第9卷第3期2020年5月Vol.9No.3May2020储能科学与技术EnergyStorageScienceandTechnology锂离子电池全生命周期内评估参数及评估方法综述卢婷1,2,杨文强1(1北京低碳清洁能源研究院,北京102211;2北京交通大学电气工程学院,北京100044)摘要:自锂离子电池得到广泛应用以来,为实现锂离子电池性能的充分应用,从不同角度对其性能展开研究。准确描述电池内部工作原理,评估电池当前工作状态和性能,以及预测电池未来工作能力,是提高储能系统安全性、可靠性和可用性的重要基础。对锂离子电池的研究工作从内部原理出发,归纳整理锂离子电池的建模方法,对不同建模方法的优缺点进行分析对比;汇总整理可以表征电池当前工作状态、性能和未来工作能力的特性参数:荷电状态SOC、健康状态SOH以及剩余寿命RUL,并汇总分析预测该参数的计算思路及相关数学方法,通过分类归纳不同的解决思路和数学方法,分析其优缺点。通过上述工作,总结当前锂离子电池全生命周期内研究评估的工程实用性方法,并指出未来的研究方向和热点。关键词:锂离子电池;建模方法;荷电状态估计;健康状态评估;寿命预测;全生命周期评估doi:10.19799/j.cnki.2095-4239.2019.0263中图分类号:TM911文献标志码:A文章编号:2095-4239(2020)03-657-13ReviewofevaluationparametersandmethodsoflithiumbatteriesthroughoutitslifecycleLUTing1,2,YANGWenqiang1(1NationalInstituteofClean-and-Low-CarbonEnergy,Beijing102211,China;2SchoolofElectricalEngineering,BeijingJiaotongUniversity,Beijing100044,China)Abstract:Thefinalgoalistomakefulluseoflithiumbattery.Inordertorealizeit,lithiumbatteryperformancehasbeenstudiedfromdifferentperspectivessinceithasbeenwidelyused.Itisanimportantfoundationsforimprovingthesafety,reliabilityandavailabilityoftheenergystoragesystemthatincludeaccuratelydescribinginternalworkingprinciple,evaluatingthecurrentoperationstateandpredictingfutureworkingabilityofbattery.Inordertoachievethefinalgoal,theresearchworkstartsfrominternalprinciplestudy.Aftersummarizingandarranginglithiumbatterymodelingmethods,itanalyzesandcomparestheadvantagesanddisadvantagesofdifferentmodelingmethods.Thenitsummarizesmanycharacteristicparametersthatcanrepresentthecurrentoperationstate,healthstateandfutureworkingabilityofthebattery,suchasstateofcharge(SOC),stateofhealth(SOH)andremainingusefullife(RUL).ThispapercomparestheadvantagesanddisadvantagesofmanySOCtraditionalestimationmethods.ThenitpointthatSOCestimationmethodbasedonbatterymodeliscommonapplicationmethod.ItsummarizesthecharacteristicsofmathematicalalgorithmusedinSOCestimationmethodbasedonbatterymodel,andpointputdifferentcharacteristicofthesealgorithm.ThenitpointoutthatthelatestresearchhotspotisSOCestimationmethodbasedonfusionmodel,thenexplainitsadvantagesandrisks.ForSOHevaluationmethod,itsummarizesthreedifferentevaluationparametersandSOHestimatingmethodbasedondifferentevaluationparameters.Aftersummarizing未来科学城储能技术专刊收稿日期:2019-11-15;修改稿日期:2020-03-01。第一作者及联系人:卢婷(1984—),女,工程师,研究方向为微电网技术、储能技术应用、多能源综合系统,E-mail:20022036@chnenergy.com.cn。2020年第9卷储能科学与技术andcomparing,itiswidelyapplicationengineeringmethodtoestimatingSOHthroughimpedanceofequivalentcircuitofbatterymodel.AndthehotresearchdirectioninthefutureisSOHestimationbasedonfusionmodel.ThenitanalyzesadvantagesanddisadvantagesofmathematicalalgorithminvolvedindifferentSOHestimationmethods.ThispapersummarizesandclassifiesRULestimationmethods.Afteranalyzingandcomparing,theimportantmethodsareRULbasedonempiricaldecaymodelandRULbasedonartificialintelligencealgorithm.ThenitgivesseveralmaturecasesbasedonempiricaldecaymodelandsortsouttheresearchcasesofRULbasedonfusionmodelasfuturehotspotresearch.Throughevaluationmethodsofdifferentapplicationstagesinlithiumbatterylifecycle,suchasSOC,SOHandRUL,whichcanengineeringpracticabilityrealizebatterystateevaluation,itprovidesaccuratequantitativeanalysisbasisforoptimizationusefulofbatterysystem.Keywords:lithiumbattery;modelingmethods;stateofcharge;stateofhealth;remainingusefullife;fulllifecycleassessment随着社会发展,能源的需求量不断增长,能源消费的场景不断丰富,对于能源存储的需求也愈发强烈。锂离子电池以其长寿命、高稳定性、高能量密度和价格适中等优势,成为储能系统应用的主要元件。但是由于储能装置的应用场景多样,例如大规模应用的电力系统储能装置和广泛应用的新能源汽车等,其不同的使用方式和运行环境可有特殊性。鉴于锂离子电池具有电化学的非线性特性,易受工作温度、充放电电流、充放深度等多种不同因素影响。