全球太阳能光伏市场回顾2023(英)--IEAVIP专享VIP免费

fc
Snapshot of
Global PV Markets
2023
Report IEA-PVPS T1-44:2023
Task 1 Strategic PV Analysis and Outreach
PVPS
Task 1 Strategic PV Analysis and Outreach 2023 Snapshot of Global PV Markets
What is IEA PVPS TCP?
The International Energy Agency (IEA), founded in 1974, is an autonomous body within the framework of the Organization
for Economic Cooperation and Development (OECD). The Technology Collaboration Programme (TCP) was created with
a belief that the future of energy security and sustainability starts with global collaboration. The programme is made up of
6000 experts across government, academia, and industry dedicated to advancing common research and the application
of specific energy technologies.
The IEA Photovoltaic Power Systems Programme (IEA PVPS) is one of the TCPs within the IEA and was established in
1993. The mission of the programme is to “enhance the international collaborative efforts which facilitate the role of
photovoltaic solar energy as a cornerstone in the transition to sustainable energy systems.” In order to achieve this, the
Programme’s participants have undertaken a variety of joint research projects in PV power systems applications. The
overall programme is headed by an Executive Committee, comprised of one delegate from each country or organisation
member, which designates distinct ‘Tasks,’ that may be research projects or activity areas.
The IEA PVPS participating countries are Australia, Austria, Canada, Chile, China, Denmark, Finland, France, Germany,
Israel, Italy, Japan, Korea, Malaysia, Morocco, the Netherlands, Norway, Portugal, South Africa, Spain, Sweden,
Switzerland, Thailand, Turkey, and the United States of America. The European Commission, Solar Power Europe, the
Smart Electric Power Alliance, the Solar Energy Industries Association, the Solar Energy Research Institute of Singapore
and Enercity SA are also members.
Visit us at: www.iea-pvps.org
What is IEA PVPS Task 1?
The objective of Task 1 of the IEA Photovoltaic Power Systems Programme is promoting and facilitating the exchange
and dissemination of information on the technical, economic, environmental and social aspects of PV power systems.
Task 1 activities support the broader PVPS objectives: to contribute to cost reduction of PV power applications, to increase
awareness of the potential and value of PV power systems, to foster the removal of both technical and non-technical
barriers and to enhance technology co-operation.
Authors
Data: IEA PVPS Reporting Countries, Becquerel Institute (BE). For the non-IEA PVPS countries: Izumi Kaizuka (RTS
Corporation), Arnulf Jäger-Waldau (EU-JRC), Jose Donoso (UNEF).
Analysis: Gaëtan Masson, Elina Bosch, Adrien Van Rechem, Melodie de l’Epine (Becquerel Institute)
Editor: Gaëtan Masson, IEA PVPS Task 1 Manager.
Design: IEA PVPS
DISCLAIMER
The IEA PVPS TCP is organised under the auspices of the International Energy Agency (IEA) but is functionally and legally autonomous.
Views, findings and publications of the IEA PVPS TCP do not necessarily represent the views or policies of the IEA Secretariat or its
individual member countries Data for non-IEA PVPS countries are provided by official contacts or experts in the relevant countries. Data
are valid at the date of publication and should be considered as estimates in several countries due to the publication date.
COVER PICTURE
4.6MW PV system on an old industrial site at Retzwiller (France) image credits : TRYBA ENERGY.
ISBN 978-3-907281-43-7: 2023 Snapshot of Global PV Markets
INTERNATIONAL ENERGY AGENCY
PHOTOVOLTAIC POWER SYSTEMS PROGRAMME
IEA PVPS
Task 1
Strategic PV Analysis and Outreach
Report IEA-PVPS T1-44:2023
April 2023
ISBN 978-3-907281-43-7
fcSnapshotofGlobalPVMarkets2023ReportIEA-PVPST1-44:2023Task1StrategicPVAnalysisandOutreachPVPSTask1StrategicPVAnalysisandOutreach–2023SnapshotofGlobalPVMarketsWhatisIEAPVPSTCP?TheInternationalEnergyAgency(IEA),foundedin1974,isanautonomousbodywithintheframeworkoftheOrganizationforEconomicCooperationandDevelopment(OECD).TheTechnologyCollaborationProgramme(TCP)wascreatedwithabeliefthatthefutureofenergysecurityandsustainabilitystartswithglobalcollaboration.Theprogrammeismadeupof6000expertsacrossgovernment,academia,andindustrydedicatedtoadvancingcommonresearchandtheapplicationofspecificenergytechnologies.TheIEAPhotovoltaicPowerSystemsProgramme(IEAPVPS)isoneoftheTCPswithintheIEAandwasestablishedin1993.Themissionoftheprogrammeisto“enhancetheinternationalcollaborativeeffortswhichfacilitatetheroleofphotovoltaicsolarenergyasacornerstoneinthetransitiontosustainableenergysystems.”Inordertoachievethis,theProgramme’sparticipantshaveundertakenavarietyofjointresearchprojectsinPVpowersystemsapplications.TheoverallprogrammeisheadedbyanExecutiveCommittee,comprisedofonedelegatefromeachcountryororganisationmember,whichdesignatesdistinct‘Tasks,’thatmayberesearchprojectsoractivityareas.TheIEAPVPSparticipatingcountriesareAustralia,Austria,Canada,Chile,China,Denmark,Finland,France,Germany,Israel,Italy,Japan,Korea,Malaysia,Morocco,theNetherlands,Norway,Portugal,SouthAfrica,Spain,Sweden,Switzerland,Thailand,Turkey,andtheUnitedStatesofAmerica.TheEuropeanCommission,SolarPowerEurope,theSmartElectricPowerAlliance,theSolarEnergyIndustriesAssociation,theSolarEnergyResearchInstituteofSingaporeandEnercitySAarealsomembers.Visitusat:www.iea-pvps.orgWhatisIEAPVPSTask1?TheobjectiveofTask1oftheIEAPhotovoltaicPowerSystemsProgrammeispromotingandfacilitatingtheexchangeanddisseminationofinformationonthetechnical,economic,environmentalandsocialaspectsofPVpowersystems.Task1activitiessupportthebroaderPVPSobjectives:tocontributetocostreductionofPVpowerapplications,toincreaseawarenessofthepotentialandvalueofPVpowersystems,tofostertheremovalofbothtechnicalandnon-technicalbarriersandtoenhancetechnologyco-operation.AuthorsData:IEAPVPSReportingCountries,BecquerelInstitute(BE).Forthenon-IEAPVPScountries:IzumiKaizuka(RTSCorporation),ArnulfJäger-Waldau(EU-JRC),JoseDonoso(UNEF).Analysis:GaëtanMasson,ElinaBosch,AdrienVanRechem,Melodiedel’Epine(BecquerelInstitute)Editor:GaëtanMasson,IEAPVPSTask1Manager.Design:IEAPVPSDISCLAIMERTheIEAPVPSTCPisorganisedundertheauspicesoftheInternationalEnergyAgency(IEA)butisfunctionallyandlegallyautonomous.Views,findingsandpublicationsoftheIEAPVPSTCPdonotnecessarilyrepresenttheviewsorpoliciesoftheIEASecretariatoritsindividualmembercountriesDatafornon-IEAPVPScountriesareprovidedbyofficialcontactsorexpertsintherelevantcountries.Dataarevalidatthedateofpublicationandshouldbeconsideredasestimatesinseveralcountriesduetothepublicationdate.COVERPICTURE4.6MWPVsystemonanoldindustrialsiteatRetzwiller(France)imagecredits:TRYBAENERGY.ISBN978-3-907281-43-7:2023SnapshotofGlobalPVMarketsINTERNATIONALENERGYAGENCYPHOTOVOLTAICPOWERSYSTEMSPROGRAMMEIEAPVPSTask1StrategicPVAnalysisandOutreachReportIEA-PVPST1-44:2023April2023ISBN978-3-907281-43-7Task1StrategicPVAnalysisandOutreach–2023SnapshotofGlobalPVMarkets3TABLEOFCONTENTSTableofContents..............................................................................................................3ExecutiveSummary..........................................................................................................41SnapshotoftheGlobalPVMarketin2022............................................................61.1EvolutionofAnnualInstallations.................................................................61.2ImpactofInternationalTradeDisruptionsandtheUkraineWar..................71.3TheTopMarketsin2022............................................................................82MarketSegmentation.............................................................................................93CumulativeInstalledCapacityintheWorld............................................................104EvolutionofRegionalPVInstallations...................................................................105LimitsofReportingConventions............................................................................125.1Decommissioning,RepoweringandRecycling...........................................125.2ACorDCNumbers?..................................................................................136ElectricityProductionfromPV...............................................................................137Policy&MarketsTrends........................................................................................147.1PolicyTrends.............................................................................................147.2CompetitiveTenders&MerchantPV.........................................................157.3ProsumersPolicies.....................................................................................157.4GridAccessPolicies...................................................................................167.5LocalManufacturingPolicies......................................................................168PVintheBroaderEnergyTransition......................................................................178.1PVandOtherRenewableEnergyEvolutions.............................................178.2ImpactofPVDevelopmentonCO2Emissions...........................................188.3PVFosteringDevelopmentofaCleanerEnergySystem............................19Task1StrategicPVAnalysisandOutreach–2023SnapshotofGlobalPVMarkets4EXECUTIVESUMMARYTheglobalPVbaseonceagaingrewsignificantlyin2022,reaching1185GW(≈1,2TW)ofcumulativecapacityaccordingtopreliminarymarketdata,bothdespiteandbecauseofpost-covidpriceshikesandEuropeangeo-politicalstrife.With240GWofnewsystemsinstalledandcommissioned,andnearlyadozencountrieswithpenetrationratesover10%,(over19%forSpain!),PVhasdemonstratedthatitisaserious,major,long-termcontributortocostcompetitiveelectricitygenerationandemissionsreductionsoftheenergysector.Majortrendsinclude:•TheChinesemarketcontinuestodominatebothnewandcumulativecapacityandadded106GW1DCor44%ofnewcapacitytoreach414,5GWofcumulativecapacity,morethandoublethatinEurope.Thisstronggrowthfollowsthatofpreviousyears-54,9GWin2021and48,2GWin2020,andevenlybalancedbetweencentralisedanddistributedsystems.