VCSMethodologyVM0036MethodologyforRewettingDrainedTemperatePeatlandsVersion1.017July2017SectoralScope14VM0036,Version1.0SectoralScope14Page2Themethodologywasdevelopedby:SilvestrumClimateAssociatesUniversityofGreifswaldPartnerintheGreifswaldMireCentreAcknowledgements:Thismethodologyhasbeendevelopedfor(butisnotlimitedto)useintheBelarusPeatlandRewettingProject(“BPRProject”).ThedevelopmentofthismethodologywasfundedbytheFederalMinistryfortheEnvironment,NatureConservation,BuildingandNuclearSafety(BMUB),theUniversityofGreifswald,PartnerintheGreifswaldMireCentre,bothGermany,andSilvestrumClimateAssociates,TheNetherlands.ThemethodologydevelopmentwassupportedbyBirdLifeBelarus(APB),CentreforInternationalMigration(CIM),Germany,andtheRoyalSocietyfortheProtectionofBirds(RSPB),UnitedKingdom.Authors:Dr.IginoEmmer,SilvestrumClimateAssociatesJohnCouwenberg,GreifswaldUniversity,PartnerintheGreifswaldMireCentreVM0036,Version1.0SectoralScope14Page3TableofContents1SOURCES.............................................................................................................................................42SUMMARYDESCRIPTIONOFTHEMETHODOLOGY......................................................................43DEFINITIONS........................................................................................................................................64APPLICABILITYCONDITIONS............................................................................................................65PROJECTBOUNDARY........................................................................................................................85.1TemporalBoundaries........................................................................................................................85.2GeographicBoundaries....................................................................................................................95.3CarbonPools...................................................................................................................................155.4GreenhouseGases.........................................................................................................................166BASELINESCENARIO.......................................................................................................................176.1DeterminationoftheMostPlausibleBaselineScenario.................................................................176.2Re-assessmentoftheBaselineScenario.......................................................................................187ADDITIONALITY.................................................................................................................................188QUANTIFICATIONOFGHGEMISSIONREDUCTIONSANDREMOVALS.....................................198.1BaselineEmissions.........................................................................................................................198.2ProjectEmissions............................................................................................................................288.3FireReductionPremium.................................................................................................................388.4Leakage...........................................................................................................................................418.5SummaryofGHGEmissionReductionand/orRemovals..............................................................419MONITORING.....................................................................................................................................479.1DataandParametersAvailableatValidation.................................................................................479.2DataandParametersMonitored.....................................................................................................629.3DescriptionoftheMonitoringPlan..................................................................................................6810REFERENCES................................................................................................................................79VM0036,Version1.0SectoralScope14Page4SOURCESThemethodologymakesuseofthefollowingapprovedmethodologiesandmethodologicaltools1:•CDMmethodologyAR-ACM0001Afforestationorreforestationofdegradedland•CDMmethodologicaltoolCalculationofthenumberofsampleplotsformeasurementswithinA/RCDMprojectactivities•CDMmethodologicaltoolCombinedtooltoidentifythebaselinescenarioanddemonstrateadditionalityinA/RCDMprojectactivities•CDMmethodologicaltoolToolfortestingsignificanceofGHGemissionsinA/RCDMprojectactivitiesThismethodologyusesthelatestversionsofthefollowingmodule2:•VCSmoduleVMD0019MethodstoprojectfutureconditionsSUMMARYDESCRIPTIONOFTHEMETHODOLOGYAdditionalityandCreditingMethodAdditionalityProjectMethodCreditingBaselineProjectMethodThismethodologyoutlinesprocedurestoestimatethereductionofnetgreenhousegasemissionsresultingfromprojectactivitiesimplementedtorewetdrainedpeatlandsintemperateclimaticregions.ItallowsfortheestimationofGHGemissionsfromdrainedandrewettedpeatlandsandalsoaccountsforchangesincarbonstocksinselectednon-peatcarbonpools.Thescopeofthismethodologyisessentiallylimitedtoprojectactivitiesthataimattherewettingofpeatlandsthathavebeendrainedforforestry,peatextractionoragriculture,butwheretheseactivitiesarenotornolongerprofitable.Post-rewettinglanduseislimitedtoforestry,agriculture,natureconservation/recreation,oractivitieslimitedtothoseaimingatGHGemissionreductions,oracombinationoftheseactivities.ThismethodologyusesgroundvegetationcompositionandwatertabledepthasproxiesforpeatlandGHGemissions,knownasthe‘GEST’approach(GEST:GreenhousegasEmissionSiteType).Vegetationiswellqualifiedforindicatinggreenhousegasfluxes(Couwenbergetal.2011)duetothefollowing:•Itisagoodindicatorofwatertabledepth,whichinturnstronglycorrelateswithGHGfluxes;1CDMtoolsareavailableathttps://cdm.unfccc.int/methodologies/ARmethodologies/tools2VCSmodulesareavailableattheVCSwebsite.VM0036,Version1.0SectoralScope14Page5•ItiscontrolledbyvariousothersitefactorsthatdetermineGHGemissionsfrompeatland,suchasnutrientavailability,soilreaction(acidity)andlanduse(history);•ItisitselfdirectlyandindirectlyresponsibleforthepredominantpartoftheGHGemissionsbyregulatingCO2exchange,supplyingorganicmatter(includingrootexudates)forCO2andCH4formation,reducingpeatmoisture,andbyprovidingpossiblebypassesforincreasedmethaneemissionviaaerenchyma(‘shuntspecies’);•Itreflectslong-timewatertableconditionsandthusprovidesindicationofaverageGHGfluxesonanannualtimescale;•Itallowsfine-scaledmapping(e.g.,atscales1:2,500–1:10,000).ProceduresareprovidedfortheestimationofthePeatDepletionTime(PDT)andtheassessmentofthemaximumeligiblequantityofGHGemissionreductionsbyrewetting,andisbasedeitheronthedifferencebetweentheremainingpeatcarbonstockintheprojectandbaselinescenariosafter100years(totalstockapproach),orthedifferenceincumulativecarbonlossinbothscenariossinceprojectstart(stocklossapproach).TransientpeaksofCH4emissionsafterrewettingmayoccur.Fortheirquantification,conservativeestimatesfrompeer-reviewedliteraturesourcesmustbeused.Thismethodologyaddressesanthropogenicpeatfiresoccurringindrainedpeatlandandestablishesaconservativedefaultvalue(FireReductionPremium),basedonfireoccurrenceandextensionintheprojectareainthebaselinescenario,soastoavoidthedirectassessmentofGHGemissionsfromfireinthebaselineandtheprojectscenarios.Undertheapplicabilityconditionsofthismethodology,marketleakage,activityshiftingandecologicalleakagedonotoccurandthemethodologyprovidescriteriaforjustificationoftheabsenceofsuchleakage.Themethodologyprovidesforthedeterminationoftheproject’snetGHGbenefitsandtheresultingVerifiedCarbonUnits(VCUs)thataregenerated.Themethodologydetailsthestepsnecessarytocometothefinalcalculationoftheproject’snetGHGbenefits,representedbyNERRDP.NERRDP=GHGBSL–GHGWPS+FireReductionPremium–GHGLKWhere:NERRDPTotalnetCO2equivalentemissionreductionsfromtherewettingofdrainedpeatland(RDP)projectactivityGHGBSLNetCO2equivalentemissionsinthebaselinescenarioGHGWPSNetCO2equivalentemissionsintheprojectscenarioFireReductionPremiumNetCO2equivalentemissionreductionsfrompeatcombustionduetoVM0036,Version1.0SectoralScope14Page6rewettingandfiremanagementGHGLKNetCO2equivalentemissionsduetoleakageDEFINITIONSGreenhousegasEmissionSiteType(GEST)Acombinationofplantspeciesindicatinglong-termwatertabledepthsandothercharacteristicsrelevanttoGHGfluxes(e.g.,peattype,pH,nutrientstatus),associatedwithannualmeanGHGfluxesofcarbondioxideandmethane(expressedasCO2e)basedonliteratureorcountry-specificmeasurements.Inabsenceofvegetation,watertabledepthisusedasthemainproxy(Couwenbergetal.2011).NetEcosystemExchange(NEE)Aninstantaneousmeasurementoftheinwardandoutwardflowsofcarbonwithinanecosystem.NEEismeasuredbyeddy-fluxtowerstodeterminetheamountofCO2enteringanecosystemandtheamountofcarbonbeinglostthroughrespirationsimultaneously.NetEcosystemProduction(NEP)Ameasurementofthenetgain(orloss)ofcarboninasystemoveraperiodoftime.NEPisestimatedbasedonlong-termaveragesofNEEmeasurements.PeatlandThedefinitionisprovidedintheVCSProgramDefinitions.Forthepurposeofthismethodology,organicsoilsthatdonotmeetthedepthrequirementintheuseddefinitionbutthatareconnectedtothepeatlandareamaybedeemedpartofthepeatlandareaincludedintheGHGaccounting.Isolatedareasoforganicsoilthatdonotmeetthedepthrequirementsarenotconsideredpeatland.Watertabledepth3Depthofsub-soilorabove-soilsurfaceofwater,relativetothesoilsurface.APPLICABILITYCONDITIONSThismethodologyisapplicableunderthefollowingconditions:1)Theprojectactivityistherewettingofdrainedpeatland.2)Theprojectarea:a)Meetsthedefinitionofapeatland;b)Islocatedinatemperate4climaticregion.3)Theprojectareawasdrainedforthefollowinglandusescenariosoracombinationofthe3Inothermethodologies,thistermmaybereferredtoas‘drainagedepth’,whereitisimpliedtohavethesamemeaning.4TheGESTapproachhas,sofar,onlybeendevelopedfortemperateclimates.VM0036,Version1.0SectoralScope14Page7followinglandusescenarios:a)Forestrythatisnotornolongerprofitable(asdeterminedonthebasisofannualreports,annualaccounts,marketstudies,governmentstudies,orlanduseplanningreportsanddocuments);b)Peatextractionthathasbeenabandonedatleast2yearspriortotheprojectstartdate;and/or,c)Agriculturethathasbeenabandonedatleast2yearspriortotheprojectstartdateorwillbecontinuedintheproject,orwheredrainageofadditionalpeatlandfornewagriculturalsiteswillnotoccurorisprohibitedbylaw.4)Post-rewettinglanduseislimitedtothefollowingoracombinationofthefollowing:a)Forestry(includingbiomassproductionbutexcludingIFMandREDDactivities);b)Agriculture(excludingALMactivities);and/or,c)Natureconservation/recreation.5)Thefollowingactivitiesmayoccurinthebaselinescenario:a)Biomassburning.6)Thefollowingactivitiesmustnotoccurinthebaselinescenario:a)Harvestingforcommercialpurposes;or,b)Collectionoffirewoodforcommercialpurposes.7)Thefollowingactivitiesmaynotoccurintheprojectscenario:a)Peatextraction;b)Burningofpeat;c)Burningofbiomass;and,d)N-fertilizerusage.8)Projectdesignandsiteselectionmustincludethefollowing:a)ProjectGHGbenefitsarenotnegativelyaffectedbydrainageactivitiesthatoccuroutsidetheprojectarea5.b)Leakagecausedbyactivityshifting,marketeffectsandhydrologicalconnectivityisavoided6.9)Livetreevegetationmaybepresentandsubjecttocarbonstockchanges(e.g.,duetoharvesting)inboththebaselineandprojectscenarios.10)WhereGHGemissionreductionsfromreducingpeatfiresareclaimedbytheproject,thefollowingmustbemet:5ThisisfurtherspecifiedinSection5.26ThisisfurtherspecifiedinSection8.4.VM0036,Version1.0SectoralScope14Page8a)Athreatoffrequenton-sitefiresmustbebeendemonstrated7.b)WherethedefaultprocedureprovidedbythismethodologyforassessingGHGemissionsduetopeatfiresinthebaselinescenariocannotbeused,suchbaselineemissionsmustconservativelynotaccountedfor;and,c)Peatlandrewettingmustbecombinedwithfiremanagement.11)Itmustbedemonstratedbyreferringtopeer-reviewedliteratureandbysufficientrewettingthatN2Oemissionswillnotincreaseintheprojectscenariocomparedtothebaselinescenario.12)Inthebaselinescenario,thepeatlandmustbedrained.PROJECTBOUNDARY5.1TemporalBoundariesProjectCreditingPeriodThetemporalboundaryforprojectsapplyingthismethodologyisequaltotheprojectcreditingperiod.Theprojectmusthavearobustoperatingplancoveringthisperiod.Whereemissionsincreaseduringatransientperiodafterrewetting,thisisregardedasanegativeemissionreductionandfallswithintheprojectcreditingperiod.Projectproponentsmustdeterminetheprojectcreditingperiod,theprojectcreditingperiodstartdateandtheprojectstartdateandprovideverifiableevidencetosupporttheseclaims.PeatDepletionTime(PDT)Peatdepletionmaybeacceleratedbypeatfiresandisattainedifthepeathasdisappearedorifastablewatertableinhibitsfurtheroxidationofthepeat.ThePDTforastratuminthebaselinescenarioequalstheperiodduringwhichtheprojectcanclaimemissionreductionsfromrewettingandis,perstratumi,attheprojectstartdateandateachreassessmentofthebaselinescenario(asoutlinedinSection6.2)estimatedas:tPDT-BSL,i=Depthpeat-BSL,i/Ratepeatloss-BSL,i(1)Where:tPDT-BSL,iPDTinthebaselinescenarioinstratumiinyearselapsedsincetheprojectstart;yrDepthpeat-BSL,iAveragepeatdepthabovethedrainagelimitinthebaselinescenarioinstratumiatprojectstart;m7RWEprojectsmaygenerateGHGcreditsfromthereductionofGHGemissionsassociatedwithavoidingpeatfiresondrainedorpartiallydrainedpeatlands.VM0036,Version1.0SectoralScope14Page9Ratepeatloss-BSL,iRateofpeatlossduetosubsidenceandfireinthebaselinescenarioinstratumi;aconservative(high)valuemustbeapplied;myr-1i1,2,3,…MBSLstratainthebaselinescenarioPeatdepths,depthsofburnscarsandsubsidenceratesmustbederivedfromdatasourcesasdescribedinSection9.1.5.2GeographicBoundariesProjectproponentsmustdefinetheprojectboundaryatthebeginningofaproposedprojectactivityandmustprovidethegeographicalcoordinatesoflandstobeincluded,soastoallowclearidentificationforthepurposeofverification.Remotelysenseddata,officiallycertifiedtopographicmaps,landadministrationandtenurerecords,and/orotherofficialdocumentationthatfacilitatesthecleardelineationoftheprojectboundarymaybeused.TheRDPprojectactivitymaycontainmorethanonediscreteareaofland.Eachdiscreteareaoflandmusthaveauniquegeographicalidentification.Whendescribingphysicalprojectboundaries,thefollowinginformationmustbeprovidedperdiscretearea:•Nameoftheprojectarea(includingcompartmentnumbers,localname(ifany))•Uniqueidentifierforeachdiscreteparcelofland•Map(s)ofthearea(preferablyindigitalformat)•Thedatamustbegeo-referenced,andprovidedindigitalformatinaccordancewiththeVCSrules.•Totalarea•DetailsoflandrightsholderanduserrightsStratificationIftheprojectareaatthestartoftheprojectisnothomogeneous,stratificationmaybecarriedouttoimprovetheaccuracyandtheprecisionofpeatdepth,carbonstockandGHGfluxestimates.DifferentstratificationsmayberequiredforthebaselineandprojectscenariosinordertoachieveoptimalaccuracyoftheestimatesofnetGHGemissionsorremovals.Strataaredefinedonthebasisofpeatdepth(includingeligibilityasassessedbelow),watertabledepth(e.g.,at0cmdefiningalevelofzeroemission,adeepwatertabledepthdefiningthehighendofemissions,andarbitrarylevelsinbetween),treecoverand/orvegetationcomposition,orexpectedchangesinthese.Incaseofthepresenceofatreecover,theGESTapproach(Section8.1.3)mustbesupplementedbyprocedurestoestimatetreecarbonstockchangeandthereforeseparatestrataVM0036,Version1.0SectoralScope14Page10mustbeestablishedforforestedland.Furthermore,differentGESTsgiverisetodifferentstrata.Stratificationonthebasisofpeatdepthmustbebasedonapeatdepthmapfortheentireprojectarea.Existingpeatdepthmapscanbeusedincombinationwithinterpolationtechniquestoderiveconservativepeatdepthmapsoftherequiredaccuracy(seebelow).Stratificationoftheprojectareabypeatdepthisrequired:a)Wheninmorethan5%oftheprojectareapeatisabsentorthedepthofthepeatisbelowathresholdvalue(e.g.,10cm);thepeatdepthmaponlyneedstodistinguishwherepeatdepthexceedsthisthreshold.Itisconservativetoomitshallowpeatstratainaccounting.b)When,usingaconservative(high)valueforsubsidencerates,intheprojectscenarioinmorethan5%oftheprojectareathepeatisdepletedwithin100years(≤t=100);thepeatdepthmaponlyneedstodistinguishwherepeatwillbedepletedatt=100.c)When,usingaconservative(high)valueforsubsidencerates,inthebaselinescenarioinmorethan5%oftheprojectareatheprojectcreditingperiodexceedsthePDT;thepeatdepthmapmustdistinguishwithadepthresolutionof10cmstratawherepeatwillbedepletedwithintheprojectcreditingperiod.Areaswherepeatwillnotbedepletedneednotbefurtherstratified.Nostratificationonthebasisofpeatdepthisrequiredifthepeatdepthin95%ormoreoftheprojectareaexceedstherequiredminimumpeatdepthforanyoftheaboveconditions.Areaswithapeatlayeratprojectstartshallowerthanrequiredbytheadopteddefinitionofpeatlandmaybeincludedifsuchareasareconnectedwithareasthatmeetthedefinition.Isolatedpocketsthatdonotmeetthedefinitionmustnotbeincluded.Whenusingexistingpeatdepthmapsordata,thesemustbecorrected,inaconservativeway,forpeatexcavationandsubsidence.When,aftercorrection,strataexceedtherequiredminimumpeatdepthbylessthan50cm,thesestratamustbeverifiedusingfieldobservations(e.g.,usingapeataugerfollowingtheprocedurestocreateapeatdepthmapoutlinedbelow).Tocreateapeatdepthmap,depthmeasurementsmustbeconductedalongtransectsthatcoverthepeatlandinasystematicway.Distancebetweentransectsmustbe200matmaximum.Startingfromthepeatlandmargin,theinitialdistancebetweendepthobservationsalongtransectsmustnotbegreaterthan100mwithadepthaccuracyofatleast10cm.Whentwosubsequentdepthobservationsalongatransectfulfilltherequireddepthcriteriabyamarginofatleast50cm,thedistancebetweentransectsandobservationpointscanberaisedto500m.Transectsmustcrosstheentirepeatlandandmustbeinitiatedfromopposedmargins.Iftransectscrossmineralsoilareaspresentinsideacontiguouspeatarea,transectsdepartingfromthesemineralsoilareasmustalsohaveaninitialdistancebetweendepthobservationsofnotgreaterthan100m.Peatdepthmapsmustbebasedonpeatdepthmeasurementsincombinationwithinterpolationtechniquestoderiveconservativepeatdepthmapsoftherequiredaccuracy.Incaseshallowpeatareasareconservativelyneglected,itissufficienttoconductdepthVM0036,Version1.0SectoralScope14Page11measurementsthatcoverthepeatlandinasystematicway,withatleast4measurementpointsperkm2oratadistanceof500m.Stratamustbespatiallydiscreteandstratumareasmustbeknown.Areasofindividualstratamustsumtothetotalprojectarea.Stratamustbeidentifiedwithspatialdata(e.g.,maps,GIScoverage,classifiedimagery,orsamplinggrids)fromwhichtheareacanbedeterminedaccurately.Landuse/landcovermapsinparticularmustbeground-truthedandlessthan10yearsold.Stratamustbediscernibletakingintoaccountgoodpracticeintermsoftheaccuracyrequirementsforthedefinitionofstratalimits/boundaries.Thismustbeindicatedintheprojectdocumentationandthechoicemustbejustified.Theprojectareamaybestratifiedexante,andthisstratificationmayberevisedexpostformonitoringpurposes.EstablishedstratamaybemergedifreasonsfortheirestablishmenthavedisappearedorhaveprovenirrelevanttokeyvariablesforestimatingnetGHGemissionsorremovals.Baselinestratificationmustremainfixeduntilareassessmentofthebaselinescenariooccurs.Stratificationintheprojectscenariowillbeupdatedateachmonitoringeventpriortoverification.Theareaofchannelsandditchesmustbequantifiedandtreatedasseparatestrata.CH4emissionsfromthesechannelsandditcheswillnotincreaseintheprojectscenariocomparedtothebaselinescenario(Couwenbergetal.2011)andtherefore,CH4emissionsfromthesechannelsandditchescanbeexcludedfromGHGaccounting.PeatlandareaseligibleforcarboncreditingThemaximumeligiblequantityofGHGemissionreductionsbyrewettingislimitedtothedifferencebetweentheremainingpeatcarbonstockintheprojectandbaselinescenariosafter100years(totalstockapproach),orthedifferenceincumulativecarbonlossinbothscenariosoveraperiodof100yearssinceprojectstart(stocklossapproach).Ifasignificantdifference(≥5%)atthe100-yearsmarkcannotbedemonstrated,theprojectareaisnoteligibleforcarboncrediting.Thisassessmentmustbeexecutedexanteusingconservativeparameters.Theprocedureassumesavariablerateofpeatlossinthebaselineandprojectscenarios,or,alternatively,aconservative–asexplainedinfootnote7–valuethatremainsconstantovertime,basedonexpertjudgment8,datasetsand/orliterature(seeSection9.1).8RequirementsforexpertjudgmentareprovidedinSection9.3.2.VM0036,Version1.0SectoralScope14Page121.TotalstockapproachThedifferencebetweenpeatcarbonstockintheprojectscenarioandbaselinescenarioatt=100isestimatedas:(2)CWPS,i,t100=Depthpeat-WPS,i,t100×VCpeat×10(3)CBSL,i,t100=Depthpeat-BSL,i,t100×VCpeat×10(4)(5)(6)Ifaconservativeconstantsubsidencerateisapplied,apossiblenegativeoutcomeissubstitutedbyzero.Where:CWPS-BSL,t100Differencebetweenpeatcarbonstockintheprojectscenarioandbaselinescenarioatt=100;tCCWPS,i,t100Peatcarbonstockintheprojectscenarioinpeatdepthstratumiatt=100;tCha-1CBSL,i,t100Peatcarbonstockinthebaselinescenarioinpeatdepthstratumiatt=100;tCha-1Depthpeat-BSL,i,t100Averagepeatdepthabovethedrainagelimitinthebaselinescenarioinstratumiatt=100;mDepthpeat-WPS,i,t100Averagepeatdepthabovethedrainagelimitintheprojectscenarioinstratumiatt=100;mDepthpeat-BSL,i,t0Averagepeatdepthabovethedrainagelimitinthebaselinescenarioinstratumiatprojectstart;mDepthpeat-WPS,i,t0Averagepeatdepthabovethedrainagelimitintheprojectscenarioinstratumiatprojectstart;mRatepeatloss-BSL,i,tRateofpeatlossduetosubsidenceandfireinthebaselinescenarioinstratumiattimet;alternatively,aconservative(low9)valuemaybeappliedthatremainsconstantovertime;myr-19Notethattheuseofarelativelylowvalueforaconstantrateofpeatlossmaynotbeconfusedwitharelativelyhighvaluewhendeterminingtheneedforstratificationofpeatdepth(p7).VM0036,Version1.0SectoralScope14Page13Ratepeatloss,WPS,i,tRateofpeatlossduetosubsidenceintheprojectscenarioinstratumiattimet;alternatively,aconservative(high)valuemaybeappliedthatremainsconstantovertime;myr-1VCpeatVolumetriccarboncontentofpeat;kgCm-3AWPS,i,t100Areaofprojectstratumiatt=100;haABSL,i,t100Areaofbaselinestratumiatt=100;hai1,2,3,…MBSLorMWPSpeatdepthstratainthebaselinescenarioorprojectscenariot100100yearssinceprojectstartThevolumetriccarboncontentinpeatcanbetakenfrommeasurementswithintheprojectareaorfromliteratureinvolvingtheprojectorsimilarareas.CWPS,i,t100needsnoadjustmentssinceundertheapplicabilityconditionsleakageemissionsareabsent.Thedifferencebetweenpeatcarbonstockintheprojectscenarioandbaselinescenarioatt=100(CWPS-BSL,t100)issignificantif:(7)2.StocklossapproachAsDepthpeat-BSL,i,t0=Depthpeat-WPS,i,t0theassessmentcanalsobebasedoncumulativesubsidenceuptot=100asfollows:(8)(9)(10)Where:CWPS-BSL,t100Differencebetweenpeatcarbonstockintheprojectscenarioandbaselinescenarioatt=100;tCCpeatloss-BSL,i,t100Cumulativepeatcarbonlossduetosubsidenceandfireinthebaselinescenarioinsubsidencestratumiatt=100;tCha-1VM0036,Version1.0SectoralScope14Page14Cpeatloss-WPS,i,t100Cumulativepeatcarbonlossduetosubsidenceintheprojectscenarioinsubsidencestratumiatt=100;tCha-1Ratepeatloss-BSL,i,tRateofpeatlossduetosubsidenceandfireinthebaselinescenarioinstratumiinyeart;alternatively,aconservative(low)valuemaybeappliedthatremainsconstantovertime;myr-1Ratepeatloss-WPS,i,tRateofpeatlossduetosubsidenceintheprojectscenarioinstratumiinyeart;alternatively,aconservative(high)valuemaybeappliedthatremainsconstantovertime;myr-1VCpeatVolumetriccarboncontentofpeat;kgCm-3AWPS,i,t100Areaofprojectstratumiatt=100;haABSL,i,t100Areaofbaselinestratumiatt=100;hai1,2,3,…MBSLorMWPSsubsidencestratainthebaselinescenarioorprojectscenariot100100yearsafterprojectstartUsingshort-termorhistoricsubsidenceratesfortheentireperiodof100yearsisconservativesincesubsidenceratesarelikelytodeclineovertime(Stephensetal.,1984).Thedifferencebetweenpeatcarbonstockintheprojectscenarioandbaselinescenarioatt=100(CWPS-BSL,t100)issignificantif:(11)BufferzonesUndertheapplicabilityconditionsofthismethodology,theprojectboundarymustbedesignedsuchthattheprojectGHGbenefitsarenotaffectedbydrainageactivitiesthatoccuroutsidetheprojectarea(e.g.,enhanceddrainage,groundwaterextraction,andchangingwatersupply).Thiscanbeachievedeitherbyanappropriatedesign(e.g.,byestablishinganimpermeabledam)orbyabufferzonewithintheprojectboundaryforwhichconservativelynoGHGbenefitsareaccounted.Thisbufferzone,ifemployed,mustbemappedandisnoteligibleforcarboncrediting.Thesizeandshapeofthebufferzonemustbedeterminedonthebasisofquantitativehydrologicalmodeling,orexpertjudgment.ProceduresforbufferzonesagainstecologicalleakageareprovidedinSection8.4.VM0036,Version1.0SectoralScope14Page155.3CarbonPoolsThecarbonpoolsthatareincludedandexcludedfromtheprojectboundaryareshowninTable5.1.Inaddition,carbonpoolsmaybedeemeddeminimisanddonothavetobeaccountedforiftogethertheomitteddecreaseincarbonstocksorincreaseinGHGemissions(Table5.2)amountstolessthan5%ofthetotalGHGbenefitgeneratedbytheproject.PeerreviewedliteratureortheCDMA/RmethodologicaltoolToolfortestingsignificanceofGHGemissionsinA/RCDMprojectactivitiesmaybeusedtodeterminewhetherdecreasesincarbonpoolsaredeminimis.Table5.1:CarbonPoolsIncludedInorExcludedFromtheProjectBoundaryCarbonpoolsIncluded?Justification/ExplanationofchoiceAbove-groundtreebiomassYesMajorcarbonpoolmaysignificantlyincreaseinthebaseline,ordecreaseintheproject,orboth,incaseofestablishmentorpresenceoftreevegetation.Treevegetationinthebaselinescenariomustbeincluded.Treevegetationintheprojectscenariomaybeconservativelysettozero.Above-groundnon-treebiomassOptionalThispoolisonlyincludedifGESTsarebasedonvegetationcover.Insuchcases,changesinlowervegetationareincludedintheestimatesofNEE(orNEP)representedbyGESTs.Below-groundbiomassYesMajorcarbonpoolmaysignificantlyincreaseinthebaseline,ordecreaseintheproject,orboth,incaseofpresenceoftreevegetationTreevegetationinthebaselinescenario:mustbeincluded.Treevegetationintheprojectscenario:maybeconservativelysettozero.Lower(herb)vegetation:includedintheNEE(orNEP).TreelitterOptionalThelitterlayermustonlybeincludedifitformspartofaGEST.WoodproductsOptionalThispoolisoptional.DeadwoodOptionalThispoolisoptional.SoilorganiccarbonYesMajorcarbonpoolsubjecttotheprojectactivity.Thesoilorganiccarboncomponentisrepresentedbythepeatcomponent.VM0036,Version1.0SectoralScope14Page165.4GreenhouseGasesTheemissionsourcesincludedinorexcludedfromtheprojectboundaryareshowninTable5.2.Inaddition,GHGsourcesmaybedeemeddeminimisanddonothavetobeaccountedforiftogethertheomitteddecreaseincarbonstocks(Table5.1)orincreaseinGHGemissionsamountstolessthan5%ofthetotalGHGbenefitgeneratedbytheproject.PeerreviewedliteratureortheCDMA/RmethodologicaltoolToolfortestingsignificanceofGHGemissionsinA/RCDMprojectactivitiesmaybeusedtodeterminewhetherincreasesinGHGemissionsaredeminimis.Table5.2:GHGSourcesIncludedInorExcludedFromtheProjectBoundarySourceGasIncluded?Justification/ExplanationBaselineChangesinstocksincarbonpoolsinbiomassCO2YesPotentialmajorsourceofremovalsconsideredundercarbonpoolsOxidationofdrainedpeatCO2OptionalMaybeconservativelyexcludedinthebaselinescenarioCH4OptionalPotentiallysignificantemission;maybeconservativelyexcludedinthebaselinescenarioN2ONoExcludedasperapplicabilityconditionBurningofbiomassCO2NoNotaccountinginbaselinescenarioisconservativeCH4NoNotaccountinginbaselinescenarioisconservativeN2ONoNotaccountinginbaselinescenarioisconservativePeatburningCO2YesFiremayoccurinthebaselinescenarioandisaccountedforwithadefaultapproachCH4NoConservativelyexcludedinthebaselinescenarioN2ONoConservativelyexcludedinthebaselinescenarioProjectTheproductionofmethanebybacteriaCH4YesPotentialmajorsourceofemissionsintheprojectinlowsalinityandfreshwaterareasVM0036,Version1.0SectoralScope14Page17SourceGasIncluded?Justification/ExplanationAccumulationofpeatinprojectscenarioCO2NoConservativelyexcludedintheprojectscenarioBurningofbiomassCO2NoCO2isaddressedincarbonstockchangeproceduresCH4NoAccountinginprojectscenarioisexcludedasperapplicabilityconditionN2ONoAccountinginprojectscenarioisexcludedasperapplicabilityconditionFossilfuelcombustionfromtransportandmachineryuseinprojectactivitiesCO2NoDeemeddeminimisCH4NoDeemeddeminimisN2ONoDeemeddeminimisPeatburningCO2YesFiremayoccurintheprojectscenarioandisaccountedforwithaFireReductionPremiumapproachCH4NoNotincludedintheFireReductionPremiumapproachN2ONoNotincludedintheFireReductionPremiumapproachBASELINESCENARIO6.1DeterminationoftheMostPlausibleBaselineScenarioAttheprojectstartdate,thebaselinescenariomustconsistofdrainedpeatlandwithalandusethatcanbeforestry,peatextractionoragriculture,abandonmentaftersuchactivities,oracombinationofthese,butwheretheseactivitiesarenotornolongerprofitable.ContinuationsoftheselandusesandpossiblesubsequentchangesinvariousalternativebaselinescenariosaredeterminedusingthelatestversionoftheCDMtoolCombinedtooltoidentifythebaselinescenarioanddemonstrateadditionalityinA/RCDMprojectactivities.VM0036,Version1.0SectoralScope14Page18ThetoolhasbeendesignedforA/RCDMprojectactivities,butmustbeusedforthepurposeofthismethodology,notingthefollowing:WherethetoolreferstoItmustbeunderstoodasreferringtoA/R,afforestation,reforestation,orforestationWRC,orrewettingNetgreenhousegasremovalsbysinksNetgreenhousegasemissionreductionsCDMVCSDOEVVBtCERs,lCERsVCUsStep0andSub-step2b–15(regardingforestedareassince31December1989)mustbeomitted.FootnoteNo1-3mustbeomitted10.IninstanceswherethereisaconflictbetweentheCDMtoolrequirementsandtheVCSrules,theVCSrulesmustbefollowed.6.2Re-assessmentoftheBaselineScenarioTheprojectproponentmustreassessthebaselinescenarioinaccordancewiththeVCSrules.Forthisassessment,thehistoricreferenceperiodisextendedtoincludetheoriginalreferenceperiodandallsubsequentmonitoringperiodsuptothebeginningofthecurrentmonitoringperiod.Thefirereferenceperiodmustnotbeextended,asthisisafixed10-yearperiodending5yearsbeforetheprojectstartdate.Theprojectproponentmust,forthedurationoftheproject,re-determinethePDTevery10years.ThisreassessmentmustusetheprocedureprovidedinSection5.1.Datasourcesforpeatdepths,depthsofburnscarsandsubsidenceratesmustbeupdatedifnewinformationrelevanttotheprojectareahasbecomeavailable.ADDITIONALITYThismethodologyusesaprojectmethodforthedemonstrationofadditionality.AdditionalitymustbedeterminedusingthelatestversionoftheCDMtoolCombinedtooltoidentifythebaselinescenarioanddemonstrateadditionalityinA/RCDMprojectactivities,withadditionalguidanceasprovidedinSection6.1.10Sub-stepandfootnotesasinversion01ofthetool,theprevailingversionofthetoolasofthewritingofthismethodology.VM0036,Version1.0SectoralScope14Page19QUANTIFICATIONOFGHGEMISSIONREDUCTIONSANDREMOVALS8.1BaselineEmissions8.1.1GeneralapproachThenetCO2equivalentemissionsinthebaselinescenariomaybedeterminedbycarbonstockchangesinnon-peatcarbonpools,GHGemissionsasaresultofpeatoxidationduetodrainage,oracombinationofthese.Inaddition,emissionsasaresultofpeatcombustionduetopeatlandfirescanbedetermined.GHGemissionsofnon-forestedareasaredeterminedusingGESTs(Section8.1.3).Forforestedareas,emissionsaredeterminedusingGESTs(coveringpeat,herbvegetationandlitter)incombinationwithcarbonstockchangesoftheabove-andbelow-groundtreebiomass(Section8.1.2).ForareasforwhichthevegetationcompositiondoesnotprovideaclearindicationofGHGemissions(barepeat,transientphasesofvegetationdevelopmentafterrewetting)watertabledepthmeasurementsmustbeusedasadditionalinputtoassessGHGfluxes.However,projectproponentsmayalsoopttochoosewatertabledepthasaproxyfortheentireprojectarea.Peatcombustionduetoanthropogenicpeatlandfiresisaddressedusingaconservativedefaultvalue(FireReductionPremium)thatisexpressedasaproportionoftheCO2emissionsavoidedthroughrewetting(Section8.3).Itmustbedemonstrated(e.g.,byreferringtopeer-reviewedliterature)thatundertheprojectscenario,N2Oemissionsareinsignificantordecreaseintheprojectscenariocomparedtothebaseline,andthereforeN2Oemissionsneednotbeaccountedfor.Projectcircumstancesaredefinedbypre-projectlanduse(e.g.,forestry,peatmining,agriculture,abandonmentaftersuchactivities)anditsintensity(especiallyrelatedtoN-fertilization),climaticzone,watertabledepths,andpeattype.ThenetCO2equivalentemissionsinthebaselineareestimatedas:(12)Where:GHGBSLNetCO2equivalentemissionsinthebaselinescenariouptoyeart;tCO2eΔCBSL-NP,i,tNetcarbonstockchangesinnon-peatcarbonpoolsinthebaselinescenarioinstratumiinyeart;tCyr-1GHGdrained,i,tGreenhousegasemissionsfromsoil,lowergroundvegetationandlitterinthebaselinescenarioinstratumiinyeart;tCO2eyr-1VM0036,Version1.0SectoralScope14Page20i1,2,3,…MBSLstratainthebaselinescenariot1,2,3,…tyearselapsedsincetheprojectstartTheprojectproponentmust,forthedurationoftheproject,re-quantifythebaselineevery10years.BasedonthereassessmentasdefinedinSection6,thenewbaselinescenariomustbeincorporatedintorevisedestimatesofbaselineemissions.ThisbaselinereassessmentmustincludetheevaluationofthevalidityofproxiesforGHGemissionsfrompeatlands(i.e.,GESTsonthebasisofvegetationcompositionand/orwatertabledepth).8.1.2Netcarbonstockchangeinnon-peatcarbonpools(ΔCBSL-NP,i,t)8.1.2.1GeneralThenon-peatcarbonpools(seeTable5.1)tobeaccountedforinthebaselinescenarioincludeabovegroundtreebiomassandbelowgroundtreebiomass.NetfluxestoandfromlowergroundvegetationandlitterareaccountedforbyGESTs.GHGemissionsmayarisefromtheburningofbiomass.Biomassburninginthebaselinescenariomayoccurbutnotaccountingforitisconservative.ThismethodologydoesnotprovideproceduresforestimatingGHGemissionsfromtheburningofbiomass.Netcarbonstockchangesinnon-peatcarbonpoolsinthebaselinescenariowillbedeterminedas:ΔCBSL-NP,i,t=∆CBSL-biomass,i,t(13)Where:ΔCBSL-NP,i,tNetcarbonstockchangeinnon-peatcarbonpoolsinthebaselinescenarioinstratumiinyeart;tCyr-1ΔCBSL-biomass,i,tNetcarbonstockchangeintreebiomassinthebaselinescenarioinstratumiinyeart;tCyr-1i1,2,3,…MBSLstratainthebaselinescenariot1,2,3,…tyearselapsedsincetheprojectstartAssessingGHGremovalsinthebaselinescenarioconsistsof3steps:1)Assessthepre-projectspatialdistributionoftreebiomass2)Forthegivenbaselinescenario,deriveatimeseriesoftreebiomassdevelopmentforeachstratum;asperSection6.2,ex-antebaselineprojectionsbeyonda10-yearperiodarenotrequired3)DetermineannualGHGremovalsperstratum;asperSection6.2,ex-antebaselineprojectionsbeyonda10-yearperiodarenotrequiredVM0036,Version1.0SectoralScope14Page21Toprojectfuturetreebiomasswithintheprojectcreditingperiodunderthebaselinescenario,usethelatestversionoftheVCSmoduleVMD0019MethodstoProjectFutureConditions.8.1.2.2Netcarbonstockchangeinbiomass(∆CBSLbiomass,i,t)Thenetcarbonstockchangeinbiomassinthebaselinescenarioisestimatedas:∆CBSL-biomass,i,t=ABSL,i,t×∆CBSL-tree,i,t(14)(15)(16)(17)Where:∆CBSL-biomass,i,tChangeincarbonstockinbiomassinthebaselinescenarioinstratumiinyeart;tCyr-1ABSL,i,tAreaofbaselinestratumiinyeart;ha∆CBSL-tree,i,tChangeincarbonstockintree11biomassinthebaselinescenarioinstratumiinyeart;tCha-1yr-1∆CBSL-tree,j,i,tChangeincarbonstockintreebiomassinthebaselinescenarioforspeciesjinstratumiinyeart;tCha-1yr-1∆CBSL-tree-AB,j,i,tChangeincarbonstockinabove-groundtreebiomassinthebaselinescenarioforspeciesjinstratumiinyeart;tCha-1yr-1∆CBSL-tree-BB,j,i,tChangeincarbonstockinbelow-groundtreebiomassinthebaselinescenarioforspeciesjinstratumiinyeart;tCha-1yr-1RjRoot:shootratiofortreespeciesj12;troott-1shootd.m.j1,2,3,…SBSLtreespeciesinthebaselinescenarioi1,2,3,…MBSLstratainthebaselinescenariot1,2,3,…tyearselapsedsincetheprojectstartAbove-groundtreebiomassThechangeincarbonstockinabove-groundtreebiomassisestimatedusingoneofthefollowingmethodsthatcanbeselectedonthebasisoftheavailabilityofdata.11WithDBH≥5cm.12Careshouldbetakenthattheroot-shootratiomaychangeasafunctionoftheabove-groundbiomasspresentattimet(seeIPCCGPG2003,Annex3.A1,Table3A1.8)VM0036,Version1.0SectoralScope14Page22Method1(Gain-lossmethod)∆CBSL-tree-AB,j,i,t=∆CG,j,i,t-∆CL,j,i,t(18)∆CG,j,i,t=Gj,i,txCFj(19)Gj,i,t=Iv,j,i,txDjxBEF1,j(20)Where:∆CBSL-tree-AB,j,i,tChangeincarbonstockinabove-groundtreebiomassinthebaselinescenarioforspeciesjinstratumiinyeart;tCha-1yr-1∆CG,j,i,tAverageannualincreaseincarbonstockduetoabove-groundbiomassgrowthoflivingtreesforspeciesjinstratumiinyeart;tCha-1yr-1∆CL,j,i,tAverageannualdecreaseincarbonstockduetoabove-groundbiomasslossoflivingtreesforspeciesjinstratumiinyeart;tCha-1yr-1Gj,i,tAverageannualincrementofabove-groundbiomassoflivingtreesforspeciesjinstratumiinyeart;tdm.ha-1yr-1CFjCarbonfraction13ofdrymatterforspeciesj;tCtd.m.-1Iv,j,i,tAverageannualincrementinmerchantablevolumeforspeciesjinstratumiinyeart;m-3ha-1yr-1DjBasicwooddensityforspeciesj;td.m.m-3BEF1,jBiomassexpansionfactorforconversionofannualnetincrement(includingbark)inmerchantablevolumetototalabove-groundbiomassincrementforspeciesjj1,2,3,…Streespeciesi1,2,3,…MBSLstratainthebaselinescenariot1,2,3,…tyearselapsedsincetheprojectstartThismethodologyallowsfortheconservativeassumptionthat,foranytimet,∆CL,j,i,t=0forthebaselinescenario.Ifbiomassincrementtablesareavailableandapplicabletothespeciespresent,thesecandirectlybeusedinEquation20.Notethatavailabledataonaverageannualincrementinthevolumeofspeciesjinstratumiforyeart(Iv,j,i,t)maybeexpressedasanetaverageannualincrement(i.e.,theterm∆CL,j,i,tisalreadyimplicitlyallowedforandmustbesettozeroinEquation18inordertoavoiddoublecounting).Alternatively,iftheaverageannualincrementinvolumeofspeciesjinstratumi,foryeart(Iv,j,i,t)isexpressedasthegrossaverageannualincrement,then∆CL,j,i,tmaybeconservativelyassumed13IPCCdefaultvalue=0.5VM0036,Version1.0SectoralScope14Page23aszero.Otherwise∆CL,j,i,tmustbeestimatedonthebasisoftransparentandverifiableinformationontherateatwhichpre-projectactivities(ormortality)arereducingcarbonstocksinexistinglivetrees(e.g.,duetoharvestingforfuelwood,orforanimalconsumption).Dependingonthekindofinformationlocallyavailable,insteadofRjandBEFjonecanuseotherparametersconvertingstemvolumetototalbiomass,forexampleKph(Alexeyevcoefficient;Alexeyevetal.(1995)).Method2(Stockdifferencemethod)∆CBSL-tree-AB,j,i,t=(CBSL-tree-AB,j,i,t–CBSL-tree-AB,j,i,(t-T))/T(21)Twomethodsareprovidedforthismethod:thebiomassexpansionfactors(BEF)methodandtheallometricequationsmethod.1.BEFmethodCBSL-tree-AB,j,i,t=Vj,i,t×Dj×BEF2j×CFj(22)Where:∆CBSL-tree-AB,j,i,tChangeincarbonstockinabove-groundtreebiomassinthebaselineforspeciesjinstratumiinyeart;tCha-1yr-1CBSL-tree-AB,j,i,tCarbonstockinabove-groundbiomassoftreespeciesjinstratumiinyeart;tCha-1Vj,i,tStemvolumeoftreespeciesjinstratumiinyeart;m3ha-1DjBasicwooddensityofspeciesj;td.m.m-3BEF2jBiomassexpansionfactorforconversionofstembiomasstoabove-groundtreebiomassforspeciesjCFjCarbonfraction14ofdrymatterforspeciesj;tCtd.m.-1i1,2,3,…MWPSstrataintheprojectscenarioj1,2,3,…SWPStreespeciesintheprojectscenariot1,2,3…tyearselapsedsincethestartoftheprojectactivityTNumberofyearsbetweentimestandt-114IPCCdefault=0.5VM0036,Version1.0SectoralScope14Page242.AllometricEquationsmethodCBSL-tree-AB,j,i,t=nTRj,i,t×fj(X,Y,…)×CFj(23)Where:CBSL-tree-AB,j,i,tCarbonstockinabove-groundbiomassofspeciesjinstratumiinyeart;tCha-1nTRj,i,tTreestanddensityofspeciesjinstratumiinyeart;treesha-1fj(X,Y,…)Allometricequationforspeciesjlinkingmeasuredtreedimensionvariables(e.g.,diameteratbreastheight(DBH)andpossiblyheight(H))toabove-groundbiomassoflivingtrees;td.m.tree-1CFjCarbonfractionofdrymatterforspeciesj;tCt-1d.m.i1,2,3,…MPstrataintheprojectscenarioj1,2,3,…SWPStreespeciesintheprojectscenariot1,2,3,…tyearselapsedsincethestartoftheprojectactivityItisacceptabletoestimateinitialstocks(t=0)usingpre-existingforestinventorydata,providedthatthepre-existingdata(1)representstheprojectstrata,(2)isnotmorethan10yearsoldandrepresentstheageandsiteclass,and(3)thatthestockestimatederivedfromthepre-existingdatahasbeenvalidatedwithlimitedsamplingwithintheprojectarea.Iftheestimateiswithinthe90%confidenceintervalofthecorrespondingestimatecalculatedfrompre-existingforestinventorydata,theinitialstockatt=0issetatthehigherboundofthe90%confidenceintervaloftheestimatefrompre-existingdata.Ifthevalidationestimateisoutside(i.e.,greaterthanorlessthan)thecorrespondingestimatecalculatedfrompre-existingforestinventorydata,theestimatefrompre-existingdatacannotbeused.8.1.3Greenhousegasemissionsduetopeatdrainage(GHGdrained,i,t)8.1.3.1TheGESTapproachInthismethodology,theGEST(GreenhouseGasEmissionSiteType)approachformsthebasisfortheestimationofGHGfluxesfromdrainedandrewettedpeatlands(Couwenbergetal.2011).TheGESTapproachusesprimarilyvegetationtypesastheindicatorofannualgreenhousegasfluxes.Vegetationiswellqualifiedforindicatinggreenhousegasfluxes(Couwenbergetal.2011)asoutlinedinSection9.3.6.GHGemissionsfromdrainedpeat,litterandgroundvegetationareestimatedbasedonthepresenceofGESTswithcalibratedGHGemissionprofilesinstratai.Asageneralrule:•foranon-forestedareaaGESTwilldetermineaverageannualnetCO2equivalentemissions•foraforestedareaaGESTincombinationwithcarbonstockchangesintreebiomasswillVM0036,Version1.0SectoralScope14Page25determineaverageannualnetCO2equivalentemissions.Inaddition,forGESTsinwhichthevegetationcompositiondoesnotprovideaclearindicationofGHGemission-relatedsiteconditions(e.g.,barepeat),watertabledepthmeasurementsmustbeusedasadditionalinputtoassessGHGfluxes.AreaswithintheprojectboundarywithdifferentGESTswillbetreatedasdifferentstrata.Foreachstratum:GHGdrained,i,t=GHGGESTbsl,i,t(24)Fort>tPDT-BSL,i:GHGdrained,i,t=0(25)Where:GHGdrained,i,tGreenhousegasemissionsfromsoil,lowergroundvegetationandlitterinthebaselinescenarioinstratumiinyeart;tCO2eyr-1tPDT-BSL,iPDTinthebaselinescenarioinstratumiinyearselapsedsincetheprojectstart;yrGHGGESTbsl,i,tGHGemissionsfromGESTsinthebaselinescenarioinstratumiinyeart;tCO2eyr-1i1,2,3,…MBSLstratainthebaselinescenariot1,2,3,…tyearselapsedsincetheprojectstartAssessingGHGemissionsinthebaselinescenarioconsistsof4steps(seeSection9.3.6foradditionalguidanceoneachofthesesteps):1)DetermineGESTs2)Assessthepre-projectspatialdistributionofGESTs3)Forthegivenbaselinescenario,deriveatimeseriesofGESTdevelopmentforeachstratum;asperSection6.2,ex-antebaselineprojectionsbeyonda10-yearperiodarenotrequired4)DetermineannualGHGemissionsperstratum;asperSection6.2,ex-antebaselineprojectionsbeyonda10-yearperiodarenotrequiredToprojectfutureGHGemissionsduetopeatdrainagewithintheprojectcreditingperiodunderthebaselinescenario,usethelatestversionoftheVCSmoduleVMD0019MethodstoProjectFutureConditions,withthefollowingadditionalguidance.1.Toderivetrendsanddevelopmentsinwatertablemanagement,thebaselinescenariomusttakeintoaccountthecurrentandhistoriclayoutofthedrainagesystemandthelong-termaverageclimatevariablesinfluencingwatertabledepths(precipitation,evaporation)priortoprojectstart,onthebasisofquantitativehydrologicalmodelingand/orexpertjudgment.Thelong-VM0036,Version1.0SectoralScope14Page26termaverageclimatevariablesmustbedeterminedusingdatafromtwoclimatestationsnearesttotheprojectareaandmustincludeatleast20years’worthofdata.Thedrainagelayoutatthestartoftheprojectactivitymustbemappedatscale:1:10,000oranyotherscalejustifiedforestimatingwatertabledepths.Historicdrainagelayoutmustbemappedusingtopographicand/orhydrologicalmapsfrom(ifavailable)thestartofthemajorhydrologicalimpactsbutcoveringatleastthe20yearspriortothestartoftheprojectactivity.Historicdrainagestructures(collapsedditches)may(still)havehigherhydraulicconductivitythanthesurroundingareasandfunctionaspreferentialflowpaths.Theeffectofhistoricdrainagestructuresoncurrenthydrologicalfunctioningoftheprojectareamustbeassessedonthebasisofexpertjudgmentandinaconservativemanner.Justificationmaybebasedonhydrologicalmodels.Thebaselinescenariomayfurthermoreincludere-activationofcollapsedditches.Historicinformationonthedrainagesystemmayservetosettrendsindrainagelay-outanddepthaswellasinfrequencyofdredgingofditchestomaintainrequiredwatertablesinthefield.Derivationofsuchtrendsmustbedoneonthebasisofexpertjudgmentandinaconservativemanner.Withrespecttohydrologicalfunctioning,baselinescenariosmustberestrictedbyclimatevariablesandquantifyanyimpactsonthehydrologicalfunctioningascausedbyplannedmeasuresoutsidetheprojectarea(suchasdamconstructionorgroundwaterextraction),bydemonstratingahydrologicalconnectiontotheplannedmeasures(e.g.,throughgroundwatercarryingsoillayers).2.Incaseofabandonmentofpre-projectlanduseinthebaselinescenario,thebaselinescenariomustalsoconsider-basedonexpertjudgmenttakingaccountofverifiablelocalexperienceand/orstudiesand/orscientificliteratureandinaconservativeway-non-humaninducedrewettingbroughtaboutbycollapsingdikesorditchesthatwouldhavenaturallyclosedovertime,andprogressivesubsidence,leadingtoraisingrelativewaterlevels,increasinglythinneraerobiclayersandreducedCO2emissionrates.Unlessalternativeevidenceisprovided,annualsubsidence(asderivedfromsubsidence-watertableobservationsormodels)mustbeassumedtoresultina1:1proportionalrisethewatertablerelativetothesurfaceintheareabetweenditches.Incaseofcontinuedorre-instatedutilizationandassociateddrainage,itmustbedemonstratedthatditchwatertablesarecontrolled(e.g.,byweirsandperiodicdeepening(dredging)ofditchestomaintainthewatertablebetweenditchesattherequiredlevel).Documentationmayincludeofficialplans,butalsopersonalcommunicationwithlocalfarmersandhistorictrends.Watertablesinthebaselinemaybedeterminedbystatic(includinganalytic)hydrologicmodeling,usingconservativepeathydraulicparameters,including:•Thedistancebetweentheditches•Thewatertabledepthintheditches•HydrologicalconductivityofthepeatBasedontheassessmentofchangesinwatertabledepth,timeseriesofvegetationcompositionmustbederived(exante),basedonvegetationsuccessionschemesindrainedpeatlandsfromVM0036,Version1.0SectoralScope14Page27scientificliteratureand/orexpertjudgment,bydefiningtimeseriesofGESTs,withtimestepsof,forexample,5yearstoallowfortheinherentdiscretecharacteroftheGESTs.IfaFireReductionPremiumisclaimed,theprojectproponentmustdemonstratewithfiremapsandhistoricaldatabasesonfiresthattheprojectareaisnowandinfuturewouldbeunderriskofanthropogenicfires.ThisisfurtherspecifiedinSection8.3.8.1.3.2BaselineCO2andCH4emissionsestimatedbyGESTGHGemissionsperstratumasaresultofpeatdrainage(microbialpeatoxidation,netfluxestoandfromlitterandlowergroundvegetation)inthebaselinescenarioareestimatedas:GHGGESTbsl,i,t=ABSl,i,t×(GHGGESTbsl-CO2,i,t+GHGGESTbsl-CH4,i,t)(26)Where:GHGGESTbsl,i,tGHGemissionsfromGESTinthebaselinescenarioinstratumiinyeart;tCO2eyr-1ABSL,i,tTotalareaofbaselinestratumiinyeart;haGHGGESTbsl-CO2,i,tEmissionofCO2frombaselineGESTinstratumiinyeart;tCO2eha-1yr-1GHGGESTbsl-CH4,i,tEmissionofCH4frombaselineGESTinstratumiinyeart;tCO2eha-1yr-1i1,2,3…MBSLstrata15inthebaselinescenariot1,2,3,…tyearselapsedsincetheprojectstartIfthevegetationcompositiondoesnotprovideaclearindicationofGHGemission-relatedsiteconditions(e.g.,barepeat)theaverageannualGHGemissionsmustberelateddirectlytowatertabledepthasfollows:GHGGESTbsl,i,t=ABSL,i,t×(GHGWLbsl-CO2,i,t+GHGWLbsl-CH4,i,t)(27)Where:GHGGESTbsl,i,tGHGemissionsfromGESTinthebaselinescenarioinstratumiinyeart;tCO2eyr-1ABSL,i,tTotalareaofbaselinestratumiinyeart;haGHGWLbsl-CO2,i,tEmissionofCO2relatedtowatertabledepthinthebaselinescenarioinstratumiinyeart;tCO2eha-1yr-1GHGWLbsl-CH4,i,tEmissionofCH4relatedtowatertabledepthinthebaselinescenarioinstratumiinyeart;tCO2eha-1yr-1i1,2,3,…MBSLstrata16inthebaselinescenario15NotethatdifferentGESTsresultindifferentstrata.VM0036,Version1.0SectoralScope14Page28t1,2,3,…tyearselapsedsincetheprojectstartTheprojectmayestablishproject-specificvaluesforGHGWLbsl-CO2andGHGWLbsl-CH4(seeSection9.3.6)orapplyvaluesfromappropriateliteraturesourcespertainingtolanduseclasses,watertabledepthsorwatertabledepthclassesandsimilarprojectcircumstances.Forsuchliteraturevaluestheaccuracymustbedefinedorconservativenessmustbejustifiedintheprojectdescription.Projectcircumstancesaredefinedbypre-projectlanduse(e.g.,forestry,peatmining,agriculture,abandonmentaftersuchactivities)anditsintensity,climaticzone,watertabledepths,andpeattype.Ifthemeanannualwatertabledepthintheprojectareaexceedsthedepthrangeforwhichtheemission-vegetationoremission-watertabledepthrelationshipdeterminedfortheprojectisvalid,aconservativeextrapolationmustbeused.GHGWLbsl-CH4maybeconservativelyneglected.ProceduresforthedeterminationsofGHGfluxesandwatertabledepthmeasurementsareprovidedinSection9.3.6.8.2ProjectEmissions8.2.1GeneralapproachThenetCO2equivalentemissionsintheprojectscenariomaybedeterminedbycarbonstockchangesinnon-peatcarbonpoolsandGHGemissionsfromrewettedpeatland.GHGemissionsfromfossilfuelcombustionfromtransportandmachineryuseinprojectactivitiesaredeemedinsignificant.ForthequantificationofpossiblespikesofCH4emissionduringatransientperiodafterrewetting,forwhichtheGESTapproachcannotbeused,conservativeestimatesfromappropriateliteraturesourcesareused.TodemonstratethatN2Oemissionsarea)insignificantorb)decreasecomparedtothebaselinescenario,andthereforeN2Oemissionsneednotbeaccountedfor,a)usetheCDMA/RmethodologicaltoolToolfortestingsignificanceofGHGemissionsinA/RCDMprojectactivities,orb)refertopeer-reviewedliterature,respectively.Forex-anteestimatesofGHGemissionsintheprojectscenariousethelatestversionoftheVCSmoduleVMD0019MethodstoProjectFutureConditions.ThenetCO2equivalentemissionsintheprojectscenarioareestimatedas:16Notethatdifferentwaterlevelsorwaterlevelclassesresultindifferentstrata.Waterlevelsorwaterlevelclasses(e.g.,0-10cm,11-20cm,etc.)canbeused,dependingondataavailability.VM0036,Version1.0SectoralScope14Page29(28)Where:GHGWPSNetCO2equivalentemissionsintheprojectscenariouptoyeart;tCO2eΔCWPS-NP,i,tNetcarbonstockchangeinnon-peatcarbonpoolsintheprojectscenarioinstratumiinyeart;tCyr-1GHGrewetted,i,tGreenhousegasemissionsfromthepeatafterrewettingintheprojectscenarioinstratumiinyeart;tCO2eyr-1i1,2,3,…MBSLstrataintheprojectscenariot1,2,3,…tyearselapsedsincetheprojectstart8.2.2Netcarbonstockchangesinnon-peatcarbonpools(∆CWPS-NP,i,t)Undertheapplicabilityconditions,theburningofbiomassisexcludedintheprojectscenario.ThismethodologydoesnotprovideproceduresforestimatingGHGemissionsfromtheburningofbiomass.MonitoringproceduresforcarbonstocksintreebiomassintheprojectscenarioareprovidedinSection9.Netcarbonstockchangesinnon-peatcarbonpoolsintheprojectscenariowillbedeterminedas:∆CWPS-NP,i,t=∆CWPS-biomass,i,t(29)Where:∆CWPS-NP,i,tNetcarbonstockchangeinnon-peatcarbonpoolsintheprojectscenarioinstratumiinyeart;tCyr-1∆CWPS-biomass,i,tNetcarbonstockchangeintreebiomassintheprojectscenarioinstratumiinyeart;tCyr-1i1,2,3,…MBSLstratainthebaselinescenariot1,2,3,…tyearselapsedsincetheprojectstart∆CWPS-Biomass,i,t=AWPS,i,t×∆CWPS-tree,i,t(30)(31)(32)VM0036,Version1.0SectoralScope14Page30(33)Where:∆CWPS-biomass,i,tChangeincarbonstockinbiomassintheprojectscenarioinstratumiinyeart;tCyr-1AWPS,i,tAreaofprojectstratumiinyeart;ha∆CWPS-tree,i,tChangeincarbonstockintree17biomassintheprojectscenarioinstratumiinyeart;tCha-1yr-1∆CWPS-tree,j,i,tChangeincarbonstockintreebiomassintheprojectscenarioforspeciesjinstratumiinyeart;tCha-1yr-1∆CWPS-tree-AB,j,i,tChangeincarbonstockinabove-groundtreebiomassintheprojectscenarioforspeciesjinstratumiinyeart;tCha-1yr-1∆CWPS-tree-BB,j,i,tChangeincarbonstockinbelow-groundtreebiomassintheprojectscenarioforspeciesjinstratumiinyeart;tCha-1yr-1RjRoot:shootratiofortreespeciesj;troott-1shootd.m.j1,2,3,…SWPStreespeciesintheprojectscenarioi1,2,3,…MWPSstrataintheprojectscenariot1,2,3,…tyearselapsedsincetheprojectstartChangesincarbonstockinabove-groundtreebiomassintheprojectscenarioareestimatedas:∆CWPS-tree-AB,j,i,t=(CWPS-tree-AB,j,i,t–CWPS-tree-AB,j,i,(t-T))/T(34)Where:∆CWPS-tree-AB,j,i,tNetcarbonstockchangeinabove-groundtreebiomassintheprojectscenariofortreespeciesjinstratumiinyeart;tCha-1yr-1CWPS-tree-AB,j,i,tCarbonstockinabove-groundtreebiomassintheprojectscenariofortreespeciesjinstratumiinyeart;tCha-118t1,2,3…tyearselapsedsincethestartoftheprojectactivityi1,2,3,…MWPSstrataintheprojectscenarioj1,2,3,…SWPStreespeciesTNumberofyearsbetweenmonitoringtimestmandtm-1Themeancarbonstockinabove-groundbiomassperunitareaisestimatedonthebasisoffield17WithDBH≥5cm.18Maybeconservativelysettozero.VM0036,Version1.0SectoralScope14Page31measurementsinpermanentsampleplots.Twomethodsareavailable:thebiomassexpansionfactors(BEF)methodandtheallometricequationsmethod.1)BEFmethodStep1:Determineonthebasisofavailabledatavolumetables(exante)andmeasurements(expost)ofthediameteratbreastheight(DBH,attypically1.3mabove-groundlevel),andalsopreferablyheight(H),ofallthetreesabovesomeminimumDBHinthepermanentsampleplots.TheexacttreedimensionstobemeasuredwillbespecifiedbytheinformationobtainedinStep2.Step2:EstimatethestemvolumeoftreesItispossibletocombineSteps1and2ifvolumetablesallowforderivingaveragevolumeoftrees,orfieldinstruments(e.g.,arelascope)thatmeasurethevolumeofeachtreedirectlyareapplied.Step3:ChooseBEFStep4:Convertthestemvolumeoftreesintocarbonstockinabove-groundtreebiomassviabasicwooddensity,theBEFandthecarbonfraction:CWPS-tree-AB,l,j,i,sp,t=VI,j,i,sp,t×Dj×BEF2j×CFj(35)Where:CWPS-tree-AB,l,j,i,sp,tCarbonstockinabove-groundbiomassoftreelofspeciesjinplotspinstratumiinyeart;tCtree-1VI,j,j,sp,tStemvolumeoftreelofspeciesjinplotspinstratumiinyeart;m3tree-1DjBasicwooddensityofspeciesj;td.m.m-3BEF2jBiomassexpansionfactorforconversionofstembiomasstoabove-groundtreebiomassforspeciesjCFjCarbonfraction19ofdrymatterforspeciesj;tCtd.m.-1l1,2,3,…Nj,i,sp,tindividualtreesofspeciesjinsampleplotspinstratumiinyearti1,2,3,…MWPSstrataintheprojectscenarioj1,2,3,…SWPStreespeciesintheprojectscenariot1,2,3,…tyearselapsedsincethestartoftheprojectactivityStep5:Calculatecarbonstockinabove-groundbiomassofalltreespeciesjpresentinplotspinstratumiattimet(i.e.,summationoveralltreeslofspeciesjpresentinplotsp).19IPCCdefault=0.5VM0036,Version1.0SectoralScope14Page32(36)Where:CWPS-tree-AB,j,i,sp,tCarbonstockinabove-groundbiomassoftreespeciesjonplotspofstratumiattimet;tCCWPS-tree-AB,l,j,i,sp,tCarbonstockinabove-groundbiomassoftreelofspeciesjinplotspinstratumiattimet;tCtree-1l1,2,3,…Nj,i,sp,tindividualtreesofspeciesjinsampleplotspinstratumiinyearti1,2,3,…MWPSstrataintheprojectscenarioj1,2,3,…SWPStreespeciesintheprojectscenariosp1,2,3,…Pisampleplotsinstratumiintheprojectscenariot1,2,3,…tyearselapsedsincethestartoftheprojectactivityStep6:Estimatethemeancarbonstockinabove-groundtreebiomassforspeciesjforeachstratum:(37)Where:CWPS-tree-AB,j,i,tAbove-groundcarbonstockintreespeciesjinstratumiinyeart;tCha-1CWPS-tree-AB,j,i,sp,tAbove-groundcarbonstockintreespeciesjonplotspofstratumiinyeart;tCAsp,iTotalareaofallsampleplotsinstratumi;haj1,2,3,…SWPStreespeciesintheprojectscenarioi1,2,3,…MWPSstrataintheprojectscenariosp1,2,3,…Pisampleplotsinstratumiintheprojectscenariot1,2,3,…tyearselapsedsincethestartoftheprojectactivityThebelow-groundtreebiomassintheprojectscenariomaybeconservativelysettozero.Proceduresforincludingbelow-groundbiomassintotaltreebiomassestimationsareprovidedinSection8.1.2.VM0036,Version1.0SectoralScope14Page332)AllometricequationsmethodStep1:SameasStep1oftheBEFmethod.Step2:Selectordevelopanappropriateallometricequation(ifpossiblespecies-specific,orifnotfromasimilarspecies)-seeChapter9foradditionalguidance.Step3:Estimatecarbonstockinabove-groundbiomassforeachindividualtreelofspeciesjinthesampleplotsplocatedinstratumiusingtheselectedordevelopedallometricequationappliedtothetreedimensionsresultingfromStep1,andsumthecarbonstocksinthesampleplot:(38)Where:CWPS-tree-AB,j,i,sp,tCarbonstockinabove-groundbiomassoftreespeciesjinsampleplotspinstratumiinyeart;tCfj(X,Y,…)Allometricequationforspeciesjlinkingmeasuredtreedimensionvariables(e.g.,diameteratbreastheight(DBH)andpossiblyheight(H))toabove-groundbiomassoflivingtrees;td.m.tree-1CFjCarbonfractionofdrymatterforspeciesj;tCt-1d.m.l1,2,3,…Nj,i,sp,tindividualtreesofspeciesjinsampleplotspinstratumiinyeartj1,2,3,…SWPStreespeciesintheprojectscenarioi1,2,3,…MPstrataintheprojectscenariosp1,2,3,…Pisampleplotsinstratumiintheprojectscenariot1,2,3,…tyearselapsedsincethestartoftheprojectactivityStep4:ProceedwithStep6oftheBEFmethod.8.2.3Projectgreenhousegasemissionsafterpeatrewetting(GHGrewetted,i,t)TheestimationofGHGemissionsinrewettedpeatfollowssimilarproceduresasprovidedinSection8.1.3.Foreachstratum:GHGrewetted,i,t=GHGGESTwps,i,t(39)VM0036,Version1.0SectoralScope14Page34Where:GHGrewetted,i,tGreenhousegasemissionsfromsoil,lowergroundvegetationandlitterintheprojectscenarioinstratumiinyeart;tCO2eyr-1GHGGESTwps,i,tGHGemissionsfromGESTsintheprojectscenarioinstratumiinyeart;tCO2eyr-1i1,2,3,…MBSLstrataintheprojectscenariot1,2,3,…tyearselapsedsincetheprojectstart8.2.3.1ProjectGHGemissionsrelatedtoGESTsThisapproachbuildsontheproceduredescribedinSection8.1.3.1.Inaddition,theGHGemissionsduringthetransientstageafterrewetting(i.e.,beforenewvegetationtypeshaveestablishedthatareinbalancewiththerewettedconditionsandforfromwhichGESTscanbedefined)mustbedetermined.TheGESTapproachfortheprojectscenariohasthefollowingsteps(seeSection9.3.6foradditionalguidanceoneachofthesesteps):1)DetermineGESTs2)AssessthespatialdistributionofGESTs3)DefinetheprojectscenarioforGESTs(exante)ormonitorGESTs(expost)4)DetermineannualGHGemissionsperstratumfortheentireprojectcreditingperiodForthequantificationofpossiblespikesofCH4emissionduringatransientperiodafterrewettingwheredyingoffvegetationmayleadtosubstantialmethaneemissions,forwhichtheGESTapproachcannotbeused,conservativeestimatesfromappropriateliteraturesourcesmustbeused.Theprojectproponentmustdemonstrateapplicabilityofthatliteratureonthebasisofsimilaritywithrespecttopre-projectlanduse(e.g.,forestry,peatmining,agriculture)andlanduseintensity(especiallyfertilization),superficialpeattypes(especiallynutrientconditions),andclimaticzone.GHGemissionsperstratumofpeatafterrewettingareestimatedas:GHGrewetted,i,t=AWPS,i,t×(GHGGESTwps-CO2,i,t+GHGGESTwps-CH4,i,t)(40)Where:GHGrewetted,i,tGreenhousegasemissionsfromsoil,lowergroundvegetationandlitterintheprojectscenarioinstratumiinyeart;tCO2eyr-1AWPS,i,tTotalareaofprojectstratumi;haGHGGESTwps-CO2,i,tEmissionofCO2fromprojectGESTinstratumiinyeart;tCO2eha-1yr-1VM0036,Version1.0SectoralScope14Page35GHGGESTwps-CH4,i,tEmissionofCH4fromprojectGESTinstratumiinyeart;tCO2eha-1yr-1i1,2,3,…MBSLstrataintheprojectscenariot1,2,3,…tyearselapsedsincetheprojectstartEx-anteestimatesofGHGrewetted,i,tmustbebasedonex-antescenariodefinitionsinStep3.Ex-postestimatesofGHGrewetted,i,tmustbebasedonmonitoringresults.IfthevegetationcompositiondoesnotprovideaclearindicationofGHGemission-relatedsiteconditions(e.g.,barepeat,transientphasesofvegetationdevelopmentafterrewetting)theaverageannualGHGemissionsmustberelateddirectlytowatertabledepth.Notethatduetoapotentialhysteresiseffecttherelationshipsbetweenwatertabledepthandgreenhousegasemissionsinarewettedpeatlandcandifferfromthoseinadrainedpeatland.GHGGESTwps,i,t=AWPS,i,t×(GHGWL-CO2,i,t+GHGWL-CH4,i,t)(41)Where:GHGGESTwps,i,tGHGemissionsfromGESTsintheprojectscenarioinstratumiinyeart;tCO2eyr-1AWPS,i,tTotalareaofprojectstratumiinyeart;haGHGWLwps-CO2,i,tEmissionofCO2relatedtowatertabledepthintheprojectscenarioinstratumiinyeart;tCO2eha-1yr-1GHGWLwps-CH4,i,tEmissionofCH4relatedtowatertabledepthintheprojectscenarioinstratumiinyeart;tCO2eha-1yr-1i1,2,3,…MBSLstrata20intheprojectscenariot1,2,3,…tyearselapsedsincetheprojectstartTheprojectmayestablishproject-specificvaluesforGHGWLwps-CO2andGHGWLwps-CH4orapplyvaluesfromappropriateliteraturesourcespertainingtolanduseclasses,watertabledepthsorwatertabledepthclasses.Forsuchliteraturevaluestheaccuracymustbedefinedorconservativenessmustbejustified.Ifthemeanannualwatertabledepthintheprojectareaexceedsthedepthrangeforwhichtheemission-vegetationoremission-watertabledepthrelationshipdeterminedfortheprojectisvalid,aconservativeextrapolationmustbeused.ProceduresforthedeterminationsofGHGfluxesandwatertabledepthmeasurementsareprovidedinSection9.3.6.20Notethatdifferentwaterlevelsorwaterlevelclassesresultindifferentstrata.Waterlevelsorwaterlevelclasses(e.g.,0-10cm,11-20cm,etc.)canbeused,dependingondataavailabilityVM0036,Version1.0SectoralScope14Page368.2.3.2DirectestimateapproachGESTconversionassessmentsmayprovidedirectconservativeestimatesofemissionreductionsduetorewetting,ratherthanprovidingestimatesofbaselineandprojectemissionsseparately(e.g.,aconversionofGESTtypeatotypebisassociatedwithagivenemissionreductionwithagivenuncertainty,ortheemissionreductionisestimatedconservatively).Table8.1.SuggestedtableformatforconservativeestimatesofemissionreductionsforGESTconversionsfromdrainedtorewetted.Table8.1:EstimatedEmissionReductionsforGESTConversionsGESTt1GESTt2EmissionreductiontCO2eha-1yr-1………………Wherethisapproachisapplied,equation55inSection8.5isamendedto:NERRDP=44/12×(∆CBSL–∆CWPS)+∆GHGrewetting+FireReductionPremium–GHGLK(42)Thegreenhousegasemissionreductionduetorewettingisestimatedas:∆GHGrewetting,i,t=Ai,t×((GHGGESTbsl-CO2,i,t+GHGGESTbsl-CH4,i,t)-(GHGGESTwps-CO2,i,t+GHGGESTwps-CH4,i,t))(43)Where:∆GHGrewetting,i,tGreenhousegasemissionreductionduetorewettinginstratumiinyeart;tCO2eyr-1Ai,tTotalareaofstratumiinyeart21;;haGHGGESTbsl-CO2,i,tEmissionofCO2frombaselineGESTinstratumiinyeart;tCO2eha-1yr-1GHGGESTwps-CO2,i,tEmissionofCO2fromprojectGESTinstratumiinyeart;tCO2eha-1yr-1GHGGESTbsl-CH4,i,tEmissionofCH4frombaselineGESTinstratumiinyeart;tCO2eha-1yr-1GHGGESTwps-CH4,i,tEmissionofCH4fromprojectGESTinstratumiinyeart;tCO2eha-1yr-1i1,2,3,…MBSLstrataintheprojectscenariot1,2,3,…tyearselapsedsincetheprojectstart21Notethatifbaselinestrataaresubdividedintheprojectscenario,areasAi,tareequaltoAWPS,i,toftherelevantstratai;ifbaselinestrataaremergedintheprojectscenario,areasAi,tareequalAWPS,i,tofstratathatincludethemergedbaselinestratai.ForunaffectedstrataAi,tequalsAWPS,i,tVM0036,Version1.0SectoralScope14Page37(44)Fort>tPDT-BSL,i:GHGrewetting,i,t=0(45)Where:∆GHGrewettingGreenhousegasemissionreductionduetorewettinguptoyeart;tCO2eGHGrewetting,i,tGreenhousegasemissionreductionduetorewettinginstratumiinyeart;tCO2eyr-1FireReductionPremiumGreenhousegasemissionreductionfrompeatcombustionduetorewettingandfiremanagementuptoyeart;tCO2eGHGLKNetCO2equivalentemissionsintheprojectscenarioduetoleakageuptoyeart;tCO2etPDT-BSL,iPDTinthebaselinescenarioinstratumiinyearselapsedsincetheprojectstart;yri1,2,3,…MBSLstratainthebaselinescenariot1,2,3,…tyearselapsedsincetheprojectstart(46)Where:ΔCBSLNetcarbonstockchangeinnon-peatcarbonpoolsinthebaselinescenariouptoyeart;tCO2eΔCBSL-NP,i,tNetcarbonstockchangeinnon-peatcarbonpoolsinthebaselinescenarioinstratumiinyeart;tCO2eyr-1i1,2,3,…MBSLstratainthebaselinescenariot1,2,3,…tyearselapsedsincetheprojectstart(47)Where:ΔCWPSNetcarbonstockchangeinnon-peatcarbonpoolsintheprojectscenariouptoyeart;tCO2eVM0036,Version1.0SectoralScope14Page38ΔCWPS-NP,i,tNetcarbonstockchangeinnon-peatcarbonpoolsintheprojectscenarioinstratumiinyeart;tCO2eyr-1i1,2,3,…MWPSstrataintheprojectscenariot1,2,3,…tyearselapsedsincetheprojectstart8.3FireReductionPremiumThismethodologyaddressesanthropogenicpeatfiresoccurringindrainedpeatlandandestablishesaconservativedefaultvalue,basedonfireoccurrenceandextensionintheprojectareainthebaselinescenario,soastoavoidthedirectassessmentofGHGemissionsfromfireinthebaselineandtheprojectscenarios.TheFireReductionPremiumapproachisonlyapplicableifanthropogenicpeatfiresdonotoccurintheprojectscenario.Theuseoffireasamanagementtool(non-catastrophicfiresorhuman-inducedfires)intheprojectscenarioisnotallowedinthecasethattheFireReductionPremiumapproachisusedtoestimateemissionsfrompeatfire.The20%FireReductionPremiumThe20%firereductionpremiumisarapidandconservativeapproachtoacknowledgingfireemissionreductionsasaresultofrewettingwithouthavingtodevelopcomplexbaselinescenariosforpeatfires.Emissionsfrompeatfiresare,likeemissionsfrommicrobialpeatoxidation,negativelycorrelatedwithwatertabledepth(cf.Turetskyetal.,2011,Ballhornetal.,2009).Thisallowsacorrelationofemissionsfrompeatfiresandmicrobialpeatoxidation.Carbonlossesfrompeatfires22areperhectareburnedareaonaverage~10timeslargerthantheannualcarbonemissionsfrommicrobialpeatoxidationperhadrainedpeatland(i.e.,intemperateandborealareas;intropicalSEAsiaeven~20times,cf.Ballhornetal.,2009,Couwenbergetal.,2010,VanderWerfetal.,2008)).Ifinthebaselinescenarioatleast25%oftheprojectareawouldburnatleastonceevery10yearsandifrewettingandfirefightingintheprojectscenariowouldstopallcarbonlossesfrommicrobialpeatoxidationandallcarbonlossesfromfire,thepeatfireemissionreductionwouldbe25%oftheemissionreductionfrommicrobialpeatoxidation.The20%defaultpremiumisthusaconservativevalue.Thefirereferenceperiodisfixedtoaperiodpriortoprojectstarttopreventdeliberatefirestomeettheeligibilitycriteria.Aminimumperiodof10yearsmustbeassessedinordertoensurearepresentativetimeperiodthatwillreflectfrequencyoffiresinthebaseline.Inthisprocedure,theCO2emissionreductionsfrommicrobialpeatoxidationduetorewettingintheprojectscenarioareestimatedfirst(Sections8.1.3and8.2.3andEquation48).Thedefaultvalueforreducedemissionsfrompeatfirehasamaximumof20%ofthereducedCO2emissionsfrommicrobialpeatoxidationduetorewetting,ifthecumulativearea23burntinthefirereferenceperiodwasequaltoorexceeded25%oftheprojectarea.Thisamountofemissionreductions22ConservativelyassumingthatallcarbonlossesfrompeatfiresoccurasCO2.23Themaximumnumberoftimesarecurringfirecanbecountedis3.VM0036,Version1.0SectoralScope14Page39(Equation48)isdenoted‘FireReductionPremium’.Theprojectwillonlybeeligibletoclaimthepremiumifthefollowingapplies:1)Overtheperiodof10to15years,ending2yearsbeforetheprojectstartdate,thecumulativeareaofpeatburntexceeded10%oftheprojectarea(whererepeatedburningofthesameareaaddstothepercentage).Evidencemustbeprovidedusingstatisticsand/ormapsinofficialreportsand/orremotesensingdata;and,2)Inthebaselinescenariotheareaisnow,andinfuturewillbe,underriskofanthropogenicpeatfires,asdemonstratedbycurrentandhistoricfirestatisticsand/orfiremapsfortheprojectarea,incombinationwithinformationoncurrentandfuturelanduse;and,3)Thefiremanagementplanproposedbytheprojectproponentatvalidationreflectsthebestpracticesavailablewithrespecttofirepreventionandcontrolasdeterminedbytherelevantauthorities24andtakesintoaccountspecificprojectcircumstances;and,4)Ateachverification,documentationisprovideddemonstratingthatfiremanagementactivitieshavebeenimplementedaccordingtotheproposedplan.Ifpeatfiresinthebaselinescenarioaremorefrequentthanonceper10yearsormoreextensivethan25%oftheprojectarea,theawardedpremiumismoreconservative.Ifpeatfiresarelessfrequentorextensive,thepremiumissmalleraccordingly.Ifpeatfiresinthebaselinearelessextensivethan10%oftheprojectarea,thepremiumisnotawarded.If(Apeatburn/AP)≥0.25theemissionreductionfrompeatcombustionduetorewettingandfiremanagementisestimatedas:FireReductionPremium=0.20×(GHGGESTbsl-CO2-GHGGESTwps-CO2)(48)If(Apeatburn/AP)<0.1thenFireReductionPremium=0(49)If(Apeatburn/AP)<0.25andApeatburn/AP≥0.1thenFireReductionPremium=(Apeatburn/AP)×0.8×(GHGGESTbsl-CO2-GHGGESTwps-CO2)(50)(51)(52)Where:FireReductionPremiumGreenhousegasemissionreductionfrompeatcombustiondueto24Verifiableevidencemustbeprovidedintheprojectdocumentation.VM0036,Version1.0SectoralScope14Page40rewettingandfiremanagementuptoyeart;tCO2eGHGGESTbsl-CO2EmissionofCO2fromGESTsinthebaselinescenariouptoyeart;tCO2eGHGGESTwps-CO2EmissionofCO2fromGESTsintheprojectscenariouptoyeart;tCO2eGHGGESTbsl-CO2,i,tEmissionofCO2frombaselineGESTinstratumiinyeart;tCO2eyr-1GHGGESTwps-CO2,i,tEmissionofCO2fromprojectGESTinstratumiinyeart;tCO2eyr-1ApeatburnCumulativeareaburnt;haAPTotalprojectarea;hai1,2,3,…MBSLstratainthebaselinescenariot1,2,3,…tyearselapsedsincetheprojectstartFireReductionPremiummaybecalculatedonatotalprojectbasis,whichimpliesthatthedocumentationreferredtoinrequirements3and4aboveareprovidedattheprojectlevel.Alternatively,theassessmentmaybeexecutedatthesub-projectlevel,forexampleiftheprojectismadeupofanumberofdifferentpeatbogsorfensthathavedifferentbaselinefirehistories,orincaseofinstancesinaGroupedProject.Ex-anteestimateofFireReductionPremium:TheestimateofGHGGESTwps-CO2,i,tinEquation52mustbetakenfromex-antecalculations(Section8.2.3.2).Ex-postestimateofFireReductionPremium:TheestimateofGHGGESTwps-CO2,i,tinEquation52mustbetakenfrommonitoringresults.Ifa)peatlandrewettingandb)abest-practicesfiremanagementhavebeenimplemented,peatfiresoccurringintheprojectscenariocanbeassumedtobecatastrophicreversals25(i.e.eventsthatwouldhaveoccurredinthebaselinescenariobutthatwouldhavebeenunaccountedfor).Therefore,providedtheabove-mentionedtwoconditionsaremet,suchfireeventswillnotaffecttheclaimtofireemissionreductionbytheproject.Althoughrewettingandfiremanagementareaimedatstoppingfireintheprojectscenario,rewettingandfiremanagementmayfail,causingpeatlandfirestooccur.Peatlandfiresinsidetheprojectboundarymust,therefore,bemonitoredand–ifnotcatastrophicasdefinedabove–accountedforbycancellingthepremiumfortheentireprojectortheindividualsub-project,asin:FireReductionPremium=0(53)Incaseofnon-catastrophicfires,adjustmentsmustbemadeforsubsequentchangesincarbonstoreandGHGfluxes(e.g.,peatstocksatt=100).25SeeVCSProgramDefinitionsfordefinitionofcatastrophicreversal.VM0036,Version1.0SectoralScope14Page418.4LeakageUndertheapplicabilityconditionsofthismethodology,marketleakageandactivityshiftingleakagedonotoccur.Projectproponentsmustdemonstrate,basedonverifiableinformation(suchaslawsandbylaws,managementplans,marketreports)thatincasethepre-projectlanduseisoneoracombinationofthefollowing:•Forestry,thisforestryisnon-commercialinnature;•Peatextraction,thisactivityhasbeenabandonedatleast2years26priortotheprojectstartdate;•Agriculture,food,fodderorfiberproductionhasbeenabandonedatleast2yearspriortotheprojectstartdate,orwillcontinueintheprojectscenario,ordrainageofadditionalpeatlandfornewagriculturalsiteswillnotoccurorisprohibitedbylaw;•Fuelwoodextraction,theactivityisnon-commercialinnature.Undertheapplicabilityconditionsofthismethodology,ecologicalleakagealsodoesnotoccur,byensuringthathydrologicalconnectivitywithadjacentareasisinsignificant(i.e.causingnoalterationofmeanannualwatertabledepthsinsuchareas).Thiscanbeachievedeitherbyanappropriatedesign(e.g.,byestablishinganimpermeabledam)orbyabufferzonewithintheprojectboundaryforwhichconservativelynoGHGbenefitsareaccounted.Thisbufferzone,ifemployed,mustbemappedandisnoteligibleforcarboncrediting.Thewidthofthebufferzonemustbedeterminedonthebasisofquantitativehydrologicalmodeling,orexpertjudgment.ProceduresformonitoringareprovidedinSections9.3.4and9.3.6.Therefore:GHGLK=0(54)8.5SummaryofGHGEmissionReductionand/orRemovals8.5.1CalculationofnetGHGemissionsreductionsThetotalnetGHGemissionreductionsfromtheRDPprojectactivityarecalculatedasfollows:NERRDP=GHGBSL–GHGWPS+FireReductionPremium–GHGLK(55)26Agentsabandoningpeatextractionforthepurposeofarewettingprojectareunlikelytoexist,becausetheinvestmentsinmakinganewareasuitableforpeatextractionbyfarexceedtherevenuesofacarbonprojectonthesamearea.VM0036,Version1.0SectoralScope14Page42Wherethedirectestimateapproachinestimatingemissionreductionsduetorewetting(Section8.2.3.2)isadopted,thetotalnetGHGemissionreductionsarecalculatedasfollows:NERRDP=44/12×(∆CBSL–∆CWPS)+∆GHGrewetting+FireReductionPremium–GHGLK(56)Where:NERRDPTotalnetCO2equivalentemissionreductionsfromtheRDPprojectactivityuptoyeart;tCO2eGHGBSLNetCO2equivalentemissionsinthebaselinescenariouptoyeart;tCO2eGHGWPSNetCO2equivalentemissionsintheprojectscenariouptoyeart;tCO2e∆CBSLNetcarbonstockchangeinnon-peatcarbonpoolsinthebaselinescenariouptoyeart;tC∆CWPSNetcarbonstockchangeinnon-peatcarbonpoolsintheprojectscenariouptoyeart;tC∆GHGrewettingGreenhousegasemissionreductionduetorewettinguptoyeart;tCO2eFireReductionPremiumGreenhousegasemissionreductionfrompeatcombustionduetorewettingandfiremanagementuptoyeart;tCO2eGHGLKNetCO2equivalentemissionsintheprojectscenarioduetoleakageuptoyeart;tCO2eNERRDPmustbecorrectedforuncertainty,byestimatingthetotaluncertaintyfortheRDPprojectactivity(NERRDP_ERROR)asprovidedinSection8.5.2.8.5.2EstimationofuncertaintyThisprocedureallowsforestimatinguncertaintyintheestimationofemissionsandcarbonstockchanges(i.e.,aprocedureforcalculatingaprecisionlevelandanydeductionincreditsforlackofprecisionfollowingprojectimplementationandmonitoring,byassessinguncertaintyinbaselineandprojectestimations).Thisprocedurefocusesonthefollowingsourcesofuncertainty:•Uncertaintyassociatedwithestimationofstocksincarbonpoolsandchangesincarbonstocks•UncertaintyinassessmentofprojectemissionsVM0036,Version1.0SectoralScope14Page43Whereanuncertaintyvalueisnotknownorcannotbesimplycalculated,thentheprojectproponentmustjustifythatitisusingaconservativenumberandanuncertaintyof0%maybeusedforthiscomponent.Guidanceonuncertainty–aprecisiontargetofa90%or95%confidenceintervalequaltoorlessthan20%or30%,respectively,oftherecordedvaluemustbetargeted.Thisisespeciallyimportantintermsofprojectplanningformeasurementofcarbonstockswheresufficientmeasurementplotsshouldbeincludedtoachievethisprecisionlevelacrossthemeasuredstocks.Requiredconditions:•Levelsofuncertaintymustbeknownforallaspectsofbaselineandprojectimplementationandmonitoring.Uncertaintywillgenerallybeknownasthe90%or95%confidenceintervalexpressedasapercentageofthemean.•Whereuncertaintyisnotknownitmustbedemonstratedthatthevalueusedisconservative.EstimatedcarbonemissionsandremovalsarisingfromAFOLUactivitieshaveuncertaintiesassociatedwiththemeasures/estimatesof:areaorotheractivitydata,carbonstocks,biomassgrowthrates,expansionfactors,andothercoefficients.Itisassumedthattheuncertaintiesassociatedwiththeestimatesofthevariousinputdataareavailable,eitherasdefaultvaluesgiveninIPCCGuidelines(2006),IPCCGPG-LULUCF(2003),expertjudgment,orestimatesbasedofsoundstatisticalsampling.Alternatively,conservativeestimatescanalsobeusedinsteadofuncertainties,providedthattheyarebasedonverifiableliteraturesourcesorexpertjudgment.Inthiscasetheuncertaintyisassumedtobezero.However,thistoolprovidesaproceduretocombineuncertaintyinformationandconservativeestimatesresultinginanoverallex-postprojectuncertainty.PlanningtoDiminishUncertaintyItisimportantthattheprocessofprojectplanningconsideruncertainty.Proceduresincludingstratificationandtheallocationofsufficientmeasurementplotscanhelpensurethatlowuncertaintyincarbonstocksresultsandultimatelyfullcreditingcanresult.Itisgoodpracticetoapplythisprocedureatanearlystagetoidentifythedatasourceswiththehighestuncertaintytoallowtheopportunitytoconductfurtherworktodiminishuncertainty.Part1–UncertaintyinBaselineEstimates(57)VM0036,Version1.0SectoralScope14Page44Where:UncertainBSL,iPercentageuncertaintyinthecombinedcarbonstocksandgreenhousegassourcesinthebaselinecaseinstratumi;%UBSL,SS,iPercentageuncertainty(expressedas90%confidenceintervalasapercentageofthemeanwhereappropriate)forcarbonstocksandgreenhousegassourcesinthebaselinecaseinstratumi(1,2,…nrepresentdifferentcarbonpoolsand/orGHGsources);%EBSL,SS,iCarbonstockorGHGsources(e.g.,trees,downdeadwood,etc.)instratumi(1,2,…nrepresentdifferentcarbonpoolsand/orGHGsources)inthebaselinecase;tCO2ei1,2,3,…MBSLstratainthebaselinescenarioToassessuncertaintyacrosscombinedstrata:(58)Where:UncertainBSLTotaluncertaintyinbaselinescenario;%UBSL,iUncertaintyinbaselinescenarioinstratumi;%AiAreaofstratumi;hai1,2,3,…MBSLstratainthebaselinescenarioPart2–UncertaintyEx-PostintheProjectScenario(59)Where:UncertainWPS,iPercentageuncertaintyinthecombinedcarbonstocksandgreenhousegassourcesintheprojectcaseinstratumi;%UWPS,SS,iPercentageuncertainty(expressedas90%confidenceintervalasapercentageofthemeanwhereappropriate)forcarbonstocksandgreenhousegassourcesintheprojectcaseinstratumi(1,2,…nrepresentdifferentcarbonpoolsand/orGHGsources);%EWPS,SS,iCarbonstockorGHGsources(e.g.,trees,downdeadwood,etc.)instratumi(1,2,…nrepresentdifferentcarbonpoolsand/orGHGsources)intheprojectcase;tCO2eVM0036,Version1.0SectoralScope14Page45i1,2,3,…MWPSstrataintheprojectscenarioToassessuncertaintyacrosscombinedstrata:(60)Where:UncertainWPSTotaluncertaintyinprojectscenario;%UWPS,iUncertaintyinprojectscenarioinstratumi;%AiAreaofstratumi;hai1,2,3,…MWPSstrataintheprojectscenarioPart3–TotalErrorinRDPProjectActivity(61)Where:NERRDP_ERRORTotaluncertaintyforRDPprojectactivity;%UncertainBSLTotaluncertaintyinbaselinescenario;%UncertainWPSTotaluncertaintyintheprojectscenario;%GHGBSLNetCO2equivalentemissionsinthebaselinescenariouptoyeart;tCO2eGHGWPSNetCO2equivalentemissionsintheprojectscenariouptoyeart;tCO2eTheallowableuncertaintyunderthismethodologyis20%or30%ofNERRDP,tata90%or95%confidencelevel,respectively.Wherethisprecisionlevelismetnodeductionshouldresultforuncertainty.Whereexceeded,thedeductionmustbeequaltotheamountthattheuncertaintyexceedstheallowablelevel.TheadjustedvalueforNERRDP,ttoaccountforuncertaintymustbecalculatedas:adjusted_NERRDP,t=NERRDP,tx(100%-NERRDP_ERROR+allowable_uncert)(62)Where:adjusted_NERRDP,tCumulativetotalnetGHGemissionreductionsattimetadjustedtoaccountforuncertainty;tCO2eNERRDP,tTotalnetGHGemissionreductionsfromtheRDPprojectactivityuptoyeart;tCO2eVM0036,Version1.0SectoralScope14Page46NERRDP_ERRORTotaluncertaintyforRDPprojectactivity;%allowable_unsertAllowableuncertainty;20%or30%ata90%or95%confidencelevel,respectively;%8.5.3CalculationofVerifiedCarbonUnitsTheconceptofwithholdinganumberofbuffercreditsintheAFOLUpooledbufferaccountisbasedonquantifyingthenetchangeincarbonstocks.TheproxyforthenetchangeincarbonstocksappliedinthismethodologyisNER(Section8.5.1).AsthisproxyincludesallnetGHGemissionsreductions,itprovidesaconservative(toolarge)estimateofthebufferwithholding.ThenumberofVerifiedCarbonUnitsiscalculatedas:(63)Where:VCUt2NumberofVerifiedCarbonUnitsinyeart2NERRDP,t1TotalnetGHGemissionreductionsfromtheRDPprojectactivityuptoyeart1;tCO2eNERRDP,t2TotalnetGHGemissionreductionsfromtheRDPprojectactivityuptoyeart2;tCO2eNERRDP_ERRORTotaluncertaintyforRDPprojectactivity;%Bufferwt2NumberofVerifiedCarbonUnitstobewithheldintheVCSBufferinyeart2(64)Where:Bufferwt2NumberofVerifiedCarbonUnitstobewithheldintheVCSBufferinyeart2NERRDP,t1TotalnetGHGemissionreductionsfromtheRDPprojectactivityuptoyeart1;tCO2eNERRDP,t2TotalnetGHGemissionreductionsfromtheRDPprojectactivityuptoyeart2;tCO2eBuffer%t2PercentageofVerifiedCarbonUnitstobewithheldintheVCSBufferinyeart2;%ThepercentagetobewithheldintheVCSbufferistobedeterminedusingthelatestversionoftheVCSAFOLUNon-PermanenceRiskTool.ThemaximumquantityofGHGemissionreductionsthatmaybeclaimedbytheproject(VCUmax)islimitedtothedifferencebetweenprojectandbaselinescenarioaftera100-yeartimeframe.VM0036,Version1.0SectoralScope14Page47Proceduresforestimatingthedifferencebetweenpeatcarbonstockintheprojectscenarioandbaselinescenarioinstratumiatt=100(CWPS-BSL,i,t100)areprovidedinSection5.2.(65)Where:VCUmaxThemaximumquantityofGHGemissionreductionsthatmaybeclaimedbytheproject;tCO2eCWPS-BSL,t100Differencebetweenpeatcarbonstockintheprojectscenarioandbaselinescenarioatt=100;tCha-1MONITORING9.1DataandParametersAvailableatValidationDataUnit/Parameter:Depthpeat-BSL,iDataunit:mDescription:PeatdepthabovethedrainagelimitinthebaselinescenarioinstratumiatprojectstartEquations1,4,5Sourceofdata:Ownmeasurementsand/orliteratureinvolvingtheprojectareaValueapplied:n/aJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresapplied:Peatdepthsatprojectstartcanbederivedfrom•Ownmeasurements(usingpeatcorers,groundpenetratingradarorothertechniqueslaidoutinscientificliteratureorhandbooks)•Literatureinvolvingtheprojectorsimilarareas.PurposeofDataCalculationofbaselineemissionsCalculationofthemaximumquantityofGHGemissionreductionsthatmaybeclaimedbytheprojectComments:Depthpeat-BSL,i,t0=Depthpeat-WPS,i,t0Thisparametermustbere-assessedtogetherwiththere-assessmentofthebaselinescenario.DataUnit/Parameter:Depthpeat-WPS,iVM0036,Version1.0SectoralScope14Page48Dataunit:mDescription:PeatdepthabovethedrainagelimitintheprojectscenarioinstratumiatprojectstartEquations6Sourceofdata:AsforDepthpeat-BSL,iValueapplied:n/aJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresapplied:AsforDepthpeat-BSL,iPurposeofDataCalculationofthemaximumquantityofGHGemissionreductionsthatmaybeclaimedbytheprojectComments:Onlyforex-anteassessmentDepthpeat-BSL,i,t0=Depthpeat-WPS,i,t0DataUnit/Parameter:Ratepeatloss-BSL,iDataunit:myr-1Description:RateofpeatlossduetosubsidenceandfireinthebaselinescenarioinstratumiEquations1,5,9Sourceofdata:Ownmeasurements,expertjudgment,datasetsand/orliteratureofhistoricsubsidenceValueapplied:n/aJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresapplied:Therateofpeatlossduetosubsidencemustbebasedonverifiableinformationandcanbederivedfrom1.Expertjudgment,datasetsand/orliteratureofhistoricsubsidenceinvolvingtheprojectorsimilarareas,basedonsurfaceheightmeasurementsrelativetoafixedreferencepointinmasl(e.g.,usingpolesfixedintheunderlyingmineralsoilorrock,orusingLiDAR,orsimilar).Informationusedmustbeverifiable.Or2.CO2emissionsderivedfromtheprevalentGESTs(Section8.1.3),incombinationwithdataonvolumetriccarboncontentofthepeat.DividetheannualCO2emission(tCO2ha-1)by44/12,thendividebyvolumetriccarbonVM0036,Version1.0SectoralScope14Page49content(gCcm-3)toobtainheightlossinm.Theaveragedepthofburnscarscanbederivedfromexpertjudgment,datasetsand/orliteratureofhistoricburndepthsinvolvingtheprojectorsimilarareas,basedonsurfaceheightmeasurements(e.g.,usingfieldmeasurementsorLiDAR).WhenusingLiDARdata,projectsmustuseascientificallyrobustapproach,referringtopertinentscientificliterature,ensuringahorizontalaccuracyinthemeterandaverticalaccuracyinthecentimeterrange.Incaseoftreecover,scientificallyacceptedmethodsmustbeusedtodistinguishgroundpointsfromnon-groundpointsreflectedbythevegetation.Projectsmay,forexample,usetheproceduresdescribedinBallhornetal.(2009).Projectsmaydeviatefromtheseproceduresprovidedthattheaccuracyrequirementsabovearemet.Thearealextentofburnscarscanbeobtainedfromstatisticsand/ormapsinofficialreportsand/orfieldmeasurementsorremotesensingdata(similarmaterialsasrequiredundereligibilitycriteria1and2inSection8.3(FireReductionPremium),Ameanannualizedburndepthmustbecalculatedandappliedtotheentireprojectarea.Asonlypartoftheprojectareaislikelytoburninthebaseline,thisconstitutesaconservativeapproach.Theprojectproponentmustdemonstrate,usingexpertjudgment,datasetsand/orscientificliteraturethattheaccuracyofthederivedrateofpeatlossissufficienttofulfillthecriteriasetoutinSection5.2(Stratification).Similarityofareasmustbeillustrated(byownmeasurements,literatureresources,datasetsoracombinationofthese)addressingpeattype,climaticconditions,landuse(forestry,agriculture,peatextraction,orabandonmentaftertheseactivities),andaverageannualwatertabledepth(±20%).Incaseofdissimilarity,theprojectproponentmustdemonstratethatsuchdifferencegivesaconservativeresultforthenetGHGbenefitsoftheproject.Forecastingpeatsubsidenceratesmustbebasedontheconservativeextrapolationofahistorictrend,orconservativemodelingofproxiessuchaswatertabledepthandlandusetype.PurposeofDataCalculationofbaselineemissionsVM0036,Version1.0SectoralScope14Page50CalculationofthemaximumquantityofGHGemissionreductionsthatmaybeclaimedbytheprojectComments:Theuseofarelativelylowvalueforaconstantrateofpeatlossmaynotbeconfusedwitharelativelyhighvaluewhendeterminingtheneedforstratificationofpeatdepth.Thisparametermustbere-assessedtogetherwiththere-assessmentofthebaselinescenario.DataUnit/Parameter:Ratepeatloss-WPS,iDataunit:myr-1Description:RateofpeatlossduetosubsidenceintheprojectscenarioinstratumiEquations6,10Sourceofdata:Ownmeasurements,expertjudgment,datasetsand/orliteratureofhistoricsubsidenceValueapplied:n/aJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresapplied:Therateofpeatlossduetosubsidencemustbebasedonverifiableinformationandcanbederivedfrom1.Expertjudgment,datasetsand/orliteratureofsubsidenceinvolvingareasrepresentingconditionssimilartotheproject,basedonsurfaceheightmeasurementsrelativetoafixedreferencepointinmasl(e.g.,usingpolesfixedintheunderlyingmineralsoilorrock,orbyusingLiDARfollowingmethodssuchasthosedescribedinBallhornetal.2009)orsimilar.Or2.CO2emissionsderivedfromtheprevalentGESTsbasedonex-antescenariodefinitions(Section8.2.3),incombinationwithdataonvolumetriccarboncontentofthepeat.DividetheannualCO2emission(tCO2ha-1)by44/12,thendividebyvolumetriccarboncontent(gCcm-3)toobtainheightlossinm.Theprojectproponentmustdemonstrate,usingexpertjudgment,datasetsand/orscientificliteraturethattheaccuracyofthederivedrateofpeatlossissufficienttofulfillthecriteriasetoutinSection5.2(Stratification).VM0036,Version1.0SectoralScope14Page51Similarityofareasmustbeillustrated(byownmeasurements,literatureresources,datasetsoracombinationofthese)addressingpeattype,climaticconditions,landuse(forestry,agriculture,peatextraction,orabandonmentaftertheseactivities),andaverageannualwatertabledepth(±20%).Incaseofdissimilarity,theprojectproponentmustdemonstratethatsuchdifferencegivesaconservativeresultforthenetGHGbenefitsoftheproject.PurposeofDataCalculationofthemaximumquantityofGHGemissionreductionsthatmaybeclaimedbytheprojectComments:Onlyforex-anteassessmentDataUnit/Parameter:VCpeatDataunit:tCm-3Description:VolumetriccarboncontentofpeatEquations3,4,9,10Sourceofdata:Thevolumetriccarboncontentinpeatcanbetakenfromownmeasurementswithintheprojectareaorfromliteratureinvolvingtheprojectorsimilarareas.Valueapplied:n/aJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresapplied:Appliedtechniquesshallfollowinternationalstandardsofapplicationorlocalstandardsaslaidoutinpertinentscientificliteratureorhandbooks.PurposeofDataCalculationofthemaximumquantityofGHGemissionreductionsthatmaybeclaimedbytheprojectComments:N/ADataUnit/Parameter:ABSL,i,tDataunit:haDescription:AreaofbaselinestratumiinyeartEquations2,7,8,11,14,26,27,43Sourceofdata:OwnassessmentValueapplied:n/aJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresDelineationofstratamustbedonepreferablyusingageographicalinformationsystem(GIS),whichallowsforintegratingdatafromdifferentsources(includingGPSVM0036,Version1.0SectoralScope14Page52applied:coordinatesandremotesensingdata).Appliedtechniquesshallfollowinternationalstandardsofapplicationorlocalstandardsaslaidoutinpertinentscientificliteratureorhandbooks.PurposeofDataCalculationofbaselineemissionsComments:InEquations2,7,8and11theparameterisdenotedasABSL,i,t100,whichistheareaofbaselinestratumiatt=100.DataUnit/Parameter:RjDataunit:trootd.m.t-1shootd.m.Description:Root:shootratiofortreespeciesjEquations17,33Sourceofdata:Thesourceofdatamustbechosenwithpriorityfromhighertolowerpreferenceasfollows:(a)Nationalandspecies-specificorgroupofspecies-specific(e.g.,fromnationalGHGinventory);(b)Species-specificorgroupofspecies-specificfromneighboringcountrieswithsimilarconditions.Sometimesb)mightbepreferabletoa);(c)Species-specificorgroupofspecies-specificfromglobalstudies.SeealsoIPCCGPG2003,Annex3.A1,Table3A1.8Valueapplied:n/aJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresapplied:TakenfromCDMA/RmethodologyPurposeofDataCalculationofbaselineemissionsCalculationofprojectemissionsComments:DataUnit/Parameter:CFjDataunit:tCtd.m.-1Description:CarbonfractionofdrymatterforspeciesjEquations19,22,23,31,34Sourceofdata:IPCCdefaultvalueVM0036,Version1.0SectoralScope14Page53Valueapplied:0.5Justificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresapplied:IPCCisareputablesourceapprovedbytheVCSPurposeofDataCalculationofbaselineemissionsCalculationofprojectemissionsComments:N/ADataUnit/Parameter:Iv,j,i,tDataunit:m-3ha-1yr-1Description:AverageannualincrementinmerchantablevolumeforspeciesjinstratumiinyeartEquations20Sourceofdata:Basedonmonitoredparameters(species,yieldclass,age)tobefoundinregionalforestgrowthtables.Valueapplied:n/aJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresapplied:CommonsourceofdatainforestryPurposeofDataCalculationofbaselineemissionsComments:N/ADataUnit/Parameter:DjDataunit:td.m.m-3Description:BasicwooddensityforspeciesjEquations20,22,31Sourceofdata:DatasetsorliteratureValueapplied:n/aJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresapplied:ValuesforDjcanbetakenfromtablesgenerallyusedinthelocalorregionaltimberandforestindustry,orfrompeer-reviewedliteratureapplicabletotheregion.Ifnospecies-specificvaluesforDjareavailable,theaveragevalueacrossallspeciescanbeused,increasedby20%toensureconservativeestimatesinthebaseline,ordecreasedbyVM0036,Version1.0SectoralScope14Page5420%toensureconservativeestimatesintheprojectscenario.Thesourceofdatamustbechosenwithpriorityfromhighertolowerpreferenceasfollows:(a)Nationalandspecies-specificorgroupofspecies-specific(e.g.,fromnationalGHGinventory);(b)(Groupof)Species-specificfromneighbouringcountrieswithsimilarconditions.Sometimesb)mightbepreferabletoa);(c)Globallyspecies-specificorgroupofspecies-specific(e.g.,IPCCGPG-LULUCF2003).ThisistakenfromaCDMA/Rmethodology.PurposeofDataCalculationofbaselineemissionsCalculationofprojectemissionsComments:N/ADataUnit/Parameter:BEF1,jDataunit:dimensionlessDescription:Biomassexpansionfactorforconversionofannualnetincrement(includingbark)inmerchantablevolumetototalabove-groundbiomassincrementforspeciesjEquations20Sourceofdata:Thesourceofdatamustbechosenwithpriorityfromhighertolowerpreferenceasfollows:a.Existinglocalandspecies-specificorgroupofspecies-specific;b.Nationalandspecies-specificorgroupofspecies-specific(e.g.,fromnationalGHGinventory)c.Species-specificorgroupofspecies-specificfromneighbouringcountrieswithsimilarconditions(mightbepreferabletobundercertainconditions)d.Climaticzoneandforesttype(egIPCCliterature:Table3A.1.10oftheGPG-LULUCF(IPCC2003)andTable4.5oftheAFOLUGuidelines(IPCC2006)Valueapplied:n/aJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresTakenfromCDMA/RmethodologyVM0036,Version1.0SectoralScope14Page55applied:PurposeofDataCalculationofbaselineemissionsComments:BEFsareagedependent,andtheyareusuallylargeforyoungstandsandquitesmallforoldstands;BEFsinIPCCliteratureandnationalinventorydataareusuallyapplicabletoclosedcanopyforest.IfappliedtoindividualtreesgrowinginopenfielditisrecommendedthattheselectedBEFbeincreasedbyafurther30%.DataUnit/Parameter:KphDataunit:dimensionlessDescription:Alexeyevcoefficient,convertsvolumesofabovegroundgrowingstock(m3ha-1)toabove,belowgroundandbarkdrybiomass(td.m.ha-1)Equations-Sourceofdata:Alexeyevetal.(1995).CarboninvegetationinRussianforests:methodstoestimatestorageandgeographicaldistribution.Water,AirSoilPollution82:271-282Valueapplied:n/aJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresapplied:Peer-reviewedliteratureisaVCS-approvedsourcePurposeofDataCalculationofbaselineemissionsComments:MaybeusedinsteadofRjandBEFjDataUnit/Parameter:Vj,i,tDataunit:m3ha-1Description:StemvolumeoftreespeciesjinstratumiinyeartEquations22Sourceofdata:DatasetsorliteratureValueapplied:n/aJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresCommonsourceofdatainforestryVM0036,Version1.0SectoralScope14Page56applied:PurposeofDataCalculationofbaselineemissionsComments:NotethatvolumetablesfromwhichVj,i,tareobtainedmayormaynotincludeallowanceforlossesduetoharvestingormortality.Suchlossesmaybeconservativelyneglectedwhenestimatingbaselineremovalsinpre-projecttrees.OtherwiseCBSL-tree-AB,j,i,tmustbeestimatedonthebasisofcredibleandtransparentinformationontherateatwhichpre-projectactivities(andmortality,ifapplicable)arereducingcarbonstocksinexistinglivetrees(e.g.,duetoharvestingforlocaltimberconsumption,orforfuelwood).DataUnit/Parameter:BEF2jDataunit:dimensionlessDescription:Biomassexpansionfactorforconversionofstembiomasstoabove-groundtreebiomassforspeciesjEquations22,31Sourceofdata:Thesourceofdatamustbechosenwithpriorityfromhighertolowerpreferenceasfollows:a.Existinglocalandspecies-specificorgroupofspecies-specific;b.Nationalandspecies-specificorgroupofspecies-specific(e.g.,fromnationalGHGinventory)c.Species-specificorgroupofspecies-specificfromneighbouringcountrieswithsimilarconditions(mightbepreferabletobundercertainconditions)d.Climaticzoneandforesttype(e.g.,IPCCliterature:Table3A.1.10oftheGPG-LULUCF(IPCC2003)andTable4.5oftheAFOLUGuidelines(IPCC2006)Valueapplied:n/aJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresapplied:TakenfromCDMA/RmethodologyPurposeofDataCalculationofbaselineemissionsCalculationofprojectemissionsComments:VM0036,Version1.0SectoralScope14Page57DataUnit/Parameter:nTRj,i,tDataunit:treesha-1Description:TreestanddensityofspeciesjinstratumiinyeartEquations23Sourceofdata:FieldmeasurementinsampleplotsorfromforestinventoryValueapplied:n/aJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresapplied:Appliedtechniquesshallfollowinternationalstandardsofapplicationorlocalstandardsaslaidoutinpertinentscientificliteratureorhandbooks.PurposeofDataCalculationofbaselineemissionsComments:N/ADataUnit/Parameter:fj(X,Y,…)Dataunit:td.m.tree-1Description:Allometricequationforspeciesjlinkingmeasuredtreedimensionvariables(e.g.,diameteratbreastheight(DBH)andpossiblyheight(H))toabove-groundbiomassoflivingtrees.Equations23Sourceofdata:Ownmeasurementsorliterature,orbothValueapplied:n/aJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresapplied:Theallometricequationsarepreferablylocallyderivedandspeciesspecific.Whenallometricequationsdevelopedfromabiome-widedatabase,suchasthoseinAnnex4A.2,Tables4.A.1and4.A.2ofIPCCGPGLULUCF,areused,itisnecessarytoverifybydestructivelyharvesting,withintheprojectareabutoutsidethesampleplots,afewtreesofdifferentsizesandestimatetheirbiomassandthencompareagainstaselectedequation.Ifthebiomassestimatedfromtheharvestedtreesiswithinabout1bytheequation,thenitcanbeassumedthattheselectedequationissuitablefortheproject.Ifthisisnotthecase,itisrecommendedtodeveloplocalallometricequationsfortheprojectuse.Forthis,asampleoftrees,representingdifferentsizeclasses,isdestructivelyharvested,anditstotalbiomassisdetermined.ThenumberoftreestobedestructivelyharvestedandmeasureddependsontheVM0036,Version1.0SectoralScope14Page58rangeofsizeclassesandnumberofspecies—thegreatertheheterogeneitythemoretreesarerequired.PurposeofDataCalculationofbaselineemissionsCalculationofprojectemissionsComments:UsedfortreesknownatvalidationDataUnit/Parameter:GHGGESTbsl-CO2,i,tDataunit:tCO2eha-1yr-1Description:EmissionofCO2frombaselineGESTinstratumiinyeartEquations26,43Sourceofdata:Datacanbeobtainedfrompeer-reviewedliteratureorfromownmeasurements.Valueapplied:n/aJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresapplied:SeeSection9.3.6forprocedurestodescribeandquantifythisproxy.Comments:Thisparametermustbere-assessedtogetherwiththere-assessmentofthebaselinescenario.DataUnit/Parameter:GHGWLbsl-CO2,i,tDataunit:tCO2eha-1yr-1Description:EmissionofCO2relatedtowatertabledepthinthebaselinescenarioinstratumiinyeartEquations27Sourceofdata:Datacanbeobtainedfrompeer-reviewedliteratureorfromownmeasurements.Valueapplied:n/aJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresapplied:SeeSection9.3.6forprocedurestoquantifythisproxy.Theprojectmayestablishproject-specificvaluesforGHGWLbsl-CO2orapplyvaluesfromappropriateliteraturesourcespertainingtolanduseclasses,orwatertabledepthsorwatertabledepthclassesandsimilarprojectcircumstances.Forsuchliteraturevaluestheaccuracymustbedefinedorconservativenessmustbejustified.Projectcircumstancesaredefinedbypre-projectlanduse(e.g.,forestry,peatmining,agriculture,abandonmentaftersuchVM0036,Version1.0SectoralScope14Page59activities)anditsintensity,climaticzone,watertabledepths,andpeattype.Ifthemeanannualwatertabledepthintheprojectareaexceedsthedepthrangeforwhichtheemission-vegetationoremission-watertabledepthrelationshipdeterminedfortheprojectisvalid,aconservativeextrapolationmustbeused.PurposeofDataCalculationofbaselineemissionsComments:Thisparametermustbere-assessedtogetherwiththere-assessmentofthebaselinescenario.DataUnit/Parameter:GHGGESTbsl-CH4,i,tDataunit:tCO2eha-1yr-1Description:EmissionofCH4frombaselineGESTinstratumiinyeartEquations26,43Sourceofdata:Datacanbeobtainedfrompeer-reviewedliteratureorfromownmeasurements.Valueapplied:n/aJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresapplied:SeeSection9.3.6forprocedurestodescribeandquantifythisproxy.PurposeofDataCalculationofbaselineemissionsComments:Thisparametermustbere-assessedtogetherwiththere-assessmentofthebaselinescenario.DataUnit/Parameter:GHGWLbsl-CH4,i,tDataunit:tCO2eha-1yr-1Description:EmissionofCH4relatedtowatertabledepthinthebaselinescenarioinstratumiinyeartEquations27Sourceofdata:Datacanbeobtainedfrompeer-reviewedliteratureorfromownmeasurements.Valueapplied:n/aJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresapplied:SeeSection9.3.6forprocedurestoquantifythisproxy.Theprojectmayestablishproject-specificvaluesforGHGWLbsl-CH4orapplyvaluesfromappropriateliteraturesourcespertainingtolanduseclasses,orwatertableVM0036,Version1.0SectoralScope14Page60depthsorwatertabledepthclassesandsimilarprojectcircumstances.Forsuchliteraturevaluestheaccuracymustbedefinedorconservativenessmustbejustified.Projectcircumstancesaredefinedbypre-projectlanduse(e.g.,forestry,peatmining,agriculture,abandonmentaftersuchactivities)anditsintensity,climaticzone,watertabledepths,andpeattype.Ifthemeanannualwatertabledepthintheprojectareaexceedsthedepthrangeforwhichtheemission-vegetationoremission-watertabledepthrelationshipdeterminedfortheprojectisvalid,aconservativeextrapolationmustbeused.GHGWLbsl-CH4maybeconservativelyneglected.PurposeofDataCalculationofbaselineemissionsComments:Thisparametermustbere-assessedtogetherwiththere-assessmentofthebaselinescenario.DataUnit/Parameter:VI,j,j,sp,tDataunit:m3tree-1Description:StemvolumeoftreelofspeciesjinplotspinstratumiinyeartEquations35Sourceofdata:VI,j,j,sp,tisbasedonavailableequationsoryieldtables(iflocallyderivedequationsoryieldtablesarenotavailableuserelevantregional,nationalordefaultdataasappropriate).Valueapplied:n/aJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresapplied:CommonsourceofdatainforestryPurposeofDataCalculationofbaselineemissionsComments:N/ADataUnit/Parameter:ApeatburnDataunit:haVM0036,Version1.0SectoralScope14Page61Description:CumulativeareaburntEquations50Sourceofdata:Statisticsand/ormapsinofficialreportsand/orremotessensingdataValueapplied:n/aJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresapplied:Thecumulativeareaburntmustbeprovidedusingstatisticsand/ormapsinofficialreportsand/orremotessensingdata.Repeatedburningofthesameareaaddstothecumulativearea.DelineationoftheprojectareamustbedonepreferablyusingaGeographicalInformationSystem(GIS),whichallowsforintegratingdatafromdifferentsources(includingGPScoordinatesandRemoteSensingdata).Appliedtechniquesshallfollowinternationalstandardsofapplicationorlocalstandardsaslaidoutinpertinentscientificliteratureorhandbooks.PurposeofDataCalculationofbaselineemissionsComments:N/ADataUnit/Parameter:APDataunit:haDescription:TotalprojectareaEquations49,50Sourceofdata:OwnassessmentValueapplied:n/aJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresapplied:DelineationoftheprojectareamustbedonepreferablyusingaGeographicalInformationSystem(GIS),whichallowsforintegratingdatafromdifferentsources(includingGPScoordinatesandRemoteSensingdata).Appliedtechniquesshallfollowinternationalstandardsofapplicationorlocalstandardsaslaidoutinpertinentscientificliteratureorhandbooks.PurposeofDataCalculationofbaselineemissionsComments:N/AVM0036,Version1.0SectoralScope14Page629.2DataandParametersMonitoredDataUnit/Parameter:AWPS,i,tDataunit:haDescription:AreaofprojectstratumiinyeartEquations:2,7,8,11,30,40,43Sourceofdata:OwnassessmentValueapplied:n/aDescriptionofmeasurementmethodsandprocedurestobeapplied:DelineationofstratamustbedonepreferablyusingaGeographicalInformationSystem(GIS),whichallowsforintegratingdatafromdifferentsources(includingGPScoordinatesandRemoteSensingdata).Appliedtechniquesshallfollowinternationalstandardsofapplicationorlocalstandardsaslaidoutinpertinentscientificliteratureorhandbooks.Frequencyofmonitoring/recording:DeterminedateachmonitoringperiodQA/QCprocedurestobeapplied:SeeSection9.3.2PurposeofData:CalculationofprojectemissionsComments:InEquations2,7,8and11theparameterisdenotedasAWPS,i,t100,whichistheareaofprojectstratumiatt=100.DataUnit/Parameter:Asp,iDataunit:haDescription:TotalareaofallsampleplotsinstratumiEquations:37Sourceofdata:FieldmeasurementsValueapplied:n/aDescriptionofmeasurementmethodsandprocedurestobeapplied:SampleplotsmaybedelineatedonamapusingaGeographicalInformationSystem(GIS).Alternatively,coordinatesofsampleplotsmapbestoredinaGIS.Thedatabasemustcontaininformationonplotsizeandorientation.Appliedtechniquesshallfollowinternationalstandardsofapplicationorlocalstandardsaslaidoutinpertinentscientificliteratureorhandbooks.VM0036,Version1.0SectoralScope14Page63Frequencyofmonitoring/recording:DeterminedatfirstmonitoringperiodQA/QCprocedurestobeapplied:SeeSection9.3.2PurposeofData:CalculationofprojectemissionsComments:N/ADataUnit/Parameter:fj(X,Y,…)Dataunit:td.m.tree-1Description:Allometricequationforspeciesjlinkingmeasuredtreedimensionvariables(e.g.,diameteratbreastheight(DBH)andpossiblyheight(H))toabove-groundbiomassoflivingtrees.Equations:38Sourceofdata:Ownmeasurementsorliterature,orbothValueapplied:n/aDescriptionofmeasurementmethodsandprocedurestobeapplied:Theallometricequationsarepreferablylocallyderivedandspeciesspecific.Whenallometricequationsdevelopedfromabiome-widedatabase,suchasthoseinAnnex4A.2,Tables4.A.1and4.A.2ofIPCCGPGLULUCF,areused,itisnecessarytoverifybydestructivelyharvesting,withintheprojectareabutoutsidethesampleplots,afewtreesofdifferentsizesandestimatetheirbiomassandthencompareagainstaselectedequation.Ifthebiomassestimatedfromtheharvestedtreesiswithinabout10%ofthatpredictedbytheequation,thenitcanbeassumedthattheselectedequationissuitablefortheproject.Ifthisisnotthecase,itisrecommendedtodeveloplocalallometricequationsfortheprojectuse.Forthis,asampleoftrees,representingdifferentsizeclasses,isdestructivelyharvested,anditstotalbiomassisdetermined.Thenumberoftreestobedestructivelyharvestedandmeasureddependsontherangeofsizeclassesandnumberofspecies—thegreatertheheterogeneitythemoretreesarerequired.Frequencyofmonitoring/recording:DeterminedatfirstmonitoringperiodQA/QCprocedurestobeapplied:SeeSection9.3.2VM0036,Version1.0SectoralScope14Page64PurposeofData:CalculationofprojectemissionsComments:UsedfortreesmonitoredDataUnit/Parameter:DBHDataunit:cmDescription:DiameteratbreastheightoftreeEquations:38Sourceofdata:FieldmeasurementinsampleplotsValueapplied:n/aDescriptionofmeasurementmethodsandprocedurestobeapplied:Measureallthetreesabove5cmDBHattypically1.3mabove-groundlevelinthepermanentsampleplots.Appliedtechniquesshallfollowinternationalstandardsofapplicationorlocalstandardsaslaidoutinpertinentscientificliteratureorhandbooks.Frequencyofmonitoring/recording:DeterminedateachmonitoringperiodQA/QCprocedurestobeapplied:SeeSection9.3.2PurposeofData:CalculationofprojectemissionsComments:N/ADataUnit/Parameter:HDataunit:mDescription:HeightoftreeEquations:38Sourceofdata:FieldmeasurementinsampleplotsValueapplied:n/aDescriptionofmeasurementmethodsandprocedurestobeapplied:Appliedtechniquesshallfollowinternationalstandardsofapplicationorlocalstandardsaslaidoutinpertinentscientificliteratureorhandbooks.FrequencyofDeterminedateachmonitoringperiodVM0036,Version1.0SectoralScope14Page65monitoring/recording:QA/QCprocedurestobeapplied:SeeSection9.3.2PurposeofData:CalculationofprojectemissionsComments:N/ADataUnit/Parameter:GHGGESTwps-CO2,i,tDataunit:tCO2eha-1yr-1Description:EmissionofCO2fromprojectGESTinstratumiinyeartEquations:40,43Sourceofdata:Datacanbeobtainedfrompeer-reviewedliteratureorfromownmeasurements.Valueapplied:n/aDescriptionofmeasurementmethodsandprocedurestobeapplied:SeeSection9.3.6forprocedurestoquantifythisproxy.Frequencyofmonitoring/recording:SeeSection9.3.6QA/QCprocedurestobeapplied:SeeSection9.3.2PurposeofData:CalculationofprojectemissionsComments:N/ADataUnit/Parameter:GHGGESTwps-CH4,i,tDataunit:tCO2eha-1yr-1Description:EmissionofCH4fromprojectGESTinstratumiinyeartEquations:40,43Sourceofdata:Datacanbeobtainedfrompeer-reviewedliteratureorfromownmeasurements.Valueapplied:n/aDescriptionofmeasurementmethodsandprocedurestobeapplied:SeeSection9.3.6forprocedurestoquantifythisproxy.Frequencyofmonitoring/recording:SeeSection9.3.6VM0036,Version1.0SectoralScope14Page66QA/QCprocedurestobeapplied:SeeSection9.3.2PurposeofData:CalculationofprojectemissionsComments:N/ADataUnit/Parameter:GHGWLwps-CO2,i,tDataunit:tCO2eha-1yr-1Description:EmissionofCO2relatedtowatertabledepthintheprojectscenarioinstratumiinyeartEquations:41Sourceofdata:Datacanbeobtainedfrompeer-reviewedliteratureorfromownmeasurements.Valueapplied:n/aDescriptionofmeasurementmethodsandprocedurestobeapplied:SeeSection9.3forprocedurestoquantifythisproxy.Theprojectmayestablishproject-specificvaluesforGHGWLwps-CO2orapplyvaluesfromappropriateliteraturesourcespertainingtolanduseclasses,orwatertabledepthsorwatertabledepthclasses.Forsuchliteraturevaluestheaccuracymustbedefinedorconservativenessmustbejustified.Ifthemeanannualwatertabledepthintheprojectareaexceedsthedepthrangeforwhichtheemission-vegetationoremission-watertabledepthrelationshipdeterminedfortheprojectisvalid,aconservativeextrapolationmustbeused.Frequencyofmonitoring/recording:SeeSection9.3.5QA/QCprocedurestobeapplied:SeeSection9.3.2PurposeofData:CalculationofprojectemissionsComments:N/ADataUnit/Parameter:GHGWLwps-CH4,i,tDataunit:tCO2eha-1yr-1Description:EmissionofCH4relatedtowatertabledepthintheprojectscenarioinstratumiinyeartEquations:41VM0036,Version1.0SectoralScope14Page67Sourceofdata:Datacanbeobtainedfrompeer-reviewedliteratureorfromownmeasurements.Valueapplied:n/aDescriptionofmeasurementmethodsandprocedurestobeapplied:SeeSection9.3.6forprocedurestoquantifythisproxy.Theprojectmayestablishproject-specificvaluesforGHGWLwps-CH4orapplyvaluesfromappropriateliteraturesourcespertainingtolanduseclasses,orwatertabledepthsorwatertabledepthclasses.Forsuchliteraturevaluestheaccuracymustbedefinedorconservativenessmustbejustified.Ifthemeanannualwatertabledepthintheprojectareaexceedsthedepthrangeforwhichtheemission-vegetationoremission-watertabledepthrelationshipdeterminedfortheprojectisvalid,aconservativeextrapolationmustbeused.Frequencyofmonitoring/recording:SeeSection9.3.6QA/QCprocedurestobeapplied:SeeSection9.3.2PurposeofData:CalculationofprojectemissionsComments:N/ADataUnit/Parameter:WatertabledepthDataunit:cmDescription:Sub-soilorabovesoilsurfaceofwater,relativetothesoilsurfaceEquations:-Sourceofdata:OwnmeasurementsValueapplied:n/aDescriptionofmeasurementmethodsandprocedurestobeapplied:ProceduresforwatertabledepthmeasurementsareprovidedinSection9.3.6.Frequencyofmonitoring/recording:SeeSection9.3.6QA/QCprocedurestobeapplied:SeeSection9.3.2PurposeofData:CalculationofprojectemissionsComments:UsedinSection9.3.4VM0036,Version1.0SectoralScope14Page68DataUnit/Parameter:t2andt1Dataunit:yrDescription:YearsofthemonitoringactivityEquations:63,64Sourceofdata:FieldmeasurementinsampleplotsValueapplied:n/aDescriptionofmeasurementmethodsandprocedurestobeapplied:N/AFrequencyofmonitoring/recording:DeterminedateachmonitoringperiodQA/QCprocedurestobeapplied:SeeSection9.3.2PurposeofData:CalculationofprojectemissionsComments:T=t2-t19.3DescriptionoftheMonitoringPlan9.3.1GeneralThemainobjectiveofprojectmonitoringistoreliablyquantifycarbonstocksandGHGemissionsintheprojectscenarioduringtheprojectcreditingperiod,priortoeachverification,withthefollowingmaintasks:•MonitoringofprojectcarbonstockchangesandGHGemissions•Estimationofex-posttotalnetcarbonstockchangesandgreenhousegasemissions,andGHGemissionsreductionsThemonitoringplanmustcontainatleastthefollowingsections:•Adescriptionofeachmonitoringtasktobeundertaken,andthetechnicalrequirements•Parameterstobemeasured•Datatobecollectedanddatacollectiontechniques•Frequencyofmonitoring•QualityAssuranceandQualityControl(QA/QC)procedures•Dataarchivingprocedures•Roles,responsibilitiesandcapacityofmonitoringteamandmanagementVM0036,Version1.0SectoralScope14Page699.3.2UncertaintyandqualitymanagementQualitymanagementproceduresarerequiredforthemanagementofdataandinformation,includingtheassessmentofuncertainty,relevanttotheprojectandbaselinescenarios.Asfaraspractical,uncertaintiesrelatedtothequantificationofGHGemissionreductionsandremovalsbysinksshouldbereduced.Tohelpreduceuncertaintiesintheaccountingofemissionsandremovals,thismethodologyuseswheneverpossibletheprovenmethodsfromtheGPG-LULUCF,GPG-2000,theIPCC’sRevised2006Guidelinesandpeer-reviewedliterature.Despitethis,potentialuncertaintiesstillarisefromthechoiceofparameterstobeused.UncertaintiesarisingfrominputparameterswouldresultinuncertaintiesintheestimationofbothbaselinenetGHGemissionsandprojectnetGHGemissions-especiallywhenglobaldefaultvaluesareused.Theprojectproponentmustidentifykeyparametersthatwouldsignificantlyinfluencetheaccuracyofestimates.Localvaluesthatarespecifictotheprojectcircumstancesmustthenbeobtainedforthesekeyparameters,wheneverpossible.Thesevaluesshouldbebasedon:•Datafromwell-referencedpeer-reviewedliteratureorotherwell-establishedpublishedsources27;or,•NationalinventorydataordefaultdatafromIPCCliteraturethathas,wheneverpossibleandnecessary,beencheckedforconsistencyagainstavailablelocaldataspecifictotheprojectcircumstances;or•Intheabsenceoftheabovesourcesofinformation,expertopinion(seeSection9.3.3)maybeusedtoassistwithdataselection.Expertswilloftenprovidearangeofdata,aswellasamostprobablevalueforthedata.Therationaleforselectingaparticulardatavaluemustbebrieflynotedintheprojectdocumentation.Inchoosingkeyparameters,ormakingimportantassumptionsbasedoninformationthatisnotspecifictotheprojectcircumstances,suchasinuseofdefaultdata,projectproponentsmustselectvaluesthatwillleadtoanaccurateestimationofnetGHGemissionreductions,takingintoaccountuncertainties.Ifuncertaintyissignificant,projectproponentsmustchoosedatasuchthatitindisputablytendstounder-estimate,ratherthanover-estimate,netGHGprojectbenefits.Forexample,conservativenessinGHGemissionreductionsbasedonGESTscouldbeestablishedbyapplyingtoolowfluxvaluestoGESTsinthebaseline.Theconservativenessofthevalue(e.g.,applyingthevalueofthenextwetterGEST),oranyalternativewayofensuringconservativeness,mustbedemonstrated.Toensurethatcarbonstocksareestimatedinawaythatisaccurate,verifiable,transparent,andconsistentacrossmeasurementperiods,theprojectproponentmustestablishanddocument27Typically,citationsforsourcesofdatausedshouldinclude:thereportorpapertitle,publisher,pagenumbers,publicationdateetc(oradetailedwebaddress).Ifweb-basedreportsarecited,hardcopiesshouldbeincludedasannexesintheprojectdocumentationifthereisanylikelihoodsuchreportsmaynotbepermanentlyavailable.VM0036,Version1.0SectoralScope14Page70clearstandardoperatingproceduresandproceduresforensuringdataquality.Ataminimum,theseproceduresmustinclude:•Comprehensivedocumentationofallfieldmeasurementscarriedoutintheprojectarea.Thisdocumentmustbedetailedenoughtoallowreplicationofsamplingintheeventofstaffturnoverbetweenmonitoringperiods.•Trainingproceduresforallpersonsinvolvedinfieldmeasurementordataanalysis.Thescopeanddateofalltrainingmustbedocumented.•Aprotocolforassessingtheaccuracyofplotmeasurementsusingacheckcruiseandaplanforcorrectingtheinventoryiferrorsarediscovered.•Protocolsforassessingdataforoutliers,transcriptionerrors,andconsistencyacrossmeasurementperiods.•Datasheetsmustbesafelyarchivedforthelifeoftheproject.Datastoredinelectronicformatsmustbebackedup.9.3.3ExpertjudgmentExpertjudgmentonmethodologicalchoiceandchoiceofinputdataandtofillgapsintheavailabledata,toselectdatafromarangeofpossiblevaluesoronuncertaintyrangesiswellestablishedintheIPCC2006goodpracticeguidance.Obtainingwell-informedjudgmentsfromdomainexpertsregardingbestestimatesanduncertaintiesofinputstothequantificationofemissionreductionsisanimportantaspectinvariousproceduresthroughoutthismethodology.ProjectproponentsmustusetheguidanceprovidedinChapter2,Volume1(ApproachestoDataCollection),inparticular,Section2.2andAnnex2A.1oftheIPCC2006GuidelinesforNationalGreenhouseGasInventories.9.3.4MonitoringofprojectimplementationInformationmustbeprovided,andrecordedintheprojectdocumentationtoestablishthat:a)Thegeographicpositionoftheprojectboundaryisrecordedforallareasofland.Thegeographiccoordinatesoftheprojectboundary(andanystratificationorbufferzonesinsidetheboundary)areestablished,recordedandarchived.Thiscanbeachievedbyfieldsurvey(e.g.,usingGPS),orbyusinggeoreferencedspatialdata(e.g.,maps,GISdatasets,orthorectifiedaerialphotographyorgeoreferencedremotesensingimages).Theabovealsoappliestotherecordingofstrata,includingstrataresultingfrompeatlandfiresintheprojectscenario(Section8.3).b)Commonlyacceptedprinciplesoflanduseinventoryandmanagementareimplementedsuchasthefollowing:•Standardoperatingprocedures(SOPs)andqualitycontrol/qualityassurance(QA/QC)proceduresforinventoriesincludingfielddatacollectionanddatamanagementmustbeapplied.UseoradaptationofSOPsalreadyappliedinnationalVM0036,Version1.0SectoralScope14Page71landusemonitoring,oravailablefrompublishedhandbooks,orfromtheIPCCGPGLULUCF2003,isrecommended;•ApplySOPs,especially,foractionslikelytocausepeatdisturbances;•Theprojectplan,togetherwitharecordoftheplanasactuallyimplementedduringtheprojectmustbeavailableforvalidationorverification,asappropriate.Continuedcompliancewiththeapplicabilityconditionsofthismethodologymustbeensuredbymonitoringthat:•Burningofbiomasswithintheprojectboundaryintheprojectscenariodoesnotoccur.Smallandisolatedevents(withdeminimiseffectsonGHGemissions’),althoughnotpermitted,donotfailtheproject.•Peatlandfireswithintheprojectboundarydonotoccurintheprojectscenario.Iftheyoccurasnon-catastrophiceventsasdefinedinthismethodology,theyareaccountedforbycancellingtheFireReductionPremiumfortheentireprojectortheindividualsub-project.•Waterleakage,ifoccurring,islimitedtoaccidentsthatcanberepaired(e.g.,thebreachingofadam).Suchaccidentsandtheirremediationmustbemonitoredtogetherwithjustificationsthattheeffecthasbeentemporalandinsignificantandhasnotcausedthediebackofwoodyvegetationinadjacentareas.•N-fertilizersarenotusedwithintheprojectboundaryintheprojectscenario.Theeffectivenessofbufferzonesmustbedemonstrated.Thismustbedoneusingwaterlevelgaugesorvegetationassessments(seeSection9.3.6forprocedures),oracombinationofthese.a)Ifabufferzonehasbeenestablished,waterlevelgaugesmustbeinstalledattheboundaryofthebufferzone(outerboundaryifusedagainstleakage,innerboundaryifusedagainstdrainageactivitiesoutsidetheprojectarea)andreadingsmustbecomparedwiththehydrologicalmodelingresultsorexpertjudgmentonwhichtheestablishmentofthebufferzonewasbased.Thenumberandspacingofwaterlevelgaugesmustbebasedonhydrologicalmodelingorexpertjudgment.Alternatively,aGESTvegetationassessmentmustbeperformedinthebufferzone.Resultsforvegetationtypesadjacenttotheprojectboundaryarecomparedwiththevegetationcompositioninthesameareaatprojectstart.b)Inthecaseofanimpermeabledam,todemonstrateitseffectiveness,waterlevelgaugesmustbelocatedoutsidethedam(ifusedagainstleakage)orinsidethedam(ifusedagainsteffectsofdrainageoutsidetheprojectboundary).Placinggaugesoutsidetheboundarymayrequireagreementswithadjacentlandownersifthedamislocatedontheprojectboundary.Alternatively,avegetationassessmentmustbeperformedinastripadjacenttoandoutsidetheprojectboundary(leakage)orinsidetheboundary(outsidedrainageeffects).ThewidthofthisstripisdeterminedbythesizeoftheareawithhomogeneousGESTcharacteristicsnearesttotheboundary.Resultsarecomparedwiththevegetationcompositioninthesamezoneatprojectstart.VM0036,Version1.0SectoralScope14Page72c)Inabsenceofabufferzoneoranimpermeabledam(e.g.,incasepump-drainedsystemsarerewetted),waterlevelgaugesmustbeinstalledorvegetationassessedasdescribedin(a)above,ortheproponentmustjustifyintheprojectdocumentationthatsuchmeasurementscanbeomitted.9.3.5StratificationandsamplingframeworkStratificationoftheProjectAreaintorelativelyhomogeneousunitscaneitherincreasethemeasuringprecisionwithoutincreasingthecostunduly,orreducethecostwithoutreducingmeasuringprecisionbecauseofthelowervariancewithineachhomogeneousunit.Projectproponentsmustpresentintheprojectdocumentationanex-antestratificationoftheProjectAreaorjustifythelackofit.Thenumberandboundariesofthestratadefinedexantemaychangeduringtheprojectcreditingperiod(expost).Theex-poststratificationmustbeupdatedbecauseofthefollowingreasons:•Unexpecteddisturbancesoccurringduringtheprojectcreditingperiod(e.g.,duetochangesinthehydrology,fire,pestsordiseaseoutbreaks),affectingdifferentlyvariouspartsofanoriginallyhomogeneousstratum;•Managementactivities(forestry,agriculture,hydrology)thatareimplementedinawaythataffectstheexistingstratification.Establishedstratamaybemergedifthereasonsfortheirestablishmenthavedisappeared.Thesamplingframework,includingsamplesize,plotsize,plotshape,anddeterminationofplotlocationmustbespecifiedintheprojectdocumentation.Wherechangesincarbonstocksaretobemonitored(i.e.,intrees),permanentsamplingplotsareused,notingthefollowing:1)Todeterminethesamplesizeandallocationamongstrata,thismethodologyusestheproceduresinSection9.3.5andthelatestversionofthetoolforthe“CalculationofthenumberofsampleplotsformeasurementswithinA/RCDMprojectactivities”,approvedbytheCDMExecutiveBoard.Thetargetedconfidenceintervalmustbe90%or95%.Wherea90%confidenceintervalisadoptedandthewidthoftheconfidenceintervalexceeds20%oftheestimatedvalueorwherea95%confidenceintervalisadoptedandthewidthoftheconfidenceintervalexceeds30%oftheestimatedvalue,anappropriateconfidencedeductionmustbeapplied,asoutlinedinSection8.5.2.2)Inordertoavoidbias,sampleplotsshouldbemarkedinconspicuously.3)Thesampleplotsizemustbeestablishedaccordingtocommonpracticeinforestandvegetationinventories.4)Toavoidsubjectivechoiceofplotlocations,thepermanentsampleplotsmustbelocatedeithersystematicallywitharandomstartorcompletelyrandomlyinsideeachdefinedstratum.Thegeographicalposition(GPScoordinate),administrativelocation,stratumandstand,seriesnumberofeachplot,aswellastheprocedureusedforlocatingthemVM0036,Version1.0SectoralScope14Page73mustberecordedandarchived.Thesamplingplotsaretobeasevenlydistributedaspossible,wherelargerstratahavemoreplotsthansmallerstrata.However,remoteareasandareaswithpooraccessibilitymaybeexcludedforthelocationofsamplingplots.Suchareasmustbemappedasseparatestrataandforthesestrataaccountingofcarbonstocksintreebiomassintheprojectscenarioisconservativelyomitted(Section8.2.2).GuidanceonplotsizeforGESTassessmentsisprovidedunder“AssessingthespatialdistributionofGESTs”inSection9.3.6.Thechoiceofmonitoringfrequencymustbejustifiedintheprojectdocumentation.9.3.6EstimatingGHGemissionsonthebasisofGESTsandwatertabledepthAGEST-indicationsystemisbasedonameta-analysisofpublishedandotherdataofGHGfluxes(emissionsorremovals)inrelationtositecharacteristicsofawiderangeofsitesinaspecificbiogeographicandclimaticregion(Couwenbergetal.,2011).FortheanalysisofGHGfluxes,onlydataonyearlynetfluxes,basedonyear-roundmeasurementsoronsoundmodelextrapolationsareused.WithrespecttoCO2fluxes,carehastobetakentoincludeonlynetCO2balances(NEEorNEP)fromreliablemodelsusinglightanddarkfluxesasinput.Themeta-analysisofdataisusedforthefollowing:•ClassifyvegetationdataandGHGfluxcharacteristicsinawaythatthedistinguishedvegetationtypesoptimallyindicateGHGfluxes;•DevelopregressionmodelsbetweenGHGfluxesandmeanannualwatertabledepth(asthisistheprimeexplanatoryvariableforannualGHGfluxesfrompeatland)inordertoallowatriangularverificationcrosscheckbetweenindependentdatasets:(i)fluxdatarelatedtothevegetationtypes,(ii)fluxdatarelatedtowatertabledepthsand(iii)vegetationtypesrelatedtowatertabledepths.DeterminingCO2andCH4emissionsForproject-specificfluxvaluestheprojectproponentmaycarryoutdirectmeasurementsofGHGfluxes,suchasclosedchamberandeddycovariancemeasurements.Appliedtechniquesmustfollowinternationalstandardsofapplicationaslaidoutinpertinentscientificliterature(e.g.,Matson&Harriss,1995,Patteyetal.2006,Almetal.2007,Evansetal.2011).DeterminingGESTsGESTscanbeclassifiedandspecifiedwithrespecttotheirGHGfluxvaluesusingthefollowingstep-wiseprotocolformeta-analysisofcollecteddata(cf.Couwenbergetal.,2011):1)DevelopregressionmodelsbetweenGHGfluxesandmeanannualwatertabledepthonthebasisofallavailabledatafromtherelevantbiogeographicandclimaticregion;2)Classifyrelevantvegetationtypesthatareactuallyfoundandpotentiallyexpectedintheregiononthebasisofplantspeciesorspeciesgroupsindicativeforwatertabledepth,VM0036,Version1.0SectoralScope14Page74usingforexamplethebio-indicationdataofEllenbergetal.(1992)andKoskaetal.(2001);3)ComparethedistinguishedvegetationtypeswiththevegetationdatafromsitesintherelevantregionforwhichreliableGHGfluxdataareavailable.Ifvegetationofatypeissufficientlysimilar(e.g.,withrespecttopresenceandabsenceofspeciesgroups(Koska,2007;Koskaetal.2001);similarityisdefinedonthebasisoffloristiccompositionorplantfunctionaltypesandexpertjudgmentandmustbejustified)tovegetationforwhichtheGHGfluxvaluesarereportedinliterature,therangeofGHGvaluesfromliteratureisascribedtothetype;4)Theresultsofstep3maybeverifiedandrefinedbycomparingthewatertabledepthdata(acquiredfromfieldobservation,vegetationformindication(Koskaetal.2001)and/orEllenbergvalues)ofthesitesusedunderStep3abovewiththeregressionmodelsfromStep1abovetoverifyandrefinethefluxvaluesfoundunderStep3above.Afterverificationandrefinementofthefluxvalues,thevegetationtypeisaGEST.5)Incaseadistinguishedvegetationtypedoesnothavesufficientsimilarity(seeabove)withvegetationdescribedinGHGliterature,usethemeanannualwatertabledepthdataandtheregressionmodelstoestablishitspreliminaryfluxvalues.6)OptimizetheGHGfluxvalueofthevegetationtypebyexpertjudgmentusingthematrixofalldistinguishedvegetationtypesandtakingintoaccounttheemission-relevantsitecharacteristicsofthevegetationtype(incl.theproportionofshuntspeciesincasemeanwatertabledepthsarehigherthan20cmbelowsurface;watertabledepth,soilreaction,C/Nofthepeat,typeandintensityoflanduse)andtheemissionandsitecharacteristicsofrelatedvegetationtypes.AssoonastheGHGfluxvaluesofatypecanbeconsistentlyandunequivocallydefined,thetypeisconsideredaGEST(Table3),independentfromthededucedrangeofGHGfluxes.LaterexpansionoftheGHGflux/vegetationdatasetmayleadtofurtherrefiningtheGESTsandtonarrowingGHGfluxranges.7)FluxvaluesassociatedwithvegetationtypesmustcomplywithQA/QCrequirementsoutlinedinSection9.3.2andaresubjecttotheuncertaintyassessment.Whereanuncertaintyvalueisnotknownorcannotbesimplycalculatedtheprojectproponentmustjustifythataconservativevalueisused.Theresultsofthisproceduremustbedescribedintheprojectdocumentation.AnexampleofthiscanbefoundinTable9.1below.VM0036,Version1.0SectoralScope14Page75Table9.1:ExampleofGESTsRelatedtoWaterTableDepthClassandCH4andCO2EmissionValues(afterCouwenbergetal.2008,2011).GESTTypical/differentiatingspeciesWatertabledepthclassCO2emissiontCO2eha-1yr-1CH4emissiontCO2eha-1yr-1ReferenceMoistbogheathCalluna,Vacciniummyrt.,Ledum+Dicranumscop.,Pleurozium(+Molinia)Moist12.50Couwenbergetal.2008,2011WetreedsandsedgefensCarexpaniculata,Epilobiumhirsutum,Lycopus,Lythrum,BerulaerectaWet-412.5Couwenbergetal.2008,2011Watertabledepthclassesrefertowatersupply:+:wetlandsandaquatichabitats;-:non-hydricterrestrialhabitats.Theyarecharacterisedby:WLw:long-termmedianwatertabledepthwetseason;WLd:longtermmedianwatertabledepthdryseason;andWD:watersupplydeficiency.Seasonallyalternatingwetnessisindicatedbyacombinationofdifferentwatertabledepthclasses(e.g.,5+/4+referstoaWLwwithin5+rangeandaWLdwithin4+range).Stronglyalternatingwetnessisindicatedbyatilde-sign(e.g.,3~referstoaWLwwithin4+rangeandaWLdwithin2+range).ClassWatertabledepthrelatedtosurface(+above,-below)7+UppersublitoralWLm:+250to+140cm6+LowereulitoralWLm:+140to+20cm5+Wet(uppereulitoral)WLm:+20to0cm4+VerymoistWLm:0to-20cm3+MoistWLm:-20to-45cm2+ModeratelymoistWLm:-45to-80cm2-ModeratelydryWD:<60l/m²3-DryWD:60–100l/m²4-VerydryWD:100–140l/m²5-ExtremelydryWD:>140l/m²AssessingthespatialdistributionofGESTsForassessingthespatialdistributionofGESTsinthefield,projectproponentsmustapplythefollowingprocedure:VM0036,Version1.0SectoralScope14Page761)Mapunitsofmoreorlesshomogenousvegetationusingcommonapproaches(incl.remotesensing,seeBox)andspecifymappingresolution.Useunitslargerthan3000m2.Includeareas<3000m2withdeviatingvegetationinanadjacentmappingunit,whenthewatertabledepthisidenticalandthesoilreliefdifferencessmallerthan1dm.Mapstronglydeviantunits(muchhigher,muchlower,forested,openspotsinforest)>1000m2but<3000m2separately.Includedeviantareas<1000m2intheadjacentmappingunittowhichitismostrelated.2)Mapvegetationunits<3000m2withsoilreliefdifferencesofmorethan1decimeter(fine-scaledpeatextractionsites,string/flarkandhummock-hollowcomplexes)tomosaicmappingunits>3000m2.Describetheirreliefpattern(i.e.proportion,extentandheightofvariouselements).3)Assesswithineachmappingunitthecoverofthelivingpartsof“shuntspecies”(seeBox)infivecoverclasses:0-20%,20-40%,40-60%,60-80%,80-100%.4)MarkthebordersofthemappingunitswithGPSwaypointsortrack-routesordepictbordersdirectlyonatopographicalmaporaerialpicture(withGPSreferencepoints).5)Recordrelevés(5m×5m)ofcharacteristichomogenousvegetationineachmappingunittofacilitatelater(aposteriori)identificationoftheGESTs.6)Assigntheherblayerofshrubortree-dominatedpeatlandtonon-forestedvegetationstypes.Thisproceduremustbeappliedforboththepre-projectspatialdistributionofGESTsandmonitoring.Whenmonitoring,assesswhethertherangeofGESTswiththeirspecificGHGemissionlevelsasobtainedinSection8.1.3.1sufficientlycoversthevegetationtypesexpectedintheprojectscenario.Ifnot,expandthesystemusingthesameprocedurebycollectingmoreliteratureorfielddataShuntspeciesShuntspeciesarespecieswithaerenchyma(openstemandroottissue)thatpumpairintotherhizosphereandtransportmethanefromtheanaerobicsoillayerdirectlyintotheatmosphere.Asaconsequence,anareawithmanyshuntspeciesmayhaveatwotimeshighermethaneemissionthanotherareaswithasimilarwatertabledepth.Importantshuntspeciesare:Blysmusspecies,Bolboschoenusspecies,Carexspecies(tallandsmallsedges),Cladiummariscus,Eleocharisspecies,Eriophorumangustifolium,Eriophorumvaginatum,Juncusspecies,Scheuchzeriapalustris,Schoenoplectusspecies,Scirpusspecies.Vegetationmappingwithhighspatialresolutionsatelliteimagery,forexample:•Usesatelliteimagerywithaminimumspatialresolutionof5m×5mandaminimumoffourspectralchannels,whichincludesvisibleandatleastoneinfraredband.•Derivethemappingunitsbyvegetationindexesanalysisorasimpleunsupervisedclassification.VM0036,Version1.0SectoralScope14Page77•Selectineverymappingunitthreerandompointsforvegetationanalysis(e.g.,ISODATAclassification).•Ineachclearlydistinguishedmappingunitselectthreecentrallylocatedpointsforvegetationanalysis.•Visitthesepointsandrecordrepresentativevegetationrelevés(usinghighaccuracyGPSdevicesandrecordwatertabledepth).•Conductasupervisedclassification(e.g.,amaximumlikelihoodclassificationof90%),minimumdistanceclassifierorspectralanglemapper,ifnecessaryincludevegetationindexes.•Toimprovetheclassificationresult,highqualitygeo-referencingisfavourableandtrainingareascanbeadded/removedonthebaseofsiteknowledge;thetrainingareasorregionsofinterestbasedongroundtruthingdatashouldbeoutlinedonminimum5pixels•Relatetheclassestovegetationformsoradditionalvegetationtypesbasedonrelevésandsiteknowledge.•Conductanaccuracyassessment,bycheckingtheclassificationresultviavisitingadditionalgroundcontrolpoints.Theseadditionalpointsmustbeselectedsothateachclassisrepresentedbymorethanonepoint.Accuracymustbeatleast60%,anyactivitiestoincreasetheaccuracyarerecommended.DerivingtimeseriesofGESTdevelopmentforeachstratumfortheentireprojectcreditingperiodPredict(exante),basedonvegetationsuccessionschemesindrainedandrewettedpeatlandsfromscientificliteratureorexpertjudgment,ormonitorGESTs(expost),foreachstratumandfortheentireprojectcreditingperiod,thedevelopmentofGESTsovertimebydefiningatimeseriesofGESTs,withtimestepsofareasonabletimeperiod(e.g.,5years)toallowfortheinherentdiscretecharacteroftheGESTs.DeterminingannualGHGemissionsperstratumfortheentireprojectcreditingperiodObtainannualGHGemissionsperstratumbyextrapolationbetweenthetypicalemissionsoftwosubsequentGESTsinatimeseries.Extrapolationcanbelinear,skewed,orconservative.Ifthechoseninterpolationmethodisnotinherentlyconservative,theprojectproponentmustprovideconclusiveargumentationwhythechosenmethodwouldapply.Foreachstratum,theannualresultscanbereportedintheformattingofTable9.2.Italicsindicateinterpolatedvalues.Table9.2:TimeSeriesofEmissionsfromGESTs.YearStratum1TotalemissionstCO2eyr-11GEST115216317VM0036,Version1.0SectoralScope14Page784185GEST219…………15GEST3GEST422……Area-weightedaverageofGEST3andGEST4emissions.Stratum1issubdividedinto1aand1b.ForareasforwhichthevegetationcompositiondoesnotprovideaclearindicationofGHGemissions(barepeat,transientphasesofvegetationdevelopmentafterrewetting)watertabledepthmeasurementsmustbeusedasadditionalinputtoassessGHGfluxes.However,projectproponentsmayalsoopttochoosewatertabledepthasaproxyfortheentireprojectarea.Stratacanbedefinedonthebasisof(amongstothers)watertabledepth(e.g.,at0cmdefiningalevelofzeroemissions,adeepwatertabledepthdefiningthehighendofemissions,andarbitrarylevelsinbetween,orexpectedchangesinthese).Watertabledepthsorwatertabledepthclasses(e.g.,0-10cm,11-20cm,etc.)canbeused,dependingondataavailability.Watertabledepthmeasurementscanbecontinuouswithdataloggersandusingmin-maxdevices(Braggetal.,1994)orsimplewaterlevelgauges.Normally,thevegetationmappingcanbeconductedduringtheentirevegetationperiod.Thewatertabledepthmeasurementsmustbedoneatleastthroughouttheseasons(springtowinter)tocaptureseasonalvariation.Thefrequencyofmonitoringvegetationchangesmustbebasedonexpertjudgment,takingintoaccountexpectedandobservedchangesinvegetationcompositionuponrewetting.Arecommendedmonitoringschedulefortemperateclimatezonesisprovidedbelow:•Mappingvegetationtypes:beforerewetting,2ndyearafterrewetting,5thyearafterrewetting,thenevery5thyearafterrewetting•Monitoringwatertabledepth:continuouslyfrom1yearbeforerewetting,totheendoftheprojectcreditingperiod.9.3.7MonitoringoffireeventsintheprojectscenarioAslaidoutinSection8.3,ifpeatlandrewettingandabest-practicesfiremanagementhavebeenimplemented,peatfiresoccurringintheprojectscenariocanbeassumedtobecatastrophicevents.Ifsuchfiresoccur,theprojectproponentmustdemonstratethatrewettingandfiremanagementhavebeencarriedoutasproposedatvalidation.Peatlossesassociatedwithsuchfiresmustbeaddedtotheex-anteestimateofpeatlossintheprojectscenarioastheymayaffectthenumberofeligiblecredits(Section5.2–Peatlandareaseligibleforcarboncrediting).Theassessmentofpeatlossesmustfollowthefire-specificproceduresandcriteriausedtoderiveRatepeatloss-BSL(Section9.1).VM0036,Version1.0SectoralScope14Page79REFERENCESAlexeyev,V.,Birdsey,R.,Stakanov,V.,Korotkov,I.(1995).CarboninvegetationinRussianforests:methodstoestimatestorageandgeographicaldistribution.Water,AirSoilPollution82:271-282.AlmJ.,ShurpaliN.J.,TuittilaE.-S.,LaurilaT.,MaljanenM.,SaarnioS.&MinkkinenK.2007.Methodsfordeterminingemissionfactorsfortheuseofpeatandpeatlands-fluxmeasurementsandmodelling.BorealEnvironmentResearch12:85-100.BallhornU.,SiegertF.,MasonM.&S.Limin(2009).DerivationofburnscardepthsandestimationofcarbonemissionswithLIDARinIndonesianpeatlands.ProcNatlAcadSciUSA,Vol.106no.50,21213-21218Couwenberg,J.,J.Augustin,D.Michaelis&H.Joosten(2008).EmissionReductionsfromRewettingofPeatlands.TowardsaFieldGuidefortheAssessmentofGreenhouseGasEmissionsfromCentralEuropeanPeatlands.Duene/RSPB,Greifswald/Sandy.Couwenberg,J.,Thiele,A.,Tanneberger,F.,Augustin,J.,Bärisch,S.,Dubovik,D.,Liashchynskaya,N.,Michaelis,D.,Minke,M.,Skuratovich,A.&Joosten,H.(2011).Assessinggreenhousegasemissionsfrompeatlandsusingvegetationasaproxy.Hydrobiologia,674,67-89.CouwenbergJ.,DommainR.,JoostenH.(2010).Greenhousegasfluxesfromtropicalpeatlandsinsouth-eastAsia.GlobalChangeBiology,16,1715-1732.EllenbergH,WeberHE,DüllE,WirthV,WernerW,1992.ZeigerwertevonPflanzeninMitteleuropa.ScriptaGeobotanica,18,1–258.Evans,C.,Worrell,F.,Holden,J.,Chapman,P.,Smith,P.&Artz,R.2011.AprogrammetoaddressevidencegapsingreenhousegasandcarbonfluxesfromUKpeatlands.JNCCReportNo.443.IPCC2006,2006IPCCGuidelinesforNationalGreenhouseGasInventories,PreparedbytheNationalGreenhouseGasInventoriesProgramme,EgglestonH.S.,BuendiaL.,MiwaK.,NgaraT.andTanabeK.(eds).Published:IGES,Japan.http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.htmlKoska,I.,2007.WeiterentwicklungdesVegetationsformenkonzeptes.AusbaueinerMethodefürdievegetationskundlicheundbioindikativeLandschaftsanalyse,dargestelltamBeispielderFeuchtgebietsvegetationNordostdeutschlands.PhDthesis,GreifswaldUniversity,Greifswald.Koska,I.,Succow,M.,Clausnitzer,U.,Timmermann,T.&Roth,S.(2001).VegetationskundlicheKennzeichnungvonMooren(topischeBetrachtung).InSuccow,M.&Joosten,H.(eds),LandschaftsökologischeMoorkunde.Schweizerbart,Stuttgart:112–184.VM0036,Version1.0SectoralScope14Page80MatsonPA&HarrissRC(eds)1995.BiogenicTraceGases:MeasuringEmissionsfromSoilandWater.BlackwellScience,Oxford.394p.PatteyE.,EdwardsG.,StrachanI.B.,DesjardinsR.L.,KaharabataS.andWagner-RiddleC.2006TowardsstandardsformeasuringgreenhousegasfluxesfromagriculturalfieldsusinginstrumentedtowersCan.J.SoilSci.86:373–400.StephensJC,AllenLH,ChenE(1984)Organicsoilsubsidence.In:ManInducedLandSubsidence(ed.HolzerTL),pp.107–122.GeologicalSocietyofAmerica,Boulder.VanderWerfGR,DempewolfJ,TriggSNetal.(2008)ClimateregulationoffireemissionsanddeforestationinequatorialAsia.ProceedingsoftheNationalAcademyofSciencesUSA,105,20350–20355.Turetsky,M.R.,Donahue,W.F.&Benscoter,B.W.(2011).Experimentaldryingintensifiesburningandcarbonlossesinanorthernpeatland.NatureCommunication2Articlenumber:514;doi:10.1038/ncomms1523.VM0036,Version1.0SectoralScope14Page81DOCUMENTHISTORYVersionDateCommentv1.017July2017Initialversionreleased.