PatentLandscapeReportHydrogenfuelcellsintransportationPatentLandscapeReportHydrogenfuelcellsintransportationThisworkislicensedunderCreativeCommonsAttribution4.0International.Theuserisallowedtoreproduce,distribute,adapt,translateandpubliclyperformthispublication,includingforcommercialpurposes,withoutexplicitpermission,providedthatthecontentisaccompaniedbyanacknowledgementthatWIPOisthesourceandthatitisclearlyindicatedifchangesweremadetotheoriginalcontent.Suggestedcitation:WorldIntellectualPropertyOrganization(WIPO)(2022),Hydrogenfuelcellsintransportation,Geneva:WIPO.Adaptation/translation/derivativesshouldnotcarryanyofficialemblemorlogo,unlesstheyhavebeenapprovedandvalidatedbyWIPO.PleasecontactusviatheWIPOwebsitetoobtainpermission.Foranyderivativework,pleaseincludethefollowingdisclaimer:“TheSecretariatofWIPOassumesnoliabilityorresponsibilitywithregardtothetransformationortranslationoftheoriginalcontent.”WhencontentpublishedbyWIPO,suchasimages,graphics,trademarksorlogos,isattributedtoathird-party,theuserofsuchcontentissolelyresponsibleforclearingtherightswiththerightholder(s).Toviewacopyofthislicense,pleasevisithttps://creativecommons.org/licenses/by/4.0AnydisputearisingunderthislicensethatcannotbesettledamicablyshallbereferredtoarbitrationinaccordancewithArbitrationRulesoftheUnitedNationsCommissiononInternationalTradeLaw(UNCITRAL)theninforce.Thepartiesshallbeboundbyanyarbitrationawardrenderedasaresultofsucharbitrationasthefinaladjudicationofsuchadispute.ThedesignationsemployedandthepresentationofmaterialthroughoutthispublicationdonotimplytheexpressionofanyopinionwhatsoeveronthepartofWIPOconcerningthelegalstatusofanycountry,territoryorareaorofitsauthorities,orconcerningthedelimitationofitsfrontiersorboundaries.ThispublicationisnotintendedtoreflecttheviewsoftheMemberStatesortheWIPOSecretariat.ThementionofspecificcompaniesorproductsofmanufacturersdoesnotimplythattheyareendorsedorrecommendedbyWIPOinpreferencetoothersofasimilarnaturethatarenotmentioned.©WIPO,2022WorldIntellectualPropertyOrganization34,chemindesColombettes,P.O.Box18CH-1211Geneva20,SwitzerlandDOI:10.34667/tind.46069ISBN:978-92-805-3416-0(PDF)ISBN:978-92-805-3417-7(online)ISSN:2790-7007(print)ISSN:2790-7015(online)Attribution4.0International(CCBY4.0)Cover:GettyImages/JONGHOSHIN–TiaClaraContentsAcknowledgements4Keyfindingsandinsights5Introduction9Motivationandmethodologyofthereport11Hydrogenfuelcelltechnologiesfortheelectrificationoftransport13Generalfieldoverview,history,andglobalpatentdevelopmentoffuelcells13Hydrogenfuelcelltechnologiesintransport:whyhydrogen,andwhyfuelcells?13Fuelcellhistory15Fuelcelltechnologies20Generaloverview20Polymerelectrolyteorprotonexchangemembranefuelcells23Solidoxidefuelcells23Directmethanolorliquidammoniafuelcellsandreformertechnology23Phosphoricacidfuelcells24Alkalimembranefuelcells24Moltencarbonatefuelcells24Patentlandscapeoffuelcelltechnologies24Fuelcellrecycling27Costanalysisfuelcellsintransport28Fuelcellrecyclingroadmap28Fuelcellautomatedproduction30Fuelcelltechnologiesintransportation34Marketapplicationbreakdown35Innovationoriginview37Patentfilingsbypatentapplicanttype39Marketviewanalysis:wherearefuelcellpatentsintransportbeingfiledglobally?44Shiftingtheanalysisfromapatentfilingcounttoactivepatentportfolios47Dynamicandcomparativecompanyanalysis48Top20universitiesandresearchinstitutesinthefield49Fuelcellapplication:personalandcommercialroadvehicles51Fuelcellsasrangeextender55Fuelcellapplication:shippingandmarinevehicles58Fuelcellapplication:aviationandabove-groundvehicles64Fuelcellapplication:railandtrackvehicles68Fuelcellapplication:specialvehicles71Thefutureoffuelcelltechnologiesintransport77Technologyreadinesslevel(TRL)79Patentperspective79Commercialviability80Customerbenefitsandproblems80Needforaction81Futuredrivers81Economicdrivers81Politicaldrivers82Roadmapandmarketoutlookforhydrogentechnologiesintransport82Annex84Glossary84Patentsearches87References9434AcknowledgementsThisPatentLandscapeReport,HydrogenFuelCellsinTransportation,waspreparedfollowingarelatedrequestfromtheSlovakRepublictotheWIPODirectorGeneral,DarenTang.ThispublicationwaspreparedwiththestewardshipofMarcoAlemán(AssistantDirectorGeneral,IPandInnovationEcosystemsSector),underthedirectionofAlejandroRocaCampañá(SeniorDirector,IPforInnovatorsDepartment)andAndrewCzajkowski(Director,TechnologyandInnovationSupportDivision),andwasledbyIreneKitsara(IPInformationOfficer,TechnologyandInnovationSupportDivision).ThereportwaspreparedbytheprojectteamledbyIreneKitsara,includingJochenSpuckandKaiGramke(bothfromEconsight),FrankPassing,PajamHassanandAnishM.Shenji(allfromintuitive.AI)andLakshmiSupriya(PatentAnalysisOfficer,TechnologyandInnovationSupportDivision).ThepatentsearchmethodologywaspreparedbyEconsightwithinputsfromWIPO(IreneKitsaraandLakshmiSupriya).KaiGramkefromEconsightdevelopedsomeofthemetricsusedintheanalysis.VisualizationswerepreparedbyKaiGramke,LakshmiSupriya,withinputsfromCraigDsouza(YoungExpertProfessional,TechnologyandInnovationSupportDivision).PajamHassanandAnishM.Shenjipreparedandanalyzedonlinenews,pressreleasesandquarterlyfinancialreportingregardingfuture-orientedstatements.FrankPassingdevelopedthetechnologyassessmentandroadmapinthereport;andincoordinationwithJochenSpuckprovidedexamplesofsomeofthecompaniesfeaturinginthepatentdatainordertolinkthelatterwithbusinessandthemarket.ThereportdrawsonhelpfulinputreceivedduringtheconceptualizationphasefromThomasBrachmann(HondaR&D)andTimKarlsson(IPHE),andfromseveralinterviewscarriedoutbyJochenSpuckwithindustryrepresentativesplusinputsprovidedbyWIPOcolleagues,includingAnjavonderRoppandPeterOksen(bothfromtheGlobalChallengesDivision).BookNowLimitededitedthereportwithinputsfromIreneKitsara,LakshmiSupriyaandAndrewCzajkowski.ThanksalsogotoCharlotteBeauchamp(Head,PublicationsandDesignSection)forherinvaluablesupportandadvice,VanessaHarwoodforhereditorialoversightandSheydaNavabforthereport'sdesign.FurtherinformationOnlineresources:Theelectronicversionofthisreportcanbeaccessedatwww.wipo.int/publications/en/details.jsp?id=4604.Thiswebpagealsoincludesdatasetsfromthereport.Contact:patent.information@wipo.int5KeyfindingsandinsightsTransformingthetransportationsectortoputitonaNetZeropathwaywillrequireacombinationoftechnologicalinnovation,governmentandcorporatedecision-making,andadaptedcustomerbehaviortoallcometogetheroverthecourseofthenextdecade.Policyeffortsacrosseverytransportationapplicationwillneedtoberapidlydevelopedandextended.Expandinginternationalcooperationwillbecrucialinmeetingthetargetofreducinggreenhousegasemissionsbytransportation,asectorresponsibleforalmost24percentofdirectcarbondioxideemissionsfromfuelcombustion.Withbattery-poweredelectrictransportationhavinggrownoverthelastfiveyears,thepoliticalmomentumforhydrogenfuelcelltransportationhasgatheredstrengthoverthelasttwoyears.ThisWIPOPatentLandscapeReportprovidesearlyobservationsonpatentingactivityinthefieldofhydrogenfuelcellsintransportation.Theseobservationsarecombinedwithonlinenews,pressreleasesandcorporatefinancialreportingtoobtaindeeperinsightsintothefutureoftransportation.AthirdwaveofpatentfilingisgainingmomentumTherehasbeenastrongincreaseinpatentfilingssince2016,bothinfuelcellsingeneralandtheirapplicationintransportationinparticular.Afirstwaveofpatentfilingsoccurredinthemid-1980s,followedbyasecondaround2005,withathirdwavestartingaround2016.Thepatentsearchidentified52,433patentfilingsinthefieldoffuelcellsthatdescribetransportationapplications,accountingforone-quarterofpatentfilingsrelatedtofuelcellsingeneral.Inall,61percent(32,018patentfamilies)oftheseincludedatleastonegrantedpatent.Halfofthispatentdataset(26,449patentfamiliesandutilitymodels)wereconsideredactiveatthetimeoftheanalysisinMarch2022.Ahighnumberoffuelcellpatentsdescribeaspecificuseintransportationandthisnumberisgrowingappreciably,thushighlightingtheincreasingimportanceofthisparticularmarketsector.(SeetheInfoBoxbelowforinformationconcerningtheuseoftheterms“patentfilings,”“patentfamilies”and“dataset”inthisreport.)PatentfilingactivityisconcentratedinjustfivejurisdictionswhicharealsothebiggestinventorlocationsInventionsrelatedtofuelcellsintransportationwerefiledforpatentprotectionacross88patentoffices,withactivepatentspresentin80jurisdictions.Whilethissuggestsawidespreadofactivityglobally,astrongconcentrationofpatentswaslocatedinjustfivejurisdictions.Wefoundthat96percentofthepatentfamiliesidentifiedincludedatleastonepatentapplicationfiledeitherinJapan,theUnitedStatesofAmerica(U.S.),China,theRepublicofKorea,Germany,orattheEuropeanPatentOffice(EPfilings)ortheWorldIntellectualPropertyOrganization(WIPO)(administeringthePatentCooperationTreaty(PCT)andrepresentingPCTfilings).Thissuggeststhatthebiggestproductionsitesarestrivingtoestablishthemselvesinthefivemainindustryregions,withmarketsstartinglocallybeforethenspreadingworldwide.Thewidespreadofactivityalsoseemstosignalarelativelyeasyaccesstothetechnologyingeneral.Intotal,62percentofthepatentfamiliesidentifiedfiledforpatentprotectionatonlyonepatentoffice,withJapanandChinaeachaccountingforone-fifthofthepatentapplicationsfiledinasinglejurisdiction.Bycomparison,inthefieldofelectricvehiclesingeneral,nationalfilingsatasingleoffice6PatentLandscapeReport–Hydrogenfuelcellsintransportationaccountedforanevenlargerproportion(69percent)ofthetotal,whereasinthefieldofcancerresearchitwaslowerat47percent.Whilepatentfilingsstemfrominventorsbasedin85jurisdictions,thesamefivejurisdictionswherethemajorityoffilingactivityisconcentratedwerealsothefivebiggestoriginsforinventors,namelyChina,Japan,theU.S.,theRepublicofKoreaandGermany,accountingfor89percentofallpatentsinthefield.BigplayerswithinthebusinesshavemadeasignificantcontributiontothepatentlandscapeThetop30playersinfuelcellsintransportaccountedfor40percentofthepatentdataset(21,152of52,433patentfamilies).Thisratherhighconcentrationissimilartothewhatwasobservedinelectricvehicles(top30playersaccountingfor43percentofthedataset),andindicatesthelevelofinvestmentbymarketplayersinthefield.Indeed,severaloftheseplayers,namely,Toyota,Hyundai,VWGroup,GM,Daimler,Bosch,HondaandNissan,areactiveinnearlyeverytransportationfield.Moreover,itwouldseemtheirinvolvementencompassesnotonlyspecificend-products,butalsothemanufacturingofcoreelements.NewplayersareemerginginthepatentlandscapeduetohighfinancialinvestmentsHowever,newplayersarealreadycompetingwiththetop-rankedplayersofrecentyears,andthismaybringchangetothelistoftopplayersinthefuture.Incontrasttowhatisthesituationinthefieldofelectricvehicles,amongthetoprankingcompaniesaccordingtopatentfilingratethereareanumberthatareeithernotyetestablishedmarketplayers–severalofwhicharebasedinChina–orsmallercompanies,especiallyinnicheapplicationssuchasspecialvehicles.Patentfilingsandactivepatentportfoliosare,however,dominatedbythelargercarcompaniesinparticular.Othertopplayersacrosstransportationapplicationsotherthanroadincludecompaniesactiveinaviation,shipbuildingandspecialvehicles,whileautomotiveandbatterysuppliersalsofeatureamongthetopapplicants.Thepatentlandscapeindicatesagrowinginterestinautomatedproduction,whilefuelcellrecyclingisalsocoveredConfirminganoverallpictureofahighlymaturetechnology,alongsideahighshareofpatentsindirecttransportationapplications,wealsoseeagrowthinpatentsforautomatedproduction.Massproductionhasbeenaddressedmorefrequentlyonlyrecently,withaspecificfocusbyplayersfromChina.Atthesametime,recyclingisalsostartingtogrow,eventhoughpatentfilingsarestilllowinnumber.Inbothareas,developmentsinpatentingactivityclearlyindicatethat,technology-wise,thelevelofreadinessseemstoberatherhigh.TheresearchcommunityisplayingavitalroleinpatentingaimedatovercomingtechnologicalchallengesThereisonlyoneuniversityandresearchinstitution(theChineseAcademyofSciences)amongthetop30patentapplicants.However,patentfilingsfromuniversityandresearchinstitutionshavegrowninthelastfewyears.Chineseuniversitieshavebeenremarkablyactiveinthefield,whiletherehasalsobeenrelatedactivitybyuniversitiesintheU.S.,theRepublicofKorea,JapanandEurope.Besidespatentingactivity,someuniversitiesandresearchinstitutionsexhibitaremarkablyhighlevelofcollaborativeactivity,workingtogetherwithindustry,butalsowithotheracademicpartnerssuchastheFrenchAlternativeEnergiesandAtomicEnergyCommission(CEA).Fuelcellshaveachievedahighdegreeoftechnologicalmaturity,withpolymerelectrolytemembranefuelsleadinginpatentfilingsFuelcellsareawell-knowntechnologywithahighdegreeofmaturity.Thereareseveraltypesoffuelcells,withpolymerelectrolyte(orprotonexchange)membranefuelcells(PEMFCs)leadinginthepatentdatasetandappearingtobethemostpromising.7KeyfindingsandinsightsChinaiscurrentlythetoporiginofpatentfilingsrelatedtohydrogenfuelcellintransportationPatentfilingsinChinahavebeenincrediblystronginthelasttwotothreeyears,eitherastheofficeoffilingforlocalinventorsortheofficeofsubsequentpatentfilingforinventionsoriginatingfromJapan,theU.S.,theRepublicofKoreaandGermany.WhileChina-basedinventorsaccountforagreatportionofthedataset,fewChinesecompaniesfeatureamongthetopranksintermsofoverallactiveportfoliostrength.Lookingatthetopcorporateplayersinpatentfiling,theycomefromJapan,theRepublicofKorea,GermanyandtheU.S.Thismaychangequickly,ifChinesecompaniescontinuetopatentatarateidenticaltoorhigherthanwhathasseeninthelastfewyears.Filingsrelatedtotheroadsectorintransportationisthebiggestcategoryinthepatentdata,withothercategories,particularlyaviationandshipping,emergingThedominantapplicationforfuelcellsandhydrogenintransportationisinroadvehicles,includingcarsandtrucks.Patentfilingsrelatedtoshipping,aviation,railandspecialvehicles(i.e.,commercialvehicles,includingfork-lifts,airporttugs,tractorsanddredgers,andvariousconstructionvehicles)onlyaccountforasmallportionofthefuelcellsintransportationdatasetincomparison.Specialvehiclesaremoreorlessthefirsttypeoffuelcell(FC)vehicletoenteranichemarket(Energy.gov,2018),whilepassengercarsmaystillbeyearsawayfrommakingalargemarketentrance(seeFigure49,Roadmap).Anincreasedfocusonbattery-poweredelectricvehicles,withapossiblenicheinheavy-dutyvehiclesandbusapplicationsintransport,extendingavehicle’srangebyadditionallyusingfuelcellsPatentdataindicatesactivityinhydrogenfuelcellvehicletechnologiesisstrong,withcorporationspouringhugeinvestmentsintodecarbonizingthesector.Becausebattery-poweredelectricvehiclesappeartohaveahighdegreeofenergyefficiency,asshownbystudiesinthelasttwoyears(e.g.,Plötz,2022),companiesarefocusingonpenetratingthemarketwithbattery-poweredelectricvehiclestomeetclimatetargetsfaster.Still,corporatestatementsandpatentdataprovideevidencethatheavy-dutyvehiclesisapotentialmarketforhydrogenfuelcells,duetotherequiredpayloadofthesevehiclesmakingthehigherenergydensityofhydrogenacrucialfactorandmoreadvantageousinthisrespectthanbattery-poweredelectricvehiclesolutions.Thisishighlightedbytheexamplesshowninthesectioncoveringfuelcellapplication:personalandcommercialroadvehicles,,whichareonlyafewofthenumerouspatentsclaimingfuelcellstobesuitableforuseincommercialvehiclestoextendavehicle’srange.HydrogenfuelcellsareexpectedtobeaviablesolutiontoaviationmeetingclimatetargetsHydrogenistheenergyvectorexpectedtoplayakeyroleintransformingaviationintoazero-carbonindustrysectoroverthenexttwodecades.Airbus,forinstance,statedinapressreleasemadein2022thathydrogenfuelcellsisoneofthemostpromisingtechnologiesonoffer(Airbus,2022).Airbusisthemajoraircraftmanufacturerwithinthefuelcellsforaviationfield,withincreasingpatentfilingactivitysince2019,afteraperiodofreducedactivityintheprecedingyears.Thissamepatterncanalsobeobservedforotherplayers,suchasRaytheon.PoliciesandcorporatepledgestodecarbonizesupplychainsandlogisticsareincreasingpatentingactivityinshippingSincecompaniesareresponsibleforCO2emissionswithintheirsupplyandlogisticschains,theyhavepledgedzero-carbonshippingby2040(see,forexample,BBC,2021)inordertopushtheheavilypollutingshippingindustrytodecarbonizefaster.Withabout90percentoftheworld’strademovingbysea,shippingtransportationaccountsfor3percentofallglobalemissions.Thepatentfieldforshippingapplicationsforfuelcellsiscomparableinsizetotheoneforaviationandsimilarlyslowingrowth.Consideringthelongaverageservicelifetimeofships,andtherecentintroductionofLNG(liquidnaturalgas)technologytofuelships,thisfieldisexpectedtocontinuehaverestrainedgrowth,unlike,forexample,fuelcells8PatentLandscapeReport–HydrogenFuelCellsinTransportationforspecialvehicles.However,itisworthnotingthatshippingcompaniessuchasDaewoopatentactivelyinthefieldoffuelcellsforspecialvehicles,specificallyinrelationtotheirapplicationwithintheharborenvironment(e.g.,up-/unloading,cranes,andso).HydrogenfuelcelltrainsasanalternativetodieselhybridfordecarbonizingrailnetworksHydrogentrainshaveseveraladvantagesoverbatterypoweredelectrictrains,inparticular,theycanrefuelfasterandtravelfurtherthantheirelectricalternatives.ItthereforecomesasnosurprisethatGermany,JapanandtheUnitedKingdom(U.K.)seehydrogentrainsascentraltotheirplanstodecarbonizetheirnationalrailnetworks.Theyhavealreadybeguntheirdeployment,withthefirsthydrogentrain(byAlstrom)introducedonGermanrailwaysin2018inpartnershipwithSiemensMobility,andtheEastJapanRailwayplanningtostarttestinghydrogentrainsinJapanduringMarch2022.Thediffusionofhydrogenfuelcelltechnologiesdependsuponsystemicdriverssuchasinfrastructure,theavailabilityofrenewableenergyandadvancesinbatterytechnologyAlthoughhydrogencanbeproducedfromanynumberofenergysources,inaneraofdecarbonization,itislowcarbon(“green”)hydrogenthatisneededtofueltransportation.Consequently,theavailabilityofrenewableenergyisexpectedtoplayacriticalroleinhydrogenproduction,withseveralchallengeslyingaheadinmeetingdemandacrossthewholevaluechain(IRENA,2022).Moreover,theinfrastructureforthetransportationandstoringofhydrogenenergy,aswellasthefuelingofcars,airplanesorships,needstobeexpandedandenhancedoverthenextnumberofyearsinordertoensurethediffusionofhydrogenfuelcelltransportationapplicationsintothemarket.Technologicalprogressinalternativeelectrificationtechnologies,likeforexamplefuturesolid-statebatteries,couldleadtoadoublingofdrivingrangeandareductioninthegapseparatingthesetechnologiesfromhydrogenfuelcells,whichhavetheadvantageofahighenergydensitythroughahighercapacity(IEEESpectrum,2021;EPOandIEA,2020).Whenwecomparethedevelopmentinpatentingactivityinthefieldoffuelcellstothatofsolid-statebatteries,wecanseethatthepatentdatasetoffuelcellsismuchbigger.Butanincreaseinpatentsforsolid-statebatteriesisabouttogatherpace,eventhoughthishasonlybecomeapparentinthelasttwoyears.Thisgoestoindicatethat,whiletechnology-wisefuelcellshaveahighreadinesslevel,thenextgenerationofbatteriestopowertheelectrificationofroadtransportationisalreadyappearingoverthehorizon.9IntroductionTransportisessentialtoeconomicgrowth.However,inacarbon-basedworld,movingpeopleandgoodsfromplacetoplaceexactsasteeppriceintermsofpollutionoftheenvironment(Pradhan,2019;WorldBank,2021).ConsiderEuropealone.Transport-relatedgreenhousegasemissionswithintheEuropeanUnionhaveincreasedsteadilyoverthepast10years,atrendthatdivergessignificantlyfromothersectorsduringperiod.PreliminaryestimatesbytheEuropeanEnvironmentAgency(EEA)for2020indicateasubstantialdropintransportemissions,becauseofdecreasedactivityduringtheCOVID-19pandemic.Nevertheless,transportationisstilllikelytohavebeenresponsibleforalmostone-quarter(24percent)ofdirectcarbondioxide(CO2)emissionfromfuelcombustion.Roadtransport–vehicles,trucks,busesandtwo-wheelers–accountsfornearlythree-quartersoftransportCO2emission,and,accordingtotheEEA,emissionsfromaviationandshippingcontinuetorise(EEA,2021).Figure1.TransportsectorCO2emissionsbymodewithintheSustainableDevelopmentScenario(SDS),2000–2030ToachieveNetZerogoals,emissionsbytheroadtransportationsector-mainlypassengervehicles-willhavetofallsignificantly.Source:IEA(2021a).10GlobalmomentumtoachieveNetZerogreenhousegasemissionsisbuildingmorequicklythanexpected.Gettingtothatpointwillrequireunprecedentedlevelsoftechnologicalinnovation.Afast-risingnumberofcompaniesandgovernmentsarecommittingtoambitiousNetZerogoalsandexpectthenecessarytechnologiesandsolutionstobeavailablewhenneeded.AnnualglobalemissionofCO2equivalentsnowamountstoabout59gigatonnes(UNEP,2020).Reachingclimatechangegoalsmayrequireacombinationofexistingandnewtechnologies,novelbusinessmodels,andmarkets.Someestimates,suchastheP4pathwaylaiddownbytheIntergovernmentalPanelonClimateChange(IPCC),showthattoday’stechnologieshavethepotentialtoreduceglobalemissionsbyaroundtwo-thirds.AreportbytheInternationalEnergyAgency(IEA)estimatesthatmostoftheglobalreductioninCO2emissionsthroughto2030islikelytobeachievedthroughreadilyavailabletechnologies;whileby2050,almosthalfofthereductionwillhavebeenbroughtaboutbytechnologiescurrentlyatthedemonstrationorprototypephase(IEA,2021c).Electrifyingthetransportationsysteminvolvesusingasourceofenergyotherthanfossilfuels,includingrenewablesources,andoffersnumerousbenefits(WorldEconomicForum,2018).Besidesbattery-poweredelectrictransportation,politicalmomentumforhydrogenusecontinuedtogatherstrengthin2020and2021.Thisisfundamentaltotheadvancementofhydrogentechnologiesandmarkets.In2020,10governmentsadoptedahydrogenstrategy:Canada(NaturalResourcesCanada,2020),Chile(MinisteriodeEnergía,2020),France(MinistèredelaTransitionécologique,2020),Germany(FederalMinistryforEconomicAffairsandEnergy(BMWi),2020),Netherlands(GovernmentsoftheNetherlands,2020),Norway(NorwegianMinistryofPetroleumandEnergy,2020),Portugal(Direção-GeraldeEnergiaeGeologia,2020),theRussianFederation(MinistryofEnergy,2020),Spain(Miteco,2020)andtheEuropeanUnion(EuropeanCommission,2020).In2021,fourmorecountriesadoptedahydrogenstrategy:theCzechRepublic(MinistryofIndustryandTrade,2021),Colombia(MinisteriodeMinasyEnergía,2021),Hungary(MagyarországKormánya,2021)andtheUnitedKingdom(U.K.)(SecretaryofStateforBusiness,EnergyandIndustrialStrategy,2021).Inaddition,PolandandItalyhavereleasedhydrogenstrategiesforpublicconsultationandmorethan20othercountrieshaveannouncedtheyareactivelydevelopingsuchastrategyoftheirown.Europeisstrivingtobecome“thefirstclimate-neutralcontinent”by2050,aimingtohavereducednetgreenhousegasemissionsto55percentofwhattheywerein1990by2030andbecometheworld’sleaderinhydrogentechnologiesintheprocess(EuropeanCommission,2021).Tothatend,itwillfocusonrampingupelectrolyzercapacitiesinthecomingyears.TheEuropeanCommission’shydrogenstrategyaimstohavecreatedamulti-billioneuromarketby2050,supportingupto1millionjobsandhelpingachieveambitiousgreenhousegasreductiontargetsinsectorsotherwisedifficulttodecarbonize.TheRepublicofKorea,theU.S.andJapanhavefocusedeffortsondeployingpassengercars(IEA/AFC,2021).Theyhold90percentoftheinventoryinthissegment.However,thisincludesonlyaverysmallnumberofbusesandcommercialvehicles.Consequently,theU.S.DepartmentofEnergyrecentlyannouncednewfundingofaroundUSD160millionforfuelcelltrucktechnologiesandcharginginfrastructure(CSIS,2021).Meanwhile,Chinahasadoptedpoliciesforfuelcellbusandcommercialvehicleuptake,andnowdominatesglobalstocksinthesesegments.Thistrendislikelytocontinue,asthefuelcellvehiclesubsidypolicyadoptedin2020aimstoenhancethemanufacturingcapacitiesofChina’sfuelcellelectricvehicle(FCEV)industry,withafocusonusingfuelcellsinmedium-andheavy-dutycommercialvehicles(S&PGlobal,2020).Chinahasinitiatedafour-yearprograminsupportoflocalgovernmentsresearchinghydrogentechnologyanddevelopinganindustrychain,intendingamassapplicationofhydrogenwithinthetransportsectorby2030(NikkeiAsia,2021).TheRepublicofKorea’sHydrogenEconomyRoadmapplanstohavecreatedacomprehensivehydrogenecosysteminthecountryby2040,whileitsNewDeal(announcedin2020)setsthe2040FCEVtargetatnearly3million,comprising2.9milliondomestically-manufacturedFCEVs,30,000fuelcelltrucksand40,000fuelcellbuses(MinistryofEconomyandFinance,2020).PatentLandscapeReport–HydrogenFuelCellsinTransportation11IntroductionJapanseestheadoptionofhydrogenasamajorwaytobothdecarbonizeitseconomyandmaintainindustrialcompetitiveness(NewZealandForeignAffairsandTrade,2020).In2017,JapanissueditsBasicHydrogenStrategy,becomingthefirstcountryintheworldtoadoptanationalhydrogenframework.Hydrogenisamongthe14sectorsidentifiedundertheGreenGrowthStrategythroughAchievingCarbonNeutralityin2050thatwillbekeytoJapan’smeetingitsdualobjective(MinistryofEconomy,TradeandIndustry,2020).InJune2021,Japanupdateditshydrogenstrategybyintroducingspecificactionplanstoprioritysectors,forexample,mobility.Mobilitytargetsincluded200,000FCEVsby2025and800,000by2030,aswellas320fuelingstationsby2025and900by2030.Adoptinggreenhydrogenasacleanfuelisexpectedtostimulatenewmarketsandnewvaluechains,requiringregulatoryframeworkstobeadaptedandcertificationschemesandstandardsdefinedinordertoreducebarriersforinterestedstakeholders.MotivationandmethodologyofthereportThetopicselectedforthepresentWIPOPatentLandscapeReportreflectscurrentexpectationthatthefieldoftransportationwillbetransformedinthedriveforNetZerocarbonemissions,andanunderstandingbythedifferentstakeholdersinvolvedoftheneedtoadapttheirbusiness,corporateandintellectualproperty(IP)strategiesaccordingly.Thereport’saimistoshedlightonthecurrenttechnologyclimate,itschangingdynamicsandtheapplicationsthathydrogenfuelcelltechnologiesareexpectedtohaveintransport,andtheimpactthisislikelytomakeinthecomingyears.Atthesametime,thereportexploreswhether,becausetheyformdistinctmarkets,differenttransportationareaswillhavedifferentimplementationhorizons.ThepatentanalysiswaspreparedusingLexisNexisPatentSightcoveringpatentdocumentsfiledorpublishedfrom1900upuntilMarch28,2022.Thepatentsearchmethodologyincorporatedseveraliterationsofsearchqueriesrelatedtohydrogentechnologies,hydrogentechnologiesintransport,fuelcelltechnologiesintransport,andsearchesrelatedtospecifictransportareas,includingroad,truck,aviation,rail,shippingandspecialvehicles(formoredetailonsearchqueries,see“Patentsearches”intheAnnex).Searchresultswerethennormalizedandcleanedtoproduceafinalpatentdataset.DifferenttechnologyfieldsbasedonpredefinedexpertsearchesbyEconSightcomplementedthesearchstrategy.Besidespatentdata,foresightprincipleswereappliedinthepreparationofthereport.Onlinenews,pressreleasesandquarterlyfinancialreporting(forexampleearningscallsfromcorporationsandorganizations)fortheperiodfrom2018toMarch28,2022,weretakenfromtheforesightintelligencedatabasebyintuitive.AI.Theforesightmethodology(see,forexample,Hines,2006;Passing,2017)includedseveraliterationsofsearchqueriesrelatedtohydrogenfuelcelltechnologiesintransportationandsearchesrelatedtospecifictransportationareas,includingroad,truck,aviation,rail,shippingandspecialvehicles.Thesearchresultswerethenanalyzedbasedonfuture-orientedstatementsfromcorporationsandtheirCEOs,organizationsandgovernmentsinordertoderiveanoutlookandroadmapforhydrogentechnologiesintransport.Anartificialintelligence(AI)algorithmandtheproprietarytechnologyofintuitive.AIhasbeenemployedtoidentifyrelevantfuture-orientedstatementsandtocreatearoadmap.Foresightindicatorswereappliedandmeasured.Theyincludedpubliclyavailablefuture-orientedstatements,thematurityofthetechnology,commercialviability,needforactionandfuturedrivers.Bycombiningpatentdatawithrelevantinsightsfromtheabove-mentionednon-patentdata,thisPatentLandscapeReportaimstoprovideabetterunderstanding,insupportofinformeddecision-making,ofwhyandhowtechnologicaladvancementsdevelop.Insodoing,thereportintegratessocietal,economic,environmentalandpoliticalinsightswiththetechnologicalperspectiveofpatentdata.12Thereportfirstdescribestheuseofhydrogenfuelcelltechnologiesintransport.Itthenfocusesonfuelcells,theirhistory,typesandapplicationacrossdifferenttransportationareas.Itanalyzestheoriginsofinventionsintherespectivetransportapplicationsectorsbasedontheinventorlocation,studyingtheevolutioninpatentfilingactivityovertimebyfocusingonthelast20,andmorespecificallyonthelastfiveyears,andmeasuringthefilingactivityofleadingplayersinthefield.Thereportalsoanalyzesthefilingactivityandoverallactivepatentportfoliosofthemainplayersandtheprotectedmarkets.Finally,thereportundertakesadeepanalysismatchingnewsandcompanystatements(andthescientificliteraturereferencedtherein)withpatentfactsandexamplesinthespecificapplicationsectors,highlightingthebenefitofcombiningmanypiecesofinformationintoacomprehensiblecollectionofdata.Thesemetricsallowforaclearerunderstandingofthecurrentsituationandinformaconcludingdiscussionoftheroadmaptothefuture.InfoBox:Whatwedo,whatwecount,howwecountandwhyInwhatfollows,weanalyzethepatentlandscapeofhydrogenintransportfromamultitudeofperspectives.Thereareseveralgeneralassumptionsandmethodologiesthatremainconstantoverthecourseoftheanalysis.Withoutspecificmentioninthetext,wehaveappliedthefollowinggeneraldefinitionsandmeasures:•Simplepatentfamiliesarecountedasaproxyforindividualinventions.Mostanalysisreferstonumbersofpatentfamilies(througharepresentativepatentfamilymember).Theterm“patentfilings”isusedinterchangeablyinthereportwiththeterms“patentdocuments”and“patentfamilies.”Thereisonlyoneexception,namelyvisualizationsrelatingtofilingsbypatentoffice,referringtotheindividualpatentapplications(stillcountingeachjurisdictionincludedamongthepatentfamilymembersonce).