数字化转型与企业环境绿色创新关系(英)--SustainabilityVIP专享VIP免费

5.03.889
Digital Transformation and
Corporate Environmental Green
Innovation Nexus: An Approach
towards Green Innovation
Improvement
Fenfen Ma, Shah Fahad, Shuxi Yan and Yapeng Zhang
Special Issue
Business Digital Transformation Processes toward Circular Economy and Sustainability
Edited by
Prof. Dr. Estrela Ferreira Cruz and Prof. Dr. António Miguel Rosado da Cruz
Article
https://doi.org/10.3390/su15076258
Citation: Ma, F.; Fahad, S.; Yan, S.;
Zhang, Y. Digital Transformation and
Corporate Environmental Green
Innovation Nexus: An Approach
towards Green Innovation
Improvement. Sustainability 2023,15,
6258. https://doi.org/10.3390/
su15076258
Academic Editors: Estrela Ferreira
Cruz and António Miguel Rosado da
Cruz
Received: 12 March 2023
Revised: 30 March 2023
Accepted: 3 April 2023
Published: 6 April 2023
Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses/by/
4.0/).
sustainability
Article
Digital Transformation and Corporate Environmental
Green Innovation Nexus: An Approach towards Green
Innovation Improvement
Fenfen Ma 1, Shah Fahad 2,3,*, Shuxi Yan 1and Yapeng Zhang 1
1School of Management, Yulin University, Yulin 719000, China
2School of Management, Hainan University, Haikou 570228, China
3School of Economics and Management, Leshan Normal University, Leshan 614000, China
*Correspondence: shah.fahad@mail.xjtu.edu.cn
Abstract:
The impact of digital transformation on green innovation is widely discussed. However,
existing studies mainly focus on the impact of the digital transformation of enterprises and fintech
company development on environmental green innovation, while ignoring the effect of the digital
transformation of commercial banks (DTCB) on corporate green innovation. Therefore, to fill the re-
search gap, this paper explores the impact of DTCB on environmental green innovation in companies
based on the data of listed companies from 2010 to 2019. This study finds that DTCB has significantly
promoted enterprises’ environmental green innovation. Mechanism analysis shows that DTCB can
promote green environmental innovation by increasing R&D expenditures and reducing agency costs.
The heterogeneity analysis indicates that DTCB can only promote the green environmental innovation
of private enterprises and enterprises with a high degree of digital transformation, but it cannot
promote the green environmental innovation of state-owned enterprises and enterprises with a low
degree of digital transformation. From the perspective of DTCB, this paper enriches the research
on the relationship between digital finance and enterprise environmental green innovation. The
government should promote the digital transformation of enterprises to utilize the green innovation
effect of DTCB.
Keywords: digital transformation; environmental green innovation; agency cost
1. Introduction
As China’s urbanization and industrialization continue to advance, green develop-
ment is being challenged. As an essential player in the market economy, enterprises are
responsible for coordinating economic growth with environmental protection [
1
]. Green
innovation can reduce pollution emissions in the production process [
2
], which is critical
to eliminating the conflict between China’s economic growth and environmental pollu-
tion [
3
]. However, the high risk of green innovation poses some challenges to itself. Green
technologies are more capital-intensive and risky than general innovations, making them
more challenging to finance [
4
]. Since commercial banks are the primary source of external
financing for most companies in China, exploring how to increase the credit of commercial
banks for corporate green innovation is of great practical importance for developing a
green economy.
The attitude of commercial banks toward corporate innovation has evolved from
aversion to tolerance. Early studies concluded that commercial banks have an aversion to
innovative corporate behavior [
5
]. On the one hand, commercial banks have an adversarial
attitude toward risk, while corporate technology innovation is inherently high risk. On
the other hand, commercial banks require companies to have stable cash flow that can
repay principal and interest over a certain period, but technological innovation activities
require continuous cash investment. However, many subsequent studies have found that
Sustainability 2023,15, 6258. https://doi.org/10.3390/su15076258 https://www.mdpi.com/journal/sustainability
Sustainability 2023,15, 6258 2 of 15
commercial banks do indeed finance corporate innovation [
6
]. Commercial banks are
somewhat tolerant of this innovative behavior. In a fully competitive market environ-
ment, technological innovation becomes the key for enterprises to cultivate competitive
advantages and eliminate the “homogenization trap” of products [
7
]. Commercial banks
recognize that sustained growth through technological innovation is the only way for com-
panies to obtain sufficient cash flow to repay debt and interest [
8
]. Commercial banks can
identify with the practical logic of ‘technological innovation for business growth’, embrace
the risk of innovation, and lend to innovative enterprises [
6
]. The sustainable growth of
enterprises through technological innovation has become a common goal for banks and
enterprises. This ‘target binding effect’ provides sufficient evolutionary motivation for the
commercial bank attitude to change from ‘innovation aversion’ to ‘innovation inclusion’. In
the current context of advocating green development, achieving the green development of
enterprises through green innovation has become a new common goal between enterprises
and commercial banks [
9
]. However, although commercial banks can accommodate the
innovative activities of enterprises, to some degree, many enterprises face credit rationing
due to information asymmetry and lack of collateral [10].
The digital transformation of commercial banks (DTCB) is conducive to improving
their ability to serve the real economy and can affect green innovation. DTCB refers to
the application of digital technologies, such as big data, cloud computing, blockchain
technology, the Internet of things, and artificial intelligence by commercial banks to realize
the online, intelligent, scenario-based, and platform-based banking business [
11
]. Currently,
commercial banks are beginning to implement digital transformation at a rapid pace [
12
].
National commercial banks implement digital transformation by setting up fintech sub-
sidiaries, while urban and rural commercial banks implement digital transformation by
cooperating with fintech companies [
13
]. DTCB can reduce information asymmetry and
increase credit supply to enterprises [
14
]. So, can DTCB promote green innovation by
increasing lending to enterprises? If DTCB can effectively promote the green innovation
of companies, exploring the effect of the green innovation of DTCB is vital to improving
the environment.
Studies have been conducted to explore the impact of digital transformation on green
innovation at both the macro and micro levels, respectively. At the macro level, ref. [
15
] and
ref. [
16
] have found that the development of the digital economy promotes green innova-
tion using data from the city panel at the prefecture level in China. Ref. [
17
] has discovered
that digital economy development can promote green innovation by promoting economic
openness, optimizing the industrial structure, and expanding the market potential. From
the micro level, ref. [
18
] has found that the digital transformation of enterprises promotes
green innovation by optimizing the human capital structure and strengthening the cooper-
ation between industry and academia. Ref. [
19
] has found that the digital transformation
of enterprises promotes green innovation by enhancing the level of information sharing
and resource allocation efficiency. Some studies focus on the green innovation effects
of the digital transformation of financial institutions. Ref. [
20
] and ref. [
21
] have found
that the development of fintech companies can significantly improve green innovation.
The digital transformation of financial institutions includes the development of fintech
companies and DTCB. In fact, fintech companies serve individual entrepreneurs and micro
and small enterprises [
22
] and engage less in green innovation. DTCB can increase lending
to enterprises, which may promote the green innovation of enterprises. However, the
existing research has mainly studied the relationship between fintech companies and green
innovation, ignoring the relationship between DTCB and green innovation.
In summary, from the micro level, studies on the effects of digital transformation on
green innovation have mainly focused on exploring the impact of the digital transformation
of enterprises and fintech companies on green innovation of enterprises, and little literature
has focused on the impact of DTCB on green innovation. Therefore, this paper fills this gap
by exploring the effect of DTCB on the green innovation of enterprises.
