IRENA-绿氢供应:政策制定指南(英文)-2021.5-64页VIP专享VIP免费

GREEN
HYDROGEN
S U PPLY
A GUIDE TO POLICY MAKING
每日免费获取报告
1、每日微信群内分享7+最新重磅报告;
2、每日分享当日华尔街日报、金融时报;
3、每周分享经济学人
4、行研报告均为公开版,权利归原作者
所有,起点财经仅分发做内部学习。
扫一扫二维码
关注公号
回复:研究报告
加入“起点财经”微信群。。
© IRENA 2021
Unlessotherwisestatedmaterialinthispublicationmaybefreelyusedsharedcopiedreproducedprintedandor
storedprovidedthatappropriateacknowledgementisgivenofIRENAasthesourceandcopyrightholderMaterial
in thispublication thatis attributedto thirdparties may be subject to separate terms of useand restrictions and
appropriatepermissionsfromthesethirdpartiesmayneedtobesecuredbeforeanyuseofsuchmaterial
Citation IRENA()Green hydrogen supply: A guide to policy making
InternationalRenewableEnergyAgencyAbuDhabi
ISBN978-92-9260-344-1
ABOUT IRENA
TheInternationalRenewableEnergyAgency(IRENA)servesastheprincipalplatformforinternational
co-operationacentreofexcellencearepositoryofpolicytechnologyresourceandfinancialknowledge
andadriverofactiononthegroundtoadvancethetransformationoftheglobalenergysystemAn
intergovernmental organisation established in  IRENA promotes the widespread adoption and
sustainableuseofallformsofrenewableenergyincludingbioenergygeothermalhydropowerocean
solarandwindenergyinthepursuitofsustainabledevelopmentenergyaccessenergysecurityand
low-carboneconomicgrowthandprosperity
wwwirenaorg
ACKNOWLEDGEMENTS
The report was authored by Emanuele Bianco Diala Hawila and Herib Blanco under the guidance of
RabiaFerroukhiIRENAcolleaguesRolandRoeschStephanieWeckendKellyTaiBarbaraJinksMasashi
HoshinoSufyanDiabandAbdullahAbouAliprovidedvaluableinput
MassimoSantarelliMartaGandiglioandFlavianoVolpe(PolytechnicUniversityofTurin)providedtechnical
contributionstothereportJekaterinaBoening(EuropeanFederationforTransportandEnvironment)and
dricPhilibertprovidedimportantandwelcomedcontributionsandobservations
ThereportbenefitedalsofromthereviewsandcommentsofexpertsinseparateroundsincludingMatthias
Deutsch (Agora Energiewende) Yanming Wan (China Hydrogen Alliance) Frank Wouters (EU-GCC
CleanEnergyTechnologyNetwork)RuudKempener(EuropeanCommission–DGEnergy)Antonellodi
Pardo(GSESpA)YanfeiLi(HunanUniversityofTechnologyandBusiness)JoseMiguelBermudezand
PeerapatVithayasrichareon(IEA)MartaMartinez(Iberdrola)PierpaoloCazzolaandMatteoCraglia(ITF)
Subrahmanyam Pulipaka (National Solar Energy Federation of India) Karl Hauptmeier (Norsk e-Fuel)
Duncan Gibb and Hannah Murdock (REN) Thierry Lepercq (Soladvent) Hergen Thore Wolf (Sunfire
GmbH) Kirsten Westphal(SWP)Ad van Wijk (TUDelft)RinaBohle ZellerandAndrewGordon Syme
Mcintosh(Vestas)SripathiAnirudhKajolandDeepakKrishnan(WorldResourcesInstitute)
Availablefordownloadwww.irena.org/publications
Forfurtherinformationortoprovidefeedbackpublications@irena.org
DISCLAIMER
Thispublicationandthematerialhereinareprovided“asis”AllreasonableprecautionshavebeentakenbyIRENAto
verifythereliabilityofthematerialinthispublicationHoweverneitherIRENAnoranyofitsocialsagentsdataor
otherthird-partycontentprovidersprovidesawarrantyofanykindeitherexpressedorimpliedandtheyacceptno
responsibilityorliabilityforanyconsequenceofuseofthepublicationormaterialhereinTheinformationcontained
hereindoesnotnecessarilyrepresenttheviewsofallMembersofIRENAThementionofspeciccompaniesorcertain
projectsorproductsdoesnotimplythattheyareendorsedorrecommendedbyIRENAinpreferencetoothersofa
similar naturethatarenotmentionedThedesignationsemployedandthepresentation ofmaterialhereindonot
implytheexpressionofanyopiniononthepartofIRENAconcerningthelegalstatusofanyregioncountryterritory
cityorareaorofitsauthoritiesorconcerningthedelimitationoffrontiersorboundaries
2
GREENHYDROGENSUPPLYAGUIDETOPOLICYMAKING每日免费获取报告1、每日微信群内分享7+最新重磅报告;2、每日分享当日华尔街日报、金融时报;3、每周分享经济学人4、行研报告均为公开版,权利归原作者所有,起点财经仅分发做内部学习。扫一扫二维码关注公号回复:研究报告加入“起点财经”微信群。。©IRENA2021Unlessotherwisestated,materialinthispublicationmaybefreelyused,shared,copied,reproduced,printedand/orstored,providedthatappropriateacknowledgementisgivenofIRENAasthesourceandcopyrightholder.Materialinthispublicationthatisattributedtothirdpartiesmaybesubjecttoseparatetermsofuseandrestrictions,andappropriatepermissionsfromthesethirdpartiesmayneedtobesecuredbeforeanyuseofsuchmaterial.Citation:IRENA(2021),Greenhydrogensupply:Aguidetopolicymaking,InternationalRenewableEnergyAgency,AbuDhabi.ISBN:978-92-9260-344-1ABOUTIRENATheInternationalRenewableEnergyAgency(IRENA)servesastheprincipalplatformforinternationalco-operation,acentreofexcellence,arepositoryofpolicy,technology,resourceandfinancialknowledge,andadriverofactiononthegroundtoadvancethetransformationoftheglobalenergysystem.Anintergovernmentalorganisationestablishedin2011,IRENApromotesthewidespreadadoptionandsustainableuseofallformsofrenewableenergy,includingbioenergy,geothermal,hydropower,ocean,solarandwindenergy,inthepursuitofsustainabledevelopment,energyaccess,energysecurityandlow-carboneconomicgrowthandprosperity.www.irena.orgACKNOWLEDGEMENTSThereportwasauthoredbyEmanueleBianco,DialaHawilaandHeribBlancoundertheguidanceofRabiaFerroukhi.IRENAcolleaguesRolandRoesch,StephanieWeckend,KellyTai,BarbaraJinks,MasashiHoshino,SufyanDiabandAbdullahAbouAliprovidedvaluableinput.MassimoSantarelli,MartaGandiglioandFlavianoVolpe(PolytechnicUniversityofTurin)providedtechnicalcontributionstothereport.JekaterinaBoening(EuropeanFederationforTransportandEnvironment)andCédricPhilibertprovidedimportantandwelcomedcontributionsandobservations.Thereportbenefitedalsofromthereviewsandcommentsofexpertsinseparaterounds,includingMatthiasDeutsch(AgoraEnergiewende),YanmingWan(ChinaHydrogenAlliance),FrankWouters(EU-GCCCleanEnergyTechnologyNetwork),RuudKempener(EuropeanCommission–DGEnergy),AntonellodiPardo(GSES.p.A.),YanfeiLi(HunanUniversityofTechnologyandBusiness),JoseMiguelBermudezandPeerapatVithayasrichareon(IEA),MartaMartinez(Iberdrola),PierpaoloCazzolaandMatteoCraglia(ITF),SubrahmanyamPulipaka(NationalSolarEnergyFederationofIndia),KarlHauptmeier(Norske-Fuel),DuncanGibbandHannahMurdock(REN21),ThierryLepercq(Soladvent),HergenThoreWolf(SunfireGmbH),KirstenWestphal(SWP),AdvanWijk(TUDelft),RinaBohleZellerandAndrewGordonSymeMcintosh(Vestas),SripathiAnirudh,KajolandDeepakKrishnan(WorldResourcesInstitute).Availablefordownload:www.irena.org/publicationsForfurtherinformationortoprovidefeedback:publications@irena.orgDISCLAIMERThispublicationandthematerialhereinareprovided“asis”.AllreasonableprecautionshavebeentakenbyIRENAtoverifythereliabilityofthematerialinthispublication.However,neitherIRENAnoranyofitsofficials,agents,dataorotherthird-partycontentprovidersprovidesawarrantyofanykind,eitherexpressedorimplied,andtheyacceptnoresponsibilityorliabilityforanyconsequenceofuseofthepublicationormaterialherein.TheinformationcontainedhereindoesnotnecessarilyrepresenttheviewsofallMembersofIRENA.ThementionofspecificcompaniesorcertainprojectsorproductsdoesnotimplythattheyareendorsedorrecommendedbyIRENAinpreferencetoothersofasimilarnaturethatarenotmentioned.Thedesignationsemployed,andthepresentationofmaterialherein,donotimplytheexpressionofanyopiniononthepartofIRENAconcerningthelegalstatusofanyregion,country,territory,cityorareaorofitsauthorities,orconcerningthedelimitationoffrontiersorboundaries.2GREENHYDROGENSUPPLYAGUIDETOPOLICYMAKING3CONTENTSINTRODUCTION06Aboutthisreport081.CURRENTSTATUSANDCHALLENGES111.1Currentstatus111.2Hydrogensupplybarriers1522.POLICYOPTIONS232.1Policiestosupportelectrolyserdeployment252.2Policiestoensureelectricityissustainableandtosupportitscost-competitiveness292.3Policiestoincentivisegreenhydrogendemand342.4Policiestosupporthydrogeninfrastructure432.5Researchanddevelopmentsupport4723.THEWAYFORWARD493.1Thepolicystages493.2Conclusion53ANNEXWaterelectrolysistechnologies54References56Abbreviations62Photocredits634TABLEOFCONTENTFIGURESFigureI.1Greenhydrogenvaluechainandthefocusofthisreport08Figure1.1Volumetricenergydensityofvarioussolutionstotransporthydrogen14Figure1.2Hydrogenproductioncostdependingonelectrolysersystemcost,electricitypriceandoperatinghour16Figure1.3Costsforhydrogentransportasafunctionofthedistancebyselectedtransportmode18Figure2.1Barriersandpolicyoptionsforthesupplyofgreenhydrogen24Figure2.2ElectrolysercapacitytargetsinEuropeanhydrogenstrategies,203026Figure2.3Productionmodels29Figure2.4Industrialelectricitypricesbycomponent,inselectedEuropeancountries,201932Figure2.5Correlationbetweenlevelisedcostofhydrogenandoperatinghoursofagrid-connectedelectrolyser,westernDenmark,201933Figure2.6CO2benefitandgaspriceincreasefromblendingandconvertingthegasgridtohydrogen38Figure2.7Envisagedtraderoutesforhydrogenasof202141Figure3.1Rangeofpoliciestopromoteelectrolysisacrossthreestagesofdeployment51BOXESBoxI.1IRENA’sworkongreenhydrogenandhard-to-abatesectors10Box1.1Selectedannouncementsofelectrolyserprojects12Box1.2Selectedannouncementsofprojectstoexpandelectrolysermanufacturing13Box1.3Energylossesofthehydrogensupplytechnologies19Box2.1Estimatedcostofhydrogenfromagrid-connectedelectrolyserinDenmark33Box2.2TheNetherlands’SDE++scheme36Box2.3Blendinghydrogeninfossilgasgrids38Box2.4Japan’sstrategyfordemonstratingdiversevaluechains42Box3.1Policystagesforelectrolysisandinfrastructure50TABLESTableA.1Waterelectrolysistechnologiesasoftoday555INTRODUCTIONInthe2015ParisAgreement,nationsaroundtheworldagreedthatrapiddecarbonisationisneededtopreventthedangerousimpactsofclimatechange.Thenin2018,theIntergovernmentalPanelonClimateChange(IPCC)reportGlobalWarmingof1.5°Cshowedthattheneedtocutgreenhousegas(GHG)emissionsrapidlyisevenmoreurgentthanpreviouslythought(IPCC,2018a).Thereportconcludedthatthewindowofopportunityisclosingfastformeaningfulactiontolimittheplanet’sincreaseintemperatureandtocountertheglobalclimatecrisis.Therefore,policymakersmustincreasetheireffortstoreduceoreliminateemissionsinalleconomicactivities.Optionsthatwoulddeliveronlypartialemissionreductionsarenotsufficient.Thefulldecarbonisationofsomeindustryandtransportsubsectorsistechnicallyandeconomicallychallenging,andthecurrentnumberofsolutionsislimited.Theseareknownas“hard-to-abate”sectors.Thereis,however,acommonsolutionforsomeofthesehard-to-abatesectors:hydrogenproducedwithrenewableenergy,alsoknownasgreenhydrogen.Greenhydrogencanbeusedasafeedstockfortheproductionofchemicalsandfuelsordirectlyasafuel.6Itwaspredictable,then,thatgreenhydrogenshouldreceiveanewwaveofattentionfromgovernments,policymakers,energysectorstakeholdersandeventhegeneralpublic.Anunprecedentednumberofreports,newsarticles,webinarsandeventsinthelasttwoyearshavetoucheduponthetopic.Butthedevelopmentofagreenhydrogensectorisitselfstillataveryearlystage.Eachyeararound120milliontonnes(Mt)ofhydrogenareproducedglobally,mostlyfromfossilgasandcoal(greyhydrogen),whichtogetheraccountfor95%ofglobalproduction.Hydrogenusedforcrudeoilrefiningandforammoniaandmethanolsynthesisrepresentalmost75%ofhydrogenconsumption.TheroadmapdescribedinIRENA’sWorldEnergyTransitionsOutlookincludesamajorroleforgreenhydrogeninreducingGHGemissionsandmakingtheenergytransitionpossible.Accordingtotheroadmap,by2050greenhydrogenneedstohavefargreaterdimensionsthantoday,productionreachingabout400Mt,equivalentto49exajoules(EJ).Producingthatmuch,inturn,wouldrequireasignificantscale-upofelectrolysers,withtotalinstalledcapacitygrowingto5terawatts(TW)by2050.Theelectricitydemandtoproducehydrogenreachescloseto21000terawatthoursperyearby2050(IRENA,2021).1Achievingtheseambitiousnumberswillbeamajorchallenge.Butasthisreportdescribes,thischallengecanbemetthroughawiderangeofpolicies.Policymakersthenhaveacentralroletoplayandalreadyhavethetoolstomeetthechallenge.Somecountrieshavealreadyintroducedahydrogenstrategyandimplementedinitialpoliciestosupportthesectorwhilenew,targetedpoliciesarebeingdrafted.Still,forthesectortomovefromnichetomainstream,morediffusedpoliciesandmeasureswillbeneeded(IRENA,2020a).Policymakerstodaycandrawearlylessonsfromthetrailblazingcountriesinthegreenhydrogensector,andfromtheirownexperiencesofrenewableenergypolicymakinginthepower,heatandtransportsectors.1Analternative,however,isthatby2050othergreenhydrogenproductionpathwaysreachausefullevelofmaturity.Thiscouldreducetheneedfordedicatedrenewableelectricity.Still,atpresentthemainexpectationandscenariosarededicatedtoelectrolysis.7ABOUTTHISREPORTInresponsetothenewwaveofinterestingreenhydrogenanditspotentialtomakeamajorcontributiontotheenergytransition,IRENAhasbeenextensivelyanalysingtheoptionsfortheproductionandconsumptionofgreenhydrogen,alongwiththepoliciesthatareneededtosupportandaccelerateitscommercialisationandwideadoption(seeBoxI.1).ThereportGreenhydrogen:Aguidetopolicymaking(IRENA,2020a)wasthefirstIRENApublicationfocusingongreenhydrogenpolicies.Itoutlinesthemainbarriersandthekeypillarsofeffectivepolicymakingfortheuptakeofgreenhydrogen.Itprovidesaframeworktoopenupadiscussionaboutgreenhydrogenpolicymaking.Thegreenhydrogenvaluechain,fromproductiontoconsumption,iscomposedofmultipleelementsinterlinkedwiththewiderenergysector.Eachelementhasitsownbarriersandchallenges.Thisreportfocusesonthesupplysideofthatvaluechain(FigureI.1).Itexaminesthepoliciesthatareneededtosupporttheproductionofgreenhydrogenbywaterelectrolysis,itstransporttolocationswhereitwillbeconsumed,andtheoptionsforstorage.Futurereportswillfocusontheuseofhydrogeninvariousenduses(industry,aviation,shipping,etc.)Theproductionofhydrogenisacentury-oldactivity.Hydrogencanbeproducedinmultiplewaysfromdifferentsources,sotodifferentiatethemithasbecomecustomarytousecolour-coding(IRENA,2020a).Greenhydrogenis,forthescopeofthisreport,hydrogenproducedthroughwaterelectrolysisfuelledbyrenewable-basedelectricity.2Waterelectrolysersaredevicesthatuseelectricitytoseparatewatermoleculesintohydrogenandoxygen.Multiplewaterelectrolysertechnologiesexisttoday.Fouroftheminparticularholdpromiseforuseinthenearfuture:alkaline,protonexchangemembrane(PEM),solidoxideelectrolysercells(SOEC)andanionexchangemembrane(AEM).AlkalineandPEMtechnologiesrepresentalltheinstalledcapacitytoday,whileSOECandAEMareatanearlierstageintheresearchfunnel,butholdthepromiseofimprovedperformance.PEM,AEMandalkalineelectrolysersworkatlowtemperatures(<60-80°C),whileSOECworkatahightemperature(>700°C)(seeAnnex1).2Otherpathwaysareavailablefortheproductionofhydrogenfromrenewableenergy,withthermochemical,photo-catalyticalandbiochemicalprocesses(IRENA,2018a).Theyarecurrentlyattheresearchstagewithalowtechnologyreadinesslevelandarenotconsideredinthisreport.GREENHYDROGENSUPPLYH1.01Hydrogen28FigureI.1GreenhydrogenvaluechainandthefocusofthisreportWITHOUTTRANSFORMATIONWITHTRANSFORMATIONTRANSFORMATIONRenewableenergyElectrolysisSteelindustryChemicalindustryRefineries22222INDUSTRYPOWERGENERATIONHEATINGShippingAviationCarsRailTrucksBusesTRANSPORTPRODUCTIONENDUSENH3TRANSPORTSustainableCO2capturePipelineTrucksShippingStorageGreenammoniaN22NH3Syntheticfuels2CO2Thetransportofhydrogenisessentialwhenelectrolyserfacilitiesarenotclosetolocationswherehydrogenisconsumed.Itcanbetransportedinavarietyofways,includingbytruck,shipandpipeline.However,toefficientlytransporthydrogen,itmusteitherbecompressedorliquefiedorfurthersynthesisedintootherenergycarrierssuchasammonia,methane,methanol,liquidorganicmoleculesorliquidhydrocarbons,whichhavehigherenergydensityandcanbetransportedusingexistinginfrastructure.3Variousbarriersexisttotheuseofeachofthetransportmodesortreatments.Ingeneral,eachmethodisbettersuitedtosomespecificenduseanddistance.Thestorageofhydrogeniscrucialtotheuptakeofgreenhydrogen,andhydrogen’ssuitabilityforstoragebringsadditionalvaluetothewholeenergysector.Hydrogencanprovideseasonalstorageforthepowersystem,aserviceprovidablebyalimitedrangeoftechnologies;additionally,hydrogenstorageisalsoessentialtomaintainasteadyinputtoapplicationsthatoperatecontinuously(e.g.thesteelindustry).Hydrogencanbestoredinsteelorcompositetanks,orinundergroundgeologicalformations.43Anotheroptionisad/absorptioninsolidmatrices,butthehighdensityiscompromisedbytherelevantweight.4Hydrogencanalsobestoredinsolidmatrices,andinthiscasetherelevantweightislessimportant,whilethehighervolumetricdensitycanbeadesiredproperty.ABOUTTHEREPORT9Thisreportexploresthemainbarrierstotheadvancementofgreenhydrogenproductionandthedevelopmentofthenecessaryinfrastructureforitstransportandstorage(Chapter1).Itprovidesamapofthepoliciesneededinthefutureandaimstoprovideinsightsonthepolicyoptions.Thisformsabasisonwhichtounderstandfuturechallenges,providingnationalexamplesandcasestudiestohighlighteffectivepolicies(Chapter2).Finally,itseparatespolicyrecommendationsintovariousstagestohelpcountriesatvaryinglevelsofdeploymentaddressbarriersandformulatesuitablepathways(Chapter3).BoxI.1IRENA’sworkongreenhydrogenandhard-to-abatesectorsThisreportispartofIRENA’songoingbodyofworktoprovideitsmembercountriesandthebroadercommunitywithanalyticalinsightsintothepotentialoptions,theenablingconditionsandthepoliciesthatcoulddeliverthedeepdecarbonisationofeconomies.IRENAprovidesdetailedglobalandregionalroadmapsforemissionreductions,alongsideassessmentofthesocio-economicimplications.The2021WorldEnergyTransitionsOutlookincludesdetailedanalysisofapathwayconsistentwitha1.5°Cgoal.Buildingonitstechnicalandsocio-economicassessment,IRENAisanalysingspecificfacetsofthatpathway,includingthepolicyandfinancialframeworksneeded.Oneparticularfocusisonthepotentialforgreenhydrogen.RecentIRENApublicationsonthistopicinclude:•Hydrogenfromrenewablepower(2018)•Hydrogen:Arenewableenergyperspective(2019)•Reachingzerowithrenewables(2020)anditssupportingbriefsonindustryandtransport•Greenhydrogen:Aguidetopolicymaking(2020)•Greenhydrogencostreduction:Scalingupelectrolyserstomeetthe1.5°Cclimategoal(2020)•Renewableenergypoliciesinatimeoftransition:Heatingandcooling(2020)•Decarbonisingend-usesectors:Practicalinsightsongreenhydrogen(2021)a•Greenhydrogensupply:Aguidetopolicymaking(2021)•Greenhydrogenforindustry:Aguidetopolicymaking(forthcoming)•Greenhydrogenforaviationandshipping:Aguidetopolicymaking(forthcoming)ThesereportscomplementIRENA’sworkonrenewables-basedelectrification,biofuelsandsyntheticfuelsandalltheoptionsforspecifichard-to-abatesectors.ThisanalyticalworkissupportedbyIRENA’sinitiativestoconveneexpertsandstakeholders,includingIRENAInnovationWeeks,IRENAPolicyDaysandPolicyTalks,IRENACoalitionforActionandtheIRENACollaborativePlatformonGreenHydrogen.Thesebringtogetherabroadrangeofmembercountriesandotherstakeholderstoexchangeknowledgeandexperience.aAuthoredbyIRENACoalitionforAction101CURRENTSTATUSANDCHALLENGESAtpresentthesupplychainforgreenhydrogenisminimal,andtheuseofgreenhydrogenislimitedtoafewsmallprojects.Rapidgrowthisnecessary,therefore,fortheindustrytoscaleuptothesizeneededtomakeasignificantcontributiontotheenergytransition.Thissectionexploresthecurrentstatusofgreenhydrogenandbarrierstocreatingalargesupplyofit,startingwithwaterelectrolysisandcontinuingtotransportandstorage.1.1.CURRENTSTATUS1.1.1ElectrolysercapacityInstalledelectrolysercapacity,atjustaround200megawatts(MW),isfarbelowthesizenecessaryfortheprojectedfutureconsumptionofgreenhydrogen.However,capacityisexpectedtoincreasesharplyaccordingtothegrowingnumberofannouncementsoflargenewelectrolyserprojects.Estimatesofthegreenhydrogenpipelineareevolvingveryrapidly.In2020,thepipelineforthenextfiveyearswasestimatedtobeabout18gigawatts(GW),butthatincreasedsharplyafewmonthslater.Estimatesvarywidelyaccordingtoannouncementsmade,between33GW(BNEF,2021a)andabove90GW(HydrogenCouncil,2021).Asmightbeexpected,mostprojectsthathavebeenannouncedareinlocationsthateitherhaveadevelopednationalhydrogenstrategyorasignificantfleetofrenewableenergypowerplants.Geographically,projectsannouncedforconstructionupto2035areclusteredinEuropeandAustralia,butthesearenottheonlyregionsexpectingincreasedelectrolysercapacity(seeBox1.1).111.1.2ElectrolysermanufacturingcapacityIn2018theworld’selectrolysermanufacturingcapacitywasabout135MW/year(IRENA,2020b).Similartotheannouncementofelectrolyserprojects,electrolysermanufacturershavebeenannouncingexpansionoftheirmanufacturingcapacity,eachaimingforthehundredsofmegawattsscale(Box1.2presentsexamples).Globalmanufacturingcapacityisexpectedtoriseto3.1GW/yearbytheendof2021(BNEF,2021b).Buttotalmanufacturingcapacitywillneedtoexpandfurthertomeeteitherthecurrenttargetsforinstalledcapacityontime(forexampletheEUtargets,seeFigure2.1)ortheoverallenergytransitiontargets.Toachievetotalinstalledelectrolysercapacityof5TWby2050,asprojectedbyIRENA(2021),globalmanufacturingcapacityof130-160GW/yearwillbeneeded,upto50timestheexpectedmanufacturingcapacityof2021.Delaysinincreasingmanufacturingcapacitynowwillmakeitnecessarytorampuptherateofdeploymentmoresteeplylater.Box1.1SelectedannouncementsofelectrolyserprojectsTheestimatedelectrolysercapacityby2030increasedfrom3.2GWto8.2GWinEuropealoneoverfivemonths(fromNovember2019toMarch2020).Manyrelativelysmallelectrolysershavebeenannounced;onlyoneproject,theHySynergyprojectinDenmark,reaches1GW.InAustraliaabout22GWofelectrolysercapacityhasbeenannounced.IncontrasttoEurope,largerprojectspredominate.The“AsianRenewableHub”wasa2014proposaltocreatetheworld'slargestrenewableenergyplantinWesternAustralia.InitiallytheconceptwastoconnectAsiatoAustraliawithadedicatedcabletoexporttheelectricityproducedinAustralia.Inlate2020theprojectwasupdatedtobecomeahubfortheproductionofgreenammonia,withthe26GWofwindandsolarphotovoltaic(PV)capacitytobecoupledwith14GWofelectrolysercapacity.OtherAustralianprojectsincludetheH2-Hubproject(3GW)andthePacificSolarHydrogenproject(3.6GW).TheArabianpeninsulaisalsoattractinginvestment.AirProducts,ACWAPowerandNEOMannouncedaUSD5billionprojectfora4GWgreenammoniaplanttobeoperationalby2025inSaudiArabia.Atthesametime,theOmanCompanyfortheDevelopmentoftheSpecialEconomicZoneatDuqm(Tatweer)signedamemorandumofunderstandingwiththeACMEgrouptoinvestUSD2.5billiontosetupagreenhydrogenandgreenammoniafacility.Chinaisexpectedtodeploy70-80GWofelectrolysersby2030,accordingtoresearchbytheChinaHydrogenAlliance.In2020,28greenhydrogenproductionprojectswereannouncedacrossChina.Project-specificinformationonupcomingelectrolyserprojectscanbefoundinIRENACoalitionforActionwhitepaperDecarbonisingend-usesectors:Practicalinsightsongreenhydrogen.Sources:AcwaPower(2020);BNEF(2021b);EuropeanCommission(2020a);Heynes(2021).CHAPTERONE121.1.3ModesoftransportinghydrogenTheenergysectorhasexperienceoftransportinggasesoverlongdistances.However,hydrogenpresentsadditionalchallengesduetoitsphysicalproperties.Ithasahighenergydensitybyweight(33.3kilowatthours[kWh]perkilogram[kg]comparedto13.9kWh/kgformethane),buthasalowenergydensitybyvolume(3kWhpercubicmetre[m3]comparedto10kWh/m3formethaneundernormalconditions).Essentially,totransportthesameamountofenergy,largervolumesofhydrogenneedtobemoved.Forthisreason,hydrogenistreatedtoreduceitsvolumewhenbeingtransported.Thecurrentlyavailabletreatmentoptionsarecompression,liquefaction,theuseofaliquidorganichydrogencarrier(LOHC)5andconversionintoammonia,methanolorsyntheticfuels.Eachofthesesolutionsincreasesitsenergydensitybyvolume.Box1.2SelectedannouncementsofprojectstoexpandelectrolysermanufacturingThyssenkruppisaGermanconglomerateandoneoftheworld’slargestproducersofsteel.Electrolyserproductionisamongitsactivities.In2020itannouncedplanstoincreaseitsannualelectrolyserproductioncapacityto1GW/year.GreenhydrogenisexpectedtoassistThyssenkrupptoreduceCO2emissionsfromsteelproductioninthefuture.ITMPowerisaBritishcompanythatmanufacturesPEMelectrolysers.ThecompanyisapartnerintheGigastackproject,thelargestplannedelectrolyserfactoryintheworldatmoment,whichiscurrentlyinthefront-endengineeringanddesignphaseandhasaninitialtargetofdelivering300MW/year,withaviewtorampingupto1GW/year.NELisaNorwegiancompanythatprovidessolutionsfortheproduction,storageanddistributionofhydrogen.ItisexpandingtheelectrolyserproductioncapacityofitsfacilityatHerøyaIndustrialPark(Norway)to500MW/year,withfutureexpansionplansofupto2GW/year.The500MWproductionlineatHerøyaIndustrialParkisscheduledtobecomeoperationalinmid-2021.HaldorTopsøeisaDanishcompanythatspecialisesincarbonemissionreductiontechnologiesforchemicalandrefiningprocesses.ThecompanyrecentlyinvestedinamanufacturingfacilitythatproducesSOECwithatotalcapacityof500MW/year.Thefacilityhastheoptiontopotentiallyexpandto5GW/year.Constructionwillbeginin2022andthefacilityissettobecomefullyoperationalby2023.IberlyzerisajointventurebetweenSpanishcompaniesIberdrolaandIngeteam,whichaimstocommissionthefirstlarge-scaleelectrolyserproductionplantsinSpain.Operationsaresettobeginin2021andthecompanyaimstoreach200MWofelectrolysermanufacturingcapacityby2023.Tohelpdeliverthisproject,aswellasotherprojectsinSpain,Iberdrolahassignedamemorandumofunderstanding(MoU)withNEL.Sources:BEIS(2020);Diermann(2020);Frøhlke(2021);Iberdrola(2020);Løkke(2021);NSEnergy(2020).5LOHCsareorganiccompounds,liketoluene,thatcanabsorbandreleasehydrogenthroughchemicalreactions.CURRENTSTATUSANDCHALLENGES13Compressedhydrogencanbetransportedbytruckorbytubetraileringascylinderswithpressuresbetween200and700bar.Forexample,ajumbotubetrailercancarryupto1100kgofhydrogencompressedat500bar(HyLAW,2019).Transportingcompressedhydrogenbytruckisviableforshortdistances(uptoafewhundredkilometres)andforlowvolumes.Forlongerdistances,hydrogenisusuallytransportedinliquidform.Liquefyinghydrogenrequirescoolingittoatemperatureof–253°Corbelow.Upto3500kgofliquidhydrogencanbetransportedbyonetruck(HydrogenEurope,2020).Asvolumeanddistanceincrease,trucksbecomealessfeasibleoption.Instead,pipelinesofcompressedhydrogencanbeused.Theycanpotentiallytransportthousandsoftonnesperday.Buttherearecurrentlyonlyabout5000kilometres(km)ofhydrogenpipeline(comparedto3millionkmoffossilgaspipeline),mainlyinindustrialclustersinAsia,EuropeandNorthAmerica(HydrogenAnalysisResourceCenter,2016).Oneoptionwouldberepurposingpipelinescurrentlydedicatedtofossilgasforthetransportofgreenhydrogen.Repurposingpipelinesmayinvolvethereplacementofvalves,regulators,compressorsandmeteringdevices,but,insomecases,dependingonthepipelinematerial,itcouldalsorequirereplacementoftheactualpipelines.Figure1.1VolumetricenergydensityofvarioussolutionstotransporthydrogenVolumetricenergydensityinkWh/m3CGH2(15°C,500bar)CGH2(15°C,700bar)LOHCLH2AmmoniaMethanolCGH2(15°C,300bar)01000200030004000500073373310001000133313331400140023672367358035804378Notes:CGH2=compressedgaseoushydrogen;LH2=liquidhydrogen.Sources:EhteshamiandChan(2014);Naziretal.(2020);Singh,SinghandGautam(2020);Teichmann,ArltandWasserscheid(2012).CHAPTERONE14Pipelinescanalsobeusedtotransportammonia,andsomealreadyexistforthispurpose.Oneexampleisthe2700kmTogliatti-Odessapipeline.Finally,hydrogencanbetransportedbyship.Forshipping,themainpathwaysareliquidhydrogen,ammonia,LOHC,methanolorsyntheticliquids.ThegovernmentandindustriesofJapanhavestartedvariousinitiativestoassessthefeasibilityoftheseoptions(seeBox2.3).Ammonia,methanolorsyntheticfuelscanalsobethefinalproductsconsumedbythechemicalindustry,orusedinthepowerandtransportsectorsasanalternativefuel.Greenammonia,forexample,isconsideredaverypromisingoptiontopowerlargerships.1.1.4HydrogenstorageTwomainhydrogenstorageoptionscurrentlyexist:tanksandundergroundgeologicformations.Tanksofvarioussizesandpressuresarealreadyusedinindustry.Theyaremoresuitedtolowvolumes(uptoaround10000m3)andfrequentuse(daily),andhavehighoperatingpressures(around1000bar).Storageundergroundispossibleindifferenttypesofreservoirs,butthemostfeasibletodatearesaltcaverns,whicharealsousedforfossilgasstorage.Undergroundstorageismoresuitedtolargevolumesandlongtimeframes(weekstoseasons),andhasaloweroperatingpressure(50–250bar).Saltcavernsarespreadacrosstheglobe,butsomecountrieshavelimitedcapacity.AsiaPacific,SouthAmerica,SouthernEuropeandthewestcoastofNorthAmerica,forexample,havefewsuchsaltcaverns.Forregionsthatdohavesuitableformations,however,thepotentialisusuallyvastandordersofmagnitudelargerthanneeded.Saltcavernsareusedforhydrogenstorageinonlytwocountries(theUnitedStatesandtheUnitedKingdom).Thetotalcapacityinusestoodatabout250gigawatthours(GWh)in2019(BlancoandFaaij,2018;BNEF,2019;Caglayanetal.,2019;Hévin,2019).1.2.HYDROGENSUPPLYBARRIERSDespitethepowerfulfactorsdrivingtheglobaluptakeofrenewableenergyandgreenhydrogen,andthenumberofplayerssupportingthetransition,multiplebarriersarechallengingthescale-upofelectrolysersandhydrogentransportinfrastructure.Themostrelevantbarriersincludethehighcosts,sustainabilityissues,unclearfutureandlackofdemand,unfitpowersystemstructures,andlackoftechnicalandcommercialstandards.1.2.1CostbarriersAmajorchallengetothewidespreadproductionofgreenhydrogeniseconomic.Tobeeconomicallyattractive,greenhydrogenshouldreachcostparitywithgreyhydrogenforsectorsalreadyusinghydrogen,andwithfossilfuelsforusesnotyetusingdecarbonisedsolutions.However,currenttechnologyoptionsarestillexpensive,bothfortheproductionandthetransportelementsofthevaluechain.Thecostsofproducingandtransportinghydrogenarerelatedtothecurrentperformanceofthemaintechnologiesthatareavailable;eachofthemhasroomforimprovement(seeBox1.3).Thecostbarrierisparticularlyfeltbythefirstmovers,andcurrentinvestorsingreenhydrogentechnologiesarereportingitamongthemainbarriersfortheirprojects(IRENACoalitionforAction,2021)CURRENTSTATUSANDCHALLENGES15ProductioncostsTheproductioncostofgreenhydrogendependsontheinvestmentcostoftheelectrolysers,theircapacityfactor,whichisameasureofhowmuchtheelectrolyserisactuallyused,andthecostorpriceofelectricityproducedfromrenewableenergy,dependingonwhetheritisproducedfullyon-siteorpurchasedfromthegridorthroughpowerpurchaseagreements(PPAs)(seeSection2.2).Greenhydrogenprojectsarealsocapital-intensive,whichmakesfinancinganimportantfactor.In2020theinvestmentcostofanalkalineelectrolyserstoodataboutUSD750-800perkilowatt(kW),withahighsensitivitytocapacity(below1MWcapacity,theinvestmentcostcoulddouble).Underoptimalconditionsoflow-costrenewableelectricity,greenhydrogencanachievecostcompetitivenesswithfossil-basedhydrogen,notinghoweverthatoperationalhoursofjust3000-4000hoursperyearareneededtoachievethegreatestreductionintheper-unitcostofinvestment(IRENA,2020b)(Figure1.2).ThepriceofelectricityprocuredfromsolarPVandonshorewindplantshasdecreasedsubstantiallyinthelastdecade.In2018solarenergywascontractedataglobalaveragepriceofUSD56/MWhandonshorewindatUSD48/MWh(IRENA,2019a).Newrecord-lowpriceswereagreedaroundtheworldin2020,downtoUSD13.5/MWhforsolarPVinAbuDhabi(UnitedArabEmirates).Still,giventhesevaluesandthecapacityfactorsofVariableRenewableEnergy(VRE)powerplants,currentcostsforgreenhydrogenhavearangeofaroundUSD4-6/kg.Bycomparison,thecostofgreyhydrogeniscurrentlyaboutUSD1-2/kg(Figure1.2)Figure1.2Hydrogenproductioncostdependingonelectrolysersystemcost,electricitypriceandoperatinghourElectricityprice(USD40/MWh)GreyhydrogencostrangeElectrolysersystemcost(USD200/kW)+fixedcostsElectricityprice(USD20/MWh)Electricityprice(USD10/MWh)Electricityprice(USD20/MWh)GreyhydrogencostrangeElectrolysersystemcost(USD500/kW)+fixedcostsElectrolysersystemcost(USD200/kW)+fixedcostsElectrolysersystemcost(USD770/kW)+fixedcostsHydrogenproductioncost(USD/kg)01234567Operatinghours116233245486764898111Hydrogenproductioncost(USD/kg)01234567Operatinghours116233245486764898111Note:GJ=gigajoule.Efficiency=65%(lowerheatingvalue).Fixedoperationalcost=3%ofthecapitalcosts.Lifetime=20years.Interestrate=8.0%.Fossilfuelrange:greyhydrogen,consideringfuelcostsofUSD1.9–5.5/GJforcoalandfossilgas.Source:IRENA(2020b).CHAPTERONE16ConversioncostsThecompressionprocessfortrucks,consideringthecapitalcostsofthecompressionplantandtheelectricityconsumption,addsaroundUSD1-1.5/kgH2(Parksetal.,2014).Similarly,theliquefactionprocesscouldaddaroundUSD2-3/kgH2(DOE,2019).Estimatesofthecostofconversionfromhydrogentoammoniain2030areintherangeofUSD0.4-0.9/kg.Reconversioncandoubleortriplethesecosts;however,ammoniacanbeusedasafeedstockandasafuel,sothisprocessmaynotbeneeded.ThecosttoconverthydrogenintoanLOHCandthenextractitbackareexpectedtobeintheorderofUSD1.3-2.3/kgby2030(McKinsey,2021).TransportcostsTransportinghydrogengeneratesadditionalcosts.Toohightransportandconversioncostswillmakenoteconomicallysustainabletotransportgreenhydrogen,andelectrolyserswouldonlybebuiltclosetolargedemandcenters.Transportcostsareafunctionofthevolumetransported,thedistanceandtheenergycarrier(seeFigure1.3).Moreover,theinvestedcostsoftheinfrastructureitself(trucks,ships,pipelines)havetobeaddedtotheoperationalcostsoftransport.6Forshortdistances,trucksarethefirstoptionastheycanbeusedalmosteverywhere.Usingtruckstotransportcompressedhydrogenismoreexpensiveduetothefactthatthesetruckscanonlycarryasmallamountofhydrogen,makingtheuseofliquidhydrogentrucksacheapersolution(althoughtheconversioncostsaremuchhigherforliquidhydrogen,asdiscussedabove).Operationaltransportcostsviapipelineareminimalanddependondistanceandflowrate:higherflowratesallowachievingeconomiesofscaleleadingtoloweradditionalcostsperunitofhydrogentransported.However,repurposingorbuildinganewhydrogenpipelineiscapital-intensive,intheorderofmillionsofdollarsperkilometre(Rödl,WulfandKaltschmitt,2018).Themajorcostisthepipelineinvestmentcomponent,andhydrogenpipelinescostscanbe110-150%thecostsforfossilgaspipelines(Guidehouse,2020).Incontrast,fossilgaspipelinescanberepurposedforhydrogenat10-25%ofthegreenfieldcost.Hydrogentransportbypipelinecanbejustone-tenthofthecostoftransportingthesameenergyaselectricity(Vermeulen,2017).Wherepossible,forlongdistancesandlargevolumestheshippingoptionhasthelowestcost(particularlywithhydrogenstoredintheformofLOHCorammonia),followedbypipelineathightransportedvolumes.Still,thecostoftransportingliquidhydrogenisquitehighduetothehighcostofadaptingthetankforlongjourneyswithreducedboil-offofhydrogen.Forlargevolumes,shippinggreenammoniaisthelowest-costoptionandaddsafewUSDcentsperkgofhydrogenforeachadditionalkilometre.6InFigure1.3,thesecostsarerepresentedasthevaluesat0km.CURRENTSTATUSANDCHALLENGES17Costperkilometer(USD/kgH2)0500100015002000Distance(km)4.03.02.01.00Pipeline(100tpd)CompressedhydrogentruckAmmoniatruckLiquidhydrogentruckPipeline(500tpd)Figure1.3CostsforhydrogentransportasafunctionofthedistancebyselectedtransportmodeNotes:Costspresenteddonotincludeconversioncosts.Finalcostsinanytransportmodedependonmanyvariablesandthevaluesherepresentedareindicative.Weightedaveragecostofcapital=7%;usefullifeofinfrastructure=20years;tpd=tonnesperday.Source:ElaboratedfromIEA(2019);Naziretal.(2020);Singh,SinghandGautam(2020);Teichmann,ArltandWasserscheid(2012).StoragecostsStoringcompressedhydrogenisatleast50%moreexpensivethanstoringmethane,giventhelowerspecificenergyofhydrogen,butstoringhydrogeninsaltcavernscanbe1%ofthecostofstoringelectricity,inparticularforseasonaluse(WijkandChatzimarkakis,2020).Thelevelisedcostofstoragedependsonthecyclingofthestoragefacility,i.e.howoftenitisused.Forhydrogenstorage,cyclingisbasicallythenumberoftimesduringtheyearthatthefacilityisfilledandemptied.Themorethestorageisused,theloweritsadditionalcostwillbeperunitofhydrogendelivered.Forthisreason,technologieswithhighcapitalcostsandsmallvolumes(suchaspressurisedtanksorliquefiedhydrogentanks)needtocycleoftentoreducetheirtotaldeliveredcostperunit,whilesolutionswithlowcapitalinvestmentneeds,suchassaltcaverns,aresuitedtoalownumberofcyclesperyear(e.g.seasonalstorage).Assuming30yearsofusefullife,theuseofpressurisedtankswithadailycyclecurrentlyaddsUSD0.2–0.85/kgtothecostofhydrogen.Thesecostsareexpectedtodecreaseasmoretanksaredeployed(BNEF,2019).StoringhydrogeninsaltcavernscyclingtwiceayearaddsbetweenUSD0.1/kg(repurposedcavern)andUSD1/kg(greenfieldinvestment)tohydrogencosts.Thesecostsarealsoexpectedtodecrease,toone-thirdoftoday’svalue(BNEF,2019;Lord,KobosandBorns,2014).Itshouldbenotedthatthisseasonallystoredhydrogenwouldbeusedinperiodswhenotherformsofenergyarenotimmediatelyavailableand,therefore,energypricestypicallyincrease.CHAPTERONE18Box1.3EnergylossesofthehydrogensupplytechnologiesFortheproductionofgreenhydrogen,differentelectrolysertechnologiesareavailable:alkaline,PEM,SOECandAEM;thesmallmarketis,however,dominatedbyalkalineandPEMtechnologies.Typicalelectrolysisefficiencyisaround66%:thismeansthattoproduce1megawatthour(MWh)ofhydrogen(or30kg),around1.5MWhofelectricityareneeded.Somehigherefficiencyfiguresarealreadyreachable.AlkalineelectrolysershaveaslightlyhigherefficiencyandarecheaperthanPEMelectrolysers.Despitethis,PEMelectrolysersarereceivingconsiderableinterestfromresearchinstitutesanddevelopers.PEMtechnologycandeliverpressurisedhydrogenwithahighpurity,withlowerstackdegradationunderconditionsofdynamicoperation(typicalifconnectedtoVREpowerplants),satisfyingagreatervarietyofhydrogendemands.Italsohasalowerfootprint(lessspaceisneededtohosttheplant).Theavailabletechnologiesdonotsharethesamecharacteristics:abriefdescriptionispresentedinAnnex1.Foritstransportandstorage,thelowvolumetricenergydensityofhydrogencausesthemainchallenges.Eachmodeofhydrogenproduction,treatmentandtransportrequiresacertainamountofenergyandcanresultinenergylosses.Thehighertheenergylosses,themorerenewableelectricitycapacityisneeded.Thiswouldincreasetheannualpaceofrenewablecapacitycommissioningneededtomeettargetsforthedecarbonisationoftheenergysystem.Theprocessofproducingcompressedhydrogenrequiresbetween1kWhtoupto7kWhperkgofcompressedhydrogen,dependingonthecompressionlevel,whileliquefactionrequiresupto12kWh/kg.However,effortsarebeingmadetoreducethisconsumptiondownto6kWh/kg.Furthermore,about1.65%ofthehydrogenislostduringtheliquefactionprocess,andaround0.3%oftheliquefiedhydrogenis“boiled-off”perdayduringtransportandstorageThewholeprocessofabsorbinghydrogenandreleasingitbackviaLOHCssuchastoluenecanlosetheequivalentto15-20%ofthehydrogencontentduetoenergyconsumptionandlossofhydrogenintheconversion.Ammoniaproductionhasarelativelylowefficiency(around55%fromelectricitytoammonia)andunlessammoniaistheendproduct,itsreconversionbacktohydrogenwillconsumeanadditional15-20%ofthehydrogencontent.Researchanddevelopment(R&D)aresettoimprovetheefficiencyofboththeproductionandtheconversionofgreenhydrogen,reducinginturntheoverallcostsofthisdecarbonisationsolution.Sources:DOE(2021,2009);Ecuityetal.(2020);IRENA(2019b);Naziretal.(2020);Niermannetal.(2019);SimbeckandChang(2002);Soloveichik(2016);StolzenburgandMubbala(2013);Teichmannetal.(2012).CURRENTSTATUSANDCHALLENGES19221.2.2SustainabilityissuesGreyhydrogenproductionfrommethaneemitsabout9kgCO2/kgH2.However,thisvalueconsidersonlytheproductionofhydrogen:themethaneusedtoproduceitneedstobetransportedandthisactivityimpliesleakages.MethaneisanimportantGHGandmethaneleakagesarerelevantcontributorstoclimatechange.Estimatesofanthropogenicmethaneemissionsaresubjecttoahighdegreeofuncertainty,butrecentestimatesputthemataround335Mtperyear(Saunoisetal.,2016),equivalentto28810MtofCO2inclimateimpacts.7ReducedCO2emissionsarethemajorbenefitofgreenhydrogen.However,iftherenewableenergyusedforgreenhydrogenelectrolysis,storageandtransportisnotsustainablyproduced,itcouldhaveanimpactintheformofdisplacedCO2emissions.Sustainablyproducedgreenhydrogenismadewithadditionalrenewableelectricity(IRENA,2020a),toensurethatelectrolyserconsumptiondoesnotincreasefossilfuelconsumptionelsewhereordisplacemoreefficientusesofrenewableelectricity.Thisissummarisedbytheprincipleofadditionality:ifthereareotherproductiveusesfortheelectricitybeinggeneratedfromrenewablesources,thatelectricityshouldnotbedivertedfromthoseusestoproducegreenhydrogen.Instead,greenhydrogenshouldbeproducedonlyfromadditionalrenewableenergycapacitythatwouldnototherwisebecommissionedandelectricitythatwouldnotbeotherwiseconsumed.8Thisisespeciallyimportantfordevelopingcountries,whichmaybeatriskofdevelopingrenewablesprojectsdedicatedtogreenhydrogenforexport,withtheriskofslowingthedecarbonisationoftheirownelectricitymix.Inaddition,whilerenewableenergyplantscanensurenoadditionalemissions,gridelectricity(composedofbothrenewableandfossilfuelpowerplants)cannotensurelowemissionsatalltimes.Theelectricityfeedingtheelectrolysershouldhaveanemissionfactorbelow190gramsofCO2/kWhinorderforelectrolytichydrogentohavelowerCO2emissionsthangreyhydrogen(IRENA,2020a).Also,convertingandtransportinghydrogencancreateadditionalCO2emissions,especiallyconvertingtoLOHC(Reußetal.,2017).Theemissionsduringthetransportstagearedirectlyrelatedtotheenergyefficiencyofthetransportmodeandtheenergydensityofthecarrier.Intheshortterm,truckstransportinghydrogenwillmostlikelycontinuetousefossilfuels.TransportwithtruckscaneasilyerodetheCO2emissionreductionbenefits.Forinstance,transportingcompressedhydrogenfor400kminatruckusingdieselwouldemitabout3kgCO2/kgH2(Wulfetal.,2018).LiquidhydrogenreducestheCO2contributionperkilogramofhydrogenmoved,givenitshigherenergydensity.Thisneedstobeweighedagainsttheadditionalemissionsduringtheliquefactionstep.Forexample,assumingcurrentGermangridelectricityandEURO5trucks,liquidhydrogentransportisestimatedtohavealowerimpactthancompressedhydrogeninGHGemissiontermsfordistancesover450km(Rödl,WulfandKaltschmitt,2018).ThemainsourceofGHGemissionsforpipelinesistheenergyconsumptionforcompression,buttheaddedemissionsarerelativelysmall.Forinstance,apipelinetransporting40tonnesperdayfor400kmwouldhaveemissionsintheorderof0.1kgCO2/kgH2(Wulfetal.,2018).Therearecurrentlyfewnationalandinternationalvoluntarysystemstocalculatetheseemissions,andonlyafractionofhydrogeniscertified(IRENA,2020a).Intheabsenceofsuchschemes,thereistheriskofunsustainablefossilfuel-basedoptionsenteringthemarket,marketedaslow-carbonwithoutproperbenchmarkingorindicationoftheeffectiveemissionreduction.7Assuminga20-yearglobalwarmingpotentialfactorformethaneequalto86(IPCC,2013).8TheprincipleofadditionalityisonecomponentofthepillarsforgreenhydrogenpolicymakingpresentedinIRENA(2020a).CHAPTERONE201.2.3LackofclarityregardingfuturedemandNotwithstandinggreatpromisesandnationalplans,thegreenhydrogensectorisstillinitsinfancy.Thelargemajorityofcountriesintheworldstilldonothaveahydrogenstrategy-evenamongthosewhichalreadyhaveasubstantialuseofhydrogen.Eventhosecountrieswitharecentstrategymaynothavesupportingpoliciesinplaceyet.Projectpipelineestimatesvarywidelyandthereisnorealexperiencewithelectrolysersatgigawattscale.Moreover,manystrategiesincludebluehydrogen(greyhydrogenwithcarboncaptureandstorage)amongthepossiblesolutions.Whilethisroutewouldprovideonlypartialdecarbonisation,thepresenceofcompetitorsreducestheopportunitiesforgreenhydrogenproducers.Thereisstillverylittlevaluerecognitionforgreenhydrogen.Whileinterestintheideaisgrowing,norealdemandexistsyetforproductsmadeusinggreenhydrogen,suchasgreensteelorgreenammonia.Instead,thedemandforsuchproductsisirrespectiveoftheoriginoftheirfeedstocks.Meansofplacingavalueonthebenefitsofgreenhydrogen(e.g.fuelmandates,blendingquotas,publicprocurementrequirements)arenotwidespread.Hydrogenisstillnotpubliclytraded,incontrasttoothersourcesofenergy,asthetradingofhydrogenispossiblethroughbilateralagreementsbetweencompanies.Withoutaclearperspectiveontheconsumptionofhydrogen,infrastructuredevelopmentmayhavenoimpetusbehindit.Investinginnewgrids,repurposingexistinginfrastructureandbuildingdedicatedportterminalsiscapital-intensiveactivitythatneedsclearvisionofthepointsoforiginandofftakeofgreenhydrogen.TURQUOISEGREENGREYBLUEHYDROGENHYDROGENHYDROGENHYDROGENGREYHYDROGENTURQUOISEGREENGREYBLUEHYDROGENHYDROGENHYDROGENHYDROGENBLUEHYDROGENTURQUOISEGREENGREYBLUEHYDROGENHYDROGENHYDROGENHYDROGENGREENHYDROGENCURRENTSTATUSANDCHALLENGES211.2.4UnfitpowersystemstructuresElectrolysersareflexibleresources(seeAnnex1)andcouldparticipatealongwithothertechnologiestoprovidethepowergridwithancillaryservices.However,electrolysersarenotcurrentlyallowedtoprovidetheirfullrangeofservicestothepowergrid,likemanyotherdemand-sideresources.Insomecountries,compensationforancillaryservicesmaynotevenbeestablished(IRENA,2020c).Whilethisisnotabarriertotheirdeployment,ithinderstheopportunitytoaddarevenuestreamandreducethecostofhydrogen.Short-termimbalancesbetweenloadandgenerationcanbemetbymanyflexibleresources,includingbatteries,buttheoptionstofixlong-termimbalancesarelimited.Onesolutionistousegreenhydrogen,generatedandstoredduringahighVREproductionperiod,andusedinpowerproductionfacilities(hydrogen-readyturbines,fuelcells)whenVREavailabilityislow.However,currentpricingstructures,inparticularinliberalisedmarkets,donotprovideenoughcertaintyaboutthereturnoninvestment.Moreover,insystemswithhighVREpenetration,electricitypricesandseasonalelectricitypricedifferentialshavefallen,makingitharderforpotentialseasonalstoragetorecovercosts(FTI,2018).Evenifthereisanetbenefittothesystemandsocietyatlarge,investorsinthepowersystemmaynothavesufficientincentivestoprovideseasonalstorage.Currentpowermarketstructuresaretypicallyunabletosignalthevalueofsecuresupplyandthereforefailtosecurecapacitytocoverextremeevents.1.2.5LackoftechnicalandcommercialstandardsHydrogencanbeassafeasthefuelsinusetoday,withproperhandlingandcontrols.However,theneedtotransportandstorehydrogenbringshazardsthatneedstobeaddressed.Indeed,hydrogenhasalonghistoryofsafeuseinindustry.Forgreenhydrogentobecomewidelyacceptedinapplicationswhereitisnotalreadyused,itwillbecomeincreasinglyimportanttodevelopandimplementinternationallyagreedcodesandstandardscoveringthesafeconstruction,maintenanceandoperationofhydrogenfacilitiesandequipment,alongtheentiresupplychain.Suchuniversalstandardsdonotcurrentlyexist.Effortsare,however,beingmadeinthisdirection.Forexample,internationalstandardisationactivitiesforhydrogentechnologiesundertheISOTechnicalCommittee197(ISO/TC197)haveinparticularadvancedforthetransportsector(ISO,2021).Unsuitablequalitystandardsforhydrogencurrentlyimposerestrictiveconditionsorlimitsonitstransport.Whilenormshavebeenadoptedinrelationtobiomethaneinseveralcountries,thishasnotbeenthecaseforhydrogen.Thisisinpartduetothefactthatstandardsweredevelopedinthefossilfuelera,withafocusonfossilgases(EuropeanCommission,2019).Virtuallyallrelevanthydrogen-relatedcodesandstandardsrestonavoluntaryprocessbasedonconsensus,butgovernmentscanencouragetheirprogressionwithdedicatedeffort.Developingandobtainingconsensusforchangestothesestandardsisalongprocess.Hence,urgentactionisneedednowtoavoidthembecomingabarriertoactioninthemediumterm.Competitionamongstandardsdevelopmentorganisationscanalsocomplicatetheprocess(DOE,2020a;Morgan,2006;Nakarado,2011).CHAPTERONE222POLICYOPTIONSThebarrierspresentedinthepreviouschapteraresimilartothebarriersfacedbyrenewableenergytechnologiesduringtheirinceptionphase.Thepoliciespresentedinthischapterarepossibleoptionstoaddressthesebarriers,creatingapositiveenvironmentfortheproduction,transportandtradeofgreenhydrogen(seeFigure2.1).Multiplepolicyoptionsareavailableforsomeofthebarriers.Theoptionscanbeattributedtospecificpartsofthevaluechain,similartothebarriers.Currentgovernmentincentivesandpoliciestargetedatelectrolysersandinfrastructureremainlimited.Butsolutionscanalsobedrawnfromtheexperiencegovernmentshavegainedinsupportingrenewableenergyinpowerandheating,aswellasfrompoliciesintheindustrysector.AspresentedinFigure2.1,awiderangeofpoliciesareavailabletosupportthedevelopmentofagreenhydrogenindustry.Policymakerscanprioritiseactionsdependingonthematurityofthenationalhydrogensector.Chapter3presentsaseriesofstages,providingaroadmapofactionsneededtosupportgreenhydrogensupplyasitmovesfromnichetomainstream.23Figure2.1BarriersandpolicyoptionsforthesupplyofgreenhydrogenHighinfrastructurecostsHighcostsofrenewableelectricityUnclearfutureUnclearfutureGreenhydrogencostgapSustainabilityissuesTechnicalbarriersELECTRICITYCONSUMPTIONGREENHYDROGENOFFTAKEPRICEDEMANDTRANSPORTSTORAGEINFRASTRUCTUREELECTROLYSIS2LackofstandardsSustainabilityofgridelectricityHighcostofelectrolysersUnclearfutureUnfitpowersystemstructureSupportforgreentrucksandshipsSeasonalstoragesupportLackofdemandUnfitpowersystemstructureExemptionsfromelectricitytaxesandleviesCapacitytargetsGreengastargetsFiscalincentivesSustainabilityassurancemeasuresManufacturingcapacitysupportVirtualblendingGreengaspremiumCreationofstandardsPlanningDirectfinancialsupportInternationalagreementsAuctionsFinancingFiscalincentivesAncillarymarketparticipationBARRIERSPOLICYOPTIONSGuaranteesoforiginResearchandDevelopmentTURQUOISEGREENGREYBLUEHYDROGENHYDROGENHYDROGENHYDROGENGREENHYDROGENCHAPTERTWO242.1.POLICIESTOSUPPORTELECTROLYSERDEPLOYMENTReducingGHGemissionsinhard-to-abatesectorsthroughtheuseofgreenhydrogenwillrequirelargeamountsofit,largerthancurrent(mostlygrey)hydrogenproduction.That,inturn,requiresarapidscale-upinthenumberandoverallcapacityoftheelectrolysersusedtomakehydrogen.TheroadmapdescribedinIRENA’sWorldEnergyTransitionsOutlookforesees400Mtofgreenhydrogenconsumedby2050,producedbyatotalinstalledcapacityofelectrolysersof5TW.Thissectiondescribespoliciestoachievethenecessarygrowthinelectrolysersandreductionincapitalcosts,includingelectrolysercapacitytargets,measurestosupportthescale-upofmanufacturingcapacity,anddirectfinancialandfiscalsupport.2.1.1ElectrolysercapacitytargetsRenewableenergytargetshavebecomeadefiningfeatureoftheglobalenergylandscape.Some166countriesaroundtheworldhadadoptedatleastonetypeofrenewableenergytargetby2020,upfrom43countriesin2005(REN21,2020).Targetsserveasaprincipalwayforpublicactorstodemonstrateacommitmenttotheenergytransitionandcanrangefromofficialgovernmentannouncementstofullyfledgedpublicplans,suchasanationalhydrogenstrategy(IRENA,forthcominga).Currenttargetsforelectrolysercapacityusuallyfeatureinnationalorregionalhydrogenstrategies,oftenwithvaryingdegreesofcommitment.Targetsettingcanensuretheappropriateparalleldevelopmentofrenewableenergyandelectrolysercapacities,whileatthesametimeavoidingthediversionofrenewableenergyfromendusesthatmaybemoreeffectiveindecreasingGHGemissions(IRENA,2020a).Electrolysertargetsinnationalstrategiestendtonotdifferentiatebetweenelectrolysertechnologies.TheEUhydrogenstrategysetstargetsof6GWofelectrolysersby2024and40GWby2030(EuropeanCommission,2020a).9SevenmemberstatesoftheEuropeanUnionhavealreadydevelopednationalstrategies,visiondocumentsorroadmaps.By2021thetotalcapacitytargetinthosestrategiesaddeduptoaround28GWby2030(Figure2.2).Inaddition,privatedevelopersintheEuropeanUnionannouncedplanstoinstallaround8GWofelectrolysers(seeBox1.1),mostlyintheNetherlands,forwhichthepipelineisaround2.6GW,andDenmark(1GW).AnothercountrywithambitioustargetsisChile,whichaimstobecomemajorhydrogenproducerandexporterby2030.Toachievethatgoal,thegovernmentaimstosee5GWofelectrolysiscapacitybuiltorindevelopmentby2025andtoreach25GWbytheendofthedecade(MinEnergía,2020).Targetsshouldnotbeseenasacapacitycap(indeed,theyshouldbeseenasafloor),andtheycanandshouldbesurpassedwhenpossibleandbenefitting(handinhandwithamorerapidrenewableenergyexpansion),butupscaleinthemanufacturingcapacitywillbeneeded.Suchupscalewouldalsodecreasetheinvestmentcomponentofhydrogencost.940GWofelectrolysersarealsoexpectedinneighbouringcountries,toprovidehydrogentotheEuropeanUnion.POLICYOPTIONS25Figure2.2ElectrolysercapacitytargetsinEuropeanhydrogenstrategies,2030Note:ThediagramtakestheaverageofthetargetrangesadoptedbytheNetherlandsandPortugal.Source:IRENAanalysisbasedonnationalstrategies.11.75GW11.75GWEUstrategy-remainingcapacityEUstrategy-remainingcapacity6.5GW6.5GWFranceFrance5GW5GWItalyItaly5GW5GWGermanyGermany3.5GW3.5GWTheNetherlandsTheNetherlands2.25GW2.25GWPortugalPortugal4GW4GWSpainSpain2GW2GWPolandPoland40GWCHAPTERTWO262.1.2Supportforthescale-upofmanufacturingcapacityGiventhestrategicimportanceofgreenhydrogeninmakingalow-carbonfuturepossible,governmentsarealreadypursuingindustrialpoliciestosupportthescale-upandefficiencyofelectrolysermanufacturingcapacity.Inadditiontodefininglong-termtargets,suchpoliciesandmeasuresaremainlyrelatedtosettingupdedicatedfundstosupportimprovedmanufacturingprocessesandtechnologicaladvancement.Scalingupproductionbycreatingelectrolyser“gigafactories”(i.e.abletoproduceelectrolysercapacityatgigawattscale)willprovideeconomiesofscale,especiallywhendesignsarestandardisedandmodulesareoptimised.Forexample,increasingthemanufacturingscalefrom10to1000units(1MWeach)peryearcoulddecreasethecostofthestack,amaincomponentoftheelectrolyser,byalmost60%(Mayyasetal.,2019).Thiscouldbecomplementedbyincreasingthemodulesizefromtoday’saverageof1MWto100MW,potentiallyleadingtoanadditional60%costreduction(IRENA,2020b).Somemanufacturersalreadyclaimthat50-75%costreductionsareachievableintheshortterm,drivenbytheupcomingscale-upinmanufacturingcapacity(Collins,2021a;2021b)(seeBox1.2).Themanufacturingprocesscurrentlystillrequiresalargeamountofmanualwork.Butitcouldbeincreasinglyautomatedasthevolumeofelectrolysersincreases.Policymakerscansupportscalingupwithdedicatedfinancialsupport.InJune2020theUSDepartmentofEnergyannouncedafundofUSD64milliontosupport18projectsaspartofthe“H2@scale”visionforanaffordablehydrogenvaluechain.Inparticular,aroundUSD17millionwillbeprovidedtoprojectstoscaleupelectrolysermanufacturingtothegigawattsize(DOE,2020b).Policiestoscaleupmanufacturingcanalsobepursuedbycountriesaimingtoexportknow-howandequipment.OnesuchcountryisGermany,whereprojectH2Gigaisdedicatedtothedevelopmentofthegigawatt-scaleserialproductionofelectrolysers.Itshareswithothertwoprojects(H2mareandTransportHyDE)aEUR700millionfundfromthecountry’sresearchministry(Franke,2020).ThedevelopmentofGermanmanufacturingcapacitytoexportelectrolysertechnologymightbeattractive,exploitingthecurrenttechnologyleadershipthatEuropecurrentlyholdsforPEM.POLICYOPTIONS272.1.3DirectfinancialsupportTargetsandsupportforthescaleupandefficiencyoffactoriescouldhelpattractinvestmentfromprivate-sectorparticipants.However,investedcostswouldstillbehighandfinancialincentivessuchasgrantsandloanswouldbeneeded.Suchfinancialincentiveshavealreadyseenwidespreaduseinpoliciestosupportrenewableenergy(IRENA,IEAandREN21,2018).Todate,electrolysersfortheproductionofgreenhydrogenhavebenefitedfromsubsidiesforpilotprogrammesandotherR&D-relatedfunding.SincethebeginningoftheCOVID-19pandemic,manycountrieshavecommittedtosupporthydrogenthroughrecoveryfunds.EstimatesindicateaglobalcommitmentofatleastUSD20billion(EnergyPolicyTracker,2021).FrancecommittedUSD8.3billionby2030initsrecentnationalstrategy,whichincludesUSD2.4billionin2020-2022aspartofitsCOVID-19recoverypackages(Petrova,2020).GermanyallocatedUSD8.4billiontothecreationofademand-drivenmarketforhydrogenaspartoftheUSD156billionstimuluspackageforeconomicrecoveryfromtheCOVID-19crisis(notincludingtheUSD2.4billiondedicatedtopartnershipswithcountrieswherehydrogencanbeproduced)(Reuters,2020)InApril2020theAustralianRenewableEnergyAgencyannouncedafundingroundofaboutUSD52million(AUD70million)forgreenhydrogen,targetingelectrolysersofatleast5MWandpreferably10MWorlarger(ARENA,2020a).IntheUnitedKingdom,theBEISHydrogenSupplyCompetitionaimedtoidentifyanddemonstratebulkgreenandbluehydrogensupplysolutions,replicableatasignificantscale.Inthefirstphase,theprogrammeusedafundofUSD6.6million(GBP5million)toconductfeasibilitystudies.AsecondphaseissupportingpilotprojectswithUSD20million(GBP15million)offunding.Fivedifferentprojects,someofthemofrelativelylargeinsize,havebeenselectedforthesecondphase(BEIS,2020).2.1.4FiscalincentivesIndustrialpoliciescommonlyprovidesupportviaadedicatedfiscalregime.Forgreenhydrogen,policiesthatreducethefinancialburdenrelatedtoelectrolyserinvestmentwillreducethatcostelementandstrengthenthebusinesscase.Theeffectofthesemeasuresongovernments’fiscalbudgetsisexpectedtobeverysmallatthebeginning,giventhelimitedelectrolyserproductioncapacity.Slidingfiscalincentives(decreasingascapacityisdeployed)couldkeeppacewiththeimprovingeconomicsoftheindustry.Therearealreadysomeexamplesoffiscalincentivesforelectrolysis.InCalifornia,projectsthatcombinePVwithelectrolysisareeligiblefora3.9%statetaxexemptionformanufacturingandR&D,theSalesandUseTaxExclusionProgramforuptoUSD20millionperprojectpercalendaryear,andtheCaliforniaResearchCreditandthe“CaliforniaCompetes”TaxCreditforaminimumofUSD20000(Eichmanetal.,2020).CHAPTERTWO282.2.POLICIESTOENSUREELECTRICITYISSUSTAINABLEANDTOSUPPORTITSCOST-COMPETITIVENESSOnceelectrolysersarebuilt,theelectricityusedmustberenewable-basedfortheproductionofgreenhydrogen.Tocompetewithtraditionalcarbon-intensivehydrogen,thiselectricitymustbeaffordable.Thissectionassessesthepolicyoptionsforensuringthatelectrolysershaveaccesstocost-competitiverenewable-basedelectricity.Itispossibletoconceptualisethreeproductionmodels(Figure2.3):fullonsiteproduction,electricityfromthepowergridorahybridsolution.Connectingelectrolyserstothegridmaybebeneficialbecausetheywouldbeabletoproduceatanymomentoftheyear,asopposedtothefullon-siteelectricitygenerationmodelwherehydrogenproductionistiedtotimeswherethepowerplantisgeneratingelectricity.Greaterutilisationoftheelectrolysersinayearwouldconsequentlydecreasetheinvestmentcomponentofthehydrogencost(Figure2.5).Moreover,fullydispatchablehydrogenproductioncouldreducetheneedforhydrogenstorageinfrastructureasproductioncanbematchedwiththeneedsoftheenduser.However,measureswouldbeneededtoensuretheelectricityuseissustainable.Inaddition,thegridelectricitypricespaidmaybehighduetogridfees,taxesandlevies,andexemptionsmaybeconsidered.MultipleIRENAreportshavedelvedintothepoliciestoacceleraterenewableenergydeploymentandhowtheycanbedesignedtominimisethepriceofrenewableenergy-basedelectricity(forexampleIRENA2019a;2015;IRENA,IEAandREN21,2018).Thefollowingsectionspresentpoliciesandstrategiestoreducethepriceofgridelectricityforelectrolysersthatareconnectedtothegrid(ineitherthegrid-onlymodelorthehybridmodel),whilealsoincreasingtheshareofrenewableelectricityconsumed.Figure2.3ProductionmodelsGenerationonsiteElectrolysis2PRODUCTIONFULLON-SITEPRODUCTIONENERGYSUPPLYRenewablegeneration(oneormorepowerplants)isdedicatedsolelytooneelectrolysisfacility,withnoconnectiontothepowergrid.Thiscouldtakeplaceinareaswithhighnaturalresourceavailability.Electrolysis2ELECTRICITYFROMTHEPOWERGRIDTheelectrolyserisconnectedtothegridandconsumeselectricitylikeanyotherenergy-intensiveindustry.ElectricitycouldbepurchasedinthewholesalemarketorthroughPPAs.Electrolysis2HYBRIDSOLUTIONTheelectrolyserisconnectedtooneormorerenewableenergypowerplantsandalsotothegrid.Thiswouldallowthefacilitytocontinueproductionwhenthepowerplantsarenotavailableandtosellexcesselectricityiftherenewableproductionexceedselectrolyserdemand.POLICYOPTIONS292.2.1PoliciesenablingsustainabilityofelectricityForgrid-connectedelectrolysers,thesustainabilityoftheelectricityconsumedmustbeensured(IRENA,2020a).Guaranteesoforigincancertifysuchfeatures,whilepolicymakerscanalsoimposecertainconditionsorencouragethemtokeeptruetheprincipleofadditionality(seeSection1.2.3)IntroducingaguaranteesoforiginschemeAguaranteeoforigin(GO)system,aspresentedinIRENA(2020a),10certifiesalltheemissionsrelatedtotheproductionandtransportofhydrogen,andcanbeusedtodeterminewhetherhydrogencanbemoreeffectivefordecarbonisationpurposesthandirectelectrificationortheuseofbioenergy.GOsshouldaccountfortheeffectofgrid-connectedelectrolysersontheoverallgridmix.Toprovethis,thetemporalandgeographicalcorrelationbetweenproductionandconsumptionshouldbeguaranteed(Crone,FrieseandLöchle,2020).MeasuresforadditionalityGrid-connectedelectrolyserscoulddrawuponnewrenewablecapacityattheexpenseofotherelectricityusesbecauseofgrowingelectrolysisdemandandahigherwillingness-to-pay(possiblyduetoincentives).Ifanelectrolyserisusingelectricityfromthegrid,thatdemandforelectricitywillbecoveredbytheso-called“marginalplant”(i.e.therunningpowerplantwiththenexthighestoperationalcostinaspecificmoment).Inmostenergysystemsaroundtheworld,marginalpowerplantsarefossilpowerplants,asrenewablepowerplantsgenerallyhavelowershort-runmarginalcosts(IRENA,2020c).Usinggridelectricitycouldthenleadtohigheruseoffossilfuelcapacity,effectivelylockinginfossilfuelgeneratorsformoreyearsifadditionalrenewableenergycapacityisnotdeployedintime.ThisphenomenoncouldactuallyendupincreasingtheaverageCO2emissionsforelectricitybyrequiringtheoperationofunitsthatwouldotherwisehavebeendisplaced(Bracker,2017).Differentmeasurescanbeusedtoensurethattheuseofrenewableelectricitybyelectrolysersdoesnottakeawayopportunitiesfordirectelectrificationusesthathavehigherpathwayefficienciesandthatcansatisfyalargershareoffinalenergyservices(Crone,FrieseandLöchle,2020;IRENA,2021,2020d;IRENA,IEAandREN21,2020;Malins,2019;Timpeetal.,2017).Inparticular,tokeeptruetheprincipleofadditionality,atleastthreeelementsshouldbefollowed:renewableelectricityproductionandconsumptionshouldbe(1)additional,andwitha(2)temporaland(3)geographicalcorrelation.Examplesofmeasurestotakeintoaccountare:•Recastingtherenewableenergytargetandquotas.Therenewableelectricitycapacitytargetsorquotascanbeeitherincreasedtoaccountforelectrolyserneedsortheycouldexcludetheelectricityconsumedbyelectrolysers.Thisensuresthatadditionalrenewablesdeploymenttakesplace.•Allow(orimpose)PPAswithmerchantpowerplants.Grid-connectedelectrolyserscouldbeaskedtohavePPAswithadditionalrenewableenergypowerplantsthatarenotreceivinganyothertypeofsupport.Amethodologyshouldbeinplacetoensureatemporalandgeographicalcorrelationbetweentheelectricityproductionunitandtheelectrolyserproduction.•Measurestotakeadvantageofotherwisecurtailedenergy.WithhighsharesofVREinthepowermix,VREcurtailmentmayincrease.Policymakerscanpromoteelectrolysers’consumptionofelectricitythatotherwisewouldhavebeencurtailed.ThiscanbedonebyprioritisingthedevelopmentofelectrolysersinareaswithgridcongestionduetoexcessiveVREproduction(forexample,northernChile,northernGermanyandsouthernItaly).Thismeasurealonemaynotjustifytheelectrolyser’sinstallation,sincethenumberofhoursofcurtailmentarelessthanthatneededtoachievethegreatestreductionintheper-unitcostofinvestment(3000-4000hours)(IRENA,2020b).10GOsareoneofthepolicypillarsdescribedinIRENA(2020a).Thereportcontainsmoredetailsontheircurrentstatusandrequirements.CHAPTERTWO30Examplesofpoliciesalreadyensuringadditionalitycanbefound,particularlyinthetransportsector.California’sLow-CarbonFuelStandard(LCFS),forexample,isdesignedtoreducethecarbonintensityoftransportfuelsandstatesthattherenewableelectricityusedforhydrogen-basedfuelsdoesnotcounttowardsmeetingCalifornia’sRenewablePortfolioStandard.Similarly,theLCFSdoesnotallowtheenvironmentalbenefitsofgreenhydrogentobeclaimedundertheRenewableEnergyCertificatesoranyotherprogramme,exceptfortheFederalRenewableFuelStandardandCalifornia’scap-and-tradeprogramme(CARB,2019).Inthisway,California’sgovernmentensuresthattheLCFSsystemdeliversitsownemissionreductionswithouttakingadvantageofotherpoliciesinplace(andviceversa).IntheEURenewableEnergyDirectiveII(REDII),theelectricityusedforsyntheticfuelscanbecountedasrenewableonlyiftheelectrolyserplantadoptsafullon-siteelectricityproductionmodelorifthesyntheticfuelproducercanprovethatgridelectricityisproducedexclusivelyfromrenewablesources,ensuringthattherenewablepropertiesofthatelectricityareclaimedonlyonce.CurrentlytheEuropeanCommissionisworkingonamethodologytoensureadditionality.Themethodologyshouldensurethatthereisatemporalcorrelationbetweentheelectricityproductionunitandfuelproduction.Geographicalcorrelationwillbealsobeensured:asyntheticfuelwouldbecountedasrenewableif,inthecaseofgridcongestion,boththeelectricitygenerationandthefuelproductionplantarelocatedonthesamesideinrespectofthecongestion.2.2.2ExemptionfromelectricitytaxesandleviesElectrolysisfallsunderenergy-intensiveprocesses,wherethecostofelectricityrepresentsalargeshareofthetotalproductioncost.Electrolysersconnectedtothegridmaybesubjecttoindustrialelectricityprices,withthesametaxesandfeesnormallyleviedonlargeconsumers.IndustrialelectricitypricescanbeashighasUSD200/MWhinsomecountries(Eurostat,2020;IEA,2020a).Taxesandfeescanrepresentasignificantshareofthefinalelectricitypriceforindustrialconsumers,whichtranslateintoahigheroperationalcomponentinthefinalcostofhydrogen(Figure2.4).Forexample,anelectrolyserinGermanythatpaysonlytheaverageelectricitypricecomponentforlargeconsumers(USD24/MWh)couldproducehydrogenatacostofUSD2.5/kgifexemptfromalltaxes.11Butwhenallthetaxesandfeesareadded,thecostclimbstoUSD7/kg.Forthisreason,Germanyexemptselectrolysersfromtheelectricitytax(Stromsteuer)andtheEEGrenewablessurcharge(CleanEnergyWire,2020;OECD,2019).Electricitytaxandlevyexemptionsforselectedindustriesarearelativelycommonindustrialpolicy.Infact,electrolysersaresometimesalreadyindirectlysupportedbysuchindustrialpoliciesdedicatedtoenergy-intensiveindustries.ElectrolyticprocessesareexemptfromelectricitytaxinNorway,FranceandtheNetherlands(OECD,2019).Exemptingelectrolysersfromtaxesandfeescanbeafirstmovetoreducethecostofelectrolytichydrogen,strengtheningitsbusinesscase.Ashydrogenproductioncanbeflexible,lowtaxesontariffscanalsobejustifiedbytheuseofthepowersystemduringperiodsoflowloadandhighVREproduction(windynights,forexample)(seeBox2.2).Exemptionshouldinanycasebeguaranteedonlywhentherenewableshareofthepowermixisaboveacertainthreshold.Thetaxexemptioncouldalsobeintroducedwithaclearphase-outprofile,foracertainamountoftimeorforatotalcapacitythatmaybenefit.11AssuminganelectrolysercostofUSD770/kWh,50%capacityloadandanelectrolyserefficiency(lowerheatingvalue)of66%.POLICYOPTIONS31Figure2.4Industrialelectricitypricesbycomponent,inselectedEuropeancountries,2019Notes:Electricitypricesforconsumptionabove150GWhperyear.LCOH=levelisedcostofhydrogen.Right-axisvaluesassumeanelectrolyserefficiencyof66%.Source:IRENAanalysisbasedonEurostat(2020).74148111185222259Electricityprice(EUR/MWh)OPEXcomponentLCOH(USD/kg)06428101214NorwaySwedenBelgiumFranceSerbiaNorthMacedoniaNetherlandsTurkeySpainBosniaandHerzegovinaBulgariaRomaniaEstoniaHungaryAustriaItalyIrelandPolandGermanySlovakiaUnitedKingdomDenmark37OtherNucleartaxesEnvironmentaltaxesCapacitytaxesRenewablestaxesValueaddedtaxNetworkcostsEnergyandsupply0Itshouldbenotedthatexemptingelectrolysersfromtaxesandfeesincreasestheburdenontheremainingcustomersandonothersourcesofsystemflexibility.Thatmaychangethecompetitivepositionofelectrolysersrelativetotheotherflexibleresources.Attentionshouldthereforebegiventofindingthebestsolutiontolevellingtheplayingfieldamongflexibleresourcesandavoidingexcessiveburdensonconsumers.Taxexemptionscanbeafirststep,butmorestrategicenergytaxreformmaybenecessarytoguaranteeafairenergytaxationsystem.Itshouldbenoted,however,thataverageelectricitypricesarenotagoodproxytoevaluatetheeconomicattractivenessofagrid-connectedelectrolyser,sinceitsflexibilityallowsittooperateinperiodsoflowelectricityprices(inliberalisedmarkets)(seeBox2.2).CHAPTERTWO32Box2.1Estimatedcostofhydrogenfromagrid-connectedelectrolyserinDenmarkInliberalisedelectricitysystemswithincreasingsharesofVRE,theenergycomponentofelectricitybillsisexpectedtodecreaseastheVREpenetrationrises(IRENA,2020c).12InwesternDenmark,whereVREpenetrationisalreadyhigh,wholesaleelectricitypriceswerebelowEUR0/MWhformorethan1.5%ofthetimeduring2019andbelowEUR20/MWhforabout6%ofthetime(Nordpool,2020).Figure2.5plotsthelevelisedcostofhydrogenusingascending2019westernDenmarkspotprices(exemptofalltaxesandlevies).ItshowshowtheproductioncostofelectrolytichydrogencoulddropbelowUSD3/kgwithanelectrolyserinvestmentcostofUSD750/kW.Figure2.5Correlationbetweenlevelisedcostofhydrogenandoperatinghoursofagrid-connectedelectrolyser,westernDenmark,2019LCOH(inUSD/kg)Windshare(in%)Capacityfactor01235461008060402000%10%70%30%50%20%90%60%80%100%40%CAPEXOPEXWindshareNotes:OPEX=operatingexpenditure;CAPEX=capitalexpenditure;electricitypricesinascendingorder,electrolyserinvestedcosts=USD750/kW;electricalefficiency(lowerheatingvalue)=66%;discountrate=7%.Source:IRENAanalysisbasedonwesternDenmarkelectricityspotpricesin2019(Nordpool,2020).12However,sincethisdynamiccreatesmisalignmentslikethe“missingmoneyproblem”,measurestorestructurethepowersystemorganizationalstructureswillbecomenecessarytosupportthepowersystemtocompletetheenergytransition(IRENA,2020c).POLICYOPTIONS332.3.POLICIESTOINCENTIVISEGREENHYDROGENDEMANDOnceelectrolysersandrenewableenergyplantsarebuilt,andsustainabilityisensured,greenhydrogencanbeproduced.However,atleastforthenextdecade,thecostofgreenhydrogencouldstillbehigherthangreyhydrogenandfossilfuels(IRENA,2020b),evenifpolicysupportselectrolysertechnologyandbringselectricitycostsdown.Moreover,demandforgreenhydrogenandgreenproductsis,asoftoday,almostnon-existent,sothewillingnesstobuyhigher-costhydrogenisstillmissing.Policymakershavevarioustoolsattheirdisposaltoincreasethedemandforgreenhydrogenbyclosingthepricegapwithgreyhydrogenandfossilfuels,byincreasingitspresenceinthegasmarket,orbyidentifyingoff-takersoutsidenationalboundaries.2.3.1Policiestoclosethepricegapbetweengreenhydrogenandfossilfuel-basedalternativesFiscalsupportApplyingtaxesandleviestogreyhydrogen,alongwithdedicatedsupportforgreenhydrogen,canassistinmakinggreenhydrogencost-competitivewithgreyhydrogen.Hydrogenisnotusuallysubjecttotaxesorlevies,buttheycanbeappliedandtiedtotheGHGemissionsassociatedwithgreyorbluehydrogenproduction.InFrance,forexample,greyhydrogenissubjecttothecarbontax(ContributionClimat-Énergie)equivalenttoEUR44.6pertonneofCO2(tCO2),whichwasintroducedin2020andissettoincreasetoEUR100/tCO2in2030.ThecurrenttaxlevelraisesthecostofgreyhydrogenbyUSD0.4/kg,whichrepresentsa20-40%increaseincost(Dolcietal.,2019).GreenhydrogentariffsorpremiumsPartofthecostgapbetweengreenandgreyhydrogencouldbeclosedbyofferingtariffsorpricepremiumsforthepurchaseofgreenhydrogen,toaccountforitsenvironmentalvalue.Suchsupporthasbeenwidelyusedtoacceleratethedeploymentofrenewableenergypowerplants,throughfeed-intariff(FIT)andfeed-inpremium(FIP)schemes,forexample.Similarlyofferingproductionsubsidiesforeachunitofhydrogenproducedcanstrengthentheeconomiccaseforelectrolyserprojects.Greenhydrogentariffsorpremiumscanbecomparedtotoday’sbiomethaneinjectionsubsidies,presentinvariousEuropeancountries.InFrance,thetariffforbiomethaneinjectedintothefossilgasgridisUSD53-166/MWh,dependingonthesizeofthebiomethaneplant.Abonuscanbeaddeddependingonthetypeoffeedstocksused(REGATRACE,2020).TheupperboundoftheFrenchbiomethaneschemewouldbeequivalenttoatariffofaroundUSD5.5/kgofhydrogen,soitcouldalreadycovertoday’sproductioncosts.CHAPTERTWO34Notably,agreenhydrogentariffcoveringgreenhydrogencostsequaltoUSD6/kg(aroundUSD180/MWh)wouldbelowerthanthelevelsintheFITschemeforrenewableelectricityinplaceadecadeago(whenrenewableelectricitywasatitsinceptionlikegreenhydrogenistoday).PreviousexperiencewithFITandFIPschemesforrenewableelectricitycanassistindesigningagreenhydrogentarifforpremiummainlyfocusingonsomeimportantpolicydesignchoicesthatmustbemade.Theyincludesettingtherighttariff(tariffsthataretoohighcanleadtowindfallprofits,buttariffstoolowlimitdeployment),settingupacostmonitoringsystemtodecreasethelevelofsubsidyaccordingtomarketevolution,determiningacapacitycaptoavoidexcessiveexpenditure,introducingapremiumfloorandcap,anddeterminingthesourceofthefunds.Considerationshouldalsobegiventoenergypovertyandvulnerability,ifconsumersaregoingtopaythepremiumintheirenergybills.Forrenewablepower,whenitbecamedifficulttodeterminetherightlevelofsupport,whichvariedfromonecontexttoanother,auctionswereintroducedasapricediscoverymechanism.AuctionsBytheendof2020about116countrieshadadoptedauctionstosupportrenewableenergydeploymentinthepowersector(REN21,forthcoming).Auctionsofferthepotentialforrealpricediscovery,especiallywhenthereisuncertaintyregardinghowtopricerenewables-basedgeneration.Auctionscanbedesignedtoworkwithinaparticularcontextorpolicypurpose,usingmanydesignelementsincludingthoserelatedtoauctiondemand,qualificationrequirements,winnerselection,andsellers’liabilityandriskallocation(IRENA,2015).Auctionsoffertheabilitytoattractprivateinvestment,domesticandforeign,throughclearandtransparentprocesses.Thesequalitieshavemadeauctionsoneofthemostwidelyadoptedtoolsoftheenergytransition,evenincountrieswithoutpriorexperienceofsupportingrenewables.Acompetition-basedmechanismlikeanauctionmaybeenvisagedoncethegreenhydrogensectorhasbeenkick-started,andrapidreplacementofgreyhydrogenproductionwithgreenhydrogenispossible.Sinceauctionslockinthewinningprojectsforthewholedurationofthecontracts,whichcangoupto20years,onlysolutionsalignedwiththeenergytransition,suchasrenewables-sourcedelectrolysers,shouldbeabletoparticipationintheauction.Auctionsmayalsobebasedontheemissionsgreenhydrogenwouldavoidcomparedtogreyhydrogen.ForeachtonneofCO2avoided,producerscouldreceiveapremiumassetbytheauctions,whichtheywouldreceiveontopofrevenuesfromsellinghydrogen.OneexampleisintheNetherlands,wheregreenhydrogencancompetewithothertechnologiesinthecontextoftheDutchdecarbonisationscheme(Box2.3).Ifanemissionstradingsystemisalreadyinplace,auctionsmayawardacarboncontractfordifference,wherebyhydrogenproducerswouldreceivethedifferencebetweentheagreedstrikepriceperavoidedCO2emissionunitandtheaveragecarbonpriceontheemissionstradingsystem.ThiskindofarrangementiscurrentlybeingconsideredintheEuropeanUnion(EuropeanCommission,2020a).Abenefitoftheauctionschemewouldbetoguaranteeascheduledrolloutofgreenhydrogentoreplacegreyhydrogen,whichcouldbephasedoutastheenergytransitionprogresses.POLICYOPTIONS35Box2.2TheNetherlands’SDE++schemeTheSDE++scheme,anauctionschemethatallocatesEUR30billiontorenewablesprojects,demonstratestheNetherlands’materialsupportforachievingenvironmentaltargets.Specifically,theSDE++schemeauctionsvariouskindofprojectsbasedontheexpectedCO2reduction,includingrenewableenergyplants,heatpumps,electrificationofindustrialthermalprocessesandhydrogenproduction,carboncaptureandstorageforindustrialprocessesandhydrogenproduction.Forhydrogen,theschemebenefitsfromacomplexpolicydesigntobothrewardhydrogenandensureitssustainability.TheSDE++subsidyforgreenhydrogencanbeuptoUSD300/tCO2(aboutUSD3/kgH2).Thiswouldbeenoughtoclosethegapbetweengreenandgreyhydrogen,withanelectricitypriceofabove80USD/MWh.InordertoencouragetheuseofrenewableelectricityintheabsenceofaGOscheme,hydrogenproductionispromotedonlyfor2000fullloadhoursayear.Theupperlimitinloadhoursisdesignedtomakeelectrolysersoperateduringperiodsoflowgridelectricitypricesonly,whichcoincidewithhigherrenewableenergyproduction(IRENA,2020c)(seeFigure2.5).ThislimitalsorelatestothefactthattheSDE++schemeassumesthatin2030therewillbeatleast2000hourswhenthemarginalplantforelectricityproductionintheNetherlandswillbe100%renewable.Sources:EuropeanCommission(2020b);NetherlandsEnterpriseAgency(2020).ParticipationofelectrolysersinancillaryservicesprocurementmechanismsConventionalfossilfuelgeneration,withacontrollablegenerationprofile,isexpectedtobeincreasinglydisplacedbyVREgeneratorsaspartoftheenergytransition.SystemoperatorswillneedflexibleresourcesthatcanprovidefastrampingcapabilitiestoaddressvariabilityfromwindandsolarPV.Electrolyserscanofferaflexibleloadthatcanprovidebalancingservicestothepowersystem,astheyarecapableofhighlyflexibleoperation(Table1.1)(IRENA,2020b).Rampingproductionupanddownaccordingtoneed,electrolyserscanbecomeavaluableassettokeepthepowergridstable.Byprovidingancillaryservices,electrolyserwouldthenreceiveanadditionalrevenuestream.Thiscould,inturn,reducethefinalpriceofgreenhydrogen.However,electrolysersneedtobeenabledtoparticipateinthepowermarkettoprovidethisflexibilitytothesystem.Thisisachallengesharedwithmanyotherinnovativedemand-sideresources(e.g.electricvehicles,heatpumpsandindustrialloads),whichmaynotcurrentlyhaveaccesstothepowermarkettooffertheirflexibility.Participationintheancillaryservicesmarketcouldleadtogreatereconomicviabilityforelectrolysers.Policymakersshouldprovidesolutionstorewardtheflexibilityelectrolysersoffer,whilealsoallowingrevenuestacking.Inordertodoso,twomeasurescanbeadopted:•Openthesystemservicesmarkettonewactors.Systemservicesmarketsaredominatedbylarge,centralisedpowerplants;however,otheractorsonthedemandsidecouldparticipateifenabled.Obtainingsystemservicesfromnewactorsmayrequirevariousmeasures,suchasspecificgridcodesandupgradestothesystemservicesprocurementmechanisms(IRENA,2020c;IRENA,IEAandREN21,2018).Moreover,openingthedoorstomoreactorswoulderodetherevenueoffossilfuelpowerplants,facilitatingtheirphase-outandacceleratingtheenergytransition.CHAPTERTWO36•Adoptnewsystemservicesproducts.InsomecountrieswithhighVREshares,newancillaryservicesproductshavebeenadopted;sincetheirexistenceisrelatedtothepresenceofhighVREshares,theseservicesaresometimesreferredtoas“flexibilityproducts”.Morespecifically,fastreserves,overgenerationmanagementandrampingproductshavebeenidentifiedaspotentialproductsneededfortheenergytransitionandare,insomecases,alreadyadopted(RGI,2020).Newproductsdifferastheytendtorecognisethespecificcharacteristicsofnewtechnologiesandthenewneedsofthepowersystem.ExamplesaretheUKEnhancedFrequencyRegulationprogrammeandCAISO’srampingproducts(IRENA,2020c;Villar,BessaandMatos,2018).InGermanytheparticipationofsmallelectrolysersismadepossiblethroughvirtualpowerplants–oraggregators(IRENA,2019b).ThyssenkruppandE.ONhaverecentlycarriedoutthenecessarytestsonanexistingalkalineelectrolyserinDuisburg.TheThyssenkruppelectrolyserhasprovedtobeabletorampproductionupanddownatthespeedrequiredtoenterthemarketforprimaryreserve,wheretheentireofferservicehastobefullydeliveredwithinamaximumof30secondsandbecontinuouslyavailableforatleast15minutes(Thyssenkrupp,2020).2.3.2PoliciestoincreasethemarketshareofgreenhydrogenPoliciestoincreasethemarketshareofgreenhydrogenincludetargetsforgreengasesandvirtualblendingmechanisms.GreengastargetsTargetsforgreengasescanbeusedtosupportrenewableenergysolutions,suchasbiomethaneandgreenhydrogen.Theyaretypicallyintroducedintheformoftargetsspecifyingasetshareofoverallgasconsumptionfromrenewablegases,orintheformofarenewableblendingmandateforgassupply(IRENA,IEAandREN21,2020).Targetsforgasmixesareeffectiveinprovidinganindicativeleveloffuturedemandand,therefore,ofneededproductionorimportcapacity.Targetsintheformofblendingtargetsarenotverycommonastheymaynotbethebestoptionfortheuseofaversatileenergycarrierlikehydrogen(seeBox2.3).Francehasintroducedatargetforrenewablegasinthegassupplymix,specifyingthat10%ofthegasconsumedshouldberenewableby2030.Itispartofthe2019ClimateEnergyAct,whichintroducednumeroustargetsinthesupplyandend-usesectors.Blendingtargetshave,however,beenconsideredaspartofmanyhydrogenstrategies.Portugalisconsideringahydrogenblendingtargetthatrisesfrom1-5%byvolumeby2025to75-80%by2050atboththetransmissionanddistributionlevels(DGEG,2020).Italy’s2020“NationalHydrogenStrategyPreliminaryGuidelines”envisageablendof2%hydrogeninthegasgridby2030(MISE,2020).Thesetargetsareyetnotmandatoryandneedtobefurtherevaluatedandadopted.AdifferentroutehasbeenundertakenbySpain.IntheSpanishhydrogenstrategy,thegovernmentincludeda25%minimumcontributionofgreenhydrogenwithrespecttothetotalhydrogenconsumedin2030byallindustriesbothasarawmaterialandasanenergysource,suchasrefineriesandthechemicalindustry.Settingatargetforthehydrogenalreadyusedwouldnotimplyblendingwithfossilgasanditcreatesclarityoverthedemandforgreenhydrogeninthenext10years.Theequivalentof25%ofcurrenthydrogenconsumptioninSpainisabout125000tonnesperyear(MITECO,2020).22TURQUOISEGREENGREYBLUEHYDROGENHYDROGENHYDROGENHYDROGENGREENHYDROGENPOLICYOPTIONS37Box2.3BlendinghydrogeninfossilgasgridsIfonlytheproductionsideofthegreenhydrogenvaluechainexists(i.e.electrolysers),withnodedicatedinfrastructureinplaceandnoimmediateuseforgreenhydrogen,policymakerscouldcreateasecuredofftakeforhydrogenproductionbyallowingtheblendingofhydrogenintheexistinggasgrid.Decidingtoblendhydrogenintheprevalentfossilgasgridhastheadvantageofthecapillarypresence,inmanycountries,ofsuchinfrastructure,whichconnectsmanyindustrialandresidentialloads.Thissolutionwouldalsoallowforgradualpenetrationofhydrogeninthegassystem,inanorderlymannerthatwouldpermitpolicymakersandsystemoperatorstofacegradualchallengeswithtime.Blendingmayappeartobeasolutionto(partially)decarbonisingthegasgrid,butitpresentsspecificchallenges.Blendingisalimitedsolutionasthemaximumshareofhydrogenwouldbelimitedbythecapabilitiesoftheexistinggasgridtoaround20%byvolume,beforeincurringsafetyissues(QuartonandSamsatli,2018).Oncethatisreached,theonlysolutionistoconvertthegridtobe100%hydrogen-ready.However,a20%hydrogenblendbyvolumetranslatesintoonlyabout7%inenergyterms.ThisalsomeanstheCO2emissionsreductionbenefitislimitedtoabout7%(seeFigure2.6).Figure2.6CO2benefitandgaspriceincreasefromblendingandconvertingthegasgridtohydrogenGasemissions(kgCO2/GJ)Hydrogenconcentration(volume%)+37%-7%Gasprice(USD/GJ)005101020153020402550307060350102030405060708090100CO2emissionsPriceBlendingregionFullconversionNotes:Fossilgasprice=USD5/GJ;greenhydrogencost=USD4/kg(USD33/GJ).CHAPTERTWO38Oncehydrogenismixedin,theresultinggasisablendunsuitableforneitherapplicationsthatrequirepurehydrogen,suchasfuelcells,norforthosewithlowtolerance.Hydrogencouldbeseparatedfromtheblend,butthisisveryexpensiveandchallengingatlowblendingratios,bringingadditionalcostsofUSD5-6/kgwithoutachievingtherecoveryofallthehydrogen(Melaina,AntoniaandPenev,2013).Blendinglimitsactuallyvarydependingonthejurisdiction.Insomecasestheblendinglimitisnotevendefinedaspartofthegasspecification.Whenspecified,thelimitisdictatedbytheelementwiththelowesttolerancetohydrogen.Themostsensitiveapplicationsareendusessuchasindustrialapplications(e.g.steelfurnaces).Thiscanleadtoaverylowlimit(aslowas0.02%byvolume)beingacceptedundernationalregulations(VanderMeer,PerottianddeJong,2020).Moreover,varyinghydrogenlimitsbetweencountrieshinderscross-bordertrade.Hydrogenhasamuchhighercostperunitofenergythanfossilgas,whichmeansevenasmallsharecanmakealargedifferenceincost.EvenwithacostofgreenhydrogenataroundUSD4/kg,equaltoUSD33/GJ,itwouldbeuptosixteentimesmoreexpensivethanwholesalemarketfossilgas(USD2-8/GJ):a20%blendwithafossilgaspriceofUSD5/GJwouldincreasethetotalgaspriceby37%(seeFigure2.6).Inaddition,greenhydrogenproductionmightfluctuatewithVREproduction.Thiscouldcreatevariablehydrogencontentinthegrid,whichnotalluserscanadjustto.Aregulationcouldspecifyconstantinjectionfromanyhydrogenproductionfacility,butthiscouldaffectthecost(asstoragewouldthenbeneededattheelectrolysersite)andthereforelimitproduction,contrarytotheobjectivesofthepolicymakers.Gascompositionvariabilityinthegridishandledwithmodelsthatpredictthecompositionofthegasdeliveredforinvoicingasrealisticallyaspossible.Asimilarapproachcouldbefollowedtoaccountforhydrogenvariability.Thiswouldrequiredevelopmentofspecificmodels.Finally,blendinghydrogeninthegasgridcouldalsobeatoddswithotherpoliciesforthedecarbonisationoftheenergysector,sinceblendingwouldrequireadjustmentstowardsachievingpartial,ratherthantotal,decarbonisation.Blendinghydrogenmaydivertahighlyversatileenergycarrier,preciousforspecific“hard-to-abate”sectors,acrossthewholeenergysectorservedbyfossilgas,manyofwhichcouldinsteadbenefitfrommoreeffectivesolutions,suchaselectrificationandenergyefficiencyactions.Thesesolutionsresultinthosesectorsthatarenothardtoabatebecomingindependentofgas,reducingtheoverallneedforgasviathegrid.Forthesereasons,blendingasasolutionfortheapplicationofhydrogenshouldbecarefullyassessedtoavoiddiversionfromlessexpensive,moreefficientusesofgreenhydrogen.POLICYOPTIONS39Targetsforanet-zeroGHGemissionenergysystemarerelevanttothehydrogensectortoo:achievingnet-zerowillrequirecuttingemissionsinthe“hard-to-abate”sectorswheregreenhydrogencanplayanimportantrole.Intotal,morethan120countrieshadannouncednet-zeroemissiongoalsbyNovember2020(WorldEconomicForum,2020).VirtualblendingOnealternativetophysicalblendingmandatesarevirtualblendingrequirements.Virtualblendingwouldimplyaquotaobligationforcertainhydrogenorgasconsumerstousegreenhydrogenor,whilenotcarryingoutthephysicaluse,buyingcertificatesforequivalentgreenhydrogenconsumption.Thisideaisalreadyusedingreencertificatesystemsforrenewableelectricityandcouldbeexploredforinternationaltradingingreenhydrogen.Thiswouldrequirearobustcertificationsystemtoavoidinternationaldouble-counting,alongwithbilateralagreementsforthetradingofcertificates.Theapproachcouldbeusefultofundinitialprojectsinremotelocationswithvastrenewableresources,sinceitprovidesapricepremiumthroughthesaleofcertificates.Nevertheless,virtualblendingisnotalignedwithalong-termnet-zeroemissionssystem,whereeachsystemneedstoachieverealreductionsinemissionsratherthanoffsettingthemthroughcertificates.2.3.3InternationalagreementsforgreenhydrogenInthelongterm,hydrogencouldbegloballytradedjustlikegas,oil,coalandLPGaretoday.ThisdynamichasbeenrecentlyexperiencedwithLNG.ThefirstinternationalshipmentofLNGdepartedfromAlgeriain1964;55yearslater,in2019,LNGaccountedfor38.1%ofallexchangesoffossilgas,with21countriesexportingto42importers,andone-thirdoftheglobalLNGvolumewastradedonaspotorshort-termbasis(GIIGNL,2020;IEA,2020b).Onenotabledifferencewithhydrogenisthatproductionislesssite-constrainedcomparedtofossilfuels.Itcanbeproducedfromdifferentenergysources,withmultipletransportoptionsanddifferentsustainabilityconsequences.Thismakesitmoresimilartobiomassmarkets,wherethemethodsofproductionandtransportplayabigroleinitssustainability.Forthisreason,whenassessingtheactionspolicymakerscantaketokick-startthetradingofhydrogen,aGOsystemisnecessarytotrackhydrogenproductiontechnologiesandtransportroutestoensuresustainability(IRENA,2020a).Globaltradeinhydrogendoesnotexisttoday,andcurrentprojectsforlargegreenhydrogenfacilitiesareplannedtoservelargelocalconsumers.However,lookingahead,effectiveinternationalsupplychainswillneedtobeinplacetomovelargequantitiesofhydrogen.Policymakerswillhavearoletoplayinsettingupsuchinternationalsupplychainsand,infact,thefirstroutesarealreadyplanned.Publishednationalhydrogenstrategiesshowhowcountriesforeseetheirroleinthefuturehydrogenmarket.Insomecases,nationalhydrogenstrategiesincludeplanstoimportlargequantitiesofgreenhydrogenthatcannotbeproducedlocally;thisisthecaseforEurope,JapanandTheRepublicofKorea.Theoppositeisalsohappening,withcountriesthathavehighhydrogenpotentialexploringtheoptionofbecomingexportersandidentifyingpotentialbuyers.TheseincludeAustralia,ChileandNorway.Finally,asmallsubsetofcountriesisidentifyinganopportunitytobecome“hydrogenhubs”,importingandexportinghydrogenthankstogeographicaladvantages(e.g.theNetherlands).Figure2.7illustratestheenvisagedtraderoutesforhydrogenasof2021.Thesestrategiesarealreadyslowlytransformingintocommitmentsbetweencountries.Inthelasttwoyears,variousMoUshavebeensignedbetweencountriestoexplorenewtraderoutes,mainlybycountrieswithanestablishedhydrogenstrategy.Finally,inoneparticularcase,thecommitmentshavealreadybeentranslatedintopracticalaction:Japanhasoneofthemostcomprehensivestrategiesforinternationalenergytrading,coveringvariousenergysourcesandcarriers.Itisalreadytestingvariousalternativeswithdifferentpartners(Box2.4).TURQUOISEGREENGREYBLUEHYDROGENHYDROGENHYDROGENHYDROGENGREENHYDROGENCHAPTERTWO40ItshouldbenotedthatsomestrategiesandMoUsmakenodifferentiationbetweenblueandgreenhydrogen,whileinothersfossilfuel-basedsolutionsarestillsupportedorconsideredforfutureinternationaltrade.However,asatleast120countrieshavecommittedtoanet-zeroenergysystem(WorldEconomicForum,2020),solutionssuchasgreenhydrogenwillbecometheonlyviablewaytoreachthesetargets.Exportersofgreyorbluehydrogenwouldthenfacetheriskofstrandedassets,whichwillbepileduptothestrandedassetsofthefossilfuelera.Internationaltradingshouldnotbeatoddswithscrutinyoverthesustainabilityofhydrogenproductionandtransport.Theconceptofadditionalityshouldbeadheredtointernationally.Whatthatmeansisthattheoff-takersshouldalsomakesurethatgreenhydrogenproductionandusearenotdisplacingdomesticuseofrenewableelectricity.Scrutinyisalsoneededtoensurethathydrogenproductionisnotadverselyaffectingthesustainabilityoftheexportingcountryinanyway,suchasdeprivingpopulationsofwaterinaridclimates.Inordertodothis,arobustGOsystemforhydrogenisacrucialconditionforestablishingaglobalgreenhydrogenmarketandavoidingunfaircompetitionfromunsustainablehydrogenproductionmodes(IRENA,2020a).Co-operationtocreatesuccessfulhydrogenroutescouldincludethealignmentofnationalresearchagendasandagreementsoninfrastructuredevelopment.Inordertocreateinternationalhydrogenvaluechains,countriesarealsomakingdedicatedinvestments.InGermany,thestimuluspackagefortheeconomicrecoveryfromtheCOVID-19crisisincludedEUR2billionforinternationalpartnershipsfordevelopinghydrogenvaluechains(Reuters,2020).Figure2.7Envisagedtraderoutesforhydrogenasof2021Notes:Hydrogenpoliciesareevolvingrapidly.Informationonthisfigurehasbeenkeptasdetailedandcompleteaspossibleatthetimeofwriting,howevermorecountriesmayhaveannouncedorplannednewhydrogenroutes.BoundariesandnamesshownonthismapdonotimplyanyendorsementoracceptancebyIRENA.AsiaPacicImporterNewroutesinplaceorunderdevelopmentExporterMemorandumofUnderstandingbetweencountriesfortraderoutesLatinAmericaEasternUSNorthAfricaEuropePossibletraderoutesexplicitlymentionedinstrategiesImportingregionPOLICYOPTIONS41Box2.4Japan’sstrategyfordemonstratingdiversevaluechainsHydrogenisacentralpieceofJapan’snationalenergystrategy.Thecombinationoflimitedfossilresources,high-costrenewablesandlargeindustriesmayleadtohydrogenbecomingoneofthekeyoptionstosatisfyenergydemandinasustainableway.Moreover,thearchipelagicnatureofthecountrymakesitatestbedforvariousshippingsolutions.Thegovernmenthasbeenworkingoninternationalhydrogentradingsincethe1990s,whenitallocatedUSD41.5million(JPY4.5billion)tothisgoal(Mitsugi,HarumiandKenzo,1998).Japanesepublicandprivatestakeholders,backedbythegovernment,havesignedvariousbilateralagreementstoimporthydrogenproducedindifferentcountries,withdifferenttechnologiesanddifferentshippingsolutions.ThefirstshipmentsfrompilotordemonstrationprojectsinAustralia,SaudiArabiaandBruneididnotinvolvegreenhydrogen(Figure2.7):•TheAustralia-JapanpilotprojectisledbytheHySTRA13andteststheviabilityofhydrogenfrombrowncoalgasification,whichisthenliquefiedandshippedtoJapan.BothgovernmentsaresupportingtheprojectwithalmostUSD115million(outofatotalofUSD496million).Aliquidhydrogencarriership,“SuisoFrontier”,wasunveiledin2019;itcancarry1250m3ofliquefiedhydrogenandshouldstartoperatingbetweenAustraliaandJapanin2021.WhiletheagreementforthecommercialisationofhydrogenwilldependonthepresenceofcarboncaptureandstorageinAustralia,thisisnotyetpartofthepilot.•SaudiArabia’sAramcodemonstrationprojectsfocusontheproductionofammoniafromcrudeoil,usingenhancedoilrecoveryandcarbonutilisationinmethanolproduction.FortytonnesofammoniahavebeenshippedfromSaudiArabiatoJapanfromthedemonstrationplantsinoneshipment.•ThecollaborationwithBruneiaimstoprovethefeasibilityofusingtoluene(anLOHC)toshiphydrogenthatisaby-productofafossilgasliquefactionfacilityinBrunei.InMay2020thehydrogenshippedinthiswaywasusedinapowerplantinJapan.Whiletheseprojectsarenotcarbon-neutral,theycanbeusefultounderstandthemostcost-competitiveandsustainablewaysofshippinggreenhydrogen.Inthemeantime,otherroutestoimportinggreenhydrogeninJapanarebeingconsidered:•NELisworkingtogetherwithvariousJapanesecompaniesonafeasibilitystudyforagreenhydrogenprojectinNorway.ThehydrogenwouldbeproducedusinghydropowerandwindenergyandwouldbedeliveredtoJapanintheformofliquidhydrogen.•Japanalsosignedamemorandumofco-operationwithNewZealandinOctober2018todevelophydrogentechnology.ThehydrogenroadmapforTaranaki(inNewZealand)envisages0.5-1GWofelectrolysiscapacitydedicatedtoexportby2030,whichisinlinewiththepotentiallevelofimportsinJapaninthenationalstrategy.•In2020theJapanesecompanyMitsubishiHeavyIndustriesmadeacapitalinvestmentintheAustralia-basedH2UGroup,adeveloperofgreenhydrogenandgreenammoniaprojects.Sources:MHI(2020);HySTRA(2021);Nagashima(2018;2020);VentureTanaraki(2020).13AconsortiumofcompaniesincludingKawasaki,Iwatani,Shell,J-Power,Marubeni,ENEOSand“K”LINECHAPTERTWO422.4.POLICIESTOSUPPORTHYDROGENINFRASTRUCTUREGreenhydrogenwillneedtobetransportedwhendemandcentresarenotco-locatedwiththeelectrolysers.AspresentedinChapter1,thiscanbeanexpensiveandenergy-intensiveactivity.However,policymakershavetoolsattheirdisposaltoaddresstheseissues.Theseincludepoliciestosupporthydrogengridconstructionand/orrepurposing,andmeasurestosupportseasonalstorage,greenshipsandgreentrucks.2.4.1Policiestosupporthydrogengridconstructionand/orrepurposingRepurposingpartsofexistingfossilgasgridinfrastructureisacost-effectiveopportunitytoscalehydrogeninfrastructureandisnotanovelty.PreviousexperiencesthatcouldserveasexamplesforhydrogenincludetheconversionfromtowngastofossilgasinEuropewiththestartofNorthSeaproductionduringthe1960s,andtheconversionfromlow-calorificgastohigh-calorificgasinnorthwestEuropewiththeclosureoftheGroningenfield(IEA,ENTSOGandEZK,2020;McDowalletal.,2014).Transmissionsystemoperators(TSOs)inGermanyarealreadylookingtorepurpose5900kmofpipelines(about15%ofthetotalnationalnetwork)tohydrogen,withonly100kmofnewpipelines.ThenetworkcostisexpectedtobeUSD726million(EUR660million)(DW,2020).TheDutchTSOsGasunieandTennet(themaingasandelectricityTSOs)areassessingthepotentialtousetheexistinggasgridforhydrogenthroughtheHyWay27feasibilitystudy(NetherlandsGovernment,2020).PlanninghydrogeninfrastructureAclearlong-termpolicyforhydrogenwouldenableinvestorsingreenhydrogenproductiontoassesstheprospectsandroutesforfuturemarketsandattractinvestmentintheneededinfrastructure.Suchlong-termsignalsarealreadypresentinhydrogenroadmaps,visiondocumentsandstrategies(IRENA,2020a).Somealreadyprovideanindicationofgovernment-selectedinternationalroutesandpreferredtransportsolutions.Theseoverarchingstrategiescanbeimprovedwithactuallong-termenergysectorplanning,suchasnationalplanstorepurposepartsofthegasgrid.Dedicatedplanningisespeciallyimportantinviewofthecapital-intensiveandlong-livednatureofgasgrids,consideringthelock-ineffectthegasgridmayhaveonindustrialandresidentialusersoverthelongterm.Atthesametime,notallofthegasgridwillneedtobeconverted.Inanet-zeroemissionsworld,theelectrificationofheating,coolingandtransport,andtheuseofbioenergy,energyefficiencyandothermorecost-effectiveandimmediatesolutions,willdisplacetheneedforagaseousenergycarrierinmanyapplications,thusreducingtheneedforagasgrid(IRENA,2020e).Whilethisisnotachallengeforthedevelopmentofhydrogeninfrastructure,ithighlightstheneedforcarefulplanninginordertoavoidunnecessaryspendingonrepurposingprogrammesandtoavoidlockingendusesintoinefficientusesofenergy.Convertingthegasnetworktohydrogenwouldrequireassessmenttoidentifythoseapplicationsthatwillneedtobesuppliedwithgreenhydrogenfirst.Whileahierarchyofimportanceshouldbelaidoutinhydrogenstrategies,economicchangescouldshiftpotentialhydrogendemand,creatingstrandedassetsinthehydrogeninfrastructure.POLICYOPTIONS43Hard-to-abateindustrialsectorsdorepresentthe“anchordemand”forhydrogen.Steel,ammoniaandchemicalplantswillneedhydrogenfortheirprocessesand,inpart,forhigh-gradeheat,althoughelectrificationcanalsobeanoptionforprovidingheat(AFRY,2021;IRENAandStateGridCorporationofChina,2019;IRENA,IEAandREN21,2020).Thefirststepforpolicymakers,beforeaimingtoconvertthegasgridtohydrogen,shouldbetoidentify“no-regret”areasforhydrogenpipelinesbasedonindustrialdemand.Beyondthat,theanticipatedadditionaldemandfromtheaviationandshippingsectorswillinformpipelinedecisions.Futurehydrogennetworkswillbesmallerthanthecurrentfossilgasnetworks.Step-by-stepsectoralplanningforhydrogeninfrastructurecanreducetherisksofoversizingorcreatingstrandedassetsorabandonedprojects(AFRY,2021),14whichwouldhavenon-trivialsocialandeconomiceffects.Indeed,astheenergytransitionunfoldsandthetraditionalroutesofenergymarketsarebeingchallenged,keystakeholdersarealreadyabandoninggasinfrastructureprojects,resultinginstrandedassetsandcosts(withoutbenefits)thatfallontheshouldersofratepayers.Ithasbeenestimatedthatduringthe2010s,EUR440billionhasbeenspentonfailedorfailingfossilgasinfrastructureprojectsintheEuropeanUnionalone(GlobalWitness,2021).RegulatoryframeworkforhydrogeninfrastructureGasgridTSOsaresubjecttostrictregulationoftheiractivities.Policymakersneedtoprovidethemwithanupdatedregulatoryframeworkthatenablestherepurposingoftheirgrids.Repurposingthegridwouldneedthedefinitionofaregulatoryframeworkandhydrogenqualitystandardsforpurehydrogengrids,sincethesehavebeenlimitedtoindustrialclusterstodate(ACERandCEER,2021).Intheearlydaysofdevelopment,hydrogenregulationscould,inspecificcircumstances,exemptprivatedeveloperssoastofacilitatethedevelopmentofbusiness-to-businesshydrogennetworks.Ashydrogennetworksevolve,itwillbecomeincreasinglyimportanttoputinplaceregulationsthatadapttomarketconditions.Thus,itiscrucialtoenactflexibleregulationsthatreacttomarketdynamicsusingperiodicallyconductedmarketanalyses.Regulationofthegasgridcanalsoavoidsituationsofpositionalpowerabuse,suchasinsituationswherepre-existingplayersdonotallowcompetitorstoaccessthesameinfrastructure.Thegeneralprinciplesofhydrogenregulationshouldbeclearfromthebeginningtoenableitscross-bordertransportandprovidecertaintyandpredictabilitytomarketparticipants,helpingthemmakeinvestmentdecisions.Areaswhereinternationalagreementisneededarehydrogenqualitystandards,operationalsafetystandards,pipelineintegrityrequirements,fuelspecificationsandappliancecompatibilitystandards.StandardisationwouldmaketheuseofGOseasierbecausetheproductwouldalwaysbethesame.Aglobalstandardwouldcreateamoreliquidmarket,bringinglowercostsforconsumers.Benefitsofstandardsgobeyondindividualcross-borderprojects.Theycanspreadthebenefitsoflearning-by-doingasforeigncompaniesthatdesignandconstructtheequipmentbegintooperateoverseas.Thiswillenablecoststodecreasemorerapidlyandwillenhancesafetyasaresultofapplyingbestpractices.IntheEuropeanUnion,theSectorForumEnergyManagementhasa“WorkingGrouponHydrogen”thatisalreadyworkingtowardsthestandardisationofthehydrogensectoramongmemberstates(JRC,CENELECandNEN,2019).However,theworkisstillatthepre-normativestageanditwilltakeyearstocreateactualstandards.14AFRY(2021)presentstheno-regretoptionsfortheEuropeancase.CHAPTERTWO44FinancinghydrogeninfrastructureTSOinvestmentwillbeneededtodevelophydrogengasinfrastructure,bothforrepurposingandforbuildingnewpipelines.Thecostofrepurposingprogrammesmayberecoveredthroughfeesongasbills.However,inthecaseofmajorexpansioninashortperiodoftime,thecapitalneededmightbebeyondthecapabilitiesoftheoperator.Additionalfundsmightthenbeneeded.Policiescanbeputinplacetofacilitatecapitalflowsforthisnetworkexpansionandrepurposing.Investmentsupportcanacceleratethedeliveryofrenewablegasprojectsduringtheearlystagesofmarketdevelopmentwheninvestmentrisksarehigher.De-riskingmeasurescanhelptoreducefinancingcostsandstimulateinvestmentbyTSOs.Theseincludecapitalgrants,loanguaranteesandsoftloansfromdevelopmentbanks.Between2021and2030theNetherlandsplanstoinvestEUR7billionininfrastructurefortheenergytransition,viatheTSOGasunie,tomeettheincreasingdemandforthetransportofhydrogen,greengas,CO2storageandrenewable-basedheat.EUR1.5billionwillbededicatedtoconnectingthelargeindustrialcentresoftheNetherlandsandnorthernGermanytolocationswhereblueandgreenhydrogenwillbeproduced.Forthisnetwork,Gasuniewilluseexistinggaspipelinesthatbecomeavailableduetothedecliningdemandfornaturalgas.MostofGasunie’sprojectsarefinancedjointlywithcustomersandotherpartners,supportedbygovernmentsubsidies(Gasunie,2020).2.4.2PoliciestosupportseasonalstorageGreenhydrogencanprovideseasonalstorageforthepowersystem,alongsideotheroptionssuchaspumpedhydropower.GreenhydrogencaninfactbeproducedinseasonswithabundantVREproductionandstoredforlateruseinundergroundgeologicalformationssuchassaltcaverns.Asseasonalstoragewillbecomenecessarytoachieveafullydecarbonisedpowergrid,policymakersshouldidentifysolutionstosupportit.Theseshouldbebeneficialtoanyseasonalstoragetechnology,andcouldinclude(FTI,2018):•Seasonalstorageprocurement:Policymakerscouldtakemeasurestoensurethatthepowersystemhasaminimumlevelofseasonalstoragecapacity.Similartotoday’scapacitymechanisms,thismeasurewouldaimtoprocureaminimumvolumeofenergyforperiodsoflowVREproduction.Thisprocurementcouldtaketheformofauctionsforthelong-termprocurementofenergyorcapacityforaspecificperiodoftime;product-specificauctionscouldbetailored(IRENA,2019a).Alternatively,suppliersofenergycouldberequiredtoensuretheyhaveaminimumamountofseasonalstorage.•Feed-inschemes:Asseasonalstoragesolutionsareunlikelytorecovertheircostswithinamarginalpricingsystem,policymakerscouldintroduceafeed-intarifforpremiumschemetocompensatethemwhenproducingduringprolongedlow-VREperiods.Thelevelofsupportshouldbesetatthesocialvalueoftheenergyproducedandbedesignedtoaccompanytheseasonalstorageoperatorsinreplacingdispatchablefossilfuelgenerators.Countrieswillhavetoregulatetheinjectionandstorageofhydrogeningeologicalformationswithintheirjurisdictions(ownership,responsibilities,environmentprotectionetc.)(seealsoSection2.4.1).Suchrulescouldtakeadvantageofexistinglawsonmining,waterpreservation,wastedisposal,resourceconservation,fossilgasstorage,treatmentofhigh-pressuregasesandothers.TheycouldbecoupledwithactivitiestoregulateCO2storage,forwhichregulationsarestillsimilarlylacking(IPCC,2018b).POLICYOPTIONS452.4.3SupportforgreenshipsandgreentrucksWhentheuseofpipelinesisnotpossible,hydrogenhastobetransportedviadedicatedvehiclesorships.Ifthesemeansoftransportarefuelledbyfossilfuelsoverlongdistances,theenvironmentalbenefitsfromtheuseofgreenhydrogencanbereducedornullified.Therearethreeprincipaloptionsfordecarbonisedtrucks:batteryelectricvehicles,fuelcellelectricvehiclesandalternativefuels(sustainablebiofuelsandsyntheticfuels).Noneoftheseoptionsisyetinwidespreaduse,butallhavebeentrialledandtheissuespreventingscale-uparemainlyeconomicandlogistical.Electrifiedsolutions,inparticular,arealsoemergingasanoptionforheavy-dutyvehicles.Electricbatterysystemsarenotsuitedtolong-distanceshipping,buttheyarebeingintroducedforshort-rangeferries.Biofuels,greenhydrogenandammoniaarebeingconsideredasfuelalternatives(IRENA,2020e).Policyinstrumentstosupportdecarbonisationofthetransportsectorfallbeyondthescopeofthisreport,butarethesubjectofmanystudiesthatcanprovideguidancetopolicymakers(forexampleIRENA,forthcomingb,forthcomingc,2019c,2018b,2016).PolicymakerscurrentlylookingatgreenhydrogenshouldmakesurethatGOsaccountfortheemissionsrelatedtothetransportofthehydrogentomakesurethatthewholesupplychainissustainable(IRENA,2020a).Thiswouldpushthehydrogensectortoidentifytransportmodeswithlimitedtozeroemissions,supportingtherapiddeploymentofelectrictrucksandammonia-fuelledships,forexample.CHAPTERTWO462.5.RESEARCHANDDEVELOPMENTSUPPORTWaterelectrolysisisacommercialtechnologyandthepoliciesdescribedabovecankick-startandmaintainanationalhydrogensector.Butcontinuedeffortisneededinresearchandinnovationtomakegreenhydrogencompetitivewithgreyhydrogenandfossilfuels.Thiswillincreasetheeffectivenessofthesupportingpoliciesand,ultimately,makethemlessnecessary.2.5.1PublicsupportforR&DandmultilateralcollaborationR&Disafundamentalpartoftheenergytransitionandisnecessarytoreducetheproductionandtransportcostsofgreenhydrogen.Governmentshaveacentralroleinsettingtheresearchagenda.ThiscantaketheformoffundingforthespecifictypesofR&Drequiredtoacceleratedevelopment,usinggrants,taxincentives,concessionalloansandequityinstart-ups.Multilateralresearchinitiativescanalsobevaluable.OneexampleisanItalo-Australiancollaborationtoshareknowledgeamongresearchinstitutions(FuelCellsWorks,2021).Hydrogenresearchinfrastructurehasevolvedovertheyearsandresearch“nodes”haveemergedfocusingonspecifictopics.Dedicatedlabshavebeenestablishedtodevelopandtestnewsolutionsinco-operationwithindustry,creatingtheenvironmentforthegrowthofstart-ups(as,forexample,inGrenobleforFrance).Thesenodesarethenconnectedviaknowledgenetworkstoenhancetheinnovationresults.AnimportantgoalforfutureR&Disimprovingtheefficiencyofelectrolysers.Sinceelectricityisthemaincostcomponent,anyimprovementinefficiencywilldirectlydecreasegreenhydrogencosts;moredetailsareavailableinIRENA(2019b).POLICYOPTIONS2247Credit:KawasakiHeavyIndustries2.5.2TargetsfortechnologicaladvancementNationalandinternationalprogrammessupportingR&Dforgreenhydrogenhaveintroducedtargetstomeasuretheprogressoftechnologicaladvancement.Thesetargetsrepresentcleargoalsfortheresearchprogrammes.Targetsforthelevelisedcostofhydrogenorelectrolysercapitalcostarecommonmetrics:•TheUnitedStatesDepartmentofEnergyhasatargetofUSD2/kg.Its“H2@Scale”researchinitiativeisaUSD64millionprogrammethatsupportseffortstocutthecostofhydrogenproduction.•TheAustralianHydrogenStrategyhasatargetofUSD1.5/kg(AUD2/kg),calledthe“H2under2”goal(ARENA,2020b).•IntheEuropeanUnion,theFuelCellsandHydrogenJointUndertaking(FCHJU)hassettargetsforthecapitalcostofelectrolysersofUSD440/kWforalkalineelectrolysersandUSD550/kWforPEMelectrolysersby2030(FCHJU,2021).Mostresearchprogrammescovermultipleobjectivesacrosssegmentsofthehydrogenvaluechain.IntheEuropeanUnion,theFCHJU,outofanEUR893millionresearchbudget,hasallocatedatotalofEUR418millionacross135projectsforenergypurposes(thisincludeselectrolysis,hydrogendistribution,storageandfuelcellsforcombinedheatandpower,andinitiativessupportingthecross-sectoralnatureofhydrogensuchasthe“hydrogenvalleys”).2.5.3DemonstrationprojectsDemonstrationprojectshaveanimportantroleintestingthefeasibilityofatransportsolutionwhileitisstillintheearlystagesofdevelopment.Theyarepivotalinidentifyingissuesandsolutionsforthelater,largerdeploymentstage.Policymakerscansupportsuchprojects,financiallyandwithdedicatedregulation,fortheearlydiscoveryofweakpointsinthesupplychainsoastobereadytoaddresstheminatimelyfashion.Asdiscussed,Japanistestingmultipleshippingoptionsforhydrogen(seeBox2.4).Therearealsoabout40projectsaroundtheworldfocusingonthetransmissionanddistributionofgreengasingrids(IRENA,IEAandREN21,2020).CHAPTERTWO483THEWAYFORWARD3.1.THEPOLICYSTAGESAwiderangeofpoliciesexiststosupportthedevelopmentofagreenhydrogenindustry.Policymakersmaybeundertheimpressionthatawallofchallengesliesaheadofthemtocreateagreenhydrogensectorintheircountry.However,theycanprioritisetheiractionsdependingonthematurityoftheirnationalhydrogensector.Certainpoliciesaresuitableforkick-startingthesector,whileotherswillbeneededlaterasthesystemmakesprogress.The“policystage”concept,introducedinIRENA(2020a),andelaboratedherewithafocusonelectrolysisandinfrastructure(Box3.1),iscreatedtoassistinunderstandingwhenapolicycouldbeintroduced,basedonthestatusofthecountry’shydrogensector.Figure3.1showstherangeofpoliciesexploredinthisreportacrossthethreestagesofelectrolysisandinfrastructuredeployment.49Box3.1PolicystagesforelectrolysisandinfrastructureSTAGE1:RTechnologyreadinessAtthisstage,greenhydrogenisnotyeteconomicallycompetitivewithgreyhydrogen.Theproduc-tioncapacityofelectrolysermanufacturersistransitioningfromthemegawatttothegigawattscale;GOsandacommitmenttouselargersharesofrenewableelectricityforelectrolysisshouldbeputinplacetomakesuretheyarereadyforthefollowingphases.Greenhydrogenisstartingtobedeployedfornicheapplicationsacrosshard-to-abatesectors,inaccordancewithnationalstrategies.Volumesarestillrelativelysmall,andifelectrolysisisnotlocatedclosetothedemandcentresthesesmallvol-umescanbesuppliedviahydrogentrucks,liquefiedorcompressed,aspipelinesarenotyetavailable.However,co-locationofsmallelectrolysersanddemandcentrescanbeexpectedasmainsolution.Hydrogenstorageismostlycarriedoutwithsteeltankson-site,butafewlocations,especiallyinindustrialsitesandports,couldbetestingundergroundstorage.Forgovernments,bilateralagreementsareatestbedforfuturelarge-scaletradingroutes,notonlyfromatechno-economicpointofview,butalsotosolidifythecommercialandpoliticalrelationshipsbetweenthecountriesinvolved.STAGE2:RMarketpenetrationAtthisstage,electrolysersareatthegigawattscale,thegreatestcostdecreasesfromeconomiesofscalehavebeenachieved,andhydrogenisclosetogreyhydrogeninmarketswithgoodrenewableenergyresources.Theshareofwindandsolarinthepowermixaresignificant,andelectrolysersareincreasinglyimportantforsomeperiodsoftimewhereotherflexibilitymeasuresarenotenoughtocopewiththevariabilityandproductionsurplus.Industrialapplicationsareeitherprogressivelybeingreplacedoradaptedtohandlepurehydrogen.Manyoftheseapplicationsarelocatedintheso-called“hydrogenvalleys”:largehydrogendemandcentresthatjustifytheuseofmoreremotelocationswithbetterrenewableresourcesforthepro-ductionofeitherelectricityorhydrogen,makingpipelinesandshipsanattractiveoption,whenthetransportofelectricityisnotfeasibleorcost-effective.Somenewhydrogenpipelinesandglobaltradingarethenneeded;someexistingsectionsofthegasnetworkarebeingconverted.Thebilateralagreementsfromthepreviousstagehavecreatednewtraderoutes,whereeconomiesofscaleandstandardiseddesignsreducethecostpenaltiesofthetransformationprocessandtransport.STAGE3:RMarketgrowthAtthisstage,greenhydrogenisfullycompetitivewithgreyhydrogen.ElectrolyserscontributetothelastfewpercentagepointsofCO2emissionsreduction,wherehydrogenanditsderivativescouldaddthemostvalue.Atthisstage,thepowersystemisclosetozeroemissions,sospecificactionstoensurelow-carbonelectricityasinputbecomelessrelevant.Thepowersystemhasaveryhighshareofwindandsolar,andelectrolysersareakeyflexibilityprovider.Allthehard-to-abatesectorsareontheirwaytowarddecarbonisedsolutions(sustainablebioenergy,energyefficiencyorgreenhydrogen).Thegreenhydrogenmarkethasadiversifiedandcompetitivesupplywithmultipleendusersandisgloballytraded.TURQUOISEGREENHYDROGENHYDROGENGREENHYDROGENCHAPTERTHREE50Figure3.1Rangeofpoliciestopromoteelectrolysisacrossthreestagesofdeployment.STAGE1STAGE2STAGE3SeasonalstoragesupportGreentrucksGreenshipsInfrastructurefinancingInfrastructureandhydrogenstandardisationInfrastructureplanningInternationalagreementsVirtualblendingGreenhydrogentargetsAuctionsGreenhydrogentariorpremiumFiscalincentivesAncillaryservicesprovisionSustainabilitymeasuresElectricitytaxandlevyexemptionsFiscalincentivesDirectfinancialsupportManufacturingcapacitysupportCapacitytargetsINFRASTRUCTUREResearchanddevelopmentGuaranteesoforiginELECTROLYSIS2GREENHYDROGENOFFTAKEELECTRICITYPROCUREMENTTHEWAYFORWARD51Fiscalpolicies(suchaselectricityfeeexemptions,VATexemptionsorgreyhydrogentaxes),targets(forelectrolysercapacityandgreenhydrogenproduction)andsupportformanufacturerscanbeintroducedattheonsetofgreenhydrogenpolicymaking.Internationalagreements,whicharebecomingastapleofhydrogenpolicymaking,canalsobeenvisagedatthisstage.Greenhydrogentariffsorpremiumandvirtualblendingmandatesmayimmediatelyfollow,astherealcostofhydrogenbecomesclear.Asregardsthetransportinfrastructure,thefirstactionsarethecreationoftechnicalandcommercialstandards,whichwillpotentiallybeappliedlater,thedecarbonisationofdeliverytrucksandimportantly,fromthebeginning,establishingaplanforfutureinfrastructure.Afterthat,financinginstrumentsforthatfutureinfrastructuremaybeneeded,makingitpossibletocreateagridabletohosthydrogen.Asthehydrogensectorprogresses,morematurepoliciesmaybeadopted,suchasauctionsandtheredesignofpowersystemstructurestoallowtheuseofseasonalstorageandtoprocureancillaryservicesfromelectrolysers.Thelatterwouldneedtobeundertakeninanycase,asthepowersystemneedsmoreflexibilitytodealwithhigherVREpenetration.Asthemarketforhydrogengrowstoaself-sustaininglevel,theattentionofpolicymakersshouldturntomaintainingthespeedofinnovationwithR&Dfunding,andtomaintainingthesustainablenatureofgreenhydrogenwithsupportforgreenelectricityandaGOsystem(inparticularforinternationaltrade).Somecountries,likeAustralia,Germany,theNetherlandsandJapan,arealreadyinthemiddleofStage1,settingtargetsforgreenhydrogenandmobilisingcapitalforinvestment.Manycountriesarealsosettingthesceneforfuturepolicies.OneexampleisPortugal.Thecountryhasalreadypublishedastrategyandupdatedthelegalandlegislativeframeworktoenterhydrogenintotheenergysystem,makingthefirststepsforaGOscheme.Thegovernment’splansincludetheintroductionofauctionsforcarboncontractsfordifference,supportforcapitalinvestment,subsidiestoreducetheoperationalcostsofhydrogentechnologiesandpoliciestosubsidiseinvestmentinsaltcavernsforseasonalstorage(BETD,2021).Theearly-movingcountrieshavebenefitedfromtheirgovernmentsco-fundingdemonstrationprojectsfordifferentpathways,testingwhatthepossibilitiesareanddevelopingexperienceofdeploymentandoperation.Theseearlierdemonstrationprojectsbringtherelevantstakeholdersintocontactthroughnetworksandworkinggroupsthatservetoalignanddefinetargets.Thisco-operationispartofthefoundationthatmakestheentireprocesspossible(IRENA,2020a).CHAPTERTHREE523.2.CONCLUSIONGlobalGHGemissionsmustberapidlyreducedtopreventthepotentiallycatastrophicimpactsofclimatechange.Suchdeepdecarbonisationoftheworld’seconomiesisbothtechnicallyfeasibleandeconomicallyaffordable.Mostoftheemissionreductionswouldcomefromthreekeyactions:renewableenergy,energyefficiencyanddirectelectrification.Still,Directelectrificationisdifficult,ifnotimpossible,insomesectors,suchassteelmakingandotherindustrialprocesses,long-haulaviationandmaritimeshipping.Thesehard-to-abatesectorswillrequireanotherformofzero-carbonenergy,themostpromisingofwhichisgreenhydrogen.TheroadmapinIRENA’sWorldEnergyTransitionsOutlookenvisionstheproductionoflargeamountsofgreenhydrogentomaketheenergytransitionpossible.However,creatingalargesupplyofgreenhydrogenandtransportingittowhereitwillbeusedischallengingandexpensive.Technological,economic,regulatoryandenvironmentalbarriersarefacedbythegreenhydrogensector.Butasthisreportdescribes,thesechallengescanbemetthroughawiderangeofsupportivepolicies.Policymakersthenhaveacentralroletoplay.Policymakerscansettargetsforthegrowthofelectrolysercapacityandgreenhydrogenproductionandconsumption.Theyalsocanprovidesupportforeachstageofdeployment–supportingelectrolysersandelectrolysermanufacturingcapacity,ensuringasufficientsupplyofrenewableelectricity,boostingdemandforgreenhydrogenanditsderivatives,andcreatinganinfrastructuretostoreandtransporthydrogen.Therearemanypossibleformsofsupport,includingdirectgrants,feedintariffsandpremiums,taxincentivesandR&Dfunding.Regulationandplanningwillalsoplayanimportantrole.Thekeymessagefromthisreportisthatcountrieswillbeabletoproduceandtransportalargeenoughsupplyofgreenhydrogentoaffordablydecarbonisethehard-to-abatesectorsandmaketheenergytransitionpossible.Butproperpoliciesmustbeinplace,andsomepoliciesneedmoreurgentadoption.THEWAYFORWARD53ANNEXWATERELECTROLYSISTECHNOLOGIESAlkalineelectrolysersarealreadyatthecommercialstage,haveslightlyhigherefficiencythanPEMelectrolysersandhavelowerinvestmentcosts(evenifPEMisapproachingsimilarvalues).Theybenefitfromasimplesystemdesign(evenifdownstreamhydrogenpurificationismorecomplexthanforPEM),andtheyhaveotherapplicationsinthechemicalindustrythatleadstothepresenceofanexistingsupplychainthatcanbescaledupforwaterelectrolysis.About20GWofcumulativeelectrolysercapacityusesthechlor-alkaliprocess.Nevertheless,theyhavethecharacteristicofoperatingatlowercurrentdensity,andsotheyneedalargerfootprint.PEMelectrolysersarecurrentlybehindalkalineintermsofefficiencyandcost,butcouldreachthesameperformanceovertimewithfurtherresearch.PEMelectrolysersoccupy20-25%lessspacethanalkalineones,withasmallerphysicalfootprintthanalkaline.LessexperiencewithPEMmeansthatthelifetimeandeffectsofoperationunderindustrialconditionsstillneedtobedemonstrated.Intermsofdynamicoperationwhenconnectedtotheelectricitygrid,theyaremoresuitablethanalkaline(fastresponse,lowerdegradation).PlatinumandiridiumarenecessaryforthePEMprocessandthiscouldlimitthescale-upofthistechnology.Currentglobaliridiumproductioncouldsupportannualdeploymentupto7GW/yr.maximum.Multiplestrategies,includingreducedmaterialuse,higherproductionratesandrecycling,amongothers,couldreducematerialneedsbyatleast80%SOECelectrolyserscanofferhigherefficiencies(40kWh/kg,comparedto50kWh/kgforalkalineandPEMelectrolysers)andcanbeintegratedwithotherprocessesthatproduceheat(e.g.synthesisoffuels).Theycouldbeusedfortheco-electrolysisofCO2andwatertodirectlyproducesyngas,whichisusedasabuildingblockforalargepartofthechemicalindustryandwhichwouldsimplifytheprocess.Thekeybarrierstobeaddressedarethestackdegradationandshortlifetimesduetothehigh-temperatureofoperation.SOECelectrolyserscanalsobereversedtobecomefuelcells,convertingthehydrogenbacktoelectricitytoalimitedextent(fuelcelloperatingmodeisabout25%oftheelectrolysercapacity).Thiscanleadtocostsavingsandreducedequipmentrequirements.SOECelectrolysersalsoallowfortheco-electrolysisofCO2andwatertoproducesyngas,whichisaprimaryfeedstockforthechemicalindustry.SOECelectrolysertechnologyismainlyatthekilowattscaletoday(butsomeearlymegawatt-scalemodelsareinproduction),andtherearechallengesinmanufacturinglarge-scalemegawatttogigawattmodules.AEMelectrolysersarethemostrecenttechnologyandhavelimiteddeployment.Theyaremostlyinthelowkilowattrangetoday.AEMelectrolysersstillhaveunstableandlimitedlifetimes,varyingbetween500and5000hours.AEMelectrolysers’potentialadvantageslieinthefactthattheydonotuseanypreciousmetalsanduseamembranethatislessexpensivethanthatusedforPEM.TableA.1showsthemaintechnologicalaspectsofthesewaterelectrolyseroptions.Afurtherefficientoptionforthefutureisrepresentedbyproton-conductingceramiccells(PCC),buttheyareevenearlierintheresearchfunnelthanSOECandAEM,andstillneedtoreachprototypestage.ANNEX54AlkalinePEMSOECAEMDevelopmentstatusCommercialCommercialDemonstrationUnderresearchOperatingconditionsTemperature(°C)70-9050-80700-85040-60Pressure(bar)~30<701<35CostparametersCAPEX(system)(USD/kW)6001000>2000Lifetime(hours)5000060000200005000Efficiency(kWh/kg)50-7850-8340-5040-69FlexibilityLoadrange15-100%0-160%30-125%5-100%Start-up1-10min1sec-5minRampup/down0.2-20%persecond100%persecondShutdown1-10minutesSecondsTableA.1WaterelectrolysistechnologiesasoftodaySources:IRENA(2018a;2020b).ANNEX2255ACER(EUAgencyfortheCooperationofEnergyRegulators)andCEER(CouncilofEuropeanEnergyRegulators)(2021),“Whenandhowtoregulatehydrogennetworks?”,EuropeanGreenDeal,Vol.1,EuropeanUnionAgencyfortheCooperationofEnergyRegulatorsandCouncilofEuropeanEnergyRegulators,www.nra.acer.europa.eu/Official_documents/Position_Papers/Position%20papers/ACER_CEER_WhitePaper_on_the_regulation_of_hydrogen_networks_2020-02-09_FINAL.pdf.AcwaPower(2020),“AirProducts,AcwaPowerandNeomsignagreementfor$5billionproductionfacilityInNeompoweredbyrenewableenergyforproductionandexportofgreenhydrogentoglobalmarkets”,AcwaPower,www.acwapower.com/news/air-products-acwa-power-and-neom-sign-agreement-for-5-billion--production-facility-in-neom-powered-by-renewable-energy-for-production-and-export-of-green-hydrogen-to-global-markets/.AFRY(2021),“No-regrethydrogen:ChartingearlystepsforH₂infrastructureinEurope”,AFRYManagementConsultingLimitedonbehalfofAgoraEnergiewende,www.agora-energiewende.de/en/publications/no-regret-hydrogenARENA(AustralianRenewableEnergyAgency)(2020a),“ARENAopens$70millionhydrogendeploymentfundinground”,AustralianRenewableEnergyAgency,www.arena.gov.au/news/arena-opens-70-million-hydrogen-deployment-funding-round/.ARENA(2020b),“Australia’spathwayto$2perkghydrogen”,AustralianRenewableEnergyAgency,www.arena.gov.au/blog/australias-pathway-to-2-per-kg-hydrogen/.BEIS(UKDepartmentforBusiness,EnergyandIndustrialStrategy)(2020),“Hydrogensupplycompetitionphase2successfulprojects”,www.gov.uk/government/publications/hydrogen-supply-competition/hydrogen-supply-programme-successful-projects-phase-2.BETD(BerlinEnergyTransitionDialogue)(2021),“betd21ConferenceDay1”,www.youtube.com/watch?v=5MAkLMYTWfw(accessed28March2021).Blanco,H.andA.Faaij(2018),“AreviewattheroleofstorageinenergysystemswithafocusonPowertoGasandlong-termstorage”,RenewableandSustainableEnergyReviews,Vol.81,Part1,pp.1049–1086,www.doi.org/10.1016/j.rser.2017.07.062.BNEF(BloombergNewEnergyFinance)(2021a),“Hydrogenelectrolyserdatabase”.BNEF(2021b),“1H2021Hydrogenmarketoutlook–Adefiningyearahead”.BNEF(2019),“Hydrogen:Theeconomicsofstorage”.Bracker,J.(2017),“Anoutlineofsustainabilitycriteriaforsyntheticfuelsusedintransport”,www.oeko.de/fileadmin/oekodoc/Sustainability-criteria-for-synthetic-fuels.pdf.Caglayan,D.G.etal.(2019),“TechnicalpotentialofsaltcavernsforhydrogenstorageinEurope,”InternationalJournalofHydrogen,Vol.45,Issue11,pp.6793–6805,www.doi.org/10.1016/j.ijhydene.2019.12.161.CARB(CaliforniaAirResourcesBoard)(2019),“LowCarbonFuelStandard(LCFS)Guidance19-01:BookandclaimaccountingforlowCIelectricity”,ww2.arb.ca.gov/sites/default/files/classic//fuels/lcfs/guidance/lcfsguidance_19-01.pdf.CleanEnergyWire(2020),“Germanypaveswayforelectrolyserramp-upbyscrappingrenewablesfeeonhydrogenproduction”,www.cleanenergywire.org/news/germany-paves-way-electrolyser-ramp-scrapping-renewables-fee-hydrogen-production(accessed29March2021).Collins,L.(2021a),“Neltoslashcostofelectrolysersby75%,withgreenhydrogenatsamepriceasfossilH2by2025”,RechargeNews,21January,www.rechargenews.com/transition/nel-to-slash-cost-of-electrolysers-by-75-with-green-hydrogen-at-same-price-as-fossil-h2-by-2025/2-1-949219.Collins,L.(2021b),“Greenhydrogen:ITMPower’snewgigafactorywillcutcostsofelectrolysersbyalmost40%”,RechargeNews,20January,www.rechargenews.com/energy-transition/green-hydrogen-itm-power-s-new-gigafactory-will-cut-costs-of-electrolysers-by-almost-40-/2-1-948190.Crone,K.,J.FrieseandS.Löchle(2020),“Sustainableelectricitysources–Renewablefuelsofnon-biologicaloriginintheREDII”,GermanEnergyAgency,www.powerfuels.org/fileadmin/user_upload/GAP_Sustainable_Electricity_Sources_Position_Paper_2020-07.pdf.DGEG(PortugueseGeneralDirectorateofEnergyandGeology)(2020),“EN-H2:NationalHydrogenStrategy”(inPortuguese),www.participa.pt/contents/consultationdocument/Estrate%CC%81gia%20Nacional%20para%20o%20Hidroge%CC%81nio%20DRAFT%20publicac%CC%A7ao.pdf.REFERENCESREFERENCES56Diermann,R.(2020),“Thyssenkruppincreasesannualelectrolyzercapacityto1GW”,PVMagazine,9June,www.pv-magazine.com/2020/06/09/thyssenkrupp-increases-annual-electrolyzer-capacity-to-1-gw/.DOE(USDepartmentofEnergy)(2021),“HydrogenTubeTrailers”,www.energy.gov/eere/fuelcells/hydrogen-tube-trailers(accessed8April2021).DOE(USDepartmentofEnergy)(2020a),“Hydrogensafety,codesandstandardschallenges”,www.energy.gov/eere/fuelcells/hydrogen-safety-codes-and-standards-challenges.DOE(2020b),“H2@Scalenewmarketsfundingopportunityannouncement(FAO)”,www.energy.gov/sites/prod/files/2020/07/f76/hfto-h2-at-scale-new-markets-foa-selections-for-release.pdf.DOE(2019),“DOEHydrogenandFuelCellsProgramrecord”,www.hydrogen.energy.gov/pdfs/19001_hydrogen_liquefaction_costs.pdf.DOE(2009),“DOEHydrogenandFuelCellsProgram”.Dolci,F.etal.(2019),“Incentivesandlegalbarriersforpower-to-hydrogenpathways:Aninternationalsnapshot”,InternationalJournalofHydrogenEnergy,Vol.44,Issue23,pp.11394–11401,www.doi.org/10.1016/j.ijhydene.2019.03.045.DW(DeutscheWelle)(2020),“Germanyandhydrogen—€9billiontospendasstrategyisrevealed”,www.dw.com/en/germany-and-hydrogen-9-billion-to-spend-as-strategy-is-revealed/a-53719746.Ecuityetal.(2020),“Ammoniatogreenhydrogenproject”,Ecuity,STFC,EngieandSiemens,www.assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf.Ehteshami,S.M.M.andS.H.Chan(2014),“Theroleofhydrogenandfuelcellstostorerenewableenergyinthefutureenergynetwork-potentialsandchallenges,”EnergyPolicy,Vol.73,pp.103–109,www.doi.org/10.1016/j.enpol.2014.04.046.Eichman,J.etal.(2020),“Optimizinganintegratedrenewable-electrolysissystem”,NationalRenewableEnergyLaboratory,www.nrel.gov/docs/fy20osti/75635.pdf.EnergyPolicyTracker(2021),“EnergyPolicyTrackerDatabase”,www.energypolicytracker.org/search-results/?_sfm_energy_type=hydrogen.EuropeanCommission(2020a),“COM(2020)301–Ahydrogenstrategyforaclimate-neutralEurope”,EuropeanCommission,www.eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0301.EuropeanCommission(2020b),“StateAidSA.53525(2020/N)–TheNetherlandsSDE++schemeforgreenhousegasreductionprojectsincludingrenewableenergy”,www.ec.europa.eu/competition/state_aid/cases1/20212/287356_2229457_158_2.pdf.EuropeanCommission(2019),“Potentialsofsectorcouplingfordecarbonisation–PublicationsOfficeoftheEU”,www.op.europa.eu/en/publication-detail/-/publication/60fadfee-216c-11ea-95ab-01aa75ed71a1/language-en.Eurostat(2020),“Energydatabase–Electricitypricesfornon-householdconsumers–bi-annualdata”(from2007onwards),www.ec.europa.eu/eurostat/data/database.FCHJU(TheFuelCellsandHydrogenJointUndertaking)(2021),“State-of-the-artandfuturetargets(KPIS)”,www.fch.europa.eu/soa-and-targets.Franke,A.(2020),“Germanytospend€700Mon3hydrogenresearchprojects”,S&PGlobalMarketIntelligence,www.spglobal.com/marketintelligence/en/news-insights/latest-news-headlines/germany-to-spend-8364-700m-on-3-hydrogen-research-projects-62113936.Frøhlke,U.(2021),“HaldorTopsoetobuildlarge-scaleSOECelectrolyzermanufacturingfacilitytomeetcustomerneedsforgreenhydrogenproduction”,HaldorTopsoe,www.blog.topsoe.com/haldor-topsoe-to-build-large-scale-soec-electrolyzer-manufacturing-facility-to-meet-customer-needs-for-green-hydrogen-production.FTI(2018),“Measuresforasustainablegasstoragemarket”,www.ec.europa.eu/info/sites/info/files/gie-fti_study_-_measures_for_a_sustainable_gas_storage_market.pdf.FuelCellsWorks(2021),“ItalyandAustralia:bridgingtwocontinentswithhydrogenandrenewablefuelsresearch”,www.fuelcellsworks.com/news/italy-and-australia-bridging-two-continents-with-hydrogen-and-renewable-fuels-research/.REFERENCES57Gasunie(2020),GasunieAnnualReport,ww.gasuniereport2020.nl/.GIIGNL(InternationalGroupofLiquefiedNaturalGasImporters)(2020),“LNGmarkets&trade”,www.giignl.org/lng-markets-trade-0.GlobalWitness(2021),“EUcompaniesburnfossilgasandtaxpayercash”,www.globalwitness.org/en/campaigns/fossil-gas/eu-companies-burn-fossil-gas-and-taxpayer-cash/.Guidehouse(2020),“EuropeanHydrogenBackbone”,www.guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdfHévin,G.(2019),“Undergroundstorageofhydrogeninsaltcaverns”,EuropeanWorkshoponUndergroundEnergyStorage,7-8November2019,Paris,www.energnet.eu/wp-content/uploads/2021/02/3-Hevin-Underground-Storage-H2-in-Salt.pdf.Heynes,G.(2021),“Plansfor$2.5bnhydrogenfacilityinOmanunveiled”,H2View,www.h2-view.com/story/plans-for-2-5bn-hydrogen-facility-in-oman-unveiled/.HydrogenAnalysisResourceCenter(2016),“Hydrogenpipelinesdatabase”,www.h2tools.org/hyarc/hydrogen-delivery.HydrogenCouncil(2021),“Aperspectiveonhydrogeninvestment,deploymentandcostcompetitiveness”,www.hydrogencouncil.com/en/hydrogen-insights-2021/.HydrogenEurope(2020),“Hydrogentransportdistribution”,www.hydrogeneurope.eu/hydrogen-transport-distribution.HyLAW(2019),“Horizontalpositionpapertransportanddistributionofcompressedhydrogenbyroadquantityandpressurelimitations”,www.hylaw.eu/sites/default/files/2019-02/20190208D4.3H2RoadTransport-HorizontalPositionPaper_0.pdf.HySTRA(2021),CO₂-freeHydrogenEnergySupply-chainTechnologyResearchAssociation,www.hystra.or.jp/en/outline/.Iberdrola(2020),“Iberdrolajoinstheworld’stopmanufacturerofelectrolyserstomakeSpainaleaderingreenhydrogentechnologyandindustry”,www.iberdrola.com/press-room/news/detail/iberdrola-joins-world-s-manufacturer-electrolysers-make-spain-leader-green-hydrogen-technology-industry.IEA(InternationalEnergyAgency)(2020a),“Energyprices2020”,www.iea.org/reports/energy-prices-2020.IEA(2020b),“Naturalgasinformationoverview”,www.iea.org/reports/natural-gas-information-overview.IEA(2019),“TheFutureofHydrogen”,www.iea.org/reports/the-future-of-hydrogen.IEA,ENTSOG(EuropeanNetworkofTransmissionSystemOperatorsforGas)andEZK(NetherlandsMinistryofEconomicAffairsandClimatePolicy)(2020),“L-Gasmarketconversionreview:Winterreport2020”,TaskForceMonitoringL-GasMarketConversion,www.zoek.officielebekendmakingen.nl/blg-925180.pdf.IPCC(IntergovernmentalPanelonClimateChange)(2018a),“IPCC,2018:Globalwarmingof1.5°C.AnIPCCSpecialReportontheimpactsofglobalwarmingof1.5°Cabovepre-industriallevelsandrelatedglobalgreenhousegasemissionpathways,inthecontextofstrengtheningtheglobalresponsetothethreatofclimatechange,sustainabledevelopment,andeffortstoeradicatepoverty”,www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_High_Res.pdf.IPCC(2018b),“Carbondioxidecaptureandstorage”,www.ipcc.ch/site/assets/uploads/2018/03/srccs_wholereport-1.pdfIPCC(2013),“ClimateChange2013:Thephysicalsciencebasis–Anthropogenicandnaturalradiativeforcing”,www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter08_FINAL.pdf.IRENA(forthcominga),Renewableenergytargets:Aguidetodesign,InternationalRenewableEnergyAgency,AbuDhabi.IRENA(forthcomingb),SustainableBioenergy:Aguidetopolicymaking,InternationalRenewableEnergyAgency,AbuDhabi.IRENA(forthcomingc),GreenHydrogenforaviationandshipping:Aguidetopolicymaking,InternationalRenewableEnergyAgency,AbuDhabi.IRENA(2021),WorldEnergyTransitionsOutlook,InternationalRenewableEnergyAgency,AbuDhabi.IRENA(2020a),GreenHydrogen:AGuidetoPolicyMaking,InternationalRenewableEnergyAgency,AbuDhabi.IRENA(2020b),GreenHydrogenCostReduction:ScalingupElectrolyserstoMeetthe1.5CClimateGoal,InternationalRenewableEnergyAgency,AbuDhabi.REFERENCES58IRENA(2020c),PowerSystemOrganisationalStructuresfortheRenewableEnergyEra,InternationalRenewableEnergyAgency,AbuDhabi.IRENA(2020d),GlobalRenewablesOutlook:EnergyTransformation2050,InternationalRenewableEnergyAgency,AbuDhabi.IRENA(2020e),ReachingZerowithRenewables:EliminatingCO2EmissionsfromIndustryandTransportinLinewiththe1.5°CClimateGoal,InternationalRenewableEnergyAgency,AbuDhabi.IRENA(2019a),RenewableEnergyAuctions:StatusandTrendsBeyondPrice,InternationalRenewableEnergyAgency,AbuDhabi.IRENA(2019b),InnovationLandscapeBrief:Aggregators,InternationalRenewableEnergyAgency,AbuDhabi.IRENA(2019c),AdvancedBiofuels:WhatHoldsThemBack?,InternationalRenewableEnergyAgency,AbuDhabi.IRENA(2018a),HydrogenfromRenewablePower:TechnologyOutlookfortheEnergyTransition,InternationalRenewableEnergyAgency,AbuDhabi.IRENA(2018b),Biogasforroadvehicles:Technologybrief,InternationalRenewableEnergyAgency,AbuDhabi.IRENA(2016),InnovationOutlook:AdvancedLiquidBiofuels,InternationalRenewableEnergyAgency,AbuDhabi.IRENA(2015),RenewableEnergyAuctions:AGuidetoDesign,InternationalRenewableEnergyAgency,AbuDhabi.IRENACoalitionforAction(2021),Decarbonisingend-usesectors:PracticalinsightsongreenhydrogenIRENA,IEAandREN21(2020),RenewableEnergyPoliciesinaTimeofTransition:Heatingandcooling.IRENA,IEAandREN21(2018),RenewableEnergyPoliciesinaTimeofTransition.IRENAandStateGridCorporationofChina(2019),ElectrificationwithRenewables:DrivingtheTransformationofEnergyServices,InternationalRenewableEnergyAgency,AbuDhabi.ISO(InternationalOrganizationforStandardization)(2021),ISO/TC197Hydrogentechnologies,https://www.iso.org/committee/54560.htmlJRC(JointResearchCentre),CENELEC(EuropeanCommitteeforElectrotechnicalStandardization)andNEN(RoyalNetherlandsStandardizationInstitute)(2019),“CEN–CENELECSectorForumEnergyManagement–WorkingGroupHydrogen–2018updatereport”,PublicationsOfficeoftheEuropeanUnion,Luxembourg,www.doi.org/10.2760/449204.Løkke,J.A.(2021),“NELQ42020”,NelHydrogen,www.nelhydrogen.com/wp-content/uploads/2021/02/Nel_2020_Q4_Presentation.pdf.Lord,A.S.,P.H.andD.J.Borns(2014),“Geologicstorageofhydrogen:Scalinguptomeetcitytransportationdemands”,InternationalJournalofHydrogenEnergy,Vol.39,Issue28,pp.15570–15582,www.doi.org/10.1016/j.ijhydene.2014.07.121.Malins,C.(2019),“Whatdoesitmeantobearenewableelectron?”,InternationalCouncilonCleanTransportation,www.theicct.org/publications/cerulogy-renewable-electrons-20191209.Mayyas,A.etal.(2019),“Manufacturingcostanalysisforprotonexchangemembranewaterelectrolyzersmanufacturingcostanalysisforprotonexchangemembranewaterelectrolyzers”,NationalRenewableEnergyLaboratory,www.nrel.gov/docs/fy19osti/72740.pdf.McDowall,W.etal.(2014),“Theroleofhydrogenandfuelcellsinprovidingaffordable,securelow-carbonheat”,www.researchgate.net/publication/286045921_The_role_of_hydrogen_and_fuel_cells_in_providing_affordable_secure_low-carbon_heat.McKinsey(2021),“HydrogenInsights–Aperspectiveonhydrogeninvestment,marketdevelopmentandcostcompetitiveness”,www.hydrogencouncil.com/wp-content/uploads/2021/02/Hydrogen-Insights-2021-Report.pdf.Melaina,M.W.,O.AntoniaandM.Penev(2013),“Blendinghydrogenintonaturalgaspipelinenetworks:Areviewofkeyissues”,NationalRenewableEnergyLaboratory,www.doi.org/10.2172/1068610.MHI(MitsubishiHeavyIndustries)(2020),“MHItoinvestingreenhydrogenandgreenammoniainSouthAustralia”,www.mhi.com/news/201126.html.MinEnergía(2020),“NationalGreenHydrogenStrategy:Chile,Acleanenergyproviderforacarbonneutralplanet”,MinistryofEnergyoftheGovernmentofChile,www.energia.gob.cl/sites/default/files/national_green_hydrogen_strategy_-_chile.pdf.MISE(ItalianMinistryofEconomicDevelopment)(2020),“NationalHydrogenStrategyPreliminaryGuidelines”.MITECO(SpanishMinistryfortheEcologicalTransitionandtheDemographicChallenge)(2020),“HydrogenRoadmap”(inSpanish),www.miteco.gob.es/es/ministerio/hoja-de-ruta-del-hidrogeno-renovable.aspx.REFERENCES59Mitsugi,C.,A.HarumiandF.Kenzo,F.(1998),“WE-NET:Japanesehydrogenprogram”,InternationalJournalofHydrogenEnergy,Vol.23,Issue3,pp.159–165,www.doi.org/10.1016/S0360-3199(97)00042-6.Morgan,T.(2006),“TheHydrogenEconomy:Anon-technicalreview”,UnitedNationsEnvironmentProgramme,www.wedocs.unep.org/bitstream/handle/20.500.11822/9024/-The%20Hydrogen%20Economy%20_%20A%20non-technical%20review-2006632.pdf?amp%3BisAllowed=&sequence=3.Nagashima,M.(2020),“Japan’shydrogensocietyambition:2020statusandperspectives”,IFRI,www.ifri.org/sites/default/files/atoms/files/nagashima_japan_hydrogen_2020.pdf.Nagashima,M.(2018),“Japan’shydrogenstrategyanditseconomicandgeopoliticalimplications”,IFRI,www.ifri.org/sites/default/files/atoms/files/nagashima_japan_hydrogen_2018_.pdf.Nakarado,G.(2011),“FinaltechnicalreportforGO17004regulatorylogic:Codesandstandardsforthehydrogeneconomy”,www.doi.org/10.2172/1344375.Nazir,H.etal.(2020),“IstheH2economyrealizableintheforeseeablefuture?PartII:H2storage,transportation,anddistribution”,InternationalJournalofHydrogenEnergy,Vol.45,Issue41,pp.20693-20708,www.doi.org/10.1016/j.ijhydene.2020.05.241.NetherlandsEnterpriseAgency(2020),“SDE++2020”,www.english.rvo.nl/sites/default/files/2020/11/Brochure%20SDE%20plus%20plus%202020.pdf.NetherlandsGovernment(2020),“HyWay27kick-off:TheDutchMinistryofEconomicAffairsandClimatePolicy,GasunieandTenneTlookintousingnationalgasgridtodevelophydrogeninfrastructure”,www.government.nl/latest/news/2020/06/15/hyway-27-kick-off-the-dutch-ministry-of-economic-affairs-and-climate-policy-gasunie-and-tennet-look-into-using-national-gas-grid-to-develop-hydrogen-infrastructure.Niermann,M.etal.(2019),“Liquidorganichydrogencarriers(LOHCs)-techno-economicanalysisofLOHCsinadefinedprocesschain”,EnergyandEnvironmentalScience,Vol.12,Issue.1,pp.290–307,www.doi.org/10.1039/C8EE02700E.Nordpool(2020),“Marketdata”,www.nordpoolgroup.com/Market-data1/.NSEnergy(2020),“IberdrolasignsMoUwithNelforelectrolyserprojectsinSpain”,19November,www.nsenergybusiness.com/news/iberdrola-nel-manufacture-electrolyser/.OECD(OrganisationforEconomicCo-operationandDevelopment)(2019),“TaxingEnergyUse2019:CountryNote–Germany”,www.oecd.org/tax/tax-policy/taxing-energy-use-iceland.pdf.Parks,G.etal.(2014),“Hydrogenstationcompression,storage,anddispensingtechnicalstatusandcosts:systemsintegration”,NationalRenewableEnergyLaboratory,www.doi.org/10.2172/1130621.Petrova,V.(2020),“Francevoicesambitionsfor6.5GWofhydrogencapacity”,RenewablesNow,11September,www.renewablesnow.com/news/france-voices-ambitions-for-65-gw-of-hydrogen-capacity-713200/.Quarton,C.J.andS.Samsatli(2018),“Power-to-gasforinjectionintothegasgrid:Whatcanwelearnfromreal-lifeprojects,economicassessmentsandsystemsmodelling?,”RenewableandSustainableEnergyReviews,Vol.98/September,pp.302–316,www.doi.org/10.1016/j.rser.2018.09.007.REGATRACE(2020),“D3.1Guidelinesforestablishingnationalbiomethaneregistries”,Regatrace,www.regatrace.eu/wp-content/uploads/2019/11/REGATRACE-D3.1.pdf.REN21(forthcoming),Renewables2021GlobalStatusReport,RenewableEnergyPolicyNetworkforthe21stCenturySecretariat,Paris.REN21(2020),“Renewables2020GlobalStatusReport”,RenewableEnergyPolicyNetworkforthe21stCenturySecretariat,Paris.Reuters(2020),“Germanyearmarks$10billionforhydrogenexpansion”,Reuters,4June2020,www.reuters.com/article/us-health-coronavirus-germany-stimulus/germany-earmarks-10-billion-for-hydrogen-expansion-idUSKBN23B10L.Reuß,M.etal.(2017),“Seasonalstorageandalternativecarriers:Aflexiblehydrogensupplychainmodel”,AppliedEnergy,Vol.200,pp.290–302,www.doi.org/10.1016/j.apenergy.2017.05.050.RGI(RenewablesGridInitiative)(2020),“Theneedforflexibilityinaclimate-neutralenergysystem”,www.renewables-grid.eu/publications/press-releases/detail/news/discussion-paper-release-the-need-for-flexibility-in-a-climate-neutral-energy-system.html.Rödl,A.,C.WulfandM.Kaltschmitt(2018),“Chapter3–Assessmentofselectedhydrogensupplychains–FactorsdeterminingtheoverallGHGemissions”,HydrogenSupplyChain:Design,DeploymentandOperation,pp.81–109,www.doi.org/10.1016/B978-0-12-811197-0.00003-8.REFERENCES60Saunois,M.etal.(2016),“Theglobalmethanebudget2000-2012”,EarthSystemScienceData,Vol.8,Issue2,pp.697–751,CopernicusGmbH,www.doi.org/10.5194/essd-8-697-2016.Simbeck,D.R.andE.Chang(2002),HydrogenSupply:CostEstimateforHydrogenPathways–ScopingAnalysis,NationalRenewableEnergyLaboratory,www.nrel.gov/docs/fy03osti/32525.pdf.Singh,R.,M.SinghandS.Gautam(2020),“Hydrogeneconomy,energy,andliquidorganiccarriersforitsmobility”,MaterialsToday:Proceedings,www.doi.org/10.1016/j.matpr.2020.09.065.Soloveichik,G.(2016),“Ammoniaasvirtualhydrogencarrier”,AdvancedResearchProjectsAgency–Energy,www.energy.gov/sites/prod/files/2016/12/f34/fcto_h2atscale_workshop_soloveichik.pdf.Stolzenburg,K.andR.Mubbala(2013),HydrogenLiquefactionReport,www.idealhy.eu/uploads/documents/IDEALHY_D3-16_Liquefaction_Report_web.pdf.Teichmann,D.,W.ArltandP.Wasserscheid(2012),“Liquidorganichydrogencarriersasanefficientvectorforthetransportandstorageofrenewableenergy”,InternationalJournalofHydrogenEnergy,Vol.37/23,pp.18118–18132,www.doi.org/10.1016/j.ijhydene.2012.08.066.Thyssenkrupp(2020),“Thyssenkruppwaterelectrolysisqualifiedforbalancingenergymarket–E.ONandthyssenkruppbringhydrogensystemstotheelectricitymarket”(inGerman),www.thyssenkrupp.com/de/newsroom/pressemeldungen/pressedetailseite/wasserelektrolyse-von-thyssenkrupp-fur-regelenergiemarkt-qualifiziert--eon-und-thyssenkrupp-bringen-wasserstoffanlagen-an-den-strommarkt-83357.Timpe,C.etal.(2017),“ImprovingtheaccountingofrenewableelectricityintransportwithinthenewEURenewableEnergyDirective”,Öko-Institut,www.oeko.de/fileadmin/oekodoc/Improving-accounting-of-renewable-electricity-in-transport.pdf.VanderMeer,J.P.,R.PerottiandF.deJong(2020),“HyLAW–NationalPolicyPaper–Netherlands”,HyLAW,www.hylaw.eu/sites/default/files/2019-03/HyLAW_National%20Policy%20Paper_Netherlands.pdf.VentureTanaraki(2020),“HydrogenTaranakiRoadmap”,HiringaEnergyandNewPlymouthDistrictCouncil.Vermeulen,U.(2017),TurningaHydrogenEconomyintoReality,28thMeetingSteeringCommitteeIPHE,TheHague,21November2017.Villar,J.,R.BessaandM.Matos(2018),“Flexibilityproductsandmarkets:Literaturereview”,ElectricPowerSystemsResearch,Vol.154,pp.329–340,www.doi.org/10.1016/j.epsr.2017.09.005.Wijk,A.vanandJ.Chatzimarkakis(2020),“GreenhydrogenforaEuropeanGreenDeal:A2x40GWInitiative”,HydrogenEuropeWorldEconomicForum(2020),“TheNet-ZeroChallenge:Fast-forwardtodecisiveclimateaction”,www3.weforum.org/docs/WEF_The_Net_Zero_Challenge.pdf.Wulf,C.etal.(2018),“LifeCycleAssessmentofhydrogentransportanddistributionoptions”,JournalofCleanerProduction,Vol.199,pp.431–443,www.doi.org/10.1016/j.jclepro.2018.07.180.REFERENCES61AEMAnionexchangemembraneCAPEXCapitalexpenditureCGH2CompressedhydrogenFCHJUFuelCellsandHydrogenJointUndertakingFIPFeed-inpremiumFITFeed-intariffGHGGreenhousegasIPCCIntergovernmentalPanelonClimateChangeIRENAInternationalRenewableEnergyAgencyLCFSLow-CarbonFuelStandardLOHCLiquidorganichydrogencarrierLCOHLevelisedcostofhydrogenLH2LiquidhydrogenMoUMemorandumofunderstandingOPEXOperatingexpenditurePCCProtonconductingceramiccellPEMProtonexchangemembranePPAPowerpurchaseagreementPVPhotovoltaicR&DResearchanddevelopmentSOECSolidoxideelectrolysercellsTSOTransmissionsystemoperatorVREVariablerenewableenergyABBREVIATIONSEJExajouleGJGigajouleGWGigawattGWhGigawatthourkgKilogramkmKilometrekWKilowattkWhKilowatthourMtMilliontonnesMWMegawattMWhMegawatthourm3CubicmetretCO2TonneofcarbondioxidetpdTonnesperdayTWTerawattUNITSOFMEASUREABBREVIATIONS62PHOTOCREDITSPHOTOCREDITSPage07:©AlexeyRezvykh;iStockPage11:©SolStock;iStockPage15:©yongyuan;iStockPage17:©BojanPesic;shutterstockPage19:©jeremyiswild;iStockPage21:©RainStar;iStockPage23:HydrogenEnergyProject,Hastings,Victoria,Australia;©DorothyChiron;shutterstockPage25:©luchschen;iStockPage26:Oulu,Finland;©MBNEWS;shutterstockPage26:©instamatics;iStockPage27:©SandervanderWerf;iStockPage34:©Petmal;shutterstockPage39:©ThomBal;shutterstockPage45:©czdast;shutterstockPage46:©Petmal;iStockPage47:Hydrogenstoragetankinwasteincinerator;©Bim;iStockPage48:©AvigatorFortuner;shutterstockPage52:Hydrogenfuelcells;©hopsalka;iStockPage53:©Scharfsinn;shutterstock63GREENHYDROGENSUPPLYAGUIDETOPOLICYMAKINGwww.irena.orgISBN978-92-9260-344-1起点财经,网罗天下报告StartYourFinance

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

小星学习库
已认证
内容提供者

满天繁星 学无止境

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