VM0032-通过调增火灾和放牧采用可持续草地的方法学VIP专享VIP免费

8
VCS Methodology
VM0032
Methodology for the Adoption of Sustainable
Grasslands through Adjustment of Fire and
Grazing
Version 1.0
16 July 2015
Sectoral Scope 14
VM0032, Version 1.0
Sectoral Scope 14
Page 2
Methodology developed by:
Soils for the Future
In partnership with:
The Nature Conservancy
Fauna and Flora International
VM0032, Version 1.0
Sectoral Scope 14
Page 3
TABLE OF CONTENTS
1 Sources .................................................................................................................................. 4
2 Summary Description of the Methodology ............................................................................. 4
3 Definitions .............................................................................................................................. 9
3.1. Defined Terms ................................................................................................................ 9
3.2. Acronyms ...................................................................................................................... 11
4 Applicability Conditions ........................................................................................................ 12
5 Project Boundary ................................................................................................................. 13
6 Baseline Scenario ................................................................................................................ 16
7 Additionality ......................................................................................................................... 18
8 Quantification of GHG emission Reductions and Removals ............................................... 18
8.1. Baseline Emissions ...................................................................................................... 18
8.2. Project Emissions ......................................................................................................... 31
8.3. Leakage ........................................................................................................................ 35
8.4. Net GHG Emission Reduction and Removals .............................................................. 38
9 Monitoring ............................................................................................................................ 51
9.1. Data and Parameters Available at Validation ............................................................... 51
9.2. Data and Parameters Monitored .................................................................................. 63
9.3. Description of the Monitoring Plan ................................................................................ 75
10 References .......................................................................................................................... 78
8VCSMethodologyVM0032MethodologyfortheAdoptionofSustainableGrasslandsthroughAdjustmentofFireandGrazingVersion1.016July2015SectoralScope14VM0032,Version1.0SectoralScope14Page2Methodologydevelopedby:SoilsfortheFutureInpartnershipwith:TheNatureConservancyFaunaandFloraInternationalVM0032,Version1.0SectoralScope14Page3TABLEOFCONTENTS1Sources..................................................................................................................................42SummaryDescriptionoftheMethodology.............................................................................43Definitions..............................................................................................................................93.1.DefinedTerms................................................................................................................93.2.Acronyms......................................................................................................................114ApplicabilityConditions........................................................................................................125ProjectBoundary.................................................................................................................136BaselineScenario................................................................................................................167Additionality.........................................................................................................................188QuantificationofGHGemissionReductionsandRemovals...............................................188.1.BaselineEmissions......................................................................................................188.2.ProjectEmissions.........................................................................................................318.3.Leakage........................................................................................................................358.4.NetGHGEmissionReductionandRemovals..............................................................389Monitoring............................................................................................................................519.1.DataandParametersAvailableatValidation...............................................................519.2.DataandParametersMonitored..................................................................................639.3.DescriptionoftheMonitoringPlan................................................................................7510References..........................................................................................................................78VM0032,Version1.0SectoralScope14Page41SOURCESThefollowinghaveinformedthedevelopmentofthemethodology:TheRProjectforStatisticalComputingIPCC,2000.Emissions:energyandtransport.Pages55-70GoodPracticeGuidanceandUncertaintyManagementinNationalGreenhouseGasInventories.IPCCNationalGreenhouseGasInventoriesProgrammeIPCC,2006.Emissionsfromlivestockanddungmanagement.Pages1-85GuidelinesforNationalGreenhouseGasInventories.IPCCIPCC,2006.Grasslands.Pages1-49GuidelinesforGreenhouseGasInventories.IPCCIPCC,2006.Quantifyinguncertaintiesinpractice.Chapter6.inR.Odingo,editor.IPCCGoodPracticeGuidanceandUncertaintyManagementinNationalGreenhouseGasInventoriesIPCCMicrosoft,2006.MonteCarloSimulationforExcelThismethodologyusesthelatestversionsofthefollowingtools:CDMA/RmethodologicaltoolCalculationofthenumberofsampleplotsformeasurementswithinA/RCDMprojectactivitiesVMD0016Methodsforstratificationoftheprojectarea(X-STR)VT0001ToolfortheDemonstrationandAssessmentofAdditionalityinVCSAFOLUProjectActivitiesVMD0040LeakagefromDisplacementofGrazingActivitiesVCSAFOLUNon-PermanenceRiskTool2SUMMARYDESCRIPTIONOFTHEMETHODOLOGYAdditionalityandCreditingMethodAdditionalityProjectMethodCreditingBaselineProjectMethod2.1ProjectActivitiesTheprojectactivitieseligibletoapplythismethodologyincludeanythatmanipulatenumberandtypeofdomesticlivestockgrazinganimals(e,gcattle,sheep,horses,goats,camels,llamas,alpacas,guanacos,orbuffalo)and/orgrouping,timingandseasonofgrazing(eg,continuousunrestricted,plannedrotational,bunchedherdrotationalorothermeansofrestrictinglivestockaccesstoforageinordertoallowvegetationresponse)inwaysthatsequestersoilcarbonand/orreducemethaneemissions.Alteringfirefrequencyand/orintensity,(eg,shiftingfromlateseasonVM0032,Version1.0SectoralScope14Page5toearlyseasonburningorchangingprescribedburnschedulesfromoneeveryotheryeartooneeveryfiveyears)inwaysthatincreasecarboninputstosoil,isalsoanincludedactivity.Increasedfiremaybeusedtoshiftplantspeciescompositionsuchthatnetcarbonsequestrationinsoilincreases(eg,conductingasingleburntoshiftvegetationfromshrubstograsses),butthenetincreaseinSOCmustcompensateforanylossesinwoodybiomassandincreasesinmethane(CH4)andnitrousoxide(N2O)emissions.Grasslandrestorationactivitiestoimprovelivestockforagedensity(egseedingoflegumesorperennialgrasses)thatdonotinvolvemechanicaltillageofsoilareallowed.ItisexpectedthatsuchprojectactivitieswilloccurongrasslandsthathavehistoricallyexperiencedSOCloss.AstheseareaswouldcontinuetomaintainlowlevelsorfurtherlossofSOCintheabsenceoftheproject,itisthereforeexpectedthatothercarbonpools,suchasabovegroundcarbonpoolsorbiomass,willhaverelativelylittlechange.ThelossofSOCinthebaselinepriortotheprojectstartdatemaybecausedbyfiresthatoccurfrequentlyenoughtoreduceSOC,orovergrazingthatisexpectedtocontinueintheabsenceoftheproject.Somegrasslands(eg,savannasandopenwoodlands)mayfeaturesignificantabovegroundwoodyplantbiomassthatexceedsfivepercentofthesoilcarbonpool.Somewoodybiomass,largelyintheformofshrubsorsmalltrees,canreducegrassdensityandsoilcarbon.Managementfirestoreducethiswoodycovermightthereforereducecarbonintheabovegroundwoodybiomasspoolbutcompensatebyincreasinggrassproductionandtotalcarbonsequestrationinsoil.[1]Suchscenariosareallowableunderthismethodology.2.2QuantificationApproachProjectsmayrelyonmeasuredormodeledapproaches(seeTable1below):Measuredapproach:Emissionreductionsarequantifiedfollowingaperiodinwhichenhancedsoilsequestrationand/orreducedmethaneemissionscanbedemonstrated.Suchprojectshaveareduceduncertaintycomparedtothosefollowingamodeledapproach,butprojectsthatincludesoilsequestrationactivitiesmayclaimandverifyemissionreductionsonlyafterincreasesinsoilcarboncanbedetected(likelyeveryfiveormoreyears,dependingontheproductivityofthesite).Modeledapproach:Emissionreductionsarequantifiedusingavalidatedmodelafterdemonstratingmanagementactivities,whichareknowntosequestercarbonand/orreducemethaneemissions,havebeenimplemented.Reducedemissionsfromsequestrationandreducedmethaneemissionsassociatedwiththeseactivitiesarethenestimatedbymodelswithacceptableprecisionwhichhavebeenvalidatedfortheprojectandre-calibratedatregularintervalsthereafter(5-10years,dependingontheproductivityofthesite).Modeledapproacheshavehigheruncertaintyduetotheuncertaintyintheparametersusedtocalculateemissionsandremovalsandtheuncertaintyinwhethermodelcalculationsactuallydescribechangesinsequestrationandreducedemissions.Consequently,verifiedmodeledVM0032,Version1.0SectoralScope14Page6emissionreductionswilllikelybereducedduetouncertaintydeductions.However,becauseactivitiesmaybedemonstratedannually,emissionreductionsmaybeverifiedannually,ifdesired.Thismodelingapproachrequirestheuseofsoilcarbonmodelsthathavebeenpublishedinpeer-reviewedjournalarticles.Modelsmusthavebeenvalidatedwithindependentdata.Datausedtovalidatethemodelmusthavebeenpublishedinapeer-reviewedjournalarticleandindependentfromdatausedtobuildthemodel.Soilcarbonmodelsdescribehowthedensityofsoilorganiccarbon(SOC)changesasaresultofbiogeochemicalprocessesandsoilcharacteristics(eg,soiltextureandtype,pH,temperature,andmoisture)andmodificationsinthecaptureofCO2andproductionofcarbon-containingrootandshootbiomassbyplants.Thisabovegroundandbelowgroundbiomassmayundergooneofseveralfates:1)ConversionbacktoCO2bycombustionduringfire,2)Consumptionandrespirationbygrazinganimals,3)Decompositionandrespirationbymicrobesinsoiland/orinthegutsofinvertebratedecomposers,or4)RemainingasSOCfromdecomposedplantmaterialorgrazinganimaldung.Aswouldbeexpectedforsuchacomplicatedprocess,suchmodelsusuallyrequiretheinputofmanyparametersthatneedtobemeasuredorobtainedfromtheliterature.Whenchoosingwhichapproachtotake,theprojectproponentmustconsidercarefullyitsabilitytoobtainnecessaryparametermeasurementsandtovalidatethechosenmodelfortheirprojectarea.VM0032,Version1.0SectoralScope14Page7Table1:SummaryofMeasuredvsModeledApproachesTable1summarizestheproceduresforapplyingeitherthemeasuredapproachorthemodeledapproach.Whilethereareadditionalstepstousingthemodeledapproachcomparedtothemeasuredapproach,theprojectproponentmaymonitoractivitiesandcalculateemissionreductionsmorefrequently(egevery1-2yearsasopposedtoevery5-10years)withthemeasuredapproach.2.3BaselineandProjectEmissionsandReductionsTheprojectproponentmustdemonstratebaselineconditionsforthe10yearspriortotheprojectstartdate,including:1)landuses,2)firehistoriessuchasthenumberoftimes,sectionsorstrataoftheprojectareaburnedandwhenthesefiresoccurred,andFrequencyFrequencyDemonstrationofSOCimpoverishingactivitiesDemonstrationofSOCimpoverishingactivitiesMeasurementsBuildModelChoosemodelMeasure/findparametersAccuracyassessmentofpredictionPredictinitialSOCEvery5‐10yearsEvery1‐2yearsVerifiedCarbonUnitCalculationatVerificationEvery5‐10yearsEvery1‐2yearsModelRe‐calibrationEvery5‐10yearsMeasureSOCAssessmentofpredictionModeladjustmentMethaneUncertaintyanalysisClaimVCU'sMeasure/findparametersModeledApproachCalculateSOCfrommodelMeasuregrazinganimalnumbersCalculatemethaneemissionsUncertaintyanalysisInitialSOCPastgrazinganimalnumbersForagequalityPastfirefrequencyConductactivitiesMeasure/findparametersMonteCarloanalysisforuncertaintyMeasureprojectfirefrequencyMeasuredApproachUncertaintyanalysisMethaneClaimVCU’sUncertaintyanalysisMeasurementsProjectScenarioBaselineConductactivitiesMeasureSOCAnimalnumbersduringcreditingperiodForagequalityduringcreditingperiodUncertaintyanalysisanddeductionInitialSOCPastgrazinganimalnumbersForagequalityVM0032,Version1.0SectoralScope14Page83)grazinglivestockanimalnumbersfromdetailedrecordssuchassurveysoflivestockowners,pastaerialsurveysorgroundcensusesoflivestockanimals.Thesedataarenecessarytoassessbaselinemethaneemissionsfromentericfermentation.Baselineconditionsmaybedeterminedfromanalysisofpastsatelliteimages,suchasMODISBurnedAreaProductmapstoassessfirehistoriesorwithothersatelliteimagerysuchasLandsat,withdemonstratedsuitabilityfrompeer-reviewedscientificpapersand/orfromdatafromtheprojectareatodetectvegetationtypesandtrends.Interpretationofsatelliteimagesduringtheprojectcreditingperiodcoupledwithgroundassessmentsoftheoccurrenceoffireatmultiplesamplingstationsisneededforverificationoffire-abatementactivities.Fortheprojectscenario,boththemodeledandmeasuredapproachesrequiresamplingofsoilsandmeasurementofbulkdensityandSOC.Ifusingthemodeledapproach,thesoilsampledepthisdeterminedbythemodel(eg,20–100cm).Thissamplingwilloccuratthestartoftheprojectandbeusedtoestablishthebaselinescenario.Likewise,forbothapproaches,groundcensuses,householdsurveys,and/oraerialsurveysofgrazinganimalnumbersbrokenoutbyspecies,sex,andageareneededtodeterminebaselinemethaneemissionsandprojectreductions(orincreases).ThemeasuredapproachsimplycalculatesthedifferenceinSOCateachverificationeventsincetheprojectstartdateorpreviousverificationevent.NotethatsufficienttimemustpassbetweenverificationeventstodetectchangesinSOC(eg,fiveormoreyears,dependingonproductivityintheprojectarea).TheinitialandsubsequentmeasurementsofSOCoccurateachofmanypermanentsamplingstationslocatedindifferentsubareas(strata)withintheprojectareathatdifferstronglyincurrentorpastvegetation,soiltypesormanagementactivities.ThesumofthedifferencesinSOC,called∆SOC,ateachsamplingstationacrosstheprojectareareflectsnetGHGemissionreductionsandremovalsfromthesoilcarbonpool.Ifamodeledapproachisused,measurementsofparameters,orinformationusedtoobtainparametervalues,mustbeavailabletobeinputintoapeer-reviewed,published,andaccuracy-tested(atleastonce)modelofsoilcarbondynamics(eg,SNAP[2]CENTURY[3,4]],EPIC[4],ortheHurleyPasture[5]models).Themodelmustincludeparametersimpactedbyprojectactivities(eg,grazingintensityandfirefrequency)aswellascriticalfactorsaffectingcarboninputsandoutputstosoil(eg,soiltexture,climate,andplantcharacteristicsthataffectdecomposition).Thespecificfactorsneededwilldependonthemodelused,assomemodels,suchasCENTURY,requiremorethan20factors,whileothers,likeSNAP,requireonlyfivefactors.Toensurethatamodelpredictschangesinemissionsorremovalsaccuratelyandpreciselyenoughtoachieveasufficientlylowuncertaintyinestimatedchangesincarbonstocksfromprojectactivities,thechosenmodelmustbetestedtodemonstrateitisappropriateforuseintheprojectarea.Suchatestusessiteconditionandmanagementhistorydatatopredictcarbonstocksthatreflecttheconsequenceofpastmanagementactionsandconditions,suchasrainfall,plantspeciescomposition,grazingintensityandfirehistory.Thispredictedcarbonstockiscomparedtocurrent,measuredcarbonstocksandtheaccuracyandprecisionofthepredictionsmustbeVM0032,Version1.0SectoralScope14Page9demonstratedwithinsubareas(strata)oftheprojectareathatdifferstronglyinpastconditionsorinmanagementactivities.Thedetailsofthemodeltestarepresentedinsection8.1.3.3.Followingthemodeltest,soilcarbondynamicsaremodeledfortheprojectareatoestimatethemaximumSOCthatwouldlikelyhaveoccurredforthe10yearspriortotheprojectstartdate,asthebaselineSOC.ThesamemodelisthenusedtocalculateanexpectedfutureequilibriumSOCunderproposedprojectactivities,thetimeinyearstoreachthisequilibrium,andtheaverageannualincrementinSOCsequestrationexpectedundertheproposedprojectactivities.ThestatisticsofvariationneededtocalculateuncertaintiesforeachparameterinthemodelarealsorequiredinordertodetermineanoveralluncertaintyinthemodelcalculationsofSOCthroughaMonteCarlosimulationanalysis.UncertaintyinthedifferencebetweenmaximumSOCinthepast10yearsandanexpectedfutureequilibriumSOCwillbeusedtodetermineanypotentialuncertaintydeduction(section8.4.4).2.4LeakageEmissionsfromleakageprimarilyoccurfromthedisplacementofcurrentactivitiesinsidetheprojectareatoareasoutsidetheprojectarea.Forthisproposedmethodology,leakagewouldoccurprimarilybydisplacementoflivestocktoothergrazinglandsinwhichgrazingwouldresultinlossofsoilcarbonand/orincreasedmethaneemissions.Suchdisplacementislimitedbytheapplicabilityconditionsforthemethodology,butwheredisplacementdoesoccurleakageemissionsmustbequantifiedaccordingtotheprocedureswithinthemethodology.3DEFINITIONSInadditiontothedefinitionssetoutinVCSdocumentProgramDefinitions,thefollowingdefinitionsandacronymsapplytothismethodology:3.1DefinedTermsBaselinePeriodAhistoricalreferenceperiodoverwhichtheproject’sbaselineemissionsarecalculated,andthatconsistsofthetenconsecutiveyearsoccurringimmediatelybeforetheprojectstartdateCalibrationProcessbywhichpredictivemodelsuselocalmeasurementstodeterminethevaluesoftheirparameters,andwhichwillmakethemodelsmorerepresentativeoftheprojectarea.CalibrationPeriodUnderamodeledapproach,thetimeinyearsfollowingtheprojectstartdateormostrecentre-calibrationwhensoilcarbonistobemeasuredagaininordertore-calibratethechosensoilcarbonmodel.ThisperiodmaybemuchlongerthantheverificationperiodformodeledapproachprojectsinordertoallowsufficienttimeformeasureablechangesinsoilcarbontooccurVM0032,Version1.0SectoralScope14Page10CelluloseCarbon-richplantmaterialthat,todecomposerequiresspecialenzymes(cellulases)typicallyfoundonlyincertainfungi,bacteriaorothermicroorganismsEntericFermentationProcessofmicrobialdigestionofplantmaterialinthedigestivetractofgrazinganimalsthat,intheabsenceofoxygen,yieldsmethane(CH4)asabyproductEquilibriumStateofacarbonpoolwheninputstothepoolarebalancedbyoutputs,suchaswheninputstosoilorganicmatterarebalancedbylossesfromrespirationbymicroorganismsExclosureFenceorotherdevicethatexcludesgrazinganimalsfromanarea,sufficienttoallowmeasurementofabovegroundbiomassinsideinordertocomparewithbiomassoutside;usedinestimatinggrazingintensityFiremanagementSetofpracticesthateitherinhibitfireorburnvegetationonpurposetoachievedesiredgoalsforvegetationandsoilcarbon.GrasslandsLandswithmorethan250mmmeanannualprecipitationcoveredbynaturalandmanagedherbaceouscoverthatlacktreesover5minheightwithgreaterthan50%canopycover(forests)1GrazinganimalMammalsthateatprimarilyherbaceousplantsortheleavesofshrubs;inthismethodology,appliestolivestockspeciessubjecttocontrolbytheprojectproponentLegumesPlantsinthepeafamily,eitherwoodyornon-woody,thatharborbacteriaintheirrootsthatperformnitrogenfixation,ortheconversionofnitrogengasintheatmosphereintochemicalformsthatcanbeusedbyplantsLigninCarbon-richplantmaterialthatisgenerallyimpervioustodecompositionbymicroorganismsNeutralDetergentFiberPlantmaterialresistanttorapiddigestionordecomposition,whichincludescelluloseandlignin1http://www.fao.org/agriculture/crops/thematic-sitemap/theme/spi/gcwg/definitions/en/VM0032,Version1.0SectoralScope14Page11OvergrazingGrazingthathasresultedinpermanentvegetationspecieschangesfrommostlypalatabletounpalatablespecies,reductioninvegetationcoverthatexposemorethan80percentbareground,and/orconsumptionofmorethan75percentofproductionPrescribedFiresFiresthataresetonpurposebylandholdersaspartofaspecificstrategytomanagevegetationintheprojectareaRotationalGrazingVariouspracticesofplannedgrazinginwhichanimalsarerestricted,byherdingorfencing,tosmallportions(<25%)ofavailablegrazinglandsforrelativelyshortperiodsoftime,followedbymovementtonewportionsofavailablegrazingland.Therestrictedaccessandtimeisdesignedforlivestockgrazinganimalstoeventuallyvisitallormostofavailablegrazinglandsbutstillallowforageplantspeciessufficienttimeandresources(water,nutrients)toregrowandsetseedfollowinggrazingortocompletegrowthandseedsetbeforegrazing.SoilOrganicCarbonDensityAmountofcarboninthesoil,expressedasamassperunitarearatherthanasapercentSoilCarbonDynamicModelAmodelpublishedinthepeer-reviewedscientificliteraturethatpredictschangesinsoilorganiccarbonasafunctionofvariousinputvariables,whichmayincludeabovegroundproduction,belowgroundproduction,precipitation,temperature,initialsoilorganiccarbon,soiltexture,andgrazingintensityandpossiblyotherfactorsdetailedinthepeer-reviewedarticle(s)describingthemodelSoilOrganicCarbon(SOC)SeeVCSdocumentProgramDefinitions.Tier1,2,or3Thelevelofprecisionanduseoflocalmeasurementsincalculatingvariousemissionsandremovalsofgreenhousegases,asassignedbytheIPCC3.2AcronymsA/RAfforestation/ReforestationAFOLUAgriculture,ForestryandOtherLandUseAICAkaikeInformationCriterionALMAgriculturalLandManagementCDMCleanDevelopmentMechanismCIConfidenceIntervalVM0032,Version1.0SectoralScope14Page12IPCCIntergovernmentalPanelonClimateChangeNDVINormalizedDifferenceVegetationIndexSAVISoil-AdjustedVegetationIndexSGMAFGSustainablegrasslandmanagementthoughadjustmentoffireandgrazingUNFCCCUnitedNationsFrameworkConventiononClimateChangeVCSVerifiedCarbonStandardVCUVerifiedCarbonUnit4APPLICABILITYCONDITIONSThismethodologyappliestoprojectactivitiesthatadjustthenumber,typeandhusbandryofgrazinganimals,adjustthefrequencyandintensityofplannedorunplannedfires,and/orintroduceherbaceousgrasslandspeciesaspotentialforageforgrazinganimalsortorestoredegradedsoils.Themethodologyisapplicableunderthefollowingconditions:1)Theprojectareamustbegrasslandsinthebaselineandprojectscenarios.2)Landsaregrazedand/orsubjecttofiresinthebaselineand/orprojectscenarios.Landsmaybeusedfordifferentpurposes,suchaslivestockproduction,conservation,huntingortourism.3)Theprojectmustbestructuredtokeeplivestockwithintheprojectarea,andtheprojectproponentmustbeabletoenforcetheboundariesoftheprojectarea.4)Theprojectmustresultinnonetincreaseinthedensityof,ortimespentbyanimalsinconfinedcorralswheredungcanpileupandbegintodecomposeanaerobically[5]andresultinCH4andN2Oemissions,suchasanincreaseinthenumberoflivestockaggregated(eg,keptincorralsorpens)thatwouldresultinmorethan50percentofthegroundareacoveredbydung.25)Baselineemissionsderivedfromlivelihood-drivenhumanimpactsonabovegroundwoodybiomass(eg,cuttingforfuelwood,charcoalortimbersales)mustbedeemeddeminimis(ie,notincludedinthecumulative95percentoftotalbaselineemissions)andprojectactivitiescannotsignificantlyaltersuchlivelihood-drivenactivities.6)Forprojectsthatproposetomodifygrazing,themaximumindividualprojectsize3is3millionhaor5percentofacountry’slandareacurrentlyorpotentiallyusedtograzelivestock,asjudgedbynationalgovernmentlanduseinventoriesorotherdocumentation.2Thiscriterionisconservativerelativetotheconditionsofdungaccumulationthatwouldresultinsignificantanaerobicdecomposition3Theseconstraintsaredesignedtoavoidmarketleakage,suchasifareductioninlivestockcreatedameatormilkshortagethatwouldencourageoverstockingoflivestockelsewhereinacountryVM0032,Version1.0SectoralScope14Page13Themethodologyisnotapplicableunderthefollowingconditions:ProjectactivitiesthatinvolvemechanicalvegetationremovalorsoiltillageTheprojectareareceivesanetimportofinorganicororganically-derivedfertilizer5PROJECTBOUNDARYThespatialextentoftheprojectboundarymustbeestablishedfollowingtheguidelinesinthelatestversionoftheVCSdocumentAFOLURequirements.Tableand3belowidentifythecarbonpoolsandGHGsourcesincludedorexcludedfromtheprojectboundary.VM0032,Version1.0SectoralScope14Page14Table2:SelectedCarbonPoolsunderBaselineandProjectActivityCarbonPoolsIncluded?Justification/ExplanationAbovegroundwoodybiomassOptionalWheretheprojectactivitiesinvolvechangesinfiremanagement,theprojectproponentmustmonitorchangesinabovegroundwoodyplantbiomass.Wheretheprojectactivityistoreducefirefrequency,theremaybeincreasesinremovalsfromwoodybiomasswhichmustbequantifiedandmonitored.Wheretheprojectplanstoburnwoodybiomasstopromotesoilsequestration,abovegroundwoodybiomassmustbeincluded,becausewoodyplantsinsomesavannagrasslandscanaccountfor10-30percentofcarbonstocks[6]andcanbedramaticallyreducedbyfire.Wheretheprojectactivitiesdonotinvolvechangesinfiremanagement,quantificationandmonitoringofchangesinremovalsfromwoodyplantbiomassisoptional.Abovegroundnon-woodybiomassNoAbovegroundnon-woodybiomassistypicallyburnedordecomposedwithinthesameyearofitsproductionandthereforeisnotamajorsinkandisconsideredinbalancewithCO2uptake,respirationbyplants,andannualdecomposition[7]BelowgroundbiomassNoBelowgroundnon-woodybiomassistypicallyburnedordecomposedwithinthesameyearofitsproductionandthereforeisnotconsideredamajorsinkingrasslandsbecauseitisconsideredinbalancewithCO2uptake,respirationbyplants,andannualdecomposition[7].Astillageisnotallowedaccordingtoapplicabilityconditions,anyincreasefromprojectactivitiesmaybeconservativelyexcluded.DeadwoodNoNegligibleingrasslands,particularlythosewithfire.LitterNoIngrasslands,litterexhibitshighturnoverwhichfurtherreflectsbalancewithCO2uptake,respirationbyplants,andannualdecomposition[7].Soilorganiccarbon(SOC)YesMajorcarbonpoolcoveredbySGMAFGWoodproductsNoAnoptionalpoolforVCSALMprojects,itisconsiderednegligibleforuntilledgrasslandsThismethodologyhasapplicabilityconditionsfornotillageandactivitiesthatdonotincludeavoidedconversionofgrasslands.Consequently,abovegroundnon-woodybiomass,litter,andVM0032,Version1.0SectoralScope14Page15belowgroundbiomassareconsiderednegligiblesinksbecausetheyturnoverconsiderablythroughouttheyear,sometimesbyasmuchas100percent[7].Thesecarbonpoolsmaylaterbeusedaspotentialparametersforsoilcarbonmodelsbecausetheyinfluencetheinputofcarbontothesoil,buttheydonotrepresentsignificant,permanentsinksorreservoirsofcarbon.Table3:GHGSourcesIncludedInorExcludedFromtheProjectBoundarySourceGasIncluded?Justification/ExplanationBaselineGrazinganimalsCO2NoBalancedwithCO2uptake,respirationbyplants,andannualdecomposition[7]CH4YesTargetremovalformethodologyN2ONoNoincreaseinconcentrationofdungandforageifnotfertilized(seeapplicabilityconditions)BurningbiomassCO2NoBalancedwithCO2uptakebyplantsCH4OptionalIfreducingormaintainingfireisaprojectactivity,CH4maybeconservativelyexcluded.OtherwiseCH4emissionsmustbecalculatedtodeterminenetchangeincarbonstocksfromincreasingfiretoinduceanincreaseinSOCN2ONoNegligibleunderapplicabilityconditionsSoilemissionsCO2NoAssumedtobeinbalancewithCinputstoSOC(SOCatequilibrium)CH4NoNegligiblesinceprojectisnotinwetlandN2ONoNegligibleunderapplicabilityconditionsProjectGrazinganimalsCO2NoBalancedwithCO2uptakebyplantsCH4YesTargetremovalformethodologyN2ONoNoincreaseinconcentrationofdung(applicabilityconditions)andforageislowinNBurningbiomassCO2NoBalancedwithCO2uptakebyplants[7]CH4OptionalIfreducingormaintainingfireisaprojectactivity,maybeconservativelyexcluded.OtherwiseCH4emissionsmustbecalculatedtodeterminenetchangeincarbonstocksfromincreasingfiretoinduceanincreaseinSOCN2ONoNegligibleunderapplicabilityconditionsSoilemissionsCO2NoAccountedforinmeasured∆SOCCH4NoNegligiblesinceprojectnotinwetlandN2ONoNegligibleunderapplicabilityconditionsVM0032,Version1.0SectoralScope14Page16Unlessspecificallyplantedathighdensitytoachieveabovegroundbiomassgreaterthan120g/m2onaverage,leguminousplants,eitherwoody(eg,AcaciaorProsopisspecies)orherbaceous,arenotlikelytoproducesoilN2Oemissionstolevelsthatapproach5percentoftotalCO2emissionsfromsoil[8,9].Consequently,N2Oemissionsfromsoilorbiomassburningarenegligible.Asperapplicabilitycondition4,thismethodologydoesnotapplytoprojectsthatresultinanetincreaseinthedensityof,ortimespentby,animalsinconfinedcorralswheredungcanpileupandbegintodecomposeanaerobically[5]andresultinCH4andN2Oemissions.Dunginpasturesoropenrangelandstypicallydecomposeaerobically[10,11],whichreleasesnegligibleCH4andN2Oemissions.Increaseintheuseoffossilfuelsduetomanagement,harvesting,andfightingfiresislikelytobenegligiblebecausethesamegeneralactivities(eg,livestockgrazing,wildlifeconservationandtourism)willbeoccurringintheprojectareaduringtheprojectlifetimeasunderbaselineconditions.6BASELINESCENARIOThebaselinescenarioisidentifiedastheexistingorhistoricallandmanagementpractices,undertheassumptionthatthesewouldcontinueintheabsenceoftheproject.Thebaselinelandmanagementactivities,suchasplans(orlackthereof)forfiremanagement,numberofgrazinganimalsandthedurationandtimingofgrazingparticularareasofland,musthavebeeninplaceduringthebaselineperiod.Inthecasethatmanagementactivitieshavechangedduringthebaselineperiod,suchchangesmustbedocumentedandtheactivitiesleadingtothelowestnetemissionsorgreatestremovalsduringthebaselineperiodmustbechosenasthemostplausiblebaselinescenario.Todevelopthebaselinescenario,theprojectproponentmustdocument,usingpublishedorgatheredproject-specificdataand/ormodels,historicgrazingplansoruseofgrazingareasbylivestockandfirehistoriesintheprojectarea.ThemethodtodeterminethemostplausiblebaselineconditionisprovidedinSection8(BaselineEmissions)withadditionalinformationprovidedinSection9.3(DescriptionoftheMonitoringPlan).Themethodincludes:1)Whereadjustmentsinfirefrequencyand/orintensityareaprojectactivity,theprojectproponentmustdemonstrateafirehistory,asamapofareasthatburnedandthenumberoftimestheyburnedovertheprevioustenyears.Thismaybeobtainedbyusingsatelliteproducts,suchasMODISBurnedAreaProduct4asdetailedinSection9.3.5)thatprovidepolygonsofburnedareasfor15dayperiodsthroughoutthedryorburningseason.AGISprogramlikeQuantumGIS(2.6)5,andotherprogramslikeIDRISI6orArcGIS,mayperformsimilarfunctions.Projectproponentsmayalsousedatedaerial4http://modis.gsfc.nasa.gov/)5QuantumGIS2.4canbedownloadedforfreeathttps://www.qgis.org6http://www.clarklabs.orgVM0032,Version1.0SectoralScope14Page17photographsoraccuratehand-drawnmapsaccompaniedbyrecordsofwhereandwhenlandparcelsburned.2)Asevidenceofpastgrazingpracticesandimpacts,theprojectproponentmustdemonstrateagrazinghistory,asdeterminedfrompastlivestockgrazinganimalcounts,groundmeasurementsofgrazingimpacts,and/orground-validatedinterpretationsofsatelliteimagery(suchastheNormalizedDifferenceVegetationIndex(NDVI),Soil-AdjustedVegetationIndex(SAVI),orothersimilarindex[12,13])fromaminimumoffourintervalsacrossthe10years,withatleastoneimagefrom8-10yearspriortotheprojectstartdate.3)Baselinemethaneemissionsrequireasdetailedaspossiblelivestockgrazinganimalcensusesthroughanycombinationofprofessionalaerialsurveys,groundcountswithappropriatespatialextrapolationtotheprojectarea[14,15],orhouseholdsurveysoflivestockheldbyeachhouseholdovertheprevious10years.Censusesmustcategorize,totheextentpossible,thespecies,sex,andageofeachanimal,andanaveragebodyweightforeachcategory7.4)Abovegroundwoodybiomassmustbesampledattheprojectstartfrommanylocationsintheprojectarea(seeSection8.1.3.5)andifnecessaryforinclusionasaparameterinsoilcarbonmodels,analyzedforneutraldetergentfiber,cellulose,andlignininaprofessionallaboratory.5)InitialsoilcarbonstocksmustbemeasuredtothedesireddepthfollowingSection8.1.3.3.Thechosendepthmustmatchthatapplicabletothechosensoilcarbonmodelifthemodeledapproachisused.6)Wherethemodeledapproachisused,predictionsofsoilcarbonstocksorstockchangesfromthechosenmodelofsoilcarbondynamics,suchasCentury[3,4,16],mustbetestedtodemonstrateitisappropriateforuseintheprojectareawithmeasuredsoilcarbonstocksorstockchangesfromtheprojectarea.CorrelationsbetweenpredictedandobservedstocksmusthaveR2>0.80withinstrataandanuncertaintybasedona95percentconfidenceintervalof<20percentforpredictedvaluesapplicabletotheprojectarea.Theuseoflessaccuratemodelpredictionsimplylargerconfidencelimitsinestimatedcarbonstocksorstockchangeafter10yearsandthuslargeruncertaintydeductionsinclaimedemissionreductions.Ifamodelcannotbefoundtoprovidesufficientaccuracy,themeasuredapproachmustbeused.7)TheselectedmodelisusedtomodelthesoilcarbondynamicsandtoestimatethemaximumSOCthatwouldhaveoccurredinthe10yearspriortotheprojectstartdate.Thisprovidesanuncertaintydeductionforactivity-basedemissionreductioncalculations.5IPCC,Emissionsfromlivestockanddungmanagement,inGuidelinesforNartionalGreenhouseGasInventories.2006,IPCC.p.1-85.7SuchdataarenecessarytouseTierIImethodsofcalculatingmethaneemissionsperIPCC2006guidelinesVM0032,Version1.0SectoralScope14Page188)Wherethemeasuredapproachisused,estimatesofinitialsoilcarbonstockswithindifferentstratamustalsocalculateanuncertaintybasedona95percentconfidenceinterval,withuncertaintydeductionsimposedifuncertaintyexceeds+15percent.9)Uncertaintypropagatedbyallestimatedemissionsandreductionsmustbecalculatedforbaselineemissions,projectemissionsandreductions.Uncertaintydeductionswilloccurifthetotaluncertainty+15%percentofestimatednetemissionsandremovalsundertheprojectscenario.Thedeductedremovalsmustbedirectlyproportionaltotheuncertainty.7ADDITIONALITYAdditionalitymustbedemonstratedusingthelatestversionoftheVCStoolVT0001ToolfortheDemonstrationandAssessmentofAdditionalityinVCSAgriculture,ForestryandOtherLandUse(AFOLU)ProjectActivities.Inthistool,theprojectproponentmust(1)identifyalternativelandusescenariostotheproposedprojectactivity,(2)performaninvestmentanalysistodeterminethattheproposedprojectactivityisnotthemosteconomicallyorfinanciallyattractiveoftheidentifiedlandusescenariosor(3)identifykeybarriers,and(4)demonstratehowtheproposedprojectactivitydeviatesfromcommonpractice.8QUANTIFICATIONOFGHGEMISSIONREDUCTIONSANDREMOVALS8.1BaselineEmissions8.1.1BaselineManagementActivitiesTheprojectproponentmustdocumentthemanagementactivitiesthatoccurredduringthebaselineperiod,inordertoquantifybaselineemissionsand/orremovals.Managementactivitiesmustinclude:1)Thenumberoflivestockgrazinganimalsofdifferentcategories(eg,weight,sex,ageandspecies)inoneormoreareaswithinorintheentireprojectarea.2)Theaverageforageremoval,orgrazingintensity(%)byallanimals,asmeasuredbycomparisonofforagebiomassinsideandoutsidefencedexclosures[2,17],orinsideandoutsideunfencedareasotherwiseavoidedbylivestock,suchasconservationareas,withsimilarsoilandclimate,orbeforeandafterplannedgrazingevents.Estimatesofgrazingintensityoverlargeareasmaybemadebyusingsatellite-basedindices,suchasNDVI[12,13],aslongassuchindicesarecorrelatedwithgroundmeasurementswithaR2>0.35.3)Thepatternoftimeandtimingofanimaluseoftheprojectarea.4)Prescribedburnsatsomedesiredfrequency.Managementactivitiesmayalsobeconsideredtomeanalackofmanagementintheformofunplannedlivestockgrazing,lackofgrazing,orunplannedfires.TheprojectproponentmustalsoprovideevidenceofthebaselinevegetationconditionsandtheirassociationwithmanagementVM0032,Version1.0SectoralScope14Page19activitiesintheprojectareaduringthebaselineperiod.Suchevidencemusttaketheformofanyoneorcombinationofthefollowing,innoparticularorderofpreference:5)Fielddataonvegetationcomposition(biomass,percentcover,incidence).Dominantvegetationtypesthatareassociatedwithlowersoilcarbon(eg,annualplants)orwithgrasseswithhighligninandcellulosecontentsuchasvariousPennisetumspp.(inAfrica),Spinifexspp.,(Australia),switchgrassPanicumvirgatumorJohnsongrassSorghumhalepense(NorthAmerica),orPaspalumspp.(SouthAmerica))followingconsumptionbylivestock.Thesedatamaybepresentedasvisuallyestimatedpercentcoverofdifferentvegetationtypesandaveragepercentcoverofannualandperennialgrasses,baregroundandshrubs,mustbeprovidedifapplicable.6)Measurementsofgrazingintensityfromexclosure(fence)experiments,visualestimatescalibratedfromexclosureexperimentsorungrazedareaswithintheprojectareawithsimilarsoilsandrainfalltoareaswheresoilcarbonisexpectedtobeincreased.7)GPS-referenced,datedphotographsofarepresentativesampleoftheprojectarea,withsufficientevidencetojudgeashifttoprojectscenariovegetationfromsimilarphotographstakenofthesameviewatthesameGPSpoint.8)Interpretedsatelliteimages,suchasindicesofNDVI[12,13]ormapsofburnedareas[18,19]acrossmultipleyears,coupledwithgroundvegetationdatatosupporttheconclusionthattheseimagesarecorrectlyinterpretedwithreasonableaccuracy(ie,R2>0.35betweenindexandvegetationmeasurefrom1).8.1.2DesignandEstablishmentofPermanentSamplingStationsThismethodologydependsgreatlyonthesuccessatmeasuringchangesinSOC,theresultsofprojectactivities,and/orkeyinputsintosoilcarbonmodelssuchasgrazingintensityand/ortheintensityandfrequencyoffires.Becausethesemeasurementsingrasslandsoftenvarybyalargeamountoverdistancesofafewmeters,theprojectproponentmustestablishpermanentsamplingstations,markedwithpermanentmaterials,likePVC,metalorstone,withrecordedGPSlocationsto10meteraccuracy,orcloseenoughtofindthepermanentmarkersofthestation.Measurementsofcarbonstocksinsoilandwood(ifrelevant)atthesameplacemaythenbecomparedovertimeandcontrolforinitialdifferencesinSOC,grazingandfirehistory,vegetation,topography,andotherfactors.Projectimpactsoncarbonstocksarethereforebestdetectedbymeasuringthechangeincarbonstocksbetweenyearsateachsamplingstationandthensummedoverallsamplingstationsratherthanthedifferencebetweenmeanstocksacrossallsamplingstationsindifferentyears.Thissamplingapproachwillgreatlyreducethevariance,andtherefore,uncertainty,inchangesinstocksbetweenbaselineandprojectactivities.FurtherdetailsaboutmeasurementsatthesepermanentstationsarediscussedinSection0.8.1.2.1NumberofSamplingStationsThetotalnumberofsamplingstations,n,fortheprojectareamustbedeterminedbyusingtheCDMA/RmethodologicaltoolCalculationofthenumberofsampleplotsformeasurementswithinVM0032,Version1.0SectoralScope14Page20A/RCDMprojectactivities.[20]Assoilistypicallysampledfromthreeormorepooled5-10cmdiametercoresatastationandthereforefromasmalltotalarea(<0.05m2),therearepotentiallyalargenumberofpotentialsamplingsitesineventhesmallestprojectarea(<1km2).Consequently,thetotalnumberofsamplingstations,accordingtotheCDMtool,islargelyinsensitivetothetotalareaoftheprojectforameasuredapproachasshowninseeFigure.Figure1:EstimateNumberofSamplingStationsFigure1showstheestimatednumberofsamplingstationsneededtodetectanincreaseinmeanSOCof0.3percentforsampleswithatypicallyobservedstandarddeviationof0.3percent(100percentofmean)andtargetstandarderroroflessthan10percent.8.1.2.2StratificationMeasuredApproachObtainingpreciseestimatesofsoilorganiccarbonrequirescarefulstratification[21,22].Stratificationonthebasisofvegetationandmanagementpracticesmustprovideagoodinitialscopeofstratificationforsoil,butadditionalfactors,suchastopography(top,middleandbottomofslopes),andtexture(proportionofsand,siltandclay)mayalsobeimportantfordefiningstrata.Acluster,regressiontreeorothersimilaranalysisofSOCfromthepermanentsamplingstations,whichisrequiredtoestablishbaselineSOCstocks,mustbeusedtodecideafinalstratification.Thesetypesofanalysesexamineasetofdifferentmeasurementsfromdifferentlocationstofindgroupsoflocationswithsimilarvalues,andmaybeconductedinmanywaysdependingontheextentofvariabilityinsoils,climate,andmanagementinaprojectarea[22].Foradetaileddiscussionandrecommendedapproaches,seereferences[23,24].RatherthanlimituncertaintyinabsolutemeasurementofSOCstocks,amodeledapproachhasthegoaltoreducethe95percentconfidenceintervalofaregressionlineofpredictedchangeinSOCrelativetoobservedchangeinSOC.Thisimposesanadditionalemphasisforthe0501001502002503003504004500.0010.010.1110100100010000100000NumberofStationsProjectArea(km2)VM0032,Version1.0SectoralScope14Page21distributionofsamplingstationstoincludethelargestpossiblevariationinSOC,bothintermsofthestratachosenandinsamplingvariationwithinstrata.Usingclusteranalysis,regressiontreeanalysisoranyothermeans,suchasthelatestversionoftheVCSmoduleVMD0016Methodsforstratificationoftheprojectarea(X-STR),v1.0[25],theprojectproponentmustclassifytheareabypastmanagementpracticesandpreliminaryinformationaboutsoils(suchasfromasoilsmap)andclimaticconditions(suchasfromareasthataresimilarinabovegroundproductivity,orfromrainfallmaps).Thisstepisequivalenttostratificationinanafforestation/reforestationproject[20]butfocusedonfactorsrelatedtosoilcarbonsequestration[7],firefrequency,andanimaldistributionandmanagement,andreducestheuncertaintyinestimatesofprojectremovalsofGHG.Thiswillproducesstratawithinwhichbaselineandprojectemissionsarecalculated,soilcarbonchangesandmethaneemissionswillbemonitored,andpast(baseline)andproposedprojectmanagementactivitieshavebeen(are)implemented.Asanexample,aprojectmightbesubdividedintofiveareasofdifferentsoiltypeand/orprecipitationasseeninFigure.Thesamplingdesignwouldthenfeatureeightstrata,oneforeachcombinationofmanagementactivity,soiltype,andprecipitationorwateravailability.Figure2:HypotheticalLandscapeamongEightStrataSubjecttoDifferentManagementPracticesOnceeachstratumisdefinedandmappedandthetotalnumberofsamplingstationsdetermined,thenarepresentativenumberofsamplepoints,zm,arechosenwithineachstratum.Thenumberofpointsperstratumwilldependonwhichstratifiedsamplingmethodisused.WhereSOCVM0032,Version1.0SectoralScope14Page22exhibitssimilarvariabilityamongstrata(ie,coefficientsofvariation(standarddeviation/mean)differbylessthan40%inareaswithdifferentsoil,vegetation,ormanagementpractices),thenumberofstationsperstratummustbeproportionaltotheproportionalareaofeachstratumintheprojectarea.Thisisthemostlikelyscenarioundertheexpectationthatstrataforaprojectareselectedtoensurealowvariance(10percentstandarderror)withineachstratum.Forexample,inaprojectwiththreestrata,A,B,andCthatrepresent50percent,40percentand10percentrespectivelyofthetotalprojectareaandtheprojectarearequires100samplingstations,then50,40,and10stationsmustbeplacedrandomlywithineachofstrataA,B,andCasshowninError!Referencesourcenotfound.3below.Thisisthecaseofproportionalallocation,whichthenumberofstationsisallocatedtoeachstratumonthebasisofitsproportionofthetotalprojectarea.Figure3:ProportionalAllocationofSamplingStations(Stars)AmongtheEightStrataintheHypotheticalProjectAreainFigure2Alternatively,thebestpossiblestratificationoftheprojectarea,resultingintheleastuncertainty,maystillfeaturecertainstratathatexhibitmuchhighervariability(>40%differenceincoefficientofvariation)inSOCthanothers.Inthiscase,“optimum”ordisproportionateallocationofstationsmaybemostappropriate.Whereadisproportionateapplicationisapplied,stratareceiveanumberofsamplingstationsproportionaltotheircoefficientofvariationratherthantheirproportionalarea.Intheexample,hypotheticalstrataA,B,Cmightreceive20,20,and60percentofstations,respectivelyifSOCinstratumCisthreetimesmorevariable(threetimeshighercoefficientofvariation),regardlessoftheirproportionalareas.Asanexample,Figure4showsthedisproportionateallocationof25samplingstationsinthehypotheticalprojectareaVM0032,Version1.0SectoralScope14Page23shownbelow.Inthiscasethehighprecipitationstratumandtheclaysoilswithahighwatertablearethreetimesmorevariablethanotherstrata,andthusreceive6stations,asopposedtotwo.Figure4:OptimalorDisproportionalAllocationofSamplingStations(Stars)AmongtheEightStrataoftheHypotheticalProjectAreainFigureTheprimarygoalofthedistributionofstationsmustbetoreducevariabilityandincreaserepresentationofdifferentSOCvaluesintheprojectarea.ModeledApproachForprojectsusingamodeledapproach,theobjectiveistodemonstratethatthechosensoilcarbonmodelcanpredictSOCstocksorchangesinSOCstocksateachofalargenumberofsamplingstationsthatdifferinkeyfactors,suchasclimatesoiltype,pastmanagement,andvegetation.Samplingstationsmustbeselectedtoencompassasmuchofthevariabilityinthesefactorsaspossibleinordertotestthatthemodelisappropriateforuseintheprojectarea(seeSection8.1.3.3.Thesamplesizemustbedeterminedusinganonlinecalculator8orapoweranalysisinanystandardstatisticsprogram.Asanexample,toachievethedesiredmodelaccuracyofR2>0.80(seeSection8.1.3.3)andanuncertaintyoflessthan0.08,atotalof120sampleswouldbeneededfromacrossthefullvariationinSOCwithintheprojectarea.8.1.3CalculationofBaselineEmissions8Oneresourceforonlinecalculatorsishttp://www.danielsoper.com/statcalc3VM0032,Version1.0SectoralScope14Page248.1.3.1BaselineEmissionsfromGrazingAnimals(BEM)Baselinemethaneemissionsfromgrazinganimalsmustbeestimatedfromdataontotalnumbersfordifferentlivestockcategoriesthatreflectspecies,age,sexandtheirrespectiveweights,intheprojectarea.ThemethodologyappliestoTier2approaches,asoutlinedintheIPCC2006GuidelinesforNationalGreenhouseGasInventoriesChapter10,EmissionsFromLivestockandDungManagement[5]butwithlocalinputdata.Calculationsarebasedonestimatingdailymethaneemissionsasafunctionofthebodyweight(kg)ofeachmajoranimalcategory[26](Figure5:DailyMethaneEmissionsData),andthenmultipliedbythenumberofanimalsineachanimalcategoryand365daysinayear.Emissionsfromallcategoriesmaythenbesummedtoprovidethetotalannualmethaneemissionsfortheprojectarea.Domesticlivestockgrazinganimalsofcategorycmustbeclassifiedasoneofthreeanimaltypes:ruminants(sheep,goats,cattle,buffalo,andcamelids(ie,camels,alpacas,guanacos,llamas),equids(donkeys,horses)orpigs.3656.2610(1)Where:BEM=Baselineannualemissionsfromgrazinganimals(tCO2e)BNc=Baselinenumberofanimalsofcategoryc(head)DMEF(Wc)=Dailyemissionfactorasafunctionofanimalweightforcategoryc(LCH4/day)WC,=Averagebodyweightduringthebaselineperiodforanimalsofcategoryc(kg)GWPCH4=Globalwarmingpotentialformethane(tCO2e/tCH4)c=categoryofgrazinganimalsK=numberofcategoriesofgrazinganimals,egspecies,gender,agecombinations365=Conversionfactorfordaystoyears6.26x10-7=ConversionfactorforLCH4/daytotCH4/dayFurther,DMEF(Wc)isthedailyemissionfactor(litersCH4/day)asafunctionofanimalweightforanimalcategoryc.ThesevaluesmustbedeterminedusingtherelevantallometricequationsinError!Referencesourcenotfound..Table4:AllometricEquations,withUncertainty,forDailyMethaneEmissionsforThreeAnimalTypes:Ruminants,Equids,AndPigsAnimalTypeEquationnR2UncertaintyPercentRuminants0.66xWC0.97620.889.5%Equids0.18xWC0.97230.7628.2%Pigs0.07xWC0.99120.9318.6%VM0032,Version1.0SectoralScope14Page25BNc,istheharmonicmeannumberofanimalsofeachcategoryduringthe10yearspriortotheprojectstartdate,calculatedasbelow.Theharmonicmeanconservativelyweightslowervaluesofmethaneemissionsinasample[27].Thismustbecalculatedusingequation(2).TheharmonicmeanBNcforncensuses[27]ofNc,ianimalsineachcategorycduringcensusiisgivenby:11∑1,(2)Where:BNc=Baselinenumberofanimalsofcategoryc(head)n=NumberofcountsNc,i=Animalsincategorycduringcounti(head)CalculationsofuncertaintyaregiveninSection8.4.2.1.Figure5showsthedailymethaneemissionsdatacompiledfromtheFranzetal.(2010)reviewof62measurementsforruminants(sheep,goats,cattleandbuffalo),23measurementsforequids(donkeysandhorses)and12measurementsforpigs,showinghowmethaneemissionsscalewithbodyweightW(kg).Allanimalswerefedroughageforagesimilarinquality(40-50percentneutraldetergentfiber)toplantsconsumedinunfertilizedgrasslandsthatlikelyapplyinthismethodology.TheserelationshipsaresummarizedinError!Referencesourcenotfound.above.Figure5:DailyMethaneEmissionsDataForagequality,andspecificallythefibercontentofforage,isknowntoaffectmethaneemissions[28].However,foragequalityisnotincludedbecauseitintroducesadditionalerrorintothecalculation,sincedrymatterintakewouldalsohavetobeestimatedtoyieldmethaneemissions.Furthermore,theforagequalityactuallyconsumed,asopposedtothatavailable,byfree-livinganimalsongrasslandscanprobablyneverbemeasuredaccuratelyacrossalarge-scaleproject.Soinstead,itisexpectedthattheuncertaintiesintheallometricequationsinError!VM0032,Version1.0SectoralScope14Page26Referencesourcenotfound.areirreduciblewithoutimpracticalandprohibitivelyexpensivedirectmethanemeasurementsonindividualanimals[28]Dependingontherelativeabundanceofequidsinthecompositionofanimals,thisuncertaintyinmethaneemissionsmayinduceanuncertaintydeductioninthecalculationofremovedmethaneemissions.8.1.3.2BaselineEmissionsofMethanefromBurningofBiomass(BEBB)Biomassburningresultsinannualemissionsofmethane.Theseemissionsmaybeconservativelyexcludedifprojectactivitiesdonotchangeorleadtodecreasedannualemissions,inwhichcaseBEBB=0.Ifprojectactivitiesdecreasefire,proponentscanchoosetoincludebiomassburninginbaselineemissioncalculationsandshowthenetdecreaseinsuchemissionsundertheprojectscenario.Ifprojectactivitiesincreasefirefrequency,suchastoremoveshrubsandleadtoanetincreaseintotalcarbonstocksfromtheincreaseinSOCassociatedwithestablishmentofperennialgrasses,projectproponentsmustcalculatethenetchangeinemissionsfrombiomassburningundertheprojectscenario,BEBB,mustbecalculatedwiththefollowingequation:∑,,,1,000,000(3)Where,BEBB=Baselineannualemissionsofmethanefromburningofbiomass(tCO2e)FFREQm,=Proportionofareaofstratummburnedannually(percent)APBm,=Meantotalabovegroundbiomassattheendofthegrowingseasoninstratumm(kgbiomass/ha)PAm,=Baselineareainstratumm(ha)BCG=Baselinecombustionfactorforsavanna/grassland(kgbiomassburned/kgbiomass)EFBG=Emissionfactorfortheburningofgrassland(gCH4/kgbiomassburned)GWPCH4=GlobalwarmingpotentialofCH4(tCO2e/tCH4)1,000,000=ConvertsgCH4intoMg(tons)8.1.3.3BaselineChangesinSOCDensityThedeterminationofachangeinbaselineequilibriumcarbondensitydependsonthetypeofprojectapproachused.MeasuredApproach.Wherethemeasuredapproachisapplied,initialSOCm,j,0ateachsamplingstationisthebaseline.InitialSOCm,j,0maybecalculatedfrommultiplepooledsoilcoresfromeachstationas:,,,,%,,,,(4)Where:VM0032,Version1.0SectoralScope14Page27SOCm,j,0=SOCdensityinstationjinstratummattimet=0(tC/ha)DEPTHm,j,0=DepthofSOCsamplingattheprojectstart(cm)SOC%m,j,0=PercentSOCindrysoilfromtheentiresoilprofiletothechosendepthatstationjinstratummattimet=0(percent)BULKm,j,0=Bulkdensityatstationjinstratummattimet=0(Mgdrysoil/m3)(NoteMg/m3areequivalenttog/cm3,theunitmostcommonlyreportedbylaboratoryanalyses)NotethatSOC%m,j,0isapercentandallowstheequationtocorrectlycalculateSOCdensity(tons/ha).DEPTHm,j,0mustbeselectedbytheprojectproponenttoaccountforthevastmajority(>80percent)ofSOCinthesoilcolumn,reflectdepthtohardpansorbedrock,ortomatchcalculationsfromsoilcarbonmodels.SOC%m,j,0andBULKm,j,0mustbemeasuredinaprofessionallaboratorythrougheithercombustionmethods[29]ormulti-spectraldiffractionwithaninfra-redspectrometerfollowingprojectarea-specificcalibrations[30].Bulkdensityaccountsforwhethersoilislooselyordenselypackedandmustnotincludevolumeoccupiedbyrockfragmentsorpebbles.Modeledapproach.Baselinemanagementactivitiesandenvironmentalconditionsdrivenbypossibleprojectactivities,suchasgrazingintensityandfirefrequency,aswellascriticalfactorsaffectingcarboninputsandoutputstosoil,suchassoiltexture,climateandplantcharacteristicsthataffectdecompositionmustbeimportedintoapeer-reviewed,publishedsoilcarbondynamicsmodelthathasbeenassessedforaccuracyatleastoncewithanindependentsetofdataotherthanthatusedtoconstructthemodel.Forexample,SNAP[3]CENTURY[4,16,31],EPIC[32,33],HurleyPasture[34,35]modelsarefourmodelsthatincorporategrazingand/orfire,amongothers,asfactorsdeterminingsoilcarbon.Oneormoreoftheseorothercandidatemodelsmustbeassessedforaccuracyindependently,(ie,withdataotherthanthatusedtoconstructthemodel),andalsotestedtodemonstrateitisappropriateforuseintheprojectareabyshowingitsabilitytopredictinitialcarbonstocksindifferentsubareas(strata)withintheprojectarea(seebelow).ThisanalysisassumesthatpastpracticeshavebeeninplacelongenoughforSOCtoapproachequilibrium.Thusthesoilcarbonmodelmustbeabletopredictthisequilibriumforstrataintheprojectthathaveexperiencedsimilarmanagementactivitiesfor20yearsormore.Aregressionlineisfittedtoascatter-plotofmodel-predictedSOC(x-axis)vs.measuredSOCfromalargenumberpermanentsamplingstations[36](seesection8.1.2.2).Variationinconditionsandmanagementactivitiesacrossstratamaybeusedasthesourceofdifferentsoilcarbonmodelparameterinputs.ThemodelmustgenerateacoefficientofdeterminationR2>0.80acrossallstrata.Theslopeoftheregressionlinemusthavea95percentconfidenceintervalthatoverlaps1andthe95percentconfidenceintervaloftheinterceptmustoverlapzero.Ifthesecriteriacannotbemetwithanyavailablemodels,thentheprojectproponentsmustusethemeasuredapproach.Biasmustbedeterminedbyevaluatingthepercentbiasofasimulation(carbonmodel)relativetoobserveddata[37].VM0032,Version1.0SectoralScope14Page28∑∑(5)Where:MBIAS=Percentbiasofcarbonmodelpredictionsrelativetoobserveddatan=numberofsamplingstationstestedYobsi=observedSOCdensityatstationiYpredi=SOCdensitypredictedatstationiBiasofthemodelchosenforthismethodologymustbebetween-20%and+20%.ThecriteriaofR2>0.80,slope=1andintercept=0shouldensurethat-20%<MBIAS<20%[37].Inthecasethatsignificantbiasisfoundandemissionreductionsareover-predicted—asubsetofobserveddatamaybeusedtoadjustmodelparametersandfitthemodeltodata,andthenthemodelmaybere-testedwiththeremainingdata.Inadditionthe95percentconfidenceintervalforpredictedmeanSOC,derivedfromMonteCarlosimulations,mustoverlapwiththatofSOCmeasuredatsamplingstationsinthesamestratum.If,forcertainstrata,the95percentconfidenceintervalsdonotoverlap,thenthesoilcarbonmodelmustbecalibratedforthatstratumbyadjustingoneormoreparametersuntil95percentconfidenceintervalsdooverlap.FigureprovidesanexampletestofpredictedSOC(g/m2)ofasoilcarbonmodelwithobservedmeasuredSOC,showingtheregressionline,coefficientofdeterminationR2andthedegreeofvariationaroundtheregressionlineexpectedforanaccurate,precisemodelforcalculatingbaselineSOCandchangesinSOC.Figure6:ExampleTestofPredictedSOC(G/M2)ofaSoilCarbonModelwithObservedMeasuredSOCy=1.0121x‐203.84R²=0.913401,0002,0003,0004,0005,0006,0007,0000100020003000400050006000ObservedSOC(g/m2)PredictedSOC(g/m2)VM0032,Version1.0SectoralScope14Page29ThestatisticsofvariationneededtocalculateuncertaintiesforeachparameterinthemodelarealsonecessarytodetermineanoveralluncertaintyinthemodelcalculationsofSOC.TotaluncertaintyofmodelpredictionsofbaselineSOC,changesinSOCoreventualequilibriumSOCmaybedeterminedbyananalysiscalledMonteCarlosimulation[3,38].Insuchasimulation,parametervaluesarerandomlychosenfromhypotheticalnormaldistributionswithmeanequaltotheparametervalueandthemeasuredstandarderroraroundthatmean.Onceallthedifferentparametervaluesforthemodelaregeneratedfromthehypotheticaldistributions,amodelpredictionismade.Thisprocessisrepeated100ormoretimestoproduceameanmodelpredictionwitha95percentconfidenceinterval.ForbaselineSOC,theMonteCarlosimulationwouldgenerateanexpectedvalueofSOCanda95percentconfidenceinterval.Insomecases,alternativesoilcarbonmodels,and/orthesamemodelingframeworkwithdifferentsetsofinputparameters,maybeappropriateforthesameprojectareaandactivity[39].Ifso,theprojectproponentmustmatchpredictionsofdifferentmodelstoobservedSOCandchoosethemodelthatbestpredictscurrentSOCm,j,0ateachstationinstratummwiththelowestAkaikeInformationCriterion(AIC)value,asperstandardmodelselectionprocedures[40]Differentmodelsmayusedifferentnumbersofparameters,soAICisastatisticthatmeasurestheamountofvariationinobservationthatisnotpredictedbyamodel,correctedforthenumberofparametersKusedinthemodeltomaketheprediction:∑2211(6)Where:AIC=AkaikeInformationCriterionvaluen=Numberofobservationstested,andei=DeviationofanobservationfromitsmodelpredictionK=NumberofparametersusedNotethatmodels,suchasCENTURY[4,16,31],withlargenumbersofparameters(>80)requirealargenumberofobservationsn>KtoevengenerateAIC,andsuchmodelswouldhavetogeneratevastlygreaterfits(higherR2,lower∑)toobservationsthanmuchsimplermodelswithfewerparameters,suchastheHurleyPasturemodel[2,34,35].Thechosenmodelmustbere-calibratedassoonaschangesinSOCmaybemeasured(typically5ormoreyearsbutuptoamaximumof10years)sincetheprojectstartdateormostrecentre-calibration(calibrationperiod).Inthiscase,themodelshouldbeusedtodetectthechangeinsoilcarbonduringthepreviouscalibrationperiodratherthantopredictcarbonstocks.Necessarymodelparametersmustbemeasuredasdiscussedpreviouslyinthissectionandpredictionsofchangeinsoilcarbonstocksmustbecomparedagainstmeasuredchangesateachofthepermanentsamplingsitesusingtheregressionapproachesoutlinedpreviouslyinthissection.Again,themodelshouldpredictobservedchangeinsoilcarbonwithR2>0.80andRMSR<0.7.Iftheselectedmodelfailstosuccessfullypredictsoilcarbonchangesaccordingtothesecriteria,thentheprojectproponentmaymodifythemodel,orre-calibrateit.Re-calibrationmayoccurbyVM0032,Version1.0SectoralScope14Page30adjustingparameterinputsorcoefficientsinthemodel’sfunctionsinareasonableway(justifiedbypeer-reviewedscientificliterature)toachievesuccessfulpredictionofchangesinSOCduringthecalibrationperiod.8.1.3.4GeneratingBaselineSOCwithaSoilCarbonModelProjectsapplyingamodeledapproach,mustapplythemaximumSOCintheprevious10yearsasthebaselineSOCstocks.Formostprojects,thiswillnothavebeenmeasured,sothesoilcarbonmodelofchoicemustbeusedto“backcast,”thatisestimateSOCthatwouldhaveoccurredduringthebaselineperiod.Figure77providesanexampleofbackcastingSOCchangefromcurrentSOC,basedonknowledgeofpastmanagementactivitiesandenvironmentalconditions.ThebluelineispredictedSOCofpreviousyears(x-axis).ThisexampleshowswhatbaselineSOCwouldbe10yearsprior(5549g/m2atyear10)ratherthancurrent(5192g/m2atyear1),thusincreasingconservatismintheestimateofbaselineSOC.Figure7:ExampleofBack-CastingSOCChangefromCurrentSOCMaximumbaselineMSOCm,j,0foreachstationineachstratummustbeestimatedbybackcastingthechosenmodel(Figure7:ExampleofBack-CastingSOCChangefromCurrentSOC)withmodelinputparametersassociatedwiththesoiltype,plantspecies,climateandmanagementactivityofthatstratum.Overall,thesoilcarbonmodelmaybeusedtoestimateamodeledbaselineSOCdensity,MSOCm,j,0=maximumSOCdensity(tons/ha)atsamplingstationjinstratummduringthebaselineperiod.,,,,(7)Where:MSOCm,j,0=ModeledSOCinstationjinstratummattimet=0(tC/ha)500052005400560058006000‐15‐10‐50SOC(g/m2)YearsPriortoProjectStartMaximumSOC,UsedasBaselineVM0032,Version1.0SectoralScope14Page31MSOCm,j,b=ModeledSOCinstationjinstratummforyearbduringthebaselineperiod(tC/ha)8.1.3.5BaselineEmissionRemovalsfromExistingWoodyPerennials(BRWP)Undertheapplicabilityconditionthatbaselineemissionsderivedfromlivelihood-drivenhumanimpactsonabovegroundwoodybiomassmustbenegligibleandprojectactivitiescannotsignificantlyaltersuchlivelihood-drivenactivities,itislikelythatfireandgrazingarethemaindriversofchangeinabovegroundwoodyvegetation.Whereareductioninfirefrequencyisaprojectactivity,woodyplantcarbonstockswillincreaseasaconsequence,andreversalsofpastandongoinglossesofwoodyplantbiomassmaybeconservativelyexcluded(ie,BRWP=0).Ifpastgrazingpressurehasbeenhighenoughtoreducefuelloads,pastfirefrequencymayhavebeenverylowandwoodyplants,particularlyshrubs,mayhavebecomeabundant.Ifso,activitiestosequestercarbonmayentailanincreaseinfirefrequencythatwillreduceabovegroundwoodybiomassbutleadtoanincreaseinsoilcarbonsequestrationsufficienttoincreasetotalcarbonstocks[1].Iffireisemployedtochangevegetation,abovegroundwoodybiomass,mustbeaccountedforincalculatingprojectemissionsandremovals.8.2ProjectEmissionsProjectemissionsandremovalsdependontheprincipalsetofprojectactivities.ProjectsthatreducefireeventsneedtoaccountonlyforchangesinmethaneemissionsbygrazinganimalsandchangesinSOC.Projectsthatincreasefireeventstoremoveunpalatablewoodyplants—usuallyshrubs—inordertostimulategrassandrootproductioncanincreasetotalcarbonstocks.Theseprojectsmustaccountforincreasedmethaneemissionfrombiomassburningandemissionsfromdecreasedabovegroundwoodybiomasscarbon.8.2.1ProjectMethaneEmissionsfromGrazingAnimals(PEMt)Ifprojectactivitieswillincludereductioninlivestocknumbers,thenaccompanyingremovalsfromreducedmethaneemissionsmustbeconservativelyexcludedfromprojectremovals.Thisavoidspotentialleakagefromshiftingofanimalstoadjacentgrasslandsorfrommarketleakagewherebyotherproducersincreaselivestocknumberstoreplaceprojectlivestockreductionsandmeetmarketdemand.However,whetherornotmethaneemissionsfromlivestockarereduced,calculationsmustbebasedonprojectdatafromanimalcountsorcensusesandemissionfactordatabasedonprojectarea-applicablebodyweightofeachcategoryfromtheequationsinError!Referencesourcenotfound.andEquation(1)(Section8.1.3.1).,,3656.2610(8)Where:PEMt=ProjectemissionsofCH4fromgrazinganimalsatyeart(tCO2e)VM0032,Version1.0SectoralScope14Page32PNC,t=Numberofanimalsofeachcategorycinyeart(head)DMEf(WC,t)=Dailyemissionfactorasafunctionofanimalweightforcategoryc(LCH4/day)WC,t=Averagebodyweightduringyeartforanimalsofcategoryc(kg)GWPCH4=Globalwarmingpotentialformethane(tCO2e/tCH4)365=Conversionfactorfordaystoyears6.26x10-7=ConversionfactorforLCH4/daytotCH4/dayTheparametersaresimilartothoseusedforcalculatingbaselinemethaneemissions.Thenumberofgrazinganimalmustbemeasured,becausenewanimalcategoriesmayresultduetoprojectactivities(eg,thereisashifttousingdifferentbreedsorspeciesoflivestock).8.2.2ProjectEmissionsfromBurningofBiomass(PEBBt)Whereprojectactivitiesreducethefrequencyoffire,thisemissionmaybeconservativelyexcluded,inwhichcasePEBBt=0.Whereprojectactivitiesincreasefirefrequency(eg,toremoveshrubs)andleadtoanetincreaseintotalcarbonstocks,thebaselineemissionsofmethaneduetoburningofbiomass,PEBBt,tCO2e,arecalculatedusingthefollowingequation:∑,∑,,,1,000,000(9)Where:PEBBt=ProjectemissionsofCH4duetobiomassburninginstratumminyeart(tCO2e)PFFREQm,t=Proportionofareaofstratummburnedinyeart(percent)APBj,m,t=Abovegroundplantbiomassatsamplingstationjinstratumminyeartatthebeginningofthedry/cold/orburningseason(kgbiomass/ha)zm=NumberofsamplingstationsinstratummattimetPAm,t=Projectareainstratummattimet(ha)PCG=Projectcombustionfactorforsavanna/grassland(kgbiomassburned/kgbiomassEFBG=Emissionfactorfortheburningofgrassland(gCH4/kgbiomassburned)GWPCH4=GlobalwarmingpotentialofCH4(tCO2e/tCH4)1,000,000=factorforconvertinggCH4intotonsTheprojectcombustionfactor(PCG)maybeestimatedintwoways.TheprojectproponentmayapplythemostapplicableIPCCdefaultvalue9ormaymeasurethemeanproportionofabovegroundbiomassafterfire(APBm,j,f)atthesamplingstationsintheprojectareathatburnedcomparedwiththepre-fireabovegroundbiomass(APBm,j,t)ateachstationjwithineachstratumm[42]:9Table2.6in41.IPCC,GuidelinesforNationalGreenhouseGasInventories2006.4(Chapter2).VM0032,Version1.0SectoralScope14Page331∑,,,,(10)Where:PCG=Projectcombustionfactorforsavanna/grassland(kgbiomassburned/kgbiomassAPBj,m,f=Abovegroundplantbiomassinstratumminyeartimmediatelyfollowingfire(kgbiomass/ha)APBj,m,t=Abovegroundplantbiomassatstationjinstratumminyeartatthebeginningofthedry/coldorburningseason(kgbiomass/ha)F=Numberofsamplingstationsthatburned8.2.3ProjectChangesinSOCDensityThedeterminationofchangefrombaselineequilibriumSOCdensitydependsonthetypeofprojectapproachused.MeasuredApproach:Wherethemeasuredapproachisapplied,theprojectsequestrationofSOC(intCO2e/ha)iscalculatedusingthefollowingequation:4412,,,,(11)Where:PRSt=ProjectremovalsduetochangesinSOCstocksinyeart(tCO2e)PAm=Projectareaofstratumm(ha)s=Numberofstrataintheprojectareazm=NumberofsamplingstationsinstratummSOCm,j,,v=BaselineSOCinstationjinstratumminyearv,Ifthisisthefirstmonitoringperiod,v=0,forsubsequentmonitoringperiods,vrepresentstheyearoflastverification(tC)SOCm,j,t=ProjectSOCmeasuredatstationjinstratumminyeart(tC/ha)Y=Lengthofthemonitoringperiod(years)44/12=ConversionfactorfromtCtotCO2e,,,,%,,,,(12)Where:SOCm,j,t=ProjectSOCmeasuredatstationjinstratumminyeart(tC/ha)VM0032,Version1.0SectoralScope14Page34DEPTHm,j,t=Soilcoredepth(cm)SOC%m,j,t=Percentsoilcarbonattimet(percent)BULKm,j,t=Bulkdensityatstationjinstratumminyeart(Mgdrysoil/m3;orequivalently,gdrysoil/cm3)NotethatthisformulaassumesthatSOCinyearYandinyear0(baselineorsincelastverification)willbemeasuredatalargenumber(100-1000)ofsamplingstationsjinastratifiedprojectarea,includingzmstationsineachstratumm(seeSection0).ModeledApproach:Theselectedprojectarea-validatedsoilcarbonmodel(seeSection8.1.3.3)mustbeusedtosimulateaprojectedequilibriumSOCdensity,calledtheprojectmodeledSOC,PSOCeqm,jforsamplingstationineachstratumunderexpectedprojectactivities.Expectedgrazingintensitiesand/orfirefrequenciesunderprojectactivitieswillcombineinthemodelwithotherparametersasneededforthechosensoilcarbonmodeltogeneratePSOCeqm,jforeachsamplingstationTheinputparametersforthesoilcarbonmodelmustbechosentosuchthatconservativeestimatesofcarbonremovalsaregenerated.UncertaintiesforeachparameterinthemodelmustbeavailabletodetermineanoveralluncertaintyforPSOCeqm,jwithaMonteCarlosimulation[3,43,44],asdiscussedindetailinSection8.1.3.3.ThemodelmustalsocalculatethenumberofyearsDtoreachthisequilibrium.Carbontypicallyaccruesinresponsetomanagementchangeswithdecreasingincrementsovertimeasequilibriumisapproached[4,33,35].Thusconservatively,theannualincrementinSOCisdeterminedbythedifferenceinSOCbetweentheconservativebaselinemaximumfrom10yearspriortotheprojectstart(MSOCm,j,0)andprojectmodeledequilibrium(PSOCeqm,j,t)dividedbythetimenecessarytoachieveprojectequilibrium(D).Theprojectequilibriummustbedeterminedassumingthatprojectactivitieswillbeimplemented.Thus,multiplyingtheannualincrementinSOC(tons/ha),bytheconversionofCtoCO244/12yieldsCO2eatthatstation.,4412,(13)Where:PRSm,t=AnnualprojectremovalsduetochangesinSOCstocksinstratumminyeart(tCO2e/ha)PSOCeqm,=ProjectmodeledequilibriumSOCatstationjinstratumm(tC/ha)basedonparametervaluesfromzmsamplingstationsinstratummMSOCm,0=ModeledSOCforstratummattimet=0(tC/ha)(seesection8.1.3.3)D=Yearsrequiredtoachieveequilibrium44/12=ConversionfactorfromtCtotCO2eVM0032,Version1.0SectoralScope14Page35,,(14)Where:PRSt=ProjectremovalsduetochangesinSOCstocksinyeart(tCO2e)PAm,t=Projectareaofstratumminyeart(ha)s=Numberofstrataintheprojectareazm=NumberofsamplingstationsinstratummPRSm,j,t=AnnualprojectremovalsduetochangesinSOCstocksatstationjinstratumminyeart(tCO2e/ha)8.2.4ProjectEmissionsandRemovalsfromExistingWoodyPlants(PERWPt)Whereprojectactivitiesinvolvechangesinfiremanagement,theprojectproponentmustmonitorchangesinabovegroundwoodyplantbiomass(AWPB)toquantifysequestrationofGHGinabovegroundwoodyplantcarbonfromreductionsinfireortoensurethatlossesofwoodybiomassfromincreasedfiredonotoutweighpotentialgainsfromsoilcarbonsequestration.Wheretheprojectactivitiesdonotinvolvechangesinfiremanagement,theprojectproponentmayexcludetheabovegroundandbelowgroundwoodybiomasspoolbyassumingPERWP=0.4412∑,∑,,,,1000(15)Where:PERWPt=Projectemissionsfromchangesinabovegroundwoodybiomassinyeart(tCO2e)44/12=ConversionfactorfromCtoCO2eC=Proportionofwoodcomposedofcarbon[45,46](kgC/kgbiomass)PAm,Y=ProjectareaofstratumminyearY(ha)zm=Numberofsamplingstationsinstratumms=NumberofstrataintheprojectareaAWPBm,j,0=Abovegroundwoodybiomassattheprojectstartdateorbeginningofthemonitoringperiodatstationjinstratumm;(kgbiomass/ha)AWPBm,j,Y=AbovegroundwoodybiomassatstationjinstratumminyearY(kgbiomass/ha)Y=Lengthofthemonitoringperiod(years)1000=Conversionfactorfromkgtot8.3Leakage8.3.1EstimationofLeakageVM0032,Version1.0SectoralScope14Page36Thismethodologyconsiderstwoformsofleakage:displacementleakagefromthemovementoflivestockofftheprojectareawheretheymayreducesoilcarbon,andmarketleakage,wherereductionsinlivestocknumbersasaprojectactivitywouldcreatemarketincentivestoreplacethelostlivestock.LEt=LDt+LMt(16)Where:LEt=totalleakageemissionsinyeart(tCO2e)LDt=leakageemissionsfromdisplacedlivestockinyeart(tCO2e)LMt=emissionsfrommarketleakageinyeart(tCO2e)8.3.1.1LeakageEmissionsFromDisplacedLivestockIncreasedGHGemissionsfromthedisplacementoflivestockoutsidetheprojectareaislimitedbytheapplicabilityconditionthattheprojectmustbestructuredtokeeplivestockwithintheprojectarea,andtheprojectproponentmustbeabletoenforcetheboundariesoftheprojectarea.Theprojectproponentmustpreventincursionoflivestockfromoutsidetheprojectareaorexcursionoflivestockfrominsidetheprojectareathroughfencing,patrollingbygamescouts,orothersuchenforcementofprojectareaboundaries.Theprojectproponentisexpectedtocontrolgrazinganimalnumbersinsidetheprojectareaandaccountforthenumberofanimalsinvolvedanddurationofanymovementoflivestocktooutsidetheprojectarea.Mechanismsmustbeinplacetopreventincursionoflivestockontoprojectlandsandtomonitorandpreventmigrationortransportoflivestockoutofprojectlands.Suchmechanismsmayincludefencingofprivatelands,governancestructuresthatpenalizelackofcooperationandparticipation,education,andmonitoringoncommunalgrazinglands.Nevertheless,monitoringofprojectactivitiesmayrevealthatlivestockexcursionsoutsidetheprojectareahaveoccurredandanyimpactsofsuchexcursionsonGHGemissionsorreductionsoutsidetheprojectareamustbeaccountedforasleakage.Wheretheprojectareaisnotfenced,suchasinpastoralistsystems,themovementandexcursionoflivestocktomorethantwokilometersfromtheprojectareaboundaryisconsideredleakage.10Leakagemethaneemissionsaredeemedaszerobecausemovementofprojectlivestockofftheprojectareadoesnotresultinanetincreaseinthenumberoflivestockemittingmethane.However,movementoflivestockcouldresultinlossesofcarbonfromhigherlevelsofovergrazingofftheprojectarea.Leakagemaybeaccountedintwopossibleways:monitoredapproachorpenaltyapproach.10Thisdistanceallowsforpossibleuncertaintyofherdersastothepositionofherdsinoroutoftheprojectareaandisatypicalallowablebufferbetweenethnicgroupcommunalgrazinglands[48]VM0032,Version1.0SectoralScope14Page37Amonitoredapproachallowslivestocktograzeoneitherplanned(identified)orunplanned(unidentified)landparcelsoutsidetheprojectarea,suchlandparcelsmustbeclassifiedasgrassland,forest,orcropland.Inthisapproach,potentialvegetationimpactsandbaselineSOCintheseoutsideareasmustbemeasured/monitored,followingVMD0040LeakagefromDisplacementofGrazingActivities.Thepenaltyapproachisamoreconservativeoption(leakagecalculationswilllikelybelarger)butnomonitoringofsoilsand/orvegetationoutsidetheprojectareaisrequiredandoff-projectareauseofgrasslands,croplands,andforestsisnotdifferentiated.Inthiscase,displacementleakage(LDt)mustbecalculatedasaproportionofnetremovalsfromincreasedsoilcarboninyeart(PRSt),basedontheproportionoftotalprojectlivestock-daysinprojectyeart,365xPNc,t,thatoccurredoutsidetheprojectarea.∑∑,365∑,(17)Where:LDt=Leakageemissionsfromdisplacedlivestock(tCO2e)DNC,x=Numberoflivestockofeachcategorycthatwereofftheprojectareaondayx(head)d=Totalnumberofdayslivestockwereofftheprojectareak=TotalnumberoflivestockcategoriesPNC,t=Numberofanimalsofeachcategorycinyeart(head)PRSt=ProjectremovalsduetochangesinSOCstocksinyeart(tCO2e)Alternatively,whereusingthemonitoredapproachtocalculatingleakage,themethodsforaccountingforlossesofSOCinVCSmoduleVMD0040(inSections5.2.4through5.2.6)mustbefollowedforunidentifiedgrasslands,croplands,andforests.BecausethisapproachexplicitlyestimatesactuallossesofSOCfromlivestockgrazing,itismoreaccurateinitscalculationofleakage,andrequiresthemeasurementofmanyadditionalparameters,asdefinedinthemodule.Theprojectproponent,forexample,whoselivestockweredisplacedonlyontoadditionalgrasslands,wouldberequiredtomeasureanumberofparametersincluding,theareaofparcelsaffected,abovegroundnetprimaryproduction,andthenumberoflivestockusingtheareapriortolivestockdisplacementandfollowingdisplacement.ThemonitoredapproachtocalculatingdisplacementleakagedoesnotneedtoaccountforCH4orN2Oemissions.Methaneemissionsfromprojectlivestockwillnotchangeeveniflivestockaredisplacedofftheprojectarea,andtheapplicabilityconditionslimitanynetincreaseindungdeposition.Otherimpacts,suchasdeforestationordegradationassociatedwithlivestockuseofforests,orremovalofcropresiduesbylivestockmustbeincludedinleakagecalculationsusingthemonitoredapproach,iftheycannotbeshowntobenegligible(ie,greaterthan0.05xPERt,equation18)8.3.1.2MarketLeakageEmissionsVM0032,Version1.0SectoralScope14Page38Theseresultfromanincreaseinactivitybyotherproducersofacommodityoutsidetheprojectareatocompensateforthereducedsupplyofacommodityfromwithintheprojectarea,suchasincreasedtimberharvestingelsewhereinacountrytocompensateforreducedharvestinginaprojectarea).MarketleakageisgenerallyconsideredtobeminimalinALMprojects[47]becausetheprojectsstillallowthesamelivelihoodchoicesandproductionofgrasslandcommodities(eg,livestock).Theapplicabilityconditionthatlimitsprojectsize,andthuspotentialimpactoftheprojectonnationalandinternationalmarkets,reducesthechancethatprojectactivitieswillresultindecliningsupplyoflivestock.Nevertheless,marketleakageforanyreductionsinlivestockmustbemadebyusingtheVCSmoduleVMD0033“Estimationofemissionsfrommarketleakage”11toestimateLMtemissionsfrommarketleakage.Firealterationsarenotexpectedtodramaticallyalterlivelihoodchoices,(eg,wouldnotpreventuseoflandforlivestock,wildlifeconservation,tourism).Projectsthatmanagefireorotherwisedonotreducelivestockneednotaccountformarketleakage.Totalleakageisnegligiblewhere:0.05(18)Where:LEt=Totalleakageemissions(tCO2e)PNRt=Projectemissionsplusremovalsinyeart(tCO2e)8.4NetGHGEmissionReductionandRemovalsTheestimationofnetprojectemissionreductions,PERt,andnetchangeincarbonstocks,NCCSt,eachyearofthemonitoringperiodiscalculatedusingthefollowingequation:(19)Where:PERt=Netprojectemissionreductionsinyeart(tCO2e)PEMt=Projectmethaneemissionsfromlivestockinyeart(tCO2e)PEBBt=Projectemissionsfrombiomassburninginyeart(tCO2e)BEM=Baselinemethaneemissionsfromlivestock(tCO2e)BEBB=Baselineemissionsfrombiomassburning(tCO2e)Notethatifprojectmethaneemissionsdecreaserelativetothebaselinefromremovaloflivestockfromtheprojectarea(note,notfromforageimprovement),iePEMt–BEM<0,thisGHGremovalmustbeconservativelyexcludedtoavoidmarketleakage,andproponentsmustsetPEMt–BEM=0.11http://www.v-c-s.org/sites/v-c-s.org/files/VMD0033%20Estimation%20of%20Emission%20from%20Market%20Leakage%2C%20v1.0.pdfVM0032,Version1.0SectoralScope14Page39(20)Where:NCCSt=Netchangeincarbonstocksinyeart(tCO2e)PRSt=Projectremovalsduetosequestrationofsoilcarboninyeart(tCO2e)PERWPt=Projectremovalsduetolossorgainofcarbonstocksinwoodybiomassinyeart(tCO2e)ThenetGHGbenefitiscalculatedusingthefollowingequation:(21)Where:Rt=NetGHGemissionreductionsandremovalsinyeart(tCO2e)PERt=Netprojectemissionreductionsinyeart(tCO2e)NCCSt=Netchangeincarbonstocksinyeart(tCO2e)LEt=Totalleakagechangesinsoilcarboninyeart(tCO2e)8.4.1Ex-AnteCalculationsofNetEmissionsandRemovalsTheprojectmustperformanex-ante(beforeproject)calculationofexpectedorestimatednetemissionsandremovals.Thekeytomakingsuchacalculationistodefineprojectquantitativemanagementobjectivesforfirefrequencyand/orgrazingmanagementcomparedtobaselineactivities.Theprojectproponentmustdothefollowing:1)Showatableofbaselineandproposedprojectscenariomanagementactivities.2)Showatableofexpectedparametersandemissionsandremovals,andtheiruncertainties,associatedwiththosemanagementobjectives;usedatafromthepeer-reviewedliterature,measureactivitiesintheprojectarea,orcalculatewithamodeltheresultingchangesinemissionsandremovalsassociatedwiththemanagement.3)Calculateexpectedprojectscenarioemissionsandremovals,andtheiruncertainties,basedonthesemanagementtargets.4)Showatableofbaselineemissions,projectemissionsandremovals,leakage(ifany),andtotalnetgreenhousegasemissionsandremovalsforeachyearoftheprojectcreditingperiod.8.4.2EstimationofUncertaintyTheVCSStandard[49]requiresthatuncertaintybecalculatedonthebasisofthefullwidthofthe95percentCIexpressedasapercentageoftheestimateofeachemissionorremoval.IPCCGuidelines[43]recommendusingaTier2approachtodetermineuncertaintywhereemissionreductionsaredeterminedbyacombinationofmeasurements,publishedemissionfactors,andprocessmodels,suchasasoilcarbonmodel.ATier2approachinvolvesconductingMonteCarlosimulations[3,38],whichmustcalculateRtfromequation(21)(seesection8.4)morethan100times,witheachcalculationdrawingrandomlyfromhypotheticalnormaldistributionsofexpectedVM0032,Version1.0SectoralScope14Page40valuesofeachparameterinthecalculation,asdefinedbythemeanandstandarderrorsofeachparameter.ThissimulationgivesameanandstandarddeviationofnetemissionsandremovalsRtthatareusedtocalculateuncertainty(equation(22)).SuchMonteCarlosimulationsmaybedoneinonlinecomputingenvironments,suchastheRProjectforStatisticalComputing[48],orevenwithmacrosdevelopedforspreadsheets[44]..,/(22)Where:UNRt=totaluncertaintyinnetemissionreductionsandremovals,notincludingleakage(%)n=numberofMonteCarlosimulationrunsperformed(mustbe>100)MCRt=meannetemissionsreductionsandremovalsattimet,fromnMonteCarlocalculationsofRt,(tCO2e)SD(MCRt,n)=standarddeviationofRtfromnMonteCarlosimulationsAlternatively,totaluncertaintymaybecalculatedbyweightinguncertaintiesaccordingtothemagnitudeofemissionorremoval.Inthiscase,uncertaintyinnetreductionsandremovalsUNRtisdrivenbyuncertaintyinbaselineemissions,projectemissionsandprojectnetchangesincarbonstocks.UPExPEMPEBBUNCCSxNCCSUBExBEM/(23)Where:UNRt=uncertaintyinnetemissionreductionsandremovals,notincludingleakage,attimet(%)UPEt=uncertaintyinprojectemissionsattimet(%)UNCCSt=uncertaintyinnetchangeincarbonstocksattimet(%)UBE=uncertaintyinbaselineemissions(%)BEM=baselineanimalmethaneemissions(tCO2e)PEMt=projectanimalmethaneemissionsattimet(tCO2e)BEBB=baselineemissionsfrombiomassburning(tCO2e)PEBBt=projectemissionsfrombiomassburning(tCO2e)NCCSt=netprojectchangesincarbonstocks(tCO2e)EachofthethreecomponentuncertaintiesarederivedindetailbelowVM0032,Version1.0SectoralScope14Page418.4.2.1UncertaintyintheBaselineForthecalculationofbaselineemissionsandreductions,BER,uncertaintyarisesinthecalculationofmethaneemissionsonly,becauseallothernetemissionsareconservativelyassumedtobezero,unlessincreasingfirefrequencyisaproposedmanagementactivity.Inthiscase:(24)Where:UBE=Uncertaintyinbaselineemissions(%)UBEM=Uncertaintyinbaselinemethaneemissionsfromgrazinganimals(gotosection8.4.2.1.1)(%)Inthecaseofproposedactivitiestoincreasefirefrequency:∑/∑(25)Where:UBEBBm=Uncertaintyinbaselinemethaneemissionsfromburningofbiomass(%)BEM=baselinemethaneemissionsfromanimals(tCO2e)BEBB=baselineemissionsfromburningofbiomass(tCO2e)8.4.2.1.1Uncertaintyinbaselinemethaneemissionsfromgrazinganimals(UBEM)∑∑(26)Where:UBEM=Uncertaintyinbaselinemethaneemissionsfromgrazinganimals(%)UBEMc=Uncertaintyinbaselinemethaneemissionsfromanimalsincategoryc(%)BEMc=Baselineemissionsfromanimalsincategoryc(tCO2e)UBEMcistheuncertaintyinmethaneemissionsfromanimalsincategoryc,asdictatedbywhethertheanimalsareruminants,equids,orpigs(seeSection8.1.3.1),.UBEMciscalculatedfromtheuncertainty,foreachanimalcategory,intheregressionequationspredictingperanimaldailymethaneemission(DMEc)basedonthemeanbodyweight(UDMEc,Error!Referencesourcenotfound.)andtheuncertaintyintheharmonicmeanofanimalcounts(UBNc)duringthebaselineperiod.ToobtainUBNc,firstfindSEBNc,thestandarderror[50]oftheharmonicmeanBNcoftheseries’Nc,iofanimalsincategorycincountiofncountsorcensuses.VM0032,Version1.0SectoralScope14Page42,/(27)Where:SEBNc=StandarderroroftheharmonicmeanofanimalcountsincategorycSD(1/Nc,i)=StandarddeviationoftheinversesofthecountIofanimalsincategorycNc,i=Animalsincategorycincensusi(head)BNc=Harmonicmeannumberofanimalsincategoryc(head)duringthebaselineperiod(head)n=NumberofcensusesThe95percentconfidenceinterval-baseduncertaintyintheestimatednumberofanimalsincategorycis:3.84100(28)Where:UBNc=Uncertaintyintheharmonicmeanofanimalcounts(%)SEBNc=StandarderroroftheharmonicmeanofanimalcountsBNc=Baselinenumberofanimalsofcategoryc(head)3.84=Multiplierconvertsexpressionintoa95%confidenceinterval100=Multiplierconvertsexpressionintopercent/(29)Where:UBEMc=Uncertaintyinbaselinemethaneemissionsfromanimalsincategoryc(%)UBNc=Uncertaintyinthebaselineharmonicmeanofanimalsofcategoryc(%)UDMEc=Uncertaintyintheregressionforpredictingdailymethaneemissionsforanimalsofcategoryc(%)8.4.2.1.2Baselinemethaneemissionsfromburningofbiomass(BEBB)Inthecaseofprojectactivitiesthatincreasefirefrequency,uncertaintyinBEBB(UBEBB)isdrivenbyuncertaintyinfirefrequency(UFFREQm)instratumm(ormeanproportionofareaburned),anduncertaintyinmeanwithin-stratumabovegroundplantbiomassattheendofthegrowingseason,UAPBm.UFFREQmarisesfromeitherthe95percentconfidenceintervalinannualvariationinproportionofareaburnedoveraperiodof10ormoreyearspriortothestartdateorfromuncertaintyintheinterpretationofsatelliteimagesinburnedareamappinginstratummresultingfrommis-identificationorclassificationerrorsofburnedversusunburnedareas[19].UFFREQm=3.84,/100(30)VM0032,Version1.0SectoralScope14Page43Where:UFFREQm=uncertainty(%)infirefrequencywithinstratummSD(FFREQm,t)=standarddeviationinfirefrequencyinstratummoverBYyearsinthebaselineperiod.BY=numberofyearsinbaselineperiodforwhichburnedareaismeasuredFFREQm=meanproportionofareaburnedduringthebaselineperiod100=convertstheexpressionintopercent3.84=convertsthenumeratorintoa95%confidenceintervalUAPBmarisesfromthe95percentconfidenceintervalamongpermanentsamplingstationsinclipped,dried,andweighedbiomass.3.84100/(31)Where:UAPBm=uncertaintyinabovegroundplantbiomasswithinstratummSD(APBzm)=standarddeviationinabovegroundplantbiomassamongzmpermanentsamplingstationsinstratummzm=numberofsamplingstationsinstratummAPBm=meanabovegroundplantbiomassinstratumm(kg/m2)Thereforethesetwosourcesofuncertaintycombineas∑//(32)Where:UBEBB=UncertaintyinbaselinemethaneemissionsfromburningofbiomassUFFREQm=UncertaintyinthefirefrequencyinstratummUAPBm=Uncertaintyinmeanwithin-stratumabovegroundplantbiomassattheendofthegrowingseasoninstratummBAm=Baselineareaofstratumm(ha)PA=sizeoftheprojectarea(ha)s=numberofstrata8.4.2.2UncertaintyundertheprojectscenarioUncertaintyundertheprojectscenariousingaweighteduncertaintyapproachisdeterminedbyuncertaintyinprojectemissionsorincarbonstocks,weightedbythemagnitudeofeach,foreachyearofthemonitoringperiod.VM0032,Version1.0SectoralScope14Page442∑,,2112∑,1(33)Where:UPEt=Uncertaintyinprojectemissions(%)UPEMt=Uncertaintyinprojectmethaneemissionsfromgrazinganimals(%)UPEBBm,t=Uncertaintyinprojectmethaneemissionsfromburningofbiomass(%)PEM=projectmethaneemissionsbyanimalsduringthemonitoringperiod(tCO2e)PEBBm,t=projectemissionsfrombiomassburninginstratummattimet(tCO2e)∑,,∑,,/∑,∑,(34)UNCCSt=Uncertaintyinnetchangesincarbonstocks(%)UPRSm,t=Uncertaintyinprojectreductionsfromsoilsequestration(%)UPERWPm,t=Uncertaintyinprojectemissionsorremovalsfromwoodyplants(%)PRSm,t=Removalsfromchangesinsoilcarbonstocksinstratummattimet(tCO2e)PERWPm,t=Removalsfromchangesinwoodyplantcarbonstocksinstratummattimet(tCO2e)8.4.2.2.1UncertaintyinProjectMethaneEmissions∑/∑(35)Where:UPEM=Uncertaintyinprojectmethaneemissionsfromgrazinganimalsduringthemonitoringperiod(%)UPEMc,=Uncertaintyinprojectmethaneemissionsfromanimalsincategoryc(%)PEMc=projectmethaneemissionsfromanimalsincategoryc(tCO2e)UPEMc,istheuncertaintyinmethaneemissionscalculatedfromtheuncertainty,foreachanimalcategory,intheregressionequationsforperanimaldailymethaneproduction(Error!Referencesourcenotfound.)andtheuncertaintyinthearithmeticmeanofanimalcensusesforcategoryc,PNc,duringthemonitoringperiod.,/(36)Where:VM0032,Version1.0SectoralScope14Page45UPNc=UncertaintyintheprojectmeanofanimalsofcategorycUPNc3.84100SDPNc,YPNcY‐11/2(37)Where:SD(PNc,Y)=StandarddeviationofanimalcountsincategorycacrossYyearsofthemonitoringperiodPNc=Arithmeticmeanofanimalnumbersincategoryc(head)Y=Yearsinthemonitoringperiod3.84=Multiplierthatconvertsthenumeratorintoa95%confidenceinterval100=MultiplierthatconvertstheexpressionintopercentUPMEc=Uncertaintyintheregression,takenfromtheliterature(Table4)forpredictingdailymethaneemissionsforanimalsofcategoryc8.4.2.2.2UncertaintyinProjectEmissionsFromBurningOfBiomassInthecaseofprojectactivitiesthatincreasefirefrequency,uncertaintyinPEBB,orUPEBB,isdrivenbyuncertaintyinfirefrequency(UFFREQm)instratumm(ormeanproportionofareaburned),anduncertaintyinmeanwithin-stratumabovegroundplantbiomassattheendofthegrowingseason,UAPBm.UFFREQmarisesfromeitherthe95percentconfidenceintervalinannualvariationinproportionofareaburnedovertheperiodsincelastvalidationorfromuncertaintyintheinterpretationofsatelliteimagesinburnedareamappinginstratummresultingfrommisidentificationorclassificationerrorsofburnedversusunburnedareas[19].UAPBmarisesfromthe95percentconfidenceintervalamongpermanentsamplingstationsinclipped,dried,andweighedbiomass.Consequently:,,,/(38)Where:UPEBB=Uncertaintyinprojectmethaneemissionsfromburningofbiomass(%)UPFFREQm=3.84×100×SD(PFFREQm,Y)×Y-11/2(39)Where:UPFFREQm=Uncertaintyintheprojectfirefrequencyinstratumm(%)PFFREQm=MeanproportionofareaofstratummburnedduringtheYyearsofthemonitoringperiodSD(PFFREQm,Y)=StandarddeviationinprojectareaofstratummburnedduringtheYyearsofthemonitoringperiodVM0032,Version1.0SectoralScope14Page46UAPBm=3.84×100×SD(APBm,Y)×Y-11/2(40)Where:UAPBm=Uncertaintyinmeanwithin-stratumabovegroundplantbiomassattheendofthegrowingseasoninstratumm(%)APBm=meanabovegroundplantbiomassattheendofthegrowingseason(kg/m2)Y=numberofyearsinthemonitoringperiod3.84=multiplierthatconvertsthenumeratorintoa95%confidenceinterval100=multiplierthatconvertstheexpressionintopercent8.4.2.2.3UncertaintyInProjectSoilRemovalsUnderameasuredapproach,uncertaintyinsoilsequestration,UPRSm,tinstratumminyeartisobtainedfromthe95percentconfidenceinterval,asrequiredbytheVCSrules[47,49]ofmeasuredchangeinSOCacrosszmsamplingstationsinstratumm.UPRSm,t=∆.∆/(41)Where:UPRSm,t=uncertaintyinprojectsoilremovalsinstratummattimet(%)SOCm=∑,,,,(42)Where:SOCm=MeanofthedifferenceinSOCbetweenthebeginningoftheprojectormonitoringperiod,timev,andtheyearofmonitoringt,acrosszmsamplingstationsinstratumm(tC/ha)SDSOCm=∆,/(43)Where:SDSOCm=StandarddeviationofSOCinstratummduringthemonitoringperiodacrosszmsamplingstationsinstratummY=Numberofyearsinthemonitoringperiodzm=Numberofsamplingstationsinstratumm3.84=Multiplierthatconvertsthenumeratorintoa95%confidenceinterval100=MultiplierthatconvertstheexpressionintopercentVM0032,Version1.0SectoralScope14Page47Underamodeledapproach,UPRSm,tisobtainedfromthecalculated95percentconfidenceinterval,asrequiredbytheVCS[47,49]fromaMonteCarlosimulationofmodeledchangesinsoilcarbon(seeSections8.4.2and8.1.3.3)averagedacrossnmodelrunsinstratumm.UPRSm,t=3.84x100x∆∆/(44)Where:UPRSm,t=Uncertaintyinprojectremovalsthroughincreasedsoilcarboninstratummattimet(%)SDMODSOCm=Standarddeviationofmorethan100modeledSOCestimatesforstratummfromMonteCarlosimulation.MODSOCm=MeanmodeledprojectequilibriumSOCforstratummfrommorethan100simulationsofprojectequilibriumSOC,(tC/ha)n=Numberoftimessimulationisrun(mustbegreaterthan100)3.84=Multipliertoconvertstandarderrorintoa95%confidenceinterval100=Multipliertoconverttopercent8.4.2.2.4UncertaintyInProjectEmissionsAndRemovalsFromWoodyPlantBiomassUncertaintyinemissionsfromlossorgainofabovegroundwoodyplantsUPERWPm,tarisesfromthreesources:Consequently,uncertaintyinremovalsoremissionsfromchangesinabovegroundwoodyplantbiomass,UPERWPm,t,mustbecalculatedasfollows:,,,/(45)Where:UPERWPm,t=UncertaintyinprojectemissionsandremovalsfromwoodyplantsinstratumminyeartUAWPBm,t-1=Uncertaintyinprojectemissionsandremovalsfromwoodyplantbiomassinstratummattheprojectstartdateortheprevious(year=t-1)UAWPBm,t=Uncertaintyinprojectemissionsandremovalsfromwoodyplantbiomassinstratumminyeart-1UWDm=Uncertaintyinwooddensityinstratumm(1)Amongplotvariationininitial(baseline)abovegroundwoodyplantbiomassinstratumm,UAWPBm,0.../(46)Where:VM0032,Version1.0SectoralScope14Page48SD(AWPBm,zm)=Standarddeviationofabovegroundwoodyplantbiomassacrosszmsamplingstationsinstratumm.AWPBm=Meanwoodyplantbiomassacrosszmsamplingstationsinstratumm(kg/m2)3.84=Multipliertoconvertexpressionto95%confidenceinterval100=Multipliertoconvertexpressiontopercent(2)Amongplotvariationininitial(baseline)abovegroundwoodyplantbiomassinyeartofverificationinstratumm:UAWPBm,t,,,,..,/(47)SD(AWPBm,t,zm)=standarddeviationofabovegroundwoodyplantbiomassacrosszmsamplingstationsinstratummattimetsincetheprojectstartorlastverification.AWPBm,t=meanwoodyplantbiomassacrosszmsamplingstationsinstratummattimetsincetheprojectstartorlastverification(kg/m2).3.84=multipliertoconvertnumeratorto95%confidenceinterval100=multipliertoconvertexpressiontopercentand(3)Amongplotvariationinwooddensity:UWDm../(48)Where:SD(WDm,zm)=standarddeviationofwooddensityacrosszmsamplingstationsinstratummattimetsincetheprojectstartorlastverification.WDm,=meanwooddensityacrosszmsamplingstationsinstratumm(g/cm3)3.84=multipliertoconvertexpressionto95%confidenceinterval100=multipliertoconvertexpressiontopercent8.4.2.2.5UncertaintyinLeakageEmissionsandRemovalsIfleakageisnotnegligible,uncertaintyinleakagemustbecalculatedas/(49)VM0032,Version1.0SectoralScope14Page49WhereULEt=uncertaintyintotalleakage(%)ULDt=uncertaintyindisplacementleakage(%)ULMt=uncertaintyinmarketleakage(%)ULDt=UPRSt(50)Where:UPRSt=Uncertaintyinprojectremovalsduetochangesinsoilcarbonstocksinyeart(%).Thisassumesthatdisplacementleakageaffectsonlysoilcarbonremovals,andthusissubjecttouncertaintyassociatedwithpredictingimpactsprojectactivitiesonsoilcarbonremovalsUncertaintyinmarketleakage,ULMt,willbedeterminedbyusingVCSmoduleVMD0033“Estimatingemissionsfrommarketleakage.”8.4.2.3TotalProjectUncertaintyThetotalprojectuncertaintyUTtiscalculatedatthetimeofreportingthroughpropagatingtheuncertaintyinthebaselineemissionsandthatintheprojectemissionsandremovalstoyeart:UnderaMonteCarlocalculationUTt=(UNRt2+ULEt2)1/2(51)WhereUTt=totalprojectuncertainty(%)UNRt=uncertaintyinnetemissionsandremovalsascalculatedwithMonteCarlosimulation(%)ULEt=uncertaintyinleakageemissionsandremovals(%)/(52)Where:UTt=Totalprojectuncertainty(%)UNRt=Uncertaintyinnetemissionsandremovals,notincludingleakage(%)ULEt=Uncertaintyinleakageemissionsandlossesfromsoilcarbonstocksattimet(%)NRt=Netemissionsreductionsandremovalsattimet,notincludingleakage(tCO2e)LEt=Leakageemissionsandlossesfromsoilcarbonstocksattimet(tCO2e)8.4.3ConservativeApproachVM0032,Version1.0SectoralScope14Page50Calculationsofemissionsreductionsandremovalsareconservativebecause:1)Baselinemethaneemissionsusetheharmonicmeanforbaselineemissionsandanarithmeticmeanfortheprojectscenarioleadingtoaconservativeestimateforreductionsinmethaneemissions(Section8.1.3.1).2)InitialbaselineSOClevelformodelled(activity-based)emissionreductionsmustbethemaximumoftheprevious10years,asrequiredbytheVCSrules[47,49].Inthecaseofmodeledapproach,thebaselineequilibriumSOCissettothismaximumandthencomparedtothemodeledfutureequilibriumSOC(Section8.1.3.3).3)Becausemodelsusedinthemodeledapproachmustbevalidatedfortheprojectwithdatafromtheprojectarea,nomodelcorrectionisnecessary.However,modelpredictionsmustmeettherequirementsforR2,slopeandinterceptinaregressionversusobservedvalues(seesection8.1.3.3)toassurethatthemodeldoesnotoverestimateremovals.Allparameterchoicesaretobeconservative.4)Emissionsreductionsaresubjecttoreductionsforuncertainty,asrequiredbytheVCSrules[47,49]inthemodeledapproach,withuncertaintydeterminedfrom95percentconfidenceintervalsfromstandarderrorscalculatedduringMonteCarlosimulations(Section8.4.2).8.4.4UncertaintyDeductionIftotalprojectuncertaintyinyeart,basedon95percentconfidenceintervals,UTt≤30percentthennodeductionmustresultforuncertainty.IfUTt>30percentthenthemodifieddiscountedvalue,Rt=RtdiscfornetanthropogenicGHGremovalbysinkstoaccountforuncertaintymustbe:100100(53)Where:Rtdisc=DiscountednetGHGemissionreductionsandremovalsbyyeart(tCO2e)UTt=TotalprojectuncertaintyRt=NetGHGemissionreductionsandremovalsbyyeart(tCO2e)ForYyearsofthemonitoringperiod,∑∑(54)Where:d=Numberofyearsinwhichnetremovalmustbediscountedu=NumberofyearsinwhichremovalsarenotdiscountedY=Numberofyearsinthemonitoringperiod(d+u)Rtdisc=DiscountednetGHGemissionreductionsandremovalsbyyeart(tCO2e)VM0032,Version1.0SectoralScope14Page51Rt=NetGHGemissionreductionsandremovalsbyyeart(tCO2e)9MONITORINGGivenapplicabilityconditionsandallowableconservativeexclusions,monitoringfocusesonmeasuringthekeyparametersforcalculatingemissionsandremovals,demonstratingprojectmanagementactivitiesandmeasuringchangesinSOC.Theprojectactivitieskeytochangingmethaneemissionsarealteringthenumberandspeciescompositionoflivestockgrazinganimalsand/orspeciescompositionofforageplants,alteringduration,timing,andintensityofgrazing,and/orchangingfirefrequency,intensityandanyaccompanyingvegetationchange(suchasinwoodybiomass).ChangesinSOCdensityundertheprojectscenariowillalsobemonitored,andstratifiedaccordingtomanagementpracticesorsoilandclimaticconditions.Monitoringofsoil,vegetation,grazingintensityandoccurrenceandintensityoffireswillfullyemploythepermanentsamplingstationsdiscussedinSection8.1.2.9.1DataandParametersAvailableatValidation9.1.1ProjectDesignData/ParameterPAm,gDataunithaDescriptionProjectareainstratummEquations3,9,11,14and15SourceofdataMeasuredinprojectareaJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedUsingshapefilesinaGISorfromknowncoordinatesofstratumboundariesorfromlegaldescriptionsofthepropertyincludedintheprojectarea.VM0032,Version1.0SectoralScope14Page52CommentsProjectproponentsmustensurethatthefollowinginformationinregardstotheprojectareaofeachstratumisprovidedintheprojectdescription:1)Map(s)ofthelocationsofthepermanentsamplingplotsoverlaidonamapofprojectstrata.2)Resultsofclusteranalysistodetermineprojectstrata.3)Tableofallprojectstrata,theirdescription,andarea,PAm4)ResultsofanalysistodeterminethenumberofsamplingunitsandtheirallocationamongstrataDataUnit/ParameterGWPCH4DataunittCO2e/tCH4DescriptionGlobal-warmingpotentialforCH4Equations6,8,12,30and32SourceofdataGWPCH4mustbeobtainedfromtheIPCCSecondAssessmentReportValueapplied21JustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedPurposeofdataCalculationofbaselineemissionsCalculationofprojectemissionsComment9.1.2BaselineMethaneEmissionsData/ParameterWc,tDataunitkgDescriptionAveragebodyweightforanimalsofcategorycinyeartEquations1SourceofdataMeasuredinprojectareaJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedNecessarytoestimateemissionfactorforgrazinganimalsusingallometricequationsinError!Referencesourcenotfound..MeasurementsmustbetakeninaccordancewiththeproceduresdescribedinSection9.1.2.PurposeofdataCalculationofbaselineemissionsVM0032,Version1.0SectoralScope14Page53CommentsData/ParameterNc,iDataunitnumberDescriptionBaselinenumberofanimalsofcategorycincensusiEquations1SourceofdataMeasuredinprojectareaJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedThenumberofanimalsineachcensusimustbemeasuredtocalculatetheharmonicmeanofthemultiplecountsiofncensusesofanimalsincategoryc.Atleastfourmeasurementswithinthebaselineperiod,withatleasttwoduringtheperiod5-10yearspriortotheprojectstart,mustbeavailable.MeasurementsmustbetakeninaccordancewiththeproceduresdescribedinSection9.1.2.PurposeofdataCalculationofbaselineemissionsCommentsTheprojectdescriptionmustprovideatableofhistoricalcensusesorestimatesofnumbersofgrazinganimals,BNc,foreachyearinwhichcountsorestimatesareavailable,sortedbythekcategoriesofanimalsintheprojectarea:species,breed(ifapplicable),sex,andage,plustherespectivelivebodyweights(Wc)ofeachcategory,with95%percentCIanduncertainties).TheprojectdescriptionmustalsoprovideadatatableshowingcalculationsofmethaneemissionsbasedontheequationsinError!Referencesourcenotfound.foreachanimalcategoryforeachyearthatdataareavailable.Thetablemustincludecalculatedtotalemissionsforthatyearandacellcontainingtheharmonicmeanoftotalannualcalculatedmethaneemissions.ThiswillbethebaselineBEM.Theharmonicmeanappropriatelyandconservativelyweightstheaveragemethaneemissionstowardsthelowervaluesofatimeseriesofmeasurements[27].Thetablemustalsocontaintheuncertaintyindailymethaneemissions(fromtheregressionequationsinError!Referencesourcenotfound.)andtheharmonicmeanandits’uncertainty.Table5belowmaybeusedasatemplate.VM0032,Version1.0SectoralScope14Page54Table5:TableforCalculatingBaselineMethaneEmissionsfromAnimalCensuses.Species-specificweightsontheleft-handsideareusedtocalculateannualmethaneemissionsperanimalusingequation1(section8.1.3.1).Methaneemissionsperanimalarethenmultipliedbytheharmonicmeannumberofanimals(equation2)toestimateannualmethaneemissionsfortheanimalcategory.Uncertaintyperanimal(fromTable3insection8.1.3.1)anduncertaintyintheharmonicmean(equation25insection8.4.2)combineinequation27tocalculateoveralluncertaintyinmethaneemissions.Thistablemustbeincludedintheprojectdescription.9.1.3ParametersforBaselineCalculationofEmissionsfromBurningofBiomassForprojectsthatintendtoincreasefirefrequency,theprojectdescriptionmustshowtheequation(Equation3)usedtocalculateBEBBanddisplayatableshowingestimatedfirefrequencyFFREQm,initialunburnedabovegroundplantbiomass(APBm,b),with95percentCIanduncertainties(95percentCI/estimate,expressedasapercentage)foreachandcalculatedBEBBwithforeachprojectstratum.SpeciesSex/AgeWeight(kg)AnnualMethaneEmissions/AnimalPerAnimalUncertainty[1]Year1Year2Year3Year4HarmonicMeanUncertaintyinAnimalCountsMethaneEmissionsforCategory(tCO2e)UncertaintyinMethaneEmissionsTotalEmissions[1]Basedonuncertaintyinregressionmodelsthatcalculatemethaneemissionsfrombodymass(seeTable3)Species3Species4MethaneEmissionsGrazingAnimalCategoryAnimalCounts(Head)Species1Species2VM0032,Version1.0SectoralScope14Page55Data/ParameterAPBm,bDataunitkgdrymass/haDescriptionMeantotalabovegroundplantbiomassinstratumminyeartattheendofthegrowingseason(summerorwetseason)Equations3SourceofdataMeasuredJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedMeasuredatpermanentsamplingstationswithineachstratummbyclipping,drying(at25-50oC)andweighingabovegroundvegetationfromoneormoresmallquadrats.Measuredatthebeginningofthedryseasoninthetropicsorbeginningofthecoldorburningseasonintemperateclimates.Mustbemeasuredintheprojectarea1-2yearsbeforetheprojectstartdate,orwithinthefirstyearofthemonitoringperiodandpriortothefirstprescribedburniffirefrequencyistobeincreasedtomanagevegetationtoincreasesoilcarbon.PurposeofdataCalculationofbaselineemissionsCommentsData/ParameterFFREQmDataunitDimensionlessproportionDescriptionAverageproportionofareaburnedinstratumminpast10yearsEquations3SourceofdataMeasuredJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedMeasuredbymappingburnedareaswithaerialphotographyorinprojectswithextensivearea(>10,000ha),interpretingsatelliteimages,suchasMODIS,withpublishedalgorithmsforassessingburnedarea[19].PhotographyorsatelliteimageinterpretationsmustbeverifiedbyrecordsofknownburnedareasorgroundassessmentsofburnsinthepastyearPurposeofdataCalculationofbaselineemissionsCommentsData/ParameterBCGDataunitkgbiomass/kgbiomassburnedDescriptionBaselinecombustionfactorforsavanna/grasslandEquations3VM0032,Version1.0SectoralScope14Page56SourceofdataHoffaet.al.,1999orReference[41]ValueApplied0.5ordefaultfromTable2.6,respectivelyJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedItisunlikelythatallabovegroundbiomassiscombustedinfire,butthisfractionisdifficulttomeasureaccuratelyduringpastyearsbecausebiomassremainingafterfiremustbemeasuredimmediatelyfollowingfire[42].Thefractionofbiomasscombustedusuallyaveragesaround0.75[42]andsettingBCG=0.5makesthepotentialimpactofincreasingfireundertheprojectscenarioconservativeinitslikelihoodtoreduceemissions.PurposeofdataCalculationofbaselineemissionsCommentsData/ParameterEFBGDataunitgCH4/kgbiomassburnedDescriptionEmissionfactorfortheburningofgrasslandEquations3,9SourceofdataReference[51]ValueApplied1.9JustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedPurposeofdataCalculationofbaselineemissionsCalculationofprojectemissionsComments9.1.4ParametersforCalculationofBaselineSOCAcriticalmeasurementisinitialsoilorganiccarbonwhichisnecessaryinestablishingthebaselineSOCinthemeasuredapproachandvalidatingthechosensoilcarbondynamicmodelinamodeledapproach.Multiplestationsmustbesampledwithineachstratumsoastodeterminea95%percentconfidenceinterval.SomemodelsonlyquantifychangesinSOCtospecificdepths,(eg,CENTURYonlypredictsSOCtoadepthof20cm[16,31]),andifusingamodelingapproachwitharestricteddepth,theprojectproponentsmustmeasuredepththatmatchesthatofthemodel.Ifusingameasuredapproachoramodelthatallowsdifferentsoildepthstobeused,andappreciablesoilcarbonstocksoccurbelow30cm[52],thenproponentsarejustifiedinsamplingVM0032,Version1.0SectoralScope14Page57deeperinthesoilprofile,eventoadepthof1m.Knownvolumesofsoilfromthecoresmustbesievedtoremoverocks,pebbles,andcoarsefragments,andthentheremainderdried(5daysat45oCorequivalent)andweighedtodeterminebulkdensity(Mg/m3)[53].IfanIRspectrometeristobeused,theprojectproponentmustshowallcalibrationdatainatablewithspectralemissionsandmeasurementsofsoilsorplantsandgraphsshowingtheregressionsofspectraldataagainstmeasurements.Data/ParameterDEPTHm,j,0DataunitcmDescriptionSoilcoredepthatstationjinstratummattimet=0(ie,atthestartoftheprojectorsincethelastverification)Equations4SourceofdataMeasuredinprojectareaJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedAteachsamplingstationj,accordingtostandardmethods[52,54],soilmustbetakenfromatleast3soilcores(with10coresateachsiterecommendedtoreduceuncertainty)toadepththataccountsforthevastmajority(>80percent)ofSOCinthesoilcolumn,reflectsdepthtohardpansorbedrock,ormatchescalculationsfromsoilcarbonmodels.Multiplecoresmaybewell-mixedintoasinglecompositesampleforanalysis.PurposeofdataCalculationofbaselineemissionsCommentsData/ParameterSOC%j,m,0DataunitDimensionlessproportionDescriptionProportionsoilorganiccarbonatstationjinstratummattimet=0(ie,atthestartoftheprojectorsincethelastverification)Equations4SourceofdataMeasuredinprojectareaJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedThebaselineforthemeasuredoffsetapproachisbasedonincreasingSOC.Trackedatthelevelofj=1tozmindividualsamplingstationsineachstratumbecauseoffsetwillbebasedondemonstratingchangesinSOCatindividualstationsandthensummingincrements.Ateachsamplingstationj,accordingtostandardmethods[52,54],soilmustbetakenfromatleast3soilcores(with10coresateachsiterecommendedtoreduceuncertainty)toadepththataccountsforthevastmajority(>80percent)ofSOCinthesoilcolumn,reflectsdepthtohardpansorVM0032,Version1.0SectoralScope14Page58bedrock,ormatchescalculationsfromsoilcarbonmodels.Multiplecoresmaybewell-mixedintoasinglecompositesampleforanalysis.Multiplestationsmustbesampledwithineachstratumsoastodeterminea95percentconfidenceinterval.Organiccarbonconcentrationsmustbemeasuredinappropriateacademicorindustriallaboratoriesthatuseeitherchemical[55]combustionorappropriatelycalibratedspectralanalysismethods.IRmethodsmustbecalibratedbyregression,withR2>0.90,ofIRmeasurementwithmeasurementbychemicalorcombustionmethods.GraphsofregressionofIRversuscombustionorchemicalmethodsmustbeshown.Theremustbenosignificantbias(ie,slope95percentconfidenceintervalmustinclude1)intercept95percentCImustinclude0.Biasmustbedeterminedbyevaluatingpercentbias(positiveornegative)followingequation(5)(seedetaileddescriptionofbiasevaluationinSection8.1.3.3)andcannotexceed+10%.IfanIRspectrometeristobeused,theprojectproponentmustshowallcalibrationdatainatablewithspectralemissionsandmeasurementsofsoilsorplantsandgraphsshowingtheregressionsofspectraldataagainstmeasurements.PurposeofdataCalculationofbaselineemissionsCommentsData/ParameterBULKm,j,0DataunitMg/m3or,equivalently,g/cm3DescriptionBulkdensityatstationjinstratummattimet=0(i.e.,atthestartoftheprojectorsincethelastverification)Equations4SourceofdataMeasuredinprojectareaJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedAteachsamplingstationj,accordingtostandardmethods[52,54],soilmustbetakenfromatleast3soilcores(with10coresateachsiterecommendedtoreduceuncertainty)toadepththataccountsforthevastmajority(>80percent)ofSOCinthesoilcolumn,reflectsdepthtohardpansorbedrock,ormatchescalculationsfromsoilcarbonmodels.Multiplecoresmaybewell-mixedintoasinglecompositesampleforanalysis.VM0032,Version1.0SectoralScope14Page59Knownvolumesofsoilfromthecoresmustbesievedtoremoverocks,pebbles,andcoarsefragments,andthentheremainderdried(5daysat45oCorequivalent)andweighedtodeterminebulkdensity.[53]PurposeofdataCalculationofbaselineemissionsComments9.1.5ParametersforSoilCarbonModelsSoilcarbonmodelsmayrequireanywherefromafewtomorethan80parameters,sothereisnodefinitivelistofparametersthatwouldapplytoallmodels.However,inevaluatingwhetheramodeledapproachisfeasibleordesirable,thefollowingparametersarelikelytobekeyinputsintosoilcarbonmodels.Eachparametermayvaryamongstrata,dependingonthesizeoftheprojectareaandunderlyingvariationinsoiltypeandplantspeciescomposition.ParametersmustyieldapredictedSOCdensity.Data/ParameterMAPmDataunitmm/yrDescriptionMeanannualprecipitationinstratummEquationsModelinputSourceofdataPrecipitationmapsfromgovernmentorpeer-reviewedpublishedsources,nearbyweatherstations,orraingaugesJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedAkeyvariablethataffectsanumberofprocessesdrivingSOCPurposeofdataCalculationofbaselineemissionsCommentsData/ParameterSTj,m,yDataunitoCDescriptionSoiltemperatureatstationjinstratumminmonthyEquationsModelinputSourceofdataMeasuredinprojectareaVM0032,Version1.0SectoralScope14Page60JustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedMustbemeasuredmonthlyoratleastseasonallywithadigitalthermometerwithprobesinsertedtoatleast½thedepthatwhichSOCwillbesampled(ie,to10cmifsoilwillbesampledandmodeledto20cm[16])PurposeofdataCalculationofbaselineemissionsCommentsData/ParameterSAND%j,mand/orCLAY%j,mand/orSILT%j,mDataunitDimensionlessproportionexpressedaspercentDescriptionProportionofsoilthatissand,silt,andorclayatstationjinstratummEquationsModelinputSourceofdataMeasuredinprojectareaJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedSoilcollectedtodesireddepthateachsamplingstationmustbemixed,andsubsampleanalyzedforclay,silt,andsandfractionsinaprofessionallaboratory.Somemodelsrequirepercentsand,somepercentclayandsomepercentofallthreeparticleclasses,sand,siltandclay.PurposeofdataCalculationofbaselineemissionsCommentsData/ParameterGIj,mDataunitDimensionlessproportionDescriptionMeanannualgrazingintensityatstationjinstratummEquationsModelinputSourceofdataMeasuredJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedMeasuredateachsamplingstationpriortovalidationbyeither1)Comparingclippedbiomassatleastattheendofthegrowingseason,ormorefrequentlyforsomemodels,insideandoutsidesmall(1m2)fences.GIj,m=1–(biomassoutside/biomassinside).Biomassisclipped,driedat25–50oC,andweighed.2)Visuallyestimatinghistoricalgrazingintensityfromacalibratedobservationmethod(R2>0.80correlationbetweenmeasuredGI(fromoption1aboveandVM0032,Version1.0SectoralScope14Page61observationalmethod))basedonspeciescomposition,bareground,andvegetationheight.PurposeofdataCalculationofbaselineemissionsCommentsData/ParameterMAPLCj,mDataunitDimensionlessproportionDescriptionMeanabovegroundplantcelluloseplusligninatsamplingplotjinstratummEquationsModelinputSourceofdataMeasuredinprojectareaJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedSOCisoftencloselyrelatedtoinputsoftheseformsofcarbonbecausetheyresistmicrobialdecomposition.PurposeofdataCalculationofbaselineemissionsCommentsInaddition,soilcarbonmodelswilllikelyusefirefrequency,FFREQmintroducedinSection8.1.3.2,andinitialSOCm,j,0introducedinSection8.1.3.4.Trackingparametersateachsamplingstationallowsthechosensoilcarbonmodel(s)tobetestedatmanylocationsandunderdifferentconditions.Thisimprovestheabilitytoinferwhetherdatafitmodelpredictions.Theseparametersmustbeinputintothechosensoilcarbonmodel(s)tocalculatetheSOCparametersdescribedbelow,whichareusedinthequantificationofremovals.Data/ParameterMSOCm,j,bDataunittC/haDescriptionModeledSOCatstationjinstratummforeachyearbduringthebaselineperiodEquations7SourceofdataSOCmodelVM0032,Version1.0SectoralScope14Page62JustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedSOCmodelsappliedmustmeetwiththemodelingrequirementsdescribedinSection8.1.3.4.PurposeofdataCalculationofbaselineemissionsCommentsData/ParameterPSOCeqm,j,DataunittC/haDescriptionModeledSOCatequilibriumatstationjinstratummEquations13SourceofdataSOCmodelJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedSOCmodelsappliedmustmeetwiththemodelingrequirementsdescribedinSection8.2.3.3.PurposeofdataCalculationofprojectemissionsCommentsData/ParameterDDataunityearsDescriptionYearsrequiredtoachieveSOCequilibriumEquations13SourceofdataSOCmodelJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedSOCmodelsappliedmustmeetwiththemodelingrequirementsdescribedinSection8.2.3.PurposeofdataCalculationofprojectemissionsComments9.1.6ParametersforRemovalsfromWoodyPlantBiomassVM0032,Version1.0SectoralScope14Page63Data/ParameterCDataunitkgC/kgbiomassDescriptionProportionofwoodcomposedofcarbonEquations15SourceofdataCDM,A/RMethodologicalTool:EstimationofcarbonstocksandchangeincarbonstocksoftreesandshrubsinA/RCDMprojectactivities,andMacDicken,1997Valueapplied0.45JustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedPurposeofdataCalculationofprojectemissionsComments9.2DataandParametersMonitoredParametersmonitoredarethoseneededtocalculateremovalsfromreducedmethaneemissionsfromanimalsand/orremovalsfromsoilcarbonsequestrationplusanyincreasesinemissionsofmethanefromburningofbiomassandleakage.Data/ParameterPAm,tDataunithaDescriptionProjectareainstratumminyeartEquation12,14,18,19SourceofdataMeasuredinprojectareaDescriptionofmeasurementmethodsandprocedurestobeappliedUsingshapefilesinaGISorfromknowncoordinatesofstratumboundariesorfromlegaldescriptionsofthepropertyincludedintheprojectarea.Frequencyofmonitoring/recordingAnnualQA/QCprocedurestobeappliedAreasmustbedeterminedfromaccurateGISlayersofclassifiedprojectareaorfromlegaldescriptionsofpropertyincludedintheprojectarea.VerificationshouldbewithGlobalPositioningVM0032,Version1.0SectoralScope14Page64Systems(GPS)withanaccuracyof10morless.Groundpointsmayincludepermanentsamplingstationsbutalsomaybenecessarytoincludepointsatdefinedstratumboundariesoralongroads.PurposeofdataCalculationofprojectemissionsCommentsProjectsmustensurethatthefollowinginformationinregardstotheprojectareaofeachstratumisprovidedwithintherelevantareaoftheprojectdescription:1)Map(s)ofthelocationsofthepermanentsamplingplotsoverlaidonamapofprojectstrata.2)Resultsofclusteranalysistodetermineprojectstrata.3)Tableofallprojectstrata,theirdescription,andarea,PAm4)Resultsofanalysistodeterminethenumberofsamplingunitsandtheirallocationamongstrata9.2.1ProjectAnimalMethaneEmissionsUnlikewhendeterminingthebaseline,thearithmeticmeanofthecountsduringtheprojectcreditingperiodmustbeusedtoensureaconservativeestimateofreductionsinmethaneemissionsrelativetobaselineemissions,whicharecalculatedwiththeharmonicmean[27].Forpermissiblemethodsofconductingananimalcensus,seeSection9.3.3.Data/ParameterPNc,tDataunitnumberDescriptionMeannumberofanimalsofcategorycintheprojectareaduringyeartEquation8,17,18SourceofdataMeasuredinprojectareaDescriptionofmeasurementmethodsandprocedurestobeappliedMeasuredasthearithmeticmeanofoneormoreyears’animalcensusesduringtheverificationperiodFrequencyofmonitoring/recordingAnnualQA/QCprocedurestobeappliedBasedonrecordsoflivestocknumbers,interviewsofgrazingmanagers,coordinators,herdersorotheradministrativestaff.Recordsshouldbekeptaspaperandelectroniccopies,VM0032,Version1.0SectoralScope14Page65PurposeofdataCalculationofprojectemissionsCommentsTheprojectdescriptionmustprovideatable,similartothatforcalculatingbaselinemethaneemissions,ofcountsorestimatesofnumbersofgrazinganimals,PNc,foreachyearduringthemonitoringperiod,sortedbythekcategoriesintheprojectarea:species,breed(ifapplicable),sex,andage,plustherespectivelivebodyweights(Wc)ofeachcategory,with95%percentCIanduncertainties.ThetablemustalsocontaintheuncertaintyindailymethaneemissionsandtheuncertaintyinthearithmeticmeancountbasedontheequationsinSection8.4.2.2.1.Table6belowmaybeuseasatemplate.Table6:TableforCalculatingProjectMethaneEmissionsfromAnimalCensuses.Species-specificweightsontheleft-handsideareusedtocalculateannualmethaneemissionsperanimalusingequation1(section8.1.3.1).Methaneemissionsperanimalarethenmultipliedbythearithmeticmeannumberofanimalstoestimateannualmethaneemissionsfortheanimalcategory.Uncertaintyperanimal(fromTable3insection8.1.3.1)anduncertaintyintheharmonicmean(equation25insection8.4.2)combineinequation27tocalculateoveralluncertaintyinmethaneemissions.Thistablemustbeincludedintheprojectdescription.9.2.2ProjectEmissionsfromBurningofBiomassSpeciesSex/AgeWeight(kg)AnnualMethaneEmissions/AnimalPerAnimalUncertainty[1]Year1Year2Year3Year4ArithmeticMeanUncertaintyinAnimalCountsMethaneEmissionsforCategory(tCO2e)UncertaintyinMethaneEmissionsTotalEmissions[1]Basedonuncertaintyinregressionmodelsthatcalculatemethaneemissionsfrombodymass(seeTable3)Species4GrazingAnimalCategoryAnimalCensus(NumberofAnimals)MethaneEmissionsSpecies1Species2Species3VM0032,Version1.0SectoralScope14Page66Forprojectsthatintendtoincreasefirefrequency,theprojectdescriptionmustshowtheequation(Equation(3))usedtocalculatePEBBm,tattimetforeachprojectstratum.AllprojectsthatalterfirefrequencymustanddisplayatableshowingestimatedfirefrequencyPFFREQm,tinyeart,pre-fireabovegroundplantbiomass(APBj,m,t),andpost-fireabovegroundplantbiomassatstationswherefireoccurred(APBj,m,f)with95percentCIanduncertaintiesforeachandcalculated.Data/ParameterPFFREQm,tDataunitDimensionlessproportionDescriptionAverageproportionofareaburnedinstratummduringprojectyeart.Equations9SourceofdataMeasuredDescriptionofmeasurementmethodsandprocedurestobeappliedMeasuredbymappingburnedareaswithaerialphotographyorinprojectswithextensivearea(>10,000ha),interpretingsatelliteimages,suchasMODISwithpublishedalgorithmsforassessingburnedarea[19].Photographyorsatelliteimageinterpretationsmustbeconfirmedbyrecordsofknownburnedareasorgroundassessmentsofburnsinthepastyear.Frequencyofmonitoring/recordingEvery15daysduringtheburningseasonQA/QCprocedurestobeappliedFollowproceduresinreferences[18,19]PurposeofdataCalculationofprojectemissionsCommentsData/ParameterAPBj,m,tDataunitkgdrymass/haDescriptionAbovegroundplantbiomassatstationjinstratumminyeartatthebeginningofthedry/coldorburningseasonEquations9,10SourceofdataMeasuredDescriptionofmeasurementmethodsandprocedurestobeappliedMeasuredatpermanentsamplingstationswithineachstratummbyclipping,drying(at25-50oC)andweighingabovegroundvegetationfromoneormoresmallquadrats.Measurementsfromallquadratsmustbeaveragedforeachsamplingstationj.Measuredatthebeginningofthedry/cold/burningseasonintemperateclimates[17,56].VM0032,Version1.0SectoralScope14Page67Frequencyofmonitoring/recordingAnnuallyQA/QCprocedurestobeappliedSamplesmustbedriedinaprofessionaldryingovenfor3daysat45-60oCorbeair-driedinsunshinefor4-7daystoaconstantmassPurposeofdataCalculationofprojectemissionsCommentsData/ParameterAPBj,m,fDataunitkgdrymass/haDescriptionAbovegroundplantbiomassinstratumminyeartatimmediatelyafterfireEquations10SourceofdataMeasuredDescriptionofmeasurementmethodsandprocedurestobeappliedMeasuredatpermanentsamplingstationswithineachstratummbyclipping,drying(at25-50oC)andweighingabovegroundvegetationfromoneormoresmallquadrats.Measurementsfromallquadratsmustbeaveragedforeachsamplingstationj.Measuredimmediatelyfollowingtheoccurrenceoffire[17,56].Frequencyofmonitoring/recordingOncein1-2yearspriortoprojectstartorbeforethefirstprescribedburninthefirstyearoftheprojectQA/QCprocedurestobeappliedSamplesshouldbedriedinaprofessionaldryingovenfor3daysat45-60oCorbeair-driedinsunshinefor4-7daystoaconstantmassPurposeofdataCalculationofprojectemissionsComments9.2.3ParametersforCalculatingSOCRemovalsIfameasuredapproachistaken,thenthecriticalmeasurementisofSOCdensityattheendofthemonitoringperiodateachsamplingstation,accordingtostandardmethods[52,54].Soilmustbetakenfromthreeormorepooledsoilcores(with10coresateachsiterecommendedtoreduceuncertainty)ateachstationtoadesireddepth(cm)Formoredetails,seesection9.1.4Inamodeledapproach,thesesameproceduresmustapplywhenmonitoringsoilcarbonforthepurposesofre-calibratingthechosensoilcarbonmodel.InthiscasetheremaybeacalibrationperiodofZyears(typically5-7years)thatislongenoughtodetectchangesinSOCandlikelylongerthanthemonitoringperiodsusedinamodeledapproach.VM0032,Version1.0SectoralScope14Page68Data/ParameterDEPTHm,j,tDataunitcmDescriptionSoilcoredepthatstationjinstratummattimet=0(ie,atthestartoftheprojectorsincethelastverification)Equations12SourceofdataMeasuredinprojectareaDescriptionofmeasurementmethodsandprocedurestobeappliedSoilmustbetakenfromatleastthreesoilcores(with10coresateachsiterecommendedtoreduceuncertainty)ateachstationjtoadepththataccountsforthevastmajority(>80percent)ofSOCinthesoilcolumn,reflectsdepthtohardpansorbedrock,ormatchescalculationsfromsoilcarbonmodels.Multiplecoresmaybewell-mixedintoasinglecompositesampleforanalysis.Frequencyofmonitoring/recordingAttheendofthemonitoringperiodformeasuredapproachprojects,or,formodeledapproach,afteradesiredmonitoringperiodforre-calibratingthechosensoilcarbonmodelonthebasisofitsabilitytopredictchangesinsoilcarbonduringthemonitoringperiod.QA/QCprocedurestobeappliedDepthcoredmustbethesameasforbaselinesoilcarbonsampling(see9.1.5).However,thedepthusedincalculatingSOCafterYyearsofprojectactivitiesmustbeadjustedtoaccountforchangesinbulkdensitysuchthatDEPTHm,j,YxBULKm,j,Y=DEPTHm,j,0xBULKm,j,0.Thisensuresthatequalmassesofsoilarecomparedbetweenyear0andyearYPurposeofdataCalculationofprojectemissionsCommentsData/ParameterSOC%m,j,tDataunitDimensionlessproportionDescriptionProportionsoilorganiccarbonatstationjinstratummattimetEquations12SourceofdataMeasuredinprojectareaVM0032,Version1.0SectoralScope14Page69DescriptionofmeasurementmethodsandprocedurestobeappliedSoilmustbetakenfromatleastthreesoilcores(with10coresateachsiterecommendedtoreduceuncertainty)ateachstationjtoadepththataccountsforthevastmajority(>80percent)ofSOCinthesoilcolumn,reflectsdepthtohardpansorbedrock,ormatchescalculationsfromsoilcarbonmodels.Multiplecoresmaybewell-mixedintoasinglecompositesampleforanalysis.Theorganiccarbonconcentrationsmustbemeasuredinappropriateacademicorindustriallaboratorieswithchemical[55]automated,calibratedanalyticalmachinesorwithproject-areacalibratedinfra-redIRspectrometers[30].Frequencyofmonitoring/recordingAttheendofthemonitoringperiodformeasuredapproachprojects,or,formodeledapproach,afteradesiredmonitoringperiodforre-validatingthechosensoilcarbonmodelonthebasisofitsabilitytopredictchangesinsoilcarbonduringthemonitoringperiod.QA/QCprocedurestobeappliedTheorganiccarbonconcentrationsmustbemeasuredinappropriateacademicorindustriallaboratorieswithchemical[55]automated,calibratedanalyticalmachinesorwithproject-areacalibratedinfra-redIRspectrometers[30].IRmethodsmustbecalibratedbyregression,withR2>0.90,ofIRmeasurementwithmeasurementbychemicalorcombustionmethods.GraphsofregressionofIRversuscombustionorchemicalmethodsmustbeshown.Theremustbenosignificantbias(ie,slope95percentconfidenceintervalmustinclude1)intercept95percentCImustinclude0,whichwillensurethatMBIAS,followingequation(5)[37]isbetween-10%and+10%.IfanIRspectrometeristobeused,theprojectproponentmustshowallcalibrationdatainatablewithspectralemissionsandmeasurementsofsoilsorplantsandgraphsshowingtheregressionsofspectraldataagainstmeasurements.PurposeofdataCalculationofprojectemissionsCommentsData/ParameterBULKm,j,tDataunitMg/m3,or,equivalently,g/cm3DescriptionBulkdensityinstratumm,stationj,yeartSourceofdataMeasuredinprojectareaEquations12VM0032,Version1.0SectoralScope14Page70DescriptionofmeasurementmethodsandprocedurestobeappliedSoilmustbetakenfromatleastthreesoilcores(with10coresateachsiterecommendedtoreduceuncertainty)ateachstationjtoadepththataccountsforthevastmajority(>80percent)ofSOCinthesoilcolumn,reflectsdepthtohardpansorbedrock,ormatchescalculationsfromsoilcarbonmodels.Multiplecoresmaybewell-mixedintoasinglecompositesampleforanalysis.Knownvolumesofsoilfromthecoresmustbesievedtoremoverocks,pebbles,andcoarsefragments,andthentheremainderdried(5daysat45oCorequivalent)andweighedtodeterminebulkdensity.Frequencyofmonitoring/recordingAttheendofthemonitoringperiodformeasuredapproachprojects,or,formodeledapproach,afteradesiredmonitoringperiodforre-validatingthechosensoilcarbonmodelonthebasisofitsabilitytopredictchangesinsoilcarbonduringthemonitoringperiod.QA/QCprocedurestobeappliedHowever,thedepthusedincalculatingSOCafterYyearsofprojectactivitiesmustbeadjustedtoaccountforchangesinbulkdensitysuchthatDEPTHm,j,YxBULKm,j,Y=DEPTHm,j,0xBULKm,j,0.Thisensuresthatequalmassesofsoilarecomparedbetweenyear0andyearY[53]PurposeofdataCalculationofprojectemissionsComments9.2.4ParametersforProjectSoilCarbonModelsIfusingthemodeledapproach,thesamesoilcarbonmodelusedtocalculateBSOCmustbeusedtocalculateSOCexpectedafterYyearsofmanagementundertheprojectscenario.UncertaintiesagainmustbecalculatedwithMonteCarlosimulations[3,38].Itiscrucialthatmodelinputparametersmustbetrackedateachsamplingstationifpossibletoallowthechosensoilcarbonmodel(s)tobemostresponsivetovariationinmajorinputstothemodel.ThemodelmustpredictSOCdensityfromtheparametersmeasuredandusedinthemodel.Atverification,theprojectproponentmustprovidealistofparametersforeachstationundertheprojectscenarioinyeart,usingtheVCStableformatforeach.Theseparameterswillvaryamongmodels,soanexhaustivelistcannotbeprovided.Howevereachparameterinthemodelmustbelisted,alongwithitsuncertaintybasedona95percentconfidenceinterval,sothatuncertaintycalculations,followingtheMonteCarloproceduresin8.4.2maybeverified.Forexample:Data/ParameterMAPm,YVM0032,Version1.0SectoralScope14Page71Dataunitmm/yrDescriptionMeanannualprecipitationinstratummovertheprojectcreditingperiodYyears.EquationModelinputSourceofdataPrecipitationmapsornearbyweatherstationsDescriptionofmeasurementmethodsandprocedurestobeappliedAkeyvariablethataffectsanumberofprocessesdrivingSOCFrequencyofmonitoring/recordingAnnuallyifobtainedfromgovernmentsourcesorlocalweatherstations,DailyifcollectedontheprojectareaQA/QCprocedurestobeappliedDatashouldbeobtainedfromgovernmentsourcesorlocalofficialweatherstations,or,ifnotavailable,fromweatherdatacollectedontheprojectarea.PurposeofdataCalculationofprojectemissionsCommentsData/ParameterSTj,m,ZDataunitoCDescriptionSoiltemperatureatstationjinstratumminmonthZEquationModelinputSourceofdataMeasuredinprojectareaDescriptionofmeasurementmethodsandprocedurestobeappliedMustbemeasuredwithadigitalthermometerwithprobesinsertedtoatleast½thedepthatwhichSOCwillbesampled(ie,to10cmifsoilwillbesampledandmodeledto20cm[3,16])Frequencyofmonitoring/recordingAtleastmonthlyQA/QCprocedurestobeappliedProceduresmustfollowthoseinreferences[57,58]PurposeofdataCalculationofprojectemissionsCommentsVM0032,Version1.0SectoralScope14Page72Data/ParameterGIj,m,zDataunitDimensionlessproportionDescriptionMeanannualgrazingintensityatstationjinstratumminyeartEquationModelinputSourceofdataMeasuredinprojectareaDescriptionofmeasurementmethodsandprocedurestobeappliedMeasuredateachsamplingstationatleasttwiceeachgrowingseasonpriortoverificationbycomparingclippedbiomassatleastattheendofthegrowingseason,ormorefrequentlyforsomemodels,insideandoutsidesmall(1m2)fences.GIm=1–(biomassoutside/biomassinside).Biomassisclipped,driedat25–50oC,andweighed.Frequencyofmonitoring/recordingMustbeatleasttwiceperyear,butpreferablymonthly,particularlyintropicalprojectareaswhereplantgrowthcanoccurinanymonthQA/QCprocedurestobeappliedSamplesshouldbedriedinaprofessionaldryingovenfor3daysat45-60oCorbeair-driedinsunshinefor4-7daystoaconstantmass,followingreferences[2,17,56]PurposeofdataCalculationofprojectemissionsCommentsInaddition,soilcarbonmodelsfortheprojectscenariowilllikelyuseprojectfirefrequency,PFFREQm,torthefrequencyoffire(proportionareaburned)instratummduringyeart(sectionSection9.2.2),andinitialSOCm,j,0introducedinSection8.1.3.4.9.2.5ParametersforProjectRemovalsfromWoodyPlantBiomassThetwoprincipalparametersaretheinitialandverifiedabovegroundwoodyplantbiomasses.Uncertaintyisexpressedas95%percentCI/meanforeachrecordeddifferenceinbiomassateachofthepermanentsamplingstations.Data/ParameterAWPBm,j,0Dataunitkg/haDescriptionAbovegroundwoodyplantbiomassattheprojectstartortheyearoflastverificationatstationjandstratumminthebeginningofthemonitoringperiodEquations15SourceofdataMeasuredinpermanentsamplingplotsVM0032,Version1.0SectoralScope14Page73DescriptionofmeasurementmethodsandprocedurestobeappliedCircularquadratscenteredateachpermanentsamplingstationjmustbesampledfornumberanddiameteratbreastheight(dbh)ofeachwoodystemwithinaspecifieddiameter.Radiusmustbe5-50cmdependingonwoodystemdensity,withsmallerradiiappropriateformoredensewoodyvegetation[45,59].Frequencyofmonitoring/recordingDuringthebeginningofthemonitoringperiodQA/QCprocedurestobeappliedProceduresmustfollowthosedetailedinreference[46]PurposeofdataCalculationofprojectemissionsCommentsData/ParameterAWPBm,j,YDataunitkg/haDescriptionAbovegroundwoodyplantbiomassatstationjandstratumminyearYattheendofthemonitoringperiodEquations15SourceofdataMeasuredinprojectareaatpermanentsamplingstationsDescriptionofmeasurementmethodsandprocedurestobeappliedCircularquadratscenteredateachpermanentsamplingstationjmustbesampledfornumberanddbhofeachwoodystemwithinaspecifieddiameter.Radiusmustbe5-50mdependingonwoodystemdensity,withsmallerradiiappropriateformoredensewoodyvegetation[45,59].Frequencyofmonitoring/recordingOnceattheendofthemonitoringperiodQA/QCprocedurestobeappliedProceduresmustfollowthosedetailedinreference[46]PurposeofdataCalculationofprojectemissionsComments9.2.6ParametersforLeakageData/ParameterDNC,xDataunitheadDescriptionNumberoflivestockofeachcategorycthatwereoutsidetheprojectarea(outsidethefencedefiningtheboundaryoftheVM0032,Version1.0SectoralScope14Page74projectarea,or,inthecaseofopengrazinglandsegpastoralistareas,beyond2kmfromthemappedprojectareaboundaryondayxEquations17,18SourceofdataMeasuredDescriptionofmeasurementmethodsandprocedurestobeappliedDeterminedfromrecordsoflivestockdistributions,asrecordedfrominterviewswithgrazingmanagers,coordinators,herders,orotheradministrativestaff.ForadditionaldetailsseeSection9.3.3Frequencyofmonitoring/recordingMonthlyQA/QCprocedurestobeappliedRecordsshouldbekeptaspaperandelectroniccopiesPurposeofdataCalculationofleakageCommentsData/ParameterdDataunitdaysDescriptionTotalnumberofdayslivestockwereofftheprojectareaEquations17,18SourceofdataMeasuredDescriptionofmeasurementmethodsandprocedurestobeappliedBasedonrecordsoflivestocknumbersandtheirdistributiononandofftheprojectarea,basedoninterviewsofgrazingmanagers,coordinators,herdersorotheradministrativestaff.ForadditionaldetailsseeSection9.3.3Frequencyofmonitoring/recordingMonthlyQA/QCprocedurestobeappliedRecordsshouldbekeptaspaperandelectroniccopies,withatleastoneelectroniccopykeptofftheprojectasanonlinedatabasePurposeofdataCalculationofleakageCommentsVM0032,Version1.0SectoralScope14Page759.3DescriptionoftheMonitoringPlan9.3.1SamplingDesignThesamplingdesignofthepermanentsamplingstationsandtheirdivisionamongstrataisdescribedindetailinSection8.1.2.9.3.2ImpactofProjectActivitiesAdditionalityofgreenhousegasreductionsarisesfromtheimplementationofnewmanagementactivities,anditisimportantfortheprojectproponenttomonitortheeffectivenessofthesenewactivities.Activitiesfallprincipallyintothreemajorcategories:(1)manipulatinganimalnumbersandgrazingintensity,(2)managingfire,(3)changingplantspeciescompositionand/orligninandcellulosecontent.9.3.3AnimalNumbersThedifferentmethodsofanimalcensusesarereviewedbySeber[60].Thepreferredmethodsare:1)Ownershiprecordsincaseswhereindividualrecordsexistforeachanimalownedbytheprojectproponentorparticipants.Thisisthemostaccuratemeasureofanimalnumbers,butislikelytoonlybepossibleindevelopedcountrieswheresuchrecordscanbecreatedandmaintained.2)Corralcounts,inwhichallknowncorralsor“bomas”whereanimalsarekeptatnightareidentifiedtocategorycandcounted.Theadvantageofthismethodisthatitallowsatotalcensusaslongasallcorralscanbelocatedandcensused.Thismaybethesuperiormethodforcensusinganimalskeptbypastoralistsinlessdevelopedcountries.Caremustbetakentocensusattimeswhenanimalsarenotbeingherdedlongdistancestofindnewpastureorwater,asthecensusmaysignificantlyunderestimateanimalcounts.95percentconfidenceintervalsmaybeestimatedbyrepeatedcounts,comparisonofcountsamongdifferentobservers,orsubsamplingmethodslikebootstrapping[61].3)Groundtransectcounts,wherebytransectsarewalkedordrivenandthenumberofanimalsofeachcategoryc,atdistancesmeasuredwithrangefinders,arecounted.Theareasampledbytransects(lengthbymeanobservationdistance)mustcoveratleast20percentoftheprojectarea[60]toavoidunacceptablevarianceanduncertainty.Countsmustbeconvertedtodensityandmultipliedbyareatoestimatetotalanimalnumbersineachcategoryandtheir95percentconfidenceintervalsbyusingtheprogramDISTANCE[62].TransectsmustbesampledinatleastfouryearsofthetenpriortotheprojectstartandatleasttwiceperyearduringtheprojectcreditingperiodYyears.Theadvantageofthismethodisthatitmaybeappliedtowildlifeortolivestockcensusesinregionswherelivestockarenotsedentary.Thedisadvantageisthatanimalsareoftenaggregatedacrossthelandscape,whichmaygreatlyincreasethevarianceoftheVM0032,Version1.0SectoralScope14Page76estimate,animalscountedmustbeextrapolatedtogettotalsfortheprojectarea,andaccurateclassificationsofanimalsintocategoriesmaybeinaccurate.4)Humansurveys,inwhichanimalownersareinterviewedaboutanimalnumbersofeachcategory,keptintheircorralsinthepast.Atleast30individualsor10percentofthetotalanimalholdersintheprojectarea,whicheverisgreater,mustbeinterviewed.Theadvantageofthismethodisthatmoredetailaboutbreedsandweightsmaybeincorporatedintothedeterminationofcategoriesandestimationofmethaneemissions.Thedisadvantageisthatthesubsampleofanimalsownedbythepeopleinterviewedmustbeextrapolatedtoencompasstheprojectarea,withaccompanyinguncertainty.5)Aerialsurveysinwhichanimalsofeachcategoryarecountedfromaerialphotographs.Thisisapopularmethodamonggovernmentswhoaresatisfiedwithbroadsurveys,buttypicallytheuncertaintyinaerialsurveysistoolargetobeusedwithdailymethaneemissions,whicharealreadyplaguedwithrelativelylargeuncertainties.Typicallyaerialsurveysonlyworkforcattleorothersimilarlylargeanimals(eg,camelsandhorses),assheepandgoatsareusuallytoosmalltobedifferentiatedbyspecies,sexoragefromtheair.Also,uncertaintiesforaerialsurveysmaybeprohibitive,astheyoftenexceed50percent[60].9.3.4GrazingIntensityTheprojectproponentmustbepreparedtomeasureabovegroundplantbiomassatleastsemi-annuallytodeterminetheimpactsofgrazingonvegetationthroughouttheprojectarea.TheparameterGIm,j,trepresentsthepercentdifferenceinstandingcropbetweengrazedandungrazed(fenced)vegetation.Itmaybemeasuredatallpermanentsamplingstationsbycomparingabovegroundplantbiomass,APBj,m,tateachstationwithbiomassinsidesmallfences(0.67–2m2).Herbaceousandshrubbiomassmustbeclippedfromthreeormoresmallquadratsateachstationandfromtwoormoresmall(0.67-2m2)temporaryfencedquadrats(utilizationcages).Grazingintensity(GI)is1–(biomassunfenced/biomassfenced)[17].Cagesmustbemovedafterclippingtoensurethatthestationmeasuresgrazeruseofplantproductionovereachseasonorportionofaseason.Itmayalsobemeasuredusingcalibratedsatelliteimagery(withatleastR2>0.60betweenthesatelliteindexandmeasuredbiomassontheground)bycomparingvegetationindices,suchasNDVIorEVI[31,63],betweenungrazedandgrazedpixelspairedtohavesimilarsoiltypes,precipitation,andothervariables.9.3.5FireFrequencyBaselineproportionofareaburned(FFREQm,b)andprojectproportionofareaburnedduringtheprojectcreditingperiodYrequiresdemonstrationoftheoccurrenceandareacoveredbyfiresoveraperiodof10yearsforthebaselineandYyearsfortheprojectscenario.Acceptableinformationsourcesincludeaerialphotographsorinterpretedsatelliteimageswitharesolution(pixellengthinm)smallerthan0.5percentofthesquarerootofthetotalprojectarea(inm2)[18,19].AnexamplemethodisDempewolf’setal.(2007)[19]algorithm,nowemployedasMODISBurnedVM0032,Version1.0SectoralScope14Page77Areaimagesdatingbackto2000.Theseimagesuseredandinfra-redspectralinformationfrom15daycompositeimages,whicheliminatecloudsandshadows,fromMODISsatellites12tocalculateaBAI,orburnedareaindexthatprovided85-95percentaccuracyinclassifyingimagepixelsasburnedorunburnedinEastAfricangrasslandandsavanna.Othermethodsofimageinterpretation,particularlyaerialphotographs,maybeused.Anymethodmustbetestedbycomparingpixelsinclassifiedimageswithobservationsofburnedorunburnedduringthesametimewindowinthepermanentsamplingstations.Validinterpretationmethodsmustcommitlessthan12percentcombinedomissionandcommissionerrors[19].9.3.6PlantSpeciesCompositionAkeyinputvariableaffectingsoilcarbondynamicsandsoilcarbonmodelsisspeciescomposition,asmanagementpracticestorestoresoilcarbonwilllikelydosoinpartbychangingplantspeciescomposition[32,64,65].Replacementofwoodyshrubsorannualgrassesthatdominateunderbaselineconditionswithperennialgrasseswithdeeprootsystemsundertheprojectscenariocanleadtorapidcarbonsequestration.Trackingplantspeciescompositionispossiblebymeasuringaerialcoverofthefourmostdominantspecieseachofgrasses,herbs(dicotyledonousplants,wildflowers),andwoodyplants.Suchdatacanshowshiftsasaconsequenceofnewmanagementactivities.9.3.7PlantLigninandCelluloseShiftsinspeciescompositionmaybeaccompaniedbyshiftsinplantchemicalcompositionthatgreatlyaffectcalculationsofsomesoilcarbonmodelsandmeasureablesoilcarbonsequestration.SOCisoftencloselyrelatedtoinputsoftheseformsofcarbonbecausetheyresistmicrobialdecomposition.Plantcelluloseandlignin(MAPLC)maybemeasuredbyeither:1)theVanSoestmethodofsequentialdigestionofgroundplantmaterial(clippedduringthemeasurementofabovegroundplantbiomass(APB))inaciddetergentandsulfuricacid[66]inaprofessionallaboratory,or2)withinfra-red(IR)spectrometerscalibratedtoprojectareaplantsandsoils.9.3.8ExAnteLeakageandOtherEmissionSourcesLeakageismainlypossiblefromnettransfersoflivestockoutoftheprojectarea,whichisnotallowedbytheapplicabilityconditionsbutneverthelessmustbemonitoredbyinventoryinglivestockshippingdepotsandfromcensusesandinterviewswithinhabitantsoftheprojectarea.Closemonitoringandcensuseffortsareespeciallyneededduringdryseasonsorotherperiodswhentheremaybestrongmotivationtomoveanimalsofftheprojectarea.Animalcensusesmustbetimedtocoincidewiththegreatestriskofanimalmovementtohavethegreatestchancetotrackanypossibleleakage.12http://modis.gsfc.nasa.gov/VM0032,Version1.0SectoralScope14Page78Thepossiblebutunlikelysourceofnewemissionsasaresultoftheprojectistheincreaseintheuseoffossilfuelsduringvehicleandairplaneuseassociatedwithmanagementactivities.ThesemaybetrackedwithmileagelogsinallprojectandassociatedvehiclesandconvertedwithIPCC2000emissionfactors[67]asstratifiedbythetypeofvehicleandfueltype(eg,diesel,gasoline,kerosene),todeterminewhetherfossilfueluseapproachesbeingasignificantgreenhousegassourceassociatedwithprojectactivity.10REFERENCES1.Neary,D.G.,etal.,Fireeffectsonbelowgroundsustainability:areviewandsynthesis.ForestEcologyandManagement,1999.122:p.51-71.2.Ritchie,M.E.,PlantcompensationtograzingandsoilcarbondynamicsinatropicalgrasslandPeerJ,2014.2:p.e233.3.Ogle,S.M.,etal.,ScaleanduncertaintyinmodeledsoilorganiccarbonstockchangesforUScroplandsusingaprocess-basedmodel.GlobalChangeBiology,2010.16(2):p.810-822.4.Paustian,K.,W.J.Parton,andJ.Persson,Modelingsoilorganic-matterininorganic-amendedandnitrogen-fertilizedlong-termplots..SoilScienceSocietyofAmericaJournal,1992.56:p.476-488.5.IPCC,Emissionsfromlivestockanddungmanagement,inGuidelinesforNartionalGreenhouseGasInventories.2006,IPCC.p.1-85.6.Holdo,R.M.,etal.,Adisease-mediatedtrophiccascadeintheSerengetianditsimplicationsforecosystemC.PLoSBiology,2009.7(9).7.IPCC,Grasslands,inGuidelinesforGreenhouseGasInventories.2006,IPCC.p.1-49.8.Cantarel,A.A.M.,etal.,EffectsofClimateChangeDriversonNitrousOxideFluxesinanUplandTemperateGrassland.Ecosystems,2011.14(2):p.223-233.9.Rafique,R.,D.Hennessy,andG.Kiely,NitrousOxideEmissionfromGrazedGrasslandUnderDifferentManagementSystems.Ecosystems,2011.14(4):p.563-582.10.Liu,C.Y.,etal.,GrowingseasonmethanebudgetofanInnerMongoliansteppe.AtmosphericEnvironment,2009.43(19):p.3086-3095.11.Saggar,S.,etal.,Soil-atmosphereexchangeofnitrousoxideandmethaneinNewZealandterrestrialecosystemsandtheirmitigationoptions:areview.PlantandSoil,2008.309(1-2):p.25-42.12.Liu,Z.Y.,etal.,Comparisonofvegetationindicesandred-edgeparametersforestimatinggrasslandcoverfromcanopyreflectancedata.JournalofIntegrativePlantBiology,2007.49(3):p.299-306.13.Ren,H.R.,G.S.Zhou,andX.S.Zhang,EstimationofgreenabovegroundbiomassofdesertsteppeinInnerMongoliabasedonred-edgereflectancecurveareamethod.BiosystemsEngineering,2011.109(4):p.385-395.14.Kery,M.,etal.,Trendestimationinpopulationswithimperfectdetection.JournalofAppliedEcology,2009.46(6):p.1163-1172.15.Porteus,T.A.,S.M.Richardson,andJ.C.Reynolds,Theimportanceofsurveydesignindistancesampling:fieldevaluationusingdomesticsheep.WildlifeResearch,2011.38(3):p.221-234.16.Pineiro,G.,J.M.Paruelo,andM.Oesterheld,Potentiallong-termimpactsoflivestockintroductiononcarbonandnitrogencyclingingrasslandsofSouthernSouthAmerica.GlobalChangeBiology,2006.12(7):p.1267-1284.17.McNaughton,S.J.,Ecologyofagrazingecosystem:theSerengeti.EcologicalMonographs,1985.55p.259-294.18.DeSantis,A.,etal.,MappingburnseverityandburningefficiencyinCaliforniausingsimulationmodelsandLandsatimagery.RemoteSensingofEnvironment,2010.114(7):p.1535-1545.19.Dempewolf,J.,etal.,Burned-areamappingoftheSerengeti-MararegionusingMODISreflectancedata.IEEEGeoscienceandRemoteSensingLetters,2007.4(2):p.312-316.20.CDM,A/Rmethodologicaltool:CalculationofthenumberofsampleplotsformeasurementswithinA/RCDMprojectactivities,version2.2009,UNFCCCAnnex19EB46p.7.21.Petersen,R.G.andL.D.Calvin,Sampling.,inMethodsofSoilAnalysis,Part3:ChemicalMethods,D.L.Sparks,Editor.1996,SoilsScienceSocietyofAmerica:Madison,WisconsinUSA.p.1-19.22.Post,W.M.,etal.,Monitoringandverifyingchangesoforganiccarboninsoil.ClimaticChange,2001.51(1):p.73-99.23.Goidts,E.,B.vanWesemael,andK.VanOost,Drivingforcesofsoilorganiccarbonevolutionatthelandscapeandregionalscaleusingdatafromastratifiedsoilmonitoring.GlobalChangeBiology,2009.15(12):p.2981-3000.24.McNab,W.H.,etal.,AnunconventionalapproachtoecosystemunitclassificationinwesternNorthCarolina,USA.ForestEcologyandManagement,1999.114(2-3):p.405-420.25.VCS,Methodsforstratificationoftheprojectarea(X-STR),v1.0.2012,VerifiedCarbonStandard.p.15.26.Franz,R.,etal.,Methaneproductioninrelationtobodymassofruminantsandequids.EvolutionaryEcologyResearch,2010.12(6):p.727-738.27.Ferger,W.F.,Thenatureanduseoftheharmonicmean.JournaloftheAmericanStatisticalAssociation,1931.26:p.36-40.28.Archimede,H.,etal.,ComparisonofmethaneproductionbetweenC3andC4grassesandlegumes.AnimalFeedScienceandTechnology,2011.166-67:p.59-64.29.Brye,K.R.andN.A.Slaton,CarbonandnitrogenstorageinatypicAlbaqualfasaffectedbyassessmentmethod.CommunicationsinSoilScienceandPlantAnalysis,2003.34(11-12):p.1637-1655.30.Knadel,M.,A.Thomsen,andM.H.Greve,Multisensoron-the-gomappingofsoilorganiccarboncontent.SoilScienceSocietyofAmericaJournal,2011.75(5):p.1799-1806.31.Feng,X.M.andY.S.Zhao,GrazingintensitymonitoringinNorthernChinasteppe:IntegratingCENTURYmodelandMODISdata.EcologicalIndicators,2011.11(1):p.175-182.32.Izaurralde,R.C.,etal.,SimulatingsoilCdynamicswithEPIC:Modeldescriptionandtestingagainstlong-termdata.EcologicalModelling,2006.192(3-4):p.362-384.33.Williams,J.R.,etal.,TheEPICcropgrowthmodel.TransactionsoftheASAE,1989.32(2):p.497-511.34.Arah,J.R.M.,etal.,Simulatingtrendsinsoilorganiccarboninlong-termexperimentsusingtheITE(Edinburgh)ForestandHurleyPastureecosystemmodels.Geoderma,1997.81(1-2):p.61-74.35.Thornley,J.H.M.andM.G.R.Cannell,Temperategrasslandresponsestoclimatechange:AnanalysisusingtheHurleypasturemodel.AnnalsofBotany,1997.80(2):p.205-221.36.Greenwood,J.A.andM.M.Sandomire,Samplesizerequiredforestimatingthestandarddeviationasapercentofitstruevalue.USNavyResearch,1950.Paper34.37.Moriasi,D.N.,etal.,Modelevaluationguidelinesforsystematicquantificationofaccuracyinwatershedsimulations.TransactionsoftheAmericanSocietyofAgriculturalandBiologicalEngineers,2007.50:p.885-900.38.Ortiz,C.,etal.,ModellingsoilcarbondevelopmentinSwedishconiferousforestsoils-AnuncertaintyanalysisofparametersandmodelestimatesusingtheGLUEmethod.EcologicalModelling,2011.222(17):p.3020-3032.39.Smith,P.,etal.,Acomparisonoftheperformanceofninesoilorganicmattermodelsusingdatasetsfromsevenlong-termexperiments.Geoderma,1997.81(1-2):p.153-225.40.Burnham,K.P.andD.R.Anderson,Multi-modelinference:understandingAICandBICinmodelselection.SociologicalMethodsandResearch,2004.33:p.201-304.41.IPCC,GuidelinesforNationalGreenhouseGasInventories2006.4(Chapter2).42.Hoffa,E.A.,etal.,SeasonalityofcarbonemissionsfrombiomassburninginaZambiansavanna.JournalOfGeophysicalResearch,1999.104:p.13841-13853.43.IPCC,Quantifyinguncertaintiesinpractice.Ch6,inIPCCGoodPracticeGuidanceandUncertaintyManagementinNationalGreenhouseGasInventoriesR.Odingo,Editor.2006,IPCC.44.Microsoft.MonteCarloSimulationforExcel.2006;Availablefrom:http://excelmontecarlo.com/.45.CDM,A/RMethodologicalTool:EstimationofcarbonstocksandchangeincarbonstocksoftreesandshrubsinA/RCDMprojectactivities,Version2.1.2011,UNFCCCAnnex13EB60.46.MacDicken,K.G.,Aguidetomonitoringcarbonstorageinforestryandagroforestryprojects.1997,WinrockInternational47.VCS,VCSAFOLURequirementsVersion3.3.2012.48.TheRProjectforStatisticalComputing.Availablefrom:http://www.r-project.org/.49.VCS,VCSStandard:VCSVersion3.3.2012.50.Norris,N.,Thestandarderrorsofthegeometricandharmonicmeansandtheirapplicationtoindexnumbers.AnnalsofMathematicalStatistics,1940.11:p.445-448.51.Akagi,S.K.,etal.,Emissionfactorsforopenanddomesticbiomassburningforuseinatmosphericmodels.AtmosphericChemistryandPhysics,2011.11(9):p.4039-4072.52.Knops,J.M.H.andD.Tilman,Dynamicsofsoilcarbonandnitrogenaccumulationfor61yearsafteragriculturalabandonment.Ecology,2000.81:p.88-98.53.Hao,X.,etal.,Soildensityandporosity,inSoilssamplingandmethodsofanalysis,secondedition,M.R.Carter,Editor.2007,CRCPress:BocaRatonFloridaUSA.p.789-799.54.Nelson,D.W.andL.E.Sommers,Totalcarbon,organiccarbon,andorganicmatter,inMethodsofSoilAnalysis.Part3.ChemicalMethods.,D.L.Sparks,Editor.1996,SoilsScienceSocietyofAmerica:Madison,Wisconsin,USA.p.961-1010.55.Walkley,A.andI.A.Black,AnexaminationofDegtjareffMethodfordeterminingsoilorganicmatterandaproposedmodificationofthechromicacidtitrationmethod.SoilScience,1934.37:p.29-37.56.Ritchie,M.E.,D.Tilman,andJ.M.H.Knops,Herbivoreeffectsonplantandnitrogendynamicsinoaksavanna.Ecology,1998.79(1):p.165-177.57.Norman,J.M.,R.Garcia,andS.B.Verma,SoilsurfaceCO2fluxesandthecarbonbudgetofagrassland..JournalofGeophysicalResearch-Atmospheres,1992.97(D17):p.18845-18853.58.Rajan,N.,S.J.Maas,andS.Cui,Extremedroughteffectsoncarbondynamicsofasemiaridpasture.AgronomyJournal,2013.105(6):p.1749-1760.59.Sanjerehei,M.M.,Determinationofanappropriatequadratsizeandshapefordetectingassociationbetweenplantspecies.EcologicalModelling,2011.222(10):p.1790-1792.60.Seber,G.A.F.,AreviewofestimatinganimalabundanceII.InternationalStatisticalReview/RevueInternationaledeStatistique,1992.60:p.129-166.61.Tsay,P.K.andA.Chao,Populationsizeestimationforcapture-recapturemodelswithapplicationstoepidemiologicaldata.JournalofAppliedStatistics,2001.28(1):p.25-36.62.Thomas,L.,etal.,Distance3.5.ResearchUnitforWildlifePopulationAssessment.1998,UniversityofSt.Andrews:StAndrews,UK.63.Huete,A.,etal.,OverviewoftheradiometricandbiophysicalperformanceoftheMODISvegetationindices.RemoteSensingoftheEnvironment,2002.83:p.195-213.64.Conant,R.T.,K.Paustian,andE.T.Elliott,Grasslandmanagementandconversionintograssland:Effectsonsoilcarbon.EcologicalApplications,2001.11(2):p.343-355.65.Derner,J.D.andG.E.Schuman,Carbonsequestrationandrangelands:Asynthesisoflandmanagementandprecipitation.JournalofSoilandWaterConservation,2007.62:p.77-85.66.Jensen,L.S.,etal.,InfluenceofbiochemicalqualityonCandNmineralisationfromabroadvarietyofplantmaterialsinsoil.PlantandSoil,2005.273(1-2):p.307-326.67.IPCC,Emissions:energyandtransport,inGoodPracticeGuidanceandUncertaintyManagementinNationalGreenhouseGasInventories.2000,IPCCNationalGreenhouseGasInventoriesProgramme.p.55-70.DOCUMENTHISTORYVersionDateCommentv1.016July2015Initialversion

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