5.03.889DigitalTransformationandCorporateEnvironmentalGreenInnovationNexus:AnApproachtowardsGreenInnovationImprovementFenfenMa,ShahFahad,ShuxiYanandYapengZhangSpecialIssueBusinessDigitalTransformationProcessestowardCircularEconomyandSustainabilityEditedbyProf.Dr.EstrelaFerreiraCruzandProf.Dr.AntónioMiguelRosadodaCruzArticlehttps://doi.org/10.3390/su15076258Citation:Ma,F.;Fahad,S.;Yan,S.;Zhang,Y.DigitalTransformationandCorporateEnvironmentalGreenInnovationNexus:AnApproachtowardsGreenInnovationImprovement.Sustainability2023,15,6258.https://doi.org/10.3390/su15076258AcademicEditors:EstrelaFerreiraCruzandAntónioMiguelRosadodaCruzReceived:12March2023Revised:30March2023Accepted:3April2023Published:6April2023Copyright:©2023bytheauthors.LicenseeMDPI,Basel,Switzerland.ThisarticleisanopenaccessarticledistributedunderthetermsandconditionsoftheCreativeCommonsAttribution(CCBY)license(https://creativecommons.org/licenses/by/4.0/).sustainabilityArticleDigitalTransformationandCorporateEnvironmentalGreenInnovationNexus:AnApproachtowardsGreenInnovationImprovementFenfenMa1,ShahFahad2,3,,ShuxiYan1andYapengZhang11SchoolofManagement,YulinUniversity,Yulin719000,China2SchoolofManagement,HainanUniversity,Haikou570228,China3SchoolofEconomicsandManagement,LeshanNormalUniversity,Leshan614000,ChinaCorrespondence:shah.fahad@mail.xjtu.edu.cnAbstract:Theimpactofdigitaltransformationongreeninnovationiswidelydiscussed.However,existingstudiesmainlyfocusontheimpactofthedigitaltransformationofenterprisesandfintechcompanydevelopmentonenvironmentalgreeninnovation,whileignoringtheeffectofthedigitaltransformationofcommercialbanks(DTCB)oncorporategreeninnovation.Therefore,tofillthere-searchgap,thispaperexplorestheimpactofDTCBonenvironmentalgreeninnovationincompaniesbasedonthedataoflistedcompaniesfrom2010to2019.ThisstudyfindsthatDTCBhassignificantlypromotedenterprises’environmentalgreeninnovation.MechanismanalysisshowsthatDTCBcanpromotegreenenvironmentalinnovationbyincreasingR&Dexpendituresandreducingagencycosts.TheheterogeneityanalysisindicatesthatDTCBcanonlypromotethegreenenvironmentalinnovationofprivateenterprisesandenterpriseswithahighdegreeofdigitaltransformation,butitcannotpromotethegreenenvironmentalinnovationofstate-ownedenterprisesandenterpriseswithalowdegreeofdigitaltransformation.FromtheperspectiveofDTCB,thispaperenrichestheresearchontherelationshipbetweendigitalfinanceandenterpriseenvironmentalgreeninnovation.ThegovernmentshouldpromotethedigitaltransformationofenterprisestoutilizethegreeninnovationeffectofDTCB.Keywords:digitaltransformation;environmentalgreeninnovation;agencycost1.IntroductionAsChina’surbanizationandindustrializationcontinuetoadvance,greendevelop-mentisbeingchallenged.Asanessentialplayerinthemarketeconomy,enterprisesareresponsibleforcoordinatingeconomicgrowthwithenvironmentalprotection[1].Greeninnovationcanreducepollutionemissionsintheproductionprocess[2],whichiscriticaltoeliminatingtheconflictbetweenChina’seconomicgrowthandenvironmentalpollu-tion[3].However,thehighriskofgreeninnovationposessomechallengestoitself.Greentechnologiesaremorecapital-intensiveandriskythangeneralinnovations,makingthemmorechallengingtofinance[4].SincecommercialbanksaretheprimarysourceofexternalfinancingformostcompaniesinChina,exploringhowtoincreasethecreditofcommercialbanksforcorporategreeninnovationisofgreatpracticalimportancefordevelopingagreeneconomy.Theattitudeofcommercialbankstowardcorporateinnovationhasevolvedfromaversiontotolerance.Earlystudiesconcludedthatcommercialbankshaveanaversiontoinnovativecorporatebehavior[5].Ontheonehand,commercialbankshaveanadversarialattitudetowardrisk,whilecorporatetechnologyinnovationisinherentlyhighrisk.Ontheotherhand,commercialbanksrequirecompaniestohavestablecashflowthatcanrepayprincipalandinterestoveracertainperiod,buttechnologicalinnovationactivitiesrequirecontinuouscashinvestment.However,manysubsequentstudieshavefoundthatSustainability2023,15,6258.https://doi.org/10.3390/su15076258https://www.mdpi.com/journal/sustainabilitySustainability2023,15,62582of15commercialbanksdoindeedfinancecorporateinnovation[6].Commercialbanksaresomewhattolerantofthisinnovativebehavior.Inafullycompetitivemarketenviron-ment,technologicalinnovationbecomesthekeyforenterprisestocultivatecompetitiveadvantagesandeliminatethe“homogenizationtrap”ofproducts[7].Commercialbanksrecognizethatsustainedgrowththroughtechnologicalinnovationistheonlywayforcom-paniestoobtainsufficientcashflowtorepaydebtandinterest[8].Commercialbankscanidentifywiththepracticallogicof‘technologicalinnovationforbusinessgrowth’,embracetheriskofinnovation,andlendtoinnovativeenterprises[6].Thesustainablegrowthofenterprisesthroughtechnologicalinnovationhasbecomeacommongoalforbanksandenterprises.This‘targetbindingeffect’providessufficientevolutionarymotivationforthecommercialbankattitudetochangefrom‘innovationaversion’to‘innovationinclusion’.Inthecurrentcontextofadvocatinggreendevelopment,achievingthegreendevelopmentofenterprisesthroughgreeninnovationhasbecomeanewcommongoalbetweenenterprisesandcommercialbanks[9].However,althoughcommercialbankscanaccommodatetheinnovativeactivitiesofenterprises,tosomedegree,manyenterprisesfacecreditrationingduetoinformationasymmetryandlackofcollateral[10].Thedigitaltransformationofcommercialbanks(DTCB)isconducivetoimprovingtheirabilitytoservetherealeconomyandcanaffectgreeninnovation.DTCBreferstotheapplicationofdigitaltechnologies,suchasbigdata,cloudcomputing,blockchaintechnology,theInternetofthings,andartificialintelligencebycommercialbankstorealizetheonline,intelligent,scenario-based,andplatform-basedbankingbusiness[11].Currently,commercialbanksarebeginningtoimplementdigitaltransformationatarapidpace[12].Nationalcommercialbanksimplementdigitaltransformationbysettingupfintechsub-sidiaries,whileurbanandruralcommercialbanksimplementdigitaltransformationbycooperatingwithfintechcompanies[13].DTCBcanreduceinformationasymmetryandincreasecreditsupplytoenterprises[14].So,canDTCBpromotegreeninnovationbyincreasinglendingtoenterprises?IfDTCBcaneffectivelypromotethegreeninnovationofcompanies,exploringtheeffectofthegreeninnovationofDTCBisvitaltoimprovingtheenvironment.Studieshavebeenconductedtoexploretheimpactofdigitaltransformationongreeninnovationatboththemacroandmicrolevels,respectively.Atthemacrolevel,ref.[15]andref.[16]havefoundthatthedevelopmentofthedigitaleconomypromotesgreeninnova-tionusingdatafromthecitypanelattheprefecturelevelinChina.Ref.[17]hasdiscoveredthatdigitaleconomydevelopmentcanpromotegreeninnovationbypromotingeconomicopenness,optimizingtheindustrialstructure,andexpandingthemarketpotential.Fromthemicrolevel,ref.