•Patentfilingsgenerallyincludebothpatentsandutilitymodels,withoutassessingtheirlegalstatus.•Thefirstfilingbyamemberofapatentfamilycountsasthefilingyear.Eachpatentfamilyiscountedonlyonceforthefirstfilinginhistoricdevelopmentanalysis.•Activepatentportfolios:forthistypeofanalysis,onlypatentsandactivepatents(asintheINPADOClegalstatusdefinition)arecounted.Theyaredifferentfrompatentfilings,sinceactivepatentsaretime-specific(activeinacertainyear)buthighlyrelevant,especiallywhenanalyzingacompany’spatentstrength.Heretheterm“activepatents”isusedinterchangeablywiththeterms“activepatentdocuments”and“activepatentfamilies.”•Theoriginoftheinventor(inventor’slocationorresidence)isusedasaproxyforthesourceofinnovations.Forpatentdocumentswithmultipleinventors,wecountthedifferentlocationslistedandcountthelocationformultipleinventorsofthesameoriginonce.PatentLandscapeReport–HydrogenFuelCellsinTransportation13Generalfieldoverview,history,andglobalpatentdevelopmentoffuelcellsHydrogenfuelcelltechnologiesintransport:whyhydrogen,andwhyfuelcells?Afuelcellisadevicethatuseshydrogen(orhydrogen-richfuel)andoxygentocreateelectricity.Fuelcellsaremoreenergyefficientthancombustionenginesandthehydrogenusedtopowerthemcancomefromavarietyofsources.Ifpurehydrogenisusedasafuel,fuelcellsemitonlyheatandwater,eliminatingconcernsaboutairpollutantsorgreenhousegases.Fuelcelltechnologyistheonlytechnologyavailablefordirectlyconvertingthechemicalenergyboundinhydrogenintoelectricalenergywithoutproducinggreenhousegasesattheon-boardconversionsite.Thereforetheprimaryfocusforhydrogenintransportationisontheon-boardgenerationofelectricalenergy,leadingtothedevelopmentoffuelcellsforthispurpose.Theinfrastructure,generation,quality,transportandavailabilityofhydrogenareallhighlyrelevanttothewholefield,butoutsidethescopeofthepresentstudy.Fuelcellsconverttheenergystoredinhydrogentoproduceelectricalpowerwhichcanbeusedtodriveelectricmotorssuchasthoseincars.Hydrogencanbegeneratedfromrenewablesourcessuchaswindorsolarenergybytheelectrolysisofwaterorbythesteamreformingoforganic,hydrogen-carryingmolecules(fortheproductionofso-called“green”or“blue”hydrogen,withseveralrelatedissues,includinghighproductioncosts,seeIRENA,2022).Hydrogenhasahighchemicalenergydensitybyweight(theenergy(megajoules)perkilogramisveryhighat120MJ/kg)comparableto,orevenhigherthan,commonliquidfuelslikegasoline(46MJ/kg)ormethanol(22MJ/kg),butcruciallydoesnotproducegreenhousegaseswhenliberatingelectricalenergy.Thismakeshydrogenanappealingcandidatefuelofthefuture.However,fuelcellscanalsorunonalternativefuels,suchasmethanol,liquidammoniaorevennaturalgases,eitherdirectlyorindirectly,whenareformingunitisattachedtothefuelcell.Moreover,althoughgasessuchashydrogen(ornaturalgas)possessveryhighenergybyweight,theyalsohavelowenergybyvolume.Moreover,gasesmustbecompressedintoaliquidorabsorbedintoasolid(e.g.,metalhydride)inordertobeeasilymanageable,andincreaseweightbytheadditionofanecessaryabsorbingmaterial.Anotheralternativeisbatteries.However,theyareheavyandbulkyincomparisonandpresentlyunabletodeliverorstoreanequivalentamountofenergyperkilogramorperliter(l).Therefore,thedecarbonizationoftransporthaspracticalaswellasphysicalchallengesthatcanbebestmetinanarrowrangeofphysicalconditions.Theenergydensityplot(energy/kgtoenergy/l)inFigure2demonstrateswhyliquidorsolidfuelsarethematerialofchoicewhenitcomestoenergycarriers.Gasoline,kerosene,alcohols,evencoal,allhavequiteahighenergycontentbyweightandbyvolume.TheycarryalltheenergyneededwithinHydrogenfuelcelltechnologiesfortheelectrificationoftransport14PatentLandscapeReport–Hydrogenfuelcellsintransportationarelativelylowweight(highenergycontentperkilogramorliter)andarefairlyeasytohandle,carry,refillandstore.Theyareinthe“sweetspot”areaoftheenergydensityplot,whichmakesthemafavorablechoice.Unfortunately,mostproduceCO2andotherclimate-relevantgaseswhenenergyisreleased.Bycontrast,hydrogenonlyproduceswaterwhenusedforenergyrelease.Wheninacompressedandliquefiedform(oftencalledLH2),orifconvertedtomethanolorammonia,hydrogencanhaveanenergydensitycomparabletostandardfuels.Hydrogengascarriesalotofenergybyweight,butbeingagashasonlylowenergybyvolume.Whenliquified,itcarries8MJ/lcomparedto32MJ/lforgasoline.However,LH2carriesmoreenergybyweightandbyvolumethandobatteriesandthereforeabletoextendtherangeofvehiclesbeyondwhatiscurrentlyachievableusingbatteriesofthesameweight.Batterieswillalwaysbetheheavierofthetwobyenergystored,evenwhentheweightofthestoragetanksisaddedtotheweightoftheLH2.Theoverallweightoftheenergycarrierisamajorconsiderationforanyvehicle,butforfreight–especiallyforairtransport–itisahugeanddecisivecostfactor.Consequently,batterieshavealimitedapplicationrangeintransportthatincludesmostlypassengervehicles.Asidefromthediscussionastowhichfuelbestsuitsthemanytransportoptions,theonlyonepotentiallyavailableforfull-rangedecarbonization,especiallyofcommercialtransport,is“green”hydrogenineitheroftwoforms:directlyinfuelcells,supportedbybatteries,orconvertedintomethanol,ammoniaoranothergas.Figure2.Energydensityplot–energybyweightversusenergybyvolume.The“sweetspot”liesintheupperrightofthedensityplot,wheresolids(coal)andliquids(gasoline,methanolandsoon)aretobefound,sincethesearemanageableatroomtemperatureandcontainalotofpureenergyperkilogramandperliter.Energybyvolume(MJ/l)0.11101000.01101001000BatteriesCoalGasolinefuelsMethanolHydrogen700barcompressedHydrogenLiquidsSolidsEnergybyweight(MJ/l)Source:AdaptedfromChoonetal.(2018).Althoughtheenergydensityofhydrogenisveryhighanditthereforehasadvantagesforvariousapplicationfieldsintransport,theentirelifecycleorsystemfromproductiontousageofhydrogenneedstobeconsidered(e.g.,Plötz,2022).Whilefuelcellsproduceelectricityfromhydrogenatthesitewhereitisneeded,thereisasystemchainattachedrelatingtohydrogenintransportation,seeFigure3.Hydrogenmustbegenerated,forexamplebytheelectrolysisofwaterusingwindorsolarenergy,givingrisetorelateddiscussionsonproducinggreenhydrogenfromrenewablepower(IRENA,2018)andofconnectedissues(IRENA,2019).Hydrogenmustbefurtherpurified,storedandtransportedthroughpipelines;filledandrefilledina700-barpressurizedcontainerorconvertedintometalhydrideormethanol;andliberated,reformedorreleasedagainthroughvalves.Itcanbeusedasacarriergasinairshipsorsimplyburnedinmotorsorrockets.Afullinfrastructureisrequiredfortheprovisionofhydrogen.Andinitsoperations,processeslikeconvertingchemicalenergytoelectricalenergyareneededforthetransmissionofthevehicle.Allthisisassociatedwithenergylossesduringtheproduction,refuelingandoperationphases.ComparisonbetweenFCsandEVsshowstheefficiencyoffuelcelltechnologiestobelowerthanforbatterypoweredvehicles.15HydrogenfuelcelltechnologiesfortheelectrificationoftransportFigure3.Lifecycleefficiencyofhydrogenfuelcell-poweredvehiclescomparedtobattery-poweredvehiclesBattery-poweredvehiclesaremuchmoreefficientthanhydrogenfuelcell-poweredvehicleswhenlookingattheirlifecycleefficiency.SeventyfivepercentoftheproducedenergyinBEVsreachesthewheelsasopposedto25percentinhydrogenfuel-cellpoweredvehicles.WIPOFOROFFICIALUSEONLYBEVFCEVElectricalenergyElectricalenergyChemicalenergy+-100%−10%−5%−10%75%ofenergyreachesthewheel25%ofenergyreachesthewheelDistributionandinversionAC/DCMixofslowandfastchargingDC-ACengineandtransmissionlocaldistributionelectrolysistransport,storage,fuelingFC-Stack+aircompressorandDC-ACDC-AC,engineandtransmission100%−30%−15%−30%PRODUCTIONREFUELINGOPERATIONSSource:AdaptedfromTraton(2022).Note:EViselectricvehicle;FCEVisfuelcellelectricvehicle.However,forthisreport,wehavechosennottoanalyzeallthetechnologiesrelatedtohydrogenintransport,butfocusinsteadontheconversionofhydrogenintoelectricityfortheelectrificationoftransportusingfuelcells.FuelcellhistoryThefuelcellwasinventedinprincipleinthe1800s,possiblybyChristianFriedrichSchönbeinin1838orbyWilliamRobertGrovein1839.Itwasnotuntilthe1960s,however,thatfuelcellswerefirstusedcommerciallyinNASA’sspaceprojectGemini,whichranfrom1962to1966(HackerandGrimwood,1977).16PatentLandscapeReport–HydrogenfuelcellsintransportationFigure4.DrawingfromU.S.PatentUS3112229,“FuelCell,”byInventorFrancisT.Bacon,filedin1961andpublishedin1963.FrancisBaconwasoneoftheinventorsofthemodernfuelcellwhichwasadoptedbyNASAinthe1960s.WhiletheGeminiprojectmarkedthefirstphaseofpatentapplications,therehavebeenseveralsimilarpeaksininnovationsince,assuggestedbythepatentfilingsovertime(Figure5).In1991,forexample,RogerBillingsdevelopedthefirstfuelcellcar(BillingsandSanchez,1995;Billings,n.d.).Butitwasnotuntil2001thattherewasanygreatincreaseinfuelcellinnovationactivity.17HydrogenfuelcelltechnologiesfortheelectrificationoftransportFigure5.Patentfilingsinthefieldoffuelcellsbyyearoffiling(1950–2020).Thefirstmeasurableincreasetookplaceinthe1960sinrelationtoNASA’sGeminiprojectandthenextinthemid-1980sandaround1991,whenthefirstfuelcellswereintegratedintocars.Thesharpincreaseinpatentfilingsrelatedtofuelcellsthatoccurredfrom2000to2005wasfollowedbyadecrease,beforeanewupswingbeganin2016andpeakedin2019.1950195519601965197019751980198519901995200020052010201520201524689111,4471,6168,8167,0278,79611,291Source:WIPO,basedonpatentdataLexisNexisPatentSightuptoMarch2022.Note:Thereisanaverage18-monthdelaybetweenpatentfilingandpublication.2019isthelastyearforwhichcompletedataareavailable.Interestingly,abreakdownoffilingsbyinventors’originsshowsthesurgeinpatentsduringtheyears2000–2005originatingfrominventorsinJapan,followedbyinventorsintheU.S.andGermany.Notuntilafewyearslaterdidinventors,firstintheRepublicofKoreaandtheninChina,closethegap(Figure6).18Figure6.Numberofpatentfilingsbythefivekeyinventorlocations.Japaneseinventorscontributedheavilytothefirstmajorsurgeinpatentfilingsrelatedtofuelcells(2000–2005)andChineseinventorstothesecond(2016–2020).199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920205,0841,9562,6033,3994,1561,0641,1321,5321,8861,9932,6003,0023,7951,0766,5607,2615,0084,9344,7954,5714,1643,4762,7792,7632,8502,4602,4732,1182,2922,2532,1041,8711,1861,2641,4111,1681,0181,2041,1971,3201,2951,3611,2791,2541,0251,0021,0301,1531,1131,1141,041868753780942552562611729733802942822661803739771759681680625604564587721989713980841686855544615555599982587580583534796516570650740535646957878903777817784741572615662ChinaGermanyJapanOtherRepublicofKoreaU.S.Source:WIPO,basedonpatentdataLexisNexisPatentSightuptoMarch2022.Note:“Others”referstoallotherinventorlocations.Thereisanaverage18-monthdelaybetweenpatentfilingandpublication.2019isthelastyearforwhichcompletedataareavailable.Patentfilingactivityshowsthatafteraninitialsurgeofpatentsbeginningin2000andpeakingin2005innovationactivitysloweddownuntilaround2013,wheninventorsbasedinChinastartedfilingpatentsinfuelcellsmorestrongly.Since2015,Chinahasdominatedfilingsinthefield.Thetopfiveinventororiginsaccountformostofthepatentingactivityrelatingtofuelcells,contributing89percentofthedataset,withfewcontributionsfromotherjurisdictions,suchasFrance,theU.K.,CanadaandItaly.Therearemorepatentfilingsrelatedtoelectricvehiclesthanforfuelcellsingeneral,withone-quarterofthelatterreferringtotransportationapplications.PatentLandscapeReport–HydrogenFuelCellsinTransportation19HydrogenfuelcelltechnologiesfortheelectrificationoftransportFigure7.Numberofpatentfamiliesinthefieldsoffuelcellsandfuelcellsintransportationcomparedtoelectricvehicles(EVs)andtoEVsexcludinghybridvehicles.Fuelcellsintransportationaccountfor25percentofthetotalfuelcellsdataset,whilepatentfilingsrelatedtoEVsexcludinghybridsarenearlyatthesamelevelasthoseforfuelcells.ElectricvehiclesElectricroadvehicles,nothybridsFuelcell247,122218,878206,89152,433FuelcellsintransportationSource:WIPO,basedonpatentdataLexisNexisPatentSightuptoMarch2022.Lookingatoveralltrendswithinthefieldoffuelcells,patentapplicationsreferringtofuelcellapplicationsintransportationaccountforone-quarteroffilings(forotherapplicationfields,seeIPAustralia,2021).Comparedtothe247,122patentfilingsinthefieldofelectricvehicles,fuelcellsisingenerallower,withcloseto207,000filings(transportevenlesserintransportation).Relatedactiveportfoliosareroughlyhalfthenumberofthepatentfilingcounts,withthefieldoffuelcellsintransporthavingaslightlyloweractiveportfoliosize.PatentingfilingactivitybyapplicantprofileFigure8.Contributionofdifferentpatentapplicantprofilestothepatentdatasetsrelatedtofuelcells(ingeneral)versusfuelcellsintransport.Companiesdominate,contributingaround80percenttobothpatentdatasets,whereasuniversitiesandresearchinstitutionsaccountforlessthan20percentofpatentfilings.CompaniesIndependentinventorsUniversities/publicresearchorganizations17%11%77%FuelcellsgeneralCompaniesIndependentinventorsUniversities/publicresearchorganizations10%13%83%FuelcellsintransportSource:WIPO,basedonpatentdataLexisNexisPatentSightuptoMarch2022.Intermsofapplicantprofiles,companiesdominatethefieldoffuelcells,accountingforabout80percentofrelatedfilings–bothintheveryapplication-specificfuelcellsinthetransportationfield,butalsofuelcellsingeneral,withuniversitiesandresearchinstitutionsaccountingforlessthan20percentofthedataset.Nevertheless,filingsfromacademicpatentapplicantshavegrowninthelastfewyears.(Moreinformationcanbefoundunder“Top20universitiesandresearchinstitutesinthefield.”)20PatentLandscapeReport–HydrogenfuelcellsintransportationFuelcelltechnologiesGeneraloverviewIneveryfuelcellconcept,fuel(mainlyhydrogen)ismadetoreactwithoxygen(typicallyfromair)toformwater.Differencesintypeofcellaremainlyascribabletothemembraneconceptandtheelectrodes.BasicfuelcellprincipleandsetupFigure9.Thebasicfuelcellcomprisestwofloworbipolarplatesandtwocatalyst-loadedelectrodeseithersideofacentralelectrolyte.Hydrogenandoxygenflowintothereactionzoneandreacttoformwaterwhenliberatingchemicalenergy.Theelectricalenergyproducedisthenusuallyextractedviathebipolarplates.FlowplateElectrolyteFlowplateElectrodeElectrode+-02H2AnodeCathodeSealingSealingSource:adaptedDeBruijn(2005).Abasicfuelcelldesigniscommontoalltypesoffuelcell(Figure9).Itcomprisesamembrane,twoelectrodesthatusuallycarrycatalysts,plusabipolarplateoneithersideresponsibleforgasflowandelectriccurrentcollection.21HydrogenfuelcelltechnologiesfortheelectrificationoftransportFuelcellreactionschematicandmainpartsofafuelcellFigure10.Mainpartsofafuelcell.Bipolarplatesareremovedforeaseofreading.Reformersareaddedtohighlighttheoptionofrunningondifferentfuels.ElectrolyteCatalystCathodeCatalystAnodeAirInverterReformerNaturalgasHydrogenH2H2H2H2H2H2H+H+H+H+H+H+H+H+H+H+H+H+H+O2H+O2H+O2O2O2O2O2O2O2ElectricityWatere-e-Source:adaptedDeBruijn(2005).Overthecourseofmorethan150yearsoffuelcelldevelopmentmanyvariantshavebeendeveloped.Themostrelevantfuelcellconceptsnowadaysarepolymerelectrolytemembranefuelcells(PEMFCs)andsolidoxidefuelcells(SOFCs),followedbyphosphoricacidfuelcells(PAFCs)andmoltencarbonatefuelcells(MCFCs).Whereasthemajorityoffuelcellsworkusinghydrogen,somecanworkeitherdirectlyorindirectlyusingotherfuels,suchasmethanol,liquidammonia,naturalgasorevendiesel.Indirectmethanolordirectammoniafuelcells(DMFCs,DAFCs),thefuelisusedinthecell.Whenthefuelcellsworkindirectly,thefuelcellstillworksonhydrogen,butthereisareformerorcrackerinstalledinfrontofthefuelcellthatconvertsthefuelintohydrogenjustpriortouse.Figure11illustratesthedifferencesbetweenvariantsofthemostcommonfuelcelltypes.22PatentLandscapeReport–HydrogenfuelcellsintransportationMethodologyofthemostcommonfuelcellvariantsFigure11.Fuelcelltechnologyoverviewshowingthemostcommonfuelcellvariants,themembranetype,temperaturerangeandthechemicalreactioninvolved.Thegeneralprincipleiscommontoallfuelcells.Thetwomaindifferencesaretheelectrolyteandthereactionconditions.ThemostcommonfuelcelltypeisPEMFC,whichoperatesatamoderatetemperaturerangeandusesapolymericprotonconductingmembrane.Othervariantsoperateatmuchhighertemperaturesandusedifferentelectrolytematerials,whichaffectsthewholefuelcelldesign.Source:Cigolottietal.(2021).Differenttypesoffuelcellshavedifferentpowerranges.Thislimitstheirscopeofapplication.Sometypicalpowerrangesare:50–100Wforlaptopcomputersorportablesmallunits;1–5kWforhomes;50–125kWforroadtransportvehicles,withcarsaround50–100kW;andtrainsbetween50and125kW(InstitutionofMechanicalEngineers,2018);and1–200MWormoreforcentralpowergeneration.ThebestfitsfortransportarethereforePEMFCandSOFC,whilePAFCandMCFC,andalsoSOFC,arebettersuitedtopowerplants(mostlystationary,butalsoinlargeships)(U.S.DepartmentofEnergyHydrogenProgram,2006;InstitutionofMechanicalEngineers,2018).23HydrogenfuelcelltechnologiesfortheelectrificationoftransportPowerrangeoffuelcellvariantsFigure12.Commontypesoffuelcellsandtheirpowerapplicationrange.Theyellowrangeisthetypicaltransportarea.Roadtransportusuallyrequires50–125kW,specialvehicles100–160kWandtrainsandships50–200kW,possiblymore.WIPOFOROFFICIALUSEONLYSource:Cigolottietal.(2021).Note:DMFCisdirectmethanolfuelcell;AFCisalkalinefuelcell;PEMFCispolymerelectrolytemembranefuelcell;SOFCissolidoxidefuelcell;PAFCisphosphoricacidfuelcell;MCFCismoltencarbonatefuelcell.PolymerelectrolyteorprotonexchangemembranefuelcellsPEMFCsarecurrentlythemostcommonfuelcelltechnology,inventedaround1960byThomasGrubbandLeonardNiedrach.Aprotonexchangemembranefuelcelltransformsthechemicalenergyliberatedduringtheelectrochemicalreactionofhydrogenandoxygentoelectricalenergy,asopposedtothedirectcombustionofhydrogenandoxygengasestoproducethermalenergy.Itiscurrentlythemostpromisingfuelcelldesignfortransportforseveralreasons:itoperatesatarelativelylowtemperaturerangeofbetween100°–180°C;canquicklyvaryitsoutput;issmallerinvolumeandsizethanmostothertypes;hasagoodavailabilityofmembranes(e.g.,NAFIONorCELTEC,producedinlargevolumes);andhasastraightforwardproductionprocessthatcanoperateatalargescale.Inordertofunction,themembranesinPEMFCsmustbeabletoconducthydrogenions(protons);however,thisdoesrequireratherexpensiveplatinumcatalysts(Polletetal.,2016).SolidoxidefuelcellsSOFCsarecharacterizedbytheirelectrolytematerial,eitherasolidoxideorceramicelectrolyte.Knownaboutsincetheearlytwentiethcentury,aSOFCusesthemostsimpleoffuelcelldesigns–justgasandsolids.Amongtheadvantagesofthisclassoffuelcellarehighcombinedheatandpowerefficiency,long-termstability,fuelflexibility,lowemissionsandrelativelylowcost.Thebiggestdisadvantageisthehighoperatingtemperature(500–1000°C),whichrequireslongerstart-uptimesandresultsinmechanicalandchemicalcompatibilityissues.SOFCswereusedincarsduringthe1990s,buthavesincebeenreplacedbyPEMFCs.Theyarestillunderintensiveinvestigationforseveraltransportapplications,especiallyshippingandrail.DirectmethanolorliquidammoniafuelcellsandreformertechnologyFuelcellscanconvertchemicalenergyintoelectricalenergy.Theymostoftenusehydrogendirectlyandmakeitreactwithoxygen(suchasfromair)inordertoliberatestoredenergy.However,fuelcellscanalsoworkwithotherfuels,eitherdirectly,suchasinDMFCs(firstdevelopedin1955),orindirectlyviaareformer.Methanolisthemostoftendiscussedalternativefuelforfuelcells(SunandSun,2020).Reformingorsteamreforming(sinceitworkswithvaporizablechemicalproductsonly)isaveryoldprocess,inventedbyCarlBoscharound1920(Haber–Boschprocess)inthesearchforbetteraccesstohydrogenfortheproductionofammonia(mainlyforfertilizer).Inreforming,moleculescarryinghydrogen,suchasmethane,areconvertedintohydrogen(andby-productssuchascarbonmonoxide).Reformingisstillthelargestindustrialprocessforgeneratinghydrogen.Asthisprocessproduceshugeamountsofcarbondioxide,itisoftheutmostimportanceastowhichsourcesofhydrogenareemployedintheprocess(Gielenetal.,2019).24PatentLandscapeReport–HydrogenfuelcellsintransportationInthecaseofliquidammonia,ammoniacrackersliberatestoredhydrogenviaacatalyticcleavageprocess(Faleschinietal.,2011).Liquidammonia’sroleinthehydrogenindustrywasfirstdiscussedbackin2006(U.S.DepartmentofEnergy,2006),butseemstohaveattractedalotmoreinterestrecently(Jeerhetal.,2020),especiallyasammoniacanbeliquifiedfarmoreeasilythanhydrogen(ammonianeedsonly–33°Ctoliquifyasopposedto253°Cforhydrogen).Finally,naturalgasescanalsobesuccessfullyreformedintohydrogen.However,becauseCO2isproducedasby-product,thisfuelisonlyanoptionforexistinginstallationssuchasthoseonboardships,whereliquifiednaturalgas(LNG)isafairlycommonfuel.Besidesthelargeindustrialapplicationsforreformingandtheammoniacrackingprocess,itisnotunusualtodaytofindon-sitemobileandsmallreformerandcrackerunitsdirectlyattachedtofuelcells.Thesesmallerunitsconvertmethanol,liquidammoniaandseveralothervaporizablematerialsdirectlyintohydrogen(evennaturalgasordieselcanbeusedforthispurpose).Thebiggestprobleminbothcasesisimpuritiespoisoningthefuelcell.Properworking,reformer-equippedfuelcellscanthereforeserveasabridgebetweentheeaseofhandlingofliquidenergycarriersubstances,ononeside,andon-siteoron-boardelectrificationbyfuelcells,ontheother.PhosphoricacidfuelcellsPAFCsareatypeoffuelcellthatusesliquidphosphoricacidasanelectrolyte.Theywerethefirstfuelcellstobecommercialized.Developedinthemid-1960sandfieldtestedsincethe1970s,theyhaveimprovedsignificantlywithregardtostability,performanceandcost.SuchcharacteristicsmadethePAFCagoodcandidateforearlystationaryapplications.Intransporttheyarelessoftenused,duetothedangerfromcorrosiveacid.AlkalimembranefuelcellsAlkalinefuelcells(AFCs),alsocalledalkalinemembranefuelcells(AMFCs)oralkalineanionexchangemembranefuelcells(AAEMFCs),arebasedonthetransportofalkalineanions–usuallyhydroxide(OH−)–betweenelectrodes.Originally,AFCsusedaqueouspotassiumhydroxide(KOH)asanelectrolyte.NASAusedAFCsinthe1960sfortheApolloandSpaceShuttleprojects.Manyrecentdevelopmentshavefocusedontheanionexchangemembrane(AEM)–acriticalaspectofAFCs–sinceitisresponsibleforthetransportofOH–ions.ThiscontrastswithPEM,whichisanH+conductivemembrane,andisthemainreasonfortherebeinglessinterestinthiskindoffuelcell.MoltencarbonatefuelcellsMCFCsworkattemperaturesabove600°Candaimatthedirectconversionofnaturalgasorbiogas.ThehightemperaturesrequiredmakestheloweruseofraremetalsascatalystspossibleandoffersignificantcostreductionsoverPAFCs.UnlikePAFCs,AFCsandPEMFCs,MCFCsdonotrequireanexternalreformerinordertoconvertmoreenergy-densefuelsintohydrogen.BecauseofthehightemperaturesatwhichMCFCsoperate,thesefuelsareconvertedintohydrogenwithinthefuelcellitselfthroughaprocesscalledinternalreforming,whichreducescost(Leo,2007).MCFCsarestillratherhugeinsizeandmoreresearchisrequiredonthematerialsemployedbeforetheycanbeusedfortransport.Theydohavegreatpotential,however,duetotheirdurability.Currently,MCFCsarediscussedmostlywithregardtostationaryuse.PatentlandscapeoffuelcelltechnologiesWhenanalyzingthepatentlandscapeforfuelcellsintransportation,itisapparentthatPEMFCsareplayingthemajorrole,followedbySOFCsandreformer-relatedtechnologies.PAFCs,AMFCsandMCFCsarecurrentlylessinvestigatedandexpectedtobeusedprimarilyinstationaryapplications.MCFCs,PAFCsandSOFCsareallfairlydurableandcheaper,buteitherrunathightemperaturesoremploycorrosiveacids.Theymostoftenhavestationaryapplications,duetheirhugesizeandbulkyindustrialpowerproduction.25HydrogenfuelcelltechnologiesfortheelectrificationoftransportTechnologybreakdownbyapplicationfieldFigure13.Distributionofpatentfilingsrelatedtovariousfuelcellstypesacrossdifferentareasoftransportation.Filinganalysisofactiveandinactivepatents,includingutilitymodels,allpatentsforfuelcellsintransport.ThedominanceofPEMFCs(green)isvisibleovertime.SOFCs(lightgrey)aretypicallyinsecondplace,withreformer/DMFCs/DAFCs(lightblueclosebehind).Allotherfuelcelldesignsarenotcontributingcomparablenumbers.Rail&TrackSpecialVehiclesAviationRoadShippingTransportGenericTrucksandCommercial19%16%16%20%16%18%19%21%49%42%54%57%46%56%51%15%14%17%17%18%23%6%6%5%6%3%3%4%3%5%8%4%5%4%4%9%5%8%AlkalinemembraneDMFC,DAFC,directorreformingMoltencarbonatePhosphoricacidProtonexchangemembraneSolidoxideSource:WIPO,basedonpatentdataLexisNexisPatentSightuptoMarch2022.Note:DMFCisdirectmethanolfuelcell;DAFCisdirectammoniafuelcell.Inalltransportapplications,PEMFCswerefoundtobethemostcommonlyusedfuelcelltype,withashareabove50percentinnearlyeveryapplicationIfield.Inshipping,trucks,andrailandtrackisthereaslightlyhighershareofSOFCs,amountingtocloseto20percent.Thehighestshareforreformers/crackersisinspecialvehicles(21percent),followedbyshipping(20percent)andrail(20percent).Thissuggestsagreateracceptanceofalternativefuels,suchasmethanolorammonia,inthesegenerallymoreindustrialsectors.Bothsolventsarealreadycommoninindustrialenvironments,suchasharbors.Shippingandrailarealsocomparabletostationarysetups,withgenerallylargerinstallationsandtypicallyrequiringgreaterreliabilityandlongerdurability.26PatentLandscapeReport–HydrogenfuelcellsintransportationFilingbreakdownbyoriginofinventorFigure14.Patentfilingsbytechnologyandinventororigin.Top:contributionofdifferentinventororiginstodifferentfuelcelltechnologypatentingactivity.Bottom:numberoffilingsbyfuelcelltechnology.InventorsbasedinJapanhavethehighestcontributiontoalltechnologies,withthehighestparticipationintheareasofPEMFCandSOFC.ItisworthnotingthatChina-basedinventorshavethehighestcontributiontofilingsrelatedtoalkalinemembraneandfuelcellrecycling.ProtonexchangemembraneSolidoxideDMFC,DAFC,directorreformingPhosphoricacidAlkalinemembraneEFuelcellrecyclingMoltencarbonate16%14%24%19%29%27%15%13%10%14%13%12%16%11%16%19%13%18%26%12%21%35%36%33%37%16%32%42%15%8%9%8%7%6%5%5%6%9%8%9%8%9%ChinaGermanyU.S.JapanRepublicofKoreaOtherProtonexchangemembraneSolidoxideDMFC,DAFC,directorreformingPhosphoricacidMoltencarbonateAlkalinemembraneFuelcellrecycling1,2492,6763,1414,91310,68412,76826,277Source:WIPO,basedonpatentdataLexisNexisPatentSightuptoMarch2022.Note:DMFCisdirectmethanolfuelcell;DAFCisdirectammoniafuelcell.Whenanalyzingtheoriginoffuelcelltechnologiesintransport,itisevidentthattherearedifferentareasofspecializationorpreferenceaccordingtoinventorprofile.InPEMFCsandSOFCs,inventorsbasedinJapanlead,followedbythosefromtheU.S.,China,theRepublicofKoreaandGermany.Thelandscapechangesforreformertechnology,PAFCandAMFCs,whereinventorsinChinaareinsecondposition,alsoforMCFCs,withinventorsintheRepublicofKoreaandU.S.leading.ItisworthnotingthatJapanleadsinfuelcellrecycling,withChinaclosebehind,forthereasonsdiscussedinthenextchapter.27HydrogenfuelcelltechnologiesfortheelectrificationoftransportFuelcellrecyclingPEMfuelcellsmostoftencontainrareplatinumcatalystsamongpossibleothers.Thebipolarplatesareeithermadeofsteeloracomparablemetalorcoatedcarbonplates.Themembranesarepolymerssuchaspolybenzimidazole(PBI)orper-fluorinatedcopolymers(forexampletheonesbyDupontunderthetradenameNAFION).Otherfuelcelltypescontainfurthermetals,ceramicsandotherpotentiallycostlyparts.Thehighpriceoffuelcellsis,incomparisontobatteries,onlypartlyattribtabletotherawmaterialsused;rather,thepriceoftoday’sfuelcellsisoftenlargelydeterminedbytheproductioncostsofthestacks.However,thisisonlytrueforcurrentsmallvolumeproduction.Theautomatedproductionscale-upexpectedinthenextfewyearsislikelytobringcostsdownandthepriceofmaterialsthendominate.ProjectedstackpricesofaroundUSD250/kWarewhollyrealisticandreportedasofferingsbyChinesemarketplayersin2021(source:interviewwithJunMa,CEOSimplyHydrogen,Shanghai).Whenitcomestorecycling,however,itwouldseemthat,whereasMEA(membraneelectrodeassembly,comprisingtheelectrodesandmembranesinafuelcellstack)polymermembraneandbipolarplatesarethebiggestcostdrivers,andgenerallyonlyafewdifferentpartsareused,thelargestsinglefactoristheexpensiveplatinumcontent(GermanEnergySolutionsInitiative,2020).Figure15.Costbreakdownoffuelcellsforstationaryapplicationsinrelationtoproductionvolume(estimated).Membranesandbipolarplatesseemtobethehighestcostdrivers.Source:Cigolottietal.(2021).ThecostbreakdowninFigure15showsthetwobiggestcostdriverstobemembranesandbipolarplates.Asisoftenthecase,onlyatsmallervolumesdoesassemblyrepresentalargershareofproductioncosts.Automatedproductionwillbekeytodramaticallyreducingcosts,basedonaninterviewcarriedoutwithRuhlamat.com.28PatentLandscapeReport–HydrogenfuelcellsintransportationCostanalysisfuelcellsintransportInthetransportfield,itwouldseemthatastackpricebelowUSD250/kWisrealisticformarketentry.TheprojectedcostoffuelcellsisunderUSD50/kWforvolumesabove500,000unitsayear.Atypicaldomesticcardemandsabout50–100kWofpowerfromatypical80kWstack,costingaroundUSD20,000forfuelcells,plusanadditionalUSD5,000–7,000forstoragetank,fuelandsupply.In2016,Toyotacalculatedthecostsforthe2017MiraitobeUSD184/kW,witharetailpriceofaroundUSD57,000.Figure16.CostmodelfortheToyotaMiraifuelcellvehicle.Thestrategicanalysisestimateat3,000systems/yearcorrespondstoMirai'smanufacturer'ssuggestedretailprice.010,00020,00030,00040,00050,00060,00070,000SAestimateToyotaMirai(1,000sys/yr)SAestimateToyotaMirai(3,000sys/yr)ToyotaMiraiMSRPSystemcost/price(USD)Overhead/ProtMarketing/WarrantyOtheraudiocostsProductionoverheadFuelcellandstoragecostSystempriceSource:Jamesetal.(2017,2021).Note:DFMA®isDesignforManufactureandAssemblyAnalysis.SAisStrategicAnalysis,thecompanythatundertooktheanalysis.ProducedbythecompanyStrategicAnalysiswhichappliedtheDFMA®(DesignforManufactureandAssemblyAnalysis)costmodelforthepurpose.FuelcellrecyclingroadmapAnalysisofthefuelcellrecyclingpatentlandscapeshowsoverallactivitytobesmall,butgrowingstrongly,havingnearlydoubledinthelastfewyears.Thisisconsistentwithalandscapewherefuelcellsarenotyetbeingproducedinvastnumbersandonlythosefewvaluablepartsofafuelcell,namelytheplatinum-containingelectrodes,extractedinanysignificantquantitythroughstandardrecyclingprocesses,suchasbypyrometallurgy.Thiswillmostprobablychangequicklywithincreasingscale-up.Thegoalwillbetomovefromextractingonlyplatinum(andproducingtoomanytoxicwastegases)tofullyrecyclingallpartsofafuelcell.Theseaspectsarecurrentlyunderinvestigationanditislikelythattheresultsofresearchwillfindtheirwayintothedesignoffuturefuelcells.ConcerninglithiumbatteriesfromEVs,asimilarincreaseininterestinthetopiccanbeexpected.Inbatteries,weseemoreandmorefull-scaleandautomatedrecyclinglinesbeingbuiltworldwide(Kumagi,2021).However,whencurrentlynomorethan5percentoflithiumbatteriesarerecycled(Woollacott,2021),itislikelytotakeseveralyearsbeforethisratebecomesreasonable–andthepresentfuelcellrecyclingratefallsfarbehindthatofbatteries!29HydrogenfuelcelltechnologiesfortheelectrificationoftransportFigure17.Fuelcellrecyclingpatentfilingsbyyearoffiling(1970–2020)andtop10applicantsinthefieldoffuelcellrecycling.Patentsdiscussingrecyclingremainfewoverall,buthavevisiblyincreased,especiallyinthelastfewyears.Themainplayersareamixofuniversities(mostlyinChina)andcompanies(mostinJapan).197019751980198519901995200020052010201520206997110525939454446393044363931507446343243241612910556534245542612212214ToyotaCentralSouthUniversityToshibaMitsubishiHeavyChineseAcademyofSciencesPanasonicPoscoHoldingsChengduAdvancedMetalMatIndTechResInstHitachiWuhanUniversityofTechnology33292216161231191211CompanyResearchinstitutionSource:WIPO,basedonpatentdataLexisNexisPatentSightuptoMarch2022.Note:Thereisanaverage18-monthdelaybetweenpatentfilingandpublication.2019isthelastyearforwhichcompletedataareavailable.30PatentLandscapeReport–HydrogenfuelcellsintransportationFuelcellautomatedproductionThescaling-upoffuelcellproductionisonlyrealisticallypossible,ifitisautomatedandcontinuous.Thisisarelativelynew,verydynamicfield,withvariousfacetsremainingtobeexplored.Fuelcellstackproductionusingroboticsandothermeanshasbeenvisibleinpatentsforseveralyears,butnowfullyautomatedfuelcellmanufacturingisbeginningtobeclaimedinpatentfilings.Thefieldisstillsmall,butnoticeshouldbetakenofthepatentdocumentsreferringtothisarea,sincemorecanbeexpected.Theapplicationofmodernmachinevision,imageanalysis,roboticsandAIinautomatedproductionwillmakemoreofanimpactineveryareaofproduction,butspecificallyinfuelcells.Stackingupto800layersinafuelcellstack,withahighdegreeofprecisioninafullyhydrogen-sealedsetup,isnoeasytaskandnotpossiblewithstandardmachinesetups.Interviewswithsmallandmediumenterprise(SME)machineplayers,suchasGermanproducerRuhlamatinSuzhou,confirmthedifficultiesinmachineconstructionandalsotheincreasingdemandfromindustryplayersforautomatedproductionlines(Fowleretal.,2019;Ruhlamat,2021;BMW,2020).Figure18.1Example:BeijingNowogenTech,CN110021772.A.Automaticproductionlineforafuelcellstack.31HydrogenfuelcelltechnologiesfortheelectrificationoftransportFigure18.2Example:UniversityXiAnJiatong,CN113161572.A.Methodandsystemforcontinuouslyproducingfuelcells/electrolyticcellsandbattery/electrolyticcells.32PatentLandscapeReport–HydrogenfuelcellsintransportationFigure18.3Example:Andritz,US2022/0093937A1.Deviceandmethodforproducingflowfieldplates.33HydrogenfuelcelltechnologiesfortheelectrificationoftransportFigure18.4Example:BOSCH,WO202008887.Methodforproducingafuelcellstack.34Thattransportationisatpresentresponsibleforclosetoone-quarter(24percent)oftheCO2emitteddirectlyfromfuelcombustiongloballyhighlightsthehugeadvancementstobemadeinreachingclimatechangegoalsthroughtheelectrificationofmoderntransport.However,thiswillonlybethecaseiftheelectricityrequiredisgeneratedfromnon-emissivesources.Highlyefficient,electrically-drivenvehicleshavebeenproducedformanyyears.Theproblemthatremainsistheon-siteorin-caravailabilityofelectricalenergy.Ithasalwaysbeenmoreconvenientandsimplertoburnmaterialswithahighenergydensity,namelyliquidfuelssuchasgasoline.Theelectrificationoftransportchallengecanbesolvedbybatteries(storingelectricalpowergeneratedoff-site)orbyelectricalpowergenerators,whichrealisticallyarelikelytobefuelcells.Batteriesaretypicallyheavyandunabletostoretheequivalentamountofenergybyweightasfuels.Fuelcellscanproduceelectricalpoweronboardavehicle,beitacar,bus,shiporairship,without“burning”emissivefuelsbutinsteadhydrogenorhydrogenprecursors.Inmostcrediblescenarios,theenergyproducedbyfuelcellswillcontinuetobestoredinon-sitebatteriesinordertosupplyconcentratedpowerondemand.Combiningbatterieswithon-siteelectricalpowergenerationgreatlyextendsavehicles’range,allowingbatteriestobesmallerandincreasingsignificantlytheflexibilityavailablefortheelectrificationoftransport.Inthepreviouschapterwesawtheextenttowhichthistechnologyhasbeeninvestigatedanddevelopedsinceitfirstoriginated.Leavingdiscussionsaboutthehydrogengeneration,itsavailabilityandtherelatedinfrastructuretootherstudies,thischapterfocusesonthetransportationsectoritselfandtheelectrificationoftransportvehiclesusingfuelcellstoconverthydrogenintoelectricalenergyon-site.Tothisend,onlythosepatentsthatcombinethefeaturesoffuelcellswithtransportation-relatedapplicationaspectsareanalyzedinregardtodevelopmentswithinthelast20years.Thissectionanalyzesglobaldevelopments,aswellasthoseacrossindividualpatentjurisdictions,usingthepatentapplicationsfiledeachyearfrom2000to2019asindicators.Asdatafortheyears2020and2021areincompleteduetopublicationdelays(withanaverage18-monthdelayfrompatentapplicationtoitspublication),mostoftheillustrationsstopat2019,thelastcalendaryearforwhichcompletedataexist.ThecutoffdateforthepatentdataretrievalinthisanalysisisMarch24,2022;thepatentdatasetincludespatentdocumentspublisheduptothatdate.Figure19belowshowsglobalpatentfilingsinfuelcelltechnologieshavesteadilyincreasedoverrecentyears,almostdoublinginthelastdecadefrom1,792in2010to3,302in2019.Asdiscussedabove,fuelcellpatentdevelopmenthasfluctuatedovertime,mainlyduetoexternalfactorssuchaschangesindemandorresearchfunding.Fuelcelltechnologiesintransportation35FuelcelltechnologiesintransportationGlobalpatentfilingforpatentsdescribingfuelcellsintransport,2000–2020Figure19.Numberofpatentfamiliesrelatedtohydrogenfuelcelltechnologiesintransportbyyearoffirstfiling,from2000to2020.Filingshavebeenonanupwardtrendsince2015andreachedanall-timepeakin2019.2000200120022003200420052006200720082009201020112012201320142015201620172018201920201,0531,2521,6361,9512,1952,2732,2792,2271,9311,9131,7921,7111,9941,8592,1092,0322,3512,4532,8903,3023,189Source:WIPO,basedonpatentdataLexisNexisPatentSightuptoMarch2022.Note:Thereisanaverage18-monthdelaybetweenpatentfilingandpublication.2019isthelastyearforwhichcompletedataareavailable.MarketapplicationbreakdownForthepurposesofthisreport,totalpatentsweredividedintosixapplicationfieldssoastobetterhighlighttrends.Weanalyzedroadvehicles,includingspecificanalysesoftrucksandcommercialorcargoroadvehicles;railandtrack-sidevehicles;shippingandwater-sidetransport;aircraftandotherair-sidevehicles,suchasverticaltake-offandlanding(VTOL)craft(“flyingcars”)ordrones(unmannedaerialvehicles,UAVs);and,finally,specialvehicles.Asagroup,specialvehiclesareacollectionofdifferenttypicalcommercialvehicles,includingfork-lifts,airporttugs,tractorsanddredgers,andvariousconstructionsvehicles.Finally,thereremainedacategoryofpatentdocumentsthatdidnotdescribeanyspecificroadorothertransportationvehicleorareaforapplicationandthereforegenericintermsofuse(forinstance,therewasnowordingotherthansimply“vehicles”inthepatentdocument).Figure20showsthedevelopmentofthesesixapplicationfieldsovertime.Itisclearfromthisthatroadvehiclesrepresentbyfarthelargestfieldofapplication,leadingdevelopmentsanddefiningtrendsintransportation,followedbyshippingandrailapplications.36PatentLandscapeReport–HydrogenfuelcellsintransportationGlobalpatentfilingbyfieldoftransportationapplication,2000–2020Figure20.Numberofpatentfamiliesfiledintransportationbyapplicationfield,from2000to2020.Filingyearisapatentfamily’sfirstfilingyear.Road-relatedapplications(cars,motorcycles,trucks,andsoon)dominatethefield,accountingforamajorityofpatentsinfuelcellsinthetransportdataset.20002001200220032004200520062007200820092010201120122013201420152016201720182019202012828839861394112335721,1821505518326941,57124994214511261,82028772221541262,04636084354491332,11942378401721162,09148894461661142,050530103325631141,77440389341401321,748402103275361411,627397110259581351,502388112329901641,735478142311881591,61038092347891371,838446102359831371,6985221054351011551,973517115424951732,0774331144361052212,5245001784271571932,8895082123101941222,748390125AviationGenericRoadShippingSpecialvehiclesRailandtrackSource:WIPO,basedonpatentdataLexisNexisPatentSightuptoMarch2022.Note:Thereisanaverage18-monthdelaybetweenpatentfilingandpublication.2019isthelastyearforwhichcompletedataareavailable.Patentfilingsforshippingareinsecondplace,followedbyaviationandrail,butwithsignificantlylowernumbers.Filingsinspecialvehicleshavealsobeengrowing,especiallyinrecentyears,althoughfilingsareratherfewinnumber.Theorderofmarketentranceisreversed,however.Specialvehicles–namely,commercialvehicles,includingfork-lifts,airporttugs,tractorsanddredgers,andvariousconstructionsvehicles–maybeanicheforfuelcellsbutareincreasingatasteadypace.Ingeneral,thepatentnumbersreflecttheoveralldevelopmentoffuelcellsdescribedintheGeneraloverviewtothereport.ThestrengthofthelinkbetweenhydrogenfuelcellsandroadapplicationsisconfirmedintheanalysisofsharestructureinFigure21.Thisshowstheshareofpatentsdescribingroad-relatedapplicationsincreasedfromanalreadysubstantial58percentin2015upto71percentduringthelastfiveyearsofthereportingperiod(thismaychangeslightlyascompletedatafor2020becomesavailable).Inthesameperiod,allotherapplicationslostshares;however,suchsmallchangesbetweenfilingyearsshouldnotbeover-interpreted.Inaddition,itshouldbenotedthatasignificantoverlapofaround20percentexistsbetweenapplications,andmusttobetakenaccountofwhenanalyzingthischart.Moreover,manypatentsdescribeseveralpossibleapplications,whereasfewclaimonlyonespecificapplication.37FuelcelltechnologiesintransportationGlobalpatentfilingsbyfieldofapplication,2000–2020Figure21.Overallapplicationfilingovertime,accordingtopatentfilingsbyyearoffirstfilingandbyapplicationfield.Filingyearisapatentfamily’sfirstyearoffiling.Specialvehiclesfilingsarefewinnumber,reflectinganichepositioninthetransportmarket.AviationGenericRoadShippingSpecialvehiclesRailandtrack200020022004200620082010201220142016201820203%5%4%3%3%4%3%3%5%5%4%4%3%3%3%2%3%3%4%3%3%10%12%13%13%16%18%15%14%16%16%15%15%15%16%15%13%12%11%11%9%10%71%66%64%63%60%58%62%61%59%61%63%63%64%62%64%67%71%71%71%73%70%3%4%6%5%5%5%5%6%6%6%5%5%4%3%4%4%4%5%4%4%6%5%4%3%3%3%3%3%3%3%2%1%1%2%2%2%2%2%2%1%2%2%8%10%11%13%13%12%12%12%11%11%11%12%12%14%12%11%8%8%8%8%9%Source:WIPO,basedonpatentdataLexisNexisPatentSightuptoMarch2022.Note:Thereisanaverage18-monthdelaybetweenpatentfilingandpublication.2019isthelastyearforwhichcompletedataareavailable.InnovationoriginviewInwhatfollows,weanalyzetheoriginofinventionsusingtheinventor’saddressasaproxyfortheoriginoftheinnovation.Thegroupingofpatentfilingsbyinventor’soriginshowsmorethanhalfattributabletoChina-basedinventors(42percentoffilingsin2019areattributabletoChinaalone),withJapaninsecondplaceaccountingforaround22percentin2019,followedbyGermanywith14percent.Overall,thetopfiveinventororigins,namely,China,Japan,Germany,theRepublicofKoreaandtheU.S.,arethesourceofaround94percentoftotalfilings,andthetop10forjustunder98percent.Thisshowsinventorsfromthissmallgroupofjurisdictionsaccountforalmostoftheentirepatentingactivity.Table1showsthekeyindicatorsforthe20mostimportantfilingjurisdictions.Foreachjurisdiction,thefilingtrendisshownasachartfrom2000to2019.Itisimportanttonotethatscalingvariesbetweenthebargraphs.Thisisdeliberate,soastofocusontrenddevelopmentintherespectivejurisdictionsasessentialinformation.Absolutefilingactivitiesareshowninadditionforfivepointsintimetoenableacomparisonoflevelsanddynamics.Furthermore,filingsfortheindividualapplicationareasasof2019areshowntobetterappreciatethefilingsstructure.Table1supportstheviewthatChinaisresponsibleforthebulkofcurrentfilings.Inaddition,itisapparentfromthetimetrendthatChinahasonlydevelopedthisdynamicinrecentyears.Indeed,justadecadeago,Chinarankeddowninfifthplaceintermsofannualfilings.38PatentLandscapeReport–HydrogenfuelcellsintransportationFurthermore,itisevidentthat,apartfromChina,Germanyaloneexhibitsasignificantgrowthdynamic.Germanyhasbeenabletogrowitsfilingsbyaround50percentcomparedwith2015.Japanmeanwhilehasstagnatedatacomparativelyhighlevelduringthelastdecade,havingreduceditsfilingsbyaroundtwo-thirdssince2005.TheU.S.isshowingadownwardtrendsimilartoJapan,albeitatalowerlevel,itsfilingshavingalmosthalvedfilingssince2005.AparticularlynoteworthydevelopmentistobeobservedwithregardtoinventorsbasedintheRepublicofKorea.AlthoughinventorsintheRepublicofKoreamademorethantwiceasmanyfilingsin2010thanin2005,andtheseincreasedfurtherupuntil2015,theyhavesincedeclinedinrecentyears.Furthermore,theRepublicofKoreaexpandeditsfilingactivitiesatatimewhenfilingswerealreadydeclininginJapanandtheUS.Moreover,theRepublicofKoreainventorsbuiltmomentumsignificantlyearlierthaninChina.WecanthereforeobserveadevelopmenttrendoppositetothatseeninJapanandtheU.S.,aswellasacleartimeleadoverChinaplusadecliningdynamicinrecentyears.Thus,whileChinaandGermanyareincreasingpatentfilingsatthepresenttime,othercountriesareconsolidatingatalowlevel.Thestoryforcountriesmorebroadlyislessclear-cutduetosignificantlylowerfilings;accordingly,acountrytrendcannotbederivedineitheronedirectionortheother.Table1.Top20inventororigins,withfilingtrendsovertimeandacrosstransportationapplicationfields.Activepatentportfoliosoftheleading20countriesbyoriginoftheinventorinfuelcellsintransportation(leftpartoftable)comparedtorecentpatentfilingactivity(allpatents,activeandinactive,rightpartoftable).AlthoughJapanleadsintotalfilingsovertheyears,filingsfromChinaarerapidlyrising.Thesametopfiveinventorlocationsdominateineverytransportapplicationfield,anexceptionbeingtheRepublicofKoreawithregardshipping.ItisnoticeablethattheRepublicofKoreapaysspecialattentiontoshippingapplications(120patentfilingsin2019)andrankssecondbehindChina,with163filingsin2019.ActivePatentPortfolioperCountryActivepatentsatgivenpointintimeaschart,activepatentportfoliopertechnologyin2020asnumbersJurisdictionActivepatentportfoliosJapanChinaRepublicofKoreaU.S.GermanyFranceCanadaU.K.IndiaRussiaItalySwitzerlandAustriaNetherlandsSwedenSpainAustraliaDenmarkIsraelBelgiumCum.lings00-1916,3317,2575,2875,0224,457939697460188186183167159134105104102918267Filings20005651360158152373012161234205120Filings2005135512916135917449301091141554537431Filings2010589211358255223422936814139794118451Filings20155094764491942424141301549862076175Filings20195411,76028517538648221810613623106821066Roadlings20195111,61721215227729191184115139572965Raillings2019236492948732021021030012Shippinglings20195516312059691463113113131322Aviationlings201954817780832639313353140135Speciallings20194969123528713203034030121Otherslings2019184321561300001150100000Source:www.econsight.com39FuelcelltechnologiesintransportationPatentfilingsbypatentapplicanttypeAcomparisonofthepatentapplicant-typestructureshowsamajorityofpatentsinthisareaarefiledbycompanies.In2000,theshareoffilingsbycompanieswas80percent(Figure22).Thishaschangedonlyslightlyovertimeandreached80percentagainin2019.Theshareoffilingsbyuniversitiesandresearchinstitutionsincreasedfromaround2percentin2000to15percentin2019.Globalpatentfilingsbyapplicanttype,2000–2020Figure22.Shareofpatentfilingsbyapplicanttype,2000–2020.Filingyearisapatentfamily’sfirstyearoffiling.Companiesdominatepatentfilingsinthelast20years,withresearchinstitutionsaccountingforabout15%ofthefilings.20002001200220032004200520062007200820092010201120122013201420152016201720182019202080%78%78%82%82%80%82%79%78%72%70%70%79%81%81%81%81%80%80%80%83%18%19%19%14%14%14%13%15%15%20%19%20%12%12%10%14%12%12%13%14%14%15%4%6%7%6%6%8%7%9%9%7%7%6%5%5%3%4%5%CompanyResearchinstitutionsIndependentinventorsSource:WIPO,basedonpatentdataLexisNexisPatentSightuptoMarch2022.Note:Thereisanaverage18-monthdelaybetweenpatentfilingandpublication.2019isthelastyearforwhichcompletedataareavailable.40PatentLandscapeReport–HydrogenfuelcellsintransportationPatentfilingsovertimeforuniversitiesandresearchinstitutionsFigure23.Globalpatentfilingsfromuniversitiesandresearchinstitutions,1970–2020.Filingyearisapatentfamily’searliestfilingyear.Chineseuniversitiesandresearchinstitutionsaccountforamajorproportionoffilingsinthelastfiveyears,increasinginnumberfromtheyearsbefore.197019751980198519901995200020052010201520201623743713192321262065947717491121111213212528212719202814152115201613141517242931525358555267817658504827262125193235314037262323241122121320212138253726392915161714181313111022283937433464579877687879687GermanyU.S.RepublicofKoreaOtherJapanChinaSource:WIPO,basedonpatentdataLexisNexisPatentSightuptoMarch2022.Note:Thereisanaverage18-monthdelaybetweenpatentfilingandpublication.2019isthelastyearforwhichcompletedataareavailable.TheincreaseseeninfilingsbyresearchinstitutionsillustratedinFigure23isdrivenbyoverlappingstructuraleffects:ageneraldeclineinfilingactivitycanbeobservedinmanyjurisdictions(withthenotableexceptionsofChina,theRepublicofKoreaandGermany),whilethespecialstructureofChinaandtheRepublicofKoreamayalsoplayanimportantrole.Figure24showsthefilingsbyresearchinstitutionasashareoftotalfilingsforthetopfivejurisdictions.TheshareofresearchinstitutionsinChina’stotalfilingscanbeseentohavefluctuatedbetweenabout20and35percentinrecentyears,wellabovethecurrentglobalshareof14percent.DuetoChina’simportanceinabsoluteterms,theoverallglobalshareforresearchinstitutionsisagrowingone.41FuelcelltechnologiesintransportationShareofpatentsfiledbyuniversitiesandpublicresearchinstitutionsinthetopfivejurisdictions,2000–2020Figure24.SharesofpatentfilingsbyuniversitiesandpublicresearchinstitutionsinChina,Japan,theRepublicofKorea,GermanyandtheU.S.,2000–2020.SharesforChinaandtheRepublicofKoreaaresignificantlyhigherthanthoseofothertopjurisdictions.AsChinaisthemostactivefileroverall,theglobalshareofresearchfilingshasgrown.20002001200220032004200520062007200820092010201120122013201420152016201720182019202015%1%2%1%5%48%2%6%2%3%19%2%10%4%4%35%2%9%2%6%26%2%7%3%7%30%3%11%5%8%24%2%9%6%7%31%3%12%3%9%35%3%14%3%7%24%5%20%2%8%30%5%15%8%11%28%3%18%3%6%27%2%14%4%7%35%4%14%5%10%26%2%15%2%8%26%3%18%2%8%25%3%18%2%10%26%2%19%3%8%24%2%18%4%8%21%2%17%5%8%17%3%18%1%13%ChinaJapanRepublicofKoreaGermanyU.S.Source:WIPO,basedonpatentdataLexisNexisPatentSightuptoMarch2022.Note:Thereisanaverage18-monthdelaybetweenpatentfilingandpublication.2019isthelastyearforwhichcompletedataareavailable.Overall,thenumberofcompaniesandresearchinstitutionsactiveinthisfieldisincreasingsignificantly.Measuringthenumberofcompanieswithatleastonefilinginanygivenyearasameasureofcompaniessteadilyactiveinthefieldorrampingupaportfolio,thenumberofactivecompanieshasalmosttripledoverthelast20yearsfrom267companiesin2000to783companiesin2019(Figure25).Overthesameperiod,thenumberofactiveresearchinstitutionsincreasedeightfoldto167comparedto2000(21activeresearchinstitutions).42PatentLandscapeReport–HydrogenfuelcellsintransportationNumberofcompaniesandresearchinstitutionswithatleastonefilinginanygivenyear,2000–2019Figure25.Comparisonbetweennumberofcompaniesanduniversitiesandresearchinstitutionswithatleastonefilingayearfrom2000to2019.Thenumberofcompaniesfilingatleastonepatenthasalmostdoubledinthelast10years,whereasthenumberofresearchinstitutionshasincreasedonlyslightly.200020012002200320042005200620072008200920102011201220132014201520162017201820197834764714834872676835084455184324284284204124089993921098921862484118332120169167356055871531531421423615757CompaniesResearchinstitutionsSource:WIPO,basedonpatentdataLexisNexisPatentSightuptoMarch2022.Note:Thereisanaverage18-monthdelaybetweenpatentfilingandpublication.2019isthelastyearforwhichcompletedataareavailable.Onlycompaniesanduniversitiesareconsideredwhichfileatleastapatentdocumentperyear.Universitiesingeneralaswellascompaniesnotfilingeveryyearinfuelcellsintransportareexcluded.ThegrowingimportanceofChinaisalsoreflectedinthenumberofChina-basedcompaniesthereareinthisfield.Outofatotalof783companiesactiveinthefieldin2019,438werebasedinChina(Figure26).Duetoprojectscoperestrictionsnotallowingcomprehensiveinformationontheheadquartersofcompaniestobecollected,anapproximationhasbeenmadebyidentifyingcompaniesinthistechnologyfieldwhichhaveexclusivelyinventorswithanaddressinChina.In2019,thiswastruefor56percentofallcompaniesactiveinthistechnology(438outofatotalof783).WithoutthecontributionfromChina,thenumberofactivecompanieswouldhaveremainedatasimilarlevelformorethan15yearsandhaveevendippedslightlyduringthelastfewyears.43FuelcelltechnologiesintransportationNumberofcompanieswithatleastonefilinginanygivenyear,Chinaandglobaldevelopment,2000–2019Figure26.Comparisonbetweencompaniesfilingatleastonepatentapplicationayearfrom2000to2019–overallresults,resultswithoutChinesecompanies,andChinesecompaniesalone.CompaniesfromChinahavecontributedsignificantlytotheremarkableincreaseinpatentfilingssince2015.Withouttheirpresencefilingwouldhaveremainedatthesamelevelorevendecreasedslightly.200020012002200320042005200620072008200920102011201220132014201520162017201820194387833389647647148385487662676835086044513251826547432428428394203141223408211913385111125137663933933952397397332398194405407440326354437605350587345345421361422CompaniesChinaCompaniesw/oChinaTotalcompaniesSource:WIPO,basedonpatentdataLexisNexisPatentSightuptoMarch2022.Note:Thereisanaverage18-monthdelaybetweenpatentfilingandpublication.2019isthelastyearforwhichcompletedataareavailable.Byselectingcompanieswithatleastonepatentfilingineachyeartheaimistoconsideronlythosesteadilyactiveinthefieldandbuildingupthesizeofaportfolio.Aswellasfilteringoutuniversities,thosecompanieswhoordinarilyfileinotherareasandonlymentionfuelcellsasanalternativeoroption,andthereforedonotfileapatentinthefieldeveryyear,arealsoexcluded.TheanalysishighlightstheextenttowhichthehighnumberofregularlyactivepatentfilingcompaniesfromChinahavebeenalmostsolelyresponsiblefortheremarkableincreaseinhydrogenfuelcellpatentfilingssince2015.Companiesfromotherjurisdictionshaveeitherstagnatedorbeenreplacedbynewentrantsduringtheperiodinquestion,withnogrowthinthenumberofsteadilyactivecompaniesapartfromthoseinChina.Anoverallincreaseinpatentfilingsbyuniversitiesandresearchinstituteshasencouragedcooperationwithcompanies.Cooperativefilingsincreasedtomorethan100filingsayearin2020(Figure27).Thisisstillrelativelylowcomparedtothetotalyearlyfilingsbyuniversitiesandresearchinstitutes.Totalcooperativefilingsreachedmorethan1000fortheperiod2000–2020Thedropin2016and2017wasmainlyduetoadeclineincooperativefilingsfromChina.Japan,ChinaandtheRepublicofKorealeadthejurisdictionsintotalfilings.Intermsofabsolutepatentcooperationbyjurisdiction,Japanisinfront,withatotalof223cooperativefilingsbetween2000and2020,followedbyChina(160)andtheRepublicofKorea(130).However,mostofthecooperativefilingsfromJapanareolder,havingbeenfiledbetween2000and2010,whereasthosefromChinaandtheRepublicofKoreaaremorerecent,datingfrommostlyafter2010.44PatentLandscapeReport–HydrogenfuelcellsintransportationHowever,theFrenchAlternativeEnergiesandAtomicEnergyCommission(CEA)istheleadinginstitutionintermsoftotalcooperation,followedbyresearchinstitutesinJapanandtheRepublicofKorea.Internationalresearchcollaborationsarefewinnumber,withanaverageoffiveayear.Itmustbenotedthatoutofatotalof64universitiesandpublicresearchinstitutesinvolvedincooperativeactivitiesoverthelast20years,38percentarefromChinaand31percentfromtheRepublicofKorea.Thisgoestoshowthatresearchinstitutesinvolvedincooperativeactivitiesinotherjurisdictionsarefarmoreconcentrated,withjustafewplayers.CooperationofcompanieswithuniversitiesandresearchinstitutesFigure27.Cooperativefilingsincreasedsteadilybetween2000and2020.ApplicationsfiledinJapanhavethehighestnumberofcooperativefilings.20002001200220032004200520062007200820092010201120122013201420152016201720182019202046363595812737411280494810684862643100929635CEATokyoInstituteofTechnologyAISTJapanTsinghuaUniversity(China)SeoulNationalUniversityKAISTGunmaUniversitySouthwestJiaotongUniversityCNRSHelmholtzAssociation11131315161919202022JapanChinaRepublicofKoreaU.S.FranceGermanySwitzerlandCanadaU.K.India57810374049130160223CooperationbyresearchinstitutionCooperationbyjurisdictionSource:WIPO,basedonpatentdataLexisNexisPatentSightuptoMarch2022.Note:CEAistheFrenchAlternativeEnergiesandAtomicEnergyCommission;CNRSistheCentreNationaldelaRechercheScientifique;KAISTistheKoreaAdvancedInstituteofScienceandTechnology.Thereisanaverage18-monthdelaybetweenpatentfilingandpublication.2019isthelastyearforwhichcompletedataareavailable.Marketviewanalysis:wherearefuelcellpatentsintransportbeingfiledglobally?Inwhatfollows,weanalyzethegeographicalscopeofthepatentsfiled.Theanalysisoffilingsacrossthosepatentofficeswherepatentapplicationswerefiledprovidesamarketviewandhighlightsthepatentprotectionstrategyadoptedbytheaverageplayer.Thisdescribesanaveragetrendinthejurisdictionswherepatentprotectionhasmostlybeensought.Thepatentstrategiesofparticularcompanieswouldneedtobeindividuallyanalyzedinordertobeunderstoodandlieoutsidethescopeofthisstudy.Thisistheonlypartofthestudywhereindividualpatentapplicationsareanalyzedratherthanpatentfamilies.45FuelcelltechnologiesintransportationToppatentofficesforfilingFigure28.Numberofindividualpatentapplicationsfiledacrosstoppatentofficesfrom2014to2020(toppanel),andtotalnumberofpatentapplicationsfiledintoppatentofficesuntilMarch2022(bottompanel).AlthoughthemostnumberofpatentapplicationshavebeenfiledinJapan,filingsinChinahavebeensteadilyincreasinginthelastfewyears.201320142015201620172018201920202021307477438410398416473314584756760761696893172351396444566597745303257484241523196057857317986479043324694925655325537711012583263092923024002,4542,2281,8631,4141,094891913ChinaEPO-EuropeanPatentOfficeGermanyJapanOtherRepublicofKoreaU.S.WIPOJapanChinaU.S.GermanyRepublicofKoreaWIPOEPO22,68719,48518,15112,95810,05010,0468,218Source:WIPO,basedonpatentdataLexisNexisPatentSightuptoMarch2022.Note:EPOistheEuropeanPatentOffice;WIPOistheWorldIntellectualPropertyOrganization.WIPOrepresentsPCTfilingsandtheEPOEPfilings.Thereisanaverage18-monthdelaybetweenpatentfilingandpublication.2019isthelastyearforwhichcompletedataareavailable.46PatentLandscapeReport–HydrogenfuelcellsintransportationTopplayersandthepatentofficeswheretheyfiledpatentapplicationsFigure29.Patentfilingstrategybycompany.Bubblesizeindicatesthetotalnumberofindividualpatentfilings,limitedtoonlyfilingsfrom2015to2019,includingactiveandinactivepatentsaswellasutilitymodels.Itistypicalofcompaniestoseektoprotecttheirhomemarket;forexample,ToyotainJapan,VWGroupinGermanyandIGEWuhaninChina.Itis,however,companystrategywithregardtowhereintheworldpatentprotectionisextendedthatindicatesthemarketsofmostinteresttothesecompanies.Inthisrespect,thereisanobviousinterestinChina,theU.S.,Japan,andalsoGermanyandtheRepublicofKorea.ParticularlyofnoteisthenumberofPCTandEPfilings,asthispointstoabroader,yetopenstrategybysomeplayers.CanadaChinaEPOFranceGermanyJapanRepublicofKoreaU.K.U.S.WIPOToyotaNissanHondaHyundaiGMVWGroupKiaBoschPanasonicDaimlerIGEWuhanBMWAisinSeikiDensoFordAirbusGroupHitachiRenaultToshibaDaewooShipbuilding&MarineEngineeringSheet1Source:WIPO,basedonpatentdataLexisNexisPatentSightuptoMarch2022.Note:EPOistheEuropeanPatentOffice;WIPOistheWorldIntellectualPropertyOrganization.47FuelcelltechnologiesintransportationShiftingtheanalysisfromapatentfilingcounttoactivepatentportfoliosWhiletheanalysisuptothispointhadbeenfromtheperspectiveofjurisdictions,wenowshiftattentiontospecificplayersinthefield,namely,theindividualcompaniesanduniversitiesandresearchinstitutions.Tothisend,theindicatorshavebeenadjusted.Whilethefocusintheglobalanalysiswasonfilings,thatis,ontheannualfilingsinjurisdictions,theactivepatentportfolioisthesubjectofacompanyanalysis.Theactivepatentportfolioinquestiontakesaccountoflegalstatusandincludesallactiveandpendingpatentapplications,aswellasactivegrantedpatents,atagivenpointintime.Forexample,in2019,itincludesallpatentsactivein2019,aswellasallpendingpatentsfrom2019andfrompreviousyears(seeGlossary).Theactivepatentportfolioallowsananalysisofthestrengthofacompany’spatentportfolio,whereasfilingsshowthedynamics.Therefore,inadditiontotheactivepatentportfolio,thefilingactivityofacompanyoverthelastfewyearsisalsoshownbelow(utilitymodelsaredisregardedwhenanalyzinganactivepatentportfolio).Thecompanyanalysisisthereforeabletofocusmuchmorestronglyonpatentstrengthratherthansolelyoninnovationactivity.Thisisespeciallyimportantinafieldsuchasfuelcells,sinceolderpatentsmighthaveanimportantroleoncethemarketstartstodevelopbutareverycostlytomaintain(i.e.,infees)overthelongterm–onlyplayersconvincedoftheirsuccessarewillingtospendmoneyinretainingsuchpatents.Basically,thereisaclearcorrelationbetweenthebuild-upofastrongactivepatentportfolioandactivefilingactivityinrecentyears.Putanotherway,adecliningactivepatentportfoliooftengoeshand-in-handwithasignificantdecreaseinfilingactivity.Table2showsthetop20companiessortedbythesizeoftheiractivepatentportfolioin2021.Thetop20listisdominatedbyautomotivemanufacturers.(Asasidenote,thefirstuniversitytoenterthefield,theChineseAcademyofSciences,ranks22overall.)Toyotaistheleadingcompanyinfuelcellsfortransportation,with2,720activepatentfamiliesin2021,followedbyHyundai(1,402),Honda(1,191),GeneralMotors(GM)(697)andVWGroup(671).ThedominanceofToyotaisunderlinedbyithavingaportfolioalmosttwicethesizeoftherunner-up(Hyundai)andanoverallshareofaround30percentofthetotalportfolioofthetop10rankedcompanies;asharethathasremainedrelativelystableovertime.Inaddition,Table2includesagraphicalrepresentationofthedevelopmentoftherespectivepatentportfoliossince2000.Thisisintendedtoindicateatrendandisnotnormalizedacrossall20companies.TheportfoliosofHondaandGMcanalsobeseenbeindecline,withHonda’sportfoliodecliningby20percentsince2015.Conversely,VWGroup’sandKia’sportfoliohasnearlytripledinsizesince2015.Thetop20isdominatedbycompaniesfromJapan,Germany,theU.S.,andtheRepublicofKorea.Thisisconsistentwiththeanalysisofkeyjurisdictions.Whatisstrikingistheclearunder-representationofChinesecompaniesinthetop20,despiteChinabeingcurrentlyresponsibleformorethan50percentoftotalfilings.ThereareonlytwoChina-basedcompaniesinthetop20,IGEWuhan(Chinesestart-upGrove-Auto.com)andFAWGroup,bothwithcomparativelysmallportfolios,despitesignificantmomentum.Thiscanbeexplainedbycorporatestructure.AlthoughChinahasamajorityofthecompaniesactiveinthistechnology,theirpatentportfoliostendtobeverysmall,withseverallikeGreatWallMotors(GWM)andDongfenghavingstartedtofileonlyveryrecently.48PatentLandscapeReport–HydrogenfuelcellsintransportationTable2.Top20companiesinfuelcellsfortransportationingeneral.Activepatentportfoliosoftheleading20playersinfuelcellsinroadtransportcomparedtorecentpatentfilingactivity(allpatents,activeandinactive).Top20companiesintransportingeneral,activepatentportfolioandlingdevelopmentCompanyActivepatentportfolios200020052010201520192021'20152016201720182019Toyota1327821,9191,7342,3192,720130260265328216Hyundai291033988211,2061,4021091618493113Honda526101,2171,3231,2321,19190108588794GM372476318158026972223291711VWGroup1691131206471671646483122109Kia8186518438057626547690107Nissan737286176366335405739241416IGEWuhan000097489031735113Bosch539313224130047925264256108Denso231942212352713011929433032Panasonic592132922932652671617241926BMW52551992552503360641418Ford8561151842432172424271711Volvo412401061761973321121314DaewooShipbuilding&MarineEngineering018751591894839232515DaimlerTruck0318871611823221101312LGChem1105911917517515201270AirbusGroup423831581381565661021FAWGroup0005881153004856StateGridCorp011691081291445651211Source:www.econsight.comSource:WIPO,basedonpatentdataLexisNexisPatentSightuptoMarch2022.Note:Toanalyzetheactivityofcompanieswemeasurethenumberofactivepatentsintherespectiveyear(cumulativeactivepatentportfolio,left)aswellasthefilingactivityoftheseplayersbycountinghowmanypatentswerefirstfiledintherespectiveyears(countingallpatents,inactiveandactive,right).DynamicandcomparativecompanyanalysisSinceglobalpatentnumbersrisecontinually,anincreaseinacompany’spatentspertechnologyindicatesincreasedpatentactivitybutisnotinitselfasignofgrowingcompetitionwithinthistechnology.Increasedactivitycanbeoffsetbyanevenhigherdegreeofactivitybyacompetitorinthefield.However,ifoneputsthepatentactivityofacompanyinrelationtopatentactivityworldwide,itispossibletoderivetheworldshareofaparticularcompanyinatechnology.Thisshowstheimportanceofacompanywithrespecttotheglobaldynamicsofatechnology,andatthesametimeitscomparativecompetitivenessinrelationtoothercompanies.Figure30usesadynamicandcomparativeindicatordevelopedbyEconSighttohighlightthecompetitivesituationbetweencompaniesinthefieldoffuelcelltransport.Thedevelopmentofworldshareoverseveralpointsintimeshowsanincreaseordecreaseinacompany’scompetitivenessovertime.Insteadofusinggrowthrates(which,evenwiththesameabsolutechangeinpatentnumbers,aremathematicallysmallerwhenappliedtolargersharesthanwhenappliedtosmallerones),timeseriesanalysisfocusesonchangeintheworldshareinpercentagepoints.Thisindicatorshowsthesizeofthechangeandadequatelydescribestheincrease(ordecrease)inacompany’stechnologicalactivitiesinrelationtothecompetition.Inthissense,Figure30showsToyota’sdominanceintermsofaworldshareof10percentoftheglobaltotalactivepatentportfoliosinfuelcelltransport,followedbyHyundai,withabouthalfofToyota’sworldshare(5.5percent).Additionally,theslowingmomentumofHonda,Daimler,GMandNissanisevident,shownhereasanegativechangeinworldsharebetween2015and2021,andaffectingallcompaniestotheleftoftheverticalaxis.Conversely,thosecompanieswiththegreatestmomentumareshownontherightoftheverticalaxis,withgrowingworldshares,namely,VWGroup,KiaandIGEWuhan.49FuelcelltechnologiesintransportationWorldshareofactivepatentsbycompanyin2021comparedtoallplayersinthefieldversusthechangeinthisworldshare,2015–2021Figure30.Worldsharesandchangeinworldsharesintransportduringtheperiod2015–2021forthetop10companies.TheproportionofactivepatentsofcompanieslikeToyotaandHyundaihaveincreasedinthelastfewyearswhereasthoseofcompanieslikeHonda,GM,andNissanhavedecreased.–3–2–101201234567891011VWGroupToyotaNissanKiaIGEWuhanHyundaiHondaGMDensoBoschChangeinworldshare2015–2021(%)Worldshare2021(%)Source:WIPO,basedonpatentdatafromLexisNexisPatentSightuptoMarch2022.Byanalyzingtheworldsharein2021(meaningtheshareofactivepatentscontributedbyanentity(hereacompany)overallpatentsforthefield)versusthechangeinthissharebetween2015and2021,weareabletoseewhichcompaniesincreasedtheirsharesandthereforegrewtheirportfoliosmoresuccessfullythanotherplayers.Everycompanyleftoftheverticalzeropercentlinesawadeclineinitsworldshare,whereascompaniestotherightofthezeropercentlineincreasedtheirworldshareorweremoreactiveduringthisperiod.Thus,theworldsharesofHonda,GMandNissanhaveshrunk,whereasthoseofHyundai,Toyota,VWGroupandIGEWuhanhaveexpanded.Top20universitiesandresearchinstitutesinthefieldThefirstuniversitytoentertheoverallfuelcellsintransportfield,theChineseAcademyofSciences,ranks22overall.Thisisanindicationofjusthowdominantcommercialplayersarewithinthefield.Nevertheless,theactivityofuniversitiesisnottobeunderestimated.TheacademicfieldislargelydominatedbyChineseuniversities,followedbyuniversitiesintheRepublicofKoreaandJapan.Aclose-upofpatentsnotinvented(basedontheinventors’location)ineitherChina,theRepublicofKoreaorJapanshowstheleadingacademicplayersinEuropeandNorthAmericatobe,fromthetop,theFrenchAtomicandRenewableEnergyAgency(CEA),followedbytheGermanHelmholtzAssociationandtheGermanAerospaceCenter,thenBatelleMemorialInstituteandFraunhoferwiththesamenumberoffilings,andtheCentreNationaldelaRechercheScientifique(CNRS)inFrance.50PatentLandscapeReport–HydrogenfuelcellsintransportationTopuniversitiesandresearchinstitutionsinfuelcellsintransport,globally,inEuropeandNorthAmericaTable3.Activepatentportfolios(withoututilitymodels)oftop-rankeduniversitiesandresearchinstitutionsinfuelcellsintransport.Globalviewofleadingplayers;focusedviewofuniversitiesandresearchinstitutionsfromEurope(47jurisdictions)andNorthAmerica(16jurisdictions)(byinventor’saddress).GlobalUniversitiesEuropeNorthAmericaResearchInstitutePatentportfoliosize2021ResearchInstitutePatentportfoliosize2021ResearchInstitutePatentportfoliosize2021ChineseAcademyofSciences121CEA55Battelle21TsinghuaUniversity(China)88HelmholtzAssociation33MIT11JilinUniversity80Fraunhofer21UniversityofChicago11TongjiUniversity79CNRS17UniversityofCalifornia10SouthwestJiaotongUniversity63UniversityofChester14StateUniversityofNewYork8WuhanUniversityofTechnology61PaulScherrerInstitute5UniversityofNewMexico8CEA58TechnicalUniversityofDenmark3LawrenceLivermoreNationalSecurity7KISTKorea54JosephFourierUniversity3StateUniversitySystemofFlorida7KoreaInstituteofEnergyResearch51VTTTechnicalResearchCentre3UniversitySystemofOhio6HelmholtzAssociation46MaxPlanck3StanfordUniversity6KAIST42ZSW3UniversityofTennessee6JiangsuUniversity41UniversityofJena3UniversityofMichigan5ZhejiangUniversity34TNONetherlands2UniversityofTexasSystem5BeijingInstituteofTechnology32DresdenUniversityofTechnology2SyracuseUniversity5SeoulNationalUniversity31ETHZurich2Caltech5NanjingUniversityofAeronauticsandAstronautics29UniversityofRennes12UniversityofMissouriSystem4HarbinInstituteofTechnology29BerlinInstituteofTechnology2ColoradoSchoolofMines3ITRI28ClausthalUniversityofTechnology2PurdueUniversity3AgencyforDefenseDevelopment28RigaTechnicalUniversity2UniversityofHoustonSystem3HarbinEngineeringUniversity28TechnicalUniversityMunich2WashingtonStateUniversity3Xi´anJiaotongUniversity28PolitehnicaUniversityofBucharest2UniversityofSouthCarolina3TianjinUniversity25NationalPolytechnicInstituteofToulouse2NorthwesternUniversity(Illinois)3KoreaInst.ofOceanSci.&Tech.25CommunityGrenobleAlpesUniversity1UniversityofNorthCarolina2HuazhongUniv.ofSci.&Tech.24IRDFrance1YaleUniversity2AISTJapan22PoznanUniversityofTechnology1VirginiaTech2Note:CEAistheFrenchAlternativeEnergiesandAtomicEnergyCommission;CNRSistheCentreNationaldelaRechercheScientifique;INTRIistheIndustrialTechnologyResearchInstitute;KAISTistheKoreaAdvancedInstituteofScienceandTechnology;KISTKoreaistheKoreaInstituteofScienceandTechnology;MITistheMassachusettsInstituteofTechnology;ZSWisZentrumfürSonnenenergie-undWasserstoff-ForschungBaden-Württemberg.51FuelcelltechnologiesintransportationFuelcellapplication:personalandcommercialroadvehiclesTheroadtransportsectorneedstodecarbonizeanddramaticallyloweremissions.Thisisnecessarynotjustfromaregulatoryperspective,butalsobecauseonlyatrulysustainabletransportationandautomotiveindustrywillbeabletomaintainitsimportanceandprosperityinthelongterm.MovingtoaNetZero-emissionfuturecreatescrucialchallengesfortheautomotiveindustry.Theintroductionofalternativepowertrainsandtheirrelatedenergyconceptsisbecomingachoicebetweenbatteryelectricvehicles(BEVs)andFCEVspoweredbyhydrogen.Hydrogenhaslongbeenknownasalow-carbonfuel,althoughestablishingitintheautomotiveindustryhasbeendifficult.Todate,hydrogenuseinthesectorhasbeenlimitedtoalessthan1percentshareofthetotalglobalstockofvehicles.However,thefuelcellvehiclemarketisbeginningtotakeoff,catalyzedbydevelopmentsinAsiaandtheUnitedStates.Morethan40,000fuelcellvehicleswereontheroadgloballybytheendofJune2021.Globalfuelcellvehicledeploymenthasbeenconcentratedlargelyonpassengervehicles.ActivepatentportfoliodevelopmentofthemostintensivelypatentingChinesecarmanufacturersinfuelcellsHowever,therearedifferencesinthegeographicaldistributionofthevariousfuelcellvehicletypes.Inparticular,theRepublicofKorea,theUnitedStatesandJapanhavefocusedeffortsonpassengervehicles,whereasChinahasadoptedpoliciessupportingfuelcellbusandcommercialvehiclessuchastrucks.Thistrendislikelytocontinue,asthenewChinesepolicyofsubsidizingfuelcellvehiclesisintendedtoenhancethemanufacturingcapacitiesofChina’sfuelcellvehicleindustrywithafocusonusingfuelcellsincommercialvehicles(S&PGlobal,2020).Hydrogenfuelcellsoffergreatpromiseforheavy-dutytrucksinapplicationsrequiringahigherdensityofenergy,fastrefuelingandadditionalrange.TheToyotaMirai,forinstance,achievedanunprecedented1,360kmdrivenonasingle,five-minutecompletefillofhydrogenduringaroundtripofsouthernCalifornia(Toyota,2021).Recently,Renaultpreviewedaconceptvehiclewithwhatittermeda“hydrogenengine,”suggestingthatthisFrenchcompanycouldfollowToyotainusinghydrogenasameansofpreservingandadvancingexistingcombustiontechnologywithlowcarbonfuel(AutoCar,2022).Dongfenghasindependentlydevelopeda12-tonhydrogenfuelcelllogisticsvehicletomeetbothintra-andinter-citylogisticsneeds.In2021,DongfengMotorputintooperationafleetofDongfengTianlongKLtractortrucksrunningon20hydrogenfuelcellsinHebeiProvince,China(H2Bulletin,2021).Commercialvehicle-makerBeiqiFotonMotor(asubsidiaryofBAIC)isaimingtomanufacture4,000hydrogenvehiclesperyearby2023,beforeraisingthebarto15,000unitsby2025(Carscoops,2020).Moreover,China-basedGWMreleaseditshydrogenenergystrategy(GreenCarCongress,2021),makingtheboldclaim:“2022willseethefirstservicefleetofhigh-endpassengercarsonthearenaoftheOlympicWinterGames;in2023,wewillbecomealeaderdomesticallyintermsofthenumberofcorepowercomponentspromoted;wewillrideintothetopthreeintermsofglobalhydrogenmarketshareby2025.”Currently,GWMhasremainedcompletelyindependentofotherplayersintermsofIPrightsanditsdevelopmentofIPinrespecttothesixcoretechnologiesandproductsofstackandcorecomponents–fuelcellenginesandcomponents(controllers,andsoon);hydrogenstoragecylinders;high-pressurehydrogenstoragevalves;hydrogensafety;andliquidhydrogen–withallpatentingexclusivelybyGreatWallandnocollaborationvisible.SAICMotor,China’sbiggestautomaker–andapartnerofVolkswagenandGM–hassaiditplanstosellover10,000hydrogenfuelcellvehiclesby2025(Reuters,2020a).IGEWuhanisascientificandtechnologicalinnovationdevelopmentplatformjointlyestablishedbyWuhanCityandChinaUniversityofGeosciences(Grove,2021).IGE,theparentcompanyofGrove,isChina’sleadinggroupintermsofhydrogenvehicleproduction,developmentandmaintenance.ItisalsotheparentcompanyofWuhanTiger,aheavyvehicle,hydrogenfuelcellpower-traincompany.ThisecosystemallowsGrovetosupportthedevelopmentofnotonlyhydrogenmobilitybutalsotheentirehydrogenvehicleindustry.Atthe2021ShanghaiMotorShow,Groverevealedthatitisdevelopinglongrangevehicles,withafirstbatchofcarscapableofdrivingover1,000kmonasingletankoffuelandtakingonlyafewminutestorefuel.Grovehasalreadyreceived3,500ordersforitshydrogenenergyheavy-dutytrucks(ChinaUniversityofGeoscience,2021).52PatentLandscapeReport–HydrogenfuelcellsintransportationFigure31.ComparisonofthemostactivepatentingChinesecarmanufacturersbasedonactivepatentportfoliodata,2010–2021.IGE,China’sleadinggroupintermsofhydrogenvehicleproduction,developmentandmaintenance,alsoleadsinpatentfilings.2010201120122013201420152016201720182019202020210100200300400500IGEWuhanFAWGroupZhengzhouYutongBusDongfengMotorSAICGroupBeiqiFotonMotorZhejiangGeelyGreatWallAutomobileCheryAutomobile4771491331259462474130BeiqiFotonMotorCheryAutomobileDongfengMotorFAWGroupGreatWallAutomobileIGEWuhanSAICGroupZhejiangGeelyZhengzhouYutongBusSource:WIPO,basedonpatentdatafromLexisNexisPatentSightuptoMarch2022.ActivepatentportfoliodevelopmentofthemostactiveglobaltruckmanufacturersinfuelcellsInEurope,numerousannouncementsmadein2020signalagreatereffortindeployingfuelcellbusesandtrucks.Althoughalmosteverymajormanufacturerworldwideisworkingonthetechnology,onlyafewtrucksandbusesfromHyundaiandToyotaarereadyforseriesproduction.In2021,Hyundaidelivered46heavy-dutytruckstoSwitzerlandandexpectstobecomethefirstglobalautomakertoapplyitsfuelcellsystemtoallitscommercialvehiclemodelsby2028.Atotal62companies,includingDaimler,Iveco,Michelin,ShellandTotal,haveagreedtoput100,000hydrogentrucksontheroadthroughoutEuropeby2030(GreenTechMedia,2020).DaimlerTrucksistestingitsGenH2long-haultruckwhichusesliquidhydrogentogenerateelectricpowerfromafuelcell;thevehiclecouldbereadyforuseby2027,ifthehydrogenfuelinfrastructureisready(DaimlerTrucks,2021).IvecoandNikolahaveconfirmedplanstolaunchhydrogenfuelcelltrucksbytheendof2023,aspartofadeeperpushintoalternativefuelsbythecommercialvehicleindustryintheU.S.market(Reuters,2021a).Tothisend,NikolahaspartneredwithautosupplierRobertBoschtojointlydevelopfuelcelltechnologyforuseinitssemi-truckFCEV(AutomotiveWorld,2021).IntheChinesemarket,Hyundaiisstartingoutwithhydrogenheavytrucksandwillthenmoveintopassengervehicles,aimingtohavemorethan30,000FCEVsonChineseroadswithinthenextfouryears(ChinaDaily,2022).53FuelcelltechnologiesintransportationFigure32.Comparisonofthemostactivepatentingglobaltruckandcommercialvehiclesmanufacturersbasedonactivepatentportfoliodata,2005–2021.Hyundai,whichhasalreadydeliveredhydrogenfuelcell-poweredtruckstoSwitzerland,leadsinpatentfilings.200520062007200820092010201120122013201420152016201720182019202020210100200300400500600700HyundaiToyotaKiaGMVWGroupBoschVolvoDongfengMotorDaimlerTruckMichelin3032364380112209328510718BoschDaimlerTruckDongfengMotorGMHyundaiKiaMichelinToyotaVolvoVWGroupSource:WIPO,basedonpatentdatafromLexisNexisPatentSightuptoMarch2022.Meanwhile,Boschisfocusingonthegrowingmarketforthelatesthydrogenmegatrend–greenhydrogen.ThecompanybelievesEuropeanUnionmarketwillbeworthalmost40billioneurosby2030,withannualgrowthratesof65percent(FuelCellWorks,2021a).Fuelcellsconverthydrogenintoelectricity,andBoschisdevelopingbothstationaryandmobilefuelcellsolutions.From2021to2024,thecompanyplanstoinvest1billioneurosinfuelcelltechnology–“BoschisalreadyH2-ready”theCEOofBoschhasdeclared.Whereastheworld’sbiggestpassengervehiclemanufacturers(VWbyvolumeandTeslabyvalue)aredirectingtheirfocusexclusivelyonBEVs,thesecond-largest,Toyota(plusHyundaiandsomeothers),hasputfuelcellvehiclesatthecorepartofitsstrategy(ArthurD.Little,2021).BMW,DaimlerandGMhavetakenamiddlepathandchosentomanageadualstrategy.54PatentLandscapeReport–HydrogenfuelcellsintransportationActivepatentportfoliodevelopmentoftheleadingglobalautomotiveproducersinfuelcellsFigure33.Activepatentportfoliosoftheleadingglobalautomotiveproducersinfuelcells,2006–2021.ByfarthelargestactivepatentportfolioinfuelcellsbelongstotheautomakerToyota.20062007200820092010201120122013201420152016201720182019202005001,0001,5002,0002,500ActivepatentportfolioToyotaHyundaiGMVWGroupBMWFordMercedes-BenzGroup2,5671,28466456523520741BMWFordGMHyundaiMercedes-BenzGroupToyotaVWGroupSource:WIPO,basedonpatentdatafromLexisNexisPatentSightuptoMarch2022.55FuelcelltechnologiesintransportationActivepatentportfoliodevelopmentoftheleadingglobalautomotiveproducersofelectricvehiclesFigure34.Activepatentportfoliosoftheleadingglobalautomotiveproducersofelectricvehicles,2005–2021.Toyotahasthelargestactivepatentportfolioamongautomotiveproducersinelectricvehicles,similartothatinfuelcells.2005200620072008200920102011201220132014201520162017201820192020202101,0002,0003,0004,0005,0006,0007,0008,0009,000ToyotaHyundaiVWFordBMWGMMercedes-Benz9,4723,1463,0631,5771,147925662BMWFordGMHyundaiMercedes-BenzToyotaVWSource:WIPO,basedonpatentdatafromLexisNexisPatentSightuptoMarch2022.Whencomparingthepatentportfoliodevelopmentoftheleadingcarmanufacturersinfuelcellsforelectricvehicles(excludinghybrids),itbecomesimmediatelyobviousjusthowimportantelectricvehiclesarecurrentlycomparedtofuelcellvehicles.Mostmanufacturershaveatleastthree(Hyundai,BMW,Daimler),four(Toyota),five(Ford)oreven10timesmoreelectricvehiclepatentsactiveintheirportfoliothanfuelcellpatents.Basedoncurrentanddeclaredfuturecapacity,theIEAestimatesthatfuelcellmanufacturingcouldenableastockof6millionFCEVsby2030,satisfyingaround40percentoftheneed,accordingtotheIEANetZeroEmissionsby2050Scenario(IEA,2021b).FuelcellsasrangeextenderArealisticscenarioforfuelcellsintransportwouldseemtobeasacooperativesolutionwithbatteriesratherthananalternative.Inthisscenario,fuelcellsareusedtogenerate–on-siteoron-board–electricitywithwhichtofeedabatterylikewiseinstalledon-site,andthisbatteryiswhatdrivesthevehicle.Thefuelcellisasortofrangeextenderforthebattery.Thebatterycouldbesmallerandlighterthanneededtomeetfullenergydemand,whilethefuelcell–beithydrogen,methanolorammonia–couldbeeasilyreloaded.Rangeextendersarespecificallydiscussedinapplicationsforcommercial,heavyorlong-distancecargotransport(seeforexampleWuetal.,2019).56PatentLandscapeReport–HydrogenfuelcellsintransportationFigure35.1Patentexample:MANTruckpatentapplication,WO2021148367.Utilityvehiclehavingfuelcelldevice.Figure35.2Patentexample:Toyota,WO2018217835.Fuelcellvehiclewithpowermodules.57FuelcelltechnologiesintransportationTherankingofthetopcompaniesinroadapplicationscorrespondstotheabovefindings(Table4).Toyotaistop,withits2,571activepatentsin2021accountingforabout40percentofthetotalpatentsheldbythetopfivecompanies.Thetop10iscomprisedentirelyofautomotivemanufacturersandsuppliers,andisfollowedin11thpositionbyPanasonic,thehighestrankingnon-automotiveplayer.Nogeneraltrendcanbediscernedamongthedifferentplayers.Somemanufacturers,suchasGM,NissanandHonda,havedecreasingactivepatentportfoliosanddecliningnumbersoffilingsinrecentyears;others,suchasHyundai,Kia,VWandVolvo,haveexpandedtheirportfolios.NewmarketentrantsareIGEWuhan,ZhengzhouYutongBus,andWeichaiPower.Topcompaniesintransportinroadapplications,activepatentportfolioandfilingdevelopmentTable4.Activepatentportfoliosoftheleading20playersinfuelcellsinroadtransport(leftpartoftable)comparedtorecentpatentfilingactivity(allpatents,activeandinactive,rightpartoftable).LeadingplayersToyotaandHyundainotonlyhavethelargestactivepatentportfoliosbuthavealsoincreaseditinrecentyears.Top20companiesinroadtransport,activepatentportfolioandlingdevelopmentCompanyActivepatentportfolios200020052010201520192021'20152016201720182019Toyota1297651,8631,6632,2012,571125246246307204Hyundai23953757841,1141,284971347176104Honda515921,1801,2771,1851,14587105568594GM352375967757596652121241610VWGroup157211117840856657577310385Kia616641773515222545677499Nissan697125976126005065435201313IGEWuhan000090477031035113Bosch46861202222653791922314771Denso211872182322662951927433031Panasonic552042812822572591517221924BMW52447892362353156621415Ford8561121792342082222261711LGChem095611116716714201270FAWGroup0005578149004856Volvo4113180126144231291012WeichaiPower0001461341051278ZhengzhouYutongBus000101061331013484215Suzuki62957861251311815827DaimlerTruck031264112129231271010Source:www.econsight.comInthecompetitiveenvironmentshowninFigure36,ToyotaandHyundaileadthefieldintermsofworldshareoffuelcellsforroadapplications;furthermore,theyhavemanagedtoincreasetheirworldshareinrecentyears.Incontrast,thecompaniesimmediatelybehindintheranking,namely,Honda,GMandNissan,haveeachbeenlosingworldshare.ToyotaandHyundaicanthereforebeexpectedtoextendtheirleadinthisapplicationinthecomingyears.VWGroup,KiaandIGEWuhanarethreecompanieswhosegrowthinthefieldisnoteworthy.Allthreearecatchingup,andhaverecordedanincreaseinworldsharehigherthaneitherToyotaorHyundai.58PatentLandscapeReport–HydrogenfuelcellsintransportationTop10companies’worldsharesinroadapplications,2015–2021Figure36.Worldsharesandchangeinworldsharesbetween2015–2021forthetop10companies.Toyotaleadstheworldinroadapplications,andhasincreaseditsshareinthelastfewyears.–3–2–10120123456789101112ToyotaHyundaiHondaGMVWGroupKiaNissanIGEWuhanBoschDensoChange(%)Worldshare2021(%)Source:WIPO,basedonpatentdatafromLexisNexisPatentSightuptoMarch2022.AsFigure36shows,theworldsharesofHonda,GMandNissanhaveallshrunk,whereasthoseofToyota,Hyundai,VWGroup,KiaandIGEWuhanhavegrown.Fuelcellapplication:shippingandmarinevehiclesShippingmakesasignificantcontributiontoglobalgreenhousegasemissions–around2.5percent–andamajorityofocean,coastalandinlandvesselscontinuetorunonheavyfueloilanddiesel,manyevenwithoutexhaustgastreatment.Thus,theInternationalMaritimeOrganizationistargetingthedecarbonizationofmaritimefuels,especiallythroughtheusehydrogen,methanolandammonia.AccordingtotheGlobalMaritimeForum,tofullydecarbonizeinternationalshippingby2050,hydrogenandammoniawillbeneededtohelpreplacethe250–300milliontonnesofoiltheindustryburnseveryyear(Bloomberg,2021).Hydrogen-basedfuels,particularlyammonia,areattractingattentionforuseinlargesea-goingvessels.MajorindustrystakeholderslikeWärtsilähaveannouncedplanstomake100percentammonia-fuelledmaritimeenginesavailableasearlyas2023,andtoofferammoniaretrofitpackagesforexistingvesselsfrom2025.AccordingtotheIEANetZeroEmissionsby2050Scenario,ammoniameets8percentoftotalshippingfueldemandandhydrogen2percent.Oneofthelargestmanufacturersofmarineengines,theMANGroup,isresearchingintensivelyintoammoniatechnologies(MarketResearchTelecast,2021).59FuelcelltechnologiesintransportationMaersk,ontheotherhand,isfocusingonmethanol-fueledships(Bloomberg,2021).NewvesselsbuiltbyHyundaiHeavyIndustriesCo.representabout3percentofMaersk’stotalcontainercapacity.Thesewillreplaceoldershipsinthecompany’sfleet,savingabout1milliontonnesofCO2emissionsayear.Maerskhastheoptionforfourmoreoftheshipstobedeliveredin2025.Shellwillcollaborateinafeasibilitystudytrialingtheuseofhydrogenfuelcellstopowerships,thefirstofitskindforthecompany.Ifsuccessful,itwouldhelppavethewayforcleaner,hydrogen-poweredshipping.Shell,whichisthechartererofthetrialvesselandthehydrogenfuelprovider,isworkingtogetherwithSembCorpMarineLtdanditswholly-ownedsubsidiaryLMGMarinAS,whichwilldesignthefuelcellandretrofitthevessel,aswellasPenguinInternational,theowneroftheroll-on/roll-offvessel(Shell,2021).In2022,ABBwithleadingexperienceinmarinesolutionannounceditistojoinforceswithBallardPower,acompanywithexpertiseinthedevelopmentofmegawatt-scalefuelcellsystemsforland-baseduse,totakethenextstepinmakingthistechnologyavailableforlargervessels(ABB,2022).In2021,AIDACruiseswastobethefirstcruisecompanyintheworldtotestfuelcellsonalargepassengershipaspartofthe“Pa-X-ell2”researchprojecton-boardtheAIDAnova(Carnival,2021).InadditiontoAIDACruises(representedbyCarnivalMaritimeGmbH),theMeyerWerftshipyard,FreudenbergSealingTechnologiesandotherpartnersareinvolvedinajointprojectfundedbytheGermanFederalMinistryofTransportandDigitalInfrastructure.Theproject’sobjectiveistofindpracticalsolutionsforclimate-neutralmobilityacrossallshipping.Thegroundbreaking“Pa-X-ell2”projectspecificallyaimstodevelopadecentralizedenergynetworkandahybridenergysystemwithanewgenerationoffuelcellsforuseinocean-goingpassengervessels.Althoughhydrogenfuelcellshavebeentrialledonseveralshort-distancevessels,theyarenotyetcommerciallyavailable(Xingetal.,2021).However,thecommercialoperationoffuelcellferrieswasexpectedtobeginin2021intheU.S.andNorway.TheDanishferryshuttlefirmDFDShopesthatby2027anewship,EuropaSeaways,willoperatebetweenCopenhagenandOslo,poweredbycompressedhydrogenandemittingonlycleanwater(Wired,2021).Majorretailers,includingAmazonandIKEA,arebeginningtocleanuptheirshippingpollution.In2021,agroupofcompaniespledgedthatby2040itwillonlycontractshipsusingzero-carbonfuelstomovefreight(TheVerge,2021).60PatentLandscapeReport–HydrogenfuelcellsintransportationActivepatentportfoliodevelopmentofthemostactiveglobalshipmanufacturersinfuelcellsFigure37.Activepatentportfoliosofthemostactiveglobalshipmanufacturersinfuelcells,2005–2021.RepublicofKoreashippingmanufacturersleadinthenumberofactivepatents.Incontrasttoroadandrail,Chinesecompanieshavenosignificantactivepatentportfolios.20052006200720082009201020112012201320142015201620172018201920202021050100150200PatentsDaewooShipbuilding&MarineEngineeringKSOEKoreaThyssenkruppChinaShipbuildingGroupGEWartsilaMAN(in:VWGroup)Maersk18990473828962ChinaShipbuildingGroupDaewooShipbuilding&MarineEngineeringGEMaerskMAN(in:VWGroup)ThyssenkruppWartsilaKSOEKoreaSource:WIPO,basedonpatentdatafromLexisNexisPatentSightuptoMarch2022.ThetoppatentapplicantwithinthepatentdatasetisDaewooShipbuilding(Figure37),whosepatentportfolioismorethantwicethatofthesecondhighestpatentapplicant,KSOE(HKoreaShipbuilding).Interestfromsomeofthemajorcompaniesinthefieldisreflectedinthepatentdataset,withWärtsilä,MAN,andMaerskfeaturingastoppatentapplicants,yethavingverysmallpatentportfolios.Unlikeforroadandrail,Chinesecompaniesarenotactiveinapplicationsrelatedtoshippingandmarinevehicles.ChinaShipbuildingistheleadingplayerinChinaintermsofpatentfilingsandhasbeenfilingmorepatentsrecentlyandistheonlyChinesecompanyinthetopfive.61FuelcelltechnologiesintransportationTop10companiesinshippingapplications,2015–2021Figure38.Worldshareofactivepatentsbycompanycomparedtoallplayersinthefieldversusthechangeinworldsharebetween2015–2021.ToyotaandHyundaihavethelargestsharesinpatentapplicationsinshipping,butwhereasToyota’sactiveportfoliodecreasedbetween2015–2021,Hyundai’sincreasedduringthesameperiod.–2–101230123456789101112ToyotaStateGridCorpSinoFuelCellSamsungHeavyIndustriesKSOEKoreaKiaHyundaiHondaGMDaewooShipbuilding&MarineEngineeringChange(%)Worldshare2021(%)Source:WIPO,basedonpatentdatafromLexisNexisPatentSightuptoMarch2022.TheactivepatentportfoliosofthetoppatentapplicantsshowToyotaandHyundaihavethelargestworldsharesinthefieldoffuelcellshippingapplications,butwithdifferingdynamicsduringtheperiod2015–2021,whenToyota’scontractedslightlywhileHyundai’sgrewbymorethan3percent.ApartfromKiainthirdplace,theotherdynamiccompaniesinthefieldaretheshippingspecialistsDaewooShipbuilding,SamsungHeavyIndustriesandKSOE(KoreaShipbuilding).62PatentLandscapeReport–HydrogenfuelcellsintransportationFigure39.1Patentexample:Wärtsilä,WO2020182308.Afueltankarrangementinamarinevesselandamethodofrelievinghydrogenfromaliquidtankarrangement.Figure39.2Patentexample:MTUFriedrichshafen,nowRolls-RoyceSolutions,WO2021185707.Controldeviceandmethodforoperatingafuelcell,fuelcellhavingacontroldeviceofthistype,andvehiclehavingafuelcellofthistype.63FuelcelltechnologiesintransportationFigure39.3Patentexample:ChinaShipbuildingGroup,HudongZhonghuaShipbuildingGroup,CN112572172.Hydrogenfuelcellelectricpropulsionforalargecontainership.Thetoptwocompaniesinshipping,asinotherapplications,areToyotaandHyundai(Table5).However,itisnoteworthythatToyota’sleadinshippingisnotsopronouncedasitisintheotherapplications,butinsteadonparwithHyundai.Also,thespecialrequirementsforshippingapplicationsarereflectedinthecompositionofthetop20companies.DaewooShipbuilding,SamsungHeavyIndustries,KSOE(KoreaShipbuilding),ChinaShipbuildingGroupandNavalGroupareallshippingspecialiststhathavemovedintofuelcelltechnologiesandbuiltsignificantportfolios.64PatentLandscapeReport–HydrogenfuelcellsintransportationTopcompaniesintransportinshippingapplications,activepatentportfolioandfilingdevelopmentTable5.Activepatentportfoliosoftheleading20playersinfuelcellsinshipping(leftpartoftable)comparedtorecentpatentfilingactivity(allpatents,activeandinactive,rightpartoftable).ToyotaandHyundaileadinactiveportfoliosinshippingapplications,withdoublethenumberofpatentsofthethird-placedcompany,Kia.Top20companiesinshipping,activepatentportfolioandlingdevelopmentCompanyActivepatentportfolios200020052010201520192021'20152016201720182019Toyota17885534815646031442304918Hyundai13883065265977066334638Kia0024891972722024334538DaewooShipbuilding&MarineEngineering018751591894839232515Honda534149177154142213194SamsungHeavyIndustries0027711113021148173KSOEKorea0111492906114398GM3143258787274851StateGridCorp0116262636601000SinoFuelCell02211287636300000Bosch2810162255413321Thyssenkrupp2112029434754412Denso4748886484411021ChinaShipbuildingGroup00021544113210Boeing011229413952420VWGroup181223293612245AirbusGroup041529243010034SiemensEnergy2111426302823131GE451827292846021NavalGroup0101926272700043Source:www.econsight.comSource:WIPO,basedonpatentdatafromLexisNexisPatentSightuptoMarch2022.Fuelcellapplication:aviationandabove-groundvehiclesThecommercialaviationsectorisfacinganongoingchallengeofreconcilingincreasinglystringentenvironmentalregulationsandemissionscommitmentswithananticipatedgrowthinpassengerdemand.Momentuminhydrogenforaviationapplicationshasbeenre-energizedaftermanyyearsdormantduetotechnicalchallenges,themostfundamentalofwhichforhydrogenfuelcellaircraftisweight.Fuelcellsarethereforeoftenonlyconsideredforon-boardelectrificationratherthanpropulsion.Thesamesituationappliestospacecraft.NASAhasinthepastusedfuelcellsforelectrificationon-boardspacecraft,butnotforpropulsion.NASAhas,however,usedhydrogendirectlytopropelrocketswithouttheneedtoconverttoelectricalpower(NASA,2021a).65FuelcelltechnologiesintransportationIn2020,Airbustookthefirstmajorstepinthisdirection,releasinganambitiousplanfordevelopingnovelhydrogenaircraftconcepts,calledZEROe,forcarryingupto200passengersandarangeof3,700km,withthegoalofhavingacommercialaircraftavailableby2035(Airbus,2020).AirbussaiditselectedtheA380,theworld’slargestpassengerplane,becauseithadroomenoughtostorethenecessaryliquidhydrogentanksandotherequipmentandcouldflyin2026.Themanufacturerisworkingwithengine-makerCFMInternational,ajointventurebetweenGEandFrance’sSafran(CNBC,2022).Airbusdid,however,alsoreporttotheEuropeanUnionthatmostairlinerswillcontinuetorelyontraditionaljetenginesupuntilatleast2050,withzero-emissionhydrogenplaneslikelytobeprincipallyconfinedtoregionalandshorter-rangeaircraftfrom2035(Reuters,2021b).Inaddition,BoeingrecentlypartneredwithAustralia’sCommonwealthScientificandIndustrialResearchOrganizationtopublisharoadmapforhydrogenintheaviationindustry.Thisconsideredwhataretheopportunitiesforhydrogenuseinaircraft,aswellasairportapplications,andruledouthydrogenbeingusedonasignificantscalebefore2050(Reuters,2021b;CSIRO,2021).In2021,GEAviationandSafranlaunchedaninnovationdevelopmentprogramforsustainableengines,extendingtheirpartnershipuntil2050(FuelCellWorks,2021b).Chinesecompaniesarenotsimilarlyactiveinaviationastheyareinroadorrail,orinnicheareassuchasdrones.Somesuppliersaddressthefield,butnoneofthelargeraircraftplayersisamongthetopranks.Severalsmallercompanies,suchasUniversalHydrogenandZeroAvia,areworkingonhydrogenaircraftsolutionsforshort-distanceflights.BackedbyinvestorsthatincludetheventurecapitalarmsofAirbus,ToyotaandJetBlue,UniversalHydrogenrecentlyraisedfundstorampupindustriallyandacceleratetowardafirsttestflightin2022(Businesswire,2021).Itsaimistospeeduptheintroductionofhydrogenforsmallerregionalairplanesby2025,replacingturbopropsystemswithfuelcellsfedbymodularhydrogencapsules.HydrogenaviationcompanyZeroAviahasannounceditsbiggestzero-emissionshydrogenaircraftyet–a76-seatairlinertobebuiltwithAlaskaAirlinesitishopingtoflyin2023–,aswellasafirstcommercialhydrogen-poweredflightbetweenLondonandRotterdamin2024(NewAtlas,2021).Expertssaythehighcostofhydrogen,thechallengesofstoringandsuper-coolingthegasandbuildingareliableandwidespreadsupplysystem,aswellascertification,mustallbeaddressed.However,inviewofthefactthatbringinganewairplanetomarketcantakeuptobetweenfiveandsevenyearsofdesign,developmentandproduction,theCEOofUniversalHydrogenhassaidthatdecisionsneedtomadebythelate2020sinordertoenterthemarketbymid-2030s(Reuters,2022).Airbusisleadingthefield,withaslightreductioninitspatentportfolioin2016,buthavingfiledincreasingnumbersofapplicationsoverallinthelastfewyears.Boeing,Safran,Ratheon,GE,Rolls-Royceandsmallnewcomers,suchasZeroaviaorH2Fly,arebehindAirbusintheranking,butfollowingagenerallyupwardtrend(Figure40).Whilethedirectuseofhydrogenincommercialaviationisnotexpectedtobecomecommerciallyviableuntilthemid-2030s,orlater,hydrogen-basedsynthetickeroseneusedasadrop-infuelforexistingaircraftcouldcomeonthemarketby2030.AfirstflightusingsynthetickerosenewascarriedoutbyKLMintheNetherlandsinFebruary2021(KLM,2021).AccordingtotheIEANetZeroEmissionsby2050Scenario,synthetickerosenewillmeetmorethan1.6percentofaviationfueldemandby2030(IEA,2021b).Besidesgeneralcommercialaviation,therearealsoquiteafewpatentsdescribingfuelcellsinotherabove-groundtechnologies.Dronesandpersonalflyingcars(PFVs),verticaltake-offandlanding(VTOL)craft,high-altitudeplatforms(HAPs)andsatelliteshavealreadybeendescribedandclaimedinpatents.Mostoftheseapplicationsareasyetmarketniches,butexpectedtogrowinthecomingyears.Inthecaseofsatellites,wehaveseenthatNASAusedfuelcellsinthe1960s.Asflyingcarshavebeeninvestigatedandpatentedtoaquiteremarkabledegree,itislittlewonderthatfuelcellshavealreadybeenused,atleastoptionally,bycarmanufacturers.66PatentLandscapeReport–HydrogenfuelcellsintransportationActivepatentportfoliodevelopmentofthemostactiveaviationcompaniesFigure40.Activepatentportfoliosofthemostactiveaviationcompanies,2005–2021.Theleader,AirbusGroup,hasalmostdoubletheactivepatentportfolioofthesecondplayer,Safran.20052006200720082009201020112012201320142015201620172018201920202021050100150AirbusGroupSafranBoeingGERaytheonTechnologiesRolls-RoyceZEROAVIA15275683938174AirbusGroupBoeingGERaytheonTechnologiesRolls-RoyceSafranZEROAVIASource:WIPO,basedonpatentdatafromLexisNexisPatentSightuptoMarch2022.Figure41.Example:MetroAviation(whichhasacquiredApplicantAlakaiTechnologies),WO2020257646.Lightweighthighpowerdensityfault-tolerantfuelcellsystem.Methodandapparatusforcleanfuelelectricaircraft.67FuelcelltechnologiesintransportationThetopplayersinthefieldareHyundaiandToyota,eachwithanactivepatentportfolioofmorethan500patentfamiliesin2021.Thetop10alsocontainsmanyaviationspecialistssuchasAirbus,Safran,BoeingandRaytheonTechnologies(Table6).However,itshouldbeemphasizedthathardlyanyoftheplayersinthetop20haveanysignificantmomentuminpatentdevelopment.ApartfromHyundaiandKia,almostallcompetitorsarestagnating,theexceptionsbeingSafran,Raytheon,VWGroupandBosch,thoughallfourarestillatacomparativelylowpatentlevel.Interestingly,thereisquitealotofnewactivityvisibleatAirbus,butonlysinceabout2019,whichisinlinewiththeirproclaimedstrategy.Top20companiesintransportinaviationapplications,activepatentportfolioandfilingdevelopmentTable6.Activepatentportfoliosoftheleading20playersinfuelcellsinaviation(leftpartoftable)comparedtorecentpatentfilingactivity(allpatents,activeandinactive,rightpartoftable).Asseeninotherareas,HyundaiandToyotaagainleadinactivepatentportfoliosinaviation.Top20companiesinaviation,activepatentportfolioandlingdevelopmentCompanyActivepatentportfolios200020052010201520192021'20152016201720182019Hyundai11782895005706862334537Toyota4765274284775191128234323Kia0024851902642021334537AirbusGroup423821561371555661021Honda0496130115109110293GM018428510297741036Safran027477075912856Boeing272749676965641RaytheonTechnologies97514284633458VWGroup06611264063569GE071328403997531Bosch059101837332413ShanghaiHydrogen000446308113000Denso02817302954241Nissan2223121282815620IntelligentEnergy022223252230101Ford0026172004523StradVision0000220000211Textron1222111801767Rolls-Royce0348141822215Source:www.econsight.comSource:WIPO,basedonpatentdatafromLexisNexisPatentSightuptoMarch2022.Thestagnatingpatentdevelopmentofmostplayersdominatesthecompetitiveenvironment.HyundaiandKiahaveadvancedanalreadyexceptionalcompetitivepositionwithincreasesintheirworldsharesabovethreepercentagepointsinrecentyearsattheexpenseofalmostallotherplayers(Figure42).Sincewemeasuresharedevelopmentoverafive-yearperiod,Airbuscontinuestobeontheleft,decreasingside.Theirrecentactivitywillhavethereforeonlyaltertheworldsharedynamicinafutureanalysis,ifrecentactivityresultsinmoresolidtrend.68PatentLandscapeReport–HydrogenfuelcellsintransportationTop10companiesinaviationapplications,worldsharesandchangeinworldshares,2015–2021Figure42.Worldshareofactivepatentsbycompanyinthefieldofaviationcomparedtoallplayersinthefieldversusthechangeofthisworldsharebetween2015–2021.AlthoughHyundaiandToyotahaveworldleadingshares,Hyundai'shasincreasedinthelastfewyearswhereasToyota’shasdecreased.–3–2–1012301234567891011121314VWGroupRaytheonTechnologiesBoeingToyotaSafranKiaHyundaiHondaGMAirbusGroupWorldsharedynamicsChangeinworldshare2015–2021(%)Worldshare2021(%)Source:WIPO,basedonpatentdatafromLexisNexisPatentSightuptoMarch2022.Fuelcellapplication:railandtrackvehiclesInrailandtrackvehicles,newapplicationsaregaininginpopularity.AlstomledthewayinEurope,completingasuccessful18-monthtrialoftwotrainsinGermanyin2020(Alstom,2020a).In2021,AlstomannouncedfurtherplanstointroducefuelcelltrainsinAustriaandItaly(CleanTechnica,2021).Thishasresultedinordersforatleast41unitsinGermanyandsixinItalytobeputintoservicebetween2021and2022(Alstom,2020b,2020c).OtherEuropeancompaniesinFrance(SNCF,2021),Germany(SiemensMobility,2021),Spain(CAF,2021)andtheUnitedKingdom(RailwayTechnology,2021)haveeitherstartedworkingwithAlstomoraredevelopingandtestingtheirownfuelcelltrainmodels,withtheobjectiveofreplacingdieseltrainsonnon-electrifiedroutes.InGermany,SiemensMobilityandDeutscheBahnhavestarteddevelopinghydrogen-poweredfuelcelltrainsandafillingstationwhichwillbetrialedin2024(Reuters,2020b).Scotlandseta2035decarbonizationgoalforitspassengerrailsystemin2021andstartedafuelcelltraininitiativespearheadedbytherecentlyestablishedfirmArcolaEnergy(CleanTechnica,2021).OutsideEurope,countriessuchasChina,Canada,Japan,theRepublicofKoreaandtheU.S.arealsoshowinginterestinhydrogenfuelcelltrains.Inadditiontopassengertrains,hydrogentramsandline-haulandswitchinglocomotivesareinvariousstagesofdevelopmentanddeployment.69FuelcelltechnologiesintransportationActivepatentportfoliosofleadingrailroadandtrack-sideactiveplayers,claimingrailortrackapplicationsinrelationtofuelcellsFigure43.Activepatentportfoliosofleadingrailroadandtrack-sideactiveplayers,claimingrailortrackapplicationsinrelationtofuelcells,2005–2021.Chineseplayersaregrowingtheirportfolios,whilemostothershaveeitherafairlystableorevenashrinkingportfolio.20052006200720082009201020112012201320142015201620172018201920202021010203040506070CRRCGroupHitachiSiemensAlstomKoreaRailroadRes.Inst.SNCFJR-East361315192271OwnerAlstomCRRCGroupHitachiJR-EastKoreaRailroadRes.Inst.SiemensSNCFSource:WIPO,basedonpatentdatafromLexisNexisPatentSightuptoMarch2022.Patentsdescribingoptionalrailortrack-sideapplicationsarecommonlyfoundformanyautomotiveplayers,sincetrackandroadapplicationscanoverlaptramwayapplicationsorapplicationsinindustrialzones.Therefore,withoutbeingactiveintherailroadapplicationsmarket,carmanufacturersareneverthelessamongtheoverallleadingplayersintermsofpatentsinthefield.Hydrogentrainsinthemainareexpectedtoreplacedieselonrailwaylinesuneconomicaltoelectrifyduetorelativelylowutilization,constituting2percentofrailenergyconsumptionby2030accordingtotheIEANetZeroEmissionsby2050Scenario(IEA,2021b).Top20playeranalysisshowsnoexceptionallystrongplayers,unliketheotherapplicationsanalyzed(Table7).Toyotaisinthelead,followedbyfourplayerswhoareparwitheachother,eachwithanactivepatentportfolioofaround100patentfamiliesin2021.TheaforementionedspecialistCRRCGroupisinsecondplace,butmostplayersarefromtheautomotiveindustry.Itcanalsobeseenthatalackofdynamicsinapplicationsingeneralalsoappliestomostofthetop20players.Onlyaveryfewplayers,suchasToyota,VWGrouporCRRC,havesignificantlyexpandingpatentportfolios.Severalothertrainmanufacturers,suchasSiemensandAlstom,havealsoincreasedthesizeoftheirpatentportfolios,butneverthelesstheyremainsmalloverall.70PatentLandscapeReport–HydrogenfuelcellsintransportationTop20companiesintransportinrailapplications,activepatentportfolioandfilingdevelopmentTable7.Activepatentportfoliosoftheleading20playersinfuelcellsinrailandtrackvehicles(leftpartoftable)comparedtorecentpatentfilingactivity(allpatents,activeandinactive,rightpartoftable).ApartfromCRRCGroup,mostoftheleadingplayersarefromtheautomotiveindustry.Top20companiesinrail,activepatentportfolioandlingdevelopmentCompanyActivepatentportfolios200020052010201520192021'20152016201720182019Toyota319807494117779208CRRCGroup00122618891716810GM1242837414141623VWGroup23511314148938Honda3163141373342120Hyundai32518283212014Hitachi18232828222200010Siemens4691181900086Bosch3587111811325GE171719181711040Ford0247181724230StatePowerInvestmentGroup00001216000120Alstom354381531032Kia0025101502014MurataManufacturing01110141421200Toray191316141300000Toshiba871211111202102Volvo025891211220NissanMotor1171714141100210DaimlerTruck001481111220Source:www.econsight.comSource:WIPO,basedonpatentdatafromLexisNexisPatentSightuptoMarch2022.ThecompetitiveenvironmentshowsToyotahasbeenabletoextenditsleadsignificantlyinrecentyears.TheaforementionedCRRCGroupandVWGroupwerelikewiseabletoincreasetheirworldshares,buttoalesserdegreethanToyota.Duetothegenerallackofadynamicdevelopmentinapplications,smallabsoluteincreasesinpatentportfoliosresultinappreciableincreasesinworldshareswhencomparedtothestaticcompetition.71FuelcelltechnologiesintransportationTop10companiesinrailapplications,2015–2021Figure44.Worldshareofactivepatentsbycompanycomparedtoallplayersinthefieldofrailin2021andchangetothisworldsharebetween2015–2021.Toyotaagainleadsintheshareofactivepatentportfolioandhasincreaseditsshareinthelastfewyears.