2023年世界能源转型展望概览:1.5°C路径(英)--IRENAVIP专享VIP免费

WORLD
ENERGY
TRANSITIONS
OUTLOOK 2023
1. 5° C PATHWAY
PREVIEW
ABOUT IRENA
The International Renewable Energy Agency (IRENA) serves as the principal platform for international
co-operation, a centre of excellence, a repository of policy, technology, resource and financial knowledge,
and a driver of action on the ground to advance the transformation of the global energy system. A global
intergovernmental organisation established in 2011, IRENA promotes the widespread adoption and
sustainable use of all forms of renewable energy, including bioenergy, geothermal, hydropower, ocean,
solar and wind energy, in the pursuit of sustainable development, energy access, energy security, and
low-carbon economic growth and prosperity. www.irena.org
© IRENA 2023
Unless otherwise stated, material in this publication may be freely used, shared, copied, reproduced,
printed and/or stored, provided that appropriate acknowledgement is given of IRENA as the source and
copyright holder. Material in this publication that is attributed to third parties may be subject to separate
terms of use and restrictions, and appropriate permissions from these third parties may need to be secured
before any use of such material.
ISBN: 978-92-9260-527-8
CITATION
This publication is a preview of the forthcoming report, IRENA (2023), World Energy Transitions Outlook
2023: 1.C Pathway, International Renewable Energy Agency, Abu Dhabi.
Available for download: www.irena.org/publications
For further information or to provide feedback: publications@irena.org
The data presented herein is accurate at the time of publication. Modelling results may change ahead of
the launch of the full report.
DISCLAIMER
This publication and the material herein are provided “as is”. All reasonable precautions have been taken
by IRENA to verify the reliability of the material in this publication. However, neither IRENA nor any of
its officials, agents, data or other third-party content providers, provides a warranty of any kind, either
expressed or implied, and they accept no responsibility or liability for any consequence of use of the
publication or material herein.
The information contained herein does not necessarily represent the views of all Members of IRENA. The
mention of specific companies or certain projects or products does not imply that they are endorsed or
recommended by IRENA in preference to others of a similar nature that are not mentioned. The designations
employed, and the presentation of material herein, do not imply the expression of any opinion on the part
of IRENA concerning the legal status of any region, country, territory, city or area or of its authorities, or
concerning the delimitation of frontiers or boundaries.
PREVIEW
WORLD
ENERGY
TRANSITIONS
OUTLOOK 2023
Francesco La Camera
Director-General, IRENA
MESSAGE FROM THE DIRECTOR-GENERAL
The recent Synthesis Report of the IPCC Sixth Assessment has delivered a sobering message - one
that leaves little ambiguity as to the need for immediate action. This decade, our success in reducing
greenhouse gas emissions will determine whether global temperature rise can be limited to 1.5°C
or even 2°C. Within this timeframe, the only realistic option available is a considerable scale-up of
renewable energy and efficiency solutions.
The International Renewable Energy Agency’s 1.5°C pathway positions electrification and efficiency
as key transition drivers, enabled by renewable energy, clean hydrogen and sustainable biomass. This
preview of the World Energy Transitions Outlook provides an overview of the progress achieved in
developing and implementing these technological avenues. It shows that the scale and extent of the
change achieved in all sectors to date fall far short of what is required to stay on the 1.C pathway.
Most of the progress so far has been made in the power sector, where advances in technology, policy
and innovation have taken us a long way.
Current energy structures were designed to support fossil fuels and must be re-designed to support
renewable energy systems. The emphasis must shift from supply to demand, toward overcoming
the structural obstacles that impede progress. This preview outlines three priority pillars - physical
infrastructure; policy and regulatory enablers; and a well-skilled workforce - that must be addressed
simultaneously, requiring significant investment and a new paradigm for international co-operation in
which all actors can engage in the transition and play an optimal role.
There is no time for a new energy system to evolve gradually over more than a century - as was the
case for the fossil fuel-based system. We simply cannot continue with incremental changes if we are
to achieve the necessary reductions in carbon emissions to meet climate goals. The Global Stocktake
concluding at COP28 in the United Arab Emirates presents the opportunity to assess requirements and
determine the best path to rapid, lasting change. To this end, the forthcoming World Energy Transitions
Outlook will provide a comprehensive assessment of the energy transition and propose effective ways
to accelerate progress following this important climate action milestone.
WORLDENERGYTRANSITIONSOUTLOOK20231.5°CPATHWAYPREVIEWABOUTIRENATheInternationalRenewableEnergyAgency(IRENA)servesastheprincipalplatformforinternationalco-operation,acentreofexcellence,arepositoryofpolicy,technology,resourceandfinancialknowledge,andadriverofactiononthegroundtoadvancethetransformationoftheglobalenergysystem.Aglobalintergovernmentalorganisationestablishedin2011,IRENApromotesthewidespreadadoptionandsustainableuseofallformsofrenewableenergy,includingbioenergy,geothermal,hydropower,ocean,solarandwindenergy,inthepursuitofsustainabledevelopment,energyaccess,energysecurity,andlow-carboneconomicgrowthandprosperity.www.irena.org©IRENA2023Unlessotherwisestated,materialinthispublicationmaybefreelyused,shared,copied,reproduced,printedand/orstored,providedthatappropriateacknowledgementisgivenofIRENAasthesourceandcopyrightholder.Materialinthispublicationthatisattributedtothirdpartiesmaybesubjecttoseparatetermsofuseandrestrictions,andappropriatepermissionsfromthesethirdpartiesmayneedtobesecuredbeforeanyuseofsuchmaterial.ISBN:978-92-9260-527-8CITATIONThispublicationisapreviewoftheforthcomingreport,IRENA(2023),WorldEnergyTransitionsOutlook2023:1.5°CPathway,InternationalRenewableEnergyAgency,AbuDhabi.Availablefordownload:www.irena.org/publicationsForfurtherinformationortoprovidefeedback:publications@irena.orgThedatapresentedhereinisaccurateatthetimeofpublication.Modellingresultsmaychangeaheadofthelaunchofthefullreport.DISCLAIMERThispublicationandthematerialhereinareprovided“asis”.AllreasonableprecautionshavebeentakenbyIRENAtoverifythereliabilityofthematerialinthispublication.However,neitherIRENAnoranyofitsofficials,agents,dataorotherthird-partycontentproviders,providesawarrantyofanykind,eitherexpressedorimplied,andtheyacceptnoresponsibilityorliabilityforanyconsequenceofuseofthepublicationormaterialherein.TheinformationcontainedhereindoesnotnecessarilyrepresenttheviewsofallMembersofIRENA.ThementionofspecificcompaniesorcertainprojectsorproductsdoesnotimplythattheyareendorsedorrecommendedbyIRENAinpreferencetoothersofasimilarnaturethatarenotmentioned.Thedesignationsemployed,andthepresentationofmaterialherein,donotimplytheexpressionofanyopiniononthepartofIRENAconcerningthelegalstatusofanyregion,country,territory,cityorareaorofitsauthorities,orconcerningthedelimitationoffrontiersorboundaries.PREVIEWWORLDENERGYTRANSITIONSOUTLOOK2023FrancescoLaCameraDirector-General,IRENAMESSAGEFROMTHEDIRECTOR-GENERALTherecentSynthesisReportoftheIPCCSixthAssessmenthasdeliveredasoberingmessage-onethatleaveslittleambiguityastotheneedforimmediateaction.Thisdecade,oursuccessinreducinggreenhousegasemissionswilldeterminewhetherglobaltemperaturerisecanbelimitedto1.5°Coreven2°C.Withinthistimeframe,theonlyrealisticoptionavailableisaconsiderablescale-upofrenewableenergyandefficiencysolutions.TheInternationalRenewableEnergyAgency’s1.5°Cpathwaypositionselectrificationandefficiencyaskeytransitiondrivers,enabledbyrenewableenergy,cleanhydrogenandsustainablebiomass.ThispreviewoftheWorldEnergyTransitionsOutlookprovidesanoverviewoftheprogressachievedindevelopingandimplementingthesetechnologicalavenues.Itshowsthatthescaleandextentofthechangeachievedinallsectorstodatefallfarshortofwhatisrequiredtostayonthe1.5°Cpathway.Mostoftheprogresssofarhasbeenmadeinthepowersector,whereadvancesintechnology,policyandinnovationhavetakenusalongway.Currentenergystructuresweredesignedtosupportfossilfuelsandmustbere-designedtosupportrenewableenergysystems.Theemphasismustshiftfromsupplytodemand,towardovercomingthestructuralobstaclesthatimpedeprogress.Thispreviewoutlinesthreeprioritypillars-physicalinfrastructure;policyandregulatoryenablers;andawell-skilledworkforce-thatmustbeaddressedsimultaneously,requiringsignificantinvestmentandanewparadigmforinternationalco-operationinwhichallactorscanengageinthetransitionandplayanoptimalrole.Thereisnotimeforanewenergysystemtoevolvegraduallyovermorethanacentury-aswasthecaseforthefossilfuel-basedsystem.Wesimplycannotcontinuewithincrementalchangesifwearetoachievethenecessaryreductionsincarbonemissionstomeetclimategoals.TheGlobalStocktakeconcludingatCOP28intheUnitedArabEmiratespresentstheopportunitytoassessrequirementsanddeterminethebestpathtorapid,lastingchange.Tothisend,theforthcomingWorldEnergyTransitionsOutlookwillprovideacomprehensiveassessmentoftheenergytransitionandproposeeffectivewaystoaccelerateprogressfollowingthisimportantclimateactionmilestone.4Theenergytransitionisoff-track.TheaftermathoftheCOVID-19pandemicandtherippleeffectsoftheUkrainecrisishavefurthercompoundedthechallengesfacingthetransition.Thestakescouldnotbehigher-everyfractionofadegreeinglobaltemperaturechangecantriggersignificantandfar-reachingconsequencesonnaturalsystems,humansocietiesandeconomies.Achievingthenecessarycourse-correctionintheenergytransitionwillrequirebold,transformativemeasuresthatreflecttheurgencyofthepresentsituation.CurrentpledgesandplansfallwellshortofIRENA’s1.5°Cpathwayandwillresultinanemissionsgapof16gigatonnes(Gt)in2050.NationallyDeterminedContributions(NDCs),long-termlowgreenhousegasemissiondevelopmentstrategies(LT-LEDs)andnet-zerotargets,iffullyimplemented,couldreducecarbondioxide(CO2)emissionsby6%by2030and56%by2050,comparedto2022levels.However,mostclimatepledgesareyettobetranslatedintodetailednationalstrategiesandplans,implementedthroughpoliciesandregulations,orsupportedwithsufficientfunding.AccordingtoIRENA'sPlannedEnergyScenario,1theemissionsgapisprojectedtoreach35Gtby2050,underscoringtheurgentneedforcomprehensiveactiontoacceleratethetransition.2AlthoughglobalinvestmentacrossallenergytransitiontechnologiesreachedarecordhighofUSD1.3trillionin2022,annualinvestmentmustmorethanquadrupletoremainonthe1.5°Cpathway.AcumulativeUSD150trillionisrequiredtorealisethe1.5°Ctargetby2050(Figure1),averagingoverUSD5trillioninannualterms.ComparedwiththePlannedEnergyScenario-underwhichacumulativeinvestmentofUSD103trillionisrequired-anadditionalUSD47trillionincumulativeinvestmentisrequiredby2050toremainonthe1.5°Cpathway.AroundUSD1trillionofannualinvestmentsinfossilfuelbasedtechnologiescurrentlyenvisagedinthePlannedEnergyScenariomustthereforeberedirectedtowardsenergytransitiontechnologiesandinfrastructure.Cumulativeinvestmentsbetweennowand2030needtototalUSD44trillion,withenergytransitiontechnologiesrepresenting80%oftheinvestment,orUSD35trillion.TotalcumulativeenergysectorinvestmentsinthePlannedEnergyScenariountil2030areUSD29trillion.AnadditionalcumulativeinvestmentofUSD15trillion-oranannualaverageinvestmentofUSD1.9billion-wouldbeneededinthe1.5°CScenariountil2030.Furthermore,achangeinthevolumeandtypeofinvestmentsisrequiredunderthe1.5°CScenariotoprioritisetheenergytransitionandsetthestageforadramaticdecreaseinthefossilfuelshareby2050(Figure1).1ForabriefoverviewofthetwoscenariosemployedintheWorldEnergyTransitionsOutlook,seeinsiderearcover,page23.2ThepresentIRENAscenariosincludeCO2emissionsfromfossilfuelcombustion,wasteincinerationandindustrialprocesses.COPannouncementsreflectedinNationallyDeterminedContributions[NDCs]asof5November2022,long-termlowgreenhousegasemissiondevelopmentstrategies[LT-LEDs]andnet-zerotargetsasof5October2022alsoincludeland-useemissions.KEYMESSAGESWORLDENERGYTRANSITIONSOUTLOOK20235Annualinvestmentsacrossallenergytransitiontechnologiesmustmorethanquadrupletoremainonthe1.5°Cpathway.PREVIEWFIGURE1Totalinvestmentbytechnologicalavenuefrom2023to2050forachievingthe1.5°CScenarioPlannedEnergyScenario1.5°CScenario2023-20502023-2050PowergridsandenergyflexibilityCarbonremoval,captureandstoragemeasures–CCSandBECCS(incl.transportandstorage)ElectrificationinendusesEnergyconservationandeciencyFossilfuelsandnuclear-powerFossilfuel-supplyRenewables-directusesanddistrictheat1501209060300Hydrogenanditsderivatives(incl.infrastructure)Renewables-powergenerationUSD+47trillionor+1.7trillionperyearCumulativeenergysectorinvestments,2023-2050(USDtrillion)USD103trillionUSD150trillionNotes:CCS=carboncaptureandstorage;BECCS=bioenergy,carboncaptureandstorage.6Existingrenewablepowertargetswouldincreasetotalrenewablepowercapacityto5.4terawatts(TW)by2030,representinglessthanhalfofthe11.2TWneededfora1.5°Cpathway.Thereissignificantscopeforaligningandstrengtheningtargetsintheshorttermtoprovidepolicyclarityandcertainty.Inmanycases,targetsinnationalenergyplansareyettobealignedwiththoseinNDCs.Inaddition,targetsshouldbemeasurableandcoverendusesbeyondpower.Ofthe183PartieswithrenewableenergycomponentsintheirNDCs,only143hadaquantifiedtarget-108forpowerand31forheatingandcooling,transportorcooking(IRENA,2022).Someprogressisbeingmade,notablyinthepowersector,withrenewablesrepresenting83%ofcapacityadditionsandreaching40%ofinstalledpowergenerationgloballyin2022.Atotalof295gigawatts(GW)ofrenewableswasaddedworldwidein2022,thelargest-everannualincreaseinrenewableenergycapacity(IRENA,2023a).Thestrongbusinesscaseforrenewables,coupledwithsupportiveenablingpolicies,hassustainedanupwardtrendintheirshareoftheglobalenergymix.However,overalldeploymentremainscentredonalimitednumberofcountiesandregions,withChina,theEuropeanUnionandtheUnitedStatesaccountingfor75%ofcapacityadditions.Althoughlarge-scaledeploymentsofrenewableenergyaretypicallyassociatedwithcountriesthathavewell-developedpowersystems,itisessentialtoexpanddeploymentelsewhere,especiallyindevelopingnationsthatlackaccesstoelectricity.FIGURE2Annualpowercapacityexpansion,2002-2022Newcapacitynon-renewables(GW)Newcapacityrenewables(GW)Annualcapacityinstallations(GW20142002201620102018200620042012200820202022807060504030201002402101801501209060300ShareofnewelectricitygeneratingcapacityNewcapacityrenewableshare(%)RenewablesshareinnewcapacityAnnualcapacityinstallations(GW/yr)2014200220162010201820062004201220082020202250%15%59%37%57%23%28%52%38%82%83%300225150750Newcapacitynon-renewables(GW)Newcapacityrenewables(GW)WORLDENERGYTRANSITIONSOUTLOOK20237Moreinvestmentsneedtoflowintodevelopingandemergingmarketstomaketheenergytransitionmoreinclusive.Renewableenergyinvestmentremainsconcentratedinalimitednumberofcountriesandfocusedononlyafewtechnologies.InvestmentinrenewablesreachedUSD0.5trillionin2022;however,thisislessthanone-thirdoftheaverageinvestmentneededeachyearinrenewablesunderthe1.5°CScenario.Furthermore,in2022,85%ofglobalrenewableenergyinvestmentbenefittedlessthan50%oftheworld’spopulationandAfricaaccountedforonly1%ofadditionalcapacityin2022(IRENAandCPI,2023;IRENA,2023a).Investmentsinoff-gridrenewableenergysolutionsin2021amountedtoUSD0.5billion(IRENAandCPI,2023),farbelowtheUSD15billionneededannuallyto2030.Whilemanytechnologychoicesexist,mostinvestmentswereinsolarPVandwindpower,with95%channelledtowardthesetechnologies(IRENAetal.,2023).Greatervolumesoffundingneedtoflowtootherenergytransitiontechnologiessuchasbiofuels,hydropowerandgeothermalenergy,aswellastosectorsbeyondpowerthathavelowersharesofrenewablesintotalfinalenergyconsumption(e.g.heatingandtransport).Everyyear,thegapbetweenwhatisrequiredandwhatisimplementedcontinuestogrow.IRENA’senergytransitionindicators(seeTable1)showsignificantaccelerationisneededacrossenergysectorsandtechnologies,fromdeeperend-useelectrificationoftransportandheat,todirectrenewableuse,energyefficiencyandinfrastructureadditions.DelaysonlyaddtothealreadyconsiderablechallengeofmeetingIPCC-definedemissionreductionlevelsin2030and2050fora1.5°Ctrajectory(IPCC,2022).Thelackofprogresswillalsoincreasefutureinvestmentneedsandthecostsofworseningclimatechangeeffects.PREVIEW8WORLDENERGYTRANSITIONSOUTLOOK2023IndicatorsRecentyears2050Progress(O/ontrack)2030IndicatorsRecentyears2050Progress(O/ontrack)2030ShareofrenewablesinelectricitygenerationRenewablepowercapacityadditionsAnnualsolarPVadditionsAnnualwindenergyadditionsInvestmentneedsforREgenerationELECTRIFICATIONWITHRENEWABLEScontinuedShareofrenewablesinfinalenergyconsumptionSolarthermalcollectorareaModernuseofbioenergy(directuse)Geothermalconsumption(directuse)RenewablesbaseddistrictheatgenerationInvestmentneedsforrenewablesendusesanddistrictheatDIRECTRENEWABLESINEND-USESANDDISTRICTHEATInvestmentneedsforpowergridsandflexibilityEnergyintensityimprovementRENEWABLESY28%91%67%34%295GW/yr975GW/yr1066GW/yr191GW/yr551GW/yr615GW/yr75GW/yr329GW/yr335GW/yr1382USDbillion/yr1300USDbillion/yr486USDbillion/yr216USDbillion/yr269USDbillion/yr13USDbillion/yr790USDbillion/yr548USDbillion/yr274USDbillion/yr19%83%746millionm2/yr3700millionm2/yr1.5EJ56EJ44EJ2.2EJ12EJ1700millionm2/yr0.6%/yr3.5%/yr0.4EJ0.9EJ4.3EJ1.3EJ2)3)1)1)1)1)4)5)6)8)9)10)11)12)14)13)28)27)27)27)7)TABLE1Trackingprogressofkeyenergysystemcomponentstoachievethe1.5°Cscenario9PREVIEWIndicatorsRecentyears2050Progress(O/ontrack)2030continuedNotes:seenextpageRenewablesbaseddistrictheatgenerationInvestmentneedsforrenewablesendusesanddistrictheatShareofdirectelectricityinfinalenergyconsumptionPassengerelectriccarsontheroadInvestmentsneedsforcharginginfrastructureofEV'sandEVadoptionsupportInvestmentneedsforheatpumpsCleanhydrogenproductionElectrolysercapacityInvestmentneedsforcleanhydrogenandderivativesinfrastructureCleanhydrogenconsumption-industryCCS/CCUtoabateemissionsinindustryBECCSandotherstoabateemissionsinindustryInvestmentneedsforcarbonremovalandinfrastructureEnergyintensityimprovementrateENERGYEFFICIENCYELECTRIFICATIONHYDROGENCCSANDBECCS29%Investmentneedsforenergyconservationandeciency1493USDbillion/yr1772USDbillion/yr295USDbillion/yr0.01GtCO2captured/yr0.002GtCO2captured/yr1.0GtCO2captured/yr0.7GtCO2captured/yr216USDbillion/yr269USDbillion/yr13USDbillion/yr12EJ0.6%/yr2.9%/yr3.5%/yr30USDbillion/yr170USDbillion/yr1.1USDbillion/yr80USDbillion/yr107USDbillion/yr6.4USDbillion/yr18USDbillion/yr0.9EJ4.3EJ51%40EJ22%10.5million355million2180million364USDbillion/yr141USDbillion/yr518Mt/yr21.4Mt/yr0.7Mt/yr5722GW0.5GW2.4EJ1)1)12)14)15)29)30)31)16)17)18)22)0.04EJ23)24)25)20)13)28)258USDbillion/yr19)21)26)64USDbillion/yr233GW3.0GtCO2captured/yr1.0GtCO2captured/yr266USDbillion/yr(contd.)TABLE1Trackingprogressofkeyenergysystemcomponentstoachievethe1.5°Cscenario10Policymakersneedtostriketherightbalancebetweenreactivemeasuresandproactiveenergytransitionstrategiesthatpromoteamoreresilient,inclusiveandclimate-safesystem.Severaloftherootcausesofthecurrentcrisesstemfromthefossilfuelbasedenergysystem,suchasoverdependenceonalimitednumberoffuelexporters,inefficientandwastefulenergyproductionandconsumption,andthelackofaccountingforenvironmentalcosts.Anenergytransitionbasedonrenewablescanreduceoreliminatemanyofthese.Itisthereforethespeedofthechangethatwilldeterminethelevelsofenergysecurityandeconomicandsocialresilienceatthenationallevelandoffernewopportunitiesforimprovedhumanwelfareglobally.Morecanbedoneintheshortterm.Whiletheenergytransitionundoubtedlyrequirestime,thereissignificantpotentialtoimplementmanyoftheavailabletechnologyoptionstoday.Upwardtrendsinthedeploymentofthesesolutionsdemonstratethatthetechnicalandeconomiccaseissound.However,comprehensivepoliciesareneededacrossallsectorstorampupdeployment,aswellastoinstigatethesystemicandstructuraloverhaulrequiredtorealiseclimateanddevelopmentobjectives.WORLDENERGYTRANSITIONSOUTLOOK2023Table1notes:[1]Averageannualinvestmentsrequirementtoreachthe1.5°Ctargetduringtheperiod2023-2030and2023-2050areshownintheinvestmentsrowsunder2030and2050respectively.AllinvestmentfiguresforrecentyearsareincurrentUSD;theparticularsofrecentyearsusedfortheindicatorsare:[2]2020;[3]2022;[4]2022;[5]2022;[6]2022;[7]2022;[8]2020;[9]2021;[10]2020;[11]2020;[12]2020;[13]2022;[14]2019;[15]2021;[16]2020;[17]2022;[18]2022;[19]2022;[20]2021;[21]2022;[22]2022;[23]2021;[24]2022;[25]2022;[26]2022;[27]netcapacityadditionsfor2030and2050areexcludingreplacementstockforend-of-lifeunits;[28]futureinvestmentsneededinrenewablesinenduses,districtheating,biofuelsandbio-basedinnovativefuels;[29]futureinvestmentsinenergyconservationandefficiencyincludethoseinbio-basedplasticsandorganicmaterials,chemicalandmechanicalrecyclingandenergyrecovery;[30]futureinvestmentsneededinelectrolysers,infrastructure,H2stations,bunkeringfacilitiesandlong-termstorage;[31]futuredemandincludesenergyandnon-energyuses.CCS=carboncaptureandstorage;CCU=carboncaptureanduse;BECCS=bioenergy,carboncaptureandstorage;EV=electricvehicle;RE=renewableenergy;yr=year;m2=squaremeter;EJ=exajoule.11TheGlobalStocktakeatthe2023UnitedNationsClimateChangeConference(COP28)mustserveasacatalystforscalingupactionoverthefollowingfiveyearstoimplementexistingenergytransitionoptions.Whilstplanningmustprovideroomforinnovationandadditionalpolicyaction,asignificantscaleupofexistingsolutionsisparamount.Forexample,advancingefficiencyandelectrificationbasedonrenewablesisacost-effectiveavenueforthepowersector,aswellasfortransportandbuildings.Cleanhydrogenanditsderivatives,andsustainablebiomasssolutions,alsooffervarioussolutionsforenduses.Energyefficiency,electrification,gridexpansionandflexibilitymeasuresmustbeprioritisedinthecomingyears.Energyefficiencyinend-usesectorsrequiresanaverageannualinvestmentofUSD1.8trillionunderthe1.5°CScenario.Electrificationofend-usesectors,hydrogen,directuseofrenewablesanddistrictheatwillrequireanadditionalUSD0.75trillionannually.Acceleratedend-usesectorelectrificationwillneedtobecombinedwithacontinuousdrivetogrowrenewablepowercapacity,withanallocationofsomeUSD1.3trillionannually.Thisgrowthrequirescommensurateelectricitynetworkexpansionandmodernisation,atacostofUSD0.5trillionannually.Bycomparison,cumulativeannualinvestmentinfossilfuelsupplyandpowercapacityinthesameperiodwouldamounttoUSD1trillion,halvingcurrenttrends.TheperiodfollowingCOP28willbepivotalforeffortstocurbclimatechangeandachievethesustainabledevelopmentgoalsoutlinedinthe2030Agenda.Theenergytransitioniscrucialfordeliveringoneconomic,socialandenvironmentalpriorities.Itisimperativeforgovernments,financialinstitutions,andtheprivatesectortourgentlyre-evaluatetheiraspirations,strategiesandimplementationplanstorealigntheenergytransitionwithitsintendedtrajectory(seeTable2).COP28needstocatalyseastepchangeinactionstoacceleratetheenergytransition.PREVIEW12TABLE2Short-termmeasurestodealwiththeenergycrisisandacceleratetheenergytransitionAmbition•Increaseambitionofnationalrenewableenergytargetsinlinewithclimategoals,increasedenergysecurityandimprovedaffordability.•Setambitiousrenewableenergytargetsandenergyefficiencytargetsinallenduses(electricity,heatingandcooling,transport).•Developeffectiveimplementationplansforalltargets.Institutions•Makeinstitutionsfitforthetransition:(e.g.newministerialstructures,cross-ministrytaskforces,updatedstatuteforregulators).•Reformtheexistinglendingpracticesofdevelopmentfinanceinstitutionsbyprovidingmoregrantsandconcessionalloans,particularlyforcountriesthatfaceunder-investmentandmaybeindebtdistress.Physicalinfrastructure•Untertakeintegratedcross-sectorinfrastructureplanningfortheenergytransitionwithambitioustargetsforexpansion(e.g.powergrids,electricvehicle[EV]charginginfrastructure,heatnetworks,alllinkeduptooptimisevariablerenewableelectricity).•Provideincentivesforinfrastructureinvestmentswheremarketbarriersexist(e.g.heatnetworks,EVchargers).•Streamlinepermittingproceduresforlarge-scaleinfrastructurewithoutcompromisingenvironmentalandsocialimpactassessmentsandensurepublicacceptanceisfostered.•Setobligationsormandatorytargetsfornewbuildings(e.g.numbersofEVchargersperoccupant,connectiontoheatnetworks).•Providemorepublicfinanceforthedevelopmentoftheinfrastructurerequired(e.g.throughdirectownershipofassetssuchastransmissionlines).Jobsandskills•Integraterenewableenergyintoeducationalcurricula;expandtechnicalandvocationaleducationandtrainingopportunities.•Stepupeffortstoanticipatefutureoccupationalneedsineachrenewableenergysectorandworkwithindustryassociationsandtraininginstitutionstoaligntheirplanning.•Ensurebetteraccesstotrainingopportunitiesforwomen,youthandminorities.•Developpathwaysforfossilfuelindustryworkerstoretrainandrecertifyforcareersinrenewableenergy.Thiswillrequirepublicfundingfortraining.Finance•Increaseandchannelpublicfinancing–includingthroughinternationalcollaborationviaabroadspectrumofpolicies,coveringallsegmentsoftherenewableenergyvaluechain,thewiderenergysectorandtheeconomyasawhole.•Strategicallyplan,selectandimplementinstrumentstochannelpublicfinance(domesticandinternational)including(1)governmentspendingsuchasgrants,rebatesandsubsidies;(2)debtincludingexistingandnewissuances,creditinstruments,concessional/blendedfinancingandguarantees;(3)equityanddirectownershipofassets(suchastransmissionlinesorlandtobuildprojects).•Define‘risk’inamorecomprehensivewaythatgoesbeyondthenarrowinvestor-centricdefinitionofrisk(e.g.ofinvestmentinenergyassetsnotpayingoff)toincludebroaderenvironmentalandsocialrisks.•Continuetousepublicpolicyandfinancetocrowdinprivatecapital.continuedWORLDENERGYTRANSITIONSOUTLOOK202313PREVIEW(contd.)TABLE2Short-termmeasurestodealwiththeenergycrisisandacceleratetheenergytransitionPowersector•Adoptapowersystemstructurethatisconducivetohighsharesofvariablerenewableenergy,recognisingtheirtechno-economiccharacteristics.Thiscouldincludedualprocurementofenergywithlong-termprocurementthroughauctionsandashort-termflexibilitymarket.•Streamlinepermittingproceduresforrenewablepowerprojectswithoutcompromisingenvironmentalandsocialimpactassessment.Ensurepublicacceptanceisfostered.•Bettersynchronisepowergridexpansionandotherinfrastructuredevelopmentswithrenewablepowerdeploymenttoavoidbottlenecks.•Designrenewableenergyprocurementprocesses(e.g.auctions)toserveobjectivesbeyondlowestprice(e.g.developmentoflocalindustry)andconsiderdesignelementstodistributetherisksofsupplychaindisruptionsamongstakeholders(e.g.indexationofcomponents).•Designpoliciesforself-consumptioninaprogressivewaythatsupportsequitableaccesstosupportforthedeploymentofsolutionsandthedistributionofsocio-economicbenefits.End-usesectors–buildings,industry,transport•Developenergyefficiencyprogrammesandmeasuressuchasstandardsintransport,industry,andbuildings.Increasefinanceforenergyefficiencythrougheffortstoaggregateprojectsandde-riskinvestment.•Promotereadinessfornewfuelsandelectrification(e.g.EVchargers,seealsoPhysicalInfrastructure).•Behaviourchanges:incentiviseslowerdrivingusingspeedlimits,mandateroomtemperaturelimits(e.g.officesandpublicbuildings),reduceindividualcarusagebypromotingpublictransportandcar-sharing;preferhigh-speedandnighttrainstoaircraftwherepossible.Cross-sectorandcross-cuttingpolicies•Introducefiscalpolicymeasures:obligationsforreinvestingwindfallprofitsoffossilfuelenergyrevenuesinenergytransitiontechnologies,reducedsubsidiesforfossilfuelsandraised/newlyintroducedCO2priceswhenfossilfuelpricesfall.Ensurethesocio-economicbenefitsofsuchinstrumentsaredistributedfairly.Reformtaxesandleviesonheatingfuels,VATexemptionsforrenewables,etc.•Developnationalbioenergyand/orhydrogenstrategies(includingsectoralprioritisation)toensurebioenergyandhydrogencanplaythemostappropriateroleindecarbonisation.•Incentivise/mandateacirculareconomyapproach(reduce,re-use,recycle),forexampleforenergy-intensiveproductslikesteel,renewableenergytechnologies,batteries,cars,etc.Thiswillbothreduceenergydemandandthedemandforcriticalmaterials.•Enhanceinternationalcollaborationacrossarangeofrelevantareasincludingsustainabilitygovernance,energyandclimatefinance,technologyandinnovation,regionalpowergrids,greenhydrogendevelopment.•Putgreaterfocus(includingthroughinternationalcollaboration)onachievingtheuniversalaccesstargetsofSDG7.14Aprofoundandsystemictransformationoftheglobalenergysystemmustoccurwithin30years.Thiscondensedtimeframenecessitatesastrategicshiftthatexpandsbeyondthefocusondecarbonisationofsupplytowarddesigninganenergysystemthatnotonlyreducescarbonemissionsbutalsosupportsaresilientandinclusiveglobaleconomy.Asaresult,planningneedstoextendbeyondbordersandthenarrowconfinesoffuelstofocusontherequirementsofthenewenergysystemandtheeconomiesitwillsustain.Focusingonthedemandforcleanenergyandtheenablersofarenewables-dominatedsystemcanhelpaddressthestructuralbarriersthathinderprogressintheenergytransition.Pursuingfuelandsectoralmitigationmeasuresisnecessarybutinsufficienttotransitiontoanenergysystemfitforthedominanceofrenewables.Fromenergyproductionandtransportationtoprocessingcoal,oilandgas,theglobalinfrastructurededicatedtoenergywillneedtochange.Thiswillhaveimpactsonpowergeneration,industrialproductionandmanufacturing,aswellasonrail,pipelines,shipyardsandothermeansofsupplyingfossilfuels.Switchingthefocusfromfuelstosystemsdesignwillhelpacceleratethedevelopmentofanewenergyinfrastructureandsustainitsimplementation.Theenergytransitioncansupportamovetowardamoreresilientandequitableworld.WORLDENERGYTRANSITIONSOUTLOOK2023DEVELOPINGSTRUCTURESFORARENEWABLES-BASEDENERGYSYSTEM15Governmentscanproactivelyshapearenewables-basedenergysystem,overcometheflawsandinefficienciesofcurrentstructures,andmoreeffectivelyinfluenceoutcomes.Thesimultaneous,proactiveshapingofphysical,policyandinstitutionalstructureswillbeessentialtorealisingdevelopmentandclimateobjectivestowardamoreresilientandequitableworld.Theseunderpinningsshouldformthepillarsofthestructurethatsupportstheenergytransitionasfollows:PHYSICALINFRASTRUCTURE:forward-lookingplanning,modernisationandexpansionofsupportinginfrastructureonlandandseatofacilitatethedevelopment,storage,distributionandtransmission,andconsumptionofrenewables.Itshouldfacilitatenational,regionalandglobalstrategiesfornewsupply-demanddynamicsandpromoteequityandinclusion.POLICYANDREGULATORYENABLERS:designofpolicyandregulatoryframeworksthatfacilitatedeployment,integrationandtradeofrenewables-basedenergy,shapesocio-economicoutcomesandpromoteequality.Theseneedtoenabledifferentlevelsoftheenergytransition,fromlocaltoglobal,andaccountfornewsupply-demanddynamics.WELL-SKILLEDWORKFORCE:capacityamonginstitutions,communitiesandindividualstoacquiretherequisiteskills,knowledgeandexpertisetodriveandsustaintheenergytransition.Anintegralaspectofthiswillbeensuringthatcommunitiesarewellinformedof,andabletoexercise,theirrightsascriticaltransitionstakeholders,andtoharnessitsbenefits.Physicalinfrastructureupgrades,modernisationandexpansionwillincreaseresilienceandbuildflexibilityforadiversifiedandinterconnectedenergysystem.Transmissionanddistributionwillneedtoaccommodateboththehighlylocalised,decentralisednatureofmanyrenewablefuels,aswellasdifferenttraderoutes.Planningforinterconnectorstoenableelectricitytrade,andshippingroutesforhydrogenandderivatives,mustconsidervastlydifferentglobaldynamicsandproactivelylinkcountriestopromotethediversificationandresilienceofenergysystems.Storagesolutionswillneedtobewidespreadanddesignedwithgeo-economicimpactsinmind.Publicacceptanceisalsocriticalforanylarge-scaleundertakingandcanbesecuredthroughprojecttransparencyandopportunitiesforcommunitiestovoicetheirperspectives.Policyandregulatoryenablersmustsystematicallyprioritisetheaccelerationoftheenergytransitionandareductionintheroleoffossilfuels.Today,theunderlyingpolicyandregulatorysystemsremainshapedaroundfossilfuels.Whileitisinevitablethatfossilfuelswillremainintheenergymixforsometime,theirsharemustdramaticallydecreaseasweapproachmid-century.Policyframeworksandmarketsshouldthereforefocusonacceleratingthetransitionandprovidetheessentialunderpinningsforaresilientandinclusivesystem.Awell-skilledworkforceisalynchpinofasuccessfulenergytransition.WorkbyIRENAandtheInternationalLabourOrganization(ILO)hasshownthattherenewableenergysectoremployedsome12.7millionpeopleworldwideasof2022,growingfromabout7.3millionin2012.Energytransitionmodellingindicatesthattensofmillionsofadditionaljobswilllikelybecreatedinthecomingdecadesasinvestmentsgrowandinstalledcapacitiesexpand.Abroadrangeofoccupationalprofileswillbeneeded.Fillingthesejobswillrequireconcertedactionineducationandskillsbuilding,andgovernmentshaveacriticalroleinco-ordinatingeffortstoaligntheofferingsoftheeducationalsectorwithprojectedindustryneeds-whetherintheformofvocationaltrainingoruniversitycourses.Toattracttalenttothesector,itiscrucialthatjobsaredecent,andthatwomen,youthandminoritieshaveequalaccesstojobtraining,hiringnetworksandcareeropportunities.PREVIEW16Net-zerocommitmentsmustbeembeddedinlegislationandtranslatedintoimplementationplansthatareadequatelyresourced.Withoutthiscrucialstep,climateannouncementsremainaspirational,andthenecessaryprogressoutofreach.Thecurrentenergysystemisdeeplywovenintosocio-economicstructuresthathaveevolvedovercenturies.ThismeanssignificantstructuralchangemustoccurinacondensedtimeframeoflessthanthreedecadestosuccessfullydeliveronthegoalsoftheParisAgreement.Energyinfrastructureislong-lived,soinvestmentinfixedinfrastructureshouldconsiderthelongterm.Everyinvestmentandplanningdecisionaroundenergyinfrastructuretodayshouldconsiderthestructureandgeographyofthelow-carboneconomyofthefuture.Electrificationofenduseswillreshapedemand.Renewablepowerwillrequireexistinginfrastructuretobemodernised,withgridreinforcementandexpansiononbothlandandsea.Greenhydrogenproductionwillalsooccurinlocationsotherthantoday’soilandgasfields.Thetechnicalchallengesandeconomiccostsofredesigninginfrastructureshouldbeaccountedfor,andtheenvironmentalandsocialaspectsadequatelyaddressedfromtheoutset.Energyinvestmentdecisionsshouldsimultaneouslydrivethetransitionandreducetheriskofstrandedassets.ThePlannedEnergyScenarioforeseescumulativeenergysector-wideinvestmentsofUSD103trillionbetween2023and2050,orUSD3.7trillionannually,onaverage,to2050.Around59%ofthisinvestmentisintendedforenergytransitiontechnologies-mostlyforrenewables,energyefficiency,electrification,hydrogen,andcarbonremovals.However,some41%ofplannedenergyinvestmentremainsaimedatfossilfuels;therefore,acombinationofscale-upandre-allocationofinvestmentinenergytransitiontechnologiesisneededtokeepthe1.5°Ctargetwithinreach.The1.5°CScenarioenvisageselectricitybecomingthemainenergycarrier,accountingforover50%oftotalfinalenergyconsumption(seeFigure3).Renewableenergydeployment,improvementsinenergyefficiencyandtheelectrificationofend-usesectorscontributetothisshift.Inaddition,modernbiomassandhydrogenareprojectedtoplaymoresignificantroles,with16%and14%oftotalfinalenergyconsumptionby2050,respectively.Notably,94%ofhydrogenconsumptionisexpectedtocomefromrenewables,indicatingagrowingrelianceoncleanenergysources.Thepathwayalsosuggeststhattotalfinalenergyconsumptioncoulddecreaseby15%from2020to2050,potentiallyindicatingatrendtowardsdecarbonisationandamoresustainableenergyfuture.WORLDENERGYTRANSITIONSOUTLOOK2023THEWAYFORWARDPRIORITISINGBOLDANDTRANSFORMATIVEACTIONS17PREVIEWFIGURE3Breakdownoftotalfinalenergyconsumptionbyenergycarrierbetween2020and2050underthe1.5°CScenarioTFEC(%)20202050:Whereweneedtobe(1.5°CScenario)417EJTotalfinalenergyconsumption353EJTotalfinalenergyconsumption20%Electricity(direct)51%Electricity(direct)1%4%9%Traditionalusesofbiomass66%Fossilfuels16%Modernbiomassuses14%Hydrogen(directuseande-fuels)7%