100Pct-WWS-PapersVIP专享VIP免费

Abstracts of 24 Peer-Reviewed Published
Journal Articles From 2009-2024 by Over
100 Co-Authors Forming the Scientific
Basis of
100% Clean, Renewable Wind-Water-
Solar (WWS) All-Sector Energy
Roadmaps for Towns, Cities, States,
Countries, and the World
Links to Papers Available on Last Page
See Also
http://web.stanford.edu/group/efmh/jacobson/Articles/I/CombiningRenew/100PercentPaperAbstracts.pdf
for Additional Papers Supporting 100%
Renewables
June 28, 2022
Links to 100% WWS Papers
2009 Jacobson, Energy & Environmental Sciences
https://web.stanford.edu/group/efmh/jacobson/Articles/I/ReviewSolGW09.pdf
2009 Jacobson and Delucchi, Scientific American
https://web.stanford.edu/group/efmh/jacobson/Articles/I/sad1109Jaco5p.indd.pdf
2011 Jacobson and Delucchi, Energy Policy
https://web.stanford.edu/group/efmh/jacobson/Articles/I/JDEnPolicyPt1.pdf
2011 Delucchi and Jacobson, Energy Policy
https://web.stanford.edu/group/efmh/jacobson/Articles/I/DJEnPolicyPt2.pdf
2011 Hart and Jacobson, Renewable Energy
https://web.stanford.edu/group/efmh/jacobson/Articles/I/CombiningRenew/HartJacRenEnMar11.pdf
2012 Hart and Jacobson, Energy & Environmental Science
https://web.stanford.edu/group/efmh/jacobson/Articles/I/CombiningRenew/HartEES12Online.pdf
2013 Jacobson et al., Energy Policy
http://web.stanford.edu/group/efmh/jacobson/Articles/I/NewYorkWWSEnPolicy.pdf
2014 Jacobson et al., Energy
http://web.stanford.edu/group/efmh/jacobson/Articles/I/CaliforniaWWS.pdf
2014 Becker et al., Energy
https://web.stanford.edu/group/efmh/jacobson/Articles/Others/BeckerEnergy14.pdf
2015 Becker et al., Energy
https://web.stanford.edu/group/efmh/jacobson/Articles/Others/BeckerEnergy15.pdf
2015 Jacobson et al., Energy & Environmental Science
http://web.stanford.edu/group/efmh/jacobson/Articles/I/USStatesWWS.pdf
2015 Jacobson et al., PNAS
http://web.stanford.edu/group/efmh/jacobson/Articles/I/CombiningRenew/CONUSGridIntegration.pdf
2016 Jacobson et al., Renewable Energy
http://web.stanford.edu/group/efmh/jacobson/Articles/I/WashStateWWS.pdf
2016 Frew et al., Energy
https://web.stanford.edu/group/efmh/jacobson/Articles/Others/16-Frew-Energy.pdf
2016 Frew and Jacobson, Energy
https://web.stanford.edu/group/efmh/jacobson/Articles/Others/16-Frew-Energy-B.pdf
2017 Jacobson et al., Joule
http://web.stanford.edu/group/efmh/jacobson/Articles/I/CountriesWWS.pdf
2018 Jacobson et al., Renewable Energy
http://web.stanford.edu/group/efmh/jacobson/Articles/I/CombiningRenew/WorldGridIntegration.pdf
2018 Jacobson et al., Sustainable Cities and Society
http://web.stanford.edu/group/efmh/jacobson/Articles/I/TownsCities.pdf
2019 Jacobson et al., One Earth
http://web.stanford.edu/group/efmh/jacobson/Articles/I/143WWSCountries.pdf
2020 Jacobson et al., Energies
https://web.stanford.edu/group/efmh/jacobson/Articles/I/Megacities.pdf
2019 Jacobson, Smart Energy
https://web.stanford.edu/group/efmh/jacobson/Articles/Others/21-Wind-Heat.pdf
2021 Jacobson, Renewable Energy
https://web.stanford.edu/group/efmh/jacobson/Articles/Others/21-CountriesVRegions.pdf
2022 Jacobson et al., Renewable Energy
https://web.stanford.edu/group/efmh/jacobson/Articles/I/21-USStates-PDFs/21-USStatesPaper.pdf
2022 Jacobson et al., Energy & Environmental Science
https://web.stanford.edu/group/efmh/jacobson/Articles/I/145Country/22-145Countries.pdf
Link to Infographic Maps of 100% WWS
Roadmaps for Cities, States, Countries
Infographic Maps – Stanford Solutions Project
https://sites.google.com/stanford.edu/wws-roadmaps/home7
Abstractsof24Peer-ReviewedPublishedJournalArticlesFrom2009-2024byOver100Co-AuthorsFormingtheScientificBasisof100%Clean,RenewableWind-Water-Solar(WWS)All-SectorEnergyRoadmapsforTowns,Cities,States,Countries,andtheWorldLinkstoPapersAvailableonLastPageSeeAlsohttp://web.stanford.edu/group/efmh/jacobson/Articles/I/CombiningRenew/100PercentPaperAbstracts.pdfforAdditionalPapersSupporting100%RenewablesJune28,2022Linksto100%WWSPapers2009Jacobson,Energy&EnvironmentalScienceshttps://web.stanford.edu/group/efmh/jacobson/Articles/I/ReviewSolGW09.pdf2009JacobsonandDelucchi,ScientificAmericanhttps://web.stanford.edu/group/efmh/jacobson/Articles/I/sad1109Jaco5p.indd.pdf2011JacobsonandDelucchi,EnergyPolicyhttps://web.stanford.edu/group/efmh/jacobson/Articles/I/JDEnPolicyPt1.pdf2011DelucchiandJacobson,EnergyPolicyhttps://web.stanford.edu/group/efmh/jacobson/Articles/I/DJEnPolicyPt2.pdf2011HartandJacobson,RenewableEnergyhttps://web.stanford.edu/group/efmh/jacobson/Articles/I/CombiningRenew/HartJacRenEnMar11.pdf2012HartandJacobson,Energy&EnvironmentalSciencehttps://web.stanford.edu/group/efmh/jacobson/Articles/I/CombiningRenew/HartEES12Online.pdf2013Jacobsonetal.,EnergyPolicyhttp://web.stanford.edu/group/efmh/jacobson/Articles/I/NewYorkWWSEnPolicy.pdf2014Jacobsonetal.,Energyhttp://web.stanford.edu/group/efmh/jacobson/Articles/I/CaliforniaWWS.pdf2014Beckeretal.,Energyhttps://web.stanford.edu/group/efmh/jacobson/Articles/Others/BeckerEnergy14.pdf2015Beckeretal.,Energyhttps://web.stanford.edu/group/efmh/jacobson/Articles/Others/BeckerEnergy15.pdf2015Jacobsonetal.,Energy&EnvironmentalSciencehttp://web.stanford.edu/group/efmh/jacobson/Articles/I/USStatesWWS.pdf2015Jacobsonetal.,PNAShttp://web.stanford.edu/group/efmh/jacobson/Articles/I/CombiningRenew/CONUSGridIntegration.pdf2016Jacobsonetal.,RenewableEnergyhttp://web.stanford.edu/group/efmh/jacobson/Articles/I/WashStateWWS.pdf2016Frewetal.,Energyhttps://web.stanford.edu/group/efmh/jacobson/Articles/Others/16-Frew-Energy.pdf2016FrewandJacobson,Energyhttps://web.stanford.edu/group/efmh/jacobson/Articles/Others/16-Frew-Energy-B.pdf2017Jacobsonetal.,Joulehttp://web.stanford.edu/group/efmh/jacobson/Articles/I/CountriesWWS.pdf2018Jacobsonetal.,RenewableEnergyhttp://web.stanford.edu/group/efmh/jacobson/Articles/I/CombiningRenew/WorldGridIntegration.pdf2018Jacobsonetal.,SustainableCitiesandSocietyhttp://web.stanford.edu/group/efmh/jacobson/Articles/I/TownsCities.pdf2019Jacobsonetal.,OneEarthhttp://web.stanford.edu/group/efmh/jacobson/Articles/I/143WWSCountries.pdf2020Jacobsonetal.,Energieshttps://web.stanford.edu/group/efmh/jacobson/Articles/I/Megacities.pdf2019Jacobson,SmartEnergyhttps://web.stanford.edu/group/efmh/jacobson/Articles/Others/21-Wind-Heat.pdf2021Jacobson,RenewableEnergyhttps://web.stanford.edu/group/efmh/jacobson/Articles/Others/21-CountriesVRegions.pdf2022Jacobsonetal.,RenewableEnergyhttps://web.stanford.edu/group/efmh/jacobson/Articles/I/21-USStates-PDFs/21-USStatesPaper.pdf2022Jacobsonetal.,Energy&EnvironmentalSciencehttps://web.stanford.edu/group/efmh/jacobson/Articles/I/145Country/22-145Countries.pdfLinktoInfographicMapsof100%WWSRoadmapsforCities,States,CountriesInfographicMaps–StanfordSolutionsProjecthttps://sites.google.com/stanford.edu/wws-roadmaps/homeReviewofsolutionstoglobalwarming,airpollution,andenergysecurity†MarkZ.JacobsonReceived12thJune2008,Accepted31stOctober2008FirstpublishedasanAdvanceArticleontheweb1stDecember2008DOI:10.1039/b809990cThispaperreviewsandranksmajorproposedenergy-relatedsolutionstoglobalwarming,airpollutionmortality,andenergysecuritywhileconsideringotherimpactsoftheproposedsolutions,suchasonwatersupply,landuse,wildlife,resourceavailability,thermalpollution,waterchemicalpollution,nuclearproliferation,andundernutrition.Nineelectricpowersourcesandtwoliquidfueloptionsareconsidered.Theelectricitysourcesincludesolar-photovoltaics(PV),concentratedsolarpower(CSP),wind,geothermal,hydroelectric,wave,tidal,nuclear,andcoalwithcarboncaptureandstorage(CCS)technology.Theliquidfueloptionsincludecorn-ethanol(E85)andcellulosic-E85.Toplacetheelectricandliquidfuelsourcesonanequalfooting,weexaminetheircomparativeabilitiestoaddresstheproblemsmentionedbypoweringnew-technologyvehicles,includingbattery-electricvehicles(BEVs),hydrogenfuelcellvehicles(HFCVs),andflex-fuelvehiclesrunonE85.Twelvecombinationsofenergysource-vehicletypeareconsidered.Uponrankingandweightingeachcombinationwithrespecttoeachof11impactcategories,fourcleardivisionsofranking,ortiers,emerge.Tier1(highest-ranked)includeswind-BEVsandwind-HFCVs.Tier2includesCSP-BEVs,geothermal-BEVs,PV-BEVs,tidal-BEVs,andwave-BEVs.Tier3includeshydro-BEVs,nuclear-BEVs,andCCS-BEVs.Tier4includescorn-andcellulosic-E85.Wind-BEVsrankedfirstinsevenoutof11categories,includingthetwomostimportant,mortalityandclimatedamagereduction.AlthoughHFCVsaremuchlessefficientthanBEVs,wind-HFCVsarestillverycleanandwererankedsecondamongallcombinations.Tier2optionsprovidesignificantbenefitsandarerecommended.Tier3optionsarelessdesirable.However,hydroelectricity,whichwasrankedaheadofcoal-CCSandnuclearwithrespecttoclimateandhealth,isanexcellentloadbalancer,thusrecommended.TheTier4combinations(cellulosic-andcorn-E85)wererankedlowestoverallandwithrespecttoclimate,airpollution,landuse,wildlifedamage,andchemicalwaste.Cellulosic-E85rankedlowerthancorn-E85overall,primarilyduetoitspotentiallylargerlandfootprintbasedonnewdataanditshigherupstreamairpollutionemissionsthancorn-E85.Whereascellulosic-E85maycausethegreatestaveragehumanmortality,nuclear-BEVscausethegreatestupper-limitmortalityriskduetotheexpansionofplutoniumseparationanduraniumenrichmentinnuclearDepartmentofCivilandEnvironmentalEngineering,StanfordUniversity,Stanford,California,94305-4020,USA.E-mail:jacobson@stanford.edu;Tel:+1(650)723-6836†Electronicsupplementaryinformation(ESI)available:Derivationofresultsusedforthisstudy.SeeDOI:10.1039/b809990cBroadercontextThispaperreviewsandranksmajorproposedenergy-relatedsolutionstoglobalwarming,airpollutionmortality,andenergysecuritywhileconsideringimpactsofthesolutionsonwatersupply,landuse,wildlife,resourceavailability,reliability,thermalpollution,waterpollution,nuclearproliferation,andundernutrition.Toplaceelectricityandliquidfueloptionsonanequalfooting,twelvecombinationsofenergysourcesandvehicletypewereconsidered.Theoverallrankingsofthecombinations(fromhighesttolowest)were(1)wind-poweredbattery-electricvehicles(BEVs),(2)wind-poweredhydrogenfuelcellvehicles,(3)concentrated-solar-powered-BEVs,(4)geothermal-powered-BEVs,(5)tidal-powered-BEVs,(6)solar-photovoltaic-powered-BEVs,(7)wave-powered-BEVs,(8)hydroelectric-powered-BEVs,(9-tie)nuclear-powered-BEVs,(9-tie)coal-with-carbon-capture-powered-BEVs,(11)corn-E85vehicles,and(12)cellulosic-E85vehicles.Therelativerankingofeachelectricityoptionforpoweringvehiclesalsoappliestotheelectricitysourceprovidinggeneralelectricity.Becausesufficientcleannaturalresources(e.g.,wind,sunlight,hotwater,oceanenergy,etc.)existtopowertheworldfortheforeseeablefuture,theresultssuggestthatthediversiontoless-efficient(nuclear,coalwithcarboncapture)ornon-efficient(corn-andcellulosicE85)optionsrepresentsanopportunitycostthatwilldelaysolutionstoglobalwarmingandairpollutionmortality.Thesoundimplementationoftherecommendedoptionsrequiresidentifyinggoodlocationsofenergyresources,updatingthetransmissionsystem,andmass-producingthecleanenergyandvehicletechnologies,thuscooperationatmultiplelevelsofgovernmentandindustry.148EnergyEnviron.Sci.,2009,2,148–173ThisjournalisªTheRoyalSocietyofChemistry2009REVIEWwww.rsc.org/eesEnergy&EnvironmentalScience58SCIENTIFICAMERICANNovember2009JOHNLEEAuroraPhotos(windfarm);BILLHEINSOHNAuroraPhotos(dam)InDecemberleadersfromaroundtheworldwillmeetinCopenhagentotrytoagreeoncuttingbackgreenhousegasemissionsfordecadestocome.Themosteffectivesteptoim-plementthatgoalwouldbeamassiveshiftawayfromfossilfuelstoclean,renewableenergysources.Ifleaderscanhaveconfidencethatsuchatransformationispossible,theymightcommittoanhistoricagreement.Wethinktheycan.AyearagoformervicepresidentAlGorethrewdownagauntlet:torepowerAmericawith100percentcarbon-freeelectricitywithin10years.Asthetwoofusstartedtoevaluatethefeasibilityofsuchachange,wetookonanevenlargerchallenge:todeterminehow100percentoftheworld’senergy,forallpurposes,couldbesuppliedbywind,waterandsolarresources,byasearlyas2030.Ourplanispresentedhere.Scientistshavebeenbuildingtothismomentforatleastadecade,analyzingvariouspiecesofthechallenge.Mostrecently,a2009StanfordUniversitystudyrankedenergysystemsaccord-ingtotheirimpactsonglobalwarming,pollu-tion,watersupply,landuse,wildlifeandotherconcerns.Theverybestoptionswerewind,so-lar,geothermal,tidalandhydroelectricpow-er—allofwhicharedrivenbywind,waterorsunlight(referredtoasWWS).Nuclearpower,coalwithcarboncapture,andethanolwereallpooreroptions,aswereoilandnaturalgas.Thestudyalsofoundthatbattery-electricvehiclesandhydrogenfuel-cellvehiclesrechargedbyWWSoptionswouldlargelyeliminatepollutionfromthetransportationsector.Ourplancallsformillionsofwindturbines,watermachinesandsolarinstallations.Thenumbersarelarge,butthescaleisnotaninsur-mountablehurdle;societyhasachievedmassiveWind,waterandsolartechnologiescanprovide100percentoftheworld’senergy,eliminatingallfossilfuels.HERE’SHOWByMarkZ.JacobsonandMarkA.DelucchiENERGYAPATHTOSUSTAINABLEENERGYBY2030Providingallglobalenergywithwind,water,andsolarpower,PartI:Technologies,energyresources,quantitiesandareasofinfrastructure,andmaterialsMarkZ.Jacobsona,n,MarkA.Delucchib,1aDepartmentofCivilandEnvironmentalEngineering,StanfordUniversity,Stanford,CA94305-4020,USAbInstituteofTransportationStudies,UniversityofCaliforniaatDavis,Davis,CA95616,USAarticleinfoArticlehistory:Received3September2010Accepted22November2010Availableonline30December2010Keywords:WindpowerSolarpowerWaterpowerabstractClimatechange,pollution,andenergyinsecurityareamongthegreatestproblemsofourtime.Addressingthemrequiresmajorchangesinourenergyinfrastructure.Here,weanalyzethefeasibilityofprovidingworldwideenergyforallpurposes(electricpower,transportation,heating/cooling,etc.)fromwind,water,andsunlight(WWS).InPartI,wediscussWWSenergysystemcharacteristics,currentandfutureenergydemand,availabilityofWWSresources,numbersofWWSdevices,andareaandmaterialrequirements.InPartII,weaddressvariability,economics,andpolicyofWWSenergy.Weestimatethat$3,800,0005MWwindturbines,$49,000300MWconcentratedsolarplants,$40,000300MWsolarPVpowerplants,$1.7billion3kWrooftopPVsystems,$5350100MWgeothermalpowerplants,$270new1300MWhydroelectricpowerplants,$720,0000.75MWwavedevices,and$490,0001MWtidalturbinescanpowera2030WWSworldthatuseselectricityandelectrolytichydrogenforallpurposes.SuchaWWSinfrastructurereducesworldpowerdemandby30%andrequiresonly$0.41%and$0.59%moreoftheworld’slandforfootprintandspacing,respectively.WesuggestproducingallnewenergywithWWSby2030andreplacingthepre-existingenergyby2050.Barrierstotheplanareprimarilysocialandpolitical,nottechnologicaloreconomic.TheenergycostinaWWSworldshouldbesimilartothattoday.&2010ElsevierLtd.Allrightsreserved.1.IntroductionAsolutiontotheproblemsofclimatechange,airpollution,waterpollution,andenergyinsecurityrequiresalarge-scaleconversiontoclean,perpetual,andreliableenergyatlowcosttogetherwithanincreaseinenergyefficiency.Overthepastdecade,anumberofstudieshaveproposedlarge-scalerenewableenergyplans.JacobsonandMasters(2001)suggestedthattheU.S.couldsatisfyitsKyotoProtocolrequirementforreducingcarbondioxideemissionsbyreplacing60%ofitscoalgenerationwith214,000–236,000windturbinesratedat1.5MW(millionwatts).Alsoin2001,Czisch(2006)suggestedthatatotallyrenewableelectricitysupplysystem,withintercontinentaltransmissionlineslinkingdispersedwindsiteswithhydropowerbackup,couldsupplyEurope,NorthAfrica,andEastAsiaattotalcostsperkWhcomparablewiththecostsofthecurrentsystem.Hoffertetal.(2002)suggestedaportfolioofsolutionsforstabilizingatmosphericCO2,includingincreasingtheuseofrenewableenergyandnuclearenergy,decarbonizingfossilfuelsandsequesteringcarbon,andimprovingenergyefficiency.PacalaandSocolow(2004)suggestedasimilarportfolio,butexpandedittoincludereductionsindeforestationandconservationtillageandgreateruseofhydrogeninvehicles.Morerecently,Fthenakisetal.(2009)analyzedthetechnical,geographical,andeconomicfeasibilityforsolarenergytosupplytheenergyneedsoftheU.S.andconcluded(p.397)that‘‘itisclearlyfeasibletoreplacethepresentfossilfuelenergyinfrastructureintheU.S.withsolarpowerandotherrenewables,andreduceCO2emissionstoalevelcommensuratewiththemostaggressiveclimate-changegoals’’.Jacobson(2009)evaluatedseverallong-termenergysystemsaccordingtoenvironmentalandothercriteria,andfoundWWSsystemstobesuperiortonuclear,fossil-fuel,andbiofuelsystems(seefurtherdiscussioninSection2).HeproposedtoaddressthehourlyandseasonalvariabilityofWWSpowerbyinterconnectinggeographicallydisperserenew-ableenergysourcestosmoothoutloads,usinghydroelectricpowertofillingapsinsupply.Healsoproposedusingbattery-electricvehicles(BEVs)togetherwithutilitycontrolsofelectricitydispatchtothemthroughsmartmeters,andstoringelectricityinhydrogenorsolar-thermalstoragemedia.Cleetusetal.(2009)subsequentlypresenteda‘‘blueprint’’foraclean-energyeconomytoreduceCO2-equivalentGHGemissionsintheU.S.by56%comparedwiththe2005levels.Thatstudyfeaturedaneconomy-wideCO2ContentslistsavailableatScienceDirectjournalhomepage:www.elsevier.com/locate/enpolEnergyPolicy0301-4215/$-seefrontmatter&2010ElsevierLtd.Allrightsreserved.doi:10.1016/j.enpol.2010.11.040nCorrespondingauthor.Tel.:+16507236836.E-mailaddresses:jacobson@stanford.edu(M.Z.Jacobson),madelucchi@ucdavis.edu(M.A.Delucchi).1Tel.:+19169895566.EnergyPolicy39(2011)1154–1169Providingallglobalenergywithwind,water,andsolarpower,PartII:Reliability,systemandtransmissioncosts,andpoliciesMarkA.Delucchia,n,MarkZ.Jacobson1,baInstituteofTransportationStudies,UniversityofCaliforniaatDavis,Davis,CA95616,USAbDepartmentofCivilandEnvironmentalEngineering,StanfordUniversity,Stanford,CA94305-4020,USAarticleinfoArticlehistory:Received3September2010Accepted22November2010Availableonline31December2010Keywords:WindpowerSolarpowerWaterpowerabstractThisisPartIIoftwopapersevaluatingthefeasibilityofprovidingallenergyforallpurposes(electricpower,transportation,andheating/cooling),everywhereintheworld,fromwind,water,andthesun(WWS).InPartI,wedescribedtheprominentrenewableenergyplansthathavebeenproposedanddiscussedthecharacteristicsofWWSenergysystems,theglobaldemandforandavailabilityofWWSenergy,quantitiesandareasrequiredforWWSinfrastructure,andsuppliesofcriticalmaterials.Here,wediscussmethodsofaddressingthevariabilityofWWSenergytoensurethatpowersupplyreliablymatchesdemand(includinginterconnectinggeographicallydispersedresources,usinghydroelectricity,usingdemand-responsemanagement,storingelectricpoweronsite,over-sizingpeakgenerationcapacityandproducinghydrogenwiththeexcess,storingelectricpowerinvehiclebatteries,andforecastingweathertoprojectenergysupplies),theeconomicsofWWSgenerationandtransmission,theeconomicsofWWSuseintransportation,andpolicymeasuresneededtoenhancetheviabilityofaWWSsystem.Wefindthatthecostofenergyina100%WWSwillbesimilartothecosttoday.Weconcludethatbarrierstoa100%conversiontoWWSpowerworldwideareprimarilysocialandpolitical,nottechnologicaloreveneconomic.&2010ElsevierLtd.Allrightsreserved.1.Variabilityandreliabilityina100%WWSenergysysteminallregionsoftheworldOneofthemajorconcernswiththeuseofenergysupplies,suchaswind,solar,andwavepower,whichproducevariableoutputiswhethersuchsuppliescanprovidereliablesourcesofelectricpowersecond-by-second,daily,seasonally,andyearly.AnewWWSenergyinfrastructuremustbeabletoprovideenergyondemandatleastasreliablyasdoesthecurrentinfrastructure(e.g.,DeCarolisandKeith,2005).Ingeneral,anyelectricitysystemmustbeabletorespondtochangesindemandoverseconds,minutes,hours,seasons,andyears,andmustbeabletoaccommodateunanticipatedchangesintheavailabilityofgeneration.Withthecurrentsystem,electricity-systemoperatorsuse‘‘automaticgen-erationcontrol’’(AGC)(orfrequencyregulation)torespondtovariationontheorderofsecondstoafewminutes;spinningreservestorespondtovariationontheorderofminutestoanhour;andpeak-powergenerationtorespondtohourlyvariation(DeCarolisandKeith,2005;KemptonandTomic,2005a;ElectricPowerResearchInstitute,1997).AGCandspinningreserveshaveverylowcost,typicallylessthan10%ofthetotalcostofelectricity(KemptonandTomic,2005a),andarelikelytoremainthisinexpensiveevenwithlargeamountsofwindpower(EnerNex,2010;DeCesaroetal.,2009),butpeak-powergenerationcanbeveryexpensive.Themainchallengeforthecurrentelectricitysystemisthatelectricpowerdemandvariesduringthedayandduringtheyear,whilemostsupply(coal,nuclear,andgeothermal)isconstantduringtheday,whichmeansthatthereisadifferencetobemadeupbypeak-andgap-fillingresourcessuchasnaturalgasandhydropower.Anotherchallengetothecurrentsystemisthatextremeeventsandunplannedmaintenancecanshutdownplantsunexpectedly.Forexample,unplannedmaintenancecanshutdowncoalplants,extremeheatwavescancausecoolingwatertowarmsufficientlytoshutdownnuclearplants,supplydisrup-tionscancurtailtheavailabilityofnaturalgas,anddroughtscanreducetheavailabilityofhydroelectricity.AWWSelectricitysystemoffersnewchallengesbutalsonewopportunitieswithrespecttoreliablymeetingenergydemands.Onthepositiveside,WWStechnologiesgenerallysufferlessdown-timethandocurrentelectricpowertechnologies.Forexample,theaveragecoalplantintheUSfrom2000to2004wasdown6.5%oftheyearforunscheduledmaintenanceand6.0%oftheyearforscheduledmaintenance(NorthAmericanElectricReliabilityCorporation,2009a),butmodernwindturbineshaveadowntimeofonly0–2%overlandand0–5%overtheocean(DongEnergyetal.,ContentslistsavailableatScienceDirectjournalhomepage:www.elsevier.com/locate/enpolEnergyPolicy0301-4215/$-seefrontmatter&2010ElsevierLtd.Allrightsreserved.doi:10.1016/j.enpol.2010.11.045nCorrespondingauthor.Tel.:+19169895566.E-mailaddresses:madelucchi@ucdavis.edu(M.A.Delucchi),jacobson@stanford.edu(M.Z.Jacobson).1Tel.:+16507236836.EnergyPolicy39(2011)1170–1190AMonteCarloapproachtogeneratorportfolioplanningandcarbonemissionsassessmentsofsystemswithlargepenetrationsofvariablerenewablesElaineK.Hart,MarkZ.JacobsonDepartmentofCivilandEnvironmentalEngineering,StanfordUniversity,473ViaOrtega,MC4020,Stanford,CA94305,USAarticleinfoArticlehistory:Received28September2010Accepted13January2011Keywords:RenewableenergyIntermittentgenerationWindpowerSolarpowerCarbonemissionsabstractAnewgeneratorportfolioplanningmodelisdescribedthatiscapableofquantifyingthecarbonemis-sionsassociatedwithsystemsthatincludeveryhighpenetrationsofvariablerenewables.ThemodelcombinesadeterministicrenewableportfolioplanningmodulewithaMonteCarlosimulationofsystemoperationthatdeterminestheexpectedleast-costdispatchfromeachtechnology,thenecessaryreservecapacity,andtheexpectedcarbonemissionsateachhour.Eachsystemisdesignedtomeetamaximumlossofloadexpectationrequirementof1dayin10years.Thepresentstudyincludeswind,centralizedsolarthermal,androoftopphotovoltaics,aswellashydroelectric,geothermal,andnaturalgasplants.Theportfoliosproducedbythemodeltakeadvantageoftheaggregationofvariablegeneratorsatmultiplegeographicallydispersesitesandtheincorporationofmeteorologicalandloadforecasts.Resultsarepresentedfromamodelrunofthecontinuoustwo-yearperiod,2005e2006intheCaliforniaISOoperatingarea.Alow-carbonportfolioisproducedforthissystemthatiscapableofachievingan80%reductioninelectricpowersectorcarbonemissionsfrom2005levelsandsupplyingover99%oftheannualdeliveredloadwithnon-carbonsources.Aportfolioisalsobuiltforaprojected2050system,whichiscapableofproviding96%ofthedeliveredelectricityfromnon-carbonsources,despiteapro-jecteddoublingofthe2005systempeakload.Theresultssuggestthatfurtherreductionsincarbonemissionsmaybeachievedwithemergingtechnologiesthatcanreliablyprovidelargecapacitieswithoutnecessarilyprovidingpositivenetannualenergygeneration.Thesetechnologiesmayincludedemandresponse,vehicle-to-gridsystems,andlarge-scaleenergystorage.