•Europedemonstratedcontinuedstronggrowthwith39GWinstalled,ledbySpain(8,1GW),Germany(7,5GW),Poland(4,9GW)andtheNetherlands(3,9GW).HighelectricitymarketpriceshavereinforcedthecompetitivityofPVandseveralcountrieshaveactedpoliciestofurtheracceleratePVinlinewithEUandnationalenergysovereigntyengagements–whilstothersareenactingpoliciestoreduceinjectionsbecauseofgridcongestion.•TheAmericanmarketcontractedto18,6GWunderthecombinedinfluenceoftradeissuesandgridconnectionbacklogs,whilstBrazilinstalledahigh9,9GW,nearlydoublingthepreviousyear’snewcapacity.•Indiaonceagainshowedstronggrowthwith18,1GW,predominantlyincentralisedsystems,andaPVpenetrationofnearly10%.StrongvolumesfromAustralia(3,9GWdespitesupplychainissues),andKorearoundouttheregionalmarket.•Japanremainedsteadyat6,5GW,thesameasin2021.Ninecountriesnowhavepenetrationratesover10%withSpain,GreeceandChileabove17%,andwhilstgridcongestionhasbecomeanissue,policymeasures,technicalsolutionsandstoragearealreadyprovidingworkablesolutionstoenhancePVpenetration.Individualmarketsremainsensitivetopolicysupportdespitecompetitivityacrossmostmarketsegmentsinmanycountries,howeverpolicysupportismovingtoindirectmeasuressuchasacceleratedpermittingorfacilitatingprosumermodelsormanaginggridcongestion.IncreasingconcernsabouttheconcentrationoftheupstreamsupplychaininChinahasledtoinitiativesandpolicysupportforlocalmanufacturing.PVplayedanimportantroleinthereductionoftheCO2emissionsfromelectricityin2022,withtwo-thirdsofnewrenewablecapacityinstalledin2022,generatingover50%ofgenerationfromnewrenewablecapacityandavoidingapproximately1399MtofannualCO2emissions,up30%from2021.Thisrepresentsaround10%ofthetotalelectricityandheatsectoremissionsand4%ofallenergyemissions.ThiscontinuedpositioningPVasoneofthekeyexistinganddevelopingsolutionstofightclimatechangehereandnow.1AllcapacitydatainthisreportisDC,unlessspecifiedotherwise.Forsomecountries,thismeanspublishingdifferentvaluestoofficialdata–forexample,China’sNationalEnergyAdministration(NEA)publishesinACandPVPSappliesaconversionratiofromACtoDC.Seesection5formoreinformation.Task1StrategicPVAnalysisandOutreach–2023SnapshotofGlobalPVMarkets5Task1StrategicPVAnalysisandOutreach–2023SnapshotofGlobalPVMarkets61SNAPSHOTOFTHEGLOBALPVMARKETIN2022IEAPVPShasdistinguisheditselfthroughouttheyearsbyproducingunbiasedreportsonthedevelopmentofPVallovertheworld,basedoninformationfromofficialgovernmentbodiesandreliableindustrysources.This11theditionofthe“SnapshotofGlobalPVMarkets”aimsatprovidingpreliminaryinformationonhowthePVmarketdevelopedin2022.The28theditionofthePVPScomplete“TrendsinPhotovoltaicApplications”reportwillbepublishedinQ42023.1.1EvolutionofAnnualInstallationsItappearsthat1185GWrepresentstheminimuminstalledcumulativecapacitybytheendof2022,andatleast240GWofPVsystemshavebeencommissionedintheworldlastyear.IEAPVPScountries2,forwhomthereisafirmlevelofcertaintyinthedata,represented953GW(or80%)ofcumulativecapacityand184GW(77%)ofannualinstallations.In2022,atleast23countriesinstalledmorethan1GW.Sixteencountries(notincludingtheEU)nowhavemorethan10GWoftotalcumulativecapacity,fivehavemorethan40GW.Chinaalonerepresented414,5GWfollowedbytheEuropeanUnion(asEU27),whichledrankingsuntil2015,butnowrankssecond(209,3GW),theUSAranksthird(142GW)andJapanfourth(85GW).Source:IEAPVPSWithcontinueddynamicgrowth,Chinaremainsthemajorregionalmarketin2022withover45%ofnewcapacity,amarketsharenotseensince2018;stronggrowthinEuropeandtoalesserextenttheUSAandIndiaaccountforanother30%.Figure2belowillustratesthechangingdynamicsoftheglobalPVmarket,andtheinfluenceoftheChinesePVmarket,2Forthepurposeofthisreport,IEAPVPScountriesarethosethatareeithermemberintheirownrightorthroughtheadhesionoftheEC.000011126817313038405077103104111145175240050100150200250300GWpFIGURE1:EVOLUTIONOFANNUALPVINSTALLATIONSNonIEAPVPSCountriesIEAPVPSCountriesJapanUSAEuropeanUnionChinaTask1StrategicPVAnalysisandOutreach–2023SnapshotofGlobalPVMarkets7butalsothefastpaceofgrowthinIndiaandemergingcountries.Japan,onceaprincipalmarketmaintainsasteadyrhythmofnewprojectsbutwithnomarketaccelerationaselsewhere.Source:IEAPVPS1.2ImpactofInternationalTradeDisruptionsandtheUkraineWarAfterthreeyearsitisstilldifficulttopreciselyquantifytheimpactsofthepandemic.Oftheprincipalmarkets,onlyIndiashowedacontractionin2020,andallotherprincipalmarketsshowedgrowththrough2020to2022despitesignificantdisruptiontothesupplychainandtradewithincreasesinpolysilicon,glass,aluminium,steel,andfreightcosts,andhencemoduleandsystemcosts.Inparallel,sinceearly2022thepoliticaltensionsinEuropeandresultingreducedgasacquisitionshaveresultedinmuchhigherwholesaleanddomesticelectricityprices,