5.03.889DigitalTransformationandCorporateEnvironmentalGreenInnovationNexus:AnApproachtowardsGreenInnovationImprovementFenfenMa,ShahFahad,ShuxiYanandYapengZhangSpecialIssueBusinessDigitalTransformationProcessestowardCircularEconomyandSustainabilityEditedbyProf.Dr.EstrelaFerreiraCruzandProf.Dr.AntónioMiguelRosadodaCruzArticlehttps://doi.org/10.3390/su15076258Citation:Ma,F.;Fahad,S.;Yan,S.;Zhang,Y.DigitalTransformationandCorporateEnvironmentalGreenInnovationNexus:AnApproachtowardsGreenInnovationImprovement.Sustainability2023,15,6258.https://doi.org/10.3390/su15076258AcademicEditors:EstrelaFerreiraCruzandAntónioMiguelRosadodaCruzReceived:12March2023Revised:30March2023Accepted:3April2023Published:6April2023Copyright:©2023bytheauthors.LicenseeMDPI,Basel,Switzerland.ThisarticleisanopenaccessarticledistributedunderthetermsandconditionsoftheCreativeCommonsAttribution(CCBY)license(https://creativecommons.org/licenses/by/4.0/).sustainabilityArticleDigitalTransformationandCorporateEnvironmentalGreenInnovationNexus:AnApproachtowardsGreenInnovationImprovementFenfenMa1,ShahFahad2,3,,ShuxiYan1andYapengZhang11SchoolofManagement,YulinUniversity,Yulin719000,China2SchoolofManagement,HainanUniversity,Haikou570228,China3SchoolofEconomicsandManagement,LeshanNormalUniversity,Leshan614000,ChinaCorrespondence:shah.fahad@mail.xjtu.edu.cnAbstract:Theimpactofdigitaltransformationongreeninnovationiswidelydiscussed.However,existingstudiesmainlyfocusontheimpactofthedigitaltransformationofenterprisesandfintechcompanydevelopmentonenvironmentalgreeninnovation,whileignoringtheeffectofthedigitaltransformationofcommercialbanks(DTCB)oncorporategreeninnovation.Therefore,tofillthere-searchgap,thispaperexplorestheimpactofDTCBonenvironmentalgreeninnovationincompaniesbasedonthedataoflistedcompaniesfrom2010to2019.ThisstudyfindsthatDTCBhassignificantlypromotedenterprises’environmentalgreeninnovation.MechanismanalysisshowsthatDTCBcanpromotegreenenvironmentalinnovationbyincreasingR&Dexpendituresandreducingagencycosts.TheheterogeneityanalysisindicatesthatDTCBcanonlypromotethegreenenvironmentalinnovationofprivateenterprisesandenterpriseswithahighdegreeofdigitaltransformation,butitcannotpromotethegreenenvironmentalinnovationofstate-ownedenterprisesandenterpriseswithalowdegreeofdigitaltransformation.FromtheperspectiveofDTCB,thispaperenrichestheresearchontherelationshipbetweendigitalfinanceandenterpriseenvironmentalgreeninnovation.ThegovernmentshouldpromotethedigitaltransformationofenterprisestoutilizethegreeninnovationeffectofDTCB.Keywords:digitaltransformation;environmentalgreeninnovation;agencycost1.IntroductionAsChina’surbanizationandindustrializationcontinuetoadvance,greendevelop-mentisbeingchallenged.Asanessentialplayerinthemarketeconomy,enterprisesareresponsibleforcoordinatingeconomicgrowthwithenvironmentalprotection[1].Greeninnovationcanreducepollutionemissionsintheproductionprocess[2],whichiscriticaltoeliminatingtheconflictbetweenChina’seconomicgrowthandenvironmentalpollu-tion[3].However,thehighriskofgreeninnovationposessomechallengestoitself.Greentechnologiesaremorecapital-intensiveandriskythangeneralinnovations,makingthemmorechallengingtofinance[4].SincecommercialbanksaretheprimarysourceofexternalfinancingformostcompaniesinChina,exploringhowtoincreasethecreditofcommercialbanksforcorporategreeninnovationisofgreatpracticalimportancefordevelopingagreeneconomy.Theattitudeofcommercialbankstowardcorporateinnovationhasevolvedfromaversiontotolerance.Earlystudiesconcludedthatcommercialbankshaveanaversiontoinnovativecorporatebehavior[5].Ontheonehand,commercialbankshaveanadversarialattitudetowardrisk,whilecorporatetechnologyinnovationisinherentlyhighrisk.Ontheotherhand,commercialbanksrequirecompaniestohavestablecashflowthatcanrepayprincipalandinterestoveracertainperiod,buttechnologicalinnovationactivitiesrequirecontinuouscashinvestment.However,manysubsequentstudieshavefoundthatSustainability2023,15,6258.https://doi.org/10.3390/su15076258https://www.mdpi.com/journal/sustainabilitySustainability2023,15,62582of15commercialbanksdoindeedfinancecorporateinnovation[6].Commercialbanksaresomewhattolerantofthisinnovativebehavior.Inafullycompetitivemarketenviron-ment,technologicalinnovationbecomesthekeyforenterprisestocultivatecompetitiveadvantagesandeliminatethe“homogenizationtrap”ofproducts[7].Commercialbanksrecognizethatsustainedgrowththroughtechnologicalinnovationistheonlywayforcom-paniestoobtainsufficientcashflowtorepaydebtandinterest[8].Commercialbankscanidentifywiththepracticallogicof‘technologicalinnovationforbusinessgrowth’,embracetheriskofinnovation,andlendtoinnovativeenterprises[6].Thesustainablegrowthofenterprisesthroughtechnologicalinnovationhasbecomeacommongoalforbanksandenterprises.This‘targetbindingeffect’providessufficientevolutionarymotivationforthecommercialbankattitudetochangefrom‘innovationaversion’to‘innovationinclusion’.Inthecurrentcontextofadvocatinggreendevelopment,achievingthegreendevelopmentofenterprisesthroughgreeninnovationhasbecomeanewcommongoalbetweenenterprisesandcommercialbanks[9].However,althoughcommercialbankscanaccommodatetheinnovativeactivitiesofenterprises,tosomedegree,manyenterprisesfacecreditrationingduetoinformationasymmetryandlackofcollateral[10].Thedigitaltransformationofcommercialbanks(DTCB)isconducivetoimprovingtheirabilitytoservetherealeconomyandcanaffectgreeninnovation.DTCBreferstotheapplicationofdigitaltechnologies,suchasbigdata,cloudcomputing,blockchaintechnology,theInternetofthings,andartificialintelligencebycommercialbankstorealizetheonline,intelligent,scenario-based,andplatform-basedbankingbusiness[11].Currently,commercialbanksarebeginningtoimplementdigitaltransformationatarapidpace[12].Nationalcommercialbanksimplementdigitaltransformationbysettingupfintechsub-sidiaries,whileurbanandruralcommercialbanksimplementdigitaltransformationbycooperatingwithfintechcompanies[13].DTCBcanreduceinformationasymmetryandincreasecreditsupplytoenterprises[14].So,canDTCBpromotegreeninnovationbyincreasinglendingtoenterprises?IfDTCBcaneffectivelypromotethegreeninnovationofcompanies,exploringtheeffectofthegreeninnovationofDTCBisvitaltoimprovingtheenvironment.Studieshavebeenconductedtoexploretheimpactofdigitaltransformationongreeninnovationatboththemacroandmicrolevels,respectively.Atthemacrolevel,ref.