[18]hasfoundthatthedigitaltransformationofenterprisespromotesgreeninnovationbyoptimizingthehumancapitalstructureandstrengtheningthecooper-ationbetweenindustryandacademia.Ref.[19]hasfoundthatthedigitaltransformationofenterprisespromotesgreeninnovationbyenhancingthelevelofinformationsharingandresourceallocationefficiency.Somestudiesfocusonthegreeninnovationeffectsofthedigitaltransformationoffinancialinstitutions.Ref.[20]andref.[21]havefoundthatthedevelopmentoffintechcompaniescansignificantlyimprovegreeninnovation.ThedigitaltransformationoffinancialinstitutionsincludesthedevelopmentoffintechcompaniesandDTCB.Infact,fintechcompaniesserveindividualentrepreneursandmicroandsmallenterprises[22]andengagelessingreeninnovation.DTCBcanincreaselendingtoenterprises,whichmaypromotethegreeninnovationofenterprises.However,theexistingresearchhasmainlystudiedtherelationshipbetweenfintechcompaniesandgreeninnovation,ignoringtherelationshipbetweenDTCBandgreeninnovation.Insummary,fromthemicrolevel,studiesontheeffectsofdigitaltransformationongreeninnovationhavemainlyfocusedonexploringtheimpactofthedigitaltransformationofenterprisesandfintechcompaniesongreeninnovationofenterprises,andlittleliteraturehasfocusedontheimpactofDTCBongreeninnovation.Therefore,thispaperfillsthisgapbyexploringtheeffectofDTCBonthegreeninnovationofenterprises.Sustainability2023,15,62583of15Themarginalcontributionsofthisstudyareasfollows.First,theresearchobjectofdigitalfinanceisextendedtothebankingsystem,enrichingtheresearchontheeffectofdigitalfinanceongreeninnovation.Currentresearchfocusesonexploringtheeffectoffintechcompaniesongreeninnovation,whiletheimpactofDTCBongreeninnovationisyettobestudied.UnderChina’sbank-basedfinancialsystem,ignoringtheeffectofDTCBongreeninnovationwillmakeitdifficulttoclarifytheeffectofdigitalfinanceongreeninnovation.Second,itexpandstheresearchontheeconomicconsequencesofDTCB.TheexistingliteraturehasmainlyexploredtheimpactofDTCBonthecreditscaleandcreditstructure,andtheimpactofDTCBongreeninnovationisyettobestudied.Hence,thispaperfurtherexpandstheeconomicconsequencesofDTCB.Third,theheterogeneityofDTCBaffectinggreeninnovationisexplored.WehavefoundthatDTCBcanonlypromotethegreeninnovationofenterpriseswithahighdegreeofdigitaltransformation,whichprovidesabasisforgovernmentdepartmentstofurtherpromotethedigitaltransformationofenterprisestofacilitatetheirgreendevelopment.2.LiteratureReviewandResearchHypothesis2.1.ImpactMechanismofDTCBonGreenInnovation2.1.1.AnalysisofInnovationResourcesMechanismFinancingconstraintsleadtoinsufficientinvestmentofcompaniesininnovativeresources[23].Thereasonwhygreeninnovationbycorporationsoftenfacesfinancingconstraintsisasfollows.First,thetraditionallendingprocessiscumbersome,whichmayresultininnovativeprojectsmissingthebestresearchanddevelopmentperiodduetothelackoftimelyfinancing.Second,companiesareoftenreluctanttorevealspecificdetailsrelatedtotheirinnovativeprojectstoavoidrevealingtradesecrets,whichexacerbatesinformationasymmetry,andfurtherunderminesthewillingnessofcommercialbankstolendtothesecompanies[24].Third,manyinnovativeenterpriseshavefewerfixedassetsandlackcollateral,makingitdifficulttoobtainexternalfinancingintraditionallendingmodelsthatvaluecollateral.Next,theeffectofDTCBonfinancingforgreeninnovationisanalyzedfromtheperspectiveoftheabovethreeexplanations.First,DTCBhassimplifiedthecreditapprovalprocessandreducedthepossibilityofinnovativeprojectsmissingthebestresearchanddevelopmentperiodbecausetheycannotobtainfinancingintime.Thetraditionalcreditapprovalprocessrequirescreditapprovalpersonneltovisittheenterprisetoconducton-siteduediligenceresearch.Itincludesexplicitlyassessingthebusinessstatusoftheenterprise,verifyingthecollateralandguarantors,etc.Thewholeprocessislong.Commercialbankshavechangedthecredit-grantingmodel,usingbigdataandartificialintelligence.Commercialbankshaveimplementedonlinelendingoperationsbasedonfirm-relatedinformationsearchedinmanychannelsandintelligentriskcontrolmodels[25].Companiescanapplyforloansusingtheon-lineplatformsofcommercialbanks,avoidingthecumbersomeapprovalprocessandreducingthetimeittakestoobtainloans.Second,theDTCBimprovesthelendingtechniquesofcommercialbanksbasedonsoftinformationandincreasesthelendingtoinnovativecorporateprojects.First,DTCBen-hancesthecapabilitiesofcommercialbankstosearchforandprocesssoftinformation.Softinformationreferstoqualitativeinformation,usuallytext,suchasthequalityofcompanymanagersandthecompetitivenessofenterpriseproducts[26].Thissoftinformationformsanimportantbasisforcommercialbankstograntloans[27].Asthedigitaleconomydevel-opsrapidly,e-commerce,socialnetworks,andcreditplatformsareaccumulatingalargeamountofcorporatedata,whichcancapturethefundamentalinformationofacompanyindetail.DTCBcanefficientlyconnecttosuchdataplatforms,broadeninformationsources,andthusreducethecostofsoftinformationproduction[28].Atthesametime,digitaltechnologyallowscommercialbankstohandlesoftinformationmoreeffectively[29].Com-paredtothetraditionalmanualinformationprocessingmode,commercialbankscanapplybigdata,cloudcomputing,blockchaintechnology,andmathematicalandstatisticalmodelstoprocesssoftinformationmorerapidlyandeffectively[30].AmorecomprehensiverangeSustainability2023,15,62584of15ofsoftinformationsourcesandmoreefficientsoftinformationprocessingtechniqueshaveenabledcommercialbankstoimprovetheirsoftinformation-basedlendingtechniques[31].Moreover,digitaltechnologyenablescommercialbankstoachieveremotemonitoringthroughtheInternetofthingsandblockchaintechnology,thussupervisingthegrantingofloanstoenterprisesmoreeffectively[32].Itavoidsthepossiblemoralhazardofenterprisesandimprovesthewillingnessofcommercialbankstofinanceinnovativeprojects.2.1.2.AnalysisofDebtGovernanceMechanismsTheprincipalagentproblemsqueezesoutgreeninnovationactivities.Theseparationofoperationandownershipoftheenterprisecausestheprincipal–agentproblem.Inthecaseofbusinessandownershipseparation,managersoftenholdaportionofthecompany’sequity.Theutilityofmanagersdoesnotdependentirelyonthevalueandprofitofthecompany,givingmanagersanincentivetousetheresourcestheycontroltosatisfytheirpreferences[33].Managerialpreferencesareexpressedinthreeaspects.Thefirstisthesizepreferenceofmanagers.Inlargecompanies,managersarepaidmoreandhavemorepower,sotheytendtopursuegrowthinsizetobuildtheir‘economicempire’[34].Thesecondisthespendingpreferenceofmanagers.Someoftheexpendituresinthecompanycandirectlyorindirectlyimprovetheutilityofthemanager[35].Thethirdisthemanager’spreferenceforaquietlife.Managershaveonlypartialownershipofthecompany,makingthemreluctanttoengageinactivitiestheyfinddifficult,suchasgreeninnovation[36].Thesizepreferenceandspendingpreferenceofmanagersleadtoaflowofresourcestofixedassetinvestmentandtheconsumptionofmanagersonthejob,etc.,whichdirectlysqueezeoutgreeninnovationactivities.Thepreferenceofmanagerstoenjoyaquietlifealsoconflictswiththehighriskofgreeninnovationactivities.Therefore,thepreferencesofthethreetypesofmanagerssqueezeoutthegreeninnovationactivitiesofthecompany.Bankdebtgovernancealleviatestheprincipalagentproblem,andthusimprovesman-agers’effortstoimplementgreeninnovationactivities.Accordingtoorganizationalcontroltheory,theimportantroleofcorporategovernanceistoconstrainmanagers’preferencesandmakerationaluseoffundingresources,suchasinvestingingreeninnovation[37].Theeconomictheoryoftheagencyindicatesthatbankdebtgovernancemechanismscanallevi-atetheprincipalagentproblem,affectingcorporatemanagers’decision-makingbehaviorandresourceallocationefficiency[38].First,theexistenceofliabilitiesrequirescompaniestorepayprincipalandinteresttocreditorswithinaspecifiedperiod.Itreducesthecapitalavailabletomanagersattheirdiscretionandconstrainsmanagers’expansionandspendingpreferences.Second,intheeventthatthedebtorisunabletorepaytheloan,thecommercialbankcanrequestthedebtortotakeoutbankruptcythroughlegalprocedures.Bankruptcycausesmanagerstolosetheirjobsanddamagestheirreputations.Therefore,thethreatofbankruptcycanforcemanagerstoworkharder[39].Third,topreventdebtorsfrominvestingborrowedcapitalinriskyprojects,commercialbanksmonitortheuseofbor-rowedcapital,constrainingmanagers’privatepreferences[40].Inconclusion,commercialbanksreducethesizeandspendingpreferencesofmanagersbyexercisingcontractualrestrictionsandsupervision,etc.,andinducemanagerstoworkhardertoimplementgreeninnovationactivities.TheDTCBstrengthenstheroleofcommercialbanksindebtgovernance,thuspro-motingcorporategreeninnovation.First,theDTCBincreaseslendingtocompanies,thusstrengtheningthegovernanceroleofcontractualconstraints.Forcompanies,largerloansimplymorepressuretorepaydebtandagreaterthreatofbankruptcy,whichmotivatesmanagerstoreducetheirexpansionandspendingpreferencesandtoworkhardertoim-plementgreeninnovationactivities.Second,theDTCBstrengthensthesupervisionoftheusageofloans.Throughdigitaltransformation,commercialbankscanobtaininformationrelatedtoenterprisesinrealtimeandcross-verifytheinformationobtained[41],makingtheinformationobtainedbycommercialbanksmoretimely,accurate,extensive,anddifficulttomanipulate[42].Inthiscase,commercialbankscanmonitortheuseofloansmoreeffectively,limitingtheuseofloansforexpansionandspendingpreferences.Ingeneral,Sustainability2023,15,62585of15themechanismofDTCBaffectinggreeninnovationisshowninFigure1.Therefore,thefollowinghypothesesareproposed.Hypothesis1:DTCBcanpromotegreeninnovationinenterprises.Hypothesis2:DTCBpromotesgreeninnovationbyincreasingtheinnovationresourcesofenterprises.Hypothesis3:DTCBpromotesgreeninnovationbyenhancingthegovernanceofdebtbyenterprises.,reflectingtheenterprise’stecFigure1.ThemechanismofDTCBaffectinggreeninnovation.2.2.AnalysisofHeterogeneity2.2.1.TheHeterogeneityoftheDegreeofEnterpriseDigitalTransformationWhenthedigitaltransformationofenterprisesreachesacertainlevel,DTCBcanplayaroleinreducinginformationasymmetry.Digitaltechnologyempowerscommercialbankstoimprovetheirabilitytofindinformation,butthisisbasedontheaccumulationofreliabledata.Whenanenterpriseaccumulatesreliabledata,DTCBcanplayaroleinreducinginformationasymmetry.Ifanenterprisecompletesthedigitaltransformation,itsinformationrelatedtotechnologicalinnovation,productionandoperation,internalcontrol,andproductsalescanbemadeavailable.Thisinformationisopen,transparent,shared,andverifiable[43],reflectingtheenterprise’stechnologicalinnovation,production,andsales.Commercialbankscanaccessthedatamentionedabovetothecredittrackingsystemthroughdigitaltechnology,whichcanbetterutilizeDTCBinreducinginformationasymmetry.SinceinformationasymmetryisanimportantmechanismbywhichDTCBaffectsgreeninnovation,DTCBcanonlypromotegreeninnovationinenterpriseswithahighdegreeofdigitaltransformation.Therefore,thefollowingpropositionisproposed.Hypothesis4:DTCBcanonlypromotegreeninnovationinenterpriseswithahighdegreeofdigitaltransformation,whileitcannotpromotegreeninnovationinenterpriseswithalowdegreeofdigitaltransformation.2.2.2.TheHeterogeneityofEnterpriseOwnershipInthecaseof“ownershipdiscrimination”inthecreditmarket,state-ownedenter-priseshaveinvisiblegovernmentguaranteesanddonotfacecreditrationing.Incontrast,privateenterprisesfacecreditrationingandhavedifficultyobtainingloansfrombanks.Thisisbecausetheyaresubjectto“ownershipdiscrimination”inthetraditionalfinancialmarket[44].AsDTCBpromotesgreeninnovationthroughincreasedfinancing.DTCBcanonlypromotegreeninnovationinprivateenterprises.Thus,thefollowingpropositionisproposed.Hypothesis5:DTCBcanonlypromotegreeninnovationinprivateenterprises,whileitcannotpromotegreeninnovationinstate-ownedenterprises.Sustainability2023,15,62586of153.DataandEmpiricalDesign3.1.DataThispaperselectsthedataoflistedcompaniesfrom2010to2019fortheempiricaltest.Thedeepintegrationoffinanceandtechnologyoriginatedin2010[14],sothispaperchooses2010asthestartingpoint.TheoutbreakofCOVID-19in2020hashadagreatimpactontheoperationandinvestmentactivitiesofprivateenterprises.InordertoeliminatetheinterferenceoftheimpactofCOVID-19ontheresearchresults,thispaperselects2019astheendpoint.ThedatacomefromtheCSMAR(ChinaStockMarketandAccountingResearchDatabase).Samplesfromthefinancialsectorareremoved.Allcontinuousvariablesweretailedby1%beforeandaftertoremoveoutliersofcontinuousvariables.Atotalof7505year-companyobservationswereobtained.Thevariablesaredescribedasfollows.3.1.1.TheExplainedVariableGreeninnovation(GI).Greeninnovationdescribestechnologicalinnovationthatcon-tributestoimprovingenvironmentalquality.Referringtotheresearchofref.[45],thenumberofgreeninventionpatentsgrantedisadoptedtomeasurethelevelofgreeninno-vationoftheenterprises.TheWorldIntellectualPropertyOrganization(WIPO)launchedtheGreenListofInternationalPatentClassificationsin2010.Thislistisusedtodeterminewhethereachofthecompany’spatentsisagreenpatent.3.1.2.TheCoreExplanatoryVariableDTCBattheenterpriselevel(DTCBE).DTCBEismeasuredbythelevelofdigitaltransformationofcommercialbanksthatlendtocompanies.Thispaperreferstothemethodofref.[46]toconstructDTCBE,includingthefollowingfoursteps.(1)Thefivemostwidelyuseddigitaltechnologiesincommercialbanksareselectedaskeywords,i.e.,bigdata,artificialintelligence,cloudcomputing,blockchaintechnology,andtheInternetofthings.(2)Web-crawledtechnologyisusedtoobtainnewssearchresultsforthecombinationofcommercialbanknamesandkeywords(suchas“Chinabank”+“bigdata”)eachyearandtothencalculatethetotalnumberofnewssearchresultsforthecombinationineachyearfrom2010to2019.