东南亚的脱碳途径(英)--IEAVIP专享VIP免费

Decarbonisation
Pathways for
Southeast Asia
The IEA examines the
full spectrum
of energy issues
including oil, gas and
coal supply and
demand, renewable
energy technologies,
electricity markets,
energy efficiency,
access to energy,
demand side
management and
much more. Through
its work, the IEA
advocates policies that
will enhance the
reliability, affordability
and sustainability of
energy in its
31 member countries,
11 association countries
and beyond.
This publication and any
map included herein are
without prejudice to the
status of or sovereignty over
any territory, to the
delimitation of international
frontiers and boundaries and
to the name of any territory,
city or area.
Source: IEA.
International Energy Agency
Website: www.iea.org
IEA member
countries:
Australia
Austria
Belgium
Canada
Czech Republic
Denmark
Estonia
Finland
France
Germany
Greece
Hungary
Ireland
Italy
Japan
Korea
Lithuania
Luxembourg
Mexico
Netherlands
New Zealand
Norway
Poland
Portugal
Slovak Republic
Spain
Sweden
Switzerland
Republic of Türkiye
United Kingdom
United States
The European
Commission also
participates in the
work of the IEA
IEA association
countries:
Argentina
Brazil
China
Egypt
India
Indonesia
Morocco
Singapore
South Africa
Thailand
Ukraine
INTERNATIONAL ENERGY
AGENCY
Decarbonisation Pathways for Southeast Asia Abstract
PAGE | 3
I EA. CC BY 4.0.
Abstract
The International Energy Agency (IEA) and the Institute of Energy Economic,
Japan (IEEJ) have developed and published long-term decarbonisation pathways
for Southeast Asia and Indonesia. This paper provides a comparison of modelling
approaches, quantitative drivers, and results from the IEA and IEEJ pathways,
highlighting areas of agreement, as well as identifying and explaining differences,
and thereby to derive implications. The IEA pathway used in the comparison is the
Announced Pledges Scenario (APS) from the World Energy Outlook 2022 and the
Energy Sector Roadmap to Net Zero Emissions in Indonesia. The IEEJ pathway
is the net zero CO2 emissions in 2050 or 2060 case (CN2050/2060) from the
Decarbonisation of ASEAN Energy Systems: Optimum Technology Selection
Model Analysis up to 2060 study.
DecarbonisationPathwaysforSoutheastAsiaTheIEAexaminesthefullspectrumofenergyissuesincludingoil,gasandcoalsupplyanddemand,renewableenergytechnologies,electricitymarkets,energyefficiency,accesstoenergy,demandsidemanagementandmuchmore.Throughitswork,theIEAadvocatespoliciesthatwillenhancethereliability,affordabilityandsustainabilityofenergyinits31membercountries,11associationcountriesandbeyond.Thispublicationandanymapincludedhereinarewithoutprejudicetothestatusoforsovereigntyoveranyterritory,tothedelimitationofinternationalfrontiersandboundariesandtothenameofanyterritory,cityorarea.Source:IEA.InternationalEnergyAgencyWebsite:www.iea.orgIEAmembercountries:AustraliaAustriaBelgiumCanadaCzechRepublicDenmarkEstoniaFinlandFranceGermanyGreeceHungaryIrelandItalyJapanKoreaLithuaniaLuxembourgMexicoNetherlandsNewZealandNorwayPolandPortugalSlovakRepublicSpainSwedenSwitzerlandRepublicofTürkiyeUnitedKingdomUnitedStatesTheEuropeanCommissionalsoparticipatesintheworkoftheIEAIEAassociationcountries:ArgentinaBrazilChinaEgyptIndiaIndonesiaMoroccoSingaporeSouthAfricaThailandUkraineINTERNATIONALENERGYAGENCYDecarbonisationPathwaysforSoutheastAsiaAbstractPAGE3IEA.CCBY4.0.AbstractTheInternationalEnergyAgency(IEA)andtheInstituteofEnergyEconomic,Japan(IEEJ)havedevelopedandpublishedlong-termdecarbonisationpathwaysforSoutheastAsiaandIndonesia.Thispaperprovidesacomparisonofmodellingapproaches,quantitativedrivers,andresultsfromtheIEAandIEEJpathways,highlightingareasofagreement,aswellasidentifyingandexplainingdifferences,andtherebytoderiveimplications.TheIEApathwayusedinthecomparisonistheAnnouncedPledgesScenario(APS)fromtheWorldEnergyOutlook2022andtheEnergySectorRoadmaptoNetZeroEmissionsinIndonesia.TheIEEJpathwayisthenetzeroCO2emissionsin2050or2060case(CN2050/2060)fromtheDecarbonisationofASEANEnergySystems:OptimumTechnologySelectionModelAnalysisupto2060study.DecarbonisationPathwaysforSoutheastAsiaAcknowledgementsPAGE4IEA.CCBY4.0.AcknowledgementsThisstudywaspreparedbytheWorldEnergyOutlookteamintheDirectorateofSustainability,TechnologyandOutlooksoftheInternationalEnergyAgency,incooperationwiththeInstituteofEnergyEconomic,Japan.ThestudywasdesignedanddirectedbyBrentWanner,HeadofthePowerSectorUnitattheIEA.Theanalysisandproductionofthereportwereledandco-ordinatedbyYasmineArsalane.TheworkbenefittedfromstrategicguidancebyLauraCozzi,ChiefEnergyModelleroftheIEA.CoordinationsupportwasprovidedbyToruMuta.OtherIEAcolleagueswhocontributedtothisworkincludedDanielCrow,DavideD’AmbrosioandRyotaTaniguchi.ValuablecontributionsweremadebyIEEJcolleagues,includingguidanceandanalysisbyToshiyukiSakamoto,BoardMemberandDirectorforClimateChangeandEnergyEfficiencyUnitofIEEJ,draftingandanalysisbySoichiMorimoto,andadditionalanalysisbySeiyaEndo,HideakiObaneandKeiShimogori.ModeldevelopmentandanalysiswereprovidedbyTakashiOtsuki,ofYokohamaNationalUniversityandIEEJ.DecarbonisationPathwaysforSoutheastAsiaTableofcontentsPAGE5IEA.CCBY4.0.TableofcontentsExecutivesummary..................................................................................................................6IntroductiontoIEAdecarbonisationpathways....................................................................8Scenariodescription...............................................................................................................8Energypoliciesandclimatepledgesconsidered...................................................................8Internationalcooperationandfinance...................................................................................10Consultationprocess............................................................................................................10Energysectorrepresentation................................................................................................10Keyassumptions...................................................................................................................12IntroductiontoIEEJdecarbonisationpathways.................................................................15Scenariodescription.............................................................................................................15Energypoliciesandclimatepledgesconsidered.................................................................16Internationalcooperationandfinance...................................................................................16Consultationprocess............................................................................................................17Energysectorrepresentation................................................................................................17Keyassumptions...................................................................................................................20Comparisonofenergyandemissionspathways...............................................................22Keydrivers............................................................................................................................23Totalenergysupply...............................................................................................................28CO₂emissions.......................................................................................................................32Totalfinalconsumptionbysector.........................................................................................36Totalfinalconsumptionbyfuel.............................................................................................38Electricitygenerationbysource............................................................................................40Implications.............................................................................................................................43DecarbonisationPathwaysforSoutheastAsiaExecutivesummaryPAGE6IEA.CCBY4.0.ExecutivesummaryTheInternationalEnergyAgency(IEA)andtheInstituteofEnergyEconomic,Japan(IEEJ)havedevelopedandpublishedlong-termdecarbonisationpathwaysforSoutheastAsiaandIndonesia.Thispaperprovidesacomparisonofmodellingapproaches,quantitativedrivers,andresultsfromtheIEAandIEEJpathways,highlightingareasofagreement,aswellasidentifyingandexplainingdifferences,andtherebytoderiveimplications.TheIEApathwayusedinthecomparisonistheAnnouncedPledgesScenario(APS)fromtheWorldEnergyOutlook2022andtheEnergySectorRoadmaptoNetZeroEmissionsinIndonesia.TheIEEJpathwayisthenetzeroCO2emissionsin2050or2060case(CN2050/2060)fromtheDecarbonisationofASEANEnergySystems:OptimumTechnologySelectionModelAnalysisupto2060study.1TheIEAandIEEJapplyuniqueenergymodellingframeworks,differintheirregionalgranularityandapproaches,andreflectdifferentsetsofinputsintheirrespectivescenarios,includingthepolicysettingsbycountry,whichcananddoleadtothedevelopmentofdifferentpathways.Thetwodecarbonisationpathwayscomparedinthispaperalsoreflectuncertaintiesaroundthepaceoftechnologydevelopment,commercialisationandcost,aswellastheprevailingfossilfuelprices.Thesedifferencesareimportantconsiderationsforthecomparisons.TheIEAAPSandIEEJCN2050/2060describetwopossibledecarbonisationpathwaysforSoutheastAsiaandIndonesia.Eachrepresentsapath,butnotnecessarilythepathway,astherearemanyuncertaintiestoconsiderandachievingnetzerogoalswillinvolvecountlessdecisionsbypeopleintheregionandaroundtheworld.BothanalysesaimtoprovideinformationtopolicymakersintheregionandbeyondonpotentialwaystotackletheoverallchallengetoreduceCO2emissionsandfulfillingcountry-levelambitionstoreachnetzeroemissionsinthelongterm.WhiletheIEAandIEEJpresenttwodistinctpathways,thereareanumberofsharedpillarsofdecarbonisation,including:Scalinguprenewableenergyiscentraltobothpathways,leadingthedecarbonisationoftheelectricitysectorandfordirectuseintransport.Theimportanceofelectrificationtoimprovetheenergyefficiencyofmanyapplications,includingtransport,andtakeadvantageofdecarbonisedelectricitysupply.Thestrongshiftawayfromtheuseofunabatedcoal-firedpowerplants,whichrepresentsthesinglelargestsourceofCO2emissionsinSoutheastAsiatoday.1TheIEEJpathwaywasdevelopedincollaborationwiththeEconomicResearchInstituteofASEANandEastAsia(ERIA).DecarbonisationPathwaysforSoutheastAsiaExecutivesummaryPAGE7IEA.CCBY4.0.Therearealsoseveraldistinctionsinthedecarbonisationpathwaysdescribed.Oneofthemostsignificantistheassumptionofeconomicgrowth,wheretheIEEJCN2050/2060assumeshigherGrossDomesticProduct(GDP)growthratethantheIEAAPS.Thisdistinctioncontributestodifferencesofprojectedtotalenergysupplyaswellastotalfinalconsumption.AlthoughtheIEAAPSandIEEJCN2050/2060includeaverysimilarcontributionofrenewableenergy,IEEJCN2050/2060includesgreaterrolesforfossilfuelsequippedwithcarboncapture,andhydrogenandammoniainthelongterm.Asecondimportantdifferenceistheextentofemissionsreductionsintheenergysectorinordertoreachnetzerotargets,linkedtodifferentassumptionsforemissionsreductionsoutsidetheenergysector,includingagriculture,forestryandotherlanduse.Acriticaluncertaintyreflectedinthetwoscenariosistheroleofcarbondioxideremovalinachievingoverallclimateambitions,wheretheIEAAPShasamorelimitedrolethanIEEJCN2050/2060,andthereforecallsfordeeperdecarbonisationinallsectors.Cleanenergytransitionsmustbesecure,sustainableandaffordable.Energytransitionsoffertheopportunitytobuildsaferandmoresustainableenergysystems,whilemaintainingenergysecuritywillrequireattentiontobothtraditionalandnewvulnerabilities.Inaddition,therearemanyuncertaintiesthatwillinfluencethepathwaytowardsnetzerotargets,bothwithinandoutsidetheenergysector.Policymakershavethemostimportantroletoplaytonavigatethesefactorsandmovetheworldclosertoitsclimategoals.Internationalcooperationwillbecriticaltopromotetechnologyinnovationandknowledge-sharing,includingonthechallengesfaced,solutionsdeveloped,andpolicyandregulatoryapproachesapplied.Astransitionscallforscalingupinvestment,theaffordabilityofcleanenergytransitionswillalsodependonreducingthecostandimprovingtheavailabilityofcapital.DecarbonisationPathwaysforSoutheastAsiaIntroductiontoIEAdecarbonisationpathwaysPAGE8IEA.CCBY4.0.IntroductiontoIEAdecarbonisationpathwaysTheIEAhaspublishedtheWorldEnergyOutlook(WEO),theenergyworld’smostauthoritativesourceofanalysisandprojections,everyyearfrom1998through2022.TheIEAhasalsopublishedfiveWorldEnergyOutlookSpecialReportsonSoutheastAsia,includingthemostrecentEnergySectorRoadmaptoNetZeroEmissionsinIndonesiaandSoutheastAsiaEnergyOutlook2022.ThroughenergysystemmodelsofIndonesiaandSoutheastAsiainaggregate,complementedbyareasofin-depthanalysisforindividualcountries,thestudiesofferinsightfulprospectsforthetenmembercountriesoftheAssociationofSoutheastAsianNations(ASEAN)–BruneiDarussalam,Cambodia,Indonesia,LaoPeople’sDemocraticRepublic(LaoPDR),Malaysia,Myanmar,thePhilippines,Singapore,ThailandandVietNam.ScenariodescriptionTheIEAexplorespossibletrajectoriesforSoutheastAsia’senergysector,differentiatedprimarilybythepoliciespursuedbygovernmentsacrosstheregion.TheAnnouncedPledgesScenario(APS)fromtheWorldEnergyOutlook2022,takesaccountofalltheclimatecommitmentsmadebygovernmentsincludingnationallydeterminedcontributionsaswellaslongertermnetzeroemissionstargets,andassumesthattheywillbemetinfullandontime.Theglobaltrendsinthisscenariorepresentthecumulativeextentoftheworld’sambitiontotackleclimatechangeasofmid-2022.EnergypoliciesandclimatepledgesconsideredInSoutheastAsia,country-specificenergypoliciesandmeasures,andclimatepledgesarerepresentedinthedecarbonisationpathways,representingtheambitionsofgovernmentsanddirectionoftravelforenergysectorsandindustries.ForSoutheastAsia,theAPSreflectscross-cuttingpoliciesorpledges,aswellassectorspecificpolicies,pledgesormeasures.DecarbonisationPathwaysforSoutheastAsiaIntroductiontoIEAdecarbonisationpathwaysPAGE9IEA.CCBY4.0.Keypolicies,pledgesandmeasuresinSoutheastAsiaintheIEAAnnouncedPledgesScenarioCountryPolicy,pledgeormeasureCross-cuttingIndonesiaNetzeroemissionsby2060orbeforeMalaysiaCarbonneutralitytargetby2050ThailandNetzeroGHGemissionstargetby2065VietNamCarbonneutralitytargetby2050Indonesia,Malaysia,PhilippinesandVietNamCommitmenttotheGlobalMethanePledgeNationallydeterminedcontribution(NDC)BruneiDarussalamReductioninGHGemissionsby20%relativetobusiness-as-usual(BAU)levelsby2030CambodiaEmissionsreductiontargetof41.7%(64.6MtCO2eq)by2030IndonesiaEmissionsreductiontargetof31.89%(29%infirstNDC)unconditionallyand43.2%(41%infirstNDC)conditionallyby2030LaoPeople’sDemocraticRepublic(LaoPDR)UnconditionalreductioninGHGin2030by60%comparedtoaBAUscenarioMalaysiaReductionineconomy-widecarbonintensity(againstGDP)of45%(unconditional)in2030comparedto2005levelMyanmarTotalemissionsreductionscontributionsasapartofitsNDCare244.52milliontCO2eunconditionally,andatotalof414.75milliontCO2econditionallyby2030PhilippinesGHGemissionsreductionandavoidanceof75%,ofwhich2.71%isunconditionaland72.29%isconditional,for2020to2030SingaporeEmissionsreductiontargetofaround60MtCO2ein2030afterpeakingitsemissionsearlierThailandReductioninGHGby30%fromtheprojectedBAUlevelby2030.Thelevelofcontributioncouldincreaseupto40percent,subjecttoadequateandenhancedaccesstotechnologydevelopmentandtransfer,financialresourcesandcapacitybuildingsupportVietNamGHGemissionsreductiontargetof15.8%(from9%)unconditionallyand43.5%(from27%)conditionally,comparedtoBAUby2030ElectricitysectorIndonesiaRenewableenergyaccountsforhalf(21GW)oftotalpowercapacityadditionundertheNationalElectricitySupplyBusinessPlan(RUPTL)2019‐2028VietNamPowerDevelopmentPlan8proposed19‐20GWofsolar,18‐19GWofwind,22GWofnaturalgasand37GWofcoal‐firedcapacityby2030BuildingssectorVietNamMinimumperformancestandardsandlabellingforappliancesandlightinginresidentialandcommercialbuildingsSingaporeEnhancementstominimumenergyperformancestandardsforlightbulbsMalaysiaMinimumenergyperformancestandardsandlabellingforwashingmachines,refrigeratorsandairconditionersTransportsectorIndonesiaGovernmentplanstophaseoutconventionaltwo‐wheelersfrom2025andtohave2millionelectricvehiclesinpassengerlight‐dutyvehiclestockby2030ThailandTargetfor100%zeroemissionsvehiclesalesfrom2035Malaysia100%ofcarsby2030tobeelectrified,CNG,LPGorbiofuel‐fuelledvehiclesSingaporeTargetstophaseoutpassengerinternalcombustionenginevehiclesby2040DecarbonisationPathwaysforSoutheastAsiaIntroductiontoIEAdecarbonisationpathwaysPAGE10IEA.CCBY4.0.InternationalcooperationandfinanceInternationalcooperationonfinancingcleanenergytransitionsisacriticalcomponentofacceleratingenergytransitionsinemergingeconomies,toimplementplansandfulfildomesticambitions,whileopeningopportunitiesforevenfastertransitions.LandmarkagreementshavebeenreachedinrecentmonthsinSoutheastAsiathatmarkmajorstepsforwardininternationalcooperation.InNovember2022,aJustEnergyTransitionPartnershipwaslaunchedbetweenIndonesiaandagroupofleadingeconomies,informedbyIEAanalysisandwhichtargetsanambitiousandequitablepowersectortransitioninIndonesia.InDecember2022,aJustEnergyTransitionPartnershipwaslaunchedwithVietNam,settomobiliseaninitialUSD15.5billionofpublicandprivatefinanceover3-5yearstosupportVietNam’sgreentransition.Inbothpartnerships,ambitionsweresettopeakpowersectoremissionsin2030,followedbysubstantialdeclinesinunabatedcoal-firedgeneration.ConsultationprocessConsultationisacentralpillaroftheIEAapproachtothedevelopmentofenergyoutlooksanddecarbonisationpathways,providinginvaluableinputtothemodellingandanalysis,suchastechnologypreferences,industrialpolicy,marketandnon-marketbarriers,andotherstrategicissues.TheWorldEnergyOutlookandWEOSpecialReportsundergoapeerreviewprocess,invitinginputfromexpertsandthoughtleadersingovernment,industry,academiaandresearchorganisations.TheIEAregularlyhostsbothhigh-levelandtechnicalworkshopsonmanyaspectsofcleanenergytransitions,aswellaseventsonregionalissuesandopportunities.Forexample,insupportoftheIndonesiaNetZeroRoadmap,severaltechnicalmeetingswereheldwithcounterpartsfromthegovernmentandrelevantanalyticalinstitutionstoidentifycriticalissues,discusskeytopicsofanalysisandpreliminaryanalysis.TheseriesofWEOSpecialReportsonSoutheastAsiahavebeenpublishedonaregularbasissince2013andcontinuetobuildonanddevelopimportantpartnershipsintheregion.EnergysectorrepresentationSince1993,theIEAhasprovidedmedium-tolong-termenergyprojectionsusingacontinually-evolvingsetofdetailed,world-leadingmodellingtools.First,theWorldEnergyModel(WEM)–alarge-scalesimulationmodeldesignedtoreplicatehowenergymarketsfunction–wasdeveloped.Adecadelater,theEnergyTechnologyPerspectives(ETP)model–atechnology-richbottom-upmodel–wasdeveloped,foruseinparalleltotheWEM.In2021,theIEAadoptedforthefirstDecarbonisationPathwaysforSoutheastAsiaIntroductiontoIEAdecarbonisationpathwaysPAGE11IEA.CCBY4.0.timeanewhybridmodellingapproachrelyingonthestrengthsofbothmodelstodeveloptheworld’sfirstcomprehensivestudyofhowtotransitiontoanenergysystematnetzeroemissionsby2050.Sincethen,theIEAhasworkedtodevelopanewintegratedmodellingframework:IEA’sGlobalEnergyandClimate(GEC)Model.Asof2022,thismodelistheprincipaltoolusedtogeneratedetailedsector-by-sectorandregion-by-regionlong-termscenariosacrossIEA'spublications.TheGECModelbringstogetherthemodellingcapabilitiesoftheWEMandETPmodels.Theresultisalarge-scalebottom-uppartial-optimisationmodellingframeworkallowingforauniquesetofanalyticalcapacitiesinenergymarkets,technologytrends,policystrategiesandinvestmentsacrosstheenergysectorthatwouldbecriticaltoachieveclimategoals.IEA’sGECModelcovers26regionsindividuallythatcanbeaggregatedtoworld-levelresultsandallsectorsacrosstheenergysystemwithdedicatedbottom-upmodellingfor:Finalenergydemand,coveringindustry,transport,buildings,agricultureandothernon-energyuse.Thisisdrivenbydetailedmodellingofenergyserviceandmaterialdemand.Energytransformation,includingelectricitygenerationandheatproduction,refineries,theproductionofbiofuels,hydrogenandhydrogen-derivedfuelsandotherenergy-relatedprocesses,aswellasrelatedtransmissionanddistributionsystems,storageandtrade.Energysupply,includingfossilfuelsexploration,extractionandtrade,andavailabilityofrenewableenergyresources.DecarbonisationPathwaysforSoutheastAsiaIntroductiontoIEAdecarbonisationpathwaysPAGE12IEA.CCBY4.0.GlobalEnergyandClimateModeloverviewIEA.CCBY4.0.Source:IEA(2022),GlobalEnergyandClimateModel.KeyassumptionsTheGECModelisaverydata-intensivemodelcoveringthewholeglobalenergysystem.Muchofthedataonenergysupply,transformationanddemand,aswellasenergypricesisobtainedfromtheIEA’sowndatabasesofenergyandeconomicstatisticsandthroughcollaborationwithotherinstitutions.ItalsodrawsDecarbonisationPathwaysforSoutheastAsiaIntroductiontoIEAdecarbonisationpathwaysPAGE13IEA.CCBY4.0.datafromawiderangeofexternalsourceswhichareindicatedintherelevantsectionsofthisdocument.ThedevelopmentoftheGECModelbenefitedfromexpertreviewwithintheIEAandbeyond,andtheIEAcontinuestoworkcloselywithcolleaguesintheinternationalmodellingcommunity.EconomicgrowthassumptionsfortheshorttomediumtermarebasedonIMFWorldEconomicOutlookandOxfordEconomics.Overthelongterm,growthineachGECModelregionisbasedonawell-establishedmacroeconomicmodelintegratingdemographicandproductivitytrends,macroeconomicconditionsandthepaceoftechnologicalchange.RatesofpopulationgrowthforeachGECModelregionarebasedonthemedium-fertilityvariantprojectionsfromtheUnitedNationsPopulationDivisionWorldPopulationProspects.Fuelend-usepricesarederivedfrominternationalprices(modelledendogenouslyasthepriceslevelsneededtostimulatesufficientinvestmentinsupplytomeetdemand)andsubsidy/taxlevels–includingCO2priceswhereapplicable–andvarybycountry.Forelectricityend-useprices,themodelcalculatespricesasasumofthewholesaleelectricityprice,systemoperationcosts,transmission&distributioncosts,othersupplycosts,andtaxesandsubsidies.IncorporationofadiverserangeoftechnologiesisakeyfeatureoftheGECModel.Extensiveresearchisundertakentoupdatetherangeoftechnologiesinthemodel,aswellastheirtechno-economicassumptions.TheGECModelincludesthebreadthoftechnologiesthatareavailableonthemarkettoday.Additionally,themodelintegratesinnovativetechnologiesandindividualtechnologydesignsthatarenotyetavailableonthemarketatscalebycharacterisingtheirmaturityandexpectedtimeofmarketintroduction.Foreachsectorandtechnologyarea,newprojectannouncementsandimportanttechnologicaldevelopmentsaretrackedindatabasesthatareregularlypublished.Themodelledscenariosareinformedbysuchdetailedtechnologytrackingprocess,includingthestatusofproject-levelplanningandfinancing.Fortechnologydevelopmentprogressandthetimetobringnewtechnologiestomarkets,thescenariosassumedifferentpaceofprogressasthesupportanddegreeofinternationalcooperationoncleanenergyinnovationincreaseswiththeambitionindecarbonisation.Thefollowingdatabasesareparticularlyrelevantforthedefinitionofthedifferentscenarios:CleanTechnologyGuide:interactivedatabasethattracksthetechnologyreadinesslevel(TRL)ofover500individualtechnologydesignsandcomponentsacrossthewholeenergysystemthatcontributetoachievingthegoalofnetzeroemissions.TheGuideisupdatedeveryyear.DecarbonisationPathwaysforSoutheastAsiaIntroductiontoIEAdecarbonisationpathwaysPAGE14IEA.CCBY4.0.CleanEnergyDemonstrationProjectsDatabase:newlylaunchedin2022,thatprovidesmoredetailedtrackingofthelocation,status,capacity,timingandfunding,ofover400demonstrationprojectsacrosstheenergysector.TrackingCleanEnergyProgress:annualtrackingofdevelopmentsfor55componentsoftheenergysystemthatarecriticalforcleanenergytransitionsandtheirprogresstowardsshort-term2030milestonealongthetrajectoryoftheNetZeroby2050Scenario.HydrogenProjectsDatabase:coversallprojectscommissionedworldwidesince2000toproducehydrogenforenergyorclimate-change-mitigationpurposes.GlobalEVOutlook:annualpublicationthatidentifiesanddiscussesrecentpolicyandmarketdevelopmentsinelectricmobilityacrosstheglobe.ItisdevelopedwiththesupportofthemembersoftheCleanEnergyMinisterialElectricVehiclesInitiative(EVI).Technologycostsareanimportantinputtothemodel.Allcostsrepresentfullyinstalled/deliveredtechnologies,notsolelytheequipmentcost,unlessotherwisenotedasforfuelcells.Installed/deliveredcostsincludeengineering,procurementandconstructioncoststoinstalltheequipment.Someillustrativeexamplesincludethefollowing:Industrycostsreflectaverageironandsteelproductioncostsforagiventechnologyanddifferentiatebetweenconventionalandinnovativeproductionroutes.PowergenerationtechnologycostsareprovidedformajormarketsforrenewableenergytechnologiesincludingsolarPV,wind,hydropowerandbioenergy,coal-firedpowerplants,gas-firedpowerplants,carboncapturetechnologiesandnuclearpower,withdetailonallmajorcontributorstothelevelizedcostofelectricity,includingovernightcapitalcosts,capacityfactor,costoffuelinputs,plusoperationandmaintenance.Additionaltechnologyandregionaldetailarealsoavailable.ElectricVehiclecostsreflectproductioncosts,notretailprices,tobetterreflectthecostdeclinesintotalcostofmanufacturing,whichmoveindependentlyoffinalmarketpricesforelectricvehiclestocustomers.Fortheglobalaveragebatterypacksize,historicalvaluesin2021havebeenused.Inhybridcars,thefuturecostincreaseisdrivenbyregionalfueleconomyandemissionsstandards.Electrolysercostsreflectaprojectedgloballyweightedaverageofinstalledelectrolysertechnologies(excludingthePeople’sRepublicofChina,wherelowercostsareassumed),includinginverters.PleaseviewthevariousassumptionsthatunderpintheIEA'sanalysisonhydrogenforadditionaldetails.Fuelcellcostsarebasedonstackmanufacturingcostsonly,notinstalled/deliveredcosts.Thecostsprovidedareforautomotivefuelcellstacksforlight-dutyvehicles.Utility-scalestationarybatterycostsreflecttheaverageinstalledcostsofallbatterysystemsratedtoprovidemaximumpoweroutputforafour-hourperiod.Asummaryofselectedkeydatainputs–includingmacrodriverssuchaspopulation,economicdevelopmentsandpricesaswellastechno-economicinputssuchasfossilfuelresourcesortechnologycosts–areavailableintheGlobalEnergyandClimateModelkeyinputdataset.DecarbonisationPathwaysforSoutheastAsiaIntroductiontoIEEJdecarbonisationpathwaysPAGE15IEA.CCBY4.0.IntroductiontoIEEJdecarbonisationpathwaysTheIEEJ,togetherwiththeEconomicResearchInstituteforASEANandEastAsia(ERIA),conductedajointproject,calledDecarbonisationofASEANEnergySystems:OptimumTechnologySelectionModelAnalysisupto2060in2021and2022.Thestudy:aimstoquantitativelydescribetheenergytransitionpathwaynecessarytorealisecarbonneutralityinASEANcountriesthroughmodelanalysis;providesinformationtoformulateenergypoliciesineachcountryandseeksupportfromdevelopedcountries;andsuggestshowtominimisetheadditionalcostsoftransformingtheenergysupply-demandstructurebyusingacost-optimaltechnologyselectionmodel,whichevaluatescombinationsofenergytechnologies.ThestudyusesasinglemodelcoveringthetenASEANcountries.Inanalysingthemodel,theERIA/IEEJdiscussedenergypoliciesandactualsituationswiththeASEANgovernmentsand,onthatbasis,consideredassumptionsfortheanalysisandprioritiesoftechnologiestobeintroduced.ScenariodescriptionInthiscomparativeanalysisreport,thefollowingcaseofnetzeroCO2emissionsin2050or2060(CN2050/2060)willbepresented.CN2050/2060reflectsnationallydeclaredcarbon-neutraltargetyearsandconsidersnaturalcarbonsinksinIndonesia,Malaysia,Myanmar,ThailandandVietNambasedondiscussionswitheachcountry.Inadditiontothiscase,theDecarbonisationofASEANEnergySystems:OptimumTechnologySelectionModelAnalysisupto2060studyanalysedabaselinewithoutanyCO2emissionstarget,aninnovationcase,a2030stringenttargetcaseandaCN2050/2060withoutnaturalcarbonsinks,detailsofwhichcanbefoundintheoriginalreportifinterested.Themodelhasbeencontinuouslyupdatedfromtheoriginalreportintermsof,forexample,assumptionsonfossilfuelpricesreflectingrecenthighenergyprices.DecarbonisationPathwaysforSoutheastAsiaIntroductiontoIEEJdecarbonisationpathwaysPAGE16IEA.CCBY4.0.EnergypoliciesandclimatepledgesconsideredCN2050/2060reflectsnationallydeclaredcarbon-neutraltargetyearsandconsidersnaturalcarbonsinksinIndonesia,Malaysia,Myanmar,Thailand,andVietNambasedondiscussionswitheachcountry.Whenanenergy-relatedCO2emissionreductiontargetwithnaturalcarbonsinkbecomeslessthan50%,itstargethasbeencappedat50%.TargetyearandassumptionsofnaturalcarbonsinkinCN2050/2060CountryCNTargetyearEnergy-relatedCO2emissionreductiontargetfrom2017Assumednaturalcarbonsink2inthetargetyearBruneiDarussalam2050100%Cambodia2050100%Indonesia206050%2050targetoftheLCCPscenariointheLTS(-300Mt)LaoPDR2050100%Malaysia205050%2016valueoftheinventory(-241Mt)Myanmar206060%2040targetoftheunconditionalNDC(-13Mt)Philippines2060100%Singapore2050100%Thailand205050%2050targetoftheCarbonNeutralityPathwayintheLTS(-120Mt)VietNam205070%2030targetoftheunconditionalNDC(-59Mt)Notes:LTS=long-termstrategy,LCCP=low-carbonscenariocompatiblewithParisAgreementtarget,NDC=nationallydeterminedcontribution.InternationalcooperationandfinanceInMay2021,theMinistryofEconomy,TradeandIndustry(METI),JapanannouncedtheAsiaEnergyTransitionInitiative(AETI),whichincludesavarietyofsupportfortherealisationofvariousandpragmaticenergytransitionsinAsia.TheAETIintendsto,firstandforemost,supportforformulatingenergytransition2Absorptionofemissionsfromthelanduse,land-usechangeandforestry(LULUCF)sink.DecarbonisationPathwaysforSoutheastAsiaIntroductiontoIEEJdecarbonisationpathwaysPAGE17IEA.CCBY4.0.roadmaps,andinamannerconsistentwiththeseroadmaps,toprovideUSD10billionfinancialsupportforrenewableenergy,energyefficiency,LNG,CCUSandotherprojects.ThissupportforformulatingenergytransitionroadmapsforeachoftenASEANcountrieshasbeenprovidedthroughthestudyofERIA/IEEJ.Japan’sinitiativeforcarbonneutralityinAsiahasrecentlyculminatedtothe“AsiaZeroEmissionCommunity”(AZEC)asannouncedbyPrimeMinisterKishidainJanuary2022.EvenundertheAZEC,theERIA/IEEJ’ssupportforroadmapsremainsoneofthemainpillarsofJapan’scooperation.ConsultationprocessSince2021,theERIA/IEEJhavehadintensivediscussionswitheachofalmosttenASEANcountries.UnliketheIEA’sanalysis,theERIA/IEEJ’sstudycananalyseandshowtheroadmapofeachASEANcountry.Throughthesediscussions,theERIA/IEEJmodifiedthecarbon-neutraltargetyearsaswellasassumptionsinordertomoreaccuratelyreflecteachASEANcountry’snationalcircumstances.Mostnotably,whiletheERIA/IEEJ’sinitialanalysisdidnottakeintoaccountnaturalcarbonsinks,theanalysiswasmodifiedsothattheycouldbepartofnetzeropathways.However,whiletheresultsofanalysiswellreflectedASEANcountries’views,theroadmapsdonotnecessarilymeanagreementwiththem.ThestudyisacrediblebutsecondopiniontosupportASEANcountriesastheydeveloptheirownroadmapsforenergytransitiontowardscarbonneutrality.EnergysectorrepresentationTheanalysiswasconductedusingtheIEEJ-NEmodel,anoptimumtechnologyselectionmodel(theInstituteofEnergyEconomics,Japan[IEEJ]–<NewEarth>[NE]model)developedbyOtsukietal.3andencompassingtheentireenergysystem.TheanalysiscoversthetenASEANcountriesfrom2017to2060,withrepresentativeyears2017,2030,2040,2050,and2060,andwithdiscountrateof8%.Theanalysisconsidersenergy-relatedCO2.TheIEEJ-NEmodelisformulatedasadynamiclinearprogrammingmodel.Likethemarketallocation(MARKAL)modeldevelopedbytheEnergyTechnologySystemsAnalysisProgram(ESTAP)oftheIEA,theIEEJ-NEmodeltakesthecostandperformanceofeachenergytechnologyasinputvaluesandyieldsasingle3Otsuki,T,H.Obane,Y.Kawakami,K.Shimogori,Y.Mizuno,S.Morimoto,Y.Matsuo(2022),EnergymixfornetzeroCO2emissionsby2050inJapan,Ananalysisconsideringsitingconstraintsonvariablerenewableenergy,IEEJTransactionsonPowerandEnergy(DenkiGakkaiRonbunshiB),142(7),pp.334-346.Otsuki,T,R.Komiyama,andY.Fujii(2019),Techno-economicAssessmentofHydrogenEnergyintheElectricityandTransportSectorsUsingaSpatially-disaggregatedGlobalEnergySystemModel,JournaloftheJapanInstituteofEnergy,98(4),pp.62–72.DecarbonisationPathwaysforSoutheastAsiaIntroductiontoIEEJdecarbonisationpathwaysPAGE18IEA.CCBY4.0.combinationofthescaleandoperationalpatternsofindividualenergytechnologiestobeintroduced.DoingsominimisesthetotalcostoftheenergysystemwhenvariousconstraintssuchasCO2emissionsandpowersupply-demandbalancearegiven.Themodelcoverstheenergyconversionandend-usesectors(industry,transport,households,andcommercial),andincorporatesmorethan350technologiesintothem.Themodelevaluatescombinationsofthetechnologiesbygivingfactorssuchascapitalcosts,fuelcosts,andCO2emissionstoeachtechnology.Themodelincludeslow-carbontechnologiessuchassolarPVpowergeneration,onshoreandoffshorewindpowergeneration,hydrogen(H2)-firedpowergeneration,ammonia(NH3)-firedpowergeneration,andnegative-emissiontechnologiessuchasdirectaircapturewithcarbonstorage(DACS)andbioenergywithcarboncaptureandstorage(BECCS).Selectedlow-carbontechnologiesinthemodelRenewablesSolarphotovoltaic,onshorewind,offshorewind,hydro,geothermal,biomassNuclearLightwaterreactorCO2capture,utilisation,andstorageCO2capture:Chemicalabsorption,physicalabsorption,directaircaptureCO2utilisation:Methanesynthesis,FTliquidfuelsynthesisCO2storage:GeologicalstorageH2Supply:Electrolysis,coalgasification,methanereforming,H2separationfromNH3,H2tradeamongstASEANcountries,H2importsfromnon-ASEANcountriesConsumption:H2turbine,naturalgas-H2co-firing,fuelcellelectricvehicle,H2-baseddirectreducediron-electricarcfurnace,fuelcellship,H2aviation,H2heatforindustries,fuelsynthesis(methane,FTliquidfuel,NH3)NH3Supply:NH3synthesis,NH3tradeamongstASEANcountries,NH3importsfromnon-ASEANcountriesConsumption:NH3turbine,coal-NH3co-firing,H2separationNegative-emissiontechnologiesDirectaircapturewithCCS(directairCCS),biomass-firedpowergenerationwithCCS(bioenergywithcarboncaptureandstorage)Notes:CCS=CO2captureandstorage,CO2=carbondioxide,FT=Fischer-Tropsch,H2=hydrogen,NH3=ammonia.DecarbonisationPathwaysforSoutheastAsiaIntroductiontoIEEJdecarbonisationpathwaysPAGE19IEA.CCBY4.0.TheIEEJ-NEmodelshowstheentireenergysystem,startingfromenergyimports,secondaryenergyconversion,intraregionalenergytrade,CO2captureandstorage(CCS),andfinalconsumption.Themodelassumesvarioustypesofenergytobeconsumed.ModelledenergysystemNotes:CO2=carbondioxide,H2=hydrogen,FT=Fischer-Tropsch,liq.=liquid,LPG=liquefiedpetroleumgas,PV=photovoltaic.Source:ERIA/IEEJ.Modellingoftheend-usesectorsisbasedondatafromtheERIAEnergyOutlookandEnergySavingPotentialinEastAsia2020,theIEAenergybalancetable,andtheIEEJoutlook2021.However,somesectorsarenotsimulatedduetolackofdataavailability.Inthemodel,thepowersupply-demandisdividedbytimetoexpressthepowervariationsofsolarorwindenergyandthesystemintegrationcost.Oneyearforpowersupply-demandisdividedinto2190timeslices(4-hourresolution).Inaddition,internationaltradesofenergyandCO2areexplicitlymodelled.ThisisimportantinordertoincorporatethemeasuresforstrengtheningnaturalresourcesharingwithinASEANcountries.DecarbonisationPathwaysforSoutheastAsiaIntroductiontoIEEJdecarbonisationpathwaysPAGE20IEA.CCBY4.0.Modelledend-usesectorsBRNKHMIDNLAOMYSMMRPHLSGPTHAVNMIndustryIron&Steel✓✓✓✓Cement✓✓✓✓Chemicals✓✓✓✓✓✓✓✓Paper&Pulp✓✓✓✓✓Otherindustries✓✓✓✓✓✓✓✓✓✓TransportPassengerLDV✓✓✓✓✓✓✓✓Bus&Truck✓✓✓✓✓✓✓✓Rail✓✓✓✓✓Aviation✓✓✓✓✓✓Navigation✓✓✓✓✓✓✓Othertransport✓✓✓✓✓✓✓✓✓✓Residential&commercialLightandappliances✓✓✓✓✓✓✓✓✓✓Spacecooling✓✓✓✓✓✓✓✓✓✓Waterheating✓✓✓✓✓✓✓✓✓✓Kitchen✓✓✓✓✓✓✓✓✓✓Agricultureandother✓✓✓✓✓✓✓✓✓✓Notes:BRN=BruneiDarussalam,KHM=Cambodia,IDN=Indonesia,LAO=LaoPeople'sDemocraticRepublic,LDV=light-dutyvehicle,MYS=Malaysia,MMR=Myanmar,PHL=Philippines,SGP=Singapore,THA=Thailand,VNM=VietNam.ThemanufacturingprocessesofironandsteelforeachcountryarebasedonWorldSteelAssociationSteelStatisticalYearbook.Theassumptionsoncement,suchasefficiencyforeachcountry,arebasedonGlobalCementandConcreteAssociation.KeyassumptionsTheanalysisisbasedonkeyassumptionsbelow.Economicindicators,suchaspopulationandGDP,arebasedonERIAEnergyOutlookandEnergySavingPotentialinEastAsia2020.FossilfuelpricesareestimatedbasedonStatedPoliciesScenarioofIEAWorldEnergyOutlook2022,whichreflectsthecurrentenergypolicysettings.Whileoilreferstointernationalprice,gasandcoalrefertodomesticpriceinASEANcountries.CapacityofgridconnectionsamongstASEANcountriesisconstrainedbasedontheplannedcapacityandcommentsfromeachcountry.Pricesofimportedhydrogenandammoniafromnon-ASEANcountriesareassumedbasedonthegovernmentofJapan’slong-termH2supplychaintarget.Anupperlimitonimportsisalsoimposed.Domesticblueorgreenhydrogenproductionisavailableaswell.AnnualCO2storagecapacityissetbasedonthecumulativepotentialineachcountryfromIEA’sCarboncapture,utilisationandstorage:theopportunityinSoutheastAsiastudy.ImportsandexportsofcapturedCO2amongASEANcountriesarealsoconsidered.DecarbonisationPathwaysforSoutheastAsiaIntroductiontoIEEJdecarbonisationpathwaysPAGE21IEA.CCBY4.0.Anupperlimitonbiofuelsupplyforvehiclesisassumedtoincreaseinproportiontodemandforroadtransport.Capitalcostsofpowergenerationtechnologiesarebasedonpubliclyavailablereports–suchastheTechnologyDatafortheIndonesianPowerSectorCatalogueforGenerationandStorageofElectricityandinformationpublishedbytheDanishEnergyAgency–obtainedbyASEANcountries.Asenergystoragetechnologies,themodelconsiderspumpedhydrostorage,lithium-ionbatteriesandcompressedH2tanks.FuturecostreductionisbasedonCostProjectionsforUtility-scaleBatteryStorage:2020UpdatebytheNationalRenewableEnergyLaboratoryoftheUnitedStates.UpperlimitsonsolarPVandwindpowercapacityareestimatedbyIEEJwithGISdatatoconsidergeographicconditionsandlanduse.Upperlimitsonhydro,geothermalandbiomass-firedpowercapacityareassumedbasedonvariousliteraturesandinformationprovidedbyASEANcountries.DecarbonisationPathwaysforSoutheastAsiaComparisonofenergyandemissionspathwaysPAGE22IEA.CCBY4.0.ComparisonofenergyandemissionspathwaysTheenergyandemissionspathwaysfortheIEAAPSandIEEJCN2050/2060arecomparedthroughto2050,alsocomparingadditionalkeydriversthatstronglyinfluencetheprojections.Thequantitativecomparisonsincludetotalenergysupply,CO2emissions,relatedindicatorsandusebyfuel,totalfinalconsumptionbysectorandfuel,andelectricitygenerationbysource.Thekeypillarsofdecarbonisationareidentifiedandcomparedbetweenthetwoscenarios,highlightingkeypointsofagreementanddistinction.DecarbonisationPathwaysforSoutheastAsiaComparisonofenergyandemissionspathwaysPAGE23IEA.CCBY4.0.KeydriversGrossdomesticproductandpopulationbycountryinSoutheastAsiaandIndonesiaSoutheastAsiaIndonesiaIEA.CCBY4.0.By2050,thepopulationinSoutheastAsiaexceeds800millionpeopleandtheeconomicoutputgrowsrapidlyovertheperiod–anaveragerateof3.8%forIEAand4.6%forIEEJ.Thereareahostofkeydriversforlong-termenergyoutlooksanddecarbonisationpathways.Inadditiontothepolicysettingsandassumptionsaboutlowemissiontechnologycostsanddevelopment,thetwomostimportantareprojectedgrowthoftheeconomyandpopulation.GDPisanindicatoroftheoverallactivityandproductionofaneconomy,andstronglylinkedtobothenergysupplyanddemand.Populationiscloselylinkedtothedemandforenergy481216200020102020203020402050GrossdomesticproductTrillionUSD(2021,MER)300600900200020102020203020402050LaoPDRCambodiaBruneiMyanmarSingaporeVietNamPhilippinesMalaysiaThailandIndonesiaIEEJPopulationMillionpeople123456200020102020203020402050GrossdomesticproductTrillionUSD(2021,MER)50100150200250300350200020102020203020402050IndonesiaIEEJPopulationMillionpeopleDecarbonisationPathwaysforSoutheastAsiaComparisonofenergyandemissionspathwaysPAGE24IEA.CCBY4.0.services,whichcombinedwithotherindicatorsincludingGDP,underpinenergydemandtrendsinbuildingsandtransport.Toaddperspectivetolong-runGDPprojections,theIEAconsiders70yearsofglobalmacroeconomicexperience.TheannualisedrealGDPgrowthratebydecadeachievedbyallmedium-andlarge-sizeeconomies4since1950areanalysed,groupingcountriesintoincomecategories(levelsofGDPpercapita).Themediangrowthrateoveradecadewaslessthan2%peryearatlowdevelopmentlevelsoflessthanUSD5000percapita,around3%intheincomecategoryofUSD5000-10000percapitaand4%intheUSD10000-20000percapitaincomecategory.Higherincomelevelswerecharacterisedbyanarrowerrangebetweenthebestandworstperformersandslowergrowth–amedianrateofaround2.5%peryearaboveUSD30000percapitaandcloserto2%aboveUSD40000.Attheselevels,manyoptionsareexhaustedandgrowthisdrivenbyratesoftechnology-drivenproductivityimprovementsandveryhighlevelsofhumancapital,notablyeducationandhealth.GDPgrowthratepercapitabydecadeversusstartingGDPpercapitaineachdecade,1950-2019IEA.CCBY4.0.Notes:IEAanalysisbasedondatafromthe2021versionofthePennWorldTables.PPP=purchasingpowerparity.Ascountriesgetricher,GDPgrowthratestendtoslowaseasyopportunitiestoachievefastgrowthareexhausted.ThishistoricalexperienceinformsIEAmacroeconomicassumptions.TheIEAAPSassumesannualGDPgrowthforSoutheastAsiaof4.7%from2020to2030(asseenfrom2000to2020)and5.1%forIndonesia.Inthelongterm,however,the4Forthepurposesofthisanalysis,alarge-ormedium-sizeeconomyisonewithmorethan0.05%ofworldGDPin2019,100countrieshaveashareofGDPabovethisthreshold.2%4%6%8%<55-1010-1515-2020-2525-3030-3535-4040-4545-5050-5555-60Decadalgrowthrate(%peryear)Incomecategory(thousandUSD[2017,PPP]percapita)33rd-66thpercentile25th-75thpercentileMedianDecarbonisationPathwaysforSoutheastAsiaComparisonofenergyandemissionspathwaysPAGE25IEA.CCBY4.0.projectedGDPgrowthrateslowsto3.3%from2030to2050forSoutheastAsiaand3.6%forIndonesia,asASEANcountriesprogresstothelevelofanadvancedeconomy,growthoptionsareprogressivelyexhausted,andthedriversofgrowthcometodependonglobal,long-runratesoftechnology-drivenproductivityimprovements.IndonesiaisthelargesteconomytodayintheregionandtheIEAAPSassumesitremainssothroughto2050,asGDPgrowthaverages4.1%from2020to2050.EconomiesinothercountriesinSoutheastAsiaareassumedtogrowatanaveragerateof3.6%from2020to2050.IntermsofpopulationinSoutheastAsia,theIEAAPShascontinuedgrowthoverthenextdecadebeforeslowingoverthe2030sand2040s.Indonesiarepresentsthelargestpopulationintheregionandmaintainsitsshareoftheregionaltotalatjustover40%throughto2050.TheIEAandIEEJscenariosshareseveralpointsofagreement,includingawell-alignedGDPgrowthrateinaggregateuntil2030andpopulationgrowthtrendthatisverysimilarto2030,withslightvariationsafter2040.However,theIEEJscenarioassumesstrongereconomicgrowthbeyond2030inSoutheastAsia(4.6%from2020to2050),particularlyforIndonesia(5.0%from2020to2050).TheIEEJscenarioismorecloselyalignedwiththeeconomicgrowthsetforthinIndonesia'sLong-TermStrategysubmittedtoUNFCCCin2021,whileGDPgrowthintheIEAAPSissufficientforIndonesiatoachieveitsgoalofbecomingthefourth-largesteconomygloballyby2045.Also,theIEEJ’sassumptiononeconomicgrowthinSoutheastAsiausesthatofERIA’sEnergyOutlook,reflectingcountry-levelvisions.ThedifferencesformacroeconomicgrowthandpopulationsetthestagefordivergencesinenergysupplyanddemandbetweentheIEAandIEEJdecarbonisationpathways,particularlybeyond2030.DecarbonisationPathwaysforSoutheastAsiaComparisonofenergyandemissionspathwaysPAGE26IEA.CCBY4.0.Changeineconomicoutput,energyconsumptionandenergy-relatedCO2emissionsinSoutheastAsiaandIndonesiaSoutheastAsiaIndonesiaIEA.CCBY4.0.Note:energy-relatedCO2emissionsreferstocarbondioxideemissionsfromthecombustionoffossilfuelandnon‐renewablewastes;andenergy-relatedCO2removal.Notethatthisdoesnotincludeemissionsfromagriculture,forestryandotherlanduseemissions(AFOLU),fromindustrialandfueltransformationprocesses(processemissions),fugitiveemissionsfromfuels,flaringorCO2fromtransportandstorage.BothanalysesincludesignificantdecarbonisationofenergyinSoutheastAsiato2050,whiletotalenergysupplyiswellalignedto2030beforeadistinctseparationto2050.IntheIEAAPS,GDP,totalenergysupplyandCO2emissionsdecoupleto2050,breakingfromrecenttrends.TotalenergysupplydecouplesfromGDPgrowth–totalenergysupplygrowingat1.5%peryearcomparedwithGDPgrowthof3.8%.Thisreflectsgainsinenergyefficiencyinend-usesthroughelectrificationandmoreefficientappliances,andthetransitiontowardsnon-combustionrenewabletechnologies.Atthesametime,CO2emissionspeakaround2030andthen100200300400500201020152020202520302035204020452050GDPTotalenergysupplyCO₂emissionsIEEJIndex(2020=100)100200300400500201020152020202520302035204020452050GDPTotalenergysupplyCO₂emissionsIEEJIndex(2020=100)DecarbonisationPathwaysforSoutheastAsiaComparisonofenergyandemissionspathwaysPAGE27IEA.CCBY4.0.declineto2050,withanaveragechangeof-1.7%peryearfrom2020to2050inSoutheastAsia.IndonesiademonstratessimilartrendswithcontinuousgrowthforGDP,aplateauingoftotalenergysupplyafter2040andpeakCO2emissionsintheearly2030s.ForSoutheastAsiaintotal,theIEAandIEEJprojectionsforeconomicgrowth,energyconsumptionandCO2emissionsaresimilarto2030.Afterthatyear,economicgrowthandtotalenergysupplygrowtharenotablyhigherintheIEEJscenario,whileCO2emissionsareslightlylowerto2040and2050.InIndonesia,bothIEAandIEEJscenariosshowcloselyalignedenergyandCO2indicatorsupto2040.However,therearenotabledifferences,withIEEJprojectingmuchstrongerGDPgrowthandtotalenergysupplygrowthafter2040,whichissimilartothetrendinIndonesia'sLong-TermStrategy.Additionally,theIEAAPSshowsfasterCO2emissionsreductionsafter2040,whileIEEJrelieslessonenergy-sectoremissionsreductionstomeetclimateambitionsandreliesmoreheavilyonenergy-relatedcarbondioxideremoval(CDR)andlandusechange.DecarbonisationPathwaysforSoutheastAsiaComparisonofenergyandemissionspathwaysPAGE28IEA.CCBY4.0.TotalenergysupplyTotalenergysupplyandkeyindicatorsinSoutheastAsiaandIndonesiaSoutheastAsiaIndonesiaIEA.CCBY4.0.BothanalysesseenotablegainsfortheenergyintensityofeconomiesinSoutheastAsia,butdifferencesintotalenergysupplygrowthdrivedistinctenergypercapitatrendsto2050.Totalenergysupplyisacriticalmetricformeasuringenergydemand,asitencompassestheuseofallprimaryenergysources.Thisoverallenergymetriccombinedwitheconomicactivityandpopulation,provideusefulindicatorsforunderstandingtheefficiencyofenergyuseinaneconomyandthepaceofenergytransitions.2040608010020102020203020402050APSIEEJ153045607520102020203020402050369121520102020203020402050Totalenergysupply(EJ)EnergyintensityofGDP(MJperUSD[2021,MER])Energypercapita(GJpercapita)2040608010020102020203020402050APSIEEJ153020102020203020402050369121520102020203020402050Totalenergysupply(EJ)EnergyintensityofGDP(MJperUSD[2021,MER])Energypercapita(GJpercapita)DecarbonisationPathwaysforSoutheastAsiaComparisonofenergyandemissionspathwaysPAGE29IEA.CCBY4.0.IntheIEAAPS,theenergyintensityofGDPcontinuestosteadilydeclineinSoutheastAsia,asithasoverthepasttwodecades.By2050,theenergyintensityoftheSoutheastAsiaeconomyisabouthalfofthelevelin2020,withasimilarreductioninIndonesia.Overthesameperiod,energypercapitarisesbyjust30%inSoutheastAsiaand53%inIndonesia,reachingaplateauforbotharound2035.ForSoutheastAsia,boththeIEAandIEEJscenariosshowclosealignmentintotalenergysupplyinabsolutetermsandpercapitato2030.Furthermore,theenergyintensityofGDPissimilarthroughto2050.However,intheIEAAPS,totalenergysupplygrowthslowsdownsignificantlyafter2035comparedtoIEEJ,whichmayindicatedifferencesineconomicgrowthassumptions.Similarly,forIndonesia,bothscenariosshowcloselyalignedtotalenergysupplyinabsolutetermsandpercapitaupto2040,withtheenergyintensityofGDPreachingsimilarlevelsin2050.However,intheIEAAPS,totalenergysupplygrowthandpercapitaslowsdownsignificantlyafter2040comparedtoIEEJ.Scalinguptotalenergysupplyandtransitioningtowardslow-emissionssourcescallsforscalingupinvestmentinSoutheastAsia.IntheIEAAPS,averageannualcapitalspendinginenergyoverthe2011-2020periodwasUSD75billion.Ofthistotal,foreverydollarinvestedinunabatedfossilfuels,about50centswereinvestedincleanenergy.Lookingforward,bothanalyseswouldseeasignificantscale-upoftotalinvestmentintheenergysectortomeetgrowingenergyservicedemandcombinedwithashiftofspendingfromfossilfuelstowardscleanenergytechnologies.Reducingcostsofcleanenergytechnology,includingthroughR&Dfortechnologiesnotyetinthemarket,aswellasmobilisingcapitalfrombothpublicandprivatesourcesoffinancingwillbekeytoSoutheastAsiancountriestransitions.DecarbonisationPathwaysforSoutheastAsiaComparisonofenergyandemissionspathwaysPAGE30IEA.CCBY4.0.TotalenergysupplyofselectedfuelsinSoutheastAsiaandIndonesiaSoutheastAsiaIndonesiaIEA.CCBY4.0.Note:Duetodataavailability,renewablesincludetraditionaluseofbiomass.Fossilfuelsallpeakinthe2030sintheIEAAPS,whileoilandnaturalgascontinuegrowingto2050and2040respectivelyforIEEJ.Renewablesgrowrapidlyinbothanalyses.Thecompositionoftotalenergysupplybysourceprovidesanoverviewofthenatureofthedecarbonisationpathwayandthebalanceofsolutionstakentoachieveoverallemissionsreductionstargets.IntheIEAAPS,thecompositionoftotalenergysupplyistransformedovertheperiodfrom2020to2050.Fossilfuelsrepresentthemajorityoftotalenergysupplyin2020,andtheuseofoil,naturalgasandcoalcontinuetoincreaseto2030beforeeachreachesapeakand5101520102020203020402050EJOilNaturalgasCoalRenewables2010202020302040205020102020203020402050APSIEEJ10203020102020203020402050EJ5101520102020203020402050EJOilNaturalgasCoalRenewables2010202020302040205020102020203020402050APSIEEJ10203020102020203020402050EJDecarbonisationPathwaysforSoutheastAsiaComparisonofenergyandemissionspathwaysPAGE31IEA.CCBY4.0.declines.From2030to2050,oildeclinesby41%,coalby54%,andnaturalgasbyamoremodest12%.Atthesametime,theuseofrenewableenergytakesoff,risingfrom23%oftotalenergysupplyin2020to25%in2030and57%in2050.Alongtheway,renewablesovertakefossilfuelsintotalenergysupplyaround2045intheIEAAPS.ForSoutheastAsia,boththeIEAandIEEJscenariosshowapeakincoalconsumptionandsimilarrenewabletrendsupto2050.However,therearesignificantdifferencesbetweenthetwoscenarios.TheIEAAPSsuggestsapeakinoilconsumption,whiletheIEEJscenarioshowsstrongcontinuousgrowth,withconsumptionin2050beingtwicethatofIEA.Additionally,naturalgasgrowthissignificantlylowerinIEAupto2030,withasubsequentdecline,whereasIEEJshowsstronggrowthupto2040andslowerdecline,withconsumptionin2050beingovertwicethatofIEA.TheIEEJscenarioalsoindicatesafasterandimmediatedeclineofcoal,withconsumptionin2050beingaquarterbelowthatofIEA.Asignificantdifferenceinoilconsumptionseemstopartlyderivefromdifferentenergyservicedemandsforheavy-dutyvehiclesthatisdifficulttoelectrify,whileoverhalfofpassengercarsshifttobatteryelectricvehiclesby2050inbothscenarios.Naturalgasisexpandingby2040inthepowerandindustryasmajorsourceofenergyintheIEEJscenario.Alargepartofemissionsfromgas-firedpoweriscapturedafter2040.ForIndonesia,bothscenariosshowapeakincoalconsumptionandsimilarrenewabletrendsupto2050.However,therearenotabledifferencesbetweenthetwoscenarios.TheIEAAPSsuggestsapeakinoilconsumption,whiletheIEEJscenarioshowsstrongcontinuousgrowth,withconsumptionin2050being3.4timesthatofIEA.Moreover,naturalgasgrowthissignificantlylowerinIEAupto2050,withIEEJshowingstronggrowthupto2040andthenadecline,withconsumptionin2040beingtwicethatofIEA.Thegapisreduced,butconsumptionin2050isstill45%higherinIEEJthaninIEA.Thedifferencesineconomicgrowthassumptionscontributetosomeofthesenoteddifferences.WhileboththeIEAandIEEJpathwaysincludeverysimilarlevelsofrenewableenergy,additionalenergydemandintheIEEJCN2050/2060isanimportantfactoringreatercontributionsoffossilfuels,whoseemissionsarereducedthroughcarboncaptureoroffsetbyothertechnologiesornature-basedcarbonremovaltowards2050/2060.DecarbonisationPathwaysforSoutheastAsiaComparisonofenergyandemissionspathwaysPAGE32IEA.CCBY4.0.CO₂emissionsEnergy-relatedCO2emissionsinSoutheastAsiaandIndonesiaSoutheastAsiaIndonesiaIEA.CCBY4.0.WhilethecarbonintensityofSoutheastAsiaeconomiesdeclinesinboth,CO2emissionsgrowthto2030istwiceaslargefortheIEEJ,whileby2050declinesare40%intheIEAAPSrelativeto2020comparedwith50%intheIEEJanalysis.IntheIEAAPS,energy-relatedCO2emissionssteadilyriseto2030inSoutheastAsia,reachingapeakinthatyearthatis17%abovethelevelin2020.After2030,CO2emissionsturnandsteeplydecline,ultimatelyfallingtoalevelin2050that0.751.502.253.003.7520102020203020402050APSIEEJ150300450600201020202030204020500.51.01.52.020102020203020402050CO2emissions(Gt)CO2intensityofGDP(tpermillionUSD[2021,MER])CO2percapita(tpercapita)0.751.502.253.0020102020203020402050APSIEEJ150300450600750201020202030204020500.20.40.60.81.020102020203020402050CO2emissions(Gt)CO2intensityofGDP(tpermillionUSD[2021,MER])CO2percapita(tpercapita)DecarbonisationPathwaysforSoutheastAsiaComparisonofenergyandemissionspathwaysPAGE33IEA.CCBY4.0.waslastseenin2006.Combinedwithagrowingeconomy,thismeansthattheCO2intensityoftheSoutheastAsiaeconomysteadilydecreasesoverthenext30years,afterholdingroughlysteadyoverthepastdecade.CO2emissionspercapitaalsopeakaround2030intheIEAAPSbeforedecliningsteadily,returningtoalevelnotseenintheregionsince1995.Indonesiafollowsasimilarpathwaytotheoverallregion,thoughtheCO2intensityoftheeconomycontinuesdeclinesthathaveoccurredoverthepastdecade.ComparingthescenariosforSoutheastAsiaandIndonesia,bothIEAandIEEJindicateapeakintotalCO2emissionsandCO2percapitainthemediumterm.ThetrendsforCO2perunitofGDPandCO2percapitaarealsocloselyalignedto2040and2050.However,therearekeydifferencesinthepathwaysforCO2emissions,relatedtodifferencesinpolicysettingsandtechnologydevelopment.TheIEAAPSshowssignificantlylowergrowthinCO2emissionsto2030,achievingtargetssetinnationallydeterminedcontributions,followedbyadecline,whiletheIEEJscenariohasstronggrowthuntil2030,followedbyafasterdeclinethereafter.InIndonesia,thepointsofagreementaresimilartoSoutheastAsia,withapeakintotalCO2emissionsandCO2percapita,andCO2perunitofGDPwellalignedto2050.However,thekeydifferenceisthatthedecarbonisationisdeeperintheIEAAPS,withsignificantlylowergrowthinCO2emissionsto2030andasharperdeclineafterwards.Thesedifferencescanbeexplainedbydifferentassumptionsonenergy-relatedCDRandnaturalcarbonsink.TheIEEJprojectslargercontributionofbothtechnologicalandnature-basedcarbonremovalthantheIEA.Alsocostsofenergy-relatedCDRcansignificantlybereducedonlyafter2030,affectingthespeedofemissionsreductionundertheIEEJscenario.DecarbonisationPathwaysforSoutheastAsiaComparisonofenergyandemissionspathwaysPAGE34IEA.CCBY4.0.Grossenergy-relatedCO2emissionsbysector,carbondioxideremovalsandnetemissionsinSoutheastAsiaandIndonesiaSoutheastAsiaIndonesiaIEA.CCBY4.0.Note:Energy-relatedCDR=carbondioxideremovalfromtheatmospherethroughbioenergywithcarboncaptureandstorage(BECCS)andthroughdirectaircaptureandstorage(DACS).Bothanalysesincludedeepemissionsreductionsintheelectricitysector,whileemissionsintransportandindustryremainnotablyhigherintheIEEJCN2050/2060,offsetbymoreCDRthanintheIEAAPS.Outoftotalenergy-relatedCO2emissionsintheIEAAPS,theelectricitysectoristhelargestemittingsectorandemissionscontinuetoincreaseuntil2030,beforebeingcutbymorethanhalfby2050.To2050,theelectricitysectorremainsthelargestemitter.Thetransportandindustrysectorsalsoseeariseinemissionsuntil2030beforereducingby28%andhalvingby2050,respectively.