执行摘要-2023年全球可再生能源融资全景报告(英)VIP专享VIP免费

2023
GLOBAL LANDSCAPE OF RENEWABLE ENERGY FINANCE 2022 2023
www.irena.org
© IRENA 2023
EXECUTIVE SUMMARY
2
GLOBAL LANDSCAPE OF RENEWABLE ENERGY FINANCE 2023
© IRENA 2023
Unless otherwise stated, material in this publication may be freely used, shared, copied, reproduced, printed and/or
stored, provided that appropriate acknowledgement is given of IRENA as the source and copyright holder. Material in this
publication that is attributed to third parties may be subject to separate terms of use and restrictions, and appropriate
permissions from these third parties may need to be secured before any use of such material.
Citation: IRENA and CPI (2023), Global landscape of renewable energy finance, 2023, International Renewable
Energy Agency, Abu Dhabi.
ISBN: 978-92-9260-523-0
This report has been re-issued since its original release date in February 2023. This revised digital imprint
incorporates updated data.
Acknowledgements
This report was jointly prepared by the International Renewable Energy Agency (IRENA) and Climate Policy Initiative
(CPI). The report was developed under the guidance of Rabia Ferroukhi (Director, IRENA Knowledge, Policy and
Finance Centre) and Ute Collier (IRENA), and Barbara Buchner and Dharshan Wignarajah (Climate Policy Initiative).
The report was authored by Diala Hawila and Faran Rana (IRENA), Costanza Strinati, Sean Stout, Jake Connolly, and
Sandy Fajrian (Climate Policy Initiative), Antonio Barbalho and Sandra Lozo (IRENA consultants).
Input was also provided by IRENA and CPI colleagues, including Divyam Nagpal, Abdullah Abou Ali, Jinlei Feng,
Emanuele Bianco, Dennis Akande, Gerardo Escamilla, Mirjam Reiner, and Hannah Guinto (IRENA), and Chavi Meattle,
and Baysa Naran (CPI).
Valuable review and feedback were provided by IRENA colleagues Elizabeth Press, Xavier Casals and Paul Komor.
The report benefitted from comments of experts including Christine Eibs Singer (Catalyst Energy Advisors), Charlotte
Gardes-Landolfini (International Monetary Fund), Jonathan Coppel (International Energy Agency), Kingsmill Bond
(Rocky Mountain Institute), Laura Fortes (GOGLA), Olivia Coldrey (Sustainable Energy for All), Miquel Muñoz Cabré,
and Danial Duma (Stockholm Environment Institute).
The report was edited by Fayre Makeig.
For further information or to provide feedback: publications@irena.org
This report can be downloaded from www.irena.org/publications
Disclaimer
This publication and the material herein are provided “as is”. All reasonable precautions have been taken by IRENA to verify the reliability of the material
in this publication. However, neither IRENA nor any of its officials, agents, data or other third-party content providers provides a warranty of any kind,
either expressed or implied, and they accept no responsibility or liability for any consequence of use of the publication or material herein.
The information contained herein does not necessarily represent the views of all Members of IRENA. The mention of specific companies or certain
projects or products does not imply that they are endorsed or recommended by IRENA in preference to others of a similar nature that are not mentioned.
The designations employed and the presentation of material herein do not imply the expression of any opinion on the part of IRENA concerning the legal
status of any region, country, territory, city or area or of its authorities, or concerning the delimitation of frontiers or boundaries.
Cover photos: Kletr © Shutterstock.com, Evgeny_V © Shutterstock.com, Mabeline72 © Shutterstock.com, Alex Traveler © Shutterstock.com and
isak55 © Shutterstock.com
About IRENA
The International Renewable Energy Agency (IRENA) is an intergovernmental organisation that supports
countries in their transition to a sustainable energy future and serves as the principal platform for international
co-operation, a centre of excellence, and a repository of policy, technology, resource and financial knowledge
on renewable energy. IRENA promotes the widespread adoption and sustainable use of all forms of renewable
energy, including bioenergy, geothermal, hydropower, ocean, solar and wind energy, in the pursuit of
sustainable development, energy access, energy security, and low-carbon economic growth and prosperity.
3
ExEcutivE Summary
Global investments in energy transition technologies reached USD1.3trillion in 2022, a record
high. Yet, the current pace of investment is not sucient to put the world on track towards
meeting climate or socio-economic development goals.
In 2022, global investments in energy transition technologies – renewable energy, energy
eciency, electrified transport and heat, energy storage, hydrogen and carbon capture and
storage (CCS) – reached USD1.3trillion despite the prevailing macroeconomic, geopolitical and
supply chain challenges. Global investments were up 19% from 2021 levels, and almost 70% from
2019, before the COVID-19 pandemic (Figure S.1). This trend demonstrates a growing recognition
of the climate crisis and energy security risks associated with over-reliance on fossil fuels.
Yet, the current pace of investment is not sucient; annual investments need to at least quadruple.
Keeping the world on track to achieving the energy transition in line with the 1.5°C Scenario laid
out in IRENAs World energy transitions outlook 2023 will require annual investments of more than
USD 5 trillion on average between 2023 and 2030 (IRENA, 2023a).







    * *
USDbillion
662 656
749 764 772 839
1 096
1 308
Electrified heat
Renewable energy Electrified transportEnergy eciency Energy storage
Hydrogen Carbon capture and storage
FigureS  Annualglobalinvestmentinrenewableenergyenergyefficiencyandothertransition-related
technologies-
Notes: Renewable energy investments for 2021 and 2022 represent preliminary estimates based on data from Bloomberg New
Energy Finance (BNEF). As BNEF has limited coverage of large hydropower investments, these were estimated at USD 7 billion per
year, the annual average investment in 2019 and 2020. Energy efficiency data are from IEA (2022a). These values are in constant
2019 dollars, while all other values are at current prices and exchange rates. Due to the lack of more granular data, the units could
not be harmonised across the databases. For this reason, these numbers are presented together for indicative purposes only
and should not be used to make comparisons between data sources. Data for other energy transition technologies come from
BNEF (2023a).
Based on: IEA (2022a) and BNEF (2023a).