(3)Thelogarithmofthetotalnumberofnewssearchresultsisusedasthelevelofdigitaltransformationofthecommercialbank.(4)Theweightedaveragelevelofdigitaltransformationofacommercialbank’slendingtoanenterprise,DTCBE,iscalculated.Theweightusedistheproportionofloansobtainedbytheenterpriseineachcommercialbankinthecurrentyear.3.1.3.TheMechanismVariables(1)R&Dexpenditure(RD).R&DexpenditureismeasuredbytheR&Dexpenditureoftheenterpriseinthecurrentyear.(2)Agencycost(AC).Agencycostismeasuredbytheratiooftheadministrativeexpensestotheoperatingrevenue.3.1.4.TheControlVariablesReferringto[47]and[48],aseriesofvariablesdescribingtheimportantcharacteristicsofenterprisesoraffectingenterprisegreeninnovationaresetascontrolvariables.ThecontrolvariablesandtheirspecificdefinitionsareshowninTable1.TheresultsofthedescriptivestatisticsforthemainvariablesareshowninTable2.Wecanseethatthestandarddeviationsofgreeninnovation,DTCBE,R&Dexpenditure,andagencycostare0.377,4.284,1.402,and0.083,respectively.ThedatashowthatthestandarddeviationofDTCBEisthehighest,reflectingthelargedifferenceinthedigitaltransfor-mationofcommercialbankslendingtoenterprises.TofurtherreflectthedistributionofDTCBEindifferentyears,thenucleardensitymapofDTCBEovertimeisshowninFig-ure2.TheestimatedpeaknucleardensityofDTCBEisincreasingyearbyyear,indicatinganupwardtrendofDTCBE.TheupwardshiftofthenucleardensitycurveindicatesanSustainability2023,15,62587of15increaseintheconcentrationoftheBTCBEdistribution.TheaccurateimpactofDTCBongreeninnovationwillbefurtherstudiedusingthesubsequenteconometricmodel.−−−−−GIit=C+α1DTCBEit+α2∑control_mmit+μi+ut+εitRDit=C+α3DTCBEit+α4∑control_mitm+μi+ut+εitACit=C+α5DTCBEit+α6∑control_mitm+μi+ut+εitGIitDTCBEit∑control_mitm––αμiutεitRDitACitFigure2.ThenucleardensitymapofDTCBE.Table1.Variabledescriptions.VariablesIndexDefinitionExplainedvariableGIGreeninnovationLogarithmofthenumberofgreenpatents.ExplanatoryvariableDTCBEDTCBattheenterpriselevelThedigitaltransformationlevelofcommercialbanksthatlendtocompanies.MechanismvariableRDR&DexpenditureLogarithmofR&Dexpenditure.ACAgencycostTheratioofadministrativeexpensestooperatingrevenue.ControlvariableCSCompanysizeThelogarithmofthenumberofemployeesinthecompany.SOEState-ownedenterpriseSetat1ifitisastate-ownedenterprise,0otherwise.ALRAsset–liabilityratioTotalliabilitiesdividedbytotalassets.IRBRIncreasingrateofbusinessrevenueGrowthrateofcurrent-periodoperatingrevenuerelativetoprevious-periodoperatingrevenue.CLRCapital–laborratioNetfixedassetsdividedbythenumberofemployees,andfollowedbytheapplicationofthelogarithm.DLDualleadershipSetat1iftheCEOisalsotheboardchairman.BSBoardSizeThelogarithmofthenumberofboardmembers.PIDProportionofindependentdirectorsTheratioofindependentdirectorstoalldirectors.GSCGovernmentsubsidieschangesThechangerateofgovernmentsubsidies.ATBCActualtaxburdenchangesThechangerateoftheactualtaxburden.Sustainability2023,15,62588of15Table2.Descriptivestatisticsofvariables.VariableObs.MeanStd.Dev.Min.Max.GI75110.1070.37702.890DTCBE751111.244.2840.22316.21RD751117.751.40211.7822.09AC75110.1070.08250.006440.772CS75117.6791.1123.82911.29SOE75110.3050.46101ALR75110.4580.2000.04000.993IRBR75110.2200.593−0.6748.507CLR751112.501.1058.69416.41DL75110.2920.45501BS75112.1210.2001.6092.708PID75110.3770.05640.2730.667GSC7511−0.00050.0197−0.2060.243ATBC7511−0.00060.00695−0.04500.04993.2.EmpiricalDesignThispaperusesafixed-effectsmodeltotesttheimpactofDTCBongreeninnovation.Themodelissetupasfollows.GIit=C+α1DTCBEit+α2∑mcontrol_mit+µi+ut+εit(1)RDit=C+α3DTCBEit+α4∑mcontrol_mit+µi+ut+εit(2)ACit=C+α5DTCBEit+α6∑mcontrol_mit+µi+ut+εit(3)InEquation(1),GIitisgreeninnovation.DTCBEitisthelevelofdigitaltransformationofcommercialbanksattheenterpriselevel.∑mcontrol_mitreferstoasetofcontrolvariablesincludingcompanysize(CS),state-ownedenterprise(SOE),asset–liabilityratio(ALR),increaserateofbusinessrevenue(IRBR),capital–laborratio(CLR),dualleadership(DL),boardsize(BS),proportionofindependentdirectors(PID),governmentsubsidieschanges(GSC),andactualtaxburdenchanges(ATBC).αistheparametertobeestimated,µiandutreflectsthetimefixedeffects,andεitistheresidualterm.Additionally,duetothelargedifferencesingreeninnovationamongindustries,thefixedeffectsoftheindustryarecontrolledinModel(1).InbothEquations(2)and(3),RDitandACitrepresentR&Dexpenditureandagencycosts,respectively.ThesettingsofothervariablesandparametersareconsistentwithEquation(1).4.EmpiricalResultsandDiscussion4.1.BaselineResultsTable3reportstheregressionresults.Model(1)onlycontrolsthefixedeffectsintimeandindividual,andModel(2)addscontrolvariablesthataffectgreeninnovation.Models(3)and(4)reporttheregressionresults,withoutcontrollingindividualfixedeffectsforcomparison.ThecoefficientofDTCBEissignificantlypositiveinbothModels(1)–(4),indicatingthatDTCBsignificantlypromotescorporategreeninnovation,whichsupportsHypothesis1.Thisisduetothefollowingreasons.First,commercialbanksincreaseloanstocompaniesthroughdigitaltransformation,allowingcompaniestoinvestingreeninnovationactivities.Second,theuseofdigitaltechnologybycommercialbankscanimprovetheirabilitytosuperviseenterprises.Understrongerexternalsupervision,managersreduceself-interestedbehaviors,suchason-the-jobconsumption,andattachmoreimportancetogreeninnovationactivities.Inaddition,theobtainedloansignalsoperateingoodcondition,helpingenterprisestoobtainfinancingfromotherchannels,thuspromotinggreeninnovation.Sustainability2023,15,62589of15Table3.Baselineregressionresults.FEREVariablesModel(1)Model(2)Model(3)Model(4)GIGIGIGICoefficientStd.ErrCoefficientStd.ErrDTCBE0.004(3.59)0.003(2.59)0.004(4.12)0.004(3.51)CS0.031(3.06)0.029(5.13)SOE−0.014(−0.40)0.012(0.80)ALR0.069(1.84)0.086(3.11)IRBR−0.011(−1.89)−0.014(−2.58)CLR0.020(2.65)0.011(1.99)DL−0.032(−2.51)−0.016(−1.59)BS−0.060(−1.41)0.018(0.59)PID−0.033(−0.27)0.050(0.52)GSC−0.201(−1.21)−0.262(−1.65)ATBC0.479(0.98)0.316(0.67)Constant0.027(0.16)−0.314(−1.24)−0.023(−0.29)−0.470(−3.28)YearFEYESYESYESYESEnterpriseFEYESYESNoNoIndustryFEYESYESYESYESN7511751175117511Adj.R-sq0.02440.02980.01540.0189Thevaluesinparenthesesaret-statistics.p<0.1,p<0.05,p<0.01.4.2.TheRobustnessTest4.2.1.ReplaceCoreExplanatoryVariables(1)ReplacethewayDTCBEisconstructed.ThispaperusesthismethodtoreplacethewayDTCBEisconstructedfortherobustnesstest.Referringto[46],thenewssearchresultsforthevariouskeywordsregardingcommercialbanksfrom2010to2019areobtainedbasedonWebcrawlertechnology.First,thelog-valueofthekeywordnewssearchresultsiscalculated.Second,basedonthenewssearchresultsforeachkeywordeachyear,thefactoranalysismethodisusedtocalculatethelevelofdigitaltransformationofcommercialbanks.Finally,etheweightedaveragedigitaltransformationlevelofcommercialbanklendingtoanenterprise,DTCBE,iscalculated.(2)Usethedigitalizationofregionalcommercialbanksasaproxyvariable.Thispa-perusesthedigitalizationofregionalcommercialbanksasaproxyvariablefortherobustnesstest.Thisstudyfollowsthemethodsofstudiesinref.[49]tomeasurethedigitalizationofregionalcommercialbanks.ThedegreeofthedigitalizationofregionalcommercialbanksisconstructedbasedonthedegreeofDTCBatthecommer-cialbanklevelandthegeographicdistributiondataofthecommercialbankbranches.Table4reportstheregressionresults,andtheDTCBEcoefficientinModels(1)and(2)issignificantlypositive,indicatingthattheconclusionthatDTCBsignificantlypromotesgreeninnovationisrobust.Sustainability2023,15,625810of15Table4.Robusttestwiththealternativecoreexplanatoryvariablesandthealternativesample.VariablesModel(1)Model(2)Model(3)GI(ReplacetheWayDTCBEIsConstructed)GI(UsetheDigitalizationofRegionalCommercialBanks)GI(DeletetheSampleofMDUCG)CoefficientStd.ErrCoefficientStd.ErrCoefficientStd.ErrDTCBE0.022(3.23)0.035(1.85)0.004(2.74)Constant−0.285(−1.12)−0.321(−0.66)−0.357(−1.07)ControlledvariableYESYESYESEnterpriseFEYESYESYESYearFEYESYESYESIndustryFEYESYESYESN751175116232Adj.R-sq0.03040.03860.0345Thevaluesinparenthesesaret-statistics.p<0.1andp<0.01.4.2.2.ExcludeMunicipalitiesDirectlyundertheCentralGovernmentReferringto[50],themunicipalitiesdirectlyunderthecentralgovernment(MDUCG)wereremovedtocarryouttherobustnesstest.ThisisduetothehighdegreeofDTCBinMDUCG,whichmayleadtothemoresignificantimpactofDTCBongreeninnovationinMDUCG.TheregressionresultsareshowninModel(3)inTable4.ItcanbeseenthatthecoefficientofDTCBEisstillsignificantlypositiveafterexcludingthesamplesofMDUCG.Thisindicatesthatthecoreconclusionsofthispaperarerobust.4.2.3.TreatmentofEndogeneityTheaboveregressionresultsshowthatDTCBcanpromotegreeninnovation.However,theaboveregressionresultsmaybechallengedbyendogeneityproblems.Consideringthatenterprises’greeninnovationinthecurrentperiodisoftenaffectedbythegreeninnovationinthelagperiod,theremaybeaserialcorrelationinthetimedimension.Therefore,thispaperintroducesthefirst-orderlaggedvalueofgreeninnovationinthebenchmarkregres-sionmodeltomitigateendogeneityproblems,andtheresultsareshownincolumn(1)inTable5.Thecoefficientofthefirst-orderlaggedvalueofgreeninnovationissignificantlypositive,indicatingthatthegreeninnovationofenterprisesinthecurrentperiodissignifi-cantlyaffectedbythegreeninnovationinthepreviousperiod.ThecoefficientofDTCBEissignificantlypositive,indicatingthatDTCBstillsignificantlypromotesgreeninnovationafterconsideringtheserialcorrelationinthetimedimensionofgreeninnovation.Table5.TreatmentofendogeneitywiththefirstorderlaggedvalueofDTCBEandGI.VariablesModel(1)Model(2)GI(UsetheFirstOrderLaggedValueofGI)GI(UsetheFirstOrderLaggedValueofDTCBE)CoefficientStd.ErrCoefficientStd.ErrL.GI0.050(3.57)L.DTCBE0.002(1.92)DTCBE0.002(1.99)Constant−0.146(−0.46)−0.317(−1.24)ControlledvariableYESYESEnterpriseFEYESYESYearFEYESYESIndustryFEYESYESN64986498Adj.R-sq0.02780.0265Thevaluesinparenthesesaret-statistics.p<0.1,p<0.05,p<0.01.Sustainability2023,15,625811of15TheimpactofDTCBongreeninnovationisusuallyalong-termcumulativeprocess,whichmayhaveacertainlag.Therefore,referringtothemethodof[51],weuseafirst-orderlaggedvalueofDTCBEasaproxyforDTCBEtomitigatetheunderlyingestimationerror.Theestimationresultsaredisplayedincolumn(2)inTable5.Theresultsindicatethatthecoefficientofthefirst-orderlaggedvalueofDTCBEissignificantlypositive,whichonceagainconfirmsourconclusions.4.3.MechanismAnalysisTheoreticalanalysisshowsthatDTCBcanpromotegreeninnovationbyincreasingtheexpendituresofenterprisesonR&Dandstrengtheningthegovernanceofdebtsforenterprises.Therefore,thispapernextexaminestheimpactofDTCBonR&Dexpendituresandagencycosts,andtheregressionresultsareshowninTable6.ThecoefficientofDTCBEissignificantlypositiveinModel(1),indicatingthatDTCBcansignificantlyincreasetheR&Dexpenditure.ThecoefficientofDTCBEissignificantlynegativeinModel(2),indicatingthatDTCBcanstrengthenthegovernanceofdebtoftheenterprises,thusreducingagencycosts.Therefore,Hypothesis2andHypothesis3aresupported.Table6.Mechanismtestresults.VariablesModel(1)Model(2)RDACCoefficientStd.ErrCoefficientStd.ErrDTCBE0.018(5.81)−0.001(−2.33)CS0.681(29.78)−0.003(−2.04)SOE−0.063(−0.93)0.003(0.65)ALR−0.178(−2.28)0.020(3.48)IRBR0.042(2.83)−0.016(−16.76)CLR0.197(11.63)0.003(2.74)DL0.028(1.04)−0.002(−1.01)BS0.219(2.46)−0.011(−1.64)PID0.224(0.86)−0.009(−0.50)GSC0.399(1.15)0.124(4.75)ATBC0.045(0.04)−0.408(−5.47)Constant9.982(15.76)0.027(0.68)EnterpriseFEYESYESYearFEYESYESIndustryFEYESYESN75117511Adj.R-sq0.43170.1212Thevaluesinparenthesesaret-statistics.p<0.05andp<0.01.4.4.HeterogeneityAnalysis4.4.1.HeterogeneityofOwnershipThetheoreticalanalysisshowsthattheinfluenceofDTCBoncorporategreeninno-vationisonlysignificantinprivateenterprises.Therefore,thispaperexploreswhetherthereisownershipheterogeneityintheimpactofDTCBongreeninnovation.Enterprisesaredividedintostate-ownedandprivateenterprises,andtheregressionisconductedbygroup.TheregressionresultsarereportedinTable7.TheresultsshowthatDTCBcansignificantlypromotegreeninnovationinprivateenterprises,butitisunabletopromotegreeninnovationinstate-ownedenterprises.ThisverifiesHypothesis4.Sustainability2023,15,625812of15Table7.Resultsbasedontheheterogeneityofthedegreeofenterprisedigitaltransformation.VariablesModel(1)Model(2)GI(EnterpriseswithaLowDegreeofDigitalTransformation)GI(EnterpriseswithaHighDegreeofDigitalTransformation)CoefficientStd.ErrCoefficientStd.ErrDTCBE0.003(1.61)0.005(2.04)Constant−0.204(−0.63)−0.103(−0.29)ControlledvariableYESYESEnterpriseFEYESYESYearFEYESYESIndustryFEYESYESN38943617Adj.R-sq0.03650.0376Thevaluesinparenthesesaret-statistics.p<0.05.4.4.2.HeterogeneityoftheDegreeofDigitalTransformationofEnterprisesTheoreticalanalysisshowsthatonlywhenenterpriseshaverealizedacertaindegreeofdigitaltransformationcanDTCBpromotegreeninnovation.Therefore,thispaperexamineswhethertheeffectofDTCBongreeninnovationisheterogeneousbetweenenterpriseswithdifferentdegreesofdigitaltransformation.Thispaperusesthemethodof[52–55]tocon-structtheindicatorsreflectingthedegreeofenterprisedigitaltransformation.Thespecificstepsareasfollows.Firstly,withthehelpofthesemanticexpressionofnationalpoliciesrelatedtothedigitaleconomy,197wordsrelatedtoenterprisedigitaltransformation,withafrequencyofmorethanorequalto5times,areselectedtoformadigitaldictionary.Then,themachinelearning-basedtextanalysismethodisusedtoanalyzethetextofthe‘managementdiscussionandanalysis’partoftheannualreportoflistedcompanies,andthefrequencyof197wordsrelatedtothedigitaltransformationoftheenterpriseisobtainedfromtheannualreport.Finally,acomprehensiveindicatorisconstructedreflectingthedegreeofenterprisedigitaltransformationbasedontheabovefrequencydata.Accordingtothemedianofthedegreeofenterprisedigitaltransformation,wedividethesamplesintothegroupwithahighdigitaltransformationdegreeandthegroupwithalowdigitaltransformationdegree.Thentheregressionisconductedbygroups.TheregressionresultsareshowninTable8.TheresultsshowthatDTCBcanonlypromotegreeninnovationinenterpriseswithahighdegreeofdigitaltransformation,butitisunabletopromotegreeninnovationinenterpriseswithalowdegreeofdigitaltransformation.ThisverifiesHypothesis5.Table8.Resultsbasedontheheterogeneityoffirmownership.VariablesModel(1)Model(2)GI(State-OwnedEnterprise)GI(PrivateEnterprise)CoefficientStd.ErrCoefficientStd.ErrDTCBE0.001(0.10)0.005(3.06)Constant−0.363(−0.88)−0.405(−1.61)ControlledvariableYESYESEnterpriseFEYESYESYearFEYESYESIndustryFEYESYESN23305181Adj.R-sq0.03440.0345Thevaluesinparenthesesaret-statistics.p<0.01.5.ConclusionsThedevelopmentofdigitalfinancehaschangedthewayfinancialservicesareprovidedandimprovedtheabilityofthefinancialsystemtoservetherealeconomy.ManyscholarsSustainability2023,15,625813of15havefocusedontheimpactofdigitalfinanceongreeninnovationandhavedrawnsomeusefulconclusions.However,existingstudiesonlydiscusstheimpactofthedevelopmentoffintechcompaniesongreeninnovation,ignoringtheimpactofthedigitaltransformationofcommercialbanks(DTCB)ongreeninnovation.Therefore,thispaperfillsthisgapandexplorestheimpactofDTCBoncorporategreeninnovation.Basedonthedataoflistedcompaniesfrom2010to2019,thisstudyexplorestheimpactofDTCBonenterprisegreeninnovation.WefindthatDTCBhassignificantlypromotedenterprisegreeninnovation.MechanismanalysisshowsthatDTCBcanpromotegreeninnovationbyincreasingR&Dexpendituresandreducingagencycosts.TheheterogeneityanalysisindicatesthatDTCBcanonlypromotegreeninnovationinprivateenterprisesandenterpriseswithahighdegreeofdigitaltransformation,butitcannotpromotegreeninnovationinstate-ownedenterprisesandenterpriseswithalowdegreeofdigitaltransformation.Thefollowingrecommendationscanbederivedfromourstudy,basedontheaboveconclusions.First,thegovernmentshouldfocusonsolvingtheproblemoftheinadequatesharingofenterprise-relatedinformation.ThemechanismanalysisshowsthattheDTCBincreasesloanstoenterprisesbyreducinginformationasymmetry,thuspromotinggreeninnovation.Atpresent,enterprise-relatedinformationisscattered,sothegovernmentshouldbroadentheinformationsourcesofcommercialbanksbybuildingenterprise-relatedinformationsharingplatformsandallowingDTCBtoplayafullroleinpromotinggreeninnovation.Theinformationsharingplatformcancollectandsharetheinformationwithinthepurviewoflocalgovernments,suchasenterprisetaxpaymentinformation,realestateinformation,compulsoryadministrativeinformation,andwaterandelectricfeepaymentinformation.Second,thegovernmentshouldguideandsupportthedigitaltransformationofenterprises.TheheterogeneityanalysisshowsthatonlywhenthedigitaltransformationofenterprisesreachesacertainlevelcanDTCBsignificantlypromotegreeninnovation.Therefore,thegovernmentshouldguideandsupportenterprisestoimplementdigitaltransformation.Thegovernmentcangivefullplaytotheguidingroleofcentralfinancialfundsandencouragelocalgovernmentstoprovidepreferentialsupporttothedigitaltransformationoftheseenterprises.Inaddition,thegovernmentcanbuildsomeplatformstoprovideenterpriseswithdigitalservices,suchastransformationconsultingandsoftwareapplications.ThispaperclarifiestheimpactofDTCBonenvironmentalgreeninnovation.However,duetothedifficultyinobtainingthedigitaltransformationlevelofcommercialbanksthatprovideloanstounlistedcompanies,thispaperdoesnotexploretheimpactofDTCBonunlistedcompanies.Inthefuture,ifweobtainthedigitaltransformationindexofcommer-cialbanksthatprovideloanstounlistedcompanies,wewillfurthertesttodeterminetheimpactofDTCBongreenenvironmentalinnovationinunlistedcompaniestodeepenandexpandourfindings.AuthorContributions:Conceptualization,F.M.andS.F.;methodology,F.M.;software,F.M.;validation,F.M.andS.F.;formalanalysis,S.F.;investigation,S.F.;resources,S.Y.;datacuration,S.F.;writing—originaldraftpreparation,F.M.;writing—reviewandediting,F.M.andS.F.;visual-ization,F.M.;supervision,F.M.;projectadministration,Y.Z.;fundingacquisition,F.M.andS.F.Allauthorshavereadandagreedtothepublishedversionofthemanuscript.Funding:ThisresearchwasfundedbytheShaanxiSocialScienceFederation,grantnumber2022HZ1843,andtheDepartmentofEducationofShaanxiProvince,grantnumber2022HZ1314.InstitutionalReviewBoardStatement:Notapplicable.InformedConsentStatement:Notapplicable.DataAvailabilityStatement:Notapplicable.ConflictsofInterest:Theauthorsdeclarenoconflictofinterest.Thefundershadnoroleinthedesignofthestudy;inthecollection,analyses,orinterpretationofdata;inthewritingofthemanuscript,orinthedecisiontopublishtheresults.Sustainability2023,15,625814of15References1.Ba,S.;Li,N.;Zhang,J.DigitalFinanceandCorporateGreenInnovation:ExclusionorIntegration?Res.Financ.Econ.Issues2022,57–68.2.Wang,C.H.Anenvironmentalperspectiveextendsmarketorientation:Greeninnovationsustainability.Bus.StrategyEnviron.2020,29,3123–3134.[CrossRef]3.Sahoo,S.;Kumar,A.;Upadhyay,A.Howdogreenknowledgemanagementandgreentechnologyinnovationimpactcorporateenvironmentalperformance?Understandingtheroleofgreenknowledgeacquisition.Bus.StrategyEnviron.2023,32,551–569.[CrossRef]4.Yu,C.-H.;Wu,X.;Zhang,D.;Chen,S.;Zhao,J.Demandforgreenfinance:ResolvingfinancingconstraintsongreeninnovationinChina.EnergyPolicy2021,153,112255.[CrossRef]5.Opler,T.C.;Titman,S.FinancialDistressandCorporatePerformance.J.Financ.1994,49,1015–1040.[CrossRef]6.Wang,X.Frominnovationaversiontoinnovationtolerance:Astudyofinfluenceofbankdebtgovernancetowardstechnologicalinnovation.Sci.Res.Manag.2015,36,184–192.7.Yu,C.;Zhang,Z.;Lin,C.;Wu,Y.J.KnowledgeCreationProcessandSustainableCompetitiveAdvantage:TheRoleofTechnologicalInnovationCapabilities.Sustainability2017,9,2280.[CrossRef]8.David,P.;O’Brien,J.P.;Yoshikawa,T.TheImplicationsofDebtHeterogeneityforR&DInvestmentandFirmPerformance.Acad.Manag.J.2008,51,165–181.9.Yu,D.;Tao,S.;Hanan,A.;Ong,T.S.;Latif,B.;Ali,M.FosteringGreenInnovationAdoptionthroughGreenDynamicCapability:TheModeratingRoleofEnvironmentalDynamismandBigDataAnalyticCapability.Int.J.Environ.Res.PublicHealth2022,19,10336.[CrossRef]10.Stiglitz,J.;Weiss,A.CreditRationinginMarketswithImperfectInformation.Am.Econ.Rev.1981,71,393–410.11.Wang,S.;Xie,X.EconomicPressureorSocialPressure:TheDevelopmentofDigitalFinanceandtheDigitalInnovationofCommercialBanks.Economist2021,1,100–108.12.Omarini,A.TheDigitalTransformationinBankingandTheRoleofFinTechsintheNewFinancialIntermediationScenario.Int.J.Financ.Econ.Trade(IJFET)2017,1,1–6.13.Wang,X.;Huang,Y.;Xun,Q.;Qiu,H.HowDigitalTechnologiesChangeFinancialInstitutions:China’sPracticeandInternationalImplications.Int.Econ.Rev.2022,70–85+6.14.Hu,B.;Ren,X.TheDevelopmentofFinTech:Characteristics,ChallengesandRegulatoryStrategies.Reform2021,82–90.15.Wang,X.;Sun,X.;Zhang,H.;Xue,C.DigitalEconomyDevelopmentandUrbanGreenInnovationCA-Pability:BasedonPanelDataof274Prefecture-LevelCitiesinChina.Sustainability2022,14,2921.