notjustinEuropebutacrossarangeofothercountriesasfarasAustralia.Theincreaseincosts,especiallyin2022,donotseemtohaveslowedgrowthinPVmarketsapartfrominIndia(whereredtapeconstraintscanexplainmuchofthedelays),althoughinsomecountriesespeciallyinEuropeverycompetitivemediumandlarge-scalesystemswerecancelledorputonholdastheirbusinessmodelscouldn’tholduptoincreasedcosts.Itishighlypossiblethatstablecostscouldhaveledtofastergrowthrates,although,consideringmanufacturingcapacity,theremayhavestillbeenpricesrisesonpolysilicon,evenifnewmanufacturingplanshadbeenlaunchedearlier.Bymid-2022transportandmaterialcostsweremostlystabilising,andPVmarketscontinuedtogrow.Overall,itisdifficulttodistinguishifthisaccelerationeffectisstrongerorweakerthanthebrakingeffectofhigherPVhardwareprices.8203330381514111714111041318779771112202719817202738.744304855106.005010015020025030020182019202020212022GWpFIGURE2:2018-2022GROWTHPERREGIONOthercountriesOtherIEAPVPScountriesIndiaJapanUSAEuropeanUnionChinaTask1StrategicPVAnalysisandOutreach–2023SnapshotofGlobalPVMarkets8TheenhancedPVcompetitivenessinmanycountrieshasbroughtgridparitytoamuchlargerrangeofsegmentsthaneven18monthsago,fromdomesticsystemstoutilityscalesystems,withimpactsonpolicyandfinancingmechanismsthatarediscussedinSection7.TheresiliencyofthePVmarketdespitethemajoreconomicandlogisticdisruptionsisremarkableandshowsthepotentialofthetechnologytolimiteconomicdownturnsandsocialdamagebroughtonbyregionalorworldwideupheaval.GreenrecoveryplansandbetterregulationscouldpropelthePVindustryfarbeyondthecurrentinstallationtrendstomeettheParisClimateAgreement.1.3TheTopMarketsin2022TheChinesemarketgrewagainataremarkablerateandinstalled106GWin2022(upfrom55GWin2021),or44%oftheglobalmarket.With38,9GWofannualinstallationstheEuropeanUnionrankedsecondfollowedbytheUSAwhereanestimated18,6GWwereinstalled,amarkethitbytradedisputesandgridconnectionbacklogs,followedbyIndiawithanincreasedmarketof18,1GW.Brazilcomesinfourthwithanestimated9,9GW,themostdynamicmarketinLatinAmerica.Note:TheEuropeanUniongrouped27Europeancountriesin2022,outofwhichGermany,Spain,France,theNetherlandsandItalyalsoappearintheTopTen,eitherfortheinstalledcapacityortheannualinstallations.TheEuropeanCommissionisamemberofIEA-PVPSthroughitsJointResearchCentre(EU-JRC).Source:IEAPVPSToreachtheTopTenfornewcapacityin2022,countriesneededtoinstallatleast3GWofPVsystems(comparedto1,5GWin2018).KoreaandFrancegavewaytoPolandandtheNetherlandsdespitereasonableperformance.TheTopTenoftotalcumulativeinstalledcapacitiesshowsmoreinertiaduetopastlevelsofinstallations:FranceexitedtheTopTenforcumulativeinstalledcapacityin2022andwasreplacedbyItalythatisnowbackintheTopTen.Thereremainsasignificantgapbetweenthefirstfiveandthenextfive;Australia,Spain,Italy,KoreaandBrazilhaveverysimilarcumulativecapacitiesofbetween20GWand30GW,underhalfasmuchasnumberfive,Germany.Task1StrategicPVAnalysisandOutreach–2023SnapshotofGlobalPVMarkets92MARKETSEGMENTATIONPreliminarydataindicatesthatinabsoluteterms,bothrooftopandutilityscalesegmentsgrewin2022.Marketsegmentswerebalanced,with48%ofnewcapacityonrooftops.Theshareoftherooftopsegmenthasbeengrowingcontinuouslysince2018asmarketsopeninnewcountriesanddecreasingcostsmakesitmoreaccessibleforresidentialandcommercialinvestors,withnotablevolumes(>2,5GW)andmarketsharesinChina,Brazil,andGermanyaswellasPolandandAustralia.Onbothsegmentsnewapplicationsareingrowth;fromBIPVintherooftopsegmenttoutilityscalefloatingPV.Stillmarginalbutgrowing,agrivoltaicprojectsandBIPVareasyethardtoquantify,asareVIPV/VAPV3volumes(PVintegratedinvehicles)althoughtheyareexpectedtodevelopwellinthecomingyears.Technologicalevolutions,suchasbifacialPVwillalsoimpactthedevelopmentofthesenewmarketsegments.Source:IEAPVPS,BecquerelInstitute3BIPV–BuildingIntegratedPV;VIPV–VehicleIntegratedPV;VAPV-VehicleIntegratedPV0501001502002503002013201420152016201720182019202020212022GWpFIGURE4:SEGMENTATIONOFPVINSTALLATION2013-2022ROOFTOPUTILITYSCALETask1StrategicPVAnalysisandOutreach–2023SnapshotofGlobalPVMarkets103CUMULATIVEINSTALLEDCAPACITYINTHEWORLDIn2022theglobalcumulativeinstalledcapacitypassedthesymbolic1TWmark,reachinganestimated1185GW,asshowninFigure5.Frontrunners-fromChinadowntoIndiaandthenGermany(67,2GW)haveatleast30GWmorethanthenextcountries.Theirpositionsareunlikelytobechallengedin2023or2024,notevenadoublingortriplingofBrazil’sdynamic2022market(9,9GW)wouldbesufficient.Braziljoinedthenextgroupofcountrieswithsmaller,similarcumulativecapacitiesofbetween20GWand30GW:Australia,Spain,Italy,KoreaandnowBrazil.Source:IEAPVPS4EVOLUTIONOFREGIONALPVINSTALLATIONSThedistributionofregionalmarketshareshasremainedsteadysince2018.AsiaPacifichascapturedthemajorsharewith64%ofthetotalcumulativeinstalledcapacityin2022(seeFigure6),drivenbyChinawithstrongcontributionsfromIndia.Japaninstalledastable6,5GWwhilstmarketsinbothKorea(downto3,6GW)andAustralia(3,9GW)contractedslightly-supplychainchallengesandinvestmentlagsinAustraliashouldberesolvedin2023.SomesmallerestablishedAsianmarkets-TaiwanandMalaysia,alsoexperiencedgrowthin2022,whereothermarkets,suchasThailand,Singapore,IndonesiaandthePhilippineshaveseenonlysloworintermittentgrowthovertheyears.IntheEuropeanUnion,Spaintooktheleadwith8,1GWafterfouryearssteadybetween4GWand5GWannually.Germanyfollowedcloselywith7,5GWafterafourthyearofover120%increasethenPoland(4,9GWinstalled)withasimilargrowthrate.TheNetherlands231247985142210414.546814223970100137177228304407511622767910118502004006008001,0001,2001,400200520062007200820092010201120122013201420152016201720182019202020212022GWpFIGURE5:GLOBALEVOLUTIONOFCUMULATIVEPVINSTALLATIONSOtherCountriesIEAPVPSCountriesIndiaJapanUSAEuropeanUnionChinaTask1StrategicPVAnalysisandOutreach–2023SnapshotofGlobalPVMarkets11rankedfourthwith3,9GWinstalled.TheyarefollowedbyFrancewith2,9GWandItaly(2,5GW).Afurtherfivecountriesinstalledover1GW:Denmark(1,6GW),Greece(1,4GW),andAustriaandHungarybothat1GW.EuropeancountriesnotintheEUinstalledacombined3,4GWin2022,ledbyTurkey(1,6GW),Switzerland(850MW)andtheUK(555MW).NotablegrowthwasobservedinNorway(+300%relativeincrease),Italy(+163%relativeincrease),Sweden(+96%)andSlovenia(+98%relativeincrease).Source:IEAPVPSDespitetheUSmarket’sunderperformance(18,6GW,downfrom27GWin2021),theoverallAmericasmarketincreased,pulledbystronggrowthinBrazil(9,9GWinstalledin2022),followedbyChilewhichinstalledaround1,8GWandMexicowith680MW.ThemarketinCanadagrewataround449MWinstalledcapacityin2022.IntheMiddleEastandAfrica,Israelinstalledanadditional1,2GW,asignificantincreasecomparedtothepreviousyear,followedbyQatar(0,8GW).AfricaandtheMiddleEastrepresentedaround3%ofglobalPVinstallationsin2022withoff-gridinstallationsgrowingrapidlyandrooftopPVoutsideofanyregulatoryschemeareprogressinginmanycountriesrapidly.02004006008001,0001,2001,4002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022GWpFIGURE6:EVOLUTIONOFREGIONALPVINSTALLATIONSEuropeAsiaPacificAfrica&MiddleEastRoWTheAmericasTask1StrategicPVAnalysisandOutreach–2023SnapshotofGlobalPVMarkets125LIMITSOFREPORTINGCONVENTIONSAsthePVmarketgrowsconstantly,reportingofPVinstallationsisbecomingmorecomplex.IEAPVPShasdecidedtocountallPVinstallations,bothgrid-connectedandoff-grid,whennumbersarereported,andtoestimatetheremainingpartonunreportedinstallations.Forcountrieswithhistoricallysignificantcapacityandgoodreporting,aslowyetgrowinggapbetweenshipped/importedcapacityandinstalledcapacitycanbeattributedtoseveralfactorsincludingconversionfactorsfromACtoDC,repoweringanddecommissioning.Theextremelyfastpaceddevelopmentofmicrosystems(plug&playsystemswithonlyafewmodules),whilstnotsignificantinoverallvolumesissymptomaticofthedevelopmentofunreportedsystemsreachingthemarketandsometimesbeinginvisibletodistributionsystemoperatorsanddatacollection.Othermarketevolutionssuchasoff-gridapplicationsaredifficulttotrackeveninmembercountries,andsignificantgrowthininstallationsinthirdcountrieswithoutarobustreportingsystemisalsoalikelysourceofunderreporting.Inlightofthis,reportingheretakesintoaccountreportedandexpertestimatesofnewcommissionedcapacityaswellasprobableunreportedvolumesinstalledinoneoftheabovecontexts.Dataonestimatedshippedcapacity,ininventories,hasbeenincorporatedinFigure3toimprovemarketvisibility.5.1Decommissioning,RepoweringandRecyclingDatapublishedbyIEAPVPSreportsonnewannualinstalledcapacityandtotalcumulativeinstalledcapacityarebasedonofficialdatainreportingcountries.Dependingonreportingpractices,cumulativecapacity(thesumofnewannualcapacity)mayoutstripoperatingcapacityassystemsaredecommissioned.Repoweredcapacitiesreplacesomedecommissionedcapacitybutalsogenerallyincreaseoperationalcapacity,astherepoweredcapacityishigherthantheinitialplantcapacityduetoPVmoduleefficiencyimprovements.ThereisnostandardisedreportingonthesesubjectsacrossIEAPVPScountries.SeveralcountriesalreadyincorporatedecommissioningofPVplantsintheirtotalcapacitynumbersbyreducingthetotalcumulativenumber.Othercountriesreportcapacityinoperationforthatyear,anddonotincluderepoweredvolumesinnewannualcapacityordecommissionedvolumesinoperationalcapacity.Manycountriesdonottrackdecommissioningorrepoweringwithanyconsistency.Repoweringisstillrelativelyunusualgiventheageoftheoldestinstallations,butitisexpectedtoincreaseinthenearfuture-serialdefectswithbacksheetsmanufacturedintheperiod2009–2011isagoodexample,asthepast2yearshaveseenafewhundredMWreplaced.Modulecapacitythathasbeenusedtorepowersystemswithdefectiveorunderperformingmoduleswillappearinshippedvolumesbutnotnecessarilyinnewannualinstallations.Realdecommissioningisexpectedtoberare,aslandusageconstraintsandcheaperPVonbuildingsencouragesrepowering.RecyclingnumberscanprovideaglimpsePrimary&trustedsecondarysource194.12Approximativesource-25.86ExpertGuess-19.78TotalShipped-284Totalinstalled-240050100150200250300Annualinstalledcapacity(GW)FIGURE3:INSTALLEDVSSHIPPEDVOLUMES20221SOURCE:IEAPVPSTask1StrategicPVAnalysisandOutreach–2023SnapshotofGlobalPVMarkets13ofwhatishappeningwithregardstorepoweringanddecommissioningincountrieswhererecyclingschemesareactive,howeverreportingisoftenintonnageandtheavailabilityofdatamustbeimprovedbeforeitcanbeusedmoregenerally.Inthecomingyears,IEAPVPSwillfollowthedynamicevolutionofdecommissioning,repoweringandrecyclingclosely,withtheexpectedimpactontheinstalledcapacity,marketprojectionsforrepoweringandthedeclineinPVperformancesduetoageingPVsystems.5.2ACorDCNumbers?Byconvention,thenumbersreportedrefertothenominalpowerofPVsystemsinstalled.TheseareexpressedinW(orWp).SomecountriesreportthepoweroutputofthePVinverter(thedeviceconvertingDCpowerfromthePVsystemintoACelectricitycompatiblewithstandardelectricitynetworks)orthegridconnectionpowerlevel.ThedifferencebetweenthestandardDCpower(inWp)andtheACpowercanrangefromaslittleas5%(conversionlosses,invertersetattheDClevel)toasmuchas60%.Forinstance,somegridregulationslimitinjectionstoaslowas70%ofthepeakpowerfromtheresidentialPVsystemsinstalledinthelastyears.Mostutility-scaleplantsbuiltin2022haveanAC-DCratiobetween1,1and1,6.Forsomecountries,numbersindicatedinthisreporthavebeentransformedtoDCnumberstomaintainthecoherencyoftheoverallreport.Ingeneral,IEAPVPSrecommendsregisteringPVsystemswithboththeDCpowerandtheACvalue.DCpowerallowsareliablecalculationoftheenergyproductionwhilstACpowerallowsabetterunderstandingofthetheoreticalmaximumpoweroutputofthePVfleet.MoreinformationaboutrecommendationstoproperlyregisterPVplantscanbefoundintheDataModelandDataAcquisitionreport(seelinkandQRcodeabove).6ELECTRICITYPRODUCTIONFROMPVPVgenerationiseasytomeasureforanindividualsystembutmorecomplexforanentirecountry.Electricityself-consumedbyprosumersisgenerallynotmetered.Convertinginstalledcapacitytoelectricityissubjecttoerrors-solarirradiationcanvarydependingonthelocalclimate;weathercandifferfromyeartoyear.SystemsinstalledinDecemberwillhaveproducedonlyafractionoftheirannualelectricityoutput;systemsinstalledonbuildingsmaynotbeatoptimumorientationormayhavepartialshadingduringtheday.PVpenetrationisbasedonthetheoreticalelectricityproductionfromPVpercountry,calculatedbasedoncumulativePVcapacityattheendof2022,closetooptimumsiting,orientation,andyearlyweatherconditions.Figure7showshowPVtheoreticallycontributestomeettheelectricitydemandinkeyIEAPVPScountriesandothers,basedontheinstalledcapacitybytheendof2022.Numbersareestimatesbasedontotalcumulativecapacityatyear’s-endandtheymaydifferfromofficialPVproductionnumbersinsomecountries.Theyshouldbeconsideredasindicative,providingareliableestimationforcomparisonbetweencountriesanddonotreplaceofficialdata.IEAPVPSTask1Report:DataModelandDataAcquisitionforPVRegistrationSchemesandGridConnection–BestPracticeandRecommendationsAvailablefordownloadhere.Task1StrategicPVAnalysisandOutreach–2023SnapshotofGlobalPVMarkets14Ninecountriesnowhavepenetrationratesover10%(upfrom7in2021):Spainatover19%,GreeceandChileabove17%andtheNetherlandsandAustraliaover15%.Highpenetrationratesarenotreservedforsmallaresunnyclimates,norforcountrieswithverylowconsumptionasdemonstratedbybothGermanyandIndiainthetopgroup–theincreasinglylargevolumesofinstalledcapacityaremakingatangiblecontributiontoelectricityconsumptionaroundtheworld.ThetwoprincipalmarketsChina(6,5%)andEurope(8,8%)demonstratethis.Intotal,PVcontributionamountsto6,2%oftheelectricitydemandintheworld.7POLICY&MARKETSTRENDS7.1PolicyTrendsThecombinationofmarketcompetitivity,climateactiongoalsandthesearchforenergysovereigntyhasledtochangesinpolicysupportforphotovoltaicsinanumberofcountriesin2022–ofteninquitecontradictorydirections.Somecountries(China,Australia…)arephasingoutsupportmechanismsforendusers(tenders,feedintariffs,directandfiscalsubsidies)asPVhasbecomecompetitive,whilstothers(Germany,Austria)havesteppedupsupport(newremunerationbonusforprosumers,6.2%0.2%0.4%0.6%1.0%1.9%2.4%3.4%3.5%4.2%4.4%4.7%4.6%4.7%4.8%5.1%5.2%5.8%5.9%6.5%6.6%7.1%7.3%8.4%8.7%8.7%9.1%9.5%10.2%12.3%12.4%12.9%15.7%15.9%17.0%17.5%19.1%0%5%10%15%20%25%GlobalNorwayFinlandMalaysiaCanadaSwedenSlovakiaThailandCzechRepublicSouthAfricaRomaniaKoreaFranceUKMoroccoUSAMexicoBulgariaAustriaChinaTurkeySwitzerlandDenmarkPortugalBelgiumEUItalyIndiaJapanIsraelGermanyHondurasAustraliaNetherlandsChileGreeceSpainFIGURE7:THEORETICALPVPENETRATION2022Task1StrategicPVAnalysisandOutreach–2023SnapshotofGlobalPVMarkets15increasedtendercapacities)todrivefurthercapacitygrowthtomeetclimateimperatives.Inparallel,manycountrieshaveusedindirectsupportmechanismsaddressingpermittingcomplexityandcosts,facilitatedaccesstoelectricitymarketsorgridaccesspoliciesforprosumerstoacceleratePVdeployment.ThepastyearhasdemonstratedthatdespitePVcompetitivity,nationalmarketsremainsensitivetopolicy,withdifferentsegmentsrespondingtopolicychangesastheybecomeeffective.Thisisparticularlyvisibleinemergingapplications,suchasagrivoltaics,floatingPVorcollectiveself-consumptionandenergycommunities.Inparticular,twomajorsubjectshavemobilisedpolicymakersin2022–gridaccesspoliciesandsupportoflocalmanufacturing.Gridaccesspolicieshaveemergedasalimitingfactorinanincreasingnumberofcountriesandmarkets,ascongestionandshiftingofcost-burdensslowsprojectsandworriesDistributionSystemOperator’s-DSO’s.SupportforlocalmanufacturinginthecontextofPVtargets,disruptedsupplychainsandthehighconcentrationofmanufacturingcapacityinChinahasledtosomereformativesupportpoliciesaroundtheworld.7.2CompetitiveTenders&MerchantPVTenderscontinuedtobethemaindriverofutilityscalePVdevelopmentin2022,althoughtheincreaseinelectricitypricesledtoasurgeinprojectsexploringPPA(PowerPurchaseAgreementsormerchantPV)asafinancingmechanisminmanycountries(Europe,Americas).Despitethis,manycountriescontinuedtoruntendersin2022,althoughfactorssuchastheattractivenessofmarketelectricitycostsorpoorlyanticipatedreservepricesledtolowersubscriptionratesthanexpectedinsomecountries(Germany,France,Spain).Theincreaseinmaterialandtransportcostsin2021and2022mayhaveimpactedtheviabilityofsomesuccessfulcandidates,withprojectsbeingdelayed(Spain)orstateorganisationsconsideringadjustingremunerationmethods(France).Theincreasedmarketcompetitivityhasledtotheterminationorgradualphasingoutoftenders,forexampleinAustralia,China–elsewhere,climateengagementsormarketimperativeshaveledtoneworincreasedvolumestobetendered(Germany,SaudiArabia).Tenderscanbeexclusivelycostbasedorintegratedmultiplefactorssuchaslanduse,carbonfootprintorgeographicallocation.AsconcernsovertheconcentrationofsupplychainsinChinaevolve,somegovernmentshavelookedtotendermechanismstoencouragelocalcontent,althoughtraderulesmakethisacomplexundertaking.MerchantPV(directsalesonelectricitymarketsorthroughPPA)isgrowingsteadilyasPVdevelopersandownerstakeadvantageofhigherelectricitypricestoavoidtheconstraintsoftenders(timing,restrictiveconditions,orinsufficientvolumes)orasthesolealternativewhensupportmechanismsarephasedout.Somecountriesareexperimentingwithnon-monetarysupporttoencouragethedevelopmentofmarketPPAs,suchasguaranteefunds,virtualPPAframeworks(Malaysia)ortendersforgridaccess(Spain).7.3ProsumersPoliciesProsumers(entitiesthatarebothproducersandconsumersofenergy)arebecomingmoreactivemarketdriversaroundtheworldaselectricityconsumptionpricesgoupandPVpenetrationratesincrease,improvingunderstandingofandaccesstoprosumerpolicies.Task1StrategicPVAnalysisandOutreach–2023SnapshotofGlobalPVMarkets16Prosumerexcessgenerationisgenerallypaidforthroughnetmetering(traditionallyinemergingmarkets),ornetbillinginmoreexperiencedmarketswithsmartorcommunicatingmeters.Remunerationratesvaryandcanbelowtodissuadeinjectionsintothegridoronthecontrarybenefitfromfeedintariffsormarketpremiums.Theseremunerationratescanbeassociatedwitharangeofdifferentconstraints,fromcapacitylimitstomandatorybuildingintegrationorcarbonfootprints.Collectiveself-consumption–whereoneorseveralPVproducers(evenutility-scaleplants)supplyoneormoreconsumersinthesamebuildingorwithinasmallgeographicalperimeterwithreduceduseofthepublicgrid-continuestogrow,althoughthewiderangeofmechanismsusedcanmakeitdifficulttocomparebetweencountries.Theuseofself-consumptionincollectivebuildingsisgrowing(manyEUcountries),whilstothermodelssuchasdistributed(orvirtual)self-consumptionarebecomingmorecommon.Thesemodelshaveincommonthattheyallowahigherrateofself-consumptionthanifonlyoneconsumerisassociated,andareincreasinglyseenasamarketsubstitute,allowingsmallscalegeneratorstoselldirectlytoconsumerswithouthavingtobecomecommercialoperators,anoftencomplexprocess.IntheCleanenergyforallEuropeanspackage,theEuropeanUnionintroducedtheconceptofRenewableEnergyCommunities(REC)andofCitizenEnergyCommunities(CEC).RECshouldallowcitizenstosellrenewableenergyproductiontotheirneighbours,whilesomecrucialcomponentsarethedefinitionoftheperimeterandthetarifficationforgriduse.Thosekeycomponentsaredefinedinthenationalimplementationinthememberstates.ThisconceptofenergycommunitiesislikelytoexpandexistingPVmarketsegmentsandtoallowcostreductionsforconsumersnotabletoinvestinasolarinstallationthemselves.7.4GridAccessPoliciesWithincreasinglyhighpenetrationratesofPVinmoreandmorecountries,andsomesmallregionsreaching100%RESoverseveralhoursordays,transmissionanddistributionsystemoperatorsarehavingtoanticipateandmoreactivelymanagePV.Newpolicieshavebeenproposedorimplementedtomanagegridaccessandcostsharing,fromtendersforcapacity(Spain)tocutoffsofsolarexportsincaseofsaturation(Australia)ortaxesongridexports(California,Belgium).Howthecostburdenofmanaging,reinforcingandrenewinggridinfrastructureissharedhasbecomeoneofthemoresensitivetopics.Increasedbehind-the-metergenerationcanreducerevenuecollectedonconsumption,whilstmiddayexportscancongestgridsandimpactgridbalancing.Aspenetrationratesincrease,newgovernancemodelscompatiblewithmarketandclimatepolicydrivendeploymenttargetswillneedtobeestablishedtoensurePVcanbesmoothlydeployed.7.5LocalManufacturingPoliciesThedifferentdisruptionsof2021and2022(covid,geopoliticaltensionsaroundtheworldandpollutionepisodesinChina)havehighlightedthefragilityofthePVvaluechain,atatimewhengovernmentsarelookingtoincreasegenerationfromPV.SupportinglocalmanufacturingatvariousstepsofthePVvaluechainhasbecomeimportantindifferentregions,pushingnumerousgovernmentstosupportlocalmanufacturingthroughpolicies,subsidiesandregulation–notableexamplesincludetheUSA’sInflationReductionAct(IRA),Task1StrategicPVAnalysisandOutreach–2023SnapshotofGlobalPVMarkets17Whiletradeconflictshavediminishedinintensityinthelastyears,thewillingnesstosupportlocalproductionhasincreasedwithinitiativesinEurope,theUSA,India,MoroccoorSaudiArabia.ThisreflectsthegrowingperceptionoftheimportancethatPVcouldtakeinthecomingyearsandthewillingnesstosecurestrategicproductioninsomecountries.Thistrendisincreasingglobally,oftenwithoutaclearunderstandingoftheindustrydynamicsandthecomplexitiesofPVmanufacturing,whichwillleadtolessrealprojectsthanwhatsomegovernmentswouldliketosee.MaterialssupplyforthePVmanufacturingindustryisgrowingasapercentageoftotalmaterialconsumption,andprecautionsmustbetakenwhenanalysingtheimpactgrowthinPVmanufacturingcouldhaveonglobalsupplychainsandotherindustries.8PVINTHEBROADERENERGYTRANSITION8.1PVandOtherRenewableEnergyEvolutionsPVisplayingamajorroletheenergytransition–andin2022representedtwothirdsofallnewrenewableelectricitytechnologies,thankstoitsconsistentcosts,technicalperformanceandaccessibility,andgenerallyfasterpermittingproceduresthanwindorhydro.Asinstalledvolumesincreases,sodoesworkforcecompetencyandinvestorconfidence,allowingsolartobeadoptedasasafe,maturetechnologyinvestment.Withthehindsightofthepastthreeyears,clearlysolarisnowamainstreamenergysource.Sources:compilationofIEAPVPS,BNEF,GWEC,IRENAandestimationsfor2022In2022,solarPVgeneratedapproximately50%ofthetotalrenewableelectricityproductionfromnewproductionassetsdespitebeingtwothirdsofnewcapacity.Thedifferencebetweencapacityandgenerationisduetothedifferentcapacityfactorsofrenewabletechnologies.Whereasbiomassinstallationscanvirtuallyproducealldayandallyear-round,windandPVinstallations’outputsstronglydependontheavailableresourcesthatcanvarylocally.0501001502002503003504002010201120122013201420152016201720182019202020212022GWpFIGURE8:EVOLUTIONOFRENEWABLEENERGYANNUALINSTALLATIONSWindPVHydroOtherrenewables(nonhydro)Task1StrategicPVAnalysisandOutreach–2023SnapshotofGlobalPVMarkets18Sources:IEAPVPS,BNEF,GWECandestimationsfor20228.2ImpactofPVDevelopmentonCO2EmissionsGlobalenergyrelatedCO2eqemissionsincreasedto36800Mtin20224,just0,9%morethan2021,muchlowerthanexpectedconsideringtheshiftfromgastocoalinsomecountries.Thetotalemissionsoftheelectricityandheatsectorreached14600MtofCO2eqin2022,anall-timehigh.5PVplayedanimportantroleinthereductionoftheCO2emissionsfromelectricityin2022,avoidingapproximately1399MtofannualCO2emissions,up30%from2021.ThisiscalculatedastheemissionsthatwouldhavebeengeneratedfromthesameamountofelectricityproducedbythedifferentgridmixesinallcountriesandtakingintoconsiderationlifecycleemissionsofPVsystems.ThisamountofavoidedCO2emissionsrepresentsaround10%ofthetotalelectricityandheatsectoremissions(+3%from2021)and4%ofallenergyemissions.4IEA,GlobalEnergyReview:CO2Emissionsin2022,March2023(https://www.iea.org/reports/co2-emissions-in-2022)5IEA,GlobalEnergyReview:CO2Emissionsin2022,March2023(https://www.iea.org/reports/co2-emissions-in-2022)FIGURE9:ELECTRICITYPRODUCTIONOFTHERENEWABLEENERGYCAPACITYINSTALLEDIN2022WindoffshoreWindonshorePVHydroTask1StrategicPVAnalysisandOutreach–2023SnapshotofGlobalPVMarkets198.3PVFosteringDevelopmentofaCleanerEnergySystemPVprovidesdirectandimmediatecarbonemissioneconomiesasitreplacesordisplacesfossilfuelgeneration.AnticipatinglargeamountsofcostcompetitivegreenelectricityfromPVsoon,anincreasingnumberofresearch,pre-industrialandcommercialinvestmentsarebeingmadetoleveragethefutureelectricityproductionforhydrogenorothermoleculessuchasammonia,methanol,tolueneorsimilar,seenbymanyastechnologieswithapotentialtotackleclimatechange.TheelectrificationoftransportisacceleratinginmanycountriesandwhilstthelinkbetweenPVdevelopmentandEVsisnotyetfullyunderstood,thegrowthofself-consumptionpoliciesandgridcongestionlimitinginjectionsarefactorstobeconsidered.ChargingEVsduringpeakloadimpliesrethinkingpowergeneration,gridmanagementandsmartmetering,andconceptssuchasvirtualself-consumptioncouldrapidlyprovideaframeworkforEV’sasmobilestorageforexcessPVgeneration.With10,5millionEVssoldin2022(+60%on2021),thegrowthcurveofEVsalescrossedthatofPVthisyear,demonstratinganaccelerateddevelopmentbeyondthatofPV.Source:IEAPVPS&EVVolumes024681012050100150200250300350400450500200820092010201120122013201420152016201720182019202020212022EVsales(millions)PVinstallation(GW)FIGURE10:EVOLUTIONOFEVANDPVANNUALGROWTHPVinstallation(GW)EVsales(millions)Task1StrategicPVAnalysisandOutreach–2023SnapshotofGlobalPVMarkets20

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