EXECUTIVE SUMMARY
2023EXECUTIVESUMMARY2GLOBALLANDSCAPEOFRENEWABLEENERGYFINANCE2023©IRENA2023Unlessotherwisestated,materialinthispublicationmaybefreelyused,shared,copied,reproduced,printedand/orstored,providedthatappropriateacknowledgementisgivenofIRENAasthesourceandcopyrightholder.Materialinthispublicationthatisattributedtothirdpartiesmaybesubjecttoseparatetermsofuseandrestrictions,andappropriatepermissionsfromthesethirdpartiesmayneedtobesecuredbeforeanyuseofsuchmaterial.Citation:IRENAandCPI(2023),Globallandscapeofrenewableenergyfinance,2023,InternationalRenewableEnergyAgency,AbuDhabi.ISBN:978-92-9260-523-0Thisreporthasbeenre-issuedsinceitsoriginalreleasedateinFebruary2023.Thisreviseddigitalimprintincorporatesupdateddata.AcknowledgementsThisreportwasjointlypreparedbytheInternationalRenewableEnergyAgency(IRENA)andClimatePolicyInitiative(CPI).ThereportwasdevelopedundertheguidanceofRabiaFerroukhi(Director,IRENAKnowledge,PolicyandFinanceCentre)andUteCollier(IRENA),andBarbaraBuchnerandDharshanWignarajah(ClimatePolicyInitiative).ThereportwasauthoredbyDialaHawilaandFaranRana(IRENA),CostanzaStrinati,SeanStout,JakeConnolly,andSandyFajrian(ClimatePolicyInitiative),AntonioBarbalhoandSandraLozo(IRENAconsultants).InputwasalsoprovidedbyIRENAandCPIcolleagues,includingDivyamNagpal,AbdullahAbouAli,JinleiFeng,EmanueleBianco,DennisAkande,GerardoEscamilla,MirjamReiner,andHannahGuinto(IRENA),andChaviMeattle,andBaysaNaran(CPI).ValuablereviewandfeedbackwereprovidedbyIRENAcolleaguesElizabethPress,XavierCasalsandPaulKomor.ThereportbenefittedfromcommentsofexpertsincludingChristineEibsSinger(CatalystEnergyAdvisors),CharlotteGardes-Landolfini(InternationalMonetaryFund),JonathanCoppel(InternationalEnergyAgency),KingsmillBond(RockyMountainInstitute),LauraFortes(GOGLA),OliviaColdrey(SustainableEnergyforAll),MiquelMuñozCabré,andDanialDuma(StockholmEnvironmentInstitute).ThereportwaseditedbyFayreMakeig.Forfurtherinformationortoprovidefeedback:publications@irena.orgThisreportcanbedownloadedfromwww.irena.org/publicationsDisclaimerThispublicationandthematerialhereinareprovided“asis”.AllreasonableprecautionshavebeentakenbyIRENAtoverifythereliabilityofthematerialinthispublication.However,neitherIRENAnoranyofitsofficials,agents,dataorotherthird-partycontentprovidersprovidesawarrantyofanykind,eitherexpressedorimplied,andtheyacceptnoresponsibilityorliabilityforanyconsequenceofuseofthepublicationormaterialherein.TheinformationcontainedhereindoesnotnecessarilyrepresenttheviewsofallMembersofIRENA.ThementionofspecificcompaniesorcertainprojectsorproductsdoesnotimplythattheyareendorsedorrecommendedbyIRENAinpreferencetoothersofasimilarnaturethatarenotmentioned.ThedesignationsemployedandthepresentationofmaterialhereindonotimplytheexpressionofanyopiniononthepartofIRENAconcerningthelegalstatusofanyregion,country,territory,cityorareaorofitsauthorities,orconcerningthedelimitationoffrontiersorboundaries.Coverphotos:Kletr©Shutterstock.com,Evgeny_V©Shutterstock.com,Mabeline72©Shutterstock.com,AlexTraveler©Shutterstock.comandisak55©Shutterstock.comAboutIRENATheInternationalRenewableEnergyAgency(IRENA)isanintergovernmentalorganisationthatsupportscountriesintheirtransitiontoasustainableenergyfutureandservesastheprincipalplatformforinternationalco-operation,acentreofexcellence,andarepositoryofpolicy,technology,resourceandfinancialknowledgeonrenewableenergy.IRENApromotesthewidespreadadoptionandsustainableuseofallformsofrenewableenergy,includingbioenergy,geothermal,hydropower,ocean,solarandwindenergy,inthepursuitofsustainabledevelopment,energyaccess,energysecurity,andlow-carboneconomicgrowthandprosperity.3ExecutiveSummaryGlobalinvestmentsinenergytransitiontechnologiesreachedUSD1.3trillionin2022,arecordhigh.Yet,thecurrentpaceofinvestmentisnotsufficienttoputtheworldontracktowardsmeetingclimateorsocio-economicdevelopmentgoals.In2022,globalinvestmentsinenergytransitiontechnologies–renewableenergy,energyefficiency,electrifiedtransportandheat,energystorage,hydrogenandcarboncaptureandstorage(CCS)–reachedUSD1.3trilliondespitetheprevailingmacroeconomic,geopoliticalandsupplychainchallenges.Globalinvestmentswereup19%from2021levels,andalmost70%from2019,beforetheCOVID-19pandemic(FigureS.1).Thistrenddemonstratesagrowingrecognitionoftheclimatecrisisandenergysecurityrisksassociatedwithover-relianceonfossilfuels.Yet,thecurrentpaceofinvestmentisnotsufficient;annualinvestmentsneedtoatleastquadruple.Keepingtheworldontracktoachievingtheenergytransitioninlinewiththe1.5°CScenariolaidoutinIRENA’sWorldenergytransitionsoutlook2023willrequireannualinvestmentsofmorethanUSD5trilliononaveragebetween2023and2030(IRENA,2023a).USDbillionElectrifiedheatRenewableenergyElectrifiedtransportEnergyeciencyEnergystorageHydrogenCarboncaptureandstorageFigureS.1Annualglobalinvestmentinrenewableenergy,energyefficiencyandothertransition-relatedtechnologies,2015-2022Notes:Renewableenergyinvestmentsfor2021and2022representpreliminaryestimatesbasedondatafromBloombergNewEnergyFinance(BNEF).AsBNEFhaslimitedcoverageoflargehydropowerinvestments,thesewereestimatedatUSD7billionperyear,theannualaverageinvestmentin2019and2020.EnergyefficiencydataarefromIEA(2022a).Thesevaluesareinconstant2019dollars,whileallothervaluesareatcurrentpricesandexchangerates.Duetothelackofmoregranulardata,theunitscouldnotbeharmonisedacrossthedatabases.Forthisreason,thesenumbersarepresentedtogetherforindicativepurposesonlyandshouldnotbeusedtomakecomparisonsbetweendatasources.DataforotherenergytransitiontechnologiescomefromBNEF(2023a).Basedon:IEA(2022a)andBNEF(2023a).EXECUTIVESUMMARY4GLOBALLANDSCAPEOFRENEWABLEENERGYFINANCE2023Achievinganenergytransitioninlinewiththe1.5°CScenariorequirestheredirectionofUSD1trillionperyearfromfossilfuelstoenergy-transition­-relatedtechnologies;butfossilfuelinvestmentsarestillontherise.Fossilfuelinvestmentshaddeclinedin2020(down22%fromtheUSD1trillioninvestedin2019)mainlyduetotheimpactsoftheCOVID-19pandemiconglobalenergymarkets(IEA,2022c).Nevertheless,2021sawfossilfuelinvestmentsbouncebackup15%toUSD897billion(FigureS.2),andpreliminarydatafor2022suggesttheymighthavealmostreturnedtotheirpre-pandemiclevels(+6%),reachingUSD953billion(IEA,2022c).InvestmentinenergyisstillgoingintofundingnewoilandgasfieldsinsteadofrenewablesanditisestimatedthatUSD570billionwillbespentonnewoilandgasdevelopmentandexplorationeveryyearuntil2030(IISD,2022).Investorsandbankshavealreadycommittedtofinancingfossilfueldevelopmentoverandabovethelimitneededtomeetthe1.5°Ctarget.OverthesixyearsfollowingtheParisClimateAgreement,somelargemulti-nationalbanksmaintainedandevenincreasedtheirinvestmentsinfossilfuelsatanaverageofaboutUSD750billiondollarsperyear(EnvironmentalFinance,2022a).Theworld’s60largestcommercialbanksinvestedaroundUSD4.6trillioninfossilfuelsbetween2015and2021,morethanone-quarterofwhichcamefromUSbanks(EnvironmentalFinance,2022a).USDbillionREFFREFFREFFREFFREFFREFFREFFREFFFossilfuelpowergenerationOilandgasupstreamOilandgasdownstreamandinfrastructureOtherrenewableenergyCoalminingandinfrastructureSolarOnshoreandoshorewindFigureS.2Annualinvestmentinrenewableenergyvs.fossilfuels,2015-2022Note:FF=fossilfuel;RE=renewableenergy.Basedon:CPI(2022a)andIEA(2022b).5ExecutiveSummaryFossilfuelcompaniesbasedinemergingmarketsanddevelopingeconomieshavecontinuedtoattractsubstantialvolumesoffinancing.Between2016and2022,theiroutstandingdebtroseby400%forcoaland225%foroilandgas,despitetheneedtoaligninvestmentswiththegoalsoutlinedintheParisAgreement(IMF,2022a).InAfrica,capitalexpendituresforoilandgasexplorationrosefromUSD3.4billionin2020toUSD5.1billionin2022.Africancompaniesaccountedforlessthanone-thirdofthissum.Inadditiontodirectinvestmentsinassets,thefossilfuelindustrycontinuestoreceiveconsiderablesupportthroughsubsidies.Between2013and2020,USD2.9trillionwasspentgloballyonfossilfuelsubsidies(FossilFuelsSubsidyTracker,2022).In2020,Europewastheregionprovidingthemostsubsidies,havingovertakentheMiddleEastandNorthAfrica(MENA)(FigureS.3).Onapercapitabasis,fossilfuelsubsidiesinEuropetotalledUSD113perperson,morethantriplethoseinMENA(USD36perperson).However,fossilfuelsubsidiesinMENAmakeup1.56%ofthegrossdomesticproduct(GDP)whileinEurope,theyconstituteonly0.3%ofGDP.USDbillionEuropeEurasiaEastAsiaandthePacificLatinAmericaandtheCaribbeanMiddleEastandNorthAfricaSouthAsiaSub-SaharanAfricaNorthAmerica(excludingMexico)OtherAsiaOtherOceaniaFigureS.3Annualfossilfuelsubsidiesbyregion,2013-2020Source:FossilFuelsSubsidyTracker(2022).6GLOBALLANDSCAPEOFRENEWABLEENERGYFINANCE2023Subsidiesdoubledin2021across51countries,fromUSD362billionin2020toUSD697billion,withconsumptionsubsidiesexpectedtohaverisenevenfurtherin2022duetocontemporaneouspricepressures(OECDandIEA,2022).Thephasingoutofinvestmentsinfossilfuelassetsshouldbecoupledwiththeeliminationofsubsidiestoensurethatthefullcostsoffossilfuelsarereflectedintheirpriceandtoleveltheplayingfieldwithrenewablesandotherenergy-transition-relatedtechnologies.However,thephaseoutofsubsidiesneedstobeaccompaniedbyapropersafetynettoensureadequatestandardsoflivingforvulnerablepopulations(IRENA,2022a).Investmentsinrenewableenergycontinuetogrow,butnotatthepaceneededtoachieveclimate,energyaccessandenergysecurityobjectivesalongwithothersocio-economicdevelopmentgoalsby2030.Despitemultipleeconomic,socialandgeopoliticalchallenges,annualinvestmentsinrenewableenergycontinuedapositivetrendthatbeganafter2018(seeFigureS.4).Preliminarydatasuggestthatin2021,investmentsreachedUSD430billion(24%upfrom2020)andin2022theyfurtherincreasedby16%reachingalmostUSD0.5trillion(BNEF,2023b).1Yet,investmentin2022waslessthanone-thirdoftheaverageinvestmentneededeachyearbetween2023and2030(aboutUSD1.6trillioninrenewablepowerandthedirectuseofrenewables)accordingtoIRENA’s1.5°CScenario(IRENA,2023a).USDbillionOnshorewindOshorewindSolarthermalincludingCSPSolarPVBiofuelsHydropowerUnknownMarineBiomassGeothermalCompoundannualgrowthrate-FigureS.4Annualfinancialcommitmentsinrenewableenergy,bytechnology,2013-2022Note:CAGR=compoundannualgrowthrate;CSP=concentratedsolarpower;PV=photovoltaic.Source:CPI(2022a).Investmentsfor2021and2022arepreliminaryestimatesbasedondatafromBNEF(2023b).AsBNEFdatahaslimitedcoverageoflargehydropowerinvestments,thesewereassumedtobeUSD7billionperyear,equivalenttotheannualaverageinvestmentfortheprecedingtwoyears.1Thesefiguresrepresent“primary”financialtransactionsinbothlarge-andsmall-scaleprojectsthatdirectlycontributetodeploymentofrenewableenergy,andthereforeexcludesecondarytransactions,e.g.refinancingofexistingdebtsorpublictradinginfinancialmarkets.NotethatthisisdifferentfrominvestmentsdiscussedinChapter3fortheoff-gridrenewableenergysectorwhichrelatestocorporate-leveltransactions(bothprimaryandsecondary)andisthereforedifferentfrominvestmentsdiscussedinChapter2(althoughsomeoverlapispossible).Formoredetails,pleaseseethemethodologydocument(Appendix).Aspreviouslynoted,2021and2022investmentnumbersinChapters1and2arepreliminaryestimatesbasedonBNEF(2023b).7ExecutiveSummaryInvestmentsarealsonotflowingatthepaceorscaleneededtoachievetheimprovementsinlivelihoodsandwelfareenvisionedinthe2030AgendaforSustainableDevelopment.Despiteprogressinenergyaccess,approximately733millionpeoplehadnoaccesstoelectricityandnearly2.4billionpeoplereliedontraditionalfuelsandtechnologiesforcookingattheendof2020(IEA,IRENA,etal.2022).Between2010and2021,theoff-gridrenewablessectorattractedmorethanUSD3billion(WoodMackenzie,2022a).Investmentsinoff-gridsolutionsreachedUSD558millionin2021,a27%increasefrom2020(FigureS.5).ButthisamountisfarshortoftheUSD2.3billionneededannuallyinoff-gridsolarproductsalone(notincludingmini-grids)between2021and2030toaccelerateprogresstowardsuniversalenergyaccess(ESMAPetal.2022a).2Althoughontherise,off-gridinvestmentsareconcentratedamongsevenlargeincumbentcompaniesthathavealreadyreachedscaleandarelookingtofurthersolidifytheirmarketpositionthroughtheirabilitytoattractcapital.TheaveragetransactionsizeclimbedfromUSD1.1millionin2017to1.7millionby2020,beforemorethandoublingtoUSD3.7millionin2021(FigureS.5).Whileatrendofgrowingticketsizeisasignofsectorgrowthandmaturity,itmayalsoindicateexistingchallengesforenterpriseslookingforsmallerinvestments.OverallinvestmentsUSDmillion(constant)Averageticketsize(USDmillion)OverallinvestmentsAverageticketsizeFigureS.5Annualinvestmentinoff-gridrenewableenergyandaveragetransactionsize,2010-2021Basedon:WoodMackenzie(2022a).2Thiswillbeneededonboththesupplysideforoff-gridrenewableenergycompaniesanddemandside(mainlyintheformofpublicfunding)toenhanceaffordabilityforconsumers.Investmentshavebecomefurtherconcentratedinspecifictechnologiesanduses.Tobestsupporttheenergytransition,morefundsneedtoflowtolessmaturetechnologiesandtosectorsbeyondpower.Whileannualrenewableenergyinvestmentshavebeengrowingovertime,thesehavebeenconcentratedinthepowersector.Between2013and2020,powergenerationassetsattracted,onaverage,90%ofrenewableinvestmentseachyear,andupto97%in2021and2022.8GLOBALLANDSCAPEOFRENEWABLEENERGYFINANCE2023Solarandwindtechnologiesconsistentlyattractthelargestshareofinvestmentbyawidemargin.In2020,solarphotovoltaic(PV)aloneattracted43%ofthetotal,followedbyonshoreandoffshorewind(at35%and12%,respectively).Investmentsinenduses,i.e.directapplications,whichincludeheatgeneration(e.g.solarwaterheaters,geothermalheatpumps,biomassboilers)andtransport(e.g.biofuels)arelagging;theywillneedtoincreasefromUSD13billionin2022toanaverageUSD269billioneachyearbetweennowand2030(IRENA,2023a).Intheoff-gridspace,solarPVproductsalsodominate,attracting92%ofoverallinvestmentsin2010-2021,owingchieflytotheirmodularanddistributedcharacteristics,andtheiradaptabilitytoawidevarietyofapplications.Solarhomesystems(SHSs)arethemostfundedtechnology(FigureS.6).Eventhoughthemajorityofoff-gridinvestmentswenttoresidentialapplicationsbetween2010and2021,thesharegoingtocommercialandindustrial(C&I)applicationshasbeenexpandingovertime(from8%in2015to32%in2021)asconsumerneedsgrowbeyondbasichouseholdaccesstomoreenergy-intensiveusesinlocalindustryandagriculture.PoweringC&Iapplicationscanpromotelocaleconomiesbycreatingjobsandspurringeconomicgrowth,whilealsoenhancingfoodsecurityandresilienceagainsttheimpactsofclimatevariabilityonagri-foodchains(IRENA,2016b).USDmillion(constant)InvestmentsinsolarhomesystemsbysectorInvestmentsinmicrominigridsbysectorCommercialandindustrialCommunitiesandothereconomicactivitiesCommunitiesandothereconomicactivitiesMultipleResidentialMicro-/mini-gridsMultipleSolarlightsSolarhomesystemsAncillaryproductsandservicesOthero-gridsolarMultipleCommercialandindustrialResidentialFigureS.6Annualinvestmentinoff-gridrenewableenergy,byoff-gridproduct,andenergyuse,2010-2021Basedon:WoodMackenzie(2022a).9ExecutiveSummaryInvestmentsareincreasinglyfocusedinanumberofregionsandcountries.Theyneedtobemoreuniversalforamoreinclusiveenergytransition.Althoughrenewableenergyinvestmentsareontheriseglobally,theycontinuetobefocusedinanumberofcountriesandregions.TheEastAsiaandPacificregioncontinuestoattractthemajorityofinvestment–two-thirdsoftheglobaltotalin2022(FigureS.7)–primarilyledbyChina.AsuiteofpoliciesincludingtaxexemptionshavedriveninvestmentsinsolarandwindinChina,puttingthecountryontracktomeetingthetargetssetoutinthe14thFive-YearPlan(CarbonBrief,2021).VietNamsawinvestmentinsolarPVgrowbyanaverageof219%peryearbetween2013and2020,drivenmainlybyfeed-intariffs(Lorimer,2021).NorthAmericaexcludingMexicoattractedthesecond-largestshareofinvestmentin2022,mainlydrivenbytheproductiontaxcreditintheUnitedStates,followedbyEurope,wherenet-zerocommitmentsandextensivepoliciestophaseoutfossilfuelsaredrivinggrowthinrenewables.IntheUnitedStates,the2022InflationReductionAct–encompassingnewtaxcredits,USD30billioningrantsandloansforcleanenergygenerationandstorage,andUSD60billioninsupportofmanufacturingoflow-carboncomponents–isexpectedtoattractUSD114billioninvestmentby2031.InEurope,theEuropeanCommissionpresentedaGreenDealIndustrialPlanfortheNet-ZeroAge,whichwouldprovideinvestmentaidandtaxbreakstowardstechnologicaldevelopment,manufacturing,productionandinstallationofnet-zeroproductsingreensectorsincludingrenewablesandhydrogen(Bloomberg,2023;EuropeanCommission,2023).TheplanlookstomobiliseEUR225billioninloansfromitsexistingRecoveryandResilienceFacility,andanadditionalEUR20billioningrants(EuropeanCommission,2023).EuropeEastAsiaandPacificNorthAmerica(excludingMexico)EurasiaSouthAsiaSub-SaharanAfricaOthersLatinAmericaandtheCaribbeanFigureS.7Investmentinrenewableenergybyregionofdestination,2013-2022Note:“NorthAmerica(excludingMexico)”includesBermuda,CanadaandtheUnitedStates.“Others”includetheMiddleEastandNorthAfrica,OtherOceania,Transregional,OtherAsiaandUnknown.Formoredetailsonthegeographicclassificationusedintheanalysis,pleaseseemethodologydocument(Appendix).Source:CPI(2022a).10GLOBALLANDSCAPEOFRENEWABLEENERGYFINANCE2023Regionshometoabout120developingandemergingmarketscontinuetoreceivecomparativelylowinvestment.Acrosstheseregions,thebulkofrenewableenergyinvestmentsiscapturedbyahandfulofcountries:Brazil,ChileandIndia.Inotherwords,morethan50%oftheworld’spopulation,mostlyresidingindevelopingandemergingcountries,receivedonly15%ofglobalinvestmentsinrenewablesin2022.Further,theshareofrenewableenergyinvestmentsgoingtotheseregionshasbeenprogressivelydecliningyearonyear(e.g.from27%in2017to15%in2022).Inabsoluteterms,annualinvestmentshavebeendecliningprecipitouslysince2018atanaveragerateof36%.Countriesdefinedas“leastdeveloped”bytheIntergovernmentalPanelonClimateChangeattractedonly0.84%ofrenewableenergyinvestmentsonaveragebetween2013and2020.Lookingatinvestmentsonapercapitabasisfurtherrevealsthedisparityininvestments.InEastAsiaandPacific,investmentpercapitaincreasedby51%between2015and2021fromUSD70/personin2015toUSD105/personin2021.ThebulkoftheincreasetookplaceinChina,whileJapanexperienceda45%declineoverthesameperiod.Excludingthesetwocountries,theregionexperiencedamorethan6-foldincreaseledbycountriessuchasVietNamandRepublicofKorea.InSouthAsia,investmentspercapitadeclinedby6%between2015and2021,howeverthetrueextentofthedeclineismaskedbyIndiawhichsawinvestmentpercapitagrowby34%inthesameperiod.ExcludingIndia,investmentpercapitadeclinedby61%fromUSD12/personin2015toUSD5/personin2021.Themoststriking–andrapidlygrowing–disparityisbetweenSub-SaharanAfricaandbothNorthAmerica(excludingMexico)andEurope.In2015,renewableenergyinvestmentpercapitainNorthAmerica(excludingMexico)orEuropewasalmost23timeshigherthanthatofSub-SaharanAfrica.In2021,investmentpercapitainEuropewas41timesthatinSub-SaharanAfrica(whichin2021felltojustUSD3/personfromUSD6/personin2015),andNorthAmericawas57timesmore.Sub-SaharanAfricaremainstheprimarydestinationforinvestmentinoff-gridrenewables.TheregionattractedUSD2.2billionin2010-2021–morethan70%ofglobaloff-gridinvestments.Electrificationratesinthisregionareamongthelowestintheworld,with568millionpeoplelackingaccesstoelectricityin2020(IEA,IRENAetal.2022).WithinSub-SaharanAfrica,EastAfrica–hometothreeofthetopfiverecipientcountriesofoff-gridinvestment(Kenya,theUnitedRepublicofTanzaniaandRwanda)-attracted43%ofthetotal.Investmentinthesedestinationsbenefitedfromtheexistingmobilemoneyecosystem,whichwasleveragedbythepay-as-you-go(PAYG)businessmodel.Approximately78%ofthetotalcommitmentsinoff-gridrenewablesin2010-2021(orUSD2.4billion)involvedthefundingofcompaniesorprojectsusingPAYG,withEastAfricaaccountingforUSD917million.DuringtheCOVID-19pandemic,off-gridrenewableenergyinvestmentsinSoutheastAsiadeclinedby98%,leavingkeyoff-gridmarketsevenmorevulnerable.Althoughthemajorityofcountriesintheregionhaveachievedhighornear-universalratesofelectricityaccess,partsofthepopulationsincountriessuchasMyanmarandCambodia(26%and15%,respectivelyin2020