欧洲高温燃料电池(SOC)及其氢储能研究进展26.04.2019IDR.QINGPINGFANG(方庆平),ROLANDPETERS,PROF.LUDGERBLUMq.fang@fz-juelich.deInstituteforElectrochemicalProcessEngineering(德国于利希研究中心IEK-3所)9thChinaInternationalEnergyStorageConferenceHangzhou,P.R.ChinaCONTENTS2•MotivationandcurrentSOCR&DinEurope欧洲研发现状简介•State-of-the-artSOCperformance(atForschungszentrumJülich)于利希研究中心SOC性能•SummaryTHEEUNEEDSADECARBONIZEDENERGYSYSTEM3(Source:doi:10.2843/341510)CO2排放量(Mt)562~50%ofgapcanbeclosedbyH2ΔT<2°CTHEHYDROGENSOCIETYANDFUELCELLTECHNOLOGY4H2Fuelcells(燃料电池):-Powergeneration,UPS-CHP-FCV,APU,RE-Marine,aviationElectrolyzers(电解储能):-PtG-PtX-On-sitegenerationDifferenttypesoffuelcellstomeetthedemandsofdifferentapplicationsFCFCFCELFUELCELLSANDHYDROGENJOINTUNDERTAKING(FCHJU)欧盟氢和燃料电池项目支持概况(2008~2017)(Source:doi:10.2843/875050)(Basedondoi:10.2843/701136)SOC:38(Source:doi:10.2843/701136)FCHJUFUNDINGONRESEARCHFORSTATIONARYAPPLICATION衰减寿命诊断下一代材料系统组件生产制造材料研发技术就绪指数“TheFCHJUmadeitaprioritytotakeSOFCsthrougharangeoftechnologyreadinesslevels(TRLs),fromresearchtobecomingacommerciallyviableproduct.Theobjectivesweretoincreasetheirlongevityandreduceproductioncosts.”从研究到产品,重点是寿命和成本“InitialworkfocusedonextendingthelifespanofSOFCs”“ThenextresearchobjectivewastoidentifywaystodevelopSOFCs,fromfunctionalbutexperimentaldesignsinthelaboratory,tousingsemi-automatedmanufacturinglines.”从实验室论证产品到半自动化生产(Source:doi:10.2843/875050)对固定式应用科研项目的支持概况GERMANYSTANDINGONTHEFRONTLINESOFC:663PEM:443(Source:http://enefield.eu/category/news/reports/)Germany:04/2019202020252030641004001000Hydrogenrefuelingstations(Source:https://h2.live/en)家用热电联供系统装机量加氢站8JÜLICH’SSOCTECHNOLOGY(于利希研究中心)-Anode-supportedcellbasedonan8YSZelectrolyteandYSZ/Nielectrode(fuelcellmode)-Metallicplanarinterconnector(Crofer22APU,Crofer22H)-Robuststackdesignsforstationaryandmobileapplications-FurtherR&Dfocusonnext-generationstackdesignsandLT-SOFCSelectedResults:-Long-termstabilityinfuelcellmode燃料电池稳态运行-Thermalcyclingability热循环性-Stabilityinelectrolysismode电解池稳定性-System系统F10DESIGN:STATIONARYOPERATION燃料电池稳态运行~0.2%/kh~0.3%/kh~1.0%/kh~0.2%/khASCcellswithLSCFcathode700°C0.5Acm-2H2+20%H2OuF:40%F1004-21,PVDGDC,APSMCF,LCC12F1004-67,APSMCF,LSCFF1002-97,WPSMnOx,LSCC10,ITMF1002-95,WPSMnOx,LSC12STACKFOR100,000hOFOPERATIONAT700°C(08.2007~01.2019)运行前700°C,运行十万小时后STACKDESIGN:F20WINDOWFRAMEDESIGNInitialsituation§Stackpowerisintherangeof5to10kWasbasicmodulesizeforbiggersystems§Toavoidtoomanystacksinonelargesystem,thepowerofthebasicunitmustbeincreasedApproach§Useofstandardcellsizetoreduceriskofsupply§Stackingof100cellsormoreisnecessaryAdaptationofmanifoldSealingtechnologySub-stackconceptInterconnectwithfourcells(10x10cm²)inonelayer窗式设计增加有效面积,并避免对大尺寸电池片的依赖性F20DESIGN:THERMALCYCLING(200°C~700°C)INFURNACEPerformanceat0.5A/cm²2x5-layersub-stacks干燥氢气下开路电压0.5A/cm²负载下电压窗式电堆热循环性(电炉环境)DesignfeaturestoimproverobustnessCSV:LIGHTWEIGHTCASSETTEDESIGN更轻,更易工业化生产的电堆设计CASSETTEDESIGN:THERMALCYCLING(200°C~700°C)INFURNACE干燥氢气下开路电压0.35A/cm²负载下电压Stackisstillrunning…FurtherresultswillbepresentedinSOFCXVI,Kyoto,2019REVERSIBILITY可逆性ASR@~800°C/0.5A/cm²:SOFC:140mΩcm²SOEC:165mΩcm²Tfurnace~20%higherASRat~800°CfurnacetemperatureinSOEmode(becauseofhighertemperatureinSOFCmodeat0.5A/cm²incombinationwithhigheractivationenergy)Comparableperformanceinwaterandco-electrolysis16SOECSTABILITY电解水稳态运行Q.Fang,C.E.Frey,N.H.Menzler,L.Blum,JournalofTheElectrochemicalSociety,165(2)F38-F45(2018)Totalvoltagedegradation~0.6%/1000h,mainlycausedbyincreaseinohmicresistance.NIDEPLETIONAFTERELECTROLYSISOPERATIONStackafter~20,000hofSOECoperationmainly800°C,50%H2O,50%steamconversionStackafter~36,000hofSOFCoperation700°C,20%H2O,40%ufNidepletionattheelectrolyte/fuelelectrodeinterfaceduringSOECoperationwasthemaincauseofdegradationinohmicresistance镍在电极/电解质界面的偏移是电解水模式下主要的衰减现象20KWSYSTEM(2013)Module1Module2Module3Module4BlowerControl&dataacquisitionSteamgeneration&heatrecoveryPDC>20kWelTmax<800°Chel,net>40%naturalgassteamreformingUc=800mVuF=70%S/C=2.2Tref=500°CTair,in=630°CTair,out=700°CSystemdimensions:3.25x1x2.1m³IntegratedModule5kWStack5KWRSOCPLANT(2018-2019)CommissioningstartedinNovember2018Fueloff-gasrecirculationIntegratedModuleSOFCwithH2:0.5A/cm²@834mV;uf=97%5.33kWDChDC,net=62%SOEwithH2O:-0.89A/cm²@1260mV;uH2O=85%14,9kWDC4,75Nm³/hH2hDC,net=70%(steam+heatingelectrically)R.Peters,R.Deja,L.Blum,V.N.Nguyen,Q.Fang,D.Stolten,Influenceofoperatingparametersonoverallsystemefficienciesusingsolidoxideelectrolysistechnology,InternationalJournalofHydrogenEnergy,40(2015)7103-7113.ElectrolysissystemwithcathoderecirculationEffectofheatsupplyonefficiency外部供热对系统效率的影响goalforLT(incl.gascompressionto70bar)h2h3h4SUMMARY-AdecarbonizedenergysystemintheEUneedsH2energy-Electrolysiswithrenewableenergyhaslong-termpotentialforH2productionandenergystorage-GermanyisleadingthefuelcellandH2activityintheEU-TheEU’scurrentfocusonfuelcellandH2technologyistoincreasetheTRL-SOCtechnologycanbedemonstratedinthelaboratoryfromthecelltosystemlevel-StableperformanceofSOCsdemonstratedatthestacklevel(uptokW)SOLIDOXIDECELL(SOC)FORSTATIONARYAPPLICATIONS22Asapowergenerator(SOFCmode):-Highestconversionefficiency-Nopreciousmetalsnecessary-Highwasteheattemperaturelevel(300~400°C)-Hightoleranceagainstpollutionsfromfuelgas-H2,CO,CH4andotherhydrocarbonsasfuelarepossibleAsagasgenerator(SOECmode):-Lowerelectricalenergydemandhigherelectricalefficiency(withexternalheatsupply)-CO2electrolysisorco-electrolysispossibleReversiblemode(rSOC)-2-in-1system-Increasedapplicationflexibility高温为固体氧化物电池(SOC)提供了优势,但同时也决定了其固定式的主要应用场景23RECHARGEABLEOXIDEBATTERY(ROB)可充电式氧化物电池Demonstrated:-9~30Ahper80cm²-84~95%roundtripefficiency->300cycleswithoutstackdegradationC.M.Berger,O.Tokariev,P.Orzessek,A.Hospach,Q.Fang,M.Bram,et.al.JournalofEnergyStorage1(2015)54-64Q.Fang,C.M.Berger,N.H.Menzler,M.Bram,L.Blum,JournalofPowerSources336(2016)91-98无需气体供应!THANKS!