Ó2011ElsevierLtd.Allrightsreserved.1.IntroductionIntheUnitedStates,approximately40%ofthetotalannualcarbondioxideemissionsareassociatedwiththegenerationofelectricity[1].SignificantreductionsincarbonemissionswithintheUnitedStateswillthereforerequireadramaticshiftinthecompositionoftheelectricpowersector.Severaltechnologiesalreadyexisttoreplacegenerationfromcoalandnaturalgaswithcleaneralternatives,butthevariabilityanduncertaintyinmanyrenewableresourcesisanticipatedtoposepolitical,financial,andtechnologicalchallengestolarge-scalegridintegration.Withoutpracticalexamplesoflargesystemswithveryhighpenetrationsofvariablegeneration,modelsmustbeemployedtopredictthebehaviorofthesesystems.Todate,mostgridintegrationmodelshavefocusedonwindpower,thoughsomehaveincludedsolartechnologies.AnextensivereviewofwindpowerintegrationstudiesacrossEuropecanbefoundin[2]andareviewofcurrentenergysystemmodelingtoolscanbefoundin[3].Earlyattemptsatmodelinggridintegrationofvariablegenera-tionwerebasedonloaddurationcurveanalyses,similartothoseusedforportfoliosofconventionalgenerators[4e6].Morerecently,however,gridintegrationhasbeenformulatedprimarilyasanoptimizationproblemwithloadbalanceconstraintsovermultipletimesteps.Deterministicloadbalancemodelshavebeenusedtodevelopscenarioswithhighpenetrationsofwindpowerwithindifferenttypesofpreexistinggenerationportfolios[7],tostudytheaffectsofaggregatingmultiplegeographicallydispersewindfarms[8],andtoanalyzetheoperationalcostsassociatedwithintrahourfluctuationsofwindpoweroutput[9].Othergridintegrationstudieshaveexploredhowthecomplementarynatureofdifferentrenewableenergyresources(includingwind,solar,wave,geothermal,and/orhydroelectricpower)canbeusedtobestmatchatime-varyingpowerdemand[10e16].Thestochasticnatureofwindandsolarcomplicatesthetreatmentofsystemreliabilityingridintegrationstudies.Proba-bilisticmodelsarealreadyusedtoaccountforforcedoutagesofCorrespondingauthor.Tel.:þ16507212650;fax:þ16507237058.E-mailaddress:ehart@stanford.edu(E.K.Hart).ContentslistsavailableatScienceDirectRenewableEnergyjournalhomepage:www.elsevier.com/locate/renene0960-1481/$eseefrontmatterÓ2011ElsevierLtd.Allrightsreserved.doi:10.1016/j.renene.2011.01.015RenewableEnergy36(2011)2278e2286Thecarbonabatementpotentialofhighpenetrationintermittentrenewables†ElaineK.HartandMarkZ.JacobsonReceived18thDecember2011,Accepted23rdFebruary2012DOI:10.1039/c2ee03490eThecarbonabatementpotentialsofwindturbines,photovoltaics,andconcentratingsolarpowerplantswereinvestigatedusingdispatchsimulationsoverCaliforniawith2005–06meteorologicalandloaddata.Aparameterizationofthesimulationresultsispresentedthatprovidesapproximationsofbothlow-penetrationcarbonabatementratesandmaximumcarbonabatementpotentialsbasedonthetemporalcharacteristicsoftheresourceandtheload.Theresultssuggestthatshallowcarbonemissionsreductions(upto20%ofthebasecase)canbeachievedmostefficientlywithgeothermalpoweranddemandreductionsviaenergyefficiencyorconservation.Deepemissionsreductions(upto89%forthisclosedsystem),however,mayrequirethebuild-outofverylargefleetsofintermittentrenewablesandimprovedpowersystemflexibility,communications,andcontrols.Atveryhighpenetrations,combiningwindandsolarpowerimprovedrenewableportfolioperformanceoverindividualbuild-outscenariosbyreducingcurtailment,suggestingthatfurtherreductionsmaybemetbyimportinguncorrelatedout-of-staterenewablepower.Theresultsalsosuggestthat90–100%carbonemissionreductionswillrelyonthedevelopmentofdemandresponseandenergystoragefacilitieswithpowercapacitiesofatleast65%ofpeakdemandandenergycapacitieslargeenoughtoaccommodateseasonalenergystorage.1IntroductionInresponsetoagrowingconcernoverglobalwarming,thelastdecadehasseenasurgeinproposalsforreducingthecarbondioxideemissionsassociatedwithelectricpowergeneration,manyofwhichincludelargebuild-outsofrenewabletechnolo-giesincludingwind,photovoltaics(PVs),concentratingsolarpower(CSP),geothermal,wave,andtidalpower.Thispaperseekstodeterminehowthetemporalcharacteristicsofelectricpowerdemand,thevariabilityofrenewableresources,andthecontrolsemployedbyrenewabletechnologiesinfluencethepotentialforarenewableportfoliotodisplacecarbon-basedgenerationandtoreducecarbondioxideemissionsatveryhighpenetrations.Furthermore,weseektounderstandwhichofthesefactorshasthestrongestinfluenceonthecarbonabatementpotentialofagiventechnology,andinthecasethatalimittothecarbonabatementpotentialofintermittentrenewablesexists,whattechnologiesareneededtoachievecompletedecarbon-izationoftheelectricitygrid.Inthepast,economicanalysesofthecarbonabatementpotentialofrenewableshavetendedtoassumethatrenewableDepartmentofCivilandEnvironmentalEngineering,StanfordUniversity,Stanford,CA,94305.E-mail:ehart@stanford.edu;Fax:+16507237058;Tel:+16507212650†Electronicsupplementaryinformation(ESI)available.SeeDOI:10.1039/c2ee03490eBroadercontextThereliableintegrationofrenewableresourcesontotheelectricitygridrepresentsanimportantsteptowarddecarbonizingtheelectricpowersectorandmitigatingglobalclimatechange.Thisstepiscomplicatedbyboththevariabilityandtheuncertaintyassociatedwithpoweroutputfromrenewableresources,likewindandsolarpower.Analysesthatseektoquantifysystemreliability,reserverequirements,andthecarbondioxideemissionsassociatedwithoperatingthesereserveshavehistoricallyreliedonsimu-lationswithhightemporalresolution(typicallyanhourorless)andwithstochastictreatments,bothofwhichincreasethecomputationalcomplexitysignificantly.However,energy-economicmodelscapableofanalyzingthecostsandeconomicimpactsofdifferentdecarbonizationstrategiesorpoliciestypicallyusetimescalesofoneyearandcannotaccuratelyresolvethephenomenaassociatedwithintermittentrenewables.Inthispaper,wedevelopaparameterizationoftheresultsfromhighertemporalresolutionsimulationsthatcanbeimplementedinlarge-scaleenergy-economicmodels.Thiseffortcontributestotheimprovedeconomictreatmentofrenewablepowersourcesinanalysesusedbypolicymakersandmayprovideadditionalinsightregardingtechnologicalcosttargetsforinnovators.6592EnergyEnviron.Sci.,2012,5,6592–6601ThisjournalisªTheRoyalSocietyofChemistry2012DynamicArticleLinksC<Energy&EnvironmentalScienceCitethis:EnergyEnviron.Sci.,2012,5,6592www.rsc.org/eesANALYSISExaminingthefeasibilityofconvertingNewYorkState’sall-purposeenergyinfrastructuretooneusingwind,water,andsunlightMarkZ.Jacobsona,n,RobertW.Howarthb,MarkA.Delucchic,StanR.Scobied,JannetteM.Barthe,MichaelJ.Dvoraka,MeganKlevzea,HindKatkhudaa,BrianMirandaa,NavidA.Chowdhurya,RickJonesa,LarsenPlanoa,AnthonyR.IngraffeafaAtmosphere/EnergyProgram,DepartmentofCivilandEnvironmentalEngineering,StanfordUniversity,Stanford,CA94305,USAbDepartmentofEcologyandEvolutionaryBiology,CornellUniversityIthaca,NY14853,USAcInstituteofTransportationStudies,U.C.Davis,Davis,CA95616,USAdPSEHealthyEnergy,NY,USAePepactonInstituteLLC,USAfSchoolofCivilandEnvironmentalEngineering,CornellUniversity,Ithaca,NY14853,USAHIGHLIGHTScNewYorkState’sall-purposeenergycanbederivedfromwind,water,andsunlight.cTheconversionreducesNYSend-usepowerdemandby$37%.cTheplancreatesmorejobsthanlostsincemostenergywillbefrominstate.cTheplancreateslong-termenergypricestabilitysincefuelcostswillbezero.cTheplandecreasesairpollutiondeaths4000/yr($33billion/yror3%ofNYSGDP).articleinfoArticlehistory:Received14September2012Accepted18February2013Availableonline13March2013Keywords:RenewableenergyAirpollutionGlobalwarmingabstractThisstudyanalyzesaplantoconvertNewYorkState’s(NYS’s)all-purpose(forelectricity,transporta-tion,heating/cooling,andindustry)energyinfrastructuretoonederivedentirelyfromwind,water,andsunlight(WWS)generatingelectricityandelectrolytichydrogen.Undertheplan,NYS’s2030all-purposeend-usepowerwouldbeprovidedby10%onshorewind(40205-MWturbines),40%offshorewind(12,7005-MWturbines),10%concentratedsolar(387100-MWplants),10%solar-PVplants(82850-MWplants),6%residentialrooftopPV($5million5-kWsystems),12%commercial/governmentrooftopPV($500,000100-kWsystems),5%geothermal(36100-MWplants),0.5%wave(19100.75-MWdevices),1%tidal(26001-MWturbines),and5.5%hydroelectric(6.61300-MWplants,ofwhich89%exist).TheconversionwouldreduceNYS’send-usepowerdemand$37%andstabilizeenergypricessincefuelcostswouldbezero.ItwouldcreatemorejobsthanlostbecausenearlyallNYSenergywouldnowbeproducedin-state.NYSairpollutionmortalityanditscostswoulddeclineby$4000(1200–7600)deaths/yr,and$33(10–76)billion/yr(3%of2010NYSGDP),respectively,alonerepayingthe271GWinstalledpowerneededwithin$17years,beforeaccountingforelectricitysales.NYS’sownemissiondecreaseswouldreduce2050U.S.climatecostsby$$3.2billion/yr.&2013ElsevierLtd.Allrightsreserved.1.IntroductionThisisastudytoexaminethetechnicalandeconomicfeasi-bilityofandproposepoliciesforconvertingNewYorkState’s(NYS’s)energyinfrastructureinallsectorstoonepoweredbywind,water,andsunlight(WWS).Theplanisalocalizedmicro-cosmofthatdevelopedfortheworldandU.S.byJacobsonandDelucchi(2009,2011)andDelucchiandJacobson(2011).Recently,otherplansinvolvingdifferentlevelsofenergyconver-sionforsomeormultipleenergysectorshavebeendevelopedatnationalorcontinentalscales(e.g.,AllianceforClimateProtection,2009;Parsons-Brinckerhoff,2009;KempandWexler,2010;Price-Waterhouse-Coopers,2010;BeyondZeroEmissions,2010;EuropeanClimateFoundation(ECF),2010;EuropeanRenewableEnergyCouncil(EREC),2010;WorldWildlifeFund,2011).LimitedplansarecurrentlyinplaceinNewYorkCity(PlaNYC,2011)andNYS(Power,2011)tohelpthecityandstate,respec-tively,providepredictableandsustainableenergy,improvetheContentslistsavailableatSciVerseScienceDirectjournalhomepage:www.elsevier.com/locate/enpolEnergyPolicy0301-4215/$-seefrontmatter&2013ElsevierLtd.Allrightsreserved.http://dx.doi.org/10.1016/j.enpol.2013.02.036nCorrespondingauthor.Tel.:þ16507236836.E-mailaddress:Jacobson@stanford.edu(M.Z.Jacobson).EnergyPolicy57(2013)585–601AroadmapforrepoweringCaliforniaforallpurposeswithwind,water,andsunlightMarkZ.Jacobsona,,MarkA.Delucchib,AnthonyR.Ingraffeac,d,RobertW.Howarthe,GuillaumeBazouina,BrettBridgelanda,KarlBurkartf,MartinChanga,NavidChowdhurya,RoyCooka,GiuliaEschera,MikeGalkaa,LiyangHana,ChristaHeaveya,AngelicaHernandeza,DanielF.Jacobsong,DionnaS.Jacobsong,BrianMirandaa,GavinNovotnya,MariePellata,PatrickQuacha,AndreaRomanoa,DanielStewarta,LauraVogela,SherryWanga,HaraWanga,LindsayWillmana,TimYeskooaaAtmosphere/EnergyProgram,DepartmentofCivilandEnvironmentalEngineering,StanfordUniversity,473ViaOrtega,Stanford,CA94305,USAbInstituteofTransportationStudies,U.C.Davis,1605TiliaSt,Davis,CA95616,USAcDepartmentofCivilandEnvironmentalEngineering,CornellUniversity,220HollisterHall,Ithaca,NY14853,USAdPhysicians,Scientists,andEngineersforHealthyEnergy,Inc.,43614thStreet,Suite808,Oakland,CA94612,USAeDepartmentofEcologyandEvolutionaryBiology,CornellUniversity,E145CorsonHall,Ithaca,NY14853,USAfK2BDigital,2658GriffithParkBlvd.,Suite612,LosAngeles,CA90039,USAgH.M.GunnSeniorHighSchool,780ArastraderoRd,PaloAlto,CA94306,USAarticleinfoArticlehistory:Received16December2013Receivedinrevisedform21June2014Accepted26June2014Availableonline22July2014Keywords:RenewableenergyAirpollutionGlobalwarmingabstractThisstudypresentsaroadmapforconvertingCalifornia'sall-purpose(electricity,transportation,heating/cooling,andindustry)energyinfrastructuretoonederivedentirelyfromwind,water,andsunlight(WWS)generatingelectricityandelectrolytichydrogen.California'savailableWWSresourcesarefirstevaluated.AmixofWWSgeneratorsisthenproposedtomatchprojected2050electricpowerdemandafterallsectorshavebeenelectrified.TheplancontemplatesallnewenergyfromWWSby2020,80e85%ofexistingenergyconvertedby2030,and100%by2050.ElectrificationplusmodestefficiencymeasuresmayreduceCalifornia'send-usepowerdemand~44%andstabilizeenergypricessinceWWSfuelcostsarezero.Severalmethodsdiscussedshouldhelpgenerationtomatchdemand.AcompleteconversioninCaliforniaby2050isestimatedtocreate~220,000more40-yearjobsthanlost,eliminate~12,500(3800e23,200)stateair-pollutionprematuremortalities/yr,avoid$103(31e232)billion/yrinhealthcosts,representing4.9(1.5e11.2)%ofCalifornia's2012grossdomesticproduct,andreduceCalifornia's2050globalclimatecostcontributionby$48billion/yr.TheCaliforniaair-pollutionhealthplusglobalclimatecostbenefitsfromeliminatingCaliforniaemissionscouldequalthe$1.1trillioninstallationcostof603GWofnewpowerneededfora100%all-purposeWWSsystemwithin~7(4e14)years.©2014ElsevierLtd.Allrightsreserved.1.IntroductionThispaperpresentsaroadmapforconvertingCalifornia'sen-ergyinfrastructureinallsectorstoonepoweredbywind,water,andsunlight(WWS).TheCaliforniaplanissimilarinoutlinetoonerecentlydevelopedforNewYorkState[39],butexpands,deepens,andadaptstheanalysisforCaliforniainseveralimportantways.Theestimatesofenergydemandandpotentialsupplyaredevel-opedspecificallyforCalifornia,whichhasahigherpopulation,fasterpopulationgrowth,greatertotalenergyuse,andlargertransportationshareoftotalenergy,butlowerenergy-usepercapita,thandoesNewYork.TheCaliforniaanalysisalsoincludesoriginally-derived(1)computer-simulatedresourceanalysesforbothwindandsolar,(2)calculationsofcurrentandfuturerooftopandparkingstructureareasandresultingmaximumphotovoltaic(PV)capacitiesfor2050,(3)air-pollutionmortalitycalculationsconsideringthreeyearsofhourlydataatallairqualitymonitoringstationsinthestate,(4)estimatesofcostreductionsassociatedCorrespondingauthor.Tel.:þ16507236836;fax:þ16507237058.E-mailaddress:jacobson@stanford.edu(M.Z.Jacobson).ContentslistsavailableatScienceDirectEnergyjournalhomepage:www.elsevier.com/locate/energyhttp://dx.doi.org/10.1016/j.energy.2014.06.0990360-5442/©2014ElsevierLtd.Allrightsreserved.Energy73(2014)875e889FeaturesofafullyrenewableUSelectricitysystem:OptimizedmixesofwindandsolarPVandtransmissiongridextensionsSarahBeckera,b,,BethanyA.Frewb,GormB.Andresend,b,TimoZeyerc,StefanSchramma,MartinGreinerd,e,MarkZ.JacobsonbaFrankfurtInstituteforAdvancedStudies,Goethe-Universit€at,60438FrankfurtamMain,GermanybDepartmentofCivilandEnvironmentalEngineering,StanfordUniversity,Stanford,CA,USAcDepartmentofPhysics,AarhusUniversity,8000AarhusC,DenmarkdDepartmentofEngineering,AarhusUniversity,8200AarhusN,DenmarkeDepartmentofMathematics,AarhusUniversity,8000AarhusC,DenmarkarticleinfoArticlehistory:Received31January2014Receivedinrevisedform15May2014Accepted17May2014Availableonline18June2014Keywords:EnergysystemdesignLarge-scaleintegrationofrenewablepowergenerationWindpowergenerationSolarPVpowergenerationPowertransmissionabstractAfutureenergysystemislikelytorelyheavilyonwindandsolarPV.ToquantifygeneralfeaturesofsuchaweatherdependentelectricitysupplyinthecontiguousUS,windandsolarPVgenerationdataarecalculated,basedon32yearsofweatherdatawithtemporalresolutionof1handspatialresolutionof40Â40km2,assumingsite-suitability-basedandstochasticwindandsolarcapacitydistributions.Theregionalwind-and-solarmixesmatchingloadandgenerationclosestonseasonaltimescalesclusteraround80%solarshare,owingtotheUSsummerloadpeak.Thismixmorethanhalveslong-termstoragerequirements,comparedtowindonly.Themixesmatchinggenerationandloadbestondailytimescaleslieatabout80%windshare,duetothenightlygapinsolarproduction.Goingfromsolaronlytothismixreducesbackupenergyneedsbyabout50%.Furthermore,wecalculateshiftsinFERC(FederalEnergyRegulatoryCommission)-levelLCOE(LevelizedCostsOfElectricity)forwindandsolarPVduetodifferingweatherconditions.RegionalLCOEvarybyupto29%,andLCOE-optimalmixeslargelyfollowresourcequality.AtransmissionnetworkenhancementamongFERCregionsisconstructedtotransferhighpenetrationsofsolarandwindacrossFERCboundaries,employinganovelleast-costoptimization.©2014ElsevierLtd.Allrightsreserved.1.IntroductionCO2andairpollutionemissionreductiongoalsaswellasenergysecurity,pricestability,andaffordabilityconsiderationsmakerenewableelectricitygenerationattractive.Ahighlyrenewableelectricitysupplywillbebasedtoalargeextentonwindandsolarphotovoltaic(PV)power,sincethesetworesourcesarebothabundantandeitherrelativelyinexpensiveorrapidlybecomingcostcompetitive[1].Suchasystemdemandsafundamentallydifferentdesignapproach:Whileelectricitygenerationwastradi-tionallyconstructedtobedispatchableinordertofollowthede-mand,windandsolarPVpoweroutputislargelydeterminedbyweatherconditionsthatareoutofhumancontrol.WethereforecollectivelytermthemVRES(variablerenewableenergysources).Spatialaggregationhasafavorableimpactongenerationcharac-teristics,aswasfoundbothforwindandsolarPVpowerinnumerousstudies[2e9].Especiallyforwind,smoothingeffectsaremuchmorepronouncedonlargescales,ascanbeseenfromthecomparisonoftheUSEastcoast(about3000Â500km2),discussedinRef.[8],toDenmark(about200Â300km2),cf.Ref.[9].Inspiteofthelevelingeffectsofaggregation,thereisstillaconsiderablemismatchbetweenloadandgenerationleft,whichispartlyduealsotoloadvariability.ThispaperaimstoidentifygeneraldesignfeaturesfortheUSpowersystemwithahighshareofwindandsolarPV.WhileseveralstudieshavedemonstratedthefeasibilityofhighpenetrationsofVRESgeneratorsintheregionalornationwideUSelectricsystem[11e14],thesehaveonlyevaluatedoneindividualUSregionand/orhaveonlyconsideredasmallsetofhoursfortheiranalysis.ThispaperisbasedondatafortheentirecontiguousUSofunprece-dentedtemporallengthandspatialresolution.Relyingon32yearsofweatherdatawithhourlytimeresolutionandaspatialresolutionof40Â40km2,potentialfuturewindandsolarPVgenerationtimeCorrespondingauthor.FrankfurtInstituteforAdvancedStudies,Goethe-Universit€at,60438FrankfurtamMain,Germany.E-mailaddress:becker@fias.uni-frankfurt.de(S.Becker).ContentslistsavailableatScienceDirectEnergyjournalhomepage:www.elsevier.com/locate/energyhttp://dx.doi.org/10.1016/j.energy.2014.05.0670360-5442/©2014ElsevierLtd.Allrightsreserved.Energy72(2014)443e458Renewablebuild-uppathwaysfortheUS:GenerationcostsarenotsystemcostsSarahBeckera,b,,BethanyA.Frewb,GormB.Andresenc,b,MarkZ.Jacobsonb,StefanSchramma,MartinGreinerc,daFrankfurtInstituteforAdvancedStudies,Goethe-Universit€at,60438FrankfurtamMain,GermanybDepartmentofCivilandEnvironmentalEngineering,StanfordUniversity,Stanford,CA,USAcDepartmentofEngineering,AarhusUniversity,8200AarhusN,DenmarkdDepartmentofMathematics,AarhusUniversity,8000AarhusC,DenmarkarticleinfoArticlehistory:Received6November2014Receivedinrevisedform15December2014Accepted21December2014Availableonline27January2015Keywords:EnergysystemdesignLarge-scaleintegrationofrenewablepowergenerationRenewablepowergenerationOptimalmixofwindandsolarPVLevelizedcostofelectricityabstractThetransitiontoafutureelectricitysystembasedprimarilyonwindandsolarPVisexaminedforallregionsinthecontiguousUS.Wepresentoptimizedpathwaysforthebuild-upofwindandsolarpowerforleastbackupenergyneedsaswellasforleastcostobtainedwithasimplified,lightweightmodelbasedonlong-termhighresolutionweather-determinedgenerationdata.Intheabsenceofstorage,thepathwaywhichachievesthebestmatchofgenerationandload,thusresultingintheleastbackupenergyrequirements,generallyfavorsacombinationofbothtechnologies,withawind/solarPV(photovoltaics)energymixofabout80/20inafullyrenewablescenario.Theleastcostdevelopmentisseentostartwith100%ofthetechnologywiththelowestaveragegenerationcostsfirst,butwithincreasingrenewableinstallations,economicallyunfavorableexcessgenerationpushesittowardtheminimalbackuppathway.Surplusgenerationandtheentailedcostscanbereducedsignificantlybycombiningwindandsolarpower,and/orabsorbingexcessgeneration,forexamplewithstorageortransmission,orbycouplingtheelectricitysystemtootherenergysectors.©2014TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).1.IntroductionWeinvestigatehighlyrenewableelectricityscenariosforthecontiguousUS.Inthispaper,themainfocusisplacedontheopti-mizationofthemixofwindandsolarPVpowerduringtherenewablebuild-up.Whilenumerousstudiesinvestigateregionalornationwidefullyrenewablepowersystems[1e7],theyusuallyfocusondetailedsinglescenariosorpathwaysand/oronlycost-optimalinstallations.Here,asimplifiedandcomputationallylightweightdescriptionbasedonhigh-resolutionwind,solarPV,andloaddataisusedtosurveyalargenumberofpossiblerenew-ablescenariosandderivesystematicinsightsfromthespatio-temporalcharacteristicsofthegeneration-loadmismatch.Inourmodeloftheelectricitysystem,thesupplyislargelyreliantonthevariablerenewableenergysourceswindandsolarPVpower,whichweabbreviateasVRES(variablerenewableenergysources).CSP(concentratedsolarpower)isnotimplementedyet.Therestoftheelectricitygenerationisassumedtobedispatchable,anditisimpliedthatitisusedtocovertheresidualdemandthatremainsafterVRESgenerationhasbeensubtractedfromtheload.Fromthispointofview,thedispatchablepartofthepowersystemwillbereferredtoasthebackupsystem,andcorrespondingly,theenergyfromthissystemwillbetermedbackupenergy.Examplesforbackuppowerplantsinafullyrenewablesettingarehydro-electricpower,geothermalpower,andtosomeextentCSPwiththermalstorage.Ingeneral,anyotherformofdispatchablegener-ationcanbeused.TheshareofVRESinthesystemismeasuredasgrossshare,i.e.thetotalVRESgenerationdividedbythetotalload.Duetotemporalmismatchesingenerationandload,theVRESnetshare,i.e.theamountofVRE(variablerenewableenergy)actuallyconsumedintheelectricitysystematthetimeoftheirgenerationisgenerallylower.EveninasystemwithaVRESgrossshareof100%,theloadwillpartlybecoveredfrombackup.Thisrenderscontri-butionsfromdispatchablerenewablesourcescrucialtoafullyrenewablesystem.Togetanimpressionofthedimensionsoftheinstallations,currentandextrapolatedrenewableinstallationsareshowninCorrespondingauthor.FrankfurtInstituteforAdvancedStudies,Goethe-Uni-versit€at,60438FrankfurtamMain,Germany.E-mailaddress:becker@fias.uni-frankfurt.de(S.Becker).ContentslistsavailableatScienceDirectEnergyjournalhomepage:www.elsevier.com/locate/energyhttp://dx.doi.org/10.1016/j.energy.2014.12.0560360-5442/©2014TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).Energy81(2015)437e445Thisjournalis©TheRoyalSocietyofChemistry2015EnergyEnviron.Sci.,2015,8,2093--21172093Citethis:EnergyEnviron.Sci.,2015,8,2093100%cleanandrenewablewind,water,andsunlight(WWS)all-sectorenergyroadmapsforthe50UnitedStates†MarkZ.Jacobson,aMarkA.Delucchi,bGuillaumeBazouin,aZackA.F.Bauer,aChristaC.Heavey,aEmmaFisher,aSeanB.Morris,aDinianaJ.Y.Piekutowski,aTaylorA.VencillaandTimW.YeskooaThisstudypresentsroadmapsforeachofthe50UnitedStatestoconverttheirall-purposeenergysystems(forelectricity,transportation,heating/cooling,andindustry)toonespoweredentirelybywind,water,andsunlight(WWS).Theplanscontemplate80–85%ofexistingenergyreplacedby2030and100%replacedby2050.Con-versionwouldreduceeachstate’send-usepowerdemandbyameanofB39.3%withB82.4%ofthisduetotheefficiencyofelectrificationandtherestduetoend-useenergyefficiencyimprovements.Year2050end-useU.S.all-purposeloadwouldbemetwithB30.9%onshorewind,B19.1%offshorewind,B30.7%utility-scalephotovoltaics(PV),B7.2%rooftopPV,B7.3%concentratedsolarpower(CSP)withstorage,B1.25%geothermalpower,B0.37%wavepower,B0.14%tidalpower,andB3.01%hydroelectricpower.Basedonaparallelgridintegrationstudy,anadditional4.4%and7.2%ofpowerbeyondthatneededforannualloadswouldbesuppliedbyCSPwithstorageandsolarthermalforheat,respectively,forpeakingandgridstability.Overall50states,convertingwouldprovideB3.9million40-yearconstructionjobsandB2.0million40-yearoperationjobsfortheenergyfacilitiesalone,thesumofwhichwouldoutweightheB3.9millionjobslostintheconventionalenergysector.ConvertingwouldalsoeliminateB62000(19000–115000)U.S.airpollutionprematuremorta-litiesperyeartodayandB46000(12000–104000)in2050,avoidingB$600($85–$2400)bil.peryear(2013dollars)in2050,equivalenttoB3.6(0.5–14.3)percentofthe2014U.S.grossdomesticproduct.ConvertingwouldfurthereliminateB$3.3(1.9–7.1)tril.peryearin2050globalwarmingcoststotheworldduetoU.S.emissions.TheseplanswillresultineachpersonintheU.S.in2050savingB$260(190–320)peryearinenergycosts($2013dollars)andU.S.healthandglobalclimatecostsperpersondecreasingbyB$1500(210–6000)peryearandB$8300(4700–17600)peryear,respectively.ThenewfootprintoverlandrequiredwillbeB0.42%ofU.S.land.Thespacingareabetweenwindturbines,whichcanbeusedformultiplepurposes,willbeB1.6%ofU.S.land.Thus,100%conversionsaretechnicallyandeconomicallyfeasiblewithlittledownside.Theseroadmapsmaythereforereducesocialandpoliticalbarrierstoimplementingclean-energypolicies.BroadercontextThispaperpresentsaconsistentsetofroadmapsforconvertingtheenergyinfrastructuresofeachofthe50UnitedStatesto100%wind,water,andsunlight(WWS)forallpurposes(electricity,transportation,heating/cooling,andindustry)by2050.Suchconversionsareobtainedbyfirstprojectingconventionalpowerdemandto2050ineachsectorthenelectrifyingthesector,assumingtheuseofsomeelectrolytichydrogenintransportationandindustryandapplyingmodestend-useenergyefficiencyimprovements.Suchstateconversionsmayreduceconventional2050U.S.-averagedpowerdemandbyB39%,withmostreductionsduetotheefficiencyofelectricityovercombustionandtherestduetomodestend-useenergyefficiencyimprovements.Theconversionsarefoundtobetechnicallyandeconomicallyfeasiblewithlittledownside.Theynearlyeliminateenergy-relatedU.S.airpollutionandclimate-relevantemissionsandtheirresultinghealthandenvironmentalcostswhilecreatingjobs,stabilizingenergyprices,andminimizinglandrequirements.Thesebenefitshavenotpreviouslybeenquantifiedforthe50states.Theirelucidationmayreducethesocialandpoliticalbarrierstoimplementingclean-energypoliciesforreplacingconventionalcombustibleandnuclearfuels.Severalsuchpoliciesareproposedhereinforeachenergysector.1.IntroductionThispaperpresentsaconsistentsetofroadmapstoconverteachofthe50U.S.states’all-purpose(electricity,transportation,aAtmosphere/EnergyProgram,Dept.ofCivilandEnv.Engineering,StanfordUniversity,USA.E-mail:jacobson@stanford.edu;Fax:+1-650-723-7058;Tel:+1-650-723-6836bInstituteofTransportationStudies,U.C.Berkeley,USA†Electronicsupplementaryinformation(ESI)available.SeeDOI:10.1039/c5ee01283jReceived25thApril2015,Accepted27thMay2015DOI:10.1039/c5ee01283jwww.rsc.org/eesEnergy&EnvironmentalSciencePAPERLow-costsolutiontothegridreliabilityproblemwith100%penetrationofintermittentwind,water,andsolarforallpurposesMarkZ.Jacobsona,1,MarkA.Delucchib,MaryA.Camerona,andBethanyA.FrewaaDepartmentofCivilandEnvironmentalEngineering,StanfordUniversity,Stanford,CA94305;andbInstituteofTransportationStudies,UniversityofCalifornia,Berkeley,CA94720EditedbyStephenPolasky,UniversityofMinnesota,St.Paul,MN,andapprovedNovember2,2015(receivedforreviewMay26,2015)Thisstudyaddressesthegreatestconcernfacingthelarge-scaleintegrationofwind,water,andsolar(WWS)intoapowergrid:thehighcostofavoidingloadlosscausedbyWWSvariabilityanduncertainty.Itusesanewgridintegrationmodelandfindslow-cost,no-load-loss,nonuniquesolutionstothisproblemonelectrificationofallUSenergysectors(electricity,transportation,heating/cooling,andindustry)whileaccountingforwindandsolartimeseriesdatafroma3Dglobalweathermodelthatsimulatesextremeeventsandcompetitionamongwindturbinesforavailablekineticenergy.So-lutionsareobtainedbyprioritizingstorageforheat(insoilandwater);cold(iniceandwater);andelectricity(inphase-changematerials,pumpedhydro,hydropower,andhydrogen),andusingdemandresponse.Nonaturalgas,biofuels,nuclearpower,orsta-tionarybatteriesareneeded.Theresulting2050–2055USelectricitysocialcostforafullsystemismuchlessthanforfossilfuels.Theseresultsholdformanyconditions,suggestingthatlow-cost