–1012301234567VWGroupToyotaSiemensHyundaiHondaHitachiGMGECRRCGroupBoschChangeinworldshare2015–2021(%)Worldshare2021(%)Source:WIPO,basedonpatentdatafromLexisNexisPatentSightuptoMarch2022.Fuelcellapplication:specialvehiclesSpecialvehiclesisagroupofvehiclesdesignedforspecialapplicationsorspecifictasks.Typically,theyarecommercialvehiclesproducedinsmallernumbers,oftenfordefinedandclosedworkingenvironments,suchasairports,harborsorconstructionsites.Furthermore,manyofthesmallerplayersandSMEsaresuccessfullyaddressingthesenichemarkets,pavingthewayfornewertechnologiessuchasfuelcells.Furthermore,specialvehiclesareoftentheidealcandidatesforSMEpartnershipscomprisingfuelcellproducers,integratorsandspecialvehiclesmanufacturers.ExamplesofsuchplayersareGaussin.com(fuelcellairporttugs)togetherwithPlugPower;Nuvera.com(partofHyster-Yale)withtheirintegratorSimplyHydrogeninChina;andInfintium(aU.S.companythatinMarch2021startedbuildingafuelcellfork-liftfactoryinChina)andGlobeFuelCell.com,aspin-offfromMercedes-Benz.Itisespeciallythecaseinthefieldofspecialvehiclesthatmanyofthesmallplayersdonothavemanyoftheirownpatents,butinsteadsometimeslicensepatentsfromuniversitiesorintegratepartsfromotherfuelcellsuppliers.Theirfootprintinthepatentlandscapeisthereforerathersmall,asyet.Atthesametime,largemanufacturerslikeKion,Caterpillar,Yanmar,Komatsu,HitachiandToyotaIndustriesaresimilarlyactiveinthefield–anindicationofitsobviouslargemarketpotentialinthefuture.Altogether,weexpecttheretobeanoticeablegrowthinpatentactivityinthisfieldovertheyearstocome,inlinewithanexpectedroll-outofanincreasingnumberoffuelcellspecialvehiclesontothemarket.72PatentLandscapeReport–HydrogenfuelcellsintransportationActivepatentportfoliodevelopmentofmostactiveplayersinspecialvehiclesFigure45.Activepatentportfoliosofthemostactiveplayersinspecialvehicles,2005–2021.Severallargemanufactures,whichdonotfeatureinotherapplicationareas,aretheplayerswiththemostactivepatentportfoliosinspecialvehicles.20052006200720082009201020112012201320142015201620172018201920202021020406080ToyotaIndustriesHitachiKionGroupKomatsuPlugPowerYanmarHoldingsDeere&CoCaterpillarLiebherr445779111491CaterpillarDeere&CoHitachiKionGroupKomatsuLiebherrPlugPowerToyotaIndustriesYanmarHoldingsSource:WIPO,basedonpatentdatafromLexisNexisPatentSightuptoMarch2022.Figure46.1.Patentexample:PlugPower,alsoapartnerofGaussin,WO2019213351.Fuelcelltank.73FuelcelltechnologiesintransportationFigure46.2.Patentexample:Nuvera(partnerofSimplyHydrogen,Shanghai),WO2011049975.Batterystate-of-chargemanagementmethod.Figure46.3.Patentexample:Toyota,US11142441.Industrialvehicle.74PatentLandscapeReport–HydrogenfuelcellsintransportationFigure46.4.Patentexample:Infintium,US20150056529.Forkliftfuelcellsupplysystem.Thetop20playersare–asisthecasefortheothertransportationapplicationareas–onceagainledbyToyota(Table8).Mostplayersinthefieldhavearathersmallpatentportfolioduetothespecializednatureofthetechnology.Theactivepatentportfoliosofthetwotopcompanies,ToyotaandToyotaIndustries,exceedinsizethecumulatedpatentportfoliosofthenext10players.Apartfromautomotivecompanies,somespecialistplayerswithsmallbutverydynamicportfolios,suchasMichelin,areamongthetopfive.Otherspecialistplayers,namelyBloomEnergy,KionGroupandKomatsu,aresimilarlysmallinsize,butintheircasenotverydynamic,withtheexceptionofCarrier,whichhasincreasedanasyetsmallportfolioremarkably.Itisalsoworthnotingthatsomeshipmanufacturers,suchasDaewoo,areactiveinspecial(harbor)vehicles,too.75FuelcelltechnologiesintransportationTop20companiesintransportinspecialvehiclesapplications,activepatentportfolioandfilingdevelopmentTable8.Activepatentportfoliosoftheleading20playersinfuelcellsinspecialvehicles(leftpartoftable)comparedtorecentpatentfilingactivity(allpatents,activeandinactive,rightpartoftable).Incontrasttootherapplicationareas,patentportfoliosaresmallerinspecialvehicles.Top20companiesinspecialvehicles,activepatentportfolioandlingdevelopmentCompanyActivepatentportfolios200020052010201520192021'20152016201720182019Toyota342729611004671922ToyotaIndustries96224460914781516VWGroup32411172410454Michelin3565142200267Bosch5379142011424GE161321231822000Honda061116131603051GM171518151500040Hyundai22612151502010Hitachi21181416141420000Volvo151115111310130Panasonic39129111301022BloomEnergy001791210021Carrier013251202017KionGroup091317131111010TianjinXinqingPowerTech000001000000Komatsu131221010912000BeijingZhiyangCloudTechnology000119900000DaewooShipbuilding&MarineEngineering000710913110FJDynamicsTech00005900090Source:www.econsight.comSource:WIPO,basedonpatentdatafromLexisNexisPatentSightuptoMarch2022.ThecompetitiveenvironmentshowsToyotaandToyotaIndustriesinfrontofthefieldbyalongdistanceandabletoextendtheirleadthroughthelargeincreasesintheworldsharetheyhaveenjoyedinrecentyears.Michelin,BoschandVWGrouparetheonlythreeotherplayerstohaveincreasedtheirworldshares.Bycontrast,thesmallertop10playershaveseensharesdecreasewithstagnatingpatentportfolios.Whatismore,theoverallgainsmadeinglobalshareswerelowerthanthosemadebythetwoleadingplayers,meaningthegapbetweenToyotaandToyotaIndustriesandtheircompetitorshaswidenedduringtheperiodinquestion.76PatentLandscapeReport–HydrogenfuelcellsintransportationFigure47.Worldshareofactivepatentsbycompanycomparedtoallplayersinthefieldofspecialvehiclesandthechangeinthisworldsharebetween2015–2021.Toyotahasthehighestincreaseinworldsharebyover4percent,followedbyToyotaIndustries,whiletherestoftheplayersareconcentratedbetweenroughlythesameworldshare.–10123401234567VWGroupToyotaToyotaIndustriesMichelinHyundaiHondaHitachiGMGEBoschChangeinworldshare2015–2021(%)Worldshare2021(%)Source:WIPO,basedonpatentdatafromLexisNexisPatentSightuptoMarch2022.77Continuinggrowthinthehydrogentransportationindustrydependsonmanyfactors,prominentamongwhichareincreasingtechnologicalmaturity,asignificantreductioninthecostofrenewableenergyandanincreasingacceptanceofitspotentialinachievingdecarbonizationtargets.Untilnow,thechallengeoftransitioninghydrogenfromresearchanddevelopmenttocommercialrealityhaslargelyrelatedtoeconomicsandinfrastructure.Asaconsequence,foralongtimehydrogentransportationapplicationshaveremainedwithintherealmofearlyprototypes.Thischapterprovidesinsightsgleanedfromcurrentprojectionsforthefutureofhydrogenfuelcelltransportationandthelandscapeahead.Fivemaincriteria–technologyreadinesslevel,commercialviability,customerbenefit,needforactionandfuturedrivers–willbethesubjectofanalysis.Thisgoesbeyondthetypicaltimescopeofpatentanalysisandalignsthefindingsdescribedinthepreviouschapterswithananalysisofrelevantnewsandquarterlyfinancialreportinginformation,proclamationsandothernon-patentdisclosures.Theevaluationoftechnologyreadiness,commercialviability,customerbenefitandneedforactionfromavailablesourcesoutsidepatentsaimstocomplementthepatentlandscapewiththenewslandscapeandthestoriesdescribedtherein.Thefutureoffuelcelltechnologiesintransport78PatentLandscapeReport–HydrogenfuelcellsintransportationFigure48.Brieftechnologyassessmentofhydrogentechnologiesintransport.(SeeGlossaryforadetaileddescriptionofthefiveassessments.)Differenttypesofassessmentsgiveanestimationofthefutureofhydrogentechnologiesintransport.79ThefutureoffuelcelltechnologiesintransportTechnologyreadinesslevel(TRL)Thetechnologicaladvancesofthelastthreeyearshaveshownthefirsthydrogenfuelcellsprototypeswithcommercialapplicationsintransportationtobeaminimumviableproduct(correspondingtoaTRL7intherelatedNASAmodelscalerangingfrom1to9,explainedintheglossary).Inparticular,Toyota’slandmarkpassengervehicleMiraihasservedasatechnicaldemonstrationthata1,360kmtripispossibleonasingletankofhydrogentakingfiveminutestofill.StrenuouseffortsbyToyotaandHyundaiinbusesandtruckshavealreadyresultedinfirstdeliveries,althoughseriesproductionisnotexpecteduntillater.Firsttestshavebeencarriedoutinshippingforferriesandcruiseships,althoughshort-distancefuelcellvesselsarenotasyetcommerciallyavailable.Aviationapplicationswillrequireafewmoreyearsuntiltheyreachthetechnologicalmaturityofroadandshipapplications,despitefirsttestflightshavingbeenannouncedfor2022byUniversalHydrogen.Ontheotherhand,railandtrackapplicationshaveprovedtobeapplicableinrealenvironmentssince2020.TrainsfromAlstom,forinstance,aretobeputintoservicesometimein2022,butotherrailandtrackcompanieshaveindicatedthatcommercialmaturitywillcomelater.Analysisofthepatentlandscapeindicatesanincreasingnumberofinventionswithnewtechnologicaladvancements,notonlyinregardtotheproductbutalsoontheprocesssidetoreducemanufacturingandmaterialcosts.PatentperspectivePatentinginthefieldoffuelcellshasalonghistorystretchingbacktoevenbefore1960.Generally,patentsfollowasetpatternasatechnologyreachesmaturity.First,generalproceduresareclaimed,followedbyanintensivesearchforingredientsandelements.Newdesignsandalternativesaredevelopedandspurevenmoreinventiveactivity.Atacertainstageofdevelopmentitisexpectedmarketopportunitieswillcomeintoplayandthenumberofapplicationspatents,aswellasproductionprocesspatents,starttogrow.Inreality,thetechnologyisoftenwellinadvanceofmarketreadiness.Wecanseeinthefuelcellspatentdevelopmentatypicalperiodofhighhopes(2005),followedbyahugedepression(2010),followedbyfurtherhyperaisingexpectationsevenhigher.Currently,thefieldisbuoyedbyasecondwaveofhighexpectationsandincreasedpatentingactivityinrelationtoapplications,suchasforcars,trucks,shipsandspecialvehicles.Atthesametime,agrowingnumberofpatentsareappearingrelatedtoprocessandautomation,aswellasfuelcellmanagement,supervisingandsteering.Also,weseethefirstriseinfuelcellrecycling.Allinall,thepatentdevelopmentdemonstratesclearlyweareinthemiddleofthemarketdevelopmentofatechnicallyadvancedtechnology.Allnewsorvoluntarydisclosuresmadebycompaniesaroundtheglobematchperfectlythepatentlandscape,intheformofstrategicdecisioneithertofullyembracethetechnologyorsimplystayaway.However,wecanalsoseethateventhosecompaniesintendingtostayaway(fornow)havenotputacompletestoptoresearchanddevelopment,asreflectedontheircontinuedrelatedpatentingactivity.Patentsareusuallyconsideredashighlightingthenearfuture,withinventionstypicallyhavingatimelineofbetweentwoandfiveyearsfrominventionfilingtomarketentrance,dependingonthetechnology.Marketandbusinessstrategiesaimforsuccesswithinthenextonetotwoyearsandareoftentwotothreeyearsaheadofthepatentstrategy.Asaresult,andfromwhatwecantellfromtheanalysisofpatentdevelopmentandnewsonfuelcellsintransportation,wemightseeremarkabledevelopmentintheverynearfuture.However,intheviewofthelate-stagedevelopmentofthetechnologyanditshighdegreeofmaturity,factorssuchasinfrastructure,politicaldecision-makingandglobaluncertaintiesleaveusunsureaboutwhenthiswillhappen.Onethingiscertaininmindisthatwhenitcomestothedecarbonizationofoneofthelargestclimategascontributors,namely,thetransportationofgoodsandpeople,thereareveryfewrealisticoptionsotherthanhydrogeninthelongterm.80PatentLandscapeReport–HydrogenfuelcellsintransportationCommercialviabilityAstechnologicalmaturityrises,companiesfacethechallengetomass-producinghydrogentransportationapplications.Sincecarbonemissiontargetsaredeterminedforeachapplicationarea,thesourceofhydrogenneedstobegreenandmustbeproducedbyrenewableenergy.Nexttocleanhydrogen,infrastructureneedtohavechargingstationsinplacesothatconsumerscanaccesstohydrogenforrefuelingcarsandtaxis,trucks,ships,trainsandaircraft.Moreover,thecostoffuelcellsiscurrentlyhighandneedstobereducedthroughmaterialimprovementsandmanufacturingprocessoptimization.Theimplicationsoffurthertechnologicaladvances,improvementininfrastructureandfactorslikeCO2pricing,haveledcompanies–especiallyintheautomotiveandtruckindustry–toanticipatecommercialviabilityanytimefrom2025to2030.Duetohigheramortizationcycles,greatercostreductionsandfurtherresearchanddevelopment,theshippingindustryprojectisexpectingcommercialviabilitysometimearound2040.Thesameappliesforaviationapplications,althoughshort-distanceaircraftandhydrogen-basedsynthetickerosenecouldstartbecomingcommerciallyviableadecadeearlierataround2030.Basedonthelatestannouncementsintherailandtrackindustry,itisexpectedhydrogentransportationwillbecommerciallyavailablesometimebetween2025–2030.However,shouldexpectationsberaisedregarding,forinstance,thelearningcurvesoftechnologicaladvancements,howquicklyinfrastructureisinstalled,thelevelofsubsidiesinhydrogentransport,increasingCO2pricesorinvestmentvolumes,companiescanbeexpectedtomodifywhattheyhavealreadyannouncedaccordingly.CustomerbenefitsandproblemsComparedtobatteryelectricapplications,fuelcellapplicationshaveadvantagesforcustomerswithregardtoalongerdistancetravelledonatankoffuelandshorterchargingcycles.However,tomakethesecommerciallyavailable,therearespecificchallengestobeovercome.Forinstance,chargingafuelcellvehiclewillhavetotakenomorethanthreetofiveminutes,asimilaramountoftimetogasolinevehicles.ComparedtoBEVs,fuelcellvehiclescurrentlycharge8–10timesfaster.Hydrogenfuelcellshaveafargreaterenergystoragedensitythanlithium-ionbatteries,offeringasignificantrangeadvantageforelectricvehicleswhilealsobeinglighterandoccupyinglessspace.Thefuelcell-basedToyotaMirahascurrentlynearlytwicetherangeoftheLucidAirBEV.Butthepricingforafuelcellvehicleiscurrentlyquitehighandunaffordableinthebroadercontext.ThemostaffordableBEVcostsaround24,000euros,whereasabasicToyotaMiraicostsaround63,000euros,makingfuelcellvehicles2.5timesmoreexpensivethanBEVsattoday’sprices.Thereare,however,otherrelatedtopicstoexploremorefully,suchassafety(Bethoux,2020).Inaviation,companiesareworkingonadvancesinlight-weightstoragetanksandcryogeniccoolingsystemsinordertoexploithydrogen’shighenergydensity.Short-rangeandunmannedflyingcraftareclosertorealization,sincetheydemandsmalleramountsofanenergycarrier.Thestorageofhydrogenisasmuchofachallengeformaritimeshippingasitisforaviation.Moretestingisneededonthesafetyaspectsofthehandling,storageandbunkeringofhydrogenonlargevessels.Inshipping,livelydiscussionisunderwayontheuseofliquidammoniaasfuelofchoice,whichfitswellwiththeindustrialinfrastructurecurrentlyavailableatharbors.81ThefutureoffuelcelltechnologiesintransportNeedforactionTogettransportationontrackinNetZeroscenarios,theimplementationofabroadsetofpolicies,technologicaladvancementsandnewmarketsarecrucial.Hydrogentechnologyisaviablesolutiontodecarbonizingatransportationsectorcurrentlyresponsibleforone-quarterofdirectCO2emissionfromcombustiblefuel.Sincehydrogenhasadvantagesintermsofthestorageoflong-termenergy,dilutesdependencyonfossilfuelsandisaviableenergysourcecomplyingwithfutureclimatetargets,companiesandgovernmentswantingtobuildontheseadvantagesasafirstmovercouldbeexpectedtoactnow.FuturedriversIthasbeendecadessincehydrogenwasfirstproposedasaprimarysourceofcleanenergy.Thankstoadvancesinseveralkeytechnologies,thetimeforthisabundantgastocontributetothefightagainstclimatechangemayhavefinallyarrived.Butthelevelofexpectationandhypeishigh,andtherearestillmanytechnological,economicandpolicychallengestobemetbeforehydrogencanofferatrulycost-effectivewayofreducinggreenhousegasemissions.Ifhydrogenistorealizeitsfullpotential,itmustbecomelessexpensiveandmoreefficienttoproduce,distributeanduse.Toachievethisgoal,twokeydriversneedtoplayapart,namely,economicsandpolitics.EconomicdriversIfthehydrogeneconomyistobecomeareality,companiesandstakeholdersthroughouttheecosystemneedtotakeaction.Movingtoazero-emissionsfuturerepresentsamassivechallengefortheenergyandtransportationindustries,includingautomotive,aviation,shippingandrail.Theelectrificationofthetransportationsectorbyintroducingalternativepowertrainsandtheirrelatedenergyconceptisbecomingachoicebetweenbatteryandfuelcellapplications.Althoughcomplementaryinmanyways,theenormousinvestmentsinresearchanddevelopment,productionandinfrastructurerequiredbyboth,combinedwithwhatisrequiredtomanageascale-up,meansmakingthewrongdecisioncouldpotentiallyendangerthefutureofestablishedcompaniesacrossapplicationareasandregions.Itislikelythatinvestmentswillpayoutforoneofthetwoalternativesintherespectiveapplicationareas,butonlyiftheyareabletoachievescale.Advantagesinscalingwillbeburdensometocatchupwith.Thechoiceofalternativesforreplacingfossilfueldividestheautomotiveindustry,includingpassengercarsandtrucks.Whereastheworld’slargestmanufacturers(byvolumeandvalue),VolkswagenGroupandTesla,arefocusingsolelyonBEVs,thesecondlargest,Toyota,aswellascompaniessuchasHyundai,GWMandsomeothers,havemadefuelcellvehiclescoretotheirbusinessstrategy.Thedivideinstrategiesisquitecontroversial–andcontentious:ElonMuskofTeslahasdescribedhydrogenas“staggeringlydumb.”However,evenadualstrategyliketheonepursuedbycompaniessuchasBMW,DaimlerandGMcancreaterisk,ifitdilutesthefocus,developmentspeedandscalerequiredforsuccess.Thatsaid,althoughpursuingadualstrategycouldprovecapital-intensiveandfarmorecomplextomanagethansimplyfocusingonone,itcouldneverthelesspayoutintermsofknowingwherebesttoapplyeitherofthetwopower-traintechnologies.Anticipatingthequestionastowhichautomotiveapplicationislikelytobemostsuitableforhydrogen-poweredfuelcellvehicles,heavy-dutytrucksisthemostobviousapplicationforinitialdeployment.Moreover,thelargescaleanddiversityofthetruckmarketissuchthatitcouldalsoactasenablertopassengervehicleapplications.Observingthistrendwillbedecisiveforthewholesector.However,ifbothbatteryelectricandfuelcellvehicleapplicationsattainequivalentcapabilitiesintermsoflifetime,range,handlingofcoldweather,vibrationandrefueling/rechargingtimes,andfurtherassumingtherewillbeanequivalentdegreeofregulationforboth,threedecisivefactorsremain:82PatentLandscapeReport–Hydrogenfuelcellsintransportation–Infrastructureneedstobebuiltup.Chargingtimesarecritical,especiallyforcommercialvehicles,betheytrucks,busesortaxis.Everyminuteavehicleisofftheroad,itislosingmoney.Thus,minimizingchargingtimeisvitalfortheelectrificationofthetransportationsector.–Autonomousdrivingisexpectedtogainmarketshareduringthisdecadeandhasthetransformativepotentialtodisruptcurrentbusinessmodels.Inthecontextofacirculareconomy,wherepeopletendtouseacarinsteadofowningone,technologiesthatavoidhighmaintenanceandhavealong-rangecapabilityaremoresignificant.–Thepayloadalsoneedstobeconsideredwhenmakingdecisions,ifhigh-energydemandsandlong-rangerequirementsplayacriticalrole.Fromthiswecanconcludethatahydrogeneconomyislikelytodevelopwithcompetitivepricingindependentoftheautomotiveindustry,andthatBEVswillbeimpactedbyrelativelyhighchargingpricesduetoincreasinggenerationcosts,highinfrastructureinvestmentsandcompetitivemarketdynamics.Thatsaid,thereare,ofcourse,additionalfactorsthatcomeintoplay,suchaspotentialadvancesinrelatedtechnologyareaslikesolid-statebatteries(IEEESpectrum,2021;EPOandIEA,2020),newregulatorybodiesanddecisionstakenontheuseofnuclearenergy,whichcouldallimpactlocalenergygenerationandthewideruseofhydrogen.PoliticaldriversBesidestheeconomicfactors,government,policymakersandregulatorsallhaveacrucialroletoplayindecarbonizingthetransportationsector.ExamplesfromEurope,ChinaandtheRepublicofKoreashowhydrogentobeakeyelementinstrategiesdesignedtoreachzeroemissionsby2050.Continuedsupportthroughdirectsubsidiesandpolicychangeswillunderpintheproductionanduseofgreenhydrogeninapplicationswherehydrogenoffersthegreatestpotentialforreducinggreenhousegasemissions.However,althoughmanyofthestrategiesforadoptinghydrogentechnologiesfocusonthedeploymentofhydrogenproduction,onlyafewplaceanemphasisontheuseofhydrogen.Ifhydrogenuseisnotpromotedforapplicationslikelong-distancetransport,shipping,aviationandfurtherindustrialapplications,companiesarelesslikelytodirecttheirfocustowardhydrogen.Today,greenhydrogenismorecostlytousethanfossilfuels.Somecountriesarechoosingtoimposehighercarbonpricesinordertoclosethiscommercialviabilitygap,makingdecarbonizingthetransportsectorthroughhydrogenuseattractivetoinvestorsandcompaniesalike.Currentprojectionsprovideinsightsintolimitingglobalwarmingto1.5°Corascloseaspossible,atargetbackedbytheParisAgreementandinlinewithdirewarningsintheUNIntergovernmentalPanelonClimateChange(IPCC)specialreportpublishedin2021,andwhichrequiresfurthereffortsbemade(IPCC,2021).A1.5°Cpathwaydemandsarapidandglobaltransformationofenergysystemsinsupportofa6percentannualemissionsreduction.Thiscanonlyberealizedthroughgreaterinvestmentingreentechnology,asignificantincreaseintheuseofrenewablepowersourcesandtheelectrificationofjustabouteverything.Thepathfrom2°Ctoa1.5°Cscenariomeansthatfargreatersolarandwindcapacityhastobepartofthesolutionby2030–hydrogencouldserveasafourthpillarinasolar,windandhydro-poweredworld.Fastercostreductionsandtheearlycommercialviabilityofhydrogeninmanytransportationapplicationareascanplayasignificantroleinhydrogen’sdeploymentandscalingup.RoadmapandmarketoutlookforhydrogentechnologiesintransportSelectedfuture-orientedstatementsmadebycompanies,organizationsandpolicymakersgiveaglimpseintoaprojectedfutureforhydrogenfuelcellsintransportation(Figure49).83ThefutureoffuelcelltechnologiesintransportFigure49.Hydrogenfuelcellintransportationroadmap,2020–2050.Differentstatementsofprojectionsprovideanoutlookofthefuturetransportationmarketandtechnologicaldevelopments.Transportationsectorresponsiblefor24%ofdirectCO2emissionworldwideZeroAviaFirstCommercialFlightDaimlerandVolvoCutdowncostbythefactorofsixforcommercialtrucksAirbus3700km,200passengeraircraftNetZeroscenariomultiplecountriesandcontintentse.g.UnitedStates,Europe,China,Japan&RepublicofKoreaAlstomFirsthydrogentrainsinAustriaandItalyIEA44GWofelectrolysiscapacityneededtomeetnet-zerogoalsQuantumscapeStartofproductionofsolid-statebatteriesforEVsEuropeanCommissioneffectivebanforfossil-fuelvehiclesArgonneNationalLab60%ofmarketshareofsolid-statebatteriescomparedtoconventionalLi-lonbatteriesRelatedfutureprojections2020203020402050WärtsiläFirst100%ammonia-fueledhydrogenmaritimeengineToyotaWorldRecordfor1360kmtripwithasinglechargingtaking5minutesSDG7affordableandcleanenergyNorske-fuelProductionof100Mltr.hydrogenaviationfuelGreatWallFirsthigh-endvehicleforservicesduringOlympicWinterGamesUniversalHydrogenSmallregionalaircraftIEASixmillionFCvehiclesonroadworldwideRetailerpledgeContractingonlyzero-emissionfueledshipsHyundaiFirstcarmakerapplyingFCtoallcommercialvehicles84GlossaryPatentmeasuresFilingdate:Wemeasuredthefirstfilingdateinapatentfamilyandplottedthefirstfilingdateofafamilyfromwhenthepatentwasfirstintroduced.Wedidnotusethefirstoroldestprioritydate,sinceseveraloftheseprioritypatentapplicationsareneverpublished.Inamajorityofcases,filingdateandprioritydatedonotdiffer.Therefore,filingdatetypicallymarksthedatewhentheinventionwasfirstdeliveredatthepatentoffice.Patentapplicant:Patentsarefiledbyanapplicant,whichcanbeorganizationoranaturalperson.Applicantsarenotinventors,evenifsometimestheyaresimilar.Theapplicantisinmostjurisdictions(exceptinafewcases,forexample,theU.S.)andinmostcasespublishedwiththepatentandremainsalwaystheapplicant.Applicantsareoftenmisspelledorincorrectlyreproducedinpatentpublications.Inaddition,theapplicantisnotautomatically,andmustneverbe,similartotheownerortheprobableownerofapatentatagiventime,evenifthatisoftenthecase.Patentscanbetransferredorsold,ortheapplicantitselfcanbesoldasacompanyinamergerortakeover.Thereforethe“owner”ofapatentmightchangeovertimeanditisnotalwayspublished.Forproperanalysis,toconsolidateincorrectspellingandtoincludemergerandacquisitioninformationintheanalysis,thereportusedwheneverappropriatetheultimateownerconceptbyPatentSightforhigherrelevancy.ThemostprobableentitywasthennamedasOWNER.Patentapplication:Wheneverapatentapplicationisfiledinajurisdiction,includingtheinternationalPatentCooperationTreaty(PCT)routeadministeredbyWIPOortheEuropeanPatentConventionroute(EP)administeredbytheEuropeanPatentOffice(EPO),itisgivenafilingdate.Thetermpatentapplicationsmustnotbeconfusedwithapplications,asappliedinnovationsareoftenalsonamedapplications(e.g.,anewinnovativewheelforacaristheapplicationofwheeltechnologyfortheapplication“roadvehicle”).Patentfamily:Apatentfamilyisacollectionofpatentapplicationscoveringthesameorsimilartechnicalcontentandallsharingoneormoreprioritydocuments.Thereareseveraldefinitionsofpatentfamilies,includingsimpleandextendedpatentfamilies(EPO,n.d.;WIPO,2013),dependingonthenumberofprioritydocumentsshared(rangingfromonetoallprioritydocuments).Patentfamilymembersaretheindividualpatentrightsfiledinthosejurisdictionswhereapatentapplicantisseekingpatentprotection(e.g.,WIPO,EPO)andallpublicationsinrelationtothese(patentpublicationswithkindcodesA1,A2,B1,andsoon).Inthepresentstudy,wearecountedpatentfamilies(usingarepresentativepatentfamilymemberforeachpatentfamily),unlessotherwisespecified,aswewantedtocountinventionsandnotseveralpatentdocumentsreferringtothesamesubjectmatter.Inaccordancetothisdefinition,weusethetermspatents,patentsfilingsorpatentfamiliesforinventions(=simplepatentfamily).Onlyinrarecasesweanalyzeindividualornationalpatentfilingsandindicatetheseinthetext.Reportingdateconcept:ThereportingdateconceptusedwasdevelopedbyPatentSightandmakesitpossibleto“travelbackintime”andanalyzethepatentlandscapeasitwasinthepast.EachreportingdateisthemomentintimeatwhichtheevaluationofapatentportfolioorAnnex85Annexapatentfamilywasdone.Thecurrentreportingdateshowsthestateoftheworldasitisnow.Foranyselectedreportingdate,onlypatentfamiliesthatwereactiveonthatparticulardatearetakenaccountoffortheanalysis.Activepatentfamiliesaredefinedasallpatentfamilieswithatleastonealivemember–thiscanbeeitherapendingpatentapplicationoranactivegranted(i.e.,inforce)patent.Moreover,foranyreportingdateselected,noinformationotherthanwhatwasalreadyavailableatthatpointintimeisconsidered.Theonlyexceptionispatentownershipinformation–foranygivenreportingdate,theownerofapatentfamilyisalwaysthecurrentultimateowner,evenifthepatentfamilybelongedtoadifferententityinthepast.Moreover,inthosecaseswhereinformationshouldhavebeenavailableatapastdateorwheredatahavebeencorrected,informationmaychangeretrospectively.Forthecorrectevaluationofpatentportfolios,itiscrucialtoknowthecurrentownerofeachpatentfamily.ThisreportusedthePatentSightstandardizedapplicantfieldreferredtoas“ultimateowner,”assigningthecurrentowneratapatentfamilyandconsolidatedlevel,aftermanuallyharmonizingandnormalizingapplicants,reviewingthecorporatestructureofacompany,andconsideringallreassignments,mergersandacquisitionswhichmayleadtoaportfoliounderthestandardizedapplicant/patentowner.ForesightindicatorsDrivenbyincreasedpressuretoinnovateandagreaterneedforstrategicalignment,itisofgreatimportancethatcompaniesandpolicymakersdealwithdevelopmentsinthebusinessenvironmentatanearlystagetoprovideorientationknowledgeforsound,strategicdecisions(Burmeisteretal.,2004;CostanzoandMacKay,2009;MüllerandMüller-Stewens,2009;Müller-StewensandMüller,2010;Rohrbeck,2011).Courtney(2001)hassuggestedthatintoday’senvironment,itisnecessarytoestablishstrategicforesightinordertobecompetitiveinthefuture.Forthispurpose,proceduresandprocesseshavetobeimplementedinordertoidentifydevelopmentsandbreaksintrendsatanearlystage,forexample,throughemergenttechnologies,newlegislationandchangingcustomerneeds,inordertoshiftindustryboundariesorcapturenewmarkets(Ansoff,1976).Strategicforesightsupportscompaniesandpolicymakersinsystematicallygeneratingneworientationknowledge,knowledgeabouttheimmediatemarketenvironment,aswellasthebroadsocioeconomic,technological,environmentalandpoliticalbusinessenvironment,inordertogainabetterunderstandingofitsfuture,includingaconcreteideaoftherisksthecompanyfaces,aswellasopportunitiesthatcanbeexploited.Strategicforesightisfundamentallybasedontheassumptionsoftrendandfutureresearch.Trendresearchisgenerallyunderstoodtomeantheidentificationandinterpretationofsocial,economic,technologicalandculturaldevelopments(Burmeisteretal.,2004;MüllerandMüller-Stewens,2009).Adistinctionmustbemadebetweenasocio-economicandamathematicalunderstandingoftrends,thatis,theaccumulationofeventsanddevelopmentsandthemathematical-statisticaltimeseries(Mićić,2006).Inthisreport,strategicforesightrepresentsaframeworkconstructforfulfillingthetaskofdataandindicatordrivenanalysis.Throughit,currentdevelopmentsinabusinessenvironmentareobtainedsotheycanbemadeavailabletodecision-makers.Thegoalistoacceleratetheresponsivenessofdecision-making(Passing,2017).Thisapproachisbasedonananalyticalunderstandingandcanbesubdividedintotheprocessstepsofobservation,analysisandevaluationofnewinformation(Müller-StewensandMüller,2010).Thus,strategicforesightdealswithprobablefuturesthatcanbeanticipatedexplorativelyonthebasisofearlydetectionofweaksignals(Ansoff,1976;KrystekandMüller-Stewens,2006;Müller-StewensandMüller,2010).Withinthisreportweusedthefollowingforesightindicators:Commercialviability:Takingcurrentdatafromresearchdevelopments,maturityofintellectualpropertyandcompanystatementsintoaccount,inordertodeterminewhenthecommercialphaseofanewtechnologyislikelytobereadyforbroaderapplication.Commercialviabilityispredictedsoastoprovidecompanies,organizationsandpolicymakerswithdata-driveninsightsfordecision-making.86PatentLandscapeReport–HydrogenfuelcellsintransportationCustomerbenefits:Customerbenefitiscalculatedaccordingtosentimentstowardtechnologies.Ifatechnologyprovidesseveraldirectadvantagesforusersandcustomers,andisfrequentlyreportedasabenefit,themethodologytakesthisintoaccountandvalidatesitbasedonfuturebuyingdecisions.Futuredrivers:Knowingwhatwillbethefuturedriversbehindtechnologicaldevelopmenthelpscompaniesdeveloptherightstrategicnarrativeandmotivesforcommunicatingtheiractivities.TheSTEEP-approach(social,technological,economic,environmentalandpolitical)describesaframeworkofmacro-environmentalfactorsandgivesanoverviewofthedifferentmacro-environmentalfactorstobetakenintoconsideration(see,e.g.,JohnsonandScholes,2000).Itisastrategictoolforunderstandingmarketgrowthordecline,businessposition,potentialanddirectionforoperations.Needforaction:Consideringinnovationasthesumofinventionandmarketpenetration,wepredicttheneedforactionbycompanies,organizationsandpolicymakerswantingtoachieveacompetitiveedgethroughtheintroductionofanewtechnologyontothemarket.Basedonproductdevelopmentcyclesandinvestmentopportunitiesintotechnologies,insightsareprovidedintotheneedforactioninthreecategories:“waitandsee,”“analyze”and“act.”Technologyreadinesslevel(TRL):Asystemusedtoestimatethematurityofatechnologypopularwithcorporationsandnationalorganizations.ThemodelwasinitiallypublishedbyNASAbuthassincebeenadaptedtomultipletechnologicalfieldsinrecentyears(NASA,2021b).TheTRLisbasedonascalefrom1to9,with9beingthemostmaturetechnology.TheuseofTRLstoassessthematurityofanewtechnologyenablesconsistent,uniformdiscussionsoftechnicalmaturityacrossdifferenttypesoftechnology(seeFigureA1).FigureA1.87AnnexPatentsearchesFuelcellsintransportPart1(Tag=(“SOFCFuelCells”,“DMFC,DAFC,DirectorReformingFuelCell”,“AMFCAlkalineMembraneFuelCells”,“PAFCPhosphoricAcidFuelCells”,“MCFCMoltenCarbonateFuelCells”,“FuelCell”,“PEMFuelCells”,“FuelCellManufacturing,Stacking”)AND(CPC=(B60,B62,Y02T10,Y02T90/14,Y02T90/16)ORIPC=(B60,B62)))AND(TitleAbstractClaims=(fuel_cellORHT_PEMORDMFCORDAFCORFCORgasdiffusionNEAR3(membranORelectrode)ORbipolarNEAR3plate)ORTitleAbstractClaimsDescription=(fuel_cellORHT_PEMORDMFCORDAFCORgasdiffusionNEAR3(membranORelectrode)ORbipolarNEAR3plate))ORCPC=(B60L3/0053,B60L11/1881,B60L50/70,B60L50/75,B60L53/54,B60L58/30,B60L58/40,B60W10/28,B60W2510/28,B60W2710/28,B60Y2400/202,H01M2250/20,Y02T90/30,Y02T90/32,Y02T90/34,Y02T90/40,Y10S903/908)ORIPC=(B60L50/70,B60L50/75,B60L53/54,B60L58/30,B60L58/40,B60W10/28)Part2((Tag=(“SOFCFuelCells”,“DMFC,DAFC,DirectorReformingFuelCell”,“AMFCAlkalineMembraneFuelCells”,“PAFCPhosphoricAcidFuelCells”,“MCFCMoltenCarbonateFuelCells”,“FuelCell”,“PEMFuelCells”,“FuelCellManufacturing,Stacking”)ORCPC=(Y02T90/30,Y02T90/40)ORTitleAbstractClaims=(fuel_cellORHT_PEMORDMFCORDAFCORFCORgasdiffusionNEAR3(membranORelectrode)ORbipolarNEAR3plate))AND(CPC=(B60,B60L50/30,B60L50/40,B60L50/60,B60L50/70,B60L50/75,B60L53/00,B60L53/10,B60L53/20,B60L58/00,B62,B66F9/06,E02F,Y02T10,Y02T90/14,Y02T90/16)ORIPC=(B60,B60L50/30,B60L50/40,B60L50/60,B60L50/70,B60L50/75,B60L53/00,B60L53/10,B60L53/20,B60L58/00,B62,B66F9/06,E02F)ORTag=(“EconSightTechnologyFields\M1.1.1.Electrical,Solar,FuelCellAircraft”,“EconSightTechnologyFields\M1.3.4.ElectricVehicles”)))Part3(Tag=(“SOFCFuelCells”,“DMFC,DAFC,DirectorReformingFuelCell”,“AMFCAlkalineMembraneFuelCells”,“PAFCPhosphoricAcidFuelCells”,“MCFCMoltenCarbonateFuelCells”,“FuelCell”,“PEMFuelCells”,“FuelCellManufacturing,Stacking”)ORCPC=(Y02T90/30,Y02T90/40))AND(TitleAbstractClaims=(pkwORautomotivORautomobilORroadNEAR3vehicleORpersonalmobilitydeviceORbusORpublictransportORtramORtruckORomnibusORcarORcarsORlkwOR(lorryORlorries)NEAR3vehicleORscooterORmotor_cycleORtuk_tukORauto_rickshawORloadSEQ2transportingOR(heavy_loadORlong_range)NEAR3vehicleORhydrogenelectrictruckORfreightvehicleORvehicle_trainOR(commercialORutility)NEAR3vehicleORelectricvehicleORBEVOR(onlyORbatteryORallORpure)SEQ3electricNEAR5(vehicleORcarORautomotivORautomobilORRoad_goingORpassenger_vehicle)ORBEVORPHEVORFCEVORtransportNEAR3truckORbusesORtransporterOR(constructionORoff-roadORfarm)NEAR3vehicleORloadNEAR3(transportingORbearing)NEAR5(CarriageORvehicle))ORTitleAbstractClaims=(scooterORmotor_cycleORtuk_tukORauto_rickshawORloadSEQ2transportingOR(towSEQ2bar)NEAR3vehicleORaircraftNEAR3(tugORtow)ORtrucksOR(heavy_loadORlong_range)NEAR3vehicleORhydrogenelectrictruckORfreightvehicleORvehicle_trainOR(commercialORutility)NEAR3vehicleORcraneORbulldozerORgraderORexcavatorORtractorORbaggerORdredgerORpersonNEAR4droneORhumanNEAR4droneORpeopleNEAR4droneORpersonalNEAR4flyingORmannedNEAR4aerialORaerautoORaerocarORaero_taxiORvtolORpassengerNEAR3droneORevtolORstolORstovlORtransportNEAR3truckORbusesORtransporterORaircraftORairplaneORhelicopterORdroneORair_shipORHAPSORLow_orbitORzeppelinORsatelliteORpersonNEAR4droneORhumanNEAR4droneORpeopleNEAR4droneORpersonalNEAR4flyingORmannedNEAR4aerialORaerautoORaerocarORaero_taxiORvtolORpassengerNEAR3droneORevtolORstolORstovlORaeroplane)ORTitleAbstractClaims=(trainORtrainsORrailwayORrailroadORtramwayORtramORtrack_boundOR(trackORtracksORrail)SEQ2vehicleORtrack_sideORlocomotive)ORTitleAbstractClaims=(shipORshipsORship_buildingORmarineORmaritimORoceanORwater_borneORsub_seaORsub_marineORtankerORseatransportORboatORshippingORship_buildingORmarineORmaritimORoceanOR88PatentLandscapeReport–Hydrogenfuelcellsintransportationwater_borneORwater_vehicleORtankerORseatransportORboatORshippingORmarine)ORTitleAbstractClaims=((forkliftORfork_liftOR(airportORharbourORloadSEQ2transportingORtowSEQ2bar)NEAR3vehicleORaircraftNEAR3(tugORtow))ORcraneORbulldozerORgraderORexcavatorORtractorORbaggerORdredger))Part4(Tag=(“SOFCFuelCells”,“DMFC,DAFC,DirectorReformingFuelCell”,“AMFCAlkalineMembraneFuelCells”,“PAFCPhosphoricAcidFuelCells”,“MCFCMoltenCarbonateFuelCells”,“FuelCell”,“PEMFuelCells”,“FuelCellManufacturing,Stacking”)ANDTitleAbstractClaimsDescription=((pkwORautomotivORautomobilORroadNEAR3vehicleORpersonalmobilitydeviceORbusORpublictransportORtramORtruckORomnibusORcarORcarsORlkwOR(lorryORlorries)NEAR3vehicleORscooterORmotor_cycleORtuk_tukORauto_rickshawORloadSEQ2transportingOR(heavy_loadORlong_range)NEAR3vehicleORhydrogenelectrictruckORfreightvehicleORvehicle_trainOR(commercialORutility)NEAR3vehicleORelectricvehicleORBEVOR(onlyORbatteryORallORpure)SEQ3electricNEAR5(vehicleORcarORautomotivORautomobilORRoad_goingORpassenger_vehicle)ORBEVORPHEVORFCEVORtransportNEAR3truckORbusesORtransporterOR(constructionORoff-roadORfarm)NEAR3vehicleORloadNEAR3(transportingORbearing)NEAR5(CarriageORvehicle)ORscooterORmotor_cycleORtuk_tukORauto_rickshawORloadSEQ2transportingOR(towSEQ2bar)NEAR3vehicleORaircraftNEAR3(tugORtow)ORtrucksOR(heavy_loadORlong_range)NEAR3vehicleORhydrogenelectrictruckORfreightvehicleORvehicle_trainOR(commercialORutility)NEAR3vehicleORcraneORbulldozerORgraderORexcavatorORtractorORbaggerORdredgerORpersonNEAR4droneORhumanNEAR4droneORpeopleNEAR4droneORpersonalNEAR4flyingORmannedNEAR4aerialORaerautoORaerocarORaero_taxiORvtolORpassengerNEAR3droneORevtolORstolORstovlORtransportNEAR3truckORbusesORtransporterORrailwayORrailroadORtramwayORtramORtrack_boundOR(trackORtracksORrail)SEQ2vehicleORtrack_sideORlocomotiveORaircraftORairplaneORhelicopterORdroneORair_shipORHAPSORLow_orbitORzeppelinORsatelliteORpersonNEAR4droneORhumanNEAR4droneORpeopleNEAR4droneORpersonalNEAR4flyingORmannedNEAR4aerialORaerautoORaerocarORaero_taxiORvtolORpassengerNEAR3droneORevtolORstolORstovlORaeroplaneORshipORshipsORship_buildingORmarineORmaritimORoceanORwater_borneORsub_seaORsub_marineORtankerORseatransportORboatORshippingORship_buildingORmarineORmaritimORoceanORwater_borneORwater_vehicleORtankerORseatransportORboatORshippingORmarine)NEAR5((fuel_cell)OR((hydrogenORH2)SEQ2electric))))ORTitleAbstractClaims=((pkwORautomotivORautomobilORroadNEAR3vehicleORpersonalmobilitydeviceORbusORpublictransportORtramORtruckORomnibusORcarORcarsORlkwOR(lorryORlorries)NEAR3vehicleORscooterORmotor_cycleORtuk_tukORauto_rickshawORloadSEQ2transportingOR(heavy_loadORlong_range)NEAR3vehicleORhydrogenelectrictruckORfreightvehicleORvehicle_trainOR(commercialORutility)NEAR3vehicleORelectricvehicleORBEVOR(onlyORbatteryORallORpure)SEQ3electricNEAR5(vehicleORcarORautomotivORautomobilORRoad_goingORpassenger_vehicle)ORBEVORPHEVORFCEVORtransportNEAR3truckORbusesORtransporterOR(constructionORoff-roadORfarm)NEAR3vehicleORloadNEAR3(transportingORbearing)NEAR5(CarriageORvehicle)ORscooterORmotor_cycleORtuk_tukORauto_rickshawORloadSEQ2transportingOR(towSEQ2bar)NEAR3vehicleORaircraftNEAR3(tugORtow)ORtrucksOR(heavy_loadORlong_range)NEAR3vehicleORhydrogenelectrictruckORfreightvehicleORvehicle_trainOR(commercialORutility)NEAR3vehicleORcraneORbulldozerORgraderORexcavatorORtractorORbaggerORdredgerORpersonNEAR4droneORhumanNEAR4droneORpeopleNEAR4droneORpersonalNEAR4flyingORmannedNEAR4aerialORaerautoORaerocarORaero_taxiORvtolORpassengerNEAR3droneORevtolORstolORstovlORtransportNEAR3truckORbusesORtransporterORrailwayORrailroadORtramwayORtramORtrack_boundOR(trackORtracksORrail)SEQ2vehicleORtrack_sideORlocomotiveORaircraftORairplaneORhelicopterORdroneORair_shipORHAPSORLow_orbitORzeppelinORsatelliteORpersonNEAR4droneORhumanNEAR4droneORpeopleNEAR4droneORpersonalNEAR4flyingORmannedNEAR4aerialORaerautoORaerocarORaero_taxiORvtolORpassengerNEAR3droneORevtolORstolORstovlORaeroplaneORshipORshipsORship_buildingORmarineORmaritimORoceanORwater_borneORsub_seaORsub_marineORtankerORseatransportORboatORshippingORship_buildingORmarineORmaritimORoceanORwater_89AnnexborneORwater_vehicleORtankerORseatransportORboatORshippingORmarine)NEAR5((fuel_cell)OR((hydrogenORH2)SEQ2electric)))Part1or2or3or4->“FuelCellsinTransport,Precleaned”CleaningstepforParts1–4,includingNOT/NOTLoop->“WIPOFCStudy\FCTransportAll(Cleaned)”Tag=(“FuelCellsinTransport,Precleaned”)ANDNOT((TitleAbstractClaims=((dieselORgasoline)NEAR3(vehicleORautomotivORautomobilORtruck))ORTag=(“EconSightTechnologyFields\WIPOTechnologyfields\1WIPO_Pharmaceuticals”,“EconSightTechnologyFields\2E.3.1.EnergyEfficientHomeAppliances”,“EconSightTechnologyFields\6P.3.6.DieselFuel,Engines”,“EconSightTechnologyFields\C10.1.7.HVAC,Airconditioning”,“EconSightTechnologyFields\M1.2.5.ExhaustCatalyst”,“EconSightTechnologyFields\M1.3.5.HybridVehicles”)ORCPC=(H01M2250/10,H01M2250/30,Y02B90/10,Y02E60/32,Y02E60/34,Y02E60/36)ORIPC=())ANDNOT(IPC=(B60L50/70,B60L50/75,B60L53/54,B60L58/30,B60L58/40,B60W10/28,H01M8/22)ORCPC=(B60L3/0053,B60L11/1881,B60L50/70,B60L50/75,B60L53/54,B60L58/30,B60L58/40,B60W10/28,B60W2510/28,B60W2710/28,B60Y2400/202,H01M8/22,H01M2250/20,Y02E60/50,Y02T90/14,Y02T90/32,Y02T90/34,Y10S903/908)ORTitleAbstractClaims=(fuel_cellORHT_PEMORDMFCORDAFCORsofcORpafcORamfcORfcbevORfcev)))Fuelcellsinroadvehicles(Tag=(“WIPOFCStudy\FCTransportAll(Cleaned)”)AND(TitleAbstractClaimsDescription=(pkwORautomotivORautomobilORroadNEAR3vehicleORpersonalmobilitydeviceORbusORpublictransportORtramORtruckORomnibusORcarORcarsORlkwOR(lorryORlorries)NEAR3vehicleORscooterORmotor_cycleORmopedORtuk_tukORauto_rickshawORloadSEQ2transportingOR(heavy_loadORlong_range)NEAR3vehicleORhydrogenelectrictruckORfreightvehicleORvehicle_trainOR(commercialORutility)NEAR3vehicleORelectricvehicleORBEVOR(onlyORbatteryORallORpure)SEQ3electricNEAR5(vehicleORcarORautomotivORautomobilORRoad_goingORpassenger_vehicle)ORBEVORPHEVORFCEVORtransportNEAR3truckORbusesORtransporterOR(constructionORoff-roadORfarm)NEAR3vehicleORloadNEAR3(transportingORbearing)NEAR5(CarriageORvehicle))ORTag=(“EconSightTechnologyFields\M1.3.4.2ElectricRoadVehicles,BEV”)ORIPC=(B62)ORCPC=(B60Y2200/10,B62,G01R31/006,G05D2201/0213,Y02T10)ORCPC=(B60W2510/28,B60W2710/28,Y02T90/14,Y02T90/34)))Fuelcellsintrucks(subsegmentofroad)(Tag=(“WIPOFCStudy\FCTransportAll(Cleaned)”)ANDTitleAbstractClaimsDescription=(busORpublictransportORtruckORomnibusORlkwOR(lorryORlorries)NEAR3vehicleORloadSEQ2transportingOR(heavy_loadORlong_range)NEAR3vehicleORhydrogenelectrictruckORfreightvehicleORvehicle_trainOR(commercialORutility)NEAR3vehicleORtransportNEAR3truckORbusesORtransporterORloadNEAR3(transportingORbearing)NEAR5(CarriageORvehicle)))Fuelcellsinairtransport/drones/cosmonauticsTag=(“WIPOFCStudy\FCTransportAll(Cleaned)”)AND(TitleAbstractClaimsDescription=(aircraftORairplaneORhelicopterORdroneORair_shipORHAPSORLow_orbitORzeppelinORsatelliteORpersonNEAR4droneORhumanNEAR4droneORpeopleNEAR4droneORpersonalNEAR4flyingORmannedNEAR4aerialORaerautoORaerocarORaero_taxiORvtolORpassengerNEAR3droneORevtolORstolORstovlORaeroplane)ORTag=(“EconSightTechnologyFields\M1.1.1.Electrical,Solar,FuelCellAircraft”,“EconSightTechnologyFields\M1.1.2.Aircraft,Aerospace,Helicopter,Vtol”,“EconSightTechnologyFields\M1.1.4.Cosmonautics”,“EconSightTechnologyFields\M1.1.5.Drone,AGV,UAV”,“EconSightTechnologyFields\M1.1.6.VTOLPAVPersonalMannedAerialVehicle”)ORIPC=(B64)ORCPC=(B60G2300/18,B60Y2200/50,B64,Y02T50))90PatentLandscapeReport–HydrogenfuelcellsintransportationFuelcellsinrailways,tramwaysTag=(“WIPOFCStudy\FCTransportAll(Cleaned)”)AND(TitleAbstractClaimsDescription=(((trainORtrains)AND(railORtrack))ORrailwayORrailroadORtramwayORtramORtrack_boundOR(trackORtracksORrail)SEQ2vehicleORtrack_sideORlocomotive)ORTag=(“EconSightTechnologyFields\M1.3.7.Railroad&Tramway”)ORIPC=(B61)ORCPC=(B60Y2200/30,B61,Y02T30,Y10S104,Y10S505/902,Y10T137/6866))ANDNOT(TitleAbstractClaims=(railwaycrossingORpowertrain)ANDNOT(TitleAbstractClaims=(trainORtrainsORrailwayORrailroadORtramwayORtramORtrack_boundOR(trackORtracksORrail)SEQ2vehicleORtrack_sideORlocomotive)))Fuelcellsinships((Tag=(“WIPOFCStudy\FCTransportAll(Cleaned)”)AND(TitleAbstractClaimsDescription=(shipORshipsORship_buildingORmarineORmaritimORoceanORwater_borneORsub_seaORsub_marineORtankerORseatransportORboatORshippingORship_buildingORmarineORmaritimORoceanORwater_borneORwater_vehicleORtankerORseatransportORboatORshippingORmarine)ORTag=(“EconSightTechnologyFields\M1.5.4.Ships,MaritimWaterways&Offshore»)ORIPC=(B63)ORCPC=(B63,Y02T70,Y02T90/38,Y02T90/46))ORCPC=(Y02T90/38,Y02T90/46)))FuelcellsinspecialvehiclesTag=(“WIPOFCStudy\FCTransportAll(Cleaned)”)AND(TitleAbstractClaimsDescription=((forkliftORfork_liftOR(airportORharbourORloadSEQ2transportingORtowSEQ2bar)NEAR3vehicleORaircraftNEAR3(tugORtow))ORcraneORbulldozerORgraderORexcavatorORtractorORbaggerORdredger)ORTag=(“EconSightTechnologyFields\6P.3.25.Fork-Lift,AirportTugs,HarbourVehicle”,“EconSightTechnologyFields\6P.3.8.HeavyEquipment,Drilling,Mining,SpecialTransport”)ORIPC=(B66F9/06,E02F)ORCPC=(B66F9/06,B66F17/003,E02F))Fuelcells,broad(((TitleAbstractClaims=(fuelSEQ2cellORfuel_cellORbipolarNEAR3plate)ORIPC=(B60W10/28,H01M4/86,H01M4/88,H01M4/90,H01M8/00,H01M8/02,H01M8/04,H01M8/06,H01M8/08,H01M8/10,H01M8/12,H01M8/14,H01M8/16,H01M8/18,H01M8/20,H01M8/22,H01M8/24)ORCPC=(B32B2457/18,B60K6/32,B60L3/0053,B60L11/1881,B60L50/70,B60L50/71,B60L50/72,B60L50/75,B60L53/54,B60L58/30,B60L58/40,B60L2230/28,B60W10/28,B60W2510/28,B60W2710/28,B60Y2400/202,B63H2021/003,B64D2041/005,B64G1/423,B65H2801/72,C01B2203/066,C10L2270/06,F01N2240/32,F17C2270/0184,F17C2270/0763,F24D2200/19,F24H2240/10,F28D2021/0043,G05B2219/2668,H01J3/388,H01M4/86,H01M4/88,H01M4/90,H01M8,H01M8/00,H01M8/02,H01M8/04,H01M8/06,H01M8/0618,H01M8/08,H01M8/083,H01M8/086,H01M8/10,H01M8/1011,H01M8/1018,H01M8/1023,H01M8/1025,H01M8/1027,H01M8/103,H01M8/1032,H01M8/1034,H01M8/1037,H01M8/1039,H01M8/1041,H01M8/1058,H01M8/1065,H01M8/1067,H01M8/1069,H01M8/12,H01M8/1246,H01M8/1253,H01M8/14,H01M8/16,H01M8/18,H01M8/20,H01M8/22,H01M8/24,H01M8/241,H01M8/2425,H01M12/04,H01M12/08,H01M16/003,H01M2008,H01M2008/128,H01M2008/1293,H01M2008/147,H01M2250,H02J3/387,H02J2001/004,Y02B90/10,Y02E60/50,Y02E60/521,Y02E60/523,Y02E60/525,Y02E60/526,Y02E70/20,Y02P70/56,Y02P90/40,Y02T90/30,Y02T90/32,Y02T90/34,Y02T90/38,Y02T90/40,Y02T90/46,Y02W30/86,Y10S429/90,Y10S429/901,Y10S903/908,Y10S903/944)ORFTerm=(2F129/DD50,3D202/BB49,3D202/EE06,3D203/AA34,3D203/DB11,3D235/CC22,3L211/AA13,4G069/CC32,4G169/CC32,4H060/GG02,5G003/AA05,5G503/AA05,5H017/AA10,5H018/AA01,5H026,5H027,5H115/PI18,5H125/AC07,5H125/BD01,5H125/EE32,5H125/FF08))ORTechnologyClusters=(“Electronics>Electricpower>Cellstack>Bipolarplate”,“Electronics>Electricpower>Fuelbattery>Acceptableelectrochemicalreaction”,“Electronics>Electricpower>Fuelbattery>Hydrogenfuel”,“Electronics>Electricpower>Fuelbattery>Portabledisposablefuel-battery”,“Electronics>Electricpower>Fuelsupply>Airsupply”,“Electronics>Electricpower>Fuelsupply>Condensationcapacity”,“Electronics>Electricpower>Fuelsupply>Fuelcartridge”,“Electronics>Electricpower>Fuelsupply>Fueltank”,91Annex“Electronics>Electricpower>Fuelsupply>Oxidefuelcell”,“Electronics>Electricpower>Fuelsupply>Reformer”,“Electronics>Electricpower>Fuelsupply>Reforming”,“Machines>Engines>Reforming>Fuelcellfc”,“Physics>Chemicalprocessing>Reformer>Fuelcell”,“Transportation>Automotive>Fuelsupply>Hydrogen”,“Transportation>Automotive>Spoiler>Fuelcellstack”))ORTag=(“EconSightTechnologyFields\2E.4.13.SOFCFuelCells”,“EconSightTechnologyFields\2E.4.14.DMFC,DAFC,DirectorReformingFuelCell”,“EconSightTechnologyFields\2E.4.15.AMFCAlkalineMembraneFuelCells”,“EconSightTechnologyFields\2E.4.16.PAFCPhosphoricAcidFuelCells”,“EconSightTechnologyFields\2E.4.17.MCFCMoltenCarbonateFuelCells”,“EconSightTechnologyFields\2E.4.7.PEMFuelCells”,“EconSightTechnologyFields\2E.4.9.FuelCellManufacturing,Stacking”))OR(IPC=(B60L50/60,B60L50/70,B60L50/75,H01M,H01M4/137)ORCPC=(H01M,H01M4/137,H01M4/242))ANDTitleAbstractClaims=(fuelNEAR3cellORFuel_cell)Polymerelectrolyte(orprotonexchange)membrane(PEM)/anionexchangemembrane(AEM)fuelcells((IPC=(H01M8/1018,H01M8/1023,H01M8/1025,H01M8/1027,H01M8/103,H01M8/1032,H01M8/1034,H01M8/1037,H01M8/1039,H01M8/1041,H01M8/1058,H01M8/1065,H01M8/1067,H01M8/1069)ORCPC=(H01M8/1018,H01M8/1023,H01M8/1025,H01M8/1027,H01M8/103,H01M8/1032,H01M8/1034,H01M8/1037,H01M8/1039,H01M8/1041,H01M8/1058,H01M8/1065,H01M8/1067,H01M8/1069,H01M2008/1095,Y02E60/521))ANDTag=(“FuelCell,broad”)OR((CPC=(H01M8/10)ORIPC=(H01M8/10)ORFTerm=(5H026/AA06,5H126/BB06))ANDTitleAbstractClaimsDescription=((((anionORProton)NEAR2(conductORexchange)NEAR2Membrane)NEAR5(polymerORMEAORAEM)ORPEMORHT_PEMORNT_PEMORLT_PEMORMEAORAEMOR(polymerNEAR2electrolyt))NEAR9(fuel_cell?ORFCORstack)ORPEMFCORDMFCOR(MethanolNEAR3FuelCell))))ORTitleAbstractClaims=(((anionORProton)NEAR2(conductORexchange)NEAR2Membrane)NEAR5(polymerORMEAORAEM)OR(PEMORHT_PEMORLT_PEMORNT_PEMOR(polymerNEAR2electrolyt))NEAR3(fuel_cell?ORstackORMEA)ORPEMFC)Directmethanol(DM)/directammonia(DA)/reformerfuelcells(((IPC=(H01M8/06)ORCPC=(H01M8/06))ANDTitleAbstractClaims=(DMFCORDAFCOR(reformORDirectORFCORFuelCellORautothermal)NEAR3(methanolORethanolORalcoholORammoniaORnh3)))ORIPC=(H01M8/1011)ORCPC=(H01M8/0618,H01M8/1011,Y02E60/523))OR(Tag=(“FuelCell,broad“,“FuelCellManufacturing,Stacking”)ANDTitleAbstractClaims=(DMFCORDAFCOR(reformORDirectORFCORFuelCellORautothermal)NEAR3(methanolORethanolORalcoholORammoniaORnh3)OR((iquidNEAR3(ammoniaORnh3))ORmethanolORethanolORalcohol)NEAR9(fuelcellORreformORautothermal)))Solidoxidefuelcells(SOFCs)(TitleAbstractClaims=((SOFCORsolideSEQ2oxidOR((zro2ORy2o3ORceo2ORla2o3ORmgoORtio2ORsolidORceramicORcermetORchromitORNi_YSZORyttriaORtitanium_oxidORmagnesium_oxidORcerium_oxidORzirconiaORoxide)NEAR3(membranORanode))NEAR5(fuel_cellORFC)))ORCPCOriginal=(H01M8/1206,H01M8/1213,H01M8/1231,H01M8/1233,H01M8/124,H01M8/1246,H01M8/1253,H01M8/1286,H01M8/2415,H01M8/2418,H01M8/242,H01M8/2425,H01M8/2428,H01M8/243,H01M8/2432,H01M8/2435,H01M8/244,H01M2008/128,H01M2008/1293)OR((CPC=(H01M8/10)ORIPC=(H01M8/10)ORFTerm=(5H026/AA06,5H126/BB06))ANDTitleAbstractClaims=((SOFCORsolideSEQ2oxidOR((zro2ORy2o3ORceo2ORla2o3ORmgoORtio2ORsolidORceramicORcermetORchromitORNi_YSZORyttriaORtitanium_oxidORmagnesium_oxidORcerium_oxidORzirconiaORoxide)NEAR3(membranORanode))NEAR7(fuel_cellORFC)))))Alkalimembranefuelcells(AMFCs)((TitleAbstractClaims=((alkaliORKOHORNaOh)NEAR3Fuel_CellOR(alkaliORKOHORNaOh)NEAR5membranOR(conductNEAR3(alkaliORhydroxylOROH-)NEAR3(ionORions))NEAR5membranORAMFCORAlkalineMembraneFuelCellORAlkalinePolymerElectrolyteMembrane92PatentLandscapeReport–HydrogenfuelcellsintransportationFuelCell)ORCPC=(H01M2300/0002,H01M2300/0014))ANDTag=(“FuelCell,broad“)ORIPC=(H01M8/083)ORCPC=(H01M8/083))ANDNOT(Tag=(“EconSightTechnologyFields\2E.4.6.LithiumBatteries”,“EconSightTechnologyFields\2E.4.6.1.LithiumIronPhosphateCathode/Batteries”)ORTitleAbstractClaims=((secondaryORrechargeableORredox_flow)NEAR3(batteryORbatteriesORaccumulator)ORelectrolysisNEAR3(alkaliORchlor_alkaliORcell)))Phosphoricacidfuelcells(PAFCs)((TitleAbstractClaims=((phosphoric_acidORh3po4ORphoshorNEAR3acidOR(teflonORptfe)NEAR3membran))ORCPC=(H01M2300/0005,H01M2300/0008))ANDTag=(“FuelCell,broad“)ORIPC=(H01M8/086)ORCPC=(H01M8/086)ORTitleAbstractClaims=(phosphoricacidfuelcell))ANDNOT(Tag=(“EconSightTechnologyFields\2E.4.6.LithiumBatteries”,“EconSightTechnologyFields\2E.4.6.1.LithiumIronPhosphateCathode/Batteries”)ORTitleAbstractClaims=((secondaryORrechargeableORredox_flowORliquidflow)NEAR3(batteryORbatteriesORaccumulator)))Moltencarbonatefuelcells(MCFCs)((TitleAbstractClaims=((moltenORmelt)NEAR3carbonatORMCFCOR((lithiumORpotassiumORsodium)NEAR3carbonat)NEAR5(elektrolytORfuel_cell))ANDTag=(“FuelCell,broad“)ORCPC=(H01M2008/147,H01M2300/0048,H01M2300/0051))ORTitleAbstractClaims=(((moltenORmelt)NEAR3carbonatORMCFCOR(lithiumORpotassiumORsodium)NEAR3carbonat)NEAR5(fuel_Cell)))ANDNOT(Tag=(“EconSightTechnologyFields\2E.4.6.LithiumBatteries”,“EconSightTechnologyFields\2E.4.6.1.LithiumIronPhosphateCathode/Batteries”)ORTitleAbstractClaims=((secondaryORrechargeableORredox_flowORliquidflow)NEAR3(batteryORbatteriesORaccumulator)))Fuelcellmanufacturing,stacking(TitleAbstractClaims=(fuel_CellNEAR3(stackORstacksORstackingORmanufactur))OR(IPC=(H01M8/00,H01M8/02,H01M8/04,H01M8/06,H01M8/08,H01M8/10,H01M8/12,H01M8/14,H01M8/20,H01M8/22,H01M8/24)ORCPC=(B65H2801/72,H01M8/00,H01M8/02,H01M8/04,H01M8/06,H01M8/08,H01M8/10,H01M8/12,H01M8/14,H01M8/22,H01M8/24,Y02E60/50)ORFTerm=(5H026,5H027)))AND(TitleAbstractClaimsDescription=(processORmanufacturORproductionORproducing)ORDescription=((stackingORstack)NEAR3(processORmanufacturORproductionORproducing))ORCPCOriginal=(H01M8,H01M8/00,Y02P70/56))Fuelcellrecycling(Tag=(“SOFCFuelCells”,“DMFC,DAFC,DirectorReformingFuelCell”,“AMFCAlkalineMembraneFuelCells”,“PAFCPhosphoricAcidFuelCells”,“MCFCMoltenCarbonateFuelCells”,“FuelCell,broad”,“PEMFuelCells”,“FuelCellManufacturing,Stacking”,“FuelCellsinTransport”)AND(Tag=(“EconSightTechnologyFields\E8.3.3.RecyclingandReuse”,“EconSightTechnologyFields\E8.3.6.Plastic,Glass,Paper,Electronics&ConsumerWasteRecycling”)ORCPC=(Y02W30/84,Y02W30/86)ORTitleAbstractClaims=(((upcyclORRecyclORrecover)NEAR3(fuelSEQ2cellORbipolarSEQ2plateORgasdiffusionelectrode))AND(shredORbrakeORcrushORdemantleORdismantleORleachOR((metalORcatalystORnobleORvaluable)NEAR3extract))))ORCPC=(Y02W30/86))ElectricvehiclesPart1(CPC=(B60H1/00392,B60L,B60L11,B60L50,B60Y2200/91,F16H2200/0021,Y02T10/64,Y02T10/70,Y02T10/7038,Y02T10/7072,Y02T10/72,Y02T90/10,Y02T90/34)ORFTerm=(2F129/DD49,2G014/AB23,2G014/AB35,2G036/BA10,3D032/GG15,3D131/BB02,3D203/AA31,3D203/AA34,3D241/CA08,3D246/AA08,3D333/CB09,3D333/CB10,3J063/AA04,3J067/GA16,3L211/AA11,3L211/AA13,5E123/AA23,5G503/FA06,5H040/AS07,5H043/AA13,5H127/FF,5H501/AA01,5H505/AA19,5H550/AA01,5H560/AA08,5H570/AA01,5H576/AA01,5H770/BA02)ORIPC=(B60L11,B60L11/16,B60L11/18,B60L50/70,B60L50/71,B60L50/72,B60L53/16,B60L53/18,B60L58/00))93AnnexPart2(TechnologyClusters=(“Electronics>Electricpower>Energystorage>Electricvehicle”,“Information>Administration>Reservation>Electricvehiclecharging”,“Transportation>Automotive>Electricvehicle”,“Transportation>Automotive>Fuelcellvehicle”,“Transportation>Automotive>Lifting>Electrically-poweredautonomousvehicle”,“Transportation>Cycles>Electricbicycle”,“Transportation>Cycles>Electricvehicle”,“Transportation>Cycles>Vehicle>Electricbalancecar”)OR(((IPC=(B60L,B60L50,B60R16,B60W,B62D)ORCPC=(B60,B60G2300/50,B60L,B60L50,B60R16,B60W,B60Y2200/90,B62D,H02J2310/48,Y02T10,Y02T10/62,Y02T90/169,Y04S10/126,Y04S30/10)ORTag=(“EconSightTechnologyFields\M1.2.1.BatteryChargerforRoadVehicles”,))ANDTitleAbstractClaims=(((onlyORbatteryORallORpure)SEQ3electricNEAR5(vehicleORcarORautomotivORautomobilORRoad_goingORpassenger_vehicle)ORBEVORPHEVORFCEV)))))Part1or2=ElectricVehicles94ABB(2022).ABBandBallardreachmilestonetowardfuelcell-poweredmarinetransport.Availableat:https://new.abb.com/news/detail/88060/abb-and-ballard-reach-milestone-toward-fuel-cell-powered-marine-transport(accessedatApr.13,2022).Airbus(2020).ZEROe–Towardstheworld’sfirstzero-emissioncommercialaircraft.Availableat:www.airbus.com/en/innovation/zero-emission/hydrogen/zeroe(accessedDec.23,2021).Alstom(2020a).Successfulyearandahalfoftrialoperationoftheworld’sfirsttwohydrogentrains,nextprojectphasebegins.Availableat:www.alstom.com/press-releases-news/2020/5/successful-year-and-half-trial-operation-worlds-first-two-hydrogen(accessedDec.23,2021).Alstom(2020b).Emission-freetrainsolutionstodeliverrailwaydecarbonisation.Availableat:www.alstom.com/press-releases-news/2021/11/emission-free-train-solutions-deliver-railway-decarbonisation(accessedDec.23,2021).Alstom(2020c).AlstomtosupplyItaly’sfirsthydrogentrains.Availableat:www.alstom.com/press-releases-news/2020/11/alstom-supply-italys-first-hydrogen-trains#:~:text=26%20November%202020%20-%20Alstom%20will,of%20approximately%20€160%20million(accessedDec.23,2021).Ansoff,H.I.