VM0024-海岸湿地创建方法学VIP专享VIP免费

VM0024, Version 1.0
Sectoral Scope 14
Approved VCS Methodology
VM0024
Version 1.0, 30 January 2014
Sectoral Scope 14
Methodology for Coastal
Wetland Creation
Copyright © Louisiana CPRA 2014
VM0024, Version 1.0
Sectoral Scope 14
Page 2
Methodology developed by:
Louisiana Coastal Protection and Restoration Authority
Methodology prepared by:
CH2M Hill
EcoPartners
VM0024, Version 1.0
Sectoral Scope 14
Page 3
Table of Contents
1 Sources ................................................................................................................................................. 5
2 Summary Description of the Methodology ............................................................................................ 5
2.1 Project Activities ........................................................................................................................ 5
2.2 Application Overview ................................................................................................................. 8
2.3 Notation ..................................................................................................................................... 9
2.4 Documentation Requirements ................................................................................................. 16
2.5 Units Versus Resolution of Emissions Reductions and/or Removals Accounting .................. 16
3 Definitions ........................................................................................................................................... 16
3.1 Acronyms ................................................................................................................................. 20
4 Applicability Conditions ....................................................................................................................... 22
5 Project Boundary ................................................................................................................................ 23
5.1 Selecting GHG Sources .......................................................................................................... 23
5.2 Selecting Carbon Pools ........................................................................................................... 25
5.3 Delineating Spatial Boundaries of Project Area ...................................................................... 27
5.4 Defining Temporal Project Boundaries .................................................................................... 29
5.5 Grouped Projects ..................................................................................................................... 30
6 Procedure for Determining the Baseline Scenario ............................................................................. 32
6.1 Demonstrating the Most Plausible Baseline Scenario ............................................................ 32
6.2 Determining Dredging in Baseline Scenario ............................................................................ 35
6.3 Determining Methane Emissions in Baseline Scenario ........................................................... 38
6.4 Reevaluating the Baseline Scenario ....................................................................................... 39
7 Procedure for Demonstrating Additionality ......................................................................................... 39
7.1 Regulatory Surplus .................................................................................................................. 39
7.2 Positive List.............................................................................................................................. 40
8 Quantification of GHG Emission Reductions and Removals .............................................................. 40
8.1 Baseline Emissions ................................................................................................................. 41
8.2 Project Emissions or Emission Reductions and/or Removals ................................................. 42
8.3 Leakage ................................................................................................................................... 45
VM00SectoApprovedVCSMethodologyVM0024Version1.0,30January2014SectoralScope14MethodologyforCoastalWetlandCreationCopyright©LouisianaCPRA2014VM0024,Version1.0SectoralScope14Page2Methodologydevelopedby:LouisianaCoastalProtectionandRestorationAuthorityMethodologypreparedby:CH2MHillEcoPartnersVM0024,Version1.0SectoralScope14Page3TableofContents1Sources.................................................................................................................................................52SummaryDescriptionoftheMethodology............................................................................................52.1ProjectActivities........................................................................................................................52.2ApplicationOverview.................................................................................................................82.3Notation.....................................................................................................................................92.4DocumentationRequirements.................................................................................................162.5UnitsVersusResolutionofEmissionsReductionsand/orRemovalsAccounting..................163Definitions...........................................................................................................................................163.1Acronyms.................................................................................................................................204ApplicabilityConditions.......................................................................................................................225ProjectBoundary................................................................................................................................235.1SelectingGHGSources..........................................................................................................235.2SelectingCarbonPools...........................................................................................................255.3DelineatingSpatialBoundariesofProjectArea......................................................................275.4DefiningTemporalProjectBoundaries....................................................................................295.5GroupedProjects.....................................................................................................................306ProcedureforDeterminingtheBaselineScenario.............................................................................326.1DemonstratingtheMostPlausibleBaselineScenario............................................................326.2DeterminingDredginginBaselineScenario............................................................................356.3DeterminingMethaneEmissionsinBaselineScenario...........................................................386.4ReevaluatingtheBaselineScenario.......................................................................................397ProcedureforDemonstratingAdditionality.........................................................................................397.1RegulatorySurplus..................................................................................................................397.2PositiveList..............................................................................................................................408QuantificationofGHGEmissionReductionsandRemovals..............................................................408.1BaselineEmissions.................................................................................................................418.2ProjectEmissionsorEmissionReductionsand/orRemovals.................................................428.3Leakage...................................................................................................................................45VM0024,Version1.0SectoralScope14Page48.4SummaryofGHGEmissionReductionand/orRemovals.......................................................469Monitoring...........................................................................................................................................539.1Stratification.............................................................................................................................549.2DescriptionoftheMonitoringPlan...........................................................................................559.3DataandParametersAvailableatValidation..........................................................................909.4DataandParametersMonitored.............................................................................................919.5GroupedProjects.....................................................................................................................9710References......................................................................................................................................98AppendixA:DefaultStratificationandSampleUnitAllocationMethods..................................................102AppendixB:DefaultStaticChamberMeasurementMethods..................................................................108AppendixC:DefaultEddyCovarianceMeasurementMethodsforMethane...........................................113AppendixD:DefaultBiomassMeasurementMethods.............................................................................121AppendixE:DefaultSOCMeasurementMethods...................................................................................127AppendixF:ModelAssessmentRequirements........................................................................................136AppendixG:EquationsinMethodology....................................................................................................138AppendixH:SupportingInformationonDevelopmentofPositiveList.....................................................146AppendixI:JustificationfortheExclusionofAllochthonousCarbonintheLouisianaCoastalZone.......154AppendixJ:ListofVariables.....................................................................................................................159AppendixK:SummaryofProjectDescriptionRequirements...................................................................168AppendixL:SummaryofMonitoringReportRequirements.....................................................................174AppendixM:SourceofEmissionsFactorsforEnergyConsumption.......................................................182VM0024,Version1.0SectoralScope14Page51SOURCESThismethodologywasdevelopedbasedontherequirementsinthefollowingdocuments:VCSStandard,v3.3AFOLURequirements,v3.3ProgramDefinitions,v3.42SUMMARYDESCRIPTIONOFTHEMETHODOLOGYAdditionalityandCreditingMethodAdditionalityActivityMethodCreditingBaselineProjectMethodThismethodologyquantifiesthegreenhousegasbenefitsofwetlandcreationactivities.Thescopeofthismethodologyincludestwoprimaryprojectactivities–substrateestablishmentandvegetationestablishment–typicallyimplementedincombinationinordertocreatenewwetlands(ie,torestorewetlandsthathavedegradedtoopenwater.)Themethodologyalsoallowsforimplementationofeitherprojectactivityindividually.Themethodologyalsoaddressesthepotentialfortheestablishmentofwoodyvegetation.Assuch,thismethodologyiscategorizedasaRestoringWetlandEcosystems(RWE)+Afforestation,ReforestationandRevegetation(ARR)methodology.ThismethodologyisonlyapplicabletoprojectslocatedintheUnitedStatesofAmerica,assetoutfurtherintheapplicabilityconditions.2.1ProjectActivitiesWetlandcreationprojectsmustbedesignedsuchthatthewetland,overtime,willsupporttheecologicalprocessesandfunctionsofamaturewetlandhabitat.Ifretentiondikesarepartofthedesign,naturaldegradationandmanualbreachesmustbeplannedinordertoallowforregulartidalexchangeorhydrologicconnectivitytothesurroundingarea.Thecreatedwetlandmustsupportwetlandvegetationspeciescapableofcontributingtosoilcarbonaccumulation.Theprojectproponentmustincludeaplanfortheestablishmentandmaintenanceofapermanentwetlandplantcommunityafterprojectconstruction.Theplanmustprovideevidencethattheprojectareawillmeetthedefinitionofawetlanduponcompletionofprojectactivities(butaformalwetlanddelineationsurveyisnotrequired).Thisplanmayincludenaturalcolonizationormanualplantingorseedingoftheprojectarea.Theplanalsomustdemonstratehowtheprojectwillbemaintainedovertheprojectcreditingperiod.Maintenancerequirementsandactivitieswillvarygeographicallyduetodifferentecologicalandphysicalprocesseswhichmayinfluencetheprojectarea(eg,elevationdeficitvs.shorelineerosion).VM0024,Version1.0SectoralScope14Page6Activemaintenancemaynotberequiredifthecreatedwetlandisdesignedandconstructedtooffsetlocalprocesses–includingimpairedhydrologicalconnectivity–whichmayhaveledtotheinitialdeteriorationofthehistoricwetland.Forinstance,projectscreatedinmoreprotectedareasmaynotbeassusceptibletoshorelineerosionforces.Inaddition,othernon-relatedrestorationprojectsneartheprojectareamayhelpalleviatehistoricissuessuchasnutrientandsedimentsourcedeficits.InLouisiana,forexample,futureplanneddiversionsofMississippiRiverwateraredesignedtosupplyfreshwater,nutrients,andsedimenttosurroundingwetlandsandmayinfluenceandsustaintheprojectareadependingonproximitytoandconfigurationwiththediversion.Theprojectproponentmustdemonstratethattheprojectengineeringanddesigntakesintoaccountlocalwaterlevelelevation,tidalrange,geotechnicalcharacteristics,sealevelriseprojections,andtherangeofplantgrowthwithinthoseconstraints.MonitoringRequirements:ProjectActivitiesThemonitoringreportmustincludethefollowingwheneversubstrateisestablished:MRR.1Planforestablishmentofapermanentwetlandplantcommunityafterprojectconstruction.Planmustincludelong-termmonitoringofemergentvegetationandplansforcontinuedmaintenanceshoulditbecomenecessary.Thisdocumentationmustdemonstratethattheprojectactivityresultsintheaccumulationormaintenanceofsoilcarbonstockandthat,uponcompletionoftheprojectactivities,theprojectareamustmeetthedefinitionofawetland.MRR.2Evidencethattheprojectengineeringanddesigntakesintoaccountlocalwaterlevelelevation,tidalrange,geotechnicalcharacteristics,sealevelriseprojections,andtherangeofplantgrowthwithinthoseconstraints.2.1.1SubstrateEstablishmentWetlandcreationprojectsareformedwithmaterialsincluding,butnotlimitedto,excavatedordredgedsedimentsfromwaterwayssuchasrivers,channels,canals,andembayments.Excavatedsedimentsmustbeplacedinopenwaterareastocreatetidalwetlandsthatsupportemergentplantestablishmentandgrowth.Theprojectactivityofcreatingawetlandfromopenwaterfirstrequirestheprojectproponenttoselectapropersitelocationthatisadjacenttoasedimentsourcewhichcontainsasufficientvolumeandiswithinthetechnicalcapabilitiesofdeliveringtherequiredsedimenttotheprojectsitetomeetdesigncriteria.Itiscommon,butnotrequired,toconstructatemporaryretentiondikearoundtheprojectareatocontainthesedimentmaterialandallowfordewateringandcompactionintheinitialyearsafterprojectconstruction.Thetemporarydikeistypicallyconstructedbymachinerysuchasanexcavator.Oncecomplete,theprojectareaisfilledwithsedimentviahydraulicormechanicaldredge,pipelines,orothermechanicalmethodstotheproperelevationasdeterminedintheengineeringanddesigndocumentsbasedonwaterVM0024,Version1.0SectoralScope14Page7levels(currentandprojected),sedimentcharacteristicsandgeotechnicalanalyses.Theretentiondikesmaybedesignedtonaturallysubsidetoelevationswhichwillallowfortidalexchangeandhydrologicconnectivitybutmayrequiremanualbreachesorremovalaftertheprojectareasedimenthasconsolidatedtotargetlevels.Theprojectproponentmustprovidedocumentationofthesubstrateestablishmentactivitiestodemonstratetheexpectedpost-constructionconditionsintheprojectarea.MonitoringRequirements:SubstrateEstablishmentThemonitoringreportmustincludethefollowingwheneversubstrateisestablished:MRR.3Post-constructionreport,includinganas-builtdrawingshowingplanviewandcrosssectionoftheprojectareaalongwithanestimateofpost-constructionsedimentelevationrelativetoageodeticortidaldatum.MRR.4Aerialimageoftheprojectareawithinthreeyearspriortoconstructionandanaerialimagewithinoneyearpost-construction.2.1.2VegetationEstablishmentTheprojectproponentmayusenaturalcolonization,seedingortransplantationtoaccomplishvegetationcoverage.Dependingonthetimeofyearwhentheprojectconstructioniscompleteorthetimerequiredforsubstratesettlement,plantingorseedingmayneedtooccuratafuturetime.Whenseedingortransplantationoccurs,theprojectproponentmayprovideadescriptionordesigndrawingofpost-plantingorseeding,indicatingthespecies,quantity,andphotographsoftheoperation.Theprojectproponentmustprovidedocumentationofthevegetationestablishmentactivitiestodemonstratethattheactivitiesresultintheaccumulationormaintenanceofsoilcarbonstock.Whentheactivityincludestheestablishmentofwoodyvegetation,ARR+RWErequirementsandmethodsapplytotheproject.SuchARR+RWEestablishmentactivitiesmustnotincludenitrogenfertilization,activepeatlanddrainage,orloweringofthewatertabledepth(eg,drainingorconstructionofchannelsinordertoharvest).ProjectswithanARR+RWEcomponentmustnotincludecommercialharvestofwoodybiomass;theextentofARRrequirementsislimitedtovegetationestablishmentwithnomanagementasreflectedbyapplicabilitycondition6inSection4.VM0024,Version1.0SectoralScope14Page8MonitoringRequirements:VegetationEstablishmentThemonitoringreportmustincludethefollowingwhenevervegetationisestablished:MRR.5Adescriptionofthequantity,species,dateandlocationofvegetationestablishment,andphotographsoftheoperation.MRR.6Aerialimageoftheprojectareaindicatingwherespecieswereestablished.2.2ApplicationOverviewIftheprojectmeetstheapplicabilityconditionsofthismethodology(seeSection4),theprojectproponentmustfollowfivestepstoensurethatthedesignoftheprojectactivitiesandmonitoringmethodsmeettherequirementsofthismethodology.Uponcompletionofthefinalstep,emissionsreductionsand/orremovalsarequantified.2.2.1StepOne:DefinetheProjectThefirststepistoidentifytheboundaryoftheprojectareainaccordancewithSection5,followingthecurrentVCSrequirementsforRWEprojectactivities.SelectingGHGsourcesmayrequireanex-anteanalysisofexpectedemissionsreductionsand/orremovalsfromprojectactivitiestodeterminedeminimissources(seeSection8.4.3).Theprojectareaisthelocationwhereprojectactivitieswillbeimplemented,definedinSection5.3.2.2.2StepTwo:CharacterizeBaselineInthisstep,theprojectproponentusesSection6todemonstratethattheprojectareawouldhaveremainedasopenwater(seeapplicabilitycondition3)andwhetherdredgingwouldhaveoccurredinthebaselinescenario.Itispossiblethatdredgingwouldnothaveoccurredinthebaselinescenario,whichisallowedbythismethodology.Inthecasewheredredgingwouldhaveoccurredinthebaselinescenario,emissionsfromenergyconsumptionmustbequantified(seeSection8.1.1).2.2.3StepThree:PlanProjectandMonitoringActivitiesProjectactivitiesmustadheretotherequirementsestablishedinSection2.1.MonitoringactivitiesmustbedesignedinaccordancewithSection9andaredocumentedinamonitoringplan.MethodsformonitoringaredescribedinAppendicesA,B,C,DandE.Theuseofanydifferentmethodsmustbejustifiedbytheprojectproponentasamethodologydeviation,inaccordancewiththeVCSrules.Theprojectproponentdetermineswhichsourcesaredeminimis,ifany,priortovalidation(seeSections8.4.3.1and8.4.3.2).VM0024,Version1.0SectoralScope14Page92.2.4StepFour:ImplementProjectActivitiesTheprojectmustbeimplementedinaccordancewiththevalidatedprojectdescription.Iftheprojectisagroupedproject,projectactivitiesmaybeimplementedasseparateprojectactivityinstancesratherthanasasingleprojectactivityinstance(seeSection9.5).2.2.5StepFive:MonitorandReportDuringandaftertheimplementationofprojectactivities,theprojectproponentmustusethemonitoringplanasthebasisfordeterminingemissionsreductionsand/orremovals(seeSection9).Forcarbonstocks,allplotsmustbemeasuredpriortothefirstverificationevent.ThedatafrommonitoringareusedinSection8.Forgroupedprojects,thereareadditionalmonitoringrequirements(seeSection9.5).Newprojectactivityinstancesmayrequiremodificationstothemonitoringplan.2.3NotationThenotationusedinthismethodologyismeanttocommunicatethevariablesandmathematicalprocessesusedtoquantifycarbonstock,gasfluxes,andgreenhousegasemissionreductionsovertime.2.3.1EquationsEquationsinthismethodologyarebracketed(eg,[G.1]in-text)andthefullequationsarelocatedinAppendixG.EquationsinAppendixGcontainadditionalinformationincludingcitations,literaturesourcesandcomments.Attimes,similaroperationsareperformedinmultipleplacesondifferentvariables.Ratherthanrepeatingnearlyidenticalequations,asingle,genericequationwiththeplaceholder𝑥or𝑦isgiven.ToestimateeachpoolorGHGsource,therelevantvariableorequationmaybesubstitutedfor𝑥asindicatedwithinthemethodology.2.3.2VariablesVariablesinthismethodologyandtheirunitsareenumeratedinthelistofvariablesinAppendixJ.Formostofthesevariables,theirunitsareintonnesofcarbondioxideequivalents.Thevariables𝑥and𝑦(withandwithoutsubscripts)aresometimesusedasplaceholdervariables—theymaystandinforanothervariableortheresultsofanequationasindicatedbythemethodologytext.2.3.2.1Variable,SubscriptandSuperscriptDesignationsSomevariablesarenotedwithspecialdesignationsthatallowthereadertoimmediatelyidentifyimportantinformationaboutthevariable.Theabsenceofdesignationsalsoimpliesinformationaboutthevariable.VM0024,Version1.0SectoralScope14Page10ThetypesofdesignationsaregiveninTable1,withexamplesoftheuseofthesedesignationsgiveninSection2.2.3.2.DesignationsareonlyprovidedforvariablesinSections8and9.Table1:VariabledesignationsanddesignationdescriptionsDesignationDescriptionQuantityThetypeofquantitythatthevariablerepresents(seeSections2.3.6,2.3.9,2.3.10,2.3.11,2.3.12and2.3.15).AccountingLevelThetypeofaccountinglevelimpliesthatthevariableispartofmonitoring.ChangeIftheΔsymbolisdesignated,thenthequantityrepresentsachangeoveramonitoringperiodratherthancumulativesincetheprojectstartdate.Theabsenceofachangedesignationimpliesthatthequantityiscumulativesincetheprojectstartdateorthatthequantityispartofmonitoringwhichmaynotbecumulativeoroverthemonitoringperiod.SourceThetypeofsourceisspecifiedasanacronyminSection3.1.Theabsenceofsourceimpliesthatthevariableispartofmonitoringorthatthevariableisfrommultiplesources.PeriodThereferencetoamonitoringperiod(seeSection2.3.7).IndexThereferencetoaunit.VM0024,Version1.0SectoralScope14Page112.3.2.2DesignationExamplesTables2,3,4,5and6provideexamplevariableswithdesignationsanddesignationdescriptions.Table2:Examplevariableswithdesignationsanddesignationdescriptions𝐸𝐵Δ𝐸𝐶[𝑚]ComponentDesignationDescription𝐸QuantityThisindicatesanemissionoranemissionreductionand/orremoval(seeSection2.3.14).Uppercasemeanstheunitisatotalfortheprojectarea.𝐵AccountingLevelIndicatestheemissionoranemissionreductionand/orremovaloccurredinthebaselinescenario(seedefinitionforP).ΔChangeTheemissionoremissionreductionand/orremovalisforaperiodoftime.𝐸𝐶SourceTheemissionoremissionreductionand/orremovalisfromenergyconsumption.[𝑚]PeriodThisemissionoremissionreductionand/orremovalisfromthemonitoringperiod.VM0024,Version1.0SectoralScope14Page12Table3:Examplevariableswithdesignationsanddesignationdescriptions𝐹𝑃Δ𝐶𝐻4[𝑚−1]ComponentDesignationDescription𝐹QuantityThisindicatesaflux(seeSection2.3.11).Uppercasemeanstheunitisatotalfortheprojectarea.𝑃AccountingLevelIndicatesthefluxisasaresultoftheproject.ΔChangeThefluxisforaperiodoftime.𝐶𝐻4SourceThefluxisformethane.[𝑚−1]PeriodThisfluxisforthepriormonitoringperiod.Table4:Examplevariableswithdesignationsanddesignationdescriptions𝐸𝐺𝐸𝑅Δ[𝑚=1]ComponentDesignationDescription𝐸QuantityThisindicatesanemissionoranemissionreductionand/orremoval(seeSection2.3.14).Uppercasemeanstheunitisatotalfortheprojectarea.𝐺𝐸𝑅AccountingLevelTheemissionoranemissionreductionand/orremovalconstitutestheGrossEmissionReductions(seedefinitionforGERs).ΔChangeTheemissionoremissionreductionand/orremovalisforaperiodoftime.[𝑚=1]PeriodTheemissionoremissionreductionand/orremovalisforthefirstmonitoringperiod.NotethattheabsenceofaP,BorLintheexamplegiveninTable4aboveindicatestheemissionoremissionreductionand/orremovalisnotspecifictotheproject,baselineorleakage.VM0024,Version1.0SectoralScope14Page13Table5:Examplevariableswithdesignationsanddesignationdescriptions𝐸𝑁𝐸𝑅[𝑚]ComponentDesignationDescription𝐸QuantityThisindicatesanemissionoremissionreductionand/orremoval(seeSection2.3.14).Uppercasemeanstheunitisatotalfortheprojectarea.𝑁𝐸𝑅AccountingLevelTheemissionoremissionreductionand/orremovalisconstitutestheNetEmissionReductions(seedefinitionforNERs).[𝑚]PeriodThisemissionoremissionreductionand/orremovalisforthemonitoringperiod.NotethattheabsenceofaP,BorLindicatestheemissionoremissionreductionand/orremovalisnotspecifictotheproject,baselineorleakage.TheabsenceofaΔindicatestheemissionoremissionreductionand/orremovalisnotoveraperiodoftime,butrathercumulativesincetheprojectstartdate.Table6:Examplevariableswithdesignationsanddesignationdescriptions𝑔𝐵(𝑡𝑦)[𝑚]ComponentDesignationDescription𝑔QuantityThisindicatesaunitofenergy(seeSection2.3.12).Lower-casemeanstheunitispermetrictonneofsediment.𝐵AccountingLevelIndicatestheunitofenergywouldhaveresultedinthebaseline(seedefinitionforP)(𝑡𝑦)IndexTheunitofenergyisfortype𝑡𝑦.Theparenthesesindicatethat𝑡𝑦isanindexratherthanadesignation(suchasPforprojectscenario).[𝑚]PeriodThisunitofenergyisforthemonitoringperiod.NotethattheabsenceofaΔindicatestheunitofenergyisnotoveraperiodoftime,butrathercumulativesincetheprojectstartdate.2.3.3SummationsSummationsusesetnotation.Setsofvariablesareindicatedusingscriptnotation,whichreducesthenumberofvariablesusedaswellasthecomplexityofsummations.VM0024,Version1.0SectoralScope14Page142.3.4StandardDeviationsandVariancesStandarddeviationisindicatedbythe𝜎symbol,withsubscriptsusedtoindicatethequantityforwhichitisestimated.Varianceisindicatedbythe𝜎2symbolandisthesquareofstandarddeviation.StandarddeviationsmaynotnecessarilybeinunitsoftCO2e.2.3.5StandardErrorsEstimatedstandarderrorisindicatedbythe𝑈symbol,withadditionalsubscriptsusedtoindicatethequantityforwhichtheuncertaintyisestimated.StandarderrorsarealwaysinunitsoftCO2e.2.3.6TheoreticalParametersandParameterizedModelsParameterstomodelaredenotedbyvariables,suchasthesurfacefrictionvelocityparameter𝑢∗.Whensuchparametershavea“hat”onthem–suchastheparameter𝑝̂𝐵(𝑡𝑦)–theyrefertoanestimatedvalueratherthanaknownquantity.2.3.7MonitoringPeriodsMonitoringperiodsarenotatedusingbracketedsuperscripts[𝑚].Thefirstmonitoringperiodisdenotedby[𝑚=1],thesecondmonitoringperiod[𝑚=2],andsoforth.Thesesuperscriptsshouldnotbeconfusedwithreferencestoequationsnumbers,asequationnumbersareneverinsuperscript.Alsoseethedefinitionformonitoringperiod.AverificationeventisthereportingandverificationofNERsclaimedforamonitoringperiod.Amonitoringperiodthatis[𝑚=0]denotes“priortotheprojectstartdate.”2.3.8Baseline,ProjectandLeakageEstimatesEstimatesrelatedtobaseline,projectandleakageemissionsreductionsand/orremovalsandcarbonstocksarespecificallydenotedwith𝐵,𝑃and𝐿inthesubscriptsofvariables,respectively.2.3.9AveragesforStocksAveragecarbon(measuredintCO2e/ha)towhichaccountingisappliedisdenotedbyalower-casec,withsubscriptstodifferentiatebetweencarbonpoolsasindicatedinthelistofvariables.Forexample,𝑐𝑃𝑆𝑂𝐶[𝑚]indicatestheaveragecarbonstockinsoilorganiccarbonintheprojectareainmonitoringperiod[𝑚].SubscriptsfromcarbonpoolsareacronymslistedinSection3.1.2.3.10TotalsforStocksTotalcarbon(measuredbytCO2e)towhichaccountingisappliedisdenotedbyacapital𝐶,withsubscriptstodifferentiatebetweencarbonpoolsasindicatedinthelistofvariables.SubscriptsfromcarbonpoolsareacronymslistedinSection3.1.VM0024,Version1.0SectoralScope14Page152.3.11FluxesforMethaneandNitrousOxideFluxesareexpressedinunitsoftCO2eperdaybythevariable𝐹withsubscriptstodifferentiatebetweenGHGsourcesasindicatedinthelistofvariables.FluxesalwayscontainaΔinthesubscriptwhenthefluxemissionsareoverthemonitoringperiod.Forexample,𝐹𝑃𝛥𝐶𝐻4[𝑚]indicatesthemethanefluxintheprojectareainmonitoringperiod[𝑚].SubscriptsfromGHGsourcesareacronymslistedinSection3.1.SomeequationsinAppendicesBandCusealower-case𝑓,signifyingthattheunitsaretCO2eperacreperday.ItisimportanttonotethatalthoughtheunitsforfluxesareintCO2eperday,thisdoesnotimplythatmonitoredfluxeshaveadailyresolution.Monitoringmaybeperiodicorseasonal,asperSection9.2.2.4.1.2.3.12UnitsofEnergyorFuelEnergyorfuelconsumptionisexpressedasatotalorperdifferentunitsasspecifiedinTable10,denotedbyacapital𝐺foratotalandalower-case𝑔perunit(whichmaybemetrictonneofsediment).Forexample,𝐺𝑃Δ𝐹𝐶(𝑡𝑦)[𝑚]indicatesthetotalprojectenergyconsumptionforenergytype(𝑡𝑦)duringmonitoringperiod[𝑚].2.3.13MassesofSedimentSedimenttransportisusedtoestimateenergyconsumptioninSection8.1.1,denotedoveramonitoringperiodasatotalwithanuppercase𝑀.Forexample,𝑀𝑃Δ[𝑚]indicatesthetotalsedimenttransportasaresultofprojectactivitiesduringmonitoringperiod[𝑚].Massesofsedimentarealwaysquantifiedasmetrictonnes.2.3.14EmissionsReductionsand/orRemovalsTotalemissionsreductionsand/orremovals(measuredastCO2e)fromaccountingaredenotedbyacapital𝐸,withsubscriptstodifferentiatebetweencarbonpoolsasindicatedinthelistofvariables.Forexample,𝐸𝑃𝛥[𝑚]indicatestheprojectemissionsreductionsand/orremovalsduringmonitoringperiod[𝑚].SubscriptsfromcarbonpoolsandGHGsourcesareacronymslistedinSection3.1.Emissionsarerepresentedbynegative𝐸values,whileemissionsremovalsarerepresentedbypositive𝐸values.2.3.15QuantifiedUncertaintiesUncertaintiesinmajorcarbonpoolsorfluxesareexpressedasstandarderrorofatotal(measuredbytCO2eortCO2e/day,respectively)andaredenotedusingacapitalletter𝑈.Forexample,𝑈𝑃𝛥𝐶𝑆[𝑚]isusedtoindicatetheuncertaintyinestimatedcarbonstocksatmonitoringperiod[𝑚].Becausethismethodology’sgasfluxmeasurementmethods(describedinAppendixBandAppendixC)areinherentlyVM0024,Version1.0SectoralScope14Page16conservative,nouncertaintyiscalculatedformethaneandnitrousoxidegasfluxes.Thus,uncertaintiesarecalculatedforcarbonstockestimatesonly.2.4DocumentationRequirements2.4.1ProjectDescriptionRequirementsToensuretheprojectmeetstherequirementssetoutinthemethodology,thismethodologyincludesProjectDescriptionRequirements(PDRs).TheprojectproponentmustprovideevidenceanddocumentationforeachPDR.PDRsarelistedineachsectionofthismethodologyandinAppendixK.ProjectproponentsmustnotethatinadditiontothePDRssetoutinthismethodology,theprojectmustadheretoallVCSruleswhenapplyingthismethodology(ie,thePDRscoveralltherequirementsofthemethodology,buttheydonotnecessarilycovereachandeveryVCSrequirementrelevanttotheproject).2.4.2MonitoringReportRequirementsToensuretheproject’scompliancewiththemethodology,thismethodologyincludesMonitoringReportRequirements(MRRs).TheprojectproponentmustprovideevidenceanddocumentationforeachMRR.MRRsarelistedineachsectionofthismethodologyandinAppendixL.2.5UnitsversusResolutionofEmissionsReductionsand/orRemovalsAccountingThemethodologyaccountsforemissionreductionsand/orremovalsusingdailyunitsinSection8.Accountingisspecifiedbydaytofacilitateintra-annualmonitoringeventsandtheverificationofmonitoringperiodsthatmayspanmoreorlessthanexactlyasingleyear.Althoughemissionsreductionsand/orremovalsarecalculatedonadailybasis,theymaynotbemeasuredormonitoredonadailybasis.TherequirementsinSection9andinAppendicesB,C,DandEspecifythatmeasurementsaretakenperiodicallythroughoutthemonitoringperiod,andthedurationorintervalofthosemeasurementsdoesnotneedtobedaily.3DEFINITIONSInadditiontothedefinitionssetoutinVCSdocumentProgramDefinitions,thefollowingdefinitionsapplytothismethodology:AccretionDepthVerticalmeasurementofaccumulatedsoilmaterialfrom𝑡[𝑚−1]to𝑡[𝑚]BaselineEmissionsForanymonitoringperiod,baselineemissions𝐸𝐵𝛥[𝑚]areasumofestimatedemissionsoverselectedcarbonpoolsduringthetimebetweentwoverificationeventsVM0024,Version1.0SectoralScope14Page17BaselineReevaluationRevisionofthebaselinescenariowhichoccursevery10yearsBufferReleaseAperiodicreleaseofbuffercreditsfromtheAFOLUpooledbufferaccountChamberSamplingTypeAtypeoftemporalsampleusingstaticchambersthatiseitherpeak,seasonal,ormonthly(seeSection9.2.2.4.1)CoarseRootArootgreaterthanorequalto2mmindiameterCovariateAvariablepossiblypredictiveoftheoutcomeunderstudy.Synonymouswiththetermproxy,asdefinedinVCSdocumentProgramDefinitionsdeminimisConsideredanegligiblesourceofemissions(<5%oftotalGHGbenefitgeneratedbytheproject)andthereforenotaccountedfor(seeSection8.4.3)DegradedWetlandAreathatpreviouslymetthedefinitionofawetland,butnownolongermeetsthatdefinitionduetodisruptionsinnormalhydrologicalandecologicalprocessesandlinkages(ie,thewetlandconvertedtoopenwater,orsimilardegradedstate,inresponsetoimpairedsedimentsupply,sealevelrise,impairedwaterquality,orsimilarreason).Adegradedwetlandmayincludeareasofopenwater.DirectMeasurementAmethodusedtoquantifyenergyconsumptionbymeasuringthevolumeoffuelconsumed(seeSection9.2.4.1)DredgingTheremovalorexcavationofbottomsedimentsfromanaquaticenvironmentforthecreationormaintenanceofwaterwaysEbullitionThesuddenreleasetotheatmosphereofbubblesofgas(usuallymethane)fromsubmergedsedimentEddyCovarianceSamplingTypeAtypeoftemporalsampleusingeddycovariancethatiseitherpeakperiodic,peakcumulative,seasonal,ormonthly(seeSection9.2.2.4.2)VM0024,Version1.0SectoralScope14Page18EddyCovarianceAmicrometeorologicaltechniquetoestimatefluxofheat,water,atmospherictracegasesandpollutantsthatreliesonturbulencetocalculatefluxesEnergyTypeAtypeofenergylistedinTable10EstuarineAtidalwaterbodyorwetlandwithmixingoffreshand(ocean-derived)saltwater,wheresalinityisgreaterthanorequalto0.5ppt(partsperthousand)duringtheperiodofaverageannuallowflowFixedSoilSampleDepthAtthetimeofprojectvalidation,afixeddepthforsoilsamplingoftheoriginalprojectsoilisdefinedbytheprojectproponent,whichcannotexceed100cm.Theonlytimewhenthefixedsampledepthmaybeexceedediswhenaccretiondepthismeasuredfrom𝑡[𝑚−1]to𝑡[𝑚].Foranymonitoringevent,atotalsampledepth(forcarbonstock)cannotexceedthepre-definedfixedsoilsampledepthandtheaccretiondepthfromthecurrentandpreviousmonitoringevent.FluxAflowofgasintotheatmosphereexpressedasarateofmassperunittimeandarea(accountedforintermsoftCO2e/ac/day)GrossGHGEmissionReductionsandRemovals(GERs)Tonnesofcarbondioxideequivalent(tCO2e)emissionsthatarereducedorremovedfromtheatmosphereduetoprojectactivities,givenasthedifferencebetweenbaselineandprojectemissionsoremissionsreductionsand/orremovals,minusemissionsfromleakage(seeSections8.1,8.2and8.3)HerbaceousMarshWetlandthatisperiodicallyfloodedandgenerallycharacterizedbyagrowthofgrasses,sedges,cattailsandrushesHydrologicallyConnectedAreasTwoormoreareaswhichmaysharematter,energy,andorganismsasaresultofwatermovementMonitoringPeriodAnintervaloftimefollowingtheprojectstartdateanddesignatedforsystematicallyverifyingprojectclaimsofGHGemissionsreductionsand/orremovals.Specifically,anintervaloftimefrom𝑡[𝑚−1]to𝑡[𝑚]where𝑡[𝑚−1]≥0(theprojectcreditingperiodstartdate)and𝑡[𝑚−1]<𝑡[𝑚].Thelengthofthemonitoringperiodis𝑡[𝑚]−𝑡[𝑚−1]where𝑚denotesthenumberofanysinglemonitoringperiodand𝑡thenumberofdaysaftertheprojectcreditingperiodstartdatethatistheendofthemonitoringperiod.Amonitoringperiodthatis[𝑚=0]denotes“priortotheprojectstartdate.”VM0024,Version1.0SectoralScope14Page19NetGHGEmissionReductionsand/orRemovals(NERs)Tonnesofcarbondioxideequivalent(tCO2e)emissionsthatarereducedorremovedfromtheatmosphereduetoprojectactivities,givenasGERsadjustedforcertaindeductionsandadditions(seeSections8.4.1,8.4.2.1and8.4.2.3)Non-TreeVegetationsuchasshrubs,grasses,sedgesandotherherbaceousplantswhichdoesnotmeetthedefinitionofatreeOpenWaterWaterwith90%ofitsareahavingadepththatdoesnotsupportemergentvegetation,andnomorethan10%sparsevegetation.Waterwithdensevegetationisnotconsideredopenwater.OriginalProjectSoilSoilresultingfromtheemplacementofsedimentsattheprojectstartdatePermanentPlotAplotwithfixedareaandlocationusedtorepeatedlymeasurechangeincarbonstocksovertimeProgrammaticDredgingProjectRoutine,ongoingdredgingoftenassociatedwithmaintainingnavigabilityProjectAreaThegeographicareacontrolledbytheprojectproponentwhereprojectactivitiesareimplementedProjectEmissionsorEmissionsReductionsand/orRemovalsProjectemissionsoremissionsreductionsand/orremovalsforanymonitoringperiod[𝑚]asestimatedbytheeventsofaccretion,fluxandenergyconsumptionProjectPerformanceAcomparisonofex-postcreditgenerationtoex-anteestimatesovertimeReferenceAreaAnareadelineatedbytheprojectproponentusedtoestimateemissionsfrommethaneebullitioninthebaselineSamplingPeriodTheperiodofmonthsforstaticchamberoreddycovariancemeasurementofmethanefluxcorrespondingtoasampletype(seeSection9.2.2.4.2)SingleEventDredgingProjectAdredgingeventassociatedwithadiscreteplannedprojectVM0024,Version1.0SectoralScope14Page20SoilUnconsolidatedmineralororganicmaterialontheimmediatesurfaceoftheEarththatservesasanaturalmediumforthegrowthoflandplantsSoilOrganicMatterTheorganicmatterthatmaybefoundinsoil,notincludingcoarserootsSubstrateEstablishmentAddingsedimenttoanareadevoidofsediment,ortoaddsedimentinanopenwatersystemtoraisethelandelevationsuchthatemergentplantscancolonizeTreeAperennialplantcontainingsecondarywoodandthatisatleastthreemeterstallatmaturityTidalAwaterbodyorwetlandexposedtoverticalwaterlevelfluctuationscorrespondingtolunar-solargravitationalcycles.Theareamayhavefreshwaterorsaltwatercharacteristics(eg,freshwaterriverineandlacustrinesystemsmayexperiencetidalinfluencewithoutocean-derivedsalts).VegetationEstablishmentTheprocessofseedingortransplantingvegetationtothesoil,orprovidingadequateconditionsfornaturalplantcolonizationVerificationEventThereportingandverificationofNERsclaimedforamonitoringperiodWaterImpoundmentAbodyofwatercreatedorstoredbyimpoundmentstructures,suchasdams,dikesandleveesWaterTableThesurfacewherewaterpressureinthesoilisequaltotheatmosphericpressure3.1AcronymsAGAbovegroundAGNTAbovegroundnon-treeAGTAbovegroundtreeARRAfforestation,reforestation,andrevegetationASActivity-shiftingBBaselinescenarioBAAFOLUpooledbufferaccountVM0024,Version1.0SectoralScope14Page21BGBelowgroundBGNTBelowgroundnon-treeBGTBelowgroundtreeBRBufferreleaseCFCarbonfractionCH4MethaneCO2CarbondioxideCO2eCarbondioxideequivalentCSCarbonstockCWACleanWaterActECEnergyconsumptionGERsGrossGHGEmissionsReductionsand/orRemovalsGHGGreenhousegasGISGeographicInformationSystemGPSGlobalPositioningSystemLLeakageLQDLiquidMEMarket-effectsMRRMonitoringReportRequirementNERsNetGHGEmissionReductionsand/orRemovalsNOAANationalOceanicandAtmosphericAdministrationNPDESNationalPollutantDischargeEliminationSystemN2ONitrousoxidePProjectscenarioPAIProjectActivityInstancePAIAProjectActivityInstanceAreaPDProjectDescriptionPDRProjectDescriptionrequirementPMProxymethodforenergyconsumptionSEStandarderrorVM0024,Version1.0SectoralScope14Page22SLDSolidSPCSpeciesUUncertaintyUSACEU.S.ArmyCorpsofEngineersUSEPAU.S.EnvironmentalProtectionAgencyUSFWSU.S.FishandWildlifeServiceVCSVerifiedCarbonStandardVCUsVerifiedCarbonUnitsVVBValidation/VerificationBodyWRWetlandrestoration4APPLICABILITYCONDITIONSThismethodologyappliestoprojectactivitiesthatcreatetidalorestuarinewetlandsthroughsubstrateestablishmentand/orvegetationestablishment.Thismethodologyisapplicableunderthefollowingconditions:1Projectactivitiesmustincludeactivitiesintendedtocreatenewwetlandsincoastalecosystemsthroughsubstrateestablishment,vegetationestablishment,orboth.2Projectactivitiesmustnotactivelylowerthewatertabledepth.3Theprojectareamustmeetthedefinitionsoftidalorestuarine,openwater,anddegradedwetlandbeforeprojectactivitiesareimplementedandwouldhaveremainedopenwaterintheabsenceoftheprojectactivities(seeSection6.1).4Theprojectareamustbeentirelywithintidalorestuarineareaswithinthecoastalzoneboundary,1andmustmeetthedefinitionofWatersoftheUnitedStates,2excludingtheGreatLakes.31Areaswithinthecoastalzoneboundary,asdefinedbyeachstateoftheUS.RefertoNOAA’sOceanandCoastalResourcewebsitesorindividualcoastalzonemanagementmaps:http://coastalmanagement.noaa.gov/mystate/welcome.htmlandhttp://coastalmanagement.noaa.gov/mystate/docs/StateCZBoundaries.pdf.2FordefinitionofWatersoftheUnitedStates,referto:http://www.epa.gov/region6/6en/w/watersus.htm.3GreatLakes:ThegeographicscopedoesnotincludeportionsofMinnesota,Wisconsin,Michigan,Illinois,Indiana,Ohio,PennsylvaniaandNewYorkwhicharehydrologicallyconnectedtotheGreatLakes.VM0024,Version1.0SectoralScope14Page236WhenARR+RWEprojectactivitiesareimplementedandincludetheestablishmentofwoodyvegetation,theremustnotbecommercialharvestactivities,nitrogenfertilizationoractivepeatlanddrainage(seeSection2.1.2).7Theprojectproponentmusthaveobtainedthenecessarypermitstodemonstratethattheprojectwillnothaveasignificantnegativeimpactonhydrologicallyconnectedareas(seeSection8.3.3).Thisapplicabilityconditionmustbesatisfiedatvalidationoratthefirstverificationevent.PDRequirements:ApplicabilityConditionsTheprojectdescriptionmustincludethefollowing:PDR.1Foreachapplicabilitycondition,credibleevidenceintheformofanalysis,documentationorthird-partyreportstosatisfythecondition.5PROJECTBOUNDARY5.1SelectingGHGSourcesThegreenhousegasesincludedin,andexcludedfrom,theprojectboundaryaresetoutinTable7below.VM0024,Version1.0SectoralScope14Page24Table7:GHGsourcesSourceGasIncluded?Justification/ExplanationAffectedbyProject?BaselineDredging,transportandre-handlingfornavigabilityormaintenanceCO2YesEmittedbyfuelcombustionregardlessoffueltype.NoCH4YesN2OYesOtherNoneMethaneebullitionCO2NoMethanebubblingmayoccurinopenwater;thequantitythereofmaybeincludedandmonitoredifdesired.NoCH4OptionalN2ONoOtherNoneProjectDredging,transportandplacementforprojectactivitiesCO2YesEmittedbyfuelcombustionregardlessoffueltype.YesCH4YesN2OYesOtherNoneHabitatregenerationCO2YesMajorpoolconsidered.YesCH4YesWetlandcreationmayresultinanincreaseinCH4emissionsincomparisontotheopenwaterbaselinescenario.N2OYes,ifsignificantWetlandcreationmayresultinanincreaseinN2Oemissionsincomparisontotheopenwaterbaselinescenario.OtherNonePDRequirements:GHGSourcesTheprojectdescriptionmustincludethefollowing:PDR.2AlistoftheincludedandexcludedGHGsources.VM0024,Version1.0SectoralScope14Page255.2SelectingCarbonPoolsThecarbonpoolsincludedinorexcludedfromtheprojectboundaryareshowninTable8below.Table8:CarbonpoolsPoolIncluded?Relevantto:Justification/CommentsAbovegroundtreebiomassIncludedProjectMajorcarbonpoolrequiredbyVCSAFOLURequirements.AbovegroundnontreebiomassOptionalProjectMaybeconservativelyexcluded.BelowgroundbiomassOptionalProjectMaybeconservativelyexcluded,butrecommendedwhenapplicableroot-shootratiosareavailable.Onlyapplicableinforestedorwoodyhabitats,notherbaceousones.LitterExcluded-Conservativelyexcluded.DeadwoodExcluded-Conservativelyexcluded.SoilorganiccarbonIncludedProjectMajorcarbonpoolexpectedtoincreaseduetoprojectactivities.WoodproductsExcluded-Conservativelyexcluded.Notexpectedtobeasignificantpool.Optionalpoolsmayalwaysbeconservativelyexcluded.Thebaselinescenarioallowsforupto10%vegetationcover(seedefinitionofopenwaterinSection3),butitisconservativetoexcludetheCO2emissionsthatoccurfromthelikelylossofwetlands,CH4emissionsfromongoingbiogeochemicalactivityintheremainingvegetationormethaneebullitionthatwouldbeexpectedtooccurinthebaselinescenario.Thesetofselectedcarbonpoolsisdenotedby𝒞.PDRequirements:CarbonPoolsTheprojectdescriptionmustincludethefollowing:PDR.3Alistoftheselectedandexcludedcarbonpools.5.2.1AllochthonousCarboninSoilOrganicCarbonPoolAutochthonouscarbonsequestration,resultingfromthegrowthofvegetationintheprojectarea,mustbeestimatedseparatelyfromallochthonouscarbon,wherethereisreasonableevidencethatthemassofcarbonthatisimportedtothesiteexceedsthatwhichisexported.ThefateoftransportedorganicmatterVM0024,Version1.0SectoralScope14Page26mustbeconservativelyassessed,whererelevant.Theoppositeconditionalsomayexist,wherethemassofexportedcarbonfromthegrowthofvegetationasaresultofprojectactivitiesisgreaterthanthemassofcarbonthatwouldbewashedouttoseaunderbaselineconditions.5.2.1.1CriteriaforProjectsLocatedWithinLouisianaForprojectslocatedwithinLouisiana,andnotwithinthedirectinfluenceofariverdiversionorrivermouth,projectproponentsarenotrequiredtoaccountforallochthonouscarbonimportbecausesuchimporthasbeendemonstratedtobenegligible(seeAppendixI).Whereriverdiversionsareimplementedtoenhancegrowthandmaintenanceofcreatedwetlands,andwheresuchriverdiversionsaredesignedtoimportsubstantialquantitiesofmineral-associatedcarbon,theprojectproponentmustjustifytheexclusionofallochthonouscarbonusingthecriterialistedinSection5.2.1.2,ormustquantifythecarbonimportpertheproceduresdescribedinSection9.2.6.Wherethereexistsanartificialwaterimpoundmentwhichaffectsthehydrologicalregimeoftheprojectarea,theprojectproponentmustjustifytheexclusionofallochthonouscarbonusingthecriterialistedinSection5.2.1.2,ormustquantifythecarbonimportpertheproceduresdescribedinSection9.2.6.5.2.1.2CriteriaforProjectsLocatedOutsideLouisianaForprojectslocatedoutsideLouisiana,theprojectproponentmayconservativelyexcludeallochthonouscarbonbyusingpubliclyavailableregionalcasestudies,peer-reviewedliteratureorregionalmodelstojustifythattheimportoforganicmatterwillnotcausecarbonaccretionestimatestobesignificantlyoverestimated.ThejustificationandevidencemustbecommensuratewiththejustificationprovidedinAppendixIforprojectslocatedwithinLouisiana.Thejustificationmustincludethefollowingevidencewhichmustbeapplicabletothegeomorphologyoftheprojectarea:Descriptionofthedominantsourcesofsedimentswithrespecttoexternal(ie,fluvial)inputsorinternal(withinestuaryortidalfreshwaterwetland)recycling.Proximityoftheprojectareawithrespecttodirectfluvialinputsornear-shoresedimentsources.Anannualmassestimateofthetotalcarbonimportedorexportedfromtheestuaryortidalfreshwaterwetlandwheretheprojectareaislocated.Descriptionoftheprojectarea/regionwithrespecttotidalenergy(suchasflood-orebb-dominated)ortidaldispersiveflux.Underebb-dominatedconditions,‘outwelling’ortransferofcarbonfromthetidalwetlandtotheoceanwouldbereasonablyexpected.Iftheprojectproponentcannotdemonstratethatallochthonouscarbonsedimentationintheprojectareacanbeconservativelyexcluded,monitoringofallochthonouscarbonmustfollowthemethodsinSection9.2.6,wheremarkerhorizonsareusedtodifferentiatebetweencarbonaccretedintheprojectareaasaresultofprojectactivitiesandallochthonouscarbonimportedintotheprojectarea.VM0024,Version1.0SectoralScope14Page27PDRequirements:AllochthonousCarboninSoilOrganicCarbonPoolForprojectslocatedoutsideLouisiana,theprojectdescriptionmustincludethefollowinginordertodemonstratethatallochthonouscarbonimportcanbeconservativelyignored:PDR.4Narrativejustificationthattheimportoforganicmatterwillnotcausecarbonaccretionestimatestobesignificantlyoverestimatedincludingcitationstocasestudies,literatureormodels.PDR.5Descriptionofthedominantsourcesofsedimentswithrespecttoexternal(ie,fluvial)inputsorinternal(withinestuaryortidalfreshwaterwetland)recycling.PDR.6Proximityoftheprojectareawithrespecttodirectfluvialinputsornear-shoresedimentsources.PDR.7Anannualmassestimateofthetotalcarbonimportedorexportedfromtheestuaryortidalfreshwaterwetlandwheretheprojectislocated.PDR.8Descriptionoftheprojectareawithrespecttotidalenergy(suchasflood-orebb-dominated)ortidaldispersiveflux.5.3DelineatingSpatialBoundariesofProjectAreaThespatialboundariesoftheprojectmustbedelineatedusingGIStechniques.Theprojectareamayconsistofmultipleprojectactivityinstances.Thatis,theprojectareaneednotbespatiallycontiguousandmaycompriseoneparcelormultipleadjacentornon-adjacentparcels.TheprojectproponentmustdemonstratecontroloftheprojectareaasdescribedinthemostrecentversionoftheVCSAFOLURequirements.Attheprojectstartdate,theentireprojectareamustmeetthedefinitionofopenwater(seeSection3fordefinition).Theprojectproponentalsomustdemonstratethattheprojectareameetsthedefinitionoftidalorestuarineopenwaterwetlandswhichoncesupportedemergentwetlandvegetation–suchasfreshwaterorsaltwaterherbaceousmarsh,scrub-shruborforest(eg,mangrove,cypress-tupeloswamp)–butwhicharedegraded(priortotheimplementationofprojectactivities)toafloodedorsubtidalcondition.Inordertodemonstratethattheprojectareaislocatedinatidalorestuarinesystem,theprojectproponentmustprovideoneofthefollowing:Federalorstateagencysupportingdocumentationdescribingtheproject’stidalorsalinitydesignation.Forexample,theNationalWetlandInventoryWetlandsMapperprovidesbothtidalandsalinitydescriptorsormodifiersforthecoastalareasoftheUnitedStates,orVM0024,Version1.0SectoralScope14Page28Peer-reviewedliteratureshowingtheproximityoftheprojectareatostudyareasandtheevidenceoftidalinfluenceorpresenceofsalinitygreaterthan0.5ppt(partsperthousand),orThelocationofthetidegageadjacenttotheprojectareaanddatawhichshoweitheradiscerniblediurnal,semi-diurnalormixed-tidesignal;salinitygreaterthan0.5ppt(partsperthousand)duringtheyear;orevidenceofatidaldatumdesignation(MLLW,MSL,MHHW,etc.).Further,theprojectproponentmustdemonstratecompliancewiththemostcurrentversionoftheVCSAFOLURequirementsregardingtheclearingofnativeecosystems.Additionally,theprojectproponentmustassessthehydrologicalconnectivityoftheprojectareatosurroundingareasusingtheproceduresdescribedinSection8.3.1anddemonstratethattherearenonegativeimpactstohydrologicallyconnectedareasandthatanyadjacenthydrologicallyconnectedareasarenotlikelytoaffecttheGHGemissionsoftheprojectarea.Sealevelrisemayaffecttheprojectareabyconvertingwetlandsintoshallowopenwateriftherateofsealevelriseexceedstherateofsoilelevationgain.Becausetheprojectboundariesarefixedthroughoutthelifetimeoftheproject,anylateralmovementofwetlandsintheprojectareacausedbysealevelriseisinherentlycapturedbymonitoringactivities(seeSection9).However,giventhesignificantpotentialimpactofsealevelriseonconstructedwetlandsinthecoastalzone,theproponentmustdemonstratethattheproject’sspatialboundariesandwetlandestablishmentactivitieshavetakenintoaccountprojectionsoffuturesealevelrise.Inparticular,theprojectproponentmustreviewcurrenttechnicalscientificliteraturerelevanttothearea(consideringsourcessuchasthemostrecentIPCCassessmentreportandpeer-reviewedliterature),documentexpectedsealevelriseinthevicinityoftheprojectarea,anddemonstratethatwetlandconstructionactivitieshavebeendesignedtowithstandexpectedsealevelrise.Inaddition,theprojectdescriptionmustincludethefollowing:Adescriptionoftheexistingnaturalorconstructedmeasuresforensuringresiliencetosealevelrise(eg,howexistinglandformsorconstructedfeaturesofferphysicalprotectionoftheprojectarea).Adescriptionofthepost-constructionsoilsurfaceelevationrelativetomeansealevel,takingintoaccountestimatedaccretion,subsidenceandsealevelriseparameterswithintheprojectarea.Afterprojectactivitiescommence,itispossiblethatoneormoretidalchannelswilldevelopwithintheprojectarea.Suchareasmustremainpartoftheprojectareaandmustnotbeexcluded.VM0024,Version1.0SectoralScope14Page29PDRequirements:DelineatingSpatialBoundariesTheprojectdescriptionmustincludethefollowing:PDR.9GIS-basedmapsoftheprojectareawith,ataminimum,thefeatureslistedinSection5.3above.PDR.10Documentationthattheentireprojectareais/wasopenwaterattheprojectstartdate.PDR.11Evidencethattheprojectareameetsthedefinitionoftidalorestuarineopenwaterwetlandswhichoncesupportedemergentwetlandvegetation.PDR.12EvidencethattheprojectareaiscompliantwiththemostcurrentversionoftheVCSAFOLURequirementsregardingtheclearingofnativeecosystems.PDR.13Ifmethaneemissionsareincludedinthebaselinescenario,anestimateoftheaveragewaterdepthintheprojectareapriortotheimplementationofprojectactivities(seeSection6.3).PDR.14Documentationthattheprojectproponenthascontrolovertheprojectarea,inaccordancewiththemostrecentversionoftheVCSAFOLURequirements.PDR.15DocumentationoftheassessmentofeffectstohydrologicallyconnectedareasasfurtherdescribedinSection8.3.1.PDR.16Documentationofprojectedsealevelriseinthevicinityoftheprojectarea,evidencethatexistinglandformsorconstructedfeaturesareexpectedtowithstandprojectsealevelrise,andadescriptionofthepost-constructionsoilsurfaceelevationrelativetomeansealevel.5.4DefiningTemporalProjectBoundariesTemporalprojectboundariesdefinetheperiodoftimewhentheprojectareawasunderthecontroloftheprojectproponentandareusedtodeterminethedatesatwhichprojectactivities,monitoringactivities,andbaselinereevaluationmustoccur.Thefollowingtemporalprojectboundariesmustbedefined:Theprojectstartdate.Thelengthoftheprojectcreditingperiod.Thedatesandperiodicityofbaselinereevaluationandmonitoringperiods.AbaselinereevaluationaftertheprojectstartdateandmonitoringmustconformtotheVCSrules.VM0024,Version1.0SectoralScope14Page30Withinsixmonthsoftheprojectcreditingperiodstartdateandpriortothefirstverificationevent,themonitoringequipmentmustbeinstalledperSections9.2.1.1and9.2.2.4.Upontheprojectstartdate,recordsofenergyconsumptionmustbemaintainedpertherequirementsofSection9.2.4.Fortheprojectduration,theprojectproponentmustreevaluatethebaselineinaccordancewiththeVCSrules(seeSection6.4).Theprojectproponentmustdocumenttheplanneddurationofmonitoringperiodsandcorrespondingfrequencyofverificationevents.PDRequirements:TemporalProjectBoundariesTheprojectdescriptionmustincludethefollowing:PDR.17Theprojectstartdate.PDR.18Theprojectcreditingperiodstartdateandlength.PDR.19Thedatebywhichmandatorybaselinereassessmentmustoccuraftertheprojectstartdate.PDR.20Atimelineincludingthefirstanticipatedmonitoringperiodshowingwhenprojectactivitieswillbeimplemented.PDR.21Atimelineforanticipatedsubsequentmonitoringperiods.MonitoringRequirements:TemporalProjectBoundariesThemonitoringreportmustincludethefollowing:MRR.7Theprojectstartdate.MRR.8MRR.9Theprojectcreditingperiodstartdateandlength.EvidenceofthestartofmonitoringperthefrequencyrequirementsdescribedinSections5.4,9.2.1.1,9.2.2.4,and9.2.3.4.VM0024,Version1.0SectoralScope14Page315.5GroupedProjectsInadditiontotherequirementsforgroupedprojectssetoutintheVCSStandard,theprojectproponentmustestablishcriteriaatthetimeofprojectvalidationthatincludethefollowing:Landscapeconfiguration:Allprojectactivityinstancesmustbesimilarwithrespecttobiogeochemicalprocesses,whichareaffectedprincipallybysuchfactorsasvegetationtype,salinity,andpresenceorabsenceofexternalnitrateloading.Monitoringmethods:Inordertofacilitatetheconsistentaccountingofallprojectactivityinstanceswithinasingleproject,allprojectactivityinstancesmustemploythesamemethodstomonitoremissionsreductionsandremovals(eg,directmeasurement,modelsfromliterature,orproxymodel)foreachincludedGHGsource.Similarly,allprojectactivityinstancesmustemploythesamemodelingassumptionsandsamplingprotocolsfortheselectedmonitoringmethods.Additionalmonitoringrequirementsmustalsobefollowedforgroupedprojects,perSection9.5.Thesetofallprojectactivityinstancesisdenotedby𝒢.PDRequirements:GroupedProjectsIfgroupedprojectsaredeveloped,theprojectdescriptionmustincludethefollowing,aspertherequirementssetoutintheVCSStandard:PDR.22Alistanddescriptionsofallenrolledprojectactivityinstancesinthegroupatthetimeofvalidation.PDR.23Amapofthedesignatedgeographicareawithinwhichallprojectactivityinstancesinthegroupmaybelocated,indicatingthatallinstancesareinthesameregion.PDR.24Alistofeligibilitycriteriaforprojectactivityinstances.VM0024,Version1.0SectoralScope14Page32MonitoringRequirements:GroupedProjectsIfgroupedprojectsaredeveloped,themonitoringreportmustincludethefollowing,aspertherequirementssetoutintheVCSStandard:MRR.10Alistanddescriptionofallprojectactivityinstancesintheproject.MRR.11Amapoftheboundariesofallprojectactivityinstancesintheprojectdemonstratingthatallinstancesareinthedesignatedgeographicregion.6PROCEDUREFORDETERMININGTHEBASELINESCENARIO6.1DemonstratingtheMostPlausibleBaselineScenarioTheprojectproponentmustconsiderarangeofalternativelanduseswhendeterminingthebaselinescenarioforbothRWEandARR+RWEprojects.Possiblebaselinescenariosmayincludeacontinuationofopenwater,additionalwetlandlossinaccordancewithlong-termtrends,naturalreestablishmentofthewetlandoralternativewetlandreestablishmentactivitiesnotassociatedwithcarbonfinance.Theprojectdescriptionmustincludeacomparativeassessmentoftheimplementationbarriersandnetbenefitsfacedbytheprojectanditsalternatives.Aspertheapplicabilityconditions,thismethodologyisonlyapplicablewherethefollowingbaselinescenarioisidentified:Theprojectareamustmeetthedefinitionsoftidalorestuarine,openwater,anddegradedwetlandbeforeprojectactivitiesareimplementedandwouldhaveremainedopenwaterintheabsenceoftheprojectactivities.TheprojectproponentmustuseoneoftheanalysismethodsdescribedinSection6.1.1or6.1.2todemonstratethebaselinescenario.Todemonstratethatthisapplicabilityconditionhasbeenmet,itisrecommendedthattheprojectproponentacquiredatafromUSGSdatasets(ie,Couvillion2012)ortheU.S.Fish&WildlifeService’sNationalWetlandsInventorytoshowthattheprojectareahistoricallymetthedefinitionofawetlandandthusthedefinitionofdegradedwetland.Iftheapplicabilityconditionismetasrequiredunderthemethodology,theonlypossiblebaselinescenarioisopenwater.Tosupportthechosenanalysismethod,theprojectproponentalsomustprovideevidenceoflong-termwaterlevelchangesintheprojectareawithminimumrecordlengthof20yearsofhydrologicaldata(eg,watertable,waterlevel,sealevel).Theevidencemustdemonstratethelong-termnatureofthedocumentedpatternofwetlandloss.VM0024,Version1.0SectoralScope14Page33Theprojectproponentmustalsodemonstratethatwetlandcreationisunlikelytooccurintheprojectareabaseduponhistoricalevidenceoflandaccretionandloss.PDRequirements:BaselineScenarioTheprojectdescriptionmustincludethefollowing:PDR.25Resultsofacomparativeassessmentoftheimplementationbarriersandnetbenefitsfacedbytheprojectanditsalternatives,andjustificationforthemostplausiblebaselinescenario.PDR.26Documentationtodemonstratethattheprojectareapreviouslymetthedefinitionofawetlandbeforeconvertingtoopenwater.Documentationmustincludehydrologicaldatatoshowevidenceoflong-termpatternsofwetlandloss.PDR.27Theselectedmethodfordemonstratingthebaselinescenariointheprojectarea(regionallandusechangeorspatialanalysis).6.1.1UsingaPublishedRegionalLandUseChangeAnalysisThebaselinescenariomaybedemonstratedthroughdocumentationregardinglandlossratesinthehydrologicbasininwhichtheprojectareaislocated.DocumentationmustbebasedonLandsatorothersatelliteoraerialimagerythatshowsatrendofcontinuedlandlossorstaticconditioninthebasinforaperiodofatleast10yearspriortotheprojectstartdateorthedateofbaselinereevaluation(seeSection6.4).ExamplesincludetheUSGeologicSurveypublication‘LandAreaChangeinCoastalLouisianafrom1932to2010’,ortheUSFish&WildlifeService,NationalWetlandsInventory,‘WetlandsStatusandTrends’reportseries.Thedocumentationmustbefrompeer-reviewedliterature,governmentpublicationorthirdpartypublicationandmustbepubliclyavailable.Theprojectproponentmustalsoidentifytheboundaryoftheprojectareaanditsproximitytoanyexistingand/orfuturewatermanagementactivities(eg,riverdiversions)whichcouldinfluencetheprojectarea.Ifwatermanagementactivitiesareidentified(eitherexistingorplannedoverthenext10years),theprojectproponentmustaddressthepotentialforland-buildingbasedonsignificantdepositionofsedimentintheprojectareaintheabsenceofprojectactivities.Anupdatedfigureofwatermanagementactivitiesmustalsobeidentifiedinthebaselinereassessment.VM0024,Version1.0SectoralScope14Page34PDRequirements:RegionalLandUseChangeforBaselineScenarioTheprojectdescriptionmustincludethefollowing:PDR.28Areferencetothedocumentprovidingevidenceofcontinuedlandlossorstaticconditioninthebasinforaperiodof10yearspriortotheprojectstartdate.PDR.29Asummaryofthereferenceddocumentindicatingwhereinthedocumenttheevidenceisprovided.PDR.30Documentationofwatermanagementactivities(eg,riverdiversions)thatcouldinfluencethebaselinescenario.6.1.2ConductingaSpatialAnalysisThebaselinescenariomaybedemonstratedusinghigh-resolutionsatelliteoraerialimagerythatdemonstratesthattheareaofopenwater(ie,non-wetland)hasnotdecreasedovertimeintheregionsurroundingtheprojectarea.Sections6.1.2.1and6.1.2.2provideguidanceonconductingtheanalysis.Forsuchanalysis,thefollowingrequirementsmustbemet:Theanalysismustbeconductedusingdatafromtwopointsintime(imagedates)atleasttenyearsapart,oneofwhichiswithintwoyearspriortotheprojectstartdateordateofbaselinereevaluation(seeSection6.4).Thetwoimagedatesmustbewithinthesamethree-monthperiodoftheirrespectiveyearstopreventseasonalvariability.Thestudyregionmustbeatleastthreetimesthesizeoftheprojectarea.Thestudyregionmustbelocatedinanareaneartheprojectarea,withsimilarclimaticandedaphicconditions.Cloudcovermustnotexceed20%ofthestudyregionforeitherimagedate.Accuracydeterminedbyerrorcheckingorground-truthingmustbeatleast90%.Theanalysismustinferthattheareaofopenwaterinthestudyregionhasnotdecreasedovertimevianaturalprocesses.Theregionofanalysismayormaynotincludetheprojectarea.VM0024,Version1.0SectoralScope14Page35PDRequirements:SpatialAnalysisforBaselineScenarioTheprojectdescriptionmustincludethefollowing:PDR.31Areportdescribinghowtheanalysiswasconducted,includingdatasourcesanddates,demonstrationofconformancewiththerequirementslistedinSection6.1.2,andjustificationfortheselectionoftheregioninwhichtheanalysiswasconducted.PDR.32Amapoftheregioninwhichtheanalysiswasconducted.PDR.33Thequantifiedchangeinwaterarea.6.1.2.1SelectingImageTypeAerialorsatelliteimagerymustbehigh-resolutionormultispectralinordertoaccuratelydelineatewetlandvs.openwater.Multipleimagesfromeachimagedatemaybeusedtoincreasecloud-freecoverageofthestudyregion.Theanalysismustconsidervaryingwaterlevelsonlandareasatthetimeoftheimagery,andthepotentialimpactoninterpretationofimagery.Properpre-processingtechniquesmustbeobserved,suchasgeometricandradiometriccorrections,cloudandshadowremovalandreductionofhaze,asneeded.6.1.2.2ClassifyingandPost-ProcessingChangedetectionanalysismaybeusedtodeterminethechangeinwaterareaovertime.Post-processingmustincludeerrorcheckingandground-truthingasneededtoensureaccuratelandcoverassessment.Forfurtherinformation,seethedetailedmapsincludedwiththeUSGeologicSurveypublication‘LandAreaChangeinCoastalLouisianafrom1932to2010,’aswellasKlemas(2011)foradetaileddescriptionregardingremotesensingtechniquestomonitorchangesinwetlands.6.2DeterminingDredginginBaselineScenarioInthebaselinescenario,dredgingmayormaynotoccurfornavigationormaintenancepurposes.Dredgingmayincludehydraulicandmechanicalmachineryandthemethodsofsedimentremovalanddisposalmaybeclassifiedaspermanentortemporary(seedredgingactivitiesdescribedinTable9).Ifdredgingisincludedinthebaselinescenario,thismustbeclearlyidentifiedintheprojectdescription.Inlargeriversornear-shorecoastalenvironments,navigationdredgingmayincludeacombinationoftemporarydisplacement(thalwegorcurrentdisposal)andtemporaryopenwaterdisposalthatoccurswithinthebanksoftheriverorwithinanembayment.Inthecaseoftemporarydisplacement/disposal,sedimentsmaybere-handledmultipletimesbeforepermanentremovaloccurs.TheprojectproponentVM0024,Version1.0SectoralScope14Page36mayaccountforsedimentre-handling.Permanentsedimentremovalalsomayoccurwithdredging,transportation,anddisposalatopenwatersitesorconfineddisposalareas(facilities).Forthebaselinescenario,theprocessofdredgingmustbedescribedbasedonasingleevent(plannedproject)orroutineprogrammaticdredging.Thebaselinedredgingmustcontainadescriptionofequipmenttypes,methodofdredging/transport/disposal/re-handling,sedimentvolume,andenergytypeandenergyquantityused.Thedocumentationofdredgingactivitiesalsomustincludeadescriptionofthelikelyfateofdredgedsedimentsinthebaseline,thusindicatingthatthesedimentswouldnotbeusedforwetlandcreationactivitiesinthebaselinescenario.AcceptabledocumentsfordescribingsingleeventdredgingprojectsorprogrammaticdredgingprojectsmayincludebutarenotlimitedtoaSection10permit(RiverandHarborsAct1899),DredgeMaterialManagementPlan(USACE)andinteragencyprojectdocumentsthatprovidedescriptionsorauthorizationforproject-specificorroutineoperations(eg,BeneficialUseofDredgeMaterial,BUDMAT).Table9:Typesofdredgingactivitiesandalternativesedimentfates(permanentortemporary)SedimentFateTypicalEquipmentDescriptionBaselineTemporarydisplacementDustpandredge;cutterheadsuctiondredge;mechanicalexcavatorSedimentsaredredgedanddisplacedintheriver/nearshorecurrent,subjecttosubsequentdownstreamremovalfromthewaterway.Theprocessoftemporarysedimentdisplacementisalsodescribedasagitationorthalwegdisposal.TemporaryremovalanddisposalHopperdredge;barge;mechanicalexcavatorSedimentsaredredged,thentransportedinaconfinedvesselanddisposedofinatemporaryarea,subjecttosubsequentdownstreamremovalfromthewaterway.PermanentdisposalCutterheadsuctiondredge;hopperdredge;mechanicalexcavatorPermanentsedimentdisposalmayincludeconfineduplanddisposal,non-wetlandbeneficialuse,oceandredgematerialdumpsite.VM0024,Version1.0SectoralScope14Page37PDRequirements:DeterminationofDredgingTheprojectdescriptionmustincludethefollowing:PDR.34Statementregardingwhetherdredgingisincludedinthebaselinescenario.PDR.35Ifdredgingisincludedinthebaselinescenario,adescriptionofthesingleeventorprogrammaticdredgingprojects,includingthelikelyfateofdredgedsedimentsinthebaselinescenario.6.2.1DeterminingNavigabilityofDredgeSiteWaterwayTheprojectproponentmustdemonstratewhethernavigationormaintenancedredgingwouldhaveoccurredinthebaseline.AcceptabledocumentsfordemonstratingdredgingwouldhaveoccurredmayincludebutarenotlimitedtoaSection10permit(RiverandHarborsAct1899)orDredgeMaterialManagementPlan(USACE)orinteragencyprojectdocumentsthatprovidedescriptionsorauthorizationforproject-specificorroutineoperations(eg,BeneficialUseofDredgeMaterial,BUDMAT).Ifnavigationormaintenancedredginginthebaselinecannotbedemonstrated,thenbaselineemissionsfromenergyconsumptionmustbezeroperSection8.1.1.PDRequirements:DemonstrationofNavigabilityTheprojectdescriptionmustincludethefollowingifnavigationormaintenancedredgingcanbedemonstratedinthebaselinescenario:PDR.36Mapofdredgingactivities,includingjustificationforplanneddredginglocations.PDR.37Documentsthatdemonstratedredgingwouldhaveoccurred.6.2.2DeterminingEnergyConsumptionforDredgingWhendredgingoccursinthebaselinescenariofornavigationormaintenance,theprojectproponentmustestimatetheenergytypesandquantitiesusedfordredging.ForeachenergytypeinTable10,theprojectproponentmustestimatetheunitofenergyconsumedpermetrictonneofsedimentremovedfromthesedimentsourceinthebaselinescenario.Theseestimatesmustbebasedonprivateindustryorfederalcost-engineeringproceduresordata.Theseestimatesmayincludeenergyconsumptionfromdredging,transport,disposalandre-handlingofsediment.Theassumptionsofequipmenttype(s),sedimentproductionrates,durationofoperations,andconveyancedistancesmustbeusedtojustifytheseestimates.VM0024,Version1.0SectoralScope14Page38Theprojectproponentmustuseconservativeassumptionswhendeterminingtheseestimates.Inthebaselinescenario,lowestimatesofenergyconsumptionfordredgingaremoreconservativethanhighestimates.Thesetofallenergytypesinthebaselinescenarioisdenoted𝒯𝐵𝐸𝐶andtheunitofenergyconsumedpermetrictonneofsedimentremovedfromthesedimentsourceforenergytype(𝑡𝑦)isdenotedby𝑔𝐵𝐸𝐶(𝑡𝑦)(seeSection8.1.1).PDRequirements:DeterminationofBaselineEnergyConsumptionTheprojectdescriptionmustincludethefollowing:PDR.38ForeachenergytypeinTable10,theestimateoftheunitofenergyconsumedpermetrictonneofsedimentdredged.PDR.39Descriptionofequipmenttypesandmethodorprocessofsedimentdredging,transport,disposal,re-handling,sedimentproductionrates,durationofoperationsandconveyancedistances.PDR.40Estimatesofcumulativesedimentquantityexcavatedandre-handled,includingtemporarydisposalanddisplacementactivities,ifapplicable.PDR.41Sourceofproceduresordataonwhichtheseestimatesarebased.6.3DeterminingMethaneEmissionsinBaselineScenarioMethaneebullition,orbubblingfromsediments,sometimesoccursinopenwaterandmayincreasetheGHGemissionsassociatedwiththebaselinescenarioinwhichtheprojectarearemainsopenwater.Itisoptionaltoincludeemissionsfrommethaneebullitioninthebaselinescenario.Ifbaselineemissionsfrommethaneebullitionareincluded,theprojectproponentmustmonitorsuchemissionsinanareaofopenwater–referredtoasareferencearea–locatedneartheprojectareaandwithenvironmentalconditionssimilartothosefoundintheprojectareapriortothestartofwetlandcreationactivities(seeSection6.3.1).Methaneemissionsmustthenbemonitoredinthereferencearea(seeSection9.2.7).6.3.1DelineatingReferenceAreaBoundariesIfemissionsfrommethaneebullitionareincludedinthebaselinescenario,theprojectproponentmustdefineareferenceareainwhichemissionsfluxfromebullitionismeasuredanddemonstratethatthereferenceareaissimilartotheprojectareawithrespecttothefollowingcriteria:a.Hydrologicallyandbiogeochemicallysimilartotheprojectarea:i.Mustmeetthedefinitionofopenwater,withnosoilexposedduringnormaltidalcycle,VM0024,Version1.0SectoralScope14Page39ii.Mustbedevoidormostlydevoidofvegetation,iii.Mustexhibitsimilarsalinityandpresenceorabsenceoftidalinfluence,andiv.Mustbesimilarwithrespecttopresenceorabsenceofexternalnitrateloading(seeSection9.2.3.1).b.Similarlandscapeconfigurationwithrespecttoproximitytoriverdelta(s),specificallyiftheprojectareaisnotwithinadelta,thereferenceareamustnotbelocatedwithinadelta.c.Soiltypeofsimilarsubstratetotheprojectareaasoftheprojectstartdate,specificallythesoilsmustbeclassifiedasthesameSoilSeriesasreportedbytheUSDANRCSSoilSurvey;oriftheSoilSeriesisdifferent,thenthepercentorganicmatteroftheupper30cmofsoilmustoccurwithinacommonrange.d.Constrainedtoaminimumwaterdepthnolessthantheminimumdepthintheprojectarea.Furthermore,waterdepthmustberecordedateachsamplepoint.Theaveragedepthofthesemeasurementsmustbeatleastasdeepastheaveragedepthmeasuredintheprojectareaasoftheprojectstartdate.MeasurementsinthereferenceareaaredescribedinSection9.2.7.PDRequirements:DeterminationofBaselineMethaneEmissionsTheprojectdescriptionmustincludethefollowing:PDR.42Descriptionandjustificationfortheselectedreferencearea.6.4ReevaluatingtheBaselineScenarioThebaselinescenariomustbereevaluatedeverytenyearsinaccordancewiththeVCSrules.ThebaselinereevaluationmustmeettherequirementsinSection6.1.Ifnewprojectactivityinstanceshavebeenaddedinthecaseofagroupedproject,thereevaluationmustmeettherequirementsinSection6.2.7PROCEDUREFORDEMONSTRATINGADDITIONALITYThismethodologyusesanactivitymethodforthedemonstrationofadditionality.Projectactivitiesthatmeettheapplicabilityconditionsofthismethodology(seeSection4)anddemonstrateregulatorysurplusaredeemedasadditional.7.1RegulatorySurplusProjectproponentsmustdemonstrateregulatorysurplusinaccordancewiththerulesandrequirementsregardingregulatorysurplussetoutinthelatestversionoftheVCSStandard.VM0024,Version1.0SectoralScope14Page40PDRequirements:DemonstrationofProjectAdditionalityTheprojectdescriptionmustincludethefollowing:PDR.43Demonstrationthatpertinentlawsandregulationshavebeenreviewedandthatnonemandatetheprojectactivities.7.2PositiveListTheapplicabilityconditionsofthismethodologyrepresentthepositivelist.Theprojectmustdemonstratethatitmeetsalloftheapplicabilityconditions,andinsodoing,itisdeemedascomplyingwiththepositivelist.Thepositivelistwasestablishedusingtheactivitypenetrationoption(OptionAintheVCSStandard).DemonstrationofadditionalityfollowingthisapproachissetoutinAppendixH–SupportingInformationonDevelopmentofPositiveList.PDRequirements:DemonstrationofProjectAdditionalityTheprojectdescriptionmustincludethefollowing:PDR.44EvidencethatprojectactivitiescomplywithallapplicabilityconditionssetoutunderSection4above.8QUANTIFICATIONOFGHGEMISSIONREDUCTIONSANDREMOVALSTheprojectproponentmustcalculategrossemissionsreductionsand/orremovals(GERs)ineachmonitoringperiod.GERsarecalculatedbysubtractingprojectemissionsoremissionsreductionsand/orremovalsfrombaselineemissions.Theprojectproponentmustthencalculatenetemissionsreductionsand/orremovals(NERs)bytakingintoaccountaconfidencededuction(ifany)andbufferpoolallocation.CumulativeGERsandNERsarequantifiedasthosesincetheprojectcreditingperiodstartdateuptotheendofthemonitoringperiod.CurrentGERsandNERsarequantifiedasthosesincetheendofthepreviousmonitoringperiodtotheendofthemonitoringperiod.VM0024,Version1.0SectoralScope14Page41WhenquantifyingGHGemissionsreductionsandremovals,theprojectproponentmustnotethedifferencebetweenunitsandresolutionofmonitoringdatadescribedinSection2.5.8.1BaselineEmissionsBaselineemissions𝐸𝐵Δ[𝑚]forthemonitoringperiodaregivenbyequation[G.6],equaltothesumofbaselineemissionsfromenergyconsumptionandemissionsfrommethaneebullitionforthemonitoringperiod.Notethat𝐸𝐵Δ[𝑚]isalwayslessthanorequaltozero.MonitoringRequirements:BaselineEmissionsThemonitoringreportmustincludethefollowing:MRR.12Calculationsofcurrentbaselineemissions𝐸BΔ[𝑚]forthe(current)monitoringperiod.MRR.13Calculationsofbaselineemissions𝐸BΔ[𝑚−1]forpriormonitoringperiods.8.1.1CalculatingEmissionsfromEnergyConsumptionBaselineemissionsfromenergyconsumptionaregivenbyequation[G.3]where𝑔𝐵(𝑡𝑦)[𝑚]istheenergyconsumedpermetrictonneofsedimentdredgedinthebaselineusingenergytype(𝑡𝑦),and𝑀𝑃Δ[𝑚]isthemassofsedimentdredgedfromthesedimentsourceasaresultofprojectactivitiesduringthemonitoringperiod.Notethat,since𝐸𝐵Δ𝐸𝐶[𝑚]isanemission,itsvalueisalwayslessthanorequaltozero.TheenergyconsumedpermetrictonneofsedimentdredgedinthebaselineisdeterminedinSection6.2.2.ThemassofsedimentdredgedfromthesedimentsourceisdeterminedeachmonitoringperiodusingSection9.2.5.BaselineEmissionsandRemovalsFuelConsumption(8.1.1)MethaneEbullition(8.1.2)BaselineEmissionsandRemovalsFuelConsumption(8.1.1)MethaneEbullition(8.1.2)ProjectEmissionsandRemovalsCarbonStocks(8.2.1)MethaneFlux(8.2.2)NitrousOxideFlux(8.2.3)EnergyConsumption(8.2.4)NaturalDisturbances(8.2.5)ProjectEmissionsandRemovalsCarbonStocks(8.2.1)MethaneFlux(8.2.2)NitrousOxideFlux(8.2.3)EnergyConsumption(8.2.4)NaturalDisturbances(8.2.5)GrossEmissionsReductions(GERs)(8.4.1)GrossEmissionsReductions(GERs)(8.4.1)NetEmissionsReductions(NERs)(8.4.2)NetEmissionsReductions(NERs)(8.4.2)ConfidenceDeduction(8.4.2.1)ConfidenceDeduction(8.4.2.1)BufferPoolAllocationorRelease(8.4.2.2,8.4.2.3)BufferPoolAllocationorRelease(8.4.2.2,8.4.2.3)VM0024,Version1.0SectoralScope14Page42Theemissionscoefficients𝑒(𝑡𝑦)foreachenergytypearegiveninTable10.EnergyemissionscoefficientsforfuelsaredefinedbytheEPAFinalMandatoryReportingofGreenhouseGasesRule,whileelectricityemissionsaredeterminedusingthemostrecentU.S.EPAeGRIDdatabase.Forboth,itisimportanttonotethatthesefactorsareupdatedperiodicallyandthatthefactorwhichisapplicablefortheyearinwhichtheemissionsoccurredmustbeused.RefertoAppendixMfordocumentationandsourcesoftheemissioncoefficientslistedinTable10.Table10:Emissionscoefficients(includingCO2,CH4,N2O)forenergytypesEnergyType(𝒕𝒚)ProjectProponentReportsAs:EmissionCoefficient𝒆(𝒕𝒚)DieselGal0.010241tCO2e/galMotorgasolineGal0.008809tCO2e/galBiodieselGal0.009459tCO2e/galCompressednaturalgasScf0.000055tCO2e/scfElectricgridkWheGRIDregionalemissionfactor(tCO2e/kWh)MonitoringRequirements:EmissionsCoefficientsThemonitoringreportmustincludethefollowingifanemissioncoefficientisusedfortheelectricgrid:MRR.14Sourceanddateoftheemissioncoefficient.MRR.15Referencetotheexactpagenumberorworksheetcellinthesource.8.1.2CalculatingEmissionsfromMethaneEbullitionIfbaselineemissionsfromopenwatermethaneebullitionareincludedintheprojectaccounting,theseemissions𝑬𝑩𝜟𝑪𝑯𝟒[𝒎]arecalculatedusingequation[G.5]andareexpressedinunitsoftCO2e.Theseemissionsaretheproductofthedailyfluxandthenumberofdaysinthemonitoringperiod.Notethat,since𝐸𝐵Δ𝐶𝐻4[𝑚]isanemission,itsvalueisalwayslessthanorequaltozero.8.2ProjectEmissionsorEmissionReductionsand/orRemovalsProjectemissionsoremissionreductionsand/orremovals𝐸𝑃Δ[𝑚]forthemonitoringperiodaregivenbyequation[G.15],equaltoemissionsoremissionreductionsand/orremovalsfromchangeincarbonVM0024,Version1.0SectoralScope14Page43stocks,nitrousoxide,methaneandenergyconsumptionresultingfromtheimplementationofprojectactivities.Projectemissionswilloccurifthefluxemissionsandemissionsfromenergyconsumptionaregreaterthancarbonaccretionforthemonitoringperiod,inwhichcase𝐸𝑃Δ[𝑚]willbenegative.Likewise,projectemissionremovalswilloccurifcarbonaccretionisgreaterthanfluxemissionsandemissionsfromenergyconsumption,inwhichcase𝐸𝑃Δ[𝑚]willbepositive.MonitoringRequirements:ProjectEmissionsorEmissionReductionsand/orRemovalsThemonitoringreportmustincludethefollowing:MRR.16Calculationsofcurrentprojectemissionsoremissionsreductionsand/orremovals𝐸𝑃Δ[𝑚]asofthemonitoringperiod.MRR.17Calculationsofprojectemissionsoremissionsreductionsand/orremovals𝐸𝑃Δ[𝑚−1]frompriormonitoringperiods.8.2.1CalculatingEmissionRemovalsinCarbonStocksCarbonstocksmustbemonitoredduringtheprojectcreditingperiodtocalculatetheGHGemissionsorremovalsthatoccurasaresultofprojectactivities.Currentemissionsoremissionsreductionsand/orremovalsfromcarbonstocks𝐸𝑃Δ𝐶𝑆[𝑚]aredefinedasthedifferencebetweencarbonstocksfromthepriormonitoringperiodandcarbonstocksfromthemonitoringperiodasgiveninequation[G.8]foraprojectthatisnotgroupedandequation[G.9]foragroupedproject;carbonstockestimatesarederivedfrommethodsdescribedinSection9.2.1.Notethat𝐸𝑃Δ𝐶𝑆[𝑚]ispositiveifvegetationgrowthhasoccurredandcarbonstockshavenotbeenreducedbydisturbances.8.2.2CalculatingEmissionsfromMethaneProjectemissionsfrommethane𝐸𝑃Δ𝐶𝐻4[𝑚]arecalculatedusingequation[G.11]andareexpressedinunitstCO2e.Theseemissionsaretheproductofthedailyfluxandthenumberofdaysinthemonitoringperiod.Notethat,since𝐸𝑃Δ𝐶𝐻4[𝑚]isanemission,itsvalueislessthanorequaltozero.8.2.3CalculatingEmissionsfromNitrousOxideProjectemissionsfromnitrousoxide𝐸𝑃Δ𝑁2𝑂[𝑚]arecalculatedusingequation[G.13]andareexpressedinunitstCO2e.Theseemissionsaretheproductofthedailyfluxandthenumberofdaysinthemonitoringperiod,asdescribedinSection9.2.2.Notethat,since𝐸𝑃Δ𝑁2𝑂[𝑚]isanemission,itsvalueislessthanorequaltozero.VM0024,Version1.0SectoralScope14Page448.2.4CalculatingEmissionsfromEnergyConsumptionProjectemissionsfromenergyconsumptionaregivenbyequation[G.14],thetotalenergyconsumedasaresultofprojectactivities.EnergyuseandtypemustbemonitoredperSection9.2.4.Theemissionscoefficients𝑒(𝑡𝑦)foreachenergytypearegiveninTable10foundinSection8.1.1.Notethat,since𝐸𝑃Δ𝐸𝐶[𝑚]isanemission,itsvalueislessthanorequaltozero.8.2.5CalculatingEmissionsfromDisturbancesEmissionsfromnaturaldisturbancesandothereventswithintheprojectareaareinherentlycapturedbythemonitoringofcarbonstocks(seeSection9.2.1).Theprojectareamustbemonitoredregularlyforevidenceofsignificantdisturbance.Thefollowingdisturbanceeventsmaybesignificant:HurricanesFiresMarshdiebackForguidanceonhowtodefineasignificantdisturbance,projectproponentsshouldrefertothedefinitionoflosseventinthecurrentversionoftheVCSProgramDefinitions.Intheeventthatasignificantdisturbanceisapparent,theprojectproponentmustdocumentthenatureandextentofthedisturbanceand,ifnecessary,re-measureexistingplotsorinstallnewplotsinthedisturbedarea.Inordertoestimatethesecarbonstocks,theprojectareamayneedtobere-stratifiedperAppendixAaspartofmonitoring(seeSection9).Ifthedisturbanceislikelytoqualifyasalossevent,thelosseventmustbereportedinaccordancewithVCSrules.Ifre-stratificationisnecessary,thenewstratamustbeeffectiveasofthedateofthedisturbance,thusensuringthatthestratificationaccuratelyrepresentsconditionsintheprojectarea.PDRequirements:EmissionsorEmissionsReductionsand/orRemovalsEventsinProjectAreaTheprojectdescriptionmustincludethefollowing:PDR.45Theselecteddefinitionofasignificantdisturbance.VM0024,Version1.0SectoralScope14Page45MonitoringRequirements:EmissionsorEmissionsReductionsand/orRemovalsEventsinProjectAreaThemonitoringreportmustincludethefollowing:MRR.18Theselecteddefinitionofasignificantdisturbance.MRR.19Amapoftheboundariesofanysignificantdisturbanceintheprojectareaduringthemonitoringperiod.MRR.20EvidencethatplotswereinstalledintothesedisturbedareasandweremeasuredperSection9.2.1.8.3Leakage8.3.1DeterminingActivity-ShiftingLeakageActivity-shiftingleakageiszerobecausetheprojectareacontinuestobeopenwaterinthebaselinescenario,andwetlandcreationdoesnotmateriallychangethelanduseactivitiesoutsideoftheprojectarea.Thus,leakagefromshiftinglivestock,agriculturalactivitiesorcommunitiescannotoccur.Further,dredgingemissionsoccurinboththebaselineandprojectscenariosandassucharenotconsideredasleakageemissionsfrommachinery.8.3.2DeterminingMarket-EffectsLeakageMarket-effectsleakageiszeroasthereisnocommercialvaluetothebaselinescenarioofopenwater.Asaresult,nochangeinsupplyanddemandcanexist,norcanshiftinproductionexistelsewhereoutsideoftheprojectarea.8.3.3DemonstratingNoEcologicalLeakageAsaresultofaddingsedimenttotheprojectareaduringwetlandcreation,thewatershed-scalehydrologycouldbeaffected.Theseeffectscouldcausedisplacementofwater(eitherstandingorflowing)toareasnotinundatedpriortotheprojectstartdate.Theprojectproponentmustdemonstratethattheprojectwillnothaveasignificantnegativeimpactonhydrologicallyconnectedareas,andtherefore,thattherewillbenoecologicalleakage.Inordertodemonstratethattheprojectwillnothaveasignificantnegativeimpactonhydrologicallyconnectedareas,theprojectproponentmustdemonstratecompliancewithSection404oftheCleanWaterActbyprovidinganindividualorgeneralpermitissuedbytheUSACE,priortothecompletionofthefirstverificationevent.Whereapplicable,compliancewithSection10oftheCleanWaterAct(RiverVM0024,Version1.0SectoralScope14Page46andHarborsAct)mustalsobedemonstrated.Likewise,anyNEPAanalysesanddecisiondocumentsmustbeprovided(ie,aFindingofNoSignificantImpact[FONSI]foranEnvironmentalAssessmentoraRecordofDecision[ROD]foranEnvironmentalImpactStatement),whereapplicable.Wheretheprojectproponentdemonstratesthattheprojectwillnothaveasignificantnegativeimpactonhydrologicallyconnectedareasinaccordancewiththerequirementsabove,ecologicalleakageisconsideredtobezero.PDRequirements:HydrologicEffectsTheprojectdescriptionmustincludethefollowing:PDR.46Wherepossibleatvalidation,demonstrationthattheprojectwillnothaveasignificantnegativeimpactonhydrologicallyconnectedareas,inaccordancewiththerequirementsofSection8.3.3.MonitoringRequirements:HydrologicEffectsThemonitoringreportmustincludethefollowing:MRR.21Demonstrationthattheprojectwillnothaveasignificantnegativeimpactonhydrologicallyconnectedareas,inaccordancewiththerequirementsofSection8.3.3,wheresamehasnotalreadybeendemonstratedatvalidation.8.4SummaryofGHGEmissionReductionand/orRemovalsTheGHGemissionsreductionsresultingfromtheprojectactivitiesarequantifiedintwosteps:GrossEmissionsReductions(GERs)andNetEmissionsReductions(NERs),Sections8.4.1and8.4.2,respectively.ThequantityofNERsarethosethatareavailableforretirementorsale,andareGERsminusaconfidencededuction(Section8.4.2.1)andallocationtotheAFOLUpooledbufferaccount(Section8.4.2.2),plusabufferrelease(Section8.4.2.3).ThequantityofGERsisthedifferencebetweenbaselineandprojectemissionsoremissionsreductionsand/orremovals.8.4.1QuantifyingGrossEmissionReductionsand/orRemovalsGrossEmissionsReductions(GERs)foramonitoringperiod[𝑚]arequantifiedusingequation[G.16]andareequaltothetotalbaselineemissionsoverthemonitoringperiodminusthetotalprojectemissionsoremissionsreductionsand/orremovalsoverthemonitoringperiod.VM0024,Version1.0SectoralScope14Page47MonitoringRequirements:QuantificationofGERsThemonitoringreportmustincludethefollowing:MRR.22QuantifiedGERsforthemonitoringperiodincludingreferencestocalculations.MRR.23QuantifiedGERsforthepriormonitoringperiod.MRR.24AgraphofGERsbymonitoringperiodforallmonitoringperiodstodate.8.4.1.1HandlingReversalsResultingfromEnergyConsumptionIntheeventthatquantifiedGERsarenegative–indicatingthatprojectemissionsoremissionsreductionsand/orremovalsaregreaterthanbaselineemissions–andthatthecauseofthiseventistheconsumptionofenergybyprojectactivities,theprojectmustnotgenerateNERsuntilcumulativeGERs𝐸𝐺𝐸𝑅[𝑚]aregreaterthanzeroperequation[G.17].NotethatalthoughcumulativeGERsmaybegreaterthanzero,areversalmaystilloccur.8.4.2QuantifyingNetEmissionsReductionand/orRemovalsNetEmissionsReductions(NERs)areequivalenttoquantifiedGERslessaconfidencededuction(ifany)andAFOLUpooledbufferaccountallocation.NERsgeneratedduringamonitoringperiod[𝑚]aredeterminedusingequation[G.21].QuantifiedNERsshouldberoundeddowntothenearestwholenumber.MonitoringRequirements:QuantificationofNERsThemonitoringreportmustincludethefollowing:MRR.25QuantifiedNERsforthemonitoringperiodincludingreferencestocalculations.MRR.26QuantifiedNERsforthepriormonitoringperiod.MRR.27AgraphofNERsbymonitoringperiodforallmonitoringperiodstodate.8.4.2.1CalculatingtheConfidenceDeductionTheconfidencededuction𝐸𝑈Δ[𝑚]isgivenbyequation[G.19]whereuncertaintyintheestimateofthetotalcarbonstockisgivenbyequation[G.18],thesumofsquared-uncertaintyinallselectedcarbonpools𝒞.IfVM0024,Version1.0SectoralScope14Page48themonitoringplanspecifiesadifferentsamplingdesign,equationsforuncertaintywilldifferforbiomassandsoil(seeSection9).Uncertaintyiscalculatedsolelyonthebasisofthecarbonstockestimateanddoesnotincludeuncertaintyinthemeasurementsofmethaneandnitrousoxide.Althoughestimatesofmethaneandnitrousoxidefluxareuncertain,thefluxmeasurementmethodssetoutininthismethodology(Sections9.2.2and9.2.3)aredesignedtoprovideconservative(ie,high)estimatesofprojectemissionsoremissionsreductionsand/orremovalsfromtheseGHGsources.Thus,theuncertaintyassociatedwithanunbiasedestimateofthesefluxesisexpectedtobenegligiblewhencomparedtotheintentionaldifferencebetweentheseestimatesandthetrue(butunknown)fluxes.Therefore,theconfidencedeductiondoesnotincludeuncertaintyfrommethaneornitrousoxideestimates.Theconfidencedeductionmustbegreaterthanorequaltozero.Iftheresultfromequation[G.19]islessthanzero,theconfidencedeductionmustbesettozero.MonitoringRequirements:ConfidenceDeductionThemonitoringreportmustincludethefollowing:MRR.28Thecalculatedconfidencedeductionandsupportingcalculations.MRR.29Anymethodologydeviations.Suchdeviationsmustincludethetextthatisbeingmodifiedandtheproposednewlanguage.8.4.2.2DeterminingAllocationtoAFOLUpooledbufferaccountTheprojectproponentmustundertakeanassessmentofnon-permanencerisksthatapplytotheproject.ThisassessmentmustconformtocurrentVCSrequirementsandmustbeusedtodeterminetheallocationofGERstotheAFOLUpooledbufferaccount.GERsallocatedtotheAFOLUpooledbufferaccountaredenotedby𝐸𝐵𝐴Δ[𝑚]asgiveninequation[G.20]andmustbebasedonthechangeincarbonstocksforthemonitoringperiodasdescribedinSection8.2.1.GERsallocatedtotheAFOLUpooledbufferaccountmustberoundeduptothenearestwholenumber.VM0024,Version1.0SectoralScope14Page49MonitoringRequirements:AFOLUpooledbufferaccountThemonitoringreportmustincludethefollowing:MRR.30ReferencetotheVCSrequirementsusedtodeterminetheAFOLUpooledbufferaccountallocation.MRR.31ReferencetocalculationsusedtodeterminetheAFOLUpooledbufferaccountallocation.8.4.2.3DeterminingReleasefromAFOLUpooledbufferaccountPeriodically,theprojectmaybeeligibleforareleaseofcreditsfromtheAFOLUpooledbufferaccount.Thebufferrelease𝐸𝐵𝑅Δ[𝑚]mustbedeterminedinaccordancewithVCSrequirements.MonitoringRequirements:BufferReleaseThemonitoringreportmustincludethefollowing:MRR.32ReferencetotheVCSrequirementsusedtodeterminethereleasefromtheAFOLUpooledbufferaccount.MRR.33Referencetocalculationsusedtodeterminethebufferrelease.8.4.2.4QuantifyingVintagesoveraMonitoringPeriodWhenthemonitoringperiodspansmorethanonecalendaryear,NERsmustbeallocatedbyyear,proportionaltothenumberofcalendardaysineachyearrelativetothetotalnumberofdaysinthemonitoringperiod.QuantifiedNERsshouldberoundedtothenearestwholenumberforeachvintageyearsuchthatthesumofvintagesineachmonitoringperiodisequaltotheNERsforthatmonitoringperiod.VM0024,Version1.0SectoralScope14Page50MonitoringRequirements:VintagesThemonitoringreportmustincludethefollowing:MRR.34QuantifiedNERsbyvintageyearforthemonitoringperiodincludingreferencestocalculations.8.4.3EstimatingEx-AnteGHGEmissionReductionsand/orRemovalsTocalculateex-anteestimatesofgreenhousegasreductionsandremovals,usethestepsoutlinedinSection8,substitutingestimatesofparametersthatrequiremonitoringwithconservativeestimatesofthoseparametersderivedfromscientificliteratureorpreliminarysamplingasapplicable.Thefollowingtableliststheparametersrequiredandprovidesguidanceforestimatingex-anteprojectbenefitsinaconservativefashion.Notethatderivedquantitiesarenotshowninthistable.VM0024,Version1.0SectoralScope14Page51Data/ParameterUnitDescriptionEx-AnteSourceofDataGuidanceforConservativeEstimation𝒃[𝒎]Unit-lessBufferwithholdingpercentagecalculatedasrequiredbytheVCSAFOLUNon-PermanenceRiskToolVCSAFOLUNon-PermanenceRiskToolThenon-permanencerisktoolistobeappliedatvalidation,thereforethevalueof𝑏[𝑚]shouldbeknown.𝑪𝑷𝑪𝑺[𝒎]tCO2eCumulativecarbonstocksinprojectareaformonitoringperiodScientificliteratureorpreliminarysamplinginareasofpastwetlandcreationItisconservativetounderestimatecarbonstocks.𝑬𝑷𝜟𝑵𝟐𝑶[𝒎]tCO2eTotalemissionsfornitrousoxideinprojectareaovermonitoringperiodSelectappropriateestimatesfromthetablesgiveninSection8.4.3.2NA𝑬𝑷𝜟𝑪𝑯𝟒[𝒎],𝑬𝑩𝜟𝑪𝑯𝟒[𝒎]tCO2eTotalmethaneemissionsinprojectareaovermonitoringperiodScientificliteratureorpreliminarysamplingItisconservativetooverestimatemethaneemissionsintheprojectscenario.𝑬𝑩𝑹𝚫[𝒎]tCO2eBufferreleaseSeecurrentVCSrequirements𝒆(𝒕𝒚)tCO2e/galEmissionscoefficientfromTable10inSection8.1.1forenergytypetyApplycoefficientsasgiveninTable10NA𝒑𝑩(𝒕𝒚)unitlessProportionofenergyforenergytypetyconsumedinthebaselinescenarioRecordsofpastenergyuseforsimilaractivitiesItisconservativetoassumethatenergytypeswithloweremissionfactorswouldhavebeenusedpredominantlyinthebaselinescenario.𝒑𝑷(𝒕𝒚)unitlessProportionofenergyforenergytypetyconsumedintheprojectscenarioRecordsofpastenergyuseforsimilaractivitiesItisconservativetoassumethatenergytypeswithhigheremissionfactorswouldhavebeenusedpredominantlyintheprojectscenario.VM0024,Version1.0SectoralScope14Page52Data/ParameterUnitDescriptionEx-AnteSourceofDataGuidanceforConservativeEstimation𝑼𝒔tCO2eStandarderrorforasetofstrataGuidancefromAppendixAmaybeusedtoplansamplingthatislikelytomeetatargetedprecisionlevelSeeAppendixA8.4.3.1DeterminingWhetherEmissionsfromMethanearedeminimisInsystemswithhighsalinity(>18ppt),methaneemissionsmaybedeminimis.Suchemissionsareconsidereddeminimisif,togetherwithanyothersourceswhichmaybedeminimis,theyaccountforlessthan5%ofthetotalGHGbenefitgeneratedbytheproject.Theprojectproponentmaychooseoneofthefollowingmethodstodemonstratethatmethaneemissionsaredeminimis:8.4.3.2DeterminingWhetherEmissionsfromNitrousOxidearedeminimisInsystemswithoutnitrateloading,nitrousoxideemissionsmaybedeminimis.Suchemissionsareconsidereddeminimisif,togetherwithanyothersourceswhichmaybedeminimis,theyaccountforlessthan5%ofthetotalGHGbenefitgeneratedbytheproject.Theprojectproponentmaychooseoneofthefollowingmethodstodemonstratethatnitrousoxideemissionsaredeminimis:1.Defaultfactors(seeSection9.2.3.1)2.Proxymodels(seeSection9.2.3.2)3.Directmeasurements(seeSection9.2.3.3)8.4.4EvaluatingProjectPerformanceProjectperformancemustbeevaluatedeachverificationeventanddeviationsfromex-anteNERsmustbedescribed.Differencesincreditgenerationfromex-anteestimatesmayresultfromchangesinthequalityofdata(literatureestimatesversuscarbonstockestimates),changesinmeasurementapproaches,occurrencesofdisturbanceeventsorbaselinere-evaluation.1.Modelsfromliterature(seeSection9.2.2.1)2.Proxymodels(seeSection9.2.2.2)3.Directmeasurements(seeSection9.2.2.3)VM0024,Version1.0SectoralScope14Page53MonitoringRequirements:ProjectPerformanceThemonitoringreportmustincludethefollowing:MRR.35ComparisonofNERspresentedforverificationrelativetothosefromex-anteestimates.MRR.36Descriptionofthecauseandeffectofdifferencesfromex-anteestimates.9MONITORINGProjectproponentsmustmonitortheapplicableGHGsourcesandselectedcarbonpoolsidentifiedfortheproject(seeSection5.1andSection5.2).Table11providesastep-by-stepsummaryofthemonitoringprogram.GiventhatmultipleGHGsourcesmustbemonitoredacrossmultiplecarbonpools,itislikelythatstratificationoftheprojectareawillimprovesamplingefficiencyandoverallmonitoringcosts(seeSection9.1).Thus,stratificationisperformedpriortoanyfieldmeasurements.Theprojectproponentmustthendevelopamonitoringplantoguidemonitoringactivities.ThemethodsformeasuringandestimatingcarbonstocksandgasfluxesdescribedinthemonitoringplanmustadheretotherequirementsprovidedinSection9.2.Themonitoringplanmustbeimplementedinthefirstmonitoringperiodandmustguideongoingmonitoringforthedurationoftheprojectcreditingperiod.Usingthemonitoringplanasaguide,thevaluesofdataandparametersidentifiedinSections9.3and9.4mustbereportedintheprojectdescription(PD)ormonitoringreport(MR).Whenmonitoringcarbonstocksandfluxes,theprojectproponentmustnotethedifferencebetweenaccountingunits(typicallytCO2e/day)andthefrequencyandintervalmonitoringactivities(seeSection2.5).Finally,groupedprojectsmustreportadditionalinformationintheMonitoringReportperSection9.5.VM0024,Version1.0SectoralScope14Page54Table11:StagesofthemonitoringprogramDevelopmentTaskKeyActivitiesIdentifyapplicableGHGsources.Selectcarbonpoolsformeasurementandaccounting.Determinewhichsourcesaredeminimis,ifanyStratifyprojectareatofocusmonitoringeffortandreducecosts.Developsamplingmethodsandprocedures.Scheduledatesandlocationsofmonitoringevents.Developmethodsforstoring,auditingandreportingmonitoringdata.Performmonitoringactivities.Synthesizeandreportmonitoringdata.Intheeventofasignificantdisturbance,re-stratifyperSection8.2.5asdescribedinSections9.1and9.2.1.2.SectionofMethodology5.1and5.29.1and9.2.1.29.29.2,9.3and9.4Inthecaseofamethodologydeviation,alternativecriteriaandproceduresrelatingtomonitoringandmeasurementmuststillmeettherequirementsofSection9.2.9.1StratificationStratificationisrecommendedforthedirectmeasurementofcarbonstocks,andisrequiredforthedirectmeasurementofmethaneandnitrousoxidefluxes.AppendixAprovidesgeneralguidelinesforstratifyingtheprojectarea,includingguidanceonallocatingsamplingandmeasurementunitswithinstrata.Differentstratificationsystemsmaybeusedforestimatingdifferentemissionsoremissionsreductionsand/orremovalsfromdifferentGHGsources.Inthecaseofdirectmeasurementofcarbonstocks,stratificationmaybeusedtoimprovesamplingefficiencyandtherebyreducetheeffortandcostsassociatedwithmonitoring.Inparticular,stratificationislikelytoreducetheuncertaintyofpopulationestimateswithineachstratum,whichoftenwillreducethenumberofplotmeasurementsneededtomeetVCSprecisionrequirements.Formethaneandnitrousoxidefluxes,stratificationisusedtoidentifythestratumthatislikelytoyieldthegreatestfluxofeachgasonanannualbasis.Theprojectproponentmustmeasuretheidentifiedstratumforeachgas.Ifdesired,otherstratamaybemeasuredaswell.SelectionofGHGsourcesandcarbonpoolsSelectionofGHGsourcesandcarbonpoolsMonitoringactivitiesMonitoringactivitiesStratificationStratificationMonitoringplanMonitoringplanVM0024,Version1.0SectoralScope14Page55Inordertofurtherstreamlinemonitoringactivities,incaseswheretheprojectproponentencountersaverysmallstratum(eg,atidalchannelthatbecomesestablishednaturallywithintheprojectarea),itispermissibletocombinethestratumwithanotherstratumwithhigherestimatedemissionsfluxperunitofarea.Intheeventthattheverysmallstratumiscombinedwithanotherstratumwithlowerestimatedemissionsfluxperunitarea,theprojectproponentmustshowthatthedifferenceinemissionsisexpectedtobedeminimis.9.1.1MultipleFluxMonitoringMethodsinStrataTheprojectproponentmayselectonemethodformonitoringmethaneornitrousoxideemissionsfluxesacrossallstrata(asdescribedinSections9.2.2and9.2.3).Alternatively,theprojectproponentmaychoosetoapplydifferentmethodstodifferentstrata.Forexample,theprojectproponentmaychoosetouseawell-acceptedmodeltopredictmethanefluxinastratumthatiswell-vegetated(providedtheprojectproponentcandemonstratetherequirementsofSection9.2.2.1)andchambermeasurementstodirectlymeasuremethanefluxelsewhere.PerSections9.2.1.2and9.2.1.3,theprojectproponentthenallocatesthechamberstothestratumandlocationswithinthestratumthatwilllikelyyieldthegreatestmethanefluxoverthecourseoftheyear.Theprojectproponentmustclearlyindicateinthemonitoringplanthemethodsthataretobeusedandtowhichstratumeachistobeapplied(seeSection9.2).Theprojectproponentmustuseastratum-areaweightedaveragetocalculateemissionsfluxesforthepurposeofaccountinginSection8.9.2DescriptionoftheMonitoringPlanTheprojectproponentmustdevelopamonitoringplantoguidemonitoringactivities.Themonitoringplanmustincludeadescriptionofmeasurementmethodsandproceduresandanapproximatescheduleindicatingwhentheprojectproponentwillperformeachmonitoringactivitythroughouttheentireprojectcreditingperiod.Themonitoringplanmustincludethefollowing:1.Thepurposeofmonitoring;2.Samplingproceduresforcarbonstocksandfluxes;3.Anticipateddatesandlocationsforsamplingoverafive-yearperiod;4.Organizationalstructure,responsibilitiesandcompetenciesofindividualsandorganizationsresponsibleformonitoring;5.Methodsforgenerating,recording,storing,aggregating,collatingandreportingdataperSections9.2.1,9.2.2and9.2.3;and6.Methodsforinternalauditingandhandlingofanyidentifiednon-conformitiestothemonitoringplan.VM0024,Version1.0SectoralScope14Page56ThescheduleformonitoringactivitiesmustbebasedupontheguidanceprovidedinthismethodologyforthefrequencyofmeasurementfortheapplicableGHGsources.Table12:ApproximatescheduleofmonitoringactivitiesbyGHGsourceFirstverificationYears1-10afterfirstverificationYears11+afterfirstverificationCarbonstocks(9.2.1.4)Allplotsmeasured.Allplotsmeasuredatleastonce.May‘cycle’throughaportionofplotseachyear.Allplotsmeasuredatleastonceevery5years.May‘cycle’throughaportionofplotseachyear.MethaneProject(9.2.2.4)Fluxmeasuredregardlessofmonitoringmethod.Modelfromliterature:Nodirectmeasurements.Assessapplicabilityofmethodsateachverificationevent.Proxymodel:Directmeasurementofcovariateseverymonitoringperiod.Directmeasurement:Fluxmeasuredeveryyear.(Chambermethod:atleast2measurementeventsperyear;eddycovariancemethod:atleast21daysofmeasurementsperyear)Baseline(9.2.7)Fluxmeasuredregardlessofmonitoringmethod.(sameasabove)Nitrousoxide(9.2.3.4)Fluxmeasuredregardlessofmonitoringmethod.Modelfromliterature:Nodirectmeasurements.Assessapplicabilityofmethodsateachverificationevent.Proxymodel:Directmeasurementofcovariateseverymonitoringperiod.Directmeasurement:Fluxmeasuredeveryyear.(atleast12measurementevents;seeSection9.2.3.4)VM0024,Version1.0SectoralScope14Page57PDRequirements:MonitoringPlanTheprojectdescriptionmustincludethefollowing:PDR.47Asummaryofcarbonstocksamplingproceduresfortheprojectarea,withacopyofasamplingprotocolusedbyfieldpersonneltocarryoutmeasurements.PDR.48Asummaryoffluxmeasurementproceduresfortheprojectarea,withacopyofafluxmeasurementprotocolusedbyfieldpersonneltocarryoutmeasurements.PDR.49Areferencetothemonitoringplan.PDR.50Anymethodologydeviations.Suchdeviationsmustincludethetextthatisbeingmodifiedandtheproposednewlanguage.VM0024,Version1.0SectoralScope14Page58MonitoringRequirements:MonitoringPlanThemonitoringreportmustincludethefollowing:MRR.37Documentationoftrainingforfieldmeasurementcrews.MRR.38Documentationofdataqualityassessment.MRR.39Referencestoplotallocationforcarbonstockmeasurement.MRR.40Listofplotgeodeticcoordinatesforplotsandfluxmeasurementdevices.MRR.41Descriptionanddiagramoffluxmeasurementsdevicesformethaneand/ornitrousoxide.MRR.42Theestimatedcarbonstock,standarderrorofthetotalforeachstock,andthesamplesizeforeachstratumintheprojectarea.MRR.43Anymethodologydeviations.Suchdeviationsmustincludethetextthatisbeingmodifiedandtheproposednewlanguage.MRR.44Frequencyofmonitoringforeachplotandfluxmeasurementlocation–allcarbonstockplotsmustbemeasuredforthefirstverification.9.2.1MonitoringProjectCarbonStocksCarbonstocksmustbemonitoredpriortothefirstverification,atleastoncewithin10yearsafterthefirstverification,andatleastonceevery5yearsthereafter,andnotnecessarilyateveryverificationevent.Totalcarbonstockfortheselectedcarbonpoolsiscalculatedusingequation[G.7].9.2.1.1RequirementsforFirstVerificationAtthefirstverification,carbonstockspriortotheprojectstartdatemustbeestimated,denotedas𝐶𝑃[𝑚=0],usingequation[G.7].Ifplotswerenotinstalledpriortotheprojectstartdate,stratificationfromaerialimagerymayberequiredtoestimate𝐶𝑃[𝑚=0](seeSection9.2.1.2).Allplotsmustbemeasuredatthefirstverification.9.2.1.2RequirementsforStratificationStratificationmaybeusedtoimprovesamplingefficiency,andmayberequiredtoestimatecarbonstockspriortothefirstmonitoringperiod(seeSection9.2.1.1).AppendixAprovidesgeneralguidelinesforVM0024,Version1.0SectoralScope14Page59stratifyingtheprojectarea,includingguidanceonallocatingmeasurementunitswithinstrata.Formeasurementsofcarbonstocks,somestratamaynotbemeasurediftheseareascanconservativelybeassumednottoaccumulatesoilorbiomasscarbonstock.Forexample,anaerialphotomaybeusedtodelineateunproductiveareasinwhichminimalabovegroundbiomasshasaccumulatedinagivenmonitoringperiod.Ratherthanallocatingsampleunitstothesestrata,theprojectproponentmayconservativelyassumethattheseareashaveastockofzero,focusingsamplingeffortsonareasthathavemoresubstantialbiomassaccumulation.Strataboundariesmaychangeovertimetoimprovecarbonstockestimates.PDRequirements:StratificationTheprojectdescriptionmustincludethefollowingifstratificationisnotelectedforeitherbiomassorSOC:PDR.51Justificationfornotstratifyingcarbonstocks.9.2.1.2.1StratificationforSOCWhenestimatingsoilcarbonstocks,theprojectproponentmaystratifytheprojectareaaccordingtofactorssuchaswaterdepth,elevationorrelativeterrainposition,soiltypemaps,orvegetationcover.Amapofallidentifiedstrataandtheirareasmustbereportedaswellastheallocationofplotswithineachstratum.PDRequirements:StratificationforSOCTheprojectdescriptionmustincludethefollowingiftheprojectareaisstratified:PDR.52Descriptionforhowthestrataweredelineated.PDR.53Map(s)oftheinitialstrataboundaries.MonitoringRequirements:StratificationforSOCThemonitoringreportmustincludethefollowingiftheprojectareaisstratified:MRR.45Map(s)ofthecurrentstrataboundaries.MRR.46Adescriptionofchangestothestrataboundaries(ifapplicable).VM0024,Version1.0SectoralScope14Page609.2.1.2.2StratificationforBiomassWhenestimatingbiomasscarbonstocks,theprojectproponentmaystratifytheprojectareaaccordingtofactorssuchasvegetationtype;age,stocking,orvegetationdensity;sitequality;elevationorrelativeterrainposition.Amapofallidentifiedstrataandtheirareasmustbereportedaswellastheallocationofplotswithineachstratum.PDRequirements:StratificationforBiomassTheprojectdescriptionmustincludethefollowingiftheprojectareaisstratified:PDR.54Descriptionforhowthestrataweredelineated.PDR.55Map(s)oftheinitialstrataboundaries.MonitoringRequirements:StratificationforBiomassThemonitoringreportmustincludethefollowingiftheprojectareaisstratified:MRR.47Map(s)ofthecurrentstrataboundaries.MRR.48Adescriptionofchangestothestrataboundaries(ifapplicable)9.2.1.3DirectMeasurementforStockChangeTheprojectproponentmusttakedirectmeasurementsofbiomassandSOC.TheprojectproponentmustusetheprotocolsprescribedinAppendixDandAppendixEasthebasisforcarbonstockmeasurementinthemonitoringplan.Theprojectproponentmustdescribethemethodsforallocatingplotstostrataandwithinstrata.PDRequirements:MeasuringCarbonStocksTheprojectdescriptionmustincludethefollowing:PDR.56Methodforallocatingplotstostratum.PDR.57Descriptionofplotsizesandlayout(suchastheuseofnestsandtheirsizes)foreachcarbonpool.VM0024,Version1.0SectoralScope14Page61MonitoringRequirements:MeasuringCarbonStocksThemonitoringreportmustincludethefollowing:MRR.49Methodforallocatingplotstostratum.MRR.50Mapofthelocationofplotswithinstrata.MRR.51Descriptionofplotsizesandlayout(suchastheuseofnestsandtheirsizes)foreachcarbonpool.9.2.1.3.1SoilPlotDesignPermanentplotsmustberandomlyallocatedintheprojectarea.Artificialmarkerhorizons(feldsparorothertechnique)maybeusedtodefinetheoriginalprojectsoilsurfaceaftertheimplementationofprojectactivities.Theprojectproponentmustspecifythemaximumsoilsampledepth,whichwillbefixedforthelifeoftheproject.PDRequirements:SoilPlotDesignTheprojectdescriptionmustincludethefollowing:PDR.58Diagramofasoilplotshowingthelocationsofartificialmarkerhorizonsandcoresampleswithintheplotovertime.PDR.59Descriptionofthefixedsoilsampledepth.MonitoringRequirements:SoilPlotDesignThemonitoringreportmustincludethefollowing:MRR.52Foreachmeasuredsoilplot,adiagramshowingthelocationofinstalledartificialmarkerhorizonsandsampledcores.MRR.53Fieldreportdescribingsoilsampledepths(accretiondepthandfixedsoilsampledepth)andcoringdevicesusedtocollectsamples.Thereportmustalsoincludenumberofsoilsamplesandtheiridentificationinachainofcustodyformsubmittedtothelaboratory.VM0024,Version1.0SectoralScope14Page629.2.1.4FrequencyofMeasurementAllplotsmustbemeasuredatthefirstverification.Fortheremainderoftheprojectcreditingperiod,carbonstocksmustbemonitoredatleastoncewithinthenext10yearsandatleastonceeveryfiveyearsthereafter,andnotnecessarilyateveryverificationevent.Theprojectproponentmaychooseto‘cycle’throughaportionofmeasurementplotsoverthefive-yearperiod.PDRequirements:FrequencyofCarbonStockMeasurementsTheprojectdescriptionmustincludethefollowing:PDR.60Theanticipatedfrequencyofmonitoringforeachplotandfluxmeasurementlocation–allcarbonstockplotsshouldbemeasuredforthefirstverification.MonitoringRequirements:FrequencyofCarbonStockMeasurementsThemonitoringreportmustincludethefollowing:MRR.54Listofplotsmeasuredduringthemonitoringperiod–allcarbonstockplotsshouldbemeasuredforthefirstverification.9.2.2MonitoringProjectMethaneFluxIntheprojectcase,methaneflux𝐹𝑃Δ𝐶𝐻4[𝑚]mustbemonitoredusingoneofthreeapproaches:modelstakenfrompeerreviewedscientificliterature(Section9.2.2.1),proxymethodsdevelopedbytheprojectproponent(Section9.2.2.2)ordirectmeasurementoffluxfromtheprojectarea(Section9.2.2.3).AllthreeapproachesresultinanestimateoffluxinunitsoftCO2e/day,whichisthenusedinequation[G.11]topredictemissionsasaresultofprojectactivities(seeSection8.2.2).SpecificfieldmethodsformeasuringmethanefluxaredescribedinAppendicesBandC.Indecidingwhichmonitoringapproachtouse,keepinmindthatdirectmeasurementisusuallythemostdemandingintermsoftimeandcost.Iftheprojectproponentisabletoidentifyamodelthatmeetstherequirementsherein,itwilllikelybethemostefficientmethod.Onceanapproachisselected,itcannotbechangedafterthefirstverificationeventunlessitisbeingchangedtodirectmeasurement.VM0024,Version1.0SectoralScope14Page63PDRequirements:MonitoringMethaneTheprojectdescriptionmustincludethefollowing:PDR.61Theselectedapproachformonitoringmethane.9.2.2.1ModelsfromLiteratureMethanefluxmaybepredictedusingaprocessmodelorproxymodelselectedfrompeer-reviewedscientificliteraturebutonlyafterthemodelhasbeendemonstratedtobeapplicabletotheprojectarea.Inselectingamodelanddemonstratingthatitisapplicabletotheprojectarea,theprojectproponentmustdothefollowing:1.Provideadescriptionofthemodelthatincludesreferencestokeytechnicalpapersandjustifieswhytheselectedmodelisappropriateforpredictingmethanefluxintheprojectarea.2.Enumeratetheassumptions(orapplicabilityconditions)ofthemodel,explainhoweachofthoseassumptionsissatisfiedintheapplicationofthemodeltotheprojectarea.3.Listallparametersofthemodel,providingthevaluesapplied,thesourceofthoseparameters,andprovidingajustificationforwhytheselectedvalueisappropriatetotheprojectarea.Ifparametersareselectedbytheusertocalibratethemodel,theprojectproponentmustjustifythevaluesselectedfortheseparametersconservativelypredictsemissions.Modelingconductedinsupportofcreditgenerationactivitiesmustuseparametervaluesthatarespecifictotheprojectareawhereitispossibletodoso(ie,themodelmustbecalibratedbasedonmeasurementsmadeattheprojectsite,notappliedwithdefaultsettings).4.Listanyforcingvariablesorcovariates(forexample,meteorologicalorhydrologicalmeasureablevariablesavailableateachtimestepforwhichthemodelisrun)thatdrivethemodelandprovideaplantoobtainprojectarea-specificvaluesforthoseparameters.Attheinitialprojectverificationandatbaselinereevaluation,themodel’sapplicabilitymustbeassessedbycomparisontodirectfieldmeasurementsofmethaneflux.Theprojectproponentmustdoallofthefollowingtodetermineifthemodelisapplicabletotheprojectarea:1.DirectlymeasuremethanefluxforoneseasonasdescribedinAppendixB.ThemeasurementsmustmeetallassumptionsoutlinedinAppendixB.AppendixBisdesignedtoprovideconservative(high)estimatesofmethaneflux.2.Usetheselectedandcalibratedmodeltopredictthemeasuredmethanefluxindependentofanydatausedtocalibratethemodel.VM0024,Version1.0SectoralScope14Page643.Estimatethemodelerrorasthesumofthedifferencesbetweenpredictedandmeasuredfluxes,dividedbythenumberofmeasurements.4.Themeanerrormustdemonstratethatthemodelconservativelyover-predictsemissionsfluxescomparedtodirectmeasurementofmethaneflux.PredictedemissionsfluxesbytheselectedmodelfromliteraturemustbeconvertedtounitsoftCO2e/day,suchthattheycanbeuseddirectlyinequation[G.11]asdescribedinSection8.2.2(forthedistinctionbetweenunitsandresolution,seeSection2.5).Ifamodel(s)fromliteratureisselected,itmustbejustifiedatthetimeofvalidationanditsapplicabilitydeterminedatthefirstverificationeventandsubsequentbaselinereevaluations.PDRequirements:MethaneModelsfromLiteratureTheprojectdescriptionmustincludethefollowingifamodelfromliteratureisusedtoestimatemethaneflux:PDR.62Justificationofmethanefluxmodelfromtheliterature,pertherequirementsofSection9.2.2.1.MonitoringRequirements:MethaneModelsfromLiteratureThemonitoringreportmustincludethefollowingifamodelfromliteratureisusedtoestimatemethaneflux:MRR.55DemonstrationthattheselectedmodelisapplicabletotheprojectareapertherequirementsofSection9.2.2.1.MRR.56DescriptionofhowmodelpredictionsareconvertedtotCO2e/day.9.2.2.2ProxyModelingProjectproponentsmaydevelopnewproxymodelstopredictmethanefluxfromwetlandecosystems.Inbuildingsuchapredictivemodel,theprojectproponentmustmeasureorcollectpublisheddataonresponsevariables(methaneflux)usingtheguidanceinAppendixBaswellaspossiblecovariates,considerarangeofalternativemodelsandselectamodelusingstatisticallysoundprocedures,andapplythemodelateachverificationeventtopredictmethaneflux.UseSections9.2.2.2.1,9.2.2.2.2,9.2.2.2.3and9.2.2.2.4todevelopnewproxymodels.Althoughthepossiblecovariatestomethanefluxmustbereportedatthetimeofvalidation,theselectedmodelanddatausedtofitthemodelmustbereportedatthetimeofthefirstverificationevent.VM0024,Version1.0SectoralScope14Page65SuchmodelsmustcomplywithrequirementsformodelssetoutintheVCSStandard.9.2.2.2.1ConsideringCovariatesIndevelopingastatisticalmodel,projectproponentsshouldfirstdevelopalistofpossiblecovariatesandlistsourcesofpotentialdataforthosecovariates,whichmayincludedirectfieldmeasurement,remotesensing,peer-reviewedscientificliterature,andtechnicalreportscompletedbygovernmentagencies.Covariatestobeconsideredmayincludebutarenotlimitedtosoilsalinity,watersalinity,soiltemperature,watertemperature,airtemperature,flooding,spectralreflectance,elevation,floodingfrequency,floodingdepth,soilorganiccarbon,andsulfateconcentrations.Fromtheinitiallyconsideredcovariates,identifythosewhosedataavailabilityandexpectedrelationshipwithmethanefluxaremostrelevanttotheprojectneeds.Possibleandselectedcovariatesandsourcesforcovariatesmustbevalidated.PDRequirements:CovariatesforProxyMethaneModelsTheprojectdescriptionmustincludethefollowingifaproxymodelisusedtoestimatemethaneflux:PDR.63Alistofpossiblecovariatesandthesourcesofdataavailableforeach.PDR.64Alistofselectedcovariatestobeusedformodelfitting.9.2.2.2.2CollectingDataforModelFittingandResponseVariablesDataformodelfittingmaybecollectedfromacombinationofdirectfieldmeasurements(seeAppendixB),peer-reviewedscientificliteratureand/ortechnicalreportsissuedbygovernmentagencies.Fielddatamustbecollectedtocovertheentirerangeofmethaneemissionsfluxpotentiallyexpectedbytheproject,aswellasthevaluesofcovariatesthatcorrespondtothatrange.AdditionalguidanceisprovidedinSection4.1.7oftheVCSStandardv3.3.Whendataarecollecteddirectlybytheprojectproponentinthefield,adatacollectionplan(orprotocol)mustbeprepared,detailingthedatacollectionmethodsandreferencingappropriatetechnicalsourcedocuments.VM0024,Version1.0SectoralScope14Page66MonitoringRequirements:DataCollectionforProxyMethaneModelThefirstmonitoringreportmustincludethefollowingifanproxymodelisusedtoestimatemethaneflux:MRR.57Completereferencestothesourceofanydatacollectedfromliteratureorreports.MRR.58Datacollectionprocedures,plansorprotocolsforanydatacollecteddirectlyfromtheprojectarea.9.2.2.2.3ModelFitting,Selection,andGoodnessofFitThismethodologyisnotprescriptivewithregardtomodelformandfittingprocedures,asvarioustypesofmodelsmaybeappropriatedependingontheobservedrelationshipbetweencovariatesandresponsevariables.However,themodelmustbefitusingsoundandwelldocumentedstatisticalmethods.ThemodelmustpredictmethanefluxintCO2e/day(orunitsthatcanbeconvertedappropriately)fromsomecombinationofmeasurablecovariates.Theprojectproponentsmustconsideravarietyofmodelformsanddatatransformationsasappropriatetothedatacollected.Duringmodelfitting,attentionshouldbepaidtooutliersandoverlyinfluentialdatapoints.Residualplotsshouldbeanalyzedtoconfirmthatmodelfittingassumptionshavebeenmet.ModelselectionandgoodnessoffitmustbeevaluatedasdescribedinAppendixF.MonitoringRequirements:ModelFitforMethaneThefirstmonitoringreportmustincludethefollowingifaproxymodelisusedtoestimatemethaneflux:MRR.59Theformoftheselectedmodel.MRR.60Summarystatisticsofthemodelfitasappropriatetothefittingofthemodel.MRR.61Theestimatedmodelparameters.MRR.62Adescriptionoftherangeofcovariatedatawithwhichthemodelwasfit.9.2.2.2.4PredictingMethaneFluxWhenaproxymodelisused,measurementoftheselectedcovariatesreplacesdirectmeasurementofmethanefluxateachverificationevent.CovariatesmustbemeasuredaccordingtotheproceduresoutlinedbytheprojectproponentinSection9.2.2.2.1andtheiractualvaluesreported.Usethemeasuredvaluesasinputstothestatisticalmodel.Inthecasethatthereisuncertaintyaboutthevalueofacovariatemodelinput,choosethevaluethatresultsinthemostconservative(ie,largest)estimateofmethaneemissionsflux.Modelsmustnotbeextrapolatedmorethan10%(thatis,noindependentvariablesthatexceedtherangefromwhichthemodelwasfitbymorethan10%mustbeinputintothemodel).VM0024,Version1.0SectoralScope14Page67MonitoringRequirements:ModelPredictionforMethaneThefirstmonitoringreportmustincludethefollowingifanproxymodelisusedtoestimatemethaneflux:MRR.63Thevaluesofanymeasuredcovariates.MRR.64Thepredictedmethaneflux.9.2.2.3DirectMeasurementEitherchambermeasurements(Section9.2.2.3.2),eddycovariancemeasurements(Section9.2.2.3.3),orothersubstantiveequivalenttechniquesmustbeused.Theprojectproponentmustselectthemeasurementmethodatthetimeofvalidation.Monitoringofgasfluxesisinherentlyuncertainwhenaggregatedoverspaceandtime.Thismethodologyaddressesthisuncertaintybyprovidingrequirementsthatensurethefluxesareoverestimated,ratherthanunderestimated,usingconservativenessasamediatortoaccuracy.Theserequirementsincludeguidelinesforstratification,arequirementformakingmeasurementsinthestratumexpectedtohavethehighestemissions,andguidelinesforthepointsintimeduringwhichmeasurementsaremade.ToconvertmonitoringdatafromfluxperacreperdaytofluxperdayasrequiredinSection8.2.2,useequation[G.10].MonitoringRequirements:ProcessedChamberandEddyCovarianceFluxDataThemonitoringreportmustincludethefollowing:MRR.65Atableofchamberfluxoreddycovarianceemissionsummarystatisticsofthemean(±1SEM)andnumberofsamplesforeachmeanintCO2e/ac/dayforeachsamplelocationwithinastratum.9.2.2.3.1StratificationStratificationmustbeusedtodeterminethestratumthatislikelytoyieldthegreatestmethaneemissionsfluxoverthecourseofayear.AppendixA,SectionA.1,providesgeneralguidelinesforstratifyingtheprojectarea.Directmeasurementsmustbeconductedinthestratumthatislikelytoyieldthegreatestmethaneemissionsflux,andmayoptionallybeconductedinotherstrataaswell,usingappropriateareaweightedstratificationestimatorsasprovidedinappendixA.VM0024,Version1.0SectoralScope14Page68Thefollowingfactorspredominantlyaffectmethaneemissionsflux:1.Carbonsource:Methaneemissionsareassociatedwithproductiveemergentplantsthatsupplylabileorganicmatterformethaneproducingbacteria.Areaswithstressedplantsorlowplantproductivitymayhavelimitedemissionsoveranannualperiod.2.Soilsaturationorreduction-oxidationpotential:Persistentsoilsaturationorinundationabovethewetlandsurfaceindicatesreducedconditionsandalikelihoodofenhancedmethaneemissions.Methaneproductionoccurswhenthereduction-oxidationpotentialislessthan<200mV.Optimalmethaneproductionoccurswhenredoxisbelow-200mV.3.Sulfate(salinity):Theabsenceofsulfatefavorsmethaneproduction.Theregularreplenishmentofsulfatewithseawaterfromtidalactioncansuppressmethaneproduction.Methaneproductioncanoccurwhensulfateislessthan4mMumol(ortypicallywhensalinity<18ppt).4.Planttraits:‘Shunt’plantspeciesarecapableofconductingmethanefromthesoiltoatmosphere.Acomprehensivelistofspeciesisnotknown,however,candidategenerathatcontainsubstantialaerenhymatousrootsandshootsincludes:Typha,Sagittaria,Peltandra,Nuphar,Nymphaea,Phragmites,andCladium(seeCouwenberg2009).5.Electronacceptors:Intheabsenceofsulfateandotherelectronacceptors,suchasnitrateandiron,methaneproductionmaybeenhanced.Thesefactorsmustbeconsideredwhendeterminingthestratumthatislikelytoyieldthegreatestmethaneemissionsflux.Theprojectproponentmustjustifytheselectedstratafordirectmeasurement,includingtimeconsiderationsrelatedtocyclicalchangesinthetidalframe.Strataboundariesmaychangeovertime.Ifthisoccurs,theprojectproponentmustensurethatthestratumlikelytoyieldthegreatestmethanefluxisalwaysmeasured.PDRequirements:StratificationforMethaneEmissionsTheprojectdescriptionmustincludethefollowingifdirectmeasurementisusedtoestimatemethaneflux:PDR.65Descriptionforhowthestrataweredelineated.PDR.66Map(s)oftheinitialstrataboundariesindicatingwhichstratumislikelytoyieldthegreatestmethaneemissionsflux.PDR.67JustificationperthecriteriainSection9.2.2.3.1forthestratumthatislikelytoyieldthegreatestmethaneemissionsflux.VM0024,Version1.0SectoralScope14Page69MonitoringRequirements:StratificationforMethaneEmissionsThemonitoringreportmustincludethefollowingifdirectmeasurementisusedtoestimatemethaneflux:MRR.66Map(s)ofthecurrentstrataboundaries.MRR.67Adescriptionofchangestothestrataboundaries(ifapplicable).9.2.2.3.2ChamberMeasurementsIfthechambermeasurementmethodisselected,theprojectproponentmusttakedirectmeasurementsofmethanefluxusingchambers.TheprojectproponentmayusetheprotocolsprescribedinAppendixBasthebasisforfluxmeasurementinthemonitoringplan.Withinstratum,chambersmustbelocatedinareasthatarelikelytoyieldthegreatestmethaneemissionsfluxoverthecourseofayear(seefactorsinSection9.2.2.3.1).PDRequirements:InstrumentationforChambersTheprojectdescriptionmustincludethefollowing:PDR.68Diagramofchamberdesign.MonitoringRequirements:InstrumentationforChambersThemonitoringreportmustincludethefollowing:MRR.68Diagramofchamberdesign.MRR.69Mapshowingthelocationofchambersintheprojectarea.9.2.2.3.3EddyCovarianceMeasurementsTheprojectproponentmaytakedirectmeasurementsofmethanefluxusingeddycovariance.TheprojectproponentmayusetheprotocolsprescribedinAppendixCasthebasisforfluxmeasurementinthemonitoringplan.Thefootprintoftheeddycovariancetowermustbemorethanhalfinthestratumdeterminedtoyieldthegreatestmethaneemissionsfluxoverthecourseofayear(seefactorsinSection9.2.2.3.1).Thetowermustbelocatedinthestratumdeterminedtoyieldthegreatestmethaneemissionsfluxoverthecourseofayear.Thefootprintofthetowermustbedefinedusingapublishedmodel(eg,Kljunetal.2004,KormannandMeixner2001).VM0024,Version1.0SectoralScope14Page70MonitoringRequirements:InstrumentationforEddyCovarianceThemonitoringreportmustincludethefollowing:MRR.70Diagramormapofeddycovariancetowerdelineatingtheselectedfootprintareawherefluxwasintegratedfromandthecomputedmean80%footprintdistance(includingthefootprintmodelused)fromthetowerduringtheperiodofanalysis.Atableofcomputedestimatesforeachofthefollowingparameters:σw=standarddeviationoftheverticalvelocityfluctuations(m/s)u=surfacefrictionvelocity(m/sec)zm=measurementheight(m)z0=roughnesslength(m)(orcanopyheightanddensitytobeusedtoestimateroughnesslength)MRR.71Descriptionofthepublishedmodelusedtodefinethefootprint.MRR.72Mapshowingthelocationofeddycovariancetowersintheprojectarea.MRR.73Documentationofadherencetomanufacturer-recommendedproceduresforcalibrationofthemethaneanalyzer.Theprojectproponentmustuseoneofthesoftwarepackagesforeddycovariancedataprocessinglistedbelow.Aninter-comparisonofsomeofthesesoftwarepackagesforeddycovariancedataqualitycontrolwasreviewedbyMauderetal.(2008),andanyofthesepackagesmustbeconsideredequallyacceptableforcomputingGHGfluxes.Eddycovariancealgorithmsmaybeusedinothercommercialsoftware,suchasMatLab,butwillrequirejustificationfromtheprojectproponent.EddyPro4.0(fullydocumented,maintained,andsupportedbyLI-COR®,Inc.)ECO2S(IMECC-EU)EdiRe(RobClement,UniversityofEdinburgh)TK3(MatthiasMauderandThomasFoken,UniversityofBayreuth)ECPack(GNUPublicLicense;WageningenUniversity);EddySoft(OlafKolleandCorinnaRebmann,Max-PlanckInstituteforBiogeochemistry)Alteddy(JanElbers,AlterraInstituteinWageningen)Theprojectproponentmustplotatimeseriesof30mindataincludingmethaneconcentration,surfacefrictionvelocityandtemperature.Datapointsmustbeomittedbasedonthefollowingthresholds:Methaneconcentrationmustnotbelessthanambient(<1.7ppm)ortheregionalaverage,whichisavailablefromthenearestNOAAERSLlaboratoryfieldstation.VM0024,Version1.0SectoralScope14Page71Surfacefrictionvelocitieslessthan0.10m/sorgreaterthan1.2m/s.Upperandlowerlimitsofdailytemperatureshouldbewithinnormsofthenearestmeteorologicalstation.MonitoringRequirements:EddyCovarianceDataProcessingandFluxComputationThemonitoringreportmustincludethefollowing:MRR.74Frequencydiagramofwinddirection(0-359with30intervals)andvelocity(m/s)fortheperiodofanalysis.MRR.75Summaryofthedatesofdatacollection,theselectedapproachforaveragingovereachperiod,explicitformulasusedforcomputingflux,numberof0.5-hrsamplesusedincalculations.MRR.76Graphicalplotof0.5-hrGHGconcentration(ppmv),windvelocityanddirection,andtemperatureusedforthefluxcalculationsMRR.77Summarystatistics(numberofsamples,mean,median,variance)ofGHGfluxforeachaveragingperiod.9.2.2.4FrequencyofMeasurementTheprojectproponentmustmonitormethanefluxperiodicallyduringasamplingperiod.Thefrequencyofmeasurementisdependentuponthemeasurementmethodselection(ie,chamberoreddycovariance).9.2.2.4.1ChamberMeasurementsThesamplingperiodmustbedefinedbyachambersamplingtypeselectedfromTable13;guidanceontheappropriateseasonsforsamplingactivitiesisgivenforthenorthernhemisphere.Thechambersamplingtypemaychangefrommonitoringperiodtomonitoringperiod,butmustneverchangewithinamonitoringperiod.Theprojectproponentmustjustifytheirselectionofthechambersamplingtypeeverymonitoringperiod.VM0024,Version1.0SectoralScope14Page72Table13:MeasurementrequirementsforchambersChamberSamplingTypeSamplingPeriodFrequencyPeriodFluxCalculation(tCO2e/ac/d)AnnualFluxCalculation(tCO2e/ac/yr)PeakJune-AugustMinimumoftwosamplingevents.Ifonlytwo,nolessthan30daysbetweenevents.Meanofallmeasurementsduringthesamplingperiod.Meanperiodflux365days.SeasonalOctober–February(winter)March–May(spring)June–September(summer)Minimumoffoursamplingevents.Eachseasonmusthaveatleastoneeventandthesummerseasonmusthaveatleasttwo,withnolessthan30daysbetweenevents.Meanofallmeasurementspereachsamplingseason.SUMofthemeanwinterseasonflux151daysandthemeanspringseasonflux92daysandthemeansummerseasonflux122days.MonthlyJanuary-DecemberMinimumof12samplingeventswithnolessthansevendaysbetweenevents.Minimumofoneeventpereachcalendarmonth.Meanofallmonthlymeasurementsduringthesamplingperiod.Meanperiodflux365days.Methaneproductionfromwetlandsoilspredominantlyoccurswhenmeansoilandwatertemperaturesexceeds20C(Whalen2005).Becausethepeakchambersamplingtypeisduringthehottestmonthsinthenorthernhemisphere,thissamplingtypeismostconservative;italsorequirestheleastamountofsampling.SeasonalandMonthlychambersamplingtypesmayprovideamoreaccurateestimateofseasonalandinter-annualfluxes.Samplingmustoccurwhenwaterlevelsarewithinmeanlowandmeanhighwater(ie,notduringextendedlowwaterevents).VM0024,Version1.0SectoralScope14Page73MonitoringRequirements:ChamberSamplingforMethaneThemonitoringreportmustincludethefollowing:MRR.78Tableofsamplingeventdatesforthemonitoringperiod,includingthetimeofdaysampleswerecollected,waterlevelrelativetothesoilsurface,soiltemperature,andairtemperature.MRR.79Copyoffielddatasheetsdocumentingtimeintervalswhensampleswerecollected,sampleidentificationnumber,andverificationofthetotalnumberofsamplesreceivedbythelaboratory.9.2.2.4.2EddyCovarianceMeasurementsThesamplingperiodmustbedefinedbytheeddycovariancesamplingtypeandtheeddycovariancesamplingtypemustbeselectedfromTable14;samplingperiodsaregivenforthenorthernhemisphere.Theeddycovariancesamplingtypemaychangefrommonitoringperiodtomonitoringperiod,butmustneverchangewithinamonitoringperiod.Theprojectproponentmustjustifytheirselectionoftheeddycovariancesamplingtypeeverymonitoringperiod.Fluxmeasurementsmustnotbeverifiedduringthesamplingperiodiftheselectededdycovariancesamplingtypeispeakorseasonal.VM0024,Version1.0SectoralScope14Page74Table14:MeasurementrequirementsforEddyCovarianceEddyCovarianceSamplingTypeSamplingPeriodFrequencyPeriodFluxCalculation(tCO2e/ac/d)AnnualFluxCalculation(tCO2e/ac/yr)PeakJuly1–September30Minimumof21days.Meanofallmeasurementsduringthe21cumulativedays(ormore).Meanperiodflux365days.SeasonalMarch1–May30(spring)July15–September15(summer)Minimumof21dayssampledinthespringandminimumof21dayssampledinthesummer.Meanofallmeasurementsduringthe21cumulativedays(ormore)pereachseason.SUMofthemeanspringseasonflux243daysandthemeansummerseasonflux122days.MonthlyJanuary-DecemberMinimumof3dayssampledpercalendarmonth.Nolessthan7daysbetweensamplingevents.Meanofallmeasurementsduringthe36days(ormore).Meanperiodflux365days.Thefollowingcriteriaestablishthefrequencyofmeasurementswithineachday:1)Asampleintervalis0.5hr.2)Aminimumof12samplesmustcompriseadailyfluxmean.3)Onemissingsamplebetweentwosamplesmaybelinearlyinterpolated.Nointerpolationisallowedfortimeperiodsgreaterthan1hr.4)Alistofinterpolatedsamplesmustberecordedandprovidedtotheverifier.VM0024,Version1.0SectoralScope14Page75PDRequirements:EddyCovarianceMeasurementTheprojectdescriptionmustincludethefollowing:PDR.69Thetypeofanalyzerselectedfordirectmeasurementsofmethane,includingadescriptionoftheresolutionofmeasurements(inppb)andthefrequencyatwhichmeasurementsaretobetaken(inHz).PDR.70Atableofmeteorologicalvariablesselectedformeasurement.Foreachvariableinthetable,justificationforitsselection,theunitofmeasurement,resolutionofmeasurementandfrequencyofmeasurement.PDR.71Adescriptiontheeddycovariancetowerconfigurationincludingthedistancesbetweensensors(vertical,northwardandeastwardseparation).PDR.72Ascalediagramoftheeddycovariancetowerconfigurationshowingtherelativelocationanddistanceoftheanemometerrelativetothemethanesensor.PDR.73Planviewdiagramormapoftheeddycovariancetowerdelineatingstrataandtheareaofhighestanticipatedemissionswithina100mradiusofthetower.Delineationofanypatchvegetation(twicethedominantcanopyheightandoccupying>100m2inarea)occurringwithintheestimated80%footprintarea.PDR.74Descriptionofdominantplantcanopyheight(inm)overanannualcycle.Anestimateofthe80%fluxfootprintdistance(inm)andparameterestimates,asfollows:𝜎𝑤=standarddeviationoftheverticalvelocityfluctuations(m/s)𝑢∗=surfacefrictionvelocity(m/sec)𝑧𝑚=measurementheight(m)ℎ𝑚=planetaryboundarylayerheight(m)or1000m𝑧𝑚=roughnesslength(m)or1/10thoftheaveragecanopyheightVM0024,Version1.0SectoralScope14Page76MonitoringRequirements:EddyCovarianceMeasurementThemonitoringreportmustincludethefollowing:MRR.80Atableofmeteorologicalvariablesselectedformeasurement.Foreachvariableinthetable,anindicationofwhetherthevariablewasmeasured,themakeandmodeloftheinstrumentusedformeasurement.MRR.81Foreachmeasuredvariable,agraphicalplotortableofthedatawithrespecttotimeduringthemonitoringperiod.Adatatableorplotmustincludeatminimum:airtemperature,methaneconcentration,methaneflux.Alistofinterpolated/missingsamples.MRR.82Documentationofcalibrationdatesandzerochecksformethaneanalyzer.Providethedateoflastfullcalibration(0-10ppmmethanestandard).Providedatesofcarbon-freeairgaschecksformethaneanalyzer.9.2.3MonitoringProjectNitrousOxideFluxNitrousoxidemaybedeminimisasdeterminedperSection8.4.3.2andcurrentVCSrequirements.Ifitisnotdeminimis,theprojectproponentmustmonitornitrousoxideflux𝐹𝑃Δ𝑁20[𝑚]usingoneofthreeapproaches:applyingdefaultvalues(Section9.2.3.1),proxymethodsdevelopedbytheprojectproponent(Section9.2.3.2)ordirectmeasurementoffluxfromtheprojectarea(Section9.2.3.3).AllthreeapproachesresultinanestimateoffluxinunitsoftCO2e/day,whichisthenusedinequation[G.13]topredictemissionsasaresultofprojectactivities(seeSection8.2.3).SpecificfieldmethodsformeasuringnitrousoxidefluxaredescribedinAppendixB.Indecidingwhichmonitoringapproachtouse,itshouldbekeptinmindthatdirectmeasurementisusuallythemostdemandingintermsoftimeandcost.Iftheprojectproponentisabletoidentifyadefaultvalueormodelthatmeetstherequirementsherein,thesewilllikelybethemostefficientmethods.Onceanapproachisselected,itcannotbechangedafterthefirstverificationevent.PDRequirements:MonitoringNitrousOxideTheprojectdescriptionmustincludethefollowing:PDR.75Theselectedapproachformonitoringnitrousoxide.9.2.3.1DefaultValuesThissectionprovidespeer-reviewedestimatesfornitrousoxideemissionsfluxinavarietyofwetlandecosystemsinseveralregionsofNorthAmerica(primarilyLouisiana).ThevaluesprovidedinTable16maybeusedtodetermineadefaultvaluefornitrousoxideemissions.VM0024,Version1.0SectoralScope14Page77Iftheprojectproponentdemonstratesthattheprojectareaisnotlocatedwithinadirect‘outfall’ofaNPDESmajordischarger(asdescribedinthissection)andisnotlocatedwithinaCWASection303ddesignatedimpairedwater,theprojectproponentmayuseanapplicabledefaultvalueprovidedinTable16ofSection9.2.3.1.1,takingintoconsiderationtheissuesdescribedinthissectioninordertodetermineifthevaluesinTable16areapplicabletotheproject.Iftheprojectareaisdeterminedtobewithinthe‘outfall’ofaNPDESmajordischarger(ie,affectedbyexternalnitrateloading)orislocatedwithinaCWASection303ddesignatedimpairedwater,theprojectproponentmusteitherapplyaproxymodel(seeSection9.2.3.2)orconductdirectmonitoring(seeSection9.2.3.3).PriortoselectingadefaultvaluefromTable16,theprojectproponentmustdeterminewhetherthereexistsanexternalnitrogenloadingthatislikelytoinfluencegasfluxesintheprojectarea.Theprojectproponentmustprovidesupportingevidencetoshowwheremajorpointsourcesofnitrogenarelocatedrelativetotheprojectareaandtodefinethehydrologicconnectionsthatleadtodirectdischargeintotheprojectarea.Majorpointsourcesofnitrogenmayincludestate-authorizedNPDESpermits(industrialormunicipalwastewatereffluent)orpublicworksprojectsresultinginthealterationofsurfacewaterflowintowetlandsandestuaries(egwetlandrestorationprojectswithfreshwater/sedimentriverdiversions).Majornon-pointnitrogensourcesfromsurfacerunofforwastewater–includingagricultural,urbanandsuburbanareas,leachfields,andleakingsewerpipes–alsomustbeconsidered.Specifically,theprojectproponentmustdemonstrate:1.Theprojectareaisnotlocatedwithinadirect‘outfall,’norisitdownstreamandincloseproximityofaNPDESmajordischarger(>1mgd)orpublicworksproject(riverdiversion)dischargingelevatednitrogeneffluent(>3mgTN/L);2.TheprojectareaisnotlocatedwithinaCWASection303ddesignatedimpairedwater,wherenitrogen(or‘nutrients’)isthesuspectedcausalfactorofimpairment;and3.Theprojectareadoesnotreceivedirectsurfacerunofffromagricultural,urbanorsuburbanareas,andisnotimmediatelyadjacenttoareaswithsewerlinesorleachfields.Acceptablesourcesofsupportingdocumentationtodemonstratethepresenceorabsenceofexternalnitrogenloadingmayinclude:state-authorizedNationalPollutantDischargeEliminationSystem(NPDES)documentation;CleanWaterAct303dImpairedWatersdocumentation;watershed-basedTotalMaximumDailyLoad(TMDL)regulations;project-specificmonitoringreports;firstorder,area-basedwaterqualitymodels;andambientwaterqualitymonitoringdata.VM0024,Version1.0SectoralScope14Page78PDRequirements:DeterminingProjectAreaExposuretoNitrogenLoadingTheprojectdescriptionmustincludethefollowing:PDR.76Locationoftheprojectareawithinaminimumdefinablewatershed,usingaUSGS,EPAorstatedelineatedwatershed.PDR.77LocationsofallNPDESmajordischargersandpublicworksprojectsproducing>1MGDofelevatednitrogeneffluent(>3mgTN/L)dischargingintotheprojectareaandlocatedwithintheminimumdefinablewatershed.PDR.78ListofEPACWASection303ddesignatedimpairedwatersforthestate.Alternatively,otherpeer-reviewedestimatesmaybeused,inwhichcasetheprojectproponentmustdemonstrateandjustifytheselecteddefaultvalue.Wheredefaultfactorsareused,theymustbeconsistentwiththecurrentversionoftheVCSStandard'srequirementsfordefaultfactors(currentlylocatedinSection4.5.6oftheVCSStandardversion3.3).TheprojectproponentmustcalculatetheselecteddefaultvalueintermsoftCO2e/yearandapplythiscalculateddefaulttodetermineemissionsinequation[G.13].Modelsmustbepubliclyavailable,thoughnotnecessarilyfreeofcharge,fromareputableandrecognizedsource(eg,themodeldeveloper’swebsite,IPCCorgovernmentagency).PDRequirements:DefaultValuesforNitrousOxideMonitoringTheprojectdescriptionmustincludethefollowingifadefaultvalueisusedtoestimatenitrousoxideflux:PDR.79Justificationfortheselecteddefaultvalue.9.2.3.1.1DefaultFactorsinAbsenceofExternalNitrateLoadingUnderbackgroundwetlandconditions,definedasthosewetlandareasnotexposedtoexternalnitrateloadingsources(eg,ariverdiversionorwastewatertreatmentoutflows,orothersignificantpointsources),intheMississippiRiverdeltaplain,nitrousoxideemissionsfluxtotheatmosphereis≤0.1tCO2e/ac/yr(Smithetal.1983).Undertheseconditions,theprojectproponentmayuseavaluefromTable16,makingsuretojustifyitsapplicabilitytotheprojectarea.Table15showsannualestimatesofnitrousoxideemissionsfluxesfromvegetatedwetlandandopenwaterhabitatsacrossasalinitygradientinLouisiana(Smithetal.1983),.Thestudywasdoneover2yearswithsamplestakenon6weekintervals(17samplingevents)usingstaticfluxchambersatsitesrepresentativeofbackgroundconditionsforLouisianawetlands(intheabsenceofexternalnitrateloading).Theemissionsfluxesarepresentedrelativetoananticipatedannualsequestrationrateof3tCO2e/ac/yr.VM0024,Version1.0SectoralScope14Page79Table15:BackgroundannualnitrousoxidefluxvaluesfromvegetatedwetlandandopenwaterhabitatsacrossasalinitygradientinLouisiana(Smithetal.1983)WetlandTypeAnnualmgN20-N/m2/yrAnnualtCO2e/ac/yr%ofBenefit@3tCO2e/ac/yrSaltmarsh310.062.0%openwater100.02Brackishmarsh480.093.2%openwater210.04Freshmarsh550.113.6%openwater340.07ForprojectsinLouisiana,thevaluesprovidedinTable15maybeusedtoestimatenitrousoxideflux.ForprojectsoutsideLouisiana,theprojectproponentmustidentifyappropriatefluxestimatesfrompeer-reviewedliteratureandmustdemonstratethattheyareapplicabletotheproject.Theeffectsofriverdiversionsonnitrousemissionsfluxtotheatmospherearelesspredictablethanbackgroundconditions.Nitrousoxideemissionsfluxfromfreshwaterwetlandsneartheoutfallofriverdiversionsmaydependonwhetherthediversionisoperating(positivefluxtotheatmosphere0.4tCO2e/ac/yr;Yuetal.2006)ornotoperating(fluxfromtheatmospheretothewetland-0.17tCO2e/ac/yr;Table15,Yuetal.2006).ThestudyofLundberg(2012)conductedalongasalinitygradientfromtheoutfallofoneriverdiversionshowedthatwetlandnitrousemissionsfluxtotheatmospherearerelativelylow(<0.07tCO2e/ac/yr).9.2.3.1.2ProjectsinPresenceofExternalNitrateLoadingExposuretohighexternalnitrateloadsmayresultinincreasednitrousoxideemissionsfluxcomparedtobackgroundconditions.Forprojectareasinthepresenceofexternalnitrateloading,theprojectproponentmusteitherapplyaproxymodel(seeSection9.2.3.2)orconductdirectmonitoring(seeSection9.2.3.3).9.2.3.2ProxyModelingProjectproponentsmaydevelopnewproxymodelstopredictnitrousoxidefluxfromwetlandecosystems.Inbuildingsuchapredictivemodel,theprojectproponentmustmeasureorcollectpublisheddataonresponsevariables(nitrousoxideflux)usingtheguidanceinAppendixBaswellaspossiblecovariates,considerarangeofalternativemodelsandselectamodelusingstatisticallysoundprocedures,andapplythemodelateachverificationeventtopredictnitrousoxideflux.UseSections9.2.3.2.1,9.2.3.2.2,9.2.3.2.3and9.2.3.2.4todevelopnewproxymodels.Althoughthepossiblecovariatestonitrousoxidefluxmustbereportedatthetimeofvalidation,theselectedmodelanddatausedtofitthemodelmustbereportedatthetimeofthefirstverificationevent.VM0024,Version1.0SectoralScope14Page809.2.3.2.1ConsideringCovariatesIndevelopingastatisticalmodel,projectproponentsmustfirstdevelopalistofpossiblecovariatesandlistsourcesofpotentialdataforthosecovariates,whichmayincludedirectfieldmeasurement,remotesensing,peer-reviewedscientificliterature,andtechnicalreportscompletedbygovernmentagencies.Fromtheinitiallyconsideredcovariates,identifythosewhosedataavailabilityandexpectedrelationshipwithmethanefluxaremostrelevanttotheprojectneeds.Possibleandselectedcovariatesandsourcesforcovariatesmustbevalidated.PDRequirements:CovariatesforProxyNitrousOxideModelsTheprojectdescriptionmustincludethefollowingifanproxymodelisusedtoestimatenitrousoxideflux:PDR.80Alistofpossiblecovariatesandthesourcesofdataavailableforeach.PDR.81Alistofselectedcovariatestobeusedformodelfitting.9.2.3.2.2CollectingDataforModelFittingandResponseVariablesDataformodelfittingmaybecollectedfromacombinationofdirectfieldmeasurements(seeAppendixB),peerreviewedscientificliteratureand/ortechnicalreportsissuedbygovernmentagencies.Fielddatamustbecollectedtocovertheentirerangeofnitrousoxideemissionsfluxpotentiallyexpectedbytheproject,aswellasthevaluesofcovariatesthatcorrespondtothatrange.Whendataarecollecteddirectlybytheprojectproponentinthefield,adatacollectionplan(orprotocol)mustbeprepared,detailingthedatacollectionmethodsandreferencingappropriatetechnicalsourcedocuments.MonitoringRequirements:DataCollectionforProxyNitrousOxideModelThefirstmonitoringreportmustincludethefollowingifanproