阿拉伯地区蓝色和绿色氢气的潜在发展(英)-联合国西亚经济社会委员会-74页VIP专享VIP免费

Potential blue and green hydrogen developments
in the Arab region
VISION
ESCWA, an innovative catalyst for a stable, just and ourishing Arab region
MISSION
Committed to the 2030 Agenda, ESCWAs passionate team produces innovative
knowledge, fosters regional consensus and delivers transformational policy advice.
Together, we work for a sustainable future for all.
Potential blue and green
hydrogen developments
in the Arab region
E/ESCWA/CL1.CCS/2022/TP.1
Economic and Social Commission for Western Asia
PotentialblueandgreenhydrogendevelopmentsintheArabregionVISIONESCWA,aninnovativecatalystforastable,justandflourishingArabregionMISSIONCommittedtothe2030Agenda,ESCWA’spassionateteamproducesinnovativeknowledge,fostersregionalconsensusanddeliverstransformationalpolicyadvice.Together,weworkforasustainablefutureforall.PotentialblueandgreenhydrogendevelopmentsintheArabregionE/ESCWA/CL1.CCS/2022/TP.1EconomicandSocialCommissionforWesternAsia©2022UnitedNationsAllrightsreservedworldwidePhotocopiesandreproductionsofexcerptsareallowedwithpropercredits.Allqueriesonrightsandlicenses,includingsubsidiaryrights,shouldbeaddressedtotheUnitedNationsEconomicandSocialCommissionforWesternAsia(ESCWA),email:publications-escwa@un.org.Thefindings,interpretationsandconclusionsexpressedinthispublicationarethoseoftheauthorsanddonotnecessarilyreflecttheviewsoftheUnitedNationsoritsofficialsorMemberStates.ThedesignationsemployedandthepresentationofmaterialinthispublicationdonotimplytheexpressionofanyopinionwhatsoeveronthepartoftheUnitedNationsconcerningthelegalstatusofanycountry,territory,cityorareaorofitsauthorities,orconcerningthedelimitationofitsfrontiersorboundaries.Linkscontainedinthispublicationareprovidedfortheconvenienceofthereaderandarecorrectatthetimeofissue.TheUnitedNationstakesnoresponsibilityforthecontinuedaccuracyofthatinformationorforthecontentofanyexternalwebsite.Referenceshave,whereverpossible,beenverified.MentionofcommercialnamesandproductsdoesnotimplytheendorsementoftheUnitedNations.Referencestodollars($)aretoUnitedStatesdollars,unlessotherwisestated.SymbolsofUnitedNationsdocumentsarecomposedofcapitalletterscombinedwithfigures.MentionofsuchasymbolindicatesareferencetoaUnitedNationsdocument.UnitedNationspublicationissuedbyESCWA,UnitedNationsHouse,RiadElSolhSquare,P.O.Box:11-8575,Beirut,Lebanon.Website:www.unescwa.org.AcknowledgementsThisreportwasdevelopedbytheEnergySectionintheClimateChangeandNaturalResourcesSustainabilityClusteroftheUnitedNationsEconomicandSocialCommissionforWesternAsia(ESCWA).TheleadauthorsareMs.RadiaSedaoui,ChiefEnergySection,ESCWA,andDr.MostefaOuki,EnergyExpert.InputsandsupportwereprovidedbySeanRatka,EconomicAffairsOfficer,ESCWA,MustafaAnsari,EconomicAffairsOfficer,ESCWAandMayaMansour,EconomicAffairsAssistant,ESCWA.ThisreportalsodrawsoninputsfromparticipantsattheESCWAwebinar:PotentialBlueandGreenHydrogenDevelopmentsintheArabCountrieson14December2021.ParticipantsincludedJoseM.Bermudez,EnergyTechnologyAnalyst,IEA;EmanueleTaibi,Lead,PowerSectorTransformationStrategies,IRENA;RamiShabaneh,SeniorResearchAssociate,KAPSARC;SuhailShatila,SeniorEnergySpecialist,Strategy,APICORP;andKhalilAlHanashi,EnergyTechnologyLead,PDO.34PotentialblueandgreenhydrogendevelopmentsintheArabregionContentsIntroduction........................................................................................................................................7Context..............................................................................................................................................................9Purposeandcontents....................................................................................................................................101.Hydrogenproduction,transportandstorage.........................................................................11A.Production...................................................................................................................................................13B.Hydrogencategories................................................................................................................................14C.Transportandstorage................................................................................................................................14D.RelevantaspectsfortheArabregion....................................................................................................152.Existingandpotentialhydrogenuses.....................................................................................17A.Currentstructureofhydrogenuses.......................................................................................................19B.Hydrocarbonandpetrochemicalindustries........................................................................................19C.Steelindustry.............................................................................................................................................20D.Transport.....................................................................................................................................................20E.Potentialsectorsforblueorgreenhydrogenuse...............................................................................213.HydrogenandinterlinkageswiththeSDGs...........................................................................23A.SDGinterlinkages.....................................................................................................................................24B.Low-carbonhydrogenandnationallydeterminedcontributions....................................................264.Renewableandnon-renewableenergypotentialintheArabregion..............................27A.Overview.....................................................................................................................................................29B.Renewableenergypotential...................................................................................................................29C.Naturalgasendowment...........................................................................................................................325.ExistingandplannedhydrogendevelopmentsintheArabregion....................................35A.Changingscene.........................................................................................................................................37B.Low-carbonhydrogendevelopments....................................................................................................37C.Plannedhydrogenexports.......................................................................................................................44123455FiguresFigure1.Sharesofglobalhydrogenmainusesbysector–2020..................................................................................19Figure2.Arabregion:installedrenewableenergycapacity–2020(MW).................................................................30Figure3.Arabregion:mainprovednaturalgasreserves(bcm)...................................................................................33Figure4.Arabregion–2020naturalgasproductionandconsumption(bcm)...........................................................34Figure5.Indicativehydrogenproductioncosts:2019($/kg)..........................................................................................51Figure6.Indicativehydrogenproductioncosts:2025–2030($/kg).............................................................................51Figure7.Estimatedbluehydrogenproductioncosts–2018($/kg)..............................................................................52Figure8.Plannedelectrolysercapacityby2030(GW)...................................................................................................53Figure9.PlannedNorthAfricaelectrolysercapacityasperEurope’sroadmap(MW)...........................................54TablesTable1.RelevantaspectsbycategoryofArabcountry................................................................................................16Table2.Low-carbonhydrogenandSDGlinkages..........................................................................................................25Table3.Arabregion:targetfuturerenewableenergycapacityandpowermixshare...........................................316.Challengesandopportunities...................................................................................................47A.Technicalandcommercialbarriers.......................................................................................................49B.Evolvingeconomics..................................................................................................................................50C.Financingconstraints...............................................................................................................................54D.Legalandregulatoryframework............................................................................................................56E.OpportunitiesforArabcountries............................................................................................................577.Conclusionsandrecommendations.......................................................................................59A.Conclusions................................................................................................................................................61B.Recommendations.....................................................................................................................................62References........................................................................................................................................64Endnotes............................................................................................................................................6967IntroductionKeymessagesTheArabregion’seconomyishighlydependentonfossilfuelsassourcesofenergyandfeedstock,employmentandexportrevenues.Developingandintroducinglow-carbonhydrogen,whetherblueorgreen,intheArabregionwouldplayanimportantroleaspartofatoolboxofcleanenergysolutionsandwouldleveragetheregion’snaturalgasresourcesandexpansiverenewableenergypotential.Diversifyingtheenergymixisakeyaspectoftheenergytransition.Beyondacceleratingtheuptakeofrenewableenergyandelectrifyingrelevantsectors,alternativeenergycarriersincludinghydrogenandhydrogenderivativesshouldbeexploredinordertoensureajustandsustainableenergytransition.Low-carbonhydrogendevelopmentcanchangetheenergymixintheArabregionwhilealsodiversifyingexportrevenuesandreducingenergy-relatedemissionsinlinewiththe2030AgendaforSustainableDevelopment.9ContextWithintheframeworkoftheUnitedNations2030AgendaforSustainableDevelopmentandtheParisAgreement(COP21)onclimatechange,ArabStatesareworkingonthedevelopmentofimplementationprogrammestoachieveajustandinclusivetransitioninlinewiththeSustainableDevelopmentGoals(SDGs),includinggoal7to“ensureaccesstoaffordable,reliable,sustainableandmodernenergyforall”andgoal13to“takeurgentactiontocombatclimatechangeanditsimpacts”.Diversifyingtheenergymixisakeyaspectoftheenergytransition.Inadditiontoacceleratingtheuptakeofrenewableenergyandelectrifyingrelevantsectors,alternativeenergycarriersneedtobeexplored,includinghydrogenandhydrogenderivativesinordertoensureajustandsustainableenergytransition.Toreachourtargetswithoutleavinganyonebehind,wemustsupportStatesandcommunitiestoadapttoagreeneconomythroughsocialprotectionandnewskills,ensuringthateveryoneinneedispreparedtotakeadvantageofthe30millionnewgreenjobsexpectedby2030.Inthelongrun,thetransitiontoahydrogeneconomycanalsoensurethatStatesintheArabregionarenotoverlydependentonaselectfewenergysourcesandarethereforelessexposedtosupplyshocks,thusbecomingcruciallymoreresilient.Globally,thereisarapidlygrowingnumberofStates,institutionsandcorporationsthathaveintroducedorwillbesoonintroducingtargetstoreducegreenhousegasemissions(GHGs)andachievecarbonneutralityby2050.TheArabregion’seconomyishighlydependentonfossilfuelsassourcesofenergyandfeedstock,employmentandexportrevenues.ThishasresultedinanunsustainableincreaseinGHG10PotentialblueandgreenhydrogendevelopmentsintheArabregionemissionsintheArabregionwithsomeArabStatesrankingamongthehighestpercapitaemittersofCO2.1Thissituationnotonlyhasdirect,adverseimplicationsontheclimatebutalsoseriouslyaffectstheregion’seconomy.Itisthereforevitalthattheregionaddressitsenvironmentalandeconomicvulnerability,andthesituationcouldworsenifenergytransitionmeasuresarenoturgentlyaccelerated.Theseincludearangeofsustainableenergysolutionsandmeasures,suchasanincreaseintheuseofrenewablesourcesofenergyandtheimplementationofeffectiveenergyefficiencymeasurestoreachthecrucialobjectiveofcarbonneutrality.Thedevelopmentandintroductionoflow-carbonhydrogen,2whetherblueorgreen,intheArabregionwouldplayanimportantroleaspartofatoolboxofcleanenergysolutionsandwouldleveragetheregion’snaturalgasresourcesandexpansiverenewableenergypotential.EffortsarealreadybeingdeployedinsomeArabStatestodevelopproductioncapacitiesofblueandgreenhydrogen.TheyarestillhoweverintheirearlydevelopmentphaseandtheeffortsarelimitedtoonlyafewStates.PurposeandcontentsThisreportfocusesonexistingandplannedhydrogendevelopmentsintheArabregionandexploresanddiscussesthemajorchallengesandopportunitiesofhydrogenproductionandusetosupporttheregion’senergytransitionwithinthecontextofthe2030AgendaforSustainableDevelopment.ThereportalsoconsidersrecentdecisionsbyseveralStatestointroducenet-zeroGHGtargetsby2050anddiscussestheimplicationsforsustainablehydrogenproduction.Hydrogenproduction,transportandstorage112PotentialblueandgreenhydrogendevelopmentsintheArabregionOver75%ofallpurehydrogenproducedgloballycomesfromnaturalgasusingsteamreforming.Totransformgreyhydrogenintomoresustainablebluehydrogen,carboncaptureandstorage(CCS)orcarboncaptureutilizationandstorage(CCUS)isrequired.Thevastmajorityofhydrogenproductiontodayisnon-sustainablegreyhydrogen.Thehydrogenproducedthroughelectrolysiswithelectricitysuppliedfullyfromrenewablesourcesofenergyiscalled“greenhydrogen”andiswidelyconsideredthemostfavourableoptionforlong-termdecarbonizationmeasures.renewablegreenhydrogenaccountsforfarlessthan1percentoftheglobalproductionofpurehydrogenandistwotothreetimesmoreexpensivethanbluehydrogen.About85%ofthehydrogenproducedisconsumedwhereitisproducedornearby.Thismaychangeinafutureglobalhydrogeneconomywhereexportsandlow-cost,long-distancetransportarekey.75%1%85%Keymessages13A.ProductionHydrogeninitsnaturalformhasbeenidentifiedindifferentlocationsonshoreandoffshore.Atpresent,thereisonlyonelocationintheworldwherenaturalhydrogenisproduced,3intheBourakébougoubasininMali,WestAfrica,wheretheCanadiancompanyHydromaoperatesapilotproject.4Currently,allhydrogenconsumedworldwideisproducedusingtechnologicalprocesses.Overthepastfewdecades,severalStateshavebeenproducinghydrogenatfacilitiesmainlylocatednearconsumptionareas.Forthemostpart,hydrogenisproducedusingnaturalgasasaprimarysourceandusedprimarilyinoilrefiningandtheproductionofammonia.Inadditiontothededicatedhydrogenproductiontechnologiestoproducepurehydrogen,hydrogencanalsobeobtainedasaby-productfromotherprocesses,alongwithothergases.In2020,atotalof90milliontonsofhydrogenwereproducedglobally.5About80percentofthistotalwaspurehydrogenproducedbydedicatedhydrogenplantsandjustover20percentwashydrogenmixedwithothergases.6Therearedifferentwaystoproducepurehydrogen,threeofwhicharelistedbelow:7•Reformingofhydrocarbons.•Coalandbiomassgasification.•Electrolysis.SteamMethaneReforming(SMR)ispresentlythedominanthydrogenproductiontechnology.SMRusesnaturalgas(methane)asaprimarysourcewithsteamtoproducehydrogen.In2018,naturalgas-basedreformingtechnologyaccountedforover75percentofallpurehydrogenproducedglobally.Hydrogencanalsobeproducedthroughgasification,usingcoalorbiomassasprimarysources.Coalgasificationisatechnologythatcametoprominenceinthe1800sinEuropeandremainspopularespeciallyincoalproducingcountriessuchasChinaandSouthAfrica.Biomasscanalsobeusedtoproducehydrogenthroughthegasificationprocess.Electrolysisisdifferentfromtheabovetwocategoriesthatrelyonfossilfuelsasprimarysources(exceptforbiomassgasification).Incontrast,electrolysisuseselectricitytosplitwaterintohydrogenandoxygen,withtheelectricityultimatelycomingfromfossilfuelsorrenewablesources.Thisisanimportantfactorinthetypeofhydrogenproduced,asexplainedbelow.Today,electrolysisusingrenewablesaccountsforfarlessthan1percentoftheglobalproductionofpurehydrogen.Thefollowingarethethreemainelectrolysistechnologies:Alkalinewaterelectrolysis(AWE).Protonexchangemembrane(PEM)electrolysis.Solidoxideelectrolysiscell(SOEC).ofhydrogenwereproducedgloballyin202090milliontons14PotentialblueandgreenhydrogendevelopmentsintheArabregionB.HydrogencategoriesExceptforbiomassgasification,reformingandgasificationtechnologiesusefossilfuelsasprimarysourcestoproducehydrogen.Consequently,theseprocessesgeneratecarbondioxide(CO2)thatisreleasedintotheatmosphere.Thehydrogenproducedthroughthesetechnologiesiscalled“greyhydrogen”,“brownhydrogen”,or“blackhydrogen.”In2020,thededicatedproductionofhydrogenresultedinthetotalemissionofabout900milliontonsofCO2.8Someoftheabovetechnologies,especiallySMR,canbecoupledwithCCSorCCUSfacilitiesthatcapturetheCO2andstoreitoruseitandstoreit.Inthiscase,thehydrogenproducedislabelled“bluehydrogen.”Hydrogenproducedusingthemethanepyrolysistechnologyiscategorizedas“turquoisehydrogen”.Hydrogenproducedthroughelectrolysiswithelectricitysuppliedfullyfromrenewablesourcesofenergyiscalled“greenhydrogen”andisconsideredthemostfavourableoptionfordecarbonizationmeasures.However,asdiscussedlaterinthispaper,itispresentlyfacingchallengesduetohighproductioncosts.Finally,thereisnointernationallyagreedcolourcategoryclassificationforthehydrogenproducedbydifferenttechnologiesandfromdifferentprimarysources.Othercolourshavebeenusedtodescribehydrogenproduced,forexample,withanuclearsourceofenergy;coalorlignite;orasaby-productofindustrialprocesses.Nevertheless,thecategoriesofblueandgreenarewidelyusedtorefertohydrogenproducedfromfossilfuels(mainlynaturalgas)withCCSorCCUSandhydrogenproducedusingrenewableenergysources.C.TransportandstoragePresently,about85percentofthehydrogenproducedisconsumedwhereitisproducedornearby.Trucksorpipelinestransporttheremaining15percent.9Overthenext10or15years,thiscouldchangeashydrogenistradedandshippedacrossregionsandcountries.Thehydrogentransportationmodechosenwilldependontransportationcosts,whichareessentiallydrivenbythevolumeofhydrogentobetransported,theproductioncost,thetransportationdistance,theinterveninggeographyandtherelevantlawsandregulations.Therearevariousoptionstotransporthydrogen:•Blendingthehydrogenwithnaturalgasingastransmissionpipelines,10orthroughdedicatedhydrogenpipelines.•Shippingofliquidhydrogenaspurehydrogen.•Shippinginammoniaform.•Shippinginliquidorganichydrogencarriers(LOHCs).Pipelinesarethecheapestmodeofhydrogentransportationacrossmedium-tolong-termdistances(between1,000kmand4,000km)11Forlonger-distanceshipmentsoflargevolumesofhydrogenbetweencountries,conversionintoammoniaorliquidorganicformsispreferred.However,thecostsofconversiontoliquidformsandthenreconversiontogasincreasethetotalcosts,withameaningfulhittoenergyefficiency.Asindicatedabove,thecostcompetitivenessofthemodeoftransportationwilldependontheproductioncostofhydrogen,butalsoonwhethertheenduseispurehydrogenorammonia.Safety15considerationsareanotherkeydriverinthechoiceofsuitabletransportationmodes.Inadditiontotransportationthroughpipelines,trucks(ortrainsdependingonroutes)candistributesmall-scalevolumesofhydrogenoverrelativelyshortdistances,withhydrogenstoredinliquidorcompressedgaseousformsorasammonia.Thestorageofhydrogenwilldependmainlyonthevolumestobestored;thestorageduration;movementsinandoutofstorageandgeologicalconditions.Forsmallvolumesovershortperiods,storageinpressurizedtanksisusuallythepreferredoption.Forlarge-scalevolumesoverlongerperiods,storageingeologicalformationsisabetteroption,includingsaltcavernsanddepletedhydrocarbonreservoirs.However,oilandgasreservoirscouldpresentcontaminationissuesthatwouldlimitorprohibittheiruse.Aquifershavealsobeenconsideredasapotentialstorageoption,buttheirsuitabilityremainstobefullyinvestigatedasnopurehydrogenstoragehastakenplaceyet.Infact,thecommercialviabilityofhydrogenstorageinbothdepletedhydrocarbonreservoirsandaquifersremainstobeproven.12D.RelevantaspectsfortheArabregionTheproduction,transportationandstorageofhydrogenwilldifferfromcountrytocountryintermsoftechnologiesandprimarysourcesusedforhydrogenproduction.DifferentArabStatesmayfollowdifferentpathwaystointroducehydrogenintotheirrespectiveeconomies.Thechoiceoftechnologyisdrivenbycostsandnon-costfactors.Withtheincreasingconcernsaboutachievingourclimatetargetsbymid-centuryandtheSDG7targetsby2030,especiallyinthetransportsectorwheretheArabregionremainsthemostenergy-intensiveamongallregions,thechoiceoftechnologywillbehighlyinfluencedbythesedriversandrelatedpolicies,lawsandregulations.ThevastArabregionstretchesfromtheAtlantictotheIndianOceanandisfarfromhomogenous.Itischaracterizedbydifferentpoliticalandeconomicsystems;financialandnaturalresourceendowments;populationsizes;geography;geologicalconditionsandclimates.Thefollowingtableoutlinessomeofthefeaturesthatcouldberelevanttotheuse,transportationandstorageofblueandgreenhydrogenintheArabregionbycategoryofcountry.Theaspectsintable1,whichdonotnecessarilyconstituteacomprehensivelistoffactorsrelevanttotheproduction,transportationandstorageofhydrogen,showthatArabhydrocarbon-producingcountriescouldpotentiallyaccountforthelargestshareoftheArabregion’sfuturelow-carbonhydrogenoutput.16PotentialblueandgreenhydrogendevelopmentsintheArabregionTable1.RelevantaspectsbycategoryofArabcountryHydrocarbon-producingcountriesFuel-importingcountriesAmplelow-costnaturalgassuppliesofsomegas-exportingcountriescouldbeusedforbluehydrogenproductionthroughhydrocarbonreformingwithCCSorCCUS(e.g.Qatar).Rapidandlargedeploymentofrenewableelectricitygenerationcapacitywithlowgenerationcostsinsomecountriescouldbeleveragedtoproducegreenhydrogenusingelectrolysis(e.g.Egyptpotentially,SaudiArabiaandtheUnitedArabEmirates).Somefuel-importingcountriescouldleveragetheirexistingandfast-growingrenewableenergycapacity,underdevelopmentandplanning,toproducegreenhydrogenusingelectrolysistechnology(e.g.Morocco).Asindicatedintheoppositecolumn,hydrocarbon-producingcountriescouldalsotakeadvantageoftheirexpandingrenewableenergycapacitytoproducegreenhydrogen.However,bluehydrogenproductionislikelytobedevelopedmainlybyState-ownednationaloilandgascompanies,whilegreenhydrogenprojectsareexecutedmainlybyutilities,inpartnershipwithprivatelocaland/orinternationalcompanies.Existinghydrogenplantsandrelatedinfrastructureinoilrefineriesandammoniasitescouldbeusedtoproducelow-carbonhydrogen.Leveragingexistingindustrialparks(e.g.JubailinSaudiArabiaandRuwaisintheUnitedArabEmirates)providesasignificantadvantageinthecreationofnewhydrogenhubsorclusters.ExistingCCSfacilitiesinsomehydrocarbon-producingcountriescouldbeused.Naturalgaspipelineinfrastructurealreadyexistsinkeygas-producingcountriesthatcouldpotentiallybeusedforlow-carbonhydrogenblendingandretrofittingorre-purposingprojects.DepletedhydrocarbonreservoirscouldbeusedforundergroundstorageofCO2andhydrogeninsomecountries,dependingontheirsuitabilityandcommercialviability.CapturedCO2couldbeusedinenhancedoilrecovery(EOR)projects.TheexperienceofArabliquefiednaturalgasandliquefiedpetroleumgas(LNG/LPG)exportersintheshippingofcryogenicproductscouldbeleveragedforthelong-distancetradeoflow-carbonhydrogenandammonia.17Existingandpotentialhydrogenuses218PotentialblueandgreenhydrogendevelopmentsintheArabregionHydrogenisversatileandcanbeusedtohelptacklevariouscriticalenergychallenges.Currently,oilrefiningandammoniaproductionaccountforover80percentofallhydrogenusedglobally.Whereverpossible,bluehydrogenproductioncouldbeaquickeroptiontoreduceGHGemissionsandsupportthelonger-termscalingupofgreenhydrogenproductioncapacity.IntheArabregion,thebulkofhydrogenisusedinoilrefiningandpetrochemicals.Theroleoflow-carbonhydrogeninsteelmaking,transportandhydrogen-basedfuelsintheregionissettogrow.Theintroductionoflow-carbonhydrogenintheworld’seconomiesisakeypieceintheportfolioofsustainableenergysolutionsandactionsneededtoachievecarbonneutralityby2050.1%205080%Keymessages19A.CurrentstructureofhydrogenusesAtpresent,hydrogenismainlyusedinthehydrocarbonandpetrochemicalindustries(includingammoniaproductionforfertilizer).Hydrogenisalsousedinthesteelindustry,especiallyinthedirectreducediron(DRI)process.In2020,oilrefiningandammoniaproductionaccountedforover80percentofallhydrogenusedglobally.TheseindustrieshavebeendevelopedandcontinuetobedevelopedinArabhydrocarbon-producingcountries.Figure1.Sharesofglobalhydrogenmainusesbysector–202013%6%43%38%OilrefiningAmmoniaMethanolSteel(DRI)Source:IEA,2021b.B.HydrocarbonandpetrochemicalindustriesHydrogenhasbeenusedintheoilrefiningindustryforalongtime.Hydrogenconsumedbyoilrefineriesissuppliedbydifferentsources,includingintegratedfacilitieslocatedattherefinerysiteandhydrogenproducedasaby-productbytherefineryandindustrialgascompanies.80%In2020,oilrefiningandammoniaproductionaccountedofallhydrogenusedglobally20PotentialblueandgreenhydrogendevelopmentsintheArabregionInrefineries,hydrogenisusedmainlytoremovesulfurfrompetroleumproductsinthede-sulfurizationprocessandinhydrocrackingtocracklargehydrocarbonmoleculestoproducesmallermoleculessuchasdieselorgasoline.13Inthepetrochemicalindustry,hydrogenisusedtoproduceammoniafornitrogenousfertiliserandotheruses.Anotherapplicationofhydrogeninpetrochemicalsisthemanufactureofsynthesisgasorsyngasfortheproductionofmethanol.Hydrogenisalsoemployedintheproductionofsyngasinthegas-to-liquids(GTL)process.However,thisapplicationislimitedtoGTLproductioncentres,whichintheArabregionarelimitedtoQatar.C.SteelindustryTheglobalshareofhydrogenuseinthesteelindustryremainsminorcomparedtotheuseinhydrocarbonandpetrochemicalindustries,asshowninthefigureabove.Thebulkofglobalsteeloutputisproducedthroughtheblastfurnace-basicoxygenfurnace(BF-BOF)processusingcoalasareducingagent.Theprocessproduceshydrogenasaby-productwithothergasesandhydrogenisconsumedon-siteorsoldtootherconsumers.Hydrogenisusedalsoasareducingagentinthedirectironreduction-electricarcfurnace(DRI-EAF)steel-makingprocess.Inthisprocess,hydrogenisproducedfromdedicatednaturalgas-basedhydrogenunits.Presently,theproductionofsteelinvolvestheuseoffossilfuels,mainlycoal.Asaresult,thesteelindustryisamajoremitterofCO2andfacesmajordecarbonizationchallenges,especiallyinEurope.14Inordertoaddressthisissue,oneoptionistousegreenhydrogenproducedfromrenewableenergysourcesinsteadoffossilfuels.Thebluehydrogenrouteisanotheralternativewhereregulationsmaypermitduringatransitionphase.D.TransportGlobally,thetransportsector,akeyconsumerofrefinedproducts,isundergoingastructuralchangeinthetypeandqualityoffuelsitneedstouseorcanusetoreduceitsGHGemissionsanditsincreasingurbanpollution,especiallyindevelopingeconomies.In2018,thissectorrepresentedwellbelow1percentofallthehydrogenconsumedintheworld.Presently,hydrogenfuelcellelectricvehicles(FCEV)accountforthebulkofallhydrogenusesbythetransportsector.Over50percentofallhydrogenfuellingstationsareintheAsiaPacificregion,mainlyinJapan21andKorea.Regionsprojectedtorecordhighgrowthofhydrogen-fuellingstationsoverthenexttenyearsincludeChina,Europe,JapanandtheUnitedStates.However,thehighcostofhydrogeninpassengervehiclesanditslimitedcompetitivenessagainstbatteryelectricvehiclesremainsaconstrainingissue.Long-haulandheavy-dutyroadtransportcouldfavourtheuseofhydrogen-basedfuelsolutions.Inthelongterm,theuseofhydrogen-basedfuelsintheshippingandpossiblyaviationindustriescouldalsopresentbetteropportunitiestodecarbonizethesetransportationsegments.15E.PotentialsectorsforblueorgreenhydrogenuseExceptforveryfewbluehydrogenprojectsintheGulfCooperationCouncil(GCC)area,allofthehydrogenconsumedintheArabregionisgreyhydrogenproducedfromfossilfuelsourceswithoutCCSorCCUS.ThebulkofthehydrogenusedintheArabregionisinoilrefining,petrochemicals(ammoniaandmethanol),thesteelindustryandGTLproduction.AspartofasustainableenergytransitionandtheachievementoftheSDGs,theabatementofthecarbonfootprintsofthesesectorsorindustriesisachallengingobjectivethatneedstobeaddressed.However,theArabregion’soilrefiningcapacityhasinfactincreasedsignificantlyinrecentyears,especiallyintheGCCcountriesandIraq,whereaboutadozennewprojectsandupgradesareunderdevelopmentorinplanning.Thisistakingplaceatamoment22PotentialblueandgreenhydrogendevelopmentsintheArabregionwhenthepetroleumproductsindustryisfacingmountinguncertaintiesduetoexcesscapacity,theglobaldecarbonizationpushandtheCOVID-19healthcrisis,whichcouldhavelong-termimplications.Internationalregulationsforacontinuousloweringofthesulfurcontentintransportfuelswillrequireanincreaseinhydrogenvolumesforde-sulfurizationunits,whichcouldbeaddressedusingblueorgreenhydrogen.However,thisisachallengingpropositionsincetheselow-carbonformsofhydrogenaremuchmoreexpensivethanthegreyhydrogensuppliescurrentlyused.Largegas-basedchemicalplants,suchasammoniaandmethanolplants,locatedmainlyingasproducingcountries(e.g.,Algeria,Egypt,SaudiArabiaandtheUnitedArabEmirates),useexclusivelyhydrogenfromgreyhydrogensources.Thecarbonfootprintofthehydrogenproductionsegmentisapotentialbarrierforinternationalammoniaandmethanoltrade,especiallyforexportstoEuropeandsomepartsofAsia.Thus,theblueand/orgreenhydrogendevelopmentpathwaysfortheseindustrieswillhavetobeconsidered.AllsteelplantsintheArabregionusefossilfuelsandproducegreyhydrogen,exceptinonecountry.IntheUnitedArabEmirates,thehydrogenusedintheEmiratesSteelDRIplantisproducedfromnaturalgas.ItishowevercategorizedasbluehydrogensinceCO2producedaspartoftheprocessiscapturedthroughtheADNOCAlReyadahCCUSfacilityandtransportedtooilwellswhereitisusedforEOR.16ThereareseveralsteelplantsinArabhydrocarbon-producingcountriesthatusetheDRIprocess,leveragingtheavailabilityoflow-costnaturalgassuppliestoproducehydrogen.However,exceptfortheUnitedArabEmirates,allthehydrogenproducedisgreyhydrogen.Therefore,greenorbluehydrogenproductiontargetingtheArabsteelindustryisanotherpotentialcandidateforcarbonfootprintreduction.Still,thiswilldependonanumberofkeyfactors,includingthecountries’strategicpolicyobjectives;theavailabilityofadditionalsourcesoflow-costrenewableelectricity;17thepossiblyrequiredprocessmodifications;theoverallcost-competitivenessofsteelandtheavailabilityofcommerciallyviablepremiummarketsforsteelproductswithlowcarbonfootprints,ortheapplicationofcarbonbordertaxesthatcouldbeimposedonunabatedindustrialproducts.ThisisalikelypossibilityforexportstoEuropeastheEuropeanCommissionhasadoptedanewCarbonBorderAdjustmentMechanism(CBAM)whichwillputacarbonpriceonimportsofatargetedselectionofproductssothatclimateactioninEuropedoesnotleadto‘carbonleakage’.ThechallengesfacedbyArabStatestointroduceblueorgreenhydrogeninthehard-to-abatesectorsorindustriesidentifiedinthissectionareexploredfurtherinthesectionChallengesandOpportunities.3HydrogenandinterlinkageswiththeSDGs24PotentialblueandgreenhydrogendevelopmentsintheArabregionA.SDGinterlinkages•Theintroductionoflow-carbonhydrogenintheworld’seconomiesisakeypieceintheportfolioofsustainableenergysolutionsandactionsneededtoachievecarbonneutralityby2050,along-termtargetadoptedbynumerousStates,institutionsandcorporateentities.TheUnitedNationsSDGsprovideaframeworktoidentifyandcategorizethedifferentsustainabledevelopmentadvantagesoflow-carbonhydrogenthroughitslinkageswiththeseSDGs,asoutlinedintable2.