(1976).Managingsurpriseanddiscontinuity.Strategicresponsetoweaksignals.SchmalenbachsZeitschriftfürbetriebswirtschaftlicheForschung28(3),S.129–152.ArthurD.Little(2021).Theroleofhydrogeninbuildingasustainablefuturefortheautomotivemobility.Availableat:www.adlittle.com/de-en/insights/prism/role-hydrogen-building-sustainable-future-automotive-mobility(accessedDec.22,2021).AutoCar(2022).RadicalnewRenaultconcepttoshowcasehydrogenplans.Availableat:www.autocar.co.uk/car-news/new-cars/radical-new-renault-concept-showcase-hydrogen-plans(accessedatApr.11,2022).AutomotiveWorld(2021).NikolaandOPALFuelssignMoUtoco-developandconstructhydrogenfuelingstationsandrelatedinfrastructure.Availableat:www.automotiveworld.com/news-releases/nikola-and-opal-fuels-sign-mou-to-co-develop-and-construct-hydrogen-fueling-stations-and-related-infrastructure/(accessedDec.22,2021).BBC(2021).Amazon,IkeaandUnileverpledgezero-carbonshippingby2040.Availableat:www.bbc.com/news/business-58970877(accessedatApril13.,2022).Bethoux,O.(2020).Hydrogenfuelcellroadvehiclesandtheirinfrastructure:anoptiontowardsanenvironmentallyfriendlyenergytransition.Energies,13(22),6132.Billings,R.E.(n.d.).Hydrogenenergy.Dr.RogerBillingsHistoricalWebsite.www.rogerebillings.com/hydrogen/(accessedJan.12,2022).Billings,R.E.andM.Sanchez(1995).Solidpolymerfuelcells:Analternativetobatteriesinelectricvehicles–anoverview.InternationalJournalofHydrogenEnergy,20(7),521–529.Bloomberg(2021).MaerskMakes$1.4billiongreenbetonmethanol-fueledships.Availableat:www.bloomberg.com/news/articles/2021-08-24/maersk-makes-1-4-billion-green-bet-on-methanol-powered-ships(accessedDec.22,2021).BMW(2020).BMWmanufacturing–automatedfuelcellstackingsystem.(Video.)Availableat:www.youtube.com/watch?v=NaDHSKgY_ZU(accessedJan.12,2022).References95ReferencesBurmeister,K.,A.Neef,andB.Beyers(2004).Corporateforesight.UnternehmengestaltenZukunft.Hamburg:Murmann(MurmannBusiness&Management).Businesswire(2021).UniversalHydrogensecuresadditional$62millioninfinancingtoacceleratefirsttestflightofhydrogen-poweredregionalaircraftto2022.Availableat:www.businesswire.com/news/home/20211014005399/en/Universal-Hydrogen-Secures-Additional-62-Million-in-Financing-to-Accelerate-First-Test-Flight-of-Hydrogen-Powered-Regional-Aircraft-to-2022(accessedDec.23,2021).CAF(2021).EuropeselectstheconsortiumledbyCAFforthedevelopmentofahydrogentrainprototype.Availableat:www.caf.net/en/sala-prensa/nota-prensa-detalle.php?e=316(accessedDec.23,2021).Carnival(2021).2021:FirstfuelcellsforAIDAnova.Availableat:www.carnivalcorp.com/news-releases/news-release-details/2021-first-fuel-cells-aidanova/(accessedDec.22,2021).Carscoops(2020).Chinesecarcompanieswouldliketosellmorehydrogenfuelcellmodels.Availableat:www.carscoops.com/2020/09/chinese-carmakers-would-like-to-sell-more-hydrogen-fuel-cell-models/(accessedDec.22,2021).ChinaDaily(2022).Chinasetsoutblueprintforfuelcellvehiclesfor2025.Availableat:www.chinadaily.com.cn/a/202203/28/WS624117a2a310fd2b29e53a40.html(accessedatApr.11,2022).ChinaUniversityofGeoscience(2021).GrovehighlightstwocarmodelsatShanghaiAutoShow.Availableat:https://en.cug.edu.cn/info/1228/2645.htm(accessedDec.22,2021).Choon,F.,L.Tao,Z.JinghaiandB.Chunli(2018).Poweringthefuturewithliquidsunshine.Joule,2,1925–1949.Cigolotti,V.,M.GenoveseandP.Fragiacomo(2021).Comprehensivereviewonfuelcelltechnologyforstationaryapplicationsassustainableandefficientpoly-generationenergysystems.Energies,14(16),4963.CleanTechnica(2021).Scotlandbanksonhydrogenfuelcelltrainsforzeroemissionrailwayby(2035).Availableat:https://cleantechnica.com/2021/01/01/scotland-banks-on-hydrogen-fuel-cell-trains-for-zero-emission-railway-by-2035/(accessedDec.23,2021).CNBC(2022).AirbusplanstotesthydrogenengineonA380jumbojettoflyin2026.Availableat:www.cnbc.com/2022/02/22/-airbus-plans-to-test-hydrogen-engine-on-a380-jumbo-jet-to-fly-mid-decade.html(accessedatApr.11,2022).Costanzo,L.A.andR.B.MacKay(2009).Handbookofresearchonstrategyandforesight.Cheltenham,UKandNorthampton,MA:EdwardElgar.Courtney,H.(2001).20/20foresight.Craftingstrategyinanuncertainworld.Boston,MA:HarvardBusinessSchoolPress.CSIRO(2021).Opportunitiesforhydrogenincommercialaviation.Availableat:www.csiro.au/en/work-with-us/services/consultancy-strategic-advice-services/CSIRO-futures/Futures-reports/hydrogen-commercial-aviation(accessedDec.23,2021).CSIS(2021).HowBidenplanstodecarbonizetransportation.Availableat:www.csis.org/analysis/how-biden-plans-decarbonize-transportation(accessedDec.22,2021).DeBruijn,F.(2005),Thecurrentstatusoffuelcelltechnologyformobileandstationaryapplications.GreenChemistry,7,132–150.DaimlerTrucks(2021).Fuel-celltruckstartoftestingofthenewGenH2truckprototype.Availableat:www.daimler.com/innovation/drive-systems/hydrogen/start-of-testing-genh2-truck-prototype.html(accessedDec.22,2021).Direção-GeraldeEnergiaeGeologia(2020).AprovaoPlanoNacionaldoHidrogénio.Availableat:www.dgeg.gov.pt/media/5eac1vcd/resolução-do-conselho-de-ministros-n-º-632020.pdf(accessedDec.22,2021).EEA(EuropeanEnvironmentalAgency)(2021).GreenhousegasemissionsfromtransportinEurope.Availableat:www.eea.europa.eu/ims/greenhouse-gas-emissions-from-transport(accessedDec.22,2021).Energy.gov(2018).FactofthemonthNovember2018:Therearenowmorethan20,000hydrogenfuelcellforkliftsinuseacrosstheUnitedStates.Availableat:www.energy.gov/eere/fuelcells/fact-month-november-2018-there-are-now-more-20000-hydrogen-fuel-cell-forklifts-use(accessedJan.12,2022).Energy.gov(n.d.).Fuelcellanimation(textversion,updatedregularly).Availableat:www.energy.gov/eere/fuelcells/fuel-cell-animation-text-version(accessedJan.12,2022).96PatentLandscapeReport–HydrogenfuelcellsintransportationEPO(EuropeanPatentOffice)(n.d.).Patentfamilies.Availableat:www.epo.org/searching-for-patents/helpful-resources/first-time-here/patent-families.html(accessedJan.12,2022).EPOandIEA(InternationalEnergyAgency)(2020).Innovationinbatteriesandelectricitystorage.Aglobalanalysisbasedonpatentdata.Availableat:https://documents.epo.org/projects/babylon/eponet.nsf/0/969395F58EB07213C12585E7002C7046/$FILE/battery_study_en.pdf(accessedApril14,2022).EuropeanCommission(2020).Ahydrogenstrategyforaclimate-neutralEurope.Availableat:https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52020DC0301&from=EN(accessedDec.22,2021).EuropeanCommission(2021).AEuropeangreendeal.Availableat:https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en#highlights(accessedDec.22,2021).Faleschini,G.,V.Hacker,M.MuhrandR.Aronsson(2011).Ammoniaforhighdensityhydrogenstorage.Availableat:www.researchgate.net/publication/238065428_Ammonia_for_High_Density_Hydrogen_Storage(accessedJan.12,2022).FederalMinistryforEconomicAffairsandEnergy(BMWi)(2022).Availableatwww.bmwk.de/Redaktion/EN/Publikationen/Energie/the-national-hydrogen-strategy.pdf?__blob=publicationFile&v=6(accessedMay12,2022).Fowler,D.,V.GurauandD.Cox(2019),Bridgingthegapbetweenautomatedmanufacturingoffuelcellcomponentsandroboticassemblyoffuelcellstacks,Energies,12(19),3604.FuelCellWorks(2021a).1billioneurostobeinvestedbyBoschinfuelcelltechnology.Availableat:https://fuelcellsworks.com/news/1-billion-euros-to-be-invested-by-bosch-in-fuel-cell-technology/(accessedDec.22,2021).FuelCellWorks(2021b).SE,SAFRANdevelopinglaunchdevelopmentprogramforsustainableenginesthatcouldworkwithhydrogen.Availableat:https://fuelcellsworks.com/news/ge-safran-developing-launch-development-program-for-sustainable-engines-that-could-work-with-hydrogen/(accessedDec.23,2021).GermanEnergySolutionsInitiative(2020).Circularrecyclingprocessforhydrogenfuelcells.Availableat:www.german-energy-solutions.de/GES/Redaktion/EN/News/2020/20200416-hydrogen-fuelcell.html(accessedJan.12,2022).Gielen,D.,E.TaibiandR.Miranda(2019).Hydrogen:Arenewableenergyperspective.Availableat:www.researchgate.net/publication/339788120_Hydrogen_A_renewable_energy_perspective/stats(accessedJan.12,2022).GovernmentsoftheNetherlands(2020).Governmentstrategyonhydrogen.Availableat:www.government.nl/binaries/government/documents/publications/2020/04/06/government-strategy-on-hydrogen/Hydrogen-Strategy-TheNetherlands.pdf(accessedDec.22,2021).GreenCarCongress(2021).GreatWallMotorssetsouthydrogenenergystrategy.Availableat:www.greencarcongress.com/2021/04/20210406-gwm.html(accessedDec.22,2021).GreenTechMedia(2020).Shell,VolvoandDaimlerbackhydrogenasEuropesetsitssightsontruckemissions.Availableat:www.greentechmedia.com/articles/read/shell-volvo-daimler-back-hydrogen-as-europe-turns-sights-on-truck-emissions(accessedDec.22,2021).Grove(2021).IGE–Groveparentcompany.Availableat:www.grove.com.cn/en/introduction.html(accessedDec.22,2021).H2Bulletin(2021).HydrogenpoweredbuseshitDalianroads.Availableat:www.h2bulletin.com/hydrogen-power-buses-are-put-in-service-in-dalian/(accessedDec.22,2021).Hacker,B.C.andJ.M.Grimwood(1977).Spacecraftsystemsbecomemoretroublesome.In:OntheShouldersofTitans:AHistoryofProjectGemini.NASASpecialPublication-4203.Availableat:https://history.nasa.gov/SP-4203/ch7-4.htm(accessedJan.12,2022).Hines,A.(2006).Strategicforesight:Thestateoftheart.Futurist,40(5),18–21.IEA(InternationalEnergyAgency)(2021a).Transport–Improvingthesustainabilityofpassengerandfreighttransport.Availableat:www.iea.org/topics/transport(accessedDec.22,2021).IEA(2021b).Hydrogen.Availableat:www.iea.org/reports/hydrogen(accessedDec.22,2021).IEA(2021c).NetZeroby2050.ARoadmapfortheGlobalEnergySector.Availableat:www.iea.org/reports/net-zero-by-2050(accessedApr.4,2022).97ReferencesIEA/AFC–InternationalEnergyAgency/AdvancedFuelCell(2021).Deploymentstatusoffuelcellsinroadtransport:2021update.Availableat:www.ieafuelcell.com/fileadmin/publications/2021-Deployment_status_of_fc_in_road_transport.pdf(accessedDec.22,2021).IEEESpectrum(2021).Solid-StateBatteriesRevUpElectricCars,BoostGridStorage.Availableat:https://spectrum.ieee.org/solid-state-battery(accessedatApr.13,2022).InstitutionofMechanicalEngineers(2018).Couldhydrogentrainsbethefutureofrail?Availableat:www.imeche.org/news/news-article/could-hydrogen-trains-be-the-future-of-rail(accessedJan.12,2022).IPAustralia(2021).Patentanalyticsonhydrogentechnology–interactivedashboards.Availableat:www.ipaustralia.gov.au/tools-resources/publications-reports/patent-analytics-hydrogen-technology(accessedApr.5,2022).IPCC(2021).Specialreport:Globalwarmingof1.5°C–summaryforpolicymakers.Availableat:www.ipcc.ch/sr15/chapter/spm/(accessedDec.23,2021).IRENA(2018).Hydrogenfromrenewablepower:Technologyoutlookfortheenergytransition.Availableat:www.irena.org/publications/2018/Sep/Hydrogen-from-renewable-power(accessedJan.12,2022).IRENA(2019).Hydrogen:Arenewableenergyperspective.Availableat:www.irena.org/publications/2019/Sep/Hydrogen-A-renewable-energy-perspective(accessedJan.12,2022).IRENA(2022),GeopoliticsoftheEnergyTransformation:TheHydrogenFactor,InternationalRenewableEnergyAgency,AbuDhabi.Availableat:www.irena.org/-/media/Files/IRENA/Agency/Publication/2022/Jan/IRENA_Geopolitics_Hydrogen_2022.pdf(accessedApr.5,2022).James,B.D.,J.M.Huya-Kouadio,C.HouchinsandD.A.DeSantis(2017).MassproductioncostestimationofdirectH2PEMfuelcellsystemsfortransportationapplications:2017update.Availableat:www.sainc.com/assets/site_18/files/publications/sa%202017%20transportation%20fuel%20cell%20cost%20analysis.pdf(accessedJan.12,2022).James,B.D.,J.M.Huya-Kouadio,C.HouchinsandD.A.DeSantis(2021).V.E.5fuelcellvehiclecostanalysis.Availableat:www.hydrogen.energy.gov/pdfs/progress17/v_e_5_james_2017.pdf(accessedJan.12,2022).Jeerh,G.,M.ZhangandS.Tao(2020).Recentprogressinammoniafuelcellsandtheirpotentialapplications.JournalofMaterialsChemistryA,2021,9,727–752.Johnson,G.andK.Scholes(2000).ExploringCorporateStrategy.London:PrenticeHall.KLM(2021).WorldfirstintheNetherlandsbyKLM,ShellandDutchMinistryforInfrastructureandWaterManagement:Firstpassengerflightperformedwithsustainablesynthetickerosene.Availableat:https://news.klm.com/world-first-in-the-netherlands-by-klm-shell-and-dutch-ministry-for-infrastructure-and-water-management-first-passenger-flight-performed-with-sustainable-synthetic-kerosene/(accessedDec.23,2021).Krystek,U.andG.Müller-Stewens(2006).StrategischeFrühaufklärung.In:D.HahnandB.Taylor(Eds.),StrategischeUnternehmungsplanung–StrategischeUnterneh-mungsführung.Berlin/Heidelberg:Springer-Verlag,pp.175–193.Kumagi,J.(2021).Lithium-ionbatteryrecyclingfinallytakesoffinNorthAmericaandEurope.Availableat:https://spectrum.ieee.org/lithiumion-battery-recycling-finally-takes-off-in-north-america-and-europe(accessedJan.12,2022).Leo.A.(2007).Stationaryfuelcellpowersystemswithdirectfuelcelltechnologytacklegrowingdistributedbaseloadpowerchallenge.Availableat:www.fuelcellenergy.com/assets/Fuel-Cell-Technology-White-Paper.pdf(accessedJan.12,2022).MagyarországKormánya(2021).Hungary’snationalhydrogenstrategy.Availableat:https://cdn.kormany.hu/uploads/document/a/a2/a2b/a2b2b7ed5179b17694659b8f050ba9648e75a0bf.pdf(accessedDec.22,2021).MarketResearchTelecast(2021).Climateprotectioninshipping:doesammoniahelpasanalternativefuel?Availableat:https://marketresearchtelecast.com/climate-protection-in-shipping-does-ammonia-help-as-an-alternative-fuel/193576/(accessedDec.22,2021).Mićić,P.(2006).DerZukunftsRadar.DiewichtigstenTrends,TechnologienundThemenfürIhreZukunft.2.Aufl.OffenbachamMain:GABAL(GABALmanagement).98PatentLandscapeReport–HydrogenfuelcellsintransportationMinistèredelaTransitionécologique(2020).Stratégienationalepourledéveloppementdel’hydrogènedécarbonéenFrance.Availableat:www.ecologie.gouv.fr/sites/default/files/DP%20-%20Stratégie%20nationale%20pour%20le%20développement%20de%20l%27hydrogène%20décarboné%20en%20France.pdf(accessedDec.22,2021).MinisteriodeEnergía(2020).NationalGreenHydrogenStrategy.Availableat:https://energia.gob.cl/sites/default/files/national_green_hydrogen_strategy_-_chile.pdf(accessedDec.22,2021).MinisteriodeMinasyEnergía(2021).LaHojadeRutadelHidrógeno.Availableat:www.minenergia.gov.co/documents/10192/24309272/Hoja+de+Ruta+del+Hidrogeno+Colombia.pdf(accessedDec.22,2021).MinistryofEconomyandFinance(2020).Koreannewdeal.Availableat:https://english.moef.go.kr/pc/selectTbPressCenterDtl.do?boardCd=N0001&seq=4948(accessedDec.22,2021).MinistryofEconomy,TradeandIndustry(2020).Greengrowthstrategythroughachievingcarbonneutralityin(2050).Availableat:www.meti.go.jp/english/press/2020/1225_001.html(accessedDec.22,2021).MinistryofEnergy(2020).NationalHydrogenStrategy.Availableat:https://minenergo.gov.ru/node/19194(accessedDec.22,2021).MinistryofIndustryandTrade(2021).TheCzechRepublic’shydrogenstrategy.Availableat:www.mpo.cz/assets/cz/prumysl/strategicke-projekty/2021/9/Hydrogen-Strategy_CZ_2021-09-09.pdf(accessedDec.22,2021).Miteco–MinisterioparalaTransiciónEcológicayelRetoDemográfico(2020).HojadeRutadelHidrógeno:unaapuestaporelhidrógenorenovable.Availableat:www.miteco.gob.es/es/prensa/ultimas-noticias/el-gobierno-aprueba-la-hoja-de-ruta-del-hidrógeno-una-apuesta-por-el-hidrógeno-renovable/tcm:30-513814(accessedDec.22,2021).Müller,A.W.andG.Müller-Stewens(2009).StrategicForesight.Trend-undZukunftsforschunginUnternehmen–Instrumente,Prozesse,Fallstudien.Stuttgart:SchaefferPoeschel.Müller-Stewens,G.andA.Müller(2010).StrategicForesight:Trend-undZukunfts-forschungalsStrategieinstrument.In:M.ReimerandS.Fiege(Eds.),Perspek-tivendesStrategischenControllings.Wiesbaden:Gabler,pp.239–257.NASA(NationalAeronauticsandSpaceAdministration)(2021a).Spaceapplicationsofhydrogenandfuelcells.Availableat:www.nasa.gov/content/space-applications-of-hydrogen-and-fuel-cells(accessedDec.23,2021).NASA(2021b).Technologyreadinesslevels(TRLs).Availableat:https://esto.nasa.gov/trl/(accessedDec.23,2021).NaturalResourcesCanada(2020).HydrogenstrategyforCanada.Availableat:www.nrcan.gc.ca/sites/www.nrcan.gc.ca/files/environment/hydrogen/NRCan_Hydrogen-Strategy-Canada-na-en-v3.pdf(accessedDec.22,2021).NewAtlas(2021).ZeroAviaplansfirstcommercialhydrogenflight,and76-seatairliner.Availableat:https://newatlas.com/aircraft/zeroavia-commercial-hydrogen-flight/(accessedDec.23,2021).NewZealandForeignAffairsandTrade(2020).Japan:Strategichydrogenroadmap.Availableat:www.mfat.govt.nz/de/trade/mfat-market-reports/market-reports-asia/japan-strategic-hydrogen-roadmap-30-october-2020/#:~:text=Japan’s%20Hydrogen%20Roadmap%20has%20an,fuel%20cell%20buses%20by%202030(accessedDec.22,2021).NikkeiAsia(2021).China’shydrogenroadmap:4thingstoknow.Availableat:https://asia.nikkei.com/Spotlight/Caixin/China-s-hydrogen-roadmap-4-things-to-know(accessedDec.22,2021).NorwegianMinistryofPetroleumandEnergy(2020).TheNorwegianGovernment’shydrogenstrategy.Availableat:www.regjeringen.no/contentassets/40026db2148e41eda8e3792d259efb6b/y-0127e.pdf(accessedDec.22,2021).Passing,F.(2017).TechnologiekonvergenzimKontextvonStrategicForesight.In:TechnologiekonvergenzimKontextvonStrategicForesight.Forschungs-/Entwicklungs-/Innovations-Management.Wiesbaden:SpringerGabler,7–20.https://doi.org/10.1007/978-3-658-17313-5_2.Plötz,P.(2022).Hydrogentechnologyisunlikelytoplayamajorroleinsustainableroadtransport.NatureElectronics,5,8–10.https://doi.org/10.1038/s41928-021-00706-6.Pollet,B.G.,A.A.Franco,H.Su,H.LiangandS.Pasupathi(2016).Protonexchangemembranefuelcells.In:Barbir,F.,A.BasileandT.NejatVesiroglu(eds),CompendiumofHydrogenEnergy,Volume3:HydrogenEnergyConversion,WoodheadPublishingSeriesinEnergy.WoodheadPublishing,3–56.99ReferencesPradhan,R.P.(2019).Investigatingthecausalrelationshipbetweentransportationinfrastructure,financialpenetrationandeconomicgrowthinG-20countries.ResearchinTransportationEconomics.doi:10.1016/j.retrec.2019.100766.RailwayTechnology(2021).HydroFLEXhydrogentrain.Availableat:www.railway-technology.com/projects/hydroflex-hydrogen-train/(accessedDec.23,2021).Reuters(2020a).Chineseautomakersannouncetargetstoraisehydrogenvehiclesales.Availableat:www.reuters.com/article/china-autos-hydrogen-idINKBN2650L0(accessedDec.22,2021).Reuters(2020b).Siemens,DeutscheBahnlaunchlocalhydrogentrainstrial.Availableat:www.reuters.com/article/us-siemens-hydrogen-trains-idUSKBN2820V9(accessedDec.23,2021).Reuters(2021a).IvecochartsfutureafterCNHwithNikolaelectrictruckdeal.Availableat:www.reuters.com/business/autos-transportation/iveco-charts-future-after-cnh-with-nikola-electric-truck-deal-2021-09-15/(accessedDec.22,2021).Reuters(2021b).AirbustellsEUhydrogenwon’tbewidelyusedinplanesbefore(2050).Availableat:www.reuters.com/business/aerospace-defense/airbus-tells-eu-hydrogen-wont-be-widely-used-planes-before-2050-2021-06-10/(accessedDec.23,2021).Reuters(2022).UniversalHydrogenCEOseesjetmakersbackingnewfuel.Availableat:www.reuters.com/article/reuters-next-universal-hydrogen-idCNL8N2SM65K(accessedatApr.11,2022).Rohrbeck,R.(2011).CorporateForesight.Heidelberg:Physica-VerlagHD.Ruhlamat(2021).Brennstoffzellenfertigung.Availableat:www.ruhlamat.com/de/montagesysteme-automatisierungssysteme/erneuerbare-energien/brennstoffzellenfertigung(accessedJan.12,2022).S&PGlobal(2020).China’snewfuelcellvehiclesubsidypolicyfocusesonwholevaluechain.Availableat:www.spglobal.com/platts/en/market-insights/latest-news/coal/100120-chinas-new-fuel-cell-vehicle-subsidy-policy-focuses-on-whole-value-chain(accessedDec.22,2021).SecretaryofStateforBusiness,EnergyandIndustrialStrategy(2021).UKhydrogenstrategy.Availableat:https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1011283/UK-Hydrogen-Strategy_web.pdf(accessedDec.22,2021).Shell(2021).ShelltotrialfirsthydrogenfuelcellforshipsinSingapore.Availableat:www.shell.com.sg/media/2021-media-releases/shell-to-trial-first-Hydrogen-fuel-cell-for-ships-in-singapore.html(accessedDec.22,2021).SiemensMobility(2021).MireoPlusdecarbonisesEurope’srailways.Availableat:www.mobility.siemens.com/global/en/company/newsroom/specialist-articles/mireo-plus-decarbonises-europes-railways.html(accessedDec.23,2021).SNCF(2021).Apioneeringorderforhydrogentrains.Availableat:www.sncf.com/en/commitments/cse-priorities/sncf-accelerates-hydrogen-train(accessedDec.23,2021).Sun,Z.andZ.Sun(2020).Hydrogengenerationfrommethanolreformingforfuelcellapplications:Areview.JournalofCentralSouthUniversity,27,1074–1103.TheVerge(2021).Giantretailerspledgetoleavefossil-fueledshipsbehind.Availableat:www.theverge.com/2021/10/20/22736701/amazon-ikea-shipping-pollution-major-retailers(accessedDec.22,2021).Toyota(2021).ToyotaMiraiSetsGuinnessWorldRecords™Titlewith845milezeroemissionjourney.Availableat:https://pressroom.toyota.com/toyota-mirai-sets-guinness-world-records-title-with-845-mile-zero-emission-journey/(accessedDec.22,2021).Traton(2022).Fraunhoferanalysisseesbattery-electrictrucksatanadvantageoverhydrogentrucks.Availableat:https://traton.com/en/newsroom/press_releases/fraunhofer-analysis-battery-electric-trucks-advantage-over-hydrogen-trucks.html(accessedApr.11,2022).UNEP(UNEnvironmentProgramme)(2020).EmissionsGapReport2020.Availableat:www.unep.org/interactive/emissions-gap-report/2020/(accessedApr.13,2022).U.S.DepartmentofEnergy(2006).Potentialrolesofammoniainahydrogeneconomy.Availableat:www.energy.gov/sites/prod/files/2015/01/f19/fcto_nh3_h2_storage_white_paper_2006.pdf(accessedJan.12,2022).U.S.DepartmentofEnergyHydrogenProgram(2006).Hydrogenfuelcells.Availableat:www.californiahydrogen.org/wp-content/uploads/files/doe_fuelcell_factsheet.pdf(accessedJan.12,2022).WIPO(WorldIntellectualPropertyOrganization)(2013).HandbookonIndustrialPropertyInformationandDocumentation.Glossaryofterms.Availableat:www.wipo.int/export/sites/www/standards/en/pdf/08-01-01.pdf(accessedApril15,2022).100PatentLandscapeReport–HydrogenfuelcellsintransportationWired(2021).Thishydrogen-powereddreamboatisheretocleanupthesevenseas.Availableat:www.wired.co.uk/article/hydrogen-ships-eu(accessedDec.22,2021).Woollacott,E.(2021).Electriccars:Whatwillhappentoallthedeadbatteries?BBCNews,April27.Availableat:www.bbc.com/news/business-56574779(accessedJan.12,2022).WorldBank(2021).Transport.Availableat:www.worldbank.org/en/topic/transport(accessedDec.22,2021).WorldEconomicForum(2018).Theelectrificationoftransportcouldtransformourfuture–ifwearepreparedforit.Availableat:www.weforum.org/agenda/2018/08/we-must-get-it-right-with-electric-vehicles-for-the-sake-of-our-planet/(accessedDec.22,2021).Wu,D.,J.Ren,H.Davies,J.ShangandO.Haas(2019).Intelligenthydrogenfuelcellrangeextenderforbatteryelectricvehicles.WorldElectricVehicleJournal,10(2),29.Availableat:www.mdpi.com/2032-6653/10/2/29(accessedApr.29,2022).Xing,H.,C.Stuart,S.SpenceandH.Chen(2021).Fuelcellpowersystemsformaritimeapplications:progressandperspectives.Sustainability,13,1213.https://doi.org/10.3390/su13031213WorldIntellectualPropertyOrganization34,chemindesColombettesP.O.Box18CH-1211Geneva20SwitzerlandTel:+41223389111Fax:+41227335428ForcontactdetailsofWIPO’sExternalOfficesvisit:www.wipo.int/about-wipo/en/officesWIPOPublicationNo.1076EISBN:978-92-805-3416-0(PDF)ISBN:978-92-805-3417-7(online)ISSN:2790-7007(print)ISSN:2790-7015(online)