为掌握锂离子电池系统当前的运行状况SOC(stateofcharge),评估当下电池的健康状况SOH(stateofhealth),并评估剩余使用寿命RUL(restusefullife),需要对上述特征进行准确的定量分析计算。为获得SOC、SOH、RUL信息,技术人员开展了大量相关研究,包括基础的电池模型建立[1-3],基于电池模型的荷电状态评估[4-6],在评估中应用不同的数学方法[7-14];对已经使用的电池老化状态进行评估,电池的健康状态的评价模型[15-22],以及可使用的健康评估数学方法[7-10,12-13,23-26];对电池的剩余寿命预估的原理及模型[27-38],以及可用于该评估的数据方法[3,7,39-40]。在上述研究中,进一步结合目前大数据和人工智能的研究热点,提出该新方法在SOC、SOH及RUL评估中的应用和改进。本文总结了到目前为止,针对锂离子电池应用全生命周期内的大量研究方向,包括电池的SOC评估、SOH评估及RUL预测;作为评估基础的建模研究;应用于评估的数据方法的总结和对比。对其研究应用方法进行梳理,总结给出目前应用广泛的主流思路,为相关领域研究人员提供参考。1锂离子电池模型锂离子电池的内部化学反应难以通过外部检测变量直接描述,因此通过建立锂离子电池的模型,研究外部检测量与电池内部状态的映射关系,是了解电池状态信息的有利方法。模型建立的思路主要有:电化学模型、黑箱模型和等效电路模型[41]。1.1电化学模型锂离子电池电化学模型以多孔电极理论和浓溶液理论为基础[2],将内部物理反应、化学反应及热力、动力学等过程采用偏微分方程组描述,从底层机理层面研究电池内部特性。目前锂离子电池主要电化学模型有:单粒子模型[5,42]、准二维数学模型[4]、简化准二维模型[43]。由于从机理层面建模,可以详细反映锂离子电池在应用过程中荷电变化、老化程度和发热等多方面情况。单粒子模型将电池的正负极简化为两个球形粒子,为P2D模型简化,是最简单的电化学模型。其具有结构简单计算量小的优点,但其主要缺点是与实际情况偏差较大。准二维数学模型是P2D模型,电池正负极等效为无数球形颗粒组成,精确程度高但是计算过程非常复杂,适用于实验室的理论支持研究。简化准二维模型的复杂程度介于单粒子模型和准二维模型两者之间。但是由于电化学模型本身采用偏微分方程组描述电池内部反应,所以工程实用困难,一般应用于厂家的电池研制开发中。1.2黑箱模型黑箱模型是从研究对象的外特性出发,基于658第3期卢婷等:锂离子电池全生命周期内评估参数及评估方法综述历史数据通过数据驱动方法,描述关注变量之间的关系。在锂离子电池建模中鉴于内部化学反应描述困难,采用电池外部的电压电流检测量,通过大量数据训练,得到电压、电流、温度、SOC、SOH、RUL之间的关系。目前多采用的数据训练方法有神经网络、支持向量机、模糊逻辑等[6]。黑箱模型避免了复杂的电池内部机理建模,但是由于无法进行机理解释,在数据量不足或训练方法不合适的情况下,其结果精度较差且具有不确定性。1.3等效电路模型等效电路模型通过线型变参数的电路模型模拟锂离子电池非线性工作特性,计算简单且模拟精度较高,是当前实用性较好的锂离子电池建模方法。目前已有的等效电路模型有:Rint模型、Thevenin模型、二阶RC模型、PNGV模型和GNL模型[1-2,6,14,33,44],其电路图如图1所示。其中Rint模型最简单,但是其模拟精度最差;Thevenin模型和PNGV模型为一阶等效电路模型,所以其模型结构相对简单,在工程中比较实用,但应用限制在恒流恒温的充放电运行工况。当锂离子电池健康状态无明显变化时,内部阻抗特性由单一阻抗弧向双向阻抗弧变化,导致仿真精度下降。二阶RC模型和GNL模型为二阶等效电路,可以表征电化学极化阻抗和浓差极化阻抗,具有更高仿真精度。1.4小结在电池状态研究中,电池模型建立的主要目的是估算SOC。通过上述分析汇总,可采用的电池模型有黑箱模型和等效电路模型。长期以来应用较为广泛,技术最成熟的是电池等效电路模型,其中图1锂离子电池等效电路模型Fig.1Lithiumbatteryequivalentcircuitmodel6592020年第9卷储能科学与技术Thevenin模型和GNL模型应用案例更多。随着计算机技术的发展,黑箱模型结合大数据技术的研究方法也得到关注。2锂离子电池荷电状态预测SOC表征电池剩余容量,数学表达式为:SOC=CresidualCactual,其中Cresidual为剩余电池容量;Cactual为电池实际容量[6]。在使用锂离子电池的过程中,SOC是指示电池使用状态的重要指标,也是电池管理中必备的参数,下文详细介绍SOC的估算方法。2.1传统低精度的SOC估算方法在对SOC精度要求较低的场合,可以采用的传统方法有:负载放电法、内阻法、安时积分法和开路电压法。负载放电法在电池停止工作时对电池放电到截至电压,通过放电容量推导放电前的电池SOC。内阻法通过在开路状态下测算电池内阻推导SOC。这两种方法都属于离线测量,在实际情况中不适用。安时积分法简单实用,可以在线估算SOC,工程实现中有很大优势。其缺点是不能确定初始SOC,并且电流检测误差会通过积分累计,所以导致估算精度较低。开路电压法通过SOC与电池开路电压之间的关系估算SOC,该方法的缺点是电池的电压变化较小,SOC对开路电压的波动很敏感,并且使用该方法需要电池处于静置状态。结合安时积分和开路电压法的应用可以克服部分原有缺点,但是估计误差在8%左右,在精度要求不高的场合采用[6]。2.2基于电池模型的SOC预测方法在1.4节中提出电池模型的主要用途是作为SOC估计的基础。其中基于等效电路模型,多采用现代控制理论方法,由电池等效电路构造空间状态方程,采用扩展卡尔曼滤波EKF、粒子滤波和滑模观测器等方法,观测其中的状态量SOC。卡尔曼滤波算法是一种从最小误差方差意义出发的最优估计算法,适用于非线性系统的扩展卡尔表2传统低精度SOC估算方法的优缺点对比Table2Comparisonofadvantagesanddisadvantagesoftraditionallow-precisionSOCestimationmethods分类离线方法在线方法负载放电法内阻法安时计量法开路电压法优点简单内阻与SOC密切相关算法简单,易于工程实现方法简单;能够自动给出SOC的初始值缺点需要离线测试,多用于实验室;实际系统不适用采用离线测试;实际应用较少;误差会逐渐累积;受电流、电池老化、温度等方面的影响;需采用其他辅助手段确定SOC初值;对电压信号的波动很敏感;表1锂离子电池模型的优缺点分析Table1Analysisofadvantagesanddisadvantagesoflithiumbatterymodel电化学模型黑箱模型等效电路模型电池模型准二维模型简化准二维模型单粒子模型Rint模型RC模型Thevenin模型;PNGV模型二阶RC模型;GNL模型优点贴合电池特性计算量小避开分析电池内部特性简单简单模型简单,计算量小,具有较好的实用价值精度高缺点计算量大,无法获得其解析解大倍率充放电条件下不准确无法对映射关系进行机理性解释;计算精度依赖训练数据量;适用范围较小;偏差大偏差大不能表现电池稳态电压变化等特性模型复杂660第3期卢婷等:锂离子电池全生命周期内评估参数及评估方法综述曼滤波是目前电池SOC估计应用最广泛的方法,并有大量研究提出改进的双卡尔曼滤波、无迹卡尔曼滤波、容积卡尔曼滤波[14]、自适应卡尔曼滤波等方法,用于解决等效电路模型参数误差、系统非线性化及观测噪声仅限于高斯分布等影响因素导致的误差和发散问题,目前其SOC误差一般在3%左右[6]。考虑到电池运行中温度和倍率的影响,文献[45]中在EKF算法的协方差预测步骤中引入补偿系数,通过仿真验证该方法的灵敏度和精度。粒子滤波PF适用于非线性非高斯模型,在SOC估算中的应用优势是,非高斯测量存在不确定性问题,但是通过得到的近似概率密度函数,仍然可以得到比较可靠性的结论[11]。卡尔曼滤波方法需要对模型进行线性化,但是粒子滤波可以应用于非线性系统模型,由于电池等效电路属于非线性系统,粒子滤波更适用于解决该问题[10]。相对于卡尔曼滤波器而言,滑模观测器的优点是精度更高稳定性更好,但主要缺点是设计原理复杂,在电池模型选择时需要保证电池SOC作为状态量可观,且模型精度与观测精度密切相关[3,7]。基于黑箱模型的电池SOC估算,采用现在的研究热门的人工智能技术,主要应用的方法有:神经网络、支持向量机、模糊控制等。以神经网络方法为例,BP(backpropagation)神经网络方法在非线性逼近问题中应用较为成熟,适用于模式识别、故障检测和线性拟合等领域。在锂离子电池SOC估算中,采用BP神经网络方法的模型如图2所示,其算法流程如图3所示。通过其他参数推算SOC,例如:电压、电流、电压变化率、内阻、温度等[46-47]。由于神经网络参数优化遵循经验风险最小原则,导致其泛化性能不佳。支持向量机方法相对于神经网络方法,采用基于结构风险最小化的监督学习算法,具有更好的泛化性能。这类方法是基于数据驱动的SOC估计,在当前应用中主要受限于3方面约束:训练集的规模、模型的适应性和模型的逼真性。目前相关研究内容较少,在已有的文献中采用神经网络和支持向量机等方法的SOC估计精度在5%左右[9,48]。2.3基于融合模型的SOC估算方法通过2.2节中对电池SOC估算方法的整理,可见基于等效电路模型的SOC估算,通过对电池模型的线性化,可以比较准确的求解SOC。但由于系统模型误差、线性化误差和参数误差,多种外界因素表3基于等效电路模型的SOC估计数学方法优缺点对比Table3ComparisonofadvantagesanddisadvantagesofmathematicalmethodsforSOCestimationbasedonequivalentcircuitmodel方法卡尔曼滤波法神经网络法观测器方法优点较强的初始误差修正能力;抑制噪声信号很强;很适合模拟非线性特性精度高稳定性好缺点在非线性系统线性化的过程中会引入误差需要大量、全面的样本数据进行训练估计算法的精度与模型的精度有关;电池模型需要保证SOC的可观性,设计难度大;图2模型结构Fig.2Modelstructure图3算法流程Fig.3Algorithmflow6612020年第9卷储能科学与技术影响,输入噪声和监测噪声不限于高斯噪声等因素,这种复杂非线性问题的求解非常困难。采用数据驱动的SOC估计方法,通过历史数据积累,通过机器学习构建能够反映内部规则和动态特性的预测模型,可以避开复杂非线性问题的求解。但是受到数据量限制,其SOC的误差可能偏大。在文献[49]中论述了数据量对BP神经网络估算精度的影响,当迭代次数大于86次后,SOC模型满足精度要求,如图4所示。目前衍生的融合模型SOC估算方法结合上述两种方法,是较为新颖的研究方向。在基于等效电路模型估算SOC的基础上,目前的研究方向有两种;一种是通过在线或离线的数据驱动方法优化模型参数,提高估算精度。在文献[12]中,采用离线模式优化模型参数的方法,通过计算存储一系列模型参数,在SOC估算中根据评估误差等指标,更新电路模型阶次和参数,实现模型精度和复杂度的平衡计算。在文献[8]中,采用在线优化模型参数的方法,通过遗传GA法优化电池等效电路中的开路电压参数。在文献[12]中在线优化模型参数的方法是,通过最小二乘法提高电池等效电路中的开路电压辨识精度。第二种是通过在线数据驱动方法减小观测噪声影响,进而提高测试精度,在文献[13]中,采用卡尔曼滤波方法估算电池SOC,通过最小二乘法支持向量机修正量测方程中的噪声方差,解决噪声方差初值设置不合理导致的精度下降问题。2.4小结在评估SOC的方法中,早期估算方法有安时积分法、开路电压法等,这类方法实现难度低但是精度也比较低。目前工业应用较广泛且精度较高的方法有:基于等效电路模型的卡尔曼滤波、粒子滤波和滑模控制等。近年来,科研人员开展基于人工智能算法的黑箱模型研究,但在实际应用中多采用基础算法实现。融合模型是当前SOC估算方法的前沿研究方向,其实用性和准确性还需要进一步验证。3锂离子电池健康状态估算锂离子电池使用过程中性能老化,掌握锂离子电池的当前健康状态有助于规划储能系统的未来运行。电池的健康状态定义参数SOH,其含义是使用中电池相对于新电池存储电能和能量的能力[19,50]。定量描述电池性能状态的指标有3种:电量、功率和内阻[21]。由电池剩余电量定义的SOH是当前电池能够发出的最大容量Qnow与新电池的额定容量Qnew的比值,如式(1)所示SOH=QnowQnew(1)由电池启动功率角度定义的SOH如式(2)所示SOH=(CCAocmp-CCAmin)(CCAnew-CCAmin)(2)式中,CCAocmp是电池实时启动功率,CCAnew是健康状态预测出的电池启动功率,CCAmin是最小启动功率。通过内阻变化表征电池健康状态的SOH如式(3)所示SOH=(Reol-R)(Reol-Rnew)(3)Reol是电池寿命结束时的电池内阻;Rnew是新电池的内阻;R是现在状态下的电池内阻[51]。3.1锂离子电池健康状态SOH的估算方法应用于SOH估算的方法有4种,分别是:基于电化学机理模型的SOH估算、基于容量A·h测试的SOH估算、基于等效电路内阻观测的SOH估算及基于数据驱动方法的SOH估算。电化学内部机理模型描述电池的动力学特性、热力学特性和材料等变化规律,建立表征参数和老化程度之间的对应关系。其中阿伦尼斯模型、逆幂律模型和疲劳强度模型分别从温度影响、电压力影响和机械应力影响的角度研究该影响因素和SOH之间的关系[21]。基于安时法的SOH估算,是考虑温度、充放电倍率、充放电深度等影响因素,对电池全生命周期进行加速老化试验,以获得电池容量退化模型的图4BP神经网络方法性能图Fig.4BPneuralnetworkmethodperformancechart662第3期卢婷等:锂离子电池全生命周期内评估参数及评估方法综述方法,该方法是一种离线估算方法。文献[19]在线应用时,通过计算电流积分的充放电量,以及估计开路电压与充放电电压测量之间的关系,建立SOH与电压参数之间的关系[24]。在文献[24]中,通过安时积分计算电池SOH,并采用Peukert方程对稳态容量进行修正,采用模糊逻辑实现对容量的动态修正。基于等效电路模型的SOH是工程应用较为广泛的方法,主要是通过监测内部阻抗评估SOH,如式(3)所示,其中采用的电池参数为等效电路中的内阻R0,其测试方法有:小负载电路测试、电化学工作站测试内阻和脉冲阻抗测量方法[19]。小负载电路测试通过将电池接入小负载电路,通过电压变化来确定电池的内阻[16]。电化学工作站通过对电池施加不同频率的小赋值交流电流,测量交流电压和交流电流之间的关系,得到阻抗谱曲线,得到溶液电阻、传荷电阻、Warbug阻抗参数[17],其测试波形如图5所示。脉冲阻抗测量方法通过对电池注入电流脉冲,根据电流和端电压的变化,结合欧姆定律和极化曲线,估算内阻[52],其测试波形如图6所示。与电池荷电状态SOC估算发展的趋势相似,随着人工智能技术发展推动数据驱动方法在电池健康状态SOH估算中应用。在电池健康状态SOH估计中,采用过的数据驱动方法有:自回归AR(autoregressive)模型、神经网络NN(neuralnetwork)、灰色理论(greytheory)、支持向量机SVM(supportvectormachine)以及高斯过程回归等方法[20-21]。该方法的局限在于数据来源的准确性和完整性,对SOH的精度有影响。通过对电池健康状态估算方法的阐述,对上述方法的优缺点进行分析,结论如表4所示,可见基于电池模型的评估是当前广泛应用的成熟方案,基于数据驱动的评估方法正处于研究热点。应用基于电池模型评估SOH中,电池内阻测量评估应用更为广泛,其中的主要估计方法有:离线测试方法、在线测试方法。离线测试中,通过开展加速老化试验,得到不同放电深度DOD、放电倍率和工作环境温度等相关影响因素下,电池内阻和循环次数的内在关系[19]。在电池运行中,测试电表4锂离子电池健康状态评估方法的优缺点对比Table4Comparisonofadvantagesanddisadvantagesoflithiumbatteryhealthassessmentmethods评估方法电池老化机理的评估基于实验测试的评估基于电池模型的评估基于数据驱动的评估优点对电池机理分析清晰实现方法简单模型结构清晰,内部物理含义清晰不依赖电池模型;大量数据分析可以提高精度;缺点电池内部反应精确描述很难实现;适用于电池设计研究;实用性太差,时间成本太高;SOH的算法较为繁琐、测试结论与在线应用的估计误差较大电池系统的非线性程度对估计的精度会产生很大的影响需要大量数据支撑;图5锂离子电池阻抗谱测试方法Fig.5Lithiumbatteryimpedancespectroscopytestmethod图6锂离子电池阻抗脉冲测试方法Fig.6Lithiumbatteryimpedancetestmethod6632020年第9卷储能科学与技术池内阻并根据已得到的内阻-SOH关系得到电池健康状态估算值[19]。在线测试方法中,结合电池内阻估算与SOC状态估计两种算法,基于电池内阻变化估算,求解电池的实时SOH[19]。其中采用的观测方法有:卡尔曼滤波[53]、滑模观测器、粒子滤波算法[15,18]、最小二乘法[28]等数学方法,通过上述方法观测内阻实现对电池健康状态的估算。3.2基于融合模型的SOH估算方法通过对电池健康状态评估方法的介绍,基于电池模型和基于数据驱动的SOH评估在准确性和可实现性上各有优缺点,所以结合两种方法的融合模型SOH估算是当前最新的研究热点。目前的研究中有种实践方法,一是将不同的数据驱动算法融合,在文献[23]中,尝试将粒子群算法PSO与支持向量机算法SVM融合,用PSO算法提高参数寻优的速度和速度,以提高SVM实现SOH预测的精度。在文献[27]中,也采用该思路,将多种数据驱动方法加权融合。二是将数据驱动算法与基于电池模型的方法结合起来,通过数据驱动方法优化电池模型参数检测的误差和观测状态方程的误差,以提高SOH估算的精度。在文献[23]中,采用粒子群算法和支持向量机算法对历史数据建模,预测未来测量数据,并建立电池容量衰退与模型,采用粒子滤波算法估计电池健康状态,使预测数据可以实时更新。在文献[22,25]中,通过大量离线测试,采用灰色神经网络算法对离线参数进行训练得到电池的老化模型,再建立电池等效模型并观测内部阻抗参数,采用灰色神经网络算法对在线参数进行辨识,得到电池的健康状态SOH。3.3SOH估算方法小结通过上述对电池健康状态SOH估算方法的介绍、文献思路介绍以及优缺点的分析对比可见,目前主要应用的方法是基于电池等效模型的内阻参数观测,考虑到准确性和可实现性的考虑,其主要采用的数据方法是基于卡尔曼滤波算法的各类改进型算法。在人工智能技术发展的趋势下,数据驱动型SOH估计及融合模型SOH估计是未来的研究趋势,其中融合模型SOH方法在当前的研究水平下更具有可实现性。4锂离子电池剩余寿命预测锂离子电池剩余寿命(remainingusefullife,RUL)的定义:在一定的充放电条件下,电池性能退化直至不能满足设备继续工作或规定值(失效阈值),在此之前的充放电循环次数,是作为储能系统运行规划的重要参考指标[19]。4.1锂离子电池剩余寿命预测方法目前锂离子电池剩余寿命的预测方法主要有2种:第一种是基于经验的方法,在具有大量电池使用经验的情况下,基于统计学分析给出电池寿命的粗略分析,主要应用方法有循环周期数法、安时法与加权安时法及面向事件的老化累计法[19,34,54]。第二种方法是基于性能的测试方法,该方法中包含2个过程,第一步是电池退化状态识别,根据已有的电池历史信息估计其性能状态退化状况[19];第二步是采用算法预测性能的演化趋势直到电池失效为止,这个过程中的充放电次数为RUL,这一过程有2种实现方式:基于模型的RUL预测、基于数据驱动的RUL预测。基于模型的RUL预测方法包含3类模型:退化机理模型、等效电路模型和经验退化模型[34,54]。退化机理模型是从电池内部的电化学反应的性能变化出发,建立电池老化模型[30]。在文献[55]中,对电池退化机理模型的描述,依赖于锂离子电池加工工艺及材料差异,其适用性较窄。等效电路模型采用电子元器件等效电池内部的动态特性。经验退化模型是使用能表征电池退化性能的状态变量,通过状态变量与时间的变化关系,描述电池的退化模型[19],该方表5锂离子电池SOH基于电池模型评估采用的数学方法优缺点对比Table5ComparisonofadvantagesanddisadvantagesofmathematicalmethodsusedinlithiumbatterySOHbasedonbatterymodelevaluation模型滑模观测器卡尔曼滤波粒子滤波优点对SOH的估算精度比较高应用广泛,便于实现;较强的初始误差修正能力;抑制噪声信号很强;采样集中在高概率区域,具有不同概率分布的采样近似缺点要求构建电池模型可观测,实现过程非常复杂;应用于SOH估计的案例较少电池非线性问题带来估算误差应用案例较少664第3期卢婷等:锂离子电池全生命周期内评估参数及评估方法综述法包含电池阻抗经验退化模型、电池容量经验退化模型[37]。可采用的数学方法有4类[34]:相关向量机、贝叶斯蒙特卡洛框架、粒子滤波[37]和卡尔曼滤波。基于数据驱动的RUL包含两种:基于统计模型的预测方法和基于人工智能算法的预测方法。基于统计模型的预测方法按照时间序列分析电池性能参数的变化,建立电池老化的统计学模型,通过外推估计电池寿命[22,38],其主要方法有基于回归模型和基于粒子滤波等。在文献[56]中,通过性能退化数据分析,发现电池容量退化基本符合幂函数,这类方法不涉及电池类型及内部原理,有较好的通用性。基于人工智能算法的预测方法通过大量历史数据,从电池性能参数和状态监测数据中挖掘内在的电池健康状态变化规律,开展RUL预测。随着人工智能技术的发展,相关研究得到重视,这种方法包含建模方法中不能体现的多种扰动因素和个体差异影响,在某些场合较基于模型的方法精度更高。目前多采用的智能算法有:时间序列模型AR、人工神经网络、支持向量机、相关向量机、高斯过程回归及灰色理论[20,22]。上述电池寿命预测方法的分类关系如图7所示,整理了各类预测方法中使用的数学方法,各类方法的优缺点分析如表6所示。通图7锂离子电池剩余寿命RUL预测方法分类Fig.7LithiumbatteryresiduallifeRULpredictionmethodclassification表6RUL预测方法优缺点对比Table6ComparisonofadvantagesanddisadvantagesofRULpredictionmethodsRUL预测方法基于模型的RUL方法基于数据驱动的RUL方法衰退机理模型经验衰退模型等效电路模型基于统计模型方法人工智能方法优点模型精度高工作相对较小量;降低成本实现难度低数据需求量少,预测方法易于实现,预测精度较高预测精度高缺点复杂程度高,无法实现在线预测;对测试仪器要求比较高;测试周期长、成本高;预测精度对建模精度依赖性较大不能体现部分电化学反应的隐含关系不同电池型号需要建立针对性模型;相同电池型号在不同劣化程度的RUL预测不同;模型适应性较差;预测精度依赖数据量和数据来源6652020年第9卷储能科学与技术过大量文献分析,目前应用较为成熟的方法是经验衰退模型,新兴的研究热点是基于人工智能算法的RUL预测。通过表6中对各种方法的优缺点比较可见,基于模型的RUL方法源于电池模型,具有一定普适性,但是由于建模精度和求解方法的精度限制,不能准确描述具有非线性、参数时变、有噪声影响的锂离子电池系统。基于人工智能算法的依赖数据,包含环境因素个体差异等影响,但是限于数据来源,不能适用于不同型号不同来源的电池。在文献[57]中采用自回归移动平均(ARIMA)、支持向量机(SVM)、粒子滤波(PF)3种方法预测RUL,其结论证明在60组实验数据下ARIMA的预测精度最高,SVM和PF的精度受实验数据量不足的影响较大。鉴于锂离子电池运行受到温度、电流等因素的影响,相关文献在电池寿命预测中考虑到上述影响。在文献[58]中,在实验过程中根据不同放电倍率、不同环境温度和不同循环次数获取数据,在此基础上采用改进型支持向量机方法预测电池RUL,通过调节算法参数给出在各种数据情况下满足RUL预测精度的最优算法。在文献[59]中,将电压、电流、温度、时间等信息作为输入空间,如式(4)所示,通过维数约简的映射φ:R8➝R2,得到每次循环能源效率和平均工作温度值,如式(6)所示。采用柔性支持向量回归的方法,在预测模型Ci=h(ηi,bti)中引入这两个变量,在RUL预测中可以充分考虑输入空间中各个因素的影响以及各因素之间的交互影响。文中通过实验结果验证在40次循环后预测效果接近真实值。Xi=(ICi,IDi,UCi,UDi,tCi,tDi,ϖti,T)(4)f(Xi)=æèçççç∑i=0IDi×UDi×tDiICi×UCi×tCi×100%,∑i=0(ϖti-T)iöø÷÷÷÷(5)考虑到锂离子电池的多种类型,为改善模型普适性并提高寿命预测精度,采用凸优化数据预处理方式,可以滤出由不确定因素造成的数据波动,得到标准工况下的数据,结合幂函数模型等预测可以达到提高寿命预测精度的目标[60]。在文献[61]中,通过磷酸铁锂电池、钛酸锂电池、锰酸锂电池等不同类型的锂离子电池实验数据,根据负极SEI膜增厚机理,结合Arrhenius定律,得到统一的电池容量衰减模型,并得出衰减趋势近似的结论。4.2锂离子电池剩余寿命预测模型在4.1节中提到的经验衰退模型,主要有两种类型:基于阻抗变化的循环寿命模型和基于容量衰退的剩余寿命模型。基于阻抗变化的循环寿命模型,通过电池电阻与温度改变及SOC与ΔSOC的变化,推导出了循环寿命完全经验模型[23],如式(6)~(8)所示R(t,T,SOC,Δ%SOC)=AT(T,SOC,Δ%SOC)t1/2+B(T,SOC,Δ%SOC)(6)A=a(SOC,Δ%SOC){exp[b(SOC,Δ%SOC)/T]}(7)B=c(SOC,Δ%SOC){exp[d(SOC,Δ%SOC)/T]}(8)基于容量衰退的剩余寿命模型有多种表达方式。文献[23,62],通过加速寿命试验的研究,以温度和充放电电流为加速应力,得到模型见式(9)Cr(nc,T,I)=(aea/T+bTβ+c)n(leλT+mlη+f)c(9)式中,Cr为容量衰减率;nc为循环次数;I为放电电流。根据循环使用的过程中电池额定容量的衰减情况,在文献[31,37]中,给出指数型的电池老化模型,如式(10)所示Cek=Cek1+Cek2=a1ea2⋅k+a3ea4⋅k...(10)在文献[18,37]中,给出多项式型的电池老化模型如式(11)所示Cpk=Cpk1+Cpk2=b1k2+b2k+b3...(11)式中,Cek和Cpk分别为指数模型和多项式模型得到的电池在第k次循环是的额定容量。a1、a2、a3、a4和b1、b2、b3、b4为未知模型参数,通过参数辨识得到。根据容量衰退数据,结合锂离子电池内部电化学反应原理参数[61],给出电池容量衰减模型如式(12)所示C(n)=Ae-EaRT⋅nz(12)式中,A为常数;Ea为活化能;R为气体常数;T为温度;n为循环次数。上述模型为电池老化实验数据,结合不同的数学模型及数学方法,得到的锂离子电池RUL预测模型。4.3基于融合模型的锂离子电池剩余寿命预测锂离子电池针对经验衰退模型依赖模型、数据驱动模型依赖数据的局限,融合模型结合这两种方法,希望能够解决上述问题,提高RUL预测精度,是最新的研究方向。文献[23]中,采用粒子群PSO、最小二乘支持向量回归机LSSVM和粒子滤波PF融666第3期卢婷等:锂离子电池全生命周期内评估参数及评估方法综述合。文献[36,39]中,采用时间序列分析ARIMA模型和PF算法融合。文献[31]中,采用AR模型和PF算法融合。在文献[32]中,采用RVM、AR模型和PF算法进行融合。文献[35]采用ARIMA模型和卡尔曼滤波KF算法融合。5结语随着锂离子电池的大量应用,全面掌握锂离子电池的当前运行状态、老化状态及预测未来的使用寿命,实现提前规划,可以大幅度提高储能系统的安全性、可靠性。本文整理汇总了长期以来,从不同角度对锂离子电池研究的论文,阐述了锂离子电池建模、荷电状态SOC估计、健康状态SOH估算和剩余寿命RUL预测这些问题的解决思路、采用的数学方法、分类汇总和优缺点的比对,是完整的锂离子电池全生命周期中的应用研究。通过汇总分析,可以全面认识锂离子电池当前的研究状态,了解上述问题当前在实际应用的工程方法,主要是以等效电路模型为基础,结合不同数学方法实现对SOC、SOH、RUL的估算。随着人工智能算法的发展,基于数据驱动的方法和融合模型的方法也在此进行梳理,罗列开展研究应用的智能算法,但是鉴于这种研究处于起步阶段,其优势和广泛应用的可行性还需要进一步验证。参考文献[1]贾玉健,解大,顾羽洁,等.电动汽车电池等效电路模型的分类和特点[J].电力与能源,2011,32(6):516-521.JIAYujian,XIEDa,GUYujie,etal.ClassificationandcharacteristicofequivalentcircuitmodelsforEV'sbattery[J].PowerandEnergy,2011,32(6):516-521.[2]杨杰,王婷,杜春雨,等.锂离子电池模型研究综述[J].储能科学与技术,2019,8(1):58-64.YANGJie,WANGTing,DUChunyu,etal.Overviewofthemodelingoflithium-ionbatteries[J].EnergyStorageScicenceandTechnology,2019,8(1):58-64.[3]孙冬,陈息坤.基于离散滑模观测器的锂电池荷电状态估计[J].中国电机工程学报,2015,35(1):185-191.SUNDong,CHENXikun.ChargestateestimationofLi-ionbatteriesbasedondiscrete-timeslidingmodeobservers[J].ProceedingsoftheChineseSocietyforElectricalEngineering,2015,35(1):185-191.[4]GOPALUNIRB,BRAATZRD.StateofchargeestimationinLi-ionbatteriesusinganisothermalpseudotwo-dimensionalmodel[J].2013,46(32):135-140.[5]李晓黔.锂离子电池模型参数辨识及SOC预测仿真分析[D].兰州:兰州交通大学,2016.LIXiaoqian.Parametersindentificaitonforlithium-ionbatterymodelandsimulationanalysisforSOC[D].Lanzhou:LanzhouJiaotongUniversity,2016.[6]沈佳妮,贺益君,马紫峰.基于模型的锂离子电池SOC及SOH估计方法研究进展[J].化工学报,2018,69(1):309-316.SHENJiani,HEYijun,MAZifeng.ProcessofmodelbasedonSOCandSOHestimationmethodsforlithium-ionbattery[J].CIESCJournal,2018,69(1):309-316.[7]何洪文,熊瑞.基于滑模观测器的锂离子动力电池荷电状态估计[J].吉林大学学报(工学版),2011,41(3):623-628.HEHongwen,XIONGRui.State-of-chargeestimationoflithium-ionpowerbatteryusingslidingmodeobserver[J].JournalofJilinUniversity(EngineeringandTechnologyEdition),2011,41(3):623-628.[8]刘伟龙,王丽芳,廖承林,等.基于模型融合与自适应无迹卡尔曼滤波算法的锂离子电池SOC估计[J].汽车工程,2017,39(9):997-1003.LIUWeilong,WANGLifang,LIAOChenglin,etal.EstimationofLi-ionbatterySOCbasedonmodelfusionandadaptiveunscentedKalmanfilteringalgorithm[J].AutomotiveEngineering,2017,39(9):997-1003.[9]罗晓东.基于IPSO-BP神经网络的锂电池SOC预测[J].数字制造科学,2018,16(1):45-49.LUOXiaodong.PredictionofbatteryresidualcapacitywithimprovedPSOandBPnetwork[J].DigitalManufactureScience,2018,16(1):45-49.[10]王君.基于粒子滤波的动力锂离子电池的功率状态和能量状态估计研究[D].长春:吉林大学,2018.WANGJun.Estimationofstateofpowerandstateofenergyinlithium-ionbatteriesbasedonparticlefilter[D].Changchun:JilinUniversity,2018.[11]王露,王顺利,陈蕾,等.一种改进的锂电池SOC粒子滤波估计方法[J].电池工业,2018,22(3):120-123.WANGLu,WANGShunli,CHENLei,etal.AnimprovedparticlefiltermethodforlithiumbatteriesSOCestimation[J].ChineseBatteryIndustry,2018,22(3):120-123.[12]熊瑞.基于数据模型融合的电动车辆动力电池组状态估计研究[D].北京:北京理工大学,2014.XIONGRui.Estimationofbatterypackstateforelectricvehiclesusingmodel-datafusionapproach[D].Beijing:BeijingInsititueofTechnology,2014.[13]赵天意.基于改进卡尔曼滤波的锂离子电池状态估计方法研究[D].哈尔滨:哈尔滨工业大学,2016.ZHAOTianyi.Lithium-ionbatterystateestimationmethodbasedonimprovedKalmanfilter[D].Harbin:HarbinInstituteofTechnology,2016.[14]周胜.基于双卡尔曼滤波算法的磷酸铁锂电池建模及SOC估计[D].成都:西南交通大学,2017.ZHOUSheng.ResearchofLiFePO4batterymodelingandSOCestimationbasedondouleKalmanfilteringalgorithm[D].Chengdu:SouthwestJiaotongUniversity,2017.[15]DONGH,JINX,LOUY,etal.Lithium-ionbatterystateofhealthmonitoringandremainingusefullifepredictionbasedonsupportvectorregression-particlefilter[J].ResearchGate,2014,271:114-123.[16]DAIHaifeng,WEIXuezhe,SUNZechang.AnewSOHpredictionconceptforthepowerlithium-ionbatteryusedonHEVs[C]//Vehicle6672020年第9卷储能科学与技术PowerandPropulsionConference,2009.[17]RANL,WUJF,WANGHY,etal.Predictionofstateofchargeoflithium-ionrechargeablebatterywithelectrochemicalimpedancespectroscopytheory[C]//20105thIEEEConferenceonIndustrialElectronicsandApplications,2010.[18]李佳.锂离子电池组的健康状态估计及寿命预测研究[D].重庆:重庆交通大学,2018.LIJia.StudyontheestimationofSOHandlifepredictionforLi-ionbatterypacks[D].Chongqing:ChongqingJiaotongUniversity,2018.[19]刘大同,周建宝,郭力萌,等.锂离子电池健康评估和寿命预测综述[J].仪器仪表学报,2015,36(1):1-16.LIUDatong,ZHOUJianbao,GUOLimeng,etal.Surveyonlithium-ionbatteryhealthassessmentandcyclelifeestimation[J].ChineseJournalofScientificInstrument,2015,36(1):1-16.[20]于海芳,陈文帅.锂离子动力电池寿命预测技术综述[J].电源技术,2018,42(2):304-307.YUHaifang,CHENWenshuai.Summaryoflifepredictiontechnologyforlithium-ionpowerbatteries[J].ChineseJournalofPowerSources,2018,42(2):304-307.[21]张金龙,佟微,孙叶宁,等.锂电池健康状态估算方法综述[J].电源学报,2017,15(2):128-134.ZHANGJinlong,TONGWei,SUNYening,etal.Summarizeoflithiumbatterystatusofhealthestimationmethod[J].JournalofPowerSupply,2017,15(2):128-134.[22]邹峰.锂离子电池健康状态评估及剩余使用寿命预测技术研究[D].南京:南京航空航天大学,2016.ZOUFeng.Researchonstateofhealthestimationandremainingusefullifepredictionofthelithiumionbattery[D].Nanjing:NanjingUniversityofAeronauticsandAstronautics,2016.[23]郭林.基于融合型数据驱动的锂离子电池剩余寿命预测方法的研究[D].青岛:青岛科技大学,2018.GUOLin.Researchonpredictionmethodofremainingusefullifeoflithiumionbatterybasedonfusiontypedatadriven[D].Qingdao:QingdaoUniversityofScienceandTechnology,2018.[24]李玉芳,周丽丽,王龙,等.基于工况特性的电动汽车蓄电池组SOC与SOH在线智能识别与评价方法研究[J].测控技术,2013,32(4):100-104+110.LIYufang,ZHOULili,WANGLong,etal.StudyononlineintelligentrecognitionandevaluuationmethodofsocansSOHofbatterypackforelectricvehiclebasedondrivingcyciecharacteristice[J].Measurement&ControlTechnology,2013,32(4):100-104+110.[25]韦海燕,陈孝杰,吕治强,等.灰色神经网络模型在线估算锂离子电池SOH[J].电网技术,2017,41(12):4038-4044.WEIHaiyan,CHENXiaojie,LÜZhiqiang,etal.Onlineestimationoflithium-ionbatterystateofhealthusinggreyneuralnetwork[J].PowerSystemTechnology,2017,41(12):4038-4044.[26]徐晶,张彩萍,汪国秀,等.梯次利用锂离子电池欧姆内阻测试方法研究[J].电源技术,2015,39(2):252-256.XUJing,ZHANGCaiping,WANGGuoxiu,etal.ResearchontestingmethodofohmicresistanceforLi-ionbatteriesechelonuse[J].ChineseJournalofPowerSources,2015,39(2):252-256.[27]CHAOH,YOUNBD,WANGP.Ensembleofdata-drivenprognosticalgorithmsforrobustpredictionofremainingusefullife[J].ReliabilityEngineering&SystemSafety,2012,103:120-135.[28]PRASADGK,RAHNCD.Modelbasedidentificationofagingparametersinlithiumionbatteries[J].JournalofPowerSources,2013,232:79-85.[29]毕军,张家玮,张栋,等.电动汽车行驶里程与电池SOC相关性分析与建模[J].交通运输系统工程与信息,2015,15(1):49-54.BIJun,ZHANGJiawei,ZHANGDong,etal.AcorrelationanalysisandmodelingforbatterySOCanddrivingmileageofelectricvehicle[J].JournalofTransportationSystemsEngineeringandInformationTechnology,2015,15(1):49-54.[30]林娅,陈则王.锂离子电池剩余寿命预测研究综述[J].电子测量技术,2018,41(4):29-35.LINYa,CHENZewang.Reviewofremaininglifepredictionforlithium-ionbatteries[J].ElectronicMeasurementTechnology,2018,41(4):29-35.[31]刘媛.锂离子电池的剩余寿命预测方法研究[D].西安:西安理工大学,2017.LIUYuan.Thestudyonresiduallifepredictionmethodforlithiumionbatteries[D].Xi'an:Xi'anUniversityofTechnology,2017.[32]刘月峰,赵光权,彭喜元.锂离子电池循环寿命的融合预测方法[J].仪器仪表学报,2015,36(7):1462-1469.LIUYuefeng,ZHAOGuangquan,PENGXiyuan.Afusionpredictionmethodoflithium-ionbatterycycle-life[J].ChineseJournalofScientificInstrument,2015,36(7):1462-1469.[33]孙冬.锂离子电池梯次利用关键技术研究[D].上海:上海大学,2016.SUNDong.Researchonkeytechnologiesforlithium-ionbatteryseconduse[D].Shanghai:ShanghaiUniversity,2015.[34]王宁,刘晓峰,陈泽华.锂离子电池寿命预测综述[J].电器与能效管理技术,2018(11):1-13.WANGNing,LIUXiaofeng,CHENZehua.Surveyonlithium-ionbatterylifeestimation[J].Electrical&EnergyManagementTechnology,2018(11):1-13.[35]王玉斐.基于模型的锂离子电池剩余寿命预测方法[D].哈尔滨:哈尔滨工程大学,2017.WANGYufei.PrognosticsofLi-ionbatteriesusingmodel-basedapproach[D].Harbin:HarbinEngineeringUniversity,2017.[36]张吉宣.锂离子电池剩余寿命预测方法研究[D].太原:中北大学,2018.ZHANGJixuan.Researchonremainingusefullifepredictionoflithiumionbatteries[D].Taiyuan:NorthUniversityofChina,2018.[37]周秀文.电动汽车锂离子电池健康状态估计及寿命预测方法研究[D].长春:吉林大学,2016.ZHOUXiuwen.ResearchonSOHestimationandRULpredictionmethodsoflithium-ionbatteryforelectricvehicles[D].Changchun:JilinUniversisty,2016.[38]朱晓栋.锂离子电池剩余使用寿命预测方法研究[D].南京:南京航空航天大学,2017.ZHUXiaodong.Researchonremainingusefullifepredictionofthelithiumionbattery[D].Nanjing:NanjingUniversityofAeronauticsandAstronautics,2017.[39]豆金昌,陈则王,揭由翔.基于ARIMA和PF的锂电池剩余使用寿命预测方法[J].太赫兹科学与电子信息学报,2013,11(5):822-826.DOUJinchang,CHENZewang,JIEYouxiang.RemainingusefullifepredictionforlithiumbatterybasedonARIMAandparticlefilter[J].JournalofTerahertzScienceandElectronicInformationTechnology,668第3期卢婷等:锂离子电池全生命周期内评估参数及评估方法综述2013,11(5):822-826.[40]王笑天,杨志家,王英男,等.双卡尔曼滤波算法在锂电池SOC估算中的应用[J].仪器仪表学报,2013,34(8):1732-1738.WANGXiaotian,YANGZhijia,WANGYingnan,etal.ApplicationofdualextendedKalmanfilteringalgorithminthestate-of-chargeestimationoflithium-ionbattery[J].ChineseJournalofScientificInstrument,2013,34(8):1732-1738.[41]高玮.基于数据片段的电动车锂电池参数辨识方法[D].北京:北京理工大学,2016.GAOWei.Datapieces-basedparameteridentificationforlithium-ionbatteryofelectricvehicles[D].Beijing:BeijingInstituteofTechnology,2016.[42]FANJJ.Evaluationoflithium-ionbatteryequivalentcircuitmodelsforstateofchargeestimationbyanexperimentalapproach[J].Energies,2011,4(4):582-598.[43]JOKARA,RAJABLOOB,DÉSILETSM,etal.Reviewofsimplifiedpseudo-two-dimensionalmodelsoflithium-ionbatteries[J].JournalofPowerSources,2016,327:44-55.[44]李云.锂电池的建模与仿真[D].北京:北方工业大学,2018.LIYun.Themodelingandsimulationofthelithium-ionbattery[D].Beijing:NorthChinaUniversityofTechnology,2018.[45]程江洲,李君豪,唐阳,等.新型的锂电池荷电状态估算方法[J].自动化与仪表,2019,34(11):92-96.CHENGJiangzhou,LIJunhao,TANGYang,etal.Anewmethodforestimatingthechargedstateoflithiumbattery[J].Automation&Instrumentation,2019,34(11):92-96.[46]刘聪聪,李珺凯,刘凯文,等.基于人工智能的锂电池SOC预测建模与优化[J].无线电通信技术,2019,45(3):237-242.LIUCongcong,LIJunkai,LIUKaiwen,etal.ModelingandoptimizationofSOCpredictionforlithiumbatterybasedonartificialintelligence[J].RadioCommunicationsTechnology,2019,45(3):237-242.[47]李桂娟.基于人工智能的锂电池SOC监测技术研究与应用[D].芜湖:安徽师范大学,2018.LIGuijuan.researchandapplicationofSOCmonitoringtechnologyforlithiumbatterybasedonartificialintelligence[D].Wuhu:AnhuiNormalUniversity,2018.[48]张树鹏.电动汽车电池荷电状态及行动力分析研究[D].上海:上海交通大学,2015.ZHANGShupeng.Studyofstateofchargeandmobilityanalysisforelectricvehicle[D].Shanghai:ShanghaiJiaoTongUniversity,2015.[49]苏振浩,李晓杰,秦晋,等.基于BP人工神经网络的动力电池SOC估算方法[J].储能科学与技术,2019,8(5):868-873.SUZhenhao,LIXiaojie,QINJin,etal.SOCestimationmethodofpowerbatterybasedonBPartificialneuralnetwork[J].EnergyStorageScienceandTechnology,2019,8(5):868-873.[50]刘金枝.锂离子电池状态估计与控制优化研究[D].天津:河北工业大学,2017.LIUJinzhi.Studyonlithium-ionbatterystateestimationandcontroloptimization[D].Tianjin:HebeiUniversityofTechnology,2017.[51]张剑楠.锂离子动力电池健康状态估计算法研究[D].长春:吉林大学,2015.ZHANGJiannan.Studyonstateofhealthestimationofthelithium-ionbattery[D].Changchun:Jilinuniversity,2015.[52]RATNAKUMARBV,SMARTMC,WHITCANACKLD,etal.TheimpedancecharacteristicsofmarsexplorationRoverLi-ionbatteries[J].JournalofPowerSources,2006,159(2):1428-1439.[53]刘新天.电源管理系统设计及参数估计策略研究[D].合肥:中国科学技术大学,2011.LIUXintian.Batterymanagementsystemdesignandparametersestimationmethodresearch[D].Hefei:UniversityofScienceAndTechnologyofChina,2011.[54]王一宣,李泽滔.锂离子电池剩余寿命研究综述[J].新型工业化,2019,9(2):94-97+106.WANGYixuan,LIZetao.Researchonlithium-ionbatteryremaininglife[J].TheJournalofNewIndustrialization,2019,9(2):94-97+106.[55]宾洋,于静美,朱英凯,等.实时雨流计数法及其在钴酸锂电池健康状态建模中的应用[J].中国电机工程学报,2017,37(12):3627-3635+3692.BINYang,YUJingmei,ZHUYingkai,etal.Areal-timerainflowalgorithmanditsapplicationtostateofhealthmodelingforLiCoO2lithium-ionbatteries[J].ProceedingsoftheCSEE,2017,37(12):3627-3635+3692.[56]孟祥峰,孙逢春,林程,等.动力电池循环寿命预测方法研究[J].电源技术,2009,33(11):955-958+969.MENGXiangchun,SUNFengchun,LINChen,etal.Cyclelifepredictionofpowerbattery[J].ChineseJournalofPowerSources,2009,33(11):955-958+969.[57]艾力,房红征,于功敬,等.基于数据驱动的卫星锂离子电池寿命预测方法[J].计算机测量与控制,2015,23(4):1262-1265+1272.AILi,FANGHongzheng,YUGongjing,etal.Researchondata-drivenlifepredictionmethodsofsatellitelithium-ionbattery[J].ComputerMeasurement&Control,2015,23(4):1262-1265+1272.[58]谢阳.基于数据驱动的锂离子电池剩余寿命预测方法研究[D].天津:河北工业大学,2016.XIEYang.Studyonremainingusefullifepredicitionmethodsoflithium-ionbatterybasedondatadriven[D].Tianjin:HebeiUniversityofTechnology,2016.[59]王帅,王月,苏小红,等.能量效率和工作温度对锂离子电池剩余寿命的影响[J].智能计算机与应用,2018,8(1):162-168+171.WANGShuai,WANGYue,SUXiaohong,etal.Effectofenergyefficiencyandtheworkingtemperatureaboutlithium-ionbattery[J].IntelligentComputerandApplications,2018,8(1):162-168+171.[60]姜媛媛,曾文文,沈静静,等.基于凸优化-寿命参数退化机理模型的锂离子电池剩余使用寿命预测[J].电力系统及其自动化学报,2019,31(3):23-28.JIANGYuanyuan,ZENGWenwen,SHENJingjing,etal.Predictionofremainingusefullifeoflithium-ionbatterybasedonconvexoptimiza‐tion-lifeparameterdegradationmechanismmodel[J].ProceedingsoftheCSU-EPSA,2019,31(3):23-28.[61]韩雪冰.车用锂离子电池机理模型与状态估计研究[D].北京:清华大学,2014.HANXuebing.StudyonLi-ionbatterymechanismmodelandstateestimationforelectricvehicles[D].Beijing:QsinghuaUniversity,2014.[62]高飞,李建玲,赵淑红,等.锂动力电池寿命预测研究进展[J].电子元件与材料,2009,28(6):79-83.GAOFei,LIJianlin,ZHAOShuhong,etal.Researchprogressonlithium-ionpowerbatterylifeprediction[J].ElectronicComponentsandMaterials,2009,28(6):79-83.669