•Wecandrawfromthistablethefollowingobservations.First,theimpactoflow-carbonhydrogenislikelytobefullyrealizedoveralongperiod,asthecostoflow-carbonhydrogenisreducedsignificantlyoverthecomingdecades.Thecontributionofgreenhydrogenproductionwilldifferfromonecountrytoanother.Thisisnotonlyduetothelimitedavailabilityoflow-costrenewableenergypotentialandrelatedinfrastructure,butalsobecausetherewilllikelybeaneedtoprioritizetheuseofrenewableenergysourcesforcleanelectrificationpurposesinsomecountries.Whereverpossible,bluehydrogenproductioncouldbeaquickeroptiontoreduceGHGemissionsandsupportthelongertermscalingupofgreenhydrogenproductioncapacity.Evenso,thebluehydrogenproductionpathwaywillbecostly,butrelativelylesscostlythangreenhydrogenproduction.25Table2.Low-carbonhydrogenandSDGlinkagesSustainableDevelopmentGoalLow-carbonhydrogenimpactSDG3:GoodHealthandWell-beingTheintroductionofcleansourcesofhydrogen,especiallyinhard-to-abatesectorsoftheeconomy,hasaclearpositiveimpactonthehealthandwell-beingofcommunities.SDG6:CleanWaterandSanitationInsomeregionsoftheworldthatareseverelyaffectedbywaterscarcityproblems,theuseoffreshwatertoproducegreenhydrogencouldbeacriticalissue.However,thedevelopmentofcommerciallyviableandsustainablesourcesofadditionalseawaterdesalinationcapacitiesforhydrogenproductioncouldalsoprovidewatersuppliesforlocalcommunities.SDG7:AffordableandCleanEnergyThelong-termproductionanduseoflow-carbonhydrogenwillprovideanewsourceofstorageforcleanenergy.Thechallengewillbetoscaleuplow-carbonhydrogenproductioncapacityovertimeandcreateviablemarketstomakeitwidelyaffordable.SDG8:DecentWorkandEconomicGrowthThedevelopmentofamultibillion-dollarlow-carbonindustryinpotentiallow-carbonhydrogenproducingandconsumingcountrieswillinthelongtermprovideeconomicgrowthandemploymentopportunities.SDG9:Industry,InnovationandInfrastructureThedevelopmentoflow-carbonhydrogenisalreadypromotinginnovationalongthelow-carbonhydrogenchainandinthelongterm,aresilientlow-carbonhydrogeninfrastructureislikelytobedeveloped,atleastintheleadinghydrogenproducingandconsumingcentres.SDG11:SustainableCitiesandCommunitiesThelong-termlarge-scaleuseoflow-carbonhydrogeninthemobilityortransportsectorwouldcontributetothereductionofroadtrafficpollutionandhelpimprovelocalenvironmentsincitiesandcommunities.However,low-carbonhydrogenusewouldbemainlyforlong-distanceheavyloadtransport.SDG13:ClimateActionLow-carbonhydrogenispartofamixofcleansolutionsandmeasurestoaddresstheissueofclimatechangemitigation,especiallyinhard-to-abatesectors.However,whenconsideringtheoptionofrenewableenergyuseforgreenhydrogenproduction,thereisaneedtofindanacceptablebalancebetweencleanelectrificationandlow-carbonhydrogenproduction.26PotentialblueandgreenhydrogendevelopmentsintheArabregionB.Low-carbonhydrogenandnationallydeterminedcontributionsBasedonpubliclyavailabledataandinformationatthetimeofwriting,low-carbonhydrogendevelopmentfordomesticandexportmarketshasnotbeenincludedbyArabStatesintheirnationallydeterminedcontributions(NDCs).TheonlynotableexceptionistheUnitedArabEmirates,whichhighlighteditinitssecondNDCsubmittedinDecember2020.However,fiveArabStateshavereferredtoCCStechnologyintheirexistingNDCs.ThiscouldbeanindicationthatCCScouldbeusedtoproducebluehydrogen,specificallyinnaturalgasproducingcountries.CCStechnologyislikelytoincludeusesotherthantheproductionoflow-carbonhydrogen,oritcouldonlybepartofalistof“long-term‘decarbonizationambitions”.18ItshouldhoweverbementionedthatonlyfourArabStates(Algeria,Qatar,SaudiArabiaandtheUnitedArabEmirates)haveanduse(orhaveused)commercialCCSfacilities.19274Renewableandnon-renewableenergypotentialintheArabregion28PotentialblueandgreenhydrogendevelopmentsintheArabregionArabStateswillpursueeitherblueorgreenhydrogenorboth,dependingontheirfossilandrenewableresources.AfewStates(Egypt,Morocco,Oman,SaudiArabiaandtheUnitedArabEmirates)couldemergeassourcesofgreenhydrogenproductioncapacities.Theregion’srenewableenergygenerationcapacityrosefrom1GWin2010toover12GWin2020andisprojectedtogrowto180GWby2030,openingthedoorforincreasedgreenhydrogenproduction.Theroleofnaturalgasintheproductionofbluehydrogeniscriticalforthetransitiontothegreenhydrogenphase.InselectArabcountrieswithnaturalgassurpluses,naturalgascouldalsobeusedtoproducebluehydrogenforexportaftermeetingdomesticmarketneeds.180GWby2030Keymessages29A.OverviewTheArabregion’sexistingandfuturerenewableenergycapacities,aswellasitsendowmentofnaturalgasresources,isimportanttothedevelopmentofblueandgreenhydrogencapacities.EachArabStateorgroupofArabStatesislikelytofollowadifferentpathwaytopotentiallydeveloplow-carbonhydrogenandintroduceitintheireconomy.Hydrocarbonproducerswithlargenaturalgasresourcesmayinitiallychoosetofocusonbluehydrogentodeveloprelativelycost-competitivelow-carbonhydrogencapacities.However,Statesnotendowedorpoorlyendowedwithhydrocarbonresourceswillfocusonthedevelopmentofgreenhydrogen.Infact,someStateswellendowedwithhydrocarbonresourcesmaydecidetodoboth.Thus,thissectionofthereportwillcovertheaboveaspectsandidentifytheArabcountriesthatmaybepotentialcandidatesforhydrogenproduction.B.RenewableenergypotentialOverthelasttenyears,therehasbeenasignificantincreaseintheArabregion’sinstalledrenewableenergycapacity(excludinghydroelectricity),from1GWin2010toover12GWin2020.20However,thebulkofthistotalinstalledrenewableenergycapacityremainsconcentratedinafewcountries,asshowninthefigurebelow.In2020,fourcountries(Egypt,Jordan,MoroccoandtheUnitedArabEmirates)accountedforabout80percentoftheregion’stotalvariablerenewablegenerationcapacity.AccordingtothelatestArabFutureEnergyIndex(AFEX),producedbytheRegionalCenterforRenewableEnergyandEnergyEfficiency(RCREEE)incollaborationwiththeUnitedNationsDevelopmentProgram(UNDP),installedrenewableenergycapacityintheArabregionisprojectedtoreachabout180GWby2030.21ThisestimateisbasedontargetsannouncedbyvariousArabStatesfortheirplannedinstalledrenewableenergycapacityandthetargetedfutureshareofrenewableenergyoutofthetotalpowercapacitymix.22Forthemostpart,thesetargetslookveryambitiouswhencontrastedwithexistinginstalledrenewablecapacityanditsshareofeachcountry’spowercapacitymix(table3).Nevertheless,onekeymessagethatemergesfromthetablebelowisthefactthatevenunderanambitiousdevelopmentscenario,by2030,renewableenergyisunlikelytoexceed30percentoftheinstalledpowermixinmostArabcountries.Egypt,MoroccoandSaudiArabiaaretheexception,withannouncedtargetsof52percentby2030,50percentby2030and42percentby2035,respectively.TheSudan,whichaccountsfortheArabregion’slargestshareofinstalledbioenergycapacity,istargetinga50percentrenewableenergycapacityby2031.Therefore,overthenextfifteenyears,fossilfuels,especiallynaturalgas,areexpectedtocontinuetoplayadominantroleintheArabregion’stotalelectricitygenerationcapacity.23,24Furthermore,thereisanadditionalkeyobservationtomakeregardingtheprojectedlimitedshareofrenewableenergycapacityinsomeArabStates.TheseStateshavealreadycommittedthemselvestolargegasorcoal-firedplants,resultinginalimitedremainingspaceforexpansionofrenewableenergy.Infact,insomecasesthiswilllead(orhasalreadyled)toatotalsurplusofelectricitygenerationcapacityoveracceptablereservemarginthresholds.30PotentialblueandgreenhydrogendevelopmentsintheArabregionFigure2.Arabregion:installedrenewableenergycapacity–2020(MW)050010001500200025003000AlgeriaBahrainEgyptIraqJordanKuwaitLebanonLibyaMauritaniaMoroccoOmanQatarSaudiArabiaStateofPalestineSudanSyriaArabRepublicTunisiaUnitedArabEmiratesYemenWindSolarBioenergySource:IRENA,2021b.Tointroducenewlow-carbonhydrogencapacitiesintheireconomiesfordomesticand/orexportpurposes,policymakerswouldhavetotakesomefundamentalenergypolicydecisions.ThisincludesthecriticalquestionofwhetherArabeconomiesshoulddedicateapart(orratheralargepart)oftheirfuturerenewableenergycapacitytoproducegreenhydrogenorfocusintheneartermontheproductionofbluehydrogenusingnaturalgaswithCCSasatransitionfuel,whereverresourcesandgeologicalconditionsallow.ThiswouldenableArabStatestocontinuewiththecleanelectrificationoftheirpowermixesandadoptpoliciesconsistentwiththe“principleofrenewableenergyadditionality”whichindicates,“ifthereareotherproductiveusesfortheelectricitybeinggeneratedfromrenewablesources,thatelectricityshouldnotbedivertedfromthoseusestoproducegreenhydrogen.”25ForArabStatesnotendowedornotwellendowedwithnaturalgasresources,thesameissueapplies.Still,thechoicewillbebetweenfurthergreenorcleanelectrificationandproductionofgreenhydrogen.31Hydrogenproduction,transportandstorageTable3.Arabregion:targetfuturerenewableenergycapacityandpowermixshareCountryTarget(MW)TargetyearRenewableaspercentageoftargetpowermixVariablerenewableaspercentageof2020powermixAlgeriaa15,0002035302Bahrain7002035100.1Egypt54,0002035425Iraq2,2402025datanotavailable0.7Jordan3,22020303131Kuwait4,2002030150.5Lebanondatanotavailable2030302Libya4,6002030220Mauritaniadatanotavailabledatanotavailabledatanotavailable21Morocco10,00020305219Omandatanotavailable2030301Qatar1,8002030200.3SaudiArabiab58,7002030500.5StateofPalestinedatanotavailabledatanotavailabledatanotavailabledatanotavailableSudan5,3002031505SyrianArabRepublic4,5502030300.1Tunisia3,8152030305UnitedArabEmirates6,5002030datanotavailable7Yemen71420251513Source:RCREEE,2019andIRENA,2021b.aSmati,Said,2021.bOneoftheobjectivesoftheSaudiGreenInitiativeannouncedinApril2021istohave“50percentrenewablesintheKingdom’senergymixby2030”.https://www.saudigreeninitiative.org/.Statesthatarenotendowedorpoorlyendowedwithnaturalgasresourceswillnaturallyhavetocontinuetofocusonthegreenhydrogenoption(e.g.Morocco).However,theshifttogreenhydrogenproductionintheArabregionwilltaketimeandrequiresubstantialinvestment.Thisoverviewofplannedrenewablecapacitiesshowsthatafewcountries(Egypt,Morocco,Oman,SaudiArabiaandtheUnitedArabEmirates)couldemergeaspotentialsourcesofgreenhydrogenproductioncapacities.However,asindicatedabove,itwilldependontheprioritization(ornot)offurtherrenewableelectrificationoftheirpowersector.Still,countriessuchasSaudiArabiawiththeirplanneddevelopmentofahugerenewableenergycapacitymaynotbeaffectedbythisprioritizationchoice.Morocco,theArabregion’sleaderinrenewableenergy,alongwithJordan,isplanningthedevelopmentofgreenhydrogencapacityforpotentialexportstoEurope.Inthiscase,theimplementationwoulddependnotonlyontheissueofrenewableelectrificationversusgreenhydrogenproduction,butalsoonthefinancialandtechnologicalsupportforimportingsourcesofgreenhydrogeninEurope.Asstressedearlier,duringthetransitiontogreenhydrogenproduction,naturalgasis32PotentialblueandgreenhydrogendevelopmentsintheArabregionlikelytoplayakeyroleintheproductionoflow-carbonbluehydrogenintheArabregion.Nonetheless,averysmallnumberofArabcountriescouldmakeavailablethefinancialandnaturalgasresourcesneededtoproducebothblueandgreenhydrogen,especiallyforpotentiallong-termlow-carbonhydrogenprojectsdedicatedforexportstoregionsoftheworldwiththestrictestcarbonregulations.AccordingtoHydrogenEurope,Europecouldpotentiallyimportover2milliontonsoflow-carbonhydrogenfromNorthAfricathroughcross-borderpipelinesby2030.26However,thisisanextremelyambitiousplangiventhecurrentverypreliminarystatusoftheseexportplans.C.NaturalgasendowmentIn2020,90milliontonsofhydrogenwasproducedglobally(excludingabout30Mtofhydrogenpresentinresidualgasesfromindustrialprocessesusedforheatandelectricity).Sixtypercentofthistotalhydrogenproductionwasbasedonnaturalgasasaprimarysourceandrequired240billioncubicmetersofnaturalgas(IEA,2021),equivalenttoover50percentofallthenaturalgasconsumedintheArabregionin2020.Therestwasproducedusingcoalandverysmallvolumesofoilasprimarysources.Ofthetotalglobalhydrogenoutput,lessthan1percentconsistedofbluehydrogenproducedwithCSSfacilities.Asexplainedabove,naturalgasisessentialfortheproductionofbluehydrogen,butnoteveryArabcountryhasaccesstonaturalgassupplies.Wherenaturalgasisavailable,itislikelytobeprioritizedforgenerationofelectricity.Nevertheless,thereisaverysmallgroupofArabcountriesthataresurplusgascountrieswheregasisexportedthroughcross-bordergaspipelines27and/orbyLNGtankersandwherenaturalgascouldalsobeusedtoproducebluehydrogenforexportaftermeetingdomesticmarketneeds.Figure3belowshowsthatprovednaturalgasreservesareunevenlydistributedintheArabregion,withonlyaverylimitednumberofArabcountrieswithlargegasreserves.Furthermore,thisgasreserveschart,whichisoftendisplayedtoshowtheregion’sgaspotential,doesnotprovideacompletepictureofthenaturalgassituationintheregion.60%50%ofthetotalhydrogenproductionwasbasedonnaturalgasasaprimarysourceofallthenaturalgasconsumedintheArabregionin202033Figure3.Arabregion:mainprovednaturalgasreserves(bcm)050100150200250AlgeriaEgyptIraqKuwaitLibyaOmanQatarSaudiArabiaUnitedArabEmiratesSource:GECF,2021andOPEC,2021.34PotentialblueandgreenhydrogendevelopmentsintheArabregionFigure4.Arabregion–2020naturalgasproductionandconsumption(bcm)050100150200AlgeriaEgyptIraqKuwaitLibyaOmanQatarSaudiArabiaUnitedArabEmiratesDomesticconsumptionMarketedproductionSource:GECF,2021Figure4showsthefragilenaturalgasbalanceofseveralArabcountries,whereahighpercentageofcurrentgasproductionisconsumeddomesticallyorissimplyinsufficienttomeetdomesticneeds.ApartfromQatar,whichwillcontinuetobeamajornetgasexporterregionallyandglobally,naturalgasproducedinmostArabcountriesislikelytobeallocatedtomeetrisingdomesticdemandforgasinthepowersectorandindustry.However,theirgasusewillgrowmoreslowlyinthefuturethaninpreviousdecades.28LargenaturalgasreserveholderssuchasQatar,SaudiArabiaandtheUnitedArabEmirateshavetherenewableandnon-renewableenergypotentialtodevelopbothblueandgreenhydrogen,aspresentedintheensuingsection.355ExistingandplannedhydrogendevelopmentsintheArabregion36PotentialblueandgreenhydrogendevelopmentsintheArabregionWellover90percentofallthehydrogenproducedintheArabregionisgreyhydrogen.Low-carbonhydrogenexportsprovideopportunitiesforpotentialnewproducersintheArabregionandcouldinthelongtermofferArabhydrocarbonproducersdiversificationopportunitiesandincentivesforanacceleratedenergytransition.Asalternativestohelpmeetthelong-termtargetofcarbonneutrality,averylimitednumberofArabcountriesareproducingblueandgreenhydrogenanddevelopingacircularcarboneconomy.SeveralArabcountrieshavebeenconsideredaspotentialsourcesoflow-carbonhydrogenproductionbecauseoftheirsignificantsolarandwindenergypotentialandtheavailabilityoflargeplotsoflandtodeveloprenewableenergyprojects.Newexportopportunitiesareemergingforlow-carbonhydrogenfromtheArabregion,inpartduetothefactthatEurope’sdomesticlow-carbonhydrogensupplieswillnotbesufficienttomeetitsprojectedlong-termhydrogendemand.90%HHKeymessages37A.ChangingsceneHydrogenproductionandutilizationinArabcountrieshavebeendrivenbytherequirementsofindustries,suchasoilrefining,petrochemicalsandsteel,thattraditionallyconsumehydrogen.Wellover90percentofallthehydrogenproducedintheArabregionisgreyhydrogen.LargeamountsofhydrogenareconsumedmainlyintheGCCandNorthAfricaareas.GCCcountriespresentlyconsumebetween5and6milliontonsofhydrogenandSaudiArabiaaccountsforover40percentofthistotalGCCconsumption.29OverthelastsixyearssincetheParisAgreement,asmallnumberofArabcountrieschannelledtheirpolicyeffortstowardsthedevelopmentofrenewablesourcesofelectricity.Initially,thesewerenotdrivenbyclimatechangeconsiderations,butmainlybythefinancialnecessitytoreducecostlypetroleumproductimportsandleveragethefallingcostsofsolarpanels.CountrieslikeJordanandMoroccomanagedtosignificantlyincreasetheshareofrenewablesintheirenergymix.IntheGCCarea,theUnitedArabEmiratesemergedasthearea’schampionbyinitiatingseveralinitiativestodevelopcarbon-freeorlow-carbonalternatives.AlthoughthepresentshareofrenewablesintheenergymixoftheUnitedArabEmiratesremainsrelativelylow,thefederalandlocal(Emirate-level)governmentsintheUnitedArabEmirateshaveenactedstrategiesandplanswithambitiousdecarbonizationtargets,someofwhicharealreadybeingimplemented.Recently,SaudiArabiastarteddevelopingalargerenewableenergyprogrammeandinitiatedblueandgreenhydrogenprojects.B.Low-carbonhydrogendevelopmentsTheproductionofblueandgreenhydrogenandthedevelopmentofacircularcarboneconomyasalternativestohelpmeetthelong-termtargetofcarbonneutralityarebeingadoptedinaverylimitednumberofArabcountries.ItshouldbenotedthatmostofthecountriesintheArabregionarestillfacingchallengesintheplanningandimplementationofrealisticsustainablerenewableenergyprogrammes.Integratingadequatelevelsofrenewableelectricitygenerationremainsanobjectivethathasyettobeachievedinthisregion,asshownintable3.Nevertheless,theinternationalfocusonlow-carbonhydrogenhasresultedinnewlow-carbonhydrogendevelopmentinitiativesintheregion.Atpresent,therearefiveArabStatesthatareactivelypursuingand/orplanningnewlow-carbonhydrogendevelopments,includingblueandgreenhydrogenprojects.TheseincludeEgyptandMoroccoinNorthAfricaandOman,SaudiArabicaandtheUnitedArabEmiratesintheGCCarea.OtherArabStateswithexistingorplannedlargerenewableenergycapacityand/ornaturalgasresourceshaveexpressedinterestinhydrogendevelopmentsandareundertakinginitiativestoplanforthedevelopmentoflow-carbonhydrogenproduction.FocusingfirstonthefiveArabStatesmentionedabove,thefollowinghydrogenorhydrogen-relatedstrategies,policiesandplanshavebeendevelopedorannouncedinthem.Itshouldbenotedthatthesehydrogendevelopmentsandannouncementsarecontinuouslytakingplace;therefore,thisreportaimstoincorporateallthelatestdevelopmentsasofDecember2021.38PotentialblueandgreenhydrogendevelopmentsintheArabregion1.UnitedArabEmiratesTheUnitedArabEmirateswasoneofthefirstArabcountriestostartdevelopingstrategiesforthesustainabletransitionofitsenergysectorandothersegmentsofitseconomy.In2017,itlaunchedEnergyStrategy2050,which“aimstoincreasethecontributionofcleanenergyinthetotalenergymixfrom25percentto50percentby2050andreducethecarbonfootprintofpowergenerationby70percent.”30Thisstrategywasprecededbyseveralothercleanenergyinitiativesandprojects.InJanuary2012,theEmirateofDubailaunchedthedevelopmentoftheMohammedbinRashidAlMaktoumSolarPark.Theground-breakingceremonyfor“thefirstsolar-drivenhydrogenelectrolysisfacilityintheMiddleEastandNorthAfricaregion”31tookplaceinFebruary2019.Thisfacilityistobesitedinthissolarparkandisexpectedtobecomeoperationalin2022.TheUnitedArabEmirateshasnotyetproducedahydrogendevelopmentstrategy.However,thecommitmentofthefederalandlocalauthoritiestointroduceblueandgreenhydrogenintotheEmiratieconomyiscontinuouslyreiteratedanddecisionsarebeingtaken.InNovember2020,atameetingoftheAbuDhabiSupremePetroleumCouncil,CrownPrinceSheikhMohamedbinZayedmandatedADNOC“toexplorepotentialopportunitiesinhydrogenwiththeambitiontopositiontheUAEasahydrogenleader.”32InJanuary2021,theEmiratiMinisterofIndustryandAdvancedTechnologyandCEOofADNOCstatedthat“hydrogencouldbeagamechangerintheenergytransition.”33AsofNovember2021,theUnitedArabEmirateshasstartedbuildingitsfirstgreenhydrogenplantandtestingisunderway,accordingtoEnergyMinisterSuhailAl-Mazrouei.34Initssecondnationallydeterminedcontribution(NDC)submittedtotheUnitedNationsFrameworkConventiononClimateChange(UNFCCC)inDecember2020,theUnitedArabEmirateshasclearlyidentifiedtheimportanceoflow-carbonhydrogenanditsintroductioninitseconomy.35InJanuary2021,ADNOC,MubadalaInvestmentCompanyandAbuDhabiDevelopmentalHoldingCompanyPJSC(ADQ),signedamemorandumofunderstandingtoformtheAbuDhabiHydrogenAlliance“toestablishAbuDhabiasatrustedleaderoflow-carbongreenandbluehydrogeninemerginginternationalmarkets.”36Acoupleoflow-carbonhydrogenorhydrogen-basedprojectshavebeenannouncedrecently,includingaplanned“world-scale”1milliontonperannumblueammoniaprojecttobedevelopedbyADNOCinjointventurewithOrascomConstructionIndustries(OCI)ofEgyptattheRuwaispetrochemicalpark.37Thisnewjointventure(Fertiglobe)announcedinAugust2021atrialshipmentofblueammoniatotheJapanesecompanyItochu.AnotherprojecttobesitedattheKhalifaIndustrialZoneinAbuDhabiisplannedtoproduce0.2milliontonsperannumofgreenammonia.Thisprojectistobedevelopedbyaprivately-ownedcompany,HeliosIndustry.38IntheEmirateofDubai,SiemensEnergy,theDubaiElectricityandWaterAuthority(DEWA)andExpo2020Dubaihave“inauguratedthefirstindustrialscale,solar-drivengreenhydrogen25%-50%70%IncreasethecontributionofcleanenergyinthetotalenergymixfromReducethecarbonfootprintofpowergenerationbyBy205039facilityintheMiddleEastandNorthAfrica”,sitedatMohammedbinRashidAlMaktoumSolarPark.39Low-carbonhydrogenistobeincreasinglyusedintheUnitedArabEmiratesinthetransportationandothersectors.HydrogenisalreadyusedintheUnitedArabEmiratesinfuelcellelectricvehicles(FCEVs).In2019,theEmiratesAuthorityforStandardizationandMetrology(ESMA)issuedthefirsttechnicalregulationforhydrogenusedinvehicles.40TheUnitedArabEmiratesisalsoplanningtoexportlow-carbonhydrogenandaimstocaptureaquarteroftheglobalhydrogenfuelmarketby2030,accordingtostatenewsagencyWAM.41InNovember2021,thetwoenergycompaniesoftheUnitedArabEmirates,ADNOCandAbuDhabiNationalEnergyCompany(TAQA),teameduptocreateaglobalrenewablesandhydrogenventurewiththeobjectiveofdevelopingatotalgeneratingcapacityof30GWby2030.42AttheCOP26climateConferenceofthePartiesinGlasgow,theUnitedArabEmiratespresentedits“hydrogenleadershiproadmap”andannouncedthatitwill“targeta25percentshareoftheglobalhydrogenmarket.”432.SaudiArabiaSaudiArabiahaslongfocusedonleveragingitslargehydrocarbonresourcesdomesticallyandexternally.Inthemid-2010s,theGovernmentintensifieditseffortstodiversifyitseconomyandreducethecountry’sheavyrelianceonhydrocarbons.TheseeffortsculminatedinSaudiVision2030,issuedin2016,whichformulatesthecountry’s“long-termgoalsandexpectations”.Itidentifiesthedevelopmentofrenewableenergyresourcesasastrategicobjectiveandhighlightsthestrategicgoalofgrowingthecontributionofrenewableswithinthenationalenergymix.44Theimplementationofarenewableenergyprogrammetooksometimetobelaunched,butitisnowprogressingwiththeaimofdevelopingtheArabregion’slargestrenewableenergycapacitywithoneofthemostcost-competitiveelectricitygenerationcosts.By2030,SaudiArabiaplanstogenerate50percentofitselectricityfromrenewableenergysources,asannouncedinNovember2020,atasessionoftheG20presided40PotentialblueandgreenhydrogendevelopmentsintheArabregionbySaudiArabia.ItwasreiteratedinJanuary2021atthe11thSessionoftheAssemblyoftheInternationalRenewableEnergyAgency(IRENA).45DuringtheG20meetings,SaudiArabiaconcentrateditseffortsontheadoptionoftheconceptofthecircularcarboneconomy(CCE)46foracleanandsustainableenergytransition.TheCCEapproach,whichwasendorsedbytheG20members,providestheframeworkfortheproductionanduseoflow-carbonhydrogendomesticallyandforexports.47Atthesametime,SaudiArabiaannouncedthatithadcommissionedateamtoprepare“anationalstrategyonhowweevolvewithhydrogen.”48Atpresent,SaudiArabiahastwolow-carbonhydrogenprojectsincludingbothblueandgreenhydrogen.ThelargestisthegreenhydrogenprojecttobelocatedinNeominthenorth-westernregionofSaudiArabia,whichistheworld’slargestgreenhydrogenproject.The$5billionNeomgreenhydrogen-basedammoniaprojectisbeingdevelopedbyajointventurebetweenNeomandACWAPowerofSaudiArabiaandAirProductsoftheUnitedStates.Theprojectwillbeequallyownedbythethreepartnersandwillproducegreenammoniaforexport.Theprojectisscheduledtobeonstreamin2025andwillincludeover4GWofrenewableenergy,usingelectrolysistoproduce650tonsofgreenhydrogenand1.2milliontonsofgreenammoniaperday.49Furthermore,planshavebeenannouncedtodevelopanassemblyplantinthecityofNeomtoproduceupto10,000hydrogenfuelcell-poweredvehiclesayearaspartofamemorandumofunderstandingbetweenHyzonMotorsoftheUnitedStatesandtheModernIndustrialInvestmentHoldingGroupandNeomcompany50ofSaudiArabia.Thesecondprojectisabluehydrogen-basedammoniaprojectlocatedinJubailIndustrialCityintheeasternprovinceofSaudiArabia.JubailisthelargestindustrialparkofSaudiArabiaandtheArabregionandoneofthelargestindustrial4GW5billion650tonsBy2050Neomgreenhydrogen-basedammoniaprojectofrenewableenergytoproduceofgreenhydrogen1.2milliontonsofgreenammoniaperday41parksintheworld,andsuchprovidessignificantcomparativeadvantagefortheproduction,utilizationandexportoflow-carbonhydrogenandammonia.TheexistingKingFahadPortofJubailisconnectedtoJubailIndustrialCity,providinganadditionaladvantageforexportoflow-carbonhydrogen-basedammonia.Thisbluehydrogen-basedammoniaprojectusesexistinginfrastructureinJubailwherethehydrogenandammoniaareproduced.TheCO2iscapturedandsenttooilfieldsforenhancedoilrecoveryandtoamethanolplantinJubail.InSeptember2020,SaudiArabiaexportedapilotshipmentof40tonsfromthisSaudiindustrialhub,whichwastheworld’sfirstshipmentofbluehydrogen-basedammoniatoJapan.51SaudiAramcoandtheInstituteofEnergyEconomicsofJapan(IEEJ)developedthisexportinitiative,inpartnershipwiththepetrochemicalscompanySABICofSaudiArabia.Thebluehydrogen-basedammoniawasusedinJapantogeneratecarbon-freeelectricity.52SaudiArabiahasalsosignedmemorandaofunderstandingwithGermanyandSouthKoreatoestablishpartnershipsforthedevelopmentoflow-carbonhydrogenandhydrogen-basedinitiatives.InOctober2021,atthefirstSaudiGreenInitiativeForum,SaudiArabiaannouncedthatitwasplanningtobecomealeadingglobalsupplierofblueandgreenhydrogenandthatitwouldproduceandexport4milliontonsoflow-carbonhydrogenby2030.533.OmanComparedtoSaudiArabiaandtheUnitedArabEmirates,OmanhaslimitedreservesofhydrocarbonsandisstillimportingasmallvolumeofnaturalgassuppliesfromQatarthroughtheDolphinEnergygaspipelineviatheUnitedArabEmirates.Itis,however,pursuingtheupstreamdevelopmentofitsnaturalgasresources,incollaborationwithinternationaloilandgascompanies,tomeetitsdomesticneedsandforpotentialadditionalexports.OmanisalsoundertakingmanyeffortstodeveloprenewablesourcesofenergytodiversifyitsenergymixandreduceitsrelianceonfossilfuelsforelectricitygenerationandreleasemoregassuppliesforLNGexports.RenewableenergyprojectshavebeeninitiatedbytheoilandgascompanyofOman,PetroleumDevelopmentOman(PDO),theglobalintegratedenergycompanyOQbasedinOmanandseveralOmanienergyandpetrochemicalscompanies,suchasOmanOil.OQhassetupaspecialrenewableenergyandenergyefficiencyunitcalledOQAlternativeEnergy.TheemerginginterestofOmaningreenhydrogenproductionisdrivenbythecountry’splannedexpansionofitsenergycapacity.EJAAD,“amembership-basedvirtualcollaborativeplatform”,54includingtheOmaniMinistryofOilandGas,PDOandtheOmaniResearchCouncil,is“coordinatingtheeffortstocreateanationalstrategyforhydrogenasapromisingeconomicengine.”55Intermsofprojects,twoinitiativesinvolvinginternationalpartnershipswereannouncedin2020.ThefirstinitiativewaslaunchedinJanuary2020withthecreationoftheOmanHydrogenCentreattheGermanUniversityofTechnology,Oman.Thiscentre“willserveasthecentreofknowledgeinhydrogentechnologyinOmanandbeyond–regionallyintheGCC.”56Thesecondinitiative,announcedinMarch2020,isapartnershipbetweentheBelgianconsortiumDEMEConcessionsandOQAlternativeEnergytodevelopagreenhydrogenproject(HyportDuqm)intheSpecialEconomicZoneofOmanatDuqm.Thefirstphaseofthisgreenhydrogenprojectconsistsofa250to500MWelectrolyserplanttobesuppliedwithrenewableelectricityfromsolarandwind.InAugust2021,aspartofitsVision2040totransformitseconomy,Omanestablisheda42PotentialblueandgreenhydrogendevelopmentsintheArabregionnationalhydrogenallianceconsistingof13publicandprivatesectorinstitutionstoproduce,transportanduselow-carbonhydrogen.574.MoroccoInNorthAfrica,Moroccohasdevelopedarelativelylargevariablerenewableenergy(solarandwind)capacityprogrammeinashortperiodoftime.ItistodayaleadingdeveloperofrenewableenergyresourcesintheArabregionandconsequentlyacandidatetoproducegreenhydrogenandgreenhydrogen-basedammonia.Moroccoisplanningtobecomeasourceofgreenhydrogenorgreenhydrogen-basedammoniasuppliesforEurope.Topromotethedevelopmentofthissourceoflow-carbonhydrogen,itsGovernmenthasundertakenthefollowingmainactions:“Settingupanationalcommissionongreenhydrogenincludingpublicandprivatesectorparticipants.Launchofastudytoformulateagreenhydrogenroadmap.Ongoingpilotprojectfortheproductionofgreenammonia.Developmentofanintegratedprogrammeofgreenammoniaproduction,throughtheredeploymentofrenewableenergy.Holdingalargescientificandtechnologicalconferencededicatedtogreenhydrogen.”58InJune2020,MoroccoandGermanysignedapartnershipagreementcoveringtwogreenhydrogenrelatedprojects.Thefirstproject,Power-to-X,willconsistofapilotprojecttoproducegreenhydrogen.ThesecondprojectisthecreationofaresearchplatformonPower-to-X,knowledgetransferandstrengtheningofrelatedskills.59Moroccoisactivelyworkingonthedevelopmentofgreenhydrogenproductioncapacity.Itsagencyforthedevelopmentofsustainableenergy(MASEN)isplanningtheconstructionofahybridsolarPV/windpowerplanttosupplya100MWelectrolyserplanttoproducegreenhydrogen.Theproject,whichispresentlyatthefeasibilitystudystage,isscheduledtobecommissionedbetween2024and2025.60Moroccocontinuestorelyheavilyonfossilfuelimports,thoughinvestmentsinrenewableenergycapacityareincreasingtoreducetheshareoffossilfuelsinthecountry’senergymix.Itsshareofrenewableenergywilllikelyrisefromabout20percentto52percentby2030.However,thismeansthatasof2019,almost70percentoftheelectricitygeneratedinMoroccostilloriginatedfromcoal-firedpowerunits.61Thereisaquestionofhowrenewableenergycapacityshouldbeallocatedbetweendirectelectrificationandgreenhydrogenorgreenhydrogen-basedammoniaproductionforexporttoEuropeandforlocalfertiliserproductiontoreduceimportsofgreyammonia.Nevertheless,MoroccoisexpectedtocontinuetoplayaleadingroleintheArabregion’sgreenhydrogencapacityanditisplanningtocaptureupto4percentoftheglobaldemandforgreenhydrogenandgreenammonia.625.EgyptPresently,EgypthasthelargestinstalledrenewableenergycapacityintheArabregionandisactivelyplanningtheexpansionofthisexistingcapacityforthegenerationofcleanelectricity.Recently,ithasalsoannouncedlow-carbonhydrogenprojectsandinitiativesinpartnershipwithinternationalcompanies.43ItiscurrentlyupdatingandextendingitsIntegratedSustainableEnergyStrategyto2040toincorporatethecountry’s“renewableenergycontributionandtransitiontoagreeneconomy.”Thisincludesthedevelopmentoflow-carbonhydrogenprojectsandinitiatives“towardsthedevelopmentofahydrogeneconomyinEgypt”,andaninter-ministerialcommitteehasbeensetuptodevelopits“NationalHydrogenStrategy”.Infact,Egypthasalreadylaunchedseverallow-carbonhydrogenprojectsandinitiatives.InJanuary2021,theMinistryofElectricityandRenewableEnergysignedanagreementwithSiemenscompanyofGermanytoundertakestudiesforthedevelopmentofagreenhydrogenpilotproject,including100–200MWofelectrolysercapacity.63InAprilandJuly2021,theEgyptianGovernmentsignedseparateagreementswiththeBelgiancompanyDEMEandEniofItalyforlow-carbonhydrogenprojectstargetingdomesticandexportmarkets.ThiswasfollowedbythesigninginOctober2021ofanagreementbetweenthejointEgyptian–EmiraticompanyFertiglobeandtherenewableenergycompanyScatecofNorwayforagreenhydrogenandgreenammoniaproject.64InMay2021,theMinistryofElectricityandRenewableEnergyofEgyptreceivedsixoffersfrominternationalcompaniesfromChina,Germany,Italy,Japan,theUnitedKingdomandtheUnitedStatestoimplementlow-carbonhydrogenproductionprojects.Acommitteehasbeensetuptoreviewtheseoffers.EgyptisclearlydeterminedtoreduceitsGHGemissionsandtransitiontoagreenereconomyinthelongterm,includingthedevelopmentoflow-carbonhydrogencapacity,particularlygreenhydrogen.ThiscouldatleastpartlyreplacethelargevolumesofgreyhydrogencurrentlyconsumedbyEgyptianindustry.656.OtherArabcountriesOtherArabcountrieshavebeenconsideredaspotentialsourcesoflow-carbonhydrogenproductionbecauseoftheirsignificantsolarandwindenergypotentialandtheavailabilityoflargeplotsoflandtodeveloprenewableenergyprojects.TheseincludeAlgeria,basednotonlyonitssolarenergypotential,66butalsoitslargecross-bordernaturalgaspipelineinfrastructure44PotentialblueandgreenhydrogendevelopmentsintheArabregionconnectedtoEurope.Inthelong-term,thisgasinfrastructureconnectioncouldpotentiallybeusedtotransportlow-carbonhydrogenproducedinNorthAfricatoEurope.Infact,low-carbonhydrogenplansformulatedbyEUinstitutionsincludehydrogentransportthroughthecross-bordernaturalgaspipelinesbetweenAlgeriaandItalyandSpain.StudiesandinternationalworkshopsonthepotentialdevelopmentofgreenhydrogenproductioninAlgeriawerefirstinitiatedin2000byAlgerianscientistsandresearchcentres.However,multi-facetedchallengespreventedprogresstowardsimplementation.67In2021,thenewlycreatedMinistryofEnergyTransitionandRenewableEnergyre-introducedthetopicofgreenhydrogendevelopmentinthenationalagendawithinthecontextofthecountry’splannedenergytransitioninitiatives.InFebruary2021,astudyongreenhydrogenandPower-to-XwaslaunchedbythisministryinpartnershipwithGermany’sGIZ.ThiswasfollowedbyaworkshopinApril2021bytheMinistryofEnergyTransitionandRenewableEnergyandtheMinistryofHigherEducationandScientificResearchonthedevelopmentofgreenhydrogeninAlgeriaanditspotentialimpactonthecountry’senergytransition.Agreenhydrogenallianceandanewgreenhydrogennationalplanwereannouncedattheendofthisworkshop.68InJuly2021,thekeyobjectivesofthisgreenhydrogennationalplanwereissuedbytheMinistryofEnergyTransitionandRenewableEnergy.69OtherAlgerianentitieshavealsoexpressedinterestinthepotentialdevelopmentoflow-carbonhydrogen.ThenationaloilandgascompanyofAlgeria,Sonatrach,andEniofItaly,haveagreedtoperformafeasibilitystudyonapilotprojecttoproducegreenhydrogeninAlgeria.70Theserecentdevelopmentshaveprovidedtheopportunitytoreconsiderthelow-carbonhydrogeninitiativeaspartofthecountry’sfuturepotentialcleanenergyalternatives.AttheendofNovember2021,theAlgerianGovernmentappointedanationalcommitteetoformulateanationalhydrogenstrategyforthedevelopmentoflow-carbonhydrogeninAlgeria.Algeriacouldofferseveraladvantagesforthepotentialdevelopmentofgreenhydrogen,suchasveryfavourablesolarirradiancelevels,largeplotsoflandsandawell-developedenergyinfrastructure.Nevertheless,developinglow-carbonhydrogencapacityislikelytobealong-termobjectiveasthecountryfacesrecurrentchallengesinitscleanelectrificationefforts.Asindicatedinfigure2,Algeriapresentlyhasaverysmallrenewableenergycapacity.Mauritaniahasalsoannouncedplanstodevelopgreenhydrogenandgreenammoniacapacities.However,thereislimitedinformationavailableontheseveryambitiousprojects.71,72C.PlannedhydrogenexportsIndustrializedcountries,suchasthoseoftheEuropeanUnion,JapanandSouthKorea,continuetofocusonthedecarbonizationoftheireconomies.Amongamixofcleanalternativestomeettheir2050climateneutralitycommitments,theyareintroducinglow-carbonhydrogen,especiallyinsectorswhereitishardtoelectrifyandabatecarbon.However,basedontheprojectionsthathavebeenpresentedfortheirplannedconsumptionoflow-carbonhydrogenorlow-carbonhydrogen-basedammonia,thedomesticlow-carbonhydrogensuppliesofEuropewillnotbesufficienttomeettheirprojectedlong-termhydrogendemand.Consequently,thisopens45opportunitiesforlow-carbonhydrogenimportsfromtheArabregionandelsewhere.AbriefoverviewofhydrogenexportprojectsfromArabcountriesispresentedbelow.1.PotentialNorthAfricanhydrogenexportsInitshydrogenstrategy,theEuropeanUnion(EU)referstopotentialimportsoflow-carbonhydrogenfromthe“EU’sneighbouringcountriesinEasternEuropeandintheSouthernandEasternMediterraneancountries”.ItidentifiesparticularlyNorthAfricaanditsgeographicalproximityandthefactthatitcouldpotentiallyprovidecost-competitiverenewablehydrogensupplies.73TheEUstrategydoesnotspecifytheimportroutesfromNorthAfrica,butaninitiativelaunchedbyEuropeangaspipelineoperatorscalledtheEuropeanHydrogenBackbone(EHB)indicatesthathydrogenimportsfromNorthAfrica,plannedfor2040orpossiblyearlier,wouldberoutedthroughItalyandSpain.74Thiswouldpotentiallyincludelow-carbonhydrogensupplies,fromAlgeria,possiblyLibya,MoroccoandTunisia.2.PotentialMiddleEasternhydrogenexportsTheMiddleEastisanothersourceofpotentiallow-carbonhydrogensupplytoEuropeandtosomeAsiancountries.TherehavebeenreferencestotheplannedEastMediterraneangaspipelineprojecttoSouthernEuropeasapotentialcross-bordernaturalgasinfrastructurethatcouldbeusedtotransportrenewablelow-carbonhydrogen.However,thisambitious2,000-kmgaspipelineprojectisunlikelytomaterialiseanytimesoon.Potentiallow-carbonhydrogensuppliesfromtheMiddleEastaremorelikelytobetransportedbyspecializedshipstoAsiaandEurope.Atpresent,therearenoclearlyidentifiedhydrogengasexportprojectsfromtheMiddleEast,apartfromtheNeomgreenhydrogenprojectinSaudiArabia.46PotentialblueandgreenhydrogendevelopmentsintheArabregionTherehasalsobeenapilotexportshipmentofbluehydrogen-basedammoniafromtheJubailIndustrialCityofSaudiArabia.Giventhecostconstraintsofpurehydrogentransportationacrosslongdistances,low-carbonhydrogenfromtheMiddleEastwouldpredominantlybeshippedinthecheaperlow-carbonammoniaform.3.PotentialchallengesofhydrogenexportsFinally,itisimportanttoraisethequestionofwhetherthepotentialsourcesofcleanenergyintheArabregioncouldproduceenoughlow-carbonhydrogentomeettheprojectedimportdemand.Furthermore,couldArabsourcescompetewithotherpotentiallow-carbonhydrogenproducerssuchasAustralia(especiallyforAsianmarkets),ChileandRussia?Thesechallengesareoutlinedinthefollowingsection.Low-carbonhydrogenexportsalsoprovideopportunitiesforpotentialnewproducersintheArabregionandcouldinthelongtermofferArabhydrocarbonproducersdiversificationopportunitiesandincentivesforanacceleratedenergytransition,butachievingthisobjectivehasbeenchallengingsofar.Forproducerswithcross-bordergaspipelineinterconnectionswithEurope,low-carbonhydrogentradecouldhelpoptimizetheuseofthisgasinfrastructure,especiallyasEuropeangasimportsstarttodeclinesignificantlyby2030andbeyond.Still,thisislikelytobeaverylong-termopportunity.4.Potentialdevelopmentapproachesforlow-carbonhydrogenAlthoughStatesarelikelytoadoptdifferentpathwaystodecarbonizetheireconomiesandmovetowardslong-termcarbonneutrality,therearecommonfeaturesregardingthedevelopmentandimplementationofblueandgreenhydrogenprojects.Bluehydrogenprojectsaremainlyinitiatedandledbythenationaloilandgascompanies(NOCs)inhydrocarbon-producingcountries,inpartnershipwithinternationaloilandgascompanies(IOCs),localandinternationalprivatesectorcompaniesandgovernmentagenciesinenergyimportingcountries.However,inthecaseofgreenhydrogenprojectswhicharecloselylinkedtorenewableenergyprojects,utilitycompaniestendtoplayaleadingroleindevelopmentandimplementation.Furthermore,low-carbonhydrogenprojectstendtobeconcentratedinindustrialclusters,parks,“valleys”ornewhubs(e.g.Neom),wheremostofthelow-carbonhydrogenproducedisexpectedtobeconsumeddomestically,orinportareaswhereitcanbeconsumedlocallyand/orinthelongtermbeexportedaslow-carbonhydrogenorgreenammonia.476Challengesandopportunities48PotentialblueandgreenhydrogendevelopmentsintheArabregionBluehydrogencanactasaneffectivebridgetogreenhydrogen,andCCSorCCUSenabletheproductionofrelativelylessexpensivebluehydrogen.Thewaterrequirementsofgreenhydrogenproductioncouldlimititsuseincertainwater-scarceregions.However,desalinatedwateronlyaddsabout1percenttothecostofgreenhydrogen,sowiththepropermechanisms,waterscarcityissuescanbeavoidedandgreenhydrogenproductioncanevenbeseenasanopportunity(toprovidelocalcommunitieswithexcessfreshwater)asopposedtoarisk.Countriesinvolvedinorplanningthedevelopmentoflow-carbonhydrogenproductioncapacitiesareconfrontedwithseveralinterrelatedtechnical,economic,regulatoryandfinancingchallenges.Inthelongterm,thecostgapbetweenblueandgreenhydrogenproductionispredictedtonarrowsignificantly.Addressingfinancingchallengeswillrequireanadequatelegalandregulatoryframeworktosupportthescalingupoflow-carbonhydrogenproductioncapacities.Thecostofproducinggreenhydrogen,currentlytwotothreetimesthatofbluehydrogen,isamajorbarriertoscalingupitscapacity.Thecommercialviabilityoflow-carbonhydrogenprojectsrequiresasignificantscalingupofthehydrogenproductioncapacity,underpinnedbysecurelong-termmarketdemand.Keymessages1%49A.Technicalandcommercialbarriers1.ScalingconstraintsStartingwiththeinterlinkedtechnicalandcommercialbarriersandfocusingontheproductionofgreenhydrogenthroughelectrolysis,themainchallengeisthefactthatelectrolysistechnologieshavenotyetreachedthecommercialviabilityneededtorealisticallymeetlong-termnet-zeroemissionstargets.Thescalingupofthesetechnologiesandconcomitantreductioninproductioncostswilltaketimeandrequirelargefinancialresources.Thisscalingupconstrainthasasignificantimpactonthecostcompetitivenessofgreenhydrogenandtherollingoutofacommerciallyandfinanceablegreenhydrogenprogrammeasdiscussedbelow.2.EnergyefficiencyAnothertechnology-relatedfactorthatispresentlyconsideredasignificantbarrieristheenergyinefficiencyorenergylossesofthesystemsusedtoproducegreenhydrogen.AccordingtoIRENA,between30and35percentoftheenergyconsumedintheprocessofproducinggreenhydrogenthroughelectrolysisislost.Furthermore,thetransformationtootherforms,especiallytotransportthecleanproduct,canleadtobetween13and25percentenergylosses.75Overtime,withtechnologyimprovements,theselossescouldbereduced.However,theyremainaconstrainttothegrowthofgreenhydrogenproductionandthescalingupofproductioncapacityforviablecommercialization.3.CCSorCCUSconstraintsTheSpecialReportoftheIntergovernmentalPanelonClimateChange(IPCC)76andtheInternationalEnergyAgency’srecentNetZeroreport77indicatetherelevanceofCCSorCCUSintheshorttomedium-termreductionofCO2emissions.Inthetransitiontogreenhydrogenand/oralongwiththeproductionofgreenhydrogen,CCSorCCUSenabletheproductionofrelativelylessexpensivebluehydrogen.ThisprocessisbasedontheintegrationofCCSorCCUSfacilitiestocapture,utilizeand/orstoreCO2.However,thistechnologyremainsexpensiveandhasstillnotevolvedatthescalerequiredtomeetNetZeroEmission(NZE)targets,withonlyalimitednumberofprojectsusingCCSorCCUSandlocatedmainlyinOECDcountries.Presently,thereare27commercialfacilitiesinoperationglobally,78withonlythreeintheArabregion.Althoughrecognizedasakeyalternativetoquicklyreduceemissionsandhelpdevelopthemarketforlow-carbonhydrogen,companieshavebeenveryreluctanttoinvestinCCSorCCUSfacilities,requestingstrongsupportfromgovernments.Thehighcostofthescaled-upfacilitiesrequiredtomeetNZEtargets,theavailabilityofsuitableCO2storageoptionsandpublicacceptanceofCCSorCCUSprojectsarekeychallengesfortheseprojectsandthereforeforthepotentialproductionofbluehydrogen.4.LimitedtransportinfrastructurePresently,thetransportationofthehydrogenproducedisnotanissue,asthebulkofthehydrogenisconsumedonsiteorclosetowhereitismanufactured.Forexample,oilrefinerysiteconfigurationsintegratehydrogenproductionunits.Therearealsosomerelatively50PotentialblueandgreenhydrogendevelopmentsintheArabregionsmallhydrogenpipelinenetworksinoperationintheUnitedStatesandinseveralEuropeancountries.However,intheArabregion,withtheplannedsignificantexpansionoflow-carbonhydrogencapacityfordomesticusesandpotentiallyforexports,theexistinghydrogenpipelineinfrastructurewouldbehard-pressedtocopewithgrowingdomesticandcross-bordertransportrequirements.5.WaterusageconstraintsThequantityofwaterrequiredbygreenhydrogenplantscouldlimittheiruseincertainregionsoftheworld.Thepotentialtotalconsumptionoffreshwaterworldwide,ifthepresentproductionofpurehydrogenwerebasedonthewaterelectrolysistechnology,wouldbe617millioncubicmeters,equivalenttoonly1.3percentoftheglobalenergysector’swaterconsumption(IEA,2019).However,desalinatedwateronlyaddsabout1percenttothecostofgreenhydrogen,sowithpropermechanismswaterscarcityissuescanbeavoidedandgreenhydrogenproductioncanevenbeseenasanopportunity(toprovidelocalcommunitieswithexcessfreshwater)asopposedtoarisk.However,theabove-mentionedgloballyaggregatedlowwaterconsumptionfiguredoesnotreflecttheadverseeconomicandsocialimpactthisfreshwaterusagecouldhaveonregionswithseverefreshwaterscarcityissues.ThisisanextremelyimportantconsiderationintheArabregion,79especiallyininlandareaswithnoaccesstopotentialsourcesofdesalinatedseawater.Furthermore,evenifaccessible,thedesalinationofseawaterisanenergy-intensiveandcostlyprocessthatwouldneedtobeassessedwithinalocalorregionalcontext.However,acommerciallyandenvironmentallysustainablewayofdevelopingadditionalseawaterdesalinationcapacityforgreenhydrogenproductioncouldalsoprovideopportunitiestosupplyfreshwatertolocalcommunities.6.RegionaltechnicalconstraintsIntheArabregion,developersandoperatorsoflow-carbonhydrogenproduction,transformationandtransportationcapacitieswouldfacesomeadditionaltechnicalconstraintsintermsofskillavailabilityandrelevantmanufacturingcapacityfortechnologycomponents.Nonetheless,thesebarriersshouldbeeasiertoovercomethrougheffectiveinternationalpartnershipsandprocurementifplannedadequately.ItshouldhoweverbeacknowledgedthatthesepartnershipsandinternationalprocurementaffordabilitywouldbelimitedtoasmallgroupofArabcountries.B.EvolvingeconomicsTheeconomicsoflow-carbonhydrogenproductionremainverychallengingandaredirectlylinkedtothetechnologicalconstraintsdescribedabove,amongothers.Themainissueisthemuchhighercostofproducinggreenhydrogencomparedtobluehydrogen.Itshouldbenotedalsothatbluehydrogenproductionisnotwidelydevelopedyet,butthetransitionallow-carbonbluehydrogenoptioncouldprogressmorequicklythanthegreenhydrogenoption.Inthelong-term,thecostgapbetweenblueandgreenhydrogenproductionispredictedtonarrowsignificantly,asshowninthefiguresbelow,ifthescalingupofgreenhydrogencapacitytakesplaceasexpected.51Figure5.Indicativehydrogenproductioncosts:2019($/kg)012345678Greyhydrogen(SMR)Greyhydrogen(AWE)BluehydrogenGreenhydrogen(PEM)0.9-2.11.5-2.53.7-7.52.6-6.9Source:KearneyEnergyTransitionInstitute,2020.Figure6.Indicativehydrogenproductioncosts:2025–2030($/kg)01234Greyhydrogen(AWE)BluehydrogenGreenhydrogen(PEM)1.6-2.61.3-1.61.6-2.2Source:KearneyEnergyTransitionInstitute,2020.Theindicativehydrogenproductioncostrangespresentedinfigures5and6showthatitmaytakearoundtenyearsforgreenhydrogentoachievenearcostparitywithbluehydrogen.Thisassumesthatallthenecessaryfundingismadeavailableandmarketsforlow-carbonhydrogenevolvefavourablyoverthisassumedtimehorizon.Inthemeantime,theproductionofbluehydrogenusingnaturalgasasaprimarysourcethroughtheSMRtechnologyandwithCCS/CCUScouldprovidealow-carbonhydrogentransitiontoamorecost-effectivegreenhydrogensolution.Thisisagainassumingthattheabove-mentionedCCSchallengesarerapidlyaddressed.However,thetransformation(toothergreenforms)andtransportationofthelow-carbonhydrogenorgreenproducts(e.g.greenammonia)couldsignificantlyincreasethecosttoend-users,especiallyforsuppliesoverlongdistances.1.AbluehydrogentransitionWiththeadditionofCCSorCCUSfacilities,thecostofbluehydrogenproductionwillincreasecomparedtogreyhydrogen.AccordingtotheInternationalEnergyAgency(IEA),thecapitalexpenditure(CAPEX)ofproducinglow-carbonhydrogenwillincrease,onaverage,byabout50percentwhiletheoperatingexpenditure(OPEX)willdouble.TheseestimatedcostincreaseswoulddependontheSMRplantdesignandlocation(IEA,2019).ThecostincreaseofnaturalgasduetotheadditionofCCUSismuchlowerinrelativetermsbutisanimportantfactorwhencomparingthecostsofbluehydrogenproductionacrossdifferentregionsoftheworld(figure7).ThisispertinenttoArabnaturalgas-producingcountries,especiallygassurpluscountries.52PotentialblueandgreenhydrogendevelopmentsintheArabregionFigure7.Estimatedbluehydrogenproductioncosts–2018($/kg)00.501.001.502.002.50UnitedStatesEuropeCapexRussiaChinaMiddleEastNaturalgasOpexSource:IEA,2019.IfitisassumedthatCAPEXandOPEXestimatesdonotvaryonaverageacrossregions,whichisnotalwaysthecase,theabovechartshowsthatbluehydrogenproducedintheMiddleEastandtheUnitedStatesisrelativelycostcompetitivecomparedtootherregionsoftheworld,at$0.94/kgfortheMiddleEastand$1.00/kgfortheUnitedStates.InthecaseofNorthAfricangas-producingcountries,bluehydrogenproductionusingnaturalgasasaprimarysourcecouldbemorechallenging.TheincreasinglyconstrainednaturalgasbalancesofproducerssuchasAlgeriaandEgyptcouldlimitbluehydrogenproductiongrowthprospectsinthisarea.Inthelongtermandpostconflict,Libyacouldbeapotentialcandidatewithabetternaturalgasbalancesituation.Thiswillhowevertaketimeandmaygobeyondtheabove-mentionedtransitionphase.Nevertheless,NorthAfricaoffersmuchbetteropportunitiesintheproductionofgreenhydrogenusingexistingandpotentialrenewableenergyresources.Therefore,thenear-termcostadvantagesofbluehydrogenproductionarelikelytobeleveragedmainlyinthefewArabgassurpluscountriesoftheGCCarea.2.RenewableenergyandgreenhydrogenSeveralparties,especiallyinEurope,favourafastertransitiontothegreenhydrogenoption.Meetingthisambitionwouldrequiretherapiddevelopmentofelectrolysiscapacityoverthenexttenyearsandbeyond.In2020,therewasatotalglobalelectrolysiscapacityof0.2GW.AccordingtoIRENA,ifallstrategiesalreadyannouncedwereimplemented,itwouldresultin85GWofelectrolysiscapacityinstalledby2030.Thiscorrespondstoabout85percentofIRENA’sPlannedEnergyScenario(PES),asshowninthefigurebelow.80Figure8clearlydepictsthesubstantialelectrolysercapacityexpansionplannedfor2030.Severalnewelectrolyserprojectsareplannedindifferentregionsoftheworldwithannouncementsindicatingover8GWby2030inEurope,22GWinAustraliaandanimpressive70to80GWby2030inChina.8153Figure8.Plannedelectrolysercapacityby2030(GW)020406060801001202030-Irenapes2030-Strategies2020100850.20Source:IRENA,2020b.Severalsignificantchallengesneedtobeaddressedtoimplementarealisticandcost-effectiveintroductionofgreenhydrogeneitherfordomesticusesorforexportsorboth.Atpresent,thecostofproducinggreenhydrogenisamajorbarriertothedevelopmentofscaledupgreenhydrogencapacity,withIRENAestimatingthatitispresentlytwotothreetimesthecostofbluehydrogen(figure5).Theproductioncostofgreenhydrogenisdrivenbythreemaininteractingelements:electrolyserinvestmentcost;capacityfactor(percentageuseoroperatinghours)andthecostofelectricityfromrenewableenergysources.Overthelasttenyears,thelevelizedcostofelectricitygeneratedusingsolarphotovoltaics(PV);concentratedsolarpower(CSP)andonshorewindsourceshasdeclinedby82percent,47percentand39percent,respectively.82Thesegenerationcostsareexpectedtocontinuetodeclinefurtherforsolarandwindpowertechnologies.SomeofthesesubstantialdropsinrenewableelectricitygenerationcostsarereflectedinrenewableenergyprojectsintheArabregion.TheAlDhafra2GWsolarphotovoltaicprojectintheUnitedArabEmiratesistheworld’slargestsolarPVprojectandhasoneoftheworld’smostcompetitiveelectricitypriceat$0.0135perkWh.83AlShuaiba600MWPVprojectofSaudiArabiareachedanevenlowerpricelevelof$0.0104perkWh.84Arabcountries,suchasJordan,Morocco,SaudiArabiaandtheUnitedArabEmirates,withexistingandpotentiallylowanddecliningcostsofelectricitygeneratedfromrenewablesourcesofenergy(solarandwind),offerakeycomparativeadvantageintheproductionofgreenhydrogen.However,asemphasizedabove,thisadvantagecanbecapturedwhentheutilizationlevelofelectrolysersincreases,dependingontheavailabilityofrenewableelectricity.Egypt,Morocco,SaudiArabiaandtheUnitedArabEmiratesareplanningtodeveloplargecapacitiesofelectricitygenerationbasedonrenewableenergysources.Iftheambitioustargetspresentedintable3areachieved,54PotentialblueandgreenhydrogendevelopmentsintheArabregionby2030/2035,eachoftheseArabcountries’renewableenergysharewouldreachbetween30andslightlyover50percentofeachcountry’senergymix.Somecountriescouldhavesurpluselectricitygenerationcapacityandcouldallocaterenewableenergycapacitytoelectrolysers,especiallyduringlowelectricityusageperiods(e.g.inwinter).85C.FinancingconstraintsOutsidetheGCCarea,NorthAfrica,especiallyEgyptandMorocco,offersopportunitiestoleverageitsincreasingrenewableenergycapacitytoproducegreenhydrogen.However,NorthAfricancountriesarenotendowedwiththesamelevelsoffinancialresourcesandfaceadditionalchallengesinsecuringexternalfinancingforhydrogendevelopmentprojectscomparedtoPersianGulfcountries.Therefore,theywillhavetorelyoneffectivepartnershipswithinternationalcompaniesorinstitutionsnotonlytodevelopandinstalltherelevanttechnologies,butalsotoinvestinthewholelow-carbonhydrogenproductionchain.ThisincludesCCSorCCUSfacilitiesforbluehydrogenandnewrenewableelectricitygenerationunitsandelectrolysersforgreenhydrogen,plusthetransport,transmissionandtransformationinfrastructure.Investmentsinlow-carbonhydrogendevelopmentsforboththedomesticmarketandforexportrequiresubstantiallevelsoffundingtocoverthedifferentsegmentsofthehydrogenchain.InlinewiththeobjectivesoftheEUhydrogenstrategyandasdescribedearlier,atotaldomesticelectrolysercapacityof6GWby2024,increasingto40GWby2030,isgoingtobedeveloped.Europe’splansalsoincludethepotentialdevelopmentof40GWofelectrolysercapacityinNorthAfricaandtheUkraineby2030.86Figure9.PlannedNorthAfricaelectrolysercapacityasperEurope’sroadmap(MW)05,0002023202420252026202720282029203010,00015,00020.00025,00030,000Ammonia-domesticuseOtherdomesticusesExportsSource:HydrogenEurope,2021.55Threequartersor30GWofthisnon-EuropeanelectrolysercapacitywillbelocatedinNorthAfricaby2030,asshowninfigure9.87Itishoweverunclearhowthedevelopmentofthisshort-termambitiouselectrolyserprogrammeinEurope’s“southernneighbourhood”wouldbefinanced,giventheprogrammecouldcostbetween$20and$30billionormore(dependingontechnologies,capacitysize,timingandrateofcapitalcostreduction).IntheGCCarea,arecentstudycommissionedbytheMENAHydrogenAllianceestimatesthatannualinvestmentsof$16to$25billion(conservativescenario)wouldberequiredoveraperiodof25yearstoinstall150to210GWofelectrolysiscapacitytoachieveagreenhydrogenproductioncapacityof50to70milliontonsby2050.Theseinvestmentsincludecapitalexpendituresforstorageandconversion,renewableenergyandelectrolysers.88Theabove-mentionedcapital-intensiveinvestmentplans/scenariosfortheArabregionwouldbequitechallengingtoimplement.AccordingtotheIEA’sreportonFinancingCleanEnergyTransitioninEmergingandDevelopingEconomies(EMDE),“Thereisnoshortageofglobalcapital,butthereisashortfallofcleanenergyinvestmentopportunitiesaroundtheworldthatofferadequatereturnstobalancetherisks.”89Themainfundingconstraintisclearlytheavailabilityofcommerciallyviablecleanenergyprojects.Thecommercialviabilityoflow-carbonhydrogenprojectsrequiresasignificantscalingupofthe16-2550-70Annualinvestmentsofwouldberequiredoveraperiodof25yearstoachieveagreenhydrogenproductioncapacityofbilliondollarsmilliontons56PotentialblueandgreenhydrogendevelopmentsintheArabregionhydrogenproductioncapacityunderpinnedbysecurelong-termmarketdemandwithcontractualpurchasecommitmentslikethosethatenabledthelaunchoftheinternationaltradeofLNG,atleastinitially.Othermechanisms,likeContractsforDifference,90couldalsoensurestabilityofrevenue.Commercialbanks,amongothers,arelikelytowaitforlow-carbonhydrogenprojectstobede-riskedbeforeofferingfinancingattheneededscale.Therefore,bothpublicandprivatesectorfundingandfinancialincentiveswillbenecessary.OrganizationssuchastheDiiDesertEnergyinitiativerecommendthatMENAcountriesleveragetheir“existingknowhowandsuccessstoriesinfinancingprojectsviainternationaldevelopmentinstitutionsindevelopingMENAcountriesandlargecommercialbanksinGCCcountries.”91WhilefundinginNorthAfricamaybechallengingtosecure,especiallytoexpandelectrolysercapacity,itcouldberelativelylessconstrainedinotherpartsoftheArabregion,specificallyintheGCCarea,suchasinSaudiArabiaandtheUnitedArabEmirates.However,itremainsanimportantfinancialchallengethatneedstobeaddressedbybothpublicandprivatesectorstakeholders.Althoughtherewouldbesomeinitialgovernmentand/orinternationalinstitutionalsupporttolaunchthefirstprojects,alarge-scalelow-carbonhydrogenprogrammeisunlikelytobefullyorevensignificantlysubsidizedbyArabhydrocarbon-producingcountriesalreadysufferingfromasignificantdropintheirhydrocarbonexportrevenues.D.LegalandregulatoryframeworkAddressingfinancingchallengeswillrequireanadequatelegalandregulatoryframeworktosupportthescalingupoflow-carbonhydrogenproductioncapacities.Thisframeworkwillneedtoreflectrealisticstrategiesformulatedatthecountryorregionallevelthatwillserveasthebasisfortheformulationofalegalandregulatoryframeworktosupportthedevelopmentoflow-carbonhydrogenineachcountryorregion.Insomecountries,therearealreadyregulationsorstandardsthatcovercertainaspectsofsuchhydrogendevelopments.Atpresent,mosthydrogensupportinitiativeslaunchedindifferentcountriesarefocusedontheuseofhydrogeninthemobilityortransportsectors,whileelectrolysers,anessentialsegmentforgreenhydrogenproduction,havesofarreceivedarelativelylowerlevelofsupport.InmostArabhydrocarbon-producingcountries,governmentsprovidesomeformofsubsidy,especiallyenergypricesubsidies,totheirindustries,andthereisnowsignificantpressuretoreduceandeventuallyphaseoutthesesubsidies.Apotentialincreaseinthecostsoftheirmanufacturedproductsresultingfromtheintroductionanduseoflow-carbonhydrogeninArabindustrieswouldbeachallengeforArabpolicymakers.Meanwhile,forexport-orientedindustries,especiallythosealreadyexportingorplanningtoexporttoEuropeanmarkets,thecarbonfootprintoftheirexportproductscouldbecomeanissueifaccesstothesemarketsisrestrictedandalternativemarketscannotbesecured.Asamatteroffact,inJuly2021,theEuropeanUnionadoptedanewcarbonborderadjustmentmechanism(CBAM)“whichwillputacarbonpriceonimportsofatargetedselectionofproductssothatambitiousclimateactioninEuropedoesnotleadto‘carbonleakage’.”92ThesectorscoveredbytheCBAMincludecement,ironandsteel,aluminiumandfertilisers.ThesearekeyindustriesinmostoftheArabStatesplanningtodevelop57low-carbonhydrogenprojects.Therefore,thegradualdecarbonizationoftheseexportindustrieswouldbeunavoidableovertimeiftheywantaccesstoEuropeanmarkets.Onerecurrentthemethatemergesfromthediscussionsatalllevels(national,regionalandinternational)ontheformulationofasupportivelegalandregulatoryframeworkistheissueofgovernmentsubsidiestosupportthelow-carbonhydrogenindustryforbothblueandgreenhydrogenproduction.Thepathwayforsomeregionsorcountriescouldbeagradualtransitionfromabluetoagreenhydrogeneconomytoallowforascalingupofcapacityandfuturecostreductions,whileotherscouldopttoleapfrogthetransitionphaseandmovedirectlyintogreenhydrogen.Therewouldalsobecountriesthatwouldcontinuetodevelopbothblueandgreenhydrogencapacitiesconcurrently.Therefore,thelegalandregulatoryframeworkswouldvary,reflectingthedifferentpathwayschosenbyspecificcountriesorgroupsofcountries.Arabhydrocarbon-producingcountrieshavebeenproducingandusinggreyhydrogenforthepastseveraldecades.However,thereisnodedicatedlegalandregulatoryframeworkfocusedonthedevelopmentoflow-carbonhydrogenproductionanduse(domesticallyorforexports)inanyArabcountry.Apartfromthepreparationoftechnicalregulationsrelatedtohydrogenuseinthemobilitysector.93ExistingandpotentialusersofhydrogenintheArabregionarepredominantlylargeindustrieslikeoilrefining,petrochemicalsandsteel.Theseindustriesfacethinmargins(e.g.oilrefining)orfluctuatinggrowthprospects(e.g.steelmanufacturing)andwouldnotbeabletoeasilyabsorbtheincreasedcostsoflow-carbonhydrogensuppliesandcouldopposethepaymentofanypricepremiumforsuppliesoflow-carbonhydrogen.Nonetheless,asindicatedabove,thedecarbonizationorreductionofthecarbonfootprintofArabexportindustries,especiallythosethatarehardtoabate,isunavoidableoverthelongtermandtheseadditionalcostswillatsomestagehavetobeinternalized.Dependingonthecostoflong-distancehydrogentransportandthedevelopmentofacommerciallyviableinternationalhydrogenmarket,potentiallow-carbonhydrogendevelopmentsintheArabregioncouldinitiallybelimitedtosmallorpilotexportprojects.Overtimetheselow-carbonhydrogendevelopmentscouldpotentiallybefocusedonthegradualreplacementofthelargequantitiesofgreyhydrogenproducedandconsumedmainlyintheGCCandNorthAfricancountries.Thiswouldbedrivenbytheimminentthreatoftheimpositionofcarbontaxesonimportsofunabatedindustrialproducts.E.OpportunitiesforArabcountriesTheseriesofchallengesreviewedinthissectionshowthatthesebarriers’levelsofdifficultyvaryfromoneregiontoanotherandevenamongdifferentcountrieswithinaregion.Infact,opportunitiescouldemergeincountriesthatarebetterpositionedandpreparedtoaddressthesechallenges.InthecaseofArabcountries,thefollowingfactorscouldprovidesomecomparativeadvantagesandopportunitiesinthedevelopmentoflow-carbonhydrogencapacities.Ingas-richArabcountries,theproductionofbluehydrogenusingnaturalgasasaprimarysourceintheSMRprocesscoupledwithCCSorCCUSfacilitiescouldsmoothoutthetransitiontoalower-costgreenhydrogenproductionphasebysupportingascalingupoflow-carbonhydrogen58PotentialblueandgreenhydrogendevelopmentsintheArabregioncapacity.However,theseArabhydrocarbon-producingcountrieswouldneedtotakeamoreactiveroleinmobilizinginvestmentsinscaled-upCCUSandgeologicalstoragefacilities.94InrelationtoCCSorCCUS,capturedCO2couldbeusedinenhancedoilrecovery(EOR)projectsandinsomeindustriesinhydrocarbon-producingcountriesand/orbestoredsafelyawayfrompopulatedareasindepletedhydrocarbonfields(wheregeologicconditionsallow).Greenhydrogenproductioncouldbenefitfromlow-costrenewableelectricitysuppliesandtheavailabilityoflargelandareasinsomepartsoftheArabregiontodeveloporexpandrenewableenergycapacity.Waterusageingreenhydrogenproductioncouldbeanissueincountrieswithveryscarcefreshwaterresources.However,GCCcountrieswithlong-establishedseawaterdesalinationindustriesandlargeproductioncapacitiescouldleveragethisexperiencetomitigateanyadversewaterusageimpactswhenexpandingthesecapacitiestoproducegreenhydrogen.Furthermore,thedevelopmentofscaled-updesalinationcapacitycouldalsoprovidelocalcommunitieswithadditionalwatersupplies.Thisisassumingthattheaddeddesalinationcapacityforgreenhydrogenproductioniscommerciallyviableandthatthedesalinationfacilitieshavealowcarbonfootprint.NorthAfricangasproducingcountries(AlgeriaandLibya)havelargecross-bordernaturalgaspipelineinfrastructurelinkingthemtosouthernEurope.TheselinkscouldpotentiallybeusedtoexporthydrogenandhavebeenmentionedinEuropeanplanstoimportgreenhydrogenfromNorthAfrica.However,theseplanswilltakealongtimetomaterializeforthereasonsoutlinedaboveintheChallengessection.SomekeyArabhydrocarbon-producingcountrieshavelargeindustrialparksorclusterswherelow-carbonhydrogenprojectscouldbelocatedatlowercoststhangreenfieldsites.Substantialsharesofthehydrogenproductioncouldbeconsumedlocallybyindustriesintheseparks.Finally,thedevelopmentofalow-carbonhydrogenindustrycouldhelpachieveeconomicdiversificationawayfromhydrocarbons,oneofthemostelusiveobjectivesofthehydrocarbon-producingcountriesoftheArabregion.However,todoso,thenewlow-carbonhydrogenindustrywillhavetodisconnectfromtheexistinghydrocarbonindustry.Forexample,thisnewindustrycannotrelyonexistinghydrocarbonorhydrocarbon-relatedinputsandinfrastructuretobetrulydiversified.Ifthisnewlow-carbonhydrogenindustryiscompletelyindependentofproducingcountries’oilandgassectors,whichconstitutethecoreoftheircomparativeadvantage,theyruntheriskofnotbeingcompetitive.95Therefore,theprosandconsofagenuinediversificationstrategyneedtobeconsidered,inadditiontotheeconomicandhumancapitaladjustmentsthatwouldberequiredovertimetoreachinternationallycompetitivecostlevels.ThissituationwouldbedifferentamongdifferentgroupsofArabhydrocarbon-producingcountries,dependingontheimportanceofthehydrocarbonsectorintheirrespectiveeconomies.597Conclusionsandrecommendations60PotentialblueandgreenhydrogendevelopmentsintheArabregionKeymessagesLow-carbonhydrogenissettoplayacrucialroleinachievingcarbonneutralitytargetsby2050,alongsiderenewableenergyelectrificationandenergyefficiency.Allrelevantpublicandprivatesectorstakeholders,especiallyhydrocarbon-producingcountries,needtotakeurgentactiontomobilizeinvestmentstoscaleupCCSandCCUScapacitytoproduceeconomicallyviablebluehydrogen.Toscaleupcapacitiesandmakeblueandgreenhydrogencommerciallyviable,marketsforlow-carbonhydrogenneedtobecreated.Thisequationwouldbedifficulttosolvewithoutgovernmentsupportandincentives.Overthenexttentofifteenyears,theprospectsforblueandgreenhydrogendevelopmentintheArabregionarelikelytobelimitedtoahandfulofcountriesintheGCCareaandNorthAfrica,withprojectslocatedmainlyinindustrialparksorclustersandportsthatcouldbecometheArabregion’slow-carbonhydrogenhubs.Dedicatingalargepartofexistingorexpandingrenewableenergycapacitytogreenhydrogenproductioncouldmeanthatmorefossilfuel-basedelectricitywouldneedtobegeneratedtocompensate.Thelarge-scaleuseofelectrolysistoproducegreenhydrogenisnotyetmatureandproductioncostsremainprohibitivelyhigh.HHHH61A.ConclusionsLow-carbonhydrogenissettoplayacrucialroleinachievingcarbonneutralitytargetsby2050,alongsiderenewableenergyelectrificationandenergyefficiency.Ofparticularinterestisitspotentialuseinhard-to-abateorhard-to-electrifysectorswherecleanelectrificationisnotfeasible.Withelectricityinputaccountingformuchoftheproductioncostofgreenhydrogen,fallingrenewablepowercostswillnarrowthegap.Attention,meanwhile,mustshifttoelectrolysers,thesecond-largestcostcomponent.Withlargerproductionfacilities,designstandardizationandinsightsfromearlyadopters,thesecostscouldfallby40percentintheshorttermandupto80percentinthelongterm.Inpriceterms,theresultinggreenhydrogencouldfallbelow$2/kilogramwithinadecade,makingitcostcompetitive.96Thefocusonhydrogenisnotnew,andtherehavebeenseveralattemptsbeforetodevelopitsproductionandutilization,buttonoavail.Therecentglobalenthusiasmforlow-carbonhydrogenisdrivenmainlybyrapidlyincreasinginternationalattentiononaddressingclimatechangethroughcarbonneutrality.Itisalsoreinforcedbythecontinuouslyfallingcostsofrenewableelectricitygeneration,themainoperatingcostofgreenhydrogenproductionthroughelectrolysis,andthefallingcostsofelectrolysers.However,thistechnologyisnotyetmatureenoughtoproducegreenhydrogenatalargescale,andproductioncostsremainprohibitivelyhigh.Today,SMRtechnologyisusedtoproducemostofthehydrogenconsumedglobally.WhencoupledwithCCSorCCUSfacilities,bluehydrogenisproduced.Usingbluehydrogenasatransitionfuelwouldhelptoscaleupcapacityandenablesignificantcostreductionsforgreenhydrogenproduction.97However,allrelevantpublicandprivatesectorstakeholders,especiallyhydrocarbon-producingcountries,needtotakeurgentactiontomobilizeinvestmentstoscaleupCCSandCCUScapacity.Toscalecapacitiesandmakeblueandgreenhydrogencommerciallyviable,marketsforlow-carbonhydrogenneedtobecreated.ThisequationwouldbedifficulttosolvewithoutGovernmentsupportandincentives.Therefore,asupportivelegalandregulatoryframeworkplussomeformofGovernmentfundingwouldberequired,untilthemarketdevelopsandallowsforprivatesectorentitiestotakeaneffectiverole.InthecaseofmostArabcountries,Governmentfinancialsupportwouldbeextremelyconstrained,ifavailableatall.ExistingandpotentialusersofhydrogenintheArabregion,especiallyindustrieswithsmallmarginsandfluctuatinggrowthprospects,wouldnotbeabletoeasilyabsorbtheincreasedcostsoflow-carbonhydrogensupplies.However,theimpendingimpositionofcarbonadjustmentmechanismsbymajorblocs,suchastheEUandsomeAsiancountries,ontheimportofindustrialproductscouldseverelyaffecttheaccessofArabindustrialproductstothesekeymarkets.Therefore,decarbonizationthroughthegradualreplacementofgreyhydrogenproductionandconsumptionintheArabregion’sindustrialcentresisunavoidable,especiallyinhard-to-abateindustries.Inthetransitionphase,thefewArabcountrieswithlargenaturalgasreservescouldfocusonbluehydrogenproduction.However,forthosewhoarenotendowedwithnaturalgasresourcesorwhohavedecidedtoundertakebothblueandgreenhydrogenprojects,someprioritizationissuesmayarise.IntheArabregion,thetargetedshareofrenewableenergycapacityinthepowermixisnotplannedtoexceed30percent,besidesafewselectcountriesaimingfor50percent,andeventheserelativelyconservativetargetswillbedifficulttoachieve.Dedicatingalargepartof62PotentialblueandgreenhydrogendevelopmentsintheArabregionexistingorexpandingrenewableenergycapacitytogreenhydrogenproductioncouldmeanthatmorefossilfuel-basedelectricitywouldbeneededtocompensate.ThiswouldclearlyaffectthegoalofcarbonneutralityandSDG7,whichemphasizestheexpandinguseofcleanenergy.ThesameobservationappliestoArabStatesthathaveovercommittedthemselvestolargefossilfuel-basedelectricitygenerationexpansionprogrammes.Thejourneytoacommerciallyviable,scaled-uplow-carbonhydrogenindustrywouldbealongandchallengingone.By2030,weneedelectrolysercoststofallby75to80percentinordertoachievegreenhydrogencostsintherangeof$2/kg.Oncethishappens,productioncanscaleinordertoreachour2050decarbonizationtargets,whichrelyongreenhydrogenasakeypieceofthepuzzle.EveninArabcountrieswellendowedwithlargenaturalgasresources,largerenewableenergycapacityandafavourablefinancialposition,thetimelineforscalinggreenhydrogencapacitywouldtaketime,likelybeyond2030/2035.Itiscrucialthatthislongtimehorizonbeproperlyunderstoodtoformulatearealisticallyachievablepathway(orpathways)withanopenchoiceoftechnologieswhileavoidinginvestment(andlock-in)inoldtechnologiesandstrandedassets.Overthenext10to15years,theprospectsforblueandgreenhydrogendevelopmentintheArabregionarelikelytobelimitedtoahandfulofcountriesintheGCCareaandNorthAfrica,withprojectslocatedmainlyinindustrialparksorclustersandportsthatcouldbecometheArabregion’slow-carbonhydrogenhubs.Wehavethetechnologytodeveloplow-carbonhydrogen;whatweneednowisaction,andtheeffectivepolicytoenableit.B.RecommendationsThefollowingareselectrecommendationsforArabcountriestoacceleratethedevelopmentoflow-carbonhydrogenlocallyandglobally.•Acceleratedomesticrenewableenergyprojectstoincreasetheshareofrenewableelectricityinpowersystemstoensureadequatecapacityforgreenhydrogenproduction.•Exploreflexibilitymeasuresincludingregionalgridinterconnectioninordertoeffectivelymanagetheinherentvariabilityofsolarandwindgeneration.•Establishcertificationandstandardizationschemesforgreenandbluehydrogenthatarealignedwithinternationalstandards.•Reduceriskbyformulatinglow-carbonhydrogenstrategiesthatreflecteachcountry’scarbonneutralityobjectivesandcommitments,renewableandnon-renewableenergyendowmentsandfinancialstrengthsand/oraccesstofundingsources.Governmentscanalsoreduceoff-takeriskbyestablishinglocallow-carbonhydrogendemandinitiatives.•Increasepublicfundinginresearch,educationandinnovationaswellastheinfrastructurerequiredtoproduceandtransportlow-carbonhydrogen,hydrogenderivativesandlow-carbonindustrialproducts.Providestronginnovationsupporttoensureprojectsreachthecommercializationstageandtoincentivizemarketcreationwhilecollaboratingwithlocaluniversitiesandresearchcentresandinternationalresearchanddevelopmentpartnerships.•Encourageinvolvementofallrelevantpublicandprivatesectorstakeholdersintheinitialstrategydesignprocessandobtaintheirbuy-in.63Strategiesshouldbebasedonthoroughmulti-disciplinaryassessments,includingsocialandenvironmentalimpactstudiesandcost/price-sensitivemarketevaluations.•Leverageexperienceintheoilandgassectorsaswellasinternationalpartnershipswithoilandgascompanies.Alsoleverageexistingrefiningandshippinginfrastructuretoacceleratethetransitiontotheproductionandexportofsustainablefuelandindustrialmaterials,therebymitigatingdisruptionstolocaleconomiesandjobsinthefaceofglobaldecarbonizationstrategiesandincomingcarbonborderadjustmentmechanisms.•Developadequatelegalandregulatoryframeworkstoincentivizelow-carbonhydrogeninvestmentsbylocalandinternationalinvestors.Focusondecarbonizationofhard-to-electrifysectorsbutavoidthefinanciallydemandingandhigh-riskcycleofsubsidies.•Studyandthoroughlyunderstandallthebarriersthatcouldariseinthispotentialnewlow-carbonfuelandmaterialstradewithothercountriesandregions(e.g.carbonpricing,certificatesorguaranteesoforigin)sincemostofthelow-carbonhydrogenthatwouldpotentiallybeproducedintheArabregioncouldinitiallybeexported.•Theinternationaltradeoflow-carbonhydrogenandderivativesisatitsembryonicstageandneedstimetodevelop.However,contractualarrangementsneedtobepreparednowtogovernfuturetransactions.64PotentialblueandgreenhydrogendevelopmentsintheArabregionReferencesAdnoc(2020).“H.H.SheikhMohamedbinZayedCommendsADNOC’sAgilityandResilienceatSPCMeeting”,22November.Availableathttps://www.adnoc.ae/en/news-and-media/press-releases/2020/hh-sheikh-mohamed-bin-zayed-commends-adnocs-agility-and-resilience-at-spc-meeting.ADQ(2021).“Mubadala,ADNOCandADQformalliancetoaccelerateAbuDhabiHydrogenleadership”,pressrelease,17January.Availableathttps://adq.ae/media/news/mubadala-adnoc-and-adq-form-alliance-to-accelerate-abu-dhabi-hydrogen-leadership.AirProducts(2020).“AirProducts,ACWAPowerandNEOMSignAgreementfor$5BillionProductionFacilityinNEOMPoweredbyRenewableEnergyforProductionandExportofGreenHydrogentoGlobalMarkets”,7July.Availableathttps://www.airproducts.com/news-center/2020/07/0707-air-products-agreement-for-green-ammonia-production-facility-for-export-to-hydrogen-market.AlKhowaiter,AhmadO.andMufti,YasserM.(2021).“SaudiAramco’sPerspectivesonHydrogen:OpportunitiesandChallenges”,OxfordEnergyForum,Issue127,May.Availableathttps://www.oxfordenergy.org/wpcms/wp-content/uploads/2021/05/OEF-127.pdf.AlReyadahCCUSproject(2017).AbuDhabi.Availableathttps://www.cslforum.org/cslf/sites/default/files/documents/AbuDhabi2017/AbuDhabi17-SiteVisitInformation.pdf.Alatawi,HatemandAbdulelahDarandary(2020).“TheSaudiMoveintoHydrogen:AParadigmShift”,KAPSARC,22December.Availableathttps://www.kapsarc.org/research/publications/the-saudi-move-into-hydrogen-a-paradigm-shift/.Alshammari,Hebshi(2021).“SaudiArabiaaimstogenerate50percentofpowerfromrenewablesby2030”,ArabNews,20January.Availableathttps://www.arabnews.com/node/1795406/saudi-arabia.Aramco(2020).“World’sfirstblueammoniashipmentopensnewroutetoasustainablefuture”,27September.Availableathttps://www.aramco.com/en/news-media/news/2020/first-blue-ammonia-shipment#.Barlow,AdamandMcErlane,Caitlin(2021).“PublicandPrivateFinanceforClimateActionTakesCenterStageatCOP26”,BakerMcKenzie,04November.Availableathttps://www.bakermckenzie.com/en/insight/publications/2021/11/public-and-private-finance-for-climate-action.Barrington,Lisa(2021).“Omansetsuphydrogenalliancetodevelopcleanfuelindustry”,Reuters,12August.Availableathttps://www.nasdaq.com/articles/oman-sets-up-hydrogen-alliance-to-develop-clean-fuel-industry-2021-08-12.Bellini,Emiliano(2021).“SaudiArabia’ssecondPVtenderdrawsworldrecordlowbidof$0.0104/kWh”,PVMagazine,8April.https://www.pv-magazine.com/2021/04/08/saudi-arabias-second-pv-tender-draws-world-record-low-bid-of-0104-kwh/.BulletindesEnergiesRenouvelables(2007).Editorial,CentredeDeveloppementdesEnergiesRenouvelables,Algiers,11June.Availableathttps://www.cder.dz/bulletin/bull11/ber11.pdf.Cockayne,James(2021).“MauritaniaEyesaPieceoftheHydrogenPie”,MEES,01October.Availableathttps://www.mees.com/2021/10/1/refining-petrochemicals/mauritania-eyes-a-piece-of-the-hydrogen-pie/76a30060-22b5-11ec-acb1-0d7b250fa802.CouncilofAustralianGovernmentsEnergyCouncil(2019).“Australia’sNationalHydrogenStrategy.”Availableathttps://www.industry.gov.au/sites/default/files/2019-11/australias-national-hydrogen-strategy.pdf.DEMEGroup(2020).“DEMEandPartnersPresentHyport®Duqm,ALarge-ScaleGreenHydrogenProjectInOman”,03March.Availableathttps://www.deme-group.com/news/deme-and-partners-present-hyportrduqm-large-scale-green-hydrogen-project-oman-.Dickel,Ralf(2020).“Bluehydrogenasanenablerofgreenhydrogen:thecaseofGermany”,OxfordInstituteforEnergyStudies,May.Availableathttps://www.oxfordenergy.org/wpcms/wp-content/uploads/2020/06/Blue-hydrogen-as-an-enabler-of-green-hydrogen-the-case-of-Germany-NG-159.pdf.Dii&RolandBerger(2021).“ThePotentialforGreenHydrogenintheGCCRegion”,May.Availableathttps://dii-desertenergy.org/wp-content/uploads/2021/05/The-potential-for-green-hydrogen-in-the-GCC-region.pdf.DiiDesertEnergy(2020).“TheRisksandOpportunitiesofGreenHydrogenProductionandExportfromtheMENAregiontoEurope”,StudyonbehalfoftheFriedrich-EbertStiftung,Amman,Jordan,November.Availableathttp://library.fes.de/pdf-files/bueros/amman/16998.pdf.DubaiElectricity&WaterAuthority(2020).“HHSheikhAhmedbinSaeedAlMaktoumbreaksgroundforMENA’sfirstsolar-poweredGreenHydrogenprojectatMohammedbinRashidAlMaktoumSolarPark”,pressrelease,03February.Availableathttps://www.dewa.gov.ae/en/about-us/media-publications/latest-news/2019/02/hh-sheikh-ahmed-bin-saeed-al-maktoum-breaks-ground.65Dunkley,Claire(2021).“SaudiArabiashootsforhydrogensupremacy”,HydrogenEconomist,08November.Availableathttps://www.pemedianetwork.com/hydrogen-economist/articles/strategies-trends/2021/saudi-arabia-shoots-for-hydrogen-supremacy.Dourian,Kate(2021).“RecordGulfRefiningCapacityAdditionstoEnterABleakMarket”,MEES,7January.Availableathttps://www.mees.com.Ecofin(2021).“CWPGlobaldévelopperaunprojetd’hydrogènevertde40milliards$enMauritanie”,04June.https://www.agenceecofin.com/hydrocarbures/0406-88872-cwp-global-developpera-un-projet-d-hydrogene-vert-de-40-milliards-en-mauritanie.ElMoudjahid(2021).“Développementdelafilièredel’hydrogènevert,Chitour:Unplanseraprésentéaugouvernement”,20April.Availableathttps://www.elmoudjahid.com/fr/nation/developpement-de-la-filiere-de-l-hydrogene-vert-chitour-un-plan-sera-presente-au-gouvernement-8744.EmiratesAuthorityforStandardizationandMetrology(2019).“The1sttechnicalregulationofhydrogenvehiclesattheregionallevelfromUAE”,ESMAwebsite.Availableathttps://moiat.gov.ae/en/media-center/blogs/2021/10/18/the-1st-technical-regulation-of-hydrogen-vehicles-at-the-regional-level-from-uae/.Eni(2021).“Eni:MeetingbetweentheCEOofSonatrach,ToufikHakkar,andtheGeneralManagerofEni–NaturalResources,AlessandroPuliti”,pressrelease,07July.Availableathttps://www.eni.com/en-IT/media/press-release/2021/07/cs-incontro-ad-sonatrach-dg-eni-nr.html.EuropeanCommission(2020).“Ahydrogenstrategyforaclimate-neutralEurope”,8July.Availableathttps://ec.europa.eu/energy/sites/ener/files/hydrogen_strategy.pdf.EuropeanCommission(2021).“CarbonBoarderAdjustmentMechanism”.Availableathttps://ec.europa.eu/taxation_customs/green-taxation-0/carbon-border-adjustment-mechanism_en.Ewing,Richard(2021).“HeliosIndustrytoinvest$1bningreenammoniaplantinAbuDhabi”,ICIS,25.Availableathttps://www.icis.com/explore/resources/news/2021/05/25/10643901/helios-industry-to-invest-1bn-in-green-ammonia-plant-in-abu-dhabi.Fattouh,B;Heidug,W;andZakkour,P(2021).“TransitioningtoNet-Zero:CCUSandtheRoleofOilandGasProducingCountries”,OIES,June.Availableathttps://www.oxfordenergy.org/publications/transitioning-to-net-zero-ccus-and-the-role-of-oil-and-gas-producing-countries/.FuelCellsWorks(2021).“UAEhasstartedbuilding‘firstgreenhydrogenplantinMiddleEast–Minister”.Availableathttps://fuelcellsworks.com/news/uae-has-started-building-first-green-hydrogen-plant-in-middle-east-minister/.GasExportingCountriesForum(GECF)(2021).“2021AnnualStatisticalBulletin”.Availableathttps://www.gecf.org/insights/annual-statistics-bulletin?d=2021&p=1.GasforClimate(2020b).“EuropeanHydrogenBackboneplan”,17July.Availableathttps://gasforclimate2050.eu/news-item/gas-infrastructure-companies-present-a-european-hydrogen-backbone-plan/.GlobalCCSInstitute(2021).‘GlobalStatusofCCS2021–CCSAcceleratingtoNetZero’.Availableathttps://www.globalccsinstitute.com/wp-content/uploads/2021/10/2021-Global-Status-of-CCS-Global-CCS-Institute-Oct-21.pdf.GlobalCCSInstitute(2022).Availableathttps://www.globalccsinstitute.com/.Gnana,Jennifer(2020).“SaudiArabiatargetsalargershareofhydrogeninitsenergymix”,TheNational(UAE),19November.Availableathttps://www.thenationalnews.com/business/energy/saudi-arabia-targets-a-larger-share-of-hydrogen-in-its-energy-mix-1.1113879.Gnana,Jennifer(2021).“AdnocandTaqatoformglobalrenewablesandhydrogenventure”,TheNational,AbuDhabi,17November.Availableathttps://www.thenationalnews.com/business/energy/2021/11/17/adnoc-and-taqa-to-form-global-renewables-and-hydrogen-venture/.GUtech(2020).“FoundingCeremonyofthe“OmanHydrogenCentre”toshapeOman’sroleintheglobalenergytransition”,27January.Availableathttps://www.gutech.edu.om/founding-ceremony-oman-hydrogen-centre-shape-omans-role-global-energy-transition/.Habib,AliandOuki,Mostefa(2021).“Egypt’slowcarbonhydrogendevelopmentprospects”,OxfordInstituteforEnergyStudies,November.Availableathttps://www.oxfordenergy.org/publications/egypts-low-carbon-hydrogen-development-prospects/.Hasanandothers(2019).“AbuDhabiElectricitySector:Features,ChallengesandOpportunitiesforMarketIntegration”,February2019.Availableathttps://www.kapsarc.org/research/publications/abu-dhabi-electricity-sector-features-challenges-and-opportunities-for-market-integration/.Hasni,Tewfikandothers(2021).“L’Algérie100%ÉnergiesRenouvelables–Recommandationspourunestratégienationaledetransitionénergétique”,Friedrich-EbertStiftung,January.Availableathttp://library.fes.de/pdf-files/bueros/algerien/17412.pdf.Hoffman,Christianandothers(2020).“DecarbonizationChallengeforSteel–Hydrogenasasolution”,McKinsey,April.Availableathttps://www.mckinsey.com/~/media/McKinsey/Industries/Metals%20and%20Mining/Our%20Insights/Decarbonization%20challenge%20for%20steel/Decarbonization-challenge-for-steel.pdf.66PotentialblueandgreenhydrogendevelopmentsintheArabregionHydrogenEurope(2021).“HydrogenAct:TowardstheCreationtheEuropeanHydrogenEconomy”,April.Availableathttps://www.hydrogeneurope.eu/wp-content/uploads/2021/04/2021.04_HE_Hydrogen-Act_Final.pdf.HydrogenEurope(2022).Website.Availableathttps://hydrogeneurope.eu.Hydroma(2021).Website.Availableathttps://hydroma.ca/en/.HyLAWOnlineDatabase(2022).Availableathttps://www.hylaw.eu/.Hyzon(2021).“HyzonMotors,NeomandModernGroupPlantoCollaborateonHydrogen-PoweredVehicleValueChain”,pressrelease,29April.https://hyzonmotors.com/neom-and-modern-group-plan-to-collaborate-on-hydrogen-powered-vehicle-value-chain/.Ingram,Jamie(2021).“AbuDhabiTargetsGame-ChangingHydrogenExpansion”,MEES,22January.Availableathttps://www.mees.com/2021/1/22/refining-petrochemicals/abu-dhabi-targets-game-changing-hydrogen-expansion/059052f0-5cb4-11eb-ae5c-c96834f90699.Ingram,Jamie(2021).“FertiglobeToDevelop1mnt/yAbuDhabiBlueAmmoniaPlant”,MEES,25June.Availableathttps://www.mees.com/2021/6/25/refining-petrochemicals/fertiglobe-to-develop-1mn-ty-abu-dhabi-blue-ammonia-plant/492fc760-d5ac-11eb-a784-112dd762c3d8.InternationalEnergyAgency(2019).“TheFutureofHydrogen:Seizingtoday’sopportunities”.ReportpreparedbytheIEAfortheG20,Japan,Paris,June.Availableathttps://www.iea.org/reports/the-future-of-hydrogen.InternationalEnergyAgency(2020).“WorldEnergyOutlook2020”,Paris.Availableathttps://www.iea.org/reports/world-energy-outlook-2020.InternationalEnergyAgency(2021a).“FinancingCleanEnergyTransitioninEmergingandDevelopingEconomies”,June.https://www.iea.org/reports/financing-clean-energy-transitions-in-emerging-and-developing-economies.InternationalEnergyAgency(2021b).“GlobalHydrogenReview2021”.Paris,October.Availableathttps://www.iea.org/reports/global-hydrogen-review-2021.InternationalEnergyAgency(2021c).“NetZeroby2050:ARoadmapfortheGlobalEnergySector”,May.https://www.iea.org/reports/net-zero-by-2050https://www.iea.org/reports/net-zero-by-2050.InternationalRenewableEnergyAgency(2020a).“HowFallingCostsMakeRenewablesaCost-effectiveInvestment”,IRENAarticles,02June.Availableathttps://www.irena.org/newsroom/articles/2020/Jun/How-Falling-Costs-Make-Renewables-a-Cost-effective-Investment.InternationalRenewableEnergyAgency(2020b).“GreenHydrogenCostReduction:Scalinguprenewablestomeetthe1.5oCclimategoal”,December.Availableathttps://irena.org/publications/2020/Dec/Green-hydrogen-cost-reduction.InternationalRenewableEnergyAgency(2020c).“GreenHydrogen:AGuidetoPolicyMaking”,November.Availableathttps://www.irena.org/publications/2020/Nov/Green-hydrogen.InternationalRenewableEnergyAgency(2021a).“GreenHydrogenSupply:AGuidetoPolicymaking”,May.https://www.irena.org/publications/2021/May/Green-Hydrogen-Supply-A-Guide-To-Policy-Making.InternationalRenewableEnergyAgency(2021b).“RenewableCapacityStatistics2021”,August.Availableathttps://www.irena.org/publications/2021/Aug/Renewable-energy-statistics-2021.Ionomrinnovations(2021).“Hydrogenelectrolysis”.Availableathttps://ionomr.com/applications/hydrogen-electrolysis/.IntergovernmentalPanelonClimateChange(2018).“SpecialReport–GlobalWarmingof1.5oC:SummaryforPolicyMakers.”Availableathttps://www.ipcc.ch/site/assets/uploads/sites/2/2019/05/SR15_SPM_version_report_LR.pdf.KearneyEnergyTransitionInstitute(2020).“Hydrogenapplicationsandbusinessmodels–GoingBlueandGreen?”.Availableathttps://www.kearney.com/documents/17779499/18269679/Hydrogen+FactBook+Final+-+June+2020.pdf/01ae498b-3d38-deca-2a61-6f107699dde1?t=1592252815706.KearneyEnergyTransitionInstitute(2021).“CarbonCaptureUtilizationandStorage”,8January.Availableathttps://www.kearney.com/documents/17779499/17781864/CCUS-2021+FactBook.pdf/718e94af-1536-b23e-1ac9-a4de74ffef25?t=1623398953000.Vision2030oftheKingdomofSaudiArabia(2016).“SaudiVision2030.”Availableathttps://www.vision2030.gov.sa/en/themes/2.Kordvani,AmirandSalah,Fatma(2020).“HydrogenLawandRegulationintheMiddleEast”,CMS,8September.Availableathttps://cms.law/en/int/expert-guides/cms-expert-guide-to-hydrogen/middle-east.Koyama,Ken(2021).“TheRoleofHydrogeninJapan’sEnergyTransitionTowards2050CarbonNeutrality”,OxfordEnergyForum,Issue127,May.Availableathttps://www.oxfordenergy.org/wpcms/wp-content/uploads/2021/05/OEF-127.pdf.67Linde-gas(2021).“HydrogeninRefining.”Availableathttps://www.linde-gas.com/en/processes/petrochemical-processing-and-refining/hydrogen_applications_refineries/index.html.Magoum,Inès(2020).“Maroc:lepayssigneunaccordavecl’Allemagnepourl’hydrogènevert”,Afrik21,15June.Availableathttps://www.afrik21.africa/maroc-le-pays-signe-un-accord-avec-lallemagne-pour-lhydrogene-vert/.Masdar(2020).“EWECAnnouncesPartnerstoDeveloptheWorld’sLargestSolarPowerPlant”,26July.Availableathttps://news.masdar.ae/en/news/2020/07/26/07/39/ewec-announces-partners-to-develop-the-worlds-largest-solar-power-plant.Masen(2020).“MasenPrépareunMégaProjetdansl’hydrogèneVert,une1èreenAfrique”,20November.Availableathttps://www.masen.ma/fr/actualites-masen/masen-prepare-un-mega-projet-dans-lhydrogene-vert-une-1ere-en-afrique.METIMinistryofEconomy,TradeandIndustry(2017).“BasicHydrogenStrategy”.Availableathttps://www.meti.go.jp/english/press/2017/pdf/1226_003a.pdf.Mills,Robin(2021).“UnderaCloud:TheFutureofMiddleEastGasDemand”,ColumbiaCenteronGlobalEnergyPolicy,ColumbiaUniversity,April.Availableathttps://www.energypolicy.columbia.edu/research/report/under-cloud-future-middle-east-gas-demand.MinisteredelaTransitionEnergetiqueetdesEnergiesRenouvelables(2021).Availableathttps://www.mteer.gov.dz/bilan07/mobile/index.html#p=21.Ministeredel’Energie,desMinesetdel’Environnement(2021a).“Hydrogènevertvecteurdetransitionénergétiqueetdecroissancedurable”,21August.Availableathttps://www.mem.gov.ma/Pages/actualite.aspx?act=278.Ministeredel’Energie,desMinesetdel’Environnement(2021b).“PrincipalesactionsréaliséesparleMaroc”.Availableathttps://www.mem.gov.ma/Pages/secteur.aspx?e=2&prj=7.MinistryofEnergy,GovernmentofChile(2020).“NationalGreenHydrogenStrategy:Chile,acleanenergyproviderforacarbonneutralplanet”,November.Availableathttps://energia.gob.cl/sites/default/files/national_green_hydrogen_strategy_-_chile.pdf.Murphy,Joseph(2021).“UAEtargets25%ofGlobalHydrogenMarket”,NaturalGasWorld,05November.Availableathttps://www.naturalgasworld.com/uae-targets-25-of-global-hydrogen-market-93674?utm_medium=email&utm_campaign=Weekly%20Complimentary%20News&utm_content=Weekly%20Complimentary%20News+CID_ed7b6911d9f558bc7a7f6c03f778a5cb&utm_source=Campaign%20Monitor&utm_term=UAE%20TARGETS%2025%20OF%20GLOBAL%20HYDROGEN%20MARKET.OmanNewsAgency(2020).“EJAADHighlightsOman'sHydrogenEconomyStrategy”,18February.Availableathttps://omannews.gov.om/NewsDescription/ArtMID/392/ArticleID/8555/EJAAD-Highlights-Omans-Hydrogen-Economy-Strategy.OPEC(2021).“AnnualStatisticalBulletin2021”.Availableathttps://www.opec.org/opec_web/en/publications/202.htm.Ouki,Mostefa(2020).“MENA–Couldintra-regionalgastradeberefocusedasaresultoftheongoingglobalcrises?”,OxfordInstituteforEnergyStudies,May.Availableathttps://www.oxfordenergy.org/wpcms/wp-content/uploads/2020/05/MENA-Could-intra-regional-gas-trade-be-refocussed-as-a-result-of-the-ongoing-global-crises-.pdf.Lambert,Martin(2020).“Hydrogenanddecarbonisationofgas:falsedawnorsilverbullet?”,OxfordInstituteforEnergyStudies,EnergyInsight66,March.Availableathttps://www.oxfordenergy.org/publications/hydrogen-and-decarbonisation-of-gas-false-dawn-or-silver-bullet/.PowerTechnology(2020).“SoharPortplanshydrogenhub”,05November.Availableathttps://www.power-technology.com/comment/sohar-port-plans-hydrogen-hub/.Poudineh,RahmatallahandFattouh,Bassam(2020).“DiversificationStrategyUnderDeepUncertaintyforMENAOilExportingCountries”,OIES,May.Availableathttps://www.oxfordenergy.org/publications/diversification-strategy-under-deep-uncertainty-for-mena-oil-exporting-countries/.RamiShabanehandothers(2020).“World’sFirstBlueAmmoniaShipmentSignalsProspectiveNewLow-CarbonEnergyTradeforSaudiArabia”,KAPSARC,2November.Availableathttps://www.kapsarc.org/research/publications/worlds-first-blue-ammonia-shipment-signals-prospective-new-low-carbon-energy-trade-for-saudi-arabia/.RegionalCenterforRenewableEnergyandEnergyEfficiency(2019).“ArabFutureEnergyIndex(AFEX)–RenewableEnergy2019”,Cairo.Availableathttps://www.rcreee.org/sites/default/files/final_afex_re_2019_final_version-1.pdf.Reuters(2021).“UAEtargets25%ofglobalhydrogenfuelmarketby2030”.Availableathttps://www.reuters.com/business/cop/uae-targets-25-global-hydrogen-fuel-market-by-2030-2021-11-04/.RutgerWillemHofste,PaulReigandLeahSchleifer(2019).“17Countries,HometoOne-QuarteroftheWorld'sPopulation,FaceExtremelyHighWaterStress”,WorldResourcesInstitute,6August.Availableathttps://www.wri.org/insights/17-countries-home-one-quarter-worlds-population-face-extremely-high-water-stress.68PotentialblueandgreenhydrogendevelopmentsintheArabregionSaudi–JapanVision2030(2017).Availableathttps://www.mofa.go.jp/files/000237093.pdf.Siemens(2021).EgyptMegaproject.Website.Availableathttps://new.siemens.com/eg/en/company/topic-areas/egypt-megaproject.html.SiemensEnergy(2021).“SiemensEnergyandpartnersinauguratefirstindustrialscaleGreenHydrogenProjectintheMiddleEastandNorthAfrica”,pressrelease,19May.Availableathttps://press.siemens-energy.com/global/en/pressrelease/siemens-energy-and-partners-inaugurate-first-industrial-scale-green-hydrogen-project.Smati,Said(2021).“ChitourÉvoqueuneNouvelleEntitépourPiloterlesAppelsd’offres:une“Sonelgazbis”pourleRenouvelable”,Liberte,Algiers,20January.Availableathttps://www.liberte-algerie.com/economie/une-sonelgaz-bis-pour-le-renouvelable-352743.SNAM(2019).“TheHydrogenChallenge:thepotentialofhydrogeninItaly”,October.Availableathttps://www.snam.it/it/hydrogen_challenge/repository_hy/file/The-H2-challenge-Position-Paper.pdf.Stevenson,Peter(2021).‘Egypt:GreenHydrogenPlan’,MEES,15October.Availableathttps://www.mees.com/2021/10/15/news-in-brief/egypt-green-hydrogen-plan/7faaf8c0-2db1-11ec-a6c6-1febf54ae6ac.Think20/G20(2020).“ACarbonManagementSystemofInnovation:TowardsACircularCarbonEconomy”,TaskForce2:ClimateChangeandEnvironmentPolicyBrief.Availableathttps://t20saudiarabia.org.sa/en/briefs/Pages/Policy-Brief.aspx?pb=TF2_PB4.UAEEnergyStrategy2050(2021).Availableathttps://u.ae/en/about-the-uae/strategies-initiatives-and-awards/federal-governments-strategies-and-plans/uae-energy-strategy-2050.UNClimateChangeConferenceUK2021(2021a).“COP26THEGLASGOWCLIMATEPACT”.Availableathttps://ukcop26.org/mdb-joint-climate-statement/.UNClimateChangeConferenceUK2021(2021b).“TheOutcomes”.Availableathttps://ukcop26.org/wp-content/uploads/2021/11/COP26-Presidency-Outcomes-The-Climate-Pact.pdf.Uniper(2021).“HYPORT®DuqmsignscooperationagreementwithUnipertoexploregreenammoniaofftake”,pressrelease,19July.Availableathttps://www.uniper.energy/news/hyport-duqm-signs-cooperation-agreement-with-uniper-to-explore-green-ammonia-offtake.UnitedNationsFrameworkConventionforClimateChange(2015).“TheParisAgreement”.Availableathttps://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement.UnitedNationsFrameworkConventionforClimateChange(2020).“SecondNationallyDeterminedContributionoftheUnitedArabEmirates”,December.Availableathttps://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/United%20Arab%20Emirates%20Second/UAE%20Second%20NDC%20-%20UNFCCC%20Submission%20-%20English%20-%20FINAL.pdf.vanWijk,AdandJorgoChatzimarkakis(2020).“GreenHydrogenforaEuropeanGreenDealA2x40GWInitiative”,HydrogenEurope,March.Availableathttps://www.hydrogeneurope.eu/wp-content/uploads/2021/05/Hydrogen-Europe_2x40-GW-Green-H2-Initative-Paper.pdf.WorldBank(2021).“CO2emissions(metrictonspercapita)”.Availableathttps://data.worldbank.org/indicator/EN.ATM.CO2E.PC?name_desc=false.Zakkour,PaulandHeidug,Wolfgang(2019).“AMechanismforCCSinthePost-ParisEra:PilotingResults-BasedFinanceandSupplySidePolicyUnderArticle6”,KAPSARC,April.Availableathttps://www.kapsarc.org/research/publications/a-mechanism-for-ccs-in-the-post-paris-era/.69Endnotes1WorldBank,2021.2Inthispaper“low-carbonhydrogen”includesbothblueandgreenhydrogen.3KearneyEnergyTransitionInstitute,2020.4Hydroma,2021.5This“excludesaround30Mtofhydrogenpresentinresidualgasesfromindustrialprocessesusedforheatandelectricity”(InternationalEnergyAgency,2021).6IEA,2021b.7IEA,2019.8IEA,2021.9IEA,2019.10Hydrogenblendingpercentagesinvolumecouldbeashighas20percentorhigherincertaincases,dependingonlocalandnationalregulations,andtypesorconditionsofgasinfrastructure.Thereisongoingresearchtoincreasethispercentage.11KearneyEnergyTransitionInstitute,2020.12IEA,2019.13Linde-gas,2021.14Hoffman,Christianandothers,2020.15IEA,2019.16AlReyadahCCUSproject,2017.17Seeinsectiononrenewableenergypotential,theissueof“renewableenergyadditionality”.18Zakkour,PaulandHeidug,Wolfgang,2019.19GlobalCCSInstitute,2022.20IRENA,2021b.21RegionalCenterforRenewableEnergyandEnergyEfficiency,2019.22Whencomparinginstalledpowercapacities,itshouldbenotedthatthelevelofelectricitygenerated(GWhorTWh)fromrenewableplantswouldbelowerthantheelectricityproducedfromthermalplantswiththesameinstalledcapacity.23RobinMills,Robin,2021.24Nuclearpowerwillalsoincreaseitsshareofthelong-termpowermixintheUnitedArabEmiratesastheEmiratinuclearpowerprogrammereachesitsfulldevelopment.25IRENA,2020c.26vanWijk,AdandJorgoChatzimarkakis,2020.27AlgeriaandEgyptexportgasthroughcross-bordergaspipelines,butpresentlyneithercountryhasagassurplus.28Ouki,Mostefa,2020.29Dii&RolandBerger,2021.30UAEEnergyStrategy2050,2021.31DEWA,2020.32Adnoc,2020.33Ingram,Jamie,2021.34FuelCellsWorks,2021.35UNFCCC,2020.36ADQ,2021.37Ingram,Jamie,2021.38Ewing,Richard,2021.39SiemensEnergy,2021.40EmiratesAuthorityforStandardizationandMetrology,2019.41Reuters,2021.42Gnana,Jennifer,2021.43Murphy,Joseph,2021.44Vision2030oftheKingdomofSaudiArabia,2016.45Alshammari,Hebshi,2021.46Think20/G20,2020.47Alatawi,HatemandAbdulelahDarandary,2020.48Gnana,Jennifer,2020.49AirProducts,2020.50Hyzon,2021.51Shabanehandothers,2020.52Aramco,2020.53Dunkley,Claire,2021.54https://www.ejaad.om.70PotentialblueandgreenhydrogendevelopmentsintheArabregion55OmanNewsAgency,2020.56GUtech,2020.57Barrington,Lisa,2021.58Ministeredel’Energie,desMinesetdel’Environnement,2021b.59Magoum,Inès,2020.60Masen,2020.61DiiDesertEnergy,2020.62Ministeredel’Energie,desMinesetdel’Environnement,2021a.63Siemens,2021.64Stevenson,Peter,2021.65Ali,HabibandOuki,Mostefa,2021.66Hasni,Tewfikandothers,2021.67BulletindesEnergiesRenouvelables,2007.68ElMoudjahid,2021.69MinisteredelaTransitionEnergetiqueetdesEnergiesRenouvelables,2021.70Eni,2021.71Cockayne,James,2021.72Ecofin,2021.73EuropeanCommission,2020.74GasforClimate,2020b.75IRENA,2020c.76IntergovernmentalPanelonClimateChange,2018.77IEA,2021c.78GlobalCCSInstitute,2021.79RutgerWillemHofste,PaulReigandLeahSchleifer,2019.80IRENA,2020b.81IRENA,2021a.82IRENA,2020a.83Masdar,2020.84Bellini,Emiliano,2021.85Hasanandothers,2019.86vanWijk,AdandJorgoChatzimarkakis,2020.87ThiswouldincludeallNorthAfricancountriesfromMoroccotoEgypt.ButthefocusislikelytobeinitiallyonMorocco,asthereisalreadyaninternationalpartnershipinplaceandanexpandingrenewableenergyprogramme.88Dii&RolandBerger,2021.89IEA,2021a.90AlKhowaiter,AhmadO.andMufti,YasserM.,2021.91DiiDesertEnergy,2020.92EuropeanCommission,2021.93Kordvani,AmirandSalah,Fatma,2020.94Fattouh,B;Heidug,W;andZakkour,P,2021.95Poudineh,RahmatallahandFattouh,Bassam,2020.96IRENA,2020b.97Dickel,Ralf,2020.Diversifyingtheenergymixisakeyaspectoftheenergytransition.Beyondacceleratingtheuptakeofrenewableenergyandelectrifyingrelevantsectors,alternativeenergycarriersincludinghydrogenandhydrogenderivativesshouldbeexploredtoensurethetransitionisjustandsustainable.ThispublicationfocusesonexistingandplannedhydrogendevelopmentsintheArabregionandexploresthemajorchallengesandopportunitiesofhydrogenproductionandusetosupporttheregion’senergytransitionwithinthecontextofthe2030AgendaforSustainableDevelopment.ThereportalsoconsidersrecentdecisionsbyseveralStatestointroducenet-zeroGHGemissiontargetsby2050anddiscussestheimplicationsforsustainablehydrogenproduction.22-00130

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

小星学习库
已认证
内容提供者

满天繁星 学无止境

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