VM0033-潮汐湿地和海草恢复方法学VIP专享VIP免费

VCS Methodology
VM0033
METHODOLOGY FOR TIDAL WETLAND
AND SEAGRASS RESTORATION
Version 2.0
30 September 2021
Sectoral Scope 14
Methodology: VCS Version 4.0
This module was developed by
The development of this methodology was funded by Restore America’s
Estuaries with support from the National Estuarine Research Reserve System
Science Collaborative (under the Bringing Wetlands to Market: Nitrogen and
Coastal Blue Carbon Project), The National Oceanic and Atmospheric
Administration’s Office of Habitat Conservation, The Ocean Foundation, The
Curtis and Edith Munson Foundation, and KBR.
Methodology authors are Dr. Igino Emmer, Silvestrum Climate Associates; Dr.
Brian Needelman, University of Maryland; Stephen Emmett-Mattox, Restore
America’s Estuaries; Drs. Stephen Crooks and Lisa Beers, Silvestrum Climate
Associates; Dr. Pat Megonigal, Smithsonian Environmental Research Center;
Doug Myers, Chesapeake Bay Foundation; Matthew Oreska, University of
Virginia; Dr. Karen McGlathery, University of Virginia, and David Shoch,
Terracarbon.
Methodology: VCS Version 4.0
CONTENTS
1 SOURCES .............................................................................................................. 4
2 SUMMARY DESCRIPTION OF THE METHODOLOGY ............................................ 5
3 DEFINITIONS ......................................................................................................... 7
4 APPLICABILITY CONDITIONS ............................................................................. 10
5 PROJECT BOUNDARY ........................................................................................ 12
5.1 Temporal Boundaries ...................................................................................................... 12
5.2 Geographic Boundaries ................................................................................................. 14
5.3 Carbon Pools ................................................................................................................... 21
5.4 Sources of Greenhouse Gases ...................................................................................... 22
6 BASELINE SCENARIO ......................................................................................... 24
6.1 Determination of the Most Plausible Baseline Scenario ............................................. 24
6.2 Reassessment of the Baseline Scenario ....................................................................... 24
7 ADDITIONALITY .................................................................................................. 25
8 QUANTIFICATION OF GHG EMISSION REDUCTIONS AND REMOVALS ........... 25
8.1 Baseline Emissions ............................................................................................................ 25
8.2 Project Emissions .............................................................................................................. 50
8.3 Emission reductions due to rewetting and fire management (Fire Reduction
Premium) .......................................................................................................................... 58
8.4 Leakage ........................................................................................................................... 59
8.5 Net GHG Emission Reductions and Removals ............................................................. 60
9 MONITORING ..................................................................................................... 65
9.1 Data and Parameters Available at Validation ........................................................... 65
9.2 Data and Parameters Monitored ................................................................................. 94
9.3 Description of the Monitoring Plan ............................................................................. 103
10 REFERENCES ..................................................................................................... 113
APPENDIX 1: LONG-TERM CARBON STORAGE IN WOOD PRODUCTS .................... 117
APPENDIX 2: ACTIVITY METHOD ................................................................................ 120
VCSMethodologyVM0033METHODOLOGYFORTIDALWETLANDANDSEAGRASSRESTORATIONVersion2.030September2021SectoralScope14Methodology:VCSVersion4.0ThismodulewasdevelopedbyThedevelopmentofthismethodologywasfundedbyRestoreAmerica’sEstuarieswithsupportfromtheNationalEstuarineResearchReserveSystemScienceCollaborative(undertheBringingWetlandstoMarket:NitrogenandCoastalBlueCarbonProject),TheNationalOceanicandAtmosphericAdministration’sOfficeofHabitatConservation,TheOceanFoundation,TheCurtisandEdithMunsonFoundation,andKBR.MethodologyauthorsareDr.IginoEmmer,SilvestrumClimateAssociates;Dr.BrianNeedelman,UniversityofMaryland;StephenEmmett-Mattox,RestoreAmerica’sEstuaries;Drs.StephenCrooksandLisaBeers,SilvestrumClimateAssociates;Dr.PatMegonigal,SmithsonianEnvironmentalResearchCenter;DougMyers,ChesapeakeBayFoundation;MatthewOreska,UniversityofVirginia;Dr.KarenMcGlathery,UniversityofVirginia,andDavidShoch,Terracarbon.Methodology:VCSVersion4.0CONTENTS1SOURCES..............................................................................................................42SUMMARYDESCRIPTIONOFTHEMETHODOLOGY............................................53DEFINITIONS.........................................................................................................74APPLICABILITYCONDITIONS.............................................................................105PROJECTBOUNDARY........................................................................................125.1TemporalBoundaries......................................................................................................125.2GeographicBoundaries.................................................................................................145.3CarbonPools...................................................................................................................215.4SourcesofGreenhouseGases......................................................................................226BASELINESCENARIO.........................................................................................246.1DeterminationoftheMostPlausibleBaselineScenario.............................................246.2ReassessmentoftheBaselineScenario.......................................................................247ADDITIONALITY..................................................................................................258QUANTIFICATIONOFGHGEMISSIONREDUCTIONSANDREMOVALS...........258.1BaselineEmissions............................................................................................................258.2ProjectEmissions..............................................................................................................508.3Emissionreductionsduetorewettingandfiremanagement(FireReductionPremium)..........................................................................................................................588.4Leakage...........................................................................................................................598.5NetGHGEmissionReductionsandRemovals.............................................................609MONITORING.....................................................................................................659.1DataandParametersAvailableatValidation...........................................................659.2DataandParametersMonitored.................................................................................949.3DescriptionoftheMonitoringPlan.............................................................................10310REFERENCES.....................................................................................................113APPENDIX1:LONG-TERMCARBONSTORAGEINWOODPRODUCTS....................117APPENDIX2:ACTIVITYMETHOD................................................................................120Methodology:VCSVersion4.041SOURCESThismethodologyreferencescertainproceduressetoutinthefollowingmethodologiesandtools:•CDMtoolAR-Tool14EstimationofcarbonstocksandchangeincarbonstocksoftreesandshrubsinA/RCDMprojectactivities•VCSmethodologyVM0024MethodologyforCoastalWetlandCreation,v1.0Thefollowinghavealsoinformedthedevelopmentofthemethodology:•VCSmoduleVMD0005Estimationofcarbonstocksinthelong-termwoodproductspool,v1.0Thismethodologyusesthelatestversionsofthefollowingmodulesandtools:•CDMtoolAR-Tool02CombinedtooltoidentifythebaselinescenarioanddemonstrateadditionalityforA/RCDMprojectactivities•CDMtoolAR-Tool03CalculationofthenumberofsampleplotsformeasurementswithinA/RCDMprojectactivities•CDMtoolAR-Tool04ToolfortestingsignificanceofGHGemissionsinA/RCDMprojectactivities•CDMtoolAR-Tool05EstimationofGHGemissionsrelatedtofossilfuelcombustioninA/RCDMprojectactivities•VCSmoduleVMD0016Methodsforstratificationoftheprojectarea•VCSmoduleVMD0019MethodstoProjectFutureConditions•VCSmoduleVMD0052DemonstrationofAdditionalityofTidalWetlandRestorationandConservationProjectActivities.CDMtoolsareavailableat:cdm.unfccc.int/methodologies/ARmethodologies/approved.Methodology:VCSVersion4.052SUMMARYDESCRIPTIONOFTHEMETHODOLOGYAdditionalityandCreditingMethodAdditionalityActivitymethodCreditingBaselineProjectmethodWetlandrestorationoccurssporadicallythroughouttheworldprimarilytocreatewildlifehabitat,restorewaterqualityandquantitylevelsandprovidestormprotectionandfoodproduction.However,wetlandrestorationalsoprovidestheadditionalbenefitsofgreenhousegas(GHG)emissionreductionsandclimatechangemitigation.Thismethodologyoutlinesprocedurestoestimatenetgreenhousegasemissionreductionsandremovalsresultingfromprojectactivitiesimplementedtorestoretidalwetlands.Suchactivitiesmayincludecreating,restoring,and/ormanaginghydrologicalconditions,sedimentsupply,salinitycharacteristics,waterqualityand/ornativeplantcommunities.Accordingly,thismethodologyisapplicabletoawiderangeofprojectactivitiesaimedatrestoringandcreatingtidalwetlands,andemissionreductionsandremovalsareestimatedprimarilybasedontheecologicalchangesthatoccurasaresultofsuchactivities(e.g.,increasedvegetativecover,changestowatertabledepth).Thismethodologyalsoaddressesthepotentialfortheestablishmentofwoodyvegetation.Assuch,thismethodologyiscategorizedasaRestoringWetlandEcosystems(RWE)andAfforestation,ReforestationandRevegetation(ARR)methodology.ProjectactivitiesareexpectedtogenerateGHGemissionreductionsandremovalsthrough:•Increasedbiomass•Increasedautochthonoussoilorganiccarbon•Reducedmethaneand/ornitrousoxideemissionsduetoincreasedsalinityorchanginglanduse•ReducedcarbondioxideemissionsduetoavoidedsoilcarbonlossThismethodologyisapplicabletoprojectslocatedglobally,andtoalltidalwetlandsystems(i.e.,tidalforests(suchasmangroves),tidalmarshesandseagrassmeadows).Fortheadditionalityassessment,anactivitymethodisused.Aprojectmethodisusedwithrespecttothecreditingbaselineforallprojects.Methodology:VCSVersion4.06Forstratawithorganicsoil,thismethodologysetsoutproceduresfortheestimationofpeatdepletiontime(PDT).Likewise,forstratawithmineralsoilsandsediments,thismethodologyprovidesproceduresfortheestimationofsoilorganiccarbondepletiontime(SDT).ThismethodologyalsoincludesanassessmentofthemaximumquantityofGHGemissionreductionswhichmaybeclaimedfromthesoilorganiccarbon(SOC)pool(eitherbasedonthedifferencebetweentheremainingsoilorganiccarbonstockintheprojectandbaselinescenariosafter100years(totalstockapproach),orthedifferenceincumulativecarbonlossinbothscenariossincetheprojectstartdate(stocklossapproach)).Toestimatecarbonstockchangesintreeandshrubbiomass,thismethodologyusesproceduresfromCDMtoolAR-Tool14EstimationofcarbonstocksandchangeincarbonstocksoftreesandshrubsinA/RCDMprojectactivities.Thismethodologyalsoprovidesamethodtoaccountforcarbonstockchangesinherbaceousvegetation.Sincebiomassmaybelostduetosubsidencefollowingsealevelrise,restorationprojectsinvolvingafforestationorreforestationmayaccountforlong-termcarbonstorageinwoodproductswheretreesareharvestedbeforedieback.GHGemissionsfromtheSOCpoolareestimatedbyassessingemissionsofCO2,CH4andN2O,whichmaybeestimatedviaseveralmethods(e.g.,proxies,modeling,defaultfactors,localpublishedvalues).WhereallochthonousSOCaccumulatesintheprojectscenario,aprocedureisprovidedtodeductsuchcarbonfromnetemissionreductions.ProxiesforemissionsfromtheSOCpoolmayincludewatertabledepthandsoilsubsidence(forwhichproceduresfromothermethodologiesandmodulesareused)andcarbonstockchange.Fornon-seagrasstidalwetlandsystems,adefaultfactormaybeusedintheabsenceoflocaldata.CH4andN2Oemissionsinthebaselinescenariomaybeconservativelysettozero.WheretheprojectproponentdemonstratesthatCH4orN2Oemissionsdonotincreaseintheprojectscenariocomparedtothebaselinescenario,theseemissionsneednotbeaccountedfor.Thismethodologyalsoaddressesanthropogenicpeatfiresoccurringindrainedareasandestablishesaconservativedefaultvalue(FireReductionPremium)basedonfireoccurrenceandextensionintheprojectareainthebaselinescenario.TheprocedureisbasedonVCSmoduleVMD0046MethodsformonitoringsoilcarbonstockchangesandGHGemissionsinWRCprojectactivities.TheapproachavoidsthedirectassessmentofGHGemissionsfromfireinthebaselineandprojectscenarios.ThismethodologyalsoincludesprocedurestoaccountforGHGemissionsfromprescribedburning(usingliterature-basedemissionfactorsfornon-CO2GHGs)andfossilfueluse(byincorporatingproceduresfromtheCDMtoolAR-Tool05EstimationofGHGemissionsrelatedtofossilfuelcombustioninA/RCDMprojectactivities).Methodology:VCSVersion4.07Thismethodologyincludesproceduresfortheconsiderationofsealevelrisewithrespecttodeterminingthegeographicboundariesoftheprojectarea,andthedeterminationofthebaselinescenarioandbaselineemissions.Activity-shiftingleakageandmarketleakagearedeemednottooccuriftheapplicabilityconditionsofthismethodologyaremet.Furthermore,activity-shiftingleakageandmarketleakagearedeemednottooccurifthepre-projectlandusewillcontinueduringtheprojectcreditingperiod.Undertheapplicabilityconditionsofthismethodology,ecologicalleakagedoesnotoccurbyensuringthattheeffectofhydrologicalconnectivitywithadjacentareasisinsignificant(i.e.,noalterationofmeanannualwatertabledepthswilloccurinsuchareas).Intidalwetlandrestorationprojects,de-wateringdownstreamwetlandsisnotexpected.Thismethodologyprovidesthestepsnecessaryforestimatingtheproject’snetGHGbenefits,asrepresentedbytheequationbelow:NERRWE=GHGBSL–GHGWPS+FRP–GHGLKWhere:NERRWE=NetCO2eemissionreductionsfromtheRWEprojectactivityGHGBSL=NetCO2eemissionsinthebaselinescenarioGHGWPS=NetCO2eemissionsintheprojectscenarioFRP=FireReductionPremium(netCO2eemissionreductionsfromorganicsoilcombustionduetorewettingandfiremanagement)GHGLK=NetCO2eemissionsduetoleakage3DEFINITIONSInadditiontothedefinitionssetoutinVCSdocumentProgramDefinitions,thefollowingdefinitionsapplytothismethodology:AllochthonousSoilOrganicCarbonSoilorganiccarbonoriginatingoutsidetheprojectareaandbeingdepositedintheprojectareaAutochthonousSoilOrganicCarbonSoilorganiccarbonoriginatingorformingintheprojectarea(e.g.,fromvegetation)CarbonPreservationDepositionalEnvironment(CPDE)Typeofsub-aquaticsedimentdepositionenvironmentthatimpactstheamountofdepositedorganiccarbonthatispreserved.Carbonpreservationisaffectedbymineralgrainsize,sedimentaccumulationandburialrates,O2availabilityintheoverlyingwatercolumnandsedimenthydraulicconductivity.Methodology:VCSVersion4.08DegradedwetlandAwetlandwhichhasbeenalteredbyhumanornaturalimpactthroughtheimpairmentofphysical,chemicaland/orbiologicalproperties,andinwhichthealterationhasresultedinareductionofthediversityofwetland-associatedspecies,soilcarbonorthecomplexityofotherecosystemfunctionswhichpreviouslyexistedinthewetlandDeltaicFluidizedMudACarbonPreservationDepositionalEnvironment(CPDE)type.Thissubaquaticdepositionalenvironmentischaracterizedbysedimentaccumulationratesgenerallygreaterthan0.4gsedimentpercm2peryearindeltaicsettings,consistingprimarilyoffluidized(unconsolidated)fine-grainmaterials.Surfacesedimentsmaybere-suspendedbywavesandtides,butdepositedorganicmatterwillbeburied.ExamplesofthesecanbefoundintheAmazonandMississippideltas.ExtremeAccumulationRateACarbonPreservationDepositionalEnvironment(CPDE)type.Thissubaquaticdepositionalenvironmentischaracterizedbyaccumulationratesgenerallygreaterthan1gsedimentpercm2peryearresultinginrapidandlong-termburialofdepositedsediments.ExamplesofthesesystemscanbefoundintheGanges-BrahmaputraandRhoneRiverdeltas.ImpoundedWaterApoolofwaterformedbyadamorpitMarshAsubsetofwetlandscharacterizedbyemergentsoft-stemmedvegetationadaptedtosaturatedsoilconditions1MineralSoilSoilthatisnotorganicMudflatAsubsetoftidalwetlandsconsistingofsoftsubstratenotsupportingemergentvegetationNormalmarineACarbonPreservationDepositionalEnvironment(CPDE)type.Thisisadepositionalenvironmentthatdoesnotmeetthedefinitionoftheotherfourdefinedconditions(i.e.,deltaicfluidizedmud,extremeaccumulationrate,oxygendepletionzone,orsmallmountainousriver).1Therearemanydifferentkindsofmarshes,rangingfromtheprairiepotholestotheEverglades,coastaltoinland,freshwatertosaltwater,butthescopeofthismethodologyislimitedtotidalmarshes.Saltmarshesconsistofsalt-tolerantanddwarfbrushwoodvegetationoverlyingmineralororganicsoils.Methodology:VCSVersion4.09NormalmarineenvironmentstypicallyhavelowsedimentationratesandhighO2availabilityinoverlyingsediments.OpenWaterAnareainwhichwaterlevelsdonotfalltoanelevationthatexposestheunderlyingsubstrateOrganicSoilSoilwithasurfacelayerofmaterialthathasasufficientdepthandpercentageoforganiccarbontomeetthresholdssetbytheIPCC(Wetlandssupplement)fororganicsoil.Whereusedinthismethodology,thetermpeatisusedtorefertoorganicsoil.Oxygen(O2)DepletionZoneACarbonPreservationDepositionalEnvironment(CPDE)type.ThisisadepositionalenvironmentwithlowO2levelsinwateroverlyingsedimentsduetorestrictedhydrologiccirculationorimpairedwaterqualitythatleadstohypoxicoranaerobicconditions(includingeuxinicandsemi-euxinic).SalinityAverageTheaveragewatersalinityvalueofawetlandecosystemusedtorepresentvariationinsalinityduringperiodsofpeakCH4emissions(e.g.,duringthegrowingseasonintemperateecosystems)SalinityLowPointTheminimumwatersalinityvalueofawetlandecosystemusedtorepresentvariationinsalinityduringperiodsofpeakCH4emissions(e.g.,duringthegrowingseasonintemperateecosystems)SeagrassMeadowAnaccumulationofseagrassplantsoveramappablearea2SmallMountainousRiverACarbonPreservationDepositionalEnvironment(CPDE)type.Thisisadepositionalenvironmentfromwhichthesedimentissuppliedfromsmallmountainousrivers,mostcommonlyfoundintectonicallyactivemarginsandsmallsteepgradients.Sedimentaccumulationratesaregenerallygreaterthan0.27gsedimentpercm2peryear.ExamplesofthesesystemscanbefoundintheriversflowingfromtheislandofTaiwanandtheEelRiverofCalifornia.TidalWetlandAsubsetofwetlandsundertheinfluenceofthewettinganddryingcyclesofthetides(e.g.,marshes,seagrassmeadows,tidalforestedwetlands,andmangroves).Sub-tidalseagrass2Thisdefinitionincludesboththebioticcommunityandthegeographicareawherethebioticcommunityoccurs.Notethatthevastmajorityofseagrassmeadowsaresub-tidal,butapercentageareintertidal.Methodology:VCSVersion4.010meadowsarenotsubjecttodryingcyclesbutarestillincludedinthisdefinition.TidalWetlandRestorationRe-establishingorimprovingthehydrology,salinity,waterquality,sedimentsupplyand/orvegetationindegradedorconvertedtidalwetlands.Forthepurposeofthismethodology,thisdefinitionalsoincludesactivitiesthatcreatewetlandecologicalconditionsonuplandsundertheinfluenceofsealevelriseoractivitiesthatconvertonewetlandtypetoanotheroractivitiesthatconvertopenwatertowetland.WaterTableDepthDepthofsub-soilorabove-soilsurfaceofwater,relativetothesoilsurface4APPLICABILITYCONDITIONSThismethodologyappliestotidalwetlandrestorationprojectactivities(tidalwetlandrestorationasdefinedinSection3above)underthefollowingapplicabilityconditions:1)Projectactivitieswhichrestoretidalwetlands(includingseagrassmeadows,perthismethodology’sdefinitionoftidalwetland)areeligible.2)Projectactivitiesmayincludeanyofthefollowing,orcombinationsofthefollowing:a)Creating,restoringand/ormanaginghydrologicalconditions(e.g.,removingtidalbarriers,improvinghydrologicalconnectivity,restoringtidalflowtowetlandsorloweringwaterlevelsonimpoundedwetlands)b)Alteringsedimentsupply(e.g.,beneficialuseofdredgematerialordivertingriversedimentstosediment-starvedareas)c)Changingsalinitycharacteristics(e.g.,restoringtidalflowtotidallyrestrictedareas)d)Improvingwaterquality(e.g.,reducingnutrientloadsleadingtoimprovedwaterclaritytoexpandseagrassmeadows,recoveringtidalandotherhydrologicflushingandexchange,orreducingnutrientresidencetime)e)(Re-)introducingnativeplantcommunities(e.g.,reseedingorreplanting)f)Improvingmanagementpractice(s)(e.g.,removinginvasivespecies,reducedgrazing)3)Priortotheprojectstartdate,theprojectarea:a)Isfreeofanylandusethatcouldbedisplacedoutsidetheprojectarea,asdemonstratedbyatleastoneofthefollowing,whererelevant:Methodology:VCSVersion4.011i)Theprojectareahasbeenabandonedfortwoormoreyearspriortotheprojectstartdate;orii)Useoftheprojectareaforcommercialpurposes(i.e.,trade)isnotprofitableasaresultofsalinityintrusion,marketforcesorotherfactors.Inaddition,timberharvestinginthebaselinescenariowithintheprojectareadoesnotoccur;oriii)Degradationofadditionalwetlandsfornewagriculturalsiteswithinthecountrywillnotoccurorisprohibitedbyenforcedlaw.ORb)Isunderalandusethatcouldbedisplacedoutsidetheprojectarea),althoughinsuchcasebaselineemissionsfromthislandusemustnotbeaccountedfor,andwheredegradationofadditionalwetlandsfornewagricultural/aquaculturalsiteswithinthecountrywillnotoccurorisprohibitedbyenforcedlaw.ORc)Isunderalandusethatwillcontinueatasimilarlevelofserviceorproductionduringtheprojectcreditingperiod(e.g.,reedorhayharvesting,collectionoffuelwood,subsistenceharvesting).Theprojectproponentmustdemonstrate(a),(b)or(c)abovebasedonverifiableinformationsuchaslawsandbylaws,managementplans,annualreports,annualaccounts,marketstudies,governmentstudiesorlanduseplanningreportsanddocuments.4)Livetreevegetationmaybepresentintheprojectareaandmaybesubjecttocarbonstockchanges(e.g.,duetoharvesting)inboththebaselineandprojectscenarios.5)Theprescribedburningofherbaceousandshrubabovegroundbiomass(coverburns)asaprojectactivitymayoccur.6)Wheretheprojectproponentintendstoclaimemissionreductionsfromreducedfrequencyofpeatfires,projectactivitiesmustincludeacombinationofrewettingandfiremanagement.7)Wheretheprojectproponentintendstoclaimemissionreductionsfromreducedfrequencyofpeatfires,itmustbedemonstratedthatathreatoffrequenton-sitefiresexists,andtheoverwhelmingcauseofignitionoftheorganicsoilisanthropogenic(e.g.,drainageofthepeat,arson).8)Instratawithorganicsoil,afforestation,reforestation,andrevegetation(ARR)activitiesmustbecombinedwithrewetting.Thismethodologyisnotapplicableunderthefollowingconditions:Methodology:VCSVersion4.0121)ProjectactivitiesqualifyasIFMorREDD.2)Baselineactivitiesincludecommercialforestry.3)Projectactivitieslowerthewatertable,unlesstheprojectconvertsopenwatertotidalwetlands,orimprovesthehydrologicalconnectiontoimpoundedwaters.4)HydrologicalconnectivityoftheprojectareawithadjacentareasleadstoasignificantincreaseinGHGemissionsoutsidetheprojectarea.5)Projectactivitiesincludetheburningoforganicsoil.6)Nitrogenfertilizer(s),suchaschemicalfertilizerormanure,areappliedintheprojectareaduringtheprojectcreditingperiod.5PROJECTBOUNDARY5.1TemporalBoundariesPeatdepletiontime(PDT)Drainedpeatissubjecttooxidationandsubsidenceandareaswithpeatatt=0mayloseallpeatbeforetheendofthecreditingperiod.Thetimeatwhichallpeathasdisappeared,oratwhichthepeatdepthreachesalevelwherenofurtheroxidationorotherlossesoccur(e.g.,attheaveragewatertabledepth),isreferredtoasthePDT.Projectsthatdonotquantifyreductionsofbaselineemissions(i.e.,thosewhichlimittheiraccountingtoGHGremovalsinbiomassand/orsoil)neednotestimatePDT.PDT(tPDT-BSL,i)forastratuminthebaselinescenariolimitstheperiodduringwhichtheprojectiseligibletoclaimsoilemissionreductionsfromrewetting,andisestimatedattheprojectstartdateforeachstratumias:tPDT-BSL,i=Depthpeat,i,t0/Ratepeatloss-BSL,I(1)Where:tPDT-BSL,I=PDTinthebaselinescenarioinstratumi(inyearselapsedsincetheprojectstartdate);yrDepthpeat,i,t0=Averageorganicsoildepthabovethedrainagelimitinstratumiattheprojectstartdate;mRatepeatloss-BSL,i=Rateoforganicsoillossduetosubsidenceandfireinthebaselinescenarioinstratumi;aconservative(high)valuemustbeappliedthatremainsconstantoverthetimefromt=0toPDT;myr-1.i=1,2,3…MBSLstratainthebaselinescenarioMethodology:VCSVersion4.013IftPDT-BSL,ifallswithinthecreditingperiod,subsequentorganiccarbonlossfromremainingmineralsoilmaybeestimatedaswellusingtheprocedureforSDTinSection5.1.2.Organicsoildepths,depthsofburnscarsandsubsidenceratesmustbederivedfromthedatasourcesdescribedinSectionError!Referencesourcenotfound..Watertabledepthisassessed,ifrelevant,followingproceduresinSection9.3.11.IftPDT-BSL,ifallswithintheCreditingPeriod,subsequentorganiccarbonlossfromremainingmineralsoilmaybeestimatedaswellusingtheprocedureforSDTinSection5.1.2,below.Soilorganiccarbondepletiontime(SDT)Projectsthatdonotquantifyreductionsofbaselineemissions(i.e.,thosewhichlimittheiraccountingtoGHGremovalsinbiomassand/orsoil)neednotestimateSDT.SDT(tSDT-BSL,i)forastratuminthebaselinescenariolimitstheperiodduringwhichtheprojectiseligibletoclaimemissionreductionsfromrestoration,andisestimatedattheprojectstartdateforeachstratumiasfollows:Forstratawitherodedsoils:tSDT-BSL,i=5years(1)Forstratawithsoilsexposedtoanaerobicenvironmentthroughexcavationordrainage,usethefollowingequation.tSDT-BSL,i=CBSL,i,t0/RateCloss-BSL,i(2)Where:tSDT-BSL,i=SDTinthebaselinescenarioinstratumi(inyearselapsedsincetheprojectstartdate);yrCBSL,i,t0=Averageorganiccarbonstockinthebaselinescenarioinmineralsoilinstratumiattheprojectstartdate;tCha-1(seeEquation10)RateCloss-BSL,i=Rateofsoilorganiccarbonlossduetooxidationinthebaselinescenarioinstratumi;aconservative(high)valuemustbeappliedthatremainsconstantoverthetimefromt=0toSDT;tCha-1yr-1.i=1,2,3…MBSLstratainthebaselinescenarioTheprojectproponentmustdeterminethedepth(Depthsoil,i,t0inEquation12below)overwhichCBSL,i,t0isdetermined.Notethatashallowerdepthwillleadtoashorter,andmoreconservative,SDT.WhereSDTisnotdetermined,noreductionsofbaselineemissionsfrommineralsoilmaybeclaimed.Methodology:VCSVersion4.014ExtrapolationofRateCloss-BSL,iovertheprojectcreditingperiodmustaccountforthepossibilityofanon-lineardecreaseofsoilorganiccarbonovertime,includingthetendencyoforganiccarbonconcentrationstoapproachsteady-stateequilibrium.Forthisreason,acompletelossofsoilorganiccarbonmaynotoccurinmineralsoils.Thissteady-stateequilibriummustbedeterminedconservatively.Incaseofalternatingmineralandorganichorizons,RateCloss-BSL,imaybedeterminedforallindividualhorizons.Thisalsoappliestocaseswhereanorganicsurfacelayeroflessthan10cmexistsorincaseswherethesoilisclassifiedasorganicbutitsorganicmatterdepletionisexpectedwithintheprojectcreditingperiodandoxidationoforganicmatterinanunderlyingmineralsoilmayoccurwithinthisperiod.SDTisconservativelysettozeroforprojectsitesdrainedmorethan20yearspriortotheprojectstartdate.SDTisalsoconservativelysettozerowheresignificantsoilerosionoccursinthebaselinescenario(significantdefinedas>5%ofRateCloss-BSL,i).WithrespecttotheestimationofSDT,theaccretionofsedimentinthebaselinescenarioisconservativelyexcluded.5.2GeographicBoundariesGeneralTheprojectproponentmustdefinethegeographicboundariesoftheprojectareaatthebeginningofprojectactivities.Theprojectproponentmustprovidethegeographiccoordinatesoflands(includingsub-tidalseagrassareas,whererelevant)includedintheprojectareatofacilitateaccuratedelineationoftheprojectarea.Remotelysenseddata,publishedtopographicmapsanddata,landadministrationandtenurerecordsand/orotherofficialdocumentationthatfacilitatescleardelineationoftheprojectareamustbeused.Theprojectactivitymaycontainmorethanonediscreteareaofland.Eachdiscreteareaoflandmusthaveauniquegeographicalidentification.Whendescribingphysicalprojectboundaries,thefollowinginformationmustbeprovidedforeachdiscretearea:•Nameoftheprojectarea(includingcompartmentnumbers,localname(ifany)).•Uniqueidentifierforeachdiscreteparcelofland.•Map(s)ofthearea(preferablyindigitalformat).•Theprojectareamustbegeo-referencedandprovidedindigitalformatinaccordancewithVCSrules.•Totalarea.•Detailsoflandrightsholderanduserrights.Methodology:VCSVersion4.015StratificationWheretheprojectareaattheprojectstartdateisnothomogeneous,stratificationmaybecarriedouttoimprovetheaccuracyandtheprecisionofcarbonstockandGHGfluxestimates.Wherestratificationisemployed,differentstratificationsmayberequiredforthebaselineandprojectscenariosinordertoachieveoptimalaccuracyoftheestimatesofnetGHGemissionreductionsandremovals.Stratamaybedefinedbasedonsoiltypeanddepth(includingeligibilityasassessedbelow),watertabledepth,vegetationcoverand/orvegetationcomposition,salinity,landtype(openwater,channel,andunvegetatedsandormudflat)orexpectedchangesinthesecharacteristics.Stratamustbespatiallydiscreteandstratumareasmustbeknown.Areasofindividualstratamustsumtothetotalprojectarea.Stratamustbeidentifiedwithspatialdata(e.g.,maps,GIScoverage,classifiedimagery,samplinggrids)fromwhichtheareacanbedeterminedaccurately.Landuse/landcovermapsinparticularmustbeground-truthedandlessthan10yearsold,unlessitcanbedemonstratedthatthemapsarestillaccurate.Stratamustbediscernibletakingintoaccountgoodpracticewithrespecttoaccuracyrequirementsforthedefinitionofstratalimitsandboundaries.Thetypeofspatialdatamustbeindicatedandjustifiedintheprojectdescription.Theprojectareamaybestratifiedexante,andthisstratificationmayberevisedexpostformonitoringpurposes.Establishedstratamaybemergedifreasonsfortheirseparateestablishmentarenolongermeaningful,orhaveprovenirrelevanttokeyvariablesforestimatingnetGHGemissionreductionsandremovals.Baselinestratificationmustremainfixeduntilareassessmentofthebaselinescenariooccurs.Stratificationintheprojectscenariomustbereviewedateachmonitoringeventpriortoverificationandrevisedifnecessary.Thesub-sectionsbelowspecifyfurtherrequirementsandguidancewithrespecttostratificationincertainscenarios.AreaswithorganicsoilTheprojectproponentmustuseVCSmoduleVMD0016MethodsforStratificationoftheProjectAreasinordertostratifyprojectareasthatincludeorganicsoil.SeagrassmeadowsGiventhetendencyofseagrassestoresponddifferentlyunderdifferentlightanddepthregimes,theprojectproponentmaydifferentiatebetweenseagrassmeadowsectionsthatoccuratdifferentdepthsgivendiscrete,orrelativelyabrupt,bathymetricandsubstratechanges.Forseagrassmeadowrestorationprojectsinareaswithexistingseagrassmeadows,theprojectproponentmustquantifythepercentageofmeadowexpansionthatcanbeattributedtotherestorationeffortbutthatisnottheresultofdirectplantingorseeding.ExistingmeadowsMethodology:VCSVersion4.016(unlesssmallerinareathan5%ofthetotalprojectarea)mustbeexcludedfromthecalculationofprojectemissions,evenincaseswheretherestoredmeadowenhancescarbonsequestrationratesinexistingmeadows.Newseagrassmeadowsthatresultfromnaturalexpansionmustbecontiguouswithrestoredmeadowplotsinordertobeincludedinprojectaccounting,unlesstheprojectproponentdemonstratesthatnon-contiguousmeadowpatchesoriginatedfromrestoredmeadowseeds.Thismaybeperformedviagenetictestingorestimatedasapercentageofnewmeadowinnon-contiguousplotsandobservednolessthanfouryearsaftertheprojectstartdate.3Thispercentagemustnotexceedtheproportionofrestoredmeadowarearelativetothetotalextentofseagrassmeadowareal,andtheprojectproponentmustdemonstratethefeasibilityofcurrent-borneseeddispersalfromtherestoredmeadow.Incaseswherearestoredmeadowcoalesceswithanexistingmeadow(s),theprojectproponentmustdelineatethelineatwhichthetwomeadowsarejoined.Theprojectproponentmayuseeitheraerialobservationsshowingmeadowextentordirectfieldobservations.NativeecosystemsInordertoclaimemissionremovalsfromARRorWRCactivities,theprojectproponentmustprovideevidenceintheprojectdescriptionthattheprojectareawasnotclearedofnativeecosystemstocreateGHGcredits.Suchproofisnotrequiredwheresuchclearingtookplacepriortothe10-yearperiodpriortotheprojectstartdate.Areasthatdonotmeetthisrequirementmustbeexcludedfromtheprojectarea.StratificationofvegetationcoverforadoptionofthedefaultSOCaccumulationrateThedefaultfactorforSOCaccumulationratemayonlybeappliedtonon-seagrasstidalwetlandsystemswithacrownorvegetationcoverofatleast15%,withalinearlydiscountedfactorforareaswithacrownorvegetationcoveroflessthan50%(seeSections8.1.4.2.3and8.2.4.2.1).Forthebaselinescenario,crownorvegetationcoversmustbebasedonatimeseriesofvegetationcomposition.Fortheprojectscenario,crownorvegetationcovermappingmustbeperformedaccordingtoestablishedmethodsinscientificliterature.StratificationofsalinityfortheaccountingofCH4TidalwetlandsmaybestratifiedaccordingtosalinityforthepurposeofestimatingCH4emissions.ThresholdvaluesofsalinityformappingsalinitystrataarespecifiedinSection8.1.4.5.4.Areaswithunrestrictedtidalexchangewillmaintainsalinitylevelssimilartothetidalwatersource,whilethosewithinfrequenttidalfloodingwillnot(inwhichcasetheuseofchannelwatersalinitylevelsisnotreliable).Forsuchareasitisthereforerecommendedtostratifyaccordingtothefrequencyoftidalexchange.3McGlatheryetal.(2012)Methodology:VCSVersion4.017ProceduresforthemeasurementofsalinitylevelsarespecifiedinSection9.3.8.StratificationofwaterbodieslackingtidalexchangeTheareaofponds,ditchesorsimilarbodiesofwaterwithintheprojectareamustbemeasuredandtreatedasseparatestratawhentheydonothavesurfacetidalwaterexchange.CH4emissionsfromthesefeaturesmaybeexcludedfromGHGaccountingiftheareaofthesefeaturesdoesnotincreaseintheprojectscenario.SealevelriseWhendefininggeographicprojectboundariesandstrata,theprojectproponentmustconsiderexpectedrelativesealevelriseandthepotentialforexpandingtheprojectarealandwardtoaccountforwetlandmigration,inundationanderosion.Theprojectareacannotbechangedduringtheprojectcreditingperiod.Forboththebaselineandprojectscenarios,theprojectproponentmustprovideaprojectionofrelativesealevelrisewithintheprojectareabasedonIPCCregionalforecastsorpeer-reviewedliteratureapplicabletotheregion.Inaddition,theprojectproponentmayalsoutilizeexpertjudgment4.Globalaveragesealevelrisescenariosarenotsuitablefordeterminingthechangesinwetlandsboundaries.Therefore,ifused,IPCCmost-likelyglobalsealevelrisescenariosmustbeappropriatelydownscaledtoregionalconditionsthatincludeverticallandmovements,suchassubsidence.Whetherdegradationoccursinthebaselinescenarioorrestorationoccursintheprojectscenario,theassessmentofpotentialwetlandmigration,inundationanderosionwithrespecttoprojectedsealevelrisemustaccountfortopographicalslope,landuseandmanagement,sedimentsupplyandtidalrange.Theassessmentmayusepublisheddatafromtheprojectarea,expertjudgmentorboth.Whenassessingthepotentialfortidalwetlandstomigratehorizontally,onemustconsiderthetopographyoftheadjacentlandandanymigrationbarriersthatmayexist.Ingeneral,andoncoastlineswherewetlandmigrationisunimpairedbyinfrastructure,concave-upslopesmaycause‘coastalsqueeze’,whilestraightorconvex-upgradientsaremorelikelytoprovidethespacerequiredforlateralmovement.Thepotentialfortidalwetlandstoriseverticallywithsealevelriseissensitivetosuspendedsedimentloadsinthesystem.Asedimentloadof>300mg/lhasbeenfoundtobalancehigh-endIPCCscenariosforsealevelrise(Orretal.2003,Stralsburgetal.2011).French(2006)andMorrisetal.(2012)suggestthatthefindingsofOrretal.2003fromtheSanFranciscoBaycouldbeusedelsewhere5.French(2006)indicatesthatat250mg/l,sealevelriseof15mmisbalancedatatidalrangeof1morgreater.Therefore,formarsheswithatidalrange4RequirementsforexpertjudgmentareprovidedinSection9.3.3.5Orretal.2003,Stralbergetal.2011Methodology:VCSVersion4.018greaterthan1m,theprojectproponentmayuse>300mg/lasasedimentloadthresholdabovewhichwetlandsarenotpredictedtobesubmerged.Theprojectproponentmayuselowerthresholdvaluesfortidalrangeandsedimentloadwherejustified.Thevulnerabilityoftidalwetlandstosealevelriseandconversiontoopenwaterisalsorelatedtotidalrange.Ingeneral,themostvulnerabletidalwetlandsarethoseinareaswithasmalltidalrange,thosewithelevationslowinthetidalframeandthoseinlocationswithlowsuspendedsedimentloads.Alternatively,intheprojectscenariotheprojectproponentmayconservativelyassumethatpartofthewetlandwithintheprojectareaerodesanddoesnotmigrate.SeeSection8.1.4.3forprocedurestoestimateCO2emissionsfromerodedsoil.Inthebaselinescenario,theprojectproponentmayconservativelyassumethatpartoftheprojectareasubmerges,withcessationofGHGremovalfromtheatmosphereasaconsequence.Iftheprojectisnotclaimingemissionsduetoerosioninthebaselinescenario,theprojectproponentmayconservativelyassumethatpartoftheprojectareaerodes.Forareasthatsubmergewithouterosion,thelossofSOCmaybeassumedtobeinsignificantinboththebaselineandprojectscenarios.Theprojectionofwetlandboundarieswithintheprojectareamustbepresentedinmapsdelineatingtheseboundariesfromtheprojectstartdateuntiltheendoftheprojectcreditingperiod,atintervalsappropriatetotherateofchangeduetosealevelrise,andatt=100.ProceduresforaccountingforprojectareasubmergenceduetorelativesealevelriseareprovidedinSection8.2.2.EstimationofareaoferodedstrataTidalwetlandsmaybesubjecttotwoformsoferosion:a)Seawardedgesofwetlandsaresubjecttomigrationduetochangesinlocalsealevel,regionalsedimentdelivery,andimpactsofhumanactions(e.g.,nearbyexcavationofshippingchannels);b)Inshelteredsettings,awayfromopenshores,wetlandsmayalsoerodeinternallythroughchannelenlargementifsedimentsupplyforwetlandaccretionisinsufficienttokeeppacewithsea-levelrise.Projectionsoffutureerosionmusttakeintoaccountscalingofwetlandretreatagainstprojectionsofacceleratedsea-levelrise,anymodificationtosedimentsupplyandhumanaction.Channeldensities(surfaceareaofchannelpersurfaceareaofwetland)greaterthan20%and/orchangesinwetlandvegetationconsistentwithincreaseddurationordepthoffloodingisanindicationthatthewetlandmaynotbekeepingpacewithsealevel.Similarly,adeclineinsurfaceelevationrelativetoadatumofmeanhighwatersurfacespringelevationintheinteriorofthetidalwetlandisanindicationofwetlandsensitivitytosedimentsupplyunderconditionsofsea-levelrise.Siteswithanannualaveragesuspendedsedimentloadinfloodingwatersof>300mg/lmaybeconsideredresilienttosea-levelriseintermsofsurfaceaccretion.Theprojectproponentshouldtakeintotheseindicatorsofwetlandpotentialsensitivitytosea-levelrisewhenconsideringwhethertoextendtheerodedareastratatoincludemarshinterior.Methodology:VCSVersion4.019Becausesuchprojectionsaredrivenbyconditionsspecifictoindividualprojectsettings,expertknowledgefromanexperiencedgeomorphologist/coastalengineermustbeutilizedforcomplexprojects.IneligiblewetlandareasForprojectsquantifyingCO2emissionreductions,projectareaswhichdonotachieveasignificantdifference(≥5%)incumulativecarbonlossoveraperiodof100yearsbeyondtheprojectstartdatearenoteligibleforcreditingbasedonthereductionofbaselineemissions,andtheseareasmustbemapped.ThemaximumquantityofGHGemissionreductionswhichmaybeclaimedfromthesoilcarbonpoolislimitedtothedifferencebetweentheremainingsoilorganiccarbonstockintheprojectandbaselinescenariosafter100years(totalstockapproach),orthedifferenceincumulativesoilorganiccarbonlossinbothscenariosoveraperiodof100yearssincetheprojectstartdate(stocklossapproach).Theprojectproponentmustcalculatethismaximumquantityexanteusingconservativeparametersandfollowingoneoftheoptionsbelow.1.TotalstockapproachThedifferencebetweensoilorganiccarbonstockintheprojectscenarioandbaselinescenarioatt=100isestimatedas:𝐶!"#$%#&,()=∑$𝐶!"#,+×𝐴!"#,+,()',!"#+-−∑$𝐶%#&,+,()×𝐴%#&,+,()',$#%+-(3)CWPS,i,t100requiresnoadjustmentforleakagesincetheapplicabilityconditionsofthismethodologyarestructuredtoensureleakageemissionsdonotoccur,asexplainedinSection8.3.Thedifferencebetweenorganiccarbonstockintheprojectscenarioandbaselinescenarioatt=100(CWPS-BSL,t100)issignificantif:∑(𝐶!"#,+,()×𝐴!"#,+,(),!"#+-≥1.05×∑$𝐶%#&,+,()×𝐴%#&,+,()',$#%+-(4)Fororganicsoil:CWPS,i,t100=Depthpeat-WPS,i,t100×VC×10(6)CBSL,i,t100=Depthpeat-BSL,i,t100×VC×10(7)𝐷𝑒𝑝𝑡ℎ./0($%#&,+,(,)=𝐷𝑒𝑝𝑡ℎ./0(,+,(,−∑𝑅𝑎𝑡𝑒./0(1233$%#&,+,((-)(-)(8)𝐷𝑒𝑝𝑡ℎ./0($!"#,+,(,)=𝐷𝑒𝑝𝑡ℎ./0(,+,(,−∑𝑅𝑎𝑡𝑒./0(1233$!"#,+,((-)(-)(9)Methodology:VCSVersion4.020Formineralsoil:𝐶%#&,+,()=𝐶%#&,+,(−∑𝑅𝑎𝑡𝑒41233$%#&,+,((-)(-)(10)𝐶!"#,+,()=𝐶%#&,+,(−∑𝑅𝑎𝑡𝑒41233$!"#,+,((-)(-)(11)CBSL,i,t0=Depthsoil,i,t0×VC×10(12)Whereaconservativeconstantrateofsubsidenceorcarbonlossisapplied,apossiblenegativeoutcomemustbesubstitutedbyzero.Thecarboncontentoforganicormineralsoilmaybetakenfrommeasurementswithintheprojectarea,orfromliteratureinvolvingtheprojectareaorsimilarareas.2.StocklossapproachTheprojectproponentmayalsocalculatethemaximumquantitybasedoncumulativesoilorganiccarbonlossuptot=100asfollows:𝐶!"#$%#&,(,)=∑(𝐶1233$%#&,+,(),$#%+-)×𝐴%#&,+)−∑(𝐶1233$!"#,+,(,),!"#+-)×𝐴!"#,+)(13)Fororganicsoil:𝐶1233$%#&,(,)=10×∑(𝑅𝑎𝑡𝑒./0(1233$%#&,+,()+-)×𝑉𝐶)(14)𝐶1233$!"#,(,)=10×∑(𝑅𝑎𝑡𝑒./0(1233$!"#,+,()+-)×𝑉𝐶)(15)Formineralsoil:𝐶1233$%#&,(,)=10×∑(𝑅𝑎𝑡𝑒41233$%#&,+,()+-)×𝑉𝐶)(16)𝐶1233$!"#,(,)=10×∑(𝑅𝑎𝑡𝑒41233$!"#,+,()+-)×𝑉𝐶)(17)Where:CWPS-BSL,t100=Differencebetweensoilorganiccarbonstockintheprojectscenarioandbaselinescenarioatt=100;tCha-1CWPS,i,t100=Soilorganiccarbonstockintheprojectscenarioinstratumiatt=100;tCha-1CBSL,i,t100=Soilorganiccarbonstockinthebaselinescenarioinstratumiatt=100;tCha-1AWPS,i,t100=Areaofprojectstratumiatt=100;haABSL,i,t100=Areaofbaselinestratumiatt=100;haDepthpeat-WPS,i,t100=Averageorganicsoildepthintheprojectscenarioinstratumiatt=100;mDepthpeat-BSL,i,t100=Averageorganicsoildepthinthebaselinescenarioinstratumiatt=100;mMethodology:VCSVersion4.021VC=Volumetricorganiccarboncontentinorganicormineralsoil;kgCm-3Depthpeat,i,t0=Averageorganicsoildepthabovethedrainagelimitinstratumiattheprojectstartdate;mRatepeatloss-BSL,i,t=Rateoforganicsoillossduetosubsidenceandfireinthebaselinescenarioinstratumiinyeart;myr-1.Ratepeatloss,WPS,i,t=Rateoforganicsoillossduetosubsidenceintheprojectscenarioinstratumiinyeart;myr-1.CBSL,i,t0=Soilorganiccarbonstockinthebaselinescenarioinmineralsoilinstratumiattheprojectstartdate;tCha-1RateCloss-BSL,i,t=Rateoforganiccarbonlossinmineralsoilduetooxidationinthebaselinescenarioinstratumiinyeart;tCha-1yr-1.RateCloss,WPS,i,t=Rateoforganiccarbonlossinmineralsoilduetooxidationintheprojectscenarioinstratumiinyeart;tCha-1yr-1.Thisvalueisconservativelysettozeroaslossratesarelikelytobenegative.Thisparametermustbereassessedwhenthebaselineisreassessed.Depthsoil,i,t0=Mineralsoildepthinstratumiattheprojectstartdate(asinEquation12);mCloss-BSL,i,t100Cumulativesoilorganiccarbonlossinthebaselinescenarioinstratumiatt=100;tCha-1Closs-WPS,i,t100=Cumulativesoilorganiccarbonlossintheprojectscenarioinstratumiatt=100;tCha-1i=1,2,3…MBSLstratainthebaselinescenariot100=100yearsaftertheprojectstartdateBufferzonesWhereestablished,bufferzonesmustbemappedinaccordancewiththeVCSrules.5.3CarbonPoolsThecarbonpoolsincludedinandexcludedfromtheprojectboundaryareshowninTable1below.CarbonpoolsmaybedeemeddeminimisanddonotneedtobeaccountedforiftogethertheomitteddecreaseincarbonstocksorincreaseinGHGemissions(Table2)amountstolessthan5%ofthetotalGHGbenefitgeneratedbytheproject.PeerreviewedliteratureortheCDMtoolAR-Tool04ToolfortestingsignificanceofGHGemissionsinA/RCDMprojectactivitiesmaybeusedtodeterminewhetherdecreasesincarbonpoolsaredeminimis.Table1:SelectionandjustificationofcarbonpoolsCarbonPoolIncluded?Justification/ExplanationAbovegroundtreebiomassYesMajorcarbonpoolmaysignificantlyincreaseordecreaseinboththebaselineandprojectscenarios,inthecaseofestablishmentorpresenceoftreevegetation.Methodology:VCSVersion4.022Abovegroundtreebiomassinthebaselinescenariomustbeincluded.Abovegroundtreebiomassintheprojectscenariomaybeincludedorconservativelyomitted.Abovegroundnon-treebiomassYesCarbonstockinthispoolmayincreaseinthebaselinescenarioandmayincreaseordecreaseintheprojectscenario.Below-groundbiomassYesMajorcarbonpoolmaysignificantlyincreaseinthebaseline,ordecreaseintheproject,orboth,incaseofpresenceoftreevegetation.Below-groundbiomassinthebaselinescenariomustbeincluded.Below-groundbiomassintheprojectscenariomaybeincludedorconservativelyomitted.LitterYesThispoolisoptionalforWRCmethodologies.Litterisonlyincludedindirectlyinassociationwiththequantificationofherbalmass.DeadwoodYesThispoolisoptionalforWRCmethodologies.SoilYesThesoilorganiccarbonstockmayincreaseduetotheimplementationoftheprojectactivity.WoodproductsYesCarbonstockinthispoolmayincreaseintheprojectscenario.5.4SourcesofGreenhouseGasesThegreenhousegasesincludedinorexcludedfromtheprojectboundaryareshowninTable2below.GHGsourcesmaybedeemeddeminimisanddonothavetobeaccountedforiftogethertheomitteddecreaseincarbonstocks(Table1)orincreaseinGHGemissionsamountstolessthan5%ofthetotalGHGbenefitgeneratedbytheproject.Peer-reviewedliteratureortheCDMtoolAR-Tool04ToolfortestingsignificanceofGHGemissionsinA/RCDMprojectactivitiesmaybeusedtodeterminewhetherincreasesinemissionsaredeminimis.Methodology:VCSVersion4.023Table2:GHGSourcesIncludedInorExcludedFromtheProjectBoundarySourceGasIncluded?Justification/ExplanationBaselineTheproductionofmethanebymicrobesCH4YesMaybeconservativelyexcludedinthebaselinescenario.Denitrification/nitrificationN2OYesMaybeconservativelyexcludedinthebaselinescenario.BurningofbiomassandorganicsoilCO2YesImplicitlyincludedintheFireReductionPremiumapproach.CH4YesImplicitlyincludedintheFireReductionPremiumapproach.N2OYesImplicitlyincludedintheFireReductionPremiumapproach.FossilfueluseCO2YesMaybeconservativelyexcludedinthebaselinescenario.CH4NoConservativelyexcludedinthebaselinescenario.N2ONoConservativelyexcludedinthebaselinescenario.ProjectTheproductionofmethanebymicrobesCH4YesPotentialmajorsourceofemissionsintheprojectinlowsalinityandfreshwaterareas.Denitrification/nitrificationN2OYesMayincreaseasaresultoftheprojectactivity.BurningofbiomassCO2YesCO2isaddressedincarbonstockchangeprocedures.CH4YesPotentialmajorsourceoffireemissions.N2OYesPotentialmajorsourceoffireemissions.FossilfueluseCO2Yes/NoPotentialmajorsourceofemissionsinanRWEprojectscenariowheremovementofsoilmaterialwithmachinesandtrucksoccurs.Notincludedinaprojectscenariowhereplantingorsowingoccurswithoutsoilmovement(e.g.,mangroveplanting).CH4NoNotasignificantsourceofemissionsinprojectfueluse.N2ONoNotasignificantsourceofemissionsinprojectfueluse.Methodology:VCSVersion4.0246BASELINESCENARIO6.1DeterminationoftheMostPlausibleBaselineScenarioThebaselinescenariomustbedeterminedusingthelatestversionofCDMtoolAR-Tool02CombinedtooltoidentifythebaselinescenarioanddemonstrateadditionalityforA/RCDMprojectactivities.ThistoolhasbeendesignedforCDMA/Rprojectactivities,andisusedinthismethodologynotingthefollowing:Sinceprojectsusingthismethodologyareeligibletoapplytheactivitymethodfordemonstratingadditionality(seeSection7.1below),allelementsofthetoolrelatedtoadditionalitymustbedisregarded.6.2ReassessmentoftheBaselineScenarioTheprojectproponentmustreassessthebaselinescenarioinaccordancewiththeVCSrules.Forthisreassessment,whenapplyingtheFireReductionPremiumapproachspecifiedinSection8.3,thehistoricreferenceperiodmustbeextendedtoincludetheoriginalreferenceperiodandallsubsequentmonitoringperiodsuptothebeginningofthecurrentmonitoringperiod.Thefirereferenceperiodmustnotbeextended,asthisisafixed10-yearperiodending5yearsbeforetheprojectstartdate.Inaddition,theprojectproponentmust,forthedurationoftheproject,re-determine,whereapplicable,thePDTevery10years.ThisreassessmentmustusetheprocedurespecifiedinSectionError!Referencesourcenotfound..Datasourcesmustbeupdatedwherenewinformationrelevanttotheprojectareahasbecomeavailable.Wherethetoolrefersto:Itmustbeunderstoodasreferringto:A/R,afforestation,reforestation,orforestationWRCorWRC/ARR,orrestorationNetgreenhousegasremovalsbysinksNetgreenhousegasemissionreductionsCDMVCSDOEVVBtCERs,lCERsVCUsMethodology:VCSVersion4.0257ADDITIONALITYThismethodologyusesanactivitymethodforthedemonstrationofadditionalityoftidalwetlandsconservationandrestorationprojectactivities.Forsuchprojectactivities,useModuleVDM0052DemonstrationofAdditionalityofTidalWetlandRestorationandConservationProjectActivities.8QUANTIFICATIONOFGHGEMISSIONREDUCTIONSANDREMOVALS8.1BaselineEmissionsGeneralapproachEmissionsinthebaselinescenarioareattributedtocarbonstockchangesinbiomasscarbonpools,soilprocesses,oracombinationofthese.Inaddition,whererelevant,emissionsfromfossilfuelusemaybequantified.Emissionsinthebaselinescenarioareestimatedas:𝐺𝐻𝐺%#&=𝐺𝐻𝐺%#&$6+27033+𝐺𝐻𝐺%#&$32+1+𝐺𝐻𝐺%#&$89/1(18)𝐺𝐻𝐺%#&$6+27033=−∑∑(::);,$#%+-)(∗(-)×∆𝐶%#&$6+27033,+,()(19)𝐺𝐻𝐺%#&$6+27033=∑∑𝐺𝐻𝐺%#&$32+1,+,(,$#%+-)(∗(-)(20)𝐺𝐻𝐺%#&$89/1=∑∑𝐺𝐻𝐺%#&$89/1,+,(,$#%+-)(∗(-)(21)Where:GHGBSL=NetCO2eemissionsinthebaselinescenariouptoyeart;tCO2eGHGBSL-biomass=NetCO2eemissionsfrombiomasscarbonpoolsinthebaselinescenariouptoyeart;tCO2eGHGBSL-soil=NetCO2eemissionsfromtheSOCpoolinthebaselinescenariouptoyeart;tCO2eGHGBSL-fuel=NetCO2eemissionsfromfossilfueluseinthebaselinescenariouptoyeart;tCO2eΔCBSL-biomass,i,t=Netcarbonstockchangesinbiomasscarbonpoolsinthebaselinescenarioinstratumiinyeart;tCyr-1GHGBSL-soil,i,t=GHGemissionsfromtheSOCpoolinthebaselinescenarioinstratumiinyeart;tCO2eyr-1Methodology:VCSVersion4.026GHGBSL-fuel,i,t=GHGemissionsfromfossilfuelusethebaselinescenarioinstratumiinyeart;tCO2eyr-1i=1,2,3…MBSLstratainthebaselinescenariot=1,2,3,…tyearselapsedsincetheprojectstartdateEstimationofGHGemissionsandremovalsrelatedtothebiomasspoolisbasedoncarbonstockchanges.EstimationofGHGemissionsandremovalsfromtheSOCpoolisbasedoneithervariousproxies(e.g.,carbonstockchange,watertabledepth)orthroughtheuseofliterature,data,defaultfactorsormodels.AssessingGHGemissionsinthebaselinescenarioconsistsofdeterminingGHGemissionproxies/parametersandassessingtheirpre-projectspatialdistribution,constructingatimeseriesofthechosenproxies/parametersforeachstratumfortheentireprojectcreditingperiodanddeterminingannualGHGemissionsperstratumfortheentireprojectcreditingperiod.InordertoprojectthefutureGHGemissionsperunitareaineachstratumforeachprojectedverificationdatewithintheprojectcreditingperiodunderthebaselinescenario,theprojectproponentmustapplythelatestversionofVCSmoduleVMD0019MethodstoProjectFutureConditions.6WhenapplyingSteps13and14ofVMD0019(version1,issued16November2012,theversionofthemodulecurrentasofthewritingofthismethodology)theprojectproponentmustusetheguidanceforsealevelriseprovidedinSection5.2ofthismethodology.FourdrivingfactorsarelikelytoberelevantforGHGaccountinginthebaselinescenario,andarerelevantforuseofVMD0019.Eachfactoraffectstheevolutionofthesiteovera100-yearperiod.Theseinclude:•Initiallanduseanddevelopmentpatterns•Initialinfrastructurethatimpedesnaturaltidalhydrology•Naturalplantsuccessionforthephysiographicregionoftheproject•Climatevariablesaslikelydriversofchangesintidalhydrologywithinthe100-yeartimeframeoftheproject,influencingsealevelrise,precipitationandassociatedfreshwaterdeliveryLanduseanddevelopmentpatterns–Inordertoderivetrendsinlanduse,assumptionsaboutthelikelihoodoffuturedevelopmentoftheprojectareamustbedocumentedandconsideredinlightofcurrentzoning,regulatoryconstraintstodevelopment,proximitytourbanareasortransportationinfrastructure,andexpectedpopulationgrowth,includinghowlandwould6ThismoduleprovidesdetailedproceduresforassessingfuturetrendsinkeyvariablesthataffectGHGemissionsorremovals.Inthecontextofthismethodology,thismoduleismeanttoassistintheassessmentofthesetrendsanddoesnotnecessarilyreplaceproceduresinthismethodology.Proceduresinthemodulemustbeusedwheneverrelevantandmaybejustifiablysimplified.Methodology:VCSVersion4.027developwithinandsurroundingtheprojectsiteandhowsuchchangeswouldchangehydrologicconditionswithintheprojectarea.CurrentdevelopmentpatternsandplausiblefuturelandusechangesmustbemappedtoascalesufficienttoestimateGHGemissionsfromthebaselinescenario.Particularattentionmustbepaidtoexistingorfutureconstructionofbarrierstotidaland/orriverhydrologyandsedimentsupplyfromriversand/oralongthecoast,aswellasbarriersthatwillimpairwetlandcapacitytomigratelandwardswithsealevelrise.Inthecaseofabandonmentofpre-projectlanduseinthebaselinescenario,theprojectproponentmustconsidernon-humaninducedhydrologicchangesbroughtaboutbycollapsingdikesorditchesthatwouldhavenaturallyclosedovertime,andprogressivesubsidence,leadingtorisingrelativewaterlevels,increasinglythinneraerobiclayersandreducedCO2emissionrates.Infrastructureimpedimentstotidalhydrology–Inordertoderivetrendsintidalwetlandevolution,thebaselinescenariomusttakeintoaccountthecurrentandhistoriclayoutofanytidalbarriersanddrainagesystems.Thetidalbarriersanddrainagelayoutatthestartoftheprojectactivitymustbemappedatscale(1:10,000oranyotherscalejustifiedforestimatingwatertabledepthsthroughouttheprojectarea).Historictidalbarriersanddrainagelayoutmustbemappedusingtopographicand/orhydrologicalmapsfrom(ifavailable)thestartofthemajorhydrologicalimpactsbutcoveringatleastthe20yearspriortotheprojectstartdate.Historicdrainagestructures(collapsedditches)may(still)havehigherhydraulicconductivitythanthesurroundingareasandfunctionaspreferentialflowpaths.Historictidalbarriers(agriculturaldikesandlevees)mayconstrainthetidalflowsandpreventnaturalsedimentationpatterns.Theeffectofhistorictidalbarriersanddrainagestructuresoncurrenthydrologicalfunctioningoftheprojectareamustbeassessedonthebasisofquantitativehydrologicalmodelingand/orexpertjudgment.Historicinformationonthepre-existingchannelnetworkasdeterminedbyaerialphotographymayservetosettrendsinpost-projectdendriticchannelformationinthefield.Derivationofsuchtrendsmustbeperformedonthebasisofhydrologicmodelingusingthetotaltidalvolume,soilerodibilityand/orexpertjudgment.Withrespecttohydrologicalfunctioning,thebaselinescenariomustberestrictedbyclimatevariablesandquantifyanyimpactsonthehydrologicalfunctioningascausedbyplannedmeasuresoutsidetheprojectarea(e.g.,damconstructionorfurtherchangesinhydrologysuchasculverts),bydemonstratingahydrologicalconnectiontotheplannedmeasures.Naturalplantsuccession-Basedontheassessmentofchangesinwatertabledepth,atimeseriesofvegetationcompositionmustbederivedexante,basedonvegetationsuccessionschemesinthebaselinescenariofromscientificliteratureorexpertjudgment.Forexample,dikedagriculturallandwillundergonaturalplantsuccessiontoforests,freshwaterwetlands,tidalwetlands,rankuplands,oropenwaterbasedonthescenario’slandusetrajectory,inundationscenario,proximitytonativeorinvasiveseedsources,plantsuccessiontrajectoriesofadjacentnaturalareasorlikelymaintenanceconsistentwithprojectedfuturehumanlanduse(e.g.,pasture,lawn,landscaping).Methodology:VCSVersion4.028Climatevariables–ConsistentwiththesealevelriseguidanceprovidedinSection5.2above,areasofinundationanderosionwithintheprojectareamustbeconsideredinrelationtotheabovethreefactors.Expectedchangesinfreshwaterdeliveryassociatedwithchangesinrainfallpatternsmustbeconsidered,includingexpectedhumanresponsestothesechanges.Theprojectproponentmust,forthedurationoftheprojectcreditingperiod,reassessthebaselinescenarioevery10years.BasedonthereassessmentcriteriaspecifiedinSection6above,therevisedbaselinescenariomustbeincorporatedintorevisedestimatesofbaselineemissions.ThisbaselinereassessmentmustincludetheevaluationofthevalidityofproxiesforGHGemissions.AccountingforsealevelriseTheconsequencesofsubmergenceofagivenstratumduetosealevelriseare:1)Carbonstocksfromabovegroundbiomassarelosttooxidation,and2)Dependinguponthegeomorphicsetting,soilcarbonstocksmaybeheldintactorbeerodedandtransportedbeyondtheprojectarea.Forstratawhereconversiontoopenwaterisexpectedbeforet=100,themaximumquantityofGHGemissionreductionsthatmaybeclaimedbytheprojectmustbecalculatedasdefinedinSection8.5.1.Regarding(1)above,wherebiomassissubmerged,itisassumedthatthiscarbonisimmediatelyandentirelyreturnedtotheatmosphere.Forsuchstrata:ΔCBSL-agbiomass,i,t=12/44×(CBSL-agbiomass,i,t–CBSL-agbiomass,i,(t-T))/T(22)Fortheyearofsubmergence:CBSL-agbiomass,i,t=0Where:ΔCBSL-agbiomass,i,t=Netcarbonstockchangeinabovegroundbiomasscarbonpoolsinthebaselinescenarioinstratumiinyeart;tCyr-1CBSL-agbiomass,i,t=Carbonstockinabovegroundbiomassinthebaselinescenarioinstratumiinyeart(fromtheabovegroundbiomasscomponentsinCTREE_BSL,tandCSHRUB_BSL,tinAR-Tool14andCBSL-herb,i,t);tCO2ei=1,2,3…MBSLstratainthebaselinescenariot=1,2,3,…tyearselapsedsincetheprojectstartdateT=Timeelapsedbetweentwosuccessiveestimations(T=t2–t1)Thegraduallossofvegetationintheprojectareaduetosubmergencemaybecapturedbydetailedstratificationintoareaswithandwithoutvegetation.Methodology:VCSVersion4.029Regarding(2)above,theprojectproponentmustassessthetimeandrateofsubmergenceoftheprojectarea.Forareasthatdrownoutwhiletheareaofpondsincreases,thelossofSOCmaybeassumedtobeinsignificant.Itisassumedthat,uponsubmergence,soilcarbonisnotreturnedtotheatmosphereunlesssite-specificscientificjustificationisprovided.Inareaswithwaveaction,sedimentwillerode,andcarbonwillberemoved.Assumingthatallcarbonisre-sedimentedandstored(andnotoxidized)isconservative.ProcedureforCO2emissionsfromerodedsoilareprovidedinSection8.1.4.3.Restorationprojectsmaybedesignedinsuchawaythattheyhaveadvantagesoverthebaselinescenarioinoneormoreofthefollowingways,asmustbequantifiedandjustifiedintheprojectdescription:•Thepointintimewhensubmergenceanderosionsetsoff.•Theamountofcarbonthaterodesuponsubmergence.•Theoxidationrateoferodedsoilorganicmatter.Inthemostconservativeapproach,theoxidationconstantis0forthebaselineand1fortheprojectscenario.NetcarbonstockchangeinbiomasscarbonpoolsinbaselinescenarioNetcarbonstockchangeinbiomasscarbonpoolsinthebaselinescenarioareestimatedas:ΔCBSL-biomass,i,t=ΔCBSL-tree/shrub,i,t+ΔCBSL-herb,i,t(23)Where:ΔCBSL-biomass,i,t=Netcarbonstockchangeinbiomasscarbonpoolsinthebaselinescenarioinstratumiinyeart;tCyr-1ΔCBSL-tree/shrub,i,t=Netcarbonstockchangeintreeandshrubcarbonpoolsinthebaselinescenarioinstratumiinyeart;tCyr-1ΔCBSL-herb,i,t=Netcarbonstockchangeinherbcarbonpoolsinthebaselinescenarioinstratumiinyeart;tCyr-1i=1,2,3…MBSLstratainthebaselinescenariot=1,2,3,…tyearselapsedsincetheprojectstartdateTreesandshrubsNetcarbonstockchangeintreesandshrubsinthebaselinescenarioareestimatedbyapplyingthelatestversionofCDMtoolAR-Tool14EstimationofcarbonstocksandchangeincarbonstocksoftreesandshrubsinA/RCDMprojectactivities,notingthat:1)AR-Tool14isonlyusedtoderivenetcarbonstockchangesintreeandshrubcarbonpools(ΔCBSL-tree/shrub,i,t),andMethodology:VCSVersion4.0302)Thefollowingequationapplies:ΔCBSL-tree/shrub,i,t=12/44×(ΔCTREE_BSL,t+ΔCSHRUB_BSL,t)(24)Where:ΔCBSL-tree/shrub,i,t=Netcarbonstockchangesintreeandshrubcarbonpoolsinthebaselinescenarioinstratumiinyeart;tCyr-1ΔCTREE_BSL,t=Changeincarbonstockinbaselinetreebiomasswithintheprojectareainyeart;tCO2-eyr-1(derivedfromapplicationofAR-Tool14;calculationsaredoneforeachstratumi)ΔCSHRUB_BSL,t=Changeincarbonstockinbaselineshrubbiomasswithintheprojectareainyeart;tCO2-eyr-1(derivedfromapplicationofAR-Tool14;calculationsaredoneforeachstratumi)Forstratawherereforestationorrevegetationactivitiesinthebaselinescenarioincludeharvesting,thelong-termaverageofCTREE_BSL,tinAR-Tool14mustbecalculatedasspecifiedinSection8.2.3.HerbaceousvegetationNetcarbonstockchangeinherbaceousvegetationinthebaselinescenarioisestimatedusingacarbonstockchangeapproachasfollows:ΔCBSL-herb,i,t=(CBSL-herb,i,t–CBSL-herb,i,,(t-T))/T(25)Where:ΔCBSL-herb,i,t=Netcarbonstockchangeinherbaceousvegetationcarbonpoolsinthebaselinescenarioinstratumiinyeart;tCyr-1CBSL-herb,i,t=Carbonstockinherbaceousvegetationinthebaselinescenarioinstratumiinyeart;tCi=1,2,3…MBSLstratainthebaselinescenariot=1,2,3…tyearselapsedsincetheprojectstartdateT=Timeelapsedbetweentwosuccessiveestimations(T=t2–t1)Adefaultfactor7forcarbonstockinherbaceousvegetationof3tCha-1maybeappliedforstratawith100%herbaceouscover.Forareaswithavegetationcover<100%,a1:1relationshipbetweenvegetationcoverandcarbonstockmustbeapplied.Thedefaultfactormaybeclaimedonlyforthefirstyearoftheprojectcreditingperiodasherbaceousbiomass7Calculatedfrompeakabovegroundbiomassdatafrom20sitessummarizedinMitsch&Gosselink.Themedianofthesestudiesis1.3kgd.m.m-2.Thiswasconvertedtothedefaultfactorvalueasfollows:1.3×0.45×0.5.Thefactor0.45convertsorganicmattermasstocarbonmass;thefactor0.5isafactorthataveragesannualpeakbiomass(factor=1)andannualminimumbiomass(factor=0,assumingephemeralabovegroundbiomassandcompletelitterdecomposition).Methodology:VCSVersion4.031quicklyreachesasteadystate.Vegetationcovermustbedeterminedbycommonlyusedtechniquesinfieldbiology.ProceduresformeasuringcarbonstocksinherbaceousvegetationareprovidedinSection9.3.6.TheabovedefaultfactormaynotbeappliedincaseAR-Tool14isused.Whereacarbonstockincreaseinherbaceousvegetationisquantifiedintheprojectscenario,carbonstockchangesmustalsobequantifiedinthebaselinescenario;whereacarbonstockdeclineisquantifiedinthebaselinescenario,carbonstockchangesmustalsobequantifiedintheprojectscenario.NetGHGemissionsfromsoilinbaselinescenarioGeneralNetGHGemissionsfromsoilinthebaselinescenarioareestimatedas:GHGBSL-soil,i,t=Ai,t×(GHGBSL-soil-CO2,i,t-Deductionalloch+GHGBSL-soil-CH4,i,t+GHGBSL-soil-N2O,i,t)(26)Fororganicsoilswheret>tPDT-BSL,i:GHGBSL-soil,i,t=0Formineralsoilswheret>tSDT-BSL,i:GHGBSL-soil,i,t=0Where:GHGBSL-soil,i,t=GHGemissionsfromtheSOCpoolinthebaselinescenarioinstratumiinyeart;tCO2eyr-1GHGBSL-soil-CO2,i,t=CO2emissionsfromtheSOCpoolinthebaselinescenarioinstratumiinyeart;tCO2eha-1yr-1Deductionalloch=DeductionfromCO2emissionsfromtheSOCpooltoaccountforthepercentageofthecarbonstockthatisderivedfromallochthonoussoilorganiccarbon;tCO2eha-1yr-1GHGBSL-soil-CH4,i,t=CH4emissionsfromtheSOCpoolinthebaselinescenarioinstratumiinyeart;tCO2eha-1yr-1GHGBSL-soil-N2O,i,t=N2OemissionsfromtheSOCpoolinthebaselinescenarioinstratumiinyeart;tCO2eha-1yr-1Ai,t=Areaofstratumiinyeart;hatPDT-BSL,i=Peatdepletiontimeinthebaselinescenarioinstratumiinyearselapsedsincetheprojectstartdate;yrtSDT-BSL,i=Soilorganiccarbondepletiontimeinthebaselinescenarioinstratumiinyearselapsedsincetheprojectstartdate;yri=1,2,3…MBSLstratainthebaselinescenariot=1,2,3,…tyearselapsedsincetheprojectstartdateCO2emissionsfromtheSOCpoolinthebaselinescenariomayoccurinsituorindirectlyfollowingsoilerosionorexposuretoanaerobicenvironmentthroughexcavationasdefinedinMethodology:VCSVersion4.032Equation27.Forstratawithin-situemissions(withorwithoutdrainage),followproceduresinSection8.1.4.2.Forstratawheresoilerosionoccurs,proceduresinSection8.1.4.3mustbeused.Forstratawheresoilisexposedtoanaerobicenvironmentthroughexcavation,proceduresinSection8.1.4.4mustbeused.Forstratawithin-situemissions,CH4andN2OemissionsmaybeconservativelysettozeroormaybeestimatedusingproceduresinSections8.1.4.5and8.1.4.6,respectively.Forstratawheresoilerosionoccurs,orsoilisexposedtoanaerobicenvironmentthroughexcavationordrainage,CH4andN2Oemissionsareconservativelysettozero.GHGBSL-soil-CO2,i,t=GHGBSL-insitu-CO2,i,t+GHGBSL-eroded-CO2,i,t+GHGBSL-excav-CO2,i,t(27)Where:GHGBSL-soil-CO2,i,tCO2emissionsfromtheSOCpoolinthebaselinescenarioinstratumiinyeart;tCO2eha-1yr-1GHGBSL-insitu-CO2,i,tCO2emissionsfromtheSOCpoolofin-situsoilsinthebaselinescenarioinstratumiinyeart;tCO2eha-1yr-1GHGBSL-eroded-CO2,i,tCO2emissionsfromtheerodedSOCpoolinthebaselinescenarioinstratumiinyeart;tCO2eha-1yr-1GHGBSL-excav-CO2,i,tCO2emissionsfromtheSOCpoolofsoilexposedtoanaerobicenvironmentthroughexcavationinthebaselinescenarioinstratumiinyeart;tCO2eha-1yr-1GHGemissionsfromdisturbedcarbonstocksinstockpiles(originatingfrompiling,dredging,channelization)exposedtoaerobicdecompositionmustbeaccountedforinthebaselinescenario.SuchstockpilesmustbeidentifiedinthestratificationoftheprojectareaandaccountingproceduresprovidedinthisSection8.1.4mustbeused.Thebaselinescenariomayinvolvetheconstructionofleveestoconstrainflowandfloodingpatterns,theconstructionofdamstoholdwater,and/orupstreamchangesinlandsurfaceleadingtointensifiedrun-off.Insuchcases,theprojectproponentmustaccountforhydrologicalprocessesthatleadtoincreasedcarbonburialandGHGreductionswithintheprojectareausingproceduresprovidedinthissection.Thesub-sectionsbelowprovideguidancewithrespecttothemethodswhichmaybeusedtoestimatenetGHGemissionsfromsoilinthebaselinescenario.Projectproponentsmaychoosethemethodthatismostsuitabletotheirprojectcircumstancesanddataavailability.However,defaultfactorsandemissionsfactorscannotbeusedinthepresenceofpublisheddatasuitableforuseintheprojectarea.UseofproxiesProxies(asdefinedinVCSdocumentProgramDefinitions)maybeusedtoderivevaluesofGHGemissions.Theprojectproponentmustdemonstratethatsuchproxiesarestronglycorrelatedwiththevalueofinterestandthattheycanserveasanequivalentorbettermethod(e.g.,inMethodology:VCSVersion4.033termsofreliability,consistencyorpracticality)todeterminethevalueofinterestthandirectmeasurementofthevalueitself.Suchproxiesmustalsohavebeendevelopedandtestedforuseinsystemsthatareinthesameorsimilarregionastheprojectarea,sharesimilargeomorphic,hydrologic,andbiologicalproperties,andareundersimilarmanagementregimes,unlessanydifferencesshouldnothaveasubstantialeffectonGHGemissions.UseofmodelsTheprojectproponentmayapplydeterministicmodels(modelsasdefinedinVCSdocumentProgramDefinitions)toderivevaluesofGHGemissions.InadditiontotheVCSrequirementsforselectionanduseofmodels,modeledGHGemissionsandremovalsmusthavebeenvalidatedwithdirectmeasurementsfromasystemwiththesameorsimilarwatertabledepthanddynamics,salinity,tidalhydrology,sedimentsupplyandplantcommunitytypeastheprojectarea.UseofpublisheddataPeer-reviewedpublisheddataorscientificreportsthathavebeenscrutinizedundertherulesforexpertjudgment(Section9.3.3)maybeusedtogeneratevaluesforGHGemissionsinthesameorsimilarsystemsasthoseintheprojectarea.Suchdatamustbelimitedtosystemsthatareinthesameorsimilarregionastheprojectarea,sharesimilargeomorphic,hydrologic,andbiologicalproperties,andareundersimilarmanagementregimesunlessanydifferencesshouldnothaveasubstantialeffectonGHGemissions.UseofdefaultfactorsEmissionfactorsmustbederivedfrompeer-reviewedliteratureandmustbeappropriatetoecosystemtypeandconditionsandthegeographicregionoftheprojectarea.ThedefaultfactorsinSections8.1.4.2.3,8.1.4.5.4,and8.1.4.6.4aresubjecttoperiodicre-assessmentpertherequirementsforperiodicassessmentofdefaultfactorssetoutinVCSdocumentMethodologyApprovalProcess.IPCCdefaultfactors8maybeusedasindicatedinthismethodology.Tier1valuesmaybeused,whererelevantindicatedintheproceduresbelow,buttheirusemustbejustifiedasappropriateforprojectconditions.CO2emissionsfromsoil–insituCO2emissionsfromin-situsoilexposedtoanaerobicenvironmentthroughdrainage(GHGBSL-insitu-CO2,i,t)maybecalculateddirectlyormaybecalculatedfromestimatesoftheinitialamountofcarbonthatisexposed(CBSL-soil,i,t)andthepercentageoftheexposedcarbonthatisreturnedtotheatmosphere(C%BSL-emitted,i,t)asdefinedinEquation28.82013Supplementtothe2006Guidelines:WetlandsMethodology:VCSVersion4.034EstimatesofCBSL-soil,i,torC%BSL-emitted,i,followingaerobicexposurebasedontheextrapolationofC%BSL-emitted,i,tovertheprojectcreditingperiodmustaccountfortendencyoforganiccarbonconcentrationstoapproachsteady-stateequilibriuminmineralsoils.Forthisreason,acompletelossofsoilorganiccarbonmaynotoccurinmineralsoils.Likewise,C%BSL-emitted,i,maynotreach100%.Thissteady-stateequilibriummustbedeterminedconservatively,e.g.byassumingthatCBSL-soil,i,tatsteadystatewillbezeroorthatC%BSL-emitted,i,willbe100%.Incaseofalternatingmineralandorganichorizonsthatareexposed,CO2emissionsmustbedeterminedforallindividualhorizons.CO2emissionsfromsoilsmaybeestimatedusing:1)Proxies2)Publishedvalues3)Defaultfactors4)Models5)Field-collecteddata,or6)Historicalorchronosequence-deriveddataGHGBSL-insitu-CO2,i,t=44/12×CBSL-soil,i,t×C%BSL-emitted,i,t/100(28)CBSL-soil,i,t=C%BSL-soil,i,t×BD×Depth_iBSL,i,tx10(29)Where:GHGBSL-insitu-CO2,i,t=CO2emissionsfromthein-situSOCpoolinthebaselinescenarioinstratumiinyeart;tCO2eha-1yr-1CBSL-soil,i,t=Soilorganiccarbonstockinin-situsoilmaterialinthebaselinescenarioinstratumiinyeart;tCha-1C%BSL-emitted,i,t=Organiccarbonlossduetooxidation,asapercentageofCmasspresentinin-situsoilmaterialinthebaselinescenarioinstratumiinyeart;%C%BSL-soil,i,t=Percentageofcarbonofin-situsoilmaterialinthebaselinescenarioinstratumiinyeart;%BD=Soilbulkdensity;kgm-3Depth_iBSL,i,t=Depthofthein-situexposedsoilinthebaselinescenarioinstratumiinyeart;mIncertaincases,allochthonoussoilorganiccarbonmayaccumulateintheprojectarea.ProceduresfortheestimationofacompensationfactorforallochthonoussoilorganiccarbonarespecifiedinSection8.1.4.2.7.8.1.4.2.1Proxy-basedapproachCO2emissionsmaybeestimatedusingproxiessuchaswatertabledepthandsoilsubsidence(wheresuchproxiesmeettheguidanceinSection8.1.4.1above).Carbonstockchange,asaMethodology:VCSVersion4.035proxyforCO2emissionsorremovals,isdealtwithinSection8.1.4.2.5.Wheretheprojectproponentusesaproxy,suchemissionsarerepresentedbythefollowingequation:GHGBSL-soil-CO2,i,t=ƒ(GHGemissionproxy)(30)WatertabledepthWatertabledepthmaybeusedasaproxyforCO2emissionsformineralandorganicsoilswheretheprojectproponentisabletojustifytheiruseasdescribedinSection8.1.4.1.Whenusingwatertabledepthasaproxy,itmustbeprojectedforthe10-yearbaselineperiodthroughhydrologicmodeling,takingintoconsiderationthefollowing:•Long-termaverageclimatevariables(over20+yearspriortotheprojectstartdatefromtwoclimatestationsnearesttotheprojectarea)influencingwaterlevelsandthetimingandquantityofwaterflow;•Plannedwatermanagementactivitiesdocumentedinexistinglandmanagementplans,predatingconsiderationoftheproposedprojectactivity;and•Potentialoffsiteinfluences(e.g.,changesinsedimentationrates,upstreamwatersupply,sealevelrise).Ifthemeanannualwatertabledepthintheprojectareaexceedsthedepthrangeforwhichtheemission-watertabledepthrelationshipdeterminedfortheprojectisvalid,aconservativeextrapolationmustbeused.SubsidenceSoilsubsidencemayalsobeusedasaproxyforCO2emissionsfromtheSOCpool,usingtheequationbelow:GHGBSL-soil-CO2,i,t=44/12×Cpeatloss-BSL,i,t(31)Cpeatloss-BSL,i,t=10×Ratesubs-BSL,ixVC(32)Where:GHGBSL-soil-CO2,i,t=CO2emissionsfromtheSOCpoolinthebaselinescenarioinstratumiinyeart;tCO2eha-1yr-1Cpeatloss-BSL,i,t=Soilorganiccarbonlossduetosubsidenceinthebaselinescenarioinsubsidencestratumiinyeart;tCha-1Ratesubs-BSL,i=Rateoforganicsoillossduetosubsidenceinthebaselinescenarioinstratumi;myr-1VC=Volumetricorganiccarboncontentoforganicsoil;kgCm-3i=1,2,3…MBSLsubsidencestratainthebaselinescenariot=1,2,3…tyearselapsedsincethestartoftheprojectactivityMethodology:VCSVersion4.0368.1.4.2.2PublishedvaluesPeer-reviewedpublisheddatamaybeusedtogenerateavalueforGHGBSL-insitu-CO2,i,t,CBSL-soil,i,t,C%BSL-emiitted,i,t,C%BSL-soil,i,t,BDorDepth,basedonvaluesfromthesameorsimilarsystemsasthoseintheprojectarea,basedontheguidelinesinSection8.1.4.1above.8.1.4.2.3DefaultfactorsFortidalmarshandmangrovesystems,adefaultfactorforGHGBSL-insitu-CO2,i,tmaybeusedintheabsenceofdatasuitableforusingthepublishedvalueapproach,usingthevalueprovidedbelow:GHGBSL-insitu-CO2,i,t=-1.46(9)tCha-1yr-1×44/12(33)Theabovedefaultfactormayonlybeappliedtoareaswithacrownorvegetationcoverofatleast50%.Bycontrast,forareaswithacrownorvegetationcoveroflessthan15%,thisSOCaccumulationisassumedtobeinsignificantandaccountedforaszero.Forareaswithacrownorvegetationcoverbetween15and50%,alinearinterpolationmaybeapplied.Whenusingthisdefaultfactor,adeductionforallochthonouscarbonmustbeappliedasperSection8.1.4.2.7.Intheabsenceofdatasuitableforusingthepublishedvalueapproach,themostrecentlypublishedIPCCemissionfactors10maybeusedtoestimateCO2emissionsfromtheSOCpool,exceptfortidalmarshandmangrovesystems.Adefaultfactormaybeusedformineralsoilsforthepercentcarbonatasteady-stateequilibriumattained20yearsfollowingexposuretoanaerobicenvironmentintheabsenceofdatasuitableforusingthepublishedvalueapproach,i.e.,atsteadystate:C%BSL-soil,i,t=C%BSL-soil,i,t20(34)Where:C%BSL-soil,i,t=Percentageofcarbonofin-situsoilmaterialinstratumiinyeart;%C%BSL-soil,i,t20=Percentageofcarboninin-situsoilmaterialatsteady-stateequilibrium20yearsfollowingexposuretoanaerobicenvironmentinstratumiinyear20;%9(withinEquation34)ThisdefaultfactorwasderivedfromthemedianrateoftheliteraturesynthesisofChmuraetal.2003.Thesynthesisincludedstudiesworldwide,includingmarshesandmangroves.Themedianwasusedasthebestestimateofcentraltendencybecausethedatawerenotnormallydistributed.102013Supplementtothe2006Guidelines:WetlandsMethodology:VCSVersion4.037Theprojectproponentmayassumethatpercentcarbondeclinesfromtheinitialvalue(C%BSL-soil,i,t0)(derivedthroughfielddatacollection,orothermethodsinthissection)tothefollowingdefaultsteady-stateequilibriumatalinearrateoveratwentyyearperiodfollowingexposure.C%BSL-soil,i,t20=1.6%(11)(35)Theprojectproponentmayjustifyalowerpercentcarbonsteadystateforthebaselinescenariobasedonappropriatescientificresearch.8.1.4.2.4ModelingApeer-reviewedpublishedmodelmaybeusedtogenerateavalueofGHGBSL-insitu-CO2,i,t,CBSL-soil,i,t,C%BSL-emitted,i,t,,C%BSL-soil,i,t,BDorDepthinthesameorsimilarsystemsasthoseintheprojectareabasedontheguidelinesinSection8.1.4.1above.8.1.4.2.5Field-collecteddataSoilcoringmaybeusedtogenerateavalueofCBSL-soil,i,t,C%BSL-soil,i,t,BDorDepthasoutlinedinSection9.3.7.Forthebaselinescenario,soilcoresmustbecollectedwithin2yearspriortotheprojectstartdate.Wheretheprojectproponentusesaninstalledreferenceplaneforthebaselinescenario,itmusthavebeeninstalledatleast4yearspriortothebaselinemeasurement,whichisgoodpracticetoensurethatareliableaverageaccumulationrateisobtained.Carbonstockchangebasedonfield-collecteddataiscalculatedusingthefollowingequation:GHGBSL-soil-CO2,i,t=44/12×–(CBSL-soil,i,t–CBSL-soil,i,,(t-T))/T(36)Where:GHGBSL-soil-CO2,i,t=CO2emissionsfromtheSOCpoolinthebaselinescenarioinstratumiinyeart;tCO2eyr-1CBSL-soil,i,t=Soilorganiccarbonstockinthebaselinescenarioinstratumiinyeart;tCha1i=1,2,3…MBSLstratainthebaselinescenariot=1,2,3…tyearselapsedsincethestartoftheprojectactivityT=Timeelapsedbetweentwosuccessiveestimations(T=t2–t1)8.1.4.2.6HistoricaldataorchronosequencesGHGBSL-insitu-CO2,i,t,CBSL-soil,i,t,C%BSL-emitted,i,t,BDorDepthinthebaselinescenariomaybeestimatedusingeitherhistoricaldatacollectedfromtheprojectareaorchronosequencedatacollectedatsimilarsites.RefertotheinstructionsinSection8.1.4.1.11Thisisthemeanvalueofresampledcultivatedanddrainedmineralsoils(fromTable2inDavidetal.2009).Methodology:VCSVersion4.038Asanexample,therateofsoilorganiccarbonlossduetooxidationinthebaselinescenariofrommineralsoils(RateCloss-BSL)maybeestimatedusingeitherhistoricaldatacollectedfromtheprojectarea(asdescribedinSection9.3.7)orchronosequencedatacollectedatsimilarsites(asdescribedinSection8.1.4.1).ReferalsototheinstructionsinSectionError!Referencesourcenotfound..CO2emissionsfromtheSOCpoolarethencalculatedasfollows:GHGBSL-insitu-CO2,i,t=RateCloss-BSL,i,t×44/12(37)Where:GHGBSL-insitu-CO2,i,t=CO2emissionsfromtheSOCpoolinthebaselinescenarioinstratumiinyeart;tCO2eha-1yr-1RateCloss-BSL,i,t=Rateoforganiccarbonloss12inmineralsoilduetooxidationinthebaselinescenarioinstratumiinyeart;tCha-1yr-1.i=1,2,3…MBSLstratainthebaselinescenariot=1,2,3…tyearselapsedsincethestartoftheprojectactivityAlternatively,Equation36maybeused.8.1.4.2.7DeductionforallochthonouscarbonAdeductionfromtheestimateofCO2emissionsfromtheSOCpoolmustbeappliedtoaccountforthepercentageofsequestrationresultingfromallochthonoussoilorganiccarbonaccumulation.AdeductionmustnotbeusediftheapproachusedabovetoestimateCO2emissionsdirectlyestimatesautochthonousCO2emissionsorotherwiseaccountsforallochthonouscarbon.Deductionalloch=GHGBSL-insitu-CO2,i,t×(%Calloch/100)13(38)Where:DeductionallochDeductionfromCO2sequestrationintheSOCpooltoaccountforthepercentageofthecarbonstockthatisderivedfromallochthonoussoilorganiccarbon;tCO2eha-1yr-1GHGBSL-insitu-CO2,i,tCO2emissionsfromtheSOCpoolinthebaselinescenarioinstratumiinyeart;tCO2eha-1yr-1%CallochPercentageofthetotalsoilorganiccarbonthatisallochthonous;%i1,2,3…MBSLstratainthebaselinescenariot1,2,3…tyearselapsedsincethestartoftheprojectactivity12Notethatthisisthesameasanegativecarbonsequestration.13Estimationmaybemadefortotalorrecalcitrantallochthonouscarbon.ThisequationonlyappliesifGHGBSL-insitu-CO2,i,tisnegative(sequestration).Methodology:VCSVersion4.039Deductionallochmaybeconservativelysettozerointhebaselinescenario.Forstratawithorganicsoilsorseagrasssystems14,Deductionalloch=0.%Callochmaybeestimatedusingeither:1)Publishedvalues2)Field-collecteddata3)ModelingPublishedvaluesPeer-reviewedpublisheddatamaybeusedtogenerateavalueofthepercentageofallochthonoussoilorganiccarboninthesameorsimilarsystemsasthoseintheprojectareabasedontheguidelinesdescribedinSection8.1.4.1.Forexample,Needelmanetal.(2018)provideavalueforthepercentageofthetotalsoilorganiccarbonthatisallochthonous(%Calloch)basedonthepercentagesoilcarbon,whichcanbeusedformarshesandmangroveswithmineralsoils.Field-collecteddataForthismethod,theallochthonouscarbonpercentageisestimatedusingdefaultvalues(listedbelow)andmeasuredthroughanalysisoffield-collectedsoilcores(forsoilcarbonororganicmatter),sedimenttiles(fordepositedsedimentcarbonororganicmatter),orthroughcollectionofsuspendedsedimentsintidalchannelsorsedimentsdepositsintidalflats(forsedimentcarbonororganicmatter).Forthefollowingequation,%Csoilmaybemeasureddirectlyorderivedfrom%OMsoilusingtheequationsinSection9.3.7.%Cautochisderivedfrom%OMautoch(definedbelow)usingtheequationsinSection9.3.7.%Calloch=100×(%Csoil-%Cautoch)/%Csoil(39)Where:%Calloch=Percentageofthetotalsoilorganiccarbonthatisallochthonous;%%Csoil=Percentageofsoilthatisorganiccarbon;%%Cautoch=Percentageofsoilthatisautochthonousorganiccarbon;%Forthefollowingequation,%OMsoilmaybeestimateddirectlyusingloss-on-ignition(LOI)dataorindirectlyfrom%Csoilusingtheequationsbelow.%OMdepsedmaybeestimateddirectlyusing14Forseagrasssystems,thiszerodeductionmayonlybeusedwhenthe‘layerwithsoilorganiccarbonindistinguishablefromthebaselineSOCconcentration’methodisusedwithfield-collecteddataoncarbonstockchanges(Duarte2013,Greinieretal.2013)Methodology:VCSVersion4.040loss-on-ignition(LOI)data,indirectlyfrom%OMsoilusingtheequationsbelow,orbyusingthedefaultvaluegivenbelow.%OMautoch=(%OMsoil-%OMdepsed)/(1-(%OMdepsed/100))(40)Where:%OMautoch=Percentageofsoilthatisautochthonousorganicmatter;%%OMdepsed=Percentageofdepositedsedimentthatisorganicmatter;%%OMsoil=Percentageofsoilthatissoilorganicmatter;%Thefollowingequationsmaybeusedtoderive%OMsoilfrom%Csoiland%OMdepsedfrom%Cdepsed,respectively.Alternatively,anequationdevelopedusingsite-specificdatamaybeusedoranequationfrompeer-reviewedliteraturemaybeusediftheequationrepresentssoilsfromthesameorsimilarsystemsasthoseintheprojectarea.Formarshsoils15:%OM<=>?=(−0.4+A(0.4;+4×0.0025×%C<=>?)/(2×0.0025)(41)%OM@AB<A@=(−0.4+E$0.4;+4×0.0025×%C@AB<A@'/(2×0.0025)(42)Formangrovesoils16:%OMsoil=(%Csoil–2.8857)/0.415(43)%OMdepsed=(%Cdepsed–2.8857)/0.415(44)Forseagrasssoilswith%OM<20%17:%OMsoil=(%Csoil+0.21)/0.4(45)%OMdepsed=(%Cdepsed+0.21)/0.4(46)Where:%Csoil=Percentageofsoilthatisorganiccarbon;%%Cdepsed=PercentageofdepositedsedimentthatisorganicC;%Inallcases,thefollowingdefaultfactormaybeusedforthedeterminationof%OMdepsed:%OMdepsed=1.51815Craftetal.199116Kauffmanetal.2011,Howardetal.201417Fourqureanetal.2012assummarizedinHowardetal.201418Mayer1994Figure4Methodology:VCSVersion4.041Alternatively,%Cdepsedmaybecalculatedas19:%Cdepsed=0.086×SA+0.05(47)Where:SA=AverageSurfaceAreaofthesediment;m2g-1ModelingAquantitativemodelmaybeusedtoestimatethepercentofallochthonoussoilorganiccarbonwheresuchmodelmeetstheguidelinesinSection8.1.4.1above.Themodeledpercentageallochthonoussoilorganiccarbonmustbeverifiedwithdirectmeasurementsfromasystemwithsimilarwatertabledepthanddynamics,salinityandplantcommunitytypeastheprojectarea.Themodelmustbeacceptedbythescientificcommunityasshownbypublicationinapeer-reviewedjournalandrepeatedapplicationtodifferentwetlandsystems.CO2EmissionsfromErodedSoilForeachstratumiattimettheprojectproponentmustdetermineifsoilerosionoccurs.CO2emissionsfromerodedsoilmaterial(GHGBSL-eroded-CO2,i,t)maybecalculateddirectlyormaybecalculatedfromestimatesoftheamountofcarbonthatiseroded(CBSL-eroded,i,t)andthepercentageoftheerodedcarbonthatisreturnedtotheatmosphere(C%BSL-emitted,i,t).Projectproponentscanuseanycombinationofthefollowingmethodstocalculatetheseterms:1)Proxies2)Publishedvalues3)Defaultfactors4)Models5)Field-collecteddata,or6)Historicalorchronosequence-deriveddataGHGBSL-eroded-CO2,i,t=44/12×CBSL-eroded,i,t×C%BSL-emitted,i,t/100(48)CBSL-eroded,i,t=C%BSL-eroded,i,t×BD×Depth_eBSL,i,tx10(49)Where:19Mayer1994Figure4andsurfacearealaboratoryproceduresMethodology:VCSVersion4.042GHGBSL-eroded-CO2,i,t=CO2emissionsfromtheerodedSOCpoolinthebaselinescenarioinstratumiinyeart;tCO2eha-1yr-1CBSL-eroded,i,t=Soilorganiccarbonstockinerodedsoilmaterialinthebaselinescenarioinstratumiinyeart;tCha-1C%BSL-emitted,i,t=Organiccarbonlossduetooxidation,asapercentageofCmasspresentinerodedsoilmaterialinthebaselinescenarioinstratumiinyeart(20);%C%BSL-eroded,i,t=Percentageofcarbonofsoilmaterialerodedinthebaselinescenario;%BD=Soilbulkdensity;kgm-3Depth_eBSL,i,t=Depthoftheerodedareafromthesurfacetothesurfacepriortoerosioninthebaselinescenarioinstratumiinyeart;m8.1.4.3.1Proxy-basedapproachCO2emissionsfromerodedsoilmaybeestimatedusingproxies(wheresuchproxiesmeettheguidanceinSection8.1.4.1).Wheretheprojectproponentusesaproxy,suchemissionsarerepresentedbythefollowingequation:GHGBSL-eroded-CO2,i,t=ƒ(GHGemissionproxy)(50)8.1.4.3.2PublishedvaluesPeer-reviewedpublisheddatamaybeusedtogenerateavalueforGHGBSL-eroded-CO2,i,t,CBSL-eroded,i,t,C%BSL-emiitted,i,t,C%BSL-eroded,i,t,BDorDepth,basedonvaluesfromsameorsimilarsystemsasthoseintheprojectarea,basedontheguidelinesinSection8.1.4.1.8.1.4.3.3DefaultfactorsFortidalmarshandmangrovesystems,adefaultfactormaybeusedintheabsenceofdatasuitableforusingthepublishedvalueapproach,usingthevaluesprovidedbelowforthespecifiedcarbonpreservationdepositionalenvironment(CPDE)asdefinedinChapter3:Ifthereisconnectivitybetweentheerodedareaandariver-estuarysystem:2122IfCPDEis“NormalMarine”or“Deltaicfluidizedmuds”,thenC%BSL-emitted,i,t=80%(51)IfCPDEis“O2depletion”,thenC%BSL-emitted,i,t=53%(52)20Toensureaconservativeoutcome,emissionsmustbeestimatedfora5-yeartimeperiodfollowingtheinitialyearoferosion.21Connectivityoccurswhenerodedcarbonisdeliveredintoriver-estuarysystemsthattransportmaterialsseawardbycontinualresuspension,coastalmarginsandembaymentswithsufficientwaveenergytocontinuallyre-suspendsedimentsintoanaerobicwatercolumn,orsubaquaticenvironmentswithloworganiccarboncontentandcourse-grainedsedimentsthatmaintainaerobicconditionsintheuppersoilprofile.22ValuesbelowarefromBlairandAller2012Methodology:VCSVersion4.043IfCPDEis“SmallMountainousRivers”,thenC%BSL-emitted,i,t=39%(53)IfCPDEis“Extremeaccumulationrates”,thenC%BSL-emitted,i,t=49%(54)Ifthereisnoconnectivitybetweentheerodedareaandariver-estuarysystemortheopenseaanderosionmassisgreaterinthebaselinescenariothantheprojectscenario,thenitisconservativetoassumenetzeroemissionsfromerodedstratainthebaselinescenarioandtheprojectscenario.C%BSL-emitted,i,t=0%(55)Ifthereisnoconnectivitybetweentheerodedareaandariver-estuarysystemortheopenseaanderosionmassisthesameorlowerinthebaselinescenariothantheprojectscenario,thenitisconservativetoassume100%emissionsfromerodedstratainthebaselinescenarioandtheprojectscenario.ThevalueinEquation55aboveisthen100%.Forbothconnectedandnon-connectedsystems,theprojectproponentmayjustifyagreaterC%BSL-emitted,i,tforthebaselinescenariobasedonappropriatescientificresearch.Incaseswhereerosionratesarelowerintheprojectscenariothanthebaselinescenarioandcarbonfateisexpectedtobesimilarinbothscenarios,thisgreatervalueofC%BSL-emitted,i,tmustalsobeusedforC%WPS-emitted,i,t.NormalMarineCPDEwithdatashowingverylowsedimentaccumulationrates(lessthan0.002gcm-2yr-1)mayuseaC%BSL-emitted,i,tvalueof98.5%23.8.1.4.3.4ModelingApeer-reviewedpublishedmodelmaybeusedtogenerateavalueofGHGBSL-eroded-CO2,i,t,CBSL-eroded,i,t,C%BSL-emitted,i,t,C%BSL-eroded,i,t,BDorDepth,inthesameorsimilarsystemsasthoseintheprojectareabasedontheguidelinesinSection8.1.4.1.8.1.4.3.5Field-collecteddataSoilcoringmaybeusedtogenerateavalueofCBSL-eroded,i,t,C%BSL-eroded,i,t,DepthorBDasoutlinedinSection9.3.7.Forthebaselinescenario,soilcoresmustbecollectedwithin2yearspriortotheprojectstartdate.Wheretheprojectproponentusesaninstalledreferenceplaneforthebaselinescenario,itmusthavebeeninstalledatleast4yearspriortotheprojectstartdate,whichisgoodpracticetoensurethatareliableaverageaccumulationrateisobtained.23Meanvaluefromfigure9inBlairandAller2012Methodology:VCSVersion4.0448.1.4.3.6HistoricaldataorchronosequencesGHGBSL-eroded-CO2,i,t,CBSL-eroded,i,t,C%BSL-emiitted,i,t,C%BSL-eroded,i,t,BDorDepthinthebaselinescenariomaybeestimatedusingeitherhistoricaldatacollectedfromtheprojectareaorchronosequencedatacollectedatsimilarsites.ReferalsototheinstructionsinSection8.1.4.1.CO2EmissionsfromSoilExposedtoanAerobicEnvironmentThroughExcavationForeachstratumiattimettheprojectproponentmustdetermineifpiled-upsoil24exposedtoanaerobicenvironmentexistswithintheprojectboundary.CO2emissionsfromsoilexposedtoanaerobicenvironmentthroughexcavation(GHGBSL-excav-CO2,i,t)maybecalculateddirectlyormaybecalculatedfromestimatesoftheinitialamountofcarbonthatisexposed(CBSL-excav,i,t)andthepercentageoftheexposedcarbonthatisreturnedtotheatmosphere(C%BSL-emitted,i,t)asdefinedinEquation56.EstimatesofCBSL-excav,i,tfollowingtheaerobicexposureeventbasedontheextrapolationofC%BSL-emitted,i,tovertheprojectcreditingperiodmustaccountfortendencyoforganiccarbonconcentrationstoapproachsteady-stateequilibriuminmineralsoils.Forthisreason,acompletelossofsoilorganiccarbonmaynotoccurinmineralsoils.Thissteady-stateequilibriummustbedeterminedconservatively.Projectproponentscanuseanycombinationofthefollowingmethodstocalculatetheseterms:1)Proxies2)Publishedvalues3)Defaultfactors4)Models5)Field-collecteddata,or6)Historicalorchronosequence-deriveddataGHGBSL-excav-CO2,i,t=44/12×CBSL-excav,i,t×C%BSL-emitted,i,t/100(56)CBSL-excav,i,t=C%BSL-excav,i,t×BD×Depth_exBSL,i,t×10(57)Where:GHGBSL-excav-CO2,i,t=CO2emissionsfromtheSOCpoolofsoilexposedtoanaerobicenvironmentthroughexcavationinthebaselinescenarioinstratumiinyeart;tCO2eha-1yr-1CBSL-excav,i,t=Soilorganiccarbonstockinsoilexposedtoanaerobicenvironmentthroughexcavationinthebaselinescenarioinstratumiinyeart;tCha-124“Piledupsoil”referstoabodyofsoilmaterialaccumulatedinpilesorlayersasaresultofexcavation.Methodology:VCSVersion4.045C%BSL-emitted,i,t=Organiccarbonlossduetooxidation,asapercentageofCmasspresentinexcavatedsoilmaterialinthebaselinescenarioinstratumiinyeart;%C%BSL-excav,i,t=Percentageofcarbonofsoilmaterialexcavatedinthebaselinescenario;%BD=Soilbulkdensity;kgm-3Depth_exBSL,i,t=Depthofthepiled-upsoilmaterialduetoexcavationinthebaselinescenarioinstratumiinyeart;m8.1.4.4.1Proxy-basedapproachCO2emissionsfromexcavatedsoilmaybeestimatedusingproxies(wheresuchproxiesmeettheguidanceinSection8.1.4.1).Wheretheprojectproponentusesaproxy,suchemissionsarerepresentedbythefollowingequation:GHGBSL-excav-CO2,i,t=ƒ(GHGemissionproxy)(58)8.1.4.4.2PublishedvaluesPeer-reviewedpublisheddatamaybeusedtogenerateavalueforGHGBSL-excav-CO2,i,t,CBSL-excav,i,t,C%BSL-emitted,i,t,,C%BSL-excav,i,t,BDandDepthbasedontheaveragerateofexcavatedsoilCO2emissionsinthesameorsimilarsystemsasthoseintheprojectarea,basedontheguidelinesinSection8.1.4.1.8.1.4.4.3DefaultfactorsAdefaultfactorforC%BSL-excav,i,tmaybeusedforthepercentcarbonatsteady-stateequilibrium20yearsfollowingexposuretoanaerobicenvironmentintheabsenceofdatasuitableforusingthepublishedvalueapproach,usingthevalueforC%BSL-soil,i,t20providedinSection8.1.4.2.3.8.1.4.4.4ModelingApeer-reviewedpublishedmodelmaybeusedtogenerateavalueofGHGBSL-excav-CO2,i,t,CBSL-excav,i,t,C%BSL-emitted,i,t,,C%BSL-excav,i,t,BDorDepthinthesameorsimilarsystemsasthoseintheprojectareabasedontheguidelinesinSection8.1.4.1.8.1.4.4.5Field-collecteddataSoilcoringmaybeusedtogenerateavalueofCBSL-excav,i,t,C%BSL-excav,i,t,BDorDepthasoutlinedinSection9.3.7.Forthebaselinescenario,soilcoresmustbecollectedwithin2yearspriortotheprojectstartdate.Wheretheprojectproponentusesaninstalledreferenceplaneforthebaselinescenario,itmusthavebeeninstalledatleast4yearspriortotheprojectstartdate,whichisgoodpracticetoensurethatareliableaverageaccumulationrateisobtained.Methodology:VCSVersion4.0468.1.4.4.6HistoricaldataorchronosequencesGHGBSL-excav-CO2,i,t,CBSL-excav,i,t,C%BSL-emitted,i,t,BD,orDepthinthebaselinescenariomaybeestimatedusingeitherhistoricaldatacollectedfromtheprojectareaorchronosequencedatacollectedatsimilarsites.ReferalsototheinstructionsinSection8.1.4.1.CH4emissionsfromsoilCH4emissionsfromsoilinthebaselinescenariomaybeconservativelyexcluded.IftheprojectproponentcandemonstratethatconditionsforCH4emissionsinthebaselineandprojectscenarioswillnotbedifferent,orconditionswilldecline,theseemissionsneednotbeaccountedfor.CH4emissionsfromsoilsmaybeestimatedusing:1)Proxies2)Field-collecteddata3)Publishedvalues4)Defaultfactors5)Models,or6)IPCCemissionfactorsWheretheprojectproponentaccountsforCH4emissionsinthebaselinescenario,theoptionsdescribedinthesectionsbelowmaybeappliedtoestimatesuchemissions.8.1.4.5.1Proxy-basedapproachWhererelevant,CH4emissionsfromorganicsoilmaybeestimatedusingproxiessuchaswatertabledepthandvegetationcomposition(wheresuchproxiesmeettherequirementsinSection8.1.4.1above).Wheretheprojectproponentusesaproxy,suchemissionsarerepresentedbythefollowingequation:GHGBSL-soil-CH4,i,t=ƒ(GHGemissionproxy)×CH4-GWP(59)Where:GHGBSL-soil-CH4,i,t=CH4emissionsfromtheSOCpoolinthebaselinescenario;tCO2eha-1yr-1ƒ(GHGemissionproxy)=ProxyforCH4emissions;tCH4ha-1yr-1CH4-GWP=GlobalwarmingpotentialofCH4;dimensionless8.1.4.5.2Field-collecteddataField-collecteddatamayalsobeusedtoestimateCH4emissions(seeSection9.3.8).Methodology:VCSVersion4.0478.1.4.5.3PublishedvaluesPeer-reviewedpublisheddatamaybeusedtogenerateavaluebasedontheaverageCH4emissionsrateinthesameorsimilarsystemsasthoseintheprojectareabasedontheguidelinesinSection8.1.4.1above.8.1.4.5.4DefaultfactorFortidalwetlandsystems,adefaultfactor25maybeusedintheabsenceofdatasuitableforusingthepublishedvalueapproachfortheestimationofGHGBSL-soil-CH4,i,t.Wherethesalinityaverageorsalinitylowpointis>18ppt,theprojectproponentmayapplyadefaultemissionfactorof:GHGBSL-soil-CH4,i,t=0.011tCH4ha-1yr-1×CH4-GWP(60)Wherethesalinityaverageorsalinitylowpointis≥20ppt,theprojectproponentmayapplyadefaultemissionfactorof:GHGBSL-soil-CH4,i,t=0.0056tCH4ha-1yr-1×CH4-GWP(61)ProceduresformeasuringthesalinityaverageorsalinitylowpointareprovidedinSection9.3.8.Theprojectproponentmustnotusethedefaultvalueof0.011tCH4ha-1yr-1forthebaselinescenarioand0.0056tCH4ha-1yr-1fortheprojectscenariotocreateadifferenceinemissionsandclaimanemissionreduction.Theuseofthedefaultfactorisintendedforprojectsthatrestoresalinitylevelsfromfresh/brackishtomuchhigherlevelsthatinhibitCH4emissions.8.1.4.5.5ModelingAquantitativemodelwhichmeetstheguidanceinSection8.1.4.1abovemayalsobeusedtoestimateCH4emissionsfromtheSOCpool.8.1.4.5.6EmissionfactorsThemostrecentlypublishedIPCCemissionfactorsmaybeusedtoestimateCH4emissionsfromtheSOCpoolfornon-tidalwetlandsystems.Tier1valuesmayalsobeused,butmustbeappliedconservativelyincludingaccountingforlocalsalinityandvegetativecoverconditions.N2OemissionsfromsoilN2Oemissionsmaybeconservativelyexcludedinthebaselinescenario.IftheprojectproponentcandemonstratethatconditionsforN2Oemissionsinthebaselineandproject25TakenfromPoffenbargeretal.2011Methodology:VCSVersion4.048scenarioswillnotbedifferent,orconditionswilldecline,theseemissionsneednotbeaccountedfor.N2Oemissionsfromsoilsmaybeestimatedusing:1)Proxies2)Field-collecteddata3)Publishedvalues4)Defaultfactors5)Models,or6)IPCCemissionfactorsWheretheprojectproponentaccountsforN2Oemissionsinthebaselinescenario,theoptionsdescribedinthesectionsbelowmaybeappliedtoestimatesuchemissions.8.1.4.6.1Proxy-basedapproachWhererelevant,N2Oemissionsmaybeestimatedusingproxiessuchaswatertabledepthandvegetationcomposition(wheresuchproxiesmeettheguidanceinSection8.1.4.1above).Wheretheprojectproponentusesaproxy,suchemissionsarerepresentedbythefollowingequation(notethatthedeterminationofthesimilarityofsystemsmustincludethenitrogenlevelsofthesystems):GHGBSL-soil-N2O,i,t=ƒ(N2Oemissionproxy)×N2O-GWP(62)Where:GHGBSL-soil-N2O,i,t=N2OemissionsfromtheSOCpoolinthebaselinescenarioduetodenitrification/nitrification;tCO2eha-1yr-1ƒ(N2Oemissionproxy)=ProxyforN2Oemissions;tN2Oha-1yr-1N2O-GWP=GlobalwarmingpotentialforN2O;dimensionless8.1.4.6.2Field-collecteddataField-collecteddatamaybeusedtoestimateN2Oemissions(seeSection9.3.8).8.1.4.6.3PublishedvaluesPeer-reviewedpublisheddatamaybeusedtogenerateavaluebasedontheaverageN2OemissionsrateinthesameorsimilarsystemsasthoseintheprojectareabasedontheguidelinesdescribedinSection8.1.4.1.Notethatdeterminationofthesimilarityofsystemsmustincludethenitrogenlevelsofthesystems.Methodology:VCSVersion4.0498.1.4.6.4DefaultfactorsThefollowingdefaultfactors26maybeusedfortheestimationofGHGBSL-soil-N2O,i,tintheabsenceofdatasuitableforusingthepublishedvalueapproach.Useofadefaultfactorisonlypermittedforthesystemslistedbelow,exceptwheretheprojectareareceiveshydrologicallydirectinputsfromapointornon-pointsourceofnitrogensuchaswastewatereffluentoranintensivelynitrogen-fertilizedsystem.Foropenwatersystemswherethesalinityaverageorsalinitylowpointis>18ppt:GHGBSL-soil-N2O,i,t=0.000157tN2Oha-1yr-1×N2O-GWP(63)Foropenwatersystemswherethesalinityaverageorsalinitylowpointis>5and≤18ppt:GHGBSL-soil-N2O,i,t=0.00033tN2Oha-1yr-1×N2O-GWP(64)Forotheropenwatersystems:GHGBSL-soil-N2O,i,t=0.00053tN2Oha-1yr-1×N2O-GWP(65)Fornon-seagrasswetlandsystemswherethesalinityaverageorsalinitylowpointis>18ppt:GHGBSL-soil-N2O,i,t=0.000487tN2Oha-1yr-1×N2O-GWP(66)Fornon-seagrasswetlandsystemswherethesalinityaverageorsalinitylowpointis>5and≤18ppt:GHGBSL-soil-N2O,i,t=0.000754tN2Oha-1yr-1×N2O-GWP(67)Forothernon-seagrasswetlandsystems:GHGBSL-soil-N2O,i,t=0.000864tN2Oha-1yr-1×N2O-GWP(68)ProceduresformeasuringthesalinityaverageandsalinitylowpointaresetoutinSection9.3.8below.8.1.4.6.5ModelingAquantitativemodelwhichmeetstherequirementsinSection8.1.4.1abovemayalsobeusedtoestimateN2OemissionsfromtheSOCpool.26TakenfromSmithetal.1983.Methodology:VCSVersion4.0508.1.4.6.6EmissionfactorsThemostrecentlypublishedIPCCemissionfactorsmayalsobeusedtoestimateN2OemissionsfromtheSOCpool.Tier1valuesmayalsobeused,butmustbeappliedconservativelyfollowingtheguidanceinSection8.1.4.1above.EmissionsfromfossilfueluseinbaselinescenarioEmissionsfromtheuseofvehiclesandmechanicalequipmentinthebaselinescenario(GHGBSL-fuel,i,t)maybeconservativelyexcluded.However,theseemissionsinthebaselinescenariomaybeestimatedusingtheproceduresinSection8.2.6below.8.2ProjectEmissionsGeneralapproachEmissionsintheprojectscenarioareattributedtocarbonstockchangesinbiomasscarbonpools,soilprocesses,oracombinationofthese.Inaddition,whererelevant,emissionsfromorganicsoilburnsandfossilfuelusemaybequantified.Organicsoilcombustionduetoanthropogenicfiresisaddressedusingaconservativedefaultfactor(FireReductionPremium)thatisexpressedasaproportionoftheCO2emissionsavoidedthroughrewetting(seeSection8.3).Emissionsintheprojectscenarioareestimatedas:𝐺𝐻𝐺!"#=𝐺𝐻𝐺!"#$6+27033+𝐺𝐻𝐺!"#$32+1+𝐺𝐻𝐺!"#$69CD+𝐺𝐻𝐺!"#$89/1(69)𝐺𝐻𝐺!"#$6+27033=−∑∑(::);,!"#+-)(∗(-)×∆𝐶!"#$6+27033,+,()(70)𝐺𝐻𝐺!"#$32+1=−∑∑(::);,!"#+-)(∗(-)×∆𝐶!"#$32+1,+,()(71)𝐺𝐻𝐺!"#$69CD=−∑∑(::);,!"#+-)(∗(-)×∆𝐶!"#$69CD,+,()(72)𝐺𝐻𝐺!"#$89/1=−∑∑(::);,!"#+-)(∗(-)×∆𝐶!"#$89/1,+,()(73)Where:GHGWPS=NetCO2eemissionsintheprojectscenariouptoyeart;tCO2eGHGWPS-biomass=NetCO2eemissionsfrombiomasscarbonpoolsintheprojectscenariouptoyeart;tCO2eGHGWPS-soil=NetCO2eemissionsfromtheSOCpoolintheprojectscenariouptoyeart;tCO2eGHGWPS-burn=NetCO2eemissionsfromprescribedburningintheprojectscenarioupMethodology:VCSVersion4.051toyeart;tCO2eGHGWPS-fuel=NetCO2eemissionsfromfossilfueluseintheprojectscenariouptoyeart;tCO2eΔCWPS-biomass,i,t=Netcarbonstockchangeinbiomasscarbonpoolsintheprojectscenarioinstratumiinyeart;tCyr-1GHGWPS-soil,i,t=GHGemissionsfromtheSOCpoolintheprojectscenarioinstratumiinyeart;tCO2eyr-1GHGWPS-burn,i,t=GHGemissionsfromprescribedburningintheprojectscenarioinstratumiinyeart;tCO2eyr-1GHGWPS-fuel,i,t=GHGemissionsfromfossilfuelusetheprojectscenarioinstratumiinyeart;tCO2eyr-1i=1,2,3…MWPSstrataintheprojectscenariot=1,2,3,…tyearselapsedsincetheprojectstartdateEx-anteestimatesofGHGWPSmustbebasedonaprojectscenariothatisdefinedexante,andmustbeprojectedusingthelatestversionofVCSmoduleVMD0019MethodstoProjectFutureConditions.Ex-postestimatesofGHGWPSmustbebasedonmonitoringresults.AccountingforsealevelriseSeeSection8.1.2forproceduresforaccountingforsealevelrise,andSection8.1.4.3forCO2emissionsfromerodedsoil.NetcarbonstockchangeinbiomasscarbonpoolsinprojectscenarioNetcarbonstockchangeinbiomasscarbonpoolsintheprojectscenarioisestimatedas:ΔCWPS-biomass,i,t=ΔCWPS-tree/shrub,i,t+ΔCWPS-herb,i,t(74)Where:ΔCWPS-biomass,i,t=Netcarbonstockchangeinbiomasscarbonpoolsintheprojectscenarioinstratumiinyeart;tCyr-1ΔCWPS-tree/shrub,i,t=Netcarbonstockchangeintreeandshrubcarbonpoolsintheprojectscenarioinstratumiinyeart;tCyr-1ΔCWPS-herb,i,t=Netcarbonstockchangeinherbcarbonpoolsintheprojectscenarioinstratumiinyeart;tCyr-1i=1,2,3…MWPSstrataintheprojectscenariot=1,2,3,…tyearselapsedsincetheprojectstartdateMethodology:VCSVersion4.052TreesandshrubsThenetcarbonstockchangeintreesandshrubsintheprojectscenarioareestimatedusingCDMtoolAR-Tool14EstimationofcarbonstocksandchangeincarbonstocksoftreesandshrubsinA/RCDMprojectactivities,notingthatthefollowingequationapplies:ΔCWPS-tree/shrub,i,t=12/44×(ΔCTREE_PROJ,t+ΔCSHRUB_PROJ,t)(75)Where:ΔCBSL-tree/shrub,i,t=Netcarbonstockchangeintreeandshrubcarbonpoolsintheprojectscenarioinstratumiinyeart;tCyr-1ΔCTREE_PROJ,t=Changeincarbonstockintreebiomassintheprojectscenarioinyeart;tCO2-eyr-1(derivedfromapplicationofAR-Tool14;calculationsaredoneforeachstratumi)ΔCSHRUB_PROJ,t=Changeincarbonstockinshrubbiomassintheprojectscenarioinyeart;tCO2-eyr-1(derivedfromapplicationofAR-Tool14;calculationsaredoneforeachstratumi)Fortheex-anteestimationoftreebiomass,anIPCCdefaultfactor27maybeused.Wherereforestationorrevegetationactivitiesintheprojectscenarioincludeharvesting,themaximumnumberofGHGcreditsgeneratedbytheseactivitiesmustnotexceedthelong-termaverageGHGbenefitfromthetreecomponent.Forstratawhereharvestingoccurs,themaximumcarbonstockintreebiomass(CTREE,i,t)usedinAR-Tool14islimitedtoCAVG-TREE,i,calculatedasfollows:𝐶EFG$HIJJ,+=∑4'()),+,,-,./D(76)Where:CAVG-TREE,i=Long-termaveragecarbonstockinbaselineorprojecttreebiomasswithintheprojectarea(instratumi)intimeperiodn;tCO2-eCTREE,i,t=Carbonstockinbaselineorprojecttreebiomasswithintheprojectarea(instratumi)inyeart(derivedfromapplicationofAR-Tool14);tCO2-eyr-1i=1,2,3…MWPSstrataintheprojectscenariot=1,2,3…nyearselapsedsincetheprojectstartdaten=TotalnumberofyearsintheestablishedtimeperiodThelong-termaveragecarbonstockmustbecalculatedforboththebaselineandtheprojectscenario.272013Supplementtothe2006Guidelines:Wetlands(Table4.4).ThisvaluecanonlybeuseduntilbiomassstockinTable4.3oftheguidelinesisreached.Methodology:VCSVersion4.053Forprojectsundertakingeven-agedmanagement,thetimeperiodnoverwhichthelong-termaverageGHGbenefitiscalculatedincludesatminimumonefullharvest/cuttingcycle,includingthelastharvest/cutinthecycle.Forprojectsunderconservationeasementswithnointentiontoharvestaftertheprojectcreditingperiod(whichmustbeshownintheprojectdescriptionbasedonverifiableinformation),orincaseofselectivecutting,thetimeperiodnoverwhichthelong-termaverageiscalculatedisthelengthoftheprojectcreditingperiod.Projectsmayaccountforlong-termcarbonstorageinwoodproducts.Inthiscase,theparameterCTREE,tinEquation76mustbereadasCTREE,i,t+CWP,i,t.ProceduresforthecalculationofCWP,i,tareprovidedinAppendix1.Examplesofhowtocalculatethelong-termaveragecarbonbenefitareprovidedinVCSdocumentAFOLUGuidance:ExampleforCalculatingtheLong-TermAverageCarbonStockforARRProjectswithHarvesting.Restorationprojectswhichincludeafforestationorreforestationcomponentsmayaccountforlong-termcarbonstorageinwoodproductsincasetreesareharvestedbeforedieback.Inthiscase,theparameterCTREE,tinEquation76mustbereadasCTREE,i,t+CWP,i,t.CAVG-SHRUB,iiscalculatedasfollows:𝐶EFG$#LIM%,+=∑4#0(1$,+,,-,./D(77)Where:CAVG-SHRUB,i=Long-termaveragecarbonstockinbaselineorprojectshrubbiomasswithintheprojectarea(instratumi)intimeperiodn;tCO2-eCSHRUB,i,t=Carbonstockinbaselineorprojectshrubbiomasswithintheprojectarea(instratumi)inyeart(derivedfromapplicationofAR-Tool14);tCO2-eyr-1i=1,2,3…MWPSstrataintheprojectscenariot=1,2,3…nyearselapsedsincetheprojectstartdaten=TotalnumberofyearsintheestablishedtimeperiodHerbaceousvegetationThenetcarbonstockchangeinherbaceousvegetationbiomassintheprojectscenarioisestimatedusingacarbonstockchangeapproachasfollows:ΔCWPS-herb,i,t=(CWPS-herb,i,t–CWPS-herb,i,,(t-T))/T(78)Where:ΔCWPS-herb,i,t=Netcarbonstockchangesinherbcarbonpoolsintheprojectscenarioinstratumiinyeart;tCyr-1CWPS-herb,i,t=CarbonstockinherbaceousvegetationintheprojectscenarioinstratumiinMethodology:VCSVersion4.054yeart;tCha-1i=1,2,3…MWPSstrataintheprojectscenariot=1,2,3…tyearselapsedsincethestartoftheprojectactivityT=Timeelapsedbetweentwosuccessiveestimations(T=t2–t1)AdefaultfactorforCWPS-herb,i,tof3tCha-1(seeSection8.1.3)maybeappliedforstratawith100%herbaceouscover.Forareaswithavegetationcover<100%,a1:1relationshipbetweenvegetationcoverandCWPS-herb,i,tmustbeapplied.Thedefaultfactormaybeclaimedonlyforthefirstyearoftheprojectcreditingperiodasherbaceousbiomassquicklyreachesasteadystate.Vegetationcovermustbedeterminedbycommonlyusedtechniquesinfieldbiology.ProceduresformeasuringcarbonsstocksinherbaceousvegetationareprovidedinSection9.3.6.TheabovedefaultfactormaynotbeappliedincaseAR-Tool14isused.Wherethecarbonstockchangeinherbaceousvegetationisquantifiedintheprojectscenario,itmustalsobequantifiedinthebaselinescenario.NetGHGemissionsandremovalsfromsoilinprojectscenarioGeneralNetGHGemissionsfromsoilsintheprojectscenarioareestimatedas:GHGWPS-soil,i,t=Ai,t×(GHGWPS-soil-CO2,i,t-Deductionalloch+GHGWPS-soil-CH4,i,t+GHGWPS-soil-N2O,i,t)(28)(79)Where:GHGWPS-soil,i,t=GHGemissionsfromtheSOCpoolintheprojectscenarioinstratumiinyeart;tCO2eyr-1GHGWPS-soil-CO2,i,t=CO2emissionsfromtheSOCpoolintheprojectscenarioinstratumiinyeart;tCO2eha-1yr-1Deductionalloch=DeductionfromCO2emissionsfromtheSOCpooltoaccountforthepercentageofthecarbonstockthatisderivedfromallochthonoussoilorganiccarbon;tCO2eha-1yr-1GHGWPS-soil-CH4,i,t=CH4emissionsfromtheSOCpoolintheprojectscenarioinstratumiinyeart;tCO2eha-1yr-1GHGWPS-soil-N2O,i,t=N2OemissionsfromtheSOCpoolintheprojectscenarioinstratumiinyeart;tCO2eha-1yr-1Ai,t=Areaofstratumiinyeart;hai=1,2,3…MWPSstrataintheprojectscenariot=1,2,3,…tyearselapsedsincetheprojectstartdateCO2emissionsfromthetidalwetlandSOCpoolintheprojectscenariomayoccurinsituorindirectlyfollowingsoilerosionorwheresoilisexposedtoanaerobicenvironmentthroughexcavation.28ThisequationonlyappliesifGHGWPS-soil-CO2,i,tisnegative(sequestration).Methodology:VCSVersion4.055CO2emissionsfromsoilGHGWPS-soil-CO2,i,t=GHGWPS-insitu-CO2,i,t+GHGWPS-eroded-CO2,i,t+GHGWPS-excav-CO2,i,t(80)Where:GHGWPS-soil-CO2,i,t=CO2emissionsfromtheSOCpoolintheprojectscenarioinstratumiinyeart;tCO2eha-1yr-1GHGWPS-insitu-CO2,i,t=CO2emissionsfromtheSOCpoolofin-situsoilsintheprojectscenarioinstratumiinyeart;tCO2eha-1yr-1GHGWPS-eroded-CO2,i,t=CO2emissionsfromtheerodedSOCpoolintheprojectscenarioinstratumiinyeart;tCO2eha-1yr-1GHGWPS-excav-CO2,i,t=CO2emissionsfromtheSOCpoolofsoilexposedtoanaerobicenvironmentthroughexcavationintheprojectscenarioinstratumiinyeart;tCO2eha-1yr-1CO2emissionsfromsoilsmaybeestimatedusingoneofthefollowingapproaches:1)Proxies2)Publishedvalues3)Defaultfactors4)Models,or5)Field-collecteddataIncertaincases,allochthonoussoilorganiccarbonmayaccumulateintheprojectarea,andsuchcarbonmustbeaccountedforintheprojectscenario.ProceduresfortheestimationofacompensationfactorforallochthonoussoilorganiccarbonarespecifiedinSections8.1.4.2.7and8.2.4.2.2.8.2.4.2.1ApproachesforestimatingGHGWPS-insitu-CO2,i,t,GHGWPS-eroded-CO2,i,tandGHGWPS-excav-CO2,i,tGHGWPS-insitu-CO2,i,t,GHGWPS-eroded-CO2,i,tandGHGWPS-excav-CO2,i,tmustbecalculatedusingthesameproceduresinSection8.1.4above.Forallequationsinthesesections,thesubscriptBSLmustbesubstitutedbyWPStomakeclearthattherelevantvaluesarebeingquantifiedfortheprojectscenario.Fortheseparameters,descriptionsareprovidedinSectionError!Referencesourcenotfound..Forbothconnectedandnon-connectedsystems,theprojectproponentmayjustifyalowerC%WPS-emitted,i,tfortheprojectscenariobasedonappropriatescientificresearch.Incaseswhereerosionratesarelowerintheprojectscenariothanthebaselinescenarioandcarbonfateisexpectedtobesimilarinbothscenarios,thislowervalueofC%WPS-emitted,i,tmustalsobeusedforC%BSL-emitted,i,t.Methodology:VCSVersion4.0568.2.4.2.2DeductionforallochthonouscarbonAdeductionmustbeappliedtoaccountforallochthonouscarbonusingtheproceduresinSection8.1.4.2.7.Theprojectproponentmustalsofollowtheadditionalguidancebelow.Thedeterminationofthedeductionforallochthonouscarbonismandatoryfortheprojectscenariounlesstheprojectproponentisabletodemonstratethattheallochthonouscarbonwouldhavebeenreturnedtotheatmosphereintheformofcarbondioxideintheabsenceoftheproject.Thedeductionforallochthonouscarbonmustonlybeappliedtosoillayersdepositedoraccumulatedaftertheprojectstartdate(suchasmaterialsformedaboveafeldsparmarkerhorizon).Iftheorganicsurfacelayerexceeds10cm,thesoilisdeemedorganicandnodeductionisrequired.Ifanorganicsurfacelayerofupto10cmispresent,deduction_allochmustbedeterminedonlyinsuchcaseswheretheprojectexperiencesmineralsedimentationeventssufficienttocreatemineralsoillayers.Inpractice,theprojectareamayshowmineralsedimentationinplaces.Ifthisisobserveditisassumedthatatsomepointduringtheprojectcreditingperiodmineralsedimentcanbedepositedontopoforganicsurfacelayers,unlesstheprojectproponentcanjustifythatstratawithanorganicsurfacelayeroflessthan10cmwillnotexperiencemineralsedimentationduringtheprojectcreditingperiod.CH4emissionsfromsoilWheretheprojectproponentisabletodemonstrate(e.g.,ifsalinityvalueswillnotchangeorwillincrease)thatCH4emissionsdonotincreaseintheprojectscenariocomparedtothebaselinescenario,CH4emissionsmaybeexcluded.TheestimationofCH4emissionsinprojectscenariomustfollowoneoftheapproachesprovidedinSection8.1.4.5above.Forallequationsinthesesections,thesubscriptBSLmustbesubstitutedbyWPStomakeclearthattherelevantvaluesarebeingquantifiedfortheprojectscenario.N2OemissionsfromsoilWheretheprojectproponentisabletodemonstrate(e.g.,byreferringtopeer-reviewedliteraturebasedonsimilarprojectcircumstances29)thatN2Oemissionsdonotincreaseintheprojectscenariocomparedtothebaselinescenario,N2Oemissionsmaybeexcluded.N2Oemissionsmustbeaccountedforintheprojectscenarioinstratawherewaterlevelswereloweredasaresultofprojectactivities30.SeagrassrestorationprojectsdonotrequireN2Oemissionaccounting.TheestimationofN2Oemissionsintheprojectscenariomayfollowoneof29Projectcircumstancesaredefinedbypre-projectlanduse(eg,forestry,agriculture,abandonmentaftersuchactivities)anditsintensity(especiallyrelatedtoN-fertilization),climaticzone,watertabledepths,andsoiltype.30Seeapplicabilityconditions.Methodology:VCSVersion4.057theapproachesprovidedinSection8.1.4.6.Forallequationsinthesesections,thesubscriptBSLmustbesubstitutedbyWPStomakeclearthattherelevantvaluesarebeingquantifiedfortheprojectscenario.Inaddition,wheretheprojectproponentisabletodemonstrate(e.g.,byreferringtopeer-reviewedliterature)thatN2Oemissionsintheprojectscenarioaredeminimis,N2Oemissionsmaybeexcluded.TodemonstratethatN2Oemissionsaredeminimisintheprojectscenario,theprojectproponentmustuseCDMtoolAR-Tool04ToolfortestingsignificanceofGHGemissionsinA/RCDMprojectactivities,orrefertopeer-reviewedliterature.Netnon-CO2emissionsfromprescribedburninginprojectscenarioWheretheprojectproponentintroducesprescribedburningofshrubandherbaceousbiomass,theprojectproponentmusta)demonstratethattheprojectdoesnotdecreasecarbonsequestrationratesifusingthedefaultfactorapproachforcarbondioxideemissionsaccountingfromsoil,andb)accountforCH4andN2Oemissionsasfollows:GHGWPS-burn,i,t=CO2eN2O,i,t+CO2eCH4,i,t(81)CO2eN2O,i,t=Biomassi,t×EFN2O,burn×N2O-GWP×10-6×Ai,t(82)CO2eCH4,i,t=Biomassi,t×EFCH4,burn×CH4-GWP×10-6×Ai,t(83)Where:GHGWPS-burn,i,t=GHGemissionsfromprescribedburningintheprojectscenarioinstratumiinyeart;tCO2eyr-1CO2eN2O,i,t=CO2eemissionsresultingfromN2Oemissionsduetoprescribedburninginstratumiinyeart;tCO2eyr-1.CO2eCH4,i,t=CO2eemissionsresultingfromCH4emissionsduetoprescribedburninginstratumiinyeart;tCO2eyr-1.Biomassi,t=Abovegroundshrubbiomassinstratumiinyeart(fromSection8.2.3),kgd.m.ha-1EFN2O,burn=EmissionfactorforN2Oforvegetationburning;gN2O/kgdrybiomassEFCH4,burn=EmissionfactorforCH4forvegetationburning;gCH4/kgdrybiomassN2O-GWP=GlobalwarmingpotentialofN2O;dimensionlessCH4-GWP=GlobalwarmingpotentialofCH4;dimensionlessAi,t=Areaofstratumiinyeart;hai=1,2,3…MWPSstrataintheprojectscenariot=1,2,3,…tyearselapsedsincetheprojectstartdateEmissionsfromfossilfueluseWhereemissionsfromtheuseofvehiclesandmechanicalequipmentforearthmovinginWRCprojectactivitiesareabovedeminimisascomparedtothebaselinescenario,suchemissionsmustMethodology:VCSVersion4.058beestimatedbyapplyingCDMtoolAR-Tool05EstimationofGHGemissionsrelatedtofossilfuelcombustioninA/RCDMprojectactivities,notingthatthefollowingequationapplies:GHGWPS-fuel,i,t=ETFC,y(84)Where:GHGWPS-fuel,i,t=GHGemissionsfromfossilfueluseintheprojectscenarioinstratumiinyeart;tCO2eyr-1ETFC,y=CO2emissionsfromfossilfuelcombustionduringtheyeary;tCO2(derivedfromapplicationofCDMtoolAR-Tool05EstimationofGHGemissionsrelatedtofossilfuelcombustioninA/RCDMprojectactivities;calculationsaredoneforeachstratumi)i=1,2,3…MWPSstrataintheprojectscenariot=1,2,3,…tyearselapsedsincetheprojectstartdateThetoolhasbeendesignedforA/RCDMprojectactivities,butmustbeusedforthepurposesofthismethodology,notingthefollowing:Wherethetoolrefersto:Itmustbeunderstoodasreferringto:A/RWRCCDMVCSDOEVVB8.3Emissionreductionsduetorewettingandfiremanagement(FireReductionPremium)Thismethodologyaddressestheemissionreductionsgeneratedfromreducedanthropogenicfiresoccurringindrainedorganicsoilsduetorewettingandfiremanagement.Emissionreductionsareestimatedusingaconservativedefaultfactorwhichisbasedonfireoccurrenceandextensionintheprojectareainthebaselinescenario.ThismethodavoidstheneedfordirectassessmentofGHGemissionsfromfireinthebaselineandtheprojectscenarios.TheprojectproponentmustapplythelatestversionofVCSmoduleVMD0046MethodsformonitoringsoilcarbonstockchangesandGHGemissionsinWRCprojectactivitiestoestimateoftheFireReductionPremium(FRP).Foreachstratumwithorganicsoiltowhichtheprojectproponentappliestheapproach,theparametersEpeatsoil-WPS,i,t(Greenhousegasemissionsfromthepeatsoilwithintheprojectboundaryintheprojectscenarioinstratumiinyeart(tCO2eyr-1))andEpeatsoil-BSL,i,,t(GHGemissionsfrommicrobialdecompositionofthepeatsoilwithintheprojectboundaryinthebaselinescenarioinstratumiinyeart(tCO2eyr-1))inthemoduleareobtainedfromGHGWPS-soil,i,tandGHGBSL-soil,i,t.Methodology:VCSVersion4.0598.4LeakageActivity-shiftingleakageandmarketleakageTheapplicabilityconditionsofthismethodologyarestructuredtoensurethatactivity-shiftingleakageandmarketleakagedonotoccur.Assuch,wheretheapplicabilityconditionsofthismethodologyaremet,activity-shiftingleakageandmarketleakagemaybeassumedtobezero.EcologicalleakageItmaybeassumedthatecologicalleakagedoesnotoccurinprojectsmeetingtheapplicabilityconditionsofthismethodology,becauseprojectsmustbedesignedinamannerwhichensuresthattheirhydrologicalconnectivitywithadjacentareasdoesnotleadtoasignificantincreaseinGHGemissionsoutsidetheprojectarea.Thismaybeachievedbyaprojectdesignwhichcausesnoalterationofmeanannualwatertabledepthsorfloodingfrequencyordurationinadjacentareas,orlimitingsuchalterationtolevelsthatdonotinfluenceGHGemissions.Where,atthedesignstage,hydrologicalchangesareexpectedtoimpactGHGemissionsinareasoutsidetheprojectarea,theprojectdesignmustbeadjustedtoincludesuchareasintheprojectarea.Theprojectproponentmustdemonstratethattheirprojectdesignmeetstheserequirementsthroughexpertjudgment,hydrologicmodelingormonitoringofalterationsofwatertabledepthattheprojectarea.Intidalwetlandrestorationprojects,de-wateringdownstreamwetlandsisnotexpectedifprojectareasaresetsufficientlylargetoincludeexpectedareasofchangedhydrology.Hydrologicmodelsmustconsiderwaterdisplacementfromprojectactivitiesandthehydrologicconnectionorblockageofinletsthatwouldchangethewetlandboundary.ProceduresformonitoringalterationsofwatertabledepthattheprojectareaareprovidedinSection9.3.4.Thetidalrangeandsedimentdeliveryexperiencedbywetlandsoutsidetheprojectareamustremainwithinthesystemtolerance,whichisdefinedbythehighandlowtidesandregionalsedimentbudget,andassessedusinghydrologicalmodels(and/orempiricalanalysis)andexpertjudgment.Toguidethisassessment,Table3outlinesavoidancecriteriarelatedtoavarietyofprocessesthatmayoccuroutsidetheprojectareaduetoaninappropriateprojectdesign.Table3:ProcessesAssociatedwithEcologicalLeakageOutsideProjectBoundaryandRelatedCriteriafortheirAvoidanceMethodology:VCSVersion4.060EcologicalleakageprocessoutsideprojectboundaryAvoidancecriterionLoweringwatertablethatcausesincreasedsoilcarbonoxidationMaintainwetlandconditions(e.g.,convertingfromimpoundedwatertoawetlanddoesnotcausesoiloxidation)LoweringwatertablethatcausesincreasedN2OemissionsNoconversionofnon-seagrasswetlandtoopenwaterRaisingwatertablethatcausesincreasedCH4emissionsNoconversionofnon-wetlandtowetlandRaisingwatertablethatcausesdecreasedvegetationproductionthatcausesdecreasednewsoilcarbonsequestrationNocausationofvegetatedtonon-vegetated(orpoorlyvegetated)conditionsProjectsmeetingtherequirementsofthisSectionError!Referencesourcenotfound.mayassumethatGHGLK=0.8.5NetGHGEmissionReductionsandRemovalsCalculationofnetGHGemissionsreductionsThetotalnetGHGemissionreductionsfromtheRWEorARR/RWEprojectactivityarecalculatedasfollows:NERRWE=GHGBSL–GHGWPS+FRP–GHGLK(85)Where:NERRWE31=NetCO2eemissionreductionsfromtheRWEprojectactivity;tCO2eGHGBSL=NetCO2eemissionsinthebaselinescenario;tCO2eGHGWPS=NetCO2eemissionsintheprojectscenario;tCO2eFRP=FireReductionPremium(netCO2eemissionreductionsfromorganicsoilcombustionduetorewettingandfiremanagement);tCO2eGHGLK=NetCO2eemissionsduetoleakage;tCO2eLong-termbenefitinWRCprojectsForprojectsclaimingreductionsofbaselineGHGemissions,orforconservationandrestorationprojectswheresealevelrisemaycausealossoftidalwetlandandassociatedbiomassand/orsoilorganiccarbonstocks,themaximumquantityofGHGemissionreductionsorremovalsthat31AlsostandsforNERARR/RWEMethodology:VCSVersion4.061maybeclaimedfromthebiomassandsoilorganiccarbonpoolislimitedtothenetGHGbenefitgeneratedbytheproject100yearsafteritsstartdate,asfollows:NERRWE-max=NERRWEatt=100(86)Where:NERRWE-max=MaximumnetCO2eemissionreductionsorremovalsthatcanbeclaimedfromtheRWEprojectactivityatanypointintimeduringthecreditingperiod;tCO2eNERRWE=NetCO2eemissionreductionsfromtheRWEprojectactivity(fromEquation85);tCO2eNotealsothatNERRWEmustbecorrectedforuncertaintybyestimatingthetotaluncertaintyfortheRWEprojectactivity(NERRWE_ERROR)usingtheproceduresinSection8.5.2below.EstimationofuncertaintyThefollowingprocedureallowstheprojectproponenttoestimateuncertaintyintheestimationofemissionsandcarbonstockchanges(i.e.,forcalculatingaprecisionlevelandanydeductionincreditsforlackofprecisionfollowingprojectimplementationandmonitoring)byassessinguncertaintyinbaselineandprojectestimations.Thisprocedurefocusesonthefollowingsourcesofuncertainty:•Uncertaintyassociatedwithestimationofstocksincarbonpoolsandchangesincarbonstocks•UncertaintyinassessmentofprojectemissionsWhereanuncertaintyvalueisnotknownorcannotbecalculated,theprojectproponentmustjustifythatitisusingaconservativenumberandanuncertaintyof0%maybeusedforthiscomponent.UncertaintyguidanceAprecisiontargetofa90%or95%confidenceintervalequaltoorlessthan20%or30%,respectively,oftherecordedvaluemustbetargeted.Thisisespeciallyimportantintermsofprojectplanningformeasurementofcarbonstockswheresufficientmeasurementplotsshouldbeincludedtoachievethisprecisionlevelacrossthemeasuredstocks.Levelsofuncertaintymustbeknownforallaspectsofbaselineandprojectimplementationandmonitoring.Uncertaintywillgenerallybeknownasthe90%or95%confidenceintervalexpressedasapercentageofthemean.Whereuncertaintyisnotknown,itmustbedemonstratedthatthevalueusedisconservative.EstimatedcarbonemissionsandremovalsarisingfromAFOLUactivitieshaveuncertaintiesassociatedwiththemeasuresandestimatesofseveralparameters.Theseincludetheprojectareaorotheractivitydata,carbonstocks,biomassgrowthrates,expansionfactorsandotherMethodology:VCSVersion4.062coefficients.Itisassumedthattheuncertaintiesassociatedwiththeestimatesofthevariousinputdataareavailable,eitherasdefaultfactorsgiveninIPCCGuidelines(2006),IPCCGPG-LULUCF(2003),expertjudgmentorestimatesbasedofsoundstatisticalsampling.Alternatively,conservativeestimatesmayalsobeusedinsteadofuncertainties,providedthattheyarebasedonverifiableliteraturesourcesorexpertjudgment.Inthiscasetheuncertaintyisassumedtobezero.However,theseprocedurescombineuncertaintyinformationandconservativeestimatesresultinginanoverallex-postprojectuncertainty.PlanningtodiminishuncertaintyItisimportantthattheprocessofprojectplanningconsideruncertainty.Proceduresincludingstratificationandtheallocationofsufficientmeasurementplotshelpensurethatlowuncertaintyincarbonstocksresultsandultimatelyfullcreditingcanresult.Itisgoodpracticetoapplythisprocedureatanearlystagetoidentifythedatasourceswiththehighestuncertaintytoallowtheopportunitytoconductfurtherworktodiminishuncertainty.NotethatinParts1–3belowthedenominatorsoftheequationsmustbeexpressedinabsolutevalues.Part1–Uncertaintyinbaselineestimates𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛%#&,+=N(M$#%,##/,+×J$#%,##/,+)2R(M$#%,##2,+×J$#%,##2,+)2…R...(M$#%,##-,+×J$#%,##-,+)2J$#%,##/,+RJ$#%,##2,+…R...J$#%,##-,+(87)Where:UncertainBSL,i=PercentageuncertaintyinthecombinedcarbonstocksandGHGsourcesinthebaselinescenarioinstratumi;%UBSL,SS,i=Percentageuncertainty(expressedas90%confidenceintervalasapercentageofthemean,whereappropriate)forcarbonstocksandGHGsourcesinthebaselinescenarioinstratumi(1,2…nrepresentdifferentcarbonpoolsand/orGHGsources);%EBSL,SS,i=CarbonstockorGHGsources(e.g.,trees,downdeadwood)instratumi(1,2…nrepresentdifferentcarbonpoolsand/orGHGsources)inthebaselinescenario;tCO2ei=1,2,3…MBSLstratainthebaselinescenarioToassessuncertaintyacrosscombinedstrata,usetheequationbelow:𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛%#&=U(M$#%,2×E/)2R(M$#%,2×E2)2…R...(M$#%,4$#%×E4$#%)2E/RE2…R...E4$#%(88)Where:UncertainBSL=Totaluncertaintyinbaselinescenario;%UBSL,i=Uncertaintyinbaselinescenarioinstratumi;%Methodology:VCSVersion4.063Ai=Areaofstratumi;hai=1,2,3…MBSLstratainthebaselinescenarioPart2–Uncertaintyex-postintheprojectscenario𝑼𝒏𝒄𝒆𝒓𝒕𝒂𝒊𝒏𝑾𝑷𝑺,𝒊=U(𝑼𝑾𝑷𝑺,𝑺𝑺𝟏,𝒊×𝑬𝑾𝑷𝑺,𝑺𝑺𝟏,𝒊)𝟐R(𝑼𝑾𝑷𝑺,𝑺𝑺𝟐,𝒊×𝑬𝑾𝑷𝑺,𝑺𝑺𝟐,𝒊)𝟐…R...(𝑼𝑾𝑷𝑺,𝑺𝑺𝒏,𝒊×𝑬𝑾𝑷𝑺,𝑺𝑺𝒏,𝒊)𝟐𝑬𝑾𝑷𝑺,𝑺𝑺𝟏,𝒊R𝑬𝑾𝑷𝑺,𝑺𝑺𝟐,𝒊…R...𝑬𝑾𝑷𝑺,𝑺𝑺𝒏,𝒊(89)Where:UncertainWPS,i=PercentageuncertaintyinthecombinedcarbonstocksandGHGsourcesintheprojectscenarioinstratumi;%UWPS,SS,i=Percentageuncertainty(expressedas90%confidenceintervalasapercentageofthemean,whereappropriate)forcarbonstocksandGHGsourcesintheprojectscenarioinstratumi(1,2…nrepresentdifferentcarbonpoolsand/orGHGsources);%EWPS,SS,i=CarbonstockorGHGsources(e.g.,trees,downdeadwood,etc.)instratumi(1,2…nrepresentdifferentcarbonpoolsand/orGHGsources)intheprojectscenario;tCO2ei=1,2,3…MWPSstrataintheprojectscenarioToassessuncertaintyacrosscombinedstrata,usetheequationbelow:𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛!"#=U(M!"#,2×E/)2R(M!"#,2×E2)2…R...(M!"#,4!"#×E4!"#)2E/RE2…R...E4!"#(90)Where:UncertainWPS=Totaluncertaintyinprojectscenario;%UWPS,i=Uncertaintyinprojectscenarioinstratumi;%Ai=Areaofstratumi;hai=1,2,3…MWPSstrataintheprojectscenarioPart3–Totalerrorinprojectactivity𝑁𝐸𝑅JII\I=N(MD]/C(0+D$#%×GLG$#%)2R(MD]/C(0+D!"#×GLG!"#)2GLG$#%RGLG!"#(91)Where:NERERROR=Totaluncertaintyforprojectactivity;%UncertainBSL=Totaluncertaintyinbaselinescenario;%UncertainWPS=Totaluncertaintyintheprojectscenario;%GHGBSL=NetCO2eemissionsinthebaselinescenariouptoyeart;tCO2eGHGWPS=NetCO2eemissionsintheprojectscenariouptoyeart;tCO2eTheallowableuncertaintyis20%or30%ofNERtata90%or95%confidencelevel,respectively.Wherethisprecisionlevelismet,nodeductionmustresultforuncertainty.Wherethisprecisionlevelisexceeded,adeductionequaltotheamountthattheuncertaintyexceedsMethodology:VCSVersion4.064theallowablelevelmustbeapplied.TheadjustedvalueforNERttoaccountforuncertaintymustbecalculatedas:adjusted_NERt=NERtx(100%-NERERROR+allowable_uncert)(92)Where:adjusted_NERt=NetGHGemissionreductionsinyeartadjustedtoaccountforuncertainty;tCO2eNERt=TotalnetGHGemissionreductionsfromtheprojectactivityuptoyeart;tCO2eNERERROR=TotaluncertaintyforWRCprojectactivity;%allowable_unsert=Allowableuncertainty;20%or30%ata90%or95%confidencelevel,respectively;%CalculationofVerifiedCarbonUnitsInordertocalculatethenumberofVerifiedCarbonUnits(VCUs)thatmaybeissued,theprojectproponentmustconsiderthenumberofbuffercreditswhichmustbedepositedintheAFOLUpooledbufferaccount.ThenumberofbuffercreditswhichmustbedepositedintheAFOLUpooledbufferaccountisbasedonthenetchangeincarbonstocks.Thenumberofverifiedcarbonunits(VCUs)iscalculatedas:𝑉𝐶𝑈(;=(𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑^JI(;−𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑_𝑁𝐸𝑅())×𝐵𝑢𝑓𝑓𝑒𝑟𝑤(;(93)Where:VCUt2=NumberofVCUsinyeart2adjusted_NERt1=TotalnetGHGemissionreductionsfromtheprojectactivityuptoyeart1adjustedtoaccountforuncertainty;tCO2eadjusted_NERt2=TotalnetGHGemissionreductionsfromtheprojectactivityuptoyeart2adjustedtoaccountforuncertainty;tCO2eBufferwt2=NumberofbuffercreditstobecontributedtotheAFOLUpooledbufferaccountinyeart2𝐵𝑢𝑓𝑓𝑒𝑟(;=(𝑁𝐸𝑅3(2]_,(;−𝑁𝐸𝑅3(2]_,())×𝐵𝑢𝑓𝑓𝑒𝑟%(;(94)Where:Bufferwt2=NumberofbuffercreditstobecontributedtotheAFOLUpooledbufferaccountinyeart2NERstock,t1=NetGHGemissionreductionsfromtheprojectactivityuptoyeart1,discardingnon-CO2emissionsfromsoilandbiomassburningandemissionsfromfossilfueluse;tCO2eNERstock,t2=NetGHGemissionreductionsfromtheprojectactivityuptoyeart2,discardingnon-CO2emissionsfromsoilandbiomassburningandemissionsfromfossilfueluse;tCO2eBuffer%t2=PercentageofbuffercreditstobecontributedtotheAFOLUpooledMethodology:VCSVersion4.065bufferaccountinyeart2;%ThepercentageofbuffercreditstobecontributedtotheAFOLUpooledbufferaccountmustbedeterminedbyapplyingthelatestversionoftheVCSAFOLUNon-PermanenceRiskTool.9MONITORING9.1DataandParametersAvailableatValidationData/ParameterDepthpeat,i,t0DataunitmDescriptionAverageorganicsoildepthabovethedrainagelimitinstratumiattheprojectstartdate;mEquations1,8,9SourceofdataExistingpeatdepthmapsand/orfieldassessmentand/orincombinationwithremotesensingdata.Literatureinvolvingtheprojectareaorsimilarareas.ValueappliedN/AJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedOrganicsoildepthsattheprojectstartdatemaybederivedfrom:•Existingpeatdepthmaps•Surfaceheightmeasurementsrelativetoafixedreferencepointinma.s.l.(e.g.,usingpolesfixedintheunderlyingmineralsoilorrock)withintheprojectarea;whererelevantincombinationwithgaugemeasurementofthewatertabletodeterminethedrainagelimitForthepurposeofdeterminingthePDT,whererelevant,peatdepthmaybedeterminedasthedepthofthepeatlayerdowntoalevelwherenofurtheroxidationorotherlossesoccur(e.g.,theaveragewatertabledepth).PurposeofdataCalculationofbaselineemissionsCalculationofthemaximumquantityofGHGemissionreductionsthatmaybeclaimedbytheprojectCommentsReassessedwhenbaselineisreassessedIntheabsenceofpeer-revieweddatasources,theprojectproponentmustjustifythatthedatausedarerepresentativeandthatstandardmethodshavebeenused.Methodology:VCSVersion4.066Data/ParameterRatepeatloss-BSL,iDataunitmyr-1DescriptionRateoforganicsoillossduetosubsidenceandfireinthebaselinescenarioinstratumi;aconservative(high)valuemustbeappliedthatremainsconstantoverthetimefromt=0toPDTEquations1,8,14SourceofdataTherateoforganicsoillossduetosubsidencemustbebasedonverifiableinformationandmaybederivedfrom:1)Expertjudgment,datasetsand/orliteratureofhistoricsubsidenceinvolvingtheprojectorsimilarareas.Datamustbebasedonsurfaceheightmeasurementsrelativetoafixedreferencepointinmasl,followingmethodsdescribedinBallhornetal.2009(e.g.,usingpolesfixedintheunderlyingmineralsoilorrock,orbyremotesensing)orsimilar.Or2)CO2emissionsderivedfromGHGemissionproxies(seeSection8.1.4.2.1above)incombinationwithdataonvolumetriccarboncontentoftheorganicsoil.DividetheannualCO2emission(tCO2ha-1)by44/12,thendividebyvolumetriccarboncontent(gCcm-3)toobtainheightlossinm.Theaveragedepthofburnscarsmaybederivedfromexpertjudgment,datasetsand/orliteratureofhistoricburndepthsinvolvingtheprojectorsimilarareas.Datamustbebasedonsurfaceheightmeasurements,usingfieldmeasurementsorremotesensing(e.g.,followingmethodsdescribedinBallhornetal.2009).Thearealextentofburnscarsmaybeobtainedfromstatisticsand/ormapsinofficialreportsand/orfieldmeasurementsorremotesensingdata.Fororganicsoillossduetofire,basedonthearealextentofburntandnon-burntareas,ameanannualizedburndepthmustbecalculatedandappliedtotheentireprojectarea.Theprojectproponentmustdemonstrate,usingexpertjudgment,datasetsand/orscientificliteraturethattheaccuracyofthederivedrateoforganicsoillossissufficienttofulfillthecriteriainSection5.2.2(Stratification).Similarityofareasmustbedemonstrated(viadirectmeasurements,literatureresources,datasetsoracombinationofthese)withrespecttoorganicsoiltype,climaticconditions,Methodology:VCSVersion4.067landuse(forestry,agriculture,peatextraction,orabandonmentaftertheseactivities),andaverageannualwatertabledepth(±20%).Incaseofdissimilarity,theprojectproponentmustdemonstratethatsuchdifferencegivesaconservativeresultforthenetGHGbenefitsoftheproject.Forecastingorganicsoilsubsidenceratesmustbebasedontheconservativeextrapolationofahistorictrend,orconservativemodelingofproxiessuchaswatertabledepthandlandusetype.ValueappliedN/AJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedSeeSourceofdataabovePurposeofDataCalculationofbaselineemissionsCalculationofthemaximumquantityofGHGemissionreductionsthatmaybeclaimedbytheprojectCommentsIntheabsenceofanaccuratevalueforthedeterminationofPDT,aconservative(high)valuemaybeapplied,whileforthedeterminationofthemaximumquantityofGHGemissionreductionswhichmaybeclaimedfromthesoilcarbonpool,aconservative(low)valuemaybeappliedthatremainsconstantovertime.Theuseofarelativelylowvalueforaconstantrateoforganicsoillossmaynotbeconfusedwitharelativelyhighvaluewhendeterminingtheneedforstratificationoforganicsoildepth.ReassessedwhenbaselineisreassessedData/ParameterRatepeatloss-WPS,i,tDataunitmyr-1DescriptionRateoforganicsoillossduetosubsidenceintheprojectscenarioinstratumiinyeartEquations9SourceofdataTherateoforganicsoillossduetosubsidencemustbebasedonverifiableinformationandmaybederivedfrom:1)Expertjudgment,datasetsand/orliteratureofsubsidenceinvolvingareasrepresentingconditionssimilartotheproject.DatamustbebasedonsurfaceheightmeasurementsrelativetoMethodology:VCSVersion4.068afixedreferencepointinmasl,followingmethodsdescribedinBallhornetal.2009(e.g.,usingpolesfixedintheunderlyingmineralsoilorrock,orbyremotesensingorsimilar).Or2)CO2emissionsderivedfromGHGemissionproxies,seeSection8.1.4.2.1above,incombinationwithdataonvolumetriccarboncontentoftheorganicsoil.DividetheannualCO2emission(tCO2ha-1)by44/12,thendividebyvolumetriccarboncontent(gCcm-3)toobtainheightlossinm.Theprojectproponentmustdemonstrate,usingexpertjudgment,datasetsand/orscientificliteraturethattheaccuracyofthederivedrateoforganicsoillossissufficienttofulfillthecriteriainSection5.2.2(Stratification).Similarityofareasmustbedemonstrated(bydirectmeasurements,literatureresources,datasetsoracombinationofthese)withrespecttoorganicsoiltype,climaticconditions,landuse(forestry,agriculture,peatextraction,orabandonmentaftertheseactivities),andaverageannualwatertabledepth(±20%).Incaseofdissimilarity,theprojectproponentmustdemonstratethatsuchdifferencegivesaconservativeresultforthenetGHGbenefitsoftheproject.ValueappliedN/AJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedSeeSourceofdataabovePurposeofDataCalculationofprojectemissions•CalculationofthemaximumquantityofGHGemissionreductionsthatmaybeclaimedbytheprojectCommentsN/AData/ParameterRateCloss-BSL,i,tDataunittCha-1yr-1DescriptionRateoforganiccarbonlossinmineralsoilduetooxidationinthebaselinescenarioinstratumiinyeartMethodology:VCSVersion4.069Rateofsoilorganiccarbonlossduetooxidationinthebaselinescenarioinstratumi;aconservative(high)valuemustbeappliedthatremainsconstantoverthetimefromt=0toSDTEquations1,10,16SourceofdataMaybeestimatedusingpublishedvalues(seeSections8.1.4.1and8.1.4.2.2)oreitherhistoricaldatacollectedfromtheprojectsiteorchronosequencedatacollectedatsimilarsites(seeSections8.1.4.1and8.1.4.2.6).Alternatively,aconservative(low)valuemaybeappliedthatremainsconstantovertime.ValueappliedN/AJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedExtrapolationofRateCloss-BSL,iovertheentireprojectcreditingperiodforthequantificationoftheSDTmustaccountforthepossibilityofanon-lineardecreaseofsoilorganiccarbonovertime,includingthetendencyoforganiccarbonconcentrationstoapproachsteady-stateequilibrium(seeSectionError!Referencesourcenotfound.).Forthisreason,acompletelossofsoilorganiccarbonmaynotoccurinmineralsoils.Thissteady-stateequilibriummustbedeterminedconservatively.PurposeofDataCalculationofbaselineemissionsCalculationofthemaximumquantityofGHGemissionreductionsthatmaybeclaimedbytheprojectCommentsIntheabsenceofanaccuratevalueforthedeterminationoftheSDT,aconservative(high)valuemaybeapplied,whileforthedeterminationofthemaximumquantityofGHGemissionreductionswhichmaybeclaimedfromthesoilcarbonpool,aconservative(low)valuemaybeappliedthatremainsconstantovertime.ReassessedwhenbaselineisreassessedData/ParameterRateCloss-WPS,i,tDataunittCha-1yr-1DescriptionRateoforganiccarbonlossinmineralsoilduetooxidationintheprojectscenarioinstratumiinyeartEquations17SourceofdataN/AMethodology:VCSVersion4.070Valueapplied0JustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedThisvalueisconservativelysettozeroaslossratesarelikelytobenegative.Thevaluemustbereassessedwhenthebaselineisreassessed.IfatthateventthereisevidencethatSOChasdecreased,thecalculationmustbeadjustedusingthecarbonlossratetodate,unlessitcanbejustifiedthatthecarbonlosswastemporary.PurposeofDataCalculationofprojectemissionsCalculationofthemaximumquantityofGHGemissionreductionsthatmaybeclaimedbytheprojectCommentsReassessedwhenbaselineisreassessedData/ParameterΔCTREE_BSL,tDataunittCO2-eyr-1DescriptionChangeincarbonstockinbaselinetreebiomasswithintheprojectareainyeartEquations24SourceofdataDerivedfromapplicationofAR-Tool14ValueappliedN/AJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedN/APurposeofDataCalculationofbaselineemissionsCommentsCalculationsaredoneforeachstratumiReassessedwhenbaselineisreassessedData/ParameterRatesubs-BSL,iDataunitmyr-1DescriptionRateoforganicsoillossduetosubsidenceinthebaselinescenarioinstratumiMethodology:VCSVersion4.071Equations32SourceofdataTherateoforganicsoillossduetosubsidencemustbebasedonverifiableinformationandmaybederivedfrom:1)Expertjudgment,datasetsand/orliteratureofhistoricsubsidenceinvolvingtheprojectorsimilarareas.Datamustbebasedonsurfaceheightmeasurementsrelativetoafixedreferencepointinmasl,followingmethodsdescribedinBallhornetal.2009(e.g.,usingpolesfixedintheunderlyingmineralsoilorrock,orbyremotesensing)orsimilar.Or2)CO2emissionsderivedfromGHGemissionproxies,seeSection8.1.4.2.1above,incombinationwithdataonvolumetriccarboncontentoftheorganicsoil.DividetheannualCO2emission(tCO2ha-1)by44/12,thendividebyvolumetriccarboncontent(gCcm-3)toobtainheightlossinm.Theaveragedepthofburnscarsmaybederivedfromexpertjudgment,datasetsand/orliteratureofhistoricburndepthsinvolvingtheprojectorsimilarareas.Datamustbebasedonsurfaceheightmeasurements,usingfieldmeasurementsorremotesensing(e.g.,followingmethodsdescribedinBallhornetal.2009).Thearealextentofburnscarsmaybeobtainedfromstatisticsand/ormapsinofficialreportsand/orfieldmeasurementsorremotesensingdata.Theprojectproponentmustdemonstrate,usingexpertjudgment,datasetsand/orscientificliteraturethattheaccuracyofthederivedrateoforganicsoillossissufficienttofulfillthecriteriainSection5.2.2(Stratification).Similarityofareasmustbedemonstrated(viadirectmeasurements,literatureresources,datasetsoracombinationofthese)withrespecttoorganicsoiltype,climaticconditions,landuse(forestry,agriculture,peatextraction,orabandonmentaftertheseactivities),andaverageannualwatertabledepth(±20%).Incaseofdissimilarity,theprojectproponentmustdemonstratethatsuchdifferencegivesaconservativeresultforthenetGHGbenefitsoftheproject.Forecastingorganicsoilsubsidenceratesmustbebasedontheconservativeextrapolationofahistorictrend,orconservativemodelingofproxiessuchaswatertabledepthandlandusetype.ValueappliedN/AMethodology:VCSVersion4.072JustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedSeeSourceofdataaboveandCouwenberg&Hooijer(2013).PurposeofDataCalculationofbaselineemissionsCommentsIntheabsenceofanaccuratevalue,forthedeterminationofsubsidenceaconservative(low)valuemaybeapplied.ReassessedwhenbaselineisreassessedData/ParameterCBSL-soil,i,tDataunittCha-1DescriptionSoilorganiccarbonstockinthebaselinescenarioinstratumiinyeartEquations28,29,(36)SourceofdataEstimatedusingmethodsdescribedinSection8.1.4.1SoilcoringmaybeusedtogenerateavalueofCBSL-soil,i,tasspecifiedinSection9.3.7ValueappliedN/AJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedForthebaselinescenario,soilcoresmustbecollectedwithin2yearspriortotheprojectstartdate.Whereusinganinstalledreferenceplaneforthebaselinescenario,itmusthavebeeninstalledatleast4yearspriortothebaselinemeasurement,whichisgoodpracticetoensurethatareliableaverageaccumulationrateisobtained.PurposeofDataCalculationofbaselineemissionsCommentsReassessedwhenbaselineisreassessedData/ParameterDepthsoil,i,t0DataunitmDescriptionMineralsoildepthinstratumiattheprojectstartdateEquations12Methodology:VCSVersion4.073SourceofdataDirectmeasurementsand/orliteratureinvolvingtheprojectareaorsimilarareasValueappliedN/AJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedMineralsoildepthsattheprojectstartdatemaybederivedfromdirectmeasurementswithintheprojectareaorliteratureinvolvingtheprojectareaorsimilarareasPurposeofDataCalculationofbaselineemissionsCalculationofthemaximumquantityofGHGemissionreductionsthatmaybeclaimedbytheprojectCommentsIntheabsenceofpeer-revieweddatasources,theprojectproponentmustjustifythatthedatausedarerepresentativeandthatstandardmethodshavebeenused.Data/ParameterVCDataunitkgCm-3DescriptionVolumetricorganiccarboncontentoforganicormineralsoilEquations6,712,14–17,32SourceofdataDirectmeasurementsand/orliteratureinvolvingtheprojectareaorsimilarareasValueappliedN/AJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedDeterminedthroughproceduresspecifiedinSection9.3.7PurposeofDataCalculationofbaselineemissionsCalculationofprojectemissions•CalculationofthemaximumquantityofGHGemissionreductionsthatmaybeclaimedbytheprojectCommentsData/ParameterABSL,i(orAi,t)Methodology:VCSVersion4.074DataunithaDescriptionAreaofbaselinestratumi(inyeart)Equations4,13,26,(79),82,83SourceofdataDelineationofstrataisdonepreferablyusingaGeographicalInformationSystem(GIS),whichallowsforintegratingdatafromdifferentsources(includingGPScoordinatesandremotesensingdata).Appliedtechniquesmustfollowinternationalstandardsofapplicationorlocalstandardsaslaidoutinpertinentscientificliteratureorhandbooks.ValueappliedN/AJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedSeeSourceofdataabovePurposeofDataCalculationofbaselineemissionsCommentsN/AData/ParameterCBSL-herb,i,tDataunittCha-1DescriptionCarbonstockinherbaceousvegetationinthebaselinescenarioinstratumiinyeartEquations25SourceofdataDirectmeasurementsordefaultfactorValueappliedN/AJustificationofchoiceofdataordescriptionofAdefaultfactor32of3tCha-1maybeappliedforstratawith100%herbaceouscover.Forareaswithavegetationcover<100%,a1:1relationshipbetweenvegetationcoverandCBSL,-32Calculatedfrompeakabovegroundbiomassdatafrom20sitessummarizedinMitsch&Gosselink.Themedianofthesestudiesis1.3td.m.ha-1.Thiswasconvertedtothedefaultfactorvalueasfollows:1.3×0.45×0.5×10.Thefactor0.45convertsorganicmattermasstocarbonmass;thefactor0.5isafactorthataveragesannualpeakbiomass(factor=1)andannualminimumbiomass(factor=0,assumingephemeralabovegroundbiomassandcompletelitterdecomposition.Methodology:VCSVersion4.075measurementmethodsandproceduresappliedherb,i,tmustbeapplied.Thedefaultmaybeclaimedforoneyearonlyduringtheprojectcreditingperiodasherbaceousbiomassquicklyreachesasteadystate.Vegetationcovermustbedeterminedbycommonlyusedtechniquesinfieldbiology.ProceduresformeasuringcarbonsstocksinherbaceousvegetationareprovidedinSection9.3.6above.PurposeofDataCalculationofbaselineemissionsCommentsReassessedwhenbaselineisreassessedData/ParameterGHGBSL-insitu-CO2,i,tDataunittCO2eha-1yr-1DescriptionCO2emissionsfromtheSOCpoolofin-situsoilsinthebaselinescenarioinstratumiinyeartEquations27,28,34,(37),38SourceofdataEstimatedusingmethodsdescribedinSection8.1.4.2ValueappliedN/AJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedN/APurposeofDataCalculationofbaselineemissionsCommentsN/AData/ParameterC%BSL-emitted,i,tDataunit%DescriptionOrganiccarbonlossduetooxidation,asapercentageofCmasspresentinin-situsoilmaterialinthebaselinescenarioinstratumiinyeart(Section8.1.4.2)Methodology:VCSVersion4.076Organiccarbonlossduetooxidation,asapercentageofCmasspresentinerodedsoilmaterialinthebaselinescenarioinstratumiinyeart(Section8.1.4.3)Organiccarbonlossduetooxidation,asapercentageofCmasspresentinexcavatedsoilmaterialinthebaselinescenarioinstratumiinyeart(Section8.1.4.4)Equations28,(48),(51)-(57)SourceofdataEstimatedusingmethodsdescribedinSections8.1.4.2,8.1.4.3and8.1.4.4ValueappliedN/AJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedThedefaultfactorsprovidedinSection8.1.4.3.3arethemeanvaluesforthespecifiedCPDE,publishedinFigure9ofBlairandAller(2012).PurposeofDataCalculationofbaselineemissionsCommentsC%BSL-emitted,i,tandRateCloss-BSL,i,tinSection5.2.4aredifferentparameterswithdifferentunitsbutrelatingtothesameprocessofsoilorganiccarbonloss.Data/ParameterC%BSL-soil,i,tDataunit%DescriptionPercentageofcarbonofin-situsoilmaterialinstratumiinyeartEquations29,34SourceofdataEstimatedusingmethodsdescribedinSections8.1.4.2,8.1.4.3and8.1.4.4ValueappliedN/AJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedN/APurposeofDataCalculationofbaselineemissionsCommentsN/AMethodology:VCSVersion4.077Data/ParameterDepth_iBSL,i,tDataunitmDescriptionDepthofin-situexposedsoilinthebaselinescenarioinstratumiinyeartEquations29SourceofdataEstimatedusingcommonlyacceptedproceduresbythescientificcommunityandtakingnoteofrequirementsinSection8.1.4.2ValueappliedN/AJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedSeeSourceofdataabovePurposeofDataCalculationofbaselineemissionsCommentsN/AData/ParameterCrowncover,vegetationcoverDataunit%DescriptionProportionofanareacoveredbytheherbaceousvegetation,shrubs,and/orthecrownsoflivetreesEquationsN/ASourceofdataForthebaselinescenario,crownorvegetationcoversmustbebasedonatimeseriesofvegetationcomposition.ValueappliedN/AJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedSeeSourceofdataabovePurposeofDataCalculationofbaselineemissionsCommentsRelevantfortheapplicationofthedefaultfactorinSection8.1.4.2Methodology:VCSVersion4.078Data/Parameter%OM(or%OMsoil)Dataunit%DescriptionPercentageofsoilthatisorganicmatterEquations41,(43),45,94-97SourceofdataDirectmeasurementsbasedonloss-on-ignitionormaybederivedfromdirectmeasurementsofsoilcarbon.ThesemeasurementsmaybemadeusingsamplescollectedinSection9.3.7orindirectlyfromthesoilcarbonpercentageasdescribedinSection8.1.4.2.7.ValueappliedN/AJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedTheequationsprovidedweredevelopedfortidalmarshsoilsbyCraftetal.1991andformangrovesoilsbyKauffmanetal.2011,andforseagrasssoilsbyFourqureanetal.2012,assummarizedinHowardetal.2014PurposeofDataCalculationofbaselineemissionsCommentsN/AData/Parameter%CsoilDataunit%DescriptionPercentageofsoilorganicCEquations(39),(43),45SourceofdataDirectmeasurementsormaybederivedfromdirectmeasurementsofsoilorganicmatter.ThesemeasurementsmaybemadeusingsamplescollectedinSection9.3.7orindirectlyfromthesoilorganicmatterpercentagedeterminedthroughloss-on-ignitionasdescribedinSection9.3.6.ValueappliedN/AJustificationofchoiceofdataordescriptionofSeeSourceofdataaboveMethodology:VCSVersion4.079measurementmethodsandproceduresappliedPurposeofDataCalculationofbaselineemissionsCalculationofprojectemissionsCommentsN/AData/ParameterBDDataunitkgm-3DescriptionDrybulkdensityEquations29,(49),(57),100SourceofdataDirectmeasurements,orfromarelationshipwithorganiccarboncontentprovidedbythescientificliterature.ValueappliedN/AJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedMassofsoilmaterialafterdryingpervolumeofsoilmaterial,basedoncommonlyacceptedproceduresbythescientificcommunity.PurposeofDataCalculationofbaselineemissionsCalculationofprojectemissionsCommentsN/AData/Parameter%OMdepsedDataunit%DescriptionPercentageofdepositedsedimentthatisorganicmatterEquations(40),44,(46)SourceofdataMaybeestimateddirectlyusingloss-on-ignition(LOI)data,indirectlyfromsoilcarbonpercentageasdescribedinSection8.1.4.2.7,orfromthedefaultvalueprovidedinSection8.1.4.2.7.Thesemeasurementsmaybemadeusingsamplescollectedonsedimenttilesorthroughcollectionandcarbonanalysis(seeMethodology:VCSVersion4.080Section9.3.7)ofsuspendedsedimentsintidalchannelsorsedimentsdepositsintidalflats.ValueappliedN/AJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedLOImaybeassessedusingstandardlaboratoryproceduresPurposeofDataCalculationofbaselineemissionsCalculationofprojectemissionsCommentsN/AData/Parameter%CdepsedDataunit%DescriptionPercentageofdepositedsedimentthatisorganicC;%Equations44,(46),(47)SourceofdataMaybeestimateddirectlyusingloss-on-ignition(LOI)dataorindirectlyfromsoilcarbonpercentageasdescribedinSection8.1.4.2.7.Thesemeasurementsmaybemadeusingsamplescollectedonsedimenttilesorthroughcollectionandcarbonanalysis(seeSection9.3.7)ofsuspendedsedimentsintidalchannelsorsedimentsdepositsintidalflats.ValueappliedN/AJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedThedefaultfactorisderivedfromthemaximumvalue(conservative)providedbyMayer1994Figure4PurposeofDataCalculationofbaselineemissionsCalculationofprojectemissionsCommentsN/AMethodology:VCSVersion4.081Data/ParameterSADataunitm2g-1DescriptionAverageSurfaceAreaofthesedimentEquations(47)SourceofdataLaboratoryproceduresdescribedinMayer1994ValueappliedN/AJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedN/APurposeofDataCalculationofbaselineemissionsCalculationofprojectemissionsCommentsN/AData/ParameterGHGBSL-eroded-CO2,i,tDataunittCO2eha-1yr-1DescriptionCO2emissionsfromtheerodedSOCpoolinthebaselinescenarioinstratumiinyeartEquations27,(48),(50)SourceofdataEstimatedusingmethodsdescribedinSection8.1.4.3ValueappliedN/AJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedN/APurposeofDataCalculationofbaselineemissionsCommentsN/AMethodology:VCSVersion4.082Data/ParameterCBSL-eroded,i,tDataunittCha-1yr-1DescriptionCmasspresentinerodedsoilmaterialinthebaselinescenarioinstratumiinyeartEquations(48),(49)SourceofdataEstimatedusingmethodsdescribedinSection8.1.4.3ValueappliedN/AJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedN/APurposeofDataCalculationofbaselineemissionsCommentsN/AData/ParameterC%BSL-eroded,i,tDataunit%DescriptionPercentageofcarbonofsoilmaterialerodedinthebaselinescenarioEquations(49)SourceofdataEstimatedusingmethodsdescribedinSection8.1.4.3ValueappliedN/AJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedN/APurposeofDataCalculationofbaselineemissionsCommentsN/AMethodology:VCSVersion4.083Data/ParameterDepth_eBSL,i,tDataunitmDescriptionDepthoftheerodedareafromthesurfacetothesurfacepriortoerosioninthebaselinescenarioinstratumiinyeartEquations(49)SourceofdataEstimatedusingmethodsdescribedinSection8.1.4.3ValueappliedN/AJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedSeeSourceofdataabovePurposeofDataCalculationofbaselineemissionsCommentsN/AData/ParameterGHGBSL-excav-CO2,i,tDataunittCO2eha-1yr-1DescriptionCO2emissionsfromtheSOCpooloftidalwetlandsoilexposedtoanaerobicenvironmentinthebaselinescenarioinstratumiinyeartEquations27,(56),(58)SourceofdataEstimatedusingmethodsdescribedinSection8.1.4.4ValueappliedN/AJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedN/APurposeofDataCalculationofbaselineemissionsCommentsN/AMethodology:VCSVersion4.084Data/ParameterCBSL-excav,i,tDataunittCha-1yr-1DescriptionSoilorganiccarbonstockintidalwetlandsoilexposedtoanaerobicenvironmentthroughexcavationinthebaselinescenarioinstratumiinyeartEquations(56),(57)SourceofdataEstimatedusingmethodsdescribedinSection8.1.4.4ValueappliedN/AJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedN/APurposeofDataCalculationofbaselineemissionsCommentsN/AData/ParameterC%BSL-excav,i,tDataunit%DescriptionPercentageofcarbonofsoilmaterialexcavatedinthebaselinescenarioEquations(57)SourceofdataEstimatedusingmethodsdescribedinSection8.1.4.4ValueappliedN/AJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedN/APurposeofDataCalculationofbaselineemissionsCommentsN/AMethodology:VCSVersion4.085Data/ParameterDepth_exBSL,i,tDataunitmDescriptionDepthofpiled-upsoilmaterialduetoexcavationinthebaselinescenarioinstratumiinyeartEquations(57)SourceofdataEstimatedusingmethodsdescribedinSection8.1.4.4ValueappliedN/AJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedSeeSourceofdataabovePurposeofDataCalculationofbaselineemissionsCommentsN/AData/ParameterEFN2O,burnDataunitgN2O/kgdrybiomassDescriptionEmissionfactorforN2OemissionsfromvegetationburningEquations82SourceofdataTheprojectproponentmayusefactorsthathavebeendeterminedforgrasslandvegetation.AsuitableEFN2Ovalueis0.21,fromTable2.5ofthe2006IPCCGuidelinesforNationalGreenhouseInventories.ValueappliedN/AJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedNitrousoxideemissionfactorsforthecombustionofherbaceouswetlandvegetationarenotcurrentlyavailableinscientificliterature.However,theseemissionsareexpectedtobesimilartothoseforgrasslandvegetation.PurposeofDataCalculationofprojectemissionsCommentsN/AMethodology:VCSVersion4.086Data/ParameterEFCH4,burnDataunitgCH4/kgdrybiomassDescriptionEmissionfactorforCH4emissionsfromvegetationburningEquations83SourceofdataTheprojectproponentmayusefactorsthathavebeendeterminedforgrasslandvegetation.AsuitableEFCH4valueis2.3,fromTable2.5ofthe2006IPCCGuidelinesforNationalGreenhouseInventories.ValueappliedN/AJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedMethaneemissionfactorsforthecombustionofherbaceouswetlandvegetationarenotcurrentlyavailableinscientificliterature.However,theseemissionsareexpectedtobesimilartothoseforgrasslandvegetation.PurposeofDataCalculationofprojectemissionsCommentsN/AData/Parameterallowable_uncertDataunit%DescriptionAllowableuncertainty;20%or30%ata90%or95%confidencelevel,respectivelyEquations(93)SourceofdataN/AValueappliedN/AJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedN/APurposeofDataCalculationofnetGHGemissionsreductionsCommentsN/AMethodology:VCSVersion4.087Data/ParameterVex,ty,i,tDataunitm3DescriptionVolumeoftimberextractedfromwithinstratumi(doesnotincludeslashleftonsite)byspeciesjandwoodproductclasstyinyeartEquations103SourceofdataDatarepresentingcommonpracticeinharvestingValueappliedN/AJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedThisvolumedoesnotincludeloggingslashleftonsite.Theprojectproponentshouldalsomakesurethatextractedvolumesaregrossvolumesremoved(i.e.,notalreadydiscountingforestimatedwoodwaste).Assignmentofvolumeextractedtowoodproductclass(es),mustbesubstantiatedonthebasisofparticipatoryruralappraisal(PRA)findingsorrecordsoftimbersales.Assignmentofvolumeextractedtospecies,mustbesubstantiatedonthebasisofeitherPRAfindings,harvestrecords,oracommercialinventory.PurposeofDataCalculationofprojectemissionsCommentsN/AData/ParameterDjDataunittd.m.m-3DescriptionBasicwooddensityintd.m.m-3forspeciesjEquations103SourceofdataThesourceofdatashallbechosenwithpriorityfromhighertolowerpreferenceasfollows:(a)Nationalspecies-specificorgroupofspecies-specific(e.g.,fromNationalGHGinventory);(b)Species-specificorgroupofspecies-specificfromneighboringcountrieswithsimilarconditions.Sometimes(b)maybepreferableto(a);(c)Globalspecies-specificorgroupofspecies-specific(e.g.,IPCC2006INVGLsAFOLUChapter4Tables4.13and4.14).Methodology:VCSVersion4.088Species-specificwooddensitiesmaynotalwaysbeavailable,andmaybedifficulttoapplywithcertaintyinthetypicallyspeciesrichforestsofthehumidtropics,henceitisacceptablepracticetousewooddensitiesdevelopedforforesttypesorplantfamiliesorspeciesgroups.ValueappliedN/AJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedWhereusingwooddensitiesdevelopedoutsideoftheprojectcountry(cases(b)and(c)aboveunderSourceofdata),wooddensitiesmustbevalidatedwitheitherlimiteddestructivesamplingordirectmeasurementofwoodhardness(e.g.,withaPilodynwoodtester)inthefieldandcorrelatingwithwooddensity.Samplesormeasurementsshouldbefrom20-30trees.Forvalidationofmeanforesttypeorspeciesgroupwooddensities,representationofspeciesinthesampleshouldbeproportionaltotheiroccurrenceintermsofbasalareaorvolumeintheprojectarea(notabundanceorstemdensity).Samplesshouldproviderepresentationacrossthelengthofthetree.Woodsamplesarecutindiscsandthicknessanddiametermeasuredtocalculategreenvolume.Samplesareovendried(105oC)toaconstantweightinthelaboratory,anddensitycalculatedasdryweight(g)perunitgreenvolume(cm3).Ifthedensityofthesamples/measurements(ormeandensityinthecaseofforesttypeorspeciesgroupmeans)iswithin±10%oftheselecteddensityvalues,thentheselecteddensityvaluesmaybeused.Otherwise,anewdensityvaluemustbedevelopedwithmoreextensivesampling,usingthevalidationsamplesasabase.Wherenewspeciesareencounteredinthecourseofmonitoring,newwooddensityvaluesmustbesourcedfromtheliteratureandvalidated,ifnecessary,asperrequirementsandproceduresabove.PurposeofDataCalculationofprojectemissionsCommentsN/AData/ParameterCFjDataunittCt-1d.m.Methodology:VCSVersion4.089DescriptionCarbonfractionofdrymatterintCt-1d.m.forspeciesjEquations103SourceofdataSpecies-orfamily-specificvaluesfromtheliterature(e.g.,IPCC2006INVGLsAFOLUChapter4Table4.3)shallbeusedifavailable,otherwisedefaultvalueof0.47tCt-1d.m.canbeused.ValueappliedN/AJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedN/APurposeofDataCalculationofprojectemissionsCommentsN/AData/ParameterSLFtyDataunitDimensionlessDescriptionFractionofwoodproductsthatwillbeemittedtotheatmospherewithin5yearsofproductionbyclassofwoodproducttyEquations104SourceofdataThesourceofdataisthepublishedpaperofWinjumetal.199833ValueappliedWinjumetal.1998givethefollowingproportionsforwoodproductswithshort-term(<5yr)usesafterwhichtheyareretiredandoxidized(applicableinternationally):Sawnwood0.2Woodbasepanels0.1Otherindustrialroundwood0.3PaperandPaperboard0.4Themethodologymakestheassumptionthatallotherclassesofwoodproducts,andwherewoodproductclasstyisunknown,are100%oxidizedwithin5years.33Winjum,J.K.,Brown,S.andSchlamadinger,B.1998.Forestharvestsandwoodproducts:sourcesandsinksofatmosphericcarbondioxide.ForestScience44:272-284Methodology:VCSVersion4.090ThereforeSLF,bywoodproductclass,isequalto:WoodProductClassSLFSawnwood0.2Woodbasepanels0.1Otherindustrialroundwood0.3Paperandpaperboard0.4Otherclassesofwoodproducts1.0JustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedParametervaluestobeupdatedifnewempirically-basedpeer-reviewedfindingsbecomeavailable.PurposeofDataCalculationofprojectemissionsCommentsN/AData/ParameterOFtyDataunitDimensionlessDescriptionOF=Fractionofwoodproductsthatwillbeemittedtotheatmospherebetween5and100yearsafterproductionbyclassofwoodproducttyEquations104SourceofdataThesourceofdataisthepublishedpaperofWinjumetal.199834ValueappliedWinjumetal.1998givesannualoxidationfractionsforeachclassofwoodproductssplitbyforestregion(boreal,temperateandtropical).Thismethodologyprojectsthesefractionsover95yearstogivetheadditionalproportion(OFvalue)thatisoxidizedbetweenthe5thand100thyearsafterinitialharvest:WoodProductClassOFBorealTemperateTropicalSawnwood0.360.600.8434Winjum,J.K.,Brown,S.andSchlamadinger,B.1998.Forestharvestsandwoodproducts:sourcesandsinksofatmosphericcarbondioxide.ForestScience44:272-284Methodology:VCSVersion4.091Woodbasepanels0.600.840.97Otherindustrialroundwood0.840.970.99Paperandpaperboard0.360.600.99JustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedParametervaluestobeupdatedifnewempirically-basedpeer-reviewedfindingsbecomeavailable.Every10years,projectproponentsshouldreviewresearchfindingstoidentifyfurtherrefinementstotheemissionfactorsthatareempirically-basedandpeer-reviewed.PurposeofDataCalculationofprojectemissionsCommentsN/AData/ParameterBCEFDataunitDimensionlessDescriptionBiomassconversionandexpansionfactorforconversionofcommercialwoodvolumeperunitareatototalabovegroundtreebiomassperunitarea;notethatBCEFasdefinedhere,andinmostapplications,isnotappliedonaperstembasisEquations104SourceofdataEquationsmusthavebeenderivedusingawiderangeofmeasuredvariables(commercialwoodvolumeperunitareaandtotalabovegroundbiomassperunitarea)basedondatasetsthatcompriseatleast30trees.Equationsmustbebasedonstatisticallysignificantregressionsandmusthaveanr2thatis≥0.8.Thesourceofdatashallbechosenwithpriorityfromhighertolowerpreferenceasfollows:(a)Existinglocalforesttype-specific;(b)Nationalforesttype-specificoreco-region-specific(e.g.,fromnationalGHGinventory);(c)Foresttype-specificoreco-region-specificfromneighboringcountrieswithsimilarconditions.Sometimes(c)mightbepreferableto(b);(d)Globalforesttypeoreco-region-specific(e.g.,IPCC2006INVGLsAFOLUChapter4Table4.5)Methodology:VCSVersion4.092TheprojectvolumedatatowhichtheselectedBCEFisappliedmustconformtothedatatheBCEFwasoriginallyderivedfrom,inparticular,itmustmatchforesttype,standstructure,minimumDBH,andcovertherangeofpotentialindependentvariablevalues(commercialvolumes)likelytobeencounteredintheprojectarea.CaremustbetakentoensurethattheselectedBCEFdoesnotaccountfornon-commercialspeciesnotrepresentedincommercialvolumeestimates(i.e.,isrestrictedtoexpandingmerchantablevolumestoaccountforonlynon-merchantabletreecomponents).ValueappliedN/AJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedAlternatively,BCEF,wherenotdirectlyavailable,canbecalculatedaswooddensity(tdrymassm-3greenvolume)×BEF(BiomassExpansionFactor=ratioofabovegroundbiomasstobiomassofthecommercialvolume).IfusingBCEFsdevelopedoutsidetheprojectcountry(cases(c)and(d)aboveunderSourceofdata),itisnecessarytovalidatetheapplicabilityofBCEFsused.Validationisperformedby:1.LimitedMeasurements•Selectatleast20plotsintheprojectareacoveringawiderangeofcommercialvolumes.•Obtaintreemeasurements(e.g.DBH,heighttoa10cmdiametertop)fromwhichtocalculatecommercialvolumeandtotalbiomass.•Calculatecommercialvolumeperunitarea(e.g.usingSmalian’sformula)andtotalbiomassperunitarea(usingthebiomassequation(s)selectedforapplicationinCP-AB)foreachplot•CalculateBCEFforeachplot(biomass(t)/commercialvolume(m3)Graphtheplot-levelestimatesofBCEFversuscommercialvolumealongwiththeBCEFequation(predicted)tobevalidated.IftheestimatedBCEFsofthemeasuredplotsaredistributedbothaboveandbelowthepredictedvaluetheBCEFequationmaybeused.TheBCEFequationmayalsobeusedifthemeasuredplotshaveaBCEFconsistentlylowerthanthatpredicted.IfgraphingtheBCEFofthemeasuredplotsindicatesasystematicbiastooverestimationofBCEF(>75%oftheplotsbelowthepredictedvalue)thenanotherBCEFequationmustbeselectedordevelopedanew.Methodology:VCSVersion4.093PurposeofDataCalculationofprojectemissionsCommentsN/AData/ParameterPcomi,tDataunitDimensionlessDescriptionCommercialvolumeasapercentoftotalabovegroundvolumeinstratumiinyeartEquations104SourceofdataThesourceofdatashallbechosenwithpriorityfromhighertolowerpreferenceasfollows:(a)Directforestinventoryoftheprojectarea,distinguishingcommerciallyviablestocksonthebasisofspeciesandtreesize,referencinglocalexpertknowledgeoraparticipatoryruralassessment(PRA)ofharvestpracticesandmarkets;(b)Forestinventoryfromaproxyareainthesameregion,representingthesameforesttypeandageclass,distinguishingcommerciallyviablestocksonthebasisofspeciesandtreesize,referencinglocalexpertknowledgeofharvestpracticesandmarketsNationalandforesttype-specificoreco-region-specific(e.g.,fromNationalGHGinventory).ValueappliedN/AJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedN/APurposeofDataCalculationofprojectemissionsCommentsN/AData/ParameterCH4-GWPDataunitDimensionlessDescriptionGlobalWarmingPotentialofCH4Methodology:VCSVersion4.094Equations(59)–(61),83,101SourceofdataIPCCValueappliedN/AJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedN/APurposeofDataCalculationofbaselineemissionsCalculationofprojectemissionsCommentsN/AData/ParameterN2O-GWPDataunitDimensionlessDescriptionGlobalWarmingPotentialofN2OEquations(62)-68,82,102SourceofdataIPCCValueappliedN/AJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedN/APurposeofDataCalculationofbaselineemissionsCalculationofprojectemissionsCommentsN/A9.2DataandParametersMonitoredForallequationsusedforthecalculationofbaselineemissionswherethesubscriptBSLisused,thesemustbesubstitutedbyWPSandappliedtotheprojectscenario.FordataandparametersusedforthecalculationofbaselineemissionslistedinSectionError!ReferenceMethodology:VCSVersion4.095sourcenotfound.abovethatarealsomonitoredintheprojectscenario,thefrequencyofmonitoring/recordingisateachmonitoringperiod,andQA/QCprocedurestobeappliedareprovidedinSection9.3.2.Data/Parameter:Biomassi,tDataunit:kgd.m.ha-1Description:AbovegroundshrubbiomassinstratumiinyeartEquations81,82Sourceofdata:MeasuredusingfieldcollecteddataattimeofburningorconservativelyestimatedfromdatacollectedduringaperiodwithgreaterbiomasswithinyeartDescriptionofmeasurementmethodsandprocedurestobeapplied:ThisvaluemaybeobtainedfromBSHRUB,i,tinAR-Tool14whereBSHRUB,i,t(shrubbiomassperhectareinshrubbiomassstratumiatagivenpointoftimeinyeart;td.m.ha-1)isquantified.Convertfromtd.m.ha-1tokgd.m.ha-1.Frequencyofmonitoring/recording:One-timemeasurementforeachburneventQA/QCprocedurestobeapplied:SeeSection9.3.2Purposeofdata:CalculationofprojectemissionsCalculationmethod:N/AComments:N/AData/ParameterΔCTREE_PROi,tDataunittCO2-eyr-1DescriptionChangeincarbonstockintreebiomassintheprojectscenarioinyeartEquations75)SourceofdataDerivedfromapplicationofAR-Tool14ValueappliedSeeAR-Tool14Methodology:VCSVersion4.096JustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedSeeAR-Tool14PurposeofDataSeeAR-Tool14CommentsCalculationofprojectemissionsData/ParameterΔCSHRUB_PROi,tDataunittCO2-eyr-1DescriptionChangeincarbonstockinshrubbiomassintheprojectscenarioinyeartEquations75)SourceofdataDerivedfromapplicationofAR-Tool14ValueappliedSeeAR-Tool14JustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedSeeAR-Tool14PurposeofDataSeeAR-Tool14CommentsCalculationofprojectemissionsData/ParameterCWPS-herb,i,tDataunittCha-1DescriptionCarbonstockinherbaceousvegetationintheprojectscenarioinstratumiinyeartEquations(78)SourceofdataDirectmeasurementsordefaultfactorValueappliedN/AMethodology:VCSVersion4.097JustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedAdefaultfactorof3tCha-1maybeappliedforstratawith100%herbaceouscover.Forareaswithavegetationcover<100%,a1:1relationshipbetweenvegetationcoverandCWPS,-herb,i,tmustbe.Thedefaultfactormaybeclaimedforoneyearonlyduringtheprojectcreditingperiodasherbaceousbiomassquicklyreachesasteadystate.Vegetationcovermustbedeterminedbycommonlyusedtechniquesinfieldbiology.ProceduresformeasuringcarbonsstocksinherbaceousvegetationarespecifiedinSection9.3.6.PurposeofDataAteachmonitoringperiodCommentsSeeSection9.3.2Data/ParameterAWPS,i(orAi,t)DataunithaDescriptionAreaofprojectstratumi(inyeart)Equations4,13,26,(79),82,83SourceofdataDelineationofstratamustbedonepreferablyusingaGeographicalInformationSystem(GIS),whichallowsforintegratingdatafromdifferentsources(includingGPScoordinatesandRemoteSensingdata)ValueappliedSeeSourceofdataaboveJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedAteachmonitoringperiodPurposeofDataSeeSection9.3.2CommentsCalculationofprojectemissionsData/Parameter%OM(or%OMsoil)Dataunit%Methodology:VCSVersion4.098DescriptionPercentageofsoilthatisorganicmatterEquations34,35,(37),(39),76,77,(79),(79)SourceofdataDirectmeasurementsbasedonloss-on-ignitionormaybederivedfromdirectmeasurementsofsoilcarbon.ThesemeasurementsmaybemadeusingsamplescollectedinSection9.3.7orindirectlyfromthesoilcarbonpercentageasdescribedinSection8.1.4.2.7.ValueappliedTheequationsprovidedweredevelopedfortidalmarshsoilsbyCraftetal.1991andformangrovesoilsbyKauffmanetal.2011,andforseagrasssoilsbyFourqureanetal.2012,assummarizedinHowardetal.2014JustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedAteachmonitoringperiodPurposeofDataSeeSection9.3.2CommentsCalculationofprojectemissionsData/Parameter%CsoilDataunit%DescriptionPercentageofsoilorganicCEquations33,(37),(39)SourceofdataDirectmeasurementsormaybederivedfromdirectmeasurementsofsoilorganicmatter.ThesemeasurementsmaybemadeusingsamplescollectedinSection9.3.7orindirectlyfromthesoilorganicmatterpercentagedeterminedthroughloss-on-ignitionasdescribedinSection9.3.6.ValueappliedN/AJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedSeeSourceofdataabovePurposeofDataAteachmonitoringperiodMethodology:VCSVersion4.099CommentsSeeSection9.3.2Data/ParameterCrowncover,vegetationcoverDataunit%DescriptionProportionofanareacoveredbytheherbaceousvegetation,shrubs,and/orthecrownsoflivetreesEquationsN/ASourceofdataFortheprojectscenario,crownorvegetationcovermappingmustbeperformedaccordingtoestablishedmethodsinscientificliterature.ValueappliedN/AJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedSeeSourceofdataabovePurposeofDataAteachmonitoringperiodCommentsSeeSection9.3.2Data/Parameter:BDDataunit:kgm-3Description:DrybulkdensityEquations29,(49),(57),100Sourceofdata:Directmeasurements,orfromarelationshipwithorganiccarboncontentprovidedbythescientificliterature.Descriptionofmeasurementmethodsandprocedurestobeapplied:Massofsoilmaterialafterdryingpervolumeofsoilmaterial,basedoncommonlyacceptedproceduresbythescientificcommunity.Methodology:VCSVersion4.0100Frequencyofmonitoring/recording:AteachmonitoringperiodQA/QCprocedurestobeapplied:SeeSection9.3.2Purposeofdata:CalculationofprojectemissionsCalculationmethod:N/AComments:RefertoproceduresinSections8.1.4.2.1–8.1.4.2.6.Forallequationsinthesesections,thesubscriptBSLmustbesubstitutedbyWPStomakeclearthattherelevantvaluesarebeingquantifiedfortheprojectscenario.Data/Parameter:%OMdepsedDataunit:%Description:PercentageofdepositedsedimentthatisorganicmatterEquations(40),44,(46)Sourceofdata:Maybeestimateddirectlyusingloss-on-ignition(LOI)data,indirectlyfromsoilcarbonpercentageasdescribedinSection8.1.4.2.7,orfromthedefaultvalueprovidedinSection8.1.4.2.7.Thesemeasurementsmaybemadeusingsamplescollectedonsedimenttilesorthroughcollectionandcarbonanalysis(seeSection9.3.7)ofsuspendedsedimentsintidalchannelsorsedimentsdepositsintidalflatsDescriptionofmeasurementmethodsandprocedurestobeapplied:LOImaybeassessedusingstandardlaboratoryproceduresFrequencyofmonitoring/recording:AteachmonitoringperiodQA/QCprocedurestobeapplied:SeeSection9.3.2Purposeofdata:CalculationofprojectemissionsMethodology:VCSVersion4.0101Calculationmethod:N/AComments:RefertoproceduresinSections8.1.4.2.1–8.1.4.2.6.Forallequationsinthesesections,thesubscriptBSLmustbesubstitutedbyWPStomakeclearthattherelevantvaluesarebeingquantifiedfortheprojectscenario.Data/Parameter:%CdepsedDataunit:%Description:Percentageofcarbonindepositedsediment;%Equations44,(46),(47)Sourceofdata:Maybeestimateddirectlyusingloss-on-ignition(LOI)dataorindirectlyfromsoilcarbonpercentageasdescribedinSection8.1.4.2.7.Thesemeasurementsmaybemadeusingsamplescollectedonsedimenttilesorthroughcollectionandcarbonanalysis(seeSection9.3.7)ofsuspendedsedimentsintidalchannelsorsedimentsdepositsintidalflats.Descriptionofmeasurementmethodsandprocedurestobeapplied:Thedefaultfactorisderivedfromthemaximumvalue(conservative)providedbyMayer1994Figure4Frequencyofmonitoring/recording:AteachmonitoringperiodQA/QCprocedurestobeapplied:SeeSection9.3.2Purposeofdata:CalculationofprojectemissionsCalculationmethod:N/AComments:RefertoproceduresinSections8.1.4.2.1–8.1.4.2.6.Forallequationsinthesesections,thesubscriptBSLmustbesubstitutedbyWPStomakeclearthattherelevantvaluesarebeingquantifiedfortheprojectscenario.Methodology:VCSVersion4.0102Data/Parameter:ETFC,yDataunit:tCO2-eyr-1Description:CO2emissionsfromfossilfuelcombustionduringtheyeary;tCO2yr-1Equations(65)Sourceofdata:DerivedfromapplicationofCDMtoolAR-Tool05EstimationofGHGemissionsrelatedtofossilfuelcombustioninA/RCDMprojectactivitiesDescriptionofmeasurementmethodsandprocedurestobeapplied:SeeAR-Tool05Frequencyofmonitoring/recording:SeeARTool05QA/QCprocedurestobeapplied:SeeARTool05Purposeofdata:CalculationofprojectemissionsCalculationmethod:SeeARTool05Comments:CalculationsaredoneforeachstratumiData/Parameter:NERERRORDataunit:%Description:TotaluncertaintyforprojectactivityEquations72,73Sourceofdata:N/ADescriptionofmeasurementmethodsandprocedurestobeapplied:N/AMethodology:VCSVersion4.0103Frequencyofmonitoring/recording:AteachmonitoringperiodQA/QCprocedurestobeapplied:N/APurposeofdata:CalculationofnetGHGemissionreductionsCalculationmethod:N/AComments:N/AData/Parameter:Vex,ty,i,tDataunit:m3Description:Volumeoftimberextractedfromwithinstratumi(doesnotincludeslashleftonsite)byspeciesjandwoodproductclasstyinyeartEquations83Sourceofdata:Estimatesderivedfromfieldmeasurementsorremoteassessmentswithaerialphotographyorsatelliteimagery.Descriptionofmeasurementmethodsandprocedurestobeapplied:SeeSection9.1Frequencyofmonitoring/recording:AteachmonitoringperiodQA/QCprocedurestobeapplied:Purposeofdata:CalculationofprojectemissionsCalculationmethod:N/AComments:Vex,ty,i,t9.3DescriptionoftheMonitoringPlanMethodology:VCSVersion4.0104GeneralThemainobjectiveofprojectmonitoringistoreliablyquantifycarbonstocksandGHGemissionsintheprojectscenarioduringtheprojectcreditingperiod,priortoeachverification,withthefollowingmaintasks:•MonitorprojectcarbonstockchangesandGHGemissions•Estimateex-postnetcarbonstockchangesandGHGemissions,andGHGemissionreductionsThemonitoringplanmustcontainatleastthefollowinginformation:•Adescriptionofeachmonitoringtasktobeundertaken,andthetechnicalrequirementstherein•Parameterstobemeasured•Datatobecollectedanddatacollectiontechniques•Frequencyofmonitoring•Qualityassuranceandqualitycontrol(QA/QC)procedures•Dataarchivingprocedures•Roles,responsibilitiesandcapacityofmonitoringteamandmanagementUncertaintyandqualitymanagementQualitymanagementproceduresarerequiredforthemanagementofdataandinformation,includingtheassessmentofuncertaintyrelevanttotheprojectandbaselinescenarios.Asfaraspractical,uncertaintiesrelatedtothequantificationofGHGemissionreductionsandremovalsbysinksshouldbereduced.Tohelpreduceuncertaintiesintheaccountingofemissionsandremovals,thismethodologyuseswheneverpossiblethemethodsfromtheGPG-LULUCF,GPG-2000,theIPCC’sRevised2006Guidelinesandpeer-reviewedliterature.Despitethis,potentialuncertaintiesstillarisefromthechoiceofparameterstobeused.UncertaintiesarisingfrominputparameterswouldresultinuncertaintiesintheestimationofbothbaselinenetGHGemissionsandprojectnetGHGemissions,especiallywhenglobaldefaultfactorsareused.Theprojectproponentmustidentifykeyparametersthatwouldsignificantlyinfluencetheaccuracyofestimates.Localvaluesthatarespecifictotheprojectcircumstancesmustthenbeobtainedforthesekeyparameters,wheneverpossible.Thesevaluesshouldbebasedon:•Datafromwell-referencedpeer-reviewedliteratureorotherwell-establishedpublishedsources35;•NationalinventorydataordefaultdatafromIPCCliteraturethathas,wheneverpossible35Typically,citationsforsourcesofdatausedshouldinclude:thereportorpapertitle,publisher,pagenumbers,publicationdate,etc.(oradetailedwebaddress).Ifweb-basedreportsarecited,hardcopiesshouldbeincludedasannexesintheprojectdescriptionifthereisanylikelihoodthatsuchreportsmaynotbepermanentlyavailable.Methodology:VCSVersion4.0105andnecessary,beencheckedforconsistencyagainstavailablelocaldataspecifictotheprojectcircumstances;or•Intheabsenceoftheabovesourcesofinformation,expertopinionmaybeusedtoassistwithdataselection.Expertswilloftenprovidearangeofdata,aswellasamostprobablevalueforthedata.Therationaleforselectingaparticulardatavaluemustbedescribedintheprojectdescription.Inchoosingkeyparameters,ormakingimportantassumptionsbasedoninformationthatisnotspecifictotheprojectcircumstances,suchasinuseofdefaultdata,theprojectproponentmustselectvaluesthatwillleadtoanaccurateestimationofnetGHGemissionreductions,takingintoaccountuncertainties.Ifuncertaintyissignificant,theprojectproponentmustchoosedatasuchthatitindisputablytendstounder-estimate,ratherthanover-estimate,netGHGprojectbenefits.Toensurethatcarbonstocksareestimatedinawaythatisaccurate,verifiable,transparent,andconsistentacrossmeasurementperiods,theprojectproponentmustestablishanddocumentclearstandardoperatingproceduresandproceduresforensuringdataquality.Ataminimum,theseproceduresmustinclude:•Comprehensivedocumentationofallfieldmeasurementscarriedoutintheprojectarea.Thisdocumentmustbedetailedenoughtoallowreplicationofsamplingintheeventofstaffturnoverbetweenmonitoringperiods.•Trainingproceduresforallpersonsinvolvedinfieldmeasurementordataanalysis.Thescopeanddateofalltrainingmustbedocumented.•Aprotocolforassessingtheaccuracyofplotmeasurementsusingacheckcruiseandaplanforcorrectingtheinventoryiferrorsarediscovered.•Protocolsforassessingdataforoutliers,transcriptionerrors,andconsistencyacrossmeasurementperiods.•Datasheetsmustbesafelyarchivedforthelifeoftheproject.Datastoredinelectronicformatsmustbebackedup.ExpertjudgmentTheuseofexpertjudgmentfortheselectionandinterpretationofmethods,selectionofinputdatatofillgapsinavailabledata,andselectionofdatafromarangeofpossiblevaluesoruncertaintyranges,iswellestablishedintheIPCC2006goodpracticeguidance.Obtainingwell-informedjudgmentsfromdomainexpertsregardingbestestimatesanduncertaintiesisanimportantaspectinvariousproceduresthroughoutthismethodology.TheprojectproponentmustusetheguidanceprovidedinChapter2(ApproachestoDataCollection),inparticular,Section2.2andAnnex2A.1oftheIPCC2006goodpracticeguidance.Methodology:VCSVersion4.0106MonitoringofprojectimplementationInformationmustbeprovidedandrecordedintheprojectdescriptiontoestablishthat:1)Thegeographicpositionoftheprojectareaisrecordedforallareasofwetland.Thegeographiccoordinatesoftheprojectarea(andanystratificationorbufferzonesinsidetheareaareestablished,recordedandarchived.Thiscanbeachievedbyfieldsurvey(e.g.,usingGPS),orbyusinggeoreferencedspatialdata(e.g.,maps,GISdatasets,orthorectifiedaerialphotographyorgeoreferencedremotesensingimages).Theabovealsoappliestotherecordingofstrata.2)Commonlyacceptedprinciplesoflanduseinventoryandmanagementareimplemented.•Standardoperatingprocedures(SOPs)andqualitycontrol/qualityassurance(QA/QC)proceduresforinventoriesincludingfielddatacollectionanddatamanagementmustbeapplied.UseoradaptationofSOPsalreadyappliedinnationallandusemonitoring,oravailablefrompublishedhandbooks,orfromtheIPCCGPGLULUCF2003,isrecommended.•ApplySOPs,especially,foractionslikelytocausesoildisturbances.•Projectplanningdocumentation,togetherwitharecordoftheplanasactuallyimplementedduringtheprojectmustbeavailableforvalidationorverification,asappropriate.Continuedcompliancewiththeapplicabilityconditionsofthismethodologymustbeensuredbymonitoringthat:•Thewatertableisnotloweredexceptwheretheprojectconvertsopenwatertotidalwetlands,orimprovesthehydrologicalconnectiontoimpoundedwaters.•Theburningoforganicsoilasaprojectactivitydoesnotoccur.•Peatlandfireswithintheprojectareadonotoccurintheprojectscenario.Iftheydooccurasnon-catastrophicevents,theyareaccountedforbycancellingtheFireReductionPremiumfortheentireprojectortheindividualprojectactivityinstance.•N-fertilizersarenotusedwithintheprojectareaintheprojectscenario.Wheretheprojectproponentchoosestomonitoralterationsofwatertabledepthintheprojectareatodemonstratenoalterationofmeanannualwatertabledepthsinadjacentareas,orthatsuchalterationislimitedtolevelsthatdonotinfluenceGHGemissions,theprojectproponentmustusewaterlevelgaugesorvegetationassessments,oracombinationofthese.Waterlevelgaugesmustbeinstalledintheprojectareaandreadingsmustbecomparedwiththehydrologicalmodelingresultsorexpertjudgmentonwhichtheestablishmentoftheprojectareawasbased.Thenumberandspacingofwaterlevelgaugesmustbebasedonhydrologicalmodelingorexpertjudgment.Methodology:VCSVersion4.0107StratificationandsamplingframeworkStratificationoftheprojectareaintorelativelyhomogeneousunitsmayeitherincreasethemeasuringprecisionwithoutincreasingthecostunduly,orreducethecostwithoutreducingmeasuringprecisionbecauseofthelowervariancewithineachhomogeneousunit.Theprojectproponentmustpresentintheprojectdescriptionanex-antestratificationoftheprojectareaorjustifythelackofit.Thenumberandboundariesofthestratadefinedexantemaychangeduringtheprojectcreditingperiod(expost).Theex-poststratificationmustbeupdatedwherethefollowingoccur:•Unexpecteddisturbancesoccurringduringtheprojectcreditingperiod(e.g.,duetochangesinthehydrology,fire,pestsordiseaseoutbreaks),affectingdifferentlyvariouspartsofanoriginallyhomogeneousstratum;•Managementactivities(forestry,agriculture,hydrology)thatareimplementedinawaythataffectstheexistingstratification.Establishedstratamaybemergedifthereasonsfortheirestablishmentarenolongerrelevant.Thesamplingframework,includingsamplesize,plotsize,plotshape,anddeterminationofplotlocationmustbespecifiedintheprojectdescription.Wherechangesincarbonstocksaretobemonitored(e.g.,intrees),permanentsamplingplotsmustbeused,notingthefollowing:1)Todeterminethesamplesizeandallocationamongstrata,thelatestversionoftheCDMtoolAR-Tool03CalculationofthenumberofsampleplotsformeasurementswithinA/RCDMprojectactivitiesmaybeused.Thetargetedconfidenceintervalmustbe90%or95%.Wherea90%confidenceintervalisadoptedandthewidthoftheconfidenceintervalexceeds20%oftheestimatedvalueorwherea95%confidenceintervalisadoptedandthewidthoftheconfidenceintervalexceeds30%oftheestimatedvalue,anappropriateconfidencedeductionmustbeapplied,asspecifiedinSection8.5.2.2)Inordertoavoidbias,sampleplotsshouldbemarkedinconspicuously.3)Thesampleplotsizemustbeestablishedaccordingtocommonpracticeinforest,vegetationandsoilinventories.4)Toavoidsubjectivechoiceofplotlocations,thepermanentsampleplotsmustbelocatedeithersystematicallywitharandomstartorcompletelyrandomlyinsideeachdefinedstratum.Thegeographicalposition(GPScoordinate),administrativelocation,stratumandstand,seriesnumberofeachplot,aswellastheprocedureusedforlocatingthemmustberecordedandarchived.Thesamplingplotsaretobeasevenlydistributedaspossible,wherelargerstratahavemoreplotsthansmallerstrata.However,remoteareasandareaswithpooraccessibilitymaybeexcludedforthelocationofsamplingplots.Suchareasmustbemappedasseparatestrataandforthesestrataaccountingofcarbonstocksintreebiomassintheprojectscenarioisconservativelyomitted(seeSection5.2.2).Thechoiceofmonitoringfrequencymustbejustifiedintheprojectdescription.Methodology:VCSVersion4.0108SamplingofherbaceousvegetationAbovegroundherbaceousmass(herb)isdefinedasapoolthatincludesbothlivingplantmass(i.e.,biomass)anddeadplantmass(i.e.,litter).Alllivinganddeadherbaceousmassisclippedabovethesoilsurfacefrominsideeachsampleframe.Drymassisdeterminedbyeitherdryingtheentirewetsampletoaconstantweight,ordryingasubsampleofthewetmasstodetermineadry-to-wetmassratioconversionfactor.Becauseabovegroundmasscanbehighlyseasonal,theaveragepoolmustbecalculatedfromatleasttwosamplesrepresentingtheminimumandmaximumstandingstocks.Alternatively,aconservativeestimateofthepoolmaybedeterminedfromasampletakenatthetimeofminimumstandingstock.SoilcoringapproachforestimatingsoilcarbonSoilorganiccarbon(CWPS-soil,i,t)maybeestimatedbydeterminingtheorganiccarbonaccumulatedaboveaconsistentreferenceplane.Thereferenceplanemustbeestablishedusingamarkerhorizon(mostcommonlyusingfeldspar)36,astronglycontrastingsoillayer(suchastheboundarybetweenorganicandmineralsoilmaterials),aninstalledreferenceplane(suchastheshallowmarkerinasurfaceelevationtable)37,alayeridentifiedbiogeochemically(suchasthroughradionuclide,heavymetal,orbiologicaltracers)38,alayerwithsoilorganiccarbonindistinguishablefromthebaselineSOCconcentration(asdeterminedinSection8.1.4.2)39orotheracceptedtechnologies.Notethatfeldsparmarkerhorizonsshouldnotbeusedinsystemswheretheyareunstable,suchassomesandysoilsandsystemswithsignificantbioturbation.Thematerialbelowthereferenceplanemaybeconservativelyassumedtohavezerochangeduetoprojectactivities.Themateriallocatedabovethereferenceplanemustbeanalyzedfortotalcarbonandbulkdensity.Sedimentsamplesmaybecollectedfortheestimationof%Cdepsed(seeSection8.1.4.2.7)usingsedimenttiles,40throughcollectionofsuspendedsedimentsintidalchannelsduringaperiodofhighsuspendedsedimentconcentrationorbycollectingcoresofsedimentdepositsintidalflats.TotalorganiccarbonmustbeanalyzeddirectlyusingCHNelementalanalysisortheWalkley-Blackchromicacidwetoxidationmethodordeterminedfromloss-on-ignition(LOI)datausingthefollowingequation:%C=0.04×%OM+0.0025×%OM2(onlyformarshsoils)41(95)%C=0.415×%OM+2.8857(onlyformangrovesoils)42(96)36Cahoon&Turner198937Cahoonetal.200238DeLauneetal.197839Greinieretal.201340PasternackandBrush199841Craftetal.199342Kauffmanetal.2011,Howardetal.2014Methodology:VCSVersion4.0109%C=-0.21+0.40(%OM)(onlyforseagrasssoilswith%OM<20%)43(97)%C=-0.33+0.43(%OM)(onlyforseagrasssoilswith%OM>20%)44(98)Alternatively,anequationdevelopedusingsite-specificdatamaybeusedoranequationfrompeer-reviewedliteraturemaybeusediftheequationrepresentssoilsfromthesameorsimilarsystemsasthoseintheprojectarea.Inorganiccarbonshouldberemovedfromsamplesifpresentinsignificantquantities,usuallythroughacidtreatment(suchassulfurousorhydrochloricacid).Livecoarsebelow-groundtreebiomassshouldberemovedfromsoilsamplespriortoanalysis.Additionallivebelow-groundbiomassmayberemovedorincluded.Soilsamplescollectedmaybeaggregatedtoreducethevariability.Themassofcarbonperunitareaiscalculatedasfollows:𝐶!"#$%&'(',=∑$𝐶𝐹#+,,%-./(0×𝐵𝐷×𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠×1003120/3'45(99)Where:CWPS-soil,i,t=Carbonstockintheprojectscenarioinstratumiinyeart;tCha-144/12=RatioofmolecularweightofCO2tocarbon;dimensionlessNdepth=Numberforsoilhorizons,basedonsubdivisionsofsoilcoresCFSOC_sample=Carbonfractionofthesample,asdeterminedinlaboratory;%BD=Bulkdensity,asdeterminedinlaboratory;gcm-3Thickness=Thicknessofsoilhorizon;cm100=Conversionfactorofgcm-3totonneha-1MonitoringCH4andN2OemissionsDirectmeasurementofCH4and/orN2Oemissionsmaybemadewitheitheraclosedchambertechniqueorachamber-lesstechniquesuchaseddycovarianceflux.Foreddycovariancemethods,theguidelinespresentedinVCSmethodologyVM0024MethodologyforCoastalWetlandCreationmustbefollowed,takingintoaccounttheadditionalguidancebelow.Fluxmeasurementsareexpectedtoconformtostandardbestpracticesusedinthescientificcommunity45.Thebasicdesignoftheclosedchamberforwetlandsrequiresabasethatextendsintothesoil(5cmminimum),andachamberthatisplacedovertheplantsandsealedtothebase.TopreventthemeasurementfromdisturbingCH4emissions,thebaseshouldbeplacedatleastonedayinadvance,andtheplotshouldbeapproachedonanelevatedramporboardwalkwhentakingsamples,althoughfailuretodosoisconservativebecauseitwillcausehigherfluxes.CH4fluxiscalculatedasthedifferenceininitialandfinalheadspaceCH4concentration,withoutremovingnon-linearincreasescausedbybubble(ebullition)fluxesthat43Fourqureanetal.2012assummarizedinHowardetal.201444Fourqureanetal.2012assummarizedinHowardetal.201445Oremland1975Methodology:VCSVersion4.0110mayhaveoccurred.Initialandfinalconcentrationswillbedeterminedastheaverageofduplicatedeterminations.BecauseCH4andN2Oemissionscanbelowfromtidalwetlands,itmaybenecessarytoencloselargeareas(≥0.25m2)orlengthenthemeasurementperiodtoimprovesensitivity.Methaneemissionsfromstratalackingvegetation(<25%cover),suchasopenwater,hollowsorponds,canbedominatedbyepisodicbubbleemissions(i.e.,ebullition).Chambersforopenwateremissionsaretypicallyasinglepiecethatfloatssuchthatthebottomextendsunderthewatersurface(5cmminimum).Floatingchambersmustbedeployedforaminimumof4days.EddycovariancetechniquessensetotalCH4andN2Oemissions(diffusiveandebullition)athightemporalresolution;suchsystemsmustbedeployedforaminimumof48hoursofuseabledata.CH4andN2Oemissionestimatesmustbeeitheraccurateorconservative.Accurateestimatesmustaccountforvariationintimecausedbychangesinplantactivity,temperature,watertabledepth,salinityandothersourcesofvariation,andinspacecausedbyfactorssuchastopography(e.g.,hummocksversushollows)orplantcover.AconservativeestimatemaybebasedondirectmeasurementstakenattimesandplacesinwhichCH4orN2Oemissionsareexpectedtobethehighestbasedonexpertjudgment,datasetsorliterature.Fluxesmustbemeasuredinthestratumwiththehighestemissions.ForCH4,thesearelikelytobestratainthewetteststratathatsupportemergentvegetation,butmayincludestagnantpoolsofwater.EddyfluxtowersmustbeplacedsothatthefootprintliesinthestratumwiththehighestCH4orN2Oemissionsfor50%ofthetime.CH4fluxesmustbemeasuredwhenthewatertableis<10cmfromthesoilsurface,duringtimesofyearwhenemissionsarehighest,suchasthewarmestmonthand/orwettestmonth.WhenCH4emissionratesincorporatemeasurementsfromperiodsoftimeoutsidethepeak,theymustbemadeatapproximatelymonthlyintervals.Inadditiontotheconservativeprinciplesabove,theprojectproponentmustconsiderotherfactorsthatarespecifictothemethodapplied.Inparticular,closedchambersmustbetransparentanddeployedindaylightunlessitiscanbeshownthatCH4emissionsarenotsensitivetolight.Regardlessofmethod,emissionsmustbeaveragedandexpressedasdaily(24hour)ratesandconvertedtoannualestimatesusingthefollowingequations:GHGWPS-soil-CH4,i,t=GHGCH4-daily,i,t×365×CH4-GWP×100(100)Where:GHGWPS-soil-CH4,i,t=CH4emissionsfromtheSOCpoolintheprojectscenarioinstratumiinyeart;tCO2eha-1yr-1GHGCH4-daily,i,t=AveragedailyCH4emissionsinthebaselinescenariobasedondirectmeasurementsofstratumiinyeart;mgCH4m-2d-1CH4-GWP=GlobalwarmingpotentialofCH4;dimensionlessMethodology:VCSVersion4.0111i=1,2,3…MWPSstratainthebaselinescenariot=1,2,3,…tyearselapsedsincetheprojectstartdate100=Conversionfactorofmgm-2totonneha-1GHGWPS-soil-N2O,i,t=GHGN2O-daily,i,t×365×N2O-GWP×100(101)Where:GHGWPS-soil-N2O,i,t=N2OemissionsfromtheSOCpoolintheprojectscenarioinstratumiinyeart;tCO2eha-1yr-1GHGN2O-daily,i,t=AveragedailyN2Oemissionsinthebaselinescenariobasedondirectmeasurementsofstratumiinyeart;mgN2Om-2d-1N2O-GWP=GlobalwarmingpotentialofN2O;dimensionlessi=1,2,3…MWPSstratainthebaselinescenariot=1,2,3,…tyearselapsedsincetheprojectstartdate100=Conversionfactorofmgm-2totonneha-1WherethedefaultfactorapproachisusedforCH4emissions(seeSection8.1.4.5.4),thesalinityaverageorsalinitylowpointwillbemeasuredonshallowporewater(within30cmfromsoilsurface)usingahandheldsalinityrefractometerorotheracceptedtechnology.ThesalinityaveragemustbecalculatedfromobservationsthatrepresentvariationinsalinityduringperiodsofpeakCH4emissions(e.g.,duringthegrowingseasonintemperateecosystemsorthewetseasonintropicalecosystems).Whenthenumberofobservationsduringthisperiodissmall(fewerthanonepermonthforoneyear),thesalinitylowpointfromthesedatamustbeused.Thesalinityofthefloodwatersource(e.g.,anadjacenttidalcreek)duringthisperiodmaybeusedasaproxyforsalinityinporewaterprovidedthereisregularhydrologicexchangebetweenthesourceandthewetland(i.e.,thesourcefloodsthewetlandatleaston20%ofhightides).MonitoringofsoilsubsidenceWheresoilsubsidenceondrainedwetlandsisusedasaproxyforcarbonlossandCO2emissions,appliedtechniquesandcalculationsmustfollowinternationalstandardsofapplicationorlocalstandardsaslaidoutinpertinentscientificliteratureorhandbooks.Theloweringoftheorganicsoilsurfaceovertime(subsidence)mustbemeasuredrelativetoafixedpoint(datum)(e.g.,usingapolefixedinthemineralsubsoil).Dipwellsusedforwatertabledepthmonitoringmaybeusedforsubsidencemonitoringwiththeadvantagethatwatertabledepthandsubsidencearemonitoredattheexactsamelocation.Inareaswherefiremayoccur,itisbest(also)toplaceironpoles.Ifpolesarelostduetofire,newpolesmustbeinstalled.Heightlossesduetofiremustbetreatedseparatelyfromthosecausedbymicrobialoxidationoftheorganicsoilinassessingcarbonlosses.Interpolationofthetrendinorganicsoilheightlossoveralongerperiodsurroundingthefireeventallowsforquantifyingheightlossduetothefire.Atleast10replicatesubsidencepolesmustbeevenlydistributedperstratum.Topreventdisturbance,polesmayneedtobefencedMethodology:VCSVersion4.0112in.Inordertoavoiddisturbanceoftheorganicsoilsurfaceduringreadingsitisadvisabletoplaceboardwalks.Forremoteandinaccessibleareas,theprojectproponentmayrelyonvegetationcoverasanindicatorforwatertabledepthandassociatedsubsidenceratesassupportedbydataorliteraturereferencesinaconservativeway.Theminimummonitoringfrequencyforsoilsubsidenceisonceayear.Consolidationofthesaturatedorganicsoilbelowthewatertablemaycontributetosubsidenceovermultipleyears.Theprojectproponentmustconservativelyassessthecontributionofconsolidationtooverallsubsidencebyreferencetoliteraturevaluesorexpertjudgmentordemonstratethatconsolidationplaysaninsignificantroleinoverallsubsidence(<5%).Thecalculationofcarbonlossratesfromsubsidencedatamustfollowpertinentscientificliterature(e.g.,Couwenberg&Hooijer2013)andusuallyrequiresdataonthevolumetriccarboncontentoftheorganicsoil.Whensubsidencemeasurementsareusedtoestablishemissionfactorstobeassociatedwithotherproxies,measurementsmustbecarriedoutoveraperiodofatleast24monthstocoverintra-andinter-annualvariability.EstimationofErodedSoilDepthandDepthofSoilExposedtoAerobicConditionsSoilcarbonlossmayoccurthroughthreemechanisms:1)verticaledgeerosionatawetlandedgeorchannelbank,generallyoccurringattheseawardmarginofwetlandsexposedtowaveenergy,2)horizontalsurfacesoilerosion;and/or3)soilexposuretoaerobicconditions.1.Verticaledgeerosionatawetlandedgeorchannelbank:Thedepthoferodedsoilmaybemeasuredinthefielddirectlyfromthedifferenceinelevationbetweentheemergentwetlandsurfaceatthewetlandedgetothesurfaceofanadjacentmudflat,orsedimentsbelowadjacentwaters.Theadjacentpointmustbechosenconservatively,andmustrepresenttheshallowestpointofthetransitionfromthewetlandtomudflatoradjacentsubaquaticsedimentsurface.Determinationofthesurfaceelevationofmudflatslopemustbebasedupontheprojectedamountofemergentwetlandretreat.Internallossofsedimentthroughchannelenlargementandorchannelnetworkexpansionoccursinwetlandswithinsufficientsedimentsupplytobuildatapacematchingsealevelriseinsettingswithatidalrangegreaterthan1m.Changeinchannelvolumecanbecalculatedusinghydraulicgeometryequationsandapproaches.462.Horizontalsurfacesoilerosion:Soildepthmaybecalculatedbydirectmeasurementatareferencesitewithreferencetoadatumthatcanbejustifiedasnothavingshiftedverticallyrelativetotheoriginalsoilsurface.Thisdatummaybedepthtoamineralsoilhorizonthathasnotshiftedduetocompactionorabedrocksoilhorizon,apointonmangrovestumpsheldinplacevertically(generallyduetosoilscomposedofcoarsesilt46e.g.,Allen2000;WilliamsandOrr2002Methodology:VCSVersion4.0113orsand),orthroughradiometricanalysistoidentifytheageofexposedsoilsurfaces.3.Soilexposuretoaerobicconditions:Thedepthofsoilexposedtoaerobicconditionsthroughdrainageisintendedtoidentifythedepthatwhichanaerobicconditionsnolongersuppressorganicmatterdecompositionastheydoinwetlandsoils.Inwetlandscience,theseanaerobicconditionsaregenerallyunderstoodtocorrespondtotheconditionsinwhichironisreduced.Thedepthtowhichthesoilisreducingwithrespecttoironmaybeidentifiedusingplatinumelectrodes,IRIS(IndicatorofReductioninSoils)Tubes,47thepresenceofreducedironinporewateroronsoilpedsurfaces(indicatedwithAlpha-alpha-Dipyridylorotherlaboratoryanalysis),orotheracceptedtechnologies.Thesemethodsmustbeusedduringthetimeofyearwiththepeakheightofanaerobicconditions(i.e.,peaksustainedwatertableandsufficienttemperatureformicrobialactivity48).MonitoringWaterTableIfwatertableisusedasaproxyforcarbonlossandGHGemissions,monitoringofwatertablesintheprojectorproxyareamustbebasedonmeasurementsinappropriatestrata.Watertabledepthmeasurementscanbecontinuouswithdataloggersandusingmin-maxdevicesorsimplewaterlevelgauges(dipwellsconsistingofe.g.,perforatedPVCtubes),Appliedtechniquesmustfollowinternationalstandardsofapplicationorlocalstandardsaslaidoutinpertinentscientificliteratureorhandbooks.Watertabledepthmeasurementsmustbecarriedoutatleasteverytwomonths.Atleast10replicatedipwellsmustbeevenlydistributedperstratum,toensuredataconsistencyalsowhendipwellsarelost.Inpeatswampforest,dipwellsmustbeplacedinsurfacedepressionsbetweentreemounds.Visualinspectionofthemultiplerecordswithinasinglestratumallowsforidentificationofoutliervaluesatsinglelocations,indicatingmeasurementerrorsthatshouldbeexcludedfromanalysis.Forremoteandinaccessibleareas,projectproponentsmayrelyonvegetationcoverasanindicatorforwatertabledepthassupportedbydataorliteraturereferencesinaconservativeway.10REFERENCESAllen,JRL2000.MorphodynamicsofHolocenesaltmarshes:AreviewsketchfromtheAtlanticandsouthernNorthSeacoastsofEurope.QuaternaryScienceReviews19:1155-1231.47Rabenhorstet.al.201348Vaughanet.al.2009Methodology:VCSVersion4.0114Anisfeld,S.C.,M.J.Tobin,G.Benoit1999.Sedimentationratesinflow-restrictedandrestoredsaltmarshesinLongIslandSound.Estuaries22:231-244.BallhornU,SiegertF,MasonMandSLimin2009.DerivationofburnscardepthsandestimationofcarbonemissionswithLIDARinIndonesianpeatlands.ProcNatlAcadSciUSA106(50):21213-21218.Blair,N.E.,andAller,R.C.2012.TheFateofTerrestrialOrganicCarbonintheMarineEnvironment.AnnualReviewofMarineScience4(1):401–423.Cahoon,DR,JCLynch,BCPerez,BSegura,RHolland,CStelly,GStephenson,andPHensel2002.Adeviceforhighprecisionmeasurementofwetlandsedimentelevation:II.Therodsurfaceelevationtable.JournalofSedimentaryResearch72(5):734-739.Cahoon,DRandRETurner1989.AccretionandcanalimpactsinarapidlysubsidingwetlandII.Feldsparmarkerhorizontechnique,Estuaries,12:260-268.Chmura,GL,SCAnisfeld,DRCahoon,andJCLynch2003.Globalcarbonsequestrationintidal,salinewetlandsoils.Globalbiogeochemicalcycles17:1111-1123.doi:10.1029/2002GB001917Couwenberg,JandHooijerA2013.Towardsrobustsubsidence-basedsoilcarbonemissionfactorsforpeatsoilsinsouth-eastAsia,withspecialreferencetooilpalmplantations.MiresandPeat12:Art.1.(Online:http://www.mires-and-peat.net/map12/map_12_01.htm)Craft,C.B.,E.D.Seneca,andS.W.Broome.1991.LossonIgnitionandKjeldahlDigestionforEstimatingOrganicCarbonandTotalNitrogeninEstuarineMarshSoils:CalibrationwithDryCombustion.Estuaries14(2):175.DeLaune,RD,WHPatrickJr,andRJBuresh1978.Sedimentationratesdeterminedby137Csdatinginarapidlyaccretionsaltmarsh,Nature275:532-533.Duarte,CM,HKennedy,NMarbàa,andIHendriks2013.Assessingthecapacityofseagrassmeadowsforcarbonburial:Currentlimitationsandfuturestrategies.Ocean&CoastalManagement83:32-38.French,J2006.Tidalmarshsedimentationandresiliencetoenvironmentalchange:Exploratorymodellingoftidal,sea-levelandsedimentsupplyforcinginpredominantlyallochthonoussystems.MarineGeology235:119-136.Greiner,JT,KJMcGlathery,JGunnell,BAMcKee.2013.Seagrassrestorationenhances“bluecarbon”sequestrationincoastalwaters.PLoSONE8(8):e72469.Howard,J.,Hoyt,S.,Isensee,K.,Pidgeon,E.,Telszewski,M.(eds.)(2014).CoastalBlueCarbon:Methodsforassessingcarbonstocksandemissionsfactorsinmangroves,tidalsaltmarshes,andseagrassmeadows.ConservationInternational,IntergovernmentalOceanographicCommissionofUNESCO,InternationalUnionforConservationofNature.Arlington,Virginia,USA.Methodology:VCSVersion4.0115IPCC2006.IPCCGuidelinesforNationalGreenhouseGasInventories,PreparedbytheNationalGreenhouseGasInventoriesProgramme,EgglestonH.S.,BuendiaL.,MiwaK.,NgaraT.andTanabeK.(eds).Published:IGES,Japan.Kauffman,J.B.,Heider,C.,Cole,T.G.,Dwire,K.A.,Donato,D.C.(2011).EcosystemcarbonstocksofMicronesianmangroveforests.Wetlands31:343–352.Mayer,L.M.1994.Surfaceareacontroloforganiccarbonaccumulationincontinentalshelfsediments.GeochimicaetCosmochimicaActa58(4):1271–1284.McGlathery,KL,LKReynolds,LWCole,RJOrth,SRMarion,ASchwarzchild2012.Recoverytrajectoriesduringstatechangefrombaresedimenttoeelgrassdominance.MarineEcologyProgressSeries448:209-221.Mitsch,WJ,andJGGosselink2007.Wetlands.4thed.JohnWiley&Sons,Inc.,Hoboken,NJ.Morris,JT,Edwards,J,Crooks,S,Reyes,E2012.AssessmentofCarbonSequestrationPotentialinCoastalWetlands.Pp517-532.In:RecarbonizationoftheBioshpere:EcosystemandGlobalCarbonCycle.R.Lal,K.Lorenz,R.Hüttl,B.U.Schneider,J.vonBraun(eds).Springer.Needelman,BA,IMEmmer,SEmmett-Mattox,SCrooks,JPMegonigal,DMyers,MPJOreska,andKMcGlathery2018.Thescienceandpolicyoftheverifiedcarbonstandardmethodologyfortidalwetlandandseagrassrestoration.EstuariesandCoasts41(8):2159-2171Oremland,RS1975.MethaneProductioninShallow-Water,TropicalMarineSediments.AppliedMicrobiolology30(4):602-608.Orr,MK,Crooks,SandWilliam,PB2003.IssuesinSanFranciscoEstuarytidalrestoration:Willrestoredtidalmarshesbesustainable?SanFranciscoEstuaryandWatershedScience1(1):108-142.http://www.escholarship.org/uc/item/8hj3d20tPoffenbarger,H,BANeedelman,andJPMegonigal2011.Salinityinfluenceonmethaneemissionsfromtidalmarshes.Wetlands31:831-842.Rabenhorst,M.C.,DeLaune,R.D.,Reddy,K.R.,Richardson,C.J.,andMegonigal,J.P.2013.UsingSynthesizedIronOxidesasanIndicatorofReductioninSoils.In:SSSABookSeries.SoilScienceSocietyofAmerica.Smith,CJ,RDDeLaune,andWHPatrickJr1983.NitrousoxideemissionfromGulfCoastwetlands.GeochimicaetCosmochimicaActa,47:1805-1814.Stralberg,S,Brennan,M,Callaway,JC,Wood,JKSchile,LM,Jongsomjit,D,Kelly,MParker,VM,Crooks,S2011.Evaluatingtidalmarshsustainabilityinthefaceofsea-levelrise:ahybridmodelingapproachappliedtoSanFranciscoBayPlosONE.http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0027388Williams,P.B.andOrr,M.K.2002.PhysicalevolutionofrestoredbreachedleveesaltmarshesintheSanFranciscoBayestuary.Restor.Ecol.10:527-542.Methodology:VCSVersion4.0116Methodology:VCSVersion4.0117APPENDIX1:LONG-TERMCARBONSTORAGEINWOODPRODUCTSIntroductionTheproceduresincludedinthisappendixallowfortheex-anteestimationofcarbonstocksinthelong-termwoodproductspoolintheprojectscenario.Theproceduresareapplicabletoallcaseswherewoodisharvestedforconversiontowoodproductsforcommercialmarkets,forallforesttypesandageclasses.Theapproachoutlinedemploysanemissionfactor(WW)derivedbyWinjumetal.1998.Intheeventthatnewresearchfindingsupdatingorrefining(e.g.,forspecificcountries)theWWfactorbecomeavailableinthefuture(duringtheprojectcreditingperiod),theymustbeusedinplaceofthefactorsincludedinthisappendix;otherwisethefactorswillremainvalid.Theuseofthisappendixrequiresthatprojectproponentsreviewresearchfindings(thatproduceemissionsfactorscompatiblewiththeconceptualframeworkhere)atleastevery10yearstoidentifyfurtherrefinementstotheemissionfactorsthatareempiricallybasedandpeerreviewed.AllfactorsarederivedfromWinjumetal.1998.Ifapprovedtimberharvestplans,specifyingharvestintensityperstrataintermsofvolumeextractedperha,areavailablefortheprojectarea,useOption1.Ifapprovedharvestplansarenotavailable,useOption2.Onceactualextractiondataisobtainedfromtheprojectsite,theymustbemonitoredandusedforcalculations.Ateachverificationevent,thelong-termaveragemustberecalculatedbasedonpastharvestedvolumesandmostrecentforecasts.Option1:DirectVolumeExtractionEstimationStep1:Identifythewoodproductclass(es)(ty;definedhereassawnwood,wood-basedpanels,otherindustrialroundwood,paperandpaperboard,andother)thataretheanticipatedenduseoftheextractedcarboncalculatedinStep2.Step2:Calculatethebiomasscarbonofthevolumeextractedbywoodproducttypetyfromwithintheprojectboundary:𝐶`%,(a,+,(=∑(𝑉/b,(a,c,+×𝐷c×𝐶𝐹c×::);#c$))(102)Where:CXB,ty,i=Extractedbiomasscarbonbyclassofwoodproducttyfromstratumiinyeart;tCO2eVex,ty,i,t=Volumeoftimberextractedfromwithinstratumi(doesnotincludeslashleftMethodology:VCSVersion4.0118onsite)byspeciesjandwoodproductclasstyinyeart;m3Dj=Meanwooddensityofspeciesj;td.m.m-3CFj=Carbonfractionofbiomassfortreespeciesj;tCt-1d.m.j=1,2,3,…Streespeciesty=Woodproductclass–definedhereassawnwood(s),wood-basedpanels(w),otherindustrialroundwood(oir),paperandpaperboard(p),andother(o)i=1,2,3…Mstratat=1,2,3,…tyearselapsedsincetheprojectstartdate44/12=RatioofmolecularweightofCO2tocarbon,tCO2etC-1Step3:Calculatetheproportionofbiomasscarbonextractedthatremainssequesteredinlong-termwoodproducts.𝐶!",+,(=∑(𝐶`%,(a,+×$1−𝑊𝑊(a'×$1−𝑆𝐿𝐹(a'×$1−𝑂𝐹(a'(a$3,d,2+C,.,2(103)Where:CWP,i,t=Extractedcarboninthewoodproductspoolfromstratumiinyeart;tCO2eCXB,ty,i,t=Meanstockofextractedbiomasscarbonbyclassofwoodproducttyfromstratumi;inyearttCO2eWWty=Woodwaste.Thefractionimmediatelyemittedthroughmillinefficiencybyclassofwoodproductty;dimensionlessSLFty=Fractionofwoodproductsthatwillbeemittedtotheatmospherewithin5yearsoftimberharvestbyclassofwoodproductty;dimensionlessOFty=Fractionofwoodproductsthatwillbeemittedtotheatmospherebetween5and100yearsoftimberharvestbyclassofwoodproductty;dimensionlessty=Woodproductclass–definedhereassawnwood(s),wood-basedpanels(w),otherindustrialroundwood(oir),paperandpaperboard(p),andother(o)i=1,2,3,…Mstratat=1,2,3,…tyearselapsedsincetheprojectstartdateOption2:CommercialInventoryEstimationStep1:Calculatethebiomasscarbonofthecommercialvolumeextractedpriortoorintheprocessofharvesting:𝐶`%,+,(=𝐶E%'()),+,(×)%4Je×𝑃𝑐𝑜𝑚+,((104)Where:CXB,i,t=Extractedbiomasscarbonfromstratumiinyeart;tCO2eCAB_tree,i,t=Abovegroundbiomasscarbonstockinstratumiinyeart;tCO2eBCEF=Biomassconversionandexpansionfactor(BCEF)forconversionofmerchantablevolumetototalabovegroundtreebiomass;dimensionlessPcomi,t=Commercialvolumeasapercentoftotalabovegroundvolumeinstratumi;dimensionlessi=1,2,3,…MstrataMethodology:VCSVersion4.0119t=1,2,3,…tyearselapsedsincetheprojectstartdateStep2:Identifythewoodproductclass(es)(ty;definedhereassawnwood,wood-basedpanels,otherindustrialroundwood,paperandpaperboard,andother)thataretheanticipatedenduseoftheextractedcarboncalculatedinStep1.Step3:SameasStep3inOption1above.DataandparametersavailableatvalidationareprovidedinSection9.1.DataandparametersmonitoredareprovidedinSection9.2.APPENDIX2:ACTIVITYMETHODIntroductionandapproachThepositivelistanalysisdescribedbelowwasoriginallyconductedonlyfortheUnitedStatesand,therefore,version1.0ofVM0033MethodologyforTidalWetlandandSeagrassRestorationlimitedtheuseoftheactivitymethodtothiscountry;projectslocatedinallothercountrieswererequiredtoapplytheprojectmethod.TheupdatetoVM0007REDDMethodologyFrameworktoversion1.6expandeditsapplicabilitytotidalwetlandrestorationandconservationactivities.Aspartofthisupdate,anewadditionalitymodulewascreatedthatexpandedtheoriginalactivitypenetrationanalysisconductedforVM0033,version1.0,tobeapplicabletobegloballyapplicable.ThisanalysisisdescribedinthemoduleVMD0052DemonstrationofAdditionalityofTidalWetlandRestorationandConservationProjectActivities.ManyoftheupdatestoVM0007REDDMethodologyFrameworktoexpanditsapplicabilitytotidalwetlandconservationandrestoration,includingthetoolVMD0052DemonstrationofAdditionalityofTidalWetlandRestorationandConservationProjectActivities,werebasedlargelyonVM0033.TheupdatestoVM0033inversion1.2weretoalignitwithsomechangesoradditionsmadeduringtheVM0007updateprocess.Theoriginalpositivelistanalysisispresentedbelow.ThefullactivitymethodanalysisisprovidedinthemoduleVMD0052,whichmustbeusedtodemonstrateadditionalityinconjunctionwiththismethodology.OriginalanalysisTidalwetlandrestorationactivitiesintheUnitedStatesareatalowlevelofpenetrationrelativetotheirmaximumadoptionpotential.Specifically,theactivitypenetrationlevelofsuchactivitiesis2.74%(orlower),asdemonstratedbelow.Thislevelisbelowthe5%thresholdspecifiedintheVCSStandard.Therefore,tidalwetlandrestorationprojectsmeetingtheapplicabilityconditionsofthismethodologyandoccurringwithinthe35coastalstates,commonwealthsorterritoriesoftheUnitedStatesofAmericaaredeemedadditional.Activitypenetrationisgivenas:APy=OAy/MAPyWhere:Methodology:VCSVersion4.0121APy=Activitypenetrationoftheprojectactivityinyeary(percentage)OAy=ObservedadoptionoftheprojectactivityinyearyMAPy=MaximumadoptionpotentialoftheprojectactivityinyearyIndeterminingtheactivitypenetrationfortidalwetlands,itisnecessarytoaddressseagrassmeadowsandothertidalwetlandsseparatelyduetohowtheseecosystemsaretreatedinthedatasources.Fortidalwetlandrestoration(excludingseagrassmeadows)intheUnitedStates,thesetermsarefurtherdefinedasfollows:OAy=Theaverageannualaggregateoftidalwetlandsrestoredfrom2000to2013asreportedbythe28NationalEstuaryPrograms(NEPs)andtheirpartnerstotheU.S.EnvironmentalProtectionAgency(measuredinacreage),andexpandedtoincluderestorationactivitiesthatoccurinaU.S.estuarythatisnotanNEP.MAPy=Thesumofthefollowing:•Aportionofthe1991100-yearCoastalFloodplainasdeterminedbytheFederalEmergencyManagementAgency(FEMA)•PasttidalwetlandlossestoshallowopenwaterinLouisianaduetocoastalerosion•TidalwetlandlossesreportedbytheU.S.FishandWildlifeService(USFWS)from1991to2013ForseagrassmeadowrestorationintheUnitedStates,thesetermsaredefinedasfollows:OAy=ThepercentageofseagrassmeadowrestorationprojectscomparedtootherestuaryrestorationprojectsfundedbyNOAAsince2000.MAPy=TheestimatedacreageofseagrassmeadowlossesintheU.S.JustificationforTidalWetlandRestorationPenetrationLevels(Non-Seagrass)TheUnitedStatesisadevelopedcountrywherestateshaveequalaccesstothenation’sresources.FactorscausingdegradationaresubstantiallythesamethroughouttheUnitedStates.Climateisnotafactorindegradationoftidalwetlands,whichoccuracrossallclimaticregionsintheUnitedStates.NocompletenationaldatasetsexistforeithertidalwetlandlossorrestorationintheUnitedStates.However,forbothMAPyandOAy,conservativeapproximationscanbemadebyexaminingthedatafromseveralsources.Methodology:VCSVersion4.0122TimePeriodThetimeperiodselectedfordeterminingtheOAyis2000to2013.Thisisanappropriatetimeperiodforthefollowingreasons:•TheNEPsbeganreportingannualactivitiesin2000andhavebeenrequiredtodososince1993bytheGovernmentPerformanceResultsAct.TheNEPdatabasecapturesactivitiespriorto2000aswellasthosefrom2000forward.•TheEstuaryRestorationAct49wassignedintolawin2000.TheActmaderestoringestuariesanationalpriorityandrepresentsarecognitionofthegrowingimportanceofestuaryhabitatrestoration,includingtidalwetlands.Itprovidedfundingauthorizationandappropriationsforrestorationprojects,andcreatedafederalinteragencycounciltopromoteacoordinatedFederalapproachtoestuaryhabitatrestoration;forgeeffectivepartnershipsamongpublicagenciesandbetweenthepublicandprivatesectors;providefinancialandtechnicalassistanceforestuaryhabitatrestorationprojects;and,developandenhancemonitoringandresearchcapabilities.Priorto2000,thelackofinteragencycoordinationcreatedsporadicanduncoordinatedrestorationactions.•NOAA’sCommunity-basedRestorationProgramwascreatedin1999withinitsRestorationCenterandbeganfundingprojectsthatyearwithjust$500,000infunding50.Thecreationofthisnationalcenterforrestorationalsoindicatesthataturningpointforrestorationwasanticipatedatthattime.Sincethen,NOAA’sannualfundingforrestorationhasgrowntowellover10milliondollars.•RestoreAmerica’Estuaries(RAE)wasestablishedin1997asanationalumbrellaorganizationforregionalnon-profitorganizations.TheseorganizationsidentifiedestuaryrestorationasanemergingopportunityandestablishedRAEtopromoteestuaryrestorationatthenationallevelandtoprovidefinancialsupportfornewrestorationactivities.ThecreationofRAEatthistimereflectstheneedforanationalvoicetocatalyzeincreasedinvestmentinestuaryrestoration.Collectivelythesemilestonesrepresentedaseachangeintherestorationcommunitythathasgreatlyincreasedfundingandcapacityforrestorationactivitiessincetheyear2000,andthereforethetimeperiod2000to2013willcapturethepreponderanceofrestorationactivities.ActivityPenetrationThe28NationalEstuaryProgramsareanappropriatemeanstoquantifyrestorationactivity.TheNationalEstuaryProgram(NEP)wasestablishedunderSection320ofthe1987CleanWaterActasaU.S.EnvironmentalProtectionAgencyprogramtoprotectandrestorethewaterqualityandecologicalintegrityofestuariesofnationalsignificance.TheNEPconsistsof28individualestuaryprogramsintheUnitedStates.EachNEPhasaManagementConferenceconsistingofdiverse49http://www.era.noaa.gov/information/act.html50Personalcommunicationin2000withtheRestorationCenterDirector,JamesBurgess.Methodology:VCSVersion4.0123stakeholdersincludingcitizens,local,stateandfederalagencies,aswellasnon-profitandprivatesectorinterests.Theyemphasizeacollaborativeapproachtoestablishingandimplementinglocally-basedComprehensiveConservationandManagementPlans(CCMP).The28estuarieswithNEPsarethemostadvancedinconservationplanningandimplementation,includingecologicalrestoration,andassuchwillhavethegreatestactivitypenetrationlevelsofestuariesintheUnitedStates.TheyarealsoamongthelargestandmostpopulatedestuaryregionsintheU.S.EstuariesnotincludedintheNEPwilltypicallyhaveamuchlowerpenetrationlevelfortidalwetlandrestoration.ThatestuariesinNEPsfacethesameorsimilarbarrierstoimplementationoftidalwetlandrestorationprojectsasestuariesthatdonothaveanNEPissupportedbytheexpertopinionssupportingthisdocument.TheexpertsalsoconfirmthatthelevelsofrestorationinNEPsaremuchgreaterthanthelevelsofrestorationoccurringinnon-NEPestuariesintheUnitedStates.Toundertaketidalwetlandrestorationrequiressignificantscientific,regulatoryandecologicalexpertise,substantialfinancialresources,cooperatingpartners,andtheabilitytomakelong-termcommitments.Asaparticipatingestuary,eachofthe28NEPsreceivestrongfederalandstatefinancialassistanceandprogrammaticsupportintheseareas-supportwhichnon-NEPestuariesdonotreceive.Moreover,becausetheNEPsarecollaborativepartnershipsofagencies,organizations,businesses,andothers,thedatareportedforeachNEPrepresentsacomprehensivereportingoftherestorationandcreationactivitiesundertakenbythepartners.Thisdemonstratesthatthe28NEPsareanappropriatemeasureofthemostsignificantobservedrestorationactivitiesintheU.S.Additionalprojectactivitiesoccurinnon-NEPestuaries.Toaccountfortheseactivities,acorrectivefactorequaltotheratioofNEPestuarylandareatonon-NEPestuarylandareaisapplied.ThelandareaofthecontiguousU.S.is2,961,266squaremiles51.Coastalcountiesrepresent17%ofthisarea52.Therefore,coastalcountiesinthecontiguousU.S.coverapproximately503,415squaremilesofland(17%ofgeographicextent).Thelandareaofthe28NEPsis246,338squaremiles53.TheratiooflandareainNEPstototallandareaofcoastalcountiesis49%(246,338/503,415).BecausetheNEPsrepresentthemostadvancedandmostsupportedestuaryprograms(seeexpertopinionsbelow),wediscountthenon-NEPestimateby50%.Acorrectionfactorof50%thereforemorethanadequatelycapturesactivityinthenon-NEPestuariesandthetotalOAyisequalto1.5timestheOAyforNEPs.TheEnvironmentalProtectionAgencymaintainsanon-linedatabaseofprojectsreportedbythe28NEPs.Fouryearsofdatawerereviewedtocalculateanaveragerateofadoptionfor2009through51U.S.CensusBureau,https://www.census.gov/geo/reference/state-area.html52NOAA’sListofCoastalCountiesfortheBureauoftheCensusStatisticalAbstractSeries,https://www.census.gov/geo/landview/lv6help/coastal_cty.pdf53NationalEstuaryProgramCoastalConditionReport,Chapter2:ConditionofNationalEstuaryProgramSites-ANationalSnapshot,June2007,http://water.epa.gov/type/oceb/nep/upload/2007_05_09_oceans_nepccr_pdf_nepccr_nepccr_natchap.pdfMethodology:VCSVersion4.01242012,whichwasthenappliedtothe2000to2014period.Thistimeperiodincludesaone-time,significantinfusionoffederalgovernmentfundingforestuaryrestorationin2009.ThroughtheAmericanRecoveryandReinvestmentActof2009,theNationalOceanicandAtmosphericAdministrationreceived$165millionforprojects,whichhadtobecompletedwithin12-18months.Thisone-timeinvestmentinrestorationishighlyunusualoverthepast14years(sincetheNEPdatawasfirstcapturedin2000).Includingthisanomalousyearinestablishinganaverageadoptionratefortheselectedtimeperiodisaconservativeapproachtoestimatingactivitypenetrationbecauseityieldsanaveragerateofrestorationthatishigherthanthemostlikelyrate,andappliesthatratetotheentiretimeperiodfordeterminingOAy.AllUnitedStatesestuariesfaceacommonsetofbarrierstotidalwetlandrestorationincludinginsufficientfunding,lackofwillinglandownersandcommunitysupport,andphysicalandecologicallimitationsandchanges,suchassealevelrise(Vigmostadetal2005,RestoreAmerica’sEstuariesandtheEstuarineResearchFederation,undated).In2000,recognizingthecriticalneedtoprovidefundingforestuaryhabitatrestoration,includingtidalwetlands,andhelptocounterthementionedsocio-economicfactors,theUnitedStatesCongresspassedandPresidentClintonsignedintolaw,theEstuaryActof2000,whichauthorized$275millionoverfiveyearsforrestorationactivities.OAyMethodofAnalysisOAyfortheNEPswasdeterminedthroughasystematicreviewofthedatasetsprovidedbytheEPAforeachoftheNEPs.Inreviewingeachdataset,theanalysisonlyincludesprojectacreageresultingfromprojects,which(1)arenotrequiredbyanyrule,regulation,law,statute,courtsettlementorothermandatoryactionand(2)meetthedefinitionoftidalwetlandrestorationprovidedinthismethodology.Whereaprojectdescriptionincludedmultiplehabitattypes(e.g.,tidalwetland,shoreline,agriculture,etc.)and/ortheprojectdescriptionincludedoneormoreactivitiesinadditiontorestoration(e.g.,acquisitionandbarrierremoval),theentireprojectacreagewasincludedinthecalculation.Thisisconservativebecauseitwillleadtoahigheractivitypenetration.TheNEPOAycalculationisprovidedinTable4.Methodology:VCSVersion4.0125Table4:CalculationofOAyfortheNEPsOncetheNEPOAywasdetermined,toensurecaptureofnon-NEPactivities,itisincreasedby50%fortheActivityPenetrationcalculation.OAy=NEPOAy×1.5=97,422.17acres1.5=146,133acresMaximumAdoptionPotentialTodetermineMAPy,anestimateoftheavailableareafortidalwetlandrestorationneedstobeestablished.Thestartingpointforthisestimateisthe“ProjectedImpactofRelativeSeaLevelRiseontheNationalFloodInsuranceProgram”preparedbytheFederalEmergencyManagementAgency(FEMA1991).FEMAcalculatedtheareaofcoastalfloodplainthatwouldfloodundera100-yearcoastalfloodEstuaryProgram20092010201120124yearaveragePeconicBayEstuaryProgram-----PiscataquaRegionEstuariesPartnership--12.000.053.01BuzzardsBayNationalEstuaryProgram3.74---0.94TillamookEstuariesPartnership46.0044.0016.004.4027.60MobileBayNationalEstuaryProgram137.00-6.502.0036.38SantaMonicaBayRestorationCommission-21.00--5.25TampaBayEstuaryProgram142.7061.28-44.5462.13DelawareCenterfortheInlandBays26.004.00--7.50LowerColumbiaRiverEstuaryPartnership--184.0058.0060.50IndianRiverLagoonNationalEstuaryProgram1,395.7521.26419.00140.30494.08MarylandCoastalBaysProgram64.431.80104.00189.0089.81GalvestonBayEstuaryProgram158.0046.81407.069.00155.22NewYork-NewJerseyHarborEstuaryProgram11.0034.0065.8050.0040.20ChesapeakeBayProgram622.001,005.003,775.00n/a1,800.67PugetSoundPartnership1,277.00140.00505.40101.00505.85CharlotteHarborNationalEstuaryProgram600.50496.00795.00140.00507.88SanFranciscoEstuaryPartnership1,469.00401.003,250.00983.361,525.84Barataria-TerrebonneEstuaryProgram673.58n/a35.00182.00296.86SarasotaBayEstuaryProgram516.00-30.005.00137.75LongIslandSoundStudy58.6588.0042.56137.7081.73PartnershipfortheDelawareEstuary1.306.50--1.95Albemarle-PamlicoNationalEstuaryProgram1.104.0084.200.3122.40BarnegatBayPartnership-----NarragansettBayEstuaryProgram63.0058.00--30.25MassachusettsBaysProgram1,442.00133.0054.0021.00412.50CascoBayEstuaryPartnership---21.805.45CoastalBendBaysandEstuariesProgram1,597.00568.00351.0072.00647.00MorroBayNationalEstuaryProgramn/an/an/an/an/aOneyearaverage,2009-20126,958.732000to2013totalestimate=14Oneyearaverage97,422.17Sources:TidalWetlandAcresRestored1.All2009dataarefrom“NEPProjectInformationandMaps2000-2009,”http://gispub2.epa.gov/NEPMap/archivetree/archivetree.html.(U.S.EnvironmentalProtectionAgency).Fromeachtable,onlytidalwetlandrestorationandcreationprojectsarecounted.2.All2010,2011and2012dataarefromthe“NEPProjectsTableTool,”http://gispub2.epa.gov/NEPmap/NEPTable_allyears/index.html.(NationalEstuaryProgram).Fromeachtable,onlytidalwetlandrestorationandcreationprojectsarecounted.Methodology:VCSVersion4.0126eventfor1990tobe19,500mi2(12,800,000acres).A100-yearfloodeventisdefinedasafloodthatstatisticallyhasa1%chanceofoccurringinanygivenyear.Bydefinition,thecoastalfloodplaindoesnotincludeeitheruplandareasorexistingwetlandareas(wetlandareasdonotfloodbecausetheyarealreadyregularlyinundated).Thecoastalfloodplainconsistssubstantiallyofformerwetlandareasthatweredrainedand/orfilledandconvertedtootherlanduses,suchasagricultural,commercial,orresidentialuses.Thisareaincludesmanybutnotallformertidalwetlandareasthatweredikedordrainedforagricultureandotheruses(someformerwetlandareasarenolongerinthefloodplainastheyarenowwellprotectedbydikesorlevees,e.g.,andthereforearenotincludedinthisestimate,whichisconservative).NotallofthecoastalfloodplainareaidentifiedbyFEMAisrestorableorsuitableforwetlandcreation.ButforestablishinganestimateofMAPy,33%ofthisarea(4,224,000acres)isusedasaconservative(low)estimate.TheFEMAestimatewasmadein1991andonlyincludeslandareassubjecttoflooding.Therefore,wealsoincludeintheMAPytidalwetlandlossessince1991andtidalwetlandsthathavedrownedorconvertedtoopenwaterincoastalLouisiana.Virtuallyalloftheseareasaresuitablefortidalwetlandrestoration.Louisianawetlandlossesfrom1900to1978arereportedtobe901,200acres(U.S.DepartmentoftheInterior1994).TheMAPyestimatedoesnotincludeLouisianacoastalwetlandlossesbetween1978and1986,anditisconservativetoexcludethatareafromtheMAPy.Tidalwetlandlossesfrom1986to1997werereportedtobe8,450acres(Dahl2000).The1991to1997portionoftheselossesisassumedtobe4,225acres,apro-ratedportionofthetotal.Tidalwetlandlossesfrom1998to2004werereportedtobe32,400acres(Dahl2006).Tidalwetlandlossesfrom2004to2009werereportedtobe124,290acres(Dahl2011).Nodataexistsfor2010to2013(fouryears).Weapplytheaveragerateoflossfromthepreviousfiveyearperiod,2004to2009,whichis124,290acres/6years=20,715acres/year.Table5:CalculationofMaximumAdoptionPotentialfortidalwetlandrestoration(non-seagrass)ActivityPenetrationCalculationforTidalWetlands(non-seagrass)MaximumAdoptionPotentialAcres33%ofFEMA1991FloodplainEstimate4,244,000LouisianaDeltaWetlandLosses901,200TidalWetlandLosses1991to19974,228TidalWetlandLosses1998to200432,400TidalWetlandLosses2004to2009124,290TidalWetlandLosses2010to201382,860TotalMAPy(non-seagrass)5,388,978Methodology:VCSVersion4.0127APy=OAy/MAPyAPy=146,133acres/5,338,978acresAPy=2.71%JustificationforSeagrassMeadowRestorationPenetrationLevelsOAyMethodofAnalysisSeagrassmeadowrestorationalsooccursataverylowlevelrelativetoitsmaximumadoptionlevelintheU.S.EvidenceofthisisprovidedbytheNationalOceanicandAtmosphericAdministration,whichmaintainsaRestorationAtlas(NOAA2014).NOAAistheleadfederalagencymandatedwithcoastalandmarinefisherieshabitatrestorationandprotection,includingseagrassmeadowhabitat.NOAA’sleveloffundingforseagrassmeadowrestorationisthereforeasufficientestimateofthetotallevelofseagrassrestoration.TheNOAAdatabasecontainsinformationonabout2,701habitatprojectsthathaveoccurredsince2000,andonly120,or4%,areseagrassmeadowprojects.Thedatabaseincludesnumeroushabitats(e.g.,dune,in-stream,kelp,mangrove,oysterreef)aswellasnumerousactivitiesinwetlandhabitats(restoration,invasivespeciesremoval,marinedebrisremoval).Onlyaportionofthe120seagrassmeadowprojectswouldmeettheapplicabilityconditionsofthismethodology.Therefore,includingallofidentifiedseagrassmeadowrestorationprojectsisconservative.ThetotalacreageofestuaryhabitatrestorationprojectsintheNOAAdatabaseis49,837acres.Seagrassmeadowprojectsaretypicallyconductedatasmallerscalethanotherhabitatactivities;thereforeassumingthat4%ofthetotalacreagecanbeattributedtoseagrassrestorationisconservative.TheOAyforseagrassrestorationistherefore4%of49,837=1,993acres.MaximumAdoptionPotentialMethodofAnalysisforSeagrassRestorationWaycottetal(2009)demonstratedthatseagrassmeadowhabitatlossesintheU.S.were853,845acresbetween1937and2006.Theprimarycausesofthelossofseagrassmeadows–sedimentdeposition,decliningwaterquality,scarringfromvessels,anddisease–aretypicallyreversible.Therefore,alloftheareadocumentedaslostisrestorable.MAPyforseagrassmeadowrestorationistherefore853,845acres.ActivityPenetrationCalculationforSeagrassRestorationAPy=OAy/MAPyAPy=1,993/853,845=0.2%.Methodology:VCSVersion4.0128ReferencesDahl,T.E.2000.StatusandtrendsofwetlandsintheconterminousUnitedStates1986to1997.U.S.DepartmentoftheInterior,FishandWildlifeService,Washington,D.CDahl,T.E.2006.StatusandtrendsofwetlandsintheconterminousUnitedStates1998to2004.U.S.DepartmentoftheInterior;FishandWildlifeService,Washington,D.C.Dahl,T.E.2011.StatusandtrendsofwetlandsintheconterminousUnitedStates2004to2009.U.S.DepartmentoftheInterior;FishandWildlifeService,Washington,D.C.FEMA1991.ProjectedImpactofRelativeSeaLevelRiseontheNationalFloodInsuranceProgram.FederalEmergencyManagementAgency,FederalInsuranceAdministration.NationalOceanicandAtmosphericAdministration.RestorationAtlas.https://restoration.atlas.noaa.gov/src/html/index.html.RestoreAmerica’sEstuariesandtheEstuarineResearchFederation.Undated.PrinciplesofEstuarineHabitatRestoration.Arlington,VA.U.S.DepartmentoftheInterior.1994.TheImpactofFederalProgramsonWetlands,VolumeII:TheEverglades,CoastalLouisiana,GalvestonBay,PuertoRico,California'sCentralValley,WesternRiparianAreas,SoutheasternandWesternAlaska,TheDelmarvaPeninsula,NorthCarolina,NortheasternNewJersey,Michigan,andNebraska.AreporttoCongressbytheSecretaryoftheInterior.http://www.doi.gov/pmb/oepc/wetlands2/v2ch8.cfmU.S.EnvironmentalProtectionAgency.NEPProjectInformationandMaps2000-2009.http://gispub2.epa.gov/NEPMap/archivetree/archivetree.html.U.S.EnvironmentalProtectionAgency.NEPProjectsTableTool.http://gispub2.epa.gov/NEPmap/NEPTable_allyears/index.html.Vigmostad,KarenE.,NicoleMays,AllenHance,andAllegraCangelosi.2005.Large-scaleecosystemrestoration:Lessonsforexistingandemerginginitiatives.Washington,DC:Northeast-MidwestInstitute.Waycott,M,CDuarte,TCarruthers,ROrth,WDennison,SOlyarnik,AColladine,JFourqurean,KHeck,AHughes,GKendrick,WKenworthy,FShort,andSWilliams2009.Acceleratinglossofseagrassesacrosstheglobethreatenscoastalecosystems.PNAS106(30):12377-12381.http://www.pnas.org/content/106/30/12377.full.pdf+htmlMethodology:VCSVersion4.0129ExpertCredentialsDebbieDeVoreistheGulfRestorationProgramCoordinatorfortheUSFish&WildlifeService,whereshecoordinatesrestorationactivitiesfortheServiceofficesandprogramsalongtheGulfCoast.Shehasmorethan15yearsofexperienceincoastalresourcemanagementandhasreceivednumerousawardsinhercareer.CurtisD.TannerisActingManagerfortheDivisionofEnvironmentalAssessmentandRestoration(EAR)intheU.S.FishandWildlifeService,wherehemanagesstaffandactivitiesintheWatershedProtectionandRestorationBranch.HeprovidedleadershipforthePugetSoundNearshoreEcosystemRestorationProject,andhasmorethantwentyyearsofexperienceincoastalresourcemanagementandrestoration.EXPERTOPINIONIDebbieL.DeVoreGulfCoastRestorationProgramManagerU.S.Fish&WildlifeServiceQuestion1–TowhatextentdoestuarieswithoutaNationalEstuaryProgramfacethesamebarrierstotidalwetlandrestorationactivitiesasestuaries,whicharepartofaNationalEstuaryProgram?Wehaveidentifiedthefollowingbarriers,amongothers:funding,landownership/control,politicalwill,alocalenvironment,whichencouragespartnerships,andsocialacceptability.Pleasenotethatweonlyneedtoconsiderbarrierstotidalwetlandrestorationwhereithasalreadybeenidentifiedaspossibleinthelandscape.Basedonyourexperienceandexpertjudgment,doestuariesinNEPsfacethesameorsimilarbarrierstoimplementationoftidalwetlandrestorationprojectsasestuariesthatdonothaveanNEP?Pleaseexplain.Answer:Whilethereare,nodoubt,advantagesaffordedanestuarywhichhasanestablishedNationalEstuaryProgram(NEP)thisdoesnotprecludeorexemptprojectsinthesegeographiesfrommanyofthesamehurdlesthatprojectsfaceinanestuaryoutsidethegeographicofanNEP.Forexample,fundingiscommonlythelargestlimitingfactorinbringingatidalrestorationprojecttoimplementation,regardlessoftheproject'slocation.ProjectswithinvolvementfromanNEPmustapplyforthesamelimitedfundingasanyotherproject(raisingthesameamountofmatch,etc.)andbeheldtothesamereportingandfiduciaryresponsibilitiesaswell.NEPsupportedprojectsmustalsogothroughthesamescrutinytoobtainregulatorypermissiontoconductwork,justasanon-NEPprojectdoes.Methodology:VCSVersion4.0130BothpoliticalwillandpublicsupportforprojectsarealsosimilarissuesfacedbyprojectsbothwithinanNEPandoutsideaNEPgeography.Infact,projectswithNEPsupportorinaNEPgeographymayevensometimeshaveabiggerstigmaasthepublicmaynothaveahighleveloftrustforgovernmentalorganizationsandbemuchlesssupportiveoftheiractions.Aswell,workingwithlandowners(particularlyprivatelandowners)mayprovemoredifficultforprojectswithangovernmentalagencyconnection.Tidalrestorationprojectsandactivities,whileoftenahighprioritybasedupontheresultofnaturalresourcepartnerscomingtogetherforacommonrestorationobjective,arenotnecessarilygivenspecialpreferencetowardsimplementationsimplybecausetheyarefacilitatedbysuchacollaboration.Theseprojectsareheldtothesamestandards(andhenceworkthroughthesamebarriersandhurdles)asprojectsinanon-NEPgeography.Question2–HowlikelyisitthattheratesofrestorationinNationalEstuaryProgramsaregreaterthantheratesofrestorationoccurringinnon-NEPestuariesintheU.S.?ItisourassumptionthatNEPswillhaveanoverallhigherrateofrestorationthanotherestuariesbecauseNEPsbenefitfromasharedstateandfederalcommitmenttoestuaryhealth,whichmaybeabsentinotherestuaries.Moreover,becauseofthestatusofbeinganNEP,theyaremorelikelytoreceivescarcefederalandstateresources,aswellasfundingfromotherpartners.NEPsaremulti-stakeholdercollaborativeeffortsthatarenotfoundinotherestuariesintheU.S.Basedonyourexperienceandexpertjudgment,areNEPssubstantiallylikelytohaveahigherrateofrestorationthannon-NEPestuaries?Pleaseexplain.Answer:AlthoughImaypaintapictureofhardtimesforNEPsabove-havingtojumpthroughthesameregulatoryhoopsasotherprojects-thatispartofdoingbusinessincoastalrestoration.NEPsandtheirrestorationpartnersunderstandthisandsupportthatweshouldbeheldtothesameregulatoryandaccountabilitystandardsasprojectsinnon-NEPgeographiesorwithnoconnectiontotheProgramitself.NEPsandtheirpartnersdo,however,recognizethetremendousbenefittoavoluntary,collaborativeandstrategicapproachtotidalrestoration(aswellasothercoastalconservationissuesNEPsaddress).Manyfundingagenciesgivecredittoprojectproponentswhoworkasacollectivemulti-stakeholderpartnership.Thereisanassumptionthatsuchapartnershiprepresentsanagreeduponsetofgoals,objectives,implementationproceduresandmonitoringforagivenproject.Thisgivesafundingagencyacertainlevelofconfidencethattheprojectwillbesuccessfulandsupportedatalocallevel.ProjectproposalswrittenbyNEPpartnersarealsooftenmorewelldefinedandinconcertwithrequestedinformationoutlinedinafundingopportunity.Toansweryourquestionspecifically,yes,IdothinkNEPshaveahigherlikelihoodofreceivingfundsforcoastalrestoration.Isaythisforafewreasons.Intoday'sworldoflimitedfederalandstatebudgetsandfewerdollarstoput"on-the-ground"forprojects,theconservationcommunityhasbeenpushedtobecomemuchmorestrategicinourthinking.BythisImeanthatwearelookingathowprojectsfitintothelargerwatershedorlandscape,westrivetoaccomplishasmanypartners'goalandobjectivesaspossible,andwemustleverageourfundsasmuchaswepossiblycan.TheNEPstructure,theirMethodology:VCSVersion4.0131associatedadvisorycommitteesandpublicoutreachcapabilities,lendsitselftoaroleinfacilitatingsuchastrategicapproach.IworkedfortheFWSCoastalProgramnearly10yearsandcansaythatformanyofthereasonsIdescribedabove,ourProgramencouragesandactivelyengagesinpartnershipwithourlocalNEPs.InmytenurewiththeCoastalProgramIhaveworkedwithNEPsinbothTexasandFlorida.Whenpossible,ourProgramstaffserveontechnicaladvisorycommittees,participateinstrategicplanningandassistinprojectimplementation.Infact,IwasinvolvedindraftingthecurrentStrategicPlanforoursouthwestFloridafocalareawhereIidentifiedworkingwiththeNEPsasapriorityforourProgram.Whenappropriateandfeasible,theCoastalProgramhasandcontinuestoinvestfundingtowardsprojectssuchastidalrestorationactivities.Originalrequesttoexpert:OnWed,Oct23,2013at4:57PM,SteveEmmett-Mattoxwrote:DearMs.Devore,RestoreAmerica’sEstuariesisseekingtodemonstratethe“additionality”oftidalwetlandrestorationintheU.S.forthepurposesofgeneratingcarbonoffsetsundertheVerifiedCarbonStandard.TheVCSreviseditsrulesin2012toincludeastandardizedapproachtodemonstrateadditionality.Inordertocomplywiththisapproach,RAEhasassembledasubstantialdatasetandanalysis.Thedata,analysisanddiscussionareattached.InarecentreviewbytheVCS,theyraisedtwoquestionsthatwewouldlikeyourhelpinanswering.IbelieveyoutobeanexpertintidalwetlandrestorationprogramsandactivitiesintheU.S.,andnowseekyouropiniononthefollowing:1–towhatextentdoestuarieswithoutaNationalEstuaryProgramfacethesamebarrierstotidalwetlandrestorationactivitiesasestuaries,whicharepartofaNationalEstuaryProgram?Wehaveidentifiedthefollowingbarriers,amongothers:funding,landownership/control,politicalwill,alocalenvironment,whichencouragespartnerships,andsocialacceptability.Pleasenotethatweonlyneedtoconsiderbarrierstotidalwetlandrestorationwhereithasalreadybeenidentifiedaspossibleinthelandscape.Basedonyourexperienceandexpertjudgment,doestuariesinNEPsfacethesameorsimilarbarrierstoimplementationoftidalwetlandrestorationprojectsasestuariesthatdonothaveanNEP?Pleaseexplain.2–howlikelyisitthattheratesofrestorationinNationalEstuaryProgramsaregreaterthantheratesofrestorationoccurringinnon-NEPestuariesintheU.S.?ItisourassumptionthatNEPswillhaveanoverallhigherrateofrestorationthanotherestuariesbecauseNEPsbenefitfromasharedstateandfederalcommitmenttoestuaryhealth,whichmaybeabsentinotherestuaries.Moreover,becauseofthestatusofbeinganNEP,theyaremorelikelytoreceivescarcefederalandstateresources,aswellasfundingfromotherpartners.NEPsaremulti-stakeholdercollaborativeeffortsthatarenotfoundinotherestuariesintheU.S.Basedonyourexperienceandexpertjudgment,areNEPssubstantiallylikelytohaveahigherrateofrestorationthannon-NEPestuaries?Pleaseexplain.Andlast,pleaseprovideanuptodateresume/CV,whichwewillsharewiththeVCS.Methodology:VCSVersion4.0132Pleaseletmeknowifyouhaveanyquestionsaboutthisrequest,andthankyouforyourtimelyresponse.Cheers,SteveEmmett-MattoxSeniorDirectorforStrategicPlanningandProgramsRestoreAmerica'sEstuariesEXPERTOPINIONIICurtisTannerActingManager,EnvironmentalRestorationandAssessmentDivisionU.S.FishandWildlifeService18November2013SteveEmmet-MattoxSeniorDirectorforStrategicPlanningandProgramsRestoreAmerica’sEstuariesDearSteve:IamwritinginresponsetoyourSeptember23,2013,emailrequestingmyexpertopinionregardingtidalwetlandrestorationandgreenhousegasoffsets.Asyouknow,IhaveovertwentyyearsofexperienceworkingoncoastalwetlandrestorationandprotectionfortheU.S.FishandWildlifeService.Theviewsexpressedinthisletterarebasedonmyownexperienceandperspective,anddonotreflectanofficialagencyposition.Ihaveattachedacopyofmycurrentresumeforyouruseinassessingmycredentials.AsIunderstandit,youareworkingtoestablishtheviabilityoftidalwetlandrestorationasatoolforuseinsequesteringcarbondioxidetomitigateanthropogenicgreenhousegasemissions.YouseektoestablishthefactthatataNationalscale,tidalwetlandrestorationintheUnitedStatesislimitedinspatialscaleandimpact.Specifically,“activitypenetration”,ortheprevalenceofrestorationprojectimplementationrelativetotheopportunityfortidalwetlandrestoration,isrelativelysmall.InyourassessmentoftidalrestorationintheU.S.,youestimatethe“…ActivityPenetrationis1.06%,whichislessthan5%,andthereforetidalwetlandrestorationintheU.S.isadditional…”asdefinedbytheVerifiedCarbonStandard.Inshort,youassertthatgiventherelativelysmallamountoftidalwetlandrestorationintheU.S.(ascomparedtoopportunityanddemonstratedneed),investmentinrestorationwouldprovideaviablealternativeforcarbonoffsetfunds.Iconcurwithyourassessment.YouranalysisrelieduponthemostcomprehensivedatasetavailableattheNationallevelfortidalwetlandrestoration,accomplishmentreportingfromtheNationalEstuaryProgram(NEP).YouhavespecificallyrequestedthatIprovideanassessmentbasedonmyexperienceandexpertjudgmentwhetheruseofthesedataareappropriate.First,youhaveaskedwhetherestuariescoveredbytheNEPprovidearepresentativesample,facingthesameorsimilarbarrierstotidalwetlandrestorationprojectMethodology:VCSVersion4.0133implementation.Basedon20+yearsofexperienceworkingoncoastalrestorationandprotectionissuesandprojects,itismyopinionthattidalwetlandrestorationistypicallylimitedbyasetofbarrierscommontoestuariesthroughouttheUnitedStates;funding,landownerwillingness,andsocialacceptabilityarenearlyuniversalchallengesforallprojectsandestuaries.Takentogetherasawhole,thegeographicdistributionofNEPsitesprovidesabroadcrosssectionofNationalestuarineecosystemconditions,encompassingarangeofecologicalthreats,fishandwildliferesourceassets,andsocio/politicalcontexts.Thisrepresentativediversityappliestobothhumanandnon-humanaspectsofcoastalecosystems.Second,youpostthequestionastowhethertherateofrestorationderivedfromanalysisofNEPestuariesisrepresentative.AsIunderstandyouranalysis,ifNEPestuarieshadasubstantiallylowerrateofrestorationthannon-NEPestuaries,youractivitypenetrationestimateof1.06%,ascomparedtheVCSthresholdof5%,couldbechallenged.Basedonmyexperiencederivedfromprojectimplementationandprogrammanagement,NEPestuarieslikelydeliverahigherrateofrestorationascomparedtonon-NEPestuaries,ifsignificantdifferencesdoinfactexist.IbasethisassertiononobservationsoftheopportunityspaceprovidedforrestorationthatNEPdesignationprovidescoastalecosystems.TheCleanWaterActdirectseachNEPtodevelopandimplementaComprehensiveConservationandManagementPlan(CCMP).AgenciesincludingtheU.S.FishandWildlifeServicerespondtopoliciesandCongressionalfundingdirectivestofocusrestorationeffortsinNEPsystems,ofteninresponsetotheCCMP.NEPdesignationalsoworkstofocustheworkofstateagency,tribalgovernment,andnon-governmentalorganizationpartnerstoaddressrestorationneedsdefinedbytheCCMP.InPugetSound,developmentandimplementationoftheCCMPistheroleofthePugetSoundPartnership(PSP),aWashingtonStatecabinet-levelagency.PSPhasleddevelopmentofthecurrentCCMPforPugetSound,referencedasthe“ActionAgenda”.PSP’sActionAgendaincludesspecifictargetsforestuarinerestorationrequiredtorecoverthehealthofPugetSound.Othernon-NEPcoastalecosystemsinWashingtonStatelackthispoliticalfocusanddedicatedstateandNationalfundingfortidalwetlandrestoration.Insummary,whileIhavenotprovidedadetailedreviewofyourdatasourcesandanalysis,Iamfamiliarwiththeapproachyouhaveappliedinyouranalysis.NEPestuariesprovideapplicabledatasetforyourassessmentofactivitypenetrationforrestoration.CCMP’sforNEPestuariesprovideanumericobjectiveforrestorationandthusaquantifiableestimateofopportunityandneed.AccomplishmentreportingrequiredbyU.S.EPAdeliversanaccountingofacresrestoredwhichcanbecomparedtonumerictargets.The28NEPsystemsdistributedthroughouttheUnitedStatesprovidearepresentativecrosssectionofcoastalecosystemsandthechallengesandopportunitiesfacedbyrestorationprojectsproponents.NEPdesignationleadstoaregionalfocusofefforts,thatdeliversactivitypenetrationrateslikelyequalorgreaterthanthatofnon-NEPsystems.Thank-youfortheopportunitytoprovidemyperspectiveonyourassessment.PleasecontactmedirectlyifyouhavequestionsorifIcanbeofadditionalassistance.Sincerely,CurtisD.TannerOriginalrequesttoexpert:Methodology:VCSVersion4.0134From:SteveEmmett-MattoxSent:Monday,September23,20131:42PMTo:'Tanner,Curtis'Subject:expertguidancesought,RestoreAmerica'sEstuariestidalwetlandrestorationandghgoffsetsDearMr.Tanner,RestoreAmerica’sEstuariesisseekingtodemonstratethe“additionality”oftidalwetlandrestorationintheU.S.forthepurposesofgeneratingcarbonoffsetsundertheVerifiedCarbonStandard.TheVCSreviseditsrulesin2012toincludeastandardizedapproachtodemonstrateadditionality.Inordertocomplywiththisapproach,RAEhasassembledasubstantialdatasetandanalysis.Thedata,analysisanddiscussionareattached.InarecentreviewbytheVCS,theyraisedtwoquestionsthatwewouldlikeyourhelpinanswering.IbelieveyoutobeanexpertintidalwetlandrestorationactivitiesintheU.S.,andnowseekyouropiniononthefollowing:1–towhatextentdoestuarieswithoutaNationalEstuaryProgramfacethesamebarrierstotidalwetlandrestorationactivitiesasestuaries,whicharepartofaNationalEstuaryProgram?Wehaveidentifiedthefollowingbarriers,amongothers:funding,landownership/control,politicalwill,alocalenvironment,whichencouragespartnerships,andsocialacceptability.Pleasenotethatweonlyneedtoconsiderbarrierstotidalwetlandrestorationwhereithasalreadybeenidentifiedaspossibleinthelandscape.Basedonyourexperienceandexpertjudgment,doestuariesinNEPsfacethesameorsimilarbarrierstoimplementationoftidalwetlandrestorationprojectsasestuariesthatdonothaveanNEP?Pleaseexplain.2–howlikelyisitthattheratesofrestorationinNationalEstuaryProgramsaregreaterthantheratesofrestorationoccurringinnon-NEPestuariesintheU.S.?ItisourassumptionthatNEPswillhaveanoverallhigherrateofrestorationthanotherestuariesbecauseNEPsindicateasharedstateandfederalcommitmenttoestuaryhealth,whichmaybeabsentinotherestuaries.Moreover,becauseofthestatusofbeinganNEP,theyaremorelikelytoreceivescarcefederalandstateresources,aswellasfundingfromotherpartners.NEPsaremulti-stakeholdercollaborativeeffortsthatarenotfoundinotherestuariesintheU.S.Basedonyourexperienceandexpertjudgment,areNEPssubstantiallylikelytohaveahigherrateofrestorationthannon-NEPestuaries?Pleaseexplain.Andlast,pleaseprovideanuptodateresume/CV,whichwewillsharewiththeVCS.Pleaseletmeknowifyouhaveanyquestionsaboutthisrequest,andthankyouforyourtimelyresponse.Cheers,SteveEmmett-MattoxSeniorDirectorforStrategicPlanningandProgramsRestoreAmerica'sEstuariesMethodology:VCSVersion4.0135DOCUMENTHISTORYVersionDateComment1.020Nov2015Newmethodology(initialversion)2.030Sep2021UpdatesbasedontherevisiontoVM0007REDDMethodologyFramework,v1.6andinclusionofthathavebeenscrutinizedundertherulesforexpertjudgmenttoestimatenetGHGemissionsfromsoilinthebaselinescenario.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