ASolutiontoGlobalWarming,AirPollution,andEnergyInsecurityforChinaByMarkZ.Jacobson,StanfordUniversity,October19,2021ThisinfographicsummarizesresultsfromsimulationsthatdemonstratetheabilityofChinatomatchall-purposeenergydemandwithwind-water-solar(WWS)electricityandheatsupply,storage,anddemandresponsecontinuouslyevery30secondsforthreeyears(2050-2052).All-purposeenergyisforelectricity,transportation,buildings,industry,agriculture/forestry/fishing,andthemilitary.ResultsareshownforChinainterconnectedwithintheChinaregion(ChinaHongKong,Mongolia,NorthKorea)andforChinaregion.Theidealtransitiontimelineis100%WWSby2035;however,resultsareshownfor2050-2052,afteradditionalpopulationgrowthhasoccurred.WWSelectricity-generatingtechnologiesincludeonshoreandoffshorewind,solarphotovoltaics(PV)onrooftopsandinpowerplants,concentratedsolarpower(CSP),geothermal,hydro,tidal,andwavepower.WWSheat-generatingtechnologiesincludegeothermalandsolarthermal.WWSstorageincludeselectricity,heat,cold,andhydrogenstorage.WWSequipmentincludeselectricandhydrogenfuelcellvehicles,heatpumps,inductioncooktops,arcfurnaces,inductionfurnaces,resistancefurnaces,lawnmowers,etc.Nofossilfuels,nuclear,bioenergy,carboncapture,directaircapture,orbluehydrogenisincluded.TheresultsarederivedfromtheLOADMATCHgridmodelusing2018business-as-usual(BAU)countryloaddatabyenergysectorandfueltype(IEA,2021),projectedto2050thenconvertedtoloadpoweredbywind-water-solar(WWS)electricityandheat.LOADMATCHalsouses30-secondresolutionWWSsupplyplusbuildingheating/coolingloaddatafromtheGATOR-GCMOMweather-predictionmodel.Themodelsaredescribedinthefollowingpublications(resultsaredescribedinthelastpublication):Jacobson,M.Z.(2021)Onthecorrelationbetweenbuildingheatdemandandwindenergysupplyandhowithelpstoavoidblackouts,SmartEnergy,1,100009,doi:10.1016/j.segy.2021.100009,http://web.stanford.edu/group/efmh/jacobson/Articles/Others/21-Wind-Heat.pdfJacobson,M.Z.(2021)Thecostofgridstabilitywith100%clean,renewableenergyforallpurposeswhencountriesareisolatedversusinterconnected,RenewableEnergy,179,1065-1075,doi:10.1016/j.renene.2021.07.115,http://web.stanford.edu/group/efmh/jacobson/Articles/Others/21-CountriesVRegions.pdfJacobson,M.Z.,A.-K.vonKrauland,S.J.Coughlin,etal.(2022),Asolutiontoglobalwarming,airpollution,andenergyinsecurityfor145countries,inreview.Mainresults.TransitioningChinato100%WWSforallenergypurposes…•Keepsthegridstable100%ofthetime.Thisishelpedbythefactthat,duringcoldstorms,windsarestrongerandwind/solararecomplementaryinnature(Figure1);•Saves1.09millionlivesfromairpollutionperyearin2050inChina;•Eliminates14,900milliontonnes-CO2eperyearin2050inChina;•Reduces2050all-purpose,end-useenergyrequirementsby53.4%;•ReducesChina’s2050annualenergycostsby62.9%(from$4.16to$1.54tril/y);•Reducesannualenergy,health,plusclimatecostsby93.3%(from$23.1to$1.54tril/y);•Costs~$13.0trillionupfront.Upfrontcostsarepaidbackthroughenergysales.CostsareforWWSelectricity,heat,andH2generation;electricity,heat,cold,andH2storage;heatpumpsfordistrictheating;all-distancetransmission;anddistribution;•Requires0.57%ofChina’slandforfootprint,0.97%forspacing;•Creates9.0millionmorelong-term,full-timejobsthanlost.TableofContentsTable1.ReducedEnd-UseDemandUponaTransitionFromBAUtoWWSTable2.2050WWSEnd-UseDemandbySectorTable3.WWSEnd-UseDemandbyLoadTypeTable4.NameplateCapacitiesNeededby2050andInstalledasof2020Table5.CapacityFactorsofWWSGeneratorsTable6.PercentofLoadMetbyDifferentWWSGeneratorsTable7.CharacteristicsofStorageResultinginMatchingDemandWith100%WWSSupplyFigure1.KeepingtheElectricGridStableWith100%WWS+Storage+DemandResponseTable8.SummaryofEnergyBudgetResultinginGridStabilityTable9.DetailsofEnergyBudgetResultinginGridStabilityTable10.BreakdownofEnergyCostsRequiredtoKeepGridStableTable11.Energy,Health,andClimateCostsofWWSVersusBAUTable12.AirPollutionMortalities,CarbonDioxideEmissions,andAssociatedCostsTable13.LandAreasNeededTable14.ChangesinEmploymentReferences.Table1.ReducedEnd-UseDemand(Load)UponaTransitionFromBAUtoWWS1strow:2018annually-averagedend-useload(GW)andpercentageoftheloadbysector.2ndrow:estimated2050totalannually-averagedend-useload(GW)andpercentageofthetotalloadbysectorifconventionalfossil-fuel,nuclear,andbiofuelusecontinuesto2050underaBAUtrajectory.3rdrow:estimated2050totalend-useload(GW)andpercentageoftotalloadbysectorif100%ofBAUend-useall-purposedeliveredloadin2050isinsteadprovidedbyWWS.Column(k)showsthepercentagereductionsintotal2050BAUloadduetoswitchingfromBAUtoWWS,includingtheeffectsof(h)energyusereductionduetothehigherworktoenergyratioofelectricityovercombustion,(i)eliminatingenergyusefortheupstreammining,transporting,and/orrefiningofcoal,oil,gas,biofuels,bioenergy,anduranium,and(j)policy-drivenincreasesinend-useefficiencybeyondthoseintheBAUcase.Column(l)istheratioofelectricityload(=allenergyload)inthe2050WWScasetotheelectricityloadinthe2050BAUcase.WhereasColumn(l)showsthatelectricityconsumptionincreasesintheWWSversusBAUcases,Column(k)showsthatallenergydecreases.Scenario(a)Totalannualaverageend-useload(GW)(b)Res-ident-ial%oftotalend-useload(c)Com-mer-cial%oftotalend-useload(d)Indus-try%oftotalend-useload(e)Trans-port%oftotalend-useload(f)Ag/for/fish%oftotalend-useload(g)Military/other%oftotalend-useload(h)%changeend-useloadwithWWSduetohigherwork:energyratio(i)%changeend-useloadwithWWSduetoelim-inatingup-stream(j)%changeend-useloadw/WWSduetoeffic-iencybeyondBAU(k)Ove-rall%changeinend-useloadwithWWS(l)WWS:BAUelec-tricityloadChinaBAU20182,798.816.44.457.116.42.143.62BAU20504,970.517.64.548.724.91.472.83WWS20502,317.016.45.66211.21.213.66-32.9-14.2-6.3-53.41.73ThereductionsinColumn(h)aredueprimarilytotheefficiencyofelectricandhydrogenfuelcellvehiclesoverinternalcombustionenginevehicles,theefficiencyofheatpumpsforairandwaterheatingovercombustionandelectricresistanceheaters,andtheefficiencyofelectricityratherthancombustionforhigh-temperatures.Table2.2050WWSEnd-UseDemandbySector2050annualaverageend-useelectricplusheatload(GW)bysectorintheChinaregionafterenergyinallsectorshasbeenconvertedtoWWS.Instantaneousloadscanbehigherorlowerthanannualaverageloads.Valuesforaregionequalthesumofvaluesamongallcountriesintheregion.CountryorregionTotalRes-identialCom-mercialTrans-portIndustrialAgricul-ture/fores-try/fishingMilitary/otherChinaregion2,358.8383.0136.91446.7277.128.1386.96Table3.WWSEnd-UseDemandbyLoadTypeAnnualaverageWWSall-sectorinflexibleandflexibleloads(GW)for2050intheChinaregion.“Totalload”isthesumof“inflexibleload”and“flexibleload.”“Flexibleload”isthesumof“coldloadsubjecttostorage,”“low-temperatureheatloadsubjecttostorage,”“loadforH2”production,compression,andstorage(accountingforleaksaswell),and“allotherloadssubjecttodemandresponse(DR).”Annualaverageloadsaredistributedintimeat30-sresolution,asdescribedinthetext.Instantaneousloads,eitherflexibleorinflexible,canbemuchhigherorlowerthanannualaverageloads.Alsoshownistheannualhydrogenmassneededineachregion,estimatedastheH2loadmultipliedby8,760hr/yranddividedby59.01kWh/kg-H2.CountryorregionTotalend-useload(GW)Inflex-ibleload(GW)Flex-ibleload(GW)Coldloadsubjecttostorage(GW)Low-temp-eratureheatloadsubjecttostorage(GW)Loadsub-jecttoDRLoadforH2(GW)H2needed(Tg-H2/yr)Chinaregion2,3591,0761,283.28.3170.784.11,00012.5Table4.NameplateCapacitiesNeededby2050andInstalledasof2020Final(fromLOADMATCH)2050total(existingplusnew)nameplatecapacity(GW)ofWWSgeneratorsneededtomatchpowerdemandwithsupply,storage,anddemandresponsecontinuouslyduring2050-2052inChina(wheninterconnectedwithintheChinaregion)andintheChinaregionasawhole.Alsogivenarenameplatecapacitiesalreadyinstalledasof2020end.Nameplatecapacityequalsthemaximumpossibleinstantaneousdischargerate.YearOnshorewindOff-shorewindResi-dentialroof-topPVComm/govtrooftopPVUtilityPVCSPwithstor-ageGeothermal-elec-tricityHydropowerWaveTidalSolarthermalGeothermalheat2020China278.329.99650.76750.767152.300.5210.026338.700.005337.640.612020Chinaregion278.489.99650.79350.793152.380.5210.026343.700.005337.640.632050China2,082640.61,012983.84,245128.21.9338.78.42.0337.640.612050Chinaregion2,100735.41,016989.84,296128.31.9343.78.72.2337.640.63Table5.CapacityFactorsofWWSGeneratorsSimulation-averaged2050-2052capacityfactors(percentofnameplatecapacityproducedaselectricitybeforetransmission,distributionormaintenancelosses)intheChinaregion.Themeancapacityfactorsinthistableequalthesimulation-averagedpowersuppliedbyeachgeneratorineachregion(Table6)dividedbythenameplatecapacityofeachgeneratorineachregion(Table4).CountryorregionOn-shorewindOff-shorewindRooftopPVUtilityPVCSPwithstorageGeo-thermalelec-tricityHydropowerWaveTidalSolarthermalGeo-thermalheatChinaregion0.4710.3720.20.2210.730.8960.4890.1390.2430.1090.54Capacityfactorsofoffshoreandonshorewindturbinesaccountforarraylosses(extractionofkineticenergybyturbines).Thesymbol“--“indicatesnoinstallationofthetechnology.RooftopPVpanelsarefixed-tiltattheoptimaltiltangleofthecountrytheyresidein;utilityPVpanelsarehalffixedoptimaltiltandhalfsingle-axishorizontaltracking.Table6.PercentofLoadMetbyDifferentWWSGeneratorsProjectedsimulation-averaged2050-2052all-sectorWWSenergysupplybeforetransmissionanddistributionlosses,storagelosses,orsheddinglosses,intheChinaregion,andpercentofsupplymetbyeachgenerator,basedonLOADMATCHsimulations.Simulation-averagepowersupply(GW)equalsthesimulationtotalenergysupply(GWh/yr)dividedbythenumberofhoursofsimulation.Thepercentagesforeachregionaddto100%.Multiplyeachpercentagebythe2050totalsupplytoobtaintheGWsupplybyeachgenerator.DividetheGWsupplyfromeachgeneratorbyitscapacityfactor(Table5)toobtainthe2050nameplatecapacityofeachgeneratorneededtomeetthesupply(Table4).CountryorregionTotalWWSsupply(GW)On-shorewind(%)Off-shorewind(%)RoofPV(%)UtilityPV(%)CSPwithstor-age(%)Geothermalelec-tricity(%)Hydropower(%)Wave(%)Tidal(%)Solarther-malheat(%)Geo-ther-malheat(%)Chinaregion2,936.733.689.3113.6332.353.200.065.720.0410.0181.2580.748Table7.CharacteristicsofStorageResultinginMatchingDemandWith100%WWSSupplyMaximumchargerates,dischargerate,storagecapacity,andhoursofstorageatthemaximumdischargerateofallelectricity,coldandheatstorageneededforsupplyplusstoragetomatchdemandintheChinaregion,whichincludesChina.StoragetypeMaxchargerate(GW)Maxdischargerate(GW)Maxstoragecapacity(TWh)Maxstoragetimeatmaxdischargerate(hr)PHS126.2126.21.76714CSP-elec.128.3128.3----CSP-PCM206.9--2.89622.6Batteries2,6002,60010.404Hydropower158.0343.71384.04,027CW-STES11.3011.300.158314ICE16.9616.960.237414HW-STES553.9553.92.7705UTES-heat378.2553.9358.9648UTES-elec.553.9------PHS=pumpedhydropowerstorage;PCM=Phase-changematerials;CSP=concentratedsolarpower;CW-STES=Chilled-watersensibleheatthermalenergystorage;HW-STES=Hotwatersensibleheatthermalenergystorage;andUTES=Undergroundthermalenergystorage(eitherboreholes,waterpits,oraquifers).Thepeakenergystoragecapacityequalsthemaximumdischargeratemultipliedbythemaximumnumberofhoursofstorageatthemaximumdischargerate.Pumpedhydrostoragefor2050inacountryorregionisestimatedastheexisting(in2020)nameplatecapacityinthecountryorregionmultipliedbytheratioofexistingpluspendingcapacitytoexistingcapacityfortheU.S.(fromFERC,2021).Ifacountryhasnoexistinghydro,aminimumisimposedtoaccountfortheadditionofpumpedhydrobetween2021and2050.HeatcapturedinaworkingfluidbyaCSPsolarcollectorcaneitherbeusedimmediatelytoproduceelectricitybyevaporatingwaterandrunningitthroughasteamturbineconnectedtoagenerator,storedinaphase-changematerial,orboth.ThemaximumdirectCSPelectricityproductionrate(CSP-elec)equalsthemaximumelectricitydischargerate,whichequalsthenameplatecapacityofthegenerator.ThemaximumchargerateofCSPphase-changematerialstorage(CSP-PCM)issetto1.612multipliedbythemaximumelectricitydischargerate,whichallowsmoreenergytobecollectedthandischargeddirectlyaselectricity.Thus,sincethehigh-temperatureworkingfluidintheCSPplantcanbeusedtoproduceelectricityandchargestorageatthesametime,themaximumoverallelectricityproductionplusstoragechargerateofenergyis2.612multipliedbythemaximumdischargerate.Thisratioisalsotheratioofthemirrorsizewithstorageversuswithoutstorage.Thisratiocanbeupto3.2inexistingCSPplants.Themaximumenergystoragecapacityequalsthemaximumelectricitydischargeratemultipliedbythemaximumnumberofhoursofstorageatfulldischarge,setto22.6hours,or1.612multipliedbythe14hoursrequiredforCSPstoragetochargewhenchargingatitsmaximumrate.Hydropower’smaximumdischargeratein2050isits2020nameplatecapacity.Hydropowercanberechargedonlynaturallybyrainfallandrunoff,anditsannual-averagerechargerateapproximatelyequalsits2020annualenergyoutput(TWh/yr)dividedbythenumberofhoursperyear.Hydroisrechargedeachtimestepatthisrechargerate.Themaximumhydropowerenergystoragecapacityavailableinallreservoirsisalsoassumedtoequalhydro’s2020annualenergyoutput.Whereasthepresenttablegiveshydro’smaximumstoragecapacity,itsoutputfromstorageduringagiventimestepislimitedbythesmallestamongthreefactors:thecurrentenergyavailableinthereservoir,thepeakhydrodischargeratemultipliedbythetimestep,andtheenergyrequired.TheCW-STESpeakdischargerateissetequalto40%oftheannualaveragecoldload(forairconditioningandrefrigeration)subjecttostorage.TheICEstoragedischargerateissetto60%ofthesameannualaveragecoldloadsubjecttostorage.Thepeakchargerateissetequaltothepeakdischargerate.TheHW-STESpeakdischargerateissetequaltothemaximuminstantaneousheatloadsubjecttostorageduringany30-secondperiodofthetwo-yearsimulation.Thevalueshavebeenconvertedtoelectricityassumingtheelectricityproducesheatforheatpumpswithacoefficientofperformanceof4.Becausetheyarebasedonmaximumratherthantheannualaverageloads,theyarehigherthantheannual-averagelow-temperatureheatloadssubjecttostorageinTable3.Thepeakchargerateissetequaltothepeakdischargerate.UTESheatstoredinundergroundsoil(boreholestorage)orwater(waterpitoraquiferstorage)canbechargedwitheithersolarorgeothermalheatorexcesselectricity(assumingtheelectricityproducesheatwithanelectricheatpumpatacoefficientofperformanceof4).Themaximumchargerateofheat(convertedtoequivalentelectricity)toUTESstorage(UTES-heat)issettothenameplatecapacityofsolarthermalcollectorsdividedbythecoefficientofperformanceofaheatpump=4).Whennosolarthermalcollectorsareused,suchasinallsimulationshere,themaximumchargerateforUTES-heatiszero,andUTESischargedonlywithexcessgridelectricityrunningheatpumps.ThemaximumchargerateofUTESstorageusingexcessgridelectricity(UTES-elec.)issetequaltothemaximuminstantaneousheatloadsubjecttostorageduringany30-secondperiodofthetwo-yearsimulation.ThemaximumUTESheatdischargerateissetequaltothemaximuminstantaneousheatloadsubjecttostorage.Themaximumchargerate,dischargerate,andcapacityofUTESstorageareallinunitsofequivalentelectricitythatwouldgiveheatatacoefficientofperformanceof4.Figure1.KeepingtheElectricGridStableWith100%WWS+Storage+DemandResponse2050-2052hourlytimeseriesshowingthematchingofall-energydemandwithsupplyandstorageintheChinaregionasawhole,whichincludesChina.Firstrow:modeledtime-dependenttotalWWSpowergenerationversusloadpluslossespluschangesinstorageplussheddingforthefullthree-yearsimulationperiod.Secondrow:sameasfirstrow,butforawindowof100daysduringthesimulation.Thirdrow:abreakdownofWWSpowergenerationbysourceduringthewindow.Fourthrow:abreakdownofinflexibleload;flexibleelectric,heat,andcoldload;flexiblehydrogenload;lossesinandoutofstorage;transmissionanddistributionlosses;changesinstorage;andshedding.Fifthrow:AbreakdownofsolarPV+CSPelectricityproduction,onshoreplusoffshorewindelectricityproduction,buildingtotalcoldload,andbuildingtotalheatload(asusedinLOADMATCH),summedovereachregion;Sixthrow:correlationplotsofbuildingheatloadversuswindpoweroutputandwindpoweroutputversussolarpoweroutput,obtainedfromallhourlydataduringthesimulation.CorrelationsareverystrongforR=0.8-1(R2=0.64-1);strongforR=0.6-0.8(R2=0.36-0.64);moderateforR=0.4-0.6(R2=0.16-0.36);weakfor0.2-0.4(R2=0.04-0.16);andveryweakfor0-0.2(R2=0-0.04)(Evans,1996).Themodelwasrunat30-sresolution.Resultsareshownhourly,sounitsareenergyoutput(TWh)perhourincrement,thusalsoinunitsofpower(TW)averagedoverthehour.Noloadlossoccurredduringany30-sinterval.RawGATOR-GCMOMresultsforsolar,wind,heatload,andcoldloadwereprovidedandfedintoLOADMATCHat30-stimeincrements.LOADMATCHmodifiedthemagnitudes,butnottimeseries,ofGATOR-GCMOMoutput,asdescribedinthepaper.Table8.SummaryofEnergyBudgetResultinginGridStabilityBudgetofsimulation-averagedend-usepowerdemandmet,energylost,WWSenergysupplied,andchangesinstorage,duringthethree-year(26,291.4875hour)simulation.AllunitsareGWaveragedoverthesimulationandarederivedfromthedatainTable9bydividingvaluesfromthetableinunitsofTWhpersimulationbythenumberofhoursofsimulation.TD&Mlossesaretransmission,distribution,andmaintenancelosses.Windturbinearraylossesarealreadyaccountedforinthe“WWSsupplybeforelosses”numbers,”sincewindsupplyvaluescomefromGATOR-GCMOM,whichaccountsforsuchlosses.ResultsareshownfortheChinaregionasawhole,withinwhichChinaisinterconnected.Countryorregion(a)Annualaverageend-useload(GW)(b)TD&Mlosses(GW)(c)Storagelosses(GW)(d)Sheddinglosses(GW)(e)End-useload+losses=a+b+c+d(GW)(f)WWSsupplybeforelosses(GW)(g)Changesinstorage(GW)(h)Supply+changesinstorage=f+g(GW)Chinaregion2,358.8194.5791.50300.52,945.32,936.78.592,945.3Table9.DetailsofEnergyBudgetResultinginGridStabilityBudgetoftotalend-useenergydemandmet,energylost,WWSenergysupplied,andchangesinstorage,duringthethree-year(26,291.4875hour)simulation.AllunitsareTWhoverthesimulation.Dividebythenumberofhoursofsimulationtoobtainsimulation-averagedpowervalues,whichareprovidedinTable8forkeyparameters.ResultsareshownfortheChinaregionasawhole,withinwhichChinaisinterconnected.ChinaregionA1.Totalendusedemand62,015Electricityforelectricityinflexibledemand29,043Electricityforelectricity,heat,coldstorage+DR30,760ElectricityforH2directuse+H2storage2,212A2.Totalendusedemand62,015Electricityfordirectuse,electricitystorage,+H257,685Low-Theatloadmetbyheatstorage4,232Coldloadmetbycoldstorage98.03A3.Totalendusedemand62,015Electricityfordirectuse,electricitystorage,DR54,571ElectricityforH2directuse+H2storage2,212Electricity+heatforheatsubjecttostorage4,489Electricityforcoldloadsubjecttostorage743.00B.Totallosses15,422Transmission,distribution,downtimelosses5,115LossesCSPstorage17.31LossesPHSstorage11.4020Lossesbatterystorage846LossesCW-STES+ICEstorage18LossesHW-STESstorage328LossesUTESstorage1,185Lossesfromshedding7,900Netend-usedemandpluslosses(A1+B)77,437C.TotalWWSsupplybeforeT&Dlosses77,211Onshore+offshorewindelectricity33,184Rooftop+utilityPV+CSPelectricity37,971Hydropowerelectricity4,416.8Waveelectricity31.78Geothermalelectricity43.8315Tidalelectricity13.879Solarheat971.8804Geothermalheat577.4566D.Nettakenfrom(+)oraddedto(-)storage225.909CSPstorage1.4127PHSstorage-0.1767Batterystorage5.4043CW-STES+ICEstorage-0.0263HW-STESstorage2.4927UTESstorage216.5664H2storage0.2359Energysuppliedplustakenfromstorage(C+D)77,437End-usedemandsinA1,A2,A3shouldbeidentical.Generatedelectricityisshedwhenitexceedsthesumofelectricitydemand,coldstoragecapacity,heatstoragecapacity,andH2storagecapacity.OnshoreandoffshorewindturbinesinGATOR-GCMOM,usedtocalculatewindpoweroutputforuseinLOADMATCH,areassumedtobeSenvion(formerlyRepower)5MWturbineswith126-mdiameterblades,100mhubheights,acut-inwindspeedof3.5m/s,andacut-outwindspeedof30m/s.RooftopPVpanelsinGATOR-GCMOMweremodeledasfixed-tiltpanelsattheoptimaltiltangleofthecountrytheyresidedin;utilityPVpanelsweremodeledashalffixedoptimaltiltandhalfsingle-axishorizontaltracking.Allpanelswereassumedtohaveanameplatecapacityof390Wandapanelareaof1.629668m2,whichgivesa2050panelefficiency(WattsofpoweroutputperWattofsolarradiationincidentonthepanel)of23.9%,whichisanincreasefromthe2015valueof20.1%.EachCSPplantbeforestorageisassumedtohavethemirrorandlandcharacteristicsoftheIvanpahsolarplant,whichhas646,457m2ofmirrorsand2.17km2oflandper100MWnameplatecapacityandaCSPefficiency(fractionofincidentsolarradiationthatisconvertedtoelectricity)of15.796%,calculatedastheproductofthereflectionefficiencyof55%andthesteamplantefficiencyof28.72%.TheefficiencyoftheCSPhotfluidcollection(energyinfluiddividedbyincidentradiation)is34%.Table10.BreakdownofEnergyCostsRequiredtoKeepGridStableSummaryof2050WWSmeancapitalcostsofnewelectricityplusheatgenerators;electricity,heat,cold,andhydrogenstorage(includingheatpumpstosupplydistrictheatingandcooling),andall-distancetransmission/distribution($trillionin2020USD)andmeanlevelizedprivatecostsofenergy(LCOE)(USD¢/kWh-all-energyor¢/kWh-electricity-replacing-BAU-electricity)averagedovereachsimulation.Alsoshownistheenergyconsumedperyearineachcaseandtheresultingaggregateannualenergycost.ResultsareshownfortheChinaregionasawhole,withinwhichChinaisinterconnected.ChinaregionCapitalcostnewgeneratorsonly($trillion)10.102Capcostnewgenerators+storage($trillion)13.333ComponentsoftotalLCOE(¢/kWh-all-energy)Short-dist.transmission1.050Long-distancetransmission0.195Distribution2.375Electricitygeneration3.208Additionalhydroturbines0Geothermal+solarthermalheatgeneration0.182LIbatterystorage0.257CSP-PCM+PHSstorage0.021CW-STES+ICEstorage0.002HW-STESstorage0.009UTESstorage0.159Heatpumpsforfillingdistrictheating/cooling0.065H2production/compression/storage0.084TotalLCOE(¢/kWh-all-energy)7.605LCOE(¢/kWh-replacingBAUelectricity)7.282GWannualavg.end-usedemand(Table1)2,358.8TWh/yend-usedemand(GWx8,760h/y)20,663Annualenergycost($billion/yr)1,571.5TheLCOEsarederivedfromcapitalcosts,annualO&M,andend-of-lifedecommissioningcoststhatvarybytechnology(andthatareafunctionoflifetimeandasocialdiscountrateforanintergenerationalprojectof2.0(1-3)%,alldividedbythetotalannualizedend-usedemandmet,giveninthepresenttable.Capitalcostofgenerators-storage-H2-HVDC($trillion)isthecapitalcostofnewelectricityandheatgenerators;electricity,heat,cold,andhydrogenstorage;hydrogenelectrolyzersandcompressors;andlong-distance(HVDC)transmission.Sincethetotalend-useloadincludesheat,cold,hydrogen,andelectricityloads(allenergy),the“electricitygenerator”cost,forexample,isacostperunitallenergyratherthanperunitelectricityalone.The‘TotalLCOE’givestheoverallcostofenergy,andthe‘ElectricityLCOE’givesthecostofenergyfortheelectricityportionofloadreplacingBAUelectricityenduse.ItisthetotalLCOElessthecostsforUTESandHW-STESstorage,H2,andlesstheportionoflong-distancetransmissionassociatedwithH2.Short-distancetransmissioncostsare$0.0105(0.01-0.011)/kWh.Distributioncostsare$0.02375(0.023-0.0245)/kWh.Long-distancetransmissioncostsare$0.0089(0.0042-0.010)/kWh(inUSD2020),whichassumes1,500to2,000kmHVDClines,acapacityfactorusageofthelinesof~50%andacapitalcostof~$400(300-460)/MWtr-km.Table11.Energy,Health,andClimateCostsofWWSVersusBAU2050ChinaandChinaregionannual-averageend-use(a)BAUloadand(b)WWSload;(c)percentdifferencebetweenWWSandBAUload;(d)presentvalueofthemeantotalcapitalcostfornewWWSelectricity,heat,cold,andhydrogengenerationandstorageandall-distancetransmissionanddistribution;meanlevelizedprivatecostsofall(e)BAUand(f)WWSenergy(¢/kWh-all-energy-sectors,averagedbetweentodayand2050);(g)meanWWSprivate(equalssocial)energycostperyear,(h)meanBAUprivateenergycostperyear,(i)meanBAUhealthcostperyear,(j)meanBAUclimatecostperyear,(k)BAUtotalsocialcostperyear;(l)percentdifferencebetweenWWSandBAUprivateenergycost;and(m)percentdifferencebetweenWWSandBAUsocialenergycost.Allcostsarein2020USD.H=8,760hoursperyear.Countryorregion(a)12050BAUAnnualavg.end-useload(GW)(b)12050WWSAnnualavg.end-useload(GW)(c)2050WWSminusBAUload=(b-a)/a(%)(d)2WWSmeantotalcap-italcost($tril2020)(e)3BAUmeanprivateenergycost¢/kWh-allenergy(f)4WWSmeanprivateenergycost¢/kWh-allenergy(g)5WWSmeanannualall-energyprivateandsocialcost=bfH$bil/(h)5BAUmeanannualall-energyprivatecost=aeH$bil/y(i)6BAUmeanannualBAUhealthcost$bil/y(j)7BAUmeanannualclimatecost($bil/y)(k)BAUmeanannualBAUtotalsocialcost=h+i+j$bil/y(l)WWSminusBAUprivateenergycost=(g-h)/h(%)(m)WWSminusBAUsocialenergycost=(g-k)/k(%)China4,970.52,317.0-53.413.0169.557.611,543.74,159.810,6028,338.223,100-62.9-93.3Chinaregion5,076.32,358.8-53.513.3339.557.611,571.54,248.410,7578,495.723,501-63.0-93.31FromTable1.2Capitalcostofgenerators-storage-H2-HVDC($trillion)isthecapitalcostofnewelectricityandheatgenerators;electricity,heat,cold,andhydrogenstorage;hydrogenelectrolyzersandcompressors;andlong-distance(HVDC)transmission.3ThisistheBAUelectricity-sectorcostofenergyperunitenergy.ItisassumedtoequaltheBAUall-energycostofenergyperunitenergy.4TheWWScostperunitenergyisforallenergy,whichisalmostallelectricity(plusasmallamountofdirectheat)5TheannualprivatecostofWWSorBAUenergyequalsthecostperunitenergyfromColumn(f)or(g),respectively,multipliedbytheenergyconsumedperyear,whichequalstheend-useloadfromColumn(b)or(a),respectively,multipliedby8,760hoursperyear.6The2050annualBAUhealthcostequalsthenumberoftotalairpollutionmortalitiesperyearin2050fromTable12,Column(a),multipliedby90%(theestimatedpercentoftotalairpollutionmortalitiesthatareduetoenergy)andbyastatisticalcostoflifeof$11.56($7.21-$17.03)million/mortality(2020USD)andamultiplierof1.15formorbidityandanothermultiplierof1.1fornon-healthimpacts(Jacobsonetal.,2019).7The2050annualBAUclimatecostequalsthe2050CO2eemissionsfromTable12,Column(b),multipliedbythesocialcostofcarbonin2050of$548($315-$1,188)/metrictonne-CO2(in2020USD),whichisupdatedfromvaluesinJacobsonetal.(2019),whichwerein2013USD.Table12.AirPollutionMortalities,CarbonDioxideEmissions,andAssociatedCostsChinaandChinaregion(a)estimatedairpollutionmortalitiesperyearin2050-2052duetoanthropogenicsources(90%ofwhichareenergy);(b)carbon-equivalentemissions(CO2e)intheBAUcase;(c)costpertonne-CO2eofeliminatingCO2ewithWWS;(d)BAUenergycostpertonne-CO2eemitted;(e)BAUhealthcostpertonne-CO2eemitted;(f)BAUclimatecostpertonne-CO2eemitted;(g)BAUtotalsocialcostpertonne-CO2eemitted;(h)BAUhealthcostperunitall-BAU-energyproduced;and(i)BAUclimatecostperunit-all-BAU-energyproduced.Countryorregion(a)12050BAUairpollutionmortalities(Deaths/y)(b)22050BAUCO2e(Mtonne/y)(c)32050WWS($/tonne-CO2e-elim-inated)(d)42050BAUenergycost($/tonne-CO2e-emitted)(e)42050BAUhealthcost($/tonne-CO2e-emitted)(f)42050BAUclimatecost($/tonne-CO2e-emitted)(g)42050BAUsocialcost=d+e+f($/tonne-CO2e-emitted)(h)52050BAUhealthcost(¢/kWh)(i)52050BAUclimatecost(¢/kWh)China1,090,24414,930103.42797105581,54724.419.2Chinaregion1,134,53515,212103.32797075581,54524.219.112050countryBAUmortalitiesduetoairpollutionareextrapolatedfrom2016valuesfromWHO(2017)usingthemethoddescribedinJacobsonetal.(2019).2CO2e=CO2-equivalentemissions.ThisaccountsfortheemissionsofCO2plustheemissionsofothergreenhousegasesmultipliedbytheirglobalwarmingpotentials.3CalculatedastheWWSprivateenergyandtotalsocialcostfromTable11,Column(g)dividedbytheCO2eemissionsfromColumn(b)ofthepresenttable.4Columns(d)-(g)arecalculatedastheBAUprivateenergy,health,climate,andtotalsocialcostsfromTable11,Columns(h)-(k),respectively,eachdividedbytheCO2eemissionsfromColumn(b)ofthepresenttable.5Columns(h)-(i)arecalculatedastheBAUhealthandclimatecostsfromTable11,Columns(i)-(j),respectively,eachdividedbytheBAUannualaverageend-useloadfromTable11,Column(a)andby8,760hoursperyear.Table13.LandAreasNeededFootprintareasfornewutilityPVfarms,CSPplants,solarthermalplantsforheat,geothermalplantsforelectricityandheat,andhydropowerplantsandspacingareasfornewonshorewindturbines.CountryorregionCountryorregionlandarea(km2)FootprintArea(km2)Spacingarea(km2)Footprintareaaspercentageofthecountryorregionlandarea(%)Spacingareaasapercentageofthecountryorregionlandarea(%)China9,388,21153,76291,1080.570.97Chinaregion11,063,25454,38891,9780.490.83Spacingareasareareasbetweenwindturbinesneededtoavoidinterferenceofthewakeofoneturbinewiththenext.Suchspacingareacanbeusedformultiplepurposes,includingfarmland,rangeland,openspace,orutilityPV.Footprintareasarethephysicallandareas,watersurfaceareas,orseafloorsurfaceareasremovedfromuseforanyotherpurposebyanenergytechnology.RooftopPVisnotincludedinthefootprintcalculationbecauseitdoesnottakeupnewland.Conventionalhydronewfootprintiszerobecausenonewdamsareproposedaspartoftheseroadmaps.Offshorewind,wave,andtidalarenotincludedbecausetheydon’ttakeupnewland.Areasaregivenbothasanabsoluteareaandasapercentageofthecountryorregionallandarea,whichexcludesinlandorcoastalwaterbodies.Forcomparison,thetotalareaandlandareaofEarthare510.1and144.6millionkm2,respectively.Table14.ChangesintheEmploymentEstimatedlong-term,full-timejobscreatedandlostintheChinaregionasawholeandinChinaitselfwheninterconnectedtotheChinaregion,duetotransitioningfromBAUenergyto100%WWSacrossallenergysectors.Thejobcreationaccountsfornewjobsintheelectricity,heat,cold,andhydrogengeneration,storage,andtransmission(includingHVDCtransmission)industries.Italsoaccountsforthebuildingofheatpumpstosupplydistrictheatingandcooling.Howeveritdoesnotaccountforchangesinjobsintheproductionofelectricappliances,vehicles,andmachinesorinincreasingbuildingenergyefficiency.ConstructionjobsarefornewWWSdevicesonly.Operationjobsarefornewandexistingdevices.Thelossesareduetoeliminatingjobsformining,transporting,processing,andusingfossilfuels,biofuels,anduranium.Fossil-fueljobsduetonon-energyusesofpetroleum,suchaslubricants,asphalt,petrochemicalfeedstock,andpetroleumcoke,areretained.Fortransportationsectors,thejobslostarethoseduetotransportingfossilfuels(e.g.,throughtruck,train,barge,ship,orpipeline);thejobsnotlostarethosefortransportingothergoods.Thetabledoesnotaccountforjobslostinthemanufactureofcombustionappliances,includingautomobiles,ships,orindustrialmachines.CountryorregionConstructionjobsproducedOperationjobsproducedTotaljobsproducedJobslostNetchangeinjobsChina5,173,3586,734,92011,908,2792,920,0288,988,251Chinaregion5,277,6276,922,93912,200,5673,007,4069,193,161References.FERC(FederalRegulatoryEnergyCommission)(2021).Pumpedstorageprojects.https://www.ferc.gov/industries-data/hydropower/licensing/pumped-storage-projects.IEA(InternationalEnergyAgency)(2021),DataandStatisticsfor2018,OECDPublishing,Paris.RetrievedOctober5,2021fromhttps://www.iea.org/data-and-statisticsJacobson,M.Z.,Delucchi,M.A.,Cameron,M.A.,Coughlin,S.J.,Hay,C.,Manogaran,I.P.,Shu,Y.andvonKrauland,A.-K.(2019).ImpactsofGreenNewDealenergyplansongridstability,costs,jobs,health,andclimatein143countries.OneEarth1,449-463.WHO(WorldHealthOrganization)(2017).Globalhealthobservatorydata.RetrievedAugust10,2021,from,https://www.who.int/gho/phe/outdoor_air_pollution/en