,reliable100%WWSsystemsshouldworkmanyplacesworldwide.energysecurityclimatechangegridstabilityrenewableenergyenergycostWorldwide,thedevelopmentofwind,water,andsolar(WWS)energyisexpandingrapidlybecauseitissustain-able,clean,safe,widelyavailable,and,inmanycases,alreadyeconomical.However,utilitiesandgridoperatorsoftenarguethattoday’spowersystemscannotaccommodatesignificantvariablewindandsolarsupplieswithoutfailure(1).SeveralstudieshaveaddressedsomeofthegridreliabilityissueswithhighWWSpenetrations(2–21),butnostudyhasanalyzedasystemthatprovidesthemaximumpossiblelong-termenvironmentalandsocialbenefits,namelysupplyingallenergyenduseswithonlyWWSpower(nonaturalgas,biofuels,ornuclearpower),withnoloadlossatreasonablecost.Thispaperfillsthisgap.ItdescribestheabilityofWWSinstallations,determinedconsis-tentlyovereachofthe48contiguousUnitedStates(CONUS)andwithwindandsolarpoweroutputpredictedintimeandspacewitha3Dclimate/weathermodel,accountingforextremevariability,toprovidetime-dependentloadreliablyandatlowcostwhencombinedwithstorageanddemandresponse(DR)fortheperiod2050–2055,whena100%WWSworldmayexist.MaterialsandMethodsThekeytothisstudyisthedevelopmentofagridintegrationmodel(LOADMATCH).Inputsincludetime-dependentloads(every30sfor6y);time-dependentintermittentwindandsolarresources(every30sfor6y)predictedwitha3Dglobalclimate/weathermodel;time-dependenthydropower,geothermal,tidal,andwaveresources;capacitiesandmaximumcharge/dischargeratesofseveraltypesofstoragetechnologies,includinghydrogen(H2);specificationsoflossesfromstorage,transmission,distribution,andmaintenance;andspecificationsofaDRsystem.LoadsandStorage.CONUSloadsfor2050–2055foruseinLOADMATCHarederivedasfollows.AnnualCONUSloadsarefirstestimatedfor2050as-sumingeachend-useenergysector(residential,transportation,commercial,industrial)isconvertedtoelectricityandsomeelectrolytichydrogenafteraccountingformodestimprovementsinend-useenergyefficiency(22).Annualloadsineachsectorarenextseparatedintocoolingandheatingloadsthatcanbemetwiththermalenergystorage(TES),loadsthatcanbemetwithhydrogenproductionandstorage,flexibleloadsthatcanbemetwithDR,andinflexibleloads(Table1).Most(50–95%)airconditioningandrefrigerationandmost(85–95%)airheatingandwaterheatingarecoupledwithTES(Table1).Coolingcoupledwithstorageistiedtochilledwater(sensible-heat)TES(STES)andicepro-ductionandmelting[phase-changematerial(PCM)-ice](SIAppendix,TableS1).Allbuildingair-andwater-heatingcoupledwithstorageusesun-dergroundTES(UTES)insoil.UTESstorageispatternedaftertheseasonalandshort-termdistrictheatingUTESsystemattheDrakeLandingCommu-nity,Canada(23).Thefluid(e.g.,glycolsolution)thatheatswaterthatheatsthesoilandrocksisitselfheatedbysunlightorexcesselectricity.Overall,85%ofthetransportationloadand70%oftheloadsforindustrialhightemperature,chemical,andelectricalprocessesareassumedtobeflexibleorproducedfromH2(Table1).Sixtypesofstoragearetreated(SIAppendix,TableS1):threeforairandwaterheating/cooling(STES,UTES,andPCM-ice);twoforelectricpowergeneration[pumpedhydropowerstorage(PHS)andphase-changematerialscoupledwithconcentratedsolarpowerplants(PCM-CSP)];andonefortransportorhigh-temperatureprocesses(hydrogen).Hydropower(withreservoirs)istreatedasanelectricitysourceondemand,butbecauseres-ervoirscanberechargedonlynaturallytheyarenottreatedasartificiallyrechargeablestorage.Lithium-ionbatteriesareusedtopowerbattery-electricvehiclesbuttoavoidbatterydegradation,nottofeedpowerfromvehiclestothegrid.Batteriesforstationarypowerstorageworkwellinthissystemtoo.However,becausetheycurrentlycostmorethantheotherstoragetechnologiesused(24),theyareprioritizedlowerandarefoundnotSignificanceThelarge-scaleconversionto100%wind,water,andsolar(WWS)powerforallpurposes(electricity,transportation,heating/cooling,andindustry)iscurrentlyinhibitedbyafearofgridinstabilityandhighcostduetothevariabilityandun-certaintyofwindandsolar.Thispapercouplesnumericalsimu-lationoftime-andspace-dependentweatherwithsimulationoftime-dependentpowerdemand,storage,anddemandresponsetoprovidelow-costsolutionstothegridreliabilityproblemwith100%penetrationofWWSacrossallenergysectorsinthecon-tinentalUnitedStatesbetween2050and2055.Solutionsareobtainedwithouthigher-coststationarybatterystoragebypri-oritizingstorageofheatinsoilandwater;coldinwaterandice;andelectricityinphase-changematerials,pumpedhydro,hy-dropower,andhydrogen.Authorcontributions:M.Z.J.designedresearch;M.Z.J.andM.A.D.performedresearch;M.Z.J.,M.A.D.,M.A.C.,andB.A.F.contributedanalytictools;M.Z.J.,M.A.D.,andM.A.C.analyzeddata;andM.Z.J.,M.A.D.,M.A.C.,andB.A.F.wrotethepaper.Theauthorsdeclarenoconflictofinterest.ThisarticleisaPNASDirectSubmission.Dataavailableuponrequest(fromM.Z.J.).1Towhomcorrespondenceshouldbeaddressed.Email:jacobson@stanford.edu.Thisarticlecontainssupportinginformationonlineatwww.pnas.org/lookup/suppl/doi:10.1073/pnas.1510028112/-/DCSupplemental.15060–15065PNASDecember8,2015vol.112no.49www.pnas.org/cgi/doi/10.1073/pnas.1510028112A100%wind,water,sunlight(WWS)all-sectorenergyplanforWashingtonStateMarkZ.Jacobsona,,MarkA.Delucchib,GuillaumeBazouina,MichaelJ.Dvorakc,RezaArghandehd,ZackA.F.Bauera,ArianeCottea,GerritM.T.H.deMoora,ElissaG.Goldnera,CaseyHeiera,RandallT.Holmesa,SheaA.Hughesa,LingzhiJina,MoizKapadiaa,CarishmaMenona,SethA.Mullendorea,EmilyM.Parisa,GrahamA.Provosta,AndreaR.Romanoa,ChandrikaSrivastavaa,TaylorA.Vencilla,NatashaS.Whitneya,TimW.YeskooaaAtmosphere/EnergyProgram,Dept.ofCivilandEnv.Engineering,StanfordUniversity,USAbInstituteofTransportationStudies,U.C.Berkeley,USAcSailor'sEnergy,USAdCaliforniaInstituteforEnergyandtheEnvironment,U.C.Berkeley,USAarticleinfoArticlehistory:Received14July2014Receivedinrevisedform31July2015Accepted1August2015AvailableonlinexxxKeywords:RenewableenergyAirpollutionGlobalwarmingWindSolarEnergycostabstractThisstudyanalyzesthepotentialandconsequencesofWashingtonState'suseofwind,water,andsunlight(WWS)toproduceelectricityandelectrolytichydrogenfor100%ofitsall-purposesenergy(electricity,transportation,heating/cooling,industry)by2050,with80e85%conversionby2030.Elec-trificationplusmodestefficiencymeasurescanreduceWashingtonState's2050end-usepowerdemandby~39.9%,with~80%ofthereductionduetoelectrification,andcanstabilizeenergypricessinceWWSfuelcostsarezero.Theremainingdemandcanbemet,inonescenario,with~35%onshorewind,~13%offshorewind,~10.73%utility-scalePV,~2.9%residentialPV,~1.5%commercial/governmentPV,~0.65%geothermal,~0.5%wave,~0.3%tidal,and~35.42%hydropower.Convertingwillrequireonly0.08%ofthestate'slandfornewfootprintand~2%forspacingbetweennewwindturbines(spacingthatcanbeusedformultiplepurposes).Itwillfurtherresultineachpersoninthestatesaving~$85/yrindirectenergycostsand~$950/yrinhealthcosts[eliminating~830(190e1950)/yrstatewideprematureairpollutionmortalities]whilereducingglobalclimatecostsby~$4200/person/yr(allin2013dollars).Convertingwillthereforeimprovehealthandclimatewhilereducingcosts.©2015ElsevierLtd.Allrightsreserved.1.IntroductionThispaperanalyzesaroadmapforconvertingWashingtonState'sall-purpose(electricity,transportation,heating/cooling,andindustry)energyinfrastructuretoonepoweredbywind,water,andsunlight(WWS).ExistingenergyplansinWashingtonStatearelargelyembodiedinthe2012WashingtonStateEnergyStrategyandBiennialEnergyReports[48].Bothaddresstheneedtoreducegreenhousegasemissions,keepenergypriceslow,andfosterjobs.However,thegoalsinthosereportsarelimitedtoemissionre-ductionsbasedona2008statelawthatrequiresreducingstatewidegreenhousegasemissionsto1990levelsby2020,to25%below1990levelsby2035,andto50%below1990levelsby2050.TheplanproposedhereoutlinesnotonlyhowtoachieveWash-ingtonState'scurrentgoalsbutalsohowtoachievemuchmoreaggressivegoals:eliminating80e85%ofpresent-daygreenhouse-gasandair-pollutantemissionsby2030and100%by2050.Severalpreviousstudieshaveanalyzedproposalsfornear100%WWSpenetrationinoneormoreenergysectorsofaregion(e.g.Refs.[23,24,19,5,3,31,2,30]).TheplanproposedhereissimilarinoutlinetoonesrecentlydevelopedforNewYorkStateandCali-fornia[25,26].However,theestimatesofenergydemand,potentialsupply,andproposedpolicymeasuresherearedevelopedspecif-icallyforWashingtonState,whichhasgreaterinstalledhydro-powerandthusmorebuilt-instorageformatchingpowersupplyCorrespondingauthor.E-mailaddress:Jacobson@stanford.edu(M.Z.Jacobson).ContentslistsavailableatScienceDirectRenewableEnergyjournalhomepage:www.elsevier.com/locate/renenehttp://dx.doi.org/10.1016/j.renene.2015.08.0030960-1481/©2015ElsevierLtd.Allrightsreserved.RenewableEnergy86(2016)75e88FlexibilitymechanismsandpathwaystoahighlyrenewableUSelectricityfutureBethanyA.Frewa,,SarahBeckerb,MichaelJ.Dvorakc,GormB.Andresend,MarkZ.JacobsonaaDepartmentofCivilandEnvironmentalEngineering,StanfordUniversity,Stanford,CA,USAbFrankfurtInstituteforAdvancedStudies,GoetheUniversity,60438FrankfurtamMain,GermanycSailor'sEnergy,CorpusChristi,TX,USAdDepartmentofEngineering,AarhusUniversity,8000AarhusC,DenmarkarticleinfoArticlehistory:Received17April2015Receivedinrevisedform22January2016Accepted25January2016AvailableonlinexxxKeywords:RenewableenergyintegrationEnergysystemanalysisAggregationStorageTransmissionElectricvehiclechargingabstractThisstudyexploresvariousscenariosandflexibilitymechanismstointegratehighpenetrationsofrenewableenergyintotheUS(UnitedStates)powergrid.AlinearprogrammingmodelePOWER(PowersystemOptimizationWithdiverseEnergyResources)eisconstructedandusedto(1)quantifyflexibilitycost-benefitsofgeographicaggregation,renewableovergeneration,storage,andflexibleelectricvehiclecharging,and(2)comparepathwaystoafullyrenewableelectricitysystem.Geographicaggregationprovidesthelargestflexibilitybenefitwith~5e50%costsavings,buteachregion'scontributiontotheaggregateRPS(renewableportfoliostandard)targetisdisproportionate,suggestingtheneedforregional-and-resource-specificRPStargets.Electricvehiclechargingyieldsalowerlevelizedsystemcost,revealingthebenefitsofdemand-sideflexibility.However,existingdemandresponsepricestructuresmayneedadjustmenttoencourageoptimalflexibleloadinhighlyrenewablesystems.TwoscenarioswithRPStargetsfrom20%to100%fortheUS(peakload~729GW)andCalifornia(peakload~62GW)findeachRPStargetfeasiblefromaplanningperspective,butwith2Âthecostand3Âtheover-generationata100%versus80%RPStarget.EmissionreductioncostsavingsfortheaggregatedUSsystemwithan80%versus20%RPStargetareroughly$200billion/year,outweighingthe$80billion/yearcostforthesameRPSrange.©2016ElsevierLtd.Allrightsreserved.1.IntroductionElectricutilities,loadbalancingareas,andtransmissionpro-vidersacrosstheUSareincreasinglymanaginglargerpenetrationsofrenewableenergyandengagingingreaterregionalcoordination.Thisisdrivenby(1)policy,suchasRPS(renewableportfoliostandard)targets,FERC(FederalEnergyRegulatoryCommission)orders,andemissionregulations,(2)reliabilityrequirements,and(3)economics,suchasdecliningwindandsolarcosts.Astheelectricsectorcontinuesinthistransformation,thereisagrowingneedforinter-regionalanalysestodeterminethemostcost-effectiveplanforinterconnectinglargegeographicareaswithhighpenetrationsofrenewableenergygenerators.SuchpowersystemplanningstudieshavebeencompletedforvariousspatialextentsintheUS,e.g.,PJMusingtheRREEOMmodel[1],westernUSusingtheSWITCHmodel[2],andcontiguousUSusingtheReEDSmodel[3],aswellasinEurope,e.g.,ENTSO-EgridwiththeURBS-EUmodel[4]andbroaderEuropeanextentincludingpor-tionsofAsiaandAfrica[5].Otherstudieshavefocusedontheoperationofthesystem,suchasNREL'sEastern[6]andWestern[7]Integrationstudies,aswellasmorespecializedoperationalstudiesthatlookatfinertemporalresolutions(e.g.,frequencyresponseandtransientstabilityinthewesternUS[8]).Throughouttheseplanning,gridintegration,anddetailedoperationalstudies,variousflexibilitymechanismshavebeenidentifiedtohelpmitigatethevariabilityanduncertaintychal-lengesarisingfromanincreasingpenetrationofvariablerenewablegeneration.Theseincludeaggregationofsupply,demand,andre-servesthroughtransmissioninterconnections;storagetechnolo-gies;flexiblegeneration,suchasflexiblenaturalgasturbinesandtheimprovedusedofhydroelectricassets;demandflexibility,suchas“smartgrid”technologiesandotherdemand-sidemechanismsCorrespondingauthor.Tel.:þ16507212650;fax:þ16507237058.E-mailaddress:bethany.frew@alumni.stanford.edu(B.A.Frew).ContentslistsavailableatScienceDirectEnergyjournalhomepage:www.elsevier.com/locate/energyhttp://dx.doi.org/10.1016/j.energy.2016.01.0790360-5442/©2016ElsevierLtd.Allrightsreserved.Energy101(2016)65e78Temporalandspatialtradeoffsinpowersystemmodelingwithassumptionsaboutstorage:AnapplicationofthePOWERmodelBethanyA.Frew,MarkZ.JacobsonCivilandEnvironmentalEngineering,StanfordUniversity,Stanford,CA,UnitedStatesarticleinfoArticlehistory:Received13May2015Receivedinrevisedform28September2016Accepted19October2016Keywords:RenewableenergyLinearprogrammingComputationalrequirementsModelaccuracyAggregationEnergysystemanalysisabstractAsthenumberandcomplexityofpowersystemplanningmodelsgrows,understandingtheimpactofmodelingchoicesonaccuracyandcomputationalrequirementsbecomesincreasinglyimportant.ThisstudyexaminesempiricallyvarioustemporalandspatialtradeoffsusingthePOWERplanningmodelforscenariosofahighlyrenewableUSsystem.First,thecommontemporalsimplificationofusingarepresentativesubsetofhoursfromafullyearofavailablehoursisjustifiedusingareducedformmodel.Accuracylossesaregenerally6%,butstorageissensitivetotheassociatedmodelmodifications,highlightingtheneedforproperstoragebalancingconstraints.Costtradeoffsofvarioustemporalandspatialadjustmentsarethenquantified:fourtemporalresolutions(1-to8-h-averagetimeblocks);variousrepresentativedaysubsetsizes(1weeke6months);twospatialresolutionsofsite-by-siteversusuniformfractionalbuildoutacrossallsolarandwindsites;andmultiplespatialextents,rangingfromCaliforniatothecontiguousUS.Mosttradeoffsyield<15%costdifferences,withtheeffectofgeographicaggregationacrossincreasingspatialextentsproducingthelargestcostreductionof14%and42%forthewesternandcontiguousUS,respectively.Theseresultscanhelppowersystemmodelersdeterminethemostappropriatetemporalandspatialtreatmentfortheirapplication.