-1-0.500.511.522.520102020APSIEEJAPSIEEJAPSIEEJGtCO2OtherElectricityBuildings,etc.TransportIndustryEnergy‐relatedCDRNetCO₂emissions203020502040-0.4-0.200.20.40.60.8120102020APSIEEJAPSIEEJAPSIEEJGtCO2OtherElectricityBuildings,etc.TransportIndustryEnergy‐relatedCDRNetCO₂emissions203020502040DecarbonisationPathwaysforSoutheastAsiaComparisonofenergyandemissionspathwaysPAGE35IEA.CCBY4.0.Thebuildingsectorseesrelativelystableemissionsoverthelongterm,whilemeetinghigherenergyservicedemand.ThereareseveralkeypointsofagreementbetweentheIEAandIEEJscenarios,startingwiththelargestreductionsinemissionscomingfromtheelectricitysector.Thisisduetotheavailabilityofanumberoflow-emissionstechnologies,includingrenewables,nuclearpower,andhydrogenandammonia.Asecondpointofagreementisthatindustryandtransportarehardertoabate,callingforresidualemissionstobepartiallycounterbalancedbyCDR.BothIEAandIEEJanalysistakeintoaccountactiontohaltandreversedeforestation.TheIEAAPSconsidersallannouncedinitiativesintheregion,suchastheReducingEmissionsfromDeforestationandForestDegradation(REDD+)programmeinCambodiaandtheEnhancedNaturalRegeneration(ENR)ProgrammeinIndonesia.IEEJanalysistakesintoaccountlanduse,landusechangeandforestry(LULUCF)forIndonesia,Malaysia,Myanmar,ThailandandVietNambaseduponconsultationswiththesecountries.CO2emissionsfromAFOLUdeclinesubstantiallyinthenextdecadetobecomeanetCO2sinkinthelatterhalfofthetwenty-firstcenturyintheAPSandbefore2030inIEEJ.WherenationalnetzerotargetsmakeuseofAFOLUsinkstooffsetremainingenergy-relatedemissions,thisisreflectedinbothIEAandIEEJmodelling.However,therearekeydifferencesbetweentheIEAandIEEJscenarios.IntheIEEJscenario,theelectricitysectoreliminatesemissionsby2050,ratherthanremainingthelargestemitter.Asecondkeydifferenceisthatallend-usesectorsseeadeclineinemissionsintheIEA,whileemissionsfromthetransportandindustrysectorshavecontinuousgrowthto2050intheIEEJscenario.IntheIEEJscenario,CDRprovidesasignificantcounterbalancetoresidualemissionsinthetransportandindustrysectorsasitbecomescost-effectivetoward2050/2060,whileremaininglimitedintheIEAAPS.DecarbonisationPathwaysforSoutheastAsiaComparisonofenergyandemissionspathwaysPAGE36IEA.CCBY4.0.TotalfinalconsumptionbysectorTotalfinalconsumptionbysectorandintensityofGDPinSoutheastAsiaandIndonesiaSoutheastAsiaIndonesiaIEA.CCBY4.0.Note:TFC=Totalfinalconsumption.HighereconomicgrowthassumptionspartlydrivestrongerenergyconsumptiongrowthintheIEEJanalysisforSoutheastAsiaandIndonesia,withlargerdifferencesintransportandbuildings.Totalfinalconsumption(TFC)ofenergyinSoutheastAsiaisprojectedtocontinuerecentgrowthin2030intheIEAAPS,beforeslowingasenergyefficiencyisdeployedinallsectors.From2030to2050,TFCinSoutheastAsiaincreasesbyjust11%,withmodestgrowthinindustryandmoresignificantgrowthinbuildings246810102030405020102020APSIEEJAPSIEEJAPSIEEJMJperUSD(2021,MER)Non-energyuseBuildings,etc.TransportIndustryTFCintensityofGDPEJ203020502040(rightaxis)2468104812162020102020APSIEEJAPSIEEJAPSIEEJMJperUSD(2021,MER)Non-energyuseBuildings,etc.TransportIndustryTFCintensityofGDPEJ203020502040(rightaxis)DecarbonisationPathwaysforSoutheastAsiaComparisonofenergyandemissionspathwaysPAGE37IEA.CCBY4.0.offsetbyreductionsintransport,mainlythroughelectrificationreflectingspecificpoliciesinIndonesia,Malaysia,ThailandandSingapore.Non-energyuseremainsaminorcontributortoTFCthroughto2050inSoutheastAsia.IndonesiaTFCreachesaplateauaround2040intheIEAAPS,withenergyconsumptionineachsectorremainingbroadlystableto2050.BoththeIEAandIEEJscenarioshavecontinuedTFCgrowthinSoutheastAsiaandIndonesiato2050,drivenbymultiplesectorsastheeconomiescontinuetodevelop.However,thepaceofgrowthisnotablydifferentbetweenthetwoscenarios.TheIEEJprojectsthatTFCinSoutheastAsiawillmorethandoublefrom2020to2050,comparedtoa40%increaseprojectedbytheIEA.InIndonesia,TFCgrowthintheIEAAPSisjustover40%,comparedwithanearlytriplingintheIEEJscenario.ThispaceofgrowthismorecloselyalignedwithIndonesia'sLong-TermStrategysubmittedtotheUNFCCCin2021.ThesedifferencesinTFCgrowthfrom2020to2050shouldbecomparedwithdifferencesinGDPgrowth.WhiletheIEEJprojects3.9timesand4.4timesGDPincreaseforSoutheastAsiaandIndonesiarespectivelyfrom2020to2050,theIEAAPSis3.0timesand3.3times.ThegapbetweentheIEAAPSandIEEJislargerinTFCgrowththaninGDPgrowth,reflectinggreaterrolesforend-useenergyefficiencyandhighersharesofelectricityintheIEAAPS.TheIEEJalsoprojectsmuchstrongergrowthratesinthetransportandbuildingssectorsinSoutheastAsiaandIndonesiathantheIEA.TheIEEJpathforTFCintheSoutheastAsiatransportsectortoalmosttripleby2050,comparedtoa31%increaseprojectedbytheIEA.InIndonesia,theIEEJprojectsalmostaquadrupleincrease,whiletheIEAprojectsa53%increase.Inthebuildingssector,theIEEJprojectsadoublingofTFCinSoutheastAsia,comparedtoa36%increaseprojectedbytheIEA.InIndonesia,theIEEJprojectsamorethandoubling,whiletheIEAprojectsa33%increase.DecarbonisationPathwaysforSoutheastAsiaComparisonofenergyandemissionspathwaysPAGE38IEA.CCBY4.0.TotalfinalconsumptionbyfuelTotalfinalconsumptionforselectedfuelsinSoutheastAsiaandIndonesiaSoutheastAsiaIndonesiaIEA.CCBY4.0.Bothanalysesseerisingelectricityuseandapeakforcoal,whiletherearenotabledifferencesinthepathsforoil,naturalgasandhydrogen.ThecompositionofTFCbyfuelshiftsmarkedlyinSoutheastAsiaintheIEAAPS.Fossilfuelsintotaldeclinefrom66%in2020to54%in2050,thoughoilhasaclearpeakin2030whilecoalshowsalongplateauinthe2020sandearly2030sbeforedecliningsharply,andnaturalgasconsumptionstabilisesoverthelongterm.Oilandcoalaresubstitutedmainlybyincreasingtheuseofelectricityand369121520102020203020402050EJElectricityOilNaturalgasCoalHydrogen0.61.21.82.43.020102020203020402050APSIEEJ20102020203020402050EJ201020202030204020502010202020302040205024681020102020203020402050EJElectricityOilNaturalgasCoalHydrogen0.30.60.91.21.520102020203020402050APSIEEJ20102020203020402050EJ2010202020302040205020102020203020402050DecarbonisationPathwaysforSoutheastAsiaComparisonofenergyandemissionspathwaysPAGE39IEA.CCBY4.0.eventuallyhydrogenintransportandindustryinparticularintheIEAAPS.InIndonesia,oilandcoalpeakaround2030,naturalgasuseremainsbroadlyflat,whileelectricityusequadruplesto2050andlow-emissionshydrogenmakesinroadsafter2030.ComparingTFCbyfuelinSoutheastAsiarevealsimportantdifferencesinthemodelleddecarbonisationpathwaysbytheIEAandIEEJ.BoththeIEAandIEEJagreethatcoalconsumptionwillpeak,andelectricitytrendsuntil2040arealigned.However,keydifferencesexist.TheIEAprojectsapeakinoilconsumption,whiletheIEEJprojectsstrongcontinuousgrowth.Consequently,oilconsumptionin2050isdoubleintheIEEJcomparedtotheIEA.NaturalgasgrowthisalsosignificantlylowerintheIEA,withconsumptionin2050being3.8timeslowerthanintheIEEJ.Additionally,theIEEJprojectsafasterandimmediatedeclineofcoal,withconsumptionin2050beinghalfthatoftheIEA.TheIEEJalsoprojectsfastergrowthinelectricitydemandafter2040,witha40%higherconsumptionthantheIEAin2050.Finally,theIEEJscenarioincludesfasteruptakeofhydrogenuse,withconsumptionbeingninetimeshigherthanintheIEAby2050.InIndonesia,boththeIEAandIEEJprojectapeakincoalconsumption,withalignedelectricitytrendsuntil2050.However,keydifferencesexist.TheIEAprojectsapeakinoilconsumption,whiletheIEEJprojectsstrongcontinuousgrowth,resultinginoilconsumptionin2050being3.8timeshigherintheIEEJthantheIEA.TheIEEJalsoprojectsnaturalgasconsumptiontobe3.4timeshigherin2050thantheIEA.TheIEEJprojectsafasterandimmediatedeclineincoal,withconsumptionin2050being32%lowerthanintheIEA.Finally,theIEEJscenarioagainincludesfasteruptakeofhydrogenuse,withconsumptionbeing5.5timeshigherthanintheIEAin2050.Again,thesepointsofdistinctionforTFCarelinkedtotheassumedeconomicgrowthintheregion.HighergrowthintheIEEJanalysiscontributetocontinuedorevenlargeruseoffossilfuels.DecarbonisationPathwaysforSoutheastAsiaComparisonofenergyandemissionspathwaysPAGE40IEA.CCBY4.0.ElectricitygenerationbysourceSoutheastAsiacoal-firedelectricitygenerationin2020,sharebycountryIEA.CCBY4.0CoalisamajorsourceofelectricityacrossSoutheastAsia,withIndonesiaandVietNamaccountingforover60%ofcoal-firedgenerationintheregionasof2020.SoutheastAsiacoal-firedpowerplantcapacitytodaystandsat90GW,withanaverageageof12years.Coalmeetscloseto45%ofelectricitysupplyinSoutheastAsia.Coal-firedunitsinThailandareolder,with19yearsonaveragewhileunitsinVietNam’sfleetareonly8yearsonaverage.Malaysia,IndonesiaandPhilippinescoalfleetshaveanaverageageof13years.Thosefivecountriesconcentrateover95%ofSoutheastAsiainstalledcoal-firedcapacityandgeneration.IntheAPSadditionsofunabatedcoalslowfromanaverageof5.5GW/yearoverthe2011-20periodtolessthan2GW/yearovertheperiodto2030beforecomingtoanend,whilealternativesourcesoflowemissionelectricityarescaledup.Theshareofunabatedcoalinelectricitygenerationdropsto33%in2030andonly6%in2050.IntheCN2050/2060,theIEEJprojectsthattheexistingcoal-firedpowerplantswillstartco-firingwithbiomass/ammoniaandCCSinstallationinthe2040’sandthatunabatedcoal-firedpowerplantswillnolongeroperatein2050.DecarbonisationPathwaysforSoutheastAsiaComparisonofenergyandemissionspathwaysPAGE41IEA.CCBY4.0.ElectricitygenerationbysourceinSoutheastAsiaandIndonesiaSoutheastAsiaIndonesiaCCBY4.0.ElectricitygenerationissettoincreaserapidlyinbothscenariosinSoutheastAsiaandIndonesia,whiletheroleofhydrogenandammonia,andnucleardifferinthelongrun.Theelectricitysectoriscriticalinanydecarbonisationpathway,andachievingadecarbonisedelectricitymixwhilemeetingincreasingelectricitydemandischallengingyetcrucial.TheIEAAPSscenariooutlineskeyelementsfordecarbonisationinSoutheastAsiaandIndonesia,includingscalinguprenewableenergytechnologies–ledbysolarPVandhydropower,complementedbywind,geothermalandbioenergy–complementedbynuclearpower,low-emissionshydrogenandammonia.Inaddition,thescenarioenvisionsapeakinunabated10002000300040005000600020102020APSIEEJAPSIEEJAPSIEEJOtherHydrogen&ammoniaWindSolarPVBioenergyGeothermalHydroNuclearNaturalgasOilCoalTWh20302050204050010001500200020102020APSIEEJAPSIEEJAPSIEEJOtherHydrogen&ammoniaWindSolarPVBioenergyGeothermalHydroNuclearNaturalgasOilCoalTWhTWh203020502040DecarbonisationPathwaysforSoutheastAsiaComparisonofenergyandemissionspathwaysPAGE42IEA.CCBY4.0.coal-firedgenerationaround2030,followedbyalong-termdecline,andmoderategrowthfortheunabateduseofnaturalgasuntil2030,followedbyreduceduse.TheIEAandIEEJscenariossharepointsofagreement,includingstronggrowthintotalgenerationuntil2050,decliningshareoffossilfuels,nuclearpowergainingafootholdinSoutheastAsia,andrenewablesbeingthecentralpillarofelectricitydecarbonisation.However,therearekeydifferencesbetweenthescenarios.TheIEEJscenarioenvisionsastrongergrowthintotalelectricitysupply,partlylinkedtotheassumedeconomicgrowthintheregion,witha46%higherincreaseby2050comparedtotheIEAAPS.Thisalsoimpliesthatwhiletotalgenerationfromrenewablesourcesis17%higherinIEEJscenariothanintheIEAAPS,theirshareislower,reaching63%in2050,comparedto79%intheIEAAPS.TheIEEJalsoincludesafasterandimmediatedeclineincoal-firedgeneration,whichwouldbe36%lowerthanintheIEAAPSby2050forSoutheastAsia.Thisispartlyduetofasterintroductionofco-firingincoal-firedgenerationundertheIEEJscenario.Furthermore,higherelectricitysupplymeansthatnaturalgas-firedgenerationpeakslaterintheIEEJscenario,in2040,andatahigherpointforbothSoutheastAsiaandIndonesia.NuclearpowerisalsolesscentraltotheIEAdecarbonisationpathwayinSoutheastAsia,with2.5timeshighergrowthfromzeroinIEEJforSoutheastAsiaandfourtimesforIndonesia.HydropowerismorecentraltotheIEAdecarbonisationpathwayinSoutheastAsia,withhydrorepresenting25%ofthemixinSoutheastAsiaand13%inIndonesiaby2050,comparedto11%and5%respectivelyinIEEJ.WindpoweralsoplaysamorecentralroleintheIEAAPS,withwindreaching17%ofSoutheastAsiaelectricitysupplyby2050comparedto9%inIEEJ.InIndonesia,theIEAAPSprojectsacontributionof17%ofthemixfromwindpower,whiletheIEEJscenarioseesnodeploymentasaresultofcost-minimisation.Finally,withstrongergrowthintotalelectricitysupply,hydrogenandammoniaaremorecentraltotheIEEJdecarbonisationpathway,withlevelsreaching19%ofthemixinSoutheastAsiaand15%inIndonesiaby2050,comparedto2%and3%respectivelyintheIEAAPS.SolarPViscentraltobothscenarios,withaquarterofelectricitysupplyintheIEAAPSandathirdinIEEJ.However,thehigherelectricitysupplyintheIEEJscenariomeansthatsolarPVistwotimeshigherinIEEJthaninIEAby2050.DecarbonisationPathwaysforSoutheastAsiaImplicationsPAGE43IEA.CCBY4.0.ImplicationsTheIEAAPSandIEEJCN2050/2060describetwopossibledecarbonisationpathwaysforSoutheastAsiaandIndonesia.Eachrepresentsapath,butnotnecessarilythepathway,astherearemanyuncertaintiestoconsiderandachievingnetzerogoalswillinvolvecountlessdecisionsbypeopleintheregionandaroundtheworld.BothanalysesaimtoprovideinformationtopolicymakersintheregionandbeyondonpotentialwaystotackletheoverallchallengetoreduceCO2emissionsandfulfillingcountry-levelambitionstoreachnetzeroemissionsinthelongterm.WhiletheIEAandIEEJpresenttwodistinctpathways,thereareanumberofsharedpillarsofdecarbonisation,including:Scalinguprenewableenergyiscentraltobothscenarios,leadingthedecarbonisationoftheelectricitysectorandfordirectuseintransport.Theimportanceofelectrificationtoimprovetheenergyefficiencyofmanyapplications,includingtransport,andtakeadvantageofdecarbonisedelectricitysupply.Thestrongshiftawayfromtheuseofunabatedcoal-firedpowerplants,whichrepresentsthesinglelargestsourceofCO2emissionsinSoutheastAsiatoday.Therearealsoseveraldistinctionsinthedecarbonisationpathwaysdescribed,whichistobeexpectedasthescenariosweredevelopedinseparateexercisesthatarebasedontwodifferentmodellingframeworks,takedifferentapproachesandreflectdifferentpolicysettingsforcountriesinSoutheastAsia.Thesedifferencesareimportantconsiderationsforthecomparisons.Oneofthemostsignificantdistinctionsistheassumptionofeconomicgrowth,leadingtodifferencesofprojectedtotalenergysupplyaswellasTFC.AlthoughtheIEAAPSandIEEJCN2050/2060includeaverysimilarcontributionofrenewableenergy,theIEEJCN2050/2060includesgreaterrolesforfossilfuelsequippedwithcarboncapture,andhydrogenandammoniainthelongterm.Asecondimportantdifferenceintheapproachistheextentofemissionsreductionsintheenergysectorinordertoreachnetzerotargets,linkedtodifferentassumptionsforemissionsreductionsoutsidetheenergysector,includingagriculture,forestryandotherlanduse.AcriticaluncertaintyreflectedinthetwoscenariosisalsotheroleofCDRinachievingoverallclimateambitions,wheretheIEAAPSincludesamorelimitedrolethanIEEJ,andthereforecallsfordeeperdecarbonisationinallsectors.Thetwodecarbonisationpathwayscomparedinthispaperalsoreflectuncertaintiesaroundthepaceoftechnologydevelopment,commercialisationandcost,aswellastheprevailingfossilfuelprices.DecarbonisationPathwaysforSoutheastAsiaImplicationsPAGE44IEA.CCBY4.0.Cleanenergytransitionsmustbesecure,sustainableandaffordable.Energytransitionsoffertheopportunitytobuildsaferandmoresustainableenergysystems,whilemaintainingenergysecuritywillrequireattentiontobothtraditionalandnewvulnerabilities.Inaddition,therearemanyuncertaintiesthatwillinfluencethepathwaytowardsnetzerotargets,bothwithinandoutsidetheenergysector.Policymakershavethemostimportantroletoplaytonavigatethesefactorsandmovetheworldclosertoitsclimategoals.Internationalcooperationwillbecriticaltopromotetechnologyinnovationandknowledge-sharing,includingonthechallengesfaced,solutionsdeveloped,andpolicyandregulatoryapproachesapplied.Astransitionscallforscalingupinvestment,theaffordabilityofcleanenergytransitionswillalsodependonreducingthecostandimprovingtheavailabilityofcapital.InternationalEnergyAgency(IEA).ThisworkreflectstheviewsoftheIEASecretariatbutdoesnotnecessarilyreflectthoseoftheIEA’sindividualMembercountriesorofanyparticularfunderorcollaborator.Theworkdoesnotconstituteprofessionaladviceonanyspecificissueorsituation.TheIEAmakesnorepresentationorwarranty,expressorimplied,inrespectofthework’scontents(includingitscompletenessoraccuracy)andshallnotberesponsibleforanyuseof,orrelianceon,thework.SubjecttotheIEA’sNoticeforCC-licencedContent,thisworkislicencedunderaCreativeCommonsAttribution4.0InternationalLicence.Thisdocumentandanymapincludedhereinarewithoutprejudicetothestatusoforsovereigntyoveranyterritory,tothedelimitationofinternationalfrontiersandboundariesandtothenameofanyterritory,cityorarea.Unlessotherwiseindicated,allmaterialpresentedinfiguresandtablesisderivedfromIEAdataandanalysis.IEAPublicationsInternationalEnergyAgencyWebsite:www.iea.orgContactinformation:www.iea.org/contactTypesetinFrancebyIEA,April,2023Coverdesign:IEAPhotocredits:©shutterstock

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