)stilllackaccesstoelectricity(WorldBank,2022).WhereastheregionattractedUSD137millioninoff-gridrenewableenergyinvestmentsover2018-2019(ledprimarilybyMyanmar),during2020-2021,investmentsplummetedtoUSD3million,likelyduetotheimpactsoftheCOVID-19pandemicandpoliticaldevelopments(ESMAPetal.2022b).11ExecutiveSummaryInvestmentshavebeenprimarilymadebyprivateactors.Privatecapitalflowstothetechnologiesandcountrieswiththeleastrisks–realorperceived.Theprivatesectorprovidesthelion’sshareofglobalinvestmentsinrenewableenergy,committingaround75%ofthetotalintheperiod2013-2020(FigureS.8).Theshareofpublicversusprivateinvestmentsvariesbycontextandtechnology.Typically,lowersharesofpublicfinancearedevotedtorenewableenergytechnologiesthatarecommerciallyviableandhighlycompetitive,whichmakesthemattractiveforprivateinvestors.Forexample,in2020,83%ofcommitmentsinsolarPVcamefromprivatefinance.Meanwhile,geothermalandhydropowerrelymostlyonpublicfinance;only32%and3%ofinvestmentsinthesetechnologies,respectively,camefromprivateinvestorsin2020.DebtEquity2013-2020,USDbillionPublicPrivateHouseholds/IndividualsState-ownedFISOENationalDFIMultilateralDFIMultilateralclimatefundsGovernmentExportCreditAgencyBilateralDFIInstitutionalinvestorsFundsCorporationCommercialFIPrivatePublicFigureS.8Debtandequityinvestmentbytypeofinvestor,2013-2020Note:DFI=developmentfinanceinstitution;FI=financeinstitution;SOE=state-ownedenterprise.Source:CPI(2022a).Globally,commercialfinancialinstitutionsandcorporationsarethemainprivatefinanceproviders,accountingtogetherforalmost85%ofprivatefinanceforrenewablesin2020(FigureS.9).Upuntil2018,privateinvestmentscamepredominantlyfromcorporations(onaverage,65%during2013-2018),butin2019and2020theshareofcorporationswentdownto41%peryear,andalargershareofinvestmentswasfilledbycommercialfinancialinstitutions(43%).12GLOBALLANDSCAPEOFRENEWABLEENERGYFINANCE2023Thisalignswiththefallingshareofequityfinancingglobally,from77%in2013to43%by2020(FigureS.10)ascorporationstogetherwithhouseholds/individualsprovided83%ofequityfinancingduring2013-2020(FigureS.8).Duringthistime,theshareofdebtfinancingincreasedfrom23%in2013to56%in2020(FigureS.10).ThisislikelylinkedtothematurationandconsolidationofmajorrenewabletechnologiessuchassolarPVandonshorewindthatareabletoattracthighlevelsofdebt,aslendersareabletoenvisionregularandpredictablecashflowsoverthelongterm,facilitatedbypowerpurchaseagreements(PPAs)inmanycountries.InstitutionalinvestorsCommercialFIHouseholds/IndividualsFundsCorporationFigureS.9Privateinvestmentinrenewableenergybyinvestor,2013-2020Note:FI=financeinstitution.Source:CPI(2022a).UnknownProject-levelequityGrantBalancesheetfinancing(equityportion)Project-levelmarketratedebtLow-costprojectdebtBalancesheetfinancing(debtportion)FigureS.10Investmentinrenewableenergy,byfinancialinstrument,2013-2020Source:CPI(2022a).13ExecutiveSummaryIntheoff-gridspace,debtandequityinvestmentscontributedabout47%and48%oftheoverallfinancing,respectivelybetween2010and2021,withanadditional5%contributedbygrants.Bytechnology,debtfinancingconstitutedthemajorityoftheinvestmentsinsolarhomesystemsandsolarlights(54%ofthetotalandrisingovertime)whileequityfinancingdominatedthemicro-/mini-gridspace.PriortotheCOVID-19pandemic,themajorityofoff-gridfinancingcamefromequityinvestmentsowingtothedominationbyprivateequity,venturecapitalandinfrastructurefundsandthelackofdebtaccessforthesector.Eversince,theshareofprivateequityhasseenarelativedecline(FigureS.11),inpartduetotheuncertaintiesposedbythepandemic,andthelimitedtrackrecordofexitsandcapitalrecyclinginthesector.Thecontributionofdebthasincreasedsharplyoverthepasttwoyears,particularlyasdebt-preferringDFIsbolsteredtheirsupportduringthepandemic(FigureS.14)andmajoroff-gridcompanieswereabletocapitaliseontheirstrongmarketpositiontosecure(large-size)predominantlydebt-baseddealsfrombothpublicandprivateinvestors(ESMAPetal.2022b).Anotherremarkabletrendistheincreaseinlocalcurrencydebt,drivenmainlybymarketsinKenyaandNigeria.Goingforward,widespreadmobilisationoflow-costdebtwillbecriticalfordeploymentofcapital-intensiverenewableenergyprojects,whileequityfinancingwillalsoremainkey,particularlytokick-startrelativelylessmaturetechnologies,andfinanceprojectsinrelativelyhigh-riskorcredit-constrainedcontexts.USDmillion(constant)ForeigncurrencydebtEquityGrantLocalcurrencydebtFigureS.11Annualinvestmentinoff-gridrenewableenergy,byfinancinginstrumentandlocalversusforeigncurrencydebt,2013-2021Basedon:WoodMackenzie(2022a).14GLOBALLANDSCAPEOFRENEWABLEENERGYFINANCE2023Themajorityofpublicinvestmentsaremadedomesticallywithrelativelylittleinternationalcollaboration.Theinternationalflowofpublicmoneytorenewableenergyhasbeenindeclinesince2018.Publicfundsarelimited,sogovernmentshavebeenfocusingwhatisavailableonde-riskingprojectsandimprovingtheirrisk-returnprofilestoattractprivatecapital.Globally,thepublicsectorprovidedlessthanone-thirdofrenewableenergyinvestmentin2020.State-ownedfinancialinstitutions,nationalDFIsandstate-ownedenterpriseswerethemainsourcesthatyear,providingmorethan80%ofpublicfinance(FigureS.12).MultilateralDFIsprovided9%ofpublicfinance–inlinewiththeirpastannualcommitments–andaccountedforabouthalfofinternationalflowscomingfromthepublicsector.CommitmentsfrombilateralDFIsin2020fell70%comparedto2019,largelyduetoa96%declineininternationalcommitmentsbytheGermanDevelopmentBank(KfW).ThismeansthatmultilateralandbilateralDFIsprovidedlessthan3%oftotalrenewableenergyinvestmentsin2020.MultilateralclimatefundsPublicfundExportCreditAgencyState-ownedFIGovernmentBilateralDFIMultilateralDFISOENationalDFIFigureS.12Publicinvestmentinrenewableenergybyinvestortype,2013-2020Note:DFI=developmentfinanceinstitution;FI=financeinstitution;SOE=state-ownedenterprise.Source:CPI(2022a).Inaddition,financingfromDFIswasprovidedmainlyintheformofdebtfinancingatmarketrates(requiringrepaymentwithinterestrateschargedatmarketvalue).Grantsandconcessionalloansamountedtojust1%oftotalrenewableenergyfinance,equivalenttoUSD5billion.Sincetheinterestratesarethesame,theonlydifferencethatDFIfinancingprovidesistomakingfinanceavailable,albeitatthesamehighcostsforusers.FigureS.13illustratestheportionofDFIfundingprovidedintheformofgrantsandlow-costdebt.15ExecutiveSummaryGrantUnknownProject-levelmarketratedebtProject-levelequityLow-costprojectdebtBilateralDFIsMultilateralDFIsUnknownProject-levelmarketratedebtGrantProject-levelequityLow-costprojectdebtBalancesheetfinancing(equityportion)FigureS.13PortionofDFIfundingintheformofgrantsandlow-costdebtNote:DFI=developmentfinanceinstitution.Source:CPI(2022a).Intheoff-gridspace,theroleofthepublicsector,inparticularDFIs,ismuchmoreimportant.DFIswerethelargestpubliccapitalproviders(accountingfor79%ofthepublicinvestmentsinoff-gridsolutionsand27%ofthetotalinvestmentsinoff-gridsolutionsin2010-2021).Notably,DFIs’contributionsafterthepandemicconstitutehalfoftheiroverallcontributionssince2010(FigureS.14).PublicfinanceflowstotheGlobalSouthareessentialtoachievingthe1.5°CScenarioanditssocio-economicbenefits(togetherwithprogressivefiscalmeasuresandothergovernmentprogrammessuchasdistributionalpolicy,asoutlinedinIRENA[2022a]).Infact,almost80%oftheoff-gridinvestmentsbetween2010and2021involvedNorth–Southflows.However,theinternationalflowofpublicfinancegoingtorenewableenergyinthebroadercontexthasbeenindeclinesince2018(IEA,IRENAetal.2022).Preliminarydatashowthatthedowntrendcontinuedthrough2021.16GLOBALLANDSCAPEOFRENEWABLEENERGYFINANCE2023Toachieveajustandinclusiveenergytransition,publicfinancing–includingthroughinternationalcollaboration–hasacriticalroletoplayacrossabroadspectrumofpolicies.Amongriskmitigationinstruments,sovereignguaranteeshavebeenpreferredforlenderslookingtoobtaina“one-size-fits-all”solutionforcreditrisks.Butsuchguaranteesaretreatedascontingentliabilitiesandmayhamperacountry’sabilitytotakeonadditionaldebtforcriticalinfrastructuredevelopmentandotherinvestments(IRENA,2020a).Moreover,sovereigndebtsarealreadystressedtotheirbreakingpointinmanyemergingeconomiesgrapplingwithhighinflationandcurrencyfluctuationsordevaluationsinthewakeoftheCOVID-19pandemic.Inthismacroeconomicenvironment,manycountriescannotaccessaffordablecapitalininternationalfinancialmarketsorprovidesovereignguaranteestomitigaterisk.Giventheurgentneedtostepupthepaceandgeographicspreadoftheenergytransition,andtocaptureitsfullpotentialinachievingsocio-economicdevelopmentgoals,moreinnovativeinstrumentsareneededthathelpunder-investedcountriesreapthelong-termbenefitsoftheenergytransitionwithoutputtingtheirfiscallyconstrainedeconomiesatafurtherdisadvantage.USDmillion(constant)InstitutionalinvestorsPrivateequity,venturecapitalandinfrastructurefundsDevelopmentfinanceInstitutionsGovernmentagenciesandintergovernmentalinstitutionsIndividuals(incl.crowdfundingplatforms)CorporationsandbusinessassociationsUndisclosedOthers(incl.non-profit/impactfunding)CommercialfinancialinstitutionsFigureS.14Annualcommitmentstooff-gridrenewableenergybytypeofinvestor,2015-2021Note:Definitionsofallinvestortypeincludedinthisanalysisareprovidedintheaccompanyingmethodologydocument(Appendix).Basedon:WoodMackenzie(2022a).17ExecutiveSummaryPublicfundingmustflowintotherenewableenergysector(coveringallsegmentsofthevaluechain),thewiderenergysectorandtheeconomyasawhole,forajustandequitableenergytransition.Publicfundscanbemobilisedandprovidedusingavarietyofinstruments.FigureS.15showsthetypesofinstrumentsthatcanbeusedtochannelpublicfinance,thesourcesofpublicfunds(domesticorinternationalthroughcollaboration)andtheintermediariesthatcanhelpchannelthem(e.g.governments,nationalDFIs,localbanks,multilateralandbilateralDFIs,exportcreditagencies,globalfundsincludingtheJustEnergyTransitionPartnership[JETP]andUN-linkedfundssuchastheGreenClimateFund).Theseinstrumentscanbeexistingornewlydesignedandmayinclude(1)governmentspendingsuchasgrants,rebatesandsubsidies;(2)debtincludingexistingandnewissuances,creditinstruments,concessionalfinancingandguarantees;(3)equityanddirectownershipofassets(suchastransmissionlinesorlandtobuildprojects)and(4)fiscalpolicyandregulationsincludingtaxesandlevies,exemptions,accelerateddepreciation,deferralsandregulationssuchasPPAs(especiallywhenthetariffspaidtoproducers–inadditiontothecostofrunningthesystem–arelowerthanwhatiscollectedbyconsumersandthedifferenceispaidthroughagovernmentsubsidy).However,suchinstrumentsshouldbeusedwithcautionastonotconcentratethebenefitsamongasmallnumberofplayersintheindustry,andinstrumentsshouldbedesignedinawaythatdistributesthebenefitsinanequitableandfairway.AsshowninFigureS.15,publicfinanceflowsviainstrumentsinvariouspolicycategoriesofIRENA’sbroadpolicyframework.Examplesincludethefollowing:PotentialinstrumentsCategoriesofpoliciesIntermediariesSourcesoffundsGovernmentsNationalInternationalSOFIs/SOEs/NationalDFIsLocalbanks/MicroFinanceInstitutionsCo-operatives/Foundations/NGOsCrowdfundingplatformsDirectinvestmentsingovernment-ownedassets,designingandfundingpoliciesInvestmentininfrastructurethatsupportintegrationofrenewablesintotheenergysystemSupportforlong-termenergyplanning,capacitybuildingandtraining,researchanddevelopment,technicalassistance,etc.PoliciestoaddressmisalignmentsandmarketfailuresGovernmentspendingincludinggrants,rebates,subsidiesDebtincludingexistingandnewissuances,creditinstruments,concessionalfinancing,guaranteesEquityanddirectownershipofassetsFiscalpolicyandregulationsincludingtaxesandlevies,exemptions,accelerateddepreciation,andregulationssuchasPPAsMultilateralandbilateralDFIsExportCreditAgenciesGlobalfunds(e.g.GCF,JETP)CarbonFinancePlatformsInternationalandSouth-SouthcollaborationMacroeconomicpolicies(formulateandimplementfiscal,monetaryandforeignexchangepoliciesthatimpactthedeliveryofpublicfunds)StructuralchangeandjusttransitionpoliciesEnablingpoliciesIntegratingpoliciesDeploymentpoliciesFigureS.15TheflowofpublicfinanceforajustandinclusiveenergytransitionNote:DFI=developmentfinanceinstitution;GCF=GreenClimateFund;JETP=JustEnergyTransitionPartnership;NGO=non-governmentalorganisation;PPA=powerpurchaseagreement;SOFI=state-ownedfinancialinstitution;SOE=state-ownedenterprise.18GLOBALLANDSCAPEOFRENEWABLEENERGYFINANCE20231.Underdeploymentpolicies,publicfundscanflowasdirectinvestmentsingovernment-ownedenergy-transition-relatedassets,public-privatepartnerships,orindesigningandfundingpoliciesthatcanattractorsupportprivateinvestment(e.g.capitalsubsidies,grantsandtariff-basedmechanismssuchasauctions,feed-intariffsandfeed-inpremiums).2.Underintegratingpolicies,publicinvestmentscangointoinfrastructureandassetsthatsupporttheintegrationofrenewablesintotheenergysystem(e.g.regionalandnationaltransmissionlines,pumpedhydroelectricenergystoragefacilities).3.Underenablingpolicies,publicmoneycansupportlong-termenergyplanning,capacitybuildingandtraining,researchanddevelopment,thedevelopmentoflocalindustryandvaluechains,aswellastechnicalassistanceofferedviamultilateraldevelopmentbanks(MDBs)andinter-governmentalorganisationssuchasIRENA.4.Understructuralchangeandjusttransitionpolicies,publicfundscangointotheredesignofpowermarketstomakethemmoreconduciveforlargesharesofvariablerenewableenergy,towardscompensationforthephasing-outoffossilfuels,aswellaspoliciestoensurethattheenergytransitionpromotesgenderequalityandsocialinclusion,amongmanyotherpriorities.5.TheglobalpolicyframeworkdefinesinternationalandSouth-Southcollaboration,whichiskeytostructuringandensuringtheinternationalflowsfromtheGlobalNorthtotheGlobalSouth.6.Inaddition,althoughnotdirectlyrelatedtoanyspecificsector,therearemacroeconomicpolicies(fiscal,monetaryandcurrencyexchangepolicies)thataffectthedeliveryofpublicfundstowardstheenergytransition.Someelementspresentedintheframework(FigureS.15)mightoverlap.Forexample,taxincentivesareatthesametimefiscalormacroeconomicpolicieswhileactingasdeploymentpolicies,andfundinggridinfrastructurecanbeviewedasanenablingoranintegratingpolicy.Whilefundingcapacitybuildingispartofanenablingpolicy,thesefundsalsofacilitatestructuralchange,beingpartofsocialdevelopmentprogrammes,andeducation,socialprotectionandcompensationpolicies,etc.Thus,therearecomplexinter-linkagesandfeedbackloopsbetweenthedifferentpoliciesandinstruments.Byunderstandingthebroadstructuralworkingsunderlyingtherenewableenergy“economy”,publicpolicyandfinancingcanbestrategicallyusedtoadvancetheenergytransition.Governmentsfromdevelopedanddevelopingcountrieswillplayacentralroleinprovidinganenablingenvironmentforbothpublicandprivateinvestments.Amorecomprehensivewayofdefiningrisk(includingrisksharing)isneeded.Anarrowinvestor-centricfocusontheriskofinvestmentinenergyassetsnotpayingoffneedstobebroadenedtoincludeenvironmental,planetaryandsocialrisks.Theseincludetheriskofleavingalargepartof19ExecutiveSummarythepopulationoutoftheenergytransitionandlockedinunderdevelopment,andtheriskoftheSustainableDevelopmentGoalsremainingfarfrombeingmet.Thisishowinvestmentrisksmustbeviewedfromtheperspectiveofgovernmentsandtheinternationalcommunity.Andwiththeverylimitedpublicfundsavailableinthedevelopingworld,theinternationalcommunitymuststepup.Theavailabilityofcapitalforpublicinvestmentsinrenewableenergywillneedtobeincreased,andlendingtodevelopingnationstransformed.Today’senvironmentcallsforafundamentalshiftinhowlendingismadetodevelopingnations,especiallythoseaffectedbyeconomicandclimatecrises,andparticularlyhowcountriesintheGlobalNorthsupportcountriesintheGlobalSouthtocopewithandadapttocrisesrelatedtoclimatechange,thecostoflivinganddebt.ThesituationindevelopingcountriesisbeingmademoredifficultamidtighteningmonetarypoliciesandastrengtheningUSdollar.Oneinfivecountriesisexperiencingfiscalandfinancialstress,whichleftunaddressedwoulddeepenhardship,increasedebtdefaults,wideninequalityanddelaytheenergytransition.Atthe27thUnitedNationsClimateChangeConference(COP27)adecisionwasreachedtoestablishalossanddamagefund,particularlyforthosenationsmostvulnerabletoclimateevents.Detailsregardingtheamountsinvolved,andhowthefacilitywillbesetupandoperationalisedareyettobenegotiated.Thefundisexpectedtoaddressadverseeffectsofclimateimpactssuchasdroughts,floods,risingseasandotherdisastersthatimpairthedeploymentofrenewableenergy.Tappingpoolsofpublicfundsforbothdevelopedanddevelopingcountrieswithoutburdeningthefiscalspaceremainsakeypriority.Governmentsshouldadopta“doingmorewithwhatisavailable”approachthroughenhancedcollaborationamongDFIsandMDBs,andbyexploringthefollowingmechanisms:CapitalreleasefrombalancesheetsofDFIs.Balancesheetsofinvestorsandfinancialinstitutionsdiscloserightsandobligationsconnectedtotheowningandlendingofassets.ItispossibleforDFIstousethoseelementstoraiseadditionalfundsthroughpostingexistingassetsascollateral(providedtheirvalueisfreeandclearofanyencumbrances),andpartiallyrepackagingreceivablesfromguaranteedloanrepayments(e.g.loansthatareguaranteedbyinsurers)intonewfinancialstructuredproductsinthemarket.TheDFIscouldoffera(highrated)newdebtproduct(e.g.acollateraliseddebtobligation)3guaranteedandmanagedbyabanksuchasanMDBtoqualifiedinvestors(e.g.pensionfunds,insurers,institutionalinvestors,etc.)andtradedoninternationalexchanges.However,suchaproductshouldbeusedwithrigorousduediligence.3Collateraliseddebtobligationsareasset-backedsecuritiesthatbundletogetheradiversifiedportfolioofinstruments(e.g.loans,bonds).Cashflowsfromunderlyingassetsareusedtorepayinvestors.20GLOBALLANDSCAPEOFRENEWABLEENERGYFINANCE2023ProductinnovationamongMDBs.Multilateralsbenefitfromtheconveningpowergrantedbyshareholdersinbothdevelopedanddevelopingcountries,tocraft,implementandoperateinnovativeframeworkstomobilisecapitalandmitigaterisks.Inparticular,liquidityfacilitiescanbescaleduptoassistrenewableenergyinvestorsinfulfillingtheirbusinessobligationsbyensuringanuninterruptedflowofpaymentsfromoff-takers–withoutposingaburdenonthefiscalspaceofdevelopingcountries(local-currency-denominatedPPAscanalsobenefitfromthisfacility).TheseliquidityfacilitiescanevolvetoincorporatetheroleofguarantorsupportedbyMDBsandDFIsincompliancewithguidelinesissuedbymultilateralsandagreedbyshareholders.Thehighlycapitalisedguarantorbecomesasupranationalfacilitytomitigatecreditandforeignexchangerisksforrenewableenergyinvestorsandlenders.MDBs,undertheapprovalofhostgovernments,canallocatefundsandcreditlinestothefacilityuptoprudentlimitsdeterminedbyministriesoffinanceandcentralbanks.BroadeningcapitalisationroutesforMDBs.Capitalcallingfromshareholdershasbeenthecommonapproachadoptedbymultilateralstoexpandtechnicalassistanceandlendingprogrammes.ThenewcapitalincreasesMDBs’fundavailabilityandenablesthemtoplacebondsintheglobalcapitalmarket,therebyraisingadditionalcapital.BondsareplacedasAAA-ratedobligationsguaranteedbyMDBs–defacto,suchinstitutionshaveanenviabletrackrecordrecognisedbycountriesandmarketparticipantsinmanagingrisks–thatcanbeplacedinthemarket,ifappropriatefinancingvehiclesareusedandtargetmarketsareidentified.MDBsshouldnowconsiderrisk-tiereddebtobligationplacementswithadifferentinvestmentgrade(BBB+andabove,e.g.multi-ratedgreenbonds),implyingdifferentlevelofreturnstobondholders.Theinitiativebroadensaccesstotheinvestorbase–frominstitutionalinvestorsandsovereignwealthfundstocorporate/qualifiedinvestors–increasingtheamountofcapitalthatcouldbecomeavailableanddeployedinrenewableenergyinvestments.Meanwhile,publicfinanceandpolicyshouldcontinuetobeusedtocrowdinprivatecapital.Policiesandinstrumentsbeyondthoseusedtomitigaterisksareneeded.Publicfinanceshouldcontinuetobeusedstrategicallytocrowdinadditionalprivatecapital.Riskmitigationinstruments(e.g.guarantees,currencyhedginginstrumentsandliquidityreservefacilities)willstillplayamajorrole,butpublicfinanceandpolicymustgobeyondriskmitigation.Examplesincludefundingcapacitybuilding,supportforpilotprojectsandinnovativefinancinginstrumentssuchasblendedfinanceinitiatives,etc.Inaddition,policymakersmayconsiderthefollowing:Incentiviseaninvestmentswapfromfossilfuelstorenewableenergybybanksandnationaloilcompanies.Incentivisinginvestorstodivertfundstowardstheenergytransitioncanbedonethroughmeasuressuchasphasingoutoffossilfuelsubsidiesandadaptingfiscalsystemstoaccountfortheenvironmental,socialandhealthimpactsofafossil-fuel-basedenergysystem.However,thephaseoutofsubsidiesshouldbeaccompaniedbyapropersafetynettoensureadequatestandardsoflivingforvulnerablepopulations(IRENA,2022a).21ExecutiveSummaryAsupplementalwayofincentivisingthisshiftisthroughhighlightingandrecognisingtheleadershiproleofthoseinstitutionsthatarepavingtheroadthroughearlyinvestmentsintheenergytransition.Morethan30significantfinancialinstitutionsincludingbanks,insurers,assetownersandassetmanagershavecommittedtostopfinancingfossilfuels.Governmentsandcivilsocietiescantakeactiontorewardtheirleadershipandencourageotherinstitutionstotakesimilarsteps.Afterthat,publicpressure,alongwithpolicyandregulation,canfurtherinfluencefinancialdecision-makinginfavourofrenewableenergyandotherenergytransitiontechnologies(EnvironmentalFinance,2022a).Mobiliseinstitutionalinvestmentandpromotegreateruseofgreenbondsforrenewables.WithaboutUSD87trillionofassetsundermanagement,institutionalinvestorshaveakeyroletoplayinreachingtheinvestmentlevelsrequiredfortheongoingglobalenergytransition.Greaterparticipationofinstitutionalcapitalwillrequireacombinationofeffectivepoliciesandregulations,capitalmarketsolutionsthataddresstheneedsofthisinvestorclass(e.g.greenbonds),aswellasavarietyofinternalchangesandcapacitybuildingonthepartofinstitutionalinvestors(IRENA,2020d).Greenbondscanhelpattractinstitutionalinvestorsandchannelconsiderableadditionalprivatecapitalintherenewableenergysector,helpingtofillthesignificantoutstandinginvestmentgap.Greenbondshaveexperiencedsignificantgrowthoverthepastdecade(about103%ayearin2011-2021),increasingfromaboutUSD800millionofissuancesin2007toaboutUSD545billionofissuancesin2021–anall-timeannualhighdespitepandemic-inducedeconomicchallenges.ThecumulativevalueofgreenbondissuancesbroketheUSD1trillionthresholdattheendof2020andstoodataboutUSD1.64trillionasoftheendof2021(EnvironmentalFinance,2022b).Somerecommendedactionsforpolicymakersandpublicfinanceproviderstofurtherincreasegreenbondissuancesincludetheadoptionofgreenbondstandardsinlinewithinternationalclimateobjectives,theprovisionoftechnicalassistanceandeconomicincentivesforgreenbondmarketdevelopmentandthecreationofbankableprojectpipelines(IRENA,2020e).Implementregulatorysandboxesforbroadeningaccesstocapitalandcreditinstruments.Regulatorysandboxesdesignedtoservebroadersocialandenvironmentalgoalscanhelpunlockmoreinvestments.Byenactingregulatorysandboxesforstart-upsandinvestorsforbothgridandoff-gridinitiatives,newsolutionsmayemergetowardsenablingaccesstopoolsofcapital/creditinstruments.SuchinitiativescanbenefitfromMDBs’support(Barbalhoetal.2022)inconnectionwithotheravailablefundingagenciesatlocal,regionalandgloballevels.Furthermore,companiescanbeinvitedtoparticipateinthesandboxwithaviewtopilotinnovativeconceptsthatfacilitateriskmitigation,includingforeignexchangerisksinelectricityexchanges.FacilitatelocalcurrencylendinganddenominatePPAs(atleastpartially)inlocalcurrencies.LocalcurrencyPPAsarehelpfultoaddresstherisksofcurrencydevaluationswhichmayotherwisecripplepoweroff-takers’abilitytomakepaymentstopowerproducersinhardcurrency(suchastheUSD)attimeswhenthedomesticcurrencyplummets.Relativelyestablishedmarketsintheoff-gridspace,forinstance,suchasKenyaandNigeriaareseeingmorelocalcurrencydebtfinancing.22GLOBALLANDSCAPEOFRENEWABLEENERGYFINANCE2023During2020-2021,about28%ofdebtinthetwocountrieswasdenominatedinlocalcurrencies(primarilytheKenyanshilling,followedbytheNigeriannaira),comparedwithjust11%duringthepre-pandemicyears.Goingforward,low-costlocalcurrencyfinancingwillbepreferredforthenextphaseoftheoff-gridrenewableenergysector’sdevelopment.Acomplementarymechanismtoaddressforeigncurrencyrisksistofacilitatelocalcurrencylendingforprojectswithdevelopmentcapitalchannelledthroughintermediariesincludingnationalbanksornon-bankingfinancialinstitutions.Severalcountries,includingBangladesh,BrazilandJordan,havepilotedsuchapproachestocatalyseinvestmentintotherenewableenergysector.Enhancetheparticipationofcorporateactors.Althoughcompaniesthatproducerenewableenergyarealreadyprovidingsubstantialinvestmentinthesector,non-energy-producingcorporationshaveapreeminentroletoplayintheenergytransitionbydrivingdemandforrenewableenergy.Bysettinguptherightenablingframework,policymakerscanencourageactivecorporatesourcingandunlockadditionalcapitalinthesector.Recommendedactionsinclude,forexample,establishingatransparentsystemforthecertificationandtrackingofrenewableenergyattributecertificates,enablingthird-partysalesbetweencompaniesandindependentpowerproducers,andcreatingincentivesforutilitiestoprovidegreenprocurementoptionsforcompanies(IRENA,2018b).Incentivisetheparticipationofphilanthropies.AccordingtoOxfam’sreporttitledSurvivaloftheRichest:HowWeMustTaxtheSuper-RichNowtoFightInequality,therichest1%ownalmosthalfoftheworld’swealthwhilethepooresthalfoftheworldownjust0.75%(Oxfam,2023).Totapintotheexistingwealth,governmentsshouldlookatincentivisingphilanthropiestomobiliseadditionalfundsintosupportforrenewableenergythatcanhelpfightpoverty,inequality,climatechangeandhumanitariancrises.Philanthropiesareplayinganincreasinglyimportantroleinbridgingfundinggaps,especiallyintheenergyaccesscontext,wherefundshavegoneintomarketdevelopment(e.g.technologyinnovationfunds)anddeliveringfinancingforendusersandenterprisesthroughvariousinstruments,suchasresults-basedgrantsandequity.Individuals(high-net-worthindividuals,familiesorhouseholds)investedanaverageofUSD20millionperyearinoff-gridrenewablesduring2015-2021,primarilythroughdedicatedcrowdfundingplatforms(IRENA,2022f).In2021,individuals,bequests,foundationsandcorporationsgaveanestimatedUSD485billiontocharitiesintheUnitedStatesalone.Theseweredistributedtowardseducation,humanservices,foundations,public-societybenefitorganisations,health,internationalaffairs,andenvironmentalandothersocialservices(GivingUSA2022).Theenergytransitionbeingtiedtoalltheseobjectives,tappingintothesefundscanhelpfillgapsleftbygovernments,andsupportthelivelihoodsandwell-beingofrelativelypoorpopulationswithoutrelyingonfossilfuels(Dennis,2022).www.irena.org©IRENA2023

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