[CrossRef]16.Xiao,Y.;Wu,S.;Liu,Z.Q.;Lin,H.J.Digitaleconomyandgreendevelopment:EmpiricalevidencefromChina’scities.Front.Environ.Sci.2023,11,1124680.[CrossRef]17.Luo,S.;Yimamu,N.;Li,Y.;Wu,H.;Irfan,M.;Hao,Y.Digitalizationandsustainabledevelopment:HowcoulddigitaleconomydevelopmentimprovegreeninnovationinChina?Bus.StrategyEnviron.2022.[CrossRef]18.Guo,F.;Yang,S.;Chai,Z.DoesDigitalTransformationofEnterprisesImprovetheQuantityandQualityofGreenTechnologyInnovation?TextAnalysisBasedonAnnualReportsofChineseListedCompanies.SouthChinaJ.Econ.2023,401,146–162.19.Yang,Y.;Yang,C.;Cai,X.EnterpriseDigitalTransformationandGreenInnovationCapabilityDevelopment:AnalysisBasedonNetworkEffect.Mod.Financ.Econ.2023,43,3–19.20.Wang,Z.;Zhu,W.;Han,C.DoesDigitalFinanceaffectcorporategreentechnologyInnovation—EmpiricalevidencefromlistedcompaniesinChina.ForumSci.Technol.China2022,52–61.21.Han,X.;Song,W.;Li,B.;Jiang,Z.Heterogeneousnonlinearregulationeffectofdigitalfinanceempowermentongreeninnovation.ChinaPopul.Resour.Environ.2022,32,65–76.22.Zhang,M.;Xie,S.;Qiang,H.;Zheng,L.DigitalFinancialInclusionandExportofSMEs:TimelyHelporAdditionalImprovement.J.WorldEcon.2022,45,30–56.23.Zhang,X.;Liu,B.;Wang,T.;Li,C.CreditRent-seeking,FinancingConstraintandCorporateInnovation.Econ.Res.J.2017,52,161–174.24.Tang,J.;Tang,Q.R&DInvestmentandFrictionsofR&DResourceAcquisitionofEnterprise:BasedonaQuestionnaireResearch.Contemp.Econ.Manag.2010,32,20–27.25.Nie,X.;Wu,Q.ResearchontheDrivingEffectofDigitalFinanceontheTechnologicalInnovationofSMEs.EastChinaEcon.Manag.2021,35,42–53.26.Berger,A.N.;Udell,G.F.Theinstitutionalmemoryhypothesisandtheprocyclicalityofbanklendingbehavior.J.Financ.Intermediation2004,13,458–495.[CrossRef]27.Qian,X.;Tang,Y.;Fang,S.DoesReformoftheSecurityInterestsSystemReducetheCostofCorporateDebt?EvidencefromaNaturalExperimentinChina.J.Financ.Res.2019,7,115–134.28.Khandani,A.E.;Kim,A.J.;Lo,A.W.Consumercredit-riskmodelsviamachine-learningalgorithms.J.Bank.Financ.2010,34,2767–2787.[CrossRef]29.Frost,J.;Gambacorta,L.;Huang,Y.;Shin,H.S.;Zbinden,P.BigTechandthechangingstructureoffinancialintermediation.Econ.Policy2019,34,761–799.[CrossRef]Sustainability2023,15,625815of1530.Cornee,S.TheRelevanceofSoftInformationforPredictingSmallBusinessCreditDefault:EvidencefromaSocialBank.J.SmallBus.Manag.2019,57,699–719.[CrossRef]31.Li,H.;Wu,F.BankInstitutionSize,LoanTechnologyandSmallBusinessFinancing.Financ.TradeEcon.2019,40,84–101.32.Kshetri,N.Blockchain’srolesinmeetingkeysupplychainmanagementobjectives.Int.J.Inf.Manag.2018,39,80–89.[CrossRef]33.Jensen,M.C.;Meckling,W.H.Theoryofthefirm:Managerialbehavior,agencycostsandownershipstructure.J.Financ.Econ.1976,3,305–360.[CrossRef]34.Jensen,M.C.AgencyCostsofFreeCashFlow,CorporateFinance,andTakeovers.Am.Econ.Rev.1986,76,323–329.35.Williamson,O.E.ManagerialDiscretionandBusinessBehavior.Am.Econ.Rev.1963,53,1032–1057.36.Hicks,J.R.AnnualSurveyofEconomicTheory:TheTheoryofMonopoly.Econometrica1935,3,1–20.[CrossRef]37.O’Connor,M.;Rafferty,M.CorporateGovernanceandInnovation.J.Financ.Quant.Anal.2012,47,397–413.[CrossRef]38.Allen,F.DoFinancialInstitutionsMatter?J.Financ.2001,56,1165–1175.[CrossRef]39.Grossman,S.;Hart,O.CorporateFinancialStructureandManagerialIncentives.Econ.Inf.Uncertain.1983,107–140.40.Harris,M.;Raviv,A.CapitalStructureandtheInformationalRoleofDebt.J.Financ.1990,45,321–349.[CrossRef]41.Rowan,N.J.;Murray,N.;Qiao,Y.;O’Neill,E.;Clifford,E.;Barceló,D.;Power,D.M.Digitaltransformationofpeatlandeco-innovations(‘Paludiculture’):Enablingaparadigmshifttowardsthereal-timesustainableproductionof‘green-friendly’productsandservices.Sci.TotalEnviron.2022,838,156328.[CrossRef][PubMed]42.Berg,T.;Burg,V.;Gombovi´c,A.;Puri,M.OntheRiseofFinTechs:CreditScoringUsingDigitalFootprints.Rev.Financ.Stud.2020,33,2845–2897.[CrossRef]43.Zhang,X.;Wu,Y.AdvancesinEmpiricalAssetPricingResearchBasedonWeb-basedBigDataMining.Econ.Perspect.2018,129–140.44.Brandt,L.;Li,H.Bankdiscriminationintransitioneconomies:Ideology,information,orincentives?J.Comp.Econ.2003,31,387–413.[CrossRef]45.Lv,C.;Shao,C.;Lee,C.-C.Greentechnologyinnovationandfinancialdevelopment:Doenvironmentalregulationandinnovationoutputmatter?EnergyEcon.2021,98,105237.[CrossRef]46.Zhang,J.;Li,K.;Zhang,J.HowdoesBankFinTechImpactStructuralDeleveragingofFirms?J.Financ.Econ.2022,48,64–77.47.Li,H.;Tang,H.;Zhou,W.;Wan,X.Impactofenterprisedigitalizationongreeninnovationperformanceundertheperspectiveofproductionandoperation.Front.PublicHealth2022,10,971971.[CrossRef]48.Feng,H.;Wang,F.;Song,G.;Liu,L.DigitalTransformationonEnterpriseGreenInnovation:EffectandTransmissionMechanism.Int.J.Environ.Res.PublicHealth2022,19,10614.[CrossRef]49.Li,X.;Wang,C.;Fang,J.BankFintech,commercialcreditandPrivateenterpriseexport:Anempiricalanalysisbasedonpaneldataofprefecture-levelcitiesinChina.Financ.Econ.Res.2022,37,1–18.50.Song,M.;Zhou,P.;Si,H.FinancialTechnologyandEnterpriseTotalFactorProductivity—Perspectiveof“Enabling”andCreditRationing.ChinaInd.Econ.2021,4,138–155.51.Meng,L.;Huang,B.ShapingtheRelationshipBetweenEconomicDevelopmentandCarbonDioxideEmissionsattheLocalLevel:EvidencefromSpatialEconometricModels.Environ.Resour.Econ.2018,71,127–156.[CrossRef]52.Yuan,C.;Xiao,T.;Geng,C.;Sheng,Y.DigitalTransformationandDivisionofLaborbetweenEnterprises:VerticalSpecializationorVerticalIntegration.ChinaInd.Econ.2021,9,137–155.53.Hu,G.;Wang,J.;Fahad,S.;Li,J.Influencingfactorsoffarmers’landtransfer,subjectivewell-being,andparticipationinagri-environmentschemesinenvironmentallyfragileareasofChina.Environ.Sci.Pollut.Res.2023,30,4448–4461.[CrossRef]54.Fahad,S.;Bai,D.;Liu,L.;Dagar,V.Comprehendingtheenvironmentalregulation,biasedpoliciesandOFDIreversetechnologyspillovereffects:Acontingentanddynamicperspective.Environ.Sci.Pollut.Res.2022,29,33167–33179.[CrossRef]55.Fahad,S.;Su,F.;Wei,K.Quantifyinghouseholds’vulnerability,regionalenvironmentalindicators,andclimatechangemitigationbyusingacombinationofvulnerabilityframeworks.LandDegrad.Dev.2023,34,859–872.[CrossRef]Disclaimer/Publisher’sNote:Thestatements,opinionsanddatacontainedinallpublicationsaresolelythoseoftheindividualauthor(s)andcontributor(s)andnotofMDPIand/ortheeditor(s).MDPIand/ortheeditor(s)disclaimresponsibilityforanyinjurytopeopleorpropertyresultingfromanyideas,methods,instructionsorproductsreferredtointhecontent.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