VM0034-加拿大的森林碳补偿方法学VIP专享VIP免费

VCS Methodology
VM0034
CANDIAN FOREST CARBON OFFSET
METHODOLOGY
Version 2.0
19 April 2020
Sectoral Scope 14
v3.3
2
Table of Contents
1 SOURCES ...................................................................................................................................................... 4
1.1 General GHG Quantification Guidance ......................................................................................... 4
1.2 Forestry-Specific Guidance and Methodologies ............................................................................ 4
2 SUMMARY DESCRIPTION OF THE METHODOLOGY ........................................................................................ 5
2.1 GHG(s) Included in Methodology .................................................................................................. 6
2.3 Methodology Flexibility .................................................................................................................. 7
3 DEFINITIONS ................................................................................................................................................. 9
4 APPLICABILITY CONDITIONS ....................................................................................................................... 13
5 PROJECT BOUNDARY .................................................................................................................................. 14
5.1 Identification of the Project Area .................................................................................................. 14
5.2 Identification of Project SSPs ...................................................................................................... 15
5.2.1 Definitions of the SSPs Accounted for Under this Methodology .......................................................... 17
5.2.2 Selection of Pools and Emission Sources ............................................................................................. 22
6 BASELINE SCENARIO ................................................................................................................................... 26
7 ADDITIONALITY .......................................................................................................................................... 26
7.1 Project Additionality ..................................................................................................................... 26
7.1.1 Introduction ......................................................................................................................................... 26
7.1.2 Steps .................................................................................................................................................... 26
7.1.3 Documentation Requirements ............................................................................................................ 36
8 QUANTIFICATION OF GHG EMISSION REDUCTIONS AND REMOVALS .......................................................... 37
8.1 Overview of Quantification Approach .......................................................................................... 37
8.1.1 Quantification of Controlled Carbon Pools .......................................................................................... 38
8.1.2 Quantification Methodologies Controlled and Related Sources .............................................................. 61
8.2 Baseline Emissions ..................................................................................................................... 98
8.3 Project Emissions ...................................................................................................................... 100
8.4 Leakage ..................................................................................................................................... 101
8.4.1 Types of Leakage ............................................................................................................................... 101
8.5 Net GHG Emission Reductions and Removals ......................................................................... 119
8.5.1 Net change in carbon stocks ............................................................................................................. 120
8.5.2 Long Term Averaging ........................................................................................................................ 121
8.5.3 VCUs Eligible for Issuance ................................................................................................................. 122
9 MONITORING ........................................................................................................................................... 124
9.1 Data and Parameters Available at Validation ............................................................................ 124
9.1.1: Default Factors Subject to Periodic Re-Assessment .......................................................................... 133
9.2 Data and Parameters Monitored ............................................................................................... 134
v3.3
3
9.3 Monitoring Plan .......................................................................................................................... 147
9.3.1 Project Implementation Monitoring .................................................................................................. 149
9.3.2 Monitoring Accounted Pools and Emissions ..................................................................................... 149
9.3.3 Monitoring of Natural Disturbances ................................................................................................. 150
9.3.4 Leakage Monitoring .......................................................................................................................... 150
9.3.5 Monitoring, Assessing, and Managing the Risk of Reversal ..................................................................... 150
10 REFERENCES .......................................................................................................................................... 153
APPENDIX A: THE BC PROVINCIAL BASE CASE APPROACH FOR ADDRESSING LEAKAGE FROM FOREST CARBON
PROJECTS ......................................................................................................................................................... 155
APPENDIX B: EXAMPLE SUBSTITUTABILITY EQUATIONS ................................................................................... 156
APPENDIX C: SUBSTITUTABILITY ESTIMATES FOR COMMERCIAL TREE SPECIES IN BRITISH COLUMBIA .............. 159
APPENDIX D: DERIVATION OF WOOD DENSITY FACTORS .................................................................................. 160
APPENDIX E: BC TIMBER HARVESTING VOLUME BY SPECIES AND REGION ........................................................ 161
APPENDIX F: DERIVATION OF HWP RETENTION FACTORS, AND DISCARDED HWP CH4 EMISSION FACTORS ...... 163
APPENDIX G: FOREST DISTRICTS BY REGION IN THE PROVINCE OF BC ............................................................... 169
DOCUMENT HISTORY ....................................................................................................................................... 171
VCSMethodologyVM0034CANDIANFORESTCARBONOFFSETMETHODOLOGYVersion2.019April2020SectoralScope14v3.32TableofContents1SOURCES......................................................................................................................................................41.1GeneralGHGQuantificationGuidance.........................................................................................41.2Forestry-SpecificGuidanceandMethodologies............................................................................42SUMMARYDESCRIPTIONOFTHEMETHODOLOGY........................................................................................52.1GHG(s)IncludedinMethodology..................................................................................................62.3MethodologyFlexibility..................................................................................................................73DEFINITIONS.................................................................................................................................................94APPLICABILITYCONDITIONS.......................................................................................................................135PROJECTBOUNDARY..................................................................................................................................145.1IdentificationoftheProjectArea..................................................................................................145.2IdentificationofProjectSSPs......................................................................................................155.2.1DefinitionsoftheSSPsAccountedforUnderthisMethodology..........................................................175.2.2SelectionofPoolsandEmissionSources.............................................................................................226BASELINESCENARIO...................................................................................................................................267ADDITIONALITY..........................................................................................................................................267.1ProjectAdditionality.....................................................................................................................267.1.1Introduction.........................................................................................................................................267.1.2Steps....................................................................................................................................................267.1.3DocumentationRequirements............................................................................................................368QUANTIFICATIONOFGHGEMISSIONREDUCTIONSANDREMOVALS..........................................................378.1OverviewofQuantificationApproach..........................................................................................378.1.1QuantificationofControlledCarbonPools..........................................................................................388.1.2QuantificationMethodologies–ControlledandRelatedSources..............................................................618.2BaselineEmissions.....................................................................................................................988.3ProjectEmissions......................................................................................................................1008.4Leakage.....................................................................................................................................1018.4.1TypesofLeakage...............................................................................................................................1018.5NetGHGEmissionReductionsandRemovals.........................................................................1198.5.1Netchangeincarbonstocks.............................................................................................................1208.5.2LongTermAveraging........................................................................................................................1218.5.3VCUsEligibleforIssuance.................................................................................................................1229MONITORING...........................................................................................................................................1249.1DataandParametersAvailableatValidation............................................................................1249.1.1:DefaultFactorsSubjecttoPeriodicRe-Assessment..........................................................................1339.2DataandParametersMonitored...............................................................................................134v3.339.3MonitoringPlan..........................................................................................................................1479.3.1ProjectImplementationMonitoring..................................................................................................1499.3.2MonitoringAccountedPoolsandEmissions.....................................................................................1499.3.3MonitoringofNaturalDisturbances.................................................................................................1509.3.4LeakageMonitoring..........................................................................................................................1509.3.5Monitoring,Assessing,andManagingtheRiskofReversal.....................................................................15010REFERENCES..........................................................................................................................................153APPENDIXA:THEBCPROVINCIALBASECASEAPPROACHFORADDRESSINGLEAKAGEFROMFORESTCARBONPROJECTS.........................................................................................................................................................155APPENDIXB:EXAMPLESUBSTITUTABILITYEQUATIONS...................................................................................156APPENDIXC:SUBSTITUTABILITYESTIMATESFORCOMMERCIALTREESPECIESINBRITISHCOLUMBIA..............159APPENDIXD:DERIVATIONOFWOODDENSITYFACTORS..................................................................................160APPENDIXE:BCTIMBERHARVESTINGVOLUMEBYSPECIESANDREGION........................................................161APPENDIXF:DERIVATIONOFHWPRETENTIONFACTORS,ANDDISCARDEDHWPCH4EMISSIONFACTORS......163APPENDIXG:FORESTDISTRICTSBYREGIONINTHEPROVINCEOFBC...............................................................169DOCUMENTHISTORY.......................................................................................................................................171v3.341SOURCESIndevelopingthismethodology,arangeofgoodpracticeguidancehasbeenconsulted,includingbothgeneralgreenhousegas(GHG)quantificationguidanceandguidancespecifictoforestryprojects.Writtenguidanceconsultedinthedevelopmentofthismethodologyincludes,butwasnotlimitedtothedocumentslistedbelow.1.1GeneralGHGQuantificationGuidance•Canada’sOffsetSystemforGHGGuideforProtocolDevelopers,DraftforConsultation,20081•CDMTool02Combinedtooltoidentifythebaselinescenarioanddemonstrateadditionality•IPCC2003GPGforLULUCF•ISO14064-22•IPCCGuidelinesforNationalGHGInventories(2006)•SystemofMeasurementandReportingforTechnologies3•VCSProgramDefinitions•VCSProgramGuide•WRI/WBCSDGHGProtocolforProjectAccounting41.2Forestry-SpecificGuidanceandMethodologies•AmericanCarbonRegistryImprovedForestManagementMethodologySeptember20105•BritishColumbiaForestOffsetGuideVersion1.06•ClimateActionReserveForestProjectProtocolVersion3.271TurningtheCorner,Canada’sOffsetSystemforGHGGuideforProtocolDevelopers,DraftforConsultation,EnvironmentCanada(2008).2ISO14064-2:2006,GHG-Part2:Specificationwithguidanceattheprojectlevelforquantification,monitoringandreportingofGHGemissionreductionsorremovalenhancements(2006).3ClimateChangeTechnologyEarlyActionMeasures(TEAM)RequirementsandGuidancefortheSystemofMeasurementAndReportingforTechnologies(SMART),GovernmentofCanada(2004).4WorldResourcesInstitute/WorldBusinessCouncilforSustainableDevelopment,TheGHGProtocolforProjectAccounting,November,2005.5AmericanCarbonRegistry/FiniteCarbon,ImprovedForestManagementMethodologyforQuantifyingGHGRemovalsandEmissionReductionsthroughIncreasedForestCarbonSequestrationonU.S.Timberland,September2010.6BritishColumbiaForestOffsetGuideVersion1.0,B.C.MinistryofForestsandRange,April20097ClimateActionReserve,ForestProjectProtocolVersion3.2,August31,2010v3.35•DraftNorthAmericanForestCarbonStandard8•IPCC2006GuidelinesforForestLand9•VCSAFOLUNon-PermanenceRiskTool2SUMMARYDESCRIPTIONOFTHEMETHODOLOGYAdditionalityandCreditingMethodAdditionalityProjectmethodCreditingBaselineProjectmethodThemethodologyisdesignedtoquantifytheGHGreductionsachievedbyarangeofprojectactivitiesincludingimprovedforestmanagement,reforestationandavoidedconversionactivitiesimplementedinforestsinCanada.TheapproachincludedinthemethodologytoquantifycarboninforestcarbonpoolsisbasedontheextensivescientificknowledgebasewhichexistsregardingthedynamicsofCanadianforestattheprovinciallevel.Thismethodologyspecificallyallowsuserstoselectappropriatemodelsandsamplingprotocolsfromasuiteofwell-establishedmodelsandmonitoringmethodscoveringthefullrangeofforestactivitiesandforestcarbonpoolsintheprovincesofBritishColumbia(BC)andQuebec(QC).Thesemodelsandprotocolsarewellcalibratedfortherangeofforestecosystemsintheserespectiveprovinces,andareconsistentwithnationalandIntergovernmentalPanelonClimateChange(IPCC)standards.ProjectproponentsdevelopingprojectsinotherprovincesofCanadamustselectappropriatemodelsandsamplingprotocolsanddemonstratethattheyarewell-calibratedfortherangeofforestecosystemoftherelevantprovince,aswellastodemonstratetheirconsistencywithnationalandIPCCstandards10.8Formoreinformation,seehttp://forestcarbonstandards.org/home.html9IPCC,2006IPCCGuidelinesforNationalGHGInventories,Volume4,Chapter4:ForestLand,200610Anyalternativemodelmustmeetthefollowingminimumrequirements:•Themodelisscientificallysound,andhasbeenpeerreviewedinaprocessthat:(i)primarilyinvolvedreviewerswiththenecessarytechnicalexpertise(e.g.,modelingspecialistsandrelevantfieldsofbiology,forestry,ecology,etc.),and(ii)wasopenandrigorous;•Themodelisbasedonempiricalevidence,andhasbeenparameterizedandvalidatedforthegeneralconditionsoftheprojectlandarea;•Applicationofthemodelislimitedtothescopeforwhichthemodelwasdevelopedandevaluated;•Themodel’sscopeofapplication,assumptions,knownequations,datasets,factorsorparameters,etc.,areclearlydocumented;•Themodelsmustprovideaccuratemodellingoftimedependentparameterssuchasdecay,belowgroundbiomassandsoilcarbonchanges,etc.Themodelmustnotassumethatsuchchangestakeplaceinstantaneouslyorwithinashortperiodoftime.InadditionalternativemodelsmustconsidertherequirementssetoutintheVCSMethodologyRequirements,v4.0.v3.36Awiderangeofpracticesandtechnologiesareavailableforuseinforestprojects.Thismethodologywillnotattempttodescribethemhereorrestricttheapplicabilityofthemethodologytospecificpracticesortechnologies.Instead,projectproponentsmustclearlydescribetheirprojectandassociatedpracticesandtechnologiesinaprojectdescription.Thestepstobeundertakenindevelopingaprojectunderthismethodologyare:1.Determinationofmethodologyapplicability.2.DeterminationofprojecteligibilityundertheVCSStandard.3.Identificationoftheprojectboundary,includingboththegeographicboundary,andthecarbonpoolsandemissionsourcestobeaccounted.4.Determinationofthebaselinescenariofortheproject.5.Determinationofwhethertheprojectmeetstherelevantcriteriaforthedeterminationofadditionality.6.Ex-anteestimationofthechangesincarbonpoolsandGHGemissionsunderthebaselinescenario.Becausethemethodologyrequiresupdatingofbaselinesforsomeprojectcategories,theex-antebaselineestimatesmayormaynotbeupdatedex-postpriortolaterverificationevents.7.Ex-anteestimationofthechangesincarbonpoolsandGHGemissionsundertheprojectscenario.Updatingoftheprojectestimateswillbeundertakenonanex-postbasispriortolaterverificationevents.8.Ex-anteestimationofemissionsduetoleakage.9.SummationoftheestimatedGHGbenefitsoftheproject.10.Preparationofamonitoringplan.2.1GHG(s)IncludedinMethodologyThismethodologyfocusesonenhancingsequestrationofcarbondioxidebyforests,reducingcarbondioxideemissionsfromforestsandforestryoperations,andmaintainingorincreasingstoresofcarboninforestandwoodproductcarbonpools.Dependingonproject-specificcircumstances,comparativelysmallchanges(eitherincreasesordecreases)intheemissionsofmethaneandnitrousoxidemayalsoberealized.GHGsourcesaredescribedinTable1below.Table1:GHGSourcesincludedinthisMethodologyGHGSource/SinkIncluded?ExplanationCO2Forestbiomass(livinganddead)YesPrimarysink/sourceinthetargetprojectactivitiesSoilcarbonYesPotentialsink/sourceinmanyprojectactivitiesv3.37HarvestedwoodproductsYesPotentialsink/sourceinmanyprojectactivitiesFossilfuelcombustionYesChangesinemissionstypicallyassociatedwithchangesinmanagementCH4BiomasscombustionConditionallyWherebiomassburningoccursinthebaselineorprojectscenariosAnaerobicdecompositionConditionallyWhereanaerobicdecompositionoccursaspartoftheharvestedwoodproductcycleFossilfuelcombustionYesChangesinemissionstypicallyassociatedwithchangesinmanagementN2OBiomasscombustionConditionallyWherebiomassburningoccursinthebaselineorprojectscenariosFertilizersConditionallyWherechangesinnitrogenfertilizeruseoccurbetweenthebaselineandprojectscenariosFossilfuelcombustionYesChangesinemissionstypicallyassociatedwithchangesinmanagement2.3MethodologyFlexibilityThismethodologyisapplicabletoawiderangeofforestcarbonprojects.Tofacilitatethis,thefollowinggeneralflexibilitymechanismsareincluded,withmoredetailoneachprovidedinappropriatesectionsofthismethodology:•Specificprojectactivities.Awiderangeofprojectactivitiesarepermitted,aslongastheyfallwithinthegeneraleligibleprojecttypecategoriesdescribedinthismethodology.•Baselinescenarioselectionapproach.Forsomeprojectactivities,flexibilityisgiveninthemethodologywithrespecttotheapproachusedtoidentifythebaselinescenario.•Exclusionofsources,sinksandpools(SSPs).Wherejustifiedbasedonprojectandbaseline-specificdetails,projectproponentsmayexcludesomeadditionalSSPsfromquantificationbeyondthoseexcludedbydefaultinthemethodology.ThiswouldincludeSSPsthatarenotpresentintheprojectandbaselineforthespecificproject,emissionsourceswhereprojectemissionsarelessthanbaselineemissions(thisisarequirementforrelatedemissionsources),orSSPsthatcanbedemonstratedtobedeminimis.•Forestcarbonquantificationapproaches.Thismethodologyallowsprojectproponentstochooseappropriateforestcarbonpoolinventory,modeling,and/orotherrelatedapproachesfromtheoptionsgiven,subjecttomeetingtherequirementsstipulatedinthismethodology.v3.38•Emissionsourcequantificationmethods.Forsomeemissionsources,morethanoneoptionisprovidedforquantification,withprojectproponentsbeingfreetochoosethemethodmostsuitedtoavailabledata.•Project-specificemissionfactorsandassumptions.Wherejustified,appropriatelydocumented,andpermittedbythequantificationmethodologiesprovidedinthismethodology,project-specificemissionfactorsandassumptionsmaybeusedinsteadofdefaultreferencessourcesand/orfactorsnotedinthemethodology.•Assessingleakage.Variousoptionsarepresentedforprojectproponentstoaddressactivityshiftingand/ormarketleakage,asappropriate,fortheirprojects.•Project-specificmonitoringapproaches.Toaccountforthewidevarietyofpotentialprojectapplications,project-specificmonitoringapproachesmaybeusedifjustifiedandiftheyconformtothegeneralrequirementsstipulatedinthemethodology.•Project-specificdataqualitymanagementapproaches.Toaccountforthewidevarietyofpotentialprojectapplications,project-specificdataqualitymanagementapproachesaretobedeveloped.Thismethodologydoesnotprescribespecificdataqualitymanagementapproachesthatmustbefollowed.•Managingriskofreversal.Projectproponentsareabletodeveloptheirowndetailedapproachtoassessingandmanagingreversalrisks,subjecttothegeneralrequirementsstipulatedinthismethodology.v3.393DEFINITIONSInadditiontothedefinitionssetoutinVCSdocumentProgramDefinitions,thebelowdefinitionsandacronymsapplytothismethodology.Insomecases,forprojectsbeingdevelopedintheprovinceofBritishcColumbia(BC),ithasbeennecessarytoprovidedefinitionsoftermsinthismethodologywhicharealsodefinedintheVCSProgramDefinitionsdocument,inordertoensureconsistencywiththeBCEmissionOffsetRegulation(EOR),ortoavoidconfusionwithstandardBCpracticesorusages.Inthesecases,thedefinitionsgiveninthismethodologymustbeused.WhereprojectsaredevelopedinotherprovincesofCanada,theVCSdefinitionsmustbeapplied.ActivityShiftingLeakageAnincreaseinGHGemissionsfromareasoutsidetheprojectarea,whichiscausedbytheprojectactivity,andwhichoccurswhentheactualagentofdeforestationand/ordegradationmovestoorundertakesactivitiesinanareaoutsideoftheprojectareaandcontinuestheirdeforestingand/ordegradingactivitiesinthatlocationAdditionalityTheconceptthataproject’semissionreductionsandremovalenhancementsmustgobeyond(ie,beadditionalto)whatwouldhaveoccurredintheabsenceoftheGHGoffsetproject.IntheBCEOR,projectsaredeemedadditionalwheretheycandemonstratethattheincentiveofhavingaGHGreductionrecognizedasanemissionoffsetisakeyfactorinovercomingfinancial,technologicalorotherobstaclestocarryingouttheproject.AdditionalityisdeterminedfollowingtheproceduredescribedinSection7.AffectedSSPAGHGsource,sink,orcarbonpoolinfluencedbyaprojectactivitythroughchangesinmarketdemandorsupplyforassociatedproductsorservices,orthroughphysicaldisplacementAfforestation,ReforestationandRevegetation(ARR)11SeedefinitionintheVCSMethodologyRequirements..BaselineScenarioThemostlikelysequenceofeventsandactionswhichwouldbeexpectedtooccurintheabsenceoftheprojectactivityCO2Equivalent(CO2e)Theuniversalunitofmeasurementtoindicatetheglobalwarmingpotential(GWP)ofeachofthesixGHG,expressedintermsoftheGWPofoneunitofcarbondioxide.Itisusedtoevaluatereleasing(oravoidingreleasing)differentGHGagainstacommonbasis.ControlledSSP11Theterm“afforestation”isusedinterchangeablywithARRwithinthismethodologybecause“afforestation”isadefinedtermwithinBritishColumbia’sForestInventorylegislation.v3.310AGHGsource,sink,orcarbonpoolwhoseoperationisunderthedirectionandinfluenceofprojectproponentsthroughfinancial,policy,managementorotherinstrumentsCreditingPeriodThetimeperiodforwhichGHGemissionreductionsorremovalsgeneratedbytheprojectareeligibleforissuanceasVCUs,theruleswithrespecttothelengthofsuchtimeperiodandtherenewaloftheprojectcreditingperiodbeingsetoutintheVCSStandard.12Equivalenttothe“validationperiod”undertheBCEOR.CrownLand(s)Land,whetherornotitiscoveredinwater,oraninterestinland,vestedinthegovernmentoftheProvinceofBritishColumbia.DeMinimisCarbonpoolsorGHGsourcesmaybedeemeddeminimisandarenotrequiredtobeaccountedforiftogetherthetotaldecreaseincarbonstocksorincreaseinGHGemissionsundertheprojectscenarioascomparedwiththebaselinescenariofortheomittedpoolsandsourcesamountstolessthan5%ofthetotalGHGbenefitgeneratedbytheprojectEmissionfactorAfactorallowingGHGemissionsorremovalstobeestimatedfromavailableactivitydata(e.g.,tonnesoffuelconsumed,tonnesofproductproduced)Ex-anteAnanalysisorquantificationoffutureeventsorconditionsEx-postAnanalysisorquantificationofpasteventsorconditionsFCOPBCForestCarbonOffsetProtocolForestLandLandonwhichaforestisfound,withthedefinitionofforestbeingthecurrentdefinitionusedbyCanadaforreportingundertheUnitedNationsConventiononClimateChange(UNCCC).Projectproponentsmustchecktoensurethattheyareusingthemostcurrentversionofthisdefinition.Atthetimeofwritingofthismethodology,thedefinitionwas13:Anarea:12ThisdefinitionisasgivenintheVCSProgramDefinitions.ThemostrecentdefinitiongivenbytheVCSmaybeused.13http://cfs.nrcan.gc.ca/pages/97v3.311•Thatisgreaterthanorequaltoonehectareinsizemeasuredtree-basetotree-base(stumptostump),andhasaminimumwidthof20m,and;•Wheretreesontheareaarecapableofachieving:oAminimumheightof5metresatmaturity;andoAminimumcrowncoverof25%atmaturity.Forestlandmayincludeareasnormallyformingpartoftheforestareawhicharetemporarilyunstockedasaresultofhumaninterventionsuchasharvesting,orasaresultofnaturalcauses,butwhichareexpectedtoreverttoforest.GlobalWarmingPotential(GWP)Afactordescribingtheradiativeforcingimpactofonemass-basedunitofagivenGHGrelativetoanequivalentunitofcarbondioxideoveragivenperiodoftime.GreenhouseGases(GHG)GHGsincludethesixgaseslistedintheKyotoProtocol:carbondioxide(CO2);methane(CH4);nitrousoxide(N2O);hydrofluorocarbons(HFCs);perfluorocarbons(PFCs);andsulphurhexafluoride(SF6)GroupedProjectsSeedefinitionassetoutintheVCSProgramDefinitionsandspecificrequirementsassetoutintheVCSStandard.HarvestedWoodProductsEquivalentto“woodproducts”asdefinedintheVCSProgramDefinitionsImprovedForestManagement(IFM)SeedefinitionintheVCSMethodologyRequirements.LeakagezoneAnareaorareasintheregionof,butoutsideof,theprojectareawhereactivitiescouldbeundertakenwhicharesimilartothoseundertakenwithintheprojectareaunderthebaselinescenario.Assessmentofactivityshiftingleakagewillbeundertakenwithintheleakagezone.MarketLeakageAnincreaseinGHGemissionsfromareasoutsidetheprojectarea,whichoccursasaresultoftheprojectsignificantlyreducingtheproductionofacommodity,causingachangeinthesupplyandmarketdemandequilibrium,whichresultsinashiftofproductionelsewheretomakeupforthelostsupplyMonitoringThecontinuousorperiodicassessmentanddocumentationofGHGemissionsandremovalsorotherGHG-relateddatav3.312MonitoringReportAdocumentwhichrecordsdatatoallowtheassessmentoftheGHGemissionreductionsorremovalsgeneratedbytheprojectduringagiventimeperiodinaccordancewiththemonitoringplansetoutintheprojectdescription,preparedusingtheVCSMonitoringReportTemplate.WhereprojectsaredevelopedwithintheprovinceofBC,thereportmustcontaindatarelevanttotheprojectasrequiredinSection5orSection7oftheBCEOR,whicheverisapplicable.ParameterAvariable.Acharacteristicofanobject,processoranalysisforwhichquantitativevaluescanbedetermined.ProjectAreaTheareaorareasoflandonwhichprojectproponentswillundertaketheprojectactivities.ProjectDescriptionThedocumentthatdescribestheproject’sGHGemissionreductionorremovalactivities,andthatusestheVCSProjectDescriptionTemplate.ThisdocumentisreferredtoastheprojectplanwithintheBCEmissionOffsetregulation.TheprojectdescriptionmustbepreparedinaccordanceVCSrules,andwithSection3or7,whicheverapplies,oftheBCEmissionOffsetregulation.ProjectReportSeethedefinitionofmonitoringreport.ProjectScenarioTheactionsandeventswhichareexpectedtooccurasaresultofimplementingtheproject.ProjectPlanSeedefinitionofprojectdescription.ReducedEmissionsfromDeforestationandDegradation(REDD)SeedefinitionintheVCSMethodologyRequirements.RegisteredProfessionalAnappliedscientistwhois:•Registeredandingoodstandingintherespectiveprovincewithanappropriateprofessionalorganizationconstitutedundercorrespondingprovinciallegislation,actingundertheorganization´scodeofethicsandsubjecttodisciplinaryactionbythatorganization,and;•Actingwithinthatindividual’sareaofexpertise.RelatedSSPAGHGsource,sink,orcarbonpoolthathasmaterialorenergyflowsinto,outof,orwithintheprojectv3.313SinkAnyphysicalunitorprocessthatremovesGHGsfromtheatmosphereSourceAnyphysicalunitorprocessthatreleasesGHGintotheatmosphereSSPAcronymforsources,sinksandcarbonpools.EquivalenttoSSR(sources,sinks,andreservoirs),asperISO14064-2.4APPLICABILITYCONDITIONSThismethodologyisapplicableunderthefollowingconditions:1.ProjectsmustbelocatedwithinCanada.2.TheprojectstartdatemustbeafterNovember29,2007.3.ProjectactivitieslocatedwithintheprovinceofBCmustcomplywiththeBCEOR.Inthecaseofprojectswithinotherprovinces,projectsmustcomplywithexistingandrelevantprovincialemissionoffsetregulations.4.Projectactivitiesmustnotincludeactionsexpectedtosignificantlyimpactthehydrologyofanysitewithintheprojectarea,includingbutnotlimitedtofloodirrigationordrainage.5.Whereaprojectinvolvesplanting,theprojectmustusegeneticallydiverseandproductiveseedstock.ForprojectswithintheprovinceofBC,projectsmustapplytheBCChiefForester’sStandardsforSeedUse14.Inthecaseofprojectswithinotherprovinces,projectsmustcomplywithrelevantprovinciallegislationandusegeneticallydiverseandproductiveseedstock.6.ThismethodologyappliestothefollowingVCSprojectcategories15:•Afforestation,ReforestationandRevegetation(ARR)•ImprovedForestManagement–ReducedImpactLogging(IFM–RIL)-•ImprovedForestManagement–LoggedtoProtectedForests(IFM–LtPF)•ImprovedForestManagement–ExtendedRotationAge(IFM–ERA)•ImprovedForestManagement–LowtoHighProductivity(IFM–LtHP)•ReducedEmissionsfromDeforestationandDegradation–AvoidedPlannedDeforestation(REDD–APD)7.Projectsinthefollowingprojectcategoriesmustalsomeetthefollowingconditions:14Availableathttp://www.for.gov.bc.ca/code/cfstandards/15FordetailsonVCSprojectcategoriesrefertosection3.2.1oftheVCSStandardv4.0v3.314•ARR:Projectproponentsmustdemonstratethattheprojectareahasnotbeenforestlandforatleast10yearspriortoprojectcommencement.•IFM:Projectareamustbeforestlandatthetimeofprojectcommencement.•REDD:Projectareamustbeforestlandatthetimeofprojectcommencement,andmusthavebeenforestlandfornotlessthan10yearspriortotheprojectstartdate.5PROJECTBOUNDARY5.1IdentificationoftheProjectAreaProjectproponentsmustprovidegeographicalinformationaboutthelocationwheretheprojectwillbecarriedoutandanyotherinformationallowingfortheuniqueidentificationoftheprojectarea.ProjectswithintheprovinceofBCmustcomplywiththelatestversionoftheBCEOR.16Theprojectareacanbecontiguousorseparatedintotracts.Thisinformationmustincludeageo-referencedmapthatshowstheprojectareainaccordancewithVCSrules.Projectproponentsareencouragedtouseprovincialbasemapping,corporatespatialdatastoredintheLandandResourceDataWarehouse(LRDW),andGIS-basedanalyticalandreportingtoolsandmapviewerssuchasiMapBC,MapView,orSeedMap.Themapprovidedmustbeatasufficientlylargescale(eg,1:20,000orlarger,thoughinsomecasesasmallerscalemapmaybeappropriate),andincludesufficientfeatures,placenamesandadministrativeboundariestoenablefieldinterpretationandpositiveidentificationoftheprojectsite.Thefollowinginformationmustbeprovidedonthemap:•Forestownershiporlicenseareaandprojectboundaries•Sizeofforestownershiporlicensearea•Latitude/longitude,orlandtitleorlandsurvey•Existinglandcoverandlanduse•Projectproponentsmayalsowishtoincludethefollowinginformationonthemap:oTopographyoForestvegetationtypesoSiteclasses16Therelevantinformationwascontainedinsection3(2)(f)oftheBCEORasitexistedonDec.62010.v3.315oWatercoursesinarea17Inadditiontotheabove,projectswithareaswithintheprovinceofBCmustalsoprovideotherprojectidentificationanddescriptioninformationasrequiredbySection3oftheBCEOR.Forallprojectactivities,projectproponentsmustdemonstratesufficientcontroloverthearea,suchthatanyemissionreductionsand/orremovalscanbemaintained.ForARRandIFM-RILprojectsonCrownland,projectproponentsmustbeabletodemonstratethattheyhavetherightsnecessarytomaintainthebenefitsoftheproject.FortheotherprojectactivitiesonCrownland,projectproponentsmustdemonstratethattheyhaveprimarymanagementcontrolovertheprojectareathrougharenewableareabasedlicense,orthroughanothermechanismgrantingequivalentcontrol.ForIFMandREDDprojects,projectproponentsmustalsoprovideevidencethattheprojectareameetsthenationaldefinitionofaforest,andhasdonesofortherequiredtimeperiod.ForIFMprojects,projectproponentsmustalsoprovideevidencethattheprojectareaisdesignated,sanctionedorapprovedforwoodproductmanagement.Suchevidencecouldinclude:•ForCrownoranyothertypeofpubliclands:oEvidencethattheareaislicensedfortimberproductionbytheCrownortherelevantauthority.•ForprivatelandsoRegistrationunderthePrivateManagedForestLandsActinthecaseofprojectsimplementedintheprovinceofBC,ortherelevantregistryifrequiredbyprovinciallegislation.oZoningasforestryland,oragriculturallandbasedontheproductionoftimberfromastandoftreesmeetingthenationaldefinitionofaforest,fortaxpurposes5.2IdentificationofProjectSSPsThegeneralflowofinputs,onsiteprocessesandoutputsbywhichforestryprojectsimpactSSPsisshowninFigure1below.17Thisprojectareaidentificationapproachtaken,withmodifications,fromtheBritishColumbiaForestOffsetGuideVersion1.0,B.C.MinistryofForestsandRange,April2009.v3.316Figure1:ProjectandBaselineModel–AllEligibleProjectCategoriesHarvestedWoodTransport&ProcessingForestland(orlandthatwillbecomeforestlandduringtheprojectcreditingperiod)withinprojectboundaryOtherSilvicultural&ForestManagementPracticesHarvestingNitrogen-BasedFertilizerApplicationSitePreparationConstructionMaterialProduction&TransportOtherOn-GoingInputsProduction&TransportHarvestingLevelsOutsideoftheProjectAreaTransportandDisposalofHarvestedWoodProductsandResidualsHarvestedWoodTransport&UseForestCarbonPoolsAtmosphericCO2in(eg,viagrowth)AtmosphericCO2,CH4,N2Oout(eg,viadecay,controlledburning,wildfire)LandUseOutsideoftheProjectAreaFossilFuelProduction&TransportPersonnelTransportto/fromSiteTransport,Useand/orDisposalofOutputsNon-ForestLandUseActivitiesSiteClearing(REDDonly)Non-forestland(orlandthatwouldhavebecomenon-forestlandduringtheprojectcreditingperiod)withinprojectboundaryVehiclesandEquipmentProduction&TransportFertilizerProduction&TransportIOutputsv3.3175.2.1DefinitionsoftheSSPsAccountedforUnderthisMethodologyProjectSSPsaredefinedinTable2(controlledcarbonpools),Table3(controlledandrelatedemissionsources)andTable4(affectedSSPs).SSPsarecategorizedascontrolled(C),related(R)oraffected(A),basedontheirrelationtoprojectproponents,whereprojectproponentsisassumedtocontrolallSSPswithinthegeographicboundaryoftheforestprojectarea,andupstreamanddownstreamSSPsareassumedtobecontrolledbyothersandthusarerelatedtotheproject.Table2:ControlledProject/BaselineCarbonPools(PP/BP)On-siteControlledCarbonPoolsPP/BP1StandingLiveTreesCarbonpoolStandinglivetreesincludeallabovegroundlivebiomass(thestem,stump,branches,bark,seedsandleavesorneedles),regardlessofspecies.ControlledPP/BP2ShrubsandHerbaceousUnderstoryCarbonpoolAllabove-groundlivewoodyandotherplantbiomassthatdoesnotmeetthedescriptionofStandingLiveTrees.ControlledPP/BP3LiveRootsCarbonpoolPortionsoflivingtrees,shrubsorherbaceousbiomasslocatedbelow-ground,principallyroots.ControlledPP/BP4StandingDeadTreesCarbonpoolStandingdeadtreesincludethestem,branches,roots,orsectionthereof,regardlessofspecies.Stumpsareconsideredstandingdeadstocks.ControlledPP/BP5LyingDeadWoodCarbonpoolAnypiece(s)ofdeadwoodmaterialfromatree,eg,deadboles,limbs,andlargerootmasses,onthegroundinforeststands.Lyingdeadwoodisalldeadtreematerialwithaminimumaveragediameterof10.0cm.Anythingnotmeetingthemeasurementcriteriaforlyingdeadwoodwillbeconsideredlitter.ControlledPP/BP6Litter&ForestFloorCarbonpoolAnypiece(s)ofdeadwoodmaterialfromatree,eg,deadboles,limbs,andlargerootmasses,onthegroundinforeststandsthatissmallerthanmaterialidentifiedaslyingdeadwood.Alsoallotherorganicmatterontheforestfloorthathasnotbecomeintegratedintothemineralsoil,exceptonorganicsoils,whereallnon-woodymaterialmaybeconsideredpartofthesoil.ControlledPP/BP7SoilCarbonpoolBelowgroundcarbonnotincludedinotherpools,toadepthappropriateconsideringthefullproject-specificsoilprofileandpotentialprojecteffectsonsoils.Controlledv3.318PP/BP8HarvestedWoodProductsInUseCarbonpoolWoodthatisharvestedorotherwisecollectedfromtheforest,transportedoutsidetheforestprojectboundary,andbeingprocessedorinuse,butexcludingharvestedwoodthathasbeenlandfilled.Includesrawwoodproducts,finishedwoodproducts,andanywoodresiduals/wastegeneratedduringtheharvestedwoodproductlifecyclethatisstillinuse(ie,,hasnotbeenburned,disposedof,etc.).Controlled18PP/BP9HarvestedWoodProductsinLandfillCarbonpoolWoodthatisharvestedorotherwisecollectedfromtheforest,transportedoutsidetheforestprojectboundary,andlandfilled.Includesrawwoodproducts,finishedwoodproducts,andanywoodresiduals/wastegeneratedduringtheharvestedwoodproductlifecyclethatissenttolandfillfordisposal.Controlled18HWPcarbonpools(in-useHWPsandlandfilledHWPs)areconsideredcontrolledcarbonpoolsforthepurposesoftheprotocol.ThisreflectsthatHWPsaredirectlycontrolledbyforestprojectproponentsduringharvestinganduptothepointofinitialsale,whichplaysasignificantroleindeterminingtheultimatefateofthewoodproductandassociatedpermanenceoftheremovals.v3.319Table3:ControlledandRelatedProject/BaselineEmissionSources(PE/BE)NameSourceDescriptionAccountedGHGsControlled,relatedoraffectedUpstreamRelatedEmissionSourcesPE/BE1FossilFuelProduction19SourceEmissionsresultingfromtheextractionandproduction/refiningofthefuelusedtooperatevehiclesandequipmentthroughouttheproject,includingforbothsitedevelopmentactivities(eg,siteclearing,roadconstruction,etc.)andon-goingsilviculturalandotherforestmanagementactivities.CO2,CH4,andN2ORelatedPE/BE2FertilizerProductionSourceEmissionsresultingfromrawmaterialextractionthroughtofinalproductionoffertilizersthatareusedthroughouttheproject.CO2,CH4,andN2ORelatedPE/BE3TransportofMaterial,Equipment,Inputs,andPersonneltoSiteSourceEmissionsresultingfromtransportationofallconstructionmaterials,equipment,inputs,andpersonneltotheprojectsiteasrequiredduringtheproject.CO2,CH4,andN2ORelatedOn-siteControlledEmissionSourcesPE/BE4FossilFuelCombustion–VehiclesandEquipmentSourceEmissionsfromvehiclesandequipmentwhichburnfossilfuels.CO2,CH4,andN2OControlled19WhereemissionfactorsusedforthecalculationofGHGemissionsfromtheuseoffossilfuelsincludeemissionfromfuelproduction,thisemissionssourceisnotrequiredforconsideration.v3.320PE/BE5FertilizerUseEmissionsSourceEmissionsofN2Oresultingfromfertilizerapplication.N2OControlledPE/BE6BiomassCombustionSourceCombustionofharvestedforestbiomassattheprojectsiteforvariouspurposes,includingforheatingoraspartoflandclearing.CH4,andN2OControlledPE/BE7ForestFireEmissionsSourceCombustionofforestcarbonpoolsinplaceduetonaturalfireeventsaswellashumaninducedfireevents(eg,accident,arson,etc.).CH4,andN2OControlledDownstreamRelatedEmissionSourcesPE/BE8HarvestedWoodTransportSourceEmissionsresultingfromthetransportofharvestedwoodfromtheforesttotheprocessingsite,andoffinishedwoodproductstotheenduser.CO2,CH4,andN2ORelatedPE/BE9HarvestedWoodProcessingSourceEmissionsresultingfromenergyusedtoprocesswoodfromrawlogstofinishedproduct.CO2,CH4,andN2ORelatedPE/BE10HarvestedWoodCombustionSourceEmissionsresultingfromthecombustionofharvestedwoodforenergy.CH4,andN2ORelatedPE/BE11HarvestedWoodProductsandResidualsAnaerobicDecaySourceEmissionsofmethaneresultingfromthedecompositionofwoodproductunderanaerobicconditionsinlandfills.CH4RelatedTable4:AffectedProjectSSPsv3.321NameSourceDescriptionControlled,relatedoraffectedAffectedSSPsPE12LeakageSourceEmissionsoccurringasaresultofActivityShiftingLeakageorMarketLeakage.Affectedv3.3225.2.2SelectionofPoolsandEmissionSourcesSelectionofpoolsandsourcestobequantifiedmustbemadebasedontheguidancegiveninTables5and6belowandintheaccompanyingnotes.Notwithstandingtheguidancegiveninthetables,ifapoolorsourcecanbeshowntobedeminimisforthefullprojectcreditingperiod,projectproponentsmaychoosenottoquantifythatpoolorsource.Table5:SelectionofCarbonPoolsARRIFM-RIL(<25%impactontotaltimberextracted)IFM-RIL(>=25%impactontotaltimberextracted)IFM-LtPFIFM-ERAIFM-LtHPREDD-APD(Annualcropasbaseline)REDD-APD(Pasturegrassasbaseline)REDD-APD(Urban/development/infrastructureasbaselineAbove-groundtreebiomass(StandingLiveTreesPP/BP1)YYYYYYYYYAbove-groundnon-treebiomass(ShrubsandherbaceousunderstoryPP/BP2)SNNNNNOOOBelowgroundbiomass(LiverootsPP/BP3)SOOOOOOOYDeadwood(standingPP/BP4andlyingPP/BP5)SYYYOOOOYDetritus(LitterandforestfloorPP/BP6)SS(Note1)S(Note1)S(Note1)S(Note1)S(Note1)NNOSoil(PP/BP7)S(Note2)S(Note2)S(Note2)S(Note2)S(Note2)S(Note2)S(Note2)S(Note2)S(Note2)v3.323Harvestedwoodproducts(InusePP/BP8andinlandfillPP/BP9)YYYYYYYYYWhere:Y:MustbeaccountedS:Mustbeaccountedwhereprojectactivitiesmaysignificantlyreducethepoolorincreasetheemission.Optionalotherwise.O:AccountingisoptionalN:Ingeneral,thecarbonpooloremissionneednotbeaccounted,unlessfailuretoaccountthepooloremissionwouldpotentiallyresultinanoverestimationoftheGHGbenefitsoftheprojectNotes:1:Unlessitcanbeshownthattheprojectwillinvolvethesameormorecarbonbeingstoredinthispoolintheprojectareaundertheprojectscenarioascomparedwiththebaselinescenario2:RequirediftheprojectexceedsthesoildisturbancelimitssetoutinSection35(3),Part4,PracticeRequirements,Division1—SoilsoftheForestandRangePracticesAct,ForestPlanningandPracticesRegulation,regardlessofwhetherornottheRegulationwouldotherwiseapplytotheprojectarea.Table6:SelectionofEmissionSourcesARRIFM-RIL(<25%impactontotaltimberextracted)IFM-RIL(>=25%impactontotaltimberextracted)IFM-LtPFIFM-ERAIFM-LtHPREDD-APD(Annualcropasbaseline)REDD-APD(Pasturegrassasbaseline)REDD-APD(Urban/development/infrastructureasbaseline)Emissionsfromproductionoffertilizers(PE/BE1)S(Note3)S(Note3)S(Note3)S(Note3)S(Note3)S(Note3)S(Note3)S(Note3)S(Note3)Emissionsfromtransport,vehiclesandequipment(PE/BE2andPE/BE3)YS(Note3)S(Note3)S(Note3)S(Note3)YSSSv3.324Emissionsfromfertilizerapplication(PE/BE4)YNNNNYNNNEmissionsfrombiomassburningandforestfires(PE/BE5andPE/BE6)O(note4)O(note4)O(note4)O(note4)O(note4)O(note4)O(note4)O(note4)O(note4)Harvestedwoodtransport(PE/BE7)S(Note3)YYYYS(Note3)YYYHarvestedwoodprocessing(PE/BE8)S(Note3)YYYYS(Note3)YYYHarvestedwoodproductsandresidualsanaerobicdecay(PE/BE9)S(Note3)YYYYS(Note3)YYYHarvestshiftingleakage(PP10inpart)NO(Note5)O(Note5)O(Note5)O(Note5)O(Note5)YYYLanduseshiftingleakage(PP10inpart)YYYYYNYYYWhere:Y:Mustbeaccounted.v3.325S:Mustbeaccountedwhereprojectactivitiesmaysignificantlyincreasetheemission.Optionalotherwise.O:Accountingisoptional.N:Ingeneral,theemissionneednotbeaccounted,unlessfailuretoaccounttheemissionwouldpotentiallyresultinanoverestimationoftheGHGbenefitsoftheproject.Notes:3:Requiredifprojectemissionsexceedbaselineemissions.4:Requiredifprojectemissionsfrombiomassburningexceedbaselineemissionsfrombiomassburning.5:RequiredwheretheprojectresultsinadecreaseinHWPproductionrelevanttothebaseline.5.2.2.1GuidanceonPoolsandSourcesAnyofthecarbonpoolsandemissiontypesnotedintables5and6asS,O,orN,includingcarbonpoolsandGHGsourcesthatcauseprojectorleakageemissions,maybedeemeddeminimisanddonothavetobeaccountedforiftogethertheomitteddecreaseincarbonstocks(incarbonpools)orincreaseinemissions(fromGHGsources)amountstolessthanfivepercentofthetotalGHGbenefitgeneratedbytheproject.Inordertodetermineanyemissionorpooltobedeminimis,projectproponentsmust:•Usetheex-antepooloremissionsproceduresspecifiedintherelevantsubsectionofsection8toprojectthenetchangeincarbonstocks(orGHGemissions)forthatpooloremissiontypeforthecreditingperiod,and•Subtractthetotalofallprojectedincreasesinemissionsfromthetotalofallprojecteddecreasesinpoolscausedbytheemittedpoolsandemissionsforeach5yearverificationperiodwithinthecreditingperiod.•Demonstratethatatnotimeoverthecreditingperioddoesthetotaldecreaseincarbonstocks(incarbonpools)andincreaseinemissions(fromGHGsources)amounttomorethanfivepercentofthetotalGHGbenefitgeneratedbytheproject•Demonstratethatthisresultremainstrueacrosstheexpectedrangeofconditionswhichcouldimpacttheprojectscenario,notcountingforcemajeurereversalswhichwouldhavebeenexpectedtoimpactboththeprojectandbaselinescenarios.v3.3266BASELINESCENARIOInordertocalculatethenetemissionreductionsand/orremovalenhancementsthathaveresultedfromaparticularproject,itisnecessarytoidentifyandselectabaselinescenariorepresentingwhatwouldhavemostlikelyoccurredwithintheprojectareaintheabsenceoftheproject.Withinthismethodology,baselinesaredeterminedonaproject-specificbasis,suchthateachprojectproponentmustprepareandjustifytheirownbaselineestimates,followingtheguidancegiveninthemethodology.StepsfordeterminingthebaselinescenarioaregiveninSection7.1below,aspartoftheprocedurefordeterminingadditionality.7ADDITIONALITY7.1ProjectAdditionalityTheprojectbaselineandadditionalitymustbedeterminedusingaProjectMethod,followingtheproceduresdetailedinthissection,andtheguidancegiveninSection7.2.ThemethodsgiveninthissectionarebasedontheCDMTool02Combinedtooltoidentifythebaselinescenarioanddemonstrateadditionality20.7.1.1IntroductionIdentificationofthebaselinescenarioanddeterminationofadditionalityforaprojectmustfollowastep-wiseapproach.Therequiredstepsare:Step1:Identificationofalternativescenarios;Step2:Barrieranalysis;Step3:Investmentanalysis;andStep4:Commonpracticeanalysis.7.1.2StepsStep1:IdentificationofbaselineandalternativescenariosThisstepservestoidentifyallthealternativescenariostotheproposedprojectactivity(s)whichcouldbethebaselinescenario.20Foundat:http://cdm.unfccc.int/methodologies/PAmethodologies/tools/am-tool-02-v5.0.0.pdfv3.327Wheretheproponenthasahistoryofmanagingtheprojectarea,theproponentmustprovidedocumentedevidenceoftheprojectproponent’soperatinghistory,suchasfiveormoreyearsofmanagementrecords,toprovideevidenceofnormalhistoricalpractices,andthisinformationmustbeconsideredindefiningandevaluatingthealternativebaselinescenarios.Notehoweverthatevidenceofoperatinghistoryoveraspecifiedtimeperioddoesnotitselfdeterminethebaselinescenario,asspecialfactors,notexpectedtoexistinthefuture,mayhaveinfluencedtheproponent’smanagementoftheareaduringthattime.ForREDDprojects,whereownershipoftheprojectareahasnotchanged,theprojectproponentmustprovideevidencetodemonstrate,basedongovernmentplans(forpubliclyownedandmanagedlands),communityplans(forpubliclyownedandcommunitymanagedlands),licenseeplans(forpubliclyownedlandsmanagedbylicensees)orlandownerplans(forprivatelyownedlands),thattheprojectareawasintendedtobecleared.Wheretheprojectproponentisanewownerormanager,forREDD,RILandLtPFprojectsthebaselinescenariomustbebasedontheprojectedmanagementactivitiesofthemostlikelyownerormanagerorclassofownerormanagerwhowouldhavemanagedtheprojectareaintheabsenceoftheproject,providingthattheseactionswereconsistentwithlaw,governmentlanduseplanning,andotherconstraints.Themostlikelymanagementactivitiesmustbedeterminedusingtheproceduresoutlinedinsteps1b,2and3below.Incaseswhereaspecific“mostlikelyownerormanager”cannotbeidentified,thebaselinescenariomustbebasedonthecommoncharacteristicsandratesofdeforestationforthemostlikelytypesofownersormanagerexpectedtomanagetheprojectarea.Determinationofthesecharacteristicsandratesofdeforestationmustbebasedonananalysisoftherecenthistoricpracticesofthistypeofownerormanagerwithintheregionaroundtheprojectarea.ForARRandIFMprojects,thebaselinescenariomustreflectatminimumthelocalcommonpracticesforareascomparabletotheprojectarea,andmustnotresultinprojectedbaselineGHGemissionsfromtheprojectareagreaterthanthosethatwouldoccurundertherelevantlocalcommonpractice.However,iflocalcommonpracticesareunsustainable,andunsustainablepracticesareinconsistentwiththemissionorhistoricalpracticesofthenewownerormanagemententity,thebaselinemustreflectatminimumsustainablepractices.Step1a:DefinealternativescenariostotheproposedprojectactivityIdentifyallalternativescenariosthat:1.Areavailabletotheprojectproponent,oranalternativeownerormanagerwhomightbemanagingtheprojectareaundertheproposedscenario,and;2.Cannotbeimplementedinparalleltotheproposedprojectactivity,andcanoccurwithintheprojectarea,and;3.Arebasedonenvironmentalpracticesnotlessrigorousthancommonpracticeamongforestmanagersinthearea.v3.328Thesealternativescenariosmustinclude:4.TypeS1:TheproposedprojectactivityundertakenwithoutbeingregisteredasaGHGreductionproject.5.TypeS2:Whereapplicable,asituationwherenoinvestmentoractionisundertakenbytheprojectproponents,butthirdparty(s)undertake(s)investmentsoractionswhichprovidethesameoutputtousersoftheprojectactivity.Forexample,inthecaseofanARRproject,analternativescenariomaybethattheprojectproponentwouldnotinvestinplanting,butthattreeswouldbeplantedbyothers.6.TypeS3:Whereapplicable,thecontinuationofthecurrentsituation,notrequiringanyinvestmentorexpensesbeyondbusinessasusualexpensestomaintainthecurrentsituation,suchas,forexample:i.Thecontinuedmanagementofanareaforforestharvest,insteadofconversionanddevelopment.ii.Landcontinuinginanunused,degradedstate.7.TypeS4:Whereapplicable,thecontinuationofthecurrentsituation,requiringaninvestmentorexpensestomaintainthecurrentsituation,suchas,forexample:iii.Continuedharvestandprocessingoftimberatexistingratesandusingexistingsilviculturalandmanufacturingtechniquesandtechnologies.8.TypeS5:Otherplausibleandcrediblealternativescenariostotheprojectactivityscenario,includingthecommonpracticesintherelevantsector,whichcouldoccuronthesamelandbase.Iftheproposedprojectactivityincludesseveraldifferentfacilities,technologies,oroutputs,orareasoflandwithdifferentpotentialuses,alternativescenariosforeachofthemmaybeidentifiedseparately.Plausiblecombinationsofthesemaybeconsideredaspossiblealternativescenariostotheproposedprojectactivity.Forthepurposeofidentifyingrelevantalternativescenarios,provideanoverviewofothertechnologiesorpracticesthatprovidethesameoutputastheproposedprojectactivity,orthatcanoccuronthesamelandbase,andthathavebeenimplementedpreviouslyorarecurrentlyunderwayintheapplicablegeographicalarea.Theapplicablegeographicalareamayincludepreferablyatleasttenareasthatprovidethesameoutputoroccuronthesamekindoflandbaseastheproposedprojectactivity,notincludingotherprojectswhichincludeGHGreductionincentives.Providerelevantdocumentationtosupporttheresultsoftheanalysis.Thedescriptionofthealternativebaselinescenariosmustproviderelevantinformationconcerningpresentorfutureconditions,suchaslegislative,technical,economic,socio-cultural,environmental,geographic,site-specificandtemporalfactors,assumptionsorprojections,andthesefactorsmustbeconsideredinthestepsbelow.v3.329Step1b:ConsistencywithmandatoryapplicablelawsandregulationsThealternativescenario(s)mustbeincompliancewithallmandatoryapplicablelegalandregulatoryrequirements,eveniftheselawsandregulationshaveobjectivesotherthanGHGreductions,eg,tomitigatelocalairpollution.(National,provincialorlocalpoliciesthatdonothavelegally-bindingstatusarenotrequiredtobeconsidered.Iftheproposedprojectactivityistheonlyalternativescenarioamongtheonesconsideredbytheprojectproponentthatisincompliancewithallmandatoryregulations,theproposedprojectactivityisnotadditional.Step2:BarrieranalysisThisstepservestoidentifybarriersandtoassesswhichalternativescenariosarepreventedbythesebarriers.InapplyingSteps2aand2b,providetransparentanddocumentedevidence,andofferconservativeinterpretationsofthisevidence,astohowitdemonstratestheexistenceandsignificanceoftheidentifiedbarriersandwhetheralternativescenariosarepreventedbythesebarriers.Thetypeofevidencetobeprovidedmustincludeatleastoneofthefollowing:1.Relevantlegislation,regulatoryinformationorindustrynorms;2.Relevant(sectoral)studiesorsurveys(eg,marketsurveys,technologystudies,etc.)undertakenbyuniversities,researchinstitutions,industryassociations,companies,bilateral/multilateralinstitutions,etc.;3.Relevantstatisticaldatafromnationalorinternationalstatistics;4.Documentationofrelevantmarketdata(eg,marketprices,tariffs,rules);5.Writtendocumentationfromthecompanyorinstitutiondevelopingorimplementingtheprojectactivityortheprojectproponent,suchasminutesfromBoardmeetings,correspondence,feasibilitystudies,financialorbudgetaryinformation,etc.;OutcomeofStep1a:Adescriptionofplausiblealternativescenariostotheprojectactivity,tobeconsideredwhenselectingtheproject’sbaselinescenario,usingthestepsbelow.OutcomeofStep1b:Listofalternativescenariostotheprojectactivitythatareincompliancewithmandatorylegislationandregulations.Iftheabove-mentionedlistcontainsonlyonescenario,namely:S1-theproposedprojectactivityundertakenwithoutbeingregisteredasaGHGreductionprojectactivity,thentheproposedprojectactivityisnotadditionalandanyremainingproceduresofthistoolarenotapplicable.Otherwise,proceedtoStep2(Barrieranalysis).v3.3306.Documentspreparedbytheprojectproponent,contractorsorprojectpartnersinthecontextoftheproposedprojectactivityorsimilarpreviousprojectimplementations;writtendocumentationofindependentexpertjudgementsfromindustry,educationalinstitutions(eg,universities,technicalschools,trainingcentres),industryassociationsandothers.Step2a:IdentifybarriersthatwouldpreventtheimplementationofalternativescenariosEstablishacompletelistofplausibleandcrediblebarriersthatmaypreventalternativescenariosfromoccurring.Suchplausibleandcrediblebarriersmayinclude:1.Investmentbarriers,otherthaninsufficientfinancialreturnsasanalyzedinStep3.Forinstance,situationswheresimilaractivitieshaveonlybeenimplementedwithgrantsorwithothernon-commercialfinance.Similaractivitiesaredefinedasactivitiesthatrelyonabroadlysimilartechnologyorpractices,areofasimilarscale,takeplaceinacomparableenvironmentwithrespecttoregulatoryframework,andareundertakenintheapplicablegeographicalareaasdefinedinStep1aabove.2.Technologicalbarriers,interalia:i.Skilledand/orproperlytrainedlabortooperateandmaintainthescenarioarenotavailableintheapplicablegeographicalarea,whichleadstoanunacceptablyhighriskoffailureorunderperformance;ii.Lackofinfrastructureforimplementationandlogisticsformaintenanceofthescenario(eg,roadnetworkdoesnotallowefficientforestfertilization);iii.Riskoftechnologicalfailure:theprocess/technologyfailureriskinthelocalcircumstancesissignificantlygreaterthanforothertechnologiesthatprovideservicesoroutputscomparabletothoseoftheproposedprojectactivity,asdemonstratedbyrelevantscientificliteratureortechnologymanufacturerinformation(eg,useofgroundbasedequipmentforselectiveharvestingwithintheprojectareamayresultinunacceptabledamagetoharvestedorretainedtimber);iv.Theparticulartechnologyusedintheproposedscenarioisnotavailableintheapplicablegeographicalarea(eg,theprojectinvolvesimportingnewloggingmachinerythathasneverbeenusedincontextofthegeographicalarea).3.Legalbarriers.Theprojectactivityfacescertainlegalbarriersthatpreventitfrombeingundertaken.However,thepotentialtogenerateemissionreductions/removalshelptoconvinceregulators(provincial,municipal,etc.)toreconsidertheprojectactivities,workwiththeproponenttoaddressanyareasofconcern,andadjustthelegalrequirementstopermittheactivity.Thesituationwhereaprojectcreatesemissionreductionsorremovalspartiallyorwhollythroughanagreementwithgovernmenttochangelegislationorregulationforthepurposesofincreasingcarbonsequestrationandtherebycreatingincrementalemissionsreductionsmayconstituteevidenceofadditionality.v3.331Step2b:EliminatealternativescenarioswhicharepreventedbytheidentifiedbarriersIdentifywhichalternativescenariosarepreventedbyatleastoneofthebarrierslistedinStep2a,andeliminatethosealternativescenariosfromfurtherconsideration.Allalternativescenariosmustbecomparedtothesamesetofbarriers.Theassessmentofthesignificanceofbarriersmaytakeintoaccountthelevelofaccesstoandavailabilityofinformation,technologiesandskilledlabourinthespecificcontextoftheindustrywheretheprojecttypeislocated.Forexample,projectslocatedinsectorswithsmallandmediumsizedenterprisesmaynothavethesamemeanstoovercometechnologicalbarriersasprojectsinasectorwheretypicallylargeorinternationalcompaniesoperate.OutcomeofStep2a:Adescriptionofthebarriersthatmaypreventoneormorealternativescenariosfromoccurring,includingajustificationofthereasonablenessoftheidentifiedbarriers.OutcomeofStep2b:Alistofalternativescenariostotheprojectactivitythatarenotpreventedbyanybarrier.v3.332Step3:InvestmentanalysisTheobjectiveofStep3istocomparetheeconomicorfinancialattractivenessofthealternativescenariosremainingafterStep2byconductinganinvestmentanalysis.TheanalysismustOutcomeofStep2:1.Ifthereisonlyonescenariothatisnotpreventedbyanybarrier,thenthefollowingapplies:1.IfthisalternativescenarioistheproposedprojectactivityundertakenwithoutbeingregisteredasaGHGreductionactivity,thentheprojectactivityisnotadditional.Ifthisalternativescenarioisnottheproposedprojectactivity,thenthisalternativeisidentifiedasthebaselinescenario.Inthiscase,demonstrate,usingquantitativeand/orqualitativeevidence,howtheregistrationoftheprojectactivityasaGHGreductionactivityovercomesidentifiedbarrierswhichpreventtheproposedprojectactivityfromoccurringintheabsenceofregistrationasaGHGreductionactivity.Ifregistrationalleviatesthesebarriers,proceedtoStep3.Otherwise,itisnotadditional.2.Ifthereismorethanonealternativescenariothatisnotpreventedbyanybarrier,thenthefollowingapplies:i.IfthealternativescenariosincludetheproposedprojectactivityundertakenwithoutbeingregisteredasaGHGreductionprojectactivity,thenproceedtoStep3(investmentanalysis).ii.IfthealternativescenariosdonotincludetheproposedprojectactivityundertakenwithoutbeingregisteredasaGHGreductionprojectactivity,then:a.Ifregistrationalleviatestheidentifiedbarriersthatpreventtheproposedprojectactivityfromoccurring,projectparticipantsmustcompleteStep3(investmentanalysis).b.IfregistrationasaGHGreductionactivitydoesnotalleviatetheidentifiedbarriersthatpreventtheproposedprojectactivityfromoccurring,thentheprojectactivityisnotadditional.v3.333includeallalternativescenariosremainingafterStep2,includingscenarioswheretheprojectproponentdoesnotundertakeaninvestment(S2orS3).Step3a:IdentificationofthefinancialindicatorIdentifythefinancialindicator,suchasIRR,NPV,costbenefitratio,orunitcostofproduction(eg.Productioncostpercubicmeterofprocessedtimberorperbonedrytonneofpulp)mostsuitablefortheprojecttypeanddecision-makingcontext.IfoneofthealternativescenariosremainingafterStep2correspondstothesituationdescribedinS2orS3,thenuseeithertheNPVortheIRRasfinancialindicatorintheanalysis.Step3b:CalculationofalternativesCalculatethesuitablefinancialindicatorforallalternativescenariosremainingafterStep2.Includeallrelevantcosts(including,forexample,investmentoperationsandmaintenancecosts),andrevenues(includingsubsidies/fiscalincentives,etc.whereapplicable),and,asappropriate,non-marketcostsandbenefitsinthecaseofpublicinvestorsifthisisstandardpracticefortheselectionofpublicinvestments.ForalternativescenariosthatcorrespondtothesituationdescribedinS2orS3andthatdonotinvolveanyinvestmentcosts,operationalcostsorrevenues,usethefollowingvaluesforthefinancialindicatortoreflectsuchasituation:1.IfthefinancialindicatoristheNPV:AssumeavalueofNPVequaltozero;2.IfthefinancialindicatoristheIRR:UseastheIRRthefinancialbenchmark,asdeterminedthroughtheoptions(1)to(5)below.Thefinancial/economicanalysismustbebasedonparametersthatarestandardinthemarket,consideringthespecificcharacteristicsoftheprojecttype,butnotlinkedtothesubjectiveprofitabilityexpectationorriskprofileofaparticularprojectproponent.Intheparticularcasewheretheprojectactivitycanonlybeimplementedbytheprojectproponent,thespecificfinancial/economicsituationofthecompanyundertakingtheprojectactivitycanbeconsidered.Thediscountrate(inthecaseoftheNPV)orthefinancialbenchmark(inthecaseoftheIRR)maybederivedfromoneormoreof:3.Governmentbondrates,increasedbyasuitableriskpremiumtoreflectprivateinvestmentand/ortheprojecttype,assubstantiatedbyanindependent(financial)expertordocumentedbyofficialpubliclyavailablefinancialdata;4.Estimatesofthecostoffinancingandrequiredreturnoncapital(eg,commerciallendingratesandguaranteesrequiredforthecountryandthetypeofprojectactivityconcerned),basedonbanker’sviewsandprivateequityinvestors/funds’requiredreturnoncomparableprojects;v3.3345.Acompanyinternalfinancialbenchmark(weightedaveragecostofcapitalofthecompany),onlyintheparticularcasethattheprojectactivitycanonlybeimplementedbytheprojectproponent.Theprojectproponentsmustdemonstratethatthisfinancialbenchmarkhasbeenconsistentlyusedinthepast,ie,thatprojectactivitiesundersimilarconditionsdevelopedbythesamecompanyusedthesamefinancialbenchmark;6.Agovernment/officiallyapprovedfinancialbenchmarkwhereitcanbedemonstratedthatsuchfinancialbenchmarksareusedforinvestmentdecisions;7.Anyotherindicatorsiftheprojectproponentcandemonstratethattheaboveoptionsarenotapplicableandtheirindicatorisappropriatelyjustified.Presenttheinvestmentanalysisinthedocumentationsubmittedforvalidationinatransparentmannerandprovidealltherelevantassumptions,sothatareadercanreproducetheanalysisandobtainthesameresults.Refertocriticaltechno-economicparametersandassumptions(suchascapitalcosts,fuelprices,lifetimes,anddiscountrateorcostofcapital).Justifyand/orciteassumptionsinamannerthatcanbevalidated.Incalculatingthefinancialindicator,therisksofthealternativescenarioscanbeincludedthroughthecashflowpattern,subjecttoproject-specificexpectationsandassumptions(eg,insurancepremiumscanbeusedinthecalculationtoreflectspecificriskequivalents).Assumptionsandinputdatafortheinvestmentanalysismustnotdifferacrossalternativescenarios,unlessdifferencescanbewellsubstantiated.Eachofthescenariosexaminedmustberankedaccordingtothefinancialindicator.Includeasensitivityanalysistoassesswhethertheconclusionregardingthefinancialattractivenessofeachscenarioisrobusttoreasonablevariationsinthecriticalassumptions.Theinvestmentcomparisonanalysisprovidesavalidargumentinidentifyingthebaselinescenarioonlyifitconsistentlysupports(foraplausiblerangeofassumptions)theconclusionthatonealternativescenarioisthemosteconomicallyand/orfinanciallyattractive.v3.335Step4:CommonpracticeanalysisCompleteananalysisoftheextenttowhichtheproposedprojecttype(eg,technologyorpractice)hasalreadydiffusedintherelevantsectorandapplicablegeographicalarea.Thistestisacredibilitychecktodemonstrateadditionalityandcomplementsthebarrieranalysis(Step2)and,whereapplicable,theinvestmentanalysis(Step3).Provideananalysisoftheextenttowhichsimilaractivitiestotheproposedprojectactivityhavebeenimplementedpreviouslyorarecurrentlyunderway.Similaractivitiesaredefinedasactivities(ie,technologiesorpractices)thatareofsimilarscale,takeplaceinacomparableenvironment,interalia,withrespecttotheregulatoryframework,andareundertakenintheapplicablegeographicalareaasdefinedinStep1aabove.OtherregisteredorvalidatedGHGreductionprojectactivitiesarenottobeincludedinthisanalysis.Providedocumentedevidenceand,whererelevant,quantitativeinformation.Onthebasisofthatanalysis,describewhetherandtowhichextentsimilaractivitieshavealreadydiffusedintheapplicablegeographicalarea.Ifsimilaractivitiestotheproposedprojectactivityareidentified,thencomparetheproposedprojectactivitytotheothersimilaractivitiesandassesswhetherthereareessentialdistinctionsbetweentheproposedprojectactivityandthesimilaractivities.Ifthisisthecase,pointoutandexplaintheessentialdistinctionsbetweentheproposedprojectactivityandthesimilaractivitiesandexplainwhythesimilaractivitiesenjoyedcertainbenefitsthatrenderedthemfinanciallyOutcomeofStep3:Rankingoftheshortlistofalternativebaselinescenariosaccordingtothemostsuitablefinancialindicator,takingintoaccounttheresultsofthesensitivityanalysis.Ifthesensitivityanalysisisnotconclusive,thenthealternativescenariototheprojectactivitywithgreatestGHGremovals(orleastemissions,inthecasethatallalternativesarenetemitters)overthecreditingperiodamongthealternativescenariosisconsideredasthebaselinescenario.Ifthesensitivityanalysisconfirmstheresultoftheinvestmentcomparisonanalysis,thenthemosteconomicallyorfinanciallyattractivealternativescenarioisconsideredasbaselinescenario.NotethatthebaselinescenarioforaREDDprojectmustresultinaLandUseandLandCoverchangefromaforestedtoanunforestedstate.IfatthisstagetheidentifiedbaselinescenariodoesnotincludeaLandUseandLandCoverchange–forinstance,ifthearearemainsforestusedfortimberproductionunderthemostlikelybaseline,thantheprojectcannotbeaREDDproject,althoughitispossiblethatitmaybeanIFMproject,Ifthealternativeidentifiedinstep3asthebaselinescenarioistheproposedprojectactivityundertakenwithoutbeingregisteredasaBritishColumbiaGHGreductionactivity,thentheprojectactivityisnotadditional.Otherwise,proceedtoStep4.v3.336attractive(eg,,subsidiesorotherfinancialflows)andwhichtheproposedprojectactivitycannotuseorwhythesimilaractivitiesdidnotfacebarrierstowhichtheproposedprojectactivityissubject.EssentialdistinctionsmayincludeaseriouschangeincircumstancesunderwhichtheproposedGHGreductionprojectactivitywillbeimplementedwhencomparedtocircumstancesunderwhichsimilarprojectswerecarriedout.Forexample,newbarriersmayhavearisen,orpromotionalpoliciesmayhaveended,leadingtoasituationinwhichtheproposedGHGreductionprojectactivitywouldnotbeimplementedwithouttheincentiveprovidedbyregistrationoftheactivityasaGHGreductionactivity.Thechangemustbefundamentalandverifiable.Theproposedprojectactivityisregardedas“commonpractice”ifsimilaractivitiescanbeobservedandessentialdistinctionsbetweentheproposedGHGreductionprojectactivityandsimilaractivitiescannotbeidentified.7.1.3DocumentationRequirementsDocumentationofthestepsandprocesscompletedtodeterminetheproject’sbaselinescenario,mustincludeelementsidentifiedinthestepsabove.InadditiontotheinformationrequiredintheVCSprojectdocumentandrepresentations,thesemustinclude:1.Anassertionbytheproponentthatthebaselinescenariowillresultinaconservativeestimateofthegreenhousegasreductiontobeachievedbytheproject,considering:i.existingorproposedregulatoryrequirementsrelevanttoanyaspectofthebaselinescenario;ii.provincialorfederalincentivesrelevanttoanyaspectofthebaselinescenario,includingtaxincentivesorgrantsthatmaybeavailable;iii.thefinancialimplicationsofcarryingoutacourseofactionreferredtointhebaselinescenario,andiv.anyotherfactorrelevanttojustifytheclaimthatthebaselinescenarioisreasonablylikelytooccuriftheprojectisnotcarriedout;OutcomeofStep4:IfoutcomeofStep4isthattheproposedprojectactivityisnotregardedas“commonpractice”,thentheproposedprojectactivityisadditional.IfoutcomeofStep4isthattheproposedprojectactivityisregardedas“commonpractice”thentheproposedprojectactivityisnotadditional,unlessitcanbedemonstratedthatmaterialandlastingchangesinconditionshaveoccurredsincesimilarprojectswerecarriedout,whichmakeitunlikelythatfurtherprojectsofthistypewouldbeimplementedintheabsenceofincentivesforGHGbenefits.v3.3372.Anassertionbytheproponentthattherearefinancial,technologicalorotherobstaclestocarryingouttheprojectthatareovercomeorpartiallyovercomebytheincentivesresultingfromthegreenhousegasproject,andajustificationfortheassertion(Steps2and3);3.AnassertionbytheproponentthattheprojectstartdateisnoearlierthanNovember29,2007.8QUANTIFICATIONOFGHGEMISSIONREDUCTIONSANDREMOVALS8.1OverviewofQuantificationApproachThequantificationmethodsforSSPsarepresentedbelowandinthesub-sectionsthatfollow.Thesemethodsmustbeusedeachtimeamonitoringreportispreparedbyprojectproponentstocalculatethenetchangeinemissionsandremovalsthathaveoccurredsincethepreviousmonitoringreportwasissued(ie,overthecurrentreportingperiodfortheproject),aswellastoestablishinitialprojectandbaselinecarbonstocks.Themethodsalsodescribethekeyparametersthatmustbemonitoredduringthereportingperiod.Projectproponentsmustusethe2003IPCCGoodPracticeGuidanceforLandUse,LandUseChangeandForestryasguidanceforapplicationofthespecificquantificationmethodsdescribedinthissection.Theoverallequationusedtocalculatenetprojectemissionreductionsandremovalenhancementsisasfollows:Equation1∆CO!e"#$,$=&∆TR&&,$+∆TE&',$+−(∆TR(&,$+∆TE(',$)[1]Where:v3.338ParameterDescription∆CO2enet,tThenetemissionreductionsandremovalenhancements,achievedbytheprojectduringreportingperiodt.Anetincreaseinemissionreductionsandremovalenhancementsisexpressedasapositivenumber.ExpressedintCO2e.∆TRPP/BP,tThenetincrementalGHGremovalsbyprojectorbaselinepools,achievedbytheprojectorthebaselineduringmonitoringperiodt.Anetincreaseintotalremovalsisexpressedasapositivenumber.ExpressedintCO2e.∆TEPS/BS,tThenetincrementalGHGemissionreductionsbyprojectorbaselinesourcesofemissions,achievedbytheprojectorthebaselineduringreportingperiodt.Anetincreaseintotalemissionreductionsisexpressedasapositivenumber.ExpressedintCO2e.Quantificationmethodsgivenforindividualpoolsandemissionsourcesbelowmustbeusedforthecalculationofbothbaseline(Section8.2)andproject(Section8.3)emissionreductionsandremovalenhancements.8.1.1QuantificationofControlledCarbonPools8.1.1.1PP1/BP1–PP7/BP7LiveandDeadForestCarbonPools(ExcludingHarvestedWoodProducts)Theproceduressetoutinthissectionapplytothefollowingcarbonpoolsforboththeprojectandbaselinescenarios:•PP1/BP1Above-groundtreebiomass(StandingLiveTrees)•PP2/BP2Above-groundnon-treebiomass(ShrubsandHerbaceousUnderstory)•PP3/BP3Below-groundbiomass(LiveRoots)•PP4/BP4Deadwood(StandingDeadTrees)•PP5/BP5Deadwood(LyingDeadWood)•PP6/BP6Litter(Litter&ForestFloor)•PP7/BP7Soilcarbon(Soil)PoolsthatarerequiredtobequantifiedisdependentonwhichpoolsareidentifiedbyprojectproponentsasrelevantbasedontherequirementscontainedinSection5.2.Theapproachesusedtoquantifythesepools,asdescribedinSection5.2,donotnecessarilyneedtotreateachpoolseparately,usethecategorieslistedabove,orreportresultsseparatelyforeachpool.v3.339However,anysuchapproachmustbeabletoshowthatthecomponentsofforestcarbonincludedinthedefinitionsofeachrelevantpoolwereassessedaspartoftheapproachused.8.1.1.1.1QuantificationApproachandAssociatedUncertaintyMeasurementofcarbonpoolchangesmaybedoneintwoways:•Periodicdirectmeasurementbysamplingcoupledwithassumptionsormodelsusedtoconvertthemeasuredforestbiomassintoamountofstoredcarbon(optionA,below);or•Projectionofprojectareainventories,disturbanceeventsandstandtypesusingsuitablestandlevelgrowthand/orcarbonmodels,withsomeminimumamountofperiodicdirectobservation(optionB,below).OptionAmayprovideprecisionforprojectsonsinglestandsorsimpleforestestates,whereasOptionBmaybemoreeffectiveforcomplexforestestatescharacterizedbyadiversityofstands,treatments,anddisturbancesasdirectmeasurementofbaselineforestcarbonistypicallynotpossiblesincetheprojectoccursinsteadofthebaseline.Therefore,theprojectscenariomayutilizeOptionAwhilethebaselinescenariomustbeassessedusingOptionB.OptionA:FieldSamplingMethod(DirectMeasurement):Whenusingthisapproach,projectproponentsmust:•Stratifytheprojectareatoproducestratawhicharerelativelyhomogenousintermsofcarboncontentandstructure/process.Stratamaybedifferentfordifferentpools.Forinstancethestratificationforsoilmaynotbethesameasthatforstandinglivetrees.Stratificationmayalsobedifferentforthebaselineandprojectscenarios.ForREDDprojects,baselinestratificationmusttakeintoaccountfactorswhichmaytendtodrivethelocationandtimingoflanduseandlandcoverchange.Thesefactorsmayresultindifferentstratathanwouldbearrivedpurelyonecologicalgrounds.Forinstance,accessibilitymaydeterminethatsomeareaswouldbedeveloped,whileotherswouldnot,evenifecologicallytheareasaresimilar.•Map,andcalculatethetotalareaof,eachstratum.•ConductsamplingusingVRI21,DIF22orNFI23standardsforconductingfieldsamplingandforestinventories,orappropriateVCSmodulesforthepoolinquestion.•Ensurethatthesamplingissupervisedbyaqualifiedregisteredprofessional.21ChangeMonitoringInventoryGroundSamplingQualityAssuranceStandardsand(2002)ChangeMonitoringInventoryGroundSamplingQualityAssuranceProcedures,www.for.gov.bc.ca/hts/vri/standards/index.html22Quebec’snormsfortheimplementationofpermanentmonitoringplots,developedbytheForestryInventoryDirectorate.https://www.mffp.gouv.qc.ca/publications/forets/connaissances/Norme-PEP.pdf23Canada’sNationalForestInventoryNationalStandardforEstablishmentofGroundPlots.v3.340•Choosesampleplotlocationsandnumbersusingajustifiedstatisticallyvalidapproachappropriatefortheprojectsite(eg,thatreflectsanysitestratification,etc.).•Ensurethatsamplingapproachesarecomparableeachtimesamplingisdone.Preferably,thesamesamplingmethodsareusedduringeachsamplingevent.However,wherechangesintechnologyorstandardsmakenewsamplingmethodspreferable,thenewsamplingmethodsmustbecalibratedtoensurethattheyproduceresultsconsistentwiththoseproducedbythepreviousmethod.Resultsofthesamplingmustbeconvertedintoamountsofstoredcarboninrelevantforestcarbonpoolsusingaforestcarbonmodel(seeSection8.2.1.1.2).Theareasofthestrataandthesampledresultsforthepoolsaretheinputsfortheforestcarbonmodel,replacingtheresultsofthegrowthandyieldandforestestateandlandscapedynamicsmodelsusedinOptionb).Tomanageassociateduncertaintyandensurethatresultsareconservative,fieldsamplingmustbeconductedatminimumonceeverytenyears,includingatthestartoftheprojectandattheendoftheproject.Whileforestsamplingisnotrequiredineachreportingperiod,modelledresultsmustbeupdatedtoaccuratelyreflectotheractivitiesconductedandmonitoredduringthereportingperiod(eg,harvestingactivities,fertilizeruse,burning,etc.),aswellasotherrelevantfactorsidentifiedasaffectingtheprojectandbaseline(eg,pests,disease,etc.).Whensamplingisconducted,resultsmustbeusedtore-calibratemodelingoutputs.24Asnotedabove,samplinglocationsandintensitiesmustbedeterminedusingajustifiedstatisticallyvalidapproachappropriatefortheprojectsite.Wherethewidthofthe90percentconfidenceintervalofthesampleddataexceeds+/-10%oftheestimatedvalue,theamountthatthecalculatedconfidenceintervalisgreaterthan+/-10%mustbeaddedtotheaverage(inthecaseofthebaselinescenario),orsubtractedfromtheaverage(inthecaseoftheprojectscenario),andtheresultingnumberusedinquantificationofcarboninthesampledcarbonpool.MethodsusedforestimatinguncertaintymustbebasedonrecognizedstatisticalapproachessuchasthosedescribedintheIPCCGoodPracticeGuidanceandUncertaintyManagementinNationalGHGInventories.Thisapproachwilldiscounttheamountofcarbonstoredinprojectpoolswheretheamountofsamplingisnotsufficienttoaddressasite’sinherentvariability/non-homogeneity.Wheremoresamplingisundertaken,thedifferencebetweenthelowerboundofthe90%confidencelimitandthesamplemeanmustdiminish,minimizingthediscountappliedtotheproject.24VCShasinternalmodalitiesfordealingwithcreditissuance,buffers,etc.,whichdonotneedtobedetailedinamethodology.Thesentence“Ifitisdeterminedthatreportingbasedonmodeledresultsinyearsbetweenfieldsamplingledtoovercreditingoftheproject,thentheproponentmustretireorreplaceanycreditsissuedinexcessofwhathasactuallybeenachievedtodate.”hasthusbeenremovedfromthisversionofFCOP.v3.341Forsiteswithsignificantstratification,itmaybeappropriatefortheproponenttosampleeachstratumseparately,andthencombineresultsusingappropriatestatisticalmethodstogeneratearesultrepresentativeoftheoverallprojectarea.Inthisway,itmaybepossibletoachieveagivenlower(orupper)90%confidencelimitwithlesssamplingthanwouldbeneedediftheentireprojectareaweresampledasawhole.Inconvertingsamplingresultstoamountofforestcarbon,uncertaintyassociatedwithassumptionsorcarbonmodelsusedmustbeconsideredandmanagedinawaythatensuresaconservativeresult.Inthecaseofcarbonmodeluncertainty,therequirementsprovidedbelowinthesectionontheInventory/ModellingMethodwouldapply.Notethatwherereportingisconductedmorefrequentlythanfieldsampling,verifierswillstillneedtoconductasiteauditaspartofeachverification.WhereOptionAischosen,itcanbeusedtoquantifyprojectforestcarbonpoolsatprojectcommencement,aswellasafterprojectcommencementundertheprojectscenario.QuantificationofbaselineforestcarbonpoolsfortimesafterprojectcommencementwillstillrequiresomeuseofthemodellingmethodsdescribedinOptionB,below,sincethebaselineisnecessarilyahypotheticalcase.OptionB:Inventory/ModellingMethod(IndirectLinkage)Whilerigorousre-measurementoffieldconditionstypicallyprovidesmoreprecisionthanmodeledprojections,forlargeanddiverseforestestates(orinsomecasessmallbutremoteprojects)intensivesamplingmaybeprohibitivelyexpensive.Fordiverseprojectareas,modellingforestcarbonchangesforeachstand,orforstratifiedgroupingsofsimilarstands,overtimewithamalgamationofresultsacrosstheprojectlandbasemayprovidesufficientlyaccurateestimateswithoutintensivefieldsampling.Thisapproachisbasedontrackingandverificationofthetimingandextentofanyprojectactivities,alongwithsomeminimumleveloffieldmeasurementattheprojectsite,thoughthetypeandlevelofmeasurementwouldbedeterminedbyprojectproponents(seebelowforfurtherdetails).NFIdataandstatisticallyvalidgroundsampledata,willbeusedasthebaseinventoryforprojectdevelopment.Additionally,VRIdatamaybeusedforprojectslocatedintheprovinceofBC,andDIFdatamaybeusedforprojectslocatedwithintheprovinceofQC.Ateachreportingperiod,proponentsmustupdateprojectionsforanydisturbancesthathaveoccurredonthelandbase(harvestingetc.)andbasedontheresultsofanysamplingthatisconducted.Accuracyassessmentsandqualityassuranceassociatedwiththesethreedatasetsarecurrentlyavailableandupdatedonanongoingbasis.Projectproponentsarerequiredtousethebestavailableinventorydataavailableatprojectreportingintervals.WheretheprojectstartdateislaterthanthedatethattheVRIdatasetswerelastupdated,themodelsbeingusedfortheprojectmustbeusedtoprojectforestcarbonforwardtothestartdateoftheprojectusingassumptionsforbaselinepre-projectforestmanagementpractices,andthatresultmustbeusedasthebasisforassessingstartingcarbonlevelsintheprojectandbaseline.v3.342Tomanagetheassociateduncertaintyandensurethatresultsareconservative,thefollowingrequirementsmustbemet:•Asnotedabove,someminimumleveloffieldmeasurementattheprojectsiteisrequiredevenwhereaprojectproponentisrelyingprimarilyonmodelledresults,toassistwithminimizingtheuncertaintyassociatedwithmodeling,especiallyovertime.Thetypeandlevelofmeasurementistobedeterminedbyprojectproponents.However,thetypeandlevelofmeasurementmustbereflectedinanoverallassessmentofuncertaintypreparedbyprojectproponents.Suchfieldmeasurementmustbeconductedatleastonceeverytenyears,toalignwiththerequirementsgiveninthesectiononthefieldsamplingmethod,above.•Inassessingtheoveralluncertaintyoftheforestcarbonpoolquantificationapproach,projectproponentsmustconductasensitivityanalysisofmodelledresultstodeterminethekeypotentialsourcesofuncertaintyandthenevaluatetheuncertaintyassociatedwiththosesources.Duringthisprocess,anyfieldmeasurementsconductedandtheirimpactonassociatedmodeluncertaintymustbeconsidered.•Basedontheresultsofthisuncertaintyassessment,theproponentmustjustifyanappropriateapproachtomanaginguncertaintythatwillensurethatreportedchangesinforestcarbonpoolsbetweenprojectandbaselineareconservative.•Whensamplingisconducted,resultsmustbeusedtore-calibratemodelresults.258.1.1.1.2SelectionofAppropriateModelsTherearethreemainfunctionsformodelsthatareusedforproducingestimatesofforestcarbonvalues,whichmaybeperformedbylinkingtwoormoremodelsorwithasingleintegratedmodel:1.Growthandyieldmodels:estimatevaluesforexistingandprojectedtreevolumeandothercharacteristics(eg,diameteratbreastheight)givenstartingconditionsandsitecharacteristics.ThegrowthandyieldmodelsshowninTable7Aand7BarecommonlyusedinBritishColumbiaandQuebec,respectively,andarerecommendedforusebyprojectproponentsintheseprovinces.Theproponenthastheoptionofusingthebelowsuggestedmodelsorotherjustifiedmodels.Ifgrowthandyieldmodel(s)areselectedforestimatingyields,anyproject-specificparameters/variablesusedbyanyselectedmodel(s)mustbeindependentlyvalidatedforappropriatenessandconsistencythroughouttheproject(note,thisdoesnotprecludeaprojectfromusingdifferentmodelsfordifferentpartsoftheirprojectarea,as25VCShasinternalmodalitiesfordealingwithcreditissuance,buffers,etc.,whichdonotneedtobedetailedinamethodology.Thesentence“Ifitisdeterminedthatreportingbasedonmodeledresultssamplingledtoovercreditingoftheproject,thentheproponentmustretireorreplaceanycreditsissuedinexcessofwhathasactuallybeenachievedtodate.”hasthusbeenremovedfromthisversionofFCOP.v3.343longastheapproachtakeninanygivenpartoftheprojectareaisconsistentlyapplied).Itisalsotheproponent’sresponsibilitytojustifyorreconcilethedifferencesofvolumeestimatesthatmayarisebetween/withinmodels,andthedifferencesbetweenmodelestimatesandfieldmeasurementsinSection8.1.1.1.1.Table7A:CommonlyUsedGrowthandYieldModelsinBCModelnameRangeofapplicabilityGeographic/biogeoclimaticareaStandtypesTASS26Province-wideSecondgrowth,simplestandsTIPSY27Province-wideSecondgrowth,simplestandsVDYP28Province-wideNaturalstandsPrognosisBC29IDF,ICH,ESSF,MSExistingmixedspecies,complexstandsSortie-ND30SBS,ICH(north-west)Mixedspecies,complexstands,MPBareasIDF=InteriorDouglasFir;ICH=InteriorCedar-Hemlock;ESSF=EngelmannSpruce-SubalpineFir;MS=MontaneSpruce;SBS=Sub-BorealSpruce;ICH(north-west)=InteriorCedar-HemlockTable7B:CommonlyUsedGrowthandYieldModelsinQCModelnameRangeofapplicabilityGeographic/biogeoclimaticareaStandtypesNatura31Province-wideExistingmixedstands,simplestandsArtemis32Province-wideExistingmixedstands,simplestands26TreeandStandSimulator.Seehttp://www.for.gov.bc.ca/hre/gymodels/tass/index.htmforfurtherdetails.27TableInterpolationProgramforStandYields.Seehttp://www.for.gov.bc.ca/hre/gymodels/TIPSY/forfurtherdetails.28VariableDensityYieldPrediction.Seehttp://www.for.gov.bc.ca/hts/vdyp/forfurtherdetails.29Seehttp://www.for.gov.bc.ca/hre/gymodels/progbc/forfurtherdetails30Seehttp://www.bvcentre.ca/sortie-ndforfurtherdetails.31Seeftp://ftp.mrn.gouv.qc.ca/Public/Drf/CAPSIS/Natura-2014/forfurtherdetails32Seeftp://ftp.mrn.gouv.qc.ca/Public/Drf/CAPSIS/ARTEMIS-2014/forfurtherdetailsv3.3442.Forestestateandlandscapedynamicsmodels:projectforestdynamicsovertimeacrosslargeareasduetomanagementand/ornaturalprocesses.Maybeusedforidentifyingsustainableharvestlevelsinatimbersupplyanalysis,formodellingnaturaldisturbances(eg,fire,mountainpinebeetle),etc.Usegrowthandyieldasinputs,amongothers,suchasgeospatialinventoryattributes.SomeforestestateandlandscapedynamicsmodelsthathavebeenusedinBritishColumbiaandarerecommendedforconsiderationbyprojectproponentswithinBCincludeFSSAM33,FSOS34,FSSIM35,Patchworks36,SELES-STSM37,CASH638,Woodstock/Stanley39,andLANDIS-II40.3.Ecosystemcarbonprojectionmodels:projectchangesincarbonstocksinvariouspools,aswellassomeemissionssourcesfromforestryoperations,overtimegiveninitialconditions(eg,inventory),growthandyielddataandprojecteddisturbanceevents.SomeecosystemcarbonprojectionmodelsthathavebeenusedinBritishColumbiaandrecommendedforconsiderationbyprojectproponentsincludeCBM-CFS3(Kurzetal.2009)41andFORECAST(Kimminsetal.,1999)42.CBM-CFS3isusedfornational-levelandforestmanagementunit-levelforestcarbonaccountinginCanada.FORECASThasalsobeencalibratedforuseinB.C.BothofthesemodelshavebeenparameterizedusingfielddatafromB.C.forestecosystems.Ecosystemcarbonmodeldevelopersmustprovideevidencethatthemodelshavebeencalibratedfortheecosystemsandmanagementregimesfoundintheprojectarea.Suchcalibrationmustincluderesultsfromrelevantcurrentpeerreviewedresearchoncarbondynamicsintheecosystem(s)inquestion.Dataonthecalibrationdatasetusedmustincludestatisticalconfidenceintervalestimatesforthemodeloutputs.Wheresuchcalibrationhasnotoccurred,andwhereexistingpeerrevieweddatawhichcanbeusedtocalibratethemodelisnotfound,fieldmeasurementswillbeneededtoinitiallycalibrate33ForestServiceSpatialAnalysisModel:http://www.barrodale.com/bcs/index.php/timber-supply-model34ForestSimulationandOptimizationSystem:http://www.forestecosystem.ca/technology_fsos.html35ForestServiceSimulator:http://www.cortex.org/case-mana-case17b.html36http://www.spatial.ca/37SpatiallyExplicitLandscapeEventSimulator:http://www.seles.info/index.php/Main_Page38CriticalAnalysisbySimulationofHarvestingversion6.21,TimberlineNaturalResourceGroupLtd.39http://www.remsoft.com/40Seehttp://www.landis-ii.org/forfurtherdetails.41Kurz,W.A.,C.C.Dymond,T.M.White,G.Stinson,C.H.Shaw,G.J.Rampley,C.Smyth,B.N.Simpson,E.T.Neilson,J.A.Trofymow,J.Metsaranta,andM.J.Apps2009.CBM-CFS3:Amodelofcarbon-dynamicsinforestryandland-usechangeimplementingIPCCstandards.EcologicalModelling220:480–504.42Seehttp://www.forestry.ubc.ca/ecomodels/moddev/forecast/forecast.htmforfurtherdetails.v3.345themodel.PlotorotherdataforcalibrationmustbegatheredusingsoundandreliablemeasurementmethodsconsistentwithVRI43,EFI44orNFI45standards,ormethodscontainedinvalidatedVCSmodules.Incaseswheremodelcalibrationhasbeencompleted,butconfidenceintervalsarestillwide(>+/-10%ofthemeanvalueat90%confidence),proponentsmustconsiderthepossibilityofundertakingfieldworktoreduceconfidenceintervals.Theabovelistsofrecommendedmodelsmaybeusedasaguidelinewhendecidingwhichmodelingapproachtouse.Eachmodelhasitsownadvantagesandlimitations(eg,somegrowthandyieldmodelscancapturetheeffectsoffertilization,someforestestateandlandscapedynamicsmodelscanintegratewiththetimbersupplyreviewprocess,somecarbonprojectionmodelsarecapableofmodelingcertainaspectsoflandscapedynamics).Theproponentmustjustifywhyaparticularmodelisusedandhowpreciselymodelsarelinked(ie,whatinformationispassedbetweendifferentmodelsintheoverallapproach).OthermodelsmayalsobesuitableforusebyprojectsinanyprovinceinCanada.Ifothermodelsareused,theymustbejustifiedbyconsideringtheappropriatenessoftheselectedmodelsversusmodelsrecommendedabove,consideringproject-specificcircumstances.Proponentsmustpayspecialattentiontojustifyingtheuseofalternativemodelsratherthantherecommendedmodelslistedabove.Inaddition,anyselectedalternativemodelmustmeetthefollowingminimumrequirements:•Themodelisscientificallysound,andhasbeenpeerreviewedinaprocessthat:(i)primarilyinvolvedreviewerswiththenecessarytechnicalexpertise(eg,,modelingspecialistsandrelevantfieldsofbiology,forestry,ecology,etc.),and(ii)wasopenandrigorous;•Themodelisbasedonempiricalevidence,andhasbeenparameterizedandvalidatedforthegeneralconditionsoftheprojectlandarea;•Applicationofthemodelislimitedtothescopeforwhichthemodelwasdevelopedandevaluated;•Themodel’sscopeofapplication,assumptions,knownequations,datasets,factorsorparameters,etc.,areclearlydocumented;43ChangeMonitoringInventoryGroundSamplingQualityAssuranceStandardsand(2002)ChangeMonitoringInventoryGroundSamplingQualityAssuranceProcedures,www.for.gov.bc.ca/hts/vri/standards/index.html44Quebec’sEcoforestryInventory(l’inventaireécoforestierduQuébec)https://mffp.gouv.qc.ca/les-forets/amenagement-durable-forets/inventaire-ecoforestier/45Canada’sNationalForestInventoryNationalStandardforEstablishmentofGroundPlots.v3.346•Themodelsmustprovideaccuratemodellingoftimedependentparameterssuchasdecay,belowgroundbiomassandsoilcarbonchanges,etc.Themodelmustnotassumethatsuchchangestakeplaceinstantaneouslyorwithinashortperiodoftime.Regardlessofwhetherarecommendedmodeloralternativemodelisselected,projectproponentsmustjustifytheselectionbyindicatinghowtheselectedmodelisthebestchoiceformodelingtherangeofactivities,conditionsandotherrelevantsite-specificdetailsincludedinboththeprojectandbaselinescenarioincomparisontootheroptionsavailable,andbyconsideringtheapproachesandassumptionsusedinthevariousmodels.Whereanexistingmodelmeetingtheaboverequirementsismodifiedbasedonlocalized,projectarea-specificconsiderations,severalfactorsmustbeconsideredbytheproponentandrationalizedtotheaudior:1.Theamountofpeerreviewedempiricaldatabehindthemodelinuse–specificallyaroundthestandtypesandtreatments/responsesbeingcontemplatedintheproject.2.Theevidencetosupportanycause/effectrelationshipsalteredin,oraddedto,theprojectscenario.Forexample,iffuelreductiontreatmentsareproposedtoreducestandreplacingfireseverityorextent,theevidencebehindmodelingassumptionsmustbepresentedanditsdegreeofuncertaintydescribed.3.Theneedtoputinplacefieldbaseddatacollectionand/ormonitoringwheremodelsordataareinsufficienttoprovidecredible,reliablepredictionsaccordingtoBCMinistrypublishedstandards(VRI)46ortheQuebecForestInventoryDirectorate(DIF)47forprojectswithinBCorQC,respectively.4.Theneedformoreconservativeestimatesofcarbonchangeisnecessaryasdatacertaintydecreases.Gamingorexploitingdifferencesbetweenmodelsinprojectplanningisnotacceptable.8.1.1.1.3EstimatingHarvestFlowforEx-AnteModellingofCarbonPoolsThefollowingrequirementsapplytoestimatingharvestflowonCrownland.Notethattheserequirementsapplytoestimatingharvestflow,nottodeterminingharvestvolumesbasedonmonitoredharvestdata.Duringthecreditingperiod,projectharvestdataistobemonitored,andwherecomparison-basedbaselinesareusedmonitoringofbaselineharvestdatawillalsobepossible.Inothercases,includingpreparationofpre-projectestimates,theserequirementswillapply.46VegetationResourcesInventoryGuidelinesforPreparingaProjectImplementationPlanforGroundSamplingandNetFactorSampling.www.for.gov.bc.ca/hts/vri/standards/index.html47http://mffp.gouv.qc.ca/les-forets/inventaire-ecoforestier/v3.347Fornon-Crownland,proponentsmustdevelopandjustifyanapproachappropriatefortheirproject,andsubjecttorequirementsdetailedelsewhereinthismethodology(eg,Section7).ForCrownland,estimatingsustainableharvestflowsforthebaselineandprojectscenariosmustbedoneinaccordancewithtimbersupplyanalysisstandardscommonlyusedbyForestAnalysisandInventoryBranchinTimberSupplyReviewsinthecaseofprojectswithinBCandinaccordancewithtimbersupplyanalysisstandardsusedbytheForestierenChefinthecaseofprojectswithinQC.Timbersupplyprojectionmustbegeneratedusingmethodsthatarerepeatableandnotoverlydependentonthetoolormodelused.Specifically:1.Thelong-termlevelmustbesustainable,asindicatedbyastabletotalgrowingstock;2.Anydeclinesinharvestlevelsintheearlytomid-termmustbenomorethan10%perdecade;3.Any“dip”intimbersupplyinthemid-termbelowthatlong-termlevelmustbeminimized;4.CurrentAAC(allowableannualcutor“possibilitéforestier”inQuebec)levelmustbemaintainedintheshorttermifpossible,whilebeingconsistentwiththepreviousprinciples.IfthecurrentAACcannotbeachievedwhilemeetingtheotherprinciples,suchasmaximum10%perdecaderateofdeclineandmaintainingthemaximummid-termlevel,projectdocumentationmustdescribewhy.Suchanexplanationmaysimplybethatanyincreaseabovethetimbersupplylevelsshownintheforecastswouldresultindisruptionintheforecastduringthespecifiedtimeperiod[note:thisdoesnotmeanthattheAACmustbeusedasthesolebasisforharvestflow–asdetailedinSection7,otherinformation(eg,historicharvestinglevels,etc.)mustalsobeconsideredtoensurethattheassessedharvestflowisconservative].Intheabove,short,mediumandlong-termhavethefollowingmeanings:•Long-term–usuallyaperiodstartingfrom60to100yearsfromnow,andisthetimeperiodduringwhichtheprojectedharvestlevelisatthesustainablelong-termlevel(whichinturnisdefinedasthelevelthatresultsinaflattotalgrowingstockoverthelongterm).•Short-term–thefirst20yearsoftheforecast.•Mid-term–thetimeperiodbetweentheshortandlongterms.Thesamemethodologyforderivingtheharvestflowmustbeusedforex-antemodellingofcarbonpoolsunderboththebaselineandtheprojectscenarios,andthespecificmethodmustbedocumented(includingquantitiessuchasmaximumallowableinter-periodchangeinlong-termgrowingstockindeterminingthelong-termsustainablelevelandtheinter-periodchangeinprojectedtimbersupplylevel).8.1.1.1.4ModellingPP7/BP7Soilv3.348Wheresoilcarbonisamandatoryrelevantcarbonpoolorisselectedasanoptionalcarbonpoolbytheproponent,theproponentmustensurethateither:•Theforestcarbonmodelsemployedhavethecapabilitytoquantifychangesinsoilcarbonbetweentheprojectandbaselineovertime,or•Anappropriateapproachforassessingsoilcarbon(whetherfieldsampling-basedormodelling-based)isselectedandpairedwiththeselectedforestcarbonmodels.Aprojectproponentmustjustifytheirselectionofasoilcarbonquantificationmethod,consideringthespecificdetailsoftheprojectandbaseline.Fortheselectedapproach,theproponentmustindicatehowtheapproachwillresultinaconservativeassessmentofthechangebetweenprojectandbaseline,consideringtheassociateduncertainty.Theapproachusedmustincludetheuseofsomeleveloffieldmeasurementattheprojectsiteatafrequencyconsistentwiththerequirementsforassessingotherforestcarbonpoolsasdescribedlaterinthismethodology(ie,atleasteverytenyears),tohelpensuretheproject-specificaccuracyofanymodellingthatmaybeused.Theextentoffieldmeasurementemployedmaybedeterminedbyprojectproponents,butwillnaturallyhaveabearingontheuncertaintyassociatedwiththequantificationapproachthatmustalsobemanaged.Soilcarbonmustbeassessedthroughthefullsite-specificsoilprofile.Incasesoflargeuncertaintyorwhereuncertaintycannotbeeffectivelymanaged,andwheresoilcarbonisanoptionalpoolinTable5,thiscarbonpoolmaybedeemednotrelevant.8.1.1.1.5QuantifyingLossEventsWhilecarboniscontinuallycyclinginandoutofaforestduetogrowthanddecayprocesses,othernaturalandhuman-inducedeventscancauseunexpectedlossesofstoredcarbontooccuronrelativelyshorttimescales.Carbonthatislostinthismannerlessthan100yearsafterbeinginitiallyremovedfromtheatmospheredoesnothaveanatmosphericeffectthatwillendureforatleast100years,asrequiredbytheBCEOR.Examplesincludenaturallossesduetofire,pest,disease,etc.,andhuman-inducedlossesduetolegalandillegalharvestingactivities,arson,negligence,etc.Forthepurposesofthismethodology,thetermlossreferstosignificantdisturbancesthatarenotanticipatedbasedontheanticipatedcarbonfluxesfortheprojectarea.Disturbancesandharvestingthatareanticipatedtooccuronapredictablebasisfortheprojectareamustbeincludedwithinthemodelingoftheprojectandbaseline.Thiswillbeparticularlyappropriateforsmallerdisturbancesthatmightbedifficulttodetectthroughregularprojectmonitoring.Caremustbetakenbyprojectproponentstoensurethattheimpactofadisturbanceisnotdoublecounted(whichcouldoccurwherethedisturbancehasbeenfactoredintomodelsaswellasismonitoredandreportedseparately).Projectproponentsmustmonitorfornaturalandhuman-inducedlossevents,andwhendetectedassessandreportontheimpactoftheeventinthenextprojectreportpreparedfortheproject.Assessmentoftheimpactofalossmustbeconsistentwiththesamefieldsampling,modeling,v3.349andquantificationproceduresemployedbytheprojectforassessingprojectandbaselineemissionsandremovals.Whenassessingtheimpactofaparticularlossevent,oneoftwoapproachesistobetaken:1.Fornaturallossesthatwouldhavealsoaffectedthebaseline:Theimpactofthelossonforestcarbonmust,inadditiontobeingassessedfortheproject,alsobemodeledforthebaseline(exceptwherethebaselineisnon-forestlandsuchasinARRorREDDwherethebaselineis100%deforestation).Suchmodelingmustdrawonobservationsofthetypeandextentoflossexperiencedbytheproject,aswellasassumptionsregardingthebaselinescenario.Inpreparingthisbaselineassessment,projectproponentsmustdemonstratehowtheassessmentisconservative(ie,doesnotoverstatetheimpactofthelosseventonthebaseline)inordertomanagetheinherentuncertaintyofpredictingtheimpactofaparticularlosseventonahypotheticalbaselinescenario.Notethatthisapproachofmodelingtheimpactoflosseventsonthebaselineisnotacommonapproachtakeninexistingforestcarbonmethodologies,,butitisconsideredthemostaccurateandappropriateapproachtoeventsthatwouldreasonablybeexpectedtoaffectboththeprojectandbaseline.2.Forhuman-inducedlossesornaturallossesthatwouldnothaveaffectedthebaseline:Theimpactofthelossistobeassessedfortheprojectonly.Notethatforlegalharvestingactivitiescontrolledbyprojectproponents,aportionoftheharvestedforestcarbonmaybetransferredtoHWPpoolsaccordingtotheHWPmethodologiesdescribedinSection8.1.1.2.WherethenetimpactofthelosseventandotherforestSSRsisthattheprojectemissionreductionsandremovalenhancementsarelessthanbaselineemissionreductionsandremovalenhancementsforthatreportingperiod,theeventiscalleda“reversal”.8.1.1.2PP8/BP8&PP9/BP9HarvestedWoodProducts(Inuseandinlandfill)ThemethodologyrecognizesthatsignificantportionsofCanadianforestproductsarenowexportedforenduseoutsideofNorthAmerica.ThemethodthusnowcontainsmethodsforcalculatingCquantitiesintheHWPpoolforbothNorthAmericaandoffshoreuses.EmissioncurvesforbothNorthAmericanandoffshoreuse,aswellasforstandardproductmixes,orcustomproductmixestailoredtothespecificprojectareprovided.Projectproponentsmustensurethattheyincludeintheirprojectcalculationsanychangeswhichmayhavebeenmadetothesefactorsasaresultofthisre-assessment.Themethodsdescribedinthissectionapplytothefollowingcarbonpoolsforboththeprojectandbaseline:•PP8/BP8HarvestedWoodProductsinusev3.350•PP9/BP9HarvestedWoodProductsinlandfillGiventhelinkagebetweencarbonstoredinthein-useandlandfillpools,theywillbequantifiedbelowaspartofasingleoverallapproach.Thismethodologyrecognizesthatcarbonstoragecanbeachievedinharvestedwoodproducts(HWPs).However,sinceaportionofthecarboninitiallystoredinHWPsisknowntobelostovertime,theapproachpresentedhereinvolvesassessingtheamountofwoodproductcarbonthatislostatvariousstagesalongtheHWPlifecycle.ThemethodologyusesseparatedatasetstoestimateretentionofHWPcarbonpoolsforHWPsinNorthAmerica,andintherestoftheworld.Note:harvestflowforbothprojectandbaselinemustbedevelopedinaccordancewiththerequirementsstipulatedinSection8.1.1.1.3.TheproponentmaychooseoneofthefollowingtwoapproachesforquantifyingHWPstorage:1.Defaultapproach–standardHWPmixesforbothNorthAmericanandoffshoreHWPutilization.Usingthisapproach,in-useandin-landfillstorageisbasedonstandardproductmixesforNorthAmericanandoffshoremarkets.ThisapproachallowsprojectproponentstocalculateHWPPoolsandrelatedmethaneemissions(calculatedinsection8.1.2.11)usingstandardtables.ThedefaultapproachisdescribedindetailinFigure2below.v3.351Figure2:HarvestedWoodProductLifecycleforesttimberharvestrawlogssawmillpulpmillnewsprintnewspaperslumberhomeslandfillHARVESTINGPRODUCTIONIN-USEDISPOSALHarvestingLossesLeftinForestCO2+CH4N20ResidualsCombustion&AerobicDecayShorterIn-UseHalf-LifeLongerIn-UseHalf-lifeRe-use&RecycleRecycleCO2CH4N20ResidualsCombustion&AerobicDecayCO2AnaerobicDecayCO2CH4N20CH4AnaerobicDecayCO2CH4%Collected&Destroyed%OxidizedbyCover%NotCollectedLong-TermCarbonStorageMETHODOLOGY:VCSVersion3v3.3522.Optionaladvancedapproach–projectspecificHWPmixes.ThisapproachallowstheproponenttocalculateHWPpoolsusingthesamefactorsandmethodsasthoseusedinthedefaultapproach,buttailoredtothespecificproductmix.Useofthisapproachrequirestheavailabilityofgoodhistoricaldataonwooddeliverybymilltype(forNorthAmericanuse)orwoodproductenduse(foroffshoreuse)forwoodsourcedfromwithintheprojectarea,aswellasprojectionsoffuturewoodproductprocessingandendusethatcanbevalidated.ThisdataismorelikelytobeavailableforNorthAmericanmarketsthanforoffshoremarkets,anditispermissibletousethisapproachforwoodusedinNorthAmericaonly,whileusingthedefaultapproachforwoodusedoffshore.Basedonthislifecyclediagram,assessmentoftheamountofcarbonstoredinHWPsin-useandinlandfillovera100-yearperiodmustconsiderthefollowing:i.Amountofcarbonremovedfromtheforestinharvestedwood(netofon-siteharvestinglosses);ii.Amountofcarbonlostduringproductionofwoodproducts(eg,atthesawmill,duringthepulp&paperprocess,etc.)andassumedcombusted(andemittedasCO2withminoramountsofCH4andN2O)and/orotherwiseaerobicallylosttotheatmosphereasCO2;iii.AmountofcarboninprimaryHWPsthatremainsin-useoverthe100-yearperiod;iv.AmountofcarboninprimaryHWPsthatdoesnotremaininuseforthefull100-yearperiodbutthatisatsomepoint:•CombustedandemittedasCO2withminoramountsofCH4andN2O)and/orotherwiseaerobicallylosttotheatmosphereasCO2,or•Senttolandfill,and:§Retainedoverthe100-yearperiod(non-degradableportionoftheHWPandthepartofthedegradableportionthathasnothadsufficienttimetodegrade)§aerobicallyoranaerobicallydecaystoCO2andCH4andislosttotheatmosphereinvariousways(thepartofthedegradableportionoftheHWPthathashadsufficienttimetodegrade).METHODOLOGY:VCSVersion3v3.353ForHWPsinuseinNorthAmerica,quantificationoftheseprocesseshasbeenconductedbyDymond48withsomedatafromSkogetal49,quantifyingcarbonstorageinHWPsinuse,andinlandfillsanddumps,forBritishColumbiaforestproducts.InthecaseofQuebec,themodelproposedbyDymon(2012)hasbeenusedincludingQCprovincialdatatoadjusttheresultsforprojectswithintheprovince.Inordertodeterminatedefaultvaluesforotherprovinces,projectproponentsmayuseoneofthefollowingoptions:1.UsetheprocedureproposedbyDymond(2012),replacingdatasourcesfromBCwithappropriatedatafromtheprovinceswheretheprojectwillbecarriedout.Thechoiceandappropriatenessofthesedataaswellasitssourcesmustbejustifiedduringvalidationbytheprojectproponent.Theprojectproponentmustalsojustifyduringvalidationtherightnessandthetransparencyofcalculationduringtheprojectvalidationprocess.2.UseothermodelsthatmaybeconsideredassuitabletodeterminateHWPdefaultvaluesrequiredbythemethodology.Ifothermodelisused,theprojectproponentmustjustifyitschoicebyconsideringtheappropriatenessoftheselectedmodelsversusthemodelrecommendedabove,consideringproject-specificcircumstances.Inaddition,anyselectedalternativemodelmustmeetthefollowingminimumrequirements:§Themodelmustbescientificallysound,andmusthavebeenpeerreviewedinaprocessthatprimarilyinvolvedreviewerswiththenecessarytechnicalexpertise;§Themodelmusthavebeenparameterizedandvalidatedforthegeneralconditionsoftheprovinceweretheprojectwillbeimplemented;§Themodel’sscopeofapplication,assumptions,knownequations,datasets,factorsorparameters,etc.,mustbeclearlydocumented.ForHWPinuseoffshore,Winjumetal50providesgeneraluseanddecayfactorsfordevelopingworldmarkets.ThesetwosourceshavebeenusedtodevelopthefiguresgiveninTables9A,9Band11below.DefaultApproachUsingthesetwosources,quantificationoftheharvestedwoodproductpoolusingthedefaultapproachiscalculatedusingthefollowingsteps:1.Calculateorestimatevolumeofroundwooddeliveredtothemill(orexported),fromtheprojectarea,byspecies,yearandwoodproductdestination(NAoroffshore).Harvest48CarenC.Dymond,ForestcarboninNorthAmerica:annualstorageandemissionsfromBritishColumbia’sharvest1965-2065,CarbonBalanceandManagement7:8,2012.49K.E.Skog,SequestrationofcarboninharvestedwoodproductsfortheUnitedStates,ForestProductsJournal58:6,2008.50JackK.Winjum,SandraBrownandBernhardSchlamadinger,ForestHarvestsandWoodProducts:SourcesandSinksofAtmosphericCarbonDioxide,ForestScience44:2,1998.METHODOLOGY:VCSVersion3v3.354flowforbothprojectandbaselinemustbedevelopedinaccordancewiththerequirementsstipulatedinSection8.1.1.1.3.Volumesmustbeforwoodonly(notincludingbark).2.Foreachyear,andlocationofuse,convertvolumestotonnesofdrybiomass,usingequation2,andthestandardwooddensityfiguresgiveninTable8Aand8B.Tonnesofdrybiomassindeliveredroundwoodperyear,bywoodproductdestination.Equation2RWbiomass!,#=∑(Vol$,!,#×wd$$)[2]Where:ParameterDescriptionDefaultValueRWbiomassy,dThedrymassofthedeliveredroundwoodextractedfromtheprojectareainyeary,foreachwoodproductdestinationd(NorthAmericaoroffshore).Expressedint.N/AVols,y,dThevolumeofdeliveredroundwoodofspeciesorgroupofspeciessforeachwoodproductdestinationd,extractedfromtheprojectareainyeary.Expressedinm3.N/AwdsThewooddensityforspeciesorgroupofspeciess,fromtables8Aand8B51.Expressedint/m3.Givenintables8Aand8BTable8A:BC-specificwooddensity(wd)foroven-dryroundwoodtoconvertfrominside-barkharvested(green)volume(m3)tomass–DerivationdetailedinAppendixD.BCSpeciesorgenusWooddensityto2significantfigures52(tm-3)Redalder(Alnusrubra)0.37Tremblingaspen(Populustremuloides)0.38Westernredcedar(Thujaplicata)0.3251WherenewdataofwooddensityisprovidedatvalidationforprovincesotherthanBCorQuebec,theprojectproponentmustjustifythesedataaswellasitsourcesanddemonstratethattheyarecorrectandapplicabletotheprojectinthecontextoftheprovinceweretheprojectactivityisbeingdeveloped.Duringthevalidationtheprojectproponentneedtodemonstratethatthesedataresultinaconservativeestimate.52ValuesafterJ.S.Gonzalez.WooddensityofCanadiantreespecies.Edmonton:ForestryCanada,NorthwestRegion,NorthernForestryCentre,1990,Inform.Rept.NOR-X-315.METHODOLOGY:VCSVersion3v3.355Yellowcypress(Chamaecyparisnootkatensis)0.42Douglas-fir(Pseudotsugamenziesii)0.44Truefirs(Abiesspp.)530.35Westernhemlock(Tsugaheterophylla)0.42Westernlarch(Larixoccidentalis)0.50Lodgepolepine(Pinuscontorta)0.41Ponderosapine(Pinusponderosa)0.41Spruce(Piceaspp.)540.36Sitkaspruce(Piceasitchensis)0.35Table8B:QC-specificwooddensity(wd)foroven-dryroundwoodtoconvertfrominside-barkharvested(green)volume(m3)tomass–DerivationdetailedinAppendixD.QCSpeciesorgenusWooddensityto2significantfigures55(tm-3)Abiesspp0.40Acerspp0.52Alnusspp0.45Betulaspp0.51Fagusgrandifolia0.60Fraxinusspp0.57Juglansspp0.53Larixlaricin0.44Piceaglauca0.34Piceamariana0.44Picearubra0.4453ThetreesknowninBCas“balsam”aretruefirs54SpruceincludesEngelmannSpruce,WhiteSpruce,andHybridSpruce.55ValuesafterJ.S.Gonzalez.WooddensityofCanadiantreespecies.Edmonton:ForestryCanada,NorthwestRegion,NorthernForestryCentre,1990,Inform.Rept.NOR-X-315.METHODOLOGY:VCSVersion3v3.356Pinusbaniksiana0.40Pinusresinosa0.38Pinusstrobus0.32Pinussylvestris0.42Populusspp0.35Prunusspp0.49Quercusspp0.58Salixspp0.45Thujaoccidentalis0.30Tilia0.43Tsuga0.42Ulmus0.653.ConverttonnesofbiomasstotonnesofCO2,foreachyear,usingequation3.TonnesofCO2indeliveredroundwoodforyearyEquation3G_HWPCO2!,#=RWbiomass!,#×CF%&×(44/12)[3]Where:ParameterDescriptionDefaultValueG_HWPCO2y,dThemassofCO2indeliveredroundwoodextractedfromtheprojectareainyeary,foreachwoodproductdestinationd(NorthAmericaoroffshore).ExpressedintCO2N/ARWbiomassy,dThedrymassofthedeliveredroundwoodextractedfromtheprojectareainyeary,foreachwoodproductdestinationd(NorthAmericaoroffshore).Unitofmeasure:t(SeeEquation2)N/ACFRWCarbonfractionofroundwooddrymass,dimensionless.0.544/12Molecularweightratiobetweencarbondioxideandcarbon,dimensionless.44/12METHODOLOGY:VCSVersion3v3.3574.CalculatethetotalGHGs(intonnesCO2e),remaininginHWPsinuseandinlandfills,atagiventimet,usingequation4.TotalGHGsremaininginHWPsderivedfromtheprojectareauptotimetEquation4GHG!"#,%&',(=∑(G_HWPCO2),+),(×HWPf+,(-)+G%&'!"#),"×HWPf",(-))[4]Where:ParameterDescriptionDefaultValueGHGCO2,HWP,tMassofCO2storedinprojectorbaselineHWPsuptotimet.ExpressedintCO2eN/AG_HWPCO2y,NAThemassofCO2indeliveredroundwoodextractedfromtheprojectareainyeary,destinedforuseinNorthAmerica.ExpressedintCO2e(SeeEquation3)N/AG_HWPCO2y,OThemassofCO2indeliveredroundwoodextractedfromtheprojectareainyeary,destinedforuseoutsideofNorthAmerica,ExpressedintCO2e(SeeEquation3)N/AHWPfNA,t-yThefactor,derivedfromtable9,forthepercentageofCO2remainingstockedinHWP(in-useandlandfill)afterthenumberofyearsbetweenharvestandtimet,forproductsusedinNorthAmerica56.Table9HWPfO,t-yThefactor,derivedfromtables9,forthepercentageofCO2remainingstockedinHWP(in-useandlandfill)afterthenumberofyearsbetweenharvestandtimet,forproductsusedoutsideofNorthAmerica.Table9>≤@Anyyearyuptoyeart56IfthefractionofCO2remainingin-useandin-landfillperyearisnotavailableinthisdocument,theprojectproponetmustprovidethenecessarydataduringthevalidationprocess.METHODOLOGY:VCSVersion3v3.358Table9:FractionofCO2remainingstockedinHWP(in-useandinlandfill)peryear–DerivationdetailedinAppendixF57YearBCproductsusedinNorthAmerica-%oftotaldeliveredCO2storedafteryyearsQCproductsusedinNorthAmerica-%oftotaldeliveredCO2storedafteryyearsProductsusedoffshore-%oftotaldeliveredCstoredafteryyears065.9%65.2%76.0%164.6%63.3%72.7%263.5%60.9%72.4%362.5%58.8%72.1%461.6%56.9%71.0%560.7%55.2%69.8%659.9%53.7%68.6%759.2%52.3%67.4%858.5%51.0%66.2%957.8%49.9%65.1%1057.2%48.9%63.9%1156.6%47.9%62.8%1256.0%47.0%61.6%1355.5%46.2%60.5%1454.9%45.4%59.4%1554.4%44.7%58.3%1653.9%44.1%57.3%1753.4%43.5%56.2%57DerivedfromCarenC.Dymond,ForestcarboninNorthAmerica:annualstorageandemissionsfromBritishColumbia’sharvest1965-2065,CarbonBalanceandManagement7:8,2012,JackK.Winjum,SandraBrownandBernhardSchlamadinger,ForestHarvestsandWoodProducts:SourcesandSinksofAtmosphericCarbonDioxide,ForestScience44:2,1998andK.E.Skog,SequestrationofcarboninharvestedwoodproductsfortheUnitedStates,ForestProductsJournal58(6):56-72.(2008)METHODOLOGY:VCSVersion3v3.3591853.0%42.9%55.2%1952.5%42.3%54.2%2052.1%41.8%53.2%2550.0%39.5%48.4%3048.1%37.7%44.0%3546.4%36.1%40.1%4044.8%34.7%36.5%4543.4%33.5%33.2%5042.0%32.4%30.2%5540.7%31.4%27.5%6039.5%30.5%25.1%6538.3%29.7%22.9%7037.2%28.9%20.8%7536.2%28.2%19.0%8035.2%27.6%17.3%8534.2%27.0%15.8%9033.3%26.5%14.4%9532.4%26.0%13.1%10031.6%25.6%12.0%AdvancedapproachIftheadvancedapproachisusedforNorthAmericanoroffshoreproducts,orboth,thesamestepswillbeusedasforthedefaultapproach,exceptthatateachstepeitherthedeliveriesbymilltype(forNorthAmericanuse)orproducttypes(foroffshoreuse)willbeaccountedseparately.ThetypestobeusedareshowninTable10.Table10:Mill/ProductcategoriesforNorthAmericaandoffshoreNorthAmericaLumbermillsPlywoodmillsPanelmills(allnon-plypanelproducts)METHODOLOGY:VCSVersion3v3.360PulpandPaperOffshoreLumberPanel(includingplywood)OtherindustrialroundwoodPaperandpaperboardInstep4,themilltypeorusecategoriesarecalculatedseparately,usingthevaluesgiveninTable11Table11:FractionofCO2remainingstockedinHWP(in-useandinlandfill)in-useandinlandfillperyear,byproductcategory–DerivationdetailedinAppendixF58BCproductsusedinNorthAmerica-%oftotaldeliveredCO2storedafteryyearsQCproductsusedinNorthAmerica-%oftotaldeliveredCO2storedafteryyears.Productsusedoffshore-%oftotaldeliveredCstoredafteryyearsYearLumbermillsPlywoodmillsPanelmillsPulp/PaperLumbermillsPlywoodmillsPanelmillsPulp/PaperLumberWoodpanelOtherroundwoodPaper064.9%79.7%84.5%49.4%67.5%81.5%84.5%56.7%76.0%76.0%76.0%76.0%163.6%78.8%84.1%47.1%65.8%80.2%84.3%54.1%73.8%74.9%72.7%69.6%262.5%78.1%83.8%45.1%63.1%78.3%84.0%51.7%73.6%74.8%72.4%69.0%361.5%77.3%83.5%43.1%60.7%76.7%83.8%49.5%73.5%74.7%72.2%68.5%460.6%76.6%83.1%41.4%58.6%75.2%83.6%47.5%73.0%74.0%70.8%66.1%559.7%76.0%82.8%39.7%56.8%73.9%83.3%45.6%72.5%73.2%69.5%63.7%659.0%75.4%82.5%38.2%55.2%72.8%83.1%43.8%72.0%72.4%68.1%61.3%758.2%74.8%82.1%36.8%53.8%71.8%82.8%42.2%71.4%71.5%66.8%59.0%857.5%74.2%81.8%35.4%52.6%70.9%82.6%40.6%70.9%70.7%65.5%56.8%956.9%73.6%81.5%34.2%51.5%70.0%82.3%39.2%70.4%69.8%64.2%54.6%1056.3%73.1%81.2%33.0%50.5%69.3%82.1%37.8%69.8%68.9%62.9%52.4%1155.7%72.6%80.8%31.9%49.7%68.6%81.8%36.5%69.2%68.1%61.6%50.4%58DerivedfromCarenC.Dymond,ForestcarboninNorthAmerica:annualstorageandemissionsfromBritishColumbia’sharvest1965-2065,CarbonBalanceandManagement7:8,2012,JackK.Winjum,SandraBrownandBernhardSchlamadinger,ForestHarvestsandWoodProducts:SourcesandSinksofAtmosphericCarbonDioxide,ForestScience44:2,1998,andK.E.Skog,SequestrationofcarboninharvestedwoodproductsfortheUnitedStates,ForestProductsJournal58(6):56-72.(2008)METHODOLOGY:VCSVersion3v3.3611255.1%72.1%80.5%30.8%48.9%68.0%81.5%35.3%68.7%67.2%60.3%48.4%1354.6%71.6%80.2%29.8%48.2%67.5%81.3%34.1%68.1%66.3%59.0%46.4%1454.0%71.2%79.9%28.9%47.6%67.0%81.0%33.0%67.5%65.3%57.8%44.5%1553.5%70.7%79.5%28.0%47.1%66.5%80.7%32.0%66.9%64.4%56.6%42.7%1653.0%70.3%79.2%27.1%46.6%66.1%80.5%31.0%66.3%63.5%55.4%40.9%1752.6%69.8%78.9%26.3%46.1%65.7%80.2%30.0%65.7%62.6%54.2%39.2%1852.1%69.4%78.6%25.5%45.7%65.3%79.9%29.1%65.1%61.7%53.0%37.5%1951.7%69.0%78.3%24.7%45.3%65.0%79.6%28.2%64.4%60.7%51.8%35.9%2051.2%68.6%77.9%24.0%45.0%64.6%79.4%27.4%63.8%59.8%50.7%34.4%2549.2%66.6%76.3%20.8%43.5%63.2%78.0%23.6%60.6%55.2%45.3%27.6%3047.4%64.8%74.7%18.1%42.4%61.9%76.6%20.4%57.4%50.7%40.4%22.0%3545.7%63.1%73.1%15.8%41.5%60.8%75.2%17.7%54.2%46.4%36.0%17.5%4044.1%61.5%71.6%13.8%40.8%59.8%73.8%15.4%51.1%42.3%32.0%13.9%4542.7%59.9%70.0%12.1%40.0%58.8%72.5%13.4%48.0%38.5%28.5%11.0%5041.3%58.4%68.5%10.7%39.4%57.8%71.2%11.7%45.0%34.9%25.3%8.7%5540.1%57.0%67.0%9.4%38.7%56.9%69.9%10.2%42.1%31.6%22.4%6.8%6038.9%55.6%65.5%8.2%38.1%56.1%68.8%8.9%39.3%28.5%19.9%5.4%6537.7%54.3%64.0%7.2%37.5%55.2%67.6%7.7%36.6%25.7%17.7%4.3%7036.7%53.0%62.6%6.4%37.0%54.4%66.5%6.7%34.1%23.1%15.7%3.4%7535.6%51.8%61.1%5.6%36.5%53.6%65.5%5.9%31.7%20.8%13.9%2.6%8034.6%50.6%59.7%4.9%36.0%52.9%64.5%5.1%29.4%18.7%12.3%2.1%8533.7%49.4%58.4%4.4%35.5%52.2%63.6%4.5%27.3%16.7%10.9%1.6%9032.8%48.3%57.0%3.9%35.1%51.5%62.7%3.9%25.3%15.0%9.7%1.3%9531.9%47.2%55.7%3.4%34.7%50.9%61.8%3.4%23.4%13.4%8.6%1.0%10031.1%46.1%54.4%3.0%34.3%50.3%60.8%3.0%21.6%12.0%7.6%0.8%8.1.2QuantificationMethodologies–ControlledandRelatedSources8.1.2.1GeneralApproachforQuantifyingEmissionsourcesForeachcontrolledandrelatedemissionsourcequantified,acalculationmethodisprovidedandjustifiedforquantifyingassociatedGHGemissionsinthefollowingsection.Notethatifapublishedquantificationmethodologyforaparameterrequiredforacontrolledorrelatedsourceinthissectionisreferencedordirectlyincorporatedbythenationalorprovincialreportingregulation(e.g..,BCReportingRegulation),thequantificationmethodology,includingrelevantMETHODOLOGY:VCSVersion3v3.362sampling,analysisandmeasurementrequirements,maybeused59.Deviationfromthereferencedordirectlyincorporatedmethodologiesforaparameterrequiresappropriateexplanationfromprojectproponents.Atypical,universallyacceptedemissionfactor-basedequationhasbeenusedformostSSPstocalculatetotalemissions,asfollows:Equation5TE'(),=∑(GHG+,'(),)×GWP+)[5]Where:ParameterDescriptionDefaultValueTEESi,tTotalemissionsfromEmissionSources(ES)i,duringreportingperiodt.ExpressedintCO2eGHGj,ESi,tEmissionsofGHGj,fromEmissionSource(ES)iduringreportingperiodt.ExpressedintGHGj.(SeeEquation6)N/AGWPjGlobalwarmingpotentialofGHGj.Dimensionless.N/AjTherelevantGHGsinthismethodology:CO2,CH4andN2ON/AtThereportingperiodinquestion,wherethevalueoftindicatesthenumberofreportingperiodsthathaveoccurredsincethestartoftheprojectuptothereportingperiodinquestion.N/AEquation6GHG+,'(),=EF),+×AL)×CF[6]Where:59TheReportingRegulation,underauthorityoftheGHGReduction(CapandTrade)Act,wasapprovedbyOrderoftheLieutenantGovernorinCouncilonNovember25,2009.ReferencedWesternClimateInitiativequantificationmethodscanbefoundathttp://www.env.gov.bc.ca/cas/mitigation/ggrcta/pdf/Final-Essential-Requirements-of-Mandatory-Reporting--Dec-17-2010.pdfMETHODOLOGY:VCSVersion3v3.363ParameterDescriptionDefaultValueGHGj,ESi,tEmissionsofGHGj,fromEmissionSource(ES)iduringreportingperiodt.Expressedint.N/AEFi,jEmissionfactor(EF)forGHGjandEmissionSource(ES)i.ExpressedintGHGj/unitofactivityorinput/outputN/AALiQuantityofinput/outputor“activitylevel(AL)”forEmissionSource(ES)i(eg,volumeoffuelcombusted,amountoffertilizerapplied,etc.).Expressedinthecorrespondingunitofactivityorinput/output.N/ACFConversionfactortobeusedwhentheunitsoftheactivityleveldonotmatchthoseoftheemissionfactor.Whereboththeactivitylevelandemissionfactorareexpressedinthesameunits,CFwouldbesetto1.Dimensionless.N/AInmostcases,emissionswillbecalculatedusingthisequationoravariationofthisequation.Wherethemethodologiesdescribedbelowrequireselectinganemissionfactorfromarecognizedsource,theprovincialGHGInventorymaybeusedwhereappropriate,followedbytheNationalGHGInventoryandthenotherrecognizedsources.Below,equationsandparametersareprovidedandjustifiedforeachrelevantSSPfortheprojectandbaseline.Notethat,asindicatedinTable6,whereprojectemissionsarelessthanbaselineemissionsforarelatedSSP,thatSSPisdeemednotrelevantinmostcases,andthenetchangeinemissionsbetweenprojectandbaselinesettozero.8.1.2.2PE1/BE1FossilFuelProductionThisquantificationmethodistobeappliedtoboththeprojectandbaseline.Emissionsfromproductionoffossilfuelsconsumedon-sitearetobecalculatedusingthestandardemissionfactormultipliedbytheactivitylevel,usingtheapproachdescribedbyEquation7andrestatedhere:PE1/BE1fossilfuelproductionemissionsEquation7TEPE1/BE1,t=∑(GHGj,PE1/BE1,t)×GWPj)[7]Where:METHODOLOGY:VCSVersion3v3.364ParameterDescriptionDefaultValueTEPE1/BE1,tTotalemissionsfromproductionoffossilfuelsconsumedbyon-sitevehiclesandequipmentduringreportingperiodt.ExpressedintCO2eGHGj,PE1/BE1,tEmissionsofGHGj,fromproductionoffossilfuelsconsumedbyon-sitevehiclesandequipmentduringreportingt.ExpressedintGHGj.(SeeEquation8)N/AGWPjGlobalwarmingpotentialofGHGj.Dimensionless.N/AjTherelevantGHGsinthismethodology:CO2,CH4andN2ON/AtThereportingperiodinquestion,wherethevalueoftindicatesthenumberofreportingperiodsthathaveoccurredsincethestartoftheprojectuptothereportingperiodinquestion.N/AEquation8GHG+,-'./0'.,=EF1,+×AL1,×CF1[8]Where:METHODOLOGY:VCSVersion3v3.365ParameterDescriptionDefaultValueGHGj,PE1/BE1,tEmissionsofGHGj,fromproductionoffossilfuelsconsumedbyon-sitevehiclesandequipmentduringreportingperiodt.Expressedint.N/AEFf,jTheemissionfactorforGHGjandfueltypef.Note:itislikelythatfuelproductionemissionfactorsmayonlybeavailableinunitsofCO2e.ExpressedintGHGj/unitoffuelSeebelowunderthetitle“Determiningtheemissionfactor”theemissionfactorrequirementsALf,tThequantityoffueloftypefconsumedbyon-sitevehiclesandequipmentduringreportingperiodt.Expressedinvolumetricmeasure(eg,l,m3,etc.)ormassmeasure(kg,t,etc.)withappropriateconversion.N/ACFfTheconversionfactortobeusediftheunitsoftheactivityleveldonotmatchthoseoftheemissionfactorforaparticularfueltypef.Whereboththeactivitylevelandemissionfactorareexpressedinthesameunits,CFwouldbesetto1.Dimensionless.N/ADeterminingtheemissionfactorFossilfuelproductionemissionfactorstendtobeuncertain,giventherangeoffactorsthatcaninfluenceoverallemissions.Emissionfactorsappropriateforthefuelsinquestionmustbeselectedfromthefollowingreferencesourcesinorderofpreference(whereanappropriatefactorisnotavailablefromapreferredreferencesource,thenextsourceonthelistmaybeconsulted):3.Theprovincialreportingregulation,correspondingtotheprovincewheretheprojectisdeveloped.4.LatestversionoftheprovincialGHGInventoryReport,correspondingtotheprovincewheretheprojectisdeveloped.5.LatestversionofCanada’sNationalGHGInventoryReport6.LatestversionoftheGHGeniustransportationfuellifecycleassessmentmodel6060Availableathttp://www.ghgenius.ca/METHODOLOGY:VCSVersion3v3.3667.Otherrecognizedsources,includingfederal(Canada)orprovincialgovernmentinstitutions(correspondingtotheprovincewheretheprojectisdeveloped),theIPCCortheUNFCCC,withapreferencetoprovincialdataovernationalorinternationalleveldata.Note:attimeofmethodologydevelopment,3.19wasthemostrecentversionoftheGHGeniusmodel.Inthisversion,defaultemissionfactorsforvariousfuelscanbefoundonworksheet“UpstreamResultsHHV”,rows19and33(oneortheotherdependingonthefuel),inunitsofgCO2eperGJ(HHV)offuel.Note:theseemissionfactorsalsoincludetransport/distribution-relatedemissionswhichwouldoverlapwithSSPPE4/BE4.Iftheseemissionfactorsareused,thenfueltransportationemissionsdonotneedtobeincludedinSSPPE6/BE6.8.Otherrecognized,justifiedreferencesources,withapreferenceforBC-specificdataovernationalorinternationalleveldata.Thesesourcesmustbepeerreviewed,andnotmorethan10yearsold.DeterminingtheactivitylevelForfuelcombustioninequipmentandvehicles,themostaccurateapproachistousefuelconsumptionrecordsbytypeofequipmentorvehicleandfueltype.However,forcalculatingfuelproductionemissionsitisequallyappropriatetotracktotalvolumesofeachtypeoffuelconsumedfortheentireprojectsite.Sinceitisnotpossibletodirectlymonitorfuelconsumptioninthebaseline,baselinefuelconsumptionmustbeestimatedbasedonjustifiedvehicleandequipmentusageestimatesinthebaselineandconsideringfuelconsumptionobservedduringtheprojectperiodasapplicable8.1.2.3PE2/BE2EmissionsfromFertilizerProductionThisquantificationmethodistobeappliedtoboththeprojectandbaseline.Emissionsfromproductionoffertilizeraretobecalculatedusingthestandardemissionfactormultipliedbytheactivitylevel,usingtheapproachdescribedbyEquations9and10andrestatedhere:Equation9TE-'2/0'2,=∑(+GHG+,-'2/0'2,×GWP+)[9]Where:METHODOLOGY:VCSVersion3v3.367ParameterDescriptionDefaultValueTEPE2/BE2,tTotalemissionsfromfertilizerproduction,duringreportingperiodt.ExpressedintCO2eGHGj,PE2/BE2,tEmissionsofGHGj,fromfertilizerproductionduringreportingperiodt.ExpressedintGHGj.(SeeEquation10)N/AGWPjGlobalwarmingpotentialofGHGj.Dimensionless.N/AjTherelevantGHGsinthismethodology:CO2,CH4andN2ON/AtThereportingperiodinquestion,wherethevalueoftindicatesthenumberofreportingperiodsthathaveoccurredsincethestartoftheprojectuptothereportingperiodinquestion.N/AEquation10GHG+,-'2/0'2,=∑EF1,+×AL1,×CF11[10]Where:ParameterDescriptionDefaultValueGHGj,PE2/BE2,tEmissionsofGHGj,fromfertilizerproductionappliedduringreportingperiodt.Expressedint.N/AEFf,jTheemissionfactorforGHGjandfertilizertypef.Note:itislikelythatfertilizerproductionemissionfactorsmayonlybeavailableinunitsofCO2e.ExpressedintGHGj/tfertilizertypefSeebelowunderthetitle“Determiningtheemissionfactor”theemissionfactorrequirementsALf,tThequantityoffertilizeroftypefappliedduringreportingperiodt.Expressedint,N/ACFfTheconversionfactortobeusediftheunitsoftheactivityleveldonotmatchthoseoftheemissionfactorforaparticularfertilizertypef.Whereboththeactivitylevelandemissionfactorareexpressedinthesameunits,CFwouldbesetto1.Dimensionless.N/AMETHODOLOGY:VCSVersion3v3.368DeterminingtheemissionfactorEmissionfactorsappropriateforthenitrogen-basedfertilizersinquestionmustbeselectedfromthefollowingreferencesourcesinorderofpreference(whereanappropriatefactorisnotavailablefromapreferredreferencesource,thenextsourceonthelistmaybeconsulted):1.Theprovincialreportingregulation,correspondingtotheprovincewheretheprojectisdeveloped.2.LatestversionoftheprovincialGHGInventoryReport,correspondingtotheprovincewheretheprojectisdeveloped.3.LatestversionofCanada’sNationalGHGInventoryReport4.LatestversionoftheGHGeniustransportationfuellifecycleassessmentmodel.5.Otherrecognizedsources,includingfederal(Canada)orprovincialgovernmentinstitutions(correspondingtotheprovincewheretheprojectisdeveloped),theIPCCortheUNFCCC,withapreferencetoprovincialdataovernationalorinternationalleveldata.Note,attimeofmethodologydevelopment,3.19wasthemostrecentversionoftheGHGeniusmodel.Inthisversion,adefaultemissionfactorfornitrogen-basedfertilizercanbefoundonworksheet“W”,cellB27,inunitsofgCO2eperkgofnitrogen-basedfertilizerproduced(notperkgofnitrogen).Theemissionfactorprovidedis2,792gCO2e/kgNitrogen-basedfertilizer.Note,thisemissionfactoralsoincludesasmallamountoftransport-relatedemissionswhichwouldoverlapwithSSPPE6/BE6.Ifthisemissionfactorisused,thenfertilizertransportationemissionsdonotneedtobeincludedinSSPPE6/BE6.ProponentsmaytailortheassumptionsusedinGHGeniustoderivethisemissionfactor(eg,typeofenergysources,ratiooffinishedfertilizertonitrogen,etc.)toproduceanemissionfactorcustomizedfortheproject,aslongasallchangesarejustified.DeterminingtheactivitylevelQuantitiesofdifferenttypesoffertilizerappliedaretobemonitoredduringtheproject.Sinceitisnotpossibletodirectlymonitorfertilizerapplicationinthebaseline,baselinefertilizerapplicationmustbeestimatedbasedonjustifiedapplicationratebasedonthepracticesdescribedfortheselectedbaselinescenario.8.1.2.4PE3/BE3EmissionsfromTransportofMaterial,Equipment,Inputs,andPersonneltoSiteThisquantificationmethodistobeappliedtoboththeprojectandbaseline.Emissionsfromtransportationofmaterials,equipment,inputs,andpersonneltotheproject/baselinesitearetobecalculatedusingthestandardemissionfactormultipliedbytheactivitylevelapproachdescribedbyEquation6andrestatedhere:METHODOLOGY:VCSVersion3v3.369Equation11TE-'3/0'3,=∑(+GHG+,-'3/0'3,×GWP+)[11]Where:ParameterDescriptionDefaultValueTEPE3/BE3,tTotalemissionsfromtransportofmaterial,equipment,inputsandpersonneltosite,duringreportingperiodt.ExpressedintCO2eGHGj,PE3/BE3,tEmissionsofGHGj,fromtransportofmaterial,equipment,inputsandpersonneltosite,duringreportingperiodt.ExpressedintGHGj.(SeeEquation12;Equation13,Equation14)N/AGWPjGlobalwarmingpotentialofGHGj.Dimensionless.N/AjTherelevantGHGsinthismethodology:CO2,CH4andN2ON/AtThereportingperiodinquestion,wherethevalueoftindicatesthenumberofreportingperiodsthathaveoccurredsincethestartoftheprojectuptothereportingperiodinquestion.N/AEquation12GHG+,-'3/0'3,=∑(EF4,+×AL4,×CF4)4[12]Where:METHODOLOGY:VCSVersion3v3.370ParameterDescriptionDefaultValueGHGj,PE3/BE3,tEmissionsofGHGj,fromtransportationofmaterials,equipment,inputsandpersonneltotheproject/baselinesiteduringreportingperiodt.Expressedint.N/AEFm,jEmissionfactor(EF)fortransportationmodemandGHGj.Expressedint/unitoftransportedmaterialusingtransportationmodem.N/AALm,tThequantityofmaterials,equipment,inputs,andpersonneltransportedbymodemduringreportingperiodt.Expressedinunitsoftransportedmaterial:persons,itemsortonnes,asappropriate.N/ACFmTheconversionfactortobeusediftheunitsoftheactivityleveldonotmatchthoseoftheemissionfactorfortransportmodem.Whereboththeactivitylevelandemissionfactorareexpressedinthesameunits,CFwouldbesetto1.Dimensionless.N/AjTherelevantGHGsinthismethodology:CO2,CH4andN2ON/AtThereportingperiodinquestion,wherethevalueoftindicatesthenumberofreportingperiodsthathaveoccurredsincethestartoftheprojectuptothereportingperiodinquestion.N/AmTransportationmodeN/AVariousapproachesareavailableforselectingemissionfactorsandactivitylevelsforuseinEquation12,rangingfromthosebasedontheuseofdetailedfuelconsumptiondatarecording(mostaccurate)tocalculationsbasedonvehicle-specificfueleconomydataandroute-specificdistancedata,tocalculationsbasedontotalamountsofgoodstransportedandgenerictransportationemissionfactorpertonne/kmtransported.Theseapproachesareoutlinedinvarioussources,includingtheTCRGeneralReportingMethodologyandCDMmethodologyAM0036.GiventhatemissionsfromthisSSRareexpectedtobesmallrelativetootherSSRs,detailedapproachessuchasuseofvehicle-specificfuelconsumptionwillnotberequired.Instead,twooptionsareavailable:6.DistanceandassumedfueleconomyapproachThisapproachisdescribedintheequationbelow:PE3/BE3distanceandfueleconomyapproachMETHODOLOGY:VCSVersion3v3.371Equation13GHG),+,/-+,,.=∑&EF/,)×∑FE/×D/,0×C/,0,.÷L/,0/×CF/00/[13]Where:ParameterDescriptionDefaultValueGHGj,PE3/BE3,tEmissionsofGHGjfromtransportationofmaterials,equipment,inputs,andpersonneltotheproject/baselinesiteduringreportingperiodt.Expressedint.N/AEFm,jTheemissionfactorforGHGjandfuelcombustedbytransportationmodem(eg,tCO2perLdiesel).Expressedint/unitoffuel.Seebelowunderthetitle“Determiningtheemissionfactor”theemissionfactorrequirementsFEmFueleconomyoftransportationmodem(eg,L/100km).Expressedinunitoffuel/unitofdistancefortransportationmodem..N/ADm,gTransportdistanceformaterial,equipment,input,orpersonnelgusingtransportmodem.Expressedinkm.N/ACm,g,tTotalquantityofmaterial,equipment,input,orpersonnelgtransportedusingtransportmodemduringreportingperiodt.Expressedintorotherrelevantunit.N/ALm,gCargoloadpertransportvehicleofmodem.Expressedintorotherrelevantunit(sameunitaCm,g,t)/transportmode.N/ACFmTheconversionfactortobeusediftheunitsofthevariousparametersdonotmatch(eg,fueleconomyinL/100kmbutdistanceinkm)foraparticulartransportmodem.Whereboththeactivitylevelandemissionfactorareexpressedinthesameunits,CFwouldbesetto1.Dimensionless.N/AjTherelevantGHGsinthismethodology:CO2,CH4andN2ON/AtThereportingperiodinquestion,wherethevalueoftindicatesthenumberofreportingperiodsthathaveoccurredsincethestartoftheprojectuptothereportingperiodinquestion.N/AmtransportationmodeN/AgTransportdistanceformaterial,equipment,input,orpersonnelN/ADeterminingtheemissionfactorMETHODOLOGY:VCSVersion3v3.372Thefollowingemissionfactors,approvedbytheprovinceofBC,andusedinitsGHGEmissionsEstimatorforemissionsreporting,maybeusedfortheprovinceofBC:•NaturalGas–0.0503tCO2e/gigajoule•Gasoline–0.0023tCO2e/litre•Diesel–0.0027tCO2e/litre•FuelOil–0.0027tCO2e/litre•Propane–0.0015tCO2e/litreForprojectintheprovinceofQuebec,EFpublishedby“TransitionEnergétiqueQuebec(TEQ)”61maybeused,asfollows:•NaturalGas–0.0565tCO2e/gigajoule•Gasoline–0.0023tCO2e/litre•Diesel–0.0028tCO2e/litre•Propane–0.0015tCO2e/litreForprojectsinotherprovincesofCanada,EFpublishedbytheprovincialgovernmentrelevantauthoritiesmaybeused.DeterminingtheactivitylevelandotherparametersThequantityofmaterial,equipment,input,orpersonnelmustbemonitoredfortheproject.Sinceitisnotpossibletodirectlymonitortransportationinthebaseline,baselinetransportationquantitiesandassumptionsmustbeestimatedbasedontheactivitiesdescribedfortheselectedbaselinescenarioandprojectassumptionswhereapplicable.Otherparameters,suchastransportmodesused,transportdistancebymode,fuelefficiency,andcargoloadpertransportvehiclemustbeconservativelydeterminedandjustifiedbasedontypicaldistancesandtypesoftransportmodesused.7.AmountanddistanceshippedapproachThisapproachisdescribedintheequationbelow:61Seehttps://transitionenergetique.gouv.qc.ca/fileadmin/medias/pdf/FacteursEmission.pdfforfurtherinformation.METHODOLOGY:VCSVersion3v3.373PE3/BE3amountanddistanceapproachEquation14GHG+,-'3/0'3,=∑EEF4,+×∑FD4,5×C4,5,H×CF45I4[14]Where:METHODOLOGY:VCSVersion3v3.374ParameterDescriptionDefaultValueGHGj,PE3/BE3,tEmissionsofGHGj,fromtransportationofmaterials,equipment,inputs,andpersonneltotheproject/baselinesiteduringreportingperiodt.Expressedint.N/AEFm,jTheemissionfactorforGHGjandtheamountanddistanceshippedbytransportationmodem(eg,gCO2pertonne-km).Expressedint/quantityoftransportedgoodoverasetdistance.Seebelowunderthetitle“Determiningtheemissionfactor”theemissionfactorrequirementsDm,gTransportdistanceformaterial,equipment,input,orpersonnelgusingtransportmodem.Expressedinkm.N/ACm,g,tTotalquantityofmaterial,equipment,input,orpersonnelgtransportedthesamedistanceusingtransportmodemduringreportingperiodt.Wherethesametypeofgoodistransporteddifferentdistancestoarriveattheprojectorbaselinesite,theymustbetreatedasseparategoodsforthepurposesofthiscalculation.Expressedintorotherrelevantunit.N/ACFmTheconversionfactortobeusediftheunitsofthevariousparametersdonotmatchforaparticulartransportmodem.Whereboththeactivitylevelandemissionfactorareexpressedinthesameunits,CFwouldbesetto1.Dimensionles.N/AjTherelevantGHGsinthismethodology:CO2,CH4andN2ON/AtThereportingperiodinquestion,wherethevalueoftindicatesthenumberofreportingperiodsthathaveoccurredsincethestartoftheprojectuptothereportingperiodinquestion.N/AmtransportationmodeN/AgTransportdistanceformaterial,equipment,input,orpersonnelN/ADeterminingtheemissionfactorTransportationemissionfactorstendtobeuncertain,giventherangeoffactorsthatcaninfluenceoverallemissions.Emissionfactorsappropriateforthetransportmodesinquestionmustbeselectedfromthefollowingreferencesourcesinorderofpreference(whereanappropriatefactorisnotavailablefromapreferredreferencesource,thenextsourceonthelistmaybeconsulted):METHODOLOGY:VCSVersion3v3.375v.Thecorrespondingprovincialreportingregulation.vi.LatestversionoftheprovincialGHGInventoryReportvii.LatestversionofCanada’sNationalGHGInventoryReportviii.Otherrecognized,justifiedreferencesources,asfederal(Canada)orprovincialgovernmentinstitutions,theIPCCortheUNFCCC.Withapreferenceforthecorrespondingprovincialdataovernationalorinternationalleveldata.InthecaseofprojectswithinBC,thefollowingconsiderationsapply:Truckfreighttransportemissions:emissionspertonne-kmtransportedtakenfromthemostrecentversionoftheBCFreightModalShiftingGHGProtocol62.IntheMarch11,2010versionthisinformationispresentedinSection4.1.1undertheheadingB9TruckOperation.Theemissionfactorprovidedis114gCO2e/tonne-kmattimeofmethodologydevelopment.Note:analternatetrucktransportemissionfactormaybeusedifjustifiedbytheproponent.Railfreighttransportemissions:emissionsperrevenuetonne-km(RTK)transportedtakenfromthemostrecentversionoftheLocomotiveEmissionsMonitoringProgramannualreportforthemostrecentdatayearavailable63.Inthe2008report,thisinformationispresentedinTable9undertheheading“EmissionsIntensity–TotalFreight(kg/1,000RTK)”.Theemissionfactorsprovidedare:15.98kgCO2/1,000RTK;0.02kgCH4/1,000RTK;and2.05kgN2O/1,000RTK.DeterminingtheactivitylevelandotherparametersThequantityofmaterial,equipment,input,orpersonnelmustbemonitoredfortheproject.Sinceitisnotpossibletodirectlymonitortransportationinthebaseline,baselinetransportationquantitiesasassumptionsmustbeestimatedbasedontheactivitiesdescribedfortheselectedbaselinescenarioandprojectassumptionswhereapplicable.Transportdistancebygoodandbymodemustbeconservativelydeterminedandjustifiedbasedontypicaldistancesandtypesoftransportmodesused.62Mostrecentversionavailableattimeofprotocoldevelopment:TheDelphiGroup,FreightModalShiftingGHGProtocol-BritishColumbia-SpecificVersion,March11,2010,availableathttp://www.pacificcarbontrust.com/LinkClick.aspx?fileticket=SyA1NMa6DZw%3d&tabid=81&mid=57763Mostrecentversionavailableattimeofprotocoldevelopment:RailwayAssociationofCanada,LocomotiveEmissionsMonitoringProgram2008,availableathttp://www.railcan.ca/documents/publications/2073/2010_06_03_LEM2008_en.pdfMETHODOLOGY:VCSVersion3v3.3768.1.2.5PE4/BE4Emissionsfromfossilfuelcombustion–VehiclesandEquipmentThisquantificationmethodistobeappliedtoboththeprojectandbaseline.Emissionsfromfossilfuelcombustioninon-sitevehiclesandequipmentaretobecalculatedusingthestandardemissionfactormultipliedbytheactivitylevelapproachdescribedbyEquation6andrestatedhere:Equation15TE-'6/0'6,=∑(GHG+,-'6/0'6,+×GWP+)[15]Where:ParameterDescriptionDefaultValueTEPE4/BE4,tTotalemissionsfromfossilfuelcombustioninonsitevehiclesandequipment,duringreportingperiodt.ExpressedintCO2eGHGj,PE4/BE4,tEmissionsofGHGj,fromfossilfuelcombustioninonsitevehiclesandequipment,duringreportingperiodt.ExpressedintGHGj.(seeEquation16)N/AGWPjGlobalwarmingpotentialofGHGj.Dimensionless.N/AjTherelevantGHGsinthismethodology:CO2,CH4andN2ON/AtThereportingperiodinquestion,wherethevalueoftindicatesthenumberofreportingperiodsthathaveoccurredsincethestartoftheprojectuptothereportingperiodinquestion.N/AEquation16GHG+,-'6/0'6,=∑E∑FEF1,7,+×AL1,7,×CF1,7H7I1[16]Where:METHODOLOGY:VCSVersion3v3.377ParameterDescriptionDefaultValueGHGj,PE4/BE4,tEmissionsofGHGj,fromon-sitevehiclesandequipmentfossilfuelcombustionduringreportingperiodt.ExpressedintGHGj.N/AEFf,e,jTheemissionfactorforGHGj,fueltypefandequipment/vehicletypee(eg,tonnesCO2perLdiesel].Expressedint/unitoffuel.Seebelowunderthetitle“Determiningtheemissionfactor”theemissionfactorrequirementsALf,e,tThequantityoffueloftypefcombustedinequipment/vehicletypeeduringreportingperiodt.Expressedvolumetricmeasure(eg,l,m3,etc.)ormassmeasure(kg,t,etc.)withappropriateconversion.N/ACFf,eTheconversionfactortobeusediftheunitsoftheactivityleveldonotmatchthoseoftheemissionfactorforaparticularfueltypefandequipment/vehicletypee.Whereboththeactivitylevelandemissionfactorareexpressedinthesameunits,CFwouldbesetto1.Dimensionless.N/AjTherelevantGHGsinthismethodology:CO2,CH4andN2ON/AtThereportingperiodinquestion,wherethevalueoftindicatesthenumberofreportingperiodsthathaveoccurredsincethestartoftheprojectuptothereportingperiodinquestion.N/AfFueltypeN/AeEquipment/vehicletypeN/ADeterminingtheemissionfactorThefollowingemissionfactors,approvedbytheProvinceofBC,andusedinitsGHGEmissionsEstimatorforemissionsreporting,mustbeusedforprojectswithintheprovinceofBC:•NaturalGas–0.0503tCO2e/gigajoule•Gasoline–0.0023tCO2e/litre•Diesel–0.0027tCO2e/litre•FuelOil–0.0027tCO2e/litre•Propane–0.0015tCO2e/litreMETHODOLOGY:VCSVersion3v3.378ForprojectintheprovinceofQuebec,EFpublishedby“TransitionEnergétiqueQuebec(TEQ)“maybeused,asfollows:•NaturalGas–0.0565tCO2e/gigajoule•Gasoline–0.0023tCO2e/litre•Diesel–0.0028tCO2e/litre•Propane–0.0015tCO2e/litreForprojectsinotherprovincesofCanada,EFpublishedbytheprovincialgovernmentrelevantauthoritiesmaybeused.DeterminingtheactivitylevelForfuelcombustioninequipmentandvehicles,themostaccurateapproachistousefuelconsumptionrecordsbytypeofequipmentorvehicleandfueltype.Wherefuelisnottrackedbytypeofequipmentorvehicle,butratheronlyintotalfortheentireprojectsite,aconservativeemissionfactormustbechosenbasedontherangeofvehiclesandequipmentthatwouldconsumeaparticularfuel.Sinceitisnotpossibletodirectlymonitorfuelconsumptioninthebaseline,baselinefuelconsumptionmustbeestimatedbasedonjustifiedvehicleandequipmentusageestimatesinthebaselineandconsideringfuelconsumptionobservedduringtheprojectperiodasapplicable.8.1.2.6PE5/BE5EmissionfromfertilizerapplicationThisquantificationmethodistobeappliedtoboththeprojectandbaseline.EmissionsofN2Oresultingfromfertilizerapplicationcannotbeaddressedusingthestandardemissionfactormultipliedbyactivitylevelapproachdescribedbyequation6.Instead,theGoodPracticeGuidance(GPG)oftheIPCCwasconsultedtoidentifyasuitableapproach.Chapter11oftheIPCC2006GuidelinesforNationalGHGInventoriesandtheCDMA/RMethodologicalTool“Estimationofdirectnitrousoxideemissionfromnitrogenfertilization”wereselectedastheprimarysourcesofgoodpracticeguidanceastheywereapplicabletotherelevantsectionsofthismethodology.Forthedevelopmentofthismethodology,themethodologydescribedintheIPCCandCDMdocumentswereadoptedwithsomesmallchangestosimplifycalculations(eg,makingthenotationconsistentbetweendirectandindirectemissions)andintroducedthetime-dependentparameterttoallocateemissionsonanannualbasis.ThislastchangewasnecessarysincetheIPCCGuidelinesaredesignedtocalculateannualinventoriesinsteadofconsideringthelifetimeofaprojectactivity.METHODOLOGY:VCSVersion3v3.379N2OEmissionsfromFertilizerUseTheemissionsofN2OthatresultfromanthropogenicNinputsoccurthroughbothadirectpathway(directlyfromthesoiltowhichNisadded)andthroughtwoindirectpathways:(i)volatilizationandredepositionofnitrogencompounds,and(ii)leachingandrunoffofnitrogencompounds,mainlyasnitrate(NO3).Forsimplicity,bothdirectandindirectemissionsarequantifiedforthisSSReventhoughitislistedasacontrolledemissionsource.ThemethodologydescribedinthissectionaddressesthefollowingsourcesofGHGemissionsfromfertilizerapplication:•Syntheticnitrogenfertilizer•Organicnitrogenappliedasfertilizer(eg,manure,compost,andotherorganicsoiladditives)TotalN2Oemissionsrelatedtofertilizeruseisdeterminedusingthefollowingequation:Equation17TE-'8/0'8,=N2O#)97:,+N2O);#)97:,[17]Where:ParameterDescriptionDefaultValueTEPE5/BE5,tTotalemissionsofN2Ofromfertilizerapplicationwithintheprojectboundary.ExpressedintN2O.N/AN2Odirect,tDirectemissionsofN2Ofromfertilizerapplicationwithintheprojectboundary.CalculatedinEquation15.ExpressedintN2.(SeeEquation18).N/AN2Oindirect,tIndirectemissionsofN2Ofromfertilizerapplicationwithintheprojectboundary.CalculatedinEquation21.ExpressedintN2ON/AApproachesfordeterminingdirectandindirectemissionsaredescribedbelow.1.DirectN2OEmissionsThedirectnitrousoxideemissionsfromnitrogenfertilizationcanbeestimatedusingthefollowingequations:DirectfertilizeruseemissionsMETHODOLOGY:VCSVersion3v3.380Equation18N2O#)97:,=FF(<,+F=<,H×EF.×>&./0>&.[18]FractionofNitrogenthatvolatilizesasNH3andNOxforsyntheticfertilizersEquation19F(<,=∑M(?),×NC(?)@)[19]FractionofNitrogenthatvolatilizesasNH3andNOxfororganicfertilizersEquation20F=<,=∑M=?+,×NC=?+A+[20]Where:ParameterDescriptionDefaultValueN!O"#$%&','DirectemissionsofN2Oasaresultoffertilizerapplicationwithintheprojectboundary.ExpressedintN2O.N/AF),'Massofsyntheticfertilizernitrogenapplied,tonnesofNinyeart.ExpressedintN(SeeEquation19).N/AF+,'Massoforganicfertilizernitrogenapplied,tonnesofNinyeartExpressedintN(SeeEquation20).N/AM),#,'Massofsyntheticfertilizeroftypeiappliedinyeart,tonnes.Expressedint.N/AM+,-,'Massoforganicfertilizeroftypejappliedinyeart,tonnes.Expressedint.N/AEF.EmissionFactorforNadditionsfromfertilizers.ExpressedintN2O-N/tNinput.0.01MW!+MolecularweightofN2O.Expresseding/mole(seeEquation18).44MWMolecularweightofN2.Expresseding/mole.28NC),#Nitrogencontent(massfraction)ofsyntheticfertilizertypeiapplied,asspecifiedbythemanufacturer/supplier,ordeterminedbylaboratoryanalysis.Expressedin%.N/AMETHODOLOGY:VCSVersion3v3.381NC+,-Nitrogencontent(massfraction)oforganicfertilizertypejapplied,asspecifiedbythemanufacturer/supplier,ordeterminedbylaboratoryanalysis.Expressedin%.N/AINumberofsyntheticfertilizertypes.N/AjNumberoforganicfertilizertypes.N/AIPCC2006guidelinesestablishthatthedefaultemissionfactorforNitrogenadditionfromfertilizers(EF1)is0.01(1.0%)ofappliedN64.Thedefaultvalueforthefractionofsyntheticfertilizervolatilizedis0.1(FracGASF)65andthedefaultvalueforthefractionoforganicfertilizervolatilizedis0.2(FracGASM)66.Thesedefaultvaluesaretobeusedforquantificationsinthismethodology,unlessprovincial/project-specificfactorscanbeidentifiedandjustified.Projectproponentsmustidentifythenitrogencontentforeachsyntheticandorganicfertilizerapplied,asreportedbythefertilizermanufacturerordeterminedbylaboratoryanalysis.2.IndirectN2OemissionsIndirectnitrousoxideemissionsfromnitrogenfertilizationcanbeestimatedusingthefollowingequations:IndirectfertilizeruseemissionsEquation21N2O);#)97:,=FN2O(JKL),+N2O(N),H×>&./0>&.[21]AmountofN2O-NproducedfromatmosphericdepositionofNvolatilizedEquation22N2O(JKL),=[F(<,×(FracOJ(?)+F=<,×(FracOJ(>)]×EF6[22]AmountofN2O-NproducedfromleachateandrunoffofN64Table11.1,Chapter11,Volume4,2006IPCCGuidelinesforNationalGHGInventories65Table11.3,Chapter11,Volume4,2006IPCCGuidelinesforNationalGHGInventories66DerivedfromTable11.3,Chapter11,Volume4,2006IPCCGuidelinesforNationalGHGInventoriesMETHODOLOGY:VCSVersion3v3.382Equation23N2O(N),=F[F(<,+F=<,H×FracN'JPQR(Q)×EF8[23]Where:ParameterDescriptionDefaultValueN!O#/"#$%&','IndirectemissionsofN2Oasaresultoffertilizerapplicationwithintheprojectboundary.ExpressedintN2O.N/AN!O(123),'AmountofN2O-NproducedfromatmosphericdepositionofNvolatilized,inyeart.ExpressedintN2O-N(SeeEquation22).N/AN!O(5),'AmountofN2O-NproducedfromleachateandrunoffofN,inyeart.ExpressedintN2O-N(seeEquation23).N/AMW!+MolecularweightofN2O.Expresseding/mole.44MWMolecularweightofN2.Expresseding/mole.28F),'Massofsyntheticfertilizernitrogenappliedinyeart.Unitofmeasure:tN.N/AF+,'Massoforganicfertilizernitrogenappliedinyeart.Unitofmeasure:tN.N/AEF6EmissionFactorforN2OemissionsfromatmosphericdepositionofNonsoilsandwatersurfaces.ExpressedintN2O-N/(tNH3-N+tNOx-Nvolatilised).0.01Frac71),FractionofNitrogenthatvolatilizesasNH3andNOxforsyntheticfertilizers.Expressedin(tNH3-N+tNOx-Nvolatilised)/tNapplied0.1Frac71)8FractionofNitrogenthatvolatilizesasNH3andNOxfororganicfertilizers.Expressedin(tNH3-N+tNOx-Nvolatilised)/tNapplied0.2Frac591:;<(;)FractionofNlostbyleachingandrunoff.ExpressedintN/tNaddedordepositedbygrazinganimals.0.30/0(seenote)EF=EmissionfactorforN2O-NemissionsfromNleachingandrunoff.ExpressedintN2O-N/tNinleachingorrunoff.0.0075INumberofsyntheticfertilizertypes.N/AJNumberoforganicfertilizertypes.N/AMETHODOLOGY:VCSVersion3v3.383IPCC2006guidelinesestablishthatthedefaultemissionfactorforN2Oemissionsfromatmosphericdepositionofnitrogen(EF4)is0.010(ofappliedN)67.ThedefaultvaluefortheemissionfactorforN2Oemissionsfromleachingandrunoff(EF5)is0.0075.Thedefaultvalueforthefractionofsyntheticfertilizervolatilizedis0.1(FracGASF)68andthedefaultvalueforthefractionoforganicfertilizervolatilizedis0.2(FracGASM)69.Thefractionofnitrogenlostbyleachingandrunoff(FracLEACH-H)appliesonlyinthosecaseswheresoilwater-holdingcapacityisexceededasaresultofprecipitationorirrigation(ie,precipitationisgreaterthanevapotranspiration).Wherethisconditionexists,thedefaultvalueforFracLEACH-H=0.3070.Whereevapotranspirationisgreaterthanprecipitation,thevalueforthisparameteriszero.Thechoiceoffactorusedinthecalculationsmustbejustifiedbytheproponent.Projectproponentsmustidentifythenitrogencontentforeachsyntheticandorganicfertilizerapplied,asreportedbythefertilizermanufacturerordeterminedbylaboratoryanalysis.Table12:AssessmentofUncertaintyforDirectandIndirectN2OEmissionsFactorDefaultValueUncertaintyRangeVW.,EmissionFactorforNadditionsfromfertilizers,tonneN2O-N/tonneNinput.0.0100.003–0.03VW6,EmissionFactorforN2OemissionsfromatmosphericdepositionofNonsoilsandwatersurfaces,tonneN2O-N/tonneNinput.0.0100.002–0.05VW=,EmissionfactorforN2OemissionsfromNleachingandrunoff,tonneN2O/tonneNinput.0.00750.0005–0.025WXYZ>?@A,FractionofNitrogenthatvolatilizesasNH3andNOxforsyntheticfertilizers.0.100.03–0.3WXYZ>?@B,FractionofNitrogenthatvolatilizesasNH3andNOxfororganicfertilizers.0.200.05–0.5WXYZCD?EF<(F),FractionofNlostbyleachingandrunoff.0.30.1–0.867Derivedfromtable12,Chapter11,Volume4,2006IPCCGuidelinesforNationalGHGInventories68DerivedfromTable11.3,Chapter11,Volume4,2006IPCCGuidelinesforNationalGHGInventories69DerivedfromTable11.3,Chapter11,Volume4,2006IPCCGuidelinesforNationalGHGInventories70DerivedfromTable11.3,Chapter11,Volume4,2006IPCCGuidelinesforNationalGHGInventoriesMETHODOLOGY:VCSVersion3v3.384UncertaintiesinestimatesofdirectandindirectN2Oemissionsfromfertilizeraremainlyduetouncertaintiesinemissionfactors.Thesefactorsareconstantlybeingreassessed,andarerelatedtoconditionssuchastemperature,partitioningfactors,activitydata,andlackofinformationonspecificpracticesandsitecharacteristics.Ingeneral,thereliabilityofactivitydata(eg,massoffertilizerapplied)willbegreaterthanthatofemission,volatilizationandleachingfactors.TheIPCCsuggestsutilizingregion-specificdatawheneverpossible,butthesearenotwidelyavailable.Additionaluncertaintiesareintroducedwhenvaluesusedarenotrepresentativeoftheconditions,butuncertaintiesinemissionfactorsarelikelytodominate.8.1.2.7PE6/BE6EmissionsfrombiomassburningThisquantificationmethodmustbeappliedtoboththeprojectandbaseline.NotethatforthisSSP,onlyCH4andN2OaretobereportedasCO2isbeingmonitoredaspartoftheforestcarbonpools.Emissionsfromcontrolledburningofbiomasson-site,includingburningofwoodresidualsandcontrolledburningforlandclearing,etc.,mustbecalculatedusingthestandardemissionfactormultipliedbytheactivitylevelapproachdescribedbyEquation6andrestatedhere:TotalemissionfrombiomassburningEquation24TE-'[/0'[,=∑(GHG+,-'[/0'[,+×GWP+)[24]Where:ParameterDescriptionDefaultValueTEPE6/BE6,tTotalemissionsfrombiomassburning,duringreportingperiodt.ExpressedintCO2eGHGj,PE6/BE6,tEmissionsofGHGj,frombiomassburning,duringreportingperiodt.ExpressedintGHGj(SeeEquation25).N/AGWPjGlobalwarmingpotentialofGHGj.Dimensionless.N/AjTherelevantGHGsinthismethodology:CO2,CH4andN2ON/AtThereportingperiodinquestion,wherethevalueoftindicatesthenumberofreportingperiodsthathaveoccurredsincethestartoftheprojectuptothereportingperiodinquestion.N/AMETHODOLOGY:VCSVersion3v3.385Equation25GHG+,-'[/0'[,=∑EF\,+×AL\,×CF\\[25]Where:ParameterDescriptionDefaultValueGHGj,PE6/BE6,tEmissionsofGHGj,frombiomassburningonsiteduringreportingperiodt..Expressedint.N/AEFb,jEmissionfactorforGHGjandbiomasstypeb(eg,tonnesCH4pertonneofbrushburned).Expressedint/tofbiomass.Seebelowunderthetitle“Determiningtheemissionfactor”theemissionfactorrequirementsALb,tAmountofbiomassoftypebcombustedduringreportingperiodt.Expressedintofbiomass.N/ACFbTheconversionfactortobeusediftheunitsoftheactivityleveldonotmatchthoseoftheemissionfactorforaparticularbiomasstypeb.Note,specialcaremustbetakentoensurethatiftheemissionfactorandactivityleveldonotassumethesamemoisturecontentofbiomass(oftendrymassisassumedforemissionfactors),anappropriateconversionfactorisusedbasedonmeasuredorconservativelyassumedbiomassmoisturecontent.Whereboththeactivitylevelandemissionfactorareexpressedinthesameunits,CFwouldbesetto1.Unitofmeasure:t.N/ADeterminingtheemissionfactorBiomasscombustionemissionfactorsmaybeobtainedfrom:1.Thecorrespondingprovincialreportingregulation2.ThelatestversionoftheprovincialGHGInventoryReport3.ThelatestversionofCanada’sNationalGHGInventoryReport4.Otherrecognized,justifiedreferencesources,suchasfederal(Canadian)orprovincialgovernmentinstitutions,theIPCCortheUNFCCC,withapreferenceforthecorrespondingprovincialdataovernationalorinternationalleveldataMETHODOLOGY:VCSVersion3v3.386Emissionfactorsmustbeusedsolongastheemissionfactorselectedisappropriateforthetypeofbiomassandconditionsunderwhichitisbeingcombusted.Otherwise,emissionfactorsfoundinpeerreviewedsourcesrelevanttotheprojectsiteconditionsmaybeused.Wheresitespecificdataisnotavailable,valuesfromtheIPCCGPGLULUCF(Table3A.1.16)maybeused.WherefiguresfromTable3A.1.16areused,theymustbedividedby1000,toadjusttheresultsfromunitsofg/kgtounitsoft/t.DeterminingtheactivitylevelProjectproponentsmustproposeandjustifyanapproachfordeterminingthetotalmassofbiomasscombustedduringcontrolledburningeventsduringareportingperiod.TheguidancegiveninApproachBintheVCSModuleVMD0031,EstimationofEmissionsfromBurningmaybeusedasabasisfordevelopingamethod.Itisexpectedthatsuchamethodwillbetailoredtothestandardoperatingpracticesoftheproponent,thoughinallcasesitmustbepossibletoverifiablydemonstratethatthemethodresultsinaconservativeestimateofassociatedprojectemissionsascomparedtobaselineemissions.Whereverpossible,measuredamountsofbiomassmaybeused(eg,massorvolumeofbiomasscombusted),thoughitisrecognizedthatinmanycases(eg,landclearing)suchameasurementmaynotbepossible,andestimatesbasedonsiteobservationswillbenecessary.8.1.2.8PE7/BE7EmissionsfromforestfiresThisquantificationmethodistobeappliedtoboththeprojectandbaseline.NotethatforthisSSR,onlyCH4andN2Oaretobereported,asCO2istrackedaspartofforestcarbonpools.EmissionsfromforestfiresaretobecalculatedusingthestandardemissionfactormultipliedbytheactivitylevelapproachdescribedbyEquation6andrestatedhere:Equation26TE-']/0'],=∑(+GHG+,-']/0'],×GWP+)[26]Where:METHODOLOGY:VCSVersion3v3.387ParameterDescriptionDefaultValueTEPE7/BE7,tTotalemissionsfromforestfires,duringreportingperiodt.ExpressedintCO2eGHGj,PE7/BE7,tEmissionsofGHGj,fromforestfires,duringreportingperiodt.ExpressedintGHGj(SeeEquation27).N/AGWPjGlobalwarmingpotentialofGHGj.Dimensionless.N/AJTherelevantGHGsinthismethodology:CO2,CH4andN2ON/ATThereportingperiodinquestion,wherethevalueoftindicatesthenumberofreportingperiodsthathaveoccurredsincethestartoftheprojectuptothereportingperiodinquestion.N/AEquation27GHG+,-']/0'],=EF11,+×AL11,×CF[27]Where:METHODOLOGY:VCSVersion3v3.388ParameterDescriptionDefaultValueGHGj,PE7/BE7,tEmissionsofGHGj,fromforestfiresduringreportingperiodt.Expressedint.N/AEFff,jTheemissionfactorforGHGjapplicabletoforestfires.ExpressedintGHGj/tofforestbiomassburned.Seebelowunderthetitle“Determiningtheemissionfactor”theemissionfactorrequirementsALff,tThequantityofforestbiomasscombustedduringforestfiresoccurringduringreportingperiod,frombothanticipateddisturbanceeventsthathavebeenmodelledintheprojectandbaselineandunanticipatedlosseventsthataremonitored.Expressedint.N/ACFTheconversionfactortobeusediftheunitsoftheactivityleveldonotmatchthoseoftheemissionfactorforaparticularbiomasstypeb.Note,specialcaremustbetakentoensurethatiftheemissionfactorandactivityleveldonotassumethesamemoisturecontentofbiomass(oftendrymassisassumedforemissionfactors),anappropriateconversionfactorisusedbasedonmeasuredorconservativelyassumedbiomassmoisturecontent.Whereboththeactivitylevelandemissionfactorareexpressedinthesameunits,CFwouldbesetto1.Dimensionless.N/ADeterminingtheemissionfactorGuidancewithrespecttocombustionemissionfactorsforforestfiresmaybesoughtfrom1.Theprovincialreportingregulation,correspondingtotheprovincewheretheprojectisdeveloped.2.LatestversionoftheprovincialGHGInventoryReport,correspondingtotheprovincewheretheprojectisdeveloped.3.LatestversionofCanada’sNationalGHGInventoryReport4.Otherrecognizedsources,includingfederal(Canada)orprovincialgovernmentinstitutions(correspondingtotheprovincewheretheprojectisdeveloped),theIPCCortheUNFCCC,withapreferencetoprovincialdataovernationalorinternationalleveldata.METHODOLOGY:VCSVersion3v3.389Intheabsenceofspecificguidance,theemissionfactorsfromtheIPCCGPGLULUCFTable3A.1.16maybeused.WherefiguresfromTable3A.1.16areused,theymustbedividedby1000,toadjusttheresultsfromunitsofg/kgtounitsoft/t.DeterminingtheactivitylevelThequantityofforestbiomasscombustedinforestfireswillbecalculatedaspartofassessingtheimpactoflossevents,asdescribedinSection8.1.1.1.5.ProponentsmustutilizetheguidancegivenforApproachBinVCSmoduleVMD0031EstimationofEmissionsfromBurningtomaketheseestimations.Theamountofbiomasscombustedduringforestfiresmaybebasedonbothsignificantlosseventsaswellasmorepredictablefiredisturbancesthathavebeenfactoredintotheemissionsmodelingforprojectandbaseline.8.1.2.9PE8/BE8EmissionsfromharvestedwoodtransportThisquantificationmethodistobeappliedtoboththeprojectandbaseline.AnapproachidenticaltothatdescribedforSSRPE3/BE3istobeusedtocalculateemissionsfromSSRPE8/BE8,exceptthatCm,g,twillrefertothetotalquantityofharvestedwoodtransported.AmountsanddistancestransportedmustbeestimatedfortwostagesintheHWPlifecycle:•Transportoflogstothesiteofprimaryproduction.•TransportofprimaryHWPstothelocationofuse.ItwillbeassumedthatHWPsaredisposedofveryclosetotheirpointofuse,andthatassociatedemissionsareverysmallcomparedtoothersources.DeterminingtheemissionfactorEmissionfactorswillbedeterminedinanidenticalmannertothatdescribedforPE3BE3.DeterminingtheactivitylevelandotherparametersQuantityofharvestedwoodsenttoprimaryproductionwillbemonitoredbytheproject.QuantitiesofprimaryHWPsproducedmustbebasedontheassumptionsusedforcalculatingHWPstorageinSection8.1.1.2.Distancetothelocationofprimaryproductionmustbebasedonactuallocationswhereprojectharvestedwoodissent,orconservativeestimatesofdistance.Distancefromthesiteofprimaryproductiontoendusemustbeestimatedbasedonreasonable,conservativeestimatesofthelocationsoffinalmarkets.METHODOLOGY:VCSVersion3v3.390Sinceitisnotpossibletodirectlymonitorthequantityofharvestedwoodinthebaseline,quantitiesmustbeestimatedbasedontheactivitiesdescribedfortheselectedbaselinescenarioandanyavailable,relevantinformationfromtheprojectperiod.AllotherrequiredparametersmustbedeterminedinanidenticalmannertothatdescribedforPE9/BE9.8.1.2.10PE9/BE9EmissionsfromharvestedwoodprocessingThisquantificationmethodistobeappliedtoboththeprojectandbaseline.Emissionsfromprimaryprocessingofharvestedwoodaretobecalculatedusingstandarizedemissionfactors71multipliedbytheactivitylevelapproachdescribedbefore.TotalemissionsfromharvestedwoodprocessingEquation28TE-'^/0'^,=∑(+GHG+,-'^/0'^,×GWP+)[28]Where:ParameterDescriptionDefaultValueTEPE9/BE9,tTotalemissionsfromharvestedwoodprocessing,duringreportingperiodt.ExpressedintCO2eGHGj,PE9/BE9,tEmissionsofGHGj,fromharvestedwoodprocessing,duringreportingperiodt.ExpressedintGHGj.N/AGWPjGlobalwarmingpotentialofGHGj.Dimensionless.N/AjTherelevantGHGsinthismethodology:CO2,CH4andN2ON/AtThereportingperiodinquestion,wherethevalueoftindicatesthenumberofreportingperiodsthathaveoccurredsincethestartoftheprojectuptothereportingperiodinquestion.N/A71Referto“Determiningtheemissionfactor”textbelowinthissectionMETHODOLOGY:VCSVersion3v3.391Equation29GHG+,-'^/0'^,=∑EFQ,+×ALQ,×CFQQ[29]Where:ParameterDescriptionDefaultValueGHGj,PE9/BE9,tEmissionsofGHGjfromharvestedwoodprocessingfromwoodharvestedduringreportingperiodt.ExpressedintonnesofGHGj.N/AEFH,jTheemissionfactorforGHGjandharvestedwoodproductHproduced(eg,CO2perunitofharvestedwoodconvertedtowoodproductH).Note:forprocessesthatrelysolelyonelectricity,EFH,jisassumedtobezeroforprojectswithinBCduetoBC’sstatedgoalofnetzeroGHGemissionelectricitygenerationinthisprovinceandthatthevastmajorityofBCharvestedwoodisprocessedin-province.ExpressedintGHGj/unitofHWPH.N/AALH,tThequantityofharvestedwoodproductHproducedfromwoodharvestedduringreportingperiodt.Expressedint,orotherunitwithappropriateconversionfactortot.N/ACFHTheconversionfactortobeusediftheunitsoftheactivityleveldonotmatchthoseoftheemissionfactorforaparticularHWPH.Caremustbetakentoensurethattheemissionfactorandtheactivitylevelbothrefertothesamequantity(eitheramountofHWPproduced,oramountofharvestedwoodprocessed).Ifnot,thenanappropriateconversionfactormustbeselected.Whereboththeactivitylevelandemissionfactorareexpressedinthesameunits,CFwouldbesetto1.Dimensionless.N/ADeterminingtheemissionfactorWhereavailable,projectproponentsmayuseprovinciallyornationally-approvedemissionfactorsrelevantfortheharvestedwoodproductsproducedfromprojectandbaselineharvestedwood.Suchfactorsmaybetailoredtotheprovincespecificcircumstancesaccordinglyifpossible,includingappropriatereflectionofthecarbonintensityofgridelectricitygenerationintherespectiveprovince(whichmaybeassumedtobezerointhecaseofprojectswithinBCforprocessesthatrelysolelyonelectricity).Ifsuchfactorsarenotavailable,projectproponentsmustdevelopfactorsbasedoninformationonenergyconsumptionfromproductionfacilitiestowhichprojectandbaselineharvestedwoodisshipped.Suchanapproachwillneedtoconsideramountsofenergy/fuelofdifferenttypesconsumedinproducingagivenquantityofaparticularHWP,andappropriatefuelcombustionMETHODOLOGY:VCSVersion3v3.392emissionfactors.SuchfuelcombustionemissionfactorsmustbesourcedinamanneridenticaltothatdescribedforSSRPE3/BE3Emissionsfromfossilfuelcombustion–VehiclesandEquipment.DeterminingtheactivitylevelProjectproponentsmustusethesamemonitoredlogproductiondatausedtodeterminetheproductionofHWPinSection8.1.1.2.Sinceitisnotpossibletodirectlymonitorthequantityofharvestedwoodinthebaseline,quantitiesmustbeestimatedbasedontheactivitiesdescribedfortheselectedbaselinescenario.8.1.2.11PE10/BE10EmissionsfromharvestedwoodproductsandresidualsanaerobicdecayAsdescribedinFigure2,thedegradableportionofHWPsinlandfillwilldecayovertimetoproduceCO2andCH4.ThismethodfocusesondeterminingthetotalamountofemissionsthatwouldresultfromHWPsdecayinginlandfillsoverthepost-harvestperiodthatHWPstorageisassessedinthismethodology.DependingonifthedefaultoroptionaladvancedapproachtoHWPquantificationistakeninSection8.1.1.2,calculationswilleitherbeforadefaultblendofmilltypesanduses(defaultapproach),orforablendofmilltypesandusesdeterminedanddemonstratedbytheuser(optionaladvancedapproach).Useofthisoptionaladvancedapproachrequirestheavailabilityofgoodhistoricaldataonwooddeliverybymilltype(forNorthAmericanuse)orwoodproductenduse(foroffshoreuse)forwoodsourcedfromwithintheprojectarea,aswellasvalidatableprojectionsoffuturewoodproductprocessingandenduse.ThisdataismorelikelytobeavailableforNorthAmericanmarketsthanforoffshoremarkets,anditispermissibletousethisapproachforwoodusedinNorthAmericaonly,whileusingthedefaultapproachforwoodusedoffshore.SincecarbonlostasCO2isaccountedforaspartofSSRsPP8/BP8andPP9/BP9,PE10/BE10focusesonlyonCH4.DefaultApproachUsingthesetwosources,quantificationoftheharvestedwoodproductpoolusingthedefaultapproachiscalculatedusingthefollowingsteps:1.Calculateorestimatevolumeofroundwooddeliveredtothemill(orexported),fromtheprojectarea,byspecies,yearandwoodproductdestination(NAoroffshore).HarvestflowforbothprojectandbaselinemustbedevelopedinaccordancewiththerequirementsstipulatedinSection8.1.1.1.3.Volumesmustbeforwoodonly(notincludingbark).2.Foreachyear,andlocationofuse,convertvolumestotonnesofdrybiomass,usingEquation2,andthestandardwooddensityfiguresgiveninTable8AforprojectswithintheprovinceofBCandTable8BforprojectswithintheprovinceofQC.InthecaseofMETHODOLOGY:VCSVersion3v3.393projectswithinotherprovinces,theprojectdevelopermustdevelopacorrespondingtabletobevalidatedduringthevalidationprocess.3.Tonnesofdrybiomassindeliveredroundwoodperyear,bywoodproductdestinationwillbecalculatedwiththeEquation2.CalculatethetotalCH4emissions(accountedastonnesCO2e),fromwoodproductsinlandfillsusingEquation30.TotalCH4emissions(intonnesCO2e)fromlandfilledHWPsderivedfromtheprojectareauptotimetEquation30GHG123+56/-+56,.=∑RWbiomass7,89∗HWPCH4f89,.:7+RWbiomass7,;∗HWPCH4f;,.:77<.[30]Where:ParameterDescriptionDefaultValueGHGCH4PE10/BE10,tMassofCH4emittedbytheprojectorbaselineHWPsinlandfillsuptoyeart.ExpressedintCO2e.N/ARWbiomassy,NAThedrymassofthedeliveredroundwoodextractedfromtheprojectareainyeary,usedinwoodproductswithinNorthAmerica.Expressedint.N/ARWbiomassy,OThedrymassofthedeliveredroundwoodextractedfromtheprojectareainyeary,usedinwoodproductsoffshore.Expressedint.N/AHWPCH4fNA,t-yThefactor,derivedfromtable14,fortheamountofCH4(accountedasCO2e)emittedinagivenyear,equaltothenumberofyearsbetweenharvestandtimet,forproductsusedinNorthAmerica.ExpressedintCO2e/twoodbiomassdelivered.Table14HWPCH4fO,t-yThefactor,derivedfromtable14,fortheamountofCH4(accountedasCO2e)emittedinagivenyear,equaltothenumberofyearsbetweenharvestandtimet,forproductsusedoutsideofNorthAmerica.ExpressedintCO2e/twoodbiomassdeliveredTable14METHODOLOGY:VCSVersion3v3.394Table14:CH4emissionsbyyear,inCO2e,asapercentageofthetotalwoodbiomassdelivered,byusearea–DerivationdetailedinAppendixF72BCQCNorthAmericaOffshoreNorthAmericaOffshore00.001%0.001%0.001%0.001%10.020%0.000%0.015%0.000%20.067%0.100%0.080%0.100%30.108%0.096%0.136%0.096%40.141%0.092%0.182%0.092%50.169%0.118%0.221%0.118%60.193%0.140%0.254%0.140%70.212%0.159%0.281%0.159%80.228%0.175%0.302%0.175%90.242%0.189%0.320%0.189%100.252%0.200%0.334%0.200%110.261%0.210%0.345%0.210%120.268%0.218%0.354%0.218%130.273%0.225%0.361%0.225%140.277%0.230%0.364%0.230%150.279%0.234%0.367%0.234%160.281%0.237%0.369%0.237%170.282%0.239%0.369%0.239%180.282%0.240%0.368%0.240%190.282%0.240%0.366%0.240%200.281%0.240%0.364%0.240%250.272%0.232%0.346%0.232%300.258%0.216%0.321%0.216%72DerivedfromCarenC.Dymond,ForestcarboninNorthAmerica:annualstorageandemissionsfromBritishColumbia’sharvest1965-2065,CarbonBalanceandManagement7:8,2012,JackK.Winjum,SandraBrownandBernhardSchlamadinger,ForestHarvestsandWoodProducts:SourcesandSinksofAtmosphericCarbonDioxide,ForestScience44:2,1998,andK.E.Skog,SequestrationofcarboninharvestedwoodproductsfortheUnitedStates,ForestProductsJournal58(6):56-72.(2008)METHODOLOGY:VCSVersion3v3.395350.244%0.198%0.296%0.198%400.230%0.179%0.272%0.179%450.217%0.161%0.250%0.161%500.205%0.145%0.230%0.145%550.195%0.130%0.212%0.130%600.185%0.116%0.197%0.116%650.177%0.105%0.183%0.105%700.169%0.094%0.171%0.094%750.163%0.085%0.160%0.085%800.156%0.076%0.150%0.076%850.151%0.069%0.141%0.069%900.146%0.062%0.134%0.062%950.141%0.057%0.127%0.057%1000.137%0.051%0.121%0.051%ProponentsmustbeawarethatthedatacontainedinTable14aresubjecttoperiodicre-assessment,asprovidedinthemostrecentversionoftheVCSdocumentMethodologyApprovalProcess(Section10.3.1inversionV4.0).Proponentsmustensurethattheyincludeintheirprojectcalculationsanychanges,whichmayhavebeenmadetothesevaluesasaresultofthisre-assessment.AdvancedapproachIftheadvancedapproachisusedforNorthAmericanoroffshoreproducts,orboth,thesamestepswillbeusedasforthedefaultapproach,exceptthatateachstepeitherthedeliveriesofroundwoodbymilltype(forNorthAmericanuse)orproducttypes(foroffshoreuse)willbeaccountedseparately.ThetypestobeusedareshowninTable15.Table15:Mill/ProductcategoriesforNorthAmericaandoffshoreNorthAmericaLumbermillsPlywoodmillsPanelmills(allnon-plypanelproducts)PulpandpaperMETHODOLOGY:VCSVersion3v3.396OffshoreLumberPanel(includingplywood)OtherindustrialroundwoodPaperandpaperboardInstep3,themilltypeorusecategoriesarecalculatedseparately,usingthevaluesgiveninTable16.METHODOLOGY:VCSVersion3v3.397Table16:CH4emissionsbyyear,inCO2e,asapercentageofthetotalwoodbiomassdelivered,bymillorproducttypeandusearea–DerivationdetailedinAppendixF.73NorthAmerica-byprimaryprocessingfacilityOffshore-byendproductYearLumbermillsPlywoodmillsPanelmillsChip/blockmillsSawnwoodWoodpanelsOtherindustrialroundwoodPaper/paperboard00.001%0.000%0.000%0.001%0.001%0.001%0.001%0.001%10.021%0.018%0.022%0.003%0.001%0.001%0.000%0.000%20.068%0.050%0.028%0.113%0.038%0.019%0.057%0.315%30.107%0.078%0.033%0.206%0.037%0.019%0.056%0.301%40.140%0.101%0.038%0.285%0.037%0.018%0.055%0.287%50.168%0.121%0.043%0.350%0.041%0.030%0.073%0.367%60.191%0.138%0.048%0.404%0.046%0.041%0.089%0.435%70.210%0.152%0.053%0.448%0.050%0.051%0.104%0.492%80.225%0.164%0.057%0.484%0.054%0.060%0.117%0.539%90.238%0.174%0.061%0.513%0.058%0.069%0.128%0.577%100.249%0.183%0.065%0.535%0.062%0.077%0.138%0.608%110.257%0.190%0.069%0.553%0.066%0.085%0.147%0.631%120.264%0.196%0.073%0.566%0.069%0.092%0.155%0.649%130.269%0.201%0.077%0.575%0.072%0.098%0.162%0.661%140.272%0.205%0.081%0.580%0.075%0.104%0.168%0.669%150.275%0.208%0.085%0.583%0.078%0.110%0.173%0.673%160.277%0.211%0.088%0.583%0.081%0.115%0.177%0.673%170.277%0.213%0.092%0.582%0.083%0.119%0.181%0.670%180.278%0.214%0.095%0.578%0.086%0.124%0.183%0.665%190.277%0.215%0.098%0.573%0.088%0.127%0.186%0.657%200.277%0.216%0.101%0.567%0.090%0.131%0.187%0.648%250.268%0.216%0.116%0.525%0.099%0.144%0.189%0.582%300.254%0.212%0.130%0.474%0.104%0.150%0.184%0.503%350.240%0.208%0.141%0.422%0.108%0.151%0.174%0.422%400.227%0.203%0.151%0.374%0.110%0.149%0.162%0.349%73DerivedfromCarenC.Dymond,ForestcarboninNorthAmerica:annualstorageandemissionsfromBritishColumbia’sharvest1965-2065,CarbonBalanceandManagement7:8,2012,JackK.Winjum,SandraBrownandBernhardSchlamadinger,ForestHarvestsandWoodProducts:SourcesandSinksofAtmosphericCarbonDioxide,ForestScience44:2,1998,andK.E.Skog,SequestrationofcarboninharvestedwoodproductsfortheUnitedStates,ForestProductsJournal58(6):56-72.(2008)METHODOLOGY:VCSVersion3v3.398450.214%0.198%0.160%0.329%0.110%0.144%0.148%0.285%500.203%0.194%0.168%0.289%0.109%0.138%0.135%0.230%550.192%0.190%0.174%0.254%0.106%0.131%0.122%0.185%600.183%0.186%0.180%0.223%0.104%0.122%0.110%0.148%650.175%0.183%0.184%0.196%0.100%0.114%0.099%0.118%700.168%0.180%0.188%0.172%0.096%0.106%0.088%0.094%750.161%0.177%0.191%0.151%0.092%0.097%0.079%0.074%800.155%0.174%0.193%0.132%0.088%0.089%0.070%0.059%850.149%0.172%0.195%0.116%0.084%0.082%0.063%0.046%900.144%0.170%0.196%0.102%0.079%0.074%0.056%0.037%950.140%0.167%0.197%0.089%0.075%0.067%0.050%0.029%1000.136%0.165%0.197%0.078%0.070%0.061%0.044%0.023%ProponentsmustbeawarethatthedatacontainedinTable16issubjecttoperiodicre-assessment,asprovidedinthemostrecentversionoftheVCSdocumentMethodologyApprovalProcess(Section10.3.1inversionV4.0).Proponentsmustensurethattheyincludeintheirprojectcalculationsanychangeswhichmayhavebeenmadetothisdataasaresultofthisre-assessment.8.2BaselineEmissionsTotalbaselineemissionsbysourcesandremovalsbypoolsarecalculatedusingequationsEquation31,Equation32,andEquation33.Totalbaselineemissionsarecalculatedusingthefollowingequation:Equation31TBE=∆TR0-,+∆TE0(,[31]Where:ParameterDescriptionDefaultvalueTBEtThetotalbaselineemissionsreductionsandremovalenhancements,consideringallpoolsandsourcesduringreportingperiodt.ExpressedintonnesofCO2eN/AMETHODOLOGY:VCSVersion3v3.399∆TRBP,tThenetincrementalGHGremovalsbybaselinepoolsachievedbythebaselineduringreportingperiodt.Anetincreaseintotalremovalsisexpressedasapositivenumber.ExpressedintonnesofCO2eN/A∆TEBS,tThenetincrementalGHGemissionreductionsbybaselinesourcesofemissionsachievedbythebaselineduringreportingperiodt.Anetincreaseintotalemissionreductionsisexpressedasapositivenumber.ExpressedintonnesofCO2eN/ANetincrementalbaselineGHGremovalsEquation32∆TR-,.=∑(TR-=,.−TR-=,.:5)=[32]NetincrementalbaselineemissionsreductionsEquation33∆TU_`,a=∑(TU_`b,ab−TU_`b,aR.)[33]Where:ParameterDescriptionDefaultValue∆TRBP,tThenetincrementalGHGremovalsbybaselinepoolsachievedbythebaselineduringreportingperiodt.Anetincreaseintotalremovalsisexpressedasanegativenumber.ExpressedintonnesofCO2eN/A∆TEBS,tThenetincrementalGHGemissionreductionsbybaselinesourcesofemissionsachievedbythebaselineduringreportingperiodt.Anetincreaseintotalemissionreductionsisexpressedasapositivenumber.ExpressedintonnesofCO2eN/ATRBPi,tThetotalGHGremovalsbypooli,underthebaselinescenarioduringreportingperiodt.ExpressedintonnesofCO2eTRBPi,t-1ThetotalGHGremovalsbypooli,underthebaselinescenarioduringreportingperiodt-1.ExpressedintonnesofCO2eTEBSj,tThetotalGHGemissionsbysourcej,underthebaselinescenarioduringreportingperiodt.ExpressedintonnesofCO2eMETHODOLOGY:VCSVersion3v3.3100TEBSj,t-1ThetotalGHGemissionsbysourcej,underthebaselinescenarioduringreportingperiodt-1.ExpressedintonnesofCO2e8.3ProjectEmissionsTotalprojectemissionsreductionsandremovalsenhancementsarecalculatedusingequations34,35and36.Equation34WXYc=∆WZdd,c+∆WYde,c[34]Where:ParameterDescriptionDefaultvalueTPEtThetotalprojectemissionsreductionsandremovalenhancements,consideringallpoolsandsourcesduringreportingperiodt.ExpressedintonnesofCO2eN/A∆TRPP,tThenetincrementalGHGremovalsbyprojectpoolsachievedbytheprojectduringreportingperiodt.Anetincreaseintotalremovalsisexpressedasapositivenumber.ExpressedintonnesofCO2eN/A∆TEPS,tThenetincrementalGHGemissionreductionsbyprojectsourcesofemissionsachievedbytheprojectduringreportingperiodt.Anetincreaseintotalemissionreductionsisexpressedasapositivenumber.ExpressedintonnesofCO2eN/ANetincrementalprojectGHGremovalsEquation35∆TR--,=∑(TR--),−TR--),R.))[35]NetincrementalprojectemissionsreductionsEquation36∆TE-(,=∑(TE-(+,+−TE-(+,R.)[36]Where:ParameterDescriptionDefaultValueMETHODOLOGY:VCSVersion3v3.3101∆TRPP,tThenetincrementalGHGremovalsbyprojectpoolsachievedbytheprojectduringreportingperiodt.Anetincreaseintotalremovalsisexpressedasanegativenumber.ExpressedintonnesofCO2eN/A∆TEPS,tThenetincrementalGHGemissionreductionsbyprojectsourcesofemissionsachievedbytheprojectduringreportingperiodt.Anetincreaseintotalemissionreductionsisexpressedasapositivenumber.ExpressedintonnesofCO2eN/ATRPPi,tThetotalGHGremovalsbypooli,undertheprojectscenarioduringreportingperiodt.ExpressedintonnesofCO2eTRPPi,t-1ThetotalGHGremovalsbypooli,undertheprojectscenarioduringreportingperiodt-1.ExpressedintonnesofCO2eTEPSj,tThetotalGHGemissionsbysourcej,undertheprojectscenarioduringreportingperiodt.ExpressedintonnesofCO2eTEPSj,t-1ThetotalGHGemissionsbysourcej,undertheprojectscenarioduringreportingperiodt-1.ExpressedintonnesofCO2e8.4LeakageLeakageoccurswhennetincreasesinGHGemissionsoccuroutsidetheprojectarea,asaresultoftheprojectactivity.Whereariskofleakageexists,projectproponentsmayundertakeleakagemitigationmeasurestoreduceleakage.Ifanysignificantincreaseinemissionsoccursasaresultofthesemeasures,theresultingemissionsmustbeaccountedusingthemethodsgiveninsection8.2fortheappropriateemissionsource.8.4.1TypesofLeakageTherearetwopotentiallyrelevantformsofleakagethatmustbeassessedforforestprojects:•Activityshiftingleakage.ActivityshiftingleakageoccurswhenthereisanincreaseinGHGemissionsfromareasoutsidetheprojectarea,whichiscausedbytheprojectactivity,andwhichoccurswhentheactualagentofdeforestationand/ordegradationmovestoorundertakesactivitiesinanareaoutsideoftheprojectareaandcontinuestheirdeforestingand/ordegradingactivitiesinthatlocation.Forinstance,ifaprojectinvolvespurchasinganareaoflandfromadevelopertopreservetheforestonit,thedevelopermightusethemoneytopurchaseanotherforestedareaoflandfordevelopment.•Marketleakage.MarketleakageoccurswhenthereisanincreaseinGHGemissionsfromareasoutsidetheprojectarea,whichoccursasaresultoftheprojectsignificantlyMETHODOLOGY:VCSVersion3v3.3102reducingtheproductionofacommodity,causingachangeinthesupplyandmarketdemandequilibrium,whichresultsinashiftofproductionelsewheretomakeupforthelostsupply.LeakageemissionsarecalculatedusingEquation37:PE16LeakageEquation37[Ufg.[,a=[Uh`,i+[Uj,a[37]ParameterDescriptionDefaultValueLEPE16,tLeakageduringreportingperiodt.ExpressedintCO2e.N/ALEAS,tLeakageduetoactivityshiftingduringreportingperiodt.ExpressedintCO2e.N/ALEM,tMarketleakageduringreportingperiodt.ExpressedintCO2e.N/AAccountingofleakagemaybeomittedwhereprojectproponentscandemonstrateanddocumentthat:•Nointernalactivityshiftingleakagehasoccurred,asdetailedin8.4.1.1Step1below,and;•Thereisnoriskofotheractivityshiftingleakage,becauseitcanbedemonstratedthatanyagentswhoseactivitiesarereducedoreliminatedbytheprojectdonothavetheabilitytoincreasetheamountofthoseactivitiestakingplaceelsewhere,and;•Calculationofmarketleakageusingthemethodsgivenbelowshowsthatmarketleakage,(togetherwithanyotherexcludedemissionsorpools)meetsthedefinitionforbeingdeminimis.8.4.1.1ActivityShiftingLeakageActivityShiftingLeakageistobeaddressedbytheproponentasfollows:1.Demonstratethatthereisnointernalactivityshiftingleakage.Projectproponentsmustdemonstratethatthereisnoleakagetoareasthatareoutsidetheprojectareabutwithinprojectproponents’soperations,suchasareaswhereprojectproponentshasownershipof,managementof,orlegallysanctionedrightstouseforestlandwithinthecountry.Itmustbedemonstratedthatthemanagementplansand/orland-usedesignationsofallotherlandsowned,managedoroperatedbyprojectproponents(whichmustbeidentifiedbylocation)havenotmateriallychangedasaresultoftheMETHODOLOGY:VCSVersion3v3.3103projectactivity(eg,harvestrateshavenotbeenincreasedorlandhasnotbeenclearedthatwouldotherwisehavebeensetaside).Whereprojectproponentsisanentitywithaconservationmission,itmaybedemonstratedthattherehavebeennomaterialchangestootherlandsmanagedorownedbyprojectproponentsbyprovidingdocumentedevidencethatitisagainstthepolicyoftheorganizationtochangethelanduseofotherownedand/ormanagedlandsincludingevidencethatsuchpolicyhashistoricallybeenfollowed.742.Determinewhetherthespecificleakageagentcanbeidentified.Iftheagent(person,organizationorentity)whoseactivitieshavebeencurtailedwithintheprojectareacanbeidentified,quantificationofactivityshiftingleakagemustbeundertakenusingthemethodsgiveninstep4,below.Wheretheagentcannotbeidentified,quantificationmustbeundertakenusingthemethodsgiveninstep5.Forinstance,ifthelandwithintheprojectareawasownedbyadeveloper,andhasbeenboughtbyaconservationorganization,thedeveloperwouldbeidentifiedasthepotentialleakageagent,asthatdevelopermightnowundertakeadditionaldeforestationonanotherpieceofland.However,ifthelandwasownedbyaforestcompany,whointendedtosellittoadeveloper,butaconservationorganizationsteppedinandboughtthelandinstead,thespecificagentofdeforestationwouldnotbeknown,sinceitwouldbeunclearwhichdevelopermighthaveboughtthelandintheabsenceoftheprojectoccurring.3.Assesstheimpactsofleakagemitigationmeasures.Ifitcanbeverifiablyshownthatdemandforthebaselineactivityissatisfiedorremovedinsomewaybyorduetoleakagemitigationmeasuresundertakenbyprojectproponentsthatdonotinvolvedeforestationoutsideoftheprojectarea,thenactivityshiftingleakagecanbeassumedtobezerofortheremainderoftheproject(itispossiblethataproponentwillnotbeabletodemonstratethisinitiallybutmaybeabletodosoatsomepointduringtheproject).Examplesofsituationsinwhichdemandcouldpotentiallybeshowntobesatisfiedorremovedinclude,butarenotnecessarilylimitedto:•Whereaprojectproponentundertakesadevelopmentprojectonforestlandsbutincreasesthedensityofthedevelopmentoverwhatwouldhaveoccurredinthebaselinecasesuchthatlandusedemand(eg,residentialorcommercialft2orotherappropriatemetric)canbesatisfiedwithlessdeforestationthaninthebaseline.•Wherethenatureofthebaselinelandusedemandisparticulartothespecificprojectsite(eg,duetositecharacteristics,etc.)andthattherearenoothersuitableareaswithinanappropriatelyestablishedleakagezonesurroundingthe74RequirementssourcedfromVCSAFOLURequirementssection4.6.13METHODOLOGY:VCSVersion3v3.3104projectareathatwouldsatisfythelandusedemand,andthusthedemandforlandwillremainunfilled,andwillcausenoleakage.•Projectproponentsundertakesotheractivitiesthatcanbeverifiablydemonstratedtosatisfydemandforthebaselinelandusewithoutdeforestationandthatwouldnothaveoccurredinthebaseline,suchasmakingavailablefordevelopment/usemarginalnon-forestlandsthatwouldnothavebeensuitableforaccommodatingthebaselinelandusewithouttheinterventionofprojectproponents.4.Estimateemissionsduetoactivityshiftingleakagewheretheagentcanbeidentified.Iftheagentcanbeidentified,activityshiftingleakagemustbequantifiedbymonitoringtheactualactivitiesoftheagentoverafiveyearperiod,ascomparedwiththeplannedactivitiesofthatagentpriortothecommencementoftheproject.Quantificationmustbeundertakenusingthefollowingsteps:a.DocumenttheplansoftheagentPriortoprojectcommencement,theplansoftheidentifiedagenttoundertakeactivitiesoverthenextfiveyearsmustbedocumented.Thedocumentationmustidentifywhattheagentplanstodo,howandwheretheyplantodoit,andwhentheactivitiesareexpectedtotakeplace.Theplansmustidentifythespecificpiecesoflandonwhichactivitiesareforecasttotakeplace,ifthisispossible,andmustbespecificenoughtoallowestimationoftheGHGemissionswhichwilloccurastheplanisimplemented.b.DetermineiftheplansoftheagenthavemateriallychangedFiveyearsafterprojectcommencement,determinewhethertheplansoftheidentifiedagenthavebeencarriedoutwithoutsubstantialchanges.Iftheyhavebeencarriedout,nofurtherquantificationisrequired.Iftheactualactivitiesoftheagenthavevariedsubstantiallyfromtheplannedactivities,quantificationmustbeundertakenusingthemethodsgiveninstepcbelow.c.QuantifytheGHGemissionsresultingfromthechanges.Basedontheactualactivitiesundertakenbytheagent,andusingthemethodsgiveninSection8ofthismethodologytoquantifyspecificpoolsandemissions,determinewhatthetotalemissionsresultingfromtheactivitiesoftheagenthavebeen.Iftheseemissionsarelessthanthoseforecastundertheoriginalplanfortheagent’sactivities,noleakagehasoccurred.Iftheactualemissionsaregreaterthantheforecastemissions,theamountofleakagewillbethedifferencebetweentheactualemissionsandtheforecastemissionsfortheagent.METHODOLOGY:VCSVersion3v3.31055.Estimateemissionsduetoactivityshiftingleakagewheretheagentcannotbeidentified.Iftheagentcannotbeidentified,andleakagemitigationmeasureshavenotsatisfiedthedemandforthebaselineactivity,projectproponentsmustundertakealanduseanalysisforthebaselinelanduseactivityinaleakagezonesurroundingtheprojectarea,inordertoassesstheextenttowhichlanduseshiftingtootherforestlandswouldoccurasaresultoftheproject,usingthefollowingsteps:a.IdentifytheleakagezoneTheleakagezoneisanareaorareasintheregionof,butoutsideof,theprojectareawhereactivitiescouldbeundertakenwhicharesimilartothoseundertakenwithintheprojectareaunderthebaselinescenario.Forexample,ifthebaselineactivitywasconversionofprivateforestlandtopasture,theleakagezonewillconsistofaspecificareaaroundtheprojectareawheresignificantamountsofprivatelandwithpotentialforconversiontopastureexist.Theleakagezonemustbedefinedbasedonananalysisofthesurroundingareatodeterminewherethereareopportunitiestoundertakethebaselineactivity.Leakagezonesmayconsistofoneormorecontinuousareas,andmayormaynotdirectlyadjointheprojectarea.Typically,leakagezoneswillbeintherangeof2tonotmorethan20timesthesizeoftheprojectarea,butcouldbesmallerwhereopportunitytoundertakebaselineactivitiesisrare.Leakagezonesextendingoverabroadgeographicarea(eg,allofBC)willnotbeappropriateforassessingleakage,asitisunlikelythatsimilardriversandopportunitiesexistoverthatwideanarea.b.AssesstheagentsandcircumstancesforactivityshiftingleakagewithintheleakagezoneSuchanassessmentmustconsideratminimumthefollowing:•Whowouldhaveundertakentheactivity(theclassofagents).Forinstance,iftheactivitybeingshiftedisclearanceoflandfordevelopment,whatclassofdeveloperswouldhaveundertakentheactivity.•Whattheclassofagentswouldhavedonewiththeland.Forinstance,iftheagentsaredevelopers,whattypeofdevelopmentwouldhaveoccurred?•Alllocalzoningbylawsandotherrestrictionsonlanddevelopmentsuchascovenants,easements,andexistingrightofways;•Availabilityofforestland(private,municipal,Crown-owned,FirstNations,IndianReserves,orother)thatmightbesuitableforthebaselinelanduse,subjecttotheaboveassessmentofzoning,plansandstrategies,butwithconsiderationofthepotentialforzoningchangestooccurthatMETHODOLOGY:VCSVersion3v3.3106mightpermitadditionalforestlandstobeeligiblefordeforestationandconversiontothebaselinelandusetype.c.QuantifyactivityshiftingleakageBasedontheassessmentoftheagentsandcircumstancesofactivityshiftingleakagewithintheleakagezone,activityshiftingleakagemustbequantifiedbaseduponthedifferencebetweenhistoricandwith-projectratesofactivitybytheidentifiedclassofagentswithintheregion.Projectproponentssmustundertakethefollowingquantificationstepsi.Identifyandjustifytheleakagezoneii.Modeltheexpectedoccurrenceoftheactivitywithintheleakagezoneoverthenextfiveyears,notincludingthebaselineactivityintheprojectarea.Iftheactivitywasdevelopment,forinstance,theratemightbeXhaperyear.Thismodellingmustbebasedonanassessmentoffactorssuchas:•Historictrends•Driversoftheactivity(populationchange,economicfactors,etc.)•Limitstotheactivity(zoningrestrictions,etc.)Projectproponentsmustdocumentandjustifyalloftheassumptionsusedindevelopingthismodel.iii.ModeltheaverageGHGoutputperunitareafromtheactivitywithintheleakagezone.Forinstance,iftheactivityisdevelopment,whatistheaveragenetGHGemissionfromtheaccountedpoolsforeachhectaredeveloped.AccountedpoolswillincludetheHWPpoolwheretheactivityresultsintheproductionofharvestedwoodproducts.Quantificationofthecarbondensitiesofpoolsontheselandsmustbeundertakenusingtheappropriatemodelsandmethodsdiscussedforthepoolsinsection8.iv.Attheendofthefiveyearperiod,assesstheactualamountoftheactivitythathastakenplacewithintheleakagezone.Forinstance,quantifythetotalnumberofhectaresdeveloped.Iftheactualamountoftheactivitythathastakenplaceisgreaterthanthatprojectedinstepb,theamountofleakageareaistheactualamountoftheactivity,lessthemodeledamountoftheactivity,toamaximumoftheamountofactivitythatwouldhavetakenplacewithintheprojectarea.Asanexample:•Theprojectareais40hectares,andunderthebaselinethiswouldhavebeendeveloped.METHODOLOGY:VCSVersion3v3.3107•Basedonthemodelling,180hectareswereexpectedtobedevelopedintheleakagezoneoverthefiveyearsafterprojectcommencement,notcountingtheprojectarea.•After5years,240hectareshavebeendeveloped.Thustheactualnumberofhectaresdevelopedis60hectaresgreaterthanexpected.However,sincetheprojectareawasonly40hectares,theleakageareais40hectares.v.MultiplytheleakageareabytheaverageGHGoutputperunitarea,calculatedinstepc,todeterminethetotalactivityshiftingleakage.Notethattheaverageoutputisusedforthecalculation,ratherthantheoutputfromanyspecificarea,sinceitisimpossibletosaywhichoftheareasactuallydevelopedrepresentstheleakage.ThusevenaprojectinwhichtheleakageareaisequalinsizetotheprojectareamayhaveGHGbenefits.Forinstance,iftheprojectsaves40hectaresofoldgrowthforest,butmostofthedevelopmentintheareatakesplaceonlowqualityagriculturalland,shiftingdevelopmentfromtheoldgrowthtothelowqualityagriculturallandwillhavesignificantGHGbenefits.8.4.1.2MarketLeakageMarketleakagemayoccurwhereaprojectinvolveschangingtheamountofharvestingthatoccursintheprojectarearelativetothebaseline.Insuchacasemanagersofotherforestlandsmayadjusttheirlevelsofharvestinresponsetoincreasesinpriceorincreasedopportunitytosellforestproducts,whichmaypartiallyorfullynegatetheprojectGHGbenefits.MarketleakagemustonlybeassessedinagivenreportingperiodwhereprojectHWPproduction,intermsofamountofcarbonorcarbondioxidestored,islessthanbaselineHWPproduction.WherebaselineHWPproductioniszero(eg,typicallyinARRprojects),marketleakagewouldbezero.NotethatinREDDprojects,thebaselinemayincludeharvestinguntilsuchtimeasthebaselinelandshavebeenfullydevelopedandfurtherdeforestationceases.Note:forprojectswiththepotentialforbothactivityshiftingandmarketleakage,marketleakageistobeassessedbasedonlyontheamountofdecreasedprojectharvestingrelativetothebaselinethatisnotalreadycompensatedforbyactivityshiftingleakage.Forexample,ifhalfofthebaselinedeforestationavoidedbyaprojectattheprojectsiteisdeterminedtoshifttootherareasoutsideoftheprojectduetoactivityshiftingleakage,marketleakagewouldonlybeassessedontheportionofavoideddeforestation(ie,avoidedharvesting)thatwouldnothavedirectlyshiftedtootherareasduetoactivityshiftingleakage.Marketleakagecanbecalculatedusingoneofthreemethods•Method1:Totaldifferenceinallcarbonpools.ThismethodassumesthatallofthedifferencebetweenthecarboncontentofthecarbonpoolswithintheprojectareaunderMETHODOLOGY:VCSVersion3v3.3108theprojectscenario,ascomparedwiththebaselinescenario,isattributabletotheprojectactionswhicharecausingthemarketleakage.Forinstance,thismethodmustbeusediftheonlyprojectactivityispreservationofforestsasaresultofreductionsinharvest.Thismethodistypicallyeasytocalculate,sincethetotaldifferenceincarboncontainedincarbonpoolswithintheprojectareabetweenthebaselineandprojectscenariosiscalculatedusingthesamplingandmodelingmethodsgiveninsection8above.However,itmaysignificantlyover-estimateleakagewheremultipleprojectactionsarebeingtakentoincreasethetotalcarbonincarbonpoolswithintheprojectarea.•Method2:Totaldifferenceincarboncontentofcarbonpoolswithintheprojectarearesultingfromharvest.Thismethodcalculatesmarketleakagebasedonlyonchangesincarbonpoolswithintheprojectareaasaresultofharvest.Themethodmustbeusedwheretheprojectalsoundertakesotheractivitieswhichincreasethecarboncontentofcarbonpoolswithintheprojectarea,inadditiontoreductionsinharvest.Forinstance,ifaprojectincludesbothharvestreductionandenhancedsilvicultureactivities,marketleakagewouldbecalculatedbasedonlyonthereductioninharvest.Notethatincaseswheretheonlyprojectactivityisreductioninharvest,Methods1and2willcalculatethesameamountofleakage.•Method3:ProjectproponentsmustusethemostcurrentmarketleakagediscountfactorsprovidedinthelatestversionoftheVCSStandard.8.4.1.2.1Marketleakage(Method1)Marketleakage–Method1Equation38HI>.@=maxK0,∆NOAA,@−∆NOBA,@/+∆PQPCDE,FGA,@−HIHI,@R×HIS>[38]Where:METHODOLOGY:VCSVersion3v3.3109ParameterDescriptionDefaultValueLEM,tTotalincreaseinprojectemissionsduetomarketleakagefromallaffectedcarbonpoolsandsourcesduringreportingperiodt.ExpressedintCO2e.N/A∆TRPP,t-∆TRBP,tThenetincrementalamountofcarbonstoredbytheprojectinforestcarbonpools(excludingHWPs)duringreportingperiodtascomparedtothebaseline.ExpressedintCO2e.N/A∆GHGCO2,HWP,tThenetincrementalamountofcarbonstoredinprojectHWPsharvestedduringreportingperiodt75ascomparedtothebaseline.ExpressedintCO2e.N/ALEAS,tTotalincreaseinprojectemissionsduetoactivityshifting(AS)leakagefromallaffectedcarbonpoolsduringreportingperiodt.ExpressedintCO2e.N/ALEFMMarketleakagefactor(LEFM),expressingthepercentageofthetotalincreaseinprojectemissionsduetomarketleakageduringreportingperiodt,Expressedin%.N/A8.4.1.2.2Marketleakage(Method2)Equation39[Uj,a=max]0,∆TUklmn,a+`a`op2,kqffrrst,a−[Uh`,ab×[Ucj[39]Where:75DifferenceofmassofCO2inprojectorbaselineHWPsascalculatedintheEquation4fortimestandt-1METHODOLOGY:VCSVersion3v3.3110ParameterDescriptionDefaultValueLEM,tTotalincreaseinprojectemissionsduetomarketleakagefromallaffectedcarbonpoolsandsourcesduringreportingperiodt.ExpressedintCO2e.N/A∆TEHarv,tThenetincrementalamountofcarbonremovedfromtheprojectforestduringreportingperiodtascomparedtothebaseline,viathefollowingmechanisms:•Physicalremovalofharvestedwoodfromtheprojectforest•Harvesting-relatedlossesthatoccurwithintheforest(eg,lostbranches,tops,etc.)thatareassumedtorapidlydecayandreleaseCO2totheatmosphere.ExpressedintCO2e.N/A∆GHGCO2,HWPPools,tThenetincrementalamountofcarbonstoredinprojectHWPsharvestedduringreportingperiodtascomparedtothebaseline.ExpressedintCO2e.N/ALEAS,tTotalincreaseinprojectemissionsduetoactivityshiftingleakage(AS)fromallaffectedcarbonpoolsduringreportingperiodt.ExpressedintCO2e.N/ALEFMMarketleakagefactor,expressingthepercentageofthetotalincreaseinemissionsduetomarketleakageduringreportingperiodt.Expressedin%.N/A8.4.1.2.2.1.EstimatingharvestingimpactsforMethod2HarvestimpactsmustbeestimatedusingEquation40.HarvestingimpactsEquation40∆TE2JKL,.=&∑mM,.,NJMOP=QO∗(msMmhM⁄)−∑mM,.,RKS)OT.∗(msMmhM⁄)MM0∗fT,USSV∗44/12Where:METHODOLOGY:VCSVersion3v3.3111ParameterDescriptionDefaultValue∆TEHarv,tThenetincrementalamountofcarbonremovedfromtheprojectforestduringreportingperiodtascomparedtothebaseline,viathefollowingmechanisms:•Physicalremovalofharvestedwoodfromtheprojectforest•Harvesting-relatedlossesthatoccurwithintheforest(eg,lostbranches,tops,etc.)thatareassumedtorapidlydecayandreleaseCO2totheatmosphere.ExpressedintCO2e.N/Ams,t,baselineDrymass,intonnes,ofharvestedwood,minusbark,harvestedinthebaselineinreportingperiodtthatwillbeprocessedintoHWPk.ThisvalueisdeterminedinamanneranalogoustoRwbiomassy,dinEquation2,Section8.1.1.2,exceptthatthismassisdeterminedbyspeciesorgroupofspeciesratherthanbyHWPtype.Expressedintonnes.N/AmssAveragetotalmassofastandingtreeofspeciesorgroupofspeciesspriortoharvest.Expressedintonnes.SeeendnotebelowthetablemhsAveragemassoftheharvestedwood,minusbark,ofatreeofspeciesorgroupsofspeciess.Expressedintonnes.Seeendnotebelowthetablems,t,projectDrymass,intonnes,ofharvestedwood,minusbark,harvestedintheprojectinreportingperiodtthatwillbeprocessedintoHWPk.ThisvalueisdeterminedinamanneranalogoustoRwbiomassy,dinSection8.1.1.2,exceptthatthismassisdeterminedbyspeciesorgroupofspeciesratherthanbyHWPtype.Expressedintonnes.N/AfC,woodThefractionofthedrymassofwood,excludingbark,thatiscarbon.DimensionlessAssumedtobe50%forallwoodspecies.76SRelevanttreespeciesorgroupofspeciestypesbeingharvestedintheprojectandbaselinearea.N/AProjectproponentswillberesponsibleforjustifyingtotalmassandharvestedmassappropriatefortheprojectandbaseline,consideringtreespeciesinvolved,typicalageoftreesatharvest,andanyotherrelevantfactors.Aproponentmayalsochoosetouseasinglevalueapplicabletoall76IPCCGPGforLULUCFequation3.2.3METHODOLOGY:VCSVersion3v3.3112species,ratherthanoneforeachrelevantspecies,aslongastheapproachisdemonstratedtobeconservative(ie,doesnotunder-estimateleakage).Thepreferredmethodforderivingmssistorunanappropriatestandmodel,takingintoaccountspecies,ageanddensity,anddividethelivebiomassstockoutputbythemodelednumberofremaininglivetreesperhectareatthestandage.8.4.1.2.3DeterminingPercentMarketLeakageProjectproponentsmayundertakethisstepusingprojectspecificdatacombinedwithexistingresultsfromstudiesofmarketleakageeffects,summarizedforregionsofBCunderOption1,below,orthroughdevelopingtheirownrefinedmarketleakageestimatesbasedonprinciplesdiscussedunderOption2.Ineithercase,marketleakageestimatesmustbebasedonananalysisofforestscontainingthesameorsubstitutablecommercialspeciesascomparedtotheforestintheprojectarea,andmustbeconsistentwithmethodsforquantifyingleakagefoundinscientificpeer-reviewedjournalsources.AlsoincludedisOption3whichistheVCSleakagediscountmethod.1.ProvincialestimatesofLEFM(Option1)ProjectproponentswithinBCcanuseaBCprovincialleakagerateestimatefromTable17belowforthefactorLEFMincalculatingtheirprojectleakageestimate.Proponentsthatchoosetouseaprovincialleakageestimateastheirprojectleakagefactorscandosoprovidedthatitissupportedbyastatementofacceptancethattheprojectisrepresentativeofaveragetimbercommoditiesandtheproponenthasnoreasontobelieveleakagewouldbehigherthantheprovincialbasecaseleakageestimate.Table17:BCprovincialleakageestimatesforprojectsresultinginreducedharvestinBCGeographicAreaEstimatedLeakageNorthernInterior65.2%SouthernInterior63.6%Coast55.3%Theleakagefactorsreferencedintheabovetablehavebeenderivedusingtheproject-specificapproach(Option2)describedbelowbasedontheaveragemixoftreespeciesinthetotalharvestofeachrespectivegeographicareaapplicabletotheprovinceofBC(seeAppendixAforfurtherdetailsonhowthebasecasevaluesweredetermined).TherearecertaintreespeciesinspecificregionsofBritishColumbiawhicharelesssubstitutableintermsofdevelopingcertainwoodproductsthanothers.Thesubstitutabilityofwoodproductshasasignificanteffectontheultimateleakageestimate.Projectproponentsmustusetheprovincialleakageestimatesasaguide.WhenprojectareashaveproportionsoftreespeciesthatdifferfromtheregionalaveragesandperhapsMETHODOLOGY:VCSVersion3v3.3113higherproportionsoftreespecieswithlowormoderatesubstitutabilitythanwhatisreflectedintheestimatedleakageratefortheproject’sregion,orinthecaseofprojectswithinprovincesotherthanBC,itisrecommendedthatprojectproponentsutilizetheguidancegiveninthisdocumentandtailor/refinetheleakageestimatestoreflecttheseprojectspecificsaccordingly.ThisisparticularlythecaseforthecoastalregionandsoutherninteriorregionofBritishColumbia.Theprovincialleakagefactorswillbereviewedperiodicallyandupdatedasrequired.Anychangeswillbeapplicabletoexistingprojectsandmustbeincorporatedintothenextprojectverificationthatfollowsthedatenewvaluesarepublished.2.Project-specificestimatesofLEFM(Option2)Projectproponentsarefreetoestimatetheirownprojectspecificmarketleakagefactorprovidedthattheyusethemethodologydescribedbelow.Anyproposedproject-specificleakageparametersusedinpreparingtheproject-specificmarketleakagefactormustbesupportedbyanadequaterationale.TherecommendedapproachfordeterminingmarketleakagefactorresultingfromaprojectwithareducedharvestutilizesaformulaproposedbyMurrayetal77asshowninEquation41.%leakagefromexternalharvestshiftingEquation41LEF>=(.uu×7×w×P.)([7R'×(.yw∗{)]×P1)[41]Where:ParameterDescriptionDefaultValueLEFMMarketleakagefactor(LEFM),%leakagefromexternalharvestshiftingeSupplypriceelasticity.77Murray,B.,etal.2004.“EstimatingLeakagefromForestCarbonSequestrationPrograms”.LandEconomics80(1):109-124.METHODOLOGY:VCSVersion3v3.3114EDemandpriceelasticity.SeeTables18and19BelowCNCarbonsequestrationreversalperunitofharvestfromthenon-reservedforest.ExpressedintC.CRCarbonsequestrationperunitof(forgone)harvestgainedbypreservingthereservedforest.ExpressedintC.FThe“preservation”parameter.Thisistheratiooftimbersupplybeingsetasidefortheoffsetproject(quantityQR)tothetimbersupplyoutsidetheoffsetarea(quantityQN).TheratiocanberepresentedasG"G#andcanbethoughtofasthemarketshareofthetimberintheoffsetproject.ΓThe“substitution”parameter.Aparameterintroducedintothereferencedleakageequationtotakeintoaccountspecialtywoods(ie,thedegreetowhichaparticularHWPcanbesubstitutedforanother).Whenusingthisequationtoderiveproject-specificleakageestimates,itisrecommendedthatprojectproponentswithintheprovinceofBCbasetheircalculationsonthevariablevaluesshownintheProvincialBaseCaseApproachforEstimatingLeakage(AppendixA)forsupplypriceelasticity(e),demandpriceelasticity(E),andthecarbonsequestrationvalues(CNandCR)(shownbelowinTable18).ThesourcesforthesevaluesareshowninAppendixA.Table18:RecommendedValuesforEstimatingProjectSpecificLeakageVariabledescriptionBaseCaseEquationValuesRationaleSupplypriceelasticity.e=0.342Marketsupplyanddemandelasticitiesareverydifficulttoestimateandrequireconsiderableamountsofrelevantandcrediblebackgrounddata.Forthemajorityofcases,projectproponentswillbeextremelychallengedtocompilethedatarequiredtoestimateappropriateelasticities.Inadditionthereisarisktheelasticitiesdevelopedorreferencedbyaproponentcouldbeeitherderivedand/orappliedinappropriately(ie,elasticitiesthatdonotadequatelyrepresentthemarket(s)associatedwiththeoffsetproject).TheelasticitiesusedintheBCProvincialBaseCaseapproach,andgivenhere,areconsideredthebestrepresentationofcurrentmarketDemandpriceelasticityE=-0.181METHODOLOGY:VCSVersion3v3.3115conditionsandarebasedonstatisticallysignificantresultsfromlong-rundatasets.Thederivationofthesevariablesarepredicatedmoreontotal/overallmarketsupplyanddemandfactors,andlessonprojectspecificfactors.Asaresult,intermsofapplyingaconsistentapproachandtostreamlinevalidationrequirementsitisrecommendedthatthereferencedelasticitiesareusedCarbonsequestrationperunitof(forgone)harvestgainedbypreservingthereservedforest.CR=1Thisisaconservativeassumption.InfavourablegrowingconditionsTitwouldnotbeunreasonabletoassumethatCR>CN.AsthegapbetweenCRandCNincreasesinfavourofCRleakagewilldecrease.Howeveritisdifficult/impossibletopredicttheareaofNorthAmericatheleakagewillbein,andthereforejustasdifficulttodefineaCNvalue.Carbonsequestrationreversalperunitofharvestfromthenon-reservedforest.CN=1Inordertotailorleakageestimatestoreflectaspecificprojectmarketleakagecase,itisrecommendedthatproponentsfocusondevelopingtheirownprojectspecificparameterstoreflectthepreservationparameter(F)andthesubstitutabilityparameter(γ).Table19:VariablesRecommendedtobeDevelopedbyProjectProponentsforEstimatingProjectSpecificLeakageEstimatesVariabledescriptionEquationVariableRationalePreservationparameter–Theratiooftimbersupplybeingsetasidefortheoffsetprojecttothetimbersupplyoutsidetheoffsetareaandcanbethoughtofasthemarketshareofthetimberintheoffsetproject.FAsprojectswillvaryinsizeandcorrespondinglytothemarketshareoftimberintheoffsetarea,thepreservationparametercanbederivedtoreflectthespecificsizeofaproject.Thisco-efficienthasaminimaleffectintheleakageequationbutifestimatedappropriatelycanofferamorespecificoverallleakageestimateforanygivenproject.SubstitutionParameter–Aparameterintroducedintothereferencedleakageequationtotakeintoaccountspecialtywoods.γForspecialtywoodswithfewsubstitutes,suchascedar,leakageislikelylowerthanforotherreadilysubstitutablewoods.Proponentswhocandemonstratethatspecialtywoodsareprevalentintheirprojectareacanutilizethesubstitutabilityparametertoreflectthisanddevelopamoreprojectspecificleakageestimate.Otherwise,thedefaultvaluesprovidedinAppendixA:AProvincialBCBaseCaseApproachForMETHODOLOGY:VCSVersion3v3.3116AddressingLeakagefromForestCarbonProjectsmustbeutilized,consideringprojectslocatedwithintheprovinceofBC.Methodforderivingapreservationparameter(F)Thepreservationparameter(F)representstheratiooftimbersetasidefortheoffsetproject(quantityQR)tothetimbersupplyoutsidetheoffsetarea(quantityQN).TheratiocanberepresentedasG"G#andcanbethoughtofasthemarketshareofthetimberintheoffsetproject.Thepurposeofthisratioistodeterminehowdifficultitwillbetoreplacethepreservedtimber.Smallamountsofpreservedtimberareeasiertoreplacethanlargeamounts.A1%(.01)preservationparameterhasbeenusedintheBCprovincialbasecases.ThisisinlinewithMurrayetal.’sgeneralcalculations.Thisvalueisusedsinceitisunlikelythatanyprojectwillalterharvestratesbymorethan1%ofthetotalNorthAmericanmarketforthespecificcommodity.Furthermore,thisvaluehasminimalimpactontheleakagecalculation.Assuch,apreservationparameterof1%isadequatefortheleakagecalculations,andproponentscanusethisvalue.Proponentsarefreetocalculatetheirownpreservationparameter,iftheychoose.Todothiscalculationthequantityofpreservedlumber(QR)willbeequaltotheamountofharvestabletimber(m3)beingclaimedontheproponent’sprojectverification.Theremainingsupplyoftimber(QN)willbethefiveyearaverageannualtotaltimberharvestinNorthAmericaforthemostrecentperiod.PreservationparameterEquation42Φ=}2}3[42]Where:ParameterDescriptionDefaultValueΦThe“preservation”parameter.Thisistheratiooftimbersupplybeingsetasidefortheoffsetproject(quantityQR)tothetimbersupplyoutsidetheoffsetarea(quantityQN).TheratiocanberepresentedasG"G#andcanbethoughtofasthemarketshareofthetimberintheoffsetproject.N/AMETHODOLOGY:VCSVersion3v3.3117QRQuantityofharvestabletimbertobeclaimedonupcomingprojectverification.Expressedinm3.N/AQNQuantityofharvestabletimbersupplyremaininginthemarket.Expressedinm3.N/AMethodforderivingasubstitutabilityparameter(γ)Therearetwokeyfactorstoconsiderwhendeterminingthesubstitutabilityparameter.Thefirstisthetreespeciesbreakdownoftheprojectarea,andthesecondiscross-speciesproductsubstitutabilityofeachgivenspecies.78Forexample,howmanycedarproductscanbereplacedwithpineproducts?Aprojectproponentmustusearepresentativeandvalidatedsampleoftreespeciesharvestmakeupfortheirprojectarea.Ifasubstitutionparameteristhencalculatedforthisrepresentativesample,onaverageitisgoingtobeaccurate(representative)ofaprojectinthisarea.Whenutilizingthisapproach,wearemainlyconcernedwith“specialtywoods”thataremoredifficulttosubstitute;suchascedarorcypress.Thecontributiontototalharvestofthesespecialtywoodsiscombinedwithspeciesspecificsubstitutabilitytocreateaweightedaverageforthesubstitutabilityparameter.Theweightedaverageisthenappliedtotheleakageequation,reducingleakagefromaprojectbytheweightedaverage(representedasapercentage)ofitsoriginallevel.WeightedSubstitutionParameterEquation43γ=∑T);)•.×S)[43]Where:ParameterDescriptionDefaultValueγSubstitutionParameter–Aparameterintroducedintothereferencedleakageequationtotakeintoaccountspecialtywoods.N/AiAspecifictreetypeN/AnNumberoftreetypeswithintheproject.Dimensionless.N/ATiTreetypei’sshareofproject’stotalmarketabletreevolume.Expressedin%.N/ASiSubstitutabilityoftreetypeiN/A78RefertoProvincialBaseCaseApproachfortheCoastalMarketforanexampleoftheapplicationofthesubstitutabilityparameter.METHODOLOGY:VCSVersion3v3.3118AdditionalrequirementsforproponentswishingtoestimatetheirownprojectspecificleakageWhereaproject-specificapproachistakenforderivinganyoftheparametersnotedabove,theadditionalrequirementsdetailedinTable20mustalsobesatisfied.Table20:AdditionalRequirementsforUsingCoefficientsintheLeakageEquationVariableCommentsSupply(e)andDemand(E)ElasticitiesNorthAmericanmarketdatamustbeusedwhenestimatingelasticitiesforthepurposeofdeterminingleakage.ThepriceelasticityoftotaldemandofNorthAmericanmustbeusedifavailable,otherwise,thepriceelasticityoftotaldemand(includingbothdomesticdemandandimportdemand)ofUSmustbeusedasUSdemandrepresentsthemajorityofNorthAmericandemand.ThepriceelasticityoftotalsupplyofNorthAmericanmarketmustbeusedifavailable;otherwiseanexportsupplyelasticityfromCanadatotheU.S.maybeacceptable.Elasticityestimatesusedbyaprojectproponentforbothsupplyanddemandmustbederivedfromthesamedatasetsandinformation/studyinordertoensureconsistencyinderivationandvalidatetheirapplicationforestimatingprojectleakage.Bothmarketsupplyandmarketdemandelasticitiesusedintheleakagemethodologymustbelong-runelasticityestimates.Carbonsequestrationvalues(CNandCR)Itisdifficult/impossibletopredictwhereexactlyCNoccursinNorthAmericaandwhatthejustifiedvaluewouldbe.Using1:1ratioisaconservativeapproach.Proponentschoosingtodeveloptheirownleakagevaluemustuseavalueof1forCNandCRintheleakageformula.PreservationParameter(F)Asprojectswillvaryinsizeandcorrespondinglytothemarketshareoftimberintheoffsetarea,thepreservationparametercanbederivedtoreflectthespecificsizeofaproject.Thisco-efficienthasaminimaleffectintheleakageequationbutifestimatedappropriatelycanofferamorespecificoverallleakageestimateforanygivenproject.Proponentswishingtoestimatethisparametermustdemonstratetheharvestpotential(orforgoneharvestsincethelastverificationperiod)thattheirrespectiveprojecthasintermsoftotalNorthAmericantimbersalesoverthepreviousyear.METHODOLOGY:VCSVersion3v3.3119SubstitutabilityParameter(γ)Proponentsmustfollowthesubstitutionguidelinesgivenabovewhencalculatingtheirownsubstitutionparameter.Proponentsmustdemonstratethetreespeciescontribution/makeupwithintheirprojectarea.Proponentsmustdemonstratethesubstitutabilityoftreespeciesintermsofpotentialwoodproducts.Proponentsmustapplylong-run,own-andcross-priceelasticitiesofdemandforsubstitutablewoodproductsinNorthAmericanmarkettoderivethesubstitutabilityparameters.Marketleakage(Option3)WhenusingOption3,projectproponentsmustprovidejustificationandevidenceofhowtheleakagediscountfactorisdetermined.TheoutcomeoftheVCSLeakageDiscountFactordetermination,providedintheTable2oftheVCSMethodologyRequirementsdocument,willbeequaltothevalueforLEFMinthefollowingequation.Table2isonlyeligableforIFMactivities.Equation44LE>,=max{0,LEF>×TPE}[44]Where:ParameterDescriptionDefaultValueLEM,tTotalincreaseinprojectemissionsduetomarketleakagefromallaffectedcarbonpoolsandsourcesduringreportingperiodt.ExpressedintCO2e.N/ALEFMMarketleakagefactor,expressingthepercentageofthetotalincreaseinprojectemissionsduetomarketleakageduringreportingperiodt.Expressedin%.N/ATPEtThetotalprojectemissionsreductions,consideringallpoolsandsourcesduringreportingperiodt.ExpressedintCO2e.SeeEquation34.N/A8.5NetGHGEmissionReductionsandRemovalsMETHODOLOGY:VCSVersion3v3.3120Theequationsforcalculatingtotalprojectandbaselineemissionreductionsand/orremovalsaregiveninsection8above.ThenetGHGemissionreductionsandremovalcalculationisshowninEquation45below.Equation45NPE=TPE−TBE−LE-'.[,[45]Where:ParameterDescriptionDefaultValueNPEtNetGHGemissionsreductionsandremovalsoftheprojectduringreportingperiodt.ExpressedintCO2e.N/ATPEtThetotalprojectemissionsreductions,consideringallpoolsandsourcesduringreportingperiodt.ExpressedintCO2e.N/ATBEtThetotalbaselineemissionsreductions,consideringallpoolsandsourcesduringreportingperiodt.ExpressedintCO2eN/ALEPE16,tTheamountofGHG,emittedfromLeakageaffectedcarbonpoolsduringreportingperiodt.OnlyrelevantforCO2;otherwise,settozero.ExpressedintCO2e.N/A8.5.1NetchangeincarbonstocksForquantifyingthenumberofbuffercreditstobewithheldintheAFOLUpooledbufferaccount,netchangeincarbonstocksmustbecalculatedusingEquation46.Equation46NTR=∆TR--,−∆TR0-,[46]Where:ParameterDescriptionDefaultValueMETHODOLOGY:VCSVersion3v3.3121NTRtNetchangeincarbonstocksduringreportingperiod.ExpressedintCO2e.N/A∆TRPP,tThenetincrementalGHGremovalsbyprojectpoolsachievedbytheprojectduringreportingperiodt.Anetincreaseintotalremovalsisexpressedasapositivenumber.ExpressedintCO2e.N/A∆TRBP,tThenetincrementalGHGremovalsbybaselinepoolsachievedbythebaselineduringreportingperiodt.Anetincreaseintotalremovalsisexpressedasapositivenumber.ExpressedintCO2e.N/A8.5.2LongTermAveragingWhereARRorIFMprojectsaretobevalidatedwiththeVCSProgram,andwheretheprojectscenarioincludesharvesting,themaximumnumberofGHGcreditsavailabletotheprojectmustnotexceedthelongtermaverageGHGbenefit79.Undertheseconditions,proponentsmustthereforeusethemethodssetoutinthismethodologytoestimatetheexpectedtotalGHGbenefitoftheprojectforeachyearofatimeperiodidentifiedfollowingtheguidancegivenintheVCSAFOLURequirements.Specifically,theperiodoverwhichthelongtermGHGbenefitmustbecalculatedmustbeestablished,notingthefollowing:•ForARRorIFMprojectsundertakingeven-agedmanagement,thetimeperiodoverwhichthelongtermGHGbenefitiscalculatedmustincludeatminimumonefullharvesting/cuttingcycle,includingthelastharvest/cutinthecycle.•ForARRprojectsunderconservationeasementswithnointentiontoharvestaftertheprojectcreditingperiod,orforselectivelycutIFMprojects,thetimeperiodoverwhichthelong-termaverageiscalculatedmustbethelengthoftheprojectcreditingperiod.Equation47below,willthenbeusedtocalculatetheaverageGHGbenefit.Equation47[i=∑NPE;•un⁄[47]Where:ParameterDescriptionDefaultValueLAThelongtermaverageGHGbenefit.ExpressedintCO2e.N/A79Seesection3.2.20oftheVCSStandardv4.0forfurtherdetailsMETHODOLOGY:VCSVersion3v3.3122NPEtNetGHGemissionsreductionsandremovalsoftheprojectduringreportingperiodt.ExpressedintCO2e.N/AnTotalnumberofyearsintheestablishedtimeperiodN/A8.5.3VCUsEligibleforIssuanceThequantityofVCUseligibleforissuancemustbedeterminedusingEquation48.Equation48Credits=Min(LA,NPE)−Risk×NTR[48]Where:ParameterDescriptionDefaultValueCreditstTotalamountofcreditsavailableforreportingperiodt.N/ALAThelongtermaverageGHGbenefit.ExpressedintCO2e.N/ANPEtNetchangeinGHGemissionsreductionsand/orremovalsforreportingperiodt.ExpressedintCO2e.N/ARiskNon-permanenceriskratingasdeterminedusingtheAFOLUNon-PermanenceRiskTool.N/ANTRtNetchangeincarbonstocksforreportingperiodt.ExpressedintCO2e.N/ANotethatwheretheprojectisaREDDproject,orwhereARRorIFMprojectscenariodoesnotincludeharvesting,longtermaveragingwillnotapply,andthereforetheequationwillread:Equation49Credits=NPE−(Risk×NTR)[49]ParameterDescriptionDefaultValueCreditstTotalamountofcreditsavailableforreportingperiodt.N/ANPEtNetchangeinGHGemissionsreductionsand/orremovalsforreportingperiodt.ExpressedintCO2e.N/AMETHODOLOGY:VCSVersion3v3.3123RiskNon-permanenceriskratingasdeterminedusingtheAFOLUNon-PermanenceRiskTool.N/ANTRtNetchangeincarbonstocksforreportingperiodt.ExpressedintCO2e.N/AMETHODOLOGY:VCSVersion3v3.31249MONITORING9.1DataandParametersAvailableatValidationData/ParameterLEFMDataunit%DescriptionMarketleakagefactor,expressingthepercentageofthetotalincreaseinprojectemissionsduetomarketleakageduringreportingperiodt.EquationsEq.38,39and41SourceofdataInthecaseofequations38or39,LEFMdatafortheprovinceofBCisprovidedbytheBCProvincialLeakageBaseCase(SeeAppendixA).Inthecaseofotherprovinces,projectproponentsmustusetheguidanceofAppendixAtotailorprojectspecificLEFMvalues.Inthecaseofequation41,LEFMequalsthevalueoftheVCSLeakageDiscountFactorprovidedontheVCSAFOLURequirementsdocument.ValueappliedVariousJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedForoption1,projectslocatedinBCprovincemayusedefaultvaluesfromtable17.Foroption2,projectdevelopermustusevaluesresultingfromEquation40.Foroption3,projectdeveloppersmustusedefaultvaluesfromTable2oftheVCSVCSMethodologyRequirementsV4.0.PurposeofdataCalculationofleakageCommentsDefaultfactorsforthisvariablemaybesubjecttoperiodicre-assessmentData/ParameterCR&CNDataunittCDescriptionCarbonsequestrationperunitofforestEquationsEq.41SourceofdataConservativeestimatebasedongenerallyhigherproductivityofCanadaforests,andtheunknownlocationofmarketleakage.Valueapplied1METHODOLOGY:VCSVersion3v3.3125JustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedConservativeestimatebasedonthegenerallyhigherproductivityofCanada'sforests,andtheunknownlocationofmarketleakage.PurposeofdataCalculationofleakageCommentsNoneData/Parameterdqx,qxDataunitFactorDescriptionOwnandcrosspriceelasticitiesofdemandforsoftwoodlumberpricesEquationsAppendixBSourceofdata:Nagubadi,R.V.,Zhang,D.,Prestemon,J.P.,andWear,D.N.2004.“SoftwoodLumberProductsintheUnitedStates:Substitutes,Complements,orUnrelated?”.ForestScience51(4):416-426.andHseu,J-S.,andBuongiorno,J.1993.“PriceelasticitiesofsubstitutionbetweenspeciesinthedemandofUSsoftwoodlumberimportsfromCanada”.CanadianJournalofForestResearch23:591-597.ValueappliedVariousJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedTheNagubandiet.al.paperisapeerreviewed,widelycitedstudyofpriceelasticitiesintheUSmarketforbroadclassesofsoftwoodlumber,andwasthemostappropriatereferencefoundforthesevariablesPurposeofdataCalculationofleakageCommentsNoneData/ParametereDataunit%DescriptionSupplypriceelasticityEquationsEq.41SourceofdataSong,N.,etal.,2011.“U.S.softwoodlumberdemandandsupplyestimationusingcointegrationindynamicequations”.JournalofForestEconomics.METHODOLOGY:VCSVersion3v3.3126ValueappliedVariousJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedSonget.alwasidentifiedasthemostrecent,appropriatepaperfordeterminingelasticitiesforBCforestproductsintheNAmarket.PurposeofdataCalculationofleakageCommentsNoneData/ParameterEDataunit%DescriptionDemandpriceelasticityEquationsEq.41SourceofdataSong,N.,etal.,2011.“U.S.softwoodlumberdemandandsupplyestimationusingcointegrationindynamicequations”.JournalofForestEconomics.ValueappliedVariousJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedSonget.alwasidentifiedasthemostrecent,approriatepaperfordeterminingelasticitiesforCanadaforestproductsintheNAmarket.PurposeofdataCalculationofleakageCommentsNoneData/ParameterEF1DataunitTonneN2O-N/tonneNinputDescriptionEmissionFactorforNadditionsfromfertilizers,EquationsEq.17SourceofdataTable11.1,Chapter11,Volume4,2006IPCCGuidelinesforNationalGHGInventoriesValueapplied0.01JustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedDefaultfactorgivenforthisvariableintheIPCCGuidelinesMETHODOLOGY:VCSVersion3v3.3127PurposeofdataCalculationofbaselineandprojectemissions.CommentsNoneData/ParameterEF4DataunittN2O-N/(tNH3-N+tNOx-Nvolatilised).DescriptionEmissionFactorforN2OemissionsfromatmosphericdepositionofNonsoilsandwatersurfaces,tonneN2O-N/tonneNinputEquationsEq.21SourceofdataTable11.3,Chapter11,Volume4,2006IPCCGuidelinesforNationalGHGInventoriesValueapplied0.01JustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedDefaultfactorgivenforthisvariableintheIPCCGuidelinesPurposeofdataCalculationofbaselineandprojectemissions.CommentsNoneData/ParameterEF5DataunittN2O-N/tNinleachingorrunoff.DescriptionEmissionfactorforN2O-NemissionsfromNleachingandrunoff,tonneN2O/tonneNinputEquationsEq.22SourceofdataTable11.3,Chapter11,Volume4,2006IPCCGuidelinesforNationalGHGInventoriesValueapplied0.0075JustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedDefaultfactorgivenforthisvariableintheIPCCGuidelinesPurposeofdataCalculationofbaselineandprojectemissions.CommentsNoneData/ParameterfC,woodMETHODOLOGY:VCSVersion3v3.3128DataunitTonne/tonneDescriptionThefractionofthedrymassofwood,excludingbark,thatiscarbon.EquationsEq.40SourceofdataIPCCGPGforLULUCFEquation3.2.3Valueapplied0.5JustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedDefaultfactorgivenforthisvariableintheIPCCGuidelinesPurposeofdataCalculationofbaselineandprojectemissions.CommentsNoneData/ParameterFracGASFDataunit(tNH3-N+tNOx-Nvolatilised)/tNappliedDescriptionFractionofNitrogenthatvolatilizesasNH3andNOxforsyntheticfertilizersEquationsEq.21Sourceofdata:Table11.3,Chapter11,Volume4,2006IPCCGuidelinesforNationalGHGInventoriesValueapplied0.1Justificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresapplied:DefaultfactorgivenforthisvariableintheIPCCGuidelinesPurposeofdataCalculationofbaselineandprojectemissions.CommentsNoneData/ParameterFracGASMDataunit(tNH3-N+tNOx-Nvolatilised)/tNappliedDescriptionFractionofNitrogenthatvolatilizesasNH3andNOxfororganicfertilizersEquationsEq.21METHODOLOGY:VCSVersion3v3.3129SourceofdataTable11.3,Chapter11,Volume4,2006IPCCGuidelinesforNationalGHGInventoriesValueapplied0.2JustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedDefaultfactorgivenforthisvariableintheIPCCGuidelinesPurposeofdataCalculationofbaselineandprojectemissions.CommentsNoneData/ParameterFracLEACH-(H)DataunittN/tNaddedordepositedbygrazinganimals.DescriptionFractionofNlostbyleachingandrunoff.EquationsEq.22SourceofdataTable11.3,Chapter11,Volume4,2006IPCCGuidelinesforNationalGHGInventoriesValueapplied0.3(ifsoilwaterholdingcapacityisexceeded)or0JustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedDefaultfactorgivenforthisvariableintheIPCCGuidelinesPurposeofdataCalculationofbaselineandprojectemissions.CommentsNoneData/ParameterGWPjDataunitDimensionlessDescriptionGlobalwarmingpotentialofgasjEquationsEq.5SourceofdataIPCCValueappliedVariousJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedValuesfoundinTable4(p.22)ofTheScienceofClimateChange,ContributionofWorkingGroup1totheSecondAssessmentReportoftheIPCCmustbeused(timehorizon-100years).METHODOLOGY:VCSVersion3v3.3130PurposeofdataCalculationofbaselineandprojectemissions,andleakageCommentsNoneData/ParameterHWPCH4fX,t-yDataunittCO2e/twoodbiomassdeliveredDescriptionThefactorfortheamountofCH4(accountedasCO2e)emittedinagivenyear,equaltothenumberofyearsbetweenharvestandtimet,forproductsusedinareaX,whereXiseitherNorthAmerica(NA)oroffshore(O)EquationsEq.30SourceofdataValuesgivenintables14and15,derivedfromDymond2012andWinjumetal1998ValueappliedVariousJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedTheDymondpaperrepresentsthemostrecent,BCfocussedassessmentofCstorageinHWPforNorthAmericanmarkets,whiletheWinjumet.al.paperisthebestavailablesourceforoffshoremarkets.Forotherprovinces,defaultvaluesmustbecalculatedaccordigDymondprocedures.OthermodelsmayalsobesuitabletodeterminateHWPdefaultvalue.Ifothermodelsareused,VVAmustbejustifiedbyconsideringtheappropriatenessoftheselectedmodels.PurposeofdataCalculationofbaselineandprojectemissions.CommentsDefaultfactorsforthisvariablemaybesubjecttoperiodicre-assessmentData/ParameterHWPfNA,t-yDataunit%DescriptionThefactorforthepercentageofCO2remainingafterthenumberofyearsbetweenharvestandtimet,forproductsusedinNorthAmericaEquationsEq.4SourceofdataDerivedfromCarenC.Dymond,ForestcarboninNorthAmerica:annualstorageandemissionsfromBritishColumbia'sharvest1965-2065,CarbonBalanceandManagement7:8,2012,andK.E.Skog,SequestrationofMETHODOLOGY:VCSVersion3v3.3131carboninharvestedwoodproductsfortheUnitedStates,ForestProductsJournal58(6):56-72.(2008)ValueappliedVariousJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedTheDymondpaperrepresentsthemostrecent,BCfocussedassessmentofCstorageinHWPforNorthAmericanmarkets.Forotherprovinces,defaultvaluesmustbecalculatedaccordigDymondprocedures.OthermodelsmayalsobesuitabletodeterminateHWPdefaultvalue.Ifothermodelsareused,VVAmustbejustifiedbyconsideringtheappropriatenessoftheselectedmodels.PurposeofdataCalculationofbaselineandprojectemissions.CommentsDefaultfactorsforthisvariablemaybesubjecttoperiodicre-assessmentData/ParameterHWPfO,t-yDataunit%DescriptionThefactorforthepercentageofCO2remainingafterthenumberofyearsbetweenharvestandtimet,forproductsusedoffshoreEquationsEq.4SourceofdataDerivedfromCarenC.Dymond,ForestcarboninNorthAmerica:annualstorageandemissionsfromBritishColumbia'sharvest1965-2065,CarbonBalanceandManagement7:8,2012,JackK.Winjum,SandraBrownandBernhardSchlamadinger,ForestHarvestsandWoodProducts:SourcesandSinksofAtmosphericCarbonDioxide,ForestScience44:2,1998andK.E.Skog,SequestrationofcarboninharvestedwoodproductsfortheUnitedStates,ForestProductsJournal58(6):56-72.(2008)ValueappliedVariousJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresapplied:TheDymond(2012)paperrepresentsthemostrecent,BCfocussedassessmentofCstorageinHWPforNorthAmericanmarkets,whiletheWinjumet.al.paperisthebestavailablesourceforkeyfactorsforoffshoremarkets.Forotherprovinces,defaultvaluesmustbecalculatedfollowingtheprocedurespropossedbytheDymond(2012)paper.OthermodelsmayalsobeusedtodeterminateHWPdefaultvalues,followingconditionsmentionedonsection8.1.1.2.METHODOLOGY:VCSVersion3v3.3132PurposeofdataCalculationofbaselineandprojectemissions.CommentsDefaultfactorsforthisvariablemaybesubjecttoperiodicre-assessmentData/ParameterTxDataunit%DescriptionTimberharvestingvolumeproportionforspeciesxbyregionforBCEquationsAppendixASourceofdataBCGovernmentdataontimberharvestbyregionValueappliedValuesgiveninAppendixEinthecaseofBC.Foroption2ofhowtocalculateLEFM%whenprojectareashaveproportionsoftreespeciesthatdifferfromtheregionalaverages(establishedinAppendixE)orwhenareasinotherprovincesotherthanBC,itisrecommendedthatprojectproponentsutilizetheguidancegiveninthisdocument(AppendixA)andtailor/refinetheleakageupdatingtimberharvestingvolumeproportionforspeciexbyproject’sregionaccordingtoscientificavaillabledata.JustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedBCgovernmentdataprovidesthedefinitiverecordofharvestactivitieswithintheprovince.Forprojectsinotherprovinces,projectdevelopermustusedataofrecorofharvestactivitiesintheprojectareaorregion.This,demostraringthatthedataisreliableandfromrelevantpeerreviewedliteraturetoascertainitsvalidity.PurposeofdataCalculationofleakageCommentsNoneData/ParameterwdfsDataunitt/m3DescriptionWooddensityforspeciesorgroupsofspeciessEquationsEq.2SourceofdataJ.S.Gonzalez.WooddensityofCanadiantreespecies.Edmonton:ForestryCanada,NorthwestRegion,NorthernForestryCentre,1990,Inform.Rept.NOR-X-315ValueappliedVariousMETHODOLOGY:VCSVersion3v3.3133JustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedTheGonzalezstudyisapublishedmeta-studyreviewingawiderangeofresearchresultsforwooddensities.PurposeofdataCalculationofbaselineandprojectemissions,andleakageCommentsNone9.1.1:DefaultFactorsSubjecttoPeriodicRe-AssessmentForprojectswithintheprovinceofBC,anumberofdefaultfactorsaregivenforusevariousequations.ThedefaultfactorsshowninTable21,below,arespecifictothismethodology,andaresubjecttoperiodicre-assessment,aslaidoutinthemostrecentversionoftheVCSdocument“MethodologyApprovalProcess”.Table21:DefaultFactorsSubjecttoPeriodicRe-AssessmentVariableDescriptionEquationHWPfPercentageofCO2remaininginuseandlandfillinwoodproducts5HWPCH4ftCH4emissionsfromlandfills30LEFMProvincialleakageestimates38Forthesefactors,updatedpeerreviewedsourcesofinformationormethodsusedinthederivationofthefactormaybecomeavailable.METHODOLOGY:VCSVersion3v3.31349.2DataandParametersMonitoredData/ParameterALb,tDataunitTonnesofbiomass.DescriptionThequantityofbiomassoftypebcombustedduringreportingperiodt.EquationsEq.25SourceofdataFieldmeasurementDescriptionofmeasurementmethodsandprocedurestobeappliedProjectproponentsmustproposeandjustifyanapproachfordeterminingthetotalmassofbiomasscombustedduringcontrolledburningeventsduringareportingperiod.TheapproachmustbebasedontheguidancegivenforApproachBinVCSmoduleVMD0031EstimationofEmissionsfromBurning.Frequencyofmonitoring/recordingForeachcombustionevent.QA/QCprocedurestobeappliedAlldatacollectionandcalculationproceduresandactivitiestobereviewedandspotcheckedbyaqualifiedprofessionalPurposeofdataCalculationofprojectemissions.Willbeestimatedormodeledforestimationofbaselineemissions.CalculationMethodSeeVCSmoduleVMD0031EstimationofEmissionsfromBurning.CommentsData/ParameterALf,tDataunitTonnesDescriptionThequantityoffertilizeroftypefappliedduringperiodtEquationsEq.8SourceofdataFertilizerpurchaseandinventoryrecordsDescriptionofmeasurementmethodsandprocedurestobeappliedStandardaccountingpractices:inventoryatbeginningoftheperiodpluspurchasesduringtheperiodlessinventoryattheendoftheperiodFrequencyofmonitoring/recordingAnnuallyoreveryreportingperiod,whicheverislonger.METHODOLOGY:VCSVersion3v3.3135QA/QCprocedurestobeappliedAlldatacollectionandcalculationproceduresandactivitiestobereviewedandspotcheckedbyaqualifiedprofessionalPurposeofdataCalculationofprojectemissions.Willbeestimatedormodeledforestimationofbaselineemissions.CalculationmethodSummationofpurchasesplusinventoryoffertilizertypefatthebeginningoftheperiod,lessinventoryattheendoftheperiod,orotherappropriateaccountingmethod.CommentsData/ParameterALf,e,tDataunitVolumetricmeasure(eg,l,m3,etc.)ormassmeasure(kg,t,etc.)withappropriateconversionDescriptionThequantityoffueloftypefcombustedinequipment/vehicletypeeduringreportingperiodt.EquationsEq.16SourceofdataMonitoringoffuelconsumptionDescriptionofmeasurementmethodsandprocedurestobeappliedFuelconsumptionrecordsbytypeofequipmentorvehicleandfueltype.Alternatively,recordsbyfueltypeonlymaybeused.Recordsmaybeinvariousforms,aslongastheydirectlyrelatetoamountoffuelconsumedandarenotestimates.Frequencyofmonitoring/recordingContinuousQA/QCprocedurestobeappliedAlldatacollectionandcalculationproceduresandactivitiestobereviewedandspotcheckedbyaqualifiedprofessionalPurposeofdataCalculationofprojectemissions.Willbeestimatedormodeledforestimationofbaselineemissions.CalculationmethodNoneCommentsData/ParameterALff,tDataunitTonnesDescriptionThequantityofforestbiomasscombustedduringforestfiresoccurringduringreportingperiod,frombothanticipateddisturbanceeventsthathavebeenmodeledintheprojectandbaselineandunanticipatedlosseventsthataremonitored.METHODOLOGY:VCSVersion3v3.3136EquationsEq.27SourceofdataCalculationbasedonmeasurementormodellingofkeyfactors.DescriptionofmeasurementmethodsandprocedurestobeappliedMeasurementofareaimpactedandestimationofbiomassquantitiesintheareapriortothefireeventfromforestinventories.Measuredormodeledpercentageofbiomassconsumedinfireevent.ProponentsmustutilizetheguidancegivenforApproachBinVCSmoduleVMD0031:EstimationofEmissionsfromBurningtomaketheseestimations.Frequencyofmonitoring/recordingForeachcombustionevent.QA/QCprocedurestobeappliedAlldatacollectionandcalculationproceduresandactivitiestobereviewedandspotcheckedbyaqualifiedprofessionalPurposeofdataCalculationofprojectemissions,estimationofbaselineemissionsCalculationmethodSeeVCSmoduleVMD0031EstimationofEmissionsfromBurning.CommentsData/ParameterALH,tDataunitt,orotherunitwithappropriateconversionfactortotDescriptionThequantityofharvestedwoodproductHproducedfromwoodharvestedduringreportingperiodt.EquationsEq.29SourceofdataHarvestmonitoringDescriptionofmeasurementmethodsandprocedurestobeappliedDerivedfromscalingrecords.StandardscalingmethodsconsistentwithorcomparabletothosecontainedintheBCScalingManualmustbeused.Frequencyofmonitoring/recordingEverytimeharvestingisconducted.QA/QCprocedurestobeappliedAlldatacollectionandcalculationproceduresandactivitiestobereviewedandspotcheckedbyaqualifiedprofessionalPurposeofdataCalculationofprojectemissions.Willbeestimatedormodeledforestimationofbaselineemissions.CalculationmethodSummationofdatafromscalingrecordsCommentsMETHODOLOGY:VCSVersion3v3.3137Data/ParameterALm,tDataunitPersons,itemsortonnes,asappropriateDescriptionThequantityofmaterials,equipment,inputs,andpersonneltransportedbymodemduringreportingperiodt.EquationsEq.12SourceofdataMonitoringofproponentactivitiesDescriptionofmeasurementmethodsandprocedurestobeappliedDatasourcedfrommanagementrecordsofprojectproponentsfortransportationbytheproponentorcontractorsworkingwithintheprojectarea.Includestransportationoutsideoftheprojectareawhereusedtoaccesstheprojectarea.Frequencyofmonitoring/recordingContinuoustrackingQA/QCprocedurestobeappliedAlldatacollectionandcalculationproceduresandactivitiestobereviewedandspotcheckedbyaqualifiedprofessionalPurposeofdataCalculationofprojectemissions.Willbeestimatedormodeledforestimationofbaselineemissions.CalculationmethodSummationfrommanagementrecordsCommentsData/ParameterCm,g,tDataunitTonnesDescriptionTotalquantityofmaterial,equipment,input,orpersonnelgtransportedusingtransportmodemduringreportingperiodt.EquationsEq.13,14SourceofdataPurchaseandpersonnelrecords(bothproponentandsubcontractors).DescriptionofmeasurementmethodsandprocedurestobeappliedBasedonsalesinvoices,personnelrecords.Wherethesametypeofgoodistransporteddifferentdistancestoarriveattheprojectorbaselinesite,theymustbetreatedasseparategoodsforthepurposesofthiscalculation.Frequencyofmonitoring/recordingContinuous(assalesinvoicesarereceived)METHODOLOGY:VCSVersion3v3.3138QA/QCprocedurestobeappliedAlldatacollectionandcalculationproceduresandactivitiestobereviewedandspotcheckedbyaqualifiedprofessionalPurposeofdataCalculationofprojectemissions.Willbeestimatedormodeledforestimationofbaselineemissions.CalculationmethodSummationfrommanagementrecordsCommentsData/ParameterDm,gDataunitKilometersDescriptionTransportdistanceformaterial,equipment,input,orpersonnelgusingtransportmodem.EquationsEq.13,14SourceofdataRoutinginformationfromshippersordrivers,estimationfromshippingestimatesormaps.DescriptionofmeasurementmethodsandprocedurestobeappliedEstimatebasedonshippingroutesandroutedistancetools(eg,internet-basedmaps,etc.)Frequencyofmonitoring/recordingAnnuallyoreveryreportingperiod,whicheverislonger.QA/QCprocedurestobeappliedAlldatacollectionandcalculationproceduresandactivitiestobereviewedandspotcheckedbyaqualifiedprofessionalPurposeofdataCalculationofprojectemissions.Willbeestimatedormodeledforestimationofbaselineemissions.CalculationmethodNoneCommentsData/ParameterEFb,jDataunitt/tofbiomassDescriptionTheemissionfactorforGHGjandbiomasstypeb(eg,tonnesCH4pertonneofbrushburned).EquationsEq.25SourceofdataBCReportingRegulation,NationalInventoryReports,orotherpeerreviewedsourcesrelevanttotheprojectsiteconditions.Wheremoresitespecificdataisnotavailable,valuesfromtheIPCCGPGLULUCF(Table3A.1.16)maybeused.METHODOLOGY:VCSVersion3v3.3139DescriptionofmeasurementmethodsandprocedurestobeappliedMonitoredfromidentifiedexternalsources.Seesection8.1.2.6formoredetail.Frequencyofmonitoring/recordingEveryreportingperiodQA/QCprocedurestobeappliedAlldatacollectionandcalculationproceduresandactivitiestobereviewedandspotcheckedbyaqualifiedprofessionalPurposeofdataCalculationofprojectemissions,estimationofbaselineemissionsCalculationmethodNoneCommentsData/ParameterEFf,jDataunitt/tDescriptionTheemissionfactorforGHGjandfertilizertypef.Note:itislikelythatfertilizerproductionemissionfactorsmayonlybeavailableinunitsofCO2e.EquationsEq.8SourceofdataVariouspotentialsources,asdescribedinsection8.2.2.3DescriptionofmeasurementmethodsandprocedurestobeappliedMonitoredfromidentifiedexternalsources.Seesection8.1.2.2formoredetailFrequencyofmonitoring/recordingEveryreportingperiodQA/QCprocedurestobeappliedAlldatacollectionandcalculationproceduresandactivitiestobereviewedandspotcheckedbyaqualifiedprofessionalPurposeofdataCalculationofprojectemissions,estimationofbaselineemissionsCalculationmethodNoneCommentsData/ParameterEFf,e,jDataunitt/unitoffuelDescriptionTheemissionfactorforGHGj,fueltypefandequipment/vehicletypee(eg,tonnesCO2perLdiesel].METHODOLOGY:VCSVersion3v3.3140EquationsEq.16SourceofdataEmissionfactorsapprovedforuseinBC,showninsection8.1.2.5above.DescriptionofmeasurementmethodsandprocedurestobeappliedMonitoredfromidentifiedexternalsources.Seesection8.1.2.5formoredetailFrequencyofmonitoring/recordingEveryreportingperiodQA/QCprocedurestobeappliedAlldatacollectionandcalculationproceduresandactivitiestobereviewedandspotcheckedbyaqualifiedprofessionalPurposeofdataCalculationofprojectemissions,estimationofbaselineemissionsCalculationmethodNoneCommentsData/ParameterEFff,jDataunitt/tDescriptionTheemissionfactorforGHGjapplicabletoforestfires.EquationsEq.27SourceofdataBCReportingRegulation,NationalInventoryReports,orotherpeerreviewedsources.Intheabsenceofsuchguidance,theemissionfactorsfromtheIPCCGPGLULUCFTable3A.1.16maybeusedDescriptionofmeasurementmethodsandprocedurestobeappliedMonitoredfromidentifiedexternalsources.Seesection8.1.2.8formoredetailFrequencyofmonitoring/recordingEveryreportingperiodQA/QCprocedurestobeappliedAlldatacollectionandcalculationproceduresandactivitiestobereviewedandspotcheckedbyaqualifiedprofessionalPurposeofdataCalculationofprojectemissions,estimationofbaselineemissionsCalculationmethodNoneCommentsMETHODOLOGY:VCSVersion3v3.3141Data/ParameterEfH,jDataunitt/tDescriptionTheemissionfactorforGHGjandharvestedwoodproductHproduced(eg,CO2perquantityofrawharvestedwoodconvertedtowoodproductH)EquationsEq.29SourceofdataStandardizedemissionfactorsormonitoringofproductionfacilitiesDescriptionofmeasurementmethodsandprocedurestobeappliedWhereproductionfacilitiesareunderthecontrolofprojectproponents,monitoredemissionsfromthesefacilitiesmustbeused.Inothercases,provinciallyornationallyapprovedstandardizedemissionfactorsmaybeused.Seesection8.1.2.10formoredetailFrequencyofmonitoring/recordingEveryreportingperiodQA/QCprocedurestobeappliedAlldatacollectionandcalculationproceduresandactivitiestobereviewedandspotcheckedbyaqualifiedprofessionalPurposeofdataCalculationofprojectemissions,estimationofbaselineemissionsCalculationmethodNoneCommentsData/ParameterEfm,jDataunitt/unitDescriptionTheemissionfactorforGHGjandtransportationmodemEquationsEq.12,13,14SourceofdataEmissionfactorsapprovedforuseinBC,showninsection8.1.2.4above.DescriptionofmeasurementmethodsandprocedurestobeappliedEmissionfactorsapprovedforuseinBC,showninsection8.1.2.4above.Frequencyofmonitoring/recordingEveryreportingperiodQA/QCprocedurestobeappliedAlldatacollectionandcalculationproceduresandactivitiestobereviewedandspotcheckedbyaqualifiedprofessionalMETHODOLOGY:VCSVersion3v3.3142PurposeofdataCalculationofprojectemissions,estimationofbaselineemissionsCalculationmethodNoneCommentsData/ParameterFEmDataunitunitoffuelperdistance(eg,ldiesel/100km).DescriptionFueleconomyoftransportationmodemEquationsEq.13SourceofdataVehiclerecords,orfuelconsumptiondatabyvehicletypefromrecognizedsources.DescriptionofmeasurementmethodsandprocedurestobeappliedBasedonmonitoredfuelconsumptionforvehiclescontrolledbytheproponent,orvehiclespecificationsordefaultassumptionsforthetypesofvehiclesusedforvehiclescontrolledbyothers.Frequencyofmonitoring/recordingRevieweveryfiveyearsoreveryreportingperiod,whicheverislonger.QA/QCprocedurestobeappliedAlldatacollectionandcalculationproceduresandactivitiestobereviewedandspotcheckedbyaqualifiedprofessionalPurposeofdataCalculationofprojectemissions.Willbeestimatedormodeledforestimationofbaselineemissions.CalculationmethodNone,orratioofamountoffuelusedtodistancetraveled,dependingondatasource.CommentsData/Parameter∆TRBP,tDataunittCO2eDescriptionThenetincrementalGHGremovalsbypoolsachievedbythebaselineduringreportingperiodt.EquationsEq.32SourceofdataCalculatedfromsampling,ormodelledMETHODOLOGY:VCSVersion3v3.3143DescriptionofmeasurementmethodsandprocedurestobeappliedDeterminedusingthemethodsgivenundereitherOptionAorOptionBinSection8.1.1.1.ThechosenOptionandmethodsmustbeusedconsistentlyforbothprojectemissions,ascalculatedinSection8.2,andbaselineemissions,ascalculatedinsection8.2,notingthatifOptionAischosen,methodsfromOptionBwillalsobeusedtodetermineGHGj,BaselineForestPools,tfortimes>t=0.Onlyrelevantforj=CO2;otherwise,settozero.Frequencyofmonitoring/recordingEveryreportingperiodQA/QCprocedurestobeappliedAlldatacollectionandcalculationproceduresandactivitiestobereviewedandspotcheckedbyaqualifiedprofessionalPurposeofdataEstimationofbaselineemissions.CalculationmethodGiveninSection8–dependsontheOptionchosenandpoolsaccounted.CommentsData/Parameter∆TRPP,tDataunittCO2eDescriptionThenetincrementalGHGremovalsbyprojectpoolsachievedbytheprojectduringreportingperiodt.EquationsEq.34SourceofdataCalculatedfromsampling,ormodelledDescriptionofmeasurementmethodsandprocedurestobeappliedDeterminedusingthemethodsgivenundereitherOptionAorOptionBinSection8.1.1.1.ThechosenOptionandmethodsmustbeusedconsistentlyforbothprojectemissions,ascalculatedinSection8.2,andbaselineemissions,ascalculatedinsection8.2,notingthatifOptionAischosen,methodsfromOptionBwillalsobeusedtodetermineGHGj,BaselineForestPools,tfortimes>t=0.Onlyrelevantforj=CO2;otherwise,settozero.Frequencyofmonitoring/recordingEveryreportingperiodQA/QCprocedurestobeappliedAlldatacollectionandcalculationproceduresandactivitiestobereviewedandspotcheckedbyaqualifiedprofessionalPurposeofdataCalculationofprojectemissions.CalculationmethodGiveninSection8–dependsontheOptionchosenandpoolsaccounted.METHODOLOGY:VCSVersion3v3.3144CommentsData/ParameterLm,gDataunitUnitofquantitypervehicleDescriptionCargoloadpertransportvehicleofmodem.EquationsEq.13SourceofdataIndustryaverageloadingforidentifiedmodeoftransportationDescriptionofmeasurementmethodsandprocedurestobeappliedDatasourcedfromtransportoperator,ortransportindustryaverageswhereprojectproponentsdoesnothaveadirectrelationshipwiththetransportcontractor.Frequencyofmonitoring/recordingRevieweveryfiveyearsoreveryreportingperiod,whicheverislonger.QA/QCprocedurestobeappliedAlldatacollectionandcalculationproceduresandactivitiestobereviewedandspotcheckedbyaqualifiedprofessionalPurposeofdataCalculationofprojectemissions,estimationofbaselineemissionsCalculationmethodNoneCommentsData/ParametermhsDataunitTonnesDescriptionAveragemassoftheharvestedwood,minusbark,ofatreeofspeciessEquationsEq.40SourceofdataSamplingofharvestedtreesofeachspecies.DescriptionofmeasurementmethodsandprocedurestobeappliedSamplingwilltypicallybeofpertreevolumes,aspartofroutinescalingoperations.SamplingmustbeundertakentoBCGovernmentscalingstandards,consistentwithBCScalingManual.Frequencyofmonitoring/recordingAtprojectcommencement,andthereafterwhereaverageharvestparameterschangeQA/QCprocedurestobeappliedAlldatacollectionandcalculationproceduresandactivitiestobereviewedandspotcheckedbyaqualifiedprofessionalMETHODOLOGY:VCSVersion3v3.3145PurposeofdataCalculationofprojectemissions.Willbeestimatedormodeledforestimationofbaselineemissions.CalculationmethodAveragingfromsampledtrees.CommentsData/ParameterMOFj,tDataunitTonnesDescriptionMassoforganicfertilizeroftypejappliedinyeart,tonnes.EquationsEq.20SourceofdatFertilizerpurchaseandinventoryrecordsDescriptionofmeasurementmethodsandprocedurestobeappliedStandardaccountingpractices:inventoryatbeginningoftheperiodpluspurchasesduringtheperiodlessinventoryattheendoftheperiodFrequencyofmonitoring/recordingAnnuallyoreveryreportingperiod,whicheverislonger.QA/QCprocedurestobeappliedAlldatacollectionandcalculationproceduresandactivitiestobereviewedandspotcheckedbyaqualifiedprofessionalPurposeofdataCalculationofprojectemissions.Willbeestimatedormodeledforestimationofbaselineemissions.CalculationmethodSummationofpurchasesplusinventoryoforganicfertilizertypeiatthebeginningoftheperiod,lessinventoryattheendoftheperiod,orotherappropriateaccountingmethod.CommentsData/ParameterMSFi,tDataunitTonnesDescriptionMassofsyntheticfertilizeroftypejappliedinyeart,tonnes.EquationsEq.19SourceofdataFertilizerpurchaseandinventoryrecordsDescriptionofmeasurementmethodsandprocedurestobeappliedStandardaccountingpractices:inventoryatbeginningoftheperiodpluspurchasesduringtheperiodlessinventoryattheendoftheperiodFrequencyofmonitoring/recordingAnnuallyoreveryreportingperiod,whicheverislonger.METHODOLOGY:VCSVersion3v3.3146QA/QCprocedurestobeappliedAlldatacollectionandcalculationproceduresandactivitiestobereviewedandspotcheckedbyaqualifiedprofessionalPurposeofdataCalculationofprojectemissions.Willbeestimatedormodeledforestimationofbaselineemissions.CalculationmethodSummationofpurchasesplusinventoryoffertilizertypefatthebeginningoftheperiod,lessinventoryattheendoftheperiod,orotherappropriateaccountingmethod.CommentsData/ParameterNCOFjDataunit%(Massfraction)DescriptionNitrogencontentoforganicfertilizertypejappliedasspecifiedbythemanufacturer/supplier,ordeterminedbylaboratoryanalysis.EquationsEq.20SourceofdataEstimatedDescriptionofmeasurementmethodsandprocedurestobeappliedDerivedfrommanufacturerspecificationsFrequencyofmonitoring/recordingAnnuallyQA/QCprocedurestobeappliedAlldatacollectionandcalculationproceduresandactivitiestobereviewedandspotcheckedbyaqualifiedprofessionalPurposeofdataCalculationofprojectemissions,estimationofbaselineemissionsCalculationmethodNoneCommentsData/ParameterNCSFiDataunit%(Massfraction)DescriptionNitrogencontentofsyntheticfertilizertypeiappliedasspecifiedbythemanufacturer/supplier,ordeterminedbylaboratoryanalysis.EquationsEq.20METHODOLOGY:VCSVersion3v3.3147SourceofdataEstimatedDescriptionofmeasurementmethodsandprocedurestobeappliedDerivedfrommanufacturerspecificationsFrequencyofmonitoring/recordingAnnuallyQA/QCprocedurestobeappliedAlldatacollectionandcalculationproceduresandactivitiestobereviewedandspotcheckedbyaqualifiedprofessionalPurposeofdataCalculationofprojectemissions,estimationofbaselineemissionsCalculationmethodNoneCommentsData/ParameterVols,y,dDataunitm3Description:Thevolumeofdeliveredroundwoodofspeciessforeachwoodproductdestinationd,extractedfromtheprojectareainyearyEquationsEq.2SourceofdataMeasuredDescriptionofmeasurementmethodsandprocedurestobeappliedAccountedfromroundwooddeliveryrecordsfromtheprojectarea,andmarketbreakdownsforcustomers.Frequencyofmonitoring/recordingContinuousQA/QCprocedurestobeappliedAlldatacollectionandcalculationproceduresandactivitiestobereviewedandspotcheckedbyaqualifiedprofessionalPurposeofdataCalculationofprojectemissions.Willbeestimatedormodeledforestimationofbaselineemissions.CalculationmethodSummationfromdeliveryrecordsComments9.3MonitoringPlanAspartoftheGHGprojectdescription,theproponentmustprepareamonitoringplanwhichwillensurethatthedataandparametersusedinthequantificationofSSRsinSection8,andlistedinMETHODOLOGY:VCSVersion3v3.3148tablesinsection9.1and9.2(the“variables”)aremonitoredtostandardsrequiredtomaintaintheintegrityofestimatesofGHGemissionsreductionsorremovals,thatmonitoringisfullydocumented,andthatappropriateQualityAssuranceandQualityControl(QA/QC)procedures,consistentwiththoselaidoutinthe2006IPCCGuidelinesforNationalGreenhouseGasInventories,arefollowed.PrimarymonitoringproceduresforquantificationofeachvariablearetobebasedontherelevantquantificationandcalculationrequirementspresentedinSection8.AsdetailedinSection8,monitoringofvariablesmayincludetheuseofmodels,physicalfieldsampling,summationofoperationalrecords,andmonitoringofrelevantresearch,asspecifiedforthatspecificvariable.Thesestandardsrepresenttheminimummonitoringrequirementsforeachvariable.Notethatprojectproponentsisexpectedtofullydocumentproject-specificdetailsofthestepsthatwillbetakentomonitoreachofthevariables(eg,specifictypeofmeasurementapproachused,specificprocedureusedwherethereisachoice,etc.)inthefullmonitoringplanaspartofaProjectdescriptiondevelopedforatheirproject.Forinstancesinwhichthereisariskthattheprimarymonitoringproceduresmaynotbeabletobefollowed,eithertemporarilyorpermanently(eg,duetomonitoringequipmentfailure,lossofcomparablesatelliteremotesensingproductsduetosatellitefailure,etc.),itisrecommendedthattheproponentestablishinadvanceanddocumentinthemonitoringplanback-up(contingency)proceduresforvariableswherethisisarisk,toensurecontinuityofverifiabledata.Suchproceduresmustmeettherequirementsspecifiedinapplicablequantificationmethodsforthevariable,presentedinthismethodology.WherestandardsandfactorsfromoutsidesourcesareusedtoderiveGHGemissionsestimates,theymustifpossiblemeetthefollowingcriteria:•Bepubliclyavailablefromareputableandrecognizedsource•Havebeensubjecttocompetentpeerreviewpriortobeingmadepubliclyavailable•BeappropriatefortheGHGsourceorsinkconcerned•BecurrentatthetimeofquantificationWhenstandardsorfactorshaveahighdegreeofuncertainty,conservativevaluesmustbeselectedtoensurethatquantificationdoesnotleadtoanover-estimationofGHGemissionreductionsorremovals.TheMonitoringPlanmustdetailhowthefollowingwillbemonitored:•Projectimplementation•Accountedpoolsandemissions,aschoseninsection5.2.2•Naturaldisturbance•LeakageMETHODOLOGY:VCSVersion3v3.3149PrepareaMonitoringPlandescribinghowthesetaskswillbeimplemented.Foreachtaskthemonitoringplanmustincludethefollowingsections:ix.Purposeofthemonitoringx.Technicaldescriptionofthemonitoringtask.xi.Datatobecollected.xii.Overviewofdatacollectionprocedures.xiii.Frequencyofthemonitoringxiv.Qualitycontrolandqualityassuranceprocedure.xv.Dataarchiving.xvi.Organizationandresponsibilitiesofthepartiesinvolvedinalltheabove.9.3.1ProjectImplementationMonitoringTherationaleofmonitoringprojectimplementationistodocumentallprojectactivitiesimplementedbytheprojectactivity(includingleakagepreventionmeasures)thatcouldcauseanincreaseinGHGemissionscomparedtothebaselinescenario.Themonitoringplanmustdetailproceduresto:•Describe,date,andgeo-reference,asnecessary,allmeasuresimplementedaspartoftheprojectactivitybyprojectproponents.•Collectalloftherelevantdataontheimplementationofprojectactivitieswhichisrequiredtoestimatecarbonstockchangesundertheprojectandbaselinescenarios,aswellasGHGemissionsduetoleakagepreventionmeasures.Refertotherelevantmodulesforthevariablestobemeasured.Statewhetherthemeasuresimplementedwereanticipatedintheprojectdescription,andifnot,describethereasonsforthedeviationfromtheprojectdescription.9.3.2MonitoringAccountedPoolsandEmissionsThemonitoringplanmustdetail:•Theestimation,modeling,measurementorcalculationapproachestobeusedinmonitoringeachvariableusedtocalculateanaccountedpooloremission.•HowmethodsandproceduresconsistentwiththerequirementsgiveninSection8ofthismethodologywillbeusedtoestimatethevaluesofmonitoredvariables.METHODOLOGY:VCSVersion3v3.3150•Howarequirementforgeographicre-stratificationwillbeidentifiedformonitoredvariableswhichvaryacrosstheprojectarea,andhowthere-stratificationwillbeundertaken.•Themonitoringplanmustincludethefollowingdetails:•Thestandardstobeusedforderivationofdatafromremotesensing,ifremotesensingistobeused.Thestandardsgivenmustbeconsistentwiththoseusedduringthepreparationofex-anteprojections.•Procedurestobefollowedinthecasethatanimprovementofthequalityofdataanddataanalysismethodsbecomesavailableduringthecreditingperiod.9.3.3MonitoringofNaturalDisturbancesNaturaldisturbancessuchastsunami,sealevelrise,volcaniceruption,landslide,flooding,permafrostmelting,pest,disease,etc.canimpactthearea,carbonstocksandnon-CO2GHGemissionsofaproject.Suchchangescanbeabruptorgradualandwhensignificant,theymustbefactored-outfromtheestimationofexpostnetanthropogenicGHGemissionreductions.Themonitoringplanmustdetailthestepstobeusedtomonitornaturaldisturbanceimpacts,andfactorthemout,consistentwiththefollowing:•Wherenaturaldisturbancesreducetheareawithinwhichtheprojectactivitiesareundertaken,orwithinwhichtheyhaveeffect,measuretheboundaryofthepolygonslostfromtheprojectareaandexcludetheareawithinsuchpolygonsfromtheprojectareainboththebaselineandprojectscenarios.•Wherenaturaldisturbanceshaveanimpactoncarbonstocks,measuretheboundaryofthepolygonswheresuchchangeshappenedandthechangeincarbonstockwithineachpolygon.Assumethatasimilarcarbonstockchangewouldhavehappenedintheprojectareaunderthebaselinecase(ifthepolygonisalreadydeforestedinthebaseline,assumenocarbonstockchangeinthebaseline).9.3.4LeakageMonitoringDependingonmethodsandvariablesusedtoestimatesourcesofleakageintheex-anteassessment,somevariablesmaybesubjecttomonitoring.Themonitoringplanmustdetailthemethodstobeusedtomonitorthesevariablesrelevanttoleakage.9.3.5Monitoring,Assessing,andManagingtheRiskofReversalProponentsmustusethelatestversionoftheVCSAFOLUNon-PermanenceRiskTool,andtheVCSNon-permanenceRiskReportTemplate.BufferingofissuedcreditswilltakeplacethroughtheestablishedVCSmechanisms,basedonthesetemplates.Additionally,inthecaseofprojectswithintheprovinceofBC,theBCEORrequiresthatproponentsofprojectsthatinvolveremovalsbycontrolledsinksandavoidedemissionsfromcontrolledreservoirs/poolsprepareariskMETHODOLOGY:VCSVersion3v3.3151mitigationandcontingencyplanforthepurposesofensuringthattheatmosphericeffectofremovalsandavoidedemissionsfromreservoirs/poolsenduresforatleast100years(ie,tomanagetheriskofareversalofcarbonstorageachievedbyaproject).WhiletheVCSriskassessmentandbufferpooldescribedabovewillformthebasisofensuringpermanence,projectsarealsoexpectedtoprepareaRiskMitigationandContingencyPlantoreducetheriskorscaleofemissionsfromnaturalandhumancausedevents.AspoliciesandlegislationrelatedtoGHGemissionreductions/removalsevolveattheprovincialandfederallevels,therequirementsofthissectionmustbereviewedtoensurethatriskmitigationplanningissufficienttoensurecompliancewiththerelevantprovincialclimatechangeregulation.9.3.5.1RiskMitigationandContingencyPlanThepurposeoftheRiskMitigationandContingencyPlanistominimizethelikelihoodthatanaturalorhuman-inducedreversaleventwilloccurupto100yearsintothefuturefromthetimeanemissionoffsetiscreatedbytheproject.Theplanmustaddressatleastthetwocoretypesofpotentialrisks:1.NaturaldisturbancesForestsaresubjecttoavarietyofnaturaldisturbancesthatreducegrowthandcarbonstorage.Theriskofnaturaldisturbancevariesasaresultofclimate,treeage,treespecies,topographyandotherfactors.Theexactlocationandextentofnaturaldisturbancesisdifficulttopredict.Nevertheless,itispossibletoestimatetheareathatmaybeaffectedbydifferenttypesofnaturaldisturbancewithinaprojectarea.ThetypesofriskofreversalandtheriskofeachtypemustbequantifiedintheRiskMitigationandContingencyPlan.Theplanmustincludeadiscussionofthehistoryandlevelofrisksfromnaturaldisturbances,takingintoaccountthespecificecosystemsandtreespeciesinvolvedintheproject.Considerationmustalsobegiventopotentialchangesinthehistoricalincidenceorscaleoftheserisksbecauseoftheimpactsofclimatechange,andmustidentifyresponsestooccurrencesoftheserisksTypesofunavoidableriskofreversalthatmustbeconsideredare:i.Wildfireii.Diseaseorinsectoutbreakiii.Otherepisodiccatastrophicevents(eg,wind-throwfromhurricaneorotherwindevent)Theriskmitigationandcontingencyplanmustidentifybothpro-activemeasurestominimizethepotentialemissionsfromtheserisks(forinstance,fireresponsecapacityandplanning),aswellasre-activeplanning(forinstance,salvageofwind-throw,METHODOLOGY:VCSVersion3v3.3152reforestationofburnedareas,etc.).Theplanmustalsoidentifythemethodsthatwillbeusedtomonitortheextentandseverityofriskeventswhichdooccur.2.RisksarisingfromhumanactionsIllegalharvestingmustbeconsidered0%riskforthecountry.However,othertypesofhumancausedrisksmayincludeunplannedharvest,miningactivity,orlandusechange.Theriskmitigationplanmustaddressthelikelihoodofsuchevents,andproposemitigationstrategiestominimizetheincidenceorseverityofsucheventswheretheyaredeemedtobepossiblewithintheprojectarea.Theproponentmustalsoensurethattheprojectdescription,andtheex-antemodellingoftheprojectandbaselinescenarios,reasonablyreflectsboththerisksandresponsesidentifiedintheRiskMitigationandContingencyPlan.Theplanmustalsoidentifythemonitoringprocedureswhicharetobeusedtoassesstheseverityofanyincidenceofhumancausedrisks.METHODOLOGY:VCSVersion3v3.315310REFERENCESAFOLUNon-PermanenceRiskToolv3.2.VerifiedCarbonStandard(2012)A/RMethodologicalTool“Estimationofdirectnitrousoxideemissionfromnitrogenfertilization”.UNFCCCCDMEB,(2007).BCVegetationResourceInventoryStandardshttp://www.for.gov.bc.ca/hts/vri/index.htmlBritishColumbiaForestOffsetGuideVersion1.0,B.C.MinistryofForestsandRange,(2009)Canada’sNationalForestInventoryGroundSamplingGuidelines,CanadianForestInventoryCommittee,(2004)“CBM-CFS3:Amodelofcarbon-dynamicsinforestryandland-usechangeimplementingIPCCstandards”.Kurz,W.A.,C.C.Dymond,T.M.White,G.Stinson,C.H.Shaw,G.J.Rampley,C.Smyth,B.N.Simpson,E.T.Neilson,J.A.Trofymow,J.Metsaranta,andM.J.Apps,EcologicalModelling220:480–504.(2009)ChangeMonitoringInventoryGroundSamplingQualityAssuranceStandardsV2.2BCMinistryofForests,LandsandNaturalResourceOperations,(2012)ClimateActionReserve,ForestProjectProtocolVersion3.2,(2010)ClimateChangeTechnologyEarlyActionMeasures(TEAM)RequirementsandGuidancefortheSystemofMeasurementAndReportingforTechnologies(SMART),GovernmentofCanada(2004)FreightModalShiftingGHGProtocol-BritishColumbia-SpecificVersion.TheDelphiGroup,(2010).GeneralTechnicalReportNE-343MethodsforCalculatingForestEcosystemandHarvestedCarbonwithStandardEstimatesforForestTypesoftheUnitedStates,USDAForestService,April2006Gonzalez,J.S(1990).WooddensityofCanadiantreespecies.InformationreportNOR-X_315.ForestryCanada.Northwestregion.NorthernForestryCentre.GouvernementduQuebec(2015)Ressourcesetindustriesforestières.PortraitstatistiqueGouvernementduQuébec(2016a).Compétitivitédel'industrieforestièreauQuébec.USDOE,TechnicalGuidelinesforVoluntaryReportingofGHGProgram,June2006.TheGHGProtocolforProjectAccounting.WorldResourcesInstitute/WorldBusinessCouncilforSustainableDevelopment,November,(2005)METHODOLOGY:VCSVersion3v3.3154ImprovedForestManagementMethodologyforQuantifyingGHGRemovalsandEmissionReductionsthroughIncreasedForestCarbonSequestrationonU.S.Timberland.AmericanCarbonRegistry/FiniteCarbon,(2010).IPCCGuidelinesforNationalGHGInventories.IPCC,(2006)ISO14064-2:2006,GHGes-Part2:Specificationwithguidanceattheprojectlevelforquantification,monitoringandreportingofGHGemissionreductionsorremovalenhancements.InternationalStandardsOrganization,(2006)LocomotiveEmissionsMonitoringProgram.RailwayAssociationofCanada,(2008).“PriceelasticitiesofsubstitutionbetweenspeciesinthedemandofUSsoftwoodlumberimportsfromCanada”.Hseu,J-S.,andBuongiorno,J.,CanadianJournalofForestResearch23:591-597.(1993)“SoftwoodLumberProductsintheUnitedStates:Substitutes,Complements,orUnrelated?”.Nagubadi,R.V.,Zhang,D.,Prestemon,J.P.,andWear,D.N.,ForestScience51(4):416-426.(2004)TurningtheCorner,Canada’sOffsetSystemforGHGesGuideforProtocolDevelopers,DraftforConsultation,EnvironmentCanada(2008)VCS(2017).RequirementsDocument.VerifiedCarbonStandard.Version3WooddensityofCanadiantreespecies.J.S.Gonzalez.,ForestryCanada,NorthwestRegion,NorthernForestryCentre,(1990)SequestrationofcarboninharvestedwoodproductsfortheUnitedStates.Skog,K.E.,ForestProductsJournal58(6):56-72.(2008)METHODOLOGY:VCSVersion3v3.3155APPENDIXA:THEBCPROVINCIALBASECASEAPPROACHFORADDRESSINGLEAKAGEFROMFORESTCARBONPROJECTSGrowingconditions,thedestinationsofwood,andtreetypecanvaryconsiderablybetweentheinteriorandcoastalregionsofBritishColumbia.Inaddition,areasinthesoutherninteriorofBritishColumbiacanvaryconsiderablyfromthenortherninterior.Thesedifferencesimpacttheparametersoftheleakageequation(Section8.3.1.2.)andassuchweexaminebasecasesforthenortherninterior,southerninteriorandcoastalregionsseparately.Assumptionsmadeforthebasecasesofboththecoastandnorthernandsoutherninteriorreflectwhataresimpleandrepresentativeoffsetprojectsineachrespectiveregion.Assumptionssuchastreetype,location,andproducttypecanallimpacttheestimatedleakage.AsaresultthesecalculationscouldbemodifiedonaprojecttoprojectbasisbytheproponentthroughusingtheleakageequationguidelinesinFCOPandbyreferringtothebasecasescenarios.Aprojecttimelineof100yearsisusedsincethisiswhatprojecttimelinesarecomparedtointheB.C.EmissionOffsetsRegulation.Toreflectthislong-runmarketelasticitiesareusedinsteadofshort-runelasticities.80Themarketshareofthebasecaseoffsetprojectisassumedtobe1%(F=.01)81ofthetotalNorthAmericamarket.CRandCNareassumedtobethesameandaregivenvaluesof1asaconservativeassumptiontolowerthechanceofunderestimatingleakage.82Proponentsmustbeawarethatthesebasecasecalculationsaresubjecttoperiodicre-assessment,asprovidedinthemostrecentversionoftheVCSdocumentMethodologyApprovalProcess(Section10.3.1inversionV4.0).Proponentsmustensurethattheyincludeintheirprojectcalculationsanychangeswhichmayhavebeenmadetothesecalculationsasaresultofthisre-assessment.80Ashort-runelasticitymeasuresthecurrentmontheffectofachangeinonevariableonlumbersupplyordemand.Assuchshort-runelasticitiescapturemarketreactionswithinthecurrentmonth.Long-runelasticitiesarenormallymoreelastic(furtherfromzero)thanshort-runduetothepositivesumeffectsoflaggeddependentvariables.Inshort-runelasticities,demandandsupplyrelationscannotbeensuredtobeamongtheestimatedco-integrationrelations.Thatistosay,consumersmaynotbeabletorespondtothechangesinmarketpriceduetosupplyanddemandshiftingrightaway,thereisalag.Onlylong-runelasticitiescancapturethelag.Giventhenatureoftheleakageissueinthiscase,itismoreappropriatetouselong-runelasticities.81Thisisstrictlyanassumptiontoshowtheimpactofasmallcarbonoffsetprojectrelativetothetotalmarket.However,evenincreasingaprojectssizetoF=.1,or10%,onlyreducesleakageby2%.ReducingFfurtherhasevenlesseffect.OverallFhasaminimalimpactontheequation.82GiventhefavourablegrowingconditionsthroughoutmuchofB.C.incontrasttotherestofNorthAmericaitwouldnotbeunreasonabletoassumethatCR>CN.AsthegapbetweenCRandCNincreasesinfavourofCRleakagewilldecrease.METHODOLOGY:VCSVersion3v3.3156APPENDIXB:EXAMPLESUBSTITUTABILITYEQUATIONSThesubstitutionparameterinMurrayetal.(2004)measurestherateofresponseofquantitydemandedofproductNduetothequantitychangeofproductR.Hence,inordertogetthesubstitutionparameterfromcrosspriceelasticity,thefollowingcalculationisapplied:Substitutionparameter=crosspriceelasticityforproductRinverseofownpriceelasticityofproductRÄ=ÇÉHÉHÑÇÉIÉIÑ=ÇÉHÉHÑÇÖIÖIÑ×ÇÖIÖIÑÇÉIÉIÑThesubstitutabilitiesoflow/moderatelysubstitutablewood(imperfectsubstitutes)inthispaperarecalculatedbasedonthereferenceslistedbelow:Table26:Own-AndCross-PriceElasticitiesOfDemandForSoftwoodLumberProducts,US:Jan.1989ToJuly2001.PercentageeffectonthequantitydemandedofFora1%changeinthepriceofSPFSYP-USYP-RDFWSPOtherSPF-0.61960.23650.00150.02230.29850.0608(0.022)(0.015)(0.012)(0.014)(0.013)(0.035)SYP-U0.3985-0.7189-0.04200.00700.3811-0.0257(0.025)(0.035)(0.024)(0.018)(0.020)(0.056)SYP-R0.0093-0.1569-1.79492.06460.2163-0.3384(0.076)(0.089)(0.234)(0.178)(0.211)(0.381)DF0.06610.01230.9707-1.62260.39940.1741(0.040)(0.031)(0.084)(0.147)(0.142)(0.227)WSP0.34600.26220.03980.1565-1.10590.3014(0.015)(0.013)(0.039)(0.056)(0.072)(0.101)Other0.0837-0.0210-0.07400.08100.3577-0.4275(0.048)(0.045)(0.083)(0.105)(0.120)(0.192)METHODOLOGY:VCSVersion3v3.3157andindicatesignificanceatthe1%and5%levels,respectively.Figuresinparenthesesarestandarderrors:SE(ŋij)=SE(βij)/mi(Binswanger1974,Pindyck1979)Source:Nagubadietal.(2004)83Table27:Long-TermElasticitiesOfDemandForUSSoftwoodLumberImportsFromCanadaBySpeciesElasticitiesPdYSprucePineFirHemlockRedCedarOthersSpruce2.330.63-2.760.160.200.130.110.20(0.76)(0.07)(0.57)(0.10)(0.13)(0.08)(0.07)(0.13)Pine2.330.632.73-6.330.530.330.290.53(0.76)(0.07)(0.74)(0.95)(0.14)(0.09)(0.08)(0.14)Fir2.330.63-1.07-1.17-0.31-0.13-0.11-0.21(0.76)(0.07)(0.48)(0.08)(0.32)(0.06)(0.05)(0.09)Hemlock2.330.631.140.180.22-3.830.120.22(0.76)(0.07)(0.62)(0.10)(0.12)(0.71)(0.06)(0.12)RedCedar2.330.63-0.57-0.09-0.11-0.07-1.03-0.11(0.76)(0.07)(0.45)(0.07)(0.09)(0.05)(0.15)(0.09)Others2.330.63-0.62-0.10-0.12-0.08-0.07-1.01(0.76)(0.07)(0.45)(0.07)(0.09)(0.06)(0.05)(0.20)NOTE:Numbersinparenthesesareapproximatestandarderrorsthatignorepossiblecorrelationbetweentheimportsharesandelasticities.Elasticityvaluesindicatethepriceofimportsofvariousspecies.Significantlydifferentfromzeroatthe5%significancelevelusingatwo-tailedtest.Source:HseuandBuongiorno(1993)8483Nagubadi,R.V.,Zhang,D.,Prestemon,J.P.,andWear,D.N.2004.“SoftwoodLumberProductsintheUnitedStates:Substitutes,Complements,orUnrelated?”.ForestScience51(4):416-426.84Hseu,J-S.,andBuongiorno,J.1993.“PriceelasticitiesofsubstitutionbetweenspeciesinthedemandofUSsoftwoodlumberimportsfromCanada”.CanadianJournalofForestResearch23:591-597.METHODOLOGY:VCSVersion3v3.3158Onlysubstitutablewoodswiththepriceelasticitiesthatarehigherthan5%significancelevelareconsideredincalculatingthesubstitutionparameters.Forexample,tocalculatethesubstitutionparameterforredcedar,weusethetablefromHseuandBuongiorno(1993):ÄJKLNKLOJ=VPQRKVJKLNKLOJ+VSKTUVNWVJKLNKLOJ=.29−1.03+.12−1.03=−40%Tocalculatethesubstitutionparameterforlarch,thetablefromNagubadietal.(2004)isused:ÄUOJNS=VXYPVVZSKJ=.3014−.4275=−70%Notethatthepriceelasticitiesoflarch,ponderosapine,redwood,whitepineandotherlumberweregroupedtogetherinthe“Other”groupinthisreference.METHODOLOGY:VCSVersion3v3.3159APPENDIXC:SUBSTITUTABILITYESTIMATESFORCOMMERCIALTREESPECIESINBRITISHCOLUMBIAPleasefindthevaluesforsubstitutabilityestimatesforcommercialtreespeciesinBCinTable28below.Table28:LowAndModeratelySubstitutableWoodsInBC85TreeSpeciesRegionSubstitutabilityRedCedarMostlyCoastandSouthernInterior40%Cypress/YellowCedarMostlyCoastandSouthernInterior40%PonderosaPineMostlySouthernInterior70%WhitePineMostlySouthernInterior70%LarchMostlySouthernInterior70%Note:Allothertreespeciesareconsideredperfectlysubstitutable(100%)85Forguidanceonthederivationofthesenumbers,seetheexamplegivenforRedCedarinAppendixB.METHODOLOGY:VCSVersion3v3.3160APPENDIXD:DERIVATIONOFWOODDENSITYFACTORSWooddensityfactorsforBCandQuebectimberspeciesaregiveninTables8Aand8Bofthemethodology.Thevaluesgivenareforovendrydensitypergreenvolume(t/m3),andarederivedfromdatafoundinthereference“J.S.Gonzalez.WooddensityofCanadiantreespecies.Edmonton:ForestryCanada,NorthwestRegion,NorthernForestryCentre,1990,Inform.Rept.NOR-X-315.”TheGonzalezstudyisameta-studysummarizingresearchintowooddensitiesforCanadiantimberspecies.ThevaluesgiveninTables8A,and8BaretheaveragesofthegreenvolumevaluesmeasuredfortreesgrowninBCandQC,withthefollowingadjustments:1.TremblingAspen.ForthisspeciesvaluesfromacrossCanadawereused,sinceonlyonevaluewasavailableforBC,andthisvaluewasexcludedasdiscussedinpoint2below.2.Exclusionofoutliers.Afterreviewofthedata,thedecisionwasmadetoexcludethevaluesderivedfromthestudyundertakenbyStandish(Standish,J.T.1983.DevelopmentofasystemtoestimatequalityofbiomassfollowinglogginginBritishColumbiaforeststospecifiedrecoverycriteria.ReportpreparedfortheCanadianForestryService,Ottawa,Ontario.),andincludedintheGonzalezpaper.TheStandishvalueswereconsistentlyhigherthanthosefoundbyotherresearchers,andwerefelttobeoutliervalues,probablyduetothetechniquesusedbythatresearcher.METHODOLOGY:VCSVersion3v3.3161APPENDIXE:BCTIMBERHARVESTINGVOLUMEBYSPECIESANDREGIONPleasefindthevaluesfortimberharvestvolumebespeciesandregioninTable29below.Table29:TimberHarvestingVolumeProportionFive-YearAverage(2006-2010)86CoastAlder0.6%Balsam9.3%Cedar22.4%Cottonwood0.3%Cypress2.9%Fir30.1%Hemlock32.3%LodgepolePine0.2%Maple0.1%Spruce1.6%WhitePine0.1%NorthernInteriorAspen7.0%Balsam5.9%Birch0.1%Cedar0.5%Cottonwood1.1%Fir0.7%Hemlock2.4%LodgepolePine61.7%Spruce20.6%SouthernInteriorAspen0.3%Balsam4.6%86InformationderivedfromtheHarvestBillingSystem(HBS)forBritishColumbia,whichismanagedbytheMinistryofForests,LandsandNaturalResourceOperations.(https://www.for.gov.bc.ca/hva/hbs/)METHODOLOGY:VCSVersion3v3.3162Birch0.1%Cedar2.9%Fir9.6%Hemlock1.7%Larch1.5%LodgepolePine62.6%Spruce16.2%WhitePine0.2%Yellow/PonderosaPine0.3%METHODOLOGY:VCSVersion3v3.3163APPENDIXF:DERIVATIONOFHWPRETENTIONFACTORS,ANDDISCARDEDHWPCH4EMISSIONFACTORSHWPretentionfactorswerederivedfortheprovincesofBCandQuebec,andaregiveninTables9and11ofthemethodology,whileCH4emissionfactorsfordiscardedHWParegiveninTables14and16.ThefactorscontainedinthesetablesweregeneratedbyamodelbasedonworkonHWPretentionandemissionscontainedinthreepapers:1.CarenC.Dymond,ForestcarboninNorthAmerica:annualstorageandemissionsfromBritishColumbia’sharvest1965-2065,CarbonBalanceandManagement7:8,20122.JackK.Winjum,SandraBrownandBernhardSchlamadinger,ForestHarvestsandWoodProducts:SourcesandSinksofAtmosphericCarbonDioxide,ForestScience44:2,19983.K.E.Skog,SequestrationofcarboninharvestedwoodproductsfortheUnitedStates,ForestProductsJournal58:6,2008.Usingthesepapers,amodelwasbuiltwhichprojectedHWPretentionandemissionsfromdiscardedHWPforbothNorthAmericanmarkets,andoverseasmarkets.Themodelusedthefollowingdataandassumptions:NorthAmericanmarkets1.Distributionofdeliveredlogvolumestoproductcategories.FiguresusedweretakenfromtheDymond87paper,andareshowninTable30.FiguresforthepercentageoftotalharvestfortheprovinceofQuebecweretakenfromofficialdatagenetaratedbythegovernmentofQuebec88.Table30:DistributionOfDeliveredWoodVolumesToProductCategoriesForNorthAmericanMarketsFirstprocessingfacility%oftotalharvest(BC)%oftotalharvest(QC)lumberplypanelschips/blocksFuellandfillTotalLumbermills84.0%53.4%47.0%35.0%17.9%0.1%100.0%87Table3,CarenC.Dymond,ForestcarboninNorthAmerica:annualstorageandemissionsfromBritishColumbia’sharvest1965-2065,CarbonBalanceandManagement7:8,201288Percentageswerecalculatedbasedondatafromthetable“Intrantsetextrantsdel'industriequébécoisedetransformationprimaireduboisde2008à2015”ofGouvernementduQuébec(2016).Ressourcesetindustriesforestièresportraitstastisque.MinistèredesForêts,delaFauneetdesParcs,2016METHODOLOGY:VCSVersion3v3.3164Chipmills5.0%35.5%96.3%3.2%0.5%100.0%Plymills8.0%0.5%51.0%16.0%24.0%8.5%0.5%100.0%panelmills3.0%8.7%84.0%15.5%0.5%100.0%NetforBC39.5%4.1%3.8%36.1%16.3%0.2%NetforQC26.0%0.2%7.4%53.7%12.4%0.3%2.Distributionofpulpwoodtoproductcategoriesbypulpingmethod.FiguresusedweretakenfromtheDymond89paper,andareshowninTable31Table31:DistributionOfPulpwoodToProductCategoriesByPulpingMethod%oftotalinput(BC)%oftotalinput(QC)90papercombustioneffluentmechanical12.0%27.8%93.0%6.9%0.1%chemical88.0%72.2%45.0%53.9%1.1%3.Distributionofproductstouses.FiguresusedweretakenfromtheDymond91paper,andareshowninTable32.Notethatthe“Other”categoryincludesrecycledmaterials.Table32:DistributionOfProductsToUsesTotalproducts(BC)Totalproducts(QC)SinglefamilyMultifamilyCom.OtherbuildingFurnitureShippingLandfillOlumber39.5%26%25.0%1.5%7.0%25.0%10.0%10.0%7.5%1ply4.1%0.2%41.0%3.0%9.0%25.5%7.5%2.0%4.0%8panel3.8%7.4%15.0%2.0%6.0%16.0%36.0%1.0%4.0%289Table5,CarenC.Dymond,ForestcarboninNorthAmerica:annualstorageandemissionsfromBritishColumbia’sharvest1965-2065,CarbonBalanceandManagement7:8,201290CalculatedfromdataofPortraitstadistiqueduQuebec(2015).Pag69.Tablewhereisdescribedthenumberoffacilitiesperpaperfabricationindustrysubgroups.91Table7,CarenC.Dymond,ForestcarboninNorthAmerica:annualstorageandemissionsfromBritishColumbia’sharvest1965-2065,CarbonBalanceandManagement7:8,2012METHODOLOGY:VCSVersion3v3.3165paper18.3%31.3%fuel33.9%34.3%landfill0.2%0.3%effluent0.4%0.4%100.00%100%4.Destinyofdiscardedwoodproducts.FiguresusedweretakenfromtheSkog92andDymond93papers,andareshowninTable33below.Recycledsolidwoodproductsweremodeledasrecyclingtothe“Other”categoryshowninTable32above,exceptshipping,whichrecycledtoitself.DataforpaperwasderivedfromSkogTable6b.BecausethetotalvaluesintheSkogtableaddedupto101%,thevalueforpaperwasreducedto34%(30%fromSkog,plusa4%adjustmenttoreflecttheDymonddata),ratherthan35%.Table33:DestinyOfDiscardedWoodProductsBurnedRecycledCompostedLandfillDumpTotalWood14.0%9.0%8.0%67.0%2.0%100.0%Paper14.0%46.0%5.0%34.0%1.0%100.0%NetofrecyclingWood15.38%8.79%73.63%2.20%100.0%Paper25.93%9.26%62.96%1.85%100.0%92Tables6aand6b,K.E.Skog,SequestrationofcarboninharvestedwoodproductsfortheUnitedStates,ForestProductsJournal58:6,2008.93Page5,CarenC.Dymond,ForestcarboninNorthAmerica:annualstorageandemissionsfromBritishColumbia’sharvest1965-2065,CarbonBalanceandManagement7:8,2012METHODOLOGY:VCSVersion3v3.31665.Decayparametersinlandfillsanddumps.ValuesusedwerederivedfromtheDymond94andSkog95papers,andareshowninTable34below.Table34:DecayParametersInLandfillsAndDumpsLandfillsDumps%decayingHalflife%CH4Halflife%CH4toCO2throughcapture23.0%2950%16.585%56%14.550%8.2585%OverseasMarkets1.Amountofwoodwastegeneratedindevelopingcountryprocessingfacilities.BasedontheWinjumpaper,24%ofwoodwasassumedtobecomewasteduringprocessing.2.Productoutputsfromdeliveredroundwood,basedoninsidebarkvolumes.ThesevalueswerederivedfromtheWinjumet.al.96paper,andareshowninTable35.94Page7andTable9,Table7,CarenC.Dymond,ForestcarboninNorthAmerica:annualstorageandemissionsfromBritishColumbia’sharvest1965-2065,CarbonBalanceandManagement7:8,201295Table7,K.E.Skog,SequestrationofcarboninharvestedwoodproductsfortheUnitedStates,ForestProductsJournal58:6,2008.96Table5,JackK.Winjum,SandraBrownandBernhardSchlamadinger,ForestHarvestsandWoodProducts:SourcesandSinksofAtmosphericCarbonDioxide,ForestScience44:2,1998METHODOLOGY:VCSVersion3v3.3167Table35:ProductOutputsFromDeliveredRoundwood%ofproducts%ofdeliveredroundwood%Productionsawnwood2638.24%29.06%woodpanels68.82%6.71%otherroundwood2232.35%24.59%Paper/paperboard1420.59%15.65%100.00%3.FractionoftotalHWPbytypefallingintothe“short-lived”category.ValuesforthisvariablewerederivedfromtheWinjumet.al.97paperbysubtractingthepercentagenotedinthepaperasgoingintolongtermproductsfromthetotal(100%)BecausetheVCSaccounts“short-lived”aslessthanorequalto3years,whiletheWinjumet.al.paperuses5years,theresultingvaluesweremultipliedby3/5.ThisapproachhascommonlybeenusedindevelopingVCSestimatesbasedontheWinjumpaper.TheresultsareshowninTable36.Table36:“Short-Lived”HWPByCategoryFractionoftotalHWPbycategoryShortlivedsawnwood12%woodpanels6%otherroundwood18%Paper/paperboard24%4.FractionofremainingHWPfallingintothe“medium-lived”category.ThepercentageofHWPremainingaftereliminationofthe“short-lived”fractionwhichfallintothe“medium-lived”categoryareshowninTable37.ThedatausedforthisvaluewasderivedfromtheWinjumet.alpaperbydeterminingtheamountexpectedtoberemainingafter100years,andcalculatingtheequivalenthalflife.BecausethemajorityofBCandQCoverseaswoodwasexpectedtogototropicalor97Page276,Step3,JackK.Winjum,SandraBrownandBernhardSchlamadinger,ForestHarvestsandWoodProducts:SourcesandSinksofAtmosphericCarbonDioxide,ForestScience44:2,1998METHODOLOGY:VCSVersion3v3.3168subtropicaldestinations(southernChina,southeastAsia,etc.),thevaluesgiveninWinjumet.al.98fortropicalusewereused.Table37:FractionOfRemainingHWPInThe“Medium-Lived”Category.Fractionofnon-short-livedHWPbycategoryHalflifeSawnwood86%34Woodbasepanels98%17Otherroundwood99%9Paper99%75.Destinyofdiscardedwoodproducts,anddecayparameter.ThesamefigureswereusedasthoseusedforNorthAmericanHWP,showninTables33and34above.ResearchindicatedthatrecyclinganddisposalpracticesinmajoroverseasmarketswereeitheralreadythesameasthoseinNorthAmerica,orwererapidlymovinginthatdirection.98Table2,JackK.Winjum,SandraBrownandBernhardSchlamadinger,ForestHarvestsandWoodProducts:SourcesandSinksofAtmosphericCarbonDioxide,ForestScience44:2,1998METHODOLOGY:VCSVersion3v3.3169APPENDIXG:FORESTDISTRICTSBYREGIONINTHEPROVINCEOFBCForestDistrictsintheprovinceofBC,usedforidentifyingaveragetreespeciesmixforthenortherninterior,southerninteriorandcoastalregionsofthisprovince.Table38:BCForestDistrictsbyRegionCoastChilliwackCampbellRiverNorthCoastNorthIslandQueenCharlotteIslandsSunshineCoastSouthIslandSquamishNorthernInteriorFortNelsonFortStJamesKalumMacKenzieNadinaPeacePrinceGeorgeSkeenaStikineVanderhoofSouthernInteriorArrowBoundaryCentralCaribooChilcotinColumbiaCascadesHeadwatersKamloopsMETHODOLOGY:VCSVersion3v3.3170KootenayLake100MileOkanaganShuswapQuesnelRockyMountainMETHODOLOGY:VCSVersion3v3.3171DOCUMENTHISTORYVersionDateCommentv1.08Dec2015Initialversion

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