VM0027-热带泥炭地排水复湿方法学VIP专享VIP免费

VM0027, Version 1.0
Sectoral Scope 14
Page 1
Approved VCS Methodology
VM0027
Version 1.0, 10 July 2014
Sectoral Scope 14
Methodology for Rewetting
Drained Tropical Peatlands
VM0027, Version 1.0
Sectoral Scope 14
Page 2
Document prepared by:
WWF Indonesia and WWF Germany
Winrock International Remote Sensing Solutions GmbH
TerraCarbon, LLC Alterra Wageningen, UR
VM0027, Version 1.0
Sectoral Scope 14
Page 3
Table of Contents
1 Sources .............................................................................................................................. 4
2 Summary Description of the Methodology ........................................................................... 4
3 Definitions ........................................................................................................................... 6
4 Applicability Conditions ....................................................................................................... 7
5 Project Boundary ................................................................................................................ 9
5.1 Geographic boundary .................................................................................................. 9
5.2 Temporal boundary .....................................................................................................10
5.3 Carbon pools ..............................................................................................................11
5.4 Sources of greenhouse gases ....................................................................................12
6 Procedure for Determining the Baseline Scenario ..............................................................13
7 Procedure for Demonstrating Additionality .........................................................................15
8 Quantification of GHG Emission Reductions and Removals ..............................................15
8.1 Baseline Emissions .....................................................................................................15
8.2 Project Emissions .......................................................................................................38
8.3 Leakage ......................................................................................................................42
8.4 Summary of GHG Emission Reduction and/or Removals ............................................42
8.5 Uncertainty Analysis ...................................................................................................43
8.6 Calculation of VCS Buffer ...........................................................................................44
8.7 Calculation of Verified Carbon Units ...........................................................................44
9 Monitoring ..........................................................................................................................45
9.1 Data and Parameters Available at Validation ..............................................................45
9.2 Data and Parameters Monitored .................................................................................52
9.3 Description of the Monitoring Plan ..............................................................................58
10 References ........................................................................................................................64
Annex I: Design of project measures .........................................................................................67
VM0027,Version1.0SectoralScope14Page1ApprovedVCSMethodologyVM0027Version1.0,10July2014SectoralScope14MethodologyforRewettingDrainedTropicalPeatlandsVM0027,Version1.0SectoralScope14Page2Documentpreparedby:WWFIndonesiaandWWFGermanyWinrockInternationalRemoteSensingSolutionsGmbHTerraCarbon,LLCAlterraWageningen,URVM0027,Version1.0SectoralScope14Page3TableofContents1Sources..............................................................................................................................42SummaryDescriptionoftheMethodology...........................................................................43Definitions...........................................................................................................................64ApplicabilityConditions.......................................................................................................75ProjectBoundary................................................................................................................95.1Geographicboundary..................................................................................................95.2Temporalboundary.....................................................................................................105.3Carbonpools..............................................................................................................115.4Sourcesofgreenhousegases....................................................................................126ProcedureforDeterminingtheBaselineScenario..............................................................137ProcedureforDemonstratingAdditionality.........................................................................158QuantificationofGHGEmissionReductionsandRemovals..............................................158.1BaselineEmissions.....................................................................................................158.2ProjectEmissions.......................................................................................................388.3Leakage......................................................................................................................428.4SummaryofGHGEmissionReductionand/orRemovals............................................428.5UncertaintyAnalysis...................................................................................................438.6CalculationofVCSBuffer...........................................................................................448.7CalculationofVerifiedCarbonUnits...........................................................................449Monitoring..........................................................................................................................459.1DataandParametersAvailableatValidation..............................................................459.2DataandParametersMonitored.................................................................................529.3DescriptionoftheMonitoringPlan..............................................................................5810References........................................................................................................................64AnnexI:Designofprojectmeasures.........................................................................................67VM0027,Version1.0SectoralScope14Page41SOURCESThismethodologyusesthelatestversionsofthefollowingtools:VCSToolfortheDemonstrationandAssessmentofAdditionalityinVCSAgriculture,ForestryandOtherLandUse(AFOLU)ProjectActivitiesCDMToolfortestingsignificanceofGHGemissionsinA/RCDMprojectactivitiesStratificationbypeatdepletiontimeisbasedonVCSmethodology,VM0004MethodologyforConservationProjectsthatAvoidPlannedLandUseConversioninPeatSwampForests.2SUMMARYDESCRIPTIONOFTHEMETHODOLOGYAdditionalityandCreditingMethodAdditionalityProjectMethodCreditingBaselineProjectMethodThismethodologyappliestoprojectactivitiesinwhichdrainedtropicalpeatlandsarerewetthroughtheconstructionofpermanentand/ortemporarystructures(eg,dams)whichholdbackwaterindrainagewaterways.Assuch,thismethodologyiscategorizedasaRestoringWetlandEcosystems(RWE)methodology.Thismethodologyquantifiesthereductionincarbondioxide(CO2)emissionsduetodecreasedoxidationofsoilorganicmaterialthatoccursasaresultofprojectactivities.AnnexIprovidesarecommendedapproachfordeterminingthenumberandlocationofdamsthatareincludedintheproject.Emissionsfromnitrousoxide(N2O)areconservativelyexcludedfromthismethodologysinceprojectactivitiesincreasethewatertableincomparisontothebaseline,andthussuchemissionswillbeequalorlowerasaresultofprojectactivities.ThequantificationofemissionreductionsisbasedprimarilyonoutputsfromtheSimulationofGroundwater(SIMGRO)modelwhichestimatesthewatertabledepthbasedonarangeofinputparameterssuchasterraincharacteristics,peatthicknessandclimatevariables.ThismethodologyisonlyapplicabletoprojectsinSoutheastAsia;specifically,Malaysia,Indonesia,BruneiandPapuaNewGuinea.Themainmethodologicalstepsareprovidedbelow:Definitionoftheprojectarea:Variousgeographicareasmustbespecifiedforthepeatrewettingproject.Theprojectareaisspecifiedforalleligiblediscreteareasofpeatlandtobesubjectedtorewettingprojectactivities.Theareaofthewatershed(s)ofinterestthatismodeledtoestimatetheimpactofprojectactivitiesonwaterlevelsintheareaofhydrologicalinfluenceisalsospecified.Undertheapplicabilityconditionsofthismethodology,theprojectareaisnotrequiredtocoincidewiththeareaofthewatershed(s)ofinterest.However,thewatershed(s)ofinterestmustconstituteoneorVM0027,Version1.0SectoralScope14Page5morecompletehydrologicalunitsorwatershedsandtheentireprojectareamustbecontainedwithinthewatershed(s)ofinterest.Aspatiallyexplicitdigitalterrainmodel(DTM),whichcharacterizeselevationandslope,isusedtodeterminethespatialextentofthewatershed(s)ofinterestforthisstudy.Topographicconditions(elevation,slope)determinethedirectionofwaterflowinaregionandthusthewatershedarea.Ifthereareareaswithinthewatershed(s)ofinterest,butoutsidetheprojectarea,thisexcludedareaofthewatershed(s)mustalsobedelineated.Discretelandareaswithinthewatershed(s)ofinterestandtheprojectareaarerecordedinspatiallyexplicitpolygons.Stratification:Initialprojectconditionsareestablishedbymodelingpeatdepthandwaterlevelsrelativetothepeatsurfaceacrossthewatershed(s)ofinterestusingremotesensingandfielddataincombinationwithahydrologicalmodel.Theprojectareaisstratifiedbydrainagedepth.Theapplicationofthismethodologyrequirestheex-antestratificationoftheprojectareabypeatdepth.Identifyingthebaselinescenario:ThelatestversionoftheVCSToolfortheDemonstrationandAssessmentofAdditionalityinVCSAgriculture,ForestryandOtherLandUse(AFOLU)ProjectActivitiesmustbeusedtoidentifythepotentialalternativebaselinelandusescenariosintheprojectareaandinthemodeledwatershedareaexcludedfromtheprojectarea.Themethodologyprovidesastepwiseapproachtodeterminethemostplausiblebaselinescenario(s)intheprojectareaandintheexcludedareaofwatershed(s).Demonstrationofadditionality:AdditionalityisdemonstratedthroughapplicationofthelatestversionoftheVCSToolfortheDemonstrationandAssessmentofAdditionalityinVCSAgriculture,ForestryandOtherLandUse(AFOLU)ProjectActivities.Ex-antecalculationofbaselineGHGemissions:Drainagedepthacrossthewatershed(s)ofinterestismodeledinthebaselinebasedonthecurrentandhistoriclayoutoftherelevantdrainagesystem(consideringanypotential“naturaldamming”expectedtooccurinthewatershed(s)ofinterest),currenttopographicdataandhistoricclimatedata.BaselineCO2emissionsfromdecompositionofpeatareestimatedbyapplyingtherelationshipbetweenwaterlevelsandCO2emissionsspecifiedinthismethodologyorotherequationsfromappropriateliteratureastheymaybecomeavailableinthefuture.CO2emissionsfromoxidationinthebaselineareonlyconsideredforprojectarealandswithsuitablythickpeatdepth(ie,areaswherethepeathasbeencompletelydepletedarenotconsideredtoemitCO2inthebaseline).CH4andN2Oemissionsinthebaselineareconservativelynotaccountedfor.Calculationofex-anteGHGprojectemissions:CO2emissionsintheprojectscenarioareestimatedfollowingthesamemethodusedinthecalculationofthebaselineemissionsconsideringtheplannedprojectintervention(ie,theestablishmentofdamsindrainagewaterways).Itisconservativelyassumedthatemissionsmayoccurovertheentireprojectareaovertheentireprojectcreditingperiodintheprojectscenario.PotentialincreasesinCH4emissionsarenotaccountedforbecausetheyaredeminimisincomparisontotheCO2emissionsreducedbytheproject.VM0027,Version1.0SectoralScope14Page6Leakageemissions:Theconditionsunderwhichthismethodologymaybeappliedaresuchthatitisappropriateorconservativetonotincludeleakageemissionsinthequantificationofnetemissionreductionsand/orremovals.FurtherdetailsandrationaleareprovidedinSection8.3below.Baselineandprojectmonitoring:Theprojectactivityismonitoredtoverifytheimplementationofthetechnicalinterventiontorewetthepreviouslydrainedtropicalpeatlands.Waterlevelsrelativetothepeatsurfacearemodeledateachmonitoringeventbasedonthecurrentandhistoriclayoutoftherelevantdrainagesystempriortoprojectstart,implementationofthetechnicalinterventionandclimatedatarecordedduringthemonitoringperiod.Baselineandprojectemissionsareestimatedfollowingthesamemethodusedinthecalculationofex-anteemissions.Actualwaterlevelsintheprojectareaaremeasuredandcomparedtomodeledwaterlevels.Methodsareincludedtoensureconservativeestimatesofwaterlevelsareproduced.3DEFINITIONSBaselinePeriodThetimeperiodbetweentheprojectstartdateandthefirstmonitoringevent,orthetimeperiodbetweenmonitoringeventsExcludedAreaofWatershed(s)Theareawithinthewatershed(s)ofinterestthatisoutsidetheprojectareaOmbrogenousTropicalPeatlandPeatlandwithasurfaceisolatedfrommineralsoil-influencedgroundwater,whichonlyreceiveswaterthroughprecipitation1PeatOrganicsoilswithatleast65%organicmatterandaminimumthicknessof30cm2,3WatershedTheentireareathatisdrainedbyonewaterway,suchthatallflowthatoriginatesintheareaisdischargedthroughasingleoutletWatershedofInterestTheoneormorecompletewatershedsmodeledtoestimatetheimpactofprojectactivitiesonwaterlevelsintheareaofhydrologicalinfluence1Rydin,HandJeglum,JK.2006.TheBiologyofPeatlands.OxfordUniversityPress,UK.360p.ISBN13:9780198528722.2Rieley,JO.andPage,SE.2005.WiseUseofTropicalPeatland:FocusonSoutheastAsia.Alterra,Wageningen,TheNetherlands.237p.ISBN90327-0347-1.3JoostenH,ClarkeD(2002)Wiseuseofmiresandpeatlands–Backgroundandprinciplesincludingaframeworkfordecision-making.InternationalMireConservationGroup/InternationalPeatSociety,304pp.VM0027,Version1.0SectoralScope14Page7WaterwayAnaturalormanmadefeatureinapeatland,includingriversandcanals,thatconductswatertowardsahydrologicaloutletAcronymsusedinthismethodologyarelistedbelow:ASCIIAmericanStandardCodeforInformationInterchangeASPRSAmericanSocietyforPhotogrammetryandRemoteSensingDSMDigitalSurfaceModelDTMDigitalTerrainModelLiDARLightDetectionandRangingPDOPPositionDilutionofPrecisionPRAParticipatoryRuralAppraisalSIMGROSimulationofGroundwatermodelRMSERootMeanSquareErrorSRTMShuttleRadarTopographyMissionSVATSoil-Vegetation-WaterTransferunit4APPLICABILITYCONDITIONSThismethodologyappliestoprojectactivitieswhichrewetdrainedtropicalpeatlandsthroughtheconstructionofpermanentandtemporarystructureswhichholdbackwaterindrainagewaterways.Projectsmustmeettheconditionsbelow.Notethatapplicabilityconditions13and14mustbesatisfiedateachandeveryverificationevent.1.Theprojectareamustmeetthedefinitionofombrogenoustropicalpeatland.2.Theprojectareamustexistatanelevationlessthan100mabovesealevel.3.TheprojectareamustexistwithinMalaysia,Indonesia,BruneiorPapuaNewGuinea(hereafterreferredtoasSoutheastAsia).4.Meanannualwaterlevelbelowthepeatsurfacewithintheprojectareaforthebaselineandprojectscenarioscannotbegreaterthan1meterindepth.VM0027,Version1.0SectoralScope14Page85.Thewatershed(s)ofinterestthatincludestheprojectareamustcompriseoneormorecompletewatersheds.6.Thewatershed(s)ofinterestcannotbehydrologically-connectedtoadjacentpeatlandandnon-peatlandareasoutsidetheprojectarea.7.Thewatershed(s)ofinterestcannotincludeareaswhereN-basedfertilizershavebeen,orareplannedtobe,applied.8.TheprojectmustdemonstrateasignificantdifferenceinthenetGHGbenefitbetweenthebaselineandprojectscenariosforatleast100years.9.Thismethodologyisonlyapplicablewherethemostplausiblebaselinescenarioisthescenariowheretheprojectareahasbeendrainedduetohuman-induceddrainageactivitiesandwouldremaindrainedintheabsenceoftheproject.10.Attheprojectstartdate,itmustbedemonstratedthatnoagentsintendtoimplementfurtherdrainageactivitieswithintheprojectarea.11.Attheprojectstartdate,landuseactivitiesintheprojectareacannotincludedeforestation,plannedforestdegradation,landuseconversion,cropproductionorgrazingofanimals.12.Thebaselinescenariointhewatershed(s)ofinterestmustresultinequalorlowerabovegroundtreebiomasscomparedtotheprojectscenario.13.Currentand/orpotentialfuturelanduseactivitiesintheexcludedareaofwatershed(s)mustnothaveasignificantnegativehydrologicimpactontheprojectarea.Acceptableevidenceincludeslanduseplans,lawsorresourceconcessionrights.Thisapplicabilityconditionmustbesatisfiedatvalidationandateachverificationevent.Failuretomeetthisapplicabilityconditionatverificationwillrendertheprojectineligibleforfurthercrediting.14.Currentand/orpotentialfuturelegallanduseactivitiestakingplacewithintheexcludedareaofwatershed(s)mustnotbedisplacedbyprojectactivities.Thisapplicabilityconditionmustbesatisfiedatvalidationandateachverificationevent.Failuretomeetthisapplicabilityconditionatverificationwillrendertheprojectineligibleforfurthercrediting.15.Peatlandrewettingmustoccurthroughpermanentandtemporarystructures(eg,dams)whichholdbackwaterindrainagewaterways,therebyincreasingannualaveragewaterlevelswithintheprojectarea.Itisnotnecessaryforalldrainagewaterwayswithintheprojectareatobedammedbytheproject.VM0027,Version1.0SectoralScope14Page916.Theprojectactivitycannotincludethecreationofadditionaldrainagewaterwaysorothertypesofinfrastructurethatcausesdrainage.17.Theprojectactivitycannotincludeanyagriculturalactivities.18.BaselineandprojectscenariowaterlevelsmustbemodeledusingthelatestversionoftheSIMGRO4model.TheparametersofthemodelmustbeadjustedforombrogenouspeatlandsinSoutheastAsia.5PROJECTBOUNDARYThissectionprovidesthemethodsfordeterminingthefollowingboundariesthatmustbespecifiedbytheprojectproponent:Thegeographicareaassociatedwiththeprojectactivity.Thetemporalboundariesrelevanttotheprojectactivity.Thesourcesandassociatedtypesofgreenhousegasemissionsthattheprojectactivitieswillimpact.5.1GeographicBoundaryThefollowinggeographicboundariesmustbespecified:Watershed(s)ofInterestAspertheapplicabilityconditionsofthismethodology,themodeledwatershed(s)ofinterestareamustencompassacompletewatershedwithinapeatdome.Eachmodeledwatershedcoveringtheprojectareamustbeself-containedandthusthehydrologywithintheareaofthewatershed(s)ofinterestdoesnotimpactthehydrologyofotherlandareas.Topographicconditions(eg,elevation,slope)determinethedirectionofwaterflowinaregionandthusthewatershedarea.AspatiallyexplicitDTM,whichcharacterizeselevationandslope,mustbeusedtodeterminethespatialextentofallwatershedsincludedintheprojectarea.Section8.1.1providesstepsforcreatingaDTMoftheprojectarea.ProjectAreaThepeatlandrewettingprojectactivitymaycontainmorethanonediscreteparcelofland.Theprojectareaisthediscreteparcel(s)ofpeatlandwheretherewettingactivitywillimpacthydrology.4Querner,EP,Povilaitis,A.2009.HydrologicaleffectsofwatermanagementmeasuresintheDovineRiverbasin,Lithuania.HydrologicalSciencesJournal.54:363-374.VM0027,Version1.0SectoralScope14Page10Inaddition,aspertheapplicabilityconditionsofthismethodology,theprojectproponentmustdemonstratethatalllandwithintheprojectareaexistsonombrogenoustropicalpeat.Thismustbedemonstratedusingremotesensingimagery5oraDTMandpeatthicknessmodel(seeSection8.1.1below).ExcludedAreaofWatershed(s)Theboundariesoftheexcludedareaofwatershed(s)mustbespecified.Whendescribingphysicalareas,thefollowinginformationmustbeprovidedforeachdiscretearea:Nameoftheprojectarea(eg,compartmentnumber,localname,watershedname);UniqueIDforeachdiscreteparcelofland;Map(s)oftheareaindigitalformat;Geographiccoordinatesofeachpolygonvertexalongwiththedocumentationoftheiraccuracy.SuchdatamustbeprovidedintheformatrequiredbytheVCSrules;Totallandarea;andDetailsoflandownershipandlanduserrights.5.2TemporalboundaryThefollowingtemporalboundariesmustbespecified:StartDateandEndDateoftheHistoricPeriodforDeterminingClimateVariablesBaselineemissionsareestimatedbasedondrainagedepthasafunctionoflong-termclimatevariables(amongotherparameters).Thelong-termaverageclimatevariablesmustbedeterminedusingdatafromweatherstationsthatarerepresentativeoftheprojectareaandmustincludeatleast20yearsofhistoricdata.StartDateandEndDateoftheProjectCreditingPeriodTheprojectcreditingperiodforWRCprojectsmustbebetween20and100years.BaselineandprojectscenarioGHGemissionsareestimatedfortheentireprojectcreditingperiod.TheprojectcannotclaimGHGreductionsforlongerthanthetimeitwouldhavetakenforallthepeatinthe5Tropicalpeatswampforestsfeatureauniquesignatureinmultispectralsatelliteimagery,whencomparedtoother,adjacentforesttypes.Thisisrelatedtoseveralphysiognomicparametersofthepeatswampforest,suchasthehydrologicconditions,ahomogenouscanopystructure,smalltreecrowndiameter,amongothers.Thismakesthemidentifiableinsatelliteimages,inparticularinimageswhichhaveabandinthe1.55-1.75micronrangeofMidInfraredspectrum(eg,Landsat-5TM,Landsat-7ETM+,SPOT-4andSPOT-5).Thespectralbandrespondstodifferencesinmoisture(Lillesand,T.M.,Kiefer,R.W.Chipman,J.W.2008.Remotesensingandimageinterpretation.6thEdition.NewYork.)andmakesthesedatasetsparticularlysuitable.ThedelineationiscarriedoutintheGISbyvisualinterpretationoftheimageinconjunctionwithelevationanalysisbasedontheSRTM.VM0027,Version1.0SectoralScope14Page11entireprojectareatobecompletelylostunderthebaselinescenario,asdeterminedbyestimationofthepeatdepletiontime.MonitoringPeriodGiventhemonitoringproceduresofthismethodology,itisrecommended,butnotrequired,thattheminimumdurationofeachmonitoringperiodbeatleastoneyear,andthatthemaximumdurationofeachmonitoringperiodbefiveyears.Baselineprojectionsmustbeannualandmustbeavailableforeachproposedfutureverificationdate.DateatWhichtheProjectBaselineMustbeRevisedTheestimationofbaselineemissionsmustberevisedpriortoeachverificationevent,basedonmonitoredclimatevariablesforthebaselineperiod.Wherethebaselinescenarioisreassessed(inaccordancewithVCSrulesforbaselinereassessment),theprojectproponentmustreassessregulatorysurplusandthebehaviorofagentsthatcausechangesinhydrologyand/orlandandwatermanagementpractices.5.3CarbonPoolsCarbonpoolIncluded?Justification/ExplanationAbovegroundtreebiomassYesRequiredforinclusionbyVCSrules.Abovegroundnon-treebiomassNoItisconservativetoexcludethiscarbonpool.BelowgroundbiomassNoItisconservativetoexcludethiscarbonpool.LitterNoItisconservativetoexcludethiscarbonpool.DeadwoodNoItisconservativetoexcludethiscarbonpool.SoilYesMainpooladdressedbyprojectactivities.WoodProductsNoItisconservativetoexcludethiscarbonpool.VM0027,Version1.0SectoralScope14Page125.4SourcesofGreenhouseGasesSourceGasIncluded?Justification/ExplanationBaselinePeatoxidationCO2YesMainsourceandgastobeaddressedbyprojectactivities.N2ONoConsiderednegligibleinpeatlands.N2Oemissionsareconservativelynotaccountedforinthebaselinescenariobythismethodology.CH4NoConsiderednegligibleindrainedpeatlands.CH4emissionsfromtropicalpeatlandsareconsidereddeminimisbecausetheyamounttolessthan5%oftheCO2emissions.6ProjectPeatoxidationCO2YesMainsourceandgastobeaddressedbyprojectactivities.N2ONoConsiderednegligibleintropicalSoutheastAsiapeatlands.7ProjectactivitiesincreasethewatertableincomparisontothebaselineandthusN2Oemissionswillbeequalorlowerasaresultofprojectactivities.CH4NoConsiderednegligibleindrainedpeatlands.CH4emissionsfromtropicalpeatlandsareconsidereddeminimisbecausetheyamounttolessthan5%oftheCO2emissions.StudiesofGHGfluxesassociatedwithlandusechangeintropicalpeatlandindicatethatCH4andN2OfluxesaresmallandcanbeconsiderednegligiblecomparedtofluxesofCO28.Ameta-analysisofchangesinCH4fluxesfromtheconversionoftropicalpeatswampforestsindicatethatCH4emissionsfromrewettingareverylowanddonotoffsetthecorrespondingincreaseinsoil6Riley,J.O.,Wüst,R.A.J.,Jauhiainen,J.,Page,S.E.,Wösten,H.,Hooijer,A.,Siegert,F.,Limin,S.H.,Stahlhut,M.2008.TropicalPeatlands:Carbonstores,carbongasemissionsandcontributiontoclimatechangeprocesses.In:Strack,M.(Ed.),PeatlandsandClimateChange.InternationalPeatSociety.Stockholm.7Estimatedat0.0054tN2Oha-1inmeta-analysisbyCouwenberg,J,Dommain,R,Joosten,H.2009.,Greenhousegasfluxesfromtropicalpeatlandsinsouth-eastAsia.GlobalChangeBiology,16:1715–1732.doi:10.1111/j.1365-2486.2009.02016.x8Couwenberg,J,Dommain,R,Joosten,H.2009.,Greenhousegasfluxesfromtropicalpeatlandsinsouth-eastAsia.GlobalChangeBiology,16:1715–1732.doi:10.1111/j.1365-2486.2009.02016.x;Hirano,T,Jauhiainen,J,Inoue,T,Takahashi,H.2009.Controlsonthecarbonbalanceoftropicalpeatlands.Ecosystems12:873-887.;Murdiyarso,D,Hergoualc’h,K,Verchot,L.2010.Opportunitiesforreducinggreenhousegasemissionsintropicalpeatlands.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica107:19,655-19,660;Strack,M(ed.).2008.PeatlandsandClimateChange.InternationalPeatSociety.VM0027,Version1.0SectoralScope14Page13CO2emissionsfrompeatlanddrainage9.Basedontheapplicabilityconditionsofthemethodology,theprojectactivitieswillcausepeatlandrewettingandwillnotresultinalowerwatertablelevelsthaninthebaselineandtherefore,N2Oemissionsareexcluded.Whilepeatlandrewettingcouldpotentiallycausegreatermethaneemissionsthaninthebaseline,therelevanceofCH4emissionsintropicalpeatlandsisverylowincomparisontotheCO2emissionsandarethereforedeemedtobedeminimis.PeerreviewedliteratureshowsthatCH4emissionsarenegligiblysmallincomparisontotheCO2emissionsintropicalpeatlands.106PROCEDUREFORDETERMININGTHEBASELINESCENARIOThelatestversionoftheVCSToolfortheDemonstrationandAssessmentofAdditionalityinVCSAgriculture,ForestryandOtherLandUse(AFOLU)ProjectActivitiesmustbeusedtoidentifythepotentialalternativebaselinelandusescenariosintheprojectarea.Thechartbelow,whichreflectstheapplicabilityconditionsofthismethodology,mustbeusedtodeterminethemostplausiblebaselinescenario.9Hergoualc’hK,Verchot,L.2012.ChangesinCH4fluxesfromtheconversionoftropicalpeatswampforests:ameta-analysis.JournalofIntegrativeEnvironmentalSciences9(2):93-10110Riley,J.O.,Wüst,R.A.J.,Jauhiainen,J.,Page,S.E.,Wösten,H.,Hooijer,A.,Siegert,F.,Limin,S.H.,Stahlhut,M.2008.TropicalPeatlands:Carbonstores,carbongasemissionsandcontributiontoclimatechangeprocesses.In:Strack,M.(Ed.),PeatlandsandClimateChange.InternationalPeatSociety.Stockholm.VM0027,Version1.0SectoralScope14Page14Hastheprojectareabeendrainedbyhuman-constructedwaterways?NoYesThismethodologyisnotapplicableIslanduseconversion,deforestation,cropproduction,plannedforestdegradationand/orgrazingofanimalstheexistinglanduse?YesNoThismethodologyisnotapplicableIsthereevidencethatdemonstratesthatlanduseconversion,deforestation,cropproduction,plannedforestdegradationand/orgrazingofanimalswillnottakeplaceinthebaselinescenario?NoYesaThismethodologyisnotapplicableIsthereanyevidencethatdemonstratesthatnoagentsintendtoimplementfurtherdrainageactivitieswithintheprojectareaattheprojectstartdate?NoYesbThismethodologyisnotapplicableIsthereevidencethatdemonstratesthattheexistingorhistoricallanduseactivitieswillcontinuetotakeplace?NoYescThismethodologyisnotapplicableIsthereevidencethatdemonstratesthatthehydrologyofthewatershedsofinterestisdrainedbyexistingdrainagewaterwaysandwillremainsimilarlydrainedintheabsenceoftheproject?NoYesdThismethodologyisnotapplicableThemostplausiblebaselinescenarioisthattheprojectareahasbeendrainedduetohuman-induceddrainageactivities,andwouldremaindrainedintheabsenceoftheprojectVM0027,Version1.0SectoralScope14Page15a.Theprojectproponentmustprovideevidencethatthelistedactivitieswillnotoccur.Thismustincludeitemssuchaslegalpermissibility,suitabilityofprojectareatolanduseand/orexistingdocumentedbaselinemanagementplans.b.Acceptableevidenceincludeslanduseplans,resultsofthePRA,lawsorresourceconcessionrights.c.Thisevidencemustincludeitemssuchaslegalpermissibility,commonpracticeand/orexistingmanagementandbudgetplans.d.Evidencemustbepresentedtodemonstratethatnoplansexistforalteringwaterwaydrainageinthewatershedsofinterest.Long-termaverageclimatevariables(atleast20yearsofdata)thatinfluencewatertabledepthsandthetimingandquantityofwaterflowmustbeusedtodemonstratethatwaterinputsareexpectedtobesimilartoexistingconditionsintheabsenceoftheproject.7PROCEDUREFORDEMONSTRATINGADDITIONALITYThelatestversionoftheVCSToolfortheDemonstrationandAssessmentofAdditionalityinVCSAgriculture,ForestryandOtherLandUse(AFOLU)ProjectActivitiesmustbeusedtodemonstrateadditionality.8QUANTIFICATIONOFGHGEMISSIONREDUCTIONSANDREMOVALS8.1BaselineEmissionsNetGHGemissionsinthebaselinescenarioaredeterminedas:max1,tttBSLBSLCC(1)Where:ΔCBSLNetgreenhousegasemissionsinthebaselinescenariofromthecontinuationofpeatlandsinadrainedstate(tCO2e)ΔCBSL,,tNetcarbonstockchangeinallpoolsinthebaselinescenarioattimet(tCO2e)t1,2,3…tmaxyearselapsedsincetheprojectstartdateuptothemaximumnumberofyearsforstratumiBaselineemissionsmustbeestimatedforboththeprojectcreditingperiodandfor100years.VM0027,Version1.0SectoralScope14Page168.1.1PrepareModelingDataBaselineCO2emissionsarebasedonthewaterlevelwithrespecttopeatsurface.Thesewaterlevelsaremodeledbasedonthecurrentandhistoriclayoutofrelevantdrainagesystems(includinganypotential“naturaldamming”expectedtooccurintheprojectarea)andthelong-termaverageweatherpriortotheprojectstartdate.Thefollowingstepsmustbefollowedtomodelwaterlevelsovertimewithinthewatershed(s)ofinterest:1)Generatelandcovermap2)GenerateDTM3)Generatepeatthicknessmodel4)Collectclimatevariabledata5)Delineatewaterways6)ValidateSIMGROmodelforprojectareaconditions8.1.1.1GenerateLandCoverMapAlandcovermapofthewatershed(s)ofinterestisrequiredinorderto:PerformadetailedaccuracyassessmentoftheDTMregardlessoftheoptionselectedforgenerationoftheDTMinSection8.1.1.2Correctradar-deriveddigitalsurfacemodels(DSM)forvegetationifOption2forgenerationoftheDTMisselectedinSection8.1.1.2Remotesensingimagesusedmusthaveaspatialresolutionof30morhigher.11,12Remotesensingdatamustbegeo-referencedintoacommongeodeticsystemwiththeotheruseddatasets(eg,usingtheUTMsystem).ThetargetgeometricaccuracyoftheimagedataisanRMSof0.5pixels.Thelandcoverclassesmustbevalidatedbyreferencedatacollectedinthefieldorhighresolutionremotesensingimagery(resolution≤5m).Overallclassificationofforest-non-forestmusthaveanaccuracyof90%ormore.11GuidanceontheselectionofdatasourcescanbefoundinChapter3A.2.4oftheIPCC2006GLAFOLUandinGOFC-GOLD(2011),Reducinggreenhousegasemissionsfromdeforestationanddegradationindevelopingcountries:asourcebookofmethodsandproceduresformonitoring,measuring,andreporting.12Thefollowingsatellitesensorsaresuitabletoassessthelandcover:SatelliteSensorGeometricresolutionSpectralresolutionMIR/SWIRLandsat-5TM30m7bandsYESLandsat-7ETM+30m7bandsYESSPOT-4/5XS20/10m4bandsYESVM0027,Version1.0SectoralScope14Page17Thelandcoverclassesmustbegroupedaccordingtoaveragevegetationheight.Theoverallstratificationmustbebasedoninternationallyrecognizedvegetationclassificationsystems,suchastheInternationalGeosphere-BiosphereProgrammelanduseclassificationsystem,buttheprojectproponentmayfurtherrefinestratificationifappropriatefortheprojectarea.Theminimumlandcoverclassesare:Forest(landsmeetingtheinternationallyrecognizedcountry’sforestdefinition)Shrubs(landswithwoodyvegetationbelowtheminimumheightcriteriainthecountry’sforestdefinitionandwithcanopycovergreaterthan10%)Grassland(landswithherbaceoustypeofcover;treeandshrubcovermustnotexceed10%)WaterInaddition,inthecasethataradar-derivedDSMisusedtogeneratetheDTM(Option2inSection8.1.1.2),thelandcoverclassificationmustbeusedtocorrecttheradardataforvegetationheight.InthiscasethestratificationmustbecreatedfromremotesensingimagerywhichhasbeenacquiredinthesametimerangeastheradardatausedforcreatingtheDTM(maximumdifferenceinacquisitiondata+/-6months).Thisisnecessaryinordertoassurethatthesatelliteimageshowsthesamelandcoversituationaselevationdata.8.1.1.2GenerateDTMADTMofthepeatsurface,generatedby3DmodelingwithinaGISenvironmentbymeansofdigitalelevationdata,mustexistfortheareawithinthewatershed(s)ofinterest.TheDTMisrequiredtodeterminetheareaofthewatershed(s)coveringtheprojectareaandisarequiredinputtocreatethepeatthicknessmodelaswellasarequiredinputtoSIMGROformodelingbaselineandprojectscenariowaterlevelsintheprojectarea.TheDTMmayhavealargerspatialextentthanthewatershed(s)ofinterestandmustmeettherequirementsbelow.TwoDTMcreationoptionsarepresentedbelow.ThemethodsdescribedunderOption2,Step4belowmustbeusedtoassesstheaccuracyoftheDTM,regardlessofwhichoptionisused.Iftherequireddataareavailable,theDTMmustbederivedusingairborneLiDARdata.Otherwise,Option2presentedbelowmustbeusedtoderivetheDTM.VM0027,Version1.0SectoralScope14Page18Option1:DerivationofDTMwithLiDARDataStep1:DerivetheDTMwithLiDARDataIfLiDARdataareusedtogenerateaterrainmodel,theLiDARpointcloudmustbefilteredwithaterrainadaptivefilteringtechnique13inordertoseparategroundpointsfromvegetationpoints.ThetechnicalspecificationsoftheLiDARdatamustmeetthefollowingqualitycriteria:Minimumpointdensityis2pointspersquaremeter,withhigherpointdensitiesrecommendedinordertofacilitatemorelaserreturnsfromtheterrainsurface.LiDARdatamustbeeithermultiplereturnorfull-waveformLiDARdatawith2-8pointspersquaremeter(recommendedinforestedareaswithdensevegetationcover)orfirst-lastpulsedata.Themaximumpermissiblescananglemustbe10°.TheverticalaccuracyoftheLiDARdatamustbeassessedbydGPSgroundmeasurementsandmusthaveanRMSEof<50cm.ThesespecificationsfacilitateahighaccuracyoftheLiDARderivedDTM,andlimitsuncertaintyintheterrainmeasurements.Thisisapreconditionforaconservativeestimateofemissionreductions.ItisrecommendedthattheDTMareabefullycoveredwithLiDARdata.However,iffullcoverageLiDARdataisnotavailableorcannotbeacquired,itisallowabletouseregularlyspacedLiDARtransectsthatsystematicallycovertheDTMarea.Thisisjustifiedduetothefactthatthetopographyoftropicalpeatswampsisusuallyveryevenandsmooth.Inordertofacilitatethebestpossiblerepresentationoftheterrain,ancillaryinformation(eg,SRTMdigitalelevationmodelandavailablesatelliteimages)mustbeconsultedduringplanning.Theplacementoftransectsmustfulfillthefollowingrequirements:Aminimumof4transectsmustbeuniformlydistributedoverthewholeareaoftheDTM.Transectsmustbeorientedparallelorinaregularlyspacedgrid.Thetransectsmustaccuratelyrepresentterrainvariationsinthewatershed(s)ofinterest.Thetransectsmustcoverthefullelevationrangeofthewatershed(s)ofinterest.TheseLiDARtransectsmustthenbeinterpolatedintoafullcoverageDTMbycompletingthefollowingsteps:13Pfeifer,N.,Stadler,P.&Briese,C.(2001).DerivationofdigitalterrainmodelsinSCOP++environment.OEEPEWorkshoponAirborneLaserscanningandInterferometricSARforDetailedDigitalElevationModels,Stockholm.VM0027,Version1.0SectoralScope14Page19FilteringoftheLiDARpointcloudswithaterrainadaptivefilteringtechniquetoseparategroundpointsfromvegetationpoints,suchastheHierarchicRobustFiltering(Pfeifferetal.2001).MathematicalmodelingofthesurfacebasedontheLiDARpointcloud(eg,withtheKrigingalgorithmoraBézier).TheBéziersurfaceisobtainedbyapplyingaCartesianproducttotheBézierequationsofaBéziercurve.14Step2:AssesstheaccuracyoftheLiDARderivedDTMLiDARderivedDTMsmustbevalidatedwithtopographicfieldmeasurementsusingdGPSdevicesbythemethodsdescribedunderOption2,Step4below.Anetworkofmeasurementpointsmustbedesignedforthewholeprojectareaandterrainelevationmustbemeasured.TheaccuracyofthevalidationdatamustbeatleastthreetimeshigherthantheDTMdatasettobeassessed.Option2:DerivationofDTMfromaDSMIncaseswhereLiDARdataarenotavailable,aDTMderivedfromradardata,includingdatafromtheShuttleRadarTopographyMission(SRTM),mustbeused.Step1:GenerationofsurfacemodelRadardata(eg,SRTMdata15orothersuperiorradardatasetsastheybecomeavailableinthefuture)coveringtheentireDTMareamustbeusedtocreateaDTM.Theminimumhorizontalresolutionfortheradardatais90mwhiletheminimumverticalresolutionforradardatais1m.Step2:CorrectionofsurfacemodelforvegetationheightTheDSMderivedfromradardatamustbecorrectedforthevegetationheightinordertoobtainaDTMshowingthepeatdometopography.Theforestcanopyheightfordifferenttypesofpeatswampforestsmaybederivedbycomparingvegetationheighttoterrainheightonforestedandnon-vegetatedareasorthroughrepresentativefieldmeasurementsoftreeheight.ToestimatecanopyheightforeachlandcoverclassinthelandcovermapgeneratedinSection8.1.1.1intheabsenceofLiDAR,datafieldmeasurementswithintheDTMareamusthaveoccurred.Canopyheightmustbemeasuredatlocationsforeachlandcoverstratumdeterminedusingrepresentativerandomsamplingorsystematicsamplingwitharandominitiationpoint.Ateachlocation,theheightofatleastthreerepresentativeindividuals(eg,trees,shrubs)ofthedominantcanopylayermustbemeasured.Sufficientnumberoflocationsmustbemeasuredin14Salomon,D.2006.CurvesandSurfacesforComputergraphics.460p.ISBN-13:978038728452115TheSRTMdatasetisafreelyavailableDSMwhichhasanalmostglobalcoverage(from80°Nto80°S),whichcontainstheelevationoftheearthsurface(ie,theelevationincludingthevegetationcover).VM0027,Version1.0SectoralScope14Page20eachlandcoverstratumtoachieveaprecisionofequalorlessthan15%ofthemeanatthe95%confidenceintervalintheestimateofvegetationheightforeachlandcoverclass.LocIndHHLoclocIndindLClocindLC11,,(2)Where:HLCMeanheightofvegetationlandcoverclassLC(m)Hind,loc,LCHeightofindividualindatsamplinglocationlocwithinlandcoverclassLC(m)Ind1,2,3…IndindividualsmeasuredatsamplinglocationlocwithinlandcoverclassLCLoc1,2,3…LoclocationsofmeasurementswithinlandcoverclassLCLC1,2,3…LClandcoverclasseswithinprojectareaStep3:DeriveDTMfromDSMRadar-derivedelevationprofilesplacedinaregularspacingoverthecoverageoftheDTMmustthenbeanalyzedinconjunctionwiththelandcoverstratificationinordertosubtractthevegetationheightofthedifferentstratafromthecorrespondentsectionoftheelevationprofiles.Thenumberofprofilesdependsonseveralfactors,mostimportantlytheareacoveredbytheDTMandhomogeneityoftheterrainandvegetationcoverinthestudyareas.Inordertoachievegoodinterpolationresultsthefollowingcriteriamustbefulfilled:Theprofilesmustbeorientedtoaccuratelyrepresentterrainvariationsintheprojectarea.Theprofilesmustcoverthefullelevationrangeoftheprojectarea.Theprofilesmustcoverallvegetationstrata.Thecorrectedelevationprofilesmustthenbemodeledwithapolynomialtrendfunctioninordertocompensateforsmallundulationsintheprofilecausedbyscatterintheelevationdata.ThemodeledterrainelevationprofilesmustthenbeinterpolatedwiththeKrigingalgorithmintoafullcoverageDTM.Theadequacyofthenumber,placementandspacingoftheelevationprofilesisevaluatedbytheaccuracyassessmentoftheDTM.IftheDTMmeetstheaccuracyrequirementsofthismethodologythenumber,placementandspacingoftheelevationprofilesareconsideredadequate.VM0027,Version1.0SectoralScope14Page21Step4:AccuracyassessmentoftheDTMRadar-derivedDTMsmustbevalidatedwithtopographicfieldmeasurements(eg,bydGPS,Tachymeterortotalstation)orLiDARderivedelevationmeasurementsfromaLiDARdatasetofknownaccuracy.Themethodsdescribedbelowmustbeusedtoassesstheaccuracyofradar-derivedDTMs.TheaccuracyofLiDARdatasetsusedtovalidateSRTM-derivedDTMsmustalsobeassessedasdescribedbelow.TheminimumacceptableaccuracyfortheDTMis1.75m.Duetotheflattopographyofthepeatdome,thedataqualityofthetopographicfieldmeasurementsofelevationmustfulfillthefollowingrequirements:Elevationdata(LiDARorfieldmeasurements)usedforthevalidationoftheDTMmusthavearelativeaccuracyatleastthreetimeshigherthantheDTMdatasettobeassessed.16Horizontalaccuracymustbelessthan1m.VerticalaccuracyofthevalidationdatamustbeatleastthreetimeshigherthantheDTMdatasettobeassessed.ThevalidationpointsmustberepresentativeoftheareacoveredbytheDTM.Aminimumnumberof20pointspervegetationclassmustbeused.Aminimumof5satellitesmustbeavailableforGPSpositionmeasurements.AmaximumPDOPof5orlessmustbeachieved.WheretheminimumsatellitevisibilityormaximumPDOPcannotbefulfilledatagivenlocation,GPSmeasurementmustbetakenatalocationwheretheserequirementscanbemet(the“station”).Then,theX-,Y-andZ-offsetfromthestationpointmustbemeasuredbytraverseorbettercontrolledtraversemeasurementswithatotalstationortachymeter.ThetraversemethodrequirestheexactdeterminationoftwopointswithGPSandtheexactdistanceandanglebetweenthesetworeferencepoints(the“station”).Then,offsetpointswhicharereferredtoasthetraversemustbemeasuredfromthestation.Thecontrolledtraversemethodisanimprovementoverthetraversemethod,andrequiresanotherstationafterthetraversetoassessandcorrectthemeasurementerrorsintheoffsetpoints.IffieldmeasurementsareusedtoassesstheaccuracyoftheDTM,theaccuracyoftheDTMmustbecalculatedbycomparisonoftheDTMelevationatthemeasurementpointswiththefieldmeasuredelevationdataaccordingtotheguidelinesoftheASPRSLidarCommittee.17Theaccuracyassessmentmustassessthefundamentalaccuracy(accuracyoftheDTMonopenterrain),aswellassupplementalaccuracyforthepresentgroundcovertypes.16ASPRSLidarCommittee.2004.VerticalAccuracyReportingforLidarDataV117ASPRSLidarCommittee.2004.VerticalAccuracyReportingforLidarDataV1VM0027,Version1.0SectoralScope14Page22Wherenofieldmeasurementsareavailable,theaccuracyofradar-derivedDTMscanalternativelybevalidatedwithLiDARderivedelevationmeasurements.SincetheaccuracyofLiDARderivedelevationdataisdependentofthefilteringofgroundpoints,ifLiDARdataisusedtovalidatetheradar-derivedDTM,theLiDARdatamustbevalidatedasdescribedbelow.WhenusingLiDARasvalidationdata,itmustbeassuredthatonlydatafromtheactualLiDARswathistaken,andnotfrominterpolatedareasbetweendifferentLiDARswaths.First,theerrors(differencebetweenDTMandfieldmeasuredorLiDARelevation)mustbetestedfornormaldistributionwithasuitabletestsuchastheKolmogorov-Smirnov(KSA)test,orbycalculatingtheskewness.18Iftheerrorsarenormallydistributed,theRootMeanSquareError(RMSE)mustbeusedtodeterminetheverticalaccuracy(Accuracyz)oftheDTM.RMSEiscalculatedwiththeequation:QZZRMSEQqqDTMqvalDTM21,,)((3)Where:RMSEDTMRMSEinDTM(m)Zval,qValidationelevationvalueq(m)ZDTM,qDTMelevationvalueq(m)q1,2,3…QsamplenumberThen,verticalaccuracy(Accuracyz)oftheDTMatthe95percentconfidencelevelmustbecalculatedbytheequation:𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑧=1.96∗𝑅𝑀𝑆𝐸𝐷𝑇𝑀(4)Where:AccuracyzVerticalaccuracyoftheDTM(m)RMSEDTMRootMeanSquareErrorforDTM(m)Ifthetestfornormaldistributionfails(ie,theerrorsfeatureanasymmetricdistribution),theuseofRMSEisnotappropriateforassessingtheverticalaccuracy.Inthiscase,the95thpercentileof18ASPRSLidarCommittee.2004.VerticalAccuracyReportingforLidarDataV1VM0027,Version1.0SectoralScope14Page23theerrorsmustbecalculatedtodetermineAccuracyz.19Accuracyzthendirectlyequalsthe95thpercentile.WherefieldmeasurementsareusedforassessingtheaccuracyoftheDTM,theaccuracyoftheDTMdirectlyequalstheverticalaccuracy.𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐷𝑇𝑀=𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑧(5)Where:AccuracyDTMAccuracyoftheDTM(m)AccuracyzVerticalaccuracyoftheDTM(m)WhereLiDARderivedelevationdataareusedforassessingtheverticalaccuracyoftheradar-derivedDTM,theuncertaintyassessmentmustconsidertheaccuraciesofbothdatasetsbyerrorpropagation.TheaccuracyoftheLiDARdata(AccuracyLiDAR)mustbeassessedwithtopographicfieldmeasurementsofelevationapplyingthesamemethodsandcriteriadescribedforassessmentoftheverticalaccuracyoftheDTMusingtopographicfieldmeasurements.Alternatively,ifthedatasethasbeenvalidatedbythedataproviderandnottheproject,itmustbeassuredthattheaccuracyofthedatahasbeenreportedinaccordancewiththeASPRSguidelines20as“Tested(meters,feet)verticalaccuracyat95percentconfidencelevel”wheneverpossible.Thisrequires:Availabilityofanindependentvalidationdatasource(fromathirdparty).Accuracyoftheindependentdatasetmustbeatleastthreetimeshigherthanthedatasetassessed.Iftheserequirementscannotbefulfilled,theaccuracyoftheLiDARdatasetmustbereportedasCompiledtomeet(meters,feet)verticalaccuracyat95percentconfidencelevel.Thismaybeusedwhere:Thevalidationdatasetwasmeasuredbythedataproviderandnotathirdparty.TheaccuracyofthevalidationdatasetisnotthreetimeshigherthantheDTMbeingvalidated.TheLiDARdatasetusedforvalidationwasvalidated,butoutsidetheprojectarea.Accuracyintheradar-derivedDTMvalidatedwithLiDARdataiscalculatedas:2LiDAR2zDTMAccuracyAccuracyAccuracy(6)19ASPRSLidarCommittee.2004.VerticalAccuracyReportingforLidarDataV120ASPRSLidarCommittee.2004.VerticalAccuracyReportingforLidarDataV1VM0027,Version1.0SectoralScope14Page24Where:AccuracyDTMAccuracyoftheradar-derivedDTM(m)AccuracyzVerticalaccuracyoftheradar-derivedDTMasassessedwithLiDARdata(m)AccuracyLiDARAccuracyoftheLiDARdataset(m)8.1.1.3GeneratePeatThicknessModelTheterrainmodelmustbecombinedwithpeatdrillingdatatogenerateaspatiallyexplicitmodelofpeatthicknesswithinthewatershed(s)ofinterest.Step1:ObtainpeatthicknessdataInordertodeterminepeatthickness,thedepthofpeatateachsamplinglocationmustbedeterminedthroughpeatdrillingusingapeataugersuchasanEijkelkampp,untilthemineralsoilunderneaththepeatisreached.Peatdrillinglocationsinthewatershed(s)ofinterestmustbedeterminedusingrepresentativerandomsamplingorsystematicsampling.Itisacceptabletoconductdrillingalongtransectsthatextendfromoneboundaryofthepeatdometotheoppositeboundaryandintersectsthehighestpointofthepeatdome.Samplingintervalsmustrangefrom500to1500metersdependingonthesizeofthepeatdomeandterrainaccessibility.ThehighestpointmustbedeterminedusingtheDTM.Inhighlyinaccessibleareaspeatthicknesscanbeinterpolatedusingacorrelationfunctionbetweenthepeatsurfaceandpeatthicknessdata.21Uncertaintyinpeatdrillingdatamustbeaddressedbyassumingthelowerboundofthepeatthicknessmodelasdescribedbelow.Step2:EstimatepeatthicknessIfdrillingmeasurementsaresystematicallydistributedacrossthewatershed(s)ofinterest,directspatialinterpolation,suchasKriging,mustbeappliedtoestimatepeatthickness.InhighlyinaccessibleareaspeatthicknessmaybeestimatedusingabinominalcorrelationfunctionbetweenthepeatsurfaceelevationderivedfromtheDTMandpeatthicknessdata.Thesurfaceelevationofthepeatdomemustbenormalizedtotheelevationoftheboundaryofthepeatdomewiththeequation:ℎ(𝑛𝑜𝑟𝑚)=ℎ−ℎ(𝑏𝑜𝑢𝑛𝑑)(7)Where:h(norm)NormalizedpeatsurfaceelevationrelativetothepeatboundaryhTerrainelevation21Jaenicke,J,Rieley,JO,Mott,C,Kimman,P,andSiegert,F.2008.DeterminationoftheamountofcarbonstoredinIndonesianpeatlands.Geoderma147:151-158VM0027,Version1.0SectoralScope14Page25h(bound)ElevationatthepeatdomeboundaryFortheestablishmentofthecorrelationfunction,thesurfaceelevationisextractedfromtheDTMatthedrillinglocations.Thenabinominaltrendfunctionbetweenthosevariablesmustbecalculatedwiththeequation:𝑃𝑇ℎ=𝑎∗ℎ(𝑛𝑜𝑟𝑚)2+𝑏∗ℎ(𝑛𝑜𝑟𝑚)+𝑐(8)Where:PThPeatthicknessh(norm)Normalizedpeatsurfaceelevationa,b,cCoefficientsofthebinominalcorrelationfunction,determinedonreferencedataTheminimumacceptablemodelcorrelationbetweenpeatsurfaceelevationandpeatthicknessisR²>0.7.Otherwise,peatthicknesscannotbederivedusingthecorrelationfunction.ThepeatthicknessmodelmustthenbeobtainedbyapplyingthecorrelationfunctiontoeachgridcellofthenormalizedDTM.Theaccuracyofthepeatthicknessmodelmustbeassessedwithvalidationpeatthicknessdatanotusedforcalibratingthemodel.AsthepeatthicknessmodelisderivedfrompeatdrillingdataandtheDTM,firstthecalculatedaccuracybasedonthepeatthicknessdatamustbecombinedwiththeaccuracyoftheDTMbyerrorpropagationtodeterminetheoverallverticalaccuracyinthepeatthicknessmodel.Theerrors(differencebetweenmeasuredpeatthicknessandthemodeledpeatthickness)mustbetestedfornormaldistributiondistributionwithasuitabletestsuchastheKolmogorov-Smirnov(KSA)test,orbycalculatingtheskewness.22Iftheerrorsarenormallydistributed,theRootMeanSquareError(RMSE)mustbeusedtodeterminetheaccuracyofthepeatthicknessmodel.RMSEiscalculatedwiththeformula:QPThPThRMSEQqqMODqvalPTh21,,)((9)Where:RMSEPThRMSEinpeatthicknessmodel(m)PThval,qValidationpeatthicknessvalueq(m)22ASPRSLidarCommittee.2004.VerticalAccuracyReportingforLidarDataV1VM0027,Version1.0SectoralScope14Page26PThMOD,qModeledpeatthicknessvalueq(m)q1,2,3…QsamplenumberThen,accuracy(AccuracyPTh)ofthepeatthicknessmodelatthe95percentconfidencelevelmustbecalculatedbytheequation:𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑃𝑇ℎ=1.96∗𝑅𝑀𝑆𝐸𝑃𝑇ℎ(10)Where:AccuracyPThAccuracyofthepeatthicknessmodel(m)RMSEPThRMSEforpeatthicknessmodel(m)Ifthetestfornormaldistributionfails(ie,theerrorsfeatureanasymmetricdistribution),theuseofRMSEisnotappropriateforassessingtheaccuracyofthepeatthicknessmodel.Inthiscase,the95thpercentileoftheerrorsmustbecalculatedtodetermineAccuracyPth.23AccuracyPThthendirectlyequalsthe95thpercentile.Peatthicknessisconservativelyestimatedbyassumingthelowerboundoftheestimatedpeatthicknessistheactualpeatthicknessattheprojectstartdate.PThtxtxAdjustedAccuracyPThPTh0,0,,(11)PThAdjusted,x,t0Peatthicknessingridcellxatstartoftheprojectactivityadjustedforuncertaintyinthepeatthicknessestimate(m)PThx,t0Peatthicknessingridcellxatstartoftheprojectactivityascalculatedfrompeatthicknessmodel(m)AccuracyPThAccuracyofthepeatthicknessmodel(m)Ateachverificationevent,peatthicknessmustbeupdatedfortheassociatedbaselineperiodtoupdatetheestimateofbaselineemissionsbyconservativelyassumingareductioninpeatdepthduetosubsidence.)01.0(0,,,tSPThPThptxAdjustedtx(12)Where:PThx,tPeatthicknessingridcellxatstartofbaselineperiod(m)23ASPRSLidarCommittee.2004.VerticalAccuracyReportingforLidarDataV1VM0027,Version1.0SectoralScope14Page27PThAdjustedx,t0Peatthicknessingridcellxatthestartoftheprojectactivityadjustedforuncertaintyinthepeatthicknessestimate(m)SpPeatsubsidencerate(seeSection8.1.2)t0,1,2,3…tnumberofyearselapsedsincethestartoftheproject(years)DuringfirstbaselineperiodPThx,t=PThAdjusted,x,t08.1.1.4CollectClimateVariableDataLong-termclimatevariablesaredeterminedusingdatafromweatherstation(s)representativeofthewatershed(s)ofinterest.Precipitationdatamustbeavailableonthedailytimestepforaclimatestationwithin100kmandwithin±100melevationoftheprojectareafor20yearspriortotheprojectstartdate,thuscapturingtherangeofprecipitationconditionsinthearea.Additionally,evapotranspirationratesofthedominantvegetationcover(s)mustbeavailableasaninputtotheSIMGROmodel.Evapotranspirationmaybeassumedtobeaconstantdailyvalueof3.5mmperday,24oranotherlocation-specificfactormaybeusediftheprojectproponentdemonstratesthatitmeetstheVCSrequirementswithrespecttotheselectionofappropriatedefaultfactors,sinceevapotranspirationisfairlyconstantinthehumidtropicalareasandyearlyvariationsinevapotranspirationshowlowvariance.Evapotranspirationismainlydrivenbywindspeed,temperatureandairhumidity.TheseclimaticfactorsarefairlysimilarforthetropicalSoutheastAsiaregionandthereforeevapotranspirationisconsideredtobefairlyuniformacrosstheregion.Halfdaytodailytimestepsarerequiredformodelingwaterflowintheunsaturatedzoneandgroundwater;theselectedtimestepsforeachmustmatchbutmayvarywithinthisrange.Dataforthewatershed(s)ofinterestmaybesuppliedfrommorethanoneweatherstationfallingwithin100kmofthewatershed(s)ofinterestboundary.InthiscasetherelevantstationmustbespecifiedforeachoftheSVAT-unitsinthemodel.Wheremorethanoneweatherstationdataexists,dataonclimatevariablesmaybeinterpolatedforthewatershed(s)ofinterest.IfmorethanoneweatherstationmeetsthelocationrequirementsforagivenSVAT-unit,fortimeperiodswheredatafromtheselectedweatherstationisnotavailable,datafromanalternateweatherstationthatmeetsthelocationrequirementsoftheSVAT-unitmaybesubstituted.24Takahashi,H.,Usup,A.,Hayasaka,H.,Kamiya,M.,Limin,S.H.,2004.Theimportanceofgroundwaterlevelandsoilmoistureofsubsurfacelayeronpeat/forestfireinatropicalpeatswampforest.In:Päivänen,J.(Eds.),WiseUseofPeatlands.Volume1.Proceedingsofthe12thInternationalPeatCongress,Tampere,Finland,6-11June2004.InternationalPeatSociety,Jyväskylä,Finland,p.760.VM0027,Version1.0SectoralScope14Page28Usingthehistoricdailyclimatedata,anaverageprecipitationperdaywithinamonthmustbecalculated.ThishistoricclimatedatawillbeusedtoruntheSIMGROmodelforex-anteestimationsforthebaselineandprojectscenarios.Foreachbaselineperiod,thehistoricalclimatedatausedmustbeupdatedtoupdatetheestimateofbaselineemissions.8.1.1.5DelineateWaterwaysWaterwaysinthewatershed(s)ofinterestmustbedelineatedandinformationonwatercharacteristicssuchaswidthanddepthismeasuredinthefieldandrecordedasaveragevaluesforeachwaterwaytype.Delineationandcharacterizationofwaterwaysiscompletedbythefollowingsteps:Step1:RemoteSensingdelineationofwaterwaysWaterwaysmaybedelineatedbycombininghighresolutionsatelliteimageswithfieldsurveys.25Highspatialresolutionsatelliteimagery(10-morbettersuchasALOSorSPOT)maybeusedtodelineatethelocation,length,andoutflowofwaterwaysusingvisualinterpretationandmeasurementtoolsinaGeographicInformationSystem(GIS)orsimilarsoftware.Wherewaterwayscannotbedelineatedwithhighresolutionsatelliteimages,thewaterwaysmaybedelineatedinthefield.Step2:FielddelineationofwaterwaysandcreationofwaterwayclassesAllidentifiedwaterwaysdelineatedwithhighresolutionsatelliteimagesmustbeconfirmedbyfieldchecks.Fielddatamustalsobeusedtodelineatewaterwaysthatcannotbedelineatedwithhighresolutionsatelliteimages.Atallidentifiedwaterways,GPSmeasurementsmustbetakenverifyingthelocationofthewaterway.Thetotallengthofwaterwaysmaybeestimatedbasedoninterviewswithlocalcommunities,oralternativelyGPSmeasurementsmaybetakenalongidentifiedwaterwaysdelineatingthewaterway.Allmeasurementsmustbeincorporatedintoageodatabaseofwaterwaylocations.Waterwaysmustbestratifiedintowaterwayclasses(eg,majorriver,minorriver,majorcanal,mediumcanal,hand-dugcanal)basedontheirphysicalparameters.Itisconservativetoassumeawaterwaydoesnotexistwhilemodelingbaselineemissions,therefore,itisnotnecessarytoensureallwaterwayshavebeenidentified.Ifanidentifiedwaterwaycannotbefieldverified,thenitmustbeassumedtonotexistinthemodel.25Jaenicke,J,Wösten,H,Budiman,AandSiegert,F.2010.PlanninghydrologicalrestorationofpeatlandsinIndonesiatomitigatecarbondioxideemissions.MitigationandAdaptationStrategiesforGlobalChange15:223-239.VM0027,Version1.0SectoralScope14Page29Step3:CharacterizationofwaterwayclassesWaterwaysmustbedividedintosizeclassesforsamplingaccordingtotheirphysicalcharacteristics.Arepresentativesubsetofwaterwaysmustbeselectedtocharacterizeeachwaterwayclass.Selectionofwaterwaysforsamplingmustberandomorsystematicwithrandomstart.Aminimumof10waterwaysor10%oftotalidentifiedwaterwaysmustbesampled,whicheverishigher,unlessfewerthan10waterwaysareidentified,inwhichcaseallwaterwaysmustbesampled.Foreachsampledwaterwayinawaterwayclass,fieldteamsmusttravelthelengthofthewaterwayandrecordinformationatregularintervals(eg,100m)allowingforatleast5measurementsperselectedwaterwaymeasured:Physicalcharacteristics:oWaterwayWidth(m)oWaterwayDepth(distancefrombottomofwaterwaytosurfaceofpeatnexttowaterway)(m)NaturalDammingevidence:oWaterflow26(slow,medium,fast)oMudsedimentationwithinwaterflow(presence/absence)oWeedgrowthwithinflowofwaterway(presence/absence)oNaturaldamming(presence/absence)Alldatacollectedmustbegeo-referencedandincludedinthegeodatabase.Somenaturaldammingofwaterwaysmaytakeplace.TheexpectedrateofsuchblockingmustbeestimatedwithintheSIMGROmodel.Thefielddatacollectedmustbeusedtoestimatethepercentageofwaterwayslikelytoexperiencenaturaldammingbeforetheendoftheprojectcreditingperiodasfollows.Anysampledwaterwaywhereatmorethan50%ofthemeasurementpointsslowwaterflow,presenceofmudsedimentationwithinwaterflow,presenceofweedgrowthwithinflowofwaterway,andpresenceofnaturaldammingisobservedisconsideredtoundergonaturaldammingwithintheprojectcreditingperiod.TheexpectedrateofnaturaldammingestimatedwithintheSIMGROmodelistheproportionofsampledwaterwaysidentifiedasundergoingnaturaldammingwithintheprojectcreditingperiod.26Slow,medium,andfastwaterflowisspecifiedrelativetoprojectfieldmeasurements.“Slow”waterflowismeasuredsurfacedischargeinthebottomthirdofallsurfacedischargemeasurementsfortheprojectarea,“medium”waterflowismeasuredsurfacedischargeinthemiddlethirdofallsurfacedischargemeasurementsfortheprojectarea,and“fast”waterflowismeasuredsurfacedischargeinthetopthirdofallsurfacedischargemeasurementsfortheprojectarea.VM0027,Version1.0SectoralScope14Page30Fieldmeasurementsofphysicalcharacteristicsmustbeaveragedtocreateanaveragecharacteristicperwaterwayclass.Thefollowingequationmustberepeatedforallwaterwayphysicalcharacteristicsmeasured(widthandwaterwaydepth):MPChChMmPpwpmAwA11,,,,(13)Where:ChA,wMeanvalueofwaterwaycharacteristicAforwaterclassw(variable)ChA,m,p,wValueofwaterwaycharacteristicAforwaterwaymeasuredmatmeasurementpointpforwaterclassw(variable)A1,2,3….Awaterwaycharacteristicforwaterclassw(widthandwaterwaydepth)1,2,3,…Wwaterclasswithinprojectaream1,2,3,…Mwaterwaysmeasuredp1,2,3,…Ppointswheremeasurementstakeninwaterwaymofwaterwayclassw8.1.1.6ValidateSIMGROModelforWatershed(s)ofInterestConditionsTomodelwaterlevelsinthewatershed(s)ofinterestandstratifytheprojectareabydrainagedepth,theprojectproponentmustusetheSIMGROmodel.27TheparametersofthemodelmustbeadjustedforombrogenoustropicalpeatlandsinSoutheastAsia.Theprojectproponentmustdeterminewhetherthismodelcalibrationadequatelymodelswatertablelevelinthewatershed(s)ofinterest.TheSIMGROmodelisadynamicintegratedmodelwhichsimulatessoil-water-atmosphereinteractionwithinSoil-Vegetation-AtmosphereTransfer(SVAT)unitstocalculatewaterlevelsintheprojectarea.TheSoilVegetationAtmosphereTransfer(SVAT)modelsimulatestheexchangeofenergybetweenthelandsurfaceandthefreeatmosphere.TheSVATmodelincorporatesabiologicalcomponent,whichsimulatestherateofplant-atmosphereandplant-soilinteractions(photosynthesisandtranspiration)andaphysicalcomponent,whichsimulatesradiativetransfer,surfaceenergybalance,andgroundwaterandsurfacewaterflow.Thebiologicalandphysicalcomponentsarebasedonthecharacteristicsofsoil,vegetationandclimateoftheregionbeingmodeled.Commonly,thePenman-Monteithequationorvariantsofthisequationareusedtosimulatethebiologicalcomponent.WithinSIMGRO,thegroundwater27vanWalsum,PEV.,Veldhuizen,AA,,vanBakel,PJT,vanderBolt,FJE,Dik,PE,Groenendijk,P,Querner,EP,Smit,MFR.2007.SIMGRO6.0.2,Theoryandmodelimplementation.Wageningen,Alterra.http://www.alterra.wur.nl/UK/research/Specialisation+water+and+climate/Integrated+Water+Management/SIMGROVM0027,Version1.0SectoralScope14Page31andsurfacewaterflowmodelsarespatiallyexplicitandincorporateregionalclimatedata(precipitation,soilevaporation,evapotranspiration)andwatermanagement(groundwaterabstraction,irrigation).VariousmoduleswithinSIMGROmaybeusedforsimulatingsurfacewateranddrainageflowandmoduleselectiondependsoneaseofuse.UseofASCIIoutputfilesarerecommendedforeaseinanalysisofresults.ThefollowingdiagramprovidesanoverviewofSIMGROmoduleswithrelationshipsandoptions.Figure1:SIMGROModuleswithRelationshipsandOptions28WithintheSIMGROmodel,saturatedgroundwaterflowismodeledusingthefiniteelementmethodwiththetopoftheminerallayersetasaquiferbottom.Atwo-layerpeatprofileisschematizedconsistingofafibrictohemicpeattoplayer(definedaslessthan1mdepth)andasapricdeeperlayer(definedasallpeatgreaterthan1m)withacharacteristichydraulicconductivityspecifiedforeachoftheselayers.Thehydraulicconductivitydefinestherateatwhichwatermovesthroughaporousmedia,inthiscasethesoil.Measurementsofhydraulicconductivitywereobtainedfromstandardpumptestmethodswhichindicatehowtheaquifer28Walsum,P.E.V.2010.SIMGRO,User’sguideV7.1.0.Wageningen,Alterra.Alterra-Report913.282pp.VM0027,Version1.0SectoralScope14Page32respondstoawithdrawalingroundwatersuchasthosedescribedinOngandYogeswaran29andTakahashiandYonetani.30TheSIMGROmodelalsoprovidesadefaultvalueforthewaterstoragecoefficient,definedasthedifferencebetweenthepeatwatercontentatsaturation(whenthegroundwaterlevelisatlandsurface)andthepeatwatercontentatapressureheadcorrespondingwithagroundwaterleveltypicalforthedrainedsituation(forexample1or1.5mbelowlandsurface).Table1:DefaultCoefficientValuesUsedinSIMGROModel31HydraulicconductivityWaterstoragecoefficientSurfacelayer(≤1mfrompeatsurface)30mday-10.5Deeplayer(>1mfrompeatsurface)0.5mday-10.5Althoughsaturatedhydraulicconductivityandwaterstoragecoefficientscanvary,aconservativevaluehasbeenusedincomparisontoothervaluesreportedforpeatlands.32AlthoughtheparametersoftheSIMGROmodelareadjustedforombrogenoustropicalpeatlandsinSoutheastAsiainaccordancewiththerequirementsabove,limitedfieldsamplingmuststilltakeplacetovalidatetheresultsproducedbythemodelforthepeatlandfoundwithinthewatershed(s)ofinterest.Modeledwaterlevelsmustbecomparedwithactualfieldmeasurementsofwaterlevelstoassesstheaccuracyofthemodel.Fieldmeasurementsmusttakeplacewithintheprojectarea.Itisallowableforsamplinglocationstobechosenbasedonaccessibility.Thefollowingconditionsmustbemetatthesamplinglocations:AlldatarequiredforSIMGROmodelingmusthavebeencollectedusingcriteriawithinthemethodology.29OngBY,YogeswaranM1992.PeatlandasaresourceforwatersupplyinSarawak.In:AminuddinBY,TanSL,AzizB,SamyJ,SalmahZ,SitiPetimah,ChooSTeds.ProceedingsoftheInternationalSymposiumonTropicalPeatland,Kuching,Sarawak,May1991.MinistryofAgriculture,MARDI,pp255–268.30Takahashi,HandYonetani,Y.1997.StudiesonmicroclimateandhydrologyofpeatswampforestinCentralKalimantan,Indonesia.In:Rieley,JO,Page,SEeds.Biodiversityandsustainabilityoftropicalpeatlands.Samara,Cardigan,pp179–18731Jaenicke,J,Wösten,H,Budiman,AandSiegert,F.2010.PlanninghydrologicalrestorationofpeatlandsinIndonesiatomitigatecarbondioxideemissions.MitigationandAdaptationStrategiesforGlobalChange15:223-239.Wösten,JHM,Clymans,E,Page,SE,Rieley,JO,Limin,SH.2008.Peat–waterinterrelationshipsinatropicalpeatlandecosysteminSoutheastAsia.Catena73,212-22432DepartmentofIrrigationandDrainage.2001.WatermanagementguidelinesforagriculturaldevelopmentincoastallowlandsofSarawak,DepartmentofIrrigationandDrainage,Sarawak.http://www.did.sarawak.gov.my/modules/web/page.php?id=381VM0027,Version1.0SectoralScope14Page33Yearlywatertablelevelrangemustbewithin±50cmofthatwithinprojectareaMinimumpeatthicknessintheareamodeledmustbegreaterthantheminimumwithintheprojectareaSamplingpointsmustbelocatedrandomlyorsystematicallywitharandomstartinglocation.Forexample,afirstsamplingpointmaybechosenatafixeddistancefromacanal(eg,10m),andadditionalsamplingpointsmaybepositionedinaregulargridwithadistancefixeddistance(eg,50m)betweenpointlocation.Locationsshouldbeaccessiblewithoutgreatdifficultytoallowforrepeatedmeasurements.Sampletransectsmustbelocatedatvariouspositionsalongthecanals,ifpossible.Ifonlyasinglemeasurementtransectcanbeinstalledalongacanal,itmustbeassuredthatitislocatedclosetothecanalmouth,becausethewatertablesatthislocationareconsideredtobeclosesttothepeatsurfaceduringthedryseasonandresultingemissionsarelowest.Therefore,anoverestimationofemissionreductionsbytheprojectmeasuresisconservativelyavoided.Ateachsamplingpointthelevelfromthepeatsurfacetothewatertablemustberecorded.33Fielddatameasurementsmustbetakenforaminimumof8months,butmustincludemeasurementswithinthedryseasonandthewetseasonatafrequencyofatleastoncepermonth.Samplinglocation,watertablelevel,anddateofmeasurementmustberecordedinageodatabase.Aminimumof10samplingpointsisrequiredtoobtain80measurementsfortherequiredtimeperiodof8monthsformodelvalidation.Themetricusedtovalidatethemodelisthedifferencebetweencalculatedandmeasuredwaterlevelsrelativetothepeatsurfaceatageographiclocationandonthedateoffieldmeasurements.First,theerrors(differencebetweencalculatedandmeasuredwaterlevels)mustbetestedfornormaldistributionwithasuitabletestsuchastheKolmogorov-Smirnov(KSA)test,orbycalculatingtheskewness34.Iftheerrorsarenormallydistributed,theRootMeanSquareError(RMSE)mustbeusedtocomparecalculatedandmeasuredwaterlevels.RMSEprovidesinformationontheaccuracyofthemodel.ItisallowabletocalculateseparateRMSEforeachseasonofayear(eg,wetseasonanddryseason).RMSEiscalculatedwiththeformula:GModMeasRMSEGgggWT21)((14)33Guidanceonwaterlevelmeasurementcanbefoundin:MorganP.andStolt.MH.2004.Acomparisonofseveralapproachestomonitorwater-tablefluctuations.SoilScienceSocietyofAmericaJournal.68:562–566VidonandSmith2008.AssessingtheInfluenceofDrainagePipeRemovalonWetlandHydrologyRestoration:ACaseStudy.EcologicalRestorationV26,N1,33-43.34ASPRSLidarCommittee.2004.VerticalAccuracyReportingforLidarDataV1VM0027,Version1.0SectoralScope14Page34Where:RMSEWTRootMeanSquareErrorforwaterlevels(cm)MeasgMeasuredwaterlevelrelativetothepeatsurfacevalueg(cm)ModgModelcalculatedwaterlevelrelativetothepeatsurfacevalueg(cm)g1,2,3…GsamplenumberAnRMSElessthanorequalto40cmisrequired.Ifthisvalueisnotmet,theSIMGROmodelcannotbeconsideredapplicabletotheprojectareaandthismethodologycannotbeused.Ifthetestfornormaldistributionfails,(ie,theerrorsfeatureanasymmetricdistribution),theuseofRMSEisnotappropriateforassessingtheaccuracyinthemodeledwaterlevels.Inthiscase,the95thpercentileoftheerrorsmustbecalculatedtodeterminetheaccuracyofmodeledwaterlevels.Theaccuracyofmodeledwaterlevelsthendirectlyequalsthe95thpercentile.Theuncertaintyinwaterlevelestimateiscalculatedas:𝑈𝑊𝑇=𝑅𝑀𝑆𝐸𝑊𝑇𝑗𝑚𝑎𝑥∗100%(15)UWTPercentageuncertaintyinwatertablelevelsestimate(%)RMSEWTRMSEcalculatedforvalidationofSIMGROmodel(cm)jmaxMaximumabsolutemodeledvalueofwatertablelevelrelativetothepeatsurface(cm)Themetricusedtotestbiasinthemodelisthemeanerror(ME).𝑀𝐸=1𝐺∗∑(𝑀𝑒𝑎𝑠𝑔−𝑀𝑜𝑑𝑔)𝐺𝑔=1(16)Where:MEMeanerror(cm)MeasgMeasuredwaterlevelrelativetothepeatsurfacevalueg(cm)ModgModelcalculatedwaterlevelrelativetothepeatsurfacevalueg(cm)g1,2,3…GsamplenumberAnMElessthanorequalto±20cmisrequired,otherwisethismethodologyisnotapplicable.8.1.2StratifyProjectAreabyPeatDepletionTimeEmissionsfrompeatcanoccuronlyaslongasthereisapeatsupplyavailabletoundergooxidation.Indrainedpeatconditions,thepeatsurfacehasbeenfoundtosubsideresultingintheVM0027,Version1.0SectoralScope14Page35aerobicpeatlayerbecomingthinner.Publishedinformationhasindicatedthatduringthefirstfewyearsafterdrainage,subsidenceistheresultofbothsoilcompactionandoxidation,butinsubsequentyearsthecauseofsubsidenceisoxidation.35Thissubsidenceisgreatestintheyearsdirectlyafterdrainage,butstabilizesafterseveralyearsfollowingtheinitialdrainageevent.Undernon-drainedconditions,netsubsidencedoesnotoccurinforestedpeatlandareas.36Subsidenceratesunderdrainedconditionsaredifferingandaredependentonconditionsattheprojectsiteinregardstoland-usehistory,watertable,currentlandcover,firehistory,microtopographyandseveralotherfactors.Asthesubsidencerateunderdrainedconditionsisstrictlydependentontheconditionsattheprojectsite,avalueforsubsidenceratemustbeusedbytheprojectproponent,whichmeetstheVCSrequirementswithrespecttotheselectionofappropriatedefaultfactors.Thenumberofyearsuntilallpeatisdepletedmustbecalculatedacrosstheprojectareaandwithintheexcludedareaofwatershed(s)boundaryforeachSIMGROgridcellbasedonthepeatthicknessmodelattheprojectstartdateadjustedforuncertaintyintheestimateofpeatthickness.Basedonthisconservativecalculation,forlocationswithinwherepeatwillremainattheendoftheprojectcreditingperiod,itisassumedthatemissionsfrompeatcantakeplaceforallyearswithintheprojectcreditingperiod.However,forlocationswherethedepthofpeatissmallerandthereforethepeatisdepletedpriortotheendoftheprojectcreditingperiod,theprojectareaandexcludedareaofwatershed(s)mustbestratifiedbythemaximumnumberofyearswhereemissionscanbeassumedtotakeplace:01.0,SpPThtxxPDT(17)iftPDT,x+t>tcrediting_periodthenforgridcellxtmax=tcrediting_period(18)iftPDT,x+t<tcrediting_periodthenforgridcellxtmax=tPDT,x+t(19)Where:tPDT,xAssumednumberofyearsuntilallpeatisdepletedwithingridcellx(years)PThxPeatthicknessingridcellxatthestartofthebaselineperiod(meters)SpPeatsubsidenceratetcrediting_periodLengthoftheprojectcreditingperiod(years)tmaxMaximumnumberofyearsemissionscantakeplaceingridcellxinprojectcreditingperiod(years)35Jauhiainen,J.HTakahashi,JEPHeikkinen,PJMartikainen,andHVasander.2005Carbonfluxesfromatropicalpeatswampforestfloor.GlobalChangeBiology:11,1788–1797)andcarbondensityof21.6tCO2ha-1cm-1(listedinunits:60kgCcm-3in:Hooijer,A.,S.Page,J.G.Canadell,M.Silvius,J.Kwadijk,H.Wosten,andJ.Jauhiainen.2010.CurrentandfutureCO2emissionsfromdrainedpeatlandsinSoutheastAsia.Biogeosciences,7,1505–151436Hooijer,A,Page,S,Jauianinen,J,Lee,WA,Lu,XX,Idris,A,Anshari,G.2012.Subsidenceandcarbonlossindrainedtropicalpeatlands.Biogeosciences9:1053–1071VM0027,Version1.0SectoralScope14Page36t1,2,3…tcrediting_periodyearselapsedsincethestartoftheprojectThemaximumnumberofyearsemissionscantakeplaceforagivengridcellmustbereassessedateachverificationeventusingupdatedpeatthicknessestimatescalculatedinSection8.1.1.3.ThepeatdepletiontimestratamustbeupdatedduringbaselinereassessmentusingupdatedpeatthicknessestimatescalculatedinSection8.1.1.3.8.1.3EstimateEx-anteModeledWaterLevelswithinProjectAreaOverProjectCreditingPeriodandfor100YearsTheSIMGROmodelmustberunacrossthewatershed(s)ofinterestareafortheprojectcreditingperiodandfor100yearsusingtheabovespatialdatasetsandthehistoricmeandailyprecipitationdata,updatedforeachbaselineperiod.TheoutputoftheSIMGROmodelforthebaselinescenariointhewatershed(s)ofinterestareaovertheprojectcreditingperiodmustbeusedtostratifytheprojectareabydrainagedepthperdayforeachyearoftheprojectcreditingperiod.Eachgridcellinthemodelwillhaveaknowndailydrainagedepthforeachyearoftheprojectcreditingperiod.Subsidenceofthepeatlayerduetodrainageisassumedtocauseareductioninthedistancefromthewaterlevelandthepeatsurface.ToaccountforreducedCO2emissionratesresultingfromprogressivesubsidence,anannualcorrectionismadetothewatertablelevelsbasedonanaverageannualsubsidencerate.𝑗𝑐𝑜𝑟𝑟,𝑥,𝑑,𝑡=𝑗𝑥,𝑑,𝑡−(𝑡∗𝑆𝑝)(20)jcorr,x,d,t0,1,2,3…Jcorr,tWatertablelevelrelativetothepeatsurface,correctedforsubsidence,ingridx,ondayd,inyeart(cm)(maximum100cm)(ifjx,d,t≤0thenassumejx,d,t=0ondayd)j0,1,2,3…JSIMGROmodeledwatertablelevelrelativetothepeatsurfaceingridx,ondayd,inyeart(cm)(maximum100cm)SpPeatsubsidenceratex1,2,3…Xgridcellsinprojectaread1,2,3…365daysofyeartt1,2,3,…tmaxyearselapsedsincethestartoftheprojectcreditingperiod8.1.4CalculateEx-anteGHGEmissionsintheBaselineThebaselineemissionsarecalculatedbyaddingemissionsfromnetchangesinthecarbonpoolsandthenon-CO2emissions.Therefore,baselinenetGHGemissionsarecalculatedas:VM0027,Version1.0SectoralScope14Page37XxxtxBSLtBSLACC1,,,(21)txBSLtxCOBSLtxBSLGHGCC,,,,2,,,(22)0,,txBSLGHG(23)Where:ΔCBSL,tNetbaselineGHGemissions,inyeart(tCO2e)ΔCBSL,x,tNetbaselineGHGemissionsingridx,inyeart(tCO2eha-1)ΔCBSL,CO2,x,tNetcarbonstockchangeinallpoolsinthebaselineingridx,inyeart(tCO2eha-1)GHGBSL,x,tNon-CO2emissionstakingplaceinthebaselineingridx,inyeart(tCO2eha-1)AxAreaofgridcellxx1,2,3,…Xgridcellsinprojectareat1,2,3,…tmaxyearselapsedsincetheprojectstartdateTheonlycarbonpoolsthatareaccountedforinthebaselineandprojectscenariosareabovegroundtreebiomassandsoilcarbon.Underthebaselinescenario,thecarbonstocksinabovegroundtreebiomasswillbedecreasingorstableduetoincreasedchanceofburningortreedeathduetolowwatertablelevels.Therefore,itisconservativetoassumethatthechangeinabovegroundtreebiomassinthebaselinescenarioisequaltozero.Anylossofsedimentwithindrainagecanalsinthebaselinescenarioisconservativelynotaccountedfor.txSOCBtxtreeABtxCOBSLCCC,,,,_,,2,(24)0,,_txtreeABC(25)Where:ΔCBSL,CO2,xtNetcarbonstockchangeinallpoolsinthebaselineingridcellx,inyeart(tCO2eha-1)ΔCAB_tree,xtNetcarbonstockchangeintheabovegroundtreebiomasspoolinthebaselineingridcellx,inyeart(tCO2eha-1)ΔCB-SOC,xtNetemissionsfromsoilcarbonpoolinthebaselineingridcellx,inyeart(tCO2eha-1)x1,2,3,…XgridcellsinprojectareaVM0027,Version1.0SectoralScope14Page38t1,2,3,…tmaxyearselapsedsincetheprojectstartdateEmissionsinthebaselinescenariomustbeestimatedfortheentireprojectcreditingperiodandfor100years.CO2emissionsfrompeatoxidationinthebaselinescenarioareestimatedconsideringthedailywaterlevelsrelativetothepeatsurfaceintheprojectareaandaCO2emissionfactorlinkingwaterlevelstoCO2emissionsfromoxidation.Fordayswherethewatertablelevelislessthanzero(eg,thepeatisflooded),theemissionsareassumedtobezeroatthatlocation.TheproceduretocalculateCO2emissionsfrompeatoxidationinthebaselinescenarioisasfollows.Foreachgridcell,emissionsmustonlybeestimatedtotakeplaceuptotheyearofpeatdepletion.DdCOtdxBSLcorrtxSOCBEFjC12,,,,,,35601.0(26)Where:∆CB-SOC,xtEmissionsfromsoilcarbonpoolresultingfrompeatoxidationinthebaselineingridcellx,yeart(tCO2eha-1in)EFCO2EmissionFactor;tCO2ha-1yr-1m-1ofwaterlevelrelativetopeatsurface;9837jcorr,BSL,x,d,t0,1,2,3…Jcorr,d,tWatertablelevelrelativetothepeatsurface,correctedforsubsidence,inbaseline,ingridx,ondayd,inyeart(cm)(ifjcorr,x,d,t≤0thenassumejcorr,x,d,t=0ondayd)x1,2,3…Xgridcellsinprojectaread1,2,3…365daysofyeartt1,2,3,…tmaxyearselapsedsincetheprojectstartdateTheaboveemissionfactorisbasedonareviewofGHGfluxesfromtropicalpeatlandsinSoutheastAsia.38AnalternativeemissionfactormaybeusediftheprojectproponentdemonstratesthatitmeetstheVCSrequirementswithrespecttotheselectionofappropriatedefaultfactors.8.2ProjectEmissionsProjectemissionsareestimatedbasedonmodeledwaterlevelsrelativetothepeatsurface.ProjectemissionsincludeonlyCO2emissionsfrompeatoxidation.37Hooijer,A.,S.Page,J.Jauhiainen,W.A.Lee,X.X.Lu,A.Idris,andG.Anshari.2012.Subsidenceandcarbonlossindrainedtropicalpeatlands.Biogeosciences,9,1053–1071.38Ibid.VM0027,Version1.0SectoralScope14Page39Theproposedprojectactivitywillraisewaterlevelsrelativetothepeatsurfacewithinthewatershed(s)ofinterestthroughpermanentandtemporarystructureswhichholdbackwaterindrainagewaterwayssuchasdams.Asaconsequence,comparedtothebaselineCO2woulddecrease.CO2emissionsfrompeatoxidationwithintheprojectareaaredeterminedbasedondrainagelevel.Therefore,projectnetGHGemissionsarecalculatedas:periodcreditingtttPCC_1Pr,(27)Where:ΔCPNetgreenhousegasemissionsintheprojectscenario(tCO2e)ΔCPr,tNetgreenhousegasemissionsintheprojectscenarioattimet(tCO2e)t1,2,3…tyearselapsedsincetheprojectstartdateEmissionsintheprojectscenariomustbeestimatedfortheentireprojectcreditingperiodandfor100years.8.2.1ModelingofWaterLevelsEx-anteandex-postprojectCO2emissionsareestimatedfollowingthesameapproachasusedfordeterminingthebaselineemissions.Inthiscase,waterlevelsrelativetothepeatsurfaceintheprojectscenariomustbeprojectedbymodelingtheeffectsofthemeasuresimplementedbytheprojectonthehydrologyofthewatershed(s)ofinterest.8.2.1.1ModificationofModelforProjectScenarioFortheex-anteestimationofprojectemissions,damlocationmustbebasedondamlocationplans.Forex-post,theactualdateandlocationofdamconstructionmustbestoredinageodatabaseandinputintotheSIMGROmodel.Theex-anteestimatedwaterlevelsrelativetothepeatsurfaceinthewatershed(s)ofinterestconsideringtheprojectinterventionisdeterminedbytheSIMGROmodelusingthehistoricprecipitationdata.Themodelmustbeupdatedex-postwithactualprecipitationdataandinformationonimplementationoftheprojectinterventiontosimulatewaterlevelsrelativetothepeatsurfaceintheprojectareaex-post.8.2.2CalculateEx-anteGHGEmissionsintheProjectScenarioTheprojectnetGHGemissionsarecalculatedas:VM0027,Version1.0SectoralScope14Page40XxxtxtACC1,Pr,Pr,(28)txCOtxCC,,2Pr,,Pr,(29)Where:ΔCPr,tNetprojectGHGemissions,inyeart(tCO2e)ΔCPr,x,tNetprojectGHGemissionsingridx,inyeart(tCO2eha-1)ΔCPr,CO2,x,tNetcarbonstockchangeinallcarbonpoolsintheprojectscenarioingridx,inyeart(tCO2eha-1)AxAreaofgridcellxx1,2,3,…Xgridcellsinprojectareat1,2,3,…tmaxyearselapsedsincetheprojectstartdate8.2.2.1ProjectNetCarbonStockChangeinPoolsTheonlycarbonpoolsthatareincludedintheprojectscenarioareabovegroundtreebiomassandsoilcarbon.However,itisconservativelyassumedthatnochangesoccurintheabovegroundtreebiomassasaresultofprojectactivities,since,inthebaselinescenariocarbonstocksinabovegroundtreebiomasswillbedecreasingorstableduetoincreasedchanceofburningortreedeathduetolowwatertablelevels.txSOCPtxtreeABtxCOCCC,,,,_,,2Pr,(30)0,,_txtreeABC(31)Where:ΔCPr,CO2,x,tNetcarbonstockchangeinallcarbonpoolsintheprojectscenarioingridxinyeart(tCO2eha-1)ΔCAB_tree,x,tNetcarbonstockchangeinabovegroundtreebiomasspoolingridxinyeart(tCO2eha-1)ΔCP-SOC,x,tNetemissionsfromsoilcarbonpoolintheprojectscenarioingridxinyeart(tCO2eha-1)x1,2,3,…Xgridcellsinprojectareat1,2,3,…tcrediting_periodyearselapsedsincetheprojectstartdateVM0027,Version1.0SectoralScope14Page41TheSIMGROmodelmustberunacrossthewatershed(s)ofinterestfortheprojectcreditingperiodandfor100yearsusingtheabovespatialdatasetsandthehistoricmeandailyprecipitationdata.CO2emissionsfrompeatoxidationintheprojectscenarioareestimatedconsideringthedailywaterlevelsrelativetothepeatsurfaceintheprojectareaandaCO2emissionfactorlinkingwaterlevelstoCO2emissionsfromoxidation.TheproceduretocalculateCO2emissionsfrompeatoxidationintheprojectscenarioisimplementedasfollows.Foreachstratum,emissionscanonlybeestimatedtotakeplaceuptotheyearofpeatdepletion.Anysedimentationoccurringwithindammedcanalsisconservativelyexcluded.DdCOtdxcorrtxSOCPEFjC12,,,Pr,,,35601.0(32)Where:∆CP-SOC,x,tEmissionsfromsoilcarbonpoolresultingfrompeatoxidationintheprojectscenarioingridxinyeart(tCO2eha-1)EFCO2EmissionFactor;tCO2ha-1yr-1ofwaterlevelrelativetothepeatsurface;9839jPr,corr,xd,t0,1,2,3…JPr,corr,x,d,tWatertablelevelrelativetothepeatsurfaceintheprojectscenario,correctedforsubsidenceingridx,indayd,inyeart(cm)(ifjPr,x,d,t≤0thenassumejPr,x,d,t=0ondayd)x1,2,3…Xgridcellsinprojectaread1,2,3…Ddaysinyeartt1,2,3,…tcrediting_periodyearselapsedsincetheprojectstartdateTheaboveemissionfactorisbasedonareviewofGHGfluxesfromtropicalpeatlandsinSoutheastAsia.40AnalternativeemissionfactormaybeusediftheprojectproponentdemonstratesthatitmeetstheVCSrequirementswithrespecttotheselectionofappropriatedefaultfactors.Ex-postprojectemissionsmustbecalculatedusingthemethodsdescribedaboveinthisSection8.2.39Hooijer,A,SPage,JJauhiainen,WA.Lee,XX.Lu,AIdris,andGAnshari.2012.Subsidenceandcarbonlossindrainedtropicalpeatlands.Biogeosciences,9,1053–107140Hooijer,A.,S.Page,J.Jauhiainen,W.A.Lee,X.X.Lu,A.Idris,andG.Anshari.2012.Subsidenceandcarbonlossindrainedtropicalpeatlands.Biogeosciences,9,1053–1071;Hooijer,A,Page,S,Canadell,JG,Silvius,M,Kwadijk,J,Woster,H,Jauhiainen,J.2010.CurrentandfutureCO2emissionsfromdrainedpeatlandsinSoutheastAsia.Biogeosciences,7:1505-1514;andCouwenberg,J,Dommain,R,Joosten,H.2010.Greenhousegasfluxesfromtropicalpeatlandsinsouth-eastAsia.GlobalChangeBiology16:1715-1732.VM0027,Version1.0SectoralScope14Page428.3LeakageLeakagerepresentstheincreaseinGHGemissionswhichoccuroutsidetheprojectareathataremeasurableandattributabletotheprojectactivity.Theformsofleakagerelevanttotheprojectactivityaremarketleakage,activity-shiftingleakageandecologicalleakage.Withrespecttomarketleakageandactivity-shiftingleakage,sinceemissionsfromdeforestationanddegradationarenotincludedinthequantificationofbaselineemissions,reductionsinGHGemissionsfrompreventingtheseactivitiesarenotincludedintheprojectscenario,andnoagentsofdeforestationordrainageremainintheprojectareaattheprojectstartdate(pleaserefertotheapplicabilityconditions),itisnotrelevantforthismethodologytoaccountfortheseformsofleakage.Withrespecttoecologicalleakage,althoughrewettingactivitiesintheprojectscenariomayresultinanincreaseofCH4emissionsoutsidetheprojectarea,theseareconsidereddeminimisbecausetheyamounttolessthan5percentoftheCO2emissions.41Assuch,itisconservativetonotaccountforemissionsduetoecologicalleakage.8.4SummaryofGHGEmissionReductionand/orRemovalsNetgreenhousegasemissionreductionsassociatedwiththeprojectactivityarecalculatedasfollows:𝐶𝑃𝑅𝐶,𝑡=∆𝐶𝐵𝑆𝐿,𝑡−∆𝐶𝑃,𝑡(33)Where:CWRC,tTotalnetgreenhouseemissionreductionsattimet(tCO2e)ΔCBSL,tNetgreenhousegasemissionsinthebaselinescenarioattimet(tCO2e)ΔCP,tNetgreenhousegasemissionsintheprojectscenarioattimet(tCO2e)t1,2,3…tcrediting_periodyearselapsedsincetheprojectstartdateNetGHGemissionreductionsmustbeestimatedforeachyearintheprojectcreditingperiodandforaperiodof100years.Thetotalnetchangesinonlythecarbonstocksiscalculatedas:IitiIitiBSLtCarbonCCC1,Pr,1,,,(34)41Riley,J.O.,Wüst,R.A.J.,Jauhiainen,J.,Page,S.E.,Wösten,H.,Hooijer,A.,Siegert,F.,Limin,S.H.,Stahlhut,M.2008.TropicalPeatlands:Carbonstores,carbongasemissionsandcontributiontoclimatechangeprocesses.In:Strack,M.(Ed.),PeatlandsandClimateChange.InternationalPeatSociety.Stockholm.VM0027,Version1.0SectoralScope14Page43Where:ΔCCarbon,tTotalcarbonstockchangeinallpoolsattimet(tCO2e)ΔCBSL,i,tNetcarbonstockchangeinallpoolsinthebaselinescenarioinstratumiattimet(tCO2e)ΔCPr,i,tNetcarbonstockchangeinallpoolsintheprojectscenarioinstratumiattimet(tCO2e)i1,2,3…Ipeatdepletiontimestratainthebaselinet1,2,3…tcrediting_periodyearselapsedsincetheprojectstartdate8.5UncertaintyAnalysisAssessmentofuncertaintymustfollowguidanceprovidedbyIPCC2000,IPCCGPG-LULUCFandIPCCAFOLU.ThismethodologyallowsfortheestimationofuncertaintyinGHGemissionsandremovalsassociatedwithprojectactivities.Useofthismethodologywhileplanningtheprojectcanhelpassurethatmeasurementsareofsufficientintensitytominimizeuncertaintydeductions.Proceduresincludingstratificationandtheallocationofsufficientmeasurementplotscanhelptheprojectproponenttoensurethatlowuncertaintyincarbonstocksresultsandultimatelyfullcreditingcanresult.Itisgoodpracticetoapplythismethodologyatanearlystagetoidentifythedatasourceswiththehighestuncertaintytoallowtheopportunitytoconductfurtherworktodiminishuncertainty.Uncertaintyinemissionsfromchangeincarbonpoolsduetouncertaintyinmodeledwatertablelevelsmustbeassessedandquantifiedasfollows.TheuncertaintyinwatertablelevelscalculatedinSection8.1.1.6isusedtocalculatetheuncertaintyinthechangeincarbonpoolsduetouncertaintyinmodeledwatertablelevels.WTUTotalyUncertaint(35)Where:UncertaintyTotalTotaluncertaintyforentireproject(%)UWTPercentuncertaintyinwatertablelevels(%)Theallowableuncertaintyis+/-30%ofCWRCatthe95%confidencelevel.Wherethisprecisionlevelismet,thennodeductionmustresultforuncertainty.Whereuncertaintyexceeds30%ofCWRC,tatthe95%confidencelevel,thenthedeductionmustbeequaltotheamountthattheuncertaintyexceedstheallowablelevel.AdjustedvalueforCWRC,ttoaccountforuncertaintymustbecalculatedas:%30int%100_,,TotaltWRCtWRCyUncertaCCAdjusted(36)VM0027,Version1.0SectoralScope14Page44Where:Adjusted_CWRC,tCumulativetotalnetGHGemissionreductionsattimetadjustedtoaccountforuncertainty(tCO2e)CWRC,tCumulativetotalnetGHGemissionreductionsattimet(tCO2e)UncertaintyTotalTotaluncertaintyforWRCprojectactivity(%)8.6CalculationofVCSBufferThenumberofcreditstobedepositedintheAFOLUpooledbufferaccountisdeterminedasapercentageofthechangeincarbonstocks.Thebufferwithholdingiscalculatedas:%BufferBufferCcarbonWRC(37)1,tttcarboncarbonCC(38)Where:BufferWRC,BufferwithholdingfortheWRCactivity(tCO2e)ΔCcarbonTotalnetchangeincarbonstocks(tCO2e)ΔCcarbon,tNetchangeincarbonstocksattimet(tCO2e)Buffer%Bufferwithholdingpercentage(%)t1,2,3…tyearselapsedsincetheprojectstartdateBufferwithholdingpercentagemustbecalculatedusingthelatestversionoftheVCSAFOLUNon-PermanenceRiskTool.8.7CalculationofVerifiedCarbonUnitsThenumberofVerifiedCarbonUnits(VCUs)forthemonitoringperiodT=t2-t1iscalculatedasfollows:𝑉𝐶𝑈𝑡=(𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑𝐶𝑊𝑅𝐶,𝑡2−𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑_𝐶𝑊𝑅𝐶,𝑡1)−𝐵𝑢𝑓𝑓𝑒𝑟𝑊𝑅𝐶(39)Where:VCUtNumberofVerifiedCarbonUnitsattimet=t2-t1(VCU)Adjusted_CWRC,t1CumulativetotalnetGHGemissionreductionsattimet1adjustedtoaccountforuncertainty(tCO2e)VM0027,Version1.0SectoralScope14Page45Adjusted_CWRC,t2CumulativetotalnetGHGemissionreductionsattimet2adjustedtoaccountforuncertainty(tCO2e)BufferWRCTotalpermanenceriskbufferwithholdingfortheWRCactivity;tCO2-e9MONITORING9.1DataandParametersAvailableatValidationData/ParameterHind,loc,LCDataunitMetersDescriptionHeightofindividualIndatsamplinglocationlocwithinlandcoverclassLCEquations2SourceofdataFieldmeasurementsoftreeheightValueappliedJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedHeightmeasuredfromgroundleveltotopofindividualeitherthroughdirectmeasurementsorbyusinganinstrumentsuchasaclinometer,relascopeorlaserinventoryinstrumentPurposeofdataCalculationofbaselineemissionsCommentsN/AData/ParameterZval,qDataunitMetersDescriptionElevationvalueqfromthevalidationdatasetEquations3SourceofdataElevationmeasurementsfromfieldorLiDARdataValueappliedJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedRadar-derivedDTMsmustbevalidatedwithtopographicfieldmeasurements(eg,bydGPS,TachymeterorTotalstation)orLiDARderivedelevationmeasurementsfromaLiDARdatasetofknownaccuracyPurposeofdataCalculationofbaselineemissionsCommentN/AData/ParameterZDTM,qVM0027,Version1.0SectoralScope14Page46DataunitMetersDescriptionDTMelevationvalueqEquations3SourceofdataDTMValueappliedJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedElevationvaluesareextractedfromtheDTMPurposeofdataCalculationofbaselineemissionsCommentN/AData/ParameterPThval,qDataunitMetersDescriptionPeatthicknessvalueqasdeterminedfromthevalidationdatasetEquations9SourceofdataFieldmeasurementsofpeatthicknessValueappliedJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresapplied:Thedepthofpeatateachsamplinglocationmustbedeterminedthroughpeatdrilling(usingapeataugersuchasanEijkelkampp)untilthemineralsoilunderneaththepeatisreached.PurposeofdataCalculationofbaselineemissionsCommentN/AData/ParameterPThMOD,qDataunitMetersDescriptionModeledpeatthicknessvalueqEquations9SourceofdataPeatthicknessmodelValueappliedJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedPeatthicknessvaluesareextractedfromthepeatthicknessmodel.VM0027,Version1.0SectoralScope14Page47PurposeofdataCalculationofbaselineemissionsCommentN/AData/ParameterChA,m,p,wDataunitVariableDescriptionValueofwaterwaycharacteristicAforwaterwaymeasuredmatmeasurementpointpforwaterclasswEquations13SourceofdataFieldmeasurementsValueappliedJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedAsampleofwaterwaysineachwaterwayclassisselectedformeasurementtocharacterizeeachwaterwayclass.PurposeofdataCalculationofbaselineemissionsCommentN/AData/ParameterMeasgDataunitCentimetersDescriptionMeasuredwaterlevelrelativetothepeatsurfacevaluegEquations14,16,41,42SourceofdataFieldmeasurementsValueappliedJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedMeasurementofwaterdepthmustbedonethroughdirectmeasurementorwithanautomaticwaterlogger.PurposeofdataCalculationofbaselineemissionsCommentGuidanceonwaterlevelmeasurementcanbefoundin:MorganP.andStolt.MH.2004.Acomparisonofseveralapproachestomonitorwater-tablefluctuations.SoilScienceSocietyofAmericaJournal.68:562–566.VidonandSmith2008.AssessingtheInfluenceofDrainagePipeRemovalonWetlandHydrologyRestoration:ACaseStudy.EcologicalRestorationV26,N1,33-43.VM0027,Version1.0SectoralScope14Page48Data/ParameterModgDataunitCentimetersDescriptionModelcalculatedwaterlevelrelativetothepeatsurfacegEquations14,16,41,42SourceofdataSIMGROmodelValueappliedJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresapplied:ThemetricusedtovalidatetheSIMGROmodelfortheprojectareaisthedifferencebetweencalculatedandmeasuredwaterlevelsrelativetothepeatsurfaceatageographiclocationandonthedateoffieldmeasurements.ThemodelcalculatedwaterlevelatthelocationandonthedateofcorrespondingfieldmeasurementsisextractedfromtheSIMGROmodeloutputs.ValueisanoutputoftheSIMGROmodel.PurposeofdataCalculationofbaselineemissionsCommentN/AData/ParameterjmaxDataunitCentimetersDescriptionMaximumabsolutemodeledvalueofwatertablelevelrelativetothepeatsurface;cmEquations15SourceofdataSIMGROmodelValueappliedJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedWatertablelevelismodeledwithSIMGROforthebaselineandprojectscenarioex-antebasedonhistoricclimatedata.PurposeofdataCalculationofbaselineemissionsCommentN/AData/ParameterPThx,t0DataunitMetersDescriptionPeatthicknessingridcellxattheprojectstartdateEquations11,12,19SourceofdataPeatthicknessmodel,basedonfieldmeasurementsofpeatdepthVM0027,Version1.0SectoralScope14Page49ValueappliedJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedThepeatthicknessmodelisagriddedspatialexplicitmodelwhereeachgridcellisauniformsize(Agrid_x)andthesumoftheareaofallgridcellsequatestotheprojectarea.PurposeofdataCalculationofbaselineemissionsCommentN/AData/ParameterSpDataunitCentimetersperyearDescriptionPeatsubsidencerateEquations12,19,20SourceofdataMostappropriatedefaultvaluefrompublishedapplicableliteraturemustbeselectedbyprojectproponentValueappliedJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedAssubsidenceratevariesasaresultoftheconditionsattheprojectsite,nodefaultvalueissuggested.Variablesinfluencingthesubsidenceratearewatertable,land-usehistoric,drainage,currentlandcover,peatbulkdensity,carboncontentandothers.PurposeofdataCalculationofbaselineemissionsCommentN/AData/Parametertcrediting_periodDataunitYearsDescriptionLengthofprojectcreditingperiodEquations18,19SourceofdataDeterminedex-anteValueappliedJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedPerVCSAFOLURequirements,theminimumlengthoftheprojectcreditingperiodis20yearsandthemaximumlengthis100years.PurposeofdataCalculationofbaselineemissionsCommentN/AVM0027,Version1.0SectoralScope14Page50Data/ParameterAgrid_xDataunitHectaresDescriptionAreaofpeatthicknessmodelgridcellxEquationsN/ASourceofdataCalculatedfrompeatthicknessmodelValueappliedJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedThepeatthicknessmodelisagriddedspatialexplicitmodelwhereeachgridcellisauniformsize(Agrid_x)andthesumoftheareaofallxgridcellsequatestotheprojectarea.PurposeofdataCalculationofbaselineandprojectemissionsCommentMaximumsizethresholdis90mx90mData/ParameterJDataunitCentimetersDescriptionSIMGROmodeledwatertablelevelrelativetothepeatsurface,(maximum100cm)EquationsN/ASourceofdataSIMGROmodelValueappliedJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedWatertablelevelismodeledforthebaselineandprojectscenarioex-postbasedonactualprecipitationdata.PurposeofdataCalculationofbaselineandprojectemissionsCommentN/AData/ParameterAExcludedDataunitHectaresDescriptionTotalareaoftheexcludedareaofwatershed(s).EquationsN/ASourceofdataSIMGROmodelValueappliedJustificationofchoiceofdataordescriptionofOutputsfromSIMGROModelareusedtodeterminetotalareaoftheexcludedareaofwatershed(s)inaspatialenvironment.VM0027,Version1.0SectoralScope14Page51measurementmethodsandproceduresappliedPurposeofdataCalculationofbaselineandprojectemissionsCommentN/AData/ParameterEFCO2DataunittCO2ha-1yr-1m-1ofwaterlevelrelativetothepeatsurfaceDescriptionEmissionfactorEquations26,32,Sourceofdata:Hooijer,A,Page,S,Jauianinen,J,Lee,WA,Lu,XX,Idris,A,Anshari,G.2012.Subsidenceandcarbonlossindrainedtropicalpeatlands.Biogeosciences9:1053–1071Valueapplied98JustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedTheaboveemissionfactorisbasedonareviewofGHGfluxesfromtropicalpeatlandsinSoutheastAsia.AnalternativeemissionfactormaybeusediftheprojectproponentdemonstratesthatitmeetstheVCSrequirementswithrespecttotheselectionofappropriatedefaultfactors.PurposeofdataCalculationofbaselineandprojectemissionsCommentN/AData/ParameterΔheadDataunitCentimetersDescriptionDesiredheaddifferenceEquations46SourceofdataDeterminedbasedonexpertopinion,consideringthepermeabilityandlowbearingcapacityofpeatsoils,aspublishedinthescientificliterature.ValueappliedJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedThisisthepreferreddifferencebetweenupstreamanddownstreamwaterwaywaterlevelacrossadam.Recentresearchshowedthatduetothelowbearingcapacityandhighpermeabilityofpeatsoilstheheaddifferenceshouldbelessthan0.5m:Ritzema,H.,Limin,S.,Kusin,K.,Jauhiainen,J.,Wösten,H.2014.CanalblockingstrategiesforhydrologicalrestorationofdegradedVM0027,Version1.0SectoralScope14Page52tropicalpeatlandsinCentralKalimantan,Indonesia.Catena114:11-20.PurposeofdataCalculationofprojectemissionsCommentN/AData/Parametercascade_slopeDataunitMeters/centimetersDescriptionAverageslopeofcascadeofdamsEquations46SourceofdataDTMValueappliedJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedTheaverageslopeofcascadeofdamsmustbedeterminedwithelevationmeasurementsinthefieldordetermineddirectlyfromtheDTM.PurposeofdataCalculationofprojectemissionsCommentN/A9.2DataandParametersMonitoredData/ParameterJDataunitCentimetersDescriptionSIMGROmodeledwatertablelevelrelativetothepeatsurface(maximum100cm)EquationsN/ASourceofdataSIMGROoutputDescriptionofmeasurementmethodsandprocedurestobeappliedWatertablelevelismodeledforthebaselineandprojectscenarioex-postbasedonactualprecipitationdataFrequencyofmonitoring/recordingPriortoeachverificationeventQA/QCprocedurestobeappliedToensurethattheSIMGROmodelisconservativelymodelingwaterlevelsrelativetothepeatsurface,theresultsoftheSIMGROmodelmustbecomparedwithmonitoredfieldmeasurementsofwaterlevelrelativetothepeatsurfacePurposeofdataCalculationofbaselineandprojectemissionsVM0027,Version1.0SectoralScope14Page53CommentN/AData/ParameterMeasgDataunitMetersDescriptionMeasuredwaterlevelvaluerelativetothepeatsurfacegEquations14,16,41,42SourceofdataFieldmeasurementsDescriptionofmeasurementmethodsandprocedurestobeappliedMeasurementofwaterdepthmustbedonethroughdirectmeasurementorwithanautomaticwaterlogger.Guidanceonwaterlevelmeasurementcanbefoundin:MorganP.andStolt.MH.2004.Acomparisonofseveralapproachestomonitorwater-tablefluctuations.SoilScienceSocietyofAmericaJournal.68:562–566VidonandSmith2008.AssessingtheInfluenceofDrainagePipeRemovalonWetlandHydrologyRestoration:ACaseStudy.EcologicalRestorationV26,N1,33-43.Frequencyofmonitoring/recordingDirectmeasurementmustbedoneatleasteverymonth,withanautomaticwaterloggerdailymeasurementsmustberecorded.QA/QCprocedurestobeappliedWaterlevelmeasurementsdatamustbearchivedinelectronicandpaperformatPurposeofdataCalculationofbaselineemissionsCommentN/AData/ParameterModgDataunitCentimetersDescriptionModelcalculatedwaterlevelrelativetothepeatsurfacegEquations41,42SourceofdataSIMGROmodelDescriptionofmeasurementmethodsandprocedurestobeappliedThemodelcalculatedwaterlevelatthelocationandonthedateofcorrespondingfieldmeasurementsisextractedfromtheSIMGROmodeloutputs.Frequencyofmonitoring/recordingPriortoeachverificationeventVM0027,Version1.0SectoralScope14Page54QA/QCprocedurestobeappliedModelcalculatedwaterlevelsatthelocationandonthedateofcorrespondingfieldmeasurementsmustbestoredinelectronicandpaperformatPurposeofdataCalculationofbaselineemissionsCommentN/AData/ParameterSpDataunitCentimetersperyearDescriptionPeatsubsidencerateEquations12,17,20,SourceofdataMostappropriatedefaultvaluefrompublishedapplicableliteraturemustbeselectedbyprojectproponentDescriptionofmeasurementmethodsandprocedurestobeappliedAssubsidenceratevariesasaresultoftheconditionsattheprojectsite,nodefaultvalueissuggested.Variablesinfluencingthesubsidenceratearewatertable,land-usehistoric,drainage,currentlandcover,peatbulkdensity,carboncontentandothers.Frequencyofmonitoring/recordingPriortoeachverificationeventQA/QCprocedurestobeappliedPurposeofdataCalculationofbaselineemissionsCommentN/AData/ParameterEFCO2DataunittCO2ha-1yr-1m-1ofwaterlevelrelativetothepeatsurfaceDescriptionEmissionfactor;EFCO2=98Equations26,32SourceofdataHooijer,A,Page,S,Jauianinen,J,Lee,WA,Lu,XX,Idris,A,Anshari,G.2012.Subsidenceandcarbonlossindrainedtropicalpeatlands.Biogeosciences9:1053–1071DescriptionofmeasurementmethodsandprocedurestobeappliedTheaboveemissionfactorisbasedonareviewofGHGfluxesfromtropicalpeatlandsinsouteastAsia.AnalternativeemissionfactormaybeusediftheprojectproponentdemonstratesthatitmeetstheVCSrequirementswithrespecttotheselectionofappropriatedefaultfactors.FrequencyofPriortoeachverificationeventVM0027,Version1.0SectoralScope14Page55monitoring/recordingQA/QCprocedurestobeappliedPurposeofdataCalculationofbaselineandprojectemissionsCommentN/AData/ParameterDailyprecipitationDataunitMillimeters/dayDescriptionInputintoSIMGROmodelEquationsN/ASourceofdataPrecipitationdatamustbeavailableonthedailytimestepforaclimatestationwithin100kmandwithin±100melevationoftheprojectareafor20yearspriortotheprojectstartdateDescriptionofmeasurementmethodsandprocedurestobeappliedPrecipitationdataiscollectedfromaprecipitationgaugeonadailybasisFrequencyofmonitoring/recordingDailyQA/QCprocedurestobeappliedPrecipitationdatamustbearchivedinelectronicandpaperformatPurposeofdataCalculationofbaselineandprojectemissionsCommentN/AData/ParameterEvapotranspirationDataunitMillimetersperdayDescriptionInputintoSIMGROmodelEquationsN/ASourceofdataTakahashi,H.,Usup,A.,Hayasaka,H.,Kamiya,M.,Limin,S.H.,2004.Theimportanceofgroundwaterlevelandsoilmoistureofsubsurfacelayeronpeat/forestfireinatropicalpeatswampforest.In:Päivänen,J.(Eds.),WiseUseofPeatlands.Volume1.Proceedingsofthe12thInternationalPeatCongress,Tampere,Finland,6-11June2004.InternationalPeatSociety,Jyväskylä,Finland,p.760.AnalternativevaluemaybeusediftheprojectproponentdemonstratesthatitmeetsVCSruleswithrespecttotheselectionofappropriatedefaultfactors.VM0027,Version1.0SectoralScope14Page56DescriptionofmeasurementmethodsandprocedurestobeappliedEvapotranspirationmaybeassumedtobeaconstantdailyvalueof3.5mmday-1.Alternatively,evapotranspirationmaybedeterminedbytheclosestmeteorologicalstationorbyfieldmeasurements.Ifevapotranspirationisdeterminedbyfieldmeasurementsanevapotranspirationpanmaybeused.Frequencyofmonitoring/recordingIfevapotranspirationisdeterminedbyfieldmeasurementsthenmeasurementsmustberecordeddailyQA/QCprocedurestobeappliedPrecipitationdatamustbearchivedinelectronicandpaperformatPurposeofdataCalculationofbaselineandprojectemissionsCommentN/AData/ParameterLocationandconstructiondateofnewandmaintaineddamsDataunitLatitude/longitude,dateDescriptionLocationanddateofdamsconstructedandmaintained.InputintoSIMGROmodel.EquationsN/ASourceofdataGPSfieldmeasurementsDescriptionofmeasurementmethodsandprocedurestobeappliedThedamidentificationnumber,geographiccoordinates,anddateofconstructionarerecordedfortheactuallocationofeachlargeandsmalldamestablished.ThisinformationmustbestoredinageodatabaseasinputsfortheSIMGROmodel.Damsthathavebeendestroyedordamagedmayberebuilt.Ifadamisdamaged/destroyed,thedateofmonitoringandidentificationnumberofdammustberecordedintothegeodatabase.WithintheSIMGROmodelthedamaged/destroyeddammustberecordedashavingbeenremovedintheyearfollowingthelastdammonitoringevent.Ifadamisrepairedorrebuiltorifadditionaldamsarebuilt,thedamidentificationnumber,damconstructiondate,andgeospatiallocationmustberecordedinthegeodatabase.Theupdatedgeodatabasewillthenbeusedinsubsequentex-postsimulationsoftheprojectscenario.Frequencyofmonitoring/recordingAtaminimumevery5yearsQA/QCprocedurestobeappliedIfdamsarenotmonitoredyearly,itmustbeassumedthatthedamsweredestroyedintheyearfollowingthepreviousmonitoringeventVM0027,Version1.0SectoralScope14Page57PurposeofdataCalculationofprojectemissionsCommentN/AData/ParameterAreaburnedDataunitHectaresDescriptionAreaburned,andgridcellsxburnedattimetintheprojectarea.EquationsN/ASourceofdataFireareadelineatedthroughdirectfieldmeasurementsorusingremotesensingimageryDescriptionofmeasurementmethodsandprocedurestobeappliedThepresenceorabsenceofanypotentialfireswithintheprojectareamayfirstbedeterminedusinglocaland/orglobalremotesensingproductssuchasNASA’sFireInformationforResourceManagementSystem(FIRMS).Whereremotesensingproductsindicateasignificantfire(greaterthan1ha)hasoccurredtheareaburnedmustbemappedeitherthroughtheuseofaGPSinthefieldorbyhanddelineatingremotesensingimagerywitharesolutionhigherthan30m.http://earthdata.nasa.gov/data/near-real-time-data/firmsFrequencyofmonitoring/recordingAnnuallyQA/QCprocedurestobeappliedAGISdatabasemustbedevelopedandupdatedtomapandarchivethedateandspatialextentofallfireswithintheprojectareaPurposeofdataCalculationofprojectemissionsCommentN/AData/ParameterLanduseinexcludedareaofwatershed(s)DataunitUnitlessDescriptionLanduseactivitiesinareaofwatershed(s)ofinterestnotincludedintheprojectareaEquationsN/ASourceofdataDocumentedevidenceoflanduse(eg,concessionrights,landusezoning,etc.)DescriptionofTheprojectproponentmustmonitorlanduseactivitiesintheVM0027,Version1.0SectoralScope14Page58measurementmethodsandprocedurestobeappliedexcludedareaofwatershed(s)toverifythatlanduseactivitieswithintheexcludedareaofwatershed(s)donotincludethecreationofadditionaldrainagewaterwaysdeforestation,landuseconversion,cropproductionorgrazingofanimals.Ateachmonitoringeventtheprojectproponentmustprovidedocumentedevidencedemonstratingthatcurrentalanduseactivitiesintheexcludedareaofwatershed(s)meettheserequirements.Ifthecreationofadditionaldrainagewaterwaysdeforestation,landuseconversion,cropproduction,orgrazingofanimalsoccurintheexcludedareaofwatershed(s)duringtheprojectcreditingperiod,thismethodologyisnolongerapplicabletotheprojectactivity.Frequencyofmonitoring/recordingEvery5yearsQA/QCprocedurestobeappliedDocumentedevidenceoflanduseactivitiesintheexcludedareaofwatershed(s)mustbearchivedinpaperandelectronicformatPurposeofdataApplicabilityofthemethodologytotheprojectactivityCommentN/A9.3DescriptionoftheMonitoringPlanTheprojectarea,climatevariables,damconstructionandwaterlevelrelativetothepeatsurfacevaluesmustbemonitoredduringprojectimplementation.9.3.1MonitoringofWaterCoursesOvertimeadditionalinformationonthelocationandcharacteristicsofwaterwaysmaybeobtained.ProjectproponentsmayupdatetheSIMGROmodelwithnewwatercoursemapsandcharacteristicsforbothex-anteandex-postbaselineandprojectemissioncalculations,butthisisnotrequired.ThemethodsdelineatedwithinSection8.1.1.5mustbefollowedforanywaterwaystobeaddedtothedatabaseandSIMGROmodel.Thiswouldincludelocationidentificationandcharacterizationofwaterway.9.3.2MonitoringofClimateVariablesActualclimatevariablesmustbemonitoredandcatalogedthroughthecollectionofdatafromweatherstation(s)representativeofthewatershed(s)ofinterest.Precipitationdatamustbeavailableonthedailytimestepforaclimatestationwithin100kmandwithin±100melevationofthewatershed(s)ofinterestboundaryoverthemonitoringperiod.Additionally,evapotranspirationratesofthedominantvegetationcover(s)mustbeavailableasinputtotheSIMGROmodel.VM0027,Version1.0SectoralScope14Page59Evapotranspirationmaybeassumedtobeaconstantdailyvalueof3.5mmperday42orthemostrecentlypublishedapplicablefactor.Dataforthewatershed(s)ofinterestareamaybesuppliedfrommorethanoneweatherstationfallingwithin100kmofthewatershed(s)ofinterestboundary.InthiscasetherelevantstationmustbespecifiedforeachoftheSVAT-unitsinthemodel.Wheremorethanoneweatherstationdataexists,dataonclimatevariablesmaybeinterpolatedforthewatershed(s)ofinterestarea.IfmorethanoneweatherstationmeetsthelocationrequirementsforagivenSVAT-unit,fortimeperiodswheredatafromtheselectedweatherstationisnotavailable,datafromanalternateweatherstationthatmeetsthelocationrequirementsoftheSVAT-unitmaybesubstituted.MeasureddailyclimatedatamustbemonitoredandusedasaninputintotheSIMGROmodelforex-postanalysisofthebaselineandprojectscenarios.9.3.3MonitoringofProjectActivities9.3.3.1MonitoringofProjectAreaTheprojectareaismonitoredtodemonstratethattheactualprojectareaconformswiththeareaoutlinedintheprojectdescription.Theprojectproponentmustmonitortheprojectareatoconfirmthattheprojectproponentmaintainscontrolovertheentireareaincludedwithintheprojectarea.Theprojectproponentmustmonitorthegeographiclocationofdamsconstructedtoconfirmthatalldamsconstructedarelocatedwithintheprojectarea.9.3.3.2MonitoringofWaterwaysThewaterwaymapandcharacteristicsmaybeupdatedateachverificationevent.NewinformationonwaterwaylocationandcharacteristicsmaybeaddedusingthemethodsinSection8.1.1.5,thoughitisnotrequired.Ifnewwaterwaysareaddedtothewaterwaymap,estimationsofbothex-antebaselineemissionsandex-postprojectemissionsmustconsidertheupdatedwaterwaymap.9.3.3.3MonitoringofDamEstablishmentTheoptimallocationofdamsisdeterminedex-anteintheprocedurefordesignofprojectmeasuresdescribedinSection8.2.1.1.Damestablishmentandrepairmustbemonitored.Thegeographiccoordinatesanddateofconstructionarerecordedfortheactuallocationofeachlargeandsmalldamestablished.GeographiccoordinatesofeachdamarestoredinageodatabaseasinputsfortheSIMGRO42Takahashi,H.,Usup,A.,Hayasaka,H.,Kamiya,M.,Limin,S.H.,2004.Theimportanceofgroundwaterlevelandsoilmoistureofsubsurfacelayeronpeat/forestfireinatropicalpeatswampforest.In:Päivänen,J.(Eds.),WiseUseofPeatlands.Volume1.Proceedingsofthe12thInternationalPeatCongress,Tampere,Finland,6-11June2004.InternationalPeatSociety,Jyväskylä,Finland,p.760.VM0027,Version1.0SectoralScope14Page60modeltosimulatewaterlevelsrelativetothepeatsurfaceintheprojectareaandestimateprojectemissions.9.3.3.4MonitoringofDamMaintenanceTheconditionandmaintenanceofdamsmustbemonitoredtoensurethattheprojectinterventionfunctionstoimpactwaterlevelsrelativetothepeatsurfaceintheprojectarea.Eachestablisheddammustbemonitoredinthefieldatleastevery5yearstodeterminedamcondition.Damsthathavebeendestroyedordamagedmayberebuilt.Ifadamisdamagedordestroyed,thedateofmonitoringandidentificationnumberofdammustberecordedintothegeodatabase.WithintheSIMGROmodelthedammustberecordedashavingbeenremovedintheyearfollowingthelastdammonitoringevent.Ifadamisrepairedorrebuiltorifadditionaldamsarebuilt,thedamidentificationnumber,damconstructiondate,andgeospatiallocationmustberecordedinthegeodatabase.Theupdatedgeodatabasemustthenbeusedinsubsequentsimulationsoftheprojectscenario.9.3.3.5MonitoringoftheExcludedAreaofWatershed(s)Theprojectproponentmustmonitorlanduseactivitiesintheexcludedareaofwatershed(s)toverifythatlanduseactivitieswithintheexcludedareaofwatershed(s)donotincludethecreationofadditionaldrainagewaterways,deforestation,landuseconversion,cropproductionorgrazingofanimals.Ateachmonitoringevent,theprojectproponentmustprovidedocumentedevidencedemonstratingthatcurrentlanduseactivitiesintheexcludedareaofwatershed(s)meettheserequirements.Activitiesmayincludeplannedforestdegradation.Theresultsofmonitoringoflanduseactivitiesmustbereportedateachverificationevent.Ifthecreationofadditionaldrainagewaterwaysdeforestation,landuseconversion,cropproductionorgrazingofanimalsoccurintheexcludedareaofwatershed(s)duringtheprojectcreditingperiod,thismethodologyisnolongerapplicable.Theprojectproponentmustalsomonitorlanduseactivitiesintheexcludedareasofwatershed(s)todetermineiflanduseactivitiesincludethecreationofdamswithinexistingwaterways.Ifthereisevidencethatdamshavebeencreated,thetype,locationandyearofdamconstructionmustberecordedinageodatabaseasinputsfortheSIMGROmodeltosimulatewaterlevelsrelativetothepeatsurfaceintheprojectareaandestimatebaselineandprojectemissions.9.3.3.6MonitoringofSampledWaterLevelsTovalidatethemodeledresultsoftheSIMGROsimulationofwatertablelevelsrelativetothepeatsurfaceasaresultofprojectconstructionofdams,fieldmeasurementsofwatertablelevelsrelativetothepeatsurfacemustbetakenatsamplingpoints.Adiscreteareamaybeselectedforsamplingpointsbasedoneaseofaccess,andsamplingpointsmaybeselectedwithinthediscreteareausingsystematicsampling.AnalternativeVM0027,Version1.0SectoralScope14Page61approachtosamplingmaybeusedifitcanbejustifiedthatthesamplingmethoddoesnotcreatebias.Allsamplingpointsmustbewithintheprojectarea.Ateachsamplingpoint,thelocation,watertablelevelrelativetothepeatsurface,anddateofmeasurementmustberecordedinageodatabase.Itisrecommended,butnotrequired,thatpermanentsamplingpointsareestablishedthroughtheinstallationofgroundwatertubes.Waterlevelsrelativetothepeatsurfacemustbemeasuredbyeitherinstallingautomaticwaterloggersormanually.43Measurementsmustbetakenonatleastfourseparatedaysforeachsamplingpointforeachyearaftertheprojectstartdate.Overthemonitoringperiod,watertablelevelrelativetothepeatsurfacesamplingmustincludemeasurementstakenwithinthedryseasonandthewetseason.Itisrecommendedbutnotrequiredforfieldsamplingtotakeplaceregularlythroughouteachyearaftertheprojectstartdate.9.3.4MonitoringofBaselineEmissionsInformationrequiredtoperiodicallyreassessemissionsinthebaselinemustbecollectedduringtheentireprojectcreditingperiod.Thekeyvariablestobemeasuredareweatherstationdataandupdatedwatercourseinformation.Ex-postbaselineemissionsareestimatedfollowingthesameapproachasusedfordeterminingtheex-antebaselineemissions.TheSIMGROmodelisupdatedex-postwithactualprecipitationdataandupdatedwatercourseinformation(notrequired)tosimulatewaterlevelsintheprojectareaex-post.TheoutputoftheSIMGROmodelforthebaselinescenariointhewatershed(s)ofinterestovertheprojectcreditingperiodmustbeusedtostratifytheprojectareabydrainagedepthperdayforeachyearoftheprojectcreditingperiod.Eachgridcellinthemodelwillhaveaknowndailydrainagedepthforeachyearoftheprojectcreditingperiod.ThemaximumnumberofyearsemissionscantakeplaceforagivengridcellmustbereassessedateachverificationeventusingupdatedpeatthicknessestimatescalculatedinSection8.1.13.Thepeatdepletiontimestratamustbeupdatedduringbaselinereassessmentusingupdatedpeatthickness.Changesinpeatthicknessareafunctionofannualsubsidence.44Theex-postmodeledwaterlevelsrelativetothepeatsurfacemustbedeterminedusingthesamemethodsasimplementedex-ante.Theex-postGHGemissionsinthebaselinemustbecalculatedusingthemethodsdescribedinSection8.1.443Guidanceonwaterlevelmeasurementcanbefoundin:MorganP.andStolt.MH.2004.Acomparisonofseveralapproachestomonitorwater-tablefluctuations.SoilScienceSocietyofAmericaJournal.68:562–566.VidonandSmith2008.AssessingtheInfluenceofDrainagePipeRemovalonWetlandHydrologyRestoration:ACaseStudy.EcologicalRestorationV26,N1,33-43.44Wosten,JHM,Ismail,AB,vanWijk,ALM.1997.Peatsubsidenceanditspracticalimplications:acasestudyinMalaysia.Geoderma,78:25-36.VM0027,Version1.0SectoralScope14Page629.3.5MonitoringofProjectEmissionsEx-postprojectemissionsareestimatedfollowingthesameapproachasusedfordeterminingthebaselineandex-anteprojectemissionswiththeadditionofaccountingforthepotentialreversalofemissionreductionsresultingfrompeatfireswithinareasrewetted:xvPRtxtxCOtxCGHGCC,Re,,Pr,,,2Pr,,Pr,(40)Where:ΔCPr,tNetprojectGHGemissions,inyeart(tCO2e)ΔCPr,x,tNetprojectGHGemissionsingridx,inyeart(tCO2eha-1)ΔCPr,CO2,x,tNetcarbonstockchangeinallcarbonpoolsintheprojectscenarioingridx,inyeart(tCO2eha-1)GHGPr,x,tNon-CO2emissionstakingplaceintheprojectgridxinyeart(tCO2eha-1)CPr,Rev,xProjectemissionsreversalduetofromfireingridx(tCO2eha-1)AxAreaofgridcellxx1,2,3,…Xgridcellsinprojectareat1,2,3,…tmaxyearselapsedsincetheprojectstartdateTheoutputoftheSIMGROmodelfortheprojectscenariointhewatershed(s)ofinterestovertheprojectcreditingperiodmustbeusedtostratifytheprojectareabywaterlevelrelativetothepeatsurfaceperdayforeachyearoftheprojectcreditingperiod.Eachgridcellinthemodelwillhaveaknowndailydrainagedepthforeachyearoftheprojectcreditingperiod.9.3.5.1ModelingofWaterLevelsTheSIMGROmodelisupdatedex-postwithactualprecipitationdata,updatedwatercourseinformation,andlocationofdamstosimulatewaterlevelsrelativetothepeatsurfaceintheprojectarea.Theex-postmodeledwaterlevelsrelativetothepeatsurfacemustbedeterminedusingthesamemethodsasimplementedex-ante.ToensurethattheSIMGROmodelisconservativelymodelingwaterlevelsrelativetothepeatsurface,theresultsoftheSIMGROmodelmustbecomparedwithmonitoredfieldmeasurementsofwaterlevelrelativetothepeatsurface.Themetricusedtovalidatethemodelisthedifferencebetweencalculatedandmeasuredwaterlevelsrelativetothepeatsurfaceatageographiclocationandonthedateoffieldmeasurements.Calculatedandmeasuredgroundwaterlevelsarecomparedbylookingattherootmeansquareerror(RMSE).RMSEprovidesinformationontheaccuracyofthemodel.ItisallowabletocalculateseparateRMSEforeachseasonofayear(eg,wetseasonanddryseason).VM0027,Version1.0SectoralScope14Page63RootMeanSquareError(RMSE)GModMeasRMSEGggg21)((41)Where:MeasgMeasuredwaterlevelrelativetothepeatsurfacevalueg(cm)ModgModelcalculatedwaterlevelrelativetothepeatsurfacevalueg(cm)g1,2,3…GsamplenumberAnRMSElessthanorequalto40cmisrequired,otherwisethismethodologyisnotapplicable.Themetricusedtotestbiasinthemodelisthemeanerror(ME).𝑀𝐸=1𝐺∗∑(𝑀𝑒𝑎𝑠𝑔−𝑀𝑜𝑑𝑔)𝐺𝑔=1(42)Where:MEMeanError;cmMeasgMeasuredwaterlevelrelativetothepeatsurfacevalueg(cm)ModgModelcalculatedwaterlevelrelativetothepeatsurfacevalueg(cm)g1,2,3…GsamplenumberAnMElessthanorequalto20cmisrequired,otherwisethismethodologyisnotapplicable.9.3.5.2MonitoringofFiresinProjectAreaEventhoughrewettingofthepeatlandareaswilllikelyreduceincidenceoffire,firesstillmayoccur.Firesmustbemonitoredwithintheprojectareaandtheareaoffiredelineatedspatially.Iffirestakeplacewithingridcellswhereemissionreductionshadpreviouslyoccurred,allpreviousemissionreductionsinthatgridcellmustbeaccountedasprojectemissionsintheyearthefiretakesplace.Forallgridcellswherefiresoccur:txtxBSLtxWRCCCC,Pr,,,,,(43)max1,,,tttxWRCxWRCCC(44)VM0027,Version1.0SectoralScope14Page64IfCWRC,x<0then0RePr,vCelse:xWRCxvCC,,RePr,(45)Where:CPr,Rev,xProjectemissionsreversalduetofireingridx(tCO2eha-1)CWRC,xTotalnetgreenhouseemissionreductionsingridx,sinceprojectstartdate(tCO2eha-1)CWRC,x,tTotalnetgreenhouseemissionreductionsingridx,inyeart(tCO2eha-1)ΔCBSL,x,tNetbaselineGHGemissionsingridx,inyeart(tCO2eha-1)ΔCPr,x,tNetprojectGHGemissionsingridx,inyeart(tCO2eha-1)AxAreaofgridcellxx1,2,3,…Xgridcellsinprojectareat1,2,3,…tmaxyearselapsedsincetheprojectstartdate10REFERENCESCouwenberg,J,Dommain,R,Joosten,H.2009.,Greenhousegasfluxesfromtropicalpeatlandsinsouth-eastAsia.GlobalChangeBiology,16:1715–1732.doi:10.1111/j.1365-2486.2009.02016.xCouwenberg,J,Dommain,R,Joosten,H.2010.,Greenhousegasfluxesfromtropicalpeatlandsinsouth-eastAsia.GlobalChangeBiology,16:1715–1732.doi:10.1111/j.1365-2486.2009.02016.xDepartmentofIrrigationandDrainage.2001.WatermanagementguidelinesforagriculturaldevelopmentincoastallowlandsofSarawak,DepartmentofIrrigationandDrainage,SarawakHirano,T,Jauhiainen,J,Inoue,T,Takahashi,H.2009.Controlsonthecarbonbalanceoftropicalpeatlands.Ecosystems12:873-887.Hooijer,A,Page,S,Canadell,JG,Silvius,M,Kwadijk,J,Woster,H,Jauhiainen,J.2010.CurrentandfutureCO2emissionsfromdrainedpeatlandsinSoutheastAsia.Biogeosciences,7:1505-1514Hooijer,A,Page,S,Jauianinen,J,Lee,WA,Lu,XX,Idris,A,Anshari,G.2012.Subsidenceandcarbonlossindrainedtropicalpeatlands.Biogeosciences9:1053–1071Jaenicke,J,Rieley,JO,Mott,C,Kimman,P,andSiegert,F.2008.DeterminationoftheamountofcarbonstoredinIndonesianpeatlands.Geoderma147:151-158VM0027,Version1.0SectoralScope14Page65Jaenicke,J,Wösten,H,Budiman,AandSiegert,F.2010.PlanninghydrologicalrestorationofpeatlandsinIndonesiatomitigatecarbondioxideemissions.MitigationandAdaptationStrategiesforGlobalChange15:223-239.DOI10.1007/s11027-010-9214-5.JoostenH,ClarkeD(2002)Wiseuseofmiresandpeatlands–Backgroundandprinciplesincludingaframeworkfordecision-making.InternationalMireConservationGroup/InternationalPeatSociety,304ppIPCC.2006GPGforLULUCFAppendix3a.2Non-CO2EmissionsfromDrainageandRewettingofForestSoils:BasisforFutureMethodologicalDevelopment.Lillesand,T.M.,Kiefer,R.W.Chipman,J.W.2008.Remotesensingandimageinterpretation.6thEdition.NewYork.MorganP.andStolt.MH.2004.Acomparisonofseveralapproachestomonitorwater-tablefluctuations.SoilScienceSocietyofAmericaJournal.68:562–566.Murdiyarso,D,Hergoualc’h,K,Verchot,L.2010.Opportunitiesforreducinggreenhousegasemissionsintropicalpeatlands.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica107:19,655-19,660.OngBY,YogeswaranM1992.PeatlandasaresourceforwatersupplyinSarawak.In:AminuddinBY,TanSL,AzizB,SamyJ,SalmahZ,SitiPetimah,ChooSTeds.ProceedingsoftheInternationalSymposiumonTropicalPeatland,Kuching,Sarawak,May1991.MinistryofAgriculture,MARDI,pp255–268.Querner,EP,Povilaitis,A.2009.HydrologicaleffectsofwatermanagementmeasuresintheDovineRiverbasin,Lithuania.HydrologicalSciencesJournal.54:363-374.Pfeifer,N.,Stadler,P.&Briese,C.(2001).DerivationofdigitalterrainmodelsinSCOP++environment.OEEPEWorkshoponAirborneLaserscanningandInterferometricSARforDetailedDigitalElevationModels,Stockholm.Rydin,HandJeglum,JK.2006.TheBiologyofPeatlands.OxfordUniversityPress,UK.360p.ISBN13:9780198528722Rieley,JO.andPage,SE.2005.WiseUseofTropicalPeatland:FocusonSoutheastAsia.Alterra,Wageningen,TheNetherlands.237p.ISBN90327-0347-1Rieley,J.O.,Wüst,R.A.J.,Jauhiainen,J.,Page,S.E.,Wösten,H.,Hooijer,A.,Siegert,F.,Limin,S.H.,Stahlhut,M.2008.TropicalPeatlands:Carbonstores,carbongasemissionsandcontributiontoclimatechangeprocesses.In:Strack,M.(Ed.),PeatlandsandClimateChange.InternationalPeatSociety.Stockholm.Ritzema,H.,Limin,S.,Kusin,K.,Jauhiainen,J.,Wösten,H.2014.CanalblockingstrategiesforhydrologicalrestorationofdegradedtropicalpeatlandsinCentralKalimantan,Indonesia.Catena114:11-20.VM0027,Version1.0SectoralScope14Page66Salomon,D.2006.CurvesandSurfacesforComputergraphics.460p.ISBN-13:9780387284521Strack,M(ed.).2008.PeatlandsandClimateChange.InternationalPeatSociety.Takahashi,HandYonetani,Y.1997.StudiesonmicroclimateandhydrologyofpeatswampforestinCentralKalimantan,Indonesia.In:Rieley,JO,Page,SEeds.Biodiversityandsustainabilityoftropicalpeatlands.Samara,Cardigan,pp179–187.VidonandSmith2008.AssessingtheInfluenceofDrainagePipeRemovalonWetlandHydrologyRestoration:ACaseStudy.EcologicalRestorationV26,N1,33-43.vanWalsum,PEV.,Veldhuizen,AA,,vanBakel,PJT,vanderBolt,FJE,Dik,PE,Groenendijk,P,Querner,EP,Smit,MFR.2007.SIMGRO6.0.2,Theoryandmodelimplementation.Wageningen,Alterra.http://www.alterra.wur.nl/UK/research/Specialisation+water+and+climate/Integrated+Water+Management/SIMGRO/Wösten,JHM,Ismail,ABmandvanWijk,ALM.1997.Peatsubsidenceanditspracticalimplications:acasestudyinMalaysia.Geoderma78:25-36.Wösten,JHM,Clymans,E,Page,SE,Rieley,JO,Limin,SH.2008.Peat–waterinterrelationshipsinatropicalpeatlandecosysteminSoutheastAsia.Catena73,212-224.Do1:10.1016/j.catena.2007.07.010Wösten,JHM,Ismail,AB,andvanWijk,ALM.1997.Peatsubsidenceanditspracticalimplications:acasestudyinMalaysia.Geoderma78:25-36VM0027,Version1.0SectoralScope14Page67ANNEXI:DESIGNOFPROJECTMEASURESTheprojectinterventionmayincludetheestablishmentofpermanentandtemporarystructureswhichholdbackwaterindrainagewaterways,suchasdams.Thebelowprovidesarecommendedapproach,thoughthemethodusedtodeterminewheredamsareplacedmaybedeterminedbytheprojectproponentbasedonproject-specificcircumstances.Thenumberandlocationofdamsforblockingcanbedeterminedbasedonananalysisofthesurfaceslopealongeachwaterwaychosenforclosuretogetherwithanaveragehydraulicheaddifference(ie,differencebetweenupstreamanddownstreamwaterwaywaterlevelacrossadam).Itisrecommendedthatlargerwaterwayclassesbeassignedahigherpriorityforblockingthansmallerwaterwayclasses.Theoptimallocationoflargepermanentdamsisdeterminedbythepracticaluseofthewaterway.Afterbuildingpermanentdams,cascadesofsimplesmalldamsmaybeinstalled.Simplesmalldamsareinstalledaccordingtooptimaldamlocations.ForsmalldamsthemeasuredorDTM-derivedslopesforeachidentifiedwaterwaymaybeusedtocalculateoptimalspacingofdamswithinacascade.Toachieveagivenheaddifferencethespacingofdamsalongthewaterwayiscalculatedaccordingtotheformula:𝑆𝑝𝐷𝑖𝑠𝑡=∆ℎ𝑒𝑎𝑑𝑐𝑎𝑠𝑐𝑎𝑑𝑒_𝑠𝑙𝑜𝑝𝑒(46)Where:SpDistRecommendedspacingbetweendams(m)ΔheadDesiredheaddifference(cm)cascade_slopeAverageslopeofcascade(cm/m)VM0027,Version1.0SectoralScope14Page68DOCUMENTHISTORYVersionDateCommentv1.010July2014Initialversion

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