气候技术值得关注:绿色氨(英)--ITIFVIP专享VIP免费

itif.org
Climate-Tech to Watch: Green Ammonia
HANNAH BOYLES | APRIL 2023
Green ammonia has attracted plenty of recent attention. The technology is promising, but cost
reductions, demonstrations, infrastructure, and market growth are all still needed if it is to
realize its potential.
KEY TAKEAWAYS
The transition to net-zero CO2 global energy systems will require countries to deploy a
range of transformational technologies. Green ammonia is envisioned to play a role in
transitioning heavy industry and agriculture systems as well as being a low-carbon energy
carrier.
Current ammonia production is responsible for 1.8 percent of global CO2 emissions.
Producing the hydrogen needed to make ammonia from water electrolysis and renewable
energy (e.g., green ammonia) is a route to significantly reduce carbon emissions.
The global green ammonia industry is still in its early stages, with only a few pilot
projects in operation, but it has attracted the attention of industry players and
governments around the world.
Bringing the costs down, improving efficiency, increasing production scale, and
expanding pipeline infrastructure will be crucial for new applications and the increased
demand envisioned.
DOE should enable the use of green hydrogen in existing ammonia production by
supporting demonstration-scale projects coupled with RD&D efforts in catalysis, reactor
design, and separations to further reduce costs. Public funding for demonstrations of new
end uses will help create a market for green ammonia.
INFORMATION TECHNOLOGY & INNOVATION FOUNDATION | APRIL 2023 PAGE 2
WHAT IS IT?
Ammonia, a colorless gas widely used to produce fertilizer, has become the subject of intense
interest due to its promise as an energy carrier and zero-carbon fuel. Producing ammonia is
energy intensive and typically involves a reaction of fossil-derived hydrogen and nitrogen
obtained from the atmosphere. Most of the associated carbon emissions are from the use of
natural gas as a feedstock for the hydrogen precursor. Alternatively, producing the hydrogen from
water electrolysis wherein renewable electricity is the energy source (e.g., green ammonia) is a
route to significantly reduce the carbon emissions from ammonia production.1
WHY IS IT IMPORTANT? GREEN AMMONIA AS A CROSSCUTTING CLIMATE
SOLUTION
The transition to a net-zero carbon dioxide (CO2) global energy system will require countries to
deploy a wide range of transformative low-carbon technologies in order to change how energy is
generated, transported, and used. Green ammonia is envisioned to play several roles in breaking
the dependencies between energy use and CO2 emissions (e.g., decarbonization) in heavy
industry and agriculture systems as well as being a low-carbon energy carrier.2
Current global ammonia production, mainly for use as a feedstock to produce fertilizer, is roughly
194 million ton per year and is responsible for 1.8 percent of global CO2 emissions.3 Widespread
adoption of green ammonia could therefore significantly reduce agriculture’s carbon footprint. A
recent study estimates that using green ammonia for fertilizer, heat, and fuel could reduce the
fossil energy consumption of corn and other small grain crops by 90 percent.4
Beyond agriculture, green ammonia offers additional decarbonization options across other
industries. It has a high energy density and—unlike hydrogen—does not need to be stored at
extremely low temperatures or high pressures, making it easier to transport.5 These properties are
especially relevant in the maritime sector, which is responsible for roughly 3 percent of global
emissions.6 The International Energy Agency (IEA) sees ammonia as a vital solution for
decarbonizing shipping, potentially addressing 45 percent of energy demand by 2050.7
Green ammonia may also play an important role as an energy carrier in the power sector. It is a
good candidate for transporting hydrogen, and can also be used as a long-duration storage
medium to provide electricity at times when renewable generation is low. In this case, variable
renewable energy (e.g., wind, solar) could be used to make hydrogen and then ammonia, which
could be stored. Whenever energy use is needed, the ammonia could be reconverted to provide
that energy. And, as storing power for inter-seasonal periods is costly, ammonia could reduce
costs in this area.8
INFORMATION TECHNOLOGY & INNOVATION FOUNDATION | APRIL 2023 PAGE 3
Figure 1: Role of green ammonia in future energy systems
itif.orgClimate-TechtoWatch:GreenAmmoniaHANNAHBOYLESAPRIL2023Greenammoniahasattractedplentyofrecentattention.Thetechnologyispromising,butcostreductions,demonstrations,infrastructure,andmarketgrowthareallstillneededifitistorealizeitspotential.KEYTAKEAWAYSThetransitiontonet-zeroCO2globalenergysystemswillrequirecountriestodeployarangeoftransformationaltechnologies.Greenammoniaisenvisionedtoplayaroleintransitioningheavyindustryandagriculturesystemsaswellasbeingalow-carbonenergycarrier.Currentammoniaproductionisresponsiblefor1.8percentofglobalCO2emissions.Producingthehydrogenneededtomakeammoniafromwaterelectrolysisandrenewableenergy(e.g.,greenammonia)isaroutetosignificantlyreducecarbonemissions.Theglobalgreenammoniaindustryisstillinitsearlystages,withonlyafewpilotprojectsinoperation,butithasattractedtheattentionofindustryplayersandgovernmentsaroundtheworld.Bringingthecostsdown,improvingefficiency,increasingproductionscale,andexpandingpipelineinfrastructurewillbecrucialfornewapplicationsandtheincreaseddemandenvisioned.DOEshouldenabletheuseofgreenhydrogeninexistingammoniaproductionbysupportingdemonstration-scaleprojectscoupledwithRD&Deffortsincatalysis,reactordesign,andseparationstofurtherreducecosts.Publicfundingfordemonstrationsofnewenduseswillhelpcreateamarketforgreenammonia.INFORMATIONTECHNOLOGY&INNOVATIONFOUNDATIONAPRIL2023PAGE2WHATISIT?Ammonia,acolorlessgaswidelyusedtoproducefertilizer,hasbecomethesubjectofintenseinterestduetoitspromiseasanenergycarrierandzero-carbonfuel.Producingammoniaisenergyintensiveandtypicallyinvolvesareactionoffossil-derivedhydrogenandnitrogenobtainedfromtheatmosphere.Mostoftheassociatedcarbonemissionsarefromtheuseofnaturalgasasafeedstockforthehydrogenprecursor.Alternatively,producingthehydrogenfromwaterelectrolysiswhereinrenewableelectricityistheenergysource(e.g.,greenammonia)isaroutetosignificantlyreducethecarbonemissionsfromammoniaproduction.1WHYISITIMPORTANT?GREENAMMONIAASACROSSCUTTINGCLIMATESOLUTIONThetransitiontoanet-zerocarbondioxide(CO2)globalenergysystemwillrequirecountriestodeployawiderangeoftransformativelow-carbontechnologiesinordertochangehowenergyisgenerated,transported,andused.GreenammoniaisenvisionedtoplayseveralrolesinbreakingthedependenciesbetweenenergyuseandCO2emissions(e.g.,decarbonization)inheavyindustryandagriculturesystemsaswellasbeingalow-carbonenergycarrier.2Currentglobalammoniaproduction,mainlyforuseasafeedstocktoproducefertilizer,isroughly194milliontonperyearandisresponsiblefor1.8percentofglobalCO2emissions.3Widespreadadoptionofgreenammoniacouldthereforesignificantlyreduceagriculture’scarbonfootprint.Arecentstudyestimatesthatusinggreenammoniaforfertilizer,heat,andfuelcouldreducethefossilenergyconsumptionofcornandothersmallgraincropsby90percent.4Beyondagriculture,greenammoniaoffersadditionaldecarbonizationoptionsacrossotherindustries.Ithasahighenergydensityand—unlikehydrogen—doesnotneedtobestoredatextremelylowtemperaturesorhighpressures,makingiteasiertotransport.5Thesepropertiesareespeciallyrelevantinthemaritimesector,whichisresponsibleforroughly3percentofglobalemissions.6TheInternationalEnergyAgency(IEA)seesammoniaasavitalsolutionfordecarbonizingshipping,potentiallyaddressing45percentofenergydemandby2050.7Greenammoniamayalsoplayanimportantroleasanenergycarrierinthepowersector.Itisagoodcandidatefortransportinghydrogen,andcanalsobeusedasalong-durationstoragemediumtoprovideelectricityattimeswhenrenewablegenerationislow.Inthiscase,variablerenewableenergy(e.g.,wind,solar)couldbeusedtomakehydrogenandthenammonia,whichcouldbestored.Wheneverenergyuseisneeded,theammoniacouldbereconvertedtoprovidethatenergy.And,asstoringpowerforinter-seasonalperiodsiscostly,ammoniacouldreducecostsinthisarea.8INFORMATIONTECHNOLOGY&INNOVATIONFOUNDATIONAPRIL2023PAGE3Figure1:RoleofgreenammoniainfutureenergysystemsINFORMATIONTECHNOLOGY&INNOVATIONFOUNDATIONAPRIL2023PAGE4Scalingupglobalammoniaproductiondoes,however,comewithattendantrisks.Ammoniaistoxic,andthoughitisnotitselfagreenhousegas,ammonialeakscaninteractwithotherairbornechemicalstoformfineparticulatematterthatultimatelyaffectsairquality.9Inaddition,burningammoniainsteadoffossilfuelsgeneratesnitrogenoxides(NOx),althoughexistingtechnologiescanminimizetheseemissions.10Figure1illustratesthelandscapeofammoniagenerationanduses.GLOBALPROGRESSTheglobalgreenammoniaindustryisstillinitsearlystages,butithasattractedtheattentionofindustryplayersandgovernmentsaroundtheworld,withpilotplantsalreadyinoperation,includingthoseinBritainandJapanthatarepoweredbywindenergy.Severalcompaniesalsohavecommercial-scaleplantsindevelopment.NorwegianchemicalcompanyYaraisbuildingaplanttoproduce3,500tonsofgreenammoniaannuallyinAustralia.ThelargestprojectannouncedtodateisinSaudiArabia.Oncecompletein2025,itwillprovide1.2milliontonsofgreenammoniaannually.11Inparallel,manycompaniesandgovernmentsaresupportingresearchintonewapplicationsforgreenammonia.Mitsubishiisdevelopingturbinestodirectlycombustammonia,andJapanhasfundedaprojecttoretrofitshipstorunonammoniaby2024.LeadingmaritimeenginemanufacturersMANandWärtsilähavebothannouncedplanstomakeinternalcombustionenginesthatcanrunonammoniacommerciallyavailableby2024.12PROGRESSINTHEUSGreenammoniaiscurrentlyonlyproducedatapilotscaleintheUnitedStates,butmajoreffortsareunderwaytoachievecommercialization.TheDepartmentofEnergy(DOE)hasplayedaninstrumentalroleinfundingearly-stageresearch,development,anddemonstration(RD&D)projectsforproducinggreenammonia.ThroughtheAdvancedResearchProjectsAgency-Energy(ARPA-E)REFUELprogram,DOEhasfundedcomponenttechnologiesandpilotsystemsfortheproductionanduseofammoniaasacarbon-neutralliquidfuel.FollowingtheREFUELprogram,ARPA-Eawardedanadditional$10milliontotheResearchTriangleInstitutetodemonstratetheproductionanduseofrenewableammonia.13Additionally,theDOEOfficeofBasicEnergySciencehasfundedsixfundamentalresearchprojectstohelpdecarbonizetheexistingammoniamarket.14CFIndustries,theworld’slargestammoniaproducer,announcedplanstobuildagreenammoniaplantin2020inLouisiana.Itwillproduce20,000tonsofgreenammoniaperyearonceitbeginsoperationsin2023.15KEYPOLICYISSUES:INNOVATIONTOADDRESSCOSTANDSCALE.Effortsbyindustrytoproducegreenammoniaatscaleareaidedbyfederalsupportforlow-carbonhydrogenproduction.TheBipartisanInfrastructureLawappropriates$9.5billiontosupportthegrowingcleanhydrogenmarket,andtheInflationReductionActof2022providesfurtherincentives,includingaproductiontaxcredit.16Despiterecentincentives,greenammoniastillfacessignificantbarrierstobecomingcompetitive,especiallyinnewendusessuchasshipping.Atitscurrentcost—roughly$794to$1,543perton—greenammoniaisunlikelytobecompetitiveintheglobalfertilizermarketorasINFORMATIONTECHNOLOGY&INNOVATIONFOUNDATIONAPRIL2023PAGE5asolutioninothersectors.Forexistingapplications,greenammoniawillhavetomeetthecostsoffossilfuels,whichrangefrom$121to$375perton.17Forgreenammoniatobecomeaviablelow-carbonfuelforshipping,itwillneedtobeeconomicallycompetitivewiththefossilfuelsthatarecurrentlyusedinshipping,includingheavyfueloil(HFO)andmarinegasoil(MGO).Greenammoniawillalsohavetocompeteagainstotherlow-carbonalternativessuchasbiodiesel.18Figure2:Comparativecostrangesforshippingfuel,pergigajoule19Usingammoniaforpowergenerationorenergystorageintroducesadditionaleconomicandtechnicalconsiderations.Onesuchfactorisround-tripefficiency,whichmeasurestheefficiencyofconvertingrenewableenergytoammonia,storingandtransportingtheammonia,andthenconvertingtheammoniabackintoelectricity.Theend-to-endefficiencyofgreenammoniaisonlybetween11and19percent,meaningtheresultingpowerwillbebetweenfiveandninetimesmoreexpensivethantheoriginalpowerusedtoproducetheammonia.Modelingofammonia-firedpowerinJapanfindsthatgeneratingpowerfromammoniawouldcostabouttwiceasmuchasrenewableenergyduetothelowround-tripefficiency.Whiletheefficiencymayimprove,greenammoniaisunlikelytobecomeacompetitivepowersource.20Bringingthecostsdown,improvingefficiency,increasingproductionscale,andexpandingpipelineinfrastructurewillbecrucialfornewapplicationsandtheincreaseddemandenvisioned.DOEplaysanimportantroleinovercomingthesebarriersbyfundingRD&Dtoaccelerateinnovation.Researchintosuchareasasnewcatalysts,reactordesigns,andseparationstrategiescanimprovetheefficiencyofammoniaproductionandbringdowncosts.ARPA-EfundsseveralRD&Dprojectsrelatedtolow-carbonammoniathroughthe$36millionREFUELprogram.Public$0$10$20$30$40$50$60$70GreenAmmoniaBiodieselMarineGasoilHeavyFuelOilLiquefiedNaturalGasINFORMATIONTECHNOLOGY&INNOVATIONFOUNDATIONAPRIL2023PAGE6RD&Dfundingisalsoneededtoaddressenvironmentalandsafetychallengesassociatedwithammoniacombustion,includingdevelopingandtestingmethodstoreduceNOxemissions.21Policiesthatsupportend-userdemandforgreenammoniaarealsoessential.Forexample,DOErecentlyfundedtwoprojectstostudytheuseofammoniaingasturbines.22Similarly,theInternationalMaritimeOrganizationisworkingtodevelopguidelinesforthesafeuseofammoniaasamarinefuel,whichwouldhelpexpanddemand.23LOOKINGFORWARDGreenammoniahasattractedplentyofrecentattention.Thetechnologyispromising,butcostreductions,demonstrations,infrastructure,andmarketgrowthareallstillneededifitistorealizeitspotential.Inadditiontothecostreductions,governmentRD&Disneededtosupporteffortstoremovetechnicalbarrierssuchaslowround-tripefficiency.AcknowledgmentsTheauthorwouldliketothankEdRightorandRobinGasterfortheirhelpwiththisreport.AboutThisSeriesInnovationtomakeenergyclean,affordable,andreliableshouldbeacentralgoalofclimateandenergypolicy,becausethesoberingrealityisthatclimatechangecausedbyunabatedcombustionoffossilfuelswillcontinueuntilcleansystemsmatchconventionalsystemsinpriceandperformance.Butthegoodnewsisthatthereisawiderangeofopportunitiestodojustthat—ifinnovationpolicyhelpstheprivatesectorunlockthem.Inthisseriesofbriefings,ITIF’sCenterforCleanEnergyInnovationprovidesoverviewsofpromisingclimatetechnologies,highlightingprogressthathasbeenmadeonthem,whatstillneedstobedone,andwhattheUnitedStatescandotobringthemtomaturitysotheycancontributetothetransitiontonet-zeroemissions.AbouttheAuthorHannahBoylesisaresearchassistantwithITIF’sCenterforCleanEnergyInnovation.Previously,BoyleswasaresearchassistantattheWeldonCooperCenterandtheROMACLabinCharlottesville,Virginia,andhasinternedwiththeAmericanEnergySociety.BoylesholdsabachelorofsciencedegreeinaerospaceengineeringfromtheUniversityofVirginia.AboutITIFTheInformationTechnologyandInnovationFoundation(ITIF)isanindependent501(c)(3)nonprofit,nonpartisanresearchandeducationalinstitutethathasbeenrecognizedrepeatedlyastheworld’sleadingthinktankforscienceandtechnologypolicy.Itsmissionistoformulate,evaluate,andpromotepolicysolutionsthataccelerateinnovationandboostproductivitytospurgrowth,opportunity,andprogress.Formoreinformation,visititif.org/about.INFORMATIONTECHNOLOGY&INNOVATIONFOUNDATIONAPRIL2023PAGE7ENDNOTES1.“Ammonia:zero-carbonfertiliser,fuelandenergystorage”(TheRoyalSociety,February2020),https://royalsociety.org/-/media/policy/projects/green-ammonia/green-ammonia-policy-briefing.pdf.2.InternationalEnergyAgency(IEA),AmmoniaTechnologyRoadmapTowardsmoresustainablenitrogenfertilizerproduction(IEA,October2021),https://iea.blob.core.windows.net/assets/6ee41bb9-8e81-4b64-8701-2acc064ff6e4/AmmoniaTechnologyRoadmap.pdf.3.“Ammonia”(TheRoyalSociety).4.NicolaJones,“FromFertilizertoFuel:Can‘Green’AmmoniaBeaClimateFix?”Yale360,January20,2022https://e360.yale.edu/features/from-fertilizer-to-fuel-can-green-ammonia-be-a-climate-fix.5.MariaGallucci,“WhytheShippingIndustryisBettingBigonAmmonia,”SpectrumIEEE,February23,2021,https://spectrum.ieee.org/why-the-shipping-industry-is-betting-big-on-ammonia.6.Ibid.7.IEA,NetZeroby2050ARoadmapfortheGlobalEnergySector(IEA,May2021),https://iea.blob.core.windows.net/assets/deebef5d-0c34-4539-9d0c-10b13d840027/NetZeroby2050-ARoadmapfortheGlobalEnergySector_CORR.pdf.8.IEA,AmmoniaTechnologyRoadmap.9.JonathanLewis,“FuelsWithoutCarbon”(CleanAirTaskForce(CATF),December2018),https://www.catf.us/wp-content/uploads/2018/12/Fuels_Without_Carbon.pdf.10.NickAshandTimScarbrough,“SailingonSolarCouldgreenammoniadecarbonizeinternationalshipping?”(EnvironmentalDefenseFund(EDF),May2019),https://www.edfeurope.org/news/2019/02/05/shipping-can-reduce-climate-pollution-and-draw-investment-developing-countries;PaulWolframetal.,“Usingammoniaasashippingfuelcoulddisruptthenitrogencycle,”NatureEnergy(October2022),1112–1114,https://doi.org/10.1038/s41560-022-01124-4.11.Jones,“FromFertilizertoFuel.”12.IEA,AmmoniaTechnologyRoadmap.13.ResearchTriangleinstitute(RTI),“RTIInternationalAwarded$10millionfromU.S.DepartmentofEnergy’sARPA-EtoDemonstrateRenewableAmmoniaProductionandUse,”newsrelease,May6,2021,https://www.rti.org/news/rti-international-awarded-funding-us-department-energy;“RenewableEnergytoFuelsThroughUtilizationofEnergy-DenseLiquids,”ARPA-e,accessedFebruary16,2023,https://arpa-e.energy.gov/technologies/programs/refuel.14.TrevorBrown,“USDOEfundingresearchintosustainableammoniasynthesis,”AmmoniaEnergyAssociation,January27,2017,https://www.ammoniaenergy.org/articles/us-doe-funding-research-into-sustainable-ammonia-synthesis/.15.Jones,“FromFertilizertoFuel.”16.U.S.DepartmentofEnergy(DOE),DOENationalCleanHydrogenStrategyandRoadmap,(Washington,D.C.:DOE,2022),https://www.hydrogen.energy.gov/pdfs/clean-hydrogen-strategy-roadmap.pdf.17.InnovationOutlook:RenewableAmmonia,InternationalRenewableEnergyAgency(IRENA),May2022,https://www.irena.org/publications/2022/May/Innovation-Outlook-Renewable-Ammonia.18.InternationalEnergyAgency(IEA),“IndicativeShippingFuelCostRanges”(accessedMarch28,2023),https://www.iea.org/data-and-statistics/charts/indicative-shipping-fuel-cost-ranges.19.Ibid.INFORMATIONTECHNOLOGY&INNOVATIONFOUNDATIONAPRIL2023PAGE820.JosephElKadi,CollinSmith,andLauraTorrente-Muriciano,“H2andNH3—thePerfectMarriageinaCarbon-freeSociety,”TheChemicalEngineer,May28,2020,https://www.thechemicalengineer.com/features/h2-and-nh3-the-perfect-marriage-in-a-carbon-free-society/;MichaelLiebreich,“TheUnbearableLightnessofHydrogen,”BloombergNEF,December12,2022,https://about.bnef.com/blog/liebreich-the-unbearable-lightness-of-hydrogen/.21.“H2IQHour:Ammonia:FromFertilizertoEnergyCarriers:TextVersion,”DOEHydorgenandFuelCellsTechnologyOffice,https://www.energy.gov/eere/fuelcells/h2iq-hour-ammonia-fertilizer-energy-carriers-text-version.22.DOE,“DOEAnnouncesNearly$25MilliontoStudyAdvancedCleanHydrogenTechnologiesforElectricityGeneration,”newsrelease,May19,2022,https://www.energy.gov/articles/doe-announces-nearly-25-million-study-advanced-clean-hydrogen-technologies-electricity.23.InternationalBunkerIndustryAssociations(IBIA),“IMOtodevelopguidelinesforsafeuseofammonia,”newsrelease,May4,2022,https://ibia.net/2022/05/04/imo-to-develop-guidelines-for-safe-use-of-ammonia/.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