©2016ElsevierLtd.Allrightsreserved.1.IntroductionAstheUSelectricitysectortransformstomeetregulatoryandreliabilityrequirementsinanagingandincreasinglyrenewablesystem,numerousoptimizationstudiesarebeingconductedtoexploretheeconomicandpowersystemimpactsunderdifferentgeneratorandtransmissionscenarios.Thesestudiesspanarangeofspatialscales,fromregional,state,andbalancingareas,e.g.,PJMusingtheRREEOMmodel[1]andtheWesternUSusingtheSWITCHmodel[2],tocountry-wideanalyses,e.g.,contiguousUSusingtheReEDSmodel[3],US-REGENmodel[4],NEWSmodel[5],andPO-WERmodel[6].Manyofthesestudiesutilizeaspecificmulti-decadecapacityexpansionmodelorshorter-termplanningmodel.Table1summarizestherelevantfeaturesofseveralUS-basedelectricitysectorplanningmodelsatthenationalscale(POWER,ReEDS,US-REGEN,NEWS,NEMSEMM,ReNOT)andattheregionalscale(SWITCH,RREEOM).Eachofthesemodelsdeter-ministicallyoptimizesfortheleast-costsystem.AreviewofthesemodelcanbefoundinSection4.1of[7];abroaderreviewofoptimization,simulation,andequilibriumcapacityexpansionmodelsisprovidedinRef.[8].Atahighlevel,thedifferencesamongthesemodelscanbecharacterizedbytradeoffsintemporalresolutionandextent,spatialresolutionandextent,andmodelcomplexity.Temporalresolutionisthetimestepsize(hourly,sub-hourly,etc.);temporalextentisthetimehorizonoverwhichthemodelsolves(1week,1month,1year,etc.);spatialresolutionreflectsthehandlingofthewind/solar/otherdevicesincludedinthemodel(e.g.,solvesite-by-site,orsolveasanaggregatedunitacrossallsites/devicesuni-formly);andspatialextentisthegeographiccoverageofthemodel(state,region,country,etc.).Systemcomplexityreferstotherep-resentationofdifferentpowersystemcomponents,suchasresourceadequacy,reliability,intra-regionaltransmission,distri-butionsystemimpacts,variabilityanduncertaintyofrenewables,andstoragechronology.These“levers”canbeadjustedtosuittheresearchobjective(s)andcomputationalresourcesavailable.Forinstance,temporalandspatialresolutioncanbereducedinordertocaptureagreatersystemcomplexity.MostmodelsinTable1haveadjustedthetemporallevertoincludearepresentativesubsetofhoursor“timeslices”acrossafullyearduetocomputationallimits.Correspondingauthor.E-mailaddress:bethany.frew@alumni.stanford.edu(B.A.Frew).ContentslistsavailableatScienceDirectEnergyjournalhomepage:www.elsevier.com/locate/energyhttp://dx.doi.org/10.1016/j.energy.2016.10.0740360-5442/©2016ElsevierLtd.Allrightsreserved.Energy117(2016)198e213Article100%CleanandRenewableWind,Water,andSunlightAll-SectorEnergyRoadmapsfor139CountriesoftheWorldMarkZ.Jacobson,1,5,MarkA.Delucchi,2ZackA.F.Bauer,1SavannahC.Goodman,1WilliamE.Chapman,1MaryA.Cameron,1CedricBozonnat,1LiatChobadi,3HaileyA.Clonts,1PeterEnevoldsen,4JennyR.Erwin,1SimoneN.Fobi,1OwenK.Goldstrom,1EleanorM.Hennessy,1JingyiLiu,1JonathanLo,1ClaytonB.Meyer,1SeanB.Morris,1KevinR.Moy,1PatrickL.O’Neill,1IvalinPetkov,1StephanieRedfern,1RobinSchucker,1MichaelA.Sontag,1JingfanWang,1EricWeiner,1andAlexanderS.Yachanin1SUMMARYWedeveloproadmapstotransformtheall-purposeenergyinfrastructures(elec-tricity,transportation,heating/cooling,industry,agriculture/forestry/fishing)of139countriestoonespoweredbywind,water,andsunlight(WWS).Theroadmapsenvision80%conversionby2030and100%by2050.WWSnotonlyreplacesbusiness-as-usual(BAU)power,butalsoreducesit$42.5%becausethework:energyratioofWWSelectricityexceedsthatofcombustion(23.0%),WWSrequiresnomining,transporting,orprocessingoffuels(12.6%),andWWSend-useefficiencyisassumedtoexceedthatofBAU(6.9%).Convert-ingmaycreate$24.3millionmorepermanent,full-timejobsthanjobslost.Itmayavoid$4.6million/yearprematureair-pollutiondeathstodayand$3.5million/yearin2050;$$22.8trillion/year(12.7¢/kWh-BAU-all-energy)in2050air-pollutioncosts;and$$28.5trillion/year(15.8¢/kWh-BAU-all-energy)in2050climatecosts.Transitioningshouldalsostabilizeenergypricesbecausefuelcostsarezero,reducepowerdisruptionandincreaseaccesstoenergybydecentralizingpower,andavoid1.5Cglobalwarming.INTRODUCTIONTheseriousnessofair-pollution,climate,andenergy-securityproblemsworldwiderequiresamassive,virtuallyimmediatetransformationoftheworld’senergyinfra-structureto100%clean,renewableenergyproducingzeroemissions.Forexample,eachyear,4–7millionpeopledieprematurelyandhundredsofmillionsmorebecomeillfromairpollution,1,2causingamassiveamountofpainandsufferingthatcannearlybeeliminatedbyazero-emissionenergysystem.Simi-larly,avoiding1.5Cwarmingsincepreindustrialtimesrequiresnolessthanan80%conversionoftheenergyinfrastructuretozero-emittingenergyby2030and100%by2050(TimelineandSectionS10.2).Lastly,asfossil-fuelsuppliesdwindleandtheirpricesrise,economic,social,andpoliticalinstabilitymayensueunlessareplacementenergyinfrastructureisdevelopedwellaheadoftime.Asaresponsetotheseconcerns,thisstudyprovidesroadmapsfor139countriesforwhichrawenergydataareavailable.3Theroadmapsdescribeafuturewhereallenergysectorsareelectrifiedoruseheatdirectlywithexistingtechnology,energydemandisContext&ScaleFortheworldtoreverseglobalwarming,eliminatemillionsofannualair-pollutiondeaths,andprovidesecureenergy,everycountrymusthaveanenergyroadmapbasedonwidelyavailable,reliable,zero-emissionenergytechnologies.Thisstudypresentssuchroadmapsfor139countriesoftheworld.TheseroadmapsarefarmoreaggressivethanwhattheParisagreementcallsfor,butarestilltechnicallyandeconomicallyfeasible.Thesolutionistoelectrifyallenergysectors(transportation,heating/cooling,industry,agriculture/forestry/fishing)andprovideallelectricitywith100%wind,water,andsolar(WWS)power.Iffullyimplementedby2050,theroadmapswillenabletheworldtoavoid1.5Cglobalwarmingandmillionsofannualair-pollutiondeaths,create24.3millionnetnewlong-term,full-timejobs,reduceenergycoststosociety,reduceenergyend-useby42.5%,reducepowerdisruption,andincreaseworldwideaccesstoenergy.108Joule1,108–121,September6,2017ª2017ElsevierInc.Matchingdemandwithsupplyatlowcostin139countriesamong20worldregionswith100%intermittentwind,water,andsunlight(WWS)forallpurposesMarkZ.Jacobsona,,MarkA.Delucchib,MaryA.Camerona,BrianV.MathiesencaDepartmentofCivilandEnvironmentalEngineering,StanfordUniversity,Stanford,CA94305-4020,USAbInstituteofTransportationStudies,UniversityofCaliforniaatBerkeley,California,94804-3580,USAcDepartmentofPlanning,AalborgUniversity,ACMeyersVænge15,Copenhagen,DK-2450,DenmarkarticleinfoArticlehistory:Received4October2017Receivedinrevisedform11January2018Accepted2February2018Availableonline3February2018Keywords:Wind-water-solarElectricandthermalgridElectricityandthermalstorageTransmissionDemandresponseabstractMatchingelectricity,heat,andcolddemandwithsupplyatlowcostisthegreatestconcernfacingcountriesseekingtoprovidetheirall-purposeenergywith100%clean,renewablewind,water,andsunlight(WWS).ImplementingWWSworldwidecouldeliminate4e7millionannualairpollutiondeaths,firstslowthenreverseglobalwarming,andprovideenergysustainably.Thisstudyderiveszero-load-losstechnicalsolutionstomatchingdemandwith100%WWSsupply;heat,cold,andelec-tricitystorage;hydrogenproduction;assumedall-distancetransmission;anddemandresponsefor20worldregionsencompassing139countriesaftertheyelectrifyorprovidedirectheatforallenergyin2050.Multiplesolutionsarefound,includingthosewithbatteriesandheatpumpsbutzeroaddedhydropowerturbinesandzerothermalenergystorage.WhereasWWSandBusiness-As-Usual(BAU)energycostsperunitenergyaresimilar,WWSrequires~42.5%lessenergyinabasecaseand~57.9%lessinaheat-pumpcasesomayreducecapitalandconsumercostssignificantly.Further,WWSsocial(energyþhealthþclimate)costsperunitenergyareone-fourthBAU's.Byreducingwatervapor,thewindturbinesproposedmayrapidlyoffset~3%globalwarmingwhilealsodisplacingfossil-fuelemis-sions.Thus,withcarefulplanning,theworld'senergychallengesmaybesolvablewithapracticaltechnique.©2018ElsevierLtd.Allrightsreserved.1.IntroductionGloballyaveragedtemperaturesin2016wereover1Chigherthanattheendofthe19thcentury[1].Toavoid1.5Cwarmingandeliminatethe4e7millionworldwideprematureairpollutiondeathsoccurringannually,theworldmustrapidlyreplacefossilfuelswithzero-emissionsenergysources.Tohelpaccomplishthisgoal,139individualcountryroadmapswererecentlydevelopedtotransitionallenergysectors(electricity,transportation,heating/cooling,industry,andagriculture/forestry/fishing)touseelectricityanddirectheatpoweredby100%wind,water,andsunlight(WWS)by2050,with80%conversionby2030[2].OnlyWWStechnologieswereusedinthatstudy,astheyprovidegreaterairpollutionhealthandclimatebenefitsthandobioenergyorfossilfuelswithcarboncaptureandsequestration(CCS)[3];uselesslandthancrop-basedbioenergy[3];andresultinlesscatastrophicrisk,weaponsprolif-erationrisk,waste,anddelaysthannuclearpower[3,4].Whereas,the139-countryroadmapsestimatethenumbersofWWSgeneratorsneededforeachcountrytomatchannually-averagedelectricity,heat,andcoldpowerdemandwithWWSsupply,theydonotprovideadetailedanalysisofmatchingsupplywithdemandovershortertimescales(e.g.,minutes,hours,months,orseasons).Suchananalysisisnecessary,astheconcernforloadloss(supplyshortfall)duetothevariabilityofWWSresourcesandassociatedcostsofmitigatingsuchuncertaintyisthegreatestbarrierfacingthelarge-scale,worldwideadoptionofWWSpower[5].Previousadvancedstudieshaveexaminedmatchingtime-dependentdemandwithsupplyforupto100%renewableenergybyreplacingconventionalgeneratorswithWWS,orWWSplusbioenergyineithertheelectricpowersectoralone,orintheelectricsectorplusoneortwoothersectorsaftertheyhavebeenelectrifiedCorrespondingauthor.E-mailaddress:jacobson@stanford.edu(M.Z.Jacobson).ContentslistsavailableatScienceDirectRenewableEnergyjournalhomepage:www.elsevier.com/locate/renenehttps://doi.org/10.1016/j.renene.2018.02.0090960-1481/©2018ElsevierLtd.Allrightsreserved.RenewableEnergy123(2018)236e248ContentslistsavailableatScienceDirectSustainableCitiesandSocietyjournalhomepage:www.elsevier.com/locate/scs100%cleanandrenewableWind,Water,andSunlight(WWS)all-sectorenergyroadmapsfor53townsandcitiesinNorthAmericaMarkZ.Jacobsona,⁎,MaryA.Camerona,EleanorM.Hennessya,IvalinPetkova,ClaytonB.Meyera,TanviK.Gambhira,AmandaT.Makia,KatherinePfleegera,HaileyClontsa,AveryL.McEvoya,MatthewL.Micciolia,Anna-KatharinavonKraulanda,RebeccaW.Fanga,MarkA.DelucchibaAtmosphere/EnergyProgram,Dept.ofCivilandEnv.Engineering,StanfordUniversity,UnitedStatesbInstituteofTransportationStudies,UniversityofCaliforniaatBerkeley,California,UnitedStatesARTICLEINFOKeywords:SustainablecitiesRenewableenergyWindSolarUrbanairpollutionClimatechangeABSTRACTTownsandcitiesworldwideemitsignificantpollutionandarealsoincreasinglyaffectedbypollution’shealthandclimateimpacts.Localdecisionmakerscanalleviatetheseimpactsbytransitioningtheenergytheycontrolto100%clean,renewableenergyandenergyefficiency.Thisstudydevelopsroadmapstotransition53townsandcitiesintheUnitedStates,Canada,andMexicoto100%wind,water,andsunlight(WWS)inallenergysectorsbynolaterthan2050,withatleast80%by2030.Theroadmapscallforelectrifyingtransportationandindustrialheat;usingelectricity,solarheat,orgeothermalheatforwaterandairheatinginbuildings;storingelectricity,cold,heat,andhydrogen;andprovidingallelectricityandheatwithWWS.Thisfulltransitioninthe53townsandcitiesexaminedmayreduce2050airpollutionprematuremortalitybyupto7000(1700-16,000)/yr,reduceglobalclimatecostsin2050by$393(221–836)billion/yr(2015USD),saveeachperson∼$133/yrinenergycosts,andcreate∼93,000morepermanent,full-timejobsthanlost.1.IntroductionAirpollutionmorbidityandmortality,globalwarming,andenergyinsecurityarethethreemostimportantenergy-relatedproblemsaf-fectingtheworldtoday(e.g.,SmithandMichael,2009;Bose,2010;AsifandMuneer,2007).Althoughinternational,national,andstatepoliciesareneededtoaddressfullytheseproblems,individualsandlocalitiescanhelpaswell.Individualsandbusinessescanelectrifytheirhomes,offices,andindustrialbuildings;switchtoelectricheatpumps,induc-tioncooktops,LEDlightbulbs,andelectrictransportation;weatherizebuildings;reduceenergyandtransportationneeds;andinstallsmall-scalewind(insomelocations),water,orsolarsystemscoupledwithbatterystorage.Thesesolutionsarelargelycosteffectivetoday.Deci-sionmakersintownsandcitiescanfurtherincentivizetheseindividualtransitionswhileinvestinginlarge-scaleclean,renewableelectricityandstorage;electric-vehiclecharginginfrastructure;andimprovedbikepaths,publictransit,andridesharing.Severalpreviousstudieshaveanalyzedorreviewedsomeofthecomponentsnecessarytotransitioncitiesorislandstoclean,renewableenergy(e.g.,AgarandRenner,2016;Calvilloetal.,2016;ParkandKwon,2016;BibriandKrogstie,2017;Noorollahietal.,2017;Newman,2017;Dahaletal.,2018).Recently,over65townsandcitiesintheUnitedStatesandover130internationalcompaniesmadecom-mitmentstotransitionto100%clean,renewableenergyinoneormoreenergysectorsbybetween2030and2050(SierraClub,2018;RE100,2018).Whileseverallocalitieshavestartedtodevelopplanstoachievethis100%goal,noend-pointroadmaps,derivedwithauniformmethodology,havebeendevelopedformultipletownsandcitiestotransitionthemacrossallenergysectors(electricity,transportation,heating/cooling,industry)to100%clean,renewableenergy.Themainpurposeofthispaperistoprovidequantitativeroadmapsfor53townsandcitiesinNorthAmerica(Canada,theUnitedStates,andMexico).Theonesselectedareeitheramongthosethathaveal-readycommittedto100%clean,renewableenergyorarelargeorgeographicallydiverse.Theroadmapsprovideoneofmanypossibleclean,renewableen-ergyscenariosfor2050foreachtownandcityandatimelinetogetthere.Theyassumethatallenergysectorswillbeelectrified,orusehydrogenproducedfromelectricity(onlyforsometransportation),orusedirectheat.Allelectricityandheatwillbegeneratedwith100%https://doi.org/10.1016/j.scs.2018.06.031Received10January2018;Receivedinrevisedform17May2018;Accepted24June2018⁎Correspondingauthor.E-mailaddress:jacobson@stanford.edu(M.Z.Jacobson).SustainableCitiesandSociety42(2018)22–37Availableonline30June20182210-6707/©2018ElsevierLtd.Allrightsreserved.TOneEarthArticleImpactsofGreenNewDealEnergyPlansonGridStability,Costs,Jobs,Health,andClimatein143CountriesMarkZ.Jacobson,1,4,MarkA.Delucchi,2MaryA.Cameron,1,3StephenJ.Coughlin,1CatherineA.Hay,1InduPriyaManogaran,1YanboShu,1andAnna-KatharinavonKrauland11DepartmentofCivilandEnvironmentalEngineering,StanfordUniversity,Stanford,CA94305-4020,USA2InstituteofTransportationStudies,UniversityofCaliforniaatBerkeley,Berkeley,CA94804-3580,USA3Hivemapper,Burlingame,CA94010,USA4LeadContactCorrespondence:jacobson@stanford.eduhttps://doi.org/10.1016/j.oneear.2019.12.003SUMMARYGlobalwarming,airpollution,andenergyinsecurityarethreeofthegreatestproblemsfacinghumanity.Toaddresstheseproblems,wedevelopGreenNewDealenergyroadmapsfor143countries.Theroad-mapscallfora100%transitionofall-purposebusi-ness-as-usual(BAU)energytowind-water-solar(WWS)energy,efficiency,andstorageby2050withatleast80%by2030.Ourstudiesongridsta-bilityfindthatthecountries,groupedinto24re-gions,canmatchdemandexactlyfrom2050to2052with100%WWSsupplyandstorage.Wealsoderivenewcostmetrics.Worldwide,WWSen-ergyreducesend-useenergyby57.1%,aggregateprivateenergycostsfrom$17.7to$6.8trillion/year(61%),andaggregatesocial(privateplushealthplusclimate)costsfrom$76.1to$6.8trillion/year(91%)atapresentvaluecapitalcostof$$73trillion.WWSenergycreates28.6millionmorelong-term,full-timejobsthanBAUenergyandneedsonly$0.17%and$0.48%oflandfornewfootprintandspacing,respectively.Thus,WWSrequireslessen-ergy,costsless,andcreatesmorejobsthandoesBAU.INTRODUCTIONTheworldisbeginningtotransitiontoclean,renewableenergyforallenergypurposes.However,toavoid1.5Cglobalwarming,wemuststopatleast80%ofallenergyandnon-energyfossilfuelsandbiofuelemissionsby20301andstop100%nolaterthan2050.1,2Airpollutionfromthesesamesourceskills4–9millionpeopleeachyear(Figure1),3andthisdamagewillcontinueunlessthesourcesofairpollutionareeliminated.Finally,iftheuseoffossilfuelsisnotcurtailedrapidly,risingde-mandforincreasinglyscarcefossilenergywillleadtoeconomic,social,andpoliticalinstability,enhancinginternationalconflict.3,4Inanefforttosolvetheseproblems,studiesamongatleast11independentresearchgroupshavefoundthattransitioningto100%renewableenergyinoneorallenergysectors,whilekeep-ingtheelectricityand/orheatgridsstableatareasonablecost,ispossible.1,5–26ThereviewsofBrownetal.27andDiesendorfandElliston28furtherfindthatcritiquesof100%renewablesystemsaremisplaced.Thelatterstudy,forexample,concludes,‘‘themaincritiquespublishedinscholarlyarticlesandbookscontainfactualerrors,questionableassumptions,importantomissions,internalinconsistencies,exaggerationsoflimitationsandirrele-vantarguments.’’Amongthestudiesthatfindthat100%renewableenergyiscosteffective,manyhavebeenoflimitedusetopolicymakersbecausetheyconsideredonlyprivatecostandnotsocialcost,didnotcomparebusiness-as-usual(BAU)withwind-water-solarSCIENCEFORSOCIETYTheEarthisapproaching1.5Cglobalwarming,airpollutionkillsover7millionpeopleyearly,andlimitedfossilfuelresourcesportendsocialinstability.Rapidsolutionsareneeded.WeprovideGreenNewDealroadmapsforallthreeproblemsfor143countries,representing99.7%ofworld’sCO2emissions.Theroadmapscallforcountriestomoveallenergyto100%clean,renewablewind-water-solar(WWS)energy,efficiency,andstoragenolaterthan2050withatleast80%by2030.Wefindthatcoun-triesandregionsavoidblackoutsdespiteWWSvariability.Worldwide,WWSreducesenergyneedsby57.1%,energycostsfrom$17.7to$6.8trillion/year(61%),andsocial(privateplushealthplusclimate)costsfrom$76.1to$6.8trillion/year(91%)atacapitalcostof$$73trillion.WWScreates28.6millionmorelong-term,full-timejobsthanarelostandneedsonly0.17%and0.48%oflandforfootprintandspace,respec-tively.Thus,WWSneedslessenergy,costsless,andcreatesmorejobsthancurrentenergy.OneEarth1,449–463,December20,2019ª2019TheAuthor(s).PublishedbyElsevierInc.449ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).energiesArticleTransitioningAllEnergyin74MetropolitanAreas,Including30Megacities,to100%CleanandRenewableWind,Water,andSunlight(WWS)MarkZ.Jacobson,Anna-KatharinavonKrauland,ZacharyF.M.Burton,StephenJ.Coughlin,CaitlinJaeggli,DanielNelli,AlexanderJ.H.Nelson,YanboShu,MilesSmith,ChorTan,ConneryD.WoodandKelynD.WoodAtmosphere/EnergyProgram,DepartmentofCivilandEnvironmentalEngineering,StanfordUniversity,Stanford,CA94305,USA;krauland@stanford.edu(A.-K.v.K.);zburton@stanford.edu(Z.F.M.B.);scoughli@stanford.edu(S.J.C.);jaegglic@stanford.edu(C.J.);dannelli@stanford.edu(D.N.);jisaburo@stanford.edu(A.J.H.N.);shuyb17@stanford.edu(Y.S.);msmith26@stanford.edu(M.S.);chorseng@alumni.stanford.edu(C.T.);conneryw@stanford.edu(C.D.W.);kelynw@stanford.edu(K.D.W.)Correspondence:jacobson@stanford.edu;Tel.:+650-723-6836Received:28August2020;Accepted:16September2020;Published:20September2020Abstract:Todate,roadmapsandpoliciesfortransitioningfromfossilfuelstoclean,renewableenergyhavebeendevelopedfornations,provinces,states,cities,andtownsinordertoaddressairpollution,globalwarming,andenergyinsecurity.However,neitherroadmapsnorpolicieshavebeendevelopedforlargemetropolitanareas(aggregationsoftownsandcities),includingmegacities(metropolitanareaswithpopulationsabove10million).Thisstudybridgesthatgapbydevelopingroadmapstotransition74metropolitanareasworldwide,including30megacities,to100%wind,water,andsunlight(WWS)energyandstorageforallenergysectorsbynolaterthan2050,withatleast80%by2030.Amongallmetropolitanareasexamined,thefulltransitionmayreduce2050annualenergycostsby61.1%(from$2.2to$0.86trillion/yrin2013USD)andsocialcosts(energyplusairpollutionplusclimatecosts)by89.6%(from$8.3to$0.86trillion/yr).Thelargeenergycostreductionisduetothe57.1%lowerend-usedenergyrequirementsandthe9%lowercostperunitenergywithWWS.Theairpollutioncostreductionof~$2.6(1.5–4.6)trillion/yrisduemostlytothesavingof408,000(322,000–506,000)lives/yrwithWWS.GlobalclimatecostsavingsduetoWWSare~$3.5(2.0–7.5)trillion/yr(2013USD).Thetransitionmayalsocreate~1.4millionmorelong-term,full-timejobsthanlost.Thus,movingto100%clean,renewableenergyandstorageforallpurposesinmetropolitanareascanresultinsignificanteconomic,health,climate,andjobbenefits.Keywords:megacities;urbanairpollution;climatechange;renewableenergy;wind;solar1.IntroductionMegacitiesandmetacitiesaredefinedasmetropolitanareaswithpopulationsabove10and20million,respectively[1].Ametropolitanarea(ormetropolis)isa“majorcitytogetherwithitssuburbsandnearbycities,towns,andenvironsoverwhichthemajorcityexercisesacommandingeconomicandsocialinfluence”[2].Anareamusthaveapopulationofatleast100,000,withatleast50,000intheurbanportion,tobeconsideredametropolitanarea[2].In1950,theonlymegacitiesintheworldweretheNewYork–NewarkandTokyometropolitanareas[1].By2020,thiscounthadrisento34,includingninemetacities[3].ThelargestofthesewereTokyo(37.4million),Delhi(30.3million),Shanghai(27.1million),andSãoPaulo(22.0million)[3].Basedoncurrenttrendsfrom[3],thenumberofmegacitiesisexpectedtogrowsubstantiallyby2050.Furthermore,thephysicalexpansionofmegacitieshasbeenrapid.Forexample,between2000and2009,Energies2020,13,4934;doi:10.3390/en13184934www.mdpi.com/journal/energiesOnthecorrelationbetweenbuildingheatdemandandwindenergysupplyandhowithelpstoavoidblackoutsMarkZ.JacobsonDepartmentofCivilandEnvironmentalEngineering,StanfordUniversity,Stanford,CA,94305-4020,USAarticleinfoArticlehistory:Received29September2020Receivedinrevisedform2March2021Accepted2March2021Availableonline5March2021Keywords:RenewableenergyGridstabilityBuildingenergyHeatloadsWindenergyWeatherabstractKeepingtheelectricandheatgridsstableisthemajorchallengefacingtheworldasittransitionsawayfromfossilfuelstoelectricityandheatprovidedbywind,water,andsunlight(WWS).Becausebuildingheatingandcoolingdemandsandwindandsolarenergysuppliesbothdependonthesameweather,buildingdemandsshouldbemodeledconsistentlywithrenewablesupplies.However,nomodeltodatehascalculatedfuturethermalloadsconsistentlywithfuturerenewablesupplies.Here,aglobalweather/climatemodelisusedtodothis.Gridstabilityin24worldregionsencompassing143countriesisthenexamined.Lowcostsolutionsarefoundeverywhere.Buildingheatloadsarefoundtocorrelatestronglywithwindenergysupplyaggregatedoverlarge,coldregions.Moderatecorrelationsarefoundelsewhere,exceptnocorrelationisfoundinsometropicalislandsandsomesmallcountries.Thus,windenergyinmostclimatescanhelptomeetseasonalheatloads,therebyhelpingtoreducethecostofenergy.Finally,windandsolarpowersuppliesarenegativelycorrelated,indicatingthatwindandsolararecomple-mentaryinnatureandshouldbothbebuilt,wherefeasible,toreduceoutputvariabilityarisingfrominstallingonlyoneofthem.©2021TheAuthor(s).PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).Inordertoreducesubstantiallyoreliminatethesevenmillionannualairpollutiondeaths,globalwarming,andenergyinsecuritythatarisefromfossilfueluse,theworldistransitioningallenergysectorstowardclean,renewableelectricityandheat.However,amajorconcerniswhetherheatdemandinbuildingscanbemeteveryminutewithrenewableelectricityanddirectheatsupply.Anadditionalquestioniswhetherallenergydemandcanbemeteveryminutewithclean,renewableelectricityandheatsupply.Thisstudyaddressesbothissues.Itfirstusesaglobalweather-climatemodeltosimulatefuturebuildingheatandcolddemandsworld-wideconsistentlywithwindandsolarsupply.Indoingso,itfindsastrongpositivecorrelationbetweenwindsupply,aggregatedoverlarge,coldregions,andbuildingheatdemandinthesameregions.Italsofindsweaknegativecorrelationsbetweenwindsupplyandbuildingcolddemandandbetweenwindsupplyandsolarsupply.Thelatteranticorrelationsuggestswindandsolarsuppliesarecomplementaryinnature.Finally,thedataareusedtofindlow-costsolutionstogridstabilityin24worldregionsencompassing143countries.Thestudyconcludesthat,duetothestrongcorrelationbetweenwindsupplyandheatdemand,windenergyinmostclimatescanhelptomeetseasonalheatdemandwhilereducingthecostofenergy.1.IntroductionManystudieshaveexaminedthefeasibilityofmatchingelec-tricityand/orheatdemandwithsupply,storage,and/ordemandresponseupontransitioningoneormoreenergysectorsentirelyto100%renewableenergy.Someofthesestudiesquantifiedin-stallationsneededtomatchannual-averagedemandamongallenergysectors(electricity,buildings,transportation,industry,etc.)worldwideorinmostcountrieswithrenewablesupply[1,2].Othersquantifiedinstallationsneededtomeetdemandcontinu-ouslyworldwideamongallenergysectors[3e5];inonecountryintheelectricpowersector[6e15],inonecountryamongmultipleenergysectors[16e22];onthecontinentalscaleintheelectricpowersector[23,24],oronthecontinentalscaleamongmultiplesectors[25,26].Studiesthattreatedmultiplesectorsassumedthatheatingwaselectrifiedthroughtheuseofeitherelectricheatpumpsorresis-tanceheating.Somestudiesthattreatedtheelectrificationofheatingalsoconsidereddistrictheatingand/orenergyefficiency/weatherizationmeasurestoreduceheatdemandinbuildings.AllE-mailaddress:jacobson@stanford.edu.ContentslistsavailableatScienceDirectSmartEnergyjournalhomepage:www.journals.elsevier.com/smart-energyhttps://doi.org/10.1016/j.segy.2021.1000092666-9552/©2021TheAuthor(s).PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).SmartEnergy1(2021)100009Thecostofgridstabilitywith100%clean,renewableenergyforallpurposeswhencountriesareisolatedversusinterconnectedMarkZ.Jacobsona,aDepartmentofCivilandEnvironmentalEngineering,StanfordUniversity,Stanford,CA,94305-4020,USAarticleinfoArticlehistory:Received14May2021Receivedinrevisedform1July2021Accepted25July2021Availableonline27July2021Keywords:RenewableenergyGridstabilityTransmissionIntermittencyBlackoutsStorageabstractThisstudyexaminestheimpactsonenergycostsandrequirementsofinterconnectingversusisolatingtheelectricgridsofcountriesinWesternEuropewheneachcountry'sall-purposeenergyisprovidedby100%wind,water,andsunlight(WWS).Aweathermodelisusedtopredictwindandsolarfieldsandbuildingheatandcoldloads.Agridmodelisusedtomatchelectricity,heat,cold,andhydrogendemandwithWWSsupply;electricity,heat,cold,andhydrogenstorage;anddemandresponse.Stablesolutionsarefoundforallcountries,includingthesmallest(LuxembourgandGibraltar)andlargest(France,Germany,Spain,Italy,andtheUnitedKingdom),andforallcombinationsofcountries.Resultsindicatethatinterconnectingcountriesreducesaggregateannualenergycosts,overbuildingofgeneratorsandstorage,energyshedding,andland/waterarearequirementsinmost,butnotall,situations.Inter-connectingWesternEuropemaydecreaseaggregateannualenergycosts~13%relativetoisolatingeachcountry.Thebestreductionsarefoundbyinterconnectinghydropower-richNorwaywithDenmark(20.6%)andNorthwesternEurope(13.7%).Interconnectingthesmallestcountries,LuxembourgandGibraltar,withlargercountriesbenefitsallcountries.Whetherisolatedorinterconnected,allcountriesexamined,includingFranceandGermany,canmaintainastablegridatlowcostwith100%WWS.©2021ElsevierLtd.Allrightsreserved.BroadercontextWiththeincreasingpenetrationofrenewablesinmanycoun-tries,energyplannerswouldliketoensurethatelectricpowergridsremainsstable.Evenwhendominatedbyfossilfuels,anisolatedgridmayfailduringanextremeweatherevent.Suchanoutagecouldhappeninanyisolatedgrid.Thispaperexploresgridstabilityinthepresenceof100%clean,renewableenergyforallpurposeswhenindividualcountriesareisolatedversusinterconnectedonthegrid.FourteencountriesinWesternEuropeareexaminedinacasestudy.Stablesolutionsarefoundforallindividualcountriesinisolationandallcombinationsofcountriesunderallweatherconditions.ResultsindicatethatinterconnectingthewholeofWesternEuropemaydecreaseaggregateannualenergycostsby~13%relativetoisolatingeachcountry'sgrid.Thebestbenefitsarefoundbyinterconnectinghydropower-richNorwaywithDenmarkandwithallofNorthwesternEurope.Interconnectingthesmallestcountries,LuxembourgandGibraltar,withlargercountriesbenefitsboththesmallandlargecountriesbutthesmallercountriesthemost.Overall,interconnectinggeographicallydiverseresourcesacrosscountryboundariesreducesaggregateannualenergycosts,overbuildingofgeneratorsandstorage,energyshedding,andland/waterarearequirementsinmost,butnotall,situations.Italsohedgesagainstasuddenlossofrenewablesupplyinoneregionbutnotothersduringanextremeweatherevent.IntroductionWiththeincreasingpenetrationofclean,renewableenergyinmanycountries,animportantissueishowtokeepthegridstablecontinuously.Onepotentialmethodistointerconnectgeographically-dispersedrenewableenergyresourcesacrosscountryboundaries.Thisstudyexamineswhethersuchin-terconnectionsare,indeed,helpfulformaintaininggridstabilityatlowcost.Atleast61countriesworldwidehavecommittedtoproviding100%oftheirelectricityfromrenewablesources[1].Commitmentsbycities,states,andbusinessestoprovide100%oftheirelectricityorallenergyfromrenewablesnumberinthehundreds[2].Toensurethat100%renewableenergypolicieswillallowtheCorrespondingauthor:E-mailaddress:jacobson@stanford.edu.ContentslistsavailableatScienceDirectRenewableEnergyjournalhomepage:www.elsevier.com/locate/renenehttps://doi.org/10.1016/j.renene.2021.07.1150960-1481/©2021ElsevierLtd.Allrightsreserved.RenewableEnergy179(2021)1065e1075ZeroairpollutionandzerocarbonfromallenergyatlowcostandwithoutblackoutsinvariableweatherthroughouttheU.S.with100%wind-water-solarandstorageMarkZ.Jacobson,Anna-KatharinavonKrauland,StephenJ.Coughlin,FrancesC.Palmer,MilesM.SmithDepartmentofCivilandEnvironmentalEngineering,StanfordUniversity,Stanford,CA,94305-4020,USAarticleinfoArticlehistory:Received21October2021Receivedinrevisedform8November2021Accepted16November2021Availableonline1December2021Keywords:100%renewablesDecarbonizationGridstabilityTransmissionExtremeweatherStorageabstractThisstudyanalyzes2050e2051gridstabilityinthe50US.statesandDistrictofColumbiaaftertheirall-sector(electricity,transportation,buildings,industry)energyistransitionedto100%clean,renewableWind-Water-Solar(WWS)electricityandheatplusstorageanddemandresponse(thustozeroairpollutionandzerocarbon).Gridstabilityisanalyzedinfiveregions;sixisolatedstates(Texas,California,Florida,NewYork,Alaska,Hawaii);TexasinterconnectedwiththeMidwest,andthecontiguousU.S.Noblackoutsoccur,includingduringsummerinCaliforniaorwinterinTexas.Nobatterieswithover4-hstorageareneeded.Concatenating4-hbatteriesprovideslong-durationstorage.Whereastransitioningmorethandoubleselectricityuse,itreducestotalend-useenergydemandby~57%versusbusiness-as-usual(BAU),contributingtothe63(43e79)%and86(77e90)%lowerannualprivateandsocial(privateþhealthþclimate)energycosts,respectively,thanBAU.CostsperunitenergyinCalifornia,NewYork,andTexasare11%,21%,and27%lower,respectively,andinFloridaare1.5%higher,whenthesestatesareinterconnectedregionallyratherthanislanded.Transitioningmaycreate~4.7millionmorepermanentjobsthanlostandrequiresonly~0.29%and0.55%ofnewU.S.landforfootprintandspacing,respectively,lessthanthe1.3%occupiedbythefossilindustrytoday.©2021ElsevierLtd.Allrightsreserved.1.IntroductionTheUnitedStatesiscurrentlyundergoingaslowbutconsistenttransitiontoclean,renewableenergy.Wedefineclean,renewableenergyasenergythatisbothclean(emitszerohealth-andclimate-affectingairpollutantswhenconsumed)andrenewable(hasasourcethatcontinuouslyreplenishestheenergy).WecallenergysourcesthatmeetthesecriteriaWind-Water-Solar(WWS)sources.WWSelectricity-generatingtechnologiesincludeonshoreandoffshorewindturbines(Wind);tidalturbines,wavedevices,geothermalelectricpowerplants,andhydroelectricpowerplants(Water);androoftop/utilitysolarphotovoltaics(PV)andconcen-tratedsolarpower(CSP)plants(Solar)(Table1).WWSheat-generatingtechnologiesincludesolarthermalandgeothermalheatplants.WWSelectricitymustbetransportedbyalternatingcurrent(AC),high-voltageAC(HVAC),andhigh-voltagedirectcurrent(HVDC)transmissionlinesandACdistributionlines(Table1).WWSenergymustalsobestoredineitherelectricity,heat,cold,orhydrogenstoragemedia(Table1).Finally,atransitiontoWWSrequiresequipmentfortransportation,industry,andbuildingsthatrunsonelectricity.Suchequipmentincludeselectricandhydrogenfuelcellvehicles,heatpumps,inductioncooktops,arcfurnaces,resistancefurnaces,lawnmowers,leafblowers,chainsaws,andmore(Table1).Forthisstudy,weconsideronlyWWSenergysincewebelievethatWWStechnologiesresultingreatersimultaneousreductionsinairpollution,climatedamage,andenergyinsecuritythandonon-WWStechnologies.Wedonotincludefossilenergy,bioenergy,non-hydrogensyntheticfuels,bluehydrogen,carboncapture,directaircapture,ornuclearenergy,sinceeachmayresultinagreaterriskofairpollution,climatedamage,and/orenergyinse-curity.Theonlyhydrogenconsideredisgreenhydrogen(fromWWSelectricity).IfwecansolveallthreeproblemsatreasonablecostwithWWSalone,wewillnotneedmiracleorcontroversialtechnologiestohelp.Correspondingauthor.E-mailaddress:jacobson@stanford.edu(M.Z.Jacobson).ContentslistsavailableatScienceDirectRenewableEnergyjournalhomepage:www.elsevier.com/locate/renenehttps://doi.org/10.1016/j.renene.2021.11.0670960-1481/©2021ElsevierLtd.Allrightsreserved.RenewableEnergy184(2022)430e442Thisjournalis©TheRoyalSocietyofChemistry2022EnergyEnviron.Sci.Citethis:DOI:10.1039/d2ee00722cLow-costsolutionstoglobalwarming,airpollution,andenergyinsecurityfor145countries†MarkZ.Jacobson,Anna-KatharinavonKrauland,StephenJ.Coughlin,EmilyDukas,AlexanderJ.H.Nelson,FrancesC.PalmerandKylieR.RasmussenGlobalwarming,airpollution,andenergyinsecurityarethreeofthegreatestproblemsfacinghumanity.Roadmapsaredevelopedandgridanalysesareperformedherefor145countriestoaddresstheseproblems.Theroadmapscallfora100%transitionofall-purposebusiness-as-usual(BAU)energytowind-water-solar(WWS)energy,efficiency,andstorage,ideallyby2035,butbynolaterthan2050,withatleast80%by2030.Gridstabilityanalysesfindthatthecountries,groupedinto24regions,canexactlymatchdemandwith100%WWSsupplyandstorage,from2050–2052.Worldwide,WWSreducesend-useenergyby56.4%,privateannualenergycostsby62.7%(from$17.8to$6.6trillionperyear),andsocial(privateplushealthplusclimate)annualenergycostsby92.0%(from$83.2to$6.6trillionperyear)atapresent-valuecostofB$61.5trillion.Themeanpaybacktimesofthecapitalcostduetoenergy-andsocial-costsavingsare5.5and0.8years,respectively.WWSisestimatedtocreate28.4millionmorelong-term,full-timejobsthanlostworldwideandmayneedonlyB0.17%andB0.36%ofworldlandfornewfootprintandspacing,respectively.Thus,WWSrequireslessenergy,costsless,andcreatesmorejobsthanBAU.Sensitivitytestindicatethefollowing.Increasingdistrictheatingandcoolingmayreducecostsbyallowingflexibleloadstoreplaceinflexibleloads,therebyreplacingelectricitystorageandovergenerationwithlow-costheatstorage.Abatterycostthatis50%higherthaninthebasecaseincreasesmeanoverallenergycostsbyonly3.2(0.03–14.5)%.Almostallregionsneedfewerhoursofloadshiftingthanassumedinthebasecase,suggestingthatactualloadshiftingmaybeeasierthanassumed.Increasingtheuseofelectricityforhydrogenfuel-cell-electricvehiclesinsteadofforbattery-electricvehiclesincreasesoverallcostinmostregionstested,duetothegreaterefficiencyofbattery-electricvehicles,butdecreasesoverallcostinsomeregionsbyimprovinggridstability.Finally,shiftingbatteryvehiclechargingfromday-nighttomostlydaychargingreducescostintheregionstested;shiftingtomostlynightchargingincreasescost.Ninety-fivepercentofthetechnologiesneededtoimplementtheplansproposedarealreadycommercial.BroadercontextTheworldisundergoingatransitiontoclean,renewableenergytoreduceairpollution,globalwarming,andenergyinsecurity.Tominimizedamage,allenergyshouldideallybetransitionedby2035.Whetherthisoccurswilldependsubstantiallyonsocialandpoliticalfactors.Oneconcernisthatatransitiontointermittentwindandsolarwillcauseblackouts.Toanalyzethisissue,weexaminetheabilityof145countriesgroupedinto24regionstoavoidblackoutsunderrealisticweatherconditionsthataffectbothenergydemandandsupply,whenenergyforallpurposesoriginatesfrom100%clean,renewable(zeroairpollutionandzerocarbon)Wind-Water-Solar(WWS)andstorage.Three-year(2050–52)gridstabilityanalysesforallregionsindicatethattransitioningtoWWScankeepthegridstableatlow-cost,everywhere.Batteriesarethemainelectricitystorageoptioninmostregions.Nobatterieswithmorethanfourhoursofstorageareneeded.Instead,long-durationstorageisobtainedbyconcatenatingbatterieswith4hourstorage.ThenewlandfootprintandspacingareasrequiredforWWSsystemsaresmallrelativetothelandcoveredbythefossilfuelindustry.Thetransitionmaycreatemillionsmorelong-term,full-timejobsthanlostandwilleliminatecarbonandairpollutionfromenergy.1.IntroductionGlobalwarming,airpollution,andenergyinsecurityremainthreeofthegreatestproblemsfacingtheworld.TheEarth’sDept.ofCivilandEnvironmentalEngineering,StanfordUniversity,Stanford,California94305-4020,USA.E-mail:jacobson@stanford.edu†Electronicsupplementaryinformation(ESI)available.SeeDOI:https://doi.org/10.1039/d2ee00722cReceived4thMarch2022,Accepted9thJune2022DOI:10.1039/d2ee00722crsc.li/eesEnergy&EnvironmentalSciencePAPERPublishedon28June2022.DownloadedbyStanfordLibrarieson6/28/20224:44:09PM.ViewArticleOnlineViewJournal

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

小星学习库
已认证
内容提供者

满天繁星 学无止境

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