OthersFossilfuels12%ModernbiomassusesOthersRenewableshareinhydrogen94%91%Renewableshareinelectricity28%RenewableshareinelectricityNotes:Thefiguresaboveincludeonlyenergyconsumption,excludingnon-energyuses.Forelectricityuse,28%in2020and91%in2050aresourcedfromrenewablesources;fordistrictheating,thesharesare7%and95%,respectively;forhydrogen(directuseande-fuels),therenewableenergyshare(i.e.greenhydrogen)wouldreach94%by2050.ThecategoryHydrogen(directuseande-fuels)accountsfortotalhydrogenconsumption(greenandblue)andothere-fuels(e-ammoniaande-methanol).Electricity(direct)includestheconsumptionofelectricitythatisprovidedbyallsourcesofgeneration:renewable,nuclearandfossilfuelbased.TraditionalusesofbiomassrefertotheresidentialTFECofsolidbiofuelsinnon-OECDcountries.Modernbioenergyusesincludesolidbiomass,biogasandbiomethaneusedinbuildingsandindustry;andliquidbiofuelsusedmainlyintransport,butalsoinbuildings,industryandotherfinalconsumption.Remainingfossilfuelsin2050correspondtonaturalgas(mainlyusedinindustryandtransport,andtoalesserextentinbuildings),oil(mainlyinindustryandtransport,andtoalesserextentinbuildings)andcoal(correspondstousesinindustry-cement,chemicals,ironandsteel).Othersincludedistrictheatandotherrenewablesconsumption.EJ=exajoule;OECD=OrganisationforEconomicCo-operationandDevelopment;TFEC=totalfinalenergyconsumption.18Theshareofrenewableenergyintheworld'sprimaryenergysupplygrowsfrom16%in2020to77%in2050underthe1.5°CScenario,requiringanannualgrowthratethirteentimesthecurrentrate(Figure4).Thisgrowthisexpectedtostabiliseprimaryenergysupplyduetoincreasedenergyefficiencyandthegrowthofrenewables.Theenergymixwillchangedrasticallyintheprocess,withanetgainof61percentagepointsofrenewableenergyshare,drivenbyamixofend-useelectrification,renewablefuelsanddirectuse.Achievingthislevelofrenewableenergypenetrationiscriticaltomeetingglobalclimategoalsandwillrequiresignificantinvestmentandpolicysupport,aswellascontinuedinnovation.WORLDENERGYTRANSITIONSOUTLOOK2023FIGURE4Totalprimaryenergysupplybyenergycarriergroup,2020-2050underthe1.5°CScenario202020502045204020352030TPES(EJ/yr)8006004002000700RenewablesNuclearFossilfuelsWhereweneedtobe(1.5°CScenario)-63p.p.-63p.p.79%79%5%5%6%6%6%6%6%6%6%6%7%7%16%16%34%34%47%47%59%59%69%69%77%77%60%60%47%47%35%35%25%25%16%16%+61p.p.+61p.p.Note:Renewablesincludebioenergy,geothermal,hydropower,ocean,solarandwindinallforms(electricityandsyntheticfuels).Fossilfuelsincludecoal,oilandnaturalgas;p.p.=percentagepoints.19Electricitygenerationwillmorethantriplefrom2020to2050,with91%ofthetotalelectricitysupplycomingfromrenewablesources,comparedto28%in2020(seeFigure5).Coal-andoil-basedpowergenerationwillexperienceasharpdeclineoverthedecadebeforebeingphasedoutentirelybymid-century.By2050,naturalgaswillprovide5%oftotalelectricityneeds,withtheremainderbeingmetbynuclearpowerplants.Thetransitionfeaturesanimportantsynergybetweenincreasinglyaffordablerenewablepowertechnologiesandthewideradoptionofelectrictechnologiesforend-useapplications,especiallyintransportandheat.By2050,mostoftheworld'spowerwillbegeneratedfromrenewablesources.PREVIEWFIGURE5Powergenerationneedstomorethantripleby2050FossilfuelsFossilfuelsRenewablesRenewablesNuclearNuclear62%62%10%10%5%5%4%4%28%28%91%91%27.0PWh89.8PWh20202050:Whereweneedtobe(1.5-S)Grosselectricitygeneration(PWh)Grosselectricitygeneration(PWh)Notes:PWh=petawatthours.20Publicinvestmentstrategiesplayacriticalroleinacceleratingthespeedoftheenergytransition.Suchinvestmentsneedtonotonlyincreaseinvolume,butalsobeallocatedstrategicallytoguideprivateinvestmentdecisionsandserveasaneffectiveinstrumenttoshapetheenergytransitioninwaysthatmaximisebenefitsinthepublicinterest.Inaddition,publicprocurementprogrammesarebestplacedtosetstandardssothatenergyprojectsadheretolabourstandardsandenvironmentalsafeguards.Strongerpublicsectorinterventionisrequiredtochannelinvestmentstowardscountriesandtechnologiesinamoreequitableway.Some75%ofglobalinvestmentinrenewablesfrom2013to2020camefromtheprivatesector;butprivatecapitaltendstoflowtothetechnologiesandcountrieswiththeleastassociatedrisks,betheyrealorperceived.In2020,83%ofcommitmentsinsolarPVcamefromprivatefinance,whereasgeothermalandhydropowerreliedprimarilyonpublicfinance-only32%and3%ofinvestmentsinthesetechnologies,respectively,camefromprivateinvestorsin2020(IRENA&CPI,2023).Thegreaterneedforpublicfinanceinhydropowerislinkedtolargeupfrontinvestments,highconstructionrisks,theneedforlong-tenorloans(asprojectscantakeoveradecadetocomplete),complexandlengthypermittingprocedures,andhighsocialandenvironmentalrisks,allofwhichcansignificantlyhampertheabilityoftheprivatesectortofinancelargehydropowerprojects(IRENA,2023b).Forgeothermal,meanwhile,thehighcostsofsurfaceexplorationanddrillingrepresentthemainobstaclestoprivatesectorfinancing.Publicfinanceandpolicyshouldcontinuetobeusedtocrowdinprivatecapital,butgreatergeographicalandtechnologicaldiversityofinvestmentrequirestargetedandscaled-uppubliccontributions.Formanyyears,policyhasfocusedonmobilisingprivatecapital.Publicfundingisurgentlyneededtoinvestinbasicenergyinfrastructureinthedevelopingworld,aswellastodrivedeploymentinlessmaturetechnologies(especiallyinendusessuchasheatingandtransport,orsyntheticfuelproduction)andinareaswhereprivateinvestorsseldomventure.Otherwise,thegapininvestmentbetweentheGlobalNorthandtheGlobalSouthwillcontinuetowiden.In2015,renewableenergyinvestmentpercapitainNorthAmerica(excludingMexico)andEuropewasaround22timeshigherthaninSub-SaharanAfrica.Butby2021,investmentpercapitainEuropehadrisento41timesthatinSub-SaharanAfrica,andinNorthAmericaitwas57timesmore(seeFigure6).ThisispartlyexplainedbythefactthatSub-SaharanAfricainvestmentpercapitain2021hadfallentoalmosthalfits2015valueofUSD6perperson(IRENAandCPI,2023).Publicfinancinghasacriticalroletoplaytohelpachieveajustandinclusiveenergytransition.WORLDENERGYTRANSITIONSOUTLOOK202321Ajustandinclusiveenergytransitionwillhelptoovercomedeepdisparitiesthataffectthequalityoflifeofhundredsofmillionsofpeople.Energytransitionpoliciesmustbealignedwithbroadersystemicchangesthataimtosafeguardhumanwell-being,advanceequityamongcountriesandcommunities,andbringtheglobaleconomyinlinewithclimate,broaderenvironmentalandresourceconstraints.Supportingdevelopingcountriestoacceleratetheenergytransitioncouldimproveenergysecuritywhilepreventingtheglobaldecarbonisationdividefromwidening.Adiverseenergymarketwouldreducesupplychainrisks,improveenergysecurityandensurelocalvaluecreationforcommodityproducers.Accesstotechnology,training,capacitybuildingandaffordablefinancewillbevitaltounlockthefullpotentialofcountries’contributionstotheglobalenergytransition,especiallyforthoserichinrenewablesandrelatedresources.Humanwelfareandsecuritymustremainattheheartoftheenergytransition.Systemicchangesbeyondtheenergysectorwillbeneededtoovercomepervasiveproblemsrelatedtohumanwelfareandsecurity,aswellasdeeplyembeddedinequalities;arenewables-basedenergytransitioncanhelpalleviatesomeoftheconditionsthatunderlytheseissues.Themoretheenergytransitioncanhelpsolvethesebroadchallenges,themoreitspopularacceptanceandlegitimacywillrise,providedalsothatcommunityneedsandinterestsarewellrepresentedandintegratedintotransitionplanning.PREVIEWFIGURE6GrowingdisparitiesinpercapitainvestmentbetweenSub-SaharanAfrica,EuropeandNorthAmericaInvestmentinrenewableenergypercapitaSub-SaharanAfricaEuropeNorthAmerica(excludingMexico)InvestmentinrenewableenergypercapitaSub-SaharanAfricaEuropeNorthAmerica(excludingMexico)2015202122times41times23times57times2015202122times127times23times179times22Toachieveasuccessfulenergytransition,internationalco-operationneedstobeenhancedandredesigned.Thecentralityofenergytotheglobaldevelopmentandclimateagendaisundisputed,andinternationalco-operationinenergyhasincreasedexponentiallyinrecentyears.Thisco-operationplaysadecisiveroleindeterminingtheoutcomesoftheenergytransitionandisacriticalavenueforachievinggreaterresilience,inclusionandequality.Thedynamismofenergysectorsandgeopoliticaldevelopmentsnecessitatesgreaterscrutinyofinternationalco-operationmodalities,instrumentsandapproachestoensuretheirrelevance,impactandagility.Theexpandingvarietyofactorsintheenergytransitionrequiresanassessmentofrolestoleveragerespectivestrengthsandefficientlyallocatelimitedpublicresources.Theimperativesofdevelopmentandclimateaction,coupledwithchangingenergysupplyanddemanddynamics,requirecoherenceandalignmentaroundpriorityactions.Forinstance,investmentinsystemsforcross-borderandglobaltradeofenergycommoditieswillrequireinternationalco-operationatanunprecedentedscale.Itis,therefore,essentialtoreconsidertherolesandresponsibilitiesofnationalandregionalentities,internationalorganisations,andinternationalfinancialinstitutionsandmultilateraldevelopmentbankstoensuretheiroptimalcontributiontotheenergytransition.AchievingtheenergytransitionwillrequirecollectiveeffortstochannelfundstotheGlobalSouth.In2020,multilateralandbilateraldevelopmentfinanceinstitutions(DFIs)providedlessthan3%oftotalrenewableenergyinvestments.Goingforward,theyneedtodirectmorefunds,atbetterterms,towardslarge-scaleenergytransitionprojects.Moreover,financingfromDFIswasprovidedmainlythroughdebtfinancingatmarketrates(requiringrepaymentwithinterestrateschargedatmarketvalue)whilegrantsandconcessionalloansamountedtojust1%oftotalrenewableenergyfinance(IRENA&CPI,2023).Theseinstitutionsareuniquelyplacedtosupportlarge-scaleandcross-borderprojectsthatcanmakeanotabledifferenceinacceleratingtheglobalenergytransition.REWRITINGINTERNATIONALCO-OPERATIONWORLDENERGYTRANSITIONSOUTLOOK2023231.5°CScenarioREFERENCESESMAP(2022),MiniGridsforHalfaBillionPeople:MarketOutlookandHandbookforDecisionMakers,WorldBank,Washington,D.C.,https://openknowledge.worldbank.org/entities/publication/b53273b6-b19a-578e-8949-8dc5c7a3cd79ESMAP,etal.(2022),Off-GridSolarMarketTrendsReport2022:Outlook,WorldBank,Washington,D.C.,https://documents1.worldbank.org/curated/en/099355110142233755/pdf/P17515005a7f550f1090130cf1b9f2b671e.pdfIPCC(2022),"SummaryforPolicymakers",ClimateChange2022:MitigationofClimateChange.ContributionofWorkingGroupIIItotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange,CambridgeUniversityPress,Cambridge,UK,andNewYork,NY,10.1017/9781009157926.001IRENA(2022),Renewableenergytargetsin2022:Aguidetodesign,InternationalRenewableEnergyAgency,AbuDhabi,www.irena.org/Publications/2022/Nov/Renewable-energy-targets-in-2022IRENA(2023a),Renewablecapacitystatistics2023,InternationalRenewableEnergyAgency,AbuDhabi,www.irena.org/Publications/2023/Mar/Renewable-capacity-statistics-2023IRENA(2023b),Thechangingroleofhydropower:Challengesandopportunities,InternationalRenewableEnergyAgency,AbuDhabi,www.irena.org/Publications/2023/Feb/The-changing-role-of-hydropower-Challenges-and-opportunitiesIRENAandCPI(2023),Globallandscapeofrenewableenergyfinance2023,InternationalRenewableEnergyAgencyandClimatePolicyInitiative,AbuDhabi,www.irena.org/Publications/2023/Feb/Global-landscape-of-renewable-energy-finance-2023TheWorldEnergyTransitionsOutlookoutlinesavisionforthetransitionoftheenergylandscapetoreflectthegoalsoftheParisAgreement,presentingapathwayforlimitingglobaltemperatureriseto1.5°CandbringingCO2emissionstonetzerobymid-century.Thispreviewpresentshigh-levelinsightsfromtheforthcoming2023report,whichbuildsontwoofIRENA’skeyscenariostocaptureglobalprogresstowardmeetingthe1.5°Cclimategoal.ThePlannedEnergyScenarioistheprimaryreferencecaseforthisstudy,providingaperspectiveonenergysystemdevelopmentsbasedongovernments’energyplansandotherplannedtargetsandpoliciesinplaceatthetimeofanalysiswithafocusonG20countries.The1.5°CScenariodescribesanenergytransitionpathwayalignedwiththe1.5°Cclimategoal–thatis,tolimitglobalaveragetemperatureincreasebytheendofthepresentcenturyto1.5°C,relativetopre-industriallevels.Itprioritisesreadilyavailabletechnologysolutions,whichcanbescaledupatthenecessarypacetomeetthe1.5°Cgoal.1.5°CScenarioPlannedEnergyScenarioPREVIEWwww.irena.org

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