[15]andref.[16]havefoundthatthedevelopmentofthedigitaleconomypromotesgreeninnova-tionusingdatafromthecitypanelattheprefecturelevelinChina.Ref.[17]hasdiscoveredthatdigitaleconomydevelopmentcanpromotegreeninnovationbypromotingeconomicopenness,optimizingtheindustrialstructure,andexpandingthemarketpotential.Fromthemicrolevel,ref.[18]hasfoundthatthedigitaltransformationofenterprisespromotesgreeninnovationbyoptimizingthehumancapitalstructureandstrengtheningthecooper-ationbetweenindustryandacademia.Ref.[19]hasfoundthatthedigitaltransformationofenterprisespromotesgreeninnovationbyenhancingthelevelofinformationsharingandresourceallocationefficiency.Somestudiesfocusonthegreeninnovationeffectsofthedigitaltransformationoffinancialinstitutions.Ref.[20]andref.[21]havefoundthatthedevelopmentoffintechcompaniescansignificantlyimprovegreeninnovation.ThedigitaltransformationoffinancialinstitutionsincludesthedevelopmentoffintechcompaniesandDTCB.Infact,fintechcompaniesserveindividualentrepreneursandmicroandsmallenterprises[22]andengagelessingreeninnovation.DTCBcanincreaselendingtoenterprises,whichmaypromotethegreeninnovationofenterprises.However,theexistingresearchhasmainlystudiedtherelationshipbetweenfintechcompaniesandgreeninnovation,ignoringtherelationshipbetweenDTCBandgreeninnovation.Insummary,fromthemicrolevel,studiesontheeffectsofdigitaltransformationongreeninnovationhavemainlyfocusedonexploringtheimpactofthedigitaltransformationofenterprisesandfintechcompaniesongreeninnovationofenterprises,andlittleliteraturehasfocusedontheimpactofDTCBongreeninnovation.Therefore,thispaperfillsthisgapbyexploringtheeffectofDTCBonthegreeninnovationofenterprises.Sustainability2023,15,62583of15Themarginalcontributionsofthisstudyareasfollows.First,theresearchobjectofdigitalfinanceisextendedtothebankingsystem,enrichingtheresearchontheeffectofdigitalfinanceongreeninnovation.Currentresearchfocusesonexploringtheeffectoffintechcompaniesongreeninnovation,whiletheimpactofDTCBongreeninnovationisyettobestudied.UnderChina’sbank-basedfinancialsystem,ignoringtheeffectofDTCBongreeninnovationwillmakeitdifficulttoclarifytheeffectofdigitalfinanceongreeninnovation.Second,itexpandstheresearchontheeconomicconsequencesofDTCB.TheexistingliteraturehasmainlyexploredtheimpactofDTCBonthecreditscaleandcreditstructure,andtheimpactofDTCBongreeninnovationisyettobestudied.Hence,thispaperfurtherexpandstheeconomicconsequencesofDTCB.Third,theheterogeneityofDTCBaffectinggreeninnovationisexplored.WehavefoundthatDTCBcanonlypromotethegreeninnovationofenterpriseswithahighdegreeofdigitaltransformation,whichprovidesabasisforgovernmentdepartmentstofurtherpromotethedigitaltransformationofenterprisestofacilitatetheirgreendevelopment.2.LiteratureReviewandResearchHypothesis2.1.ImpactMechanismofDTCBonGreenInnovation2.1.1.AnalysisofInnovationResourcesMechanismFinancingconstraintsleadtoinsufficientinvestmentofcompaniesininnovativeresources[23].Thereasonwhygreeninnovationbycorporationsoftenfacesfinancingconstraintsisasfollows.First,thetraditionallendingprocessiscumbersome,whichmayresultininnovativeprojectsmissingthebestresearchanddevelopmentperiodduetothelackoftimelyfinancing.Second,companiesareoftenreluctanttorevealspecificdetailsrelatedtotheirinnovativeprojectstoavoidrevealingtradesecrets,whichexacerbatesinformationasymmetry,andfurtherunderminesthewillingnessofcommercialbankstolendtothesecompanies[24].Third,manyinnovativeenterpriseshavefewerfixedassetsandlackcollateral,makingitdifficulttoobtainexternalfinancingintraditionallendingmodelsthatvaluecollateral.Next,theeffectofDTCBonfinancingforgreeninnovationisanalyzedfromtheperspectiveoftheabovethreeexplanations.First,DTCBhassimplifiedthecreditapprovalprocessandreducedthepossibilityofinnovativeprojectsmissingthebestresearchanddevelopmentperiodbecausetheycannotobtainfinancingintime.Thetraditionalcreditapprovalprocessrequirescreditapprovalpersonneltovisittheenterprisetoconducton-siteduediligenceresearch.Itincludesexplicitlyassessingthebusinessstatusoftheenterprise,verifyingthecollateralandguarantors,etc.Thewholeprocessislong.Commercialbankshavechangedthecredit-grantingmodel,usingbigdataandartificialintelligence.Commercialbankshaveimplementedonlinelendingoperationsbasedonfirm-relatedinformationsearchedinmanychannelsandintelligentriskcontrolmodels[25].Companiescanapplyforloansusingtheon-lineplatformsofcommercialbanks,avoidingthecumbersomeapprovalprocessandreducingthetimeittakestoobtainloans.Second,theDTCBimprovesthelendingtechniquesofcommercialbanksbasedonsoftinformationandincreasesthelendingtoinnovativecorporateprojects.First,DTCBen-hancesthecapabilitiesofcommercialbankstosearchforandprocesssoftinformation.Softinformationreferstoqualitativeinformation,usuallytext,suchasthequalityofcompanymanagersandthecompetitivenessofenterpriseproducts[26].Thissoftinformationformsanimportantbasisforcommercialbankstograntloans[27].Asthedigitaleconomydevel-opsrapidly,e-commerce,socialnetworks,andcreditplatformsareaccumulatingalargeamountofcorporatedata,whichcancapturethefundamentalinformationofacompanyindetail.DTCBcanefficientlyconnecttosuchdataplatforms,broadeninformationsources,andthusreducethecostofsoftinformationproduction[28].Atthesametime,digitaltechnologyallowscommercialbankstohandlesoftinformationmoreeffectively[29].Com-paredtothetraditionalmanualinformationprocessingmode,commercialbankscanapplybigdata,cloudcomputing,blockchaintechnology,andmathematicalandstatisticalmodelstoprocesssoftinformationmorerapidlyandeffectively[30].AmorecomprehensiverangeSustainability2023,15,62584of15ofsoftinformationsourcesandmoreefficientsoftinformationprocessingtechniqueshaveenabledcommercialbankstoimprovetheirsoftinformation-basedlendingtechniques[31].Moreover,digitaltechnologyenablescommercialbankstoachieveremotemonitoringthroughtheInternetofthingsandblockchaintechnology,thussupervisingthegrantingofloanstoenterprisesmoreeffectively[32].Itavoidsthepossiblemoralhazardofenterprisesandimprovesthewillingnessofcommercialbankstofinanceinnovativeprojects.2.1.2.AnalysisofDebtGovernanceMechanismsTheprincipalagentproblemsqueezesoutgreeninnovationactivities.Theseparationofoperationandownershipoftheenterprisecausestheprincipal–agentproblem.Inthecaseofbusinessandownershipseparation,managersoftenholdaportionofthecompany’sequity.Theutilityofmanagersdoesnotdependentirelyonthevalueandprofitofthecompany,givingmanagersanincentivetousetheresourcestheycontroltosatisfytheirpreferences[33].Managerialpreferencesareexpressedinthreeaspects.Thefirstisthesizepreferenceofmanagers.Inlargecompanies,managersarepaidmoreandhavemorepower,sotheytendtopursuegrowthinsizetobuildtheir‘economicempire’[34].Thesecondisthespendingpreferenceofmanagers.Someoftheexpendituresinthecompanycandirectlyorindirectlyimprovetheutilityofthemanager[35].Thethirdisthemanager’spreferenceforaquietlife.Managershaveonlypartialownershipofthecompany,makingthemreluctanttoengageinactivitiestheyfinddifficult,suchasgreeninnovation[36].Thesizepreferenceandspendingpreferenceofmanagersleadtoaflowofresourcestofixedassetinvestmentandtheconsumptionofmanagersonthejob,etc.,whichdirectlysqueezeoutgreeninnovationactivities.Thepreferenceofmanagerstoenjoyaquietlifealsoconflictswiththehighriskofgreeninnovationactivities.Therefore,thepreferencesofthethreetypesofmanagerssqueezeoutthegreeninnovationactivitiesofthecompany.Bankdebtgovernancealleviatestheprincipalagentproblem,andthusimprovesman-agers’effortstoimplementgreeninnovationactivities.Accordingtoorganizationalcontroltheory,theimportantroleofcorporategovernanceistoconstrainmanagers’preferencesandmakerationaluseoffundingresources,suchasinvestingingreeninnovation[37].Theeconomictheoryoftheagencyindicatesthatbankdebtgovernancemechanismscanallevi-atetheprincipalagentproblem,affectingcorporatemanagers’decision-makingbehaviorandresourceallocationefficiency[38].First,theexistenceofliabilitiesrequirescompaniestorepayprincipalandinteresttocreditorswithinaspecifiedperiod.Itreducesthecapitalavailabletomanagersattheirdiscretionandconstrainsmanagers’expansionandspendingpreferences.Second,intheeventthatthedebtorisunabletorepaytheloan,thecommercialbankcanrequestthedebtortotakeoutbankruptcythroughlegalprocedures.Bankruptcycausesmanagerstolosetheirjobsanddamagestheirreputations.Therefore,thethreatofbankruptcycanforcemanagerstoworkharder[39].Third,topreventdebtorsfrominvestingborrowedcapitalinriskyprojects,commercialbanksmonitortheuseofbor-rowedcapital,constrainingmanagers’privatepreferences[40].Inconclusion,commercialbanksreducethesizeandspendingpreferencesofmanagersbyexercisingcontractualrestrictionsandsupervision,etc.,andinducemanagerstoworkhardertoimplementgreeninnovationactivities.TheDTCBstrengthenstheroleofcommercialbanksindebtgovernance,thuspro-motingcorporategreeninnovation.First,theDTCBincreaseslendingtocompanies,thusstrengtheningthegovernanceroleofcontractualconstraints.Forcompanies,largerloansimplymorepressuretorepaydebtandagreaterthreatofbankruptcy,whichmotivatesmanagerstoreducetheirexpansionandspendingpreferencesandtoworkhardertoim-plementgreeninnovationactivities.Second,theDTCBstrengthensthesupervisionoftheusageofloans.Throughdigitaltransformation,commercialbankscanobtaininformationrelatedtoenterprisesinrealtimeandcross-verifytheinformationobtained[41],makingtheinformationobtainedbycommercialbanksmoretimely,accurate,extensive,anddifficulttomanipulate[42].Inthiscase,commercialbankscanmonitortheuseofloansmoreeffectively,limitingtheuseofloansforexpansionandspendingpreferences.Ingeneral,Sustainability2023,15,62585of15themechanismofDTCBaffectinggreeninnovationisshowninFigure1.Therefore,thefollowinghypothesesareproposed.Hypothesis1:DTCBcanpromotegreeninnovationinenterprises.Hypothesis2:DTCBpromotesgreeninnovationbyincreasingtheinnovationresourcesofenterprises.Hypothesis3:DTCBpromotesgreeninnovationbyenhancingthegovernanceofdebtbyenterprises.,reflectingtheenterprise’stecFigure1.ThemechanismofDTCBaffectinggreeninnovation.2.2.AnalysisofHeterogeneity2.2.1.TheHeterogeneityoftheDegreeofEnterpriseDigitalTransformationWhenthedigitaltransformationofenterprisesreachesacertainlevel,DTCBcanplayaroleinreducinginformationasymmetry.Digitaltechnologyempowerscommercialbankstoimprovetheirabilitytofindinformation,butthisisbasedontheaccumulationofreliabledata.Whenanenterpriseaccumulatesreliabledata,DTCBcanplayaroleinreducinginformationasymmetry.Ifanenterprisecompletesthedigitaltransformation,itsinformationrelatedtotechnologicalinnovation,productionandoperation,internalcontrol,andproductsalescanbemadeavailable.Thisinformationisopen,transparent,shared,andverifiable[43],reflectingtheenterprise’stechnologicalinnovation,production,andsales.Commercialbankscanaccessthedatamentionedabovetothecredittrackingsystemthroughdigitaltechnology,whichcanbetterutilizeDTCBinreducinginformationasymmetry.SinceinformationasymmetryisanimportantmechanismbywhichDTCBaffectsgreeninnovation,DTCBcanonlypromotegreeninnovationinenterpriseswithahighdegreeofdigitaltransformation.Therefore,thefollowingpropositionisproposed.Hypothesis4:DTCBcanonlypromotegreeninnovationinenterpriseswithahighdegreeofdigitaltransformation,whileitcannotpromotegreeninnovationinenterpriseswithalowdegreeofdigitaltransformation.2.2.2.TheHeterogeneityofEnterpriseOwnershipInthecaseof“ownershipdiscrimination”inthecreditmarket,state-ownedenter-priseshaveinvisiblegovernmentguaranteesanddonotfacecreditrationing.Incontrast,privateenterprisesfacecreditrationingandhavedifficultyobtainingloansfrombanks.Thisisbecausetheyaresubjectto“ownershipdiscrimination”inthetraditionalfinancialmarket[44].AsDTCBpromotesgreeninnovationthroughincreasedfinancing.DTCBcanonlypromotegreeninnovationinprivateenterprises.Thus,thefollowingpropositionisproposed.Hypothesis5:DTCBcanonlypromotegreeninnovationinprivateenterprises,whileitcannotpromotegreeninnovationinstate-ownedenterprises.Sustainability2023,15,62586of153.DataandEmpiricalDesign3.1.DataThispaperselectsthedataoflistedcompaniesfrom2010to2019fortheempiricaltest.Thedeepintegrationoffinanceandtechnologyoriginatedin2010[14],sothispaperchooses2010asthestartingpoint.TheoutbreakofCOVID-19in2020hashadagreatimpactontheoperationandinvestmentactivitiesofprivateenterprises.InordertoeliminatetheinterferenceoftheimpactofCOVID-19ontheresearchresults,thispaperselects2019astheendpoint.ThedatacomefromtheCSMAR(ChinaStockMarketandAccountingResearchDatabase).Samplesfromthefinancialsectorareremoved.Allcontinuousvariablesweretailedby1%beforeandaftertoremoveoutliersofcontinuousvariables.Atotalof7505year-companyobservationswereobtained.Thevariablesaredescribedasfollows.3.1.1.TheExplainedVariableGreeninnovation(GI).Greeninnovationdescribestechnologicalinnovationthatcon-tributestoimprovingenvironmentalquality.Referringtotheresearchofref.[45],thenumberofgreeninventionpatentsgrantedisadoptedtomeasurethelevelofgreeninno-vationoftheenterprises.TheWorldIntellectualPropertyOrganization(WIPO)launchedtheGreenListofInternationalPatentClassificationsin2010.Thislistisusedtodeterminewhethereachofthecompany’spatentsisagreenpatent.3.1.2.TheCoreExplanatoryVariableDTCBattheenterpriselevel(DTCBE).DTCBEismeasuredbythelevelofdigitaltransformationofcommercialbanksthatlendtocompanies.Thispaperreferstothemethodofref.[46]toconstructDTCBE,includingthefollowingfoursteps.(1)Thefivemostwidelyuseddigitaltechnologiesincommercialbanksareselectedaskeywords,i.e.,bigdata,artificialintelligence,cloudcomputing,blockchaintechnology,andtheInternetofthings.(2)Web-crawledtechnologyisusedtoobtainnewssearchresultsforthecombinationofcommercialbanknamesandkeywords(suchas“Chinabank”+“bigdata”)eachyearandtothencalculatethetotalnumberofnewssearchresultsforthecombinationineachyearfrom2010to2019.(3)Thelogarithmofthetotalnumberofnewssearchresultsisusedasthelevelofdigitaltransformationofthecommercialbank.(4)Theweightedaveragelevelofdigitaltransformationofacommercialbank’slendingtoanenterprise,DTCBE,iscalculated.Theweightusedistheproportionofloansobtainedbytheenterpriseineachcommercialbankinthecurrentyear.3.1.3.TheMechanismVariables(1)R&Dexpenditure(RD).R&DexpenditureismeasuredbytheR&Dexpenditureoftheenterpriseinthecurrentyear.(2)Agencycost(AC).Agencycostismeasuredbytheratiooftheadministrativeexpensestotheoperatingrevenue.3.1.4.TheControlVariablesReferringto[47]and[48],aseriesofvariablesdescribingtheimportantcharacteristicsofenterprisesoraffectingenterprisegreeninnovationaresetascontrolvariables.ThecontrolvariablesandtheirspecificdefinitionsareshowninTable1.TheresultsofthedescriptivestatisticsforthemainvariablesareshowninTable2.Wecanseethatthestandarddeviationsofgreeninnovation,DTCBE,R&Dexpenditure,andagencycostare0.377,4.284,1.402,and0.083,respectively.ThedatashowthatthestandarddeviationofDTCBEisthehighest,reflectingthelargedifferenceinthedigitaltransfor-mationofcommercialbankslendingtoenterprises.TofurtherreflectthedistributionofDTCBEindifferentyears,thenucleardensitymapofDTCBEovertimeisshowninFig-ure2.TheestimatedpeaknucleardensityofDTCBEisincreasingyearbyyear,indicatinganupwardtrendofDTCBE.TheupwardshiftofthenucleardensitycurveindicatesanSustainability2023,15,62587of15increaseintheconcentrationoftheBTCBEdistribution.TheaccurateimpactofDTCBongreeninnovationwillbefurtherstudiedusingthesubsequenteconometricmodel.−−−−−GIit=C+α1DTCBEit+α2∑control_mmit+μi+ut+εitRDit=C+α3DTCBEit+α4∑control_mitm+μi+ut+εitACit=C+α5DTCBEit+α6∑control_mitm+μi+ut+εitGIitDTCBEit∑control_mitm––αμiutεitRDitACitFigure2.ThenucleardensitymapofDTCBE.Table1.Variabledescriptions.VariablesIndexDefinitionExplainedvariableGIGreeninnovationLogarithmofthenumberofgreenpatents.ExplanatoryvariableDTCBEDTCBattheenterpriselevelThedigitaltransformationlevelofcommercialbanksthatlendtocompanies.MechanismvariableRDR&DexpenditureLogarithmofR&Dexpenditure.ACAgencycostTheratioofadministrativeexpensestooperatingrevenue.ControlvariableCSCompanysizeThelogarithmofthenumberofemployeesinthecompany.SOEState-ownedenterpriseSetat1ifitisastate-ownedenterprise,0otherwise.ALRAsset–liabilityratioTotalliabilitiesdividedbytotalassets.IRBRIncreasingrateofbusinessrevenueGrowthrateofcurrent-periodoperatingrevenuerelativetoprevious-periodoperatingrevenue.CLRCapital–laborratioNetfixedassetsdividedbythenumberofemployees,andfollowedbytheapplicationofthelogarithm.DLDualleadershipSetat1iftheCEOisalsotheboardchairman.BSBoardSizeThelogarithmofthenumberofboardmembers.PIDProportionofindependentdirectorsTheratioofindependentdirectorstoalldirectors.GSCGovernmentsubsidieschangesThechangerateofgovernmentsubsidies.ATBCActualtaxburdenchangesThechangerateoftheactualtaxburden.Sustainability2023,15,62588of15Table2.Descriptivestatisticsofvariables.VariableObs.MeanStd.Dev.Min.Max.GI75110.1070.37702.890DTCBE751111.244.2840.22316.21RD751117.751.40211.7822.09AC75110.1070.08250.006440.772CS75117.6791.1123.82911.29SOE75110.3050.46101ALR75110.4580.2000.04000.993IRBR75110.2200.593−0.6748.507CLR751112.501.1058.69416.41DL75110.2920.45501BS75112.1210.2001.6092.708PID75110.3770.05640.2730.667GSC7511−0.00050.0197−0.2060.243ATBC7511−0.00060.00695−0.04500.04993.2.EmpiricalDesignThispaperusesafixed-effectsmodeltotesttheimpactofDTCBongreeninnovation.Themodelissetupasfollows.GIit=C+α1DTCBEit+α2∑mcontrol_mit+µi+ut+εit(1)RDit=C+α3DTCBEit+α4∑mcontrol_mit+µi+ut+εit(2)ACit=C+α5DTCBEit+α6∑mcontrol_mit+µi+ut+εit(3)InEquation(1),GIitisgreeninnovation.DTCBEitisthelevelofdigitaltransformationofcommercialbanksattheenterpriselevel.∑mcontrol_mitreferstoasetofcontrolvariablesincludingcompanysize(CS),state-ownedenterprise(SOE),asset–liabilityratio(ALR),increaserateofbusinessrevenue(IRBR),capital–laborratio(CLR),dualleadership(DL),boardsize(BS),proportionofindependentdirectors(PID),governmentsubsidieschanges(GSC),andactualtaxburdenchanges(ATBC).αistheparametertobeestimated,µiandutreflectsthetimefixedeffects,andεitistheresidualterm.Additionally,duetothelargedifferencesingreeninnovationamongindustries,thefixedeffectsoftheindustryarecontrolledinModel(1).InbothEquations(2)and(3),RDitandACitrepresentR&Dexpenditureandagencycosts,respectively.ThesettingsofothervariablesandparametersareconsistentwithEquation(1).4.EmpiricalResultsandDiscussion4.1.BaselineResultsTable3reportstheregressionresults.Model(1)onlycontrolsthefixedeffectsintimeandindividual,andModel(2)addscontrolvariablesthataffectgreeninnovation.Models(3)and(4)reporttheregressionresults,withoutcontrollingindividualfixedeffectsforcomparison.ThecoefficientofDTCBEissignificantlypositiveinbothModels(1)–(4),indicatingthatDTCBsignificantlypromotescorporategreeninnovation,whichsupportsHypothesis1.Thisisduetothefollowingreasons.First,commercialbanksincreaseloanstocompaniesthroughdigitaltransformation,allowingcompaniestoinvestingreeninnovationactivities.Second,theuseofdigitaltechnologybycommercialbankscanimprovetheirabilitytosuperviseenterprises.Understrongerexternalsupervision,managersreduceself-interestedbehaviors,suchason-the-jobconsumption,andattachmoreimportancetogreeninnovationactivities.Inaddition,theobtainedloansignalsoperateingoodcondition,helpingenterprisestoobtainfinancingfromotherchannels,thuspromotinggreeninnovation.Sustainability2023,15,62589of15Table3.Baselineregressionresults.FEREVariablesModel(1)Model(2)Model(3)Model(4)GIGIGIGICoefficientStd.ErrCoefficientStd.ErrDTCBE0.004(3.59)0.003(2.59)0.004(4.12)0.004(3.51)CS0.031(3.06)0.029(5.13)SOE−0.014(−0.40)0.012(0.80)ALR0.069(1.84)0.086(3.11)IRBR−0.011(−1.89)−0.014(−2.58)CLR0.020(2.65)0.011(1.99)DL−0.032(−2.51)−0.016(−1.59)BS−0.060(−1.41)0.018(0.59)PID−0.033(−0.27)0.050(0.52)GSC−0.201(−1.21)−0.262(−1.65)ATBC0.479(0.98)0.316(0.67)Constant0.027(0.16)−0.314(−1.24)−0.023(−0.29)−0.470(−3.28)YearFEYESYESYESYESEnterpriseFEYESYESNoNoIndustryFEYESYESYESYESN7511751175117511Adj.R-sq0.02440.02980.01540.0189Thevaluesinparenthesesaret-statistics.p<0.1,p<0.05,p<0.01.4.2.TheRobustnessTest4.2.1.ReplaceCoreExplanatoryVariables(1)ReplacethewayDTCBEisconstructed.ThispaperusesthismethodtoreplacethewayDTCBEisconstructedfortherobustnesstest.Referringto[46],thenewssearchresultsforthevariouskeywordsregardingcommercialbanksfrom2010to2019areobtainedbasedonWebcrawlertechnology.First,thelog-valueofthekeywordnewssearchresultsiscalculated.Second,basedonthenewssearchresultsforeachkeywordeachyear,thefactoranalysismethodisusedtocalculatethelevelofdigitaltransformationofcommercialbanks.Finally,etheweightedaveragedigitaltransformationlevelofcommercialbanklendingtoanenterprise,DTCBE,iscalculated.(2)Usethedigitalizationofregionalcommercialbanksasaproxyvariable.Thispa-perusesthedigitalizationofregionalcommercialbanksasaproxyvariablefortherobustnesstest.Thisstudyfollowsthemethodsofstudiesinref.[49]tomeasurethedigitalizationofregionalcommercialbanks.ThedegreeofthedigitalizationofregionalcommercialbanksisconstructedbasedonthedegreeofDTCBatthecommer-cialbanklevelandthegeographicdistributiondataofthecommercialbankbranches.Table4reportstheregressionresults,andtheDTCBEcoefficientinModels(1)and(2)issignificantlypositive,indicatingthattheconclusionthatDTCBsignificantlypromotesgreeninnovationisrobust.Sustainability2023,15,625810of15Table4.Robusttestwiththealternativecoreexplanatoryvariablesandthealternativesample.VariablesModel(1)Model(2)Model(3)GI(ReplacetheWayDTCBEIsConstructed)GI(UsetheDigitalizationofRegionalCommercialBanks)GI(DeletetheSampleofMDUCG)CoefficientStd.ErrCoefficientStd.ErrCoefficientStd.ErrDTCBE0.022(3.23)0.035(1.85)0.004(2.74)Constant−0.285(−1.12)−0.321(−0.66)−0.357(−1.07)ControlledvariableYESYESYESEnterpriseFEYESYESYESYearFEYESYESYESIndustryFEYESYESYESN751175116232Adj.R-sq0.03040.03860.0345Thevaluesinparenthesesaret-statistics.p<0.1andp<0.01.4.2.2.ExcludeMunicipalitiesDirectlyundertheCentralGovernmentReferringto[50],themunicipalitiesdirectlyunderthecentralgovernment(MDUCG)wereremovedtocarryouttherobustnesstest.ThisisduetothehighdegreeofDTCBinMDUCG,whichmayleadtothemoresignificantimpactofDTCBongreeninnovationinMDUCG.TheregressionresultsareshowninModel(3)inTable4.ItcanbeseenthatthecoefficientofDTCBEisstillsignificantlypositiveafterexcludingthesamplesofMDUCG.Thisindicatesthatthecoreconclusionsofthispaperarerobust.4.2.3.TreatmentofEndogeneityTheaboveregressionresultsshowthatDTCBcanpromotegreeninnovation.However,theaboveregressionresultsmaybechallengedbyendogeneityproblems.Consideringthatenterprises’greeninnovationinthecurrentperiodisoftenaffectedbythegreeninnovationinthelagperiod,theremaybeaserialcorrelationinthetimedimension.Therefore,thispaperintroducesthefirst-orderlaggedvalueofgreeninnovationinthebenchmarkregres-sionmodeltomitigateendogeneityproblems,andtheresultsareshownincolumn(1)inTable5.Thecoefficientofthefirst-orderlaggedvalueofgreeninnovationissignificantlypositive,indicatingthatthegreeninnovationofenterprisesinthecurrentperiodissignifi-cantlyaffectedbythegreeninnovationinthepreviousperiod.ThecoefficientofDTCBEissignificantlypositive,indicatingthatDTCBstillsignificantlypromotesgreeninnovationafterconsideringtheserialcorrelationinthetimedimensionofgreeninnovation.Table5.TreatmentofendogeneitywiththefirstorderlaggedvalueofDTCBEandGI.VariablesModel(1)Model(2)GI(UsetheFirstOrderLaggedValueofGI)GI(UsetheFirstOrderLaggedValueofDTCBE)CoefficientStd.ErrCoefficientStd.ErrL.GI0.050(3.57)L.DTCBE0.002(1.92)DTCBE0.002(1.99)Constant−0.146(−0.46)−0.317(−1.24)ControlledvariableYESYESEnterpriseFEYESYESYearFEYESYESIndustryFEYESYESN64986498Adj.R-sq0.02780.0265Thevaluesinparenthesesaret-statistics.p<0.1,p<0.05,p<0.01.Sustainability2023,15,625811of15TheimpactofDTCBongreeninnovationisusuallyalong-termcumulativeprocess,whichmayhaveacertainlag.Therefore,referringtothemethodof[51],weuseafirst-orderlaggedvalueofDTCBEasaproxyforDTCBEtomitigatetheunderlyingestimationerror.Theestimationresultsaredisplayedincolumn(2)inTable5.Theresultsindicatethatthecoefficientofthefirst-orderlaggedvalueofDTCBEissignificantlypositive,whichonceagainconfirmsourconclusions.4.3.MechanismAnalysisTheoreticalanalysisshowsthatDTCBcanpromotegreeninnovationbyincreasingtheexpendituresofenterprisesonR&Dandstrengtheningthegovernanceofdebtsforenterprises.Therefore,thispapernextexaminestheimpactofDTCBonR&Dexpendituresandagencycosts,andtheregressionresultsareshowninTable6.ThecoefficientofDTCBEissignificantlypositiveinModel(1),indicatingthatDTCBcansignificantlyincreasetheR&Dexpenditure.ThecoefficientofDTCBEissignificantlynegativeinModel(2),indicatingthatDTCBcanstrengthenthegovernanceofdebtoftheenterprises,thusreducingagencycosts.Therefore,Hypothesis2andHypothesis3aresupported.Table6.Mechanismtestresults.VariablesModel(1)Model(2)RDACCoefficientStd.ErrCoefficientStd.ErrDTCBE0.018(5.81)−0.001(−2.33)CS0.681(29.78)−0.003(−2.04)SOE−0.063(−0.93)0.003(0.65)ALR−0.178(−2.28)0.020(3.48)IRBR0.042(2.83)−0.016(−16.76)CLR0.197(11.63)0.003(2.74)DL0.028(1.04)−0.002(−1.01)BS0.219(2.46)−0.011(−1.64)PID0.224(0.86)−0.009(−0.50)GSC0.399(1.15)0.124(4.75)ATBC0.045(0.04)−0.408(−5.47)Constant9.982(15.76)0.027(0.68)EnterpriseFEYESYESYearFEYESYESIndustryFEYESYESN75117511Adj.R-sq0.43170.1212Thevaluesinparenthesesaret-statistics.p<0.05andp<0.01.4.4.HeterogeneityAnalysis4.4.1.HeterogeneityofOwnershipThetheoreticalanalysisshowsthattheinfluenceofDTCBoncorporategreeninno-vationisonlysignificantinprivateenterprises.Therefore,thispaperexploreswhetherthereisownershipheterogeneityintheimpactofDTCBongreeninnovation.Enterprisesaredividedintostate-ownedandprivateenterprises,andtheregressionisconductedbygroup.TheregressionresultsarereportedinTable7.TheresultsshowthatDTCBcansignificantlypromotegreeninnovationinprivateenterprises,butitisunabletopromotegreeninnovationinstate-ownedenterprises.ThisverifiesHypothesis4.Sustainability2023,15,625812of15Table7.Resultsbasedontheheterogeneityofthedegreeofenterprisedigitaltransformation.VariablesModel(1)Model(2)GI(EnterpriseswithaLowDegreeofDigitalTransformation)GI(EnterpriseswithaHighDegreeofDigitalTransformation)CoefficientStd.ErrCoefficientStd.ErrDTCBE0.003(1.61)0.005(2.04)Constant−0.204(−0.63)−0.103(−0.29)ControlledvariableYESYESEnterpriseFEYESYESYearFEYESYESIndustryFEYESYESN38943617Adj.R-sq0.03650.0376Thevaluesinparenthesesaret-statistics.p<0.05.4.4.2.HeterogeneityoftheDegreeofDigitalTransformationofEnterprisesTheoreticalanalysisshowsthatonlywhenenterpriseshaverealizedacertaindegreeofdigitaltransformationcanDTCBpromotegreeninnovation.Therefore,thispaperexamineswhethertheeffectofDTCBongreeninnovationisheterogeneousbetweenenterpriseswithdifferentdegreesofdigitaltransformation.Thispaperusesthemethodof[52–55]tocon-structtheindicatorsreflectingthedegreeofenterprisedigitaltransformation.Thespecificstepsareasfollows.Firstly,withthehelpofthesemanticexpressionofnationalpoliciesrelatedtothedigitaleconomy,197wordsrelatedtoenterprisedigitaltransformation,withafrequencyofmorethanorequalto5times,areselectedtoformadigitaldictionary.Then,themachinelearning-basedtextanalysismethodisusedtoanalyzethetextofthe‘managementdiscussionandanalysis’partoftheannualreportoflistedcompanies,andthefrequencyof197wordsrelatedtothedigitaltransformationoftheenterpriseisobtainedfromtheannualreport.Finally,acomprehensiveindicatorisconstructedreflectingthedegreeofenterprisedigitaltransformationbasedontheabovefrequencydata.Accordingtothemedianofthedegreeofenterprisedigitaltransformation,wedividethesamplesintothegroupwithahighdigitaltransformationdegreeandthegroupwithalowdigitaltransformationdegree.Thentheregressionisconductedbygroups.TheregressionresultsareshowninTable8.TheresultsshowthatDTCBcanonlypromotegreeninnovationinenterpriseswithahighdegreeofdigitaltransformation,butitisunabletopromotegreeninnovationinenterpriseswithalowdegreeofdigitaltransformation.ThisverifiesHypothesis5.Table8.Resultsbasedontheheterogeneityoffirmownership.VariablesModel(1)Model(2)GI(State-OwnedEnterprise)GI(PrivateEnterprise)CoefficientStd.ErrCoefficientStd.ErrDTCBE0.001(0.10)0.005(3.06)Constant−0.363(−0.88)−0.405(−1.61)ControlledvariableYESYESEnterpriseFEYESYESYearFEYESYESIndustryFEYESYESN23305181Adj.R-sq0.03440.0345Thevaluesinparenthesesaret-statistics.p<0.01.5.ConclusionsThedevelopmentofdigitalfinancehaschangedthewayfinancialservicesareprovidedandimprovedtheabilityofthefinancialsystemtoservetherealeconomy.ManyscholarsSustainability2023,15,625813of15havefocusedontheimpactofdigitalfinanceongreeninnovationandhavedrawnsomeusefulconclusions.However,existingstudiesonlydiscusstheimpactofthedevelopmentoffintechcompaniesongreeninnovation,ignoringtheimpactofthedigitaltransformationofcommercialbanks(DTCB)ongreeninnovation.Therefore,thispaperfillsthisgapandexplorestheimpactofDTCBoncorporategreeninnovation.Basedonthedataoflistedcompaniesfrom2010to2019,thisstudyexplorestheimpactofDTCBonenterprisegreeninnovation.WefindthatDTCBhassignificantlypromotedenterprisegreeninnovation.MechanismanalysisshowsthatDTCBcanpromotegreeninnovationbyincreasingR&Dexpendituresandreducingagencycosts.TheheterogeneityanalysisindicatesthatDTCBcanonlypromotegreeninnovationinprivateenterprisesandenterpriseswithahighdegreeofdigitaltransformation,butitcannotpromotegreeninnovationinstate-ownedenterprisesandenterpriseswithalowdegreeofdigitaltransformation.Thefollowingrecommendationscanbederivedfromourstudy,basedontheaboveconclusions.First,thegovernmentshouldfocusonsolvingtheproblemoftheinadequatesharingofenterprise-relatedinformation.ThemechanismanalysisshowsthattheDTCBincreasesloanstoenterprisesbyreducinginformationasymmetry,thuspromotinggreeninnovation.Atpresent,enterprise-relatedinformationisscattered,sothegovernmentshouldbroadentheinformationsourcesofcommercialbanksbybuildingenterprise-relatedinformationsharingplatformsandallowingDTCBtoplayafullroleinpromotinggreeninnovation.Theinformationsharingplatformcancollectandsharetheinformationwithinthepurviewoflocalgovernments,suchasenterprisetaxpaymentinformation,realestateinformation,compulsoryadministrativeinformation,andwaterandelectricfeepaymentinformation.Second,thegovernmentshouldguideandsupportthedigitaltransformationofenterprises.TheheterogeneityanalysisshowsthatonlywhenthedigitaltransformationofenterprisesreachesacertainlevelcanDTCBsignificantlypromotegreeninnovation.Therefore,thegovernmentshouldguideandsupportenterprisestoimplementdigitaltransformation.Thegovernmentcangivefullplaytotheguidingroleofcentralfinancialfundsandencouragelocalgovernmentstoprovidepreferentialsupporttothedigitaltransformationoftheseenterprises.Inaddition,thegovernmentcanbuildsomeplatformstoprovideenterpriseswithdigitalservices,suchastransformationconsultingandsoftwareapplications.ThispaperclarifiestheimpactofDTCBonenvironmentalgreeninnovation.However,duetothedifficultyinobtainingthedigitaltransformationlevelofcommercialbanksthatprovideloanstounlistedcompanies,thispaperdoesnotexploretheimpactofDTCBonunlistedcompanies.Inthefuture,ifweobtainthedigitaltransformationindexofcommer-cialbanksthatprovideloanstounlistedcompanies,wewillfurthertesttodeterminetheimpactofDTCBongreenenvironmentalinnovationinunlistedcompaniestodeepenandexpandourfindings.AuthorContributions:Conceptualization,F.M.andS.F.;methodology,F.M.;software,F.M.;validation,F.M.andS.F.;formalanalysis,S.F.;investigation,S.F.;resources,S.Y.;datacuration,S.F.;writing—originaldraftpreparation,F.M.;writing—reviewandediting,F.M.andS.F.;visual-ization,F.M.;supervision,F.M.;projectadministration,Y.Z.;fundingacquisition,F.M.andS.F.Allauthorshavereadandagreedtothepublishedversionofthemanuscript.Funding:ThisresearchwasfundedbytheShaanxiSocialScienceFederation,grantnumber2022HZ1843,andtheDepartmentofEducationofShaanxiProvince,grantnumber2022HZ1314.InstitutionalReviewBoardStatement:Notapplicable.InformedConsentStatement:Notapplicable.DataAvailabilityStatement:Notapplicable.ConflictsofInterest:Theauthorsdeclarenoconflictofinterest.Thefundershadnoroleinthedesignofthestudy;inthecollection,analyses,orinterpretationofdata;inthewritingofthemanuscript,orinthedecisiontopublishtheresults.Sustainability2023,15,625814of15References1.Ba,S.;Li,N.;Zhang,J.DigitalFinanceandCorporateGreenInnovation:ExclusionorIntegration?Res.Financ.Econ.Issues2022,57–68.2.Wang,C.H.Anenvironmentalperspectiveextendsmarketorientation:Greeninnovationsustainability.Bus.StrategyEnviron.2020,29,3123–3134.[CrossRef]3.Sahoo,S.;Kumar,A.;Upadhyay,A.Howdogreenknowledgemanagementandgreentechnologyinnovationimpactcorporateenvironmentalperformance?Understandingtheroleofgreenknowledgeacquisition.Bus.StrategyEnviron.2023,32,551–569.[CrossRef]4.Yu,C.-H.;Wu,X.;Zhang,D.;Chen,S.;Zhao,J.Demandforgreenfinance:ResolvingfinancingconstraintsongreeninnovationinChina.EnergyPolicy2021,153,112255.[CrossRef]5.Opler,T.C.;Titman,S.FinancialDistressandCorporatePerformance.J.Financ.1994,49,1015–1040.[CrossRef]6.Wang,X.Frominnovationaversiontoinnovationtolerance:Astudyofinfluenceofbankdebtgovernancetowardstechnologicalinnovation.Sci.Res.Manag.2015,36,184–192.7.Yu,C.;Zhang,Z.;Lin,C.;Wu,Y.J.KnowledgeCreationProcessandSustainableCompetitiveAdvantage:TheRoleofTechnologicalInnovationCapabilities.Sustainability2017,9,2280.[CrossRef]8.David,P.;O’Brien,J.P.;Yoshikawa,T.TheImplicationsofDebtHeterogeneityforR&DInvestmentandFirmPerformance.Acad.Manag.J.2008,51,165–181.9.Yu,D.;Tao,S.;Hanan,A.;Ong,T.S.;Latif,B.;Ali,M.FosteringGreenInnovationAdoptionthroughGreenDynamicCapability:TheModeratingRoleofEnvironmentalDynamismandBigDataAnalyticCapability.Int.J.Environ.Res.PublicHealth2022,19,10336.[CrossRef]10.Stiglitz,J.;Weiss,A.CreditRationinginMarketswithImperfectInformation.Am.Econ.Rev.1981,71,393–410.11.Wang,S.;Xie,X.EconomicPressureorSocialPressure:TheDevelopmentofDigitalFinanceandtheDigitalInnovationofCommercialBanks.Economist2021,1,100–108.12.Omarini,A.TheDigitalTransformationinBankingandTheRoleofFinTechsintheNewFinancialIntermediationScenario.Int.J.Financ.Econ.Trade(IJFET)2017,1,1–6.13.Wang,X.;Huang,Y.;Xun,Q.;Qiu,H.HowDigitalTechnologiesChangeFinancialInstitutions:China’sPracticeandInternationalImplications.Int.Econ.Rev.2022,70–85+6.14.Hu,B.;Ren,X.TheDevelopmentofFinTech:Characteristics,ChallengesandRegulatoryStrategies.Reform2021,82–90.15.Wang,X.;Sun,X.;Zhang,H.;Xue,C.DigitalEconomyDevelopmentandUrbanGreenInnovationCA-Pability:BasedonPanelDataof274Prefecture-LevelCitiesinChina.Sustainability2022,14,2921.[CrossRef]16.Xiao,Y.;Wu,S.;Liu,Z.Q.;Lin,H.J.Digitaleconomyandgreendevelopment:EmpiricalevidencefromChina’scities.Front.Environ.Sci.2023,11,1124680.[CrossRef]17.Luo,S.;Yimamu,N.;Li,Y.;Wu,H.;Irfan,M.;Hao,Y.Digitalizationandsustainabledevelopment:HowcoulddigitaleconomydevelopmentimprovegreeninnovationinChina?Bus.StrategyEnviron.2022.[CrossRef]18.Guo,F.;Yang,S.;Chai,Z.DoesDigitalTransformationofEnterprisesImprovetheQuantityandQualityofGreenTechnologyInnovation?TextAnalysisBasedonAnnualReportsofChineseListedCompanies.SouthChinaJ.Econ.2023,401,146–162.19.Yang,Y.;Yang,C.;Cai,X.EnterpriseDigitalTransformationandGreenInnovationCapabilityDevelopment:AnalysisBasedonNetworkEffect.Mod.Financ.Econ.2023,43,3–19.20.Wang,Z.;Zhu,W.;Han,C.DoesDigitalFinanceaffectcorporategreentechnologyInnovation—EmpiricalevidencefromlistedcompaniesinChina.ForumSci.Technol.China2022,52–61.21.Han,X.;Song,W.;Li,B.;Jiang,Z.Heterogeneousnonlinearregulationeffectofdigitalfinanceempowermentongreeninnovation.ChinaPopul.Resour.Environ.2022,32,65–76.22.Zhang,M.;Xie,S.;Qiang,H.;Zheng,L.DigitalFinancialInclusionandExportofSMEs:TimelyHelporAdditionalImprovement.J.WorldEcon.2022,45,30–56.23.Zhang,X.;Liu,B.;Wang,T.;Li,C.CreditRent-seeking,FinancingConstraintandCorporateInnovation.Econ.Res.J.2017,52,161–174.24.Tang,J.;Tang,Q.R&DInvestmentandFrictionsofR&DResourceAcquisitionofEnterprise:BasedonaQuestionnaireResearch.Contemp.Econ.Manag.2010,32,20–27.25.Nie,X.;Wu,Q.ResearchontheDrivingEffectofDigitalFinanceontheTechnologicalInnovationofSMEs.EastChinaEcon.Manag.2021,35,42–53.26.Berger,A.N.;Udell,G.F.Theinstitutionalmemoryhypothesisandtheprocyclicalityofbanklendingbehavior.J.Financ.Intermediation2004,13,458–495.[CrossRef]27.Qian,X.;Tang,Y.;Fang,S.DoesReformoftheSecurityInterestsSystemReducetheCostofCorporateDebt?EvidencefromaNaturalExperimentinChina.J.Financ.Res.2019,7,115–134.28.Khandani,A.E.;Kim,A.J.;Lo,A.W.Consumercredit-riskmodelsviamachine-learningalgorithms.J.Bank.Financ.2010,34,2767–2787.[CrossRef]29.Frost,J.;Gambacorta,L.;Huang,Y.;Shin,H.S.;Zbinden,P.BigTechandthechangingstructureoffinancialintermediation.Econ.Policy2019,34,761–799.[CrossRef]Sustainability2023,15,625815of1530.Cornee,S.TheRelevanceofSoftInformationforPredictingSmallBusinessCreditDefault:EvidencefromaSocialBank.J.SmallBus.Manag.2019,57,699–719.[CrossRef]31.Li,H.;Wu,F.BankInstitutionSize,LoanTechnologyandSmallBusinessFinancing.Financ.TradeEcon.2019,40,84–101.32.Kshetri,N.Blockchain’srolesinmeetingkeysupplychainmanagementobjectives.Int.J.Inf.Manag.2018,39,80–89.[CrossRef]33.Jensen,M.C.;Meckling,W.H.Theoryofthefirm:Managerialbehavior,agencycostsandownershipstructure.J.Financ.Econ.1976,3,305–360.[CrossRef]34.Jensen,M.C.AgencyCostsofFreeCashFlow,CorporateFinance,andTakeovers.Am.Econ.Rev.1986,76,323–329.35.Williamson,O.E.ManagerialDiscretionandBusinessBehavior.Am.Econ.Rev.1963,53,1032–1057.36.Hicks,J.R.AnnualSurveyofEconomicTheory:TheTheoryofMonopoly.Econometrica1935,3,1–20.[CrossRef]37.O’Connor,M.;Rafferty,M.CorporateGovernanceandInnovation.J.Financ.Quant.Anal.2012,47,397–413.[CrossRef]38.Allen,F.DoFinancialInstitutionsMatter?J.Financ.2001,56,1165–1175.[CrossRef]39.Grossman,S.;Hart,O.CorporateFinancialStructureandManagerialIncentives.Econ.Inf.Uncertain.1983,107–140.40.Harris,M.;Raviv,A.CapitalStructureandtheInformationalRoleofDebt.J.Financ.1990,45,321–349.[CrossRef]41.Rowan,N.J.;Murray,N.;Qiao,Y.;O’Neill,E.;Clifford,E.;Barceló,D.;Power,D.M.Digitaltransformationofpeatlandeco-innovations(‘Paludiculture’):Enablingaparadigmshifttowardsthereal-timesustainableproductionof‘green-friendly’productsandservices.Sci.TotalEnviron.2022,838,156328.[CrossRef][PubMed]42.Berg,T.;Burg,V.;Gombovi´c,A.;Puri,M.OntheRiseofFinTechs:CreditScoringUsingDigitalFootprints.Rev.Financ.Stud.2020,33,2845–2897.[CrossRef]43.Zhang,X.;Wu,Y.AdvancesinEmpiricalAssetPricingResearchBasedonWeb-basedBigDataMining.Econ.Perspect.2018,129–140.44.Brandt,L.;Li,H.Bankdiscriminationintransitioneconomies:Ideology,information,orincentives?J.Comp.Econ.2003,31,387–413.[CrossRef]45.Lv,C.;Shao,C.;Lee,C.-C.Greentechnologyinnovationandfinancialdevelopment:Doenvironmentalregulationandinnovationoutputmatter?EnergyEcon.2021,98,105237.[CrossRef]46.Zhang,J.;Li,K.;Zhang,J.HowdoesBankFinTechImpactStructuralDeleveragingofFirms?J.Financ.Econ.2022,48,64–77.47.Li,H.;Tang,H.;Zhou,W.;Wan,X.Impactofenterprisedigitalizationongreeninnovationperformanceundertheperspectiveofproductionandoperation.Front.PublicHealth2022,10,971971.[CrossRef]48.Feng,H.;Wang,F.;Song,G.;Liu,L.DigitalTransformationonEnterpriseGreenInnovation:EffectandTransmissionMechanism.Int.J.Environ.Res.PublicHealth2022,19,10614.[CrossRef]49.Li,X.;Wang,C.;Fang,J.BankFintech,commercialcreditandPrivateenterpriseexport:Anempiricalanalysisbasedonpaneldataofprefecture-levelcitiesinChina.Financ.Econ.Res.2022,37,1–18.50.Song,M.;Zhou,P.;Si,H.FinancialTechnologyandEnterpriseTotalFactorProductivity—Perspectiveof“Enabling”andCreditRationing.ChinaInd.Econ.2021,4,138–155.51.Meng,L.;Huang,B.ShapingtheRelationshipBetweenEconomicDevelopmentandCarbonDioxideEmissionsattheLocalLevel:EvidencefromSpatialEconometricModels.Environ.Resour.Econ.2018,71,127–156.[CrossRef]52.Yuan,C.;Xiao,T.;Geng,C.;Sheng,Y.DigitalTransformationandDivisionofLaborbetweenEnterprises:VerticalSpecializationorVerticalIntegration.ChinaInd.Econ.2021,9,137–155.53.Hu,G.;Wang,J.;Fahad,S.;Li,J.Influencingfactorsoffarmers’landtransfer,subjectivewell-being,andparticipationinagri-environmentschemesinenvironmentallyfragileareasofChina.Environ.Sci.Pollut.Res.2023,30,4448–4461.[CrossRef]54.Fahad,S.;Bai,D.;Liu,L.;Dagar,V.Comprehendingtheenvironmentalregulation,biasedpoliciesandOFDIreversetechnologyspillovereffects:Acontingentanddynamicperspective.Environ.Sci.Pollut.Res.2022,29,33167–33179.[CrossRef]55.Fahad,S.;Su,F.;Wei,K.Quantifyinghouseholds’vulnerability,regionalenvironmentalindicators,andclimatechangemitigationbyusingacombinationofvulnerabilityframeworks.LandDegrad.Dev.2023,34,859–872.[CrossRef]Disclaimer/Publisher’sNote:Thestatements,opinionsanddatacontainedinallpublicationsaresolelythoseoftheindividualauthor(s)andcontributor(s)andnotofMDPIand/ortheeditor(s).MDPIand/ortheeditor(s)disclaimresponsibilityforanyinjurytopeopleorpropertyresultingfromanyideas,methods,instructionsorproductsreferredtointhecontent.