ALEXZAPANTISGeneralManager,CommercialAPRIL2021BLUEHYDROGENBLUEHYDROGEN2AcknowledgementsThisresearchwasoverseenbyanAdvisoryCommitteeofeminentindividualsfromgovernment,academiaandindustrywithdeepexpertiseacrosstechnology,policy,economicsandfinancerelevanttoclimatechange.TheguidanceoftheAdvisoryCommitteehasbeeninvaluableindevelopingthiswork.ThanksarealsoduetotheCenterforGlobalEnergyPolicyatColumbiaUniversitySIPAfortheirreviewandinputtothisreport.AdvisoryCommitteefortheCircularCarbonEconomy:KeystonetoGlobalSustainabilitySeries•Mr.BradPage,CEO,GlobalCarbonCapture&StorageInstitute(Co-Chair)•Mr.AhmadAl-Khowaiter,CTO,SaudiAramco(Co-Chair)•Dr.StephenBohlen,ActingStateGeologist,CaliforniaDepartmentofConservation•Ms.HeidiHeitkamp,FormerSenatorfromNorthDakota,U.S.Senate,UnitedStatesofAmerica•Mr.RichardKaufmann,Chairman,NewYorkStateEnergyResearchandDevelopmentAuthority(NYSERDA)•Ms.MariaJelescuDreyfus,CEO,ArdinallInvestmentManagement•Dr.ArunMajumdar,Director,PrecourtInstituteforEnergyandStanfordUniversity•Dr.NebojsaNakicenovic,FormerDeputyDirectorGeneral/CEOofInternationalInstituteforAppliedSystemsAnalysis(IIASA)•Mr.AdamSiemenski,President,KingAbdullahPetroleumStudiesandResearchCenter(KAPSARC)•Prof.NobuoTanaka,FormerExecutiveDirector,InternationalEnergyAgency(IEA)andDistinguishedFellow,InstituteofEnergyEconomicsJapanTHECIRCULARCARBONECONOMY:KEYSTONETOGLOBALSUSTAINABILITYSERIESassessestheopportunitiesandlimitsassociatedwithtransitiontowardmoreresilient,sustainableenergysystemsthataddressclimatechange,increaseaccesstoenergy,andsparkinnovationforathrivingglobaleconomy.BLUEHYDROGEN3INTRODUCTION41.0CURRENTPRODUCTION&USE52.0EMISSIONSABATEMENTOPPORTUNITY93.0CLEANHYDROGENPRODUCTIONCOSTS104.0COSTDRIVERSFORHYDROGENPRODUCTIONVIAFOSSILPATHWAYSWITHCCS135.0COSTDRIVERSFORRENEWABLEHYDROGENPRODUCTION156.0REDUCINGTHECOSTOFCLEANHYDROGENPRODUCTION177.0RESOURCEREQUIREMENTSFORCLEANH2PRODUCTION188.0EMISSIONSABATEMENTOPPORTUNITYCOSTOFRENEWABLEHYDROGEN219.0IMPLICATIONSFORPOLICY2310.0CONCLUSION2411.0REFERENCES25CONTENTSBLUEHYDROGEN4INTRODUCTIONStoppingglobalwarmingrequiresnetgreenhousegasemissionstofalltozeroandremainatzerothereafter.Putsimply,allemissionsmusteithercease,orbecompletelyoffsetbythepermanentremovalofgreenhousegases(particularlycarbondioxide-CO2)fromtheatmosphere.Thetimetakentoreducenetemissionstozero,andthusthetotalmassofgreenhousegasesintheatmosphere,willdeterminethefinalequilibriumtemperatureoftheEarth.Almostallanalysisconcludesthatreducingemissionsrapidlyenoughtoremainwithina1.5°Celsiuscarbonbudgetispracticallyimpossible.Consequently,tolimitglobalwarmingto1.5°Celsiusabovepre-industrialtimes,greenhousegasemissionsmustbereducedtonet-zeroassoonaspossible,andthenCO2mustbepermanentlyremovedfromtheatmospheretobringthetotalmassofgreenhousegasesintheatmospherebelowthe1.5°Celsiuscarbonbudget.Thistaskisasimmenseasitisurgent.Aconclusionthatmaybedrawnfromcredibleanalysisandmodellingofpathwaystoachievenet-zeroemissionsisthatthelowestcostandriskapproachwillembracethebroadestportfoliooftechnologiesandstrategies,sometimescolloquiallyreferredtoasan“alloftheabove”approach.TheKingAbdullahPetroleumStudiesandResearchCenter(KAPSARC)intheKingdomofSaudiArabiadevelopedtheCircularCarbonEconomy(CCE)frameworktomorepreciselydescribethisapproach.Thisframeworkrecognizesandvaluesallemissionreductionoptions(Williams2019).TheCCEbuildsuponthewell-establishedCircularEconomyconcept,whichconsistsofthe“threeRs”whichareReduce,ReuseandRecycle.TheCircularEconomyiseffectiveindescribinganapproachtosustainabilityconsideringtheefficientutilizationofresourcesandwasteshoweveritisnotsufficienttodescribeawholisticapproachtomitigatinggreenhousegasemissions.Thisisbecauseitdoesnotexplicitlymakeprovisionfortheremovalofcarbondioxidefromtheatmosphere(CarbonDirectRemovalorCDR)orthepreventionofcarbondioxide,onceproduced,fromenteringtheatmosphereusingcarboncaptureandstorage(CCS).RigorousanalysisbytheIntergovernmentalPanelonClimateChange,theInternationalEnergyAgency,andmanyothersallconcludethatCCSandCDR,alongsideallothermitigationmeasures,areessentialtoachieveclimatetargets.TheCircularCarbonEconomyaddsafourth“R”tothe“threeRs”oftheCircularEconomy;Remove.RemoveincludesmeasureswhichremoveCO2fromatmosphereorpreventitfromenteringtheatmosphereafterithasbeenproducedsuchascarboncaptureandstorage(CCS)atindustrialandenergyfacilities,bio-energywithCCS(BECCS),DirectAirCapture(DAC)withgeologicalstorage,andafforestation.Thisreportexploresthepotentialcontributionofbluehydrogen,whichhasverylowlife-cycleCO2emissions,toclimatemitigation.Bluehydrogenproducedfromfossilfuelswithcarboncaptureandstorage(CCS)cancontributetotheReducedimensionoftheCCEbydisplacingtheuseofunabatedfossilfuelsinindustrialandenergyapplications.HydrogenproducedfrombiomasswithCCScanalsocontributetotheRemovedimensionoftheCCEasithasnegativelife-cycleemissions.BLUEHYDROGEN5Near-zeroemissionshydrogen(cleanhydrogen)hasthepotentialtomakeasignificantcontributiontoemissionsreductioninthepowergeneration,transportation,andindustrialsectors.Hydrogencanbeburnedinturbinesorusedinfuelcellstogenerateelectricity,canbeusedinfuelcellstopowerelectricvehicles,asasourceofdomesticandindustrialheat,andasafeedstockforindustrialprocesses.Hydrogenmayalsobeusedtostoreexcessenergygeneratedbyintermittentrenewableelectricitysourceswhensupplyexceedsdemand,albeitwithsignificantlosses.Thevirtueofhydrogenisthatitproduceszerocarbonemissionsatthepointofuse.Currentlyapproximately120Mtofhydrogenisproducedannually;around75Mtofpurehydrogenwiththeremainderbeingmixedwithothergases,predominantlycarbonmonoxide(CO)insyngas(synthesisgas).Thepurehydrogenisusedmostlyinrefining(39Mt)andammoniaproduction(33Mt).Lessthan0.01Mtofpurehydrogenisusedinfuelcellelectricvehicles.Thesyngascontainingtheremaining45Mtofhydrogenisusedmostlyinmethanolproduction(14Mt),directreductionironmakingandotherindustrialprocessesincludingasasourceofhigh-heat(IEA2019;InternationalEnergyAgency(IEA)20202020a).Approximately98%ofcurrenthydrogenproductionisfromthereformationofmethaneorthegasificationofcoalorsimilarmaterialsoffossil-fuelorigin(egpetcokeorashphaltene).Onlyabout1%ofhydrogenproductionfromfossilfuelsincludescarboncaptureandstorage(CCS).Approximately1.9%ofhydrogenisproducedasabi-productofchlorineandcausticsodaproduction.TheInternationalEnergyAgency(IEA)estimatesthatlessthan0.4%ofhydrogenisproducedbytheelectrolysisofwaterpoweredbyrenewableelectricity.Approximately98%ofglobalhydrogenproductionisemissionsintense,emittingaround830MtpaofCO2(IEA2019;GlobalCCSInstitute2020).Lowemissionproductionmethodsforhydrogenavailabletodayincludesteammethanereformation(SMR),autothermalreformationofmethane(ATR),orcoalgasification;eachwithcarboncaptureandstorage(CCS),andelectrolysisofwaterpoweredbynearzeroemissionselectricitysuchasrenewablegenerationornuclearpower.Productionofcleanhydrogenfrombiomassthroughanaerobicdigestion,fermentation,gasificationorpyrolysis(allwithCCS)areatearlierstagesofcommercialization.ProductionfrombiomasswithCCSisattractiveasitwoulddelivernegativeemissions,althoughitwouldcompetewithothersourcesofdemandforbiomass(InternationalEnergyAgency(IEA)20202020a).Figure2.showsestimatesoftheemissionintensityofvarioushydrogenproductionpathways.TheproductionpathwayswiththehighestemissionsarecoalgasificationwithoutCCS,andelectrolysisusingpowersuppliedbyfossilgenerators;inthisexample,naturalgascombinedcyclegeneration(NGCC).Bothhaveanemissionsintensityofapproximately22kgCO2/kgH2.Further,usingelectricityfromapowergridtoincreasetheutilisationofrenewablepoweredelectrolyserswillalsoproducehighemissionshydrogen,unlessthegridhasanextremelylowemissionsintensity.IfthegridhasanemissionsintensityequivalenttoNGCC(400kg/MWh),and63%ofthepowersuppliedtotheelectrolysersisfromthegrid(theremaining37%beingfromdedicatedrenewablegeneration),thehydrogenproducedwillhaveanemissionsintensityofapproximately14kgCO2/kgH2–thiscomparestoapproximately9-10kgCO2/kgH2forconventionalSMRwithoutCCS.Asignificantconclusionfromthisanalysisisthatelectrolysersshouldneverbepoweredbyelectricityfromagridsuppliedbyfossilgeneration.HydrogenproducedbyelectrolyserswillproducehigherCO2emissionsthanconventionalSMRwithoutCCSunlesstheelectricitysupplyingtheelectrolyserhasanemissionintensityofaround165kgCO2/MWhorless.11.0CURRENTPRODUCTION&USE1Notethatallofthesefiguresareapproximate.NGCChasarangeofemissionintensities.Fugitiveemissionsfromnaturalgasandcoalproductionarenotexplicitlyconsideredandwilladdtototallifecycleemissionsfromfossilpathways.Lifecycleemissionsfromconstructionandmaintenanceofrenewablegenerationfacilities,andbiomassproductionarealsonotfullyconsideredandwilladdtotheemissionintensityofthoseproductionpathways.BLUEHYDROGEN6ItisclearfromFigure2thathydrogenproducedfromgasorcoalwithCCS,frombiomass,orfromelectrolyserspoweredbynear-zeroemissionselectricitywillbecleanhydrogen.ItisalsoclearthathydrogenproductionbygasificationofbiomasswithCCScandeliververysignificantnegativeemissionsmakingitanattractiveoptionforclimatemitigationpurposes.Howevergasificationofbiomasstoproducehydrogenisnotyetfullycommercialised,andwouldcompetewithotherprocessesforbiomass.Itsdeploymentisthusconstrained,atleastinthenearterm.Figure1.CurrentAnnualH2Production–120MtCOAL/COKEPUREH₂WITHCCS0.1%METHANEPUREH₂43.8%RENEWABLEELECTROLYSISPUREH₂0.3%METHANEORCOALSYNGASWITHCCS0.4%METHANEPUREH₂WITHCCS0.6%COALPUREH₂13.4%CHLORALKALIBIPRODUCTELECTROLYSISPUREH₂1.9%METHANEORCOALSYNGAS39.6%BLUEHYDROGEN7FacilitiesproducinghydrogenfromfossilfuelswithCCShavebeenoperatingatcommercialscale,producingupto1,300tofhydrogenperday,perfacility,fordecades(GlobalCCSInstitute2019).Table1.listscurrenthydrogenproductionfacilitieswithCCS.Theworld’slargestrenewablepoweredelectrolysercommencedoperationattheFukushimaHydrogenEnergyResearchFieldinJapaninMarch2020.Theelectrolyserhasacapacityof10MW,andispoweredby20MWofsolarPVcells(RenewEconomy2020).AssumingthatthefacilityhasbatterystoragesufficienttostoretheexcessenergyproducedbythePVarrayforlaterusebytheelectrolyser,ithasthecapacitytoproduceabout2.4tofcleanhydrogenperday.Muchlargerscalerenewablehydrogenproductionfacilitiesarecurrentlybeingplannedanddeveloped.Thesefacilitiesbenefitfromeconomiesofscaleandaccesstooutstandingrenewableresources.Theworld’slargestrenewablehydrogenproductionfacilityisbeingplannedinAustralia.TheAsianRenewableEnergyHub(AREH)project,ifitproceedstoconstruction,willproduce4800tperdayofhydrogenfromelectrolyserspoweredby23GWofsolarPVandwindpower(‘TheAsianRenewableEnergyHub’2020a).TheNeomprojectinSaudiArabiawillproduce650tofhydrogenperdayfromelectrolyserspoweredby4GWofsolarPVandwind.BoththeAREHprojectinAustralia’sremotenorth-westandtheNeomprojectinSaudiArabiahaveexcellentsolarandwindresources.Figure2.Emissionsintensityofhydrogenproductiontechnologies.AssumesemissionsintensityofNGCCof400kgCO2/MWh,55kWh/kgH2forelectrolysis,37%ofproductionfromgridfirmedelectrolysisutiliseszeroemissionsrenewableelectricity.EF=EntrainedFlow.FB=FluidisedBed.Electricityrequiredformethaneandcoalproductionpathwaysarefull-lifecycleincludingpowerusedinmethaneandcoalproductionfrom(Mehmetietal.2018).Emissionsfrombiomassgasificationarefrom(Salkuyeh,Saville&MacLean2018).Fugitiveemissionsfromnaturalgasandcoalproductionarenotexplicitlyconsideredandwilladdtototallifecycleemissionsfromfossilpathways.Lifecycleemissionsfromconstructionandmaintenanceofrenewablegenerationfacilities,andbiomassproductionarealsonotfullyconsideredandwilladdtotheemissionintensityofthoseproductionpathways.0551015202510152025NGCCELECTRICITYEMISSIONSLIFECYCLEEMISSIONSEXCLUDINGFABRICATION/CONSTRUCTIONANDMAINTENANCESCOPE1EMISSIONSSMRNOCCSATRCOALGASIFICATIONNOCCSELECTROLYSISWITHGRIDPOWERELECTROLYSISWITHRENEWABLEELECTRICITYFIRMEDBYGRIDPOWERELECTROLYSISWITH100%RENEWABLEELECTRICITYBIOMASSGASIFICATIONNOCCSEFGASIFIERBIOMASSGASIFICATIONWITHCCSEFGASIFIERBIOMASSGASIFICATIONNOCCSFBGASIFIERBIOMASSGASIFICATIONWITHCCSFBGASIFIERCOALGASIFICATIONWITHCCS98%CAPTUREATRWITHCCS94%CAPTURESMRWITHCCS90%CAPTUREBLUEHYDROGEN8Table1.HydrogenProductionfromFossilFuelswithCCSTable2.Examplesoftheworld’slargestrenewablehydrogenproductionfacilitiesFACILITYH2PRODUCTIONCAPACITYH2PRODUCTIONPROCESSHYDROGENUSEOPERATIONALCOMMENCEMENTEnidFertiliser200tonnesperdayofH2insyngasMethanereformationFertiliserproduction1982GreatPlainsSynfuel1,300tonnesperdayofH2insyngasCoalgasificationSyntheticnaturalgasproduction2000AirProducts500tonnesH2perdayMethanereformationPetroleumrefining2013Coffeyville200tonnesH2perdayPetroleumcokegasificationFertiliserproduction2013Quest900tonnesH2perdayMethanereformationBitumenupgrading(syntheticoilproduction)2015AlbertaCarbonTrunkLine-Sturgeon240tonnesH2perdayAsphalteneresiduegasificationBitumenupgrading(syntheticoilproduction)2020AlbertaCarbonTrunkLine-Nutrien800tonnesH2perdayMethanereformationFertiliserproduction2020SinopecQilu100tonnesH2perday(estimated)Coal/CokegasificationFertiliserproductionExpected2021FACILITYH2PRODUCTIONCAPACITYH2PRODUCTIONPROCESSOPERATIONALCOMMENCEMENTFukushima2.4tonnesH2perday10MWelectrolyserspoweredby20MWsolarPV2019Neom650tonnesH2perday4GWwindandsolarPVpoweredelectrolysersExpectedafter2025AREH4800tonnesH2perday23GWwindandsolarPVpoweredelectrolysersPossibleafter2028BLUEHYDROGEN9Asacarbonfreeenergycarrierandfeedstocktoindustrialprocesses,cleanhydrogencouldhaveasignificantroleindecarbonisingtheglobaleconomyacrossarangeofsectors.TheHydrogenCouncilestimatesthatdemandforhydrogencouldexceed530Mtpaby2050,andifthatdemandwasmetbycleanhydrogen,coulddeliver6BtCO2abatementinthatyear(HydrogenCouncil2017).Thisestimateissubjecttomanyassumptionsaboutthedemandforcleanhydrogen,itsapplicationsandtheenergysourcesthatthehydrogenwoulddisplace,howeveritillustratesthepotentialofcleanhydrogentosupportmulti-gigatonnescaleabatementacrosstheglobaleconomy.Meetingthatdemandwouldrequirescalingupproductioncapacityforcleanhydrogenfromlessthan2Mtpatodaytoover500Mtpainlessthan30years.Rapidramp-upofproductioncapacityisacriticalrequisiteforhydrogentoplayasignificantroleinachievingambitiousclimatetargets.2.0EMISSIONSABATEMENTOPPORTUNITYFigure3.PotentialCleanHydrogenDemandin2050-adaptedfrom(HydrogenCouncil2017)POWERGENERATIONTRANSPORTATIONINDUSTRIALENERGYBUILDINGHEAT&POWERINDUSTRIALFEEDSTOCK01002003004005006001317615162110BLUEHYDROGEN10ThereisarangeofcostsofproductionofcleanhydrogenforbothfossilfuelswithCCSandrenewablepoweredelectrolysis.Keydeterminingfactorsofcostarethepriceofcoalornaturalgas,andthequalityoftherenewableenergyresource(whichimpactselectricityprice&capacityfactoroftheelectrolysers)forrenewablehydrogen.Overall,hydrogenproducedfromcoalorgaswithCCSisthelowestcostcleanhydrogentodayandisexpectedtoremainsoatleastuntil2030.(IEA2019)Table3andFigure4summarisethecostofcleanhydrogenproductionaccordingtorecentreportsbyAustralia’sCommonwealthScientificandIndustrialResearchOrganisation(CSIRO)(Bruceetal.2018),theInternationalEnergyAgency(IEA2019;InternationalEnergyAgency(IEA)20202020a),theInternationalRenewableEnergyAssociation(IRENA)(InternationalRenewableEnergyAgency2019)andtheHydrogenCouncil(HydrogenCouncil2020).Thesereportsusearangeofunderlyingassumptions(e.g.costoffuelsandelectricity,capacityfactorsforrenewablegeneration)thatmustbeconsideredwhencomparingtheirresults.Actualcostswillalwaysbesiteandprojectspecific.Itisworthnotingthatthehighestcostcleanhydrogenisproducedusingelectrolyserspoweredbyrenewableelectricitythatwouldotherwisebecurtailed.CSIROassumedotherwisecurtailedelectricitywouldhavealowpriceoflessthanUSD2c/kWh.However,renewableelectricityiscurrentlyscarceandrelativelysmallamountsofitarecurtailedresultinginverylowutilisationoftheelectyrolyser(10%)andaveryhighunitcostofproduction.ThisexplainsthehighcostofcleanhydrogenproductionfromcurtailedrenewableelectricitycalculatedbyCSIRO.ItisalsoworthnotingthatthelowestestimateofcostforhydrogenfromelectrolysisbytheIEAassumesalowelectricitycostofUSD2c/kWhandacapacityfactorof57%.TheIEAreportdoesnotstatethattheelectricityissuppliedfromrenewablesources.Achievinga57%capacityfactorand2c/kWhcostofelectricityfromsolarPVorwindwillnotbepossibleinmostlocations.However,whereexcellentwindandsolarPVresourcesarecollocated,andabundantlandisavailableatlowcost,thismaybeachievablesuchasattheproposedNeomandAREHrenewablehydrogenfacilities.3.0CLEANHYDROGENPRODUCTIONCOSTSBLUEHYDROGEN113ConvertedfromAUDassuming1AUD=0.7USD4Theseestimatesareforelectrolysis.TheIEAreportdoesnotspecifythesourceofelectricityasrenewable.Table3.Recentpublishedestimatesofcostofcleanhydrogenproduction.(IEA2019;Bruceetal.2018;InternationalRenewableEnergyAgency2019;HydrogenCouncil2020)ALLCOSTSINUSDPERKGOFHYDROGENDEDICATEDRENEWABLEELECTRICITYSUPPLYOTHERWISECURTAILEDRENEWABLEELECTRICITYSUPPLYSTEAMMETHANEREFORMATIONWITHCCSBLACKCOALGASIFICATIONWITHCCSCSIRO20183$7.70(35%capacityfactor,electricityprice6c/kWh)$18.20(10%capacityfactor,electricityprice2c/kWh)$1.60-$1.90(Gaspriceis$8/GJ)$1.80-$2.20(Coalpriceis$3/GJ)IEA2020$2.30–$6.604(Lowendis57%capacityfactorandelectricitycost2c/kWh.Highendis57%capacityfactorandelectricitycost10c/kWh)N/A$1.40–$2.40(Lowendisgasprice$3/GJ.Highendisgascost$9/GJ)$2.05-$2.20(Lowendiscoalprice43c/GJ.Highendiscoalcost$1.15/GJ)IRENA2019$2.70–$6.90(Lowendiswind;48%capacityfactor&electricityprice2.3c/kWh.HighendisPV;26%capacityfactor&electricityprice8.5c/kWh)N/A$1.50–$2.30(Lowendisgasprice$3/GJ.Highendisgasprice$8/GJ)$1.80(Coalpriceis$1.50/GJ)HydrogenCouncil2020$6.00(50%capacityfactor&electricityprice5.7c/kWh)N/A$2.10(assumes“Europeangasprices”)$2.10(Coalpriceis$60/tonne)ThereisgenerallygoodagreementbetweentheCSIRO,IEA,IRENAandtheHydrogenCouncilonthecostofproducingcleanhydrogenfromnaturalgasorcoalwithCCS.Thisisnotsurprisingas98%ofhydrogeniscurrentlyproducedfromnaturalgasorcoalandtherearesevenfossilbasedhydrogenproductionfacilitieswhichutiliseCCSatcommercialscale.Thus,thecostofproductionofcleanhydrogenfromcoalornaturalgaswithCCSisrelativelywellknown.CurrentproductioncostsarereportedtobearoundUSD2/kgofhydrogenforgasorcoalwithCCS.Thereisawiderrangeofestimatedcostsforrenewablehydrogenproducedwithelectrolysers;USD2.30/kgtoUSD7.70/kgofhydrogen.Thelargestcontributiontothatvariationarisesfromtheassumedutilisationoftheelectrolyser(ie,capacityfactorofthededicatedrenewablegenerationcapacity),thepriceofelectricityandthecapexfortheelectrolyserwhichispredominantlyafunctionofscale(largerarelowercapexperunitproductioncapacity).BLUEHYDROGEN12Figure4.Simpleaverageandrangeofestimatedcurrentcostofcleanhydrogenproductionfromrecentlypublishedreports.(InternationalEnergyAgency(IEA)20202020b)(InternationalRenewableEnergyAgency2019)(HydrogenCouncil2020)(Bruceetal.2018)(onlyoneestimateofcostofcurtailedrenewablewithelectrolysis).SMR=steammethanereformation.CCS=carboncapture&storage.SMR&CCSCOALGASIFICATION&CCSDEDICATEDRENEWABLEWITHELECTROLYSISCURTAILEDRENEWABLEWITHELECTROLYSIS02468101214161820BLUEHYDROGEN13ThecostofproducingcleanhydrogenfromgaswithCCScanvarysignificantlyfromplacetoplaceduetodifferencesinfuelcosts.Inlocationswithlowcostgas(USD3/MBtu)5,capexisthelargestcostcomponentandtheoverallcostisUSD1.50/kgH2.Inlocationswithveryhighcostgas,gasisthelargestcostcomponent.Itisnotablethatevenassumingaveryhighgasprice(USD11/MBtu)theoverallcostofbluehydrogenproducedfromSMRwithCCSisonlyUSD2.40/kgH2–seeFigure5(IEA2019).ProducinghydrogenfromcoalgasificationwithCCSismorecapitalintensivethanfromsteammethanereformingwithCCSandthisisreflectedinitscoststructure(seeFigure6).ThecostofcoalhasrelativelylittleimpactonthecostofhydrogenproductionfromcoalgasificationwithCCS.IncreasingthecostofcoalfromUSD0.43/GJtoUSD1.15/GJincreasesthecostofhydrogenproductionfromUSD2.05/kgH2toUSD2.20/kgH2.4.0COSTDRIVERSFORHYDROGENPRODUCTIONVIAFOSSILPATHWAYSWITHCCS51MBtuis1millionBritishThermalUnits=1.055GJFigure5.ComponentsofcostofproductionofH2fromnaturalgas–adaptedfrom(IEA2019).1MBtuis1millionBritishThermalUnits=1.055GJ.StackedbarsassumeCO2transportandstoragecostofUSD20/tCO2.HighandlowT&Scostsensitivitiesassume8kgCO2capturedperkgofH2produced.CAPEXOPEXGASHIGHCOSTT&SUSD30/tCO₂LOWCOSTT&SUSD10/tCO₂LOWGASPRICEUSD3/MbtuHIGHGASPRICEUSD11/Mbtu00.51.01.52.02.5BLUEHYDROGEN14Figure6.ComponentsofcostofproductionofH2fromcoal–adaptedfrom(IEA2019)&(InternationalEnergyAgency(IEA)20202020a).StackedbarsassumeCO2transportandstoragecostofUSD20/tCO2.HighandlowT&Scostsensitivitiesassume22kgCO2capturedperkgofH2produced.ThecostoftransportandstorageofCO2alsohasanimpactonthetotalcostofproduction.Producing1kgofhydrogenfromcoalandgaswithCCSwillrequireapproximately22kgand8kgofCO2respectivelytobetransportedandstored.Thus,thecostofhydrogenproductionfromcoalwithCCSwillbemoresensitivetoCO2transportandstoragecoststhangas.Thecostsquotedaboveandshowninthestackedbarsinfigures5and6assumeaCO2transportandstoragecostofUSD20/tCO2.Alsoshowninfigures5and6isthecostofhydrogenproductionforalowandhighCO2transportandstoragecostofUSD10/tCO2andUSD30/tCO2.Insummary,aUSD10/tchangeinthecostoftransportandstorageofCO2resultsinaUSD8c/kgandUSD22c/kgchangeinthetotalcostofproductionofhydrogenfromSMRwithCCSandcoalgasificationwithCCSrespectively.CAPEXOPEXCOALHIGHCOSTT&SUSD30/tCO₂LOWCOSTT&SUSD10/tCO₂LOWCOALPRICEUSD0.43/GJHIGHCOALPRICEUSD1.15/GJ00.51.01.52.02.5BLUEHYDROGEN15Themaincostdriversforrenewablehydrogenarecapexoftheelectrolysers,priceofelectricityandtheutilisationoftheelectrolysers.ThisisillustratedinFigure7whichusesdatafromthe2020HydrogenCouncilreport(HydrogenCouncil2020).Thecapitalcostofelectrolyserswillreduceasthescaleofdeploymentincreases.RecentanalysisbyIRENAfindsthatifthecapitalcostofelectrolyserscanbereducedby80%fromthecurrentaverageofUSD770/kW,thecostofhydrogenproductionwouldreducefromaroundUSD5.90/kgtojustoverUSD3.00/kg.ReducingthepriceforelectricityfromthecurrentaverageofUSD53/MWhtoUSD20/MWwouldfurtherreducethecostofhydrogenproductiontoapproximatelyUSD1.70/kgatacapacityfactorof36%(Taibietal.2020).Consequently,theavailabilityofhighqualityrenewableresourcesandsufficientlandwithaverylowopportunitycostonwhichtositerenewableelectricitygenerationcapacityarecriticalenablersoftheproductionofrenewablehydrogenatpricesthatarecompetitivewithSMRorcoalgasificationwithCCS.5.0COSTDRIVERSFORRENEWABLEHYDROGENPRODUCTIONBLUEHYDROGEN16Figure7.Costofcleanhydrogenproductionfromelectrolysisasafunctionofelectricityprice,utilizationoftheelectrolyser(percentagefigures)andcapitalcost.(HydrogenCouncil2020)ElectricityPriceUSD/MWhElectrolyserCapitalCost:USD250/kW020406080100246810ElectrolyserCapitalCost:USD750/kWElectricityPriceUSD/MWh02040608010024681010%20%30%40%50%LINEAR10%LINEAR20%LINEAR30%LINEAR40%LINEAR50%BLUEHYDROGEN17Thecostofproducingblueandgreenhydrogenisreducing.Examplesofcostreductiondriversforgreenhydrogenincludereducedcapitalcostofelectrolyserswithincreasedscaleandthroughtechnologyinnovations,andtheongoingreductioninthecostofrenewableelectricity.Athoroughdiscussionofopportunitiestoreducethecostofproductionofgreenhydrogeniscontainedinanotherreportinthisseries,onGreenHydrogen,producedbytheCenterforGlobalEnergyPolicyatColumbiaUniversitySIPA(Fanetal.2021).Atahighlevel,thesameprinciplesarereducingthecostofproductionofbluehydrogen.LargerfacilitieswhichformpartofCCShubswillbenefitfromeconomiesofscaleinhydrogenproductionandinCO2transportandstoragethatreducethetotalunitcostofproduction.IndustrialCCShubs,wheremultiplefacilitiesutilisecommonCO2transportandstorageinfrastructure,createbusinessecosystems,reducingcounterpartyriskandthecostofcapital.Giventhecapitalintensityofbluehydrogenproduction,reducingthecostofcapitalbyseveralpercentcanprovidematerialreductionsintheunitcostofproduction.BetterintegrationofhydrogenproductionandCO2capturecomponentsofthebluehydrogenproductionchainalsoofferssignificantopportunitiesforcostreduction.Forexample,ratherthandesigningthesteammethanereformerandCO2captureandcompressionplantsseparately,andthenconnectingthemtogether,designinganintegratedplantwheretheoverallperformanceoftheentireprocessisoptimisedwilldelivercostsavings.Thosesavingswillarisefrombetterheatintegrationwhichinvolvesusingsourcesofheatinthereformerorgasifiertoprovidesomeoftheheatingrequiredforthecaptureplant.Findingtheoptimalsteamsupplymethod,minimisingtheinefficiencyofthesteamextractionatnominalandpartialloads,andrecoveringwasteheatfromthecapturesystemforuseintheplantsteamcycle(whereapplicable)arenowbeingwidelyappliedtothedevelopmentofnewgenerationcarboncaptureplant.Incrementalimprovementsinengineeringdesign–“learningbydoing”–suchasbetterheatintegrationdescribedabove,andmoreefficientphysicalplantdesigntoreducetheuseofhighercostmaterials(e.g.stainlesssteel),willcontinuetodriveincrementalreductionsinthecostofproductionofbluehydrogen.NewCO2capturetechnologiesareindevelopmentthatofferthepromiseofstepchangereductionsinthecostofCO2capture.Thesetechnologiesincludechemicalloopingprocesses,newadsorptionprocessesandnewphysicalandchemicalsolventsforuseinabsorptionprocessesaswellasnewmembranesfortheseparationofCO2fromothergases.Finally,acompletelynewcyclefortheproductionofelectricity,hydrogenandammoniawithinherentCO2captureisindevelopmentbasedontheAllamCyclewhichutilisestheCO2fromgascombustiontodriveaturbine.Thefullyintegratedplant,currentlyprogressingthroughfeasibilitystudies,mayproducehydrogenwith100%CO2captureatsignificantlylesscostthatcurrentbluehydrogenproductionfacilities.ThesecostreductionopportunitiesareexploredanddescribedinanotherreportinthisseriesonTechnologyReadinessandCostsofCCS.6.0REDUCINGTHECOSTOFCLEANHYDROGENPRODUCTIONBLUEHYDROGEN18Theavailabilityofland,water,electricity,coal,gasandporespaceforCO2storagewilldeterminethebestcleanhydrogenproductionmethodinanyspecificlocation.TheproductionofcleanhydrogenusingelectrolysersorcoalorgaswithCCSrequiresimilaramountsofwater,around6kg/kgH2forgasplusCCSand9kg/kgH2forcoalplusCCSorelectrolysis(Bruceetal.2018;Naterer,Jaber&Dincer2010).Electrolysishasextremelyhighelectricitydemandof55kWh/kgH2(IEA2019)comparedto1.91kWh/kgH2forgasplusCCSand3.48kWh/kgH2forcoalplusCCS(includingtheelectricityrequiredtoproducethegasorcoal)(IEA2019;Mehmetietal.2018).Hydrogenproducedbyelectrolysiswillonlybecleanifitispoweredbyrenewableenergyornuclearpower(seefigure2.).Renewablehydrogenrequiressufficientlandtohostthewindand/orsolarPVgenerationcapacitywhilstfossilhydrogenwithCCSrequireslandforCO2pipelinesandinjectioninfrastructure.FossilhydrogenwithCCSalsorequirescoalorgasandporespaceforthegeologicalstorageofCO2.TheAREHprojectinAustralia’sremotenorth-westplanstoproduce10milliontonnesperyearofammonia.Thisrequiresapproximately1.76Mtpaofhydrogenwhichwillbeproducedbytheelectrolysisofwaterpoweredbyacombined23GWofsolarPVandwindcapacity,locatedon5750km2ofland(‘TheAsianRenewableEnergyHub’2020b).AREHbenefitsfromexcellentsolarandwindresourcesthattogetherwillachieveanexpectedcapacityfactorofapproximately48%.AREHalsobenefitsfromtheavailabilityofabundantlandwithverylowopportunitycost.Thiscombinationofresources,togetherwithscale,coulddelivernear-zeroemissionshydrogen,towardsthelowerendofcostsforrenewablehydrogen(seeFigure4.).Whereabundantlow-costlandorexcellentrenewableresourcesarenotavailable,butcoalorgasandporespaceforgeologicalstorageofCO2is,cleanhydrogenfromgasorcoalwithCCSwillbethebestoption.Comparedtorenewablehydrogen,cleanhydrogenproducedfromgasorcoalwithCCSrequiresverymodestamountsoflandandelectricity.Forexample,productionof1.76Mtofhydrogen(equivalenttooneAREHproject)fromsteammethanereformationwithCCSwouldrequireapproximately14km2ofland,assuminga500kmCO2pipelineina20mwidecorridor,2km2fortheplant,andfourCO2injectionwellssituatedovera2km2area.Figure8.comparesresourcerequirementsforrenewablehydrogenbasedontheAREHprojecttothesamequantityofhydrogenproducedfromgasorcoalwithCCS.7.0RESOURCEREQUIREMENTSFORCLEANH2PRODUCTION6Totalprojectareais6,500km2,includinganadditional3GWofwindandsolarPVcapacitywhichwillbededicatedtoelectricityproductionforexport.BLUEHYDROGEN19Figure8.Resourcesrequiredfortheproductionof1.76MtofH2fromcoalorgaswithCCSandelectrolysispoweredbyrenewableelectricity.LandrequirementsforelectrolysispathwayistakenfromtheAREHProjectwebsite.Assumescombined48%capacityfactorforwindandsolarPVand55kWh/kgofH2viaelectrolysis(IEA2019).9kgwaterrequiredperkgofH2forelectrolysis(IEA2019).ElectricityrequirementforCG+CCS(3.48kWh/kgH2)andSMR+CCS(1.91kWh/kgH2)includeselectricityusedintheproductionofthecoalorgas(Mehmetietal.2018).6.3kgofwaterrequiredperkgofH2forSMRwithCCS(Naterer,Jaber&Dincer2010).9kgwaterrequiredperkgofH2forcoalgasificationwithCCS(Bruceetal.2018).LandrequirementforCG+CCSandSMR+CCSassumes500kmCO2pipelineina20mwidecorridor,2km2fortheplantand10injectionwellsover5km2forCG+CCS,and4injectionwellsover2km2forSMR+CCS.CO2capturedrequiringgeologicalstorageperkgofH2is21.5kgforCG+CCSand7.2kgforSMR+CCS.CG&CCSSMR&CCSELECTROLYSISAREHPROJECT01,0002,0003,0004,0005,0006,0007,0005,7501417CG&CCSSMR&CCSELECTROLYSISAREHPROJECT0510152025303540WATERmCOALTONNESCH₄TONNESELECTRICITYMWh010,000,00020,000,00030,000,00040,000,00050,000,00060,000,00070,000,00080,000,00090,000,000100,000,00015,882,35313,411,7656,141,17611,117,6473,370,5886,529,41215,882,35397,058,824BLUEHYDROGEN20Asnotedpreviously,theproductionofbluehydrogenrequiresaccesstocoalorgasandaccesstoporespaceforthegeologicalstorageofCO2.Boththecoalandgasindustriesarematurewithwell-establishedsupplychains.Accessingsufficientsuppliesofcoalorgastosupportbluehydrogenproductioninanyprospectivelocationwillbearoutineprocessthatneedsnodiscussioninthisreport.AccessingporespaceforgeologicalstorageofCO2howeverisnotyetroutine.Thisraisesthequestionastowhethertheavailabilityofgeologicalstorageresourcesisasignificantconstraintontheproductionofbluehydrogen.Anotherreportinthisseries(onCCSHubsandClusters)addressesthisquestionforCCSinanyindustry.AconclusionfromthatanalysisisthatglobalresourcesforthegeologicalstorageofCO2aremorethansufficientforCCStoplayitsfullroleunderanyclimatemitigationscenario.Theopportunityliesinidentifyinglocationswherealltherequisitesofbluehydrogenproductionareavailable.Forexample,locationswithaccesstocoalorgasaswellasporespaceforCO2storage.TheHubsandClustersReportidentifiesmanysuchlocationsaroundtheworld.Figure9belowprovidesasummaryofanestimateofglobalgeologicalstorageresourcesforCO2.ItisclearthatporespaceforthegeologicalstorageofCO2isnotaconstraintonbluehydrogenproduction,althoughlocatingproductioncentresrelativelyclosetostorageresourceswillminimiseCO2transportcosts.Figure9.EstimateofGlobalCO2GeologicalStorageCapacityinBillionsofTonnes.Confidenceisameasureofthematurityofstorageresourceappraisal.2,000-21,000220-410200-4301,210-4,1301002,00015047-63200NORTHSEA3001401401-51005-305-25129237162-228HIGHCONFIDENCEMEDIUMCONFIDENCELOWCONFIDENCEVERYLOWCONFIDENCEBLUEHYDROGEN21Asshownpreviously,low-emissionshydrogenprovidesanopportunitytodeliveremissionsabatementatthemulti-gigatonnescaleifsufficientvolumesareutilisedinplaceofunabatedfossilfuels.However,astheobjectiveistoreduceallanthropogenicemissionstonet-zero,itisappropriatetoexaminehowtheproductionoflowemissionhydrogenwouldimpactuponthebroaderemissionsabatementchallenge.Producinghydrogenusingelectrolysersrequireslargeamountsofelectricity.Toillustrate,producing530Mtofcleanhydrogen,theamounttheHydrogenCouncilprojectedcouldbeutilisedin2050,wouldrequire29,000TWhofnear-zeroemissionselectricity.Thisismorethanthetotalglobalgenerationofelectricitybyallsourcesin2018(InternationalEnergyAgency(IEA)2020).Thatquantityofnearzeroemissionselectricitycouldtheoreticallycompletelyreplaceallfossilgenerationcapacityresultinginaglobalzeroemissions(atpointofgeneration)electricitysystem.Alegitimatequestioniswhetherthereisanemissionsabatementopportunitycostassociatedwithusingrenewableelectricity(ornucleargeneration)toproducehydrogeninsteadofdisplacingunabatedcoalorgaselectricitygeneration.Assumingthatthecleanhydrogendisplacesthecombustionofnaturalgas,thatemissionsabatementopportunitycostcanbeverysignificantbecause:•Around30%oftheenergyislostintheprocessofconvertingelectricitytohydrogenviaelectrolysis.•Coalhasamuchhigheremissionfactorthannaturalgas(90.23kgCO2e/GJvs51.53kgCO2e/GJ).Almosttwiceasmuchabatementisaccruedbydisplacingcoalcomparedtomethaneperunitenergy.•Coalorgasfiredpowerstationshaveathermalefficiencyofaround30–50%.DisplacingoneGJofelectricityproductionfromacoalorgaspowerplantpreventsemissionsfromthecombustionof2-3GJofcoalorgas.Theratioofemissionsabatementfromdirectuseofrenewableelectricitytodisplacegridelectricity,toemissionsabatementfromthedisplacementofnaturalgasbyhydrogenproducedusingthesamequantityofrenewableelectricitycanbecalculatedasfollows.Where:ErAc8.0EMISSIONSABATEMENTOPPORTUNITYCOSTOFRENEWABLEHYDROGEN7Assuming55kWhofelectricityisrequiredtoproduce1kgofH28Assumingtherewassufficientdispatchablenearzeroemissionsgeneratingcapacitysuchasnuclearandhydroelectricplusrenewablegenerationandenergystoragetoensuresupply=EnergyvalueoftherenewableelectricityinGJ=emissionabatementifrenewableelectricityisusedtodisplacegridelectricityintonnesCO2eBLUEHYDROGEN22AgPEMeffEFcEFgSubstitutingforvariables:ThisrelationshipisgraphedinFigure10forelectricityproductionwithemissionsintensityupto1.1tCO2/MWh(305kgCO2/GJ),whichisequivalenttoGermanlignitefiredgeneration.RenewableelectricitydeliversthreetimesmoreemissionsabatementwhenusedtodisplaceNGCCgenerationandeighttimesmoreemissionsabatementwhenusedtodisplacelignitefiredgenerationthanwhenusedtoproducehydrogenwhichthendisplacesthecombustionofnaturalgas.Whereverpossible,renewableelectricityshouldbeusedtodisplaceunabatedfossilgenerationwhereitdeliverssignificantlymoreemissionabatementthanitwouldifusedtoproducehydrogenwhichthendisplacesnaturalgascombustion.Renewablehydrogenproductionshouldonlybeconsideredwherethereisnoopportunitytofeedrenewableelectricityintoagridtodisplacefossilgeneration,andwhereexcellentrenewableresourcesandabundantlandwithlowopportunitycostexist.Figure10.RatioofEmissionsAbatementfromRenewableElectricitythatDisplacesFossilGenerationinaGridtoemissionsabatementfromRenewableElectricityusedtoproduceHydrogenwhichthenDisplacestheCombustionofNaturalGas.EmissionsIntensityofElectricityDisplacedbyRenewableElectricity(tCO₂e/MWh)00.20.40.61.01.20.82314567890.08.4timesgreaterabatementifdisplacingGermanlignitefiredgeneration.3timesgreaterabatementifdisplacingcombinedcyclegasgeneration.=emissionabatementifrenewableelectricityisusedtoproducehydrogenwhichthendisplacescombustionofnaturalgasintonnesCO2e=efficiencyofconversionofelectricalenergytohydrogenbyelectrolysers:assume0.71(convertedfrom55kWh/kgH2–HigherHeatingValue)=EmissionsintensityofgridgenerationwhichwouldbedisplacedinkgCO2e/GJofelectricity=Emissionfactorfornaturalgascombustion:51.53kgCO2e/GJBLUEHYDROGEN23Theutilisationofblue(andgreen)hydrogenintheglobaleconomyhasthepotentialtosupportemissionsabatementatthemulti-gigatonneperyearscale.However,rampingupbothdemandandinvestmentinproductionofcleanhydrogenrequiresstrongandsustainedpolicy.Undercurrentpolicysettingstheprivatesectorwillnotdeploybluehydrogenproductioncapacityatthescalerequiredtomeetclimatechangemitigationtargetsbecausethereareseveralmarketfailuresandbroaderbarrierstoinvestment.Thesemarketfailuresdirectlyaffectthebusinesscaseforinvestinginbluehydrogenbyreducingtheexpectedreturnfromprojects.Fortunately,wellestablishedpolicyoptions,someofwhichhavebeenusedtosupporttheestablishmentofotherindustries(eg,rail,electricity,telecommunications,internet,renewableenergy)overthepastcenturyareavailabletocorrectthesemarketfailuresandovercomethebarrierstoinvestment.ThesearedescribedindetailinanotherreportinthisseriesonPolicyandRegulatoryRecommendations.Policyrecommendationsfornationalgovernments,asrelevanttoinvestmentsinbluehydrogenproductionfromthatreport,aresummarisedhere.Recommendation1.Basedonrigorousanalysisdefinetheroleofbluehydrogeninmeetingnationalemissionreductiontargetsandcommunicatethistoindustryandthepublic.Recommendation2.Createacertain,longterm,highvalueonthestorageofCO2.Recommendation3.Supporttheidentificationandappraisalofgeologicalstorageresources–leverageanyexistingdatacollectedforhydrocarbonexploration.Recommendation4.DevelopandpromulgatespecificCCSlawsandregulationsthatincludetransferoflong-termliabilityforgeologicallystoredCO2totheGovernmentsubjecttoacceptableperformanceandbehaviorofthestoredCO2.Recommendation5.IdentifyopportunitiesforCCShubswherebluehydrogencanbeproducedandfacilitatetheirestablishment.ConsiderbeingthefirstinvestorinCO2transportandstorageinfrastructuretoservicethefirsthubs.Recommendation6.Providelowcostfinanceand/orguaranteesortakeequitytoreducethecostofcapitalforbluehydrogeninvestments.Recommendation7.Wherenecessary,providematerialcapitalgrantstobluehydrogenprojects/hubstoinitiateprivateinvestment.9.0IMPLICATIONSFORPOLICYBLUEHYDROGEN24Hydrogenproducedfromfossilfuelsorbiomasswithcarboncaptureandstorage,orbyrenewableenergypoweredelectrolysershasthepotentialtodeliverabatementatthemulti-gigatonneperyearscale.BlueorgreenhydrogencanReduceCO2emissionsbydisplacingfossilfuelssuchasnaturalgasindomesticandindustrialapplicationsandoilintransport.Althoughlessmaturethanbluehydrogen,hydrogenproducedfrombiomass(withCCS)canRemoveapproximately15-20kgofCO2fromtheatmosphereforeverykilogramofhydrogenproduced.Theurgencyattachedtoreducingglobalemissionstonet-zerorequiresarapidaccelerationinthedeploymentofallemissionsreducingtechnologies.Technologiesthatarematureandcommerciallyavailableatlargescale,suchasbluehydrogenproductionthathasbeenoperatingfordecades,mustbedeployednow.Inthemajorityoflocations,bluehydrogenwillbethelowest-costcleanhydrogenproductionoption.Lowproductioncostiscriticaltounderpinrapiddemandgrowthforcleanhydrogenalongwiththeproductioncapacitytomeetthatdemand.Consequently,bluehydrogeniswellplacedtokickstarttherapidincreaseintheutilisationofcleanhydrogenforclimatemitigationpurposes.Bluehydrogenhastheaddedadvantageofallowingrenewableandnuclearpowertodisplaceunabatedfossilfuelelectricitygenerationinelectricitygrids,whereitdeliversbetweenthreeandeighttimesasmuchabatementcomparedtousingthatsamequantityofelectricitytoproducehydrogenusingelectrolysers,whichthendisplacesthecombustionofnaturalgas.Greenhydrogen,producedbyelectrolyserspoweredbyrenewableelectricity,mustalsobedeployedwherethereisacoincidenceofexcellentrenewableresources,lowcostland,andlittleopportunitytousetherenewableelectricitytodisplaceunabatedfossilgeneration.Thesignificantopportunityandroleofgreenhydrogeninachievingnetzeroemissionsisdescribedinanotherreportinthisseries,producedbytheCenterforGlobalEnergyPolicyatColumbiaUniversitySIPA(Fanetal.2021).However,strongandsustainedpolicyisrequiredtoincentiviseinvestmentinblue(andgreen)hydrogenproductionattheratenecessarytosupporttheachievementofclimatemitigationtargets.Ultimately,policymustsupportthebusinesscaseforinvestmentbyincreasingexpectedreturnsanddecreasingrealandperceivedrisks.Consideringbluehydrogen,thereisaparticularopportunityforgovernmentpolicytosupporttheestablishmentofessentialinfrastructurenecessarytocreateCCShubs.CCShubsreducetheunitcostofproductionthrougheconomiesofscaleandcreatebusinessecosystems,reducingcounterpartyriskandthecostofcapital.10.0CONCLUSIONBLUEHYDROGEN2511.0REFERENCES1.Bruce,S,Temminghoff,M,Hayward,J,Schmidt,E,Munnings,C,Palfreyman,D&Hartley,P2018,NationalHydrogenRoadmap,accessedfrom<https://www.csiro.au/~/media/Do-Business/Files/Futures/18-00314_EN_NationalHydrogenRoadmap_WEB_180823.pdf?la=en&hash=36839EEC2DE1BC38DC738F5AAE7B40895F3E15F4>.2.Fan,Z,Braverman,S,Lou,Y,Smith,GM,Bhardwaj,A,McCormick,C&Friedmann,J2021,GreenHydrogeninaCircularCarbonEconomy:OpportunitiesandLimits(inreview),.3.GlobalCCSInstitute2019,‘CO2REDatabase,FacilitiesReport’,.4.GlobalCCSInstitute2020,‘CO2REDatabase’,.5.HydrogenCouncil2017,‘Hydrogenscalingup:Asustainablepathwayfortheglobalenergytransition.www.hydrogencouncil.com’,Hydrogenscalingup:Asustainablepathwayfortheglobalenergytransition,no.November,p.80,accessedfrom<www.hydrogencouncil.com.%0Awww.hydrogencouncil.com>.6.HydrogenCouncil2020,‘Pathtohydrogencompetitiveness:acostperspective’,,no.January,p.88,accessedfrom<www.hydrogencouncil.com.>.7.IEA2019,‘TheFutureofHydrogenforG20.Seizingtoday’sopportunities’,ReportpreparedbytheIEAfortheG20,Japan,no.June.8.InternationalEnergyAgency(IEA)2020,WorldEnergyOutlook2020,accessedJanuary14,2021,from<https://www.iea.org/reports/world-energy-outlook-2020>.9.InternationalEnergyAgency(IEA)20202020a,Cross-cutting:Hydrogen,.10.InternationalEnergyAgency(IEA)20202020b,TheCircularCarbonEconomy;Cross-cutting:Hydrogen,accessedfrom<https://www.cceguide.org/wp-content/uploads/2020/08/07-IEA-Cross-cutting.pdf>.11.InternationalRenewableEnergyAgency2019,HYDROGEN:ARENEWABLEENERGYPERSPECTIVE,.12.Mehmeti,A,Angelis-Dimakis,A,Arampatzis,G,McPhail,S&Ulgiati,S2018,‘LifeCycleAssessmentandWaterFootprintofHydrogenProductionMethods:FromConventionaltoEmergingTechnologies’,Environments,vol.5,no.2,p.24.13.Naterer,GF,Jaber,O&Dincer,I2010,‘EnvironmentalImpactComparisonofSteamMethaneRef-ormationandThermochemicalProcessesofHydrogenPro-ductionEnvironmentalImpactComparisonofSteamMethaneReformationandThermochemicalProcessesofHydrogenProduction’,EssenSchriftendesForschungszentrumsJülich/Energy&Environment,vol.78,pp.1–7,accessedfrom<http://juser.fz-juelich.de/record/135464/files/HP4a_3_Naterer_rev0601.pdf>.14.RenewEconomy2020,‘JapanbeginssolarpoweredhydrogenproductionatFukushimaplant’,.15.Salkuyeh,YK,Saville,BA&MacLean,HL2018,‘Techno-economicanalysisandlifecycleassessmentofhydrogenproductionfromdifferentbiomassgasificationprocesses’,InternationalJournalofHydrogenEnergy,vol.43,no.20,pp.9514–9528,accessedfrom<https://doi.org/10.1016/j.ijhydene.2018.04.024>.16.Taibi,E,Blanco,H,Miranda,R&Carmo,M2020,GreenHydrogenCostReduction;ScalingupElectrolyserstomeetthe1.5CClimateGoal,accessedfrom<www.irena.org/publications>.17.‘TheAsianRenewableEnergyHub’2020a,.18.‘TheAsianRenewableEnergyHub’2020b,accessedDecember21,2020,from<https://asianrehub.com/>.19.Williams,E2019,‘DataInsightsAchievingClimateGoalsbyClosingtheLoopinaCircularCarbonEconomy’,KingAbdullahPetroleumStudiesandResearchCenter(“KAPSARC”,pp.1–13.BLUEHYDROGEN26AMERICASWashingtonDC,UnitedStatesamericasoffice@globalccsinstitute.comAUSTRALIAMelbourne,Australiainfo@globalccsinstitute.comCHINABeijing,Chinachinaoffice@globalccsinstitute.comEUROPE&MIDDLEEASTBrussels,Belgiumeuropeoffice@globalccsinstitute.comUNITEDKINGDOMLondon,UnitedKingdomukoffice@globalccsinstitute.comJAPANTokyo,Japanjapanoffice@globalccsinstitute.comGETINTOUCHTofindoutmoreabouttheGlobalCCSInstituteincludingMembershipandourConsultancyservices,visitglobalccsinstitute.comorcontactus.Copyright©2021GlobalCCSInstituteTheinformationinthisdocumentissuppliedbytheGlobalCarbonCaptureandStorageInstituteLtd(GlobalCCSInstitute)andissubjecttotheprovisionsoutlinedinthissection.Thereceiptofthisdocumentbythepersonsorentitynamedatthefrontofthisdocumentoranyotherrecipient(Recipient)evidencesacceptanceoftheseprovisions.ThisdocumentisaddressedsolelytotheRecipientandisfortheirsolereviewonlyandmaynotbeprovidedordisclosedtoanyotherpersonwithoutthepriorwrittenconsentofGlobalCCSInstitute.IftheseprovisionsarenotagreedandacceptedbytheRecipient,thisdocumentandanycopiesofitmustbeimmediatelyreturnedtoGlobalCCSInstituteorotherwisedestroyed.ThisdocumenthasbeenmadeavailabletotheRecipientforinformationpurposesonlyandisnotintendedtobeanddoesnotconstituteanyformofofferingdocument,adviceorrecommendation.Tothemaximumextentpermittedbylaw,GlobalCCSInstituteanditsaffiliates,associates,relatedbodiescorporate,shareholders,officers,employees,partners,representatives,agents,advisersandconsultants(eachaRelevantPerson)expresslydisclaimallliabilityforanylossordamage(includingbutnotlimitedtofornegligence,defaultorlackofcare)foruseorrelianceontheinformationinthisdocumentoranyinformationwhichismadeavailableinconnectionwithanyfurtherorrelatedenquiries,includinganycommercialorinvestmentdecisionsmadeonthebasisofinformationprovidedinthisdocument.ThisdocumenthasbeenpreparedonthebasisofpubliclyavailableinformationorotherinformationknowntoGlobalCCSInstituteatthetimethisdocumentwascompiledandtheaccuracyofsuchinformationhasnotbeenindependentlyverifiedbytheGlobalCCSInstituteoranyRelevantPerson.GlobalCCSInstitutedoesnotguaranteethattheinformationinthispublicationistotallyreliable,accurateorcompleteandthereforetheinformationinthisdocumentmustnotberelieduponwhenmakingcommercial,investmentorotherdecisions.NeithertheGlobalCCSInstitutenoranyRelevantPersonsmakeanyrepresentationorwarranty(expressorimplied)astotheaccuracy,sufficiencyorcompletenessofthecontentsofthisdocumentandacceptnoliabilityforuseorrelianceofanyinformationinthisdocument.