WORLDENERGYTRANSITIONSOUTLOOK20231.5°CPATHWAYPREVIEWABOUTIRENATheInternationalRenewableEnergyAgency(IRENA)servesastheprincipalplatformforinternationalco-operation,acentreofexcellence,arepositoryofpolicy,technology,resourceandfinancialknowledge,andadriverofactiononthegroundtoadvancethetransformationoftheglobalenergysystem.Aglobalintergovernmentalorganisationestablishedin2011,IRENApromotesthewidespreadadoptionandsustainableuseofallformsofrenewableenergy,includingbioenergy,geothermal,hydropower,ocean,solarandwindenergy,inthepursuitofsustainabledevelopment,energyaccess,energysecurity,andlow-carboneconomicgrowthandprosperity.www.irena.org©IRENA2023Unlessotherwisestated,materialinthispublicationmaybefreelyused,shared,copied,reproduced,printedand/orstored,providedthatappropriateacknowledgementisgivenofIRENAasthesourceandcopyrightholder.Materialinthispublicationthatisattributedtothirdpartiesmaybesubjecttoseparatetermsofuseandrestrictions,andappropriatepermissionsfromthesethirdpartiesmayneedtobesecuredbeforeanyuseofsuchmaterial.ISBN:978-92-9260-527-8CITATIONThispublicationisapreviewoftheforthcomingreport,IRENA(2023),WorldEnergyTransitionsOutlook2023:1.5°CPathway,InternationalRenewableEnergyAgency,AbuDhabi.Availablefordownload:www.irena.org/publicationsForfurtherinformationortoprovidefeedback:publications@irena.orgThedatapresentedhereinisaccurateatthetimeofpublication.Modellingresultsmaychangeaheadofthelaunchofthefullreport.DISCLAIMERThispublicationandthematerialhereinareprovided“asis”.AllreasonableprecautionshavebeentakenbyIRENAtoverifythereliabilityofthematerialinthispublication.However,neitherIRENAnoranyofitsofficials,agents,dataorotherthird-partycontentproviders,providesawarrantyofanykind,eitherexpressedorimplied,andtheyacceptnoresponsibilityorliabilityforanyconsequenceofuseofthepublicationormaterialherein.TheinformationcontainedhereindoesnotnecessarilyrepresenttheviewsofallMembersofIRENA.ThementionofspecificcompaniesorcertainprojectsorproductsdoesnotimplythattheyareendorsedorrecommendedbyIRENAinpreferencetoothersofasimilarnaturethatarenotmentioned.Thedesignationsemployed,andthepresentationofmaterialherein,donotimplytheexpressionofanyopiniononthepartofIRENAconcerningthelegalstatusofanyregion,country,territory,cityorareaorofitsauthorities,orconcerningthedelimitationoffrontiersorboundaries.PREVIEWWORLDENERGYTRANSITIONSOUTLOOK2023FrancescoLaCameraDirector-General,IRENAMESSAGEFROMTHEDIRECTOR-GENERALTherecentSynthesisReportoftheIPCCSixthAssessmenthasdeliveredasoberingmessage-onethatleaveslittleambiguityastotheneedforimmediateaction.Thisdecade,oursuccessinreducinggreenhousegasemissionswilldeterminewhetherglobaltemperaturerisecanbelimitedto1.5°Coreven2°C.Withinthistimeframe,theonlyrealisticoptionavailableisaconsiderablescale-upofrenewableenergyandefficiencysolutions.TheInternationalRenewableEnergyAgency’s1.5°Cpathwaypositionselectrificationandefficiencyaskeytransitiondrivers,enabledbyrenewableenergy,cleanhydrogenandsustainablebiomass.ThispreviewoftheWorldEnergyTransitionsOutlookprovidesanoverviewoftheprogressachievedindevelopingandimplementingthesetechnologicalavenues.Itshowsthatthescaleandextentofthechangeachievedinallsectorstodatefallfarshortofwhatisrequiredtostayonthe1.5°Cpathway.Mostoftheprogresssofarhasbeenmadeinthepowersector,whereadvancesintechnology,policyandinnovationhavetakenusalongway.Currentenergystructuresweredesignedtosupportfossilfuelsandmustbere-designedtosupportrenewableenergysystems.Theemphasismustshiftfromsupplytodemand,towardovercomingthestructuralobstaclesthatimpedeprogress.Thispreviewoutlinesthreeprioritypillars-physicalinfrastructure;policyandregulatoryenablers;andawell-skilledworkforce-thatmustbeaddressedsimultaneously,requiringsignificantinvestmentandanewparadigmforinternationalco-operationinwhichallactorscanengageinthetransitionandplayanoptimalrole.Thereisnotimeforanewenergysystemtoevolvegraduallyovermorethanacentury-aswasthecaseforthefossilfuel-basedsystem.Wesimplycannotcontinuewithincrementalchangesifwearetoachievethenecessaryreductionsincarbonemissionstomeetclimategoals.TheGlobalStocktakeconcludingatCOP28intheUnitedArabEmiratespresentstheopportunitytoassessrequirementsanddeterminethebestpathtorapid,lastingchange.Tothisend,theforthcomingWorldEnergyTransitionsOutlookwillprovideacomprehensiveassessmentoftheenergytransitionandproposeeffectivewaystoaccelerateprogressfollowingthisimportantclimateactionmilestone.4Theenergytransitionisoff-track.TheaftermathoftheCOVID-19pandemicandtherippleeffectsoftheUkrainecrisishavefurthercompoundedthechallengesfacingthetransition.Thestakescouldnotbehigher-everyfractionofadegreeinglobaltemperaturechangecantriggersignificantandfar-reachingconsequencesonnaturalsystems,humansocietiesandeconomies.Achievingthenecessarycourse-correctionintheenergytransitionwillrequirebold,transformativemeasuresthatreflecttheurgencyofthepresentsituation.CurrentpledgesandplansfallwellshortofIRENA’s1.5°Cpathwayandwillresultinanemissionsgapof16gigatonnes(Gt)in2050.NationallyDeterminedContributions(NDCs),long-termlowgreenhousegasemissiondevelopmentstrategies(LT-LEDs)andnet-zerotargets,iffullyimplemented,couldreducecarbondioxide(CO2)emissionsby6%by2030and56%by2050,comparedto2022levels.However,mostclimatepledgesareyettobetranslatedintodetailednationalstrategiesandplans,implementedthroughpoliciesandregulations,orsupportedwithsufficientfunding.AccordingtoIRENA'sPlannedEnergyScenario,1theemissionsgapisprojectedtoreach35Gtby2050,underscoringtheurgentneedforcomprehensiveactiontoacceleratethetransition.2AlthoughglobalinvestmentacrossallenergytransitiontechnologiesreachedarecordhighofUSD1.3trillionin2022,annualinvestmentmustmorethanquadrupletoremainonthe1.5°Cpathway.AcumulativeUSD150trillionisrequiredtorealisethe1.5°Ctargetby2050(Figure1),averagingoverUSD5trillioninannualterms.ComparedwiththePlannedEnergyScenario-underwhichacumulativeinvestmentofUSD103trillionisrequired-anadditionalUSD47trillionincumulativeinvestmentisrequiredby2050toremainonthe1.5°Cpathway.AroundUSD1trillionofannualinvestmentsinfossilfuelbasedtechnologiescurrentlyenvisagedinthePlannedEnergyScenariomustthereforeberedirectedtowardsenergytransitiontechnologiesandinfrastructure.Cumulativeinvestmentsbetweennowand2030needtototalUSD44trillion,withenergytransitiontechnologiesrepresenting80%oftheinvestment,orUSD35trillion.TotalcumulativeenergysectorinvestmentsinthePlannedEnergyScenariountil2030areUSD29trillion.AnadditionalcumulativeinvestmentofUSD15trillion-oranannualaverageinvestmentofUSD1.9billion-wouldbeneededinthe1.5°CScenariountil2030.Furthermore,achangeinthevolumeandtypeofinvestmentsisrequiredunderthe1.5°CScenariotoprioritisetheenergytransitionandsetthestageforadramaticdecreaseinthefossilfuelshareby2050(Figure1).1ForabriefoverviewofthetwoscenariosemployedintheWorldEnergyTransitionsOutlook,seeinsiderearcover,page23.2ThepresentIRENAscenariosincludeCO2emissionsfromfossilfuelcombustion,wasteincinerationandindustrialprocesses.COPannouncementsreflectedinNationallyDeterminedContributions[NDCs]asof5November2022,long-termlowgreenhousegasemissiondevelopmentstrategies[LT-LEDs]andnet-zerotargetsasof5October2022alsoincludeland-useemissions.KEYMESSAGESWORLDENERGYTRANSITIONSOUTLOOK20235Annualinvestmentsacrossallenergytransitiontechnologiesmustmorethanquadrupletoremainonthe1.5°Cpathway.PREVIEWFIGURE1Totalinvestmentbytechnologicalavenuefrom2023to2050forachievingthe1.5°CScenarioPlannedEnergyScenario1.5°CScenario2023-20502023-2050PowergridsandenergyflexibilityCarbonremoval,captureandstoragemeasures–CCSandBECCS(incl.transportandstorage)ElectrificationinendusesEnergyconservationandeciencyFossilfuelsandnuclear-powerFossilfuel-supplyRenewables-directusesanddistrictheat1501209060300Hydrogenanditsderivatives(incl.infrastructure)Renewables-powergenerationUSD+47trillionor+1.7trillionperyearCumulativeenergysectorinvestments,2023-2050(USDtrillion)USD103trillionUSD150trillionNotes:CCS=carboncaptureandstorage;BECCS=bioenergy,carboncaptureandstorage.6Existingrenewablepowertargetswouldincreasetotalrenewablepowercapacityto5.4terawatts(TW)by2030,representinglessthanhalfofthe11.2TWneededfora1.5°Cpathway.Thereissignificantscopeforaligningandstrengtheningtargetsintheshorttermtoprovidepolicyclarityandcertainty.Inmanycases,targetsinnationalenergyplansareyettobealignedwiththoseinNDCs.Inaddition,targetsshouldbemeasurableandcoverendusesbeyondpower.Ofthe183PartieswithrenewableenergycomponentsintheirNDCs,only143hadaquantifiedtarget-108forpowerand31forheatingandcooling,transportorcooking(IRENA,2022).Someprogressisbeingmade,notablyinthepowersector,withrenewablesrepresenting83%ofcapacityadditionsandreaching40%ofinstalledpowergenerationgloballyin2022.Atotalof295gigawatts(GW)ofrenewableswasaddedworldwidein2022,thelargest-everannualincreaseinrenewableenergycapacity(IRENA,2023a).Thestrongbusinesscaseforrenewables,coupledwithsupportiveenablingpolicies,hassustainedanupwardtrendintheirshareoftheglobalenergymix.However,overalldeploymentremainscentredonalimitednumberofcountiesandregions,withChina,theEuropeanUnionandtheUnitedStatesaccountingfor75%ofcapacityadditions.Althoughlarge-scaledeploymentsofrenewableenergyaretypicallyassociatedwithcountriesthathavewell-developedpowersystems,itisessentialtoexpanddeploymentelsewhere,especiallyindevelopingnationsthatlackaccesstoelectricity.FIGURE2Annualpowercapacityexpansion,2002-2022Newcapacitynon-renewables(GW)Newcapacityrenewables(GW)Annualcapacityinstallations(GW20142002201620102018200620042012200820202022807060504030201002402101801501209060300ShareofnewelectricitygeneratingcapacityNewcapacityrenewableshare(%)RenewablesshareinnewcapacityAnnualcapacityinstallations(GW/yr)2014200220162010201820062004201220082020202250%15%59%37%57%23%28%52%38%82%83%300225150750Newcapacitynon-renewables(GW)Newcapacityrenewables(GW)WORLDENERGYTRANSITIONSOUTLOOK20237Moreinvestmentsneedtoflowintodevelopingandemergingmarketstomaketheenergytransitionmoreinclusive.Renewableenergyinvestmentremainsconcentratedinalimitednumberofcountriesandfocusedononlyafewtechnologies.InvestmentinrenewablesreachedUSD0.5trillionin2022;however,thisislessthanone-thirdoftheaverageinvestmentneededeachyearinrenewablesunderthe1.5°CScenario.Furthermore,in2022,85%ofglobalrenewableenergyinvestmentbenefittedlessthan50%oftheworld’spopulationandAfricaaccountedforonly1%ofadditionalcapacityin2022(IRENAandCPI,2023;IRENA,2023a).Investmentsinoff-gridrenewableenergysolutionsin2021amountedtoUSD0.5billion(IRENAandCPI,2023),farbelowtheUSD15billionneededannuallyto2030.Whilemanytechnologychoicesexist,mostinvestmentswereinsolarPVandwindpower,with95%channelledtowardthesetechnologies(IRENAetal.,2023).Greatervolumesoffundingneedtoflowtootherenergytransitiontechnologiessuchasbiofuels,hydropowerandgeothermalenergy,aswellastosectorsbeyondpowerthathavelowersharesofrenewablesintotalfinalenergyconsumption(e.g.heatingandtransport).Everyyear,thegapbetweenwhatisrequiredandwhatisimplementedcontinuestogrow.IRENA’senergytransitionindicators(seeTable1)showsignificantaccelerationisneededacrossenergysectorsandtechnologies,fromdeeperend-useelectrificationoftransportandheat,todirectrenewableuse,energyefficiencyandinfrastructureadditions.DelaysonlyaddtothealreadyconsiderablechallengeofmeetingIPCC-definedemissionreductionlevelsin2030and2050fora1.5°Ctrajectory(IPCC,2022).Thelackofprogresswillalsoincreasefutureinvestmentneedsandthecostsofworseningclimatechangeeffects.PREVIEW8WORLDENERGYTRANSITIONSOUTLOOK2023IndicatorsRecentyears2050Progress(O/ontrack)2030IndicatorsRecentyears2050Progress(O/ontrack)2030ShareofrenewablesinelectricitygenerationRenewablepowercapacityadditionsAnnualsolarPVadditionsAnnualwindenergyadditionsInvestmentneedsforREgenerationELECTRIFICATIONWITHRENEWABLEScontinuedShareofrenewablesinfinalenergyconsumptionSolarthermalcollectorareaModernuseofbioenergy(directuse)Geothermalconsumption(directuse)RenewablesbaseddistrictheatgenerationInvestmentneedsforrenewablesendusesanddistrictheatDIRECTRENEWABLESINEND-USESANDDISTRICTHEATInvestmentneedsforpowergridsandflexibilityEnergyintensityimprovementRENEWABLESY28%91%67%34%295GW/yr975GW/yr1066GW/yr191GW/yr551GW/yr615GW/yr75GW/yr329GW/yr335GW/yr1382USDbillion/yr1300USDbillion/yr486USDbillion/yr216USDbillion/yr269USDbillion/yr13USDbillion/yr790USDbillion/yr548USDbillion/yr274USDbillion/yr19%83%746millionm2/yr3700millionm2/yr1.5EJ56EJ44EJ2.2EJ12EJ1700millionm2/yr0.6%/yr3.5%/yr0.4EJ0.9EJ4.3EJ1.3EJ2)3)1)1)1)1)4)5)6)8)9)10)11)12)14)13)28)27)27)27)7)TABLE1Trackingprogressofkeyenergysystemcomponentstoachievethe1.5°Cscenario9PREVIEWIndicatorsRecentyears2050Progress(O/ontrack)2030continuedNotes:seenextpageRenewablesbaseddistrictheatgenerationInvestmentneedsforrenewablesendusesanddistrictheatShareofdirectelectricityinfinalenergyconsumptionPassengerelectriccarsontheroadInvestmentsneedsforcharginginfrastructureofEV'sandEVadoptionsupportInvestmentneedsforheatpumpsCleanhydrogenproductionElectrolysercapacityInvestmentneedsforcleanhydrogenandderivativesinfrastructureCleanhydrogenconsumption-industryCCS/CCUtoabateemissionsinindustryBECCSandotherstoabateemissionsinindustryInvestmentneedsforcarbonremovalandinfrastructureEnergyintensityimprovementrateENERGYEFFICIENCYELECTRIFICATIONHYDROGENCCSANDBECCS29%Investmentneedsforenergyconservationandeciency1493USDbillion/yr1772USDbillion/yr295USDbillion/yr0.01GtCO2captured/yr0.002GtCO2captured/yr1.0GtCO2captured/yr0.7GtCO2captured/yr216USDbillion/yr269USDbillion/yr13USDbillion/yr12EJ0.6%/yr2.9%/yr3.5%/yr30USDbillion/yr170USDbillion/yr1.1USDbillion/yr80USDbillion/yr107USDbillion/yr6.4USDbillion/yr18USDbillion/yr0.9EJ4.3EJ51%40EJ22%10.5million355million2180million364USDbillion/yr141USDbillion/yr518Mt/yr21.4Mt/yr0.7Mt/yr5722GW0.5GW2.4EJ1)1)12)14)15)29)30)31)16)17)18)22)0.04EJ23)24)25)20)13)28)258USDbillion/yr19)21)26)64USDbillion/yr233GW3.0GtCO2captured/yr1.0GtCO2captured/yr266USDbillion/yr(contd.)TABLE1Trackingprogressofkeyenergysystemcomponentstoachievethe1.5°Cscenario10Policymakersneedtostriketherightbalancebetweenreactivemeasuresandproactiveenergytransitionstrategiesthatpromoteamoreresilient,inclusiveandclimate-safesystem.Severaloftherootcausesofthecurrentcrisesstemfromthefossilfuelbasedenergysystem,suchasoverdependenceonalimitednumberoffuelexporters,inefficientandwastefulenergyproductionandconsumption,andthelackofaccountingforenvironmentalcosts.Anenergytransitionbasedonrenewablescanreduceoreliminatemanyofthese.Itisthereforethespeedofthechangethatwilldeterminethelevelsofenergysecurityandeconomicandsocialresilienceatthenationallevelandoffernewopportunitiesforimprovedhumanwelfareglobally.Morecanbedoneintheshortterm.Whiletheenergytransitionundoubtedlyrequirestime,thereissignificantpotentialtoimplementmanyoftheavailabletechnologyoptionstoday.Upwardtrendsinthedeploymentofthesesolutionsdemonstratethatthetechnicalandeconomiccaseissound.However,comprehensivepoliciesareneededacrossallsectorstorampupdeployment,aswellastoinstigatethesystemicandstructuraloverhaulrequiredtorealiseclimateanddevelopmentobjectives.WORLDENERGYTRANSITIONSOUTLOOK2023Table1notes:[1]Averageannualinvestmentsrequirementtoreachthe1.5°Ctargetduringtheperiod2023-2030and2023-2050areshownintheinvestmentsrowsunder2030and2050respectively.AllinvestmentfiguresforrecentyearsareincurrentUSD;theparticularsofrecentyearsusedfortheindicatorsare:[2]2020;[3]2022;[4]2022;[5]2022;[6]2022;[7]2022;[8]2020;[9]2021;[10]2020;[11]2020;[12]2020;[13]2022;[14]2019;[15]2021;[16]2020;[17]2022;[18]2022;[19]2022;[20]2021;[21]2022;[22]2022;[23]2021;[24]2022;[25]2022;[26]2022;[27]netcapacityadditionsfor2030and2050areexcludingreplacementstockforend-of-lifeunits;[28]futureinvestmentsneededinrenewablesinenduses,districtheating,biofuelsandbio-basedinnovativefuels;[29]futureinvestmentsinenergyconservationandefficiencyincludethoseinbio-basedplasticsandorganicmaterials,chemicalandmechanicalrecyclingandenergyrecovery;[30]futureinvestmentsneededinelectrolysers,infrastructure,H2stations,bunkeringfacilitiesandlong-termstorage;[31]futuredemandincludesenergyandnon-energyuses.CCS=carboncaptureandstorage;CCU=carboncaptureanduse;BECCS=bioenergy,carboncaptureandstorage;EV=electricvehicle;RE=renewableenergy;yr=year;m2=squaremeter;EJ=exajoule.11TheGlobalStocktakeatthe2023UnitedNationsClimateChangeConference(COP28)mustserveasacatalystforscalingupactionoverthefollowingfiveyearstoimplementexistingenergytransitionoptions.Whilstplanningmustprovideroomforinnovationandadditionalpolicyaction,asignificantscaleupofexistingsolutionsisparamount.Forexample,advancingefficiencyandelectrificationbasedonrenewablesisacost-effectiveavenueforthepowersector,aswellasfortransportandbuildings.Cleanhydrogenanditsderivatives,andsustainablebiomasssolutions,alsooffervarioussolutionsforenduses.Energyefficiency,electrification,gridexpansionandflexibilitymeasuresmustbeprioritisedinthecomingyears.Energyefficiencyinend-usesectorsrequiresanaverageannualinvestmentofUSD1.8trillionunderthe1.5°CScenario.Electrificationofend-usesectors,hydrogen,directuseofrenewablesanddistrictheatwillrequireanadditionalUSD0.75trillionannually.Acceleratedend-usesectorelectrificationwillneedtobecombinedwithacontinuousdrivetogrowrenewablepowercapacity,withanallocationofsomeUSD1.3trillionannually.Thisgrowthrequirescommensurateelectricitynetworkexpansionandmodernisation,atacostofUSD0.5trillionannually.Bycomparison,cumulativeannualinvestmentinfossilfuelsupplyandpowercapacityinthesameperiodwouldamounttoUSD1trillion,halvingcurrenttrends.TheperiodfollowingCOP28willbepivotalforeffortstocurbclimatechangeandachievethesustainabledevelopmentgoalsoutlinedinthe2030Agenda.Theenergytransitioniscrucialfordeliveringoneconomic,socialandenvironmentalpriorities.Itisimperativeforgovernments,financialinstitutions,andtheprivatesectortourgentlyre-evaluatetheiraspirations,strategiesandimplementationplanstorealigntheenergytransitionwithitsintendedtrajectory(seeTable2).COP28needstocatalyseastepchangeinactionstoacceleratetheenergytransition.PREVIEW12TABLE2Short-termmeasurestodealwiththeenergycrisisandacceleratetheenergytransitionAmbition•Increaseambitionofnationalrenewableenergytargetsinlinewithclimategoals,increasedenergysecurityandimprovedaffordability.•Setambitiousrenewableenergytargetsandenergyefficiencytargetsinallenduses(electricity,heatingandcooling,transport).•Developeffectiveimplementationplansforalltargets.Institutions•Makeinstitutionsfitforthetransition:(e.g.newministerialstructures,cross-ministrytaskforces,updatedstatuteforregulators).•Reformtheexistinglendingpracticesofdevelopmentfinanceinstitutionsbyprovidingmoregrantsandconcessionalloans,particularlyforcountriesthatfaceunder-investmentandmaybeindebtdistress.Physicalinfrastructure•Untertakeintegratedcross-sectorinfrastructureplanningfortheenergytransitionwithambitioustargetsforexpansion(e.g.powergrids,electricvehicle[EV]charginginfrastructure,heatnetworks,alllinkeduptooptimisevariablerenewableelectricity).•Provideincentivesforinfrastructureinvestmentswheremarketbarriersexist(e.g.heatnetworks,EVchargers).•Streamlinepermittingproceduresforlarge-scaleinfrastructurewithoutcompromisingenvironmentalandsocialimpactassessmentsandensurepublicacceptanceisfostered.•Setobligationsormandatorytargetsfornewbuildings(e.g.numbersofEVchargersperoccupant,connectiontoheatnetworks).•Providemorepublicfinanceforthedevelopmentoftheinfrastructurerequired(e.g.throughdirectownershipofassetssuchastransmissionlines).Jobsandskills•Integraterenewableenergyintoeducationalcurricula;expandtechnicalandvocationaleducationandtrainingopportunities.•Stepupeffortstoanticipatefutureoccupationalneedsineachrenewableenergysectorandworkwithindustryassociationsandtraininginstitutionstoaligntheirplanning.•Ensurebetteraccesstotrainingopportunitiesforwomen,youthandminorities.•Developpathwaysforfossilfuelindustryworkerstoretrainandrecertifyforcareersinrenewableenergy.Thiswillrequirepublicfundingfortraining.Finance•Increaseandchannelpublicfinancing–includingthroughinternationalcollaborationviaabroadspectrumofpolicies,coveringallsegmentsoftherenewableenergyvaluechain,thewiderenergysectorandtheeconomyasawhole.•Strategicallyplan,selectandimplementinstrumentstochannelpublicfinance(domesticandinternational)including(1)governmentspendingsuchasgrants,rebatesandsubsidies;(2)debtincludingexistingandnewissuances,creditinstruments,concessional/blendedfinancingandguarantees;(3)equityanddirectownershipofassets(suchastransmissionlinesorlandtobuildprojects).•Define‘risk’inamorecomprehensivewaythatgoesbeyondthenarrowinvestor-centricdefinitionofrisk(e.g.ofinvestmentinenergyassetsnotpayingoff)toincludebroaderenvironmentalandsocialrisks.•Continuetousepublicpolicyandfinancetocrowdinprivatecapital.continuedWORLDENERGYTRANSITIONSOUTLOOK202313PREVIEW(contd.)TABLE2Short-termmeasurestodealwiththeenergycrisisandacceleratetheenergytransitionPowersector•Adoptapowersystemstructurethatisconducivetohighsharesofvariablerenewableenergy,recognisingtheirtechno-economiccharacteristics.Thiscouldincludedualprocurementofenergywithlong-termprocurementthroughauctionsandashort-termflexibilitymarket.•Streamlinepermittingproceduresforrenewablepowerprojectswithoutcompromisingenvironmentalandsocialimpactassessment.Ensurepublicacceptanceisfostered.•Bettersynchronisepowergridexpansionandotherinfrastructuredevelopmentswithrenewablepowerdeploymenttoavoidbottlenecks.•Designrenewableenergyprocurementprocesses(e.g.auctions)toserveobjectivesbeyondlowestprice(e.g.developmentoflocalindustry)andconsiderdesignelementstodistributetherisksofsupplychaindisruptionsamongstakeholders(e.g.indexationofcomponents).•Designpoliciesforself-consumptioninaprogressivewaythatsupportsequitableaccesstosupportforthedeploymentofsolutionsandthedistributionofsocio-economicbenefits.End-usesectors–buildings,industry,transport•Developenergyefficiencyprogrammesandmeasuressuchasstandardsintransport,industry,andbuildings.Increasefinanceforenergyefficiencythrougheffortstoaggregateprojectsandde-riskinvestment.•Promotereadinessfornewfuelsandelectrification(e.g.EVchargers,seealsoPhysicalInfrastructure).•Behaviourchanges:incentiviseslowerdrivingusingspeedlimits,mandateroomtemperaturelimits(e.g.officesandpublicbuildings),reduceindividualcarusagebypromotingpublictransportandcar-sharing;preferhigh-speedandnighttrainstoaircraftwherepossible.Cross-sectorandcross-cuttingpolicies•Introducefiscalpolicymeasures:obligationsforreinvestingwindfallprofitsoffossilfuelenergyrevenuesinenergytransitiontechnologies,reducedsubsidiesforfossilfuelsandraised/newlyintroducedCO2priceswhenfossilfuelpricesfall.Ensurethesocio-economicbenefitsofsuchinstrumentsaredistributedfairly.Reformtaxesandleviesonheatingfuels,VATexemptionsforrenewables,etc.•Developnationalbioenergyand/orhydrogenstrategies(includingsectoralprioritisation)toensurebioenergyandhydrogencanplaythemostappropriateroleindecarbonisation.•Incentivise/mandateacirculareconomyapproach(reduce,re-use,recycle),forexampleforenergy-intensiveproductslikesteel,renewableenergytechnologies,batteries,cars,etc.Thiswillbothreduceenergydemandandthedemandforcriticalmaterials.•Enhanceinternationalcollaborationacrossarangeofrelevantareasincludingsustainabilitygovernance,energyandclimatefinance,technologyandinnovation,regionalpowergrids,greenhydrogendevelopment.•Putgreaterfocus(includingthroughinternationalcollaboration)onachievingtheuniversalaccesstargetsofSDG7.14Aprofoundandsystemictransformationoftheglobalenergysystemmustoccurwithin30years.Thiscondensedtimeframenecessitatesastrategicshiftthatexpandsbeyondthefocusondecarbonisationofsupplytowarddesigninganenergysystemthatnotonlyreducescarbonemissionsbutalsosupportsaresilientandinclusiveglobaleconomy.Asaresult,planningneedstoextendbeyondbordersandthenarrowconfinesoffuelstofocusontherequirementsofthenewenergysystemandtheeconomiesitwillsustain.Focusingonthedemandforcleanenergyandtheenablersofarenewables-dominatedsystemcanhelpaddressthestructuralbarriersthathinderprogressintheenergytransition.Pursuingfuelandsectoralmitigationmeasuresisnecessarybutinsufficienttotransitiontoanenergysystemfitforthedominanceofrenewables.Fromenergyproductionandtransportationtoprocessingcoal,oilandgas,theglobalinfrastructurededicatedtoenergywillneedtochange.Thiswillhaveimpactsonpowergeneration,industrialproductionandmanufacturing,aswellasonrail,pipelines,shipyardsandothermeansofsupplyingfossilfuels.Switchingthefocusfromfuelstosystemsdesignwillhelpacceleratethedevelopmentofanewenergyinfrastructureandsustainitsimplementation.Theenergytransitioncansupportamovetowardamoreresilientandequitableworld.WORLDENERGYTRANSITIONSOUTLOOK2023DEVELOPINGSTRUCTURESFORARENEWABLES-BASEDENERGYSYSTEM15Governmentscanproactivelyshapearenewables-basedenergysystem,overcometheflawsandinefficienciesofcurrentstructures,andmoreeffectivelyinfluenceoutcomes.Thesimultaneous,proactiveshapingofphysical,policyandinstitutionalstructureswillbeessentialtorealisingdevelopmentandclimateobjectivestowardamoreresilientandequitableworld.Theseunderpinningsshouldformthepillarsofthestructurethatsupportstheenergytransitionasfollows:PHYSICALINFRASTRUCTURE:forward-lookingplanning,modernisationandexpansionofsupportinginfrastructureonlandandseatofacilitatethedevelopment,storage,distributionandtransmission,andconsumptionofrenewables.Itshouldfacilitatenational,regionalandglobalstrategiesfornewsupply-demanddynamicsandpromoteequityandinclusion.POLICYANDREGULATORYENABLERS:designofpolicyandregulatoryframeworksthatfacilitatedeployment,integrationandtradeofrenewables-basedenergy,shapesocio-economicoutcomesandpromoteequality.Theseneedtoenabledifferentlevelsoftheenergytransition,fromlocaltoglobal,andaccountfornewsupply-demanddynamics.WELL-SKILLEDWORKFORCE:capacityamonginstitutions,communitiesandindividualstoacquiretherequisiteskills,knowledgeandexpertisetodriveandsustaintheenergytransition.Anintegralaspectofthiswillbeensuringthatcommunitiesarewellinformedof,andabletoexercise,theirrightsascriticaltransitionstakeholders,andtoharnessitsbenefits.Physicalinfrastructureupgrades,modernisationandexpansionwillincreaseresilienceandbuildflexibilityforadiversifiedandinterconnectedenergysystem.Transmissionanddistributionwillneedtoaccommodateboththehighlylocalised,decentralisednatureofmanyrenewablefuels,aswellasdifferenttraderoutes.Planningforinterconnectorstoenableelectricitytrade,andshippingroutesforhydrogenandderivatives,mustconsidervastlydifferentglobaldynamicsandproactivelylinkcountriestopromotethediversificationandresilienceofenergysystems.Storagesolutionswillneedtobewidespreadanddesignedwithgeo-economicimpactsinmind.Publicacceptanceisalsocriticalforanylarge-scaleundertakingandcanbesecuredthroughprojecttransparencyandopportunitiesforcommunitiestovoicetheirperspectives.Policyandregulatoryenablersmustsystematicallyprioritisetheaccelerationoftheenergytransitionandareductionintheroleoffossilfuels.Today,theunderlyingpolicyandregulatorysystemsremainshapedaroundfossilfuels.Whileitisinevitablethatfossilfuelswillremainintheenergymixforsometime,theirsharemustdramaticallydecreaseasweapproachmid-century.Policyframeworksandmarketsshouldthereforefocusonacceleratingthetransitionandprovidetheessentialunderpinningsforaresilientandinclusivesystem.Awell-skilledworkforceisalynchpinofasuccessfulenergytransition.WorkbyIRENAandtheInternationalLabourOrganization(ILO)hasshownthattherenewableenergysectoremployedsome12.7millionpeopleworldwideasof2022,growingfromabout7.3millionin2012.Energytransitionmodellingindicatesthattensofmillionsofadditionaljobswilllikelybecreatedinthecomingdecadesasinvestmentsgrowandinstalledcapacitiesexpand.Abroadrangeofoccupationalprofileswillbeneeded.Fillingthesejobswillrequireconcertedactionineducationandskillsbuilding,andgovernmentshaveacriticalroleinco-ordinatingeffortstoaligntheofferingsoftheeducationalsectorwithprojectedindustryneeds-whetherintheformofvocationaltrainingoruniversitycourses.Toattracttalenttothesector,itiscrucialthatjobsaredecent,andthatwomen,youthandminoritieshaveequalaccesstojobtraining,hiringnetworksandcareeropportunities.PREVIEW16Net-zerocommitmentsmustbeembeddedinlegislationandtranslatedintoimplementationplansthatareadequatelyresourced.Withoutthiscrucialstep,climateannouncementsremainaspirational,andthenecessaryprogressoutofreach.Thecurrentenergysystemisdeeplywovenintosocio-economicstructuresthathaveevolvedovercenturies.ThismeanssignificantstructuralchangemustoccurinacondensedtimeframeoflessthanthreedecadestosuccessfullydeliveronthegoalsoftheParisAgreement.Energyinfrastructureislong-lived,soinvestmentinfixedinfrastructureshouldconsiderthelongterm.Everyinvestmentandplanningdecisionaroundenergyinfrastructuretodayshouldconsiderthestructureandgeographyofthelow-carboneconomyofthefuture.Electrificationofenduseswillreshapedemand.Renewablepowerwillrequireexistinginfrastructuretobemodernised,withgridreinforcementandexpansiononbothlandandsea.Greenhydrogenproductionwillalsooccurinlocationsotherthantoday’soilandgasfields.Thetechnicalchallengesandeconomiccostsofredesigninginfrastructureshouldbeaccountedfor,andtheenvironmentalandsocialaspectsadequatelyaddressedfromtheoutset.Energyinvestmentdecisionsshouldsimultaneouslydrivethetransitionandreducetheriskofstrandedassets.ThePlannedEnergyScenarioforeseescumulativeenergysector-wideinvestmentsofUSD103trillionbetween2023and2050,orUSD3.7trillionannually,onaverage,to2050.Around59%ofthisinvestmentisintendedforenergytransitiontechnologies-mostlyforrenewables,energyefficiency,electrification,hydrogen,andcarbonremovals.However,some41%ofplannedenergyinvestmentremainsaimedatfossilfuels;therefore,acombinationofscale-upandre-allocationofinvestmentinenergytransitiontechnologiesisneededtokeepthe1.5°Ctargetwithinreach.The1.5°CScenarioenvisageselectricitybecomingthemainenergycarrier,accountingforover50%oftotalfinalenergyconsumption(seeFigure3).Renewableenergydeployment,improvementsinenergyefficiencyandtheelectrificationofend-usesectorscontributetothisshift.Inaddition,modernbiomassandhydrogenareprojectedtoplaymoresignificantroles,with16%and14%oftotalfinalenergyconsumptionby2050,respectively.Notably,94%ofhydrogenconsumptionisexpectedtocomefromrenewables,indicatingagrowingrelianceoncleanenergysources.Thepathwayalsosuggeststhattotalfinalenergyconsumptioncoulddecreaseby15%from2020to2050,potentiallyindicatingatrendtowardsdecarbonisationandamoresustainableenergyfuture.WORLDENERGYTRANSITIONSOUTLOOK2023THEWAYFORWARDPRIORITISINGBOLDANDTRANSFORMATIVEACTIONS17PREVIEWFIGURE3Breakdownoftotalfinalenergyconsumptionbyenergycarrierbetween2020and2050underthe1.5°CScenarioTFEC(%)20202050:Whereweneedtobe(1.5°CScenario)417EJTotalfinalenergyconsumption353EJTotalfinalenergyconsumption20%Electricity(direct)51%Electricity(direct)1%4%9%Traditionalusesofbiomass66%Fossilfuels16%Modernbiomassuses14%Hydrogen(directuseande-fuels)7%OthersFossilfuels12%ModernbiomassusesOthersRenewableshareinhydrogen94%91%Renewableshareinelectricity28%RenewableshareinelectricityNotes:Thefiguresaboveincludeonlyenergyconsumption,excludingnon-energyuses.Forelectricityuse,28%in2020and91%in2050aresourcedfromrenewablesources;fordistrictheating,thesharesare7%and95%,respectively;forhydrogen(directuseande-fuels),therenewableenergyshare(i.e.greenhydrogen)wouldreach94%by2050.ThecategoryHydrogen(directuseande-fuels)accountsfortotalhydrogenconsumption(greenandblue)andothere-fuels(e-ammoniaande-methanol).Electricity(direct)includestheconsumptionofelectricitythatisprovidedbyallsourcesofgeneration:renewable,nuclearandfossilfuelbased.TraditionalusesofbiomassrefertotheresidentialTFECofsolidbiofuelsinnon-OECDcountries.Modernbioenergyusesincludesolidbiomass,biogasandbiomethaneusedinbuildingsandindustry;andliquidbiofuelsusedmainlyintransport,butalsoinbuildings,industryandotherfinalconsumption.Remainingfossilfuelsin2050correspondtonaturalgas(mainlyusedinindustryandtransport,andtoalesserextentinbuildings),oil(mainlyinindustryandtransport,andtoalesserextentinbuildings)andcoal(correspondstousesinindustry-cement,chemicals,ironandsteel).Othersincludedistrictheatandotherrenewablesconsumption.EJ=exajoule;OECD=OrganisationforEconomicCo-operationandDevelopment;TFEC=totalfinalenergyconsumption.18Theshareofrenewableenergyintheworld'sprimaryenergysupplygrowsfrom16%in2020to77%in2050underthe1.5°CScenario,requiringanannualgrowthratethirteentimesthecurrentrate(Figure4).Thisgrowthisexpectedtostabiliseprimaryenergysupplyduetoincreasedenergyefficiencyandthegrowthofrenewables.Theenergymixwillchangedrasticallyintheprocess,withanetgainof61percentagepointsofrenewableenergyshare,drivenbyamixofend-useelectrification,renewablefuelsanddirectuse.Achievingthislevelofrenewableenergypenetrationiscriticaltomeetingglobalclimategoalsandwillrequiresignificantinvestmentandpolicysupport,aswellascontinuedinnovation.WORLDENERGYTRANSITIONSOUTLOOK2023FIGURE4Totalprimaryenergysupplybyenergycarriergroup,2020-2050underthe1.5°CScenario202020502045204020352030TPES(EJ/yr)8006004002000700RenewablesNuclearFossilfuelsWhereweneedtobe(1.5°CScenario)-63p.p.-63p.p.79%79%5%5%6%6%6%6%6%6%6%6%7%7%16%16%34%34%47%47%59%59%69%69%77%77%60%60%47%47%35%35%25%25%16%16%+61p.p.+61p.p.Note:Renewablesincludebioenergy,geothermal,hydropower,ocean,solarandwindinallforms(electricityandsyntheticfuels).Fossilfuelsincludecoal,oilandnaturalgas;p.p.=percentagepoints.19Electricitygenerationwillmorethantriplefrom2020to2050,with91%ofthetotalelectricitysupplycomingfromrenewablesources,comparedto28%in2020(seeFigure5).Coal-andoil-basedpowergenerationwillexperienceasharpdeclineoverthedecadebeforebeingphasedoutentirelybymid-century.By2050,naturalgaswillprovide5%oftotalelectricityneeds,withtheremainderbeingmetbynuclearpowerplants.Thetransitionfeaturesanimportantsynergybetweenincreasinglyaffordablerenewablepowertechnologiesandthewideradoptionofelectrictechnologiesforend-useapplications,especiallyintransportandheat.By2050,mostoftheworld'spowerwillbegeneratedfromrenewablesources.PREVIEWFIGURE5Powergenerationneedstomorethantripleby2050FossilfuelsFossilfuelsRenewablesRenewablesNuclearNuclear62%62%10%10%5%5%4%4%28%28%91%91%27.0PWh89.8PWh20202050:Whereweneedtobe(1.5-S)Grosselectricitygeneration(PWh)Grosselectricitygeneration(PWh)Notes:PWh=petawatthours.20Publicinvestmentstrategiesplayacriticalroleinacceleratingthespeedoftheenergytransition.Suchinvestmentsneedtonotonlyincreaseinvolume,butalsobeallocatedstrategicallytoguideprivateinvestmentdecisionsandserveasaneffectiveinstrumenttoshapetheenergytransitioninwaysthatmaximisebenefitsinthepublicinterest.Inaddition,publicprocurementprogrammesarebestplacedtosetstandardssothatenergyprojectsadheretolabourstandardsandenvironmentalsafeguards.Strongerpublicsectorinterventionisrequiredtochannelinvestmentstowardscountriesandtechnologiesinamoreequitableway.Some75%ofglobalinvestmentinrenewablesfrom2013to2020camefromtheprivatesector;butprivatecapitaltendstoflowtothetechnologiesandcountrieswiththeleastassociatedrisks,betheyrealorperceived.In2020,83%ofcommitmentsinsolarPVcamefromprivatefinance,whereasgeothermalandhydropowerreliedprimarilyonpublicfinance-only32%and3%ofinvestmentsinthesetechnologies,respectively,camefromprivateinvestorsin2020(IRENA&CPI,2023).Thegreaterneedforpublicfinanceinhydropowerislinkedtolargeupfrontinvestments,highconstructionrisks,theneedforlong-tenorloans(asprojectscantakeoveradecadetocomplete),complexandlengthypermittingprocedures,andhighsocialandenvironmentalrisks,allofwhichcansignificantlyhampertheabilityoftheprivatesectortofinancelargehydropowerprojects(IRENA,2023b).Forgeothermal,meanwhile,thehighcostsofsurfaceexplorationanddrillingrepresentthemainobstaclestoprivatesectorfinancing.Publicfinanceandpolicyshouldcontinuetobeusedtocrowdinprivatecapital,butgreatergeographicalandtechnologicaldiversityofinvestmentrequirestargetedandscaled-uppubliccontributions.Formanyyears,policyhasfocusedonmobilisingprivatecapital.Publicfundingisurgentlyneededtoinvestinbasicenergyinfrastructureinthedevelopingworld,aswellastodrivedeploymentinlessmaturetechnologies(especiallyinendusessuchasheatingandtransport,orsyntheticfuelproduction)andinareaswhereprivateinvestorsseldomventure.Otherwise,thegapininvestmentbetweentheGlobalNorthandtheGlobalSouthwillcontinuetowiden.In2015,renewableenergyinvestmentpercapitainNorthAmerica(excludingMexico)andEuropewasaround22timeshigherthaninSub-SaharanAfrica.Butby2021,investmentpercapitainEuropehadrisento41timesthatinSub-SaharanAfrica,andinNorthAmericaitwas57timesmore(seeFigure6).ThisispartlyexplainedbythefactthatSub-SaharanAfricainvestmentpercapitain2021hadfallentoalmosthalfits2015valueofUSD6perperson(IRENAandCPI,2023).Publicfinancinghasacriticalroletoplaytohelpachieveajustandinclusiveenergytransition.WORLDENERGYTRANSITIONSOUTLOOK202321Ajustandinclusiveenergytransitionwillhelptoovercomedeepdisparitiesthataffectthequalityoflifeofhundredsofmillionsofpeople.Energytransitionpoliciesmustbealignedwithbroadersystemicchangesthataimtosafeguardhumanwell-being,advanceequityamongcountriesandcommunities,andbringtheglobaleconomyinlinewithclimate,broaderenvironmentalandresourceconstraints.Supportingdevelopingcountriestoacceleratetheenergytransitioncouldimproveenergysecuritywhilepreventingtheglobaldecarbonisationdividefromwidening.Adiverseenergymarketwouldreducesupplychainrisks,improveenergysecurityandensurelocalvaluecreationforcommodityproducers.Accesstotechnology,training,capacitybuildingandaffordablefinancewillbevitaltounlockthefullpotentialofcountries’contributionstotheglobalenergytransition,especiallyforthoserichinrenewablesandrelatedresources.Humanwelfareandsecuritymustremainattheheartoftheenergytransition.Systemicchangesbeyondtheenergysectorwillbeneededtoovercomepervasiveproblemsrelatedtohumanwelfareandsecurity,aswellasdeeplyembeddedinequalities;arenewables-basedenergytransitioncanhelpalleviatesomeoftheconditionsthatunderlytheseissues.Themoretheenergytransitioncanhelpsolvethesebroadchallenges,themoreitspopularacceptanceandlegitimacywillrise,providedalsothatcommunityneedsandinterestsarewellrepresentedandintegratedintotransitionplanning.PREVIEWFIGURE6GrowingdisparitiesinpercapitainvestmentbetweenSub-SaharanAfrica,EuropeandNorthAmericaInvestmentinrenewableenergypercapitaSub-SaharanAfricaEuropeNorthAmerica(excludingMexico)InvestmentinrenewableenergypercapitaSub-SaharanAfricaEuropeNorthAmerica(excludingMexico)2015202122times41times23times57times2015202122times127times23times179times22Toachieveasuccessfulenergytransition,internationalco-operationneedstobeenhancedandredesigned.Thecentralityofenergytotheglobaldevelopmentandclimateagendaisundisputed,andinternationalco-operationinenergyhasincreasedexponentiallyinrecentyears.Thisco-operationplaysadecisiveroleindeterminingtheoutcomesoftheenergytransitionandisacriticalavenueforachievinggreaterresilience,inclusionandequality.Thedynamismofenergysectorsandgeopoliticaldevelopmentsnecessitatesgreaterscrutinyofinternationalco-operationmodalities,instrumentsandapproachestoensuretheirrelevance,impactandagility.Theexpandingvarietyofactorsintheenergytransitionrequiresanassessmentofrolestoleveragerespectivestrengthsandefficientlyallocatelimitedpublicresources.Theimperativesofdevelopmentandclimateaction,coupledwithchangingenergysupplyanddemanddynamics,requirecoherenceandalignmentaroundpriorityactions.Forinstance,investmentinsystemsforcross-borderandglobaltradeofenergycommoditieswillrequireinternationalco-operationatanunprecedentedscale.Itis,therefore,essentialtoreconsidertherolesandresponsibilitiesofnationalandregionalentities,internationalorganisations,andinternationalfinancialinstitutionsandmultilateraldevelopmentbankstoensuretheiroptimalcontributiontotheenergytransition.AchievingtheenergytransitionwillrequirecollectiveeffortstochannelfundstotheGlobalSouth.In2020,multilateralandbilateraldevelopmentfinanceinstitutions(DFIs)providedlessthan3%oftotalrenewableenergyinvestments.Goingforward,theyneedtodirectmorefunds,atbetterterms,towardslarge-scaleenergytransitionprojects.Moreover,financingfromDFIswasprovidedmainlythroughdebtfinancingatmarketrates(requiringrepaymentwithinterestrateschargedatmarketvalue)whilegrantsandconcessionalloansamountedtojust1%oftotalrenewableenergyfinance(IRENA&CPI,2023).Theseinstitutionsareuniquelyplacedtosupportlarge-scaleandcross-borderprojectsthatcanmakeanotabledifferenceinacceleratingtheglobalenergytransition.REWRITINGINTERNATIONALCO-OPERATIONWORLDENERGYTRANSITIONSOUTLOOK2023231.5°CScenarioREFERENCESESMAP(2022),MiniGridsforHalfaBillionPeople:MarketOutlookandHandbookforDecisionMakers,WorldBank,Washington,D.C.,https://openknowledge.worldbank.org/entities/publication/b53273b6-b19a-578e-8949-8dc5c7a3cd79ESMAP,etal.(2022),Off-GridSolarMarketTrendsReport2022:Outlook,WorldBank,Washington,D.C.,https://documents1.worldbank.org/curated/en/099355110142233755/pdf/P17515005a7f550f1090130cf1b9f2b671e.pdfIPCC(2022),"SummaryforPolicymakers",ClimateChange2022:MitigationofClimateChange.ContributionofWorkingGroupIIItotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange,CambridgeUniversityPress,Cambridge,UK,andNewYork,NY,10.1017/9781009157926.001IRENA(2022),Renewableenergytargetsin2022:Aguidetodesign,InternationalRenewableEnergyAgency,AbuDhabi,www.irena.org/Publications/2022/Nov/Renewable-energy-targets-in-2022IRENA(2023a),Renewablecapacitystatistics2023,InternationalRenewableEnergyAgency,AbuDhabi,www.irena.org/Publications/2023/Mar/Renewable-capacity-statistics-2023IRENA(2023b),Thechangingroleofhydropower:Challengesandopportunities,InternationalRenewableEnergyAgency,AbuDhabi,www.irena.org/Publications/2023/Feb/The-changing-role-of-hydropower-Challenges-and-opportunitiesIRENAandCPI(2023),Globallandscapeofrenewableenergyfinance2023,InternationalRenewableEnergyAgencyandClimatePolicyInitiative,AbuDhabi,www.irena.org/Publications/2023/Feb/Global-landscape-of-renewable-energy-finance-2023TheWorldEnergyTransitionsOutlookoutlinesavisionforthetransitionoftheenergylandscapetoreflectthegoalsoftheParisAgreement,presentingapathwayforlimitingglobaltemperatureriseto1.5°CandbringingCO2emissionstonetzerobymid-century.Thispreviewpresentshigh-levelinsightsfromtheforthcoming2023report,whichbuildsontwoofIRENA’skeyscenariostocaptureglobalprogresstowardmeetingthe1.5°Cclimategoal.ThePlannedEnergyScenarioistheprimaryreferencecaseforthisstudy,providingaperspectiveonenergysystemdevelopmentsbasedongovernments’energyplansandotherplannedtargetsandpoliciesinplaceatthetimeofanalysiswithafocusonG20countries.The1.5°CScenariodescribesanenergytransitionpathwayalignedwiththe1.5°Cclimategoal–thatis,tolimitglobalaveragetemperatureincreasebytheendofthepresentcenturyto1.5°C,relativetopre-industriallevels.Itprioritisesreadilyavailabletechnologysolutions,whichcanbescaledupatthenecessarypacetomeetthe1.5°Cgoal.1.5°CScenarioPlannedEnergyScenarioPREVIEWwww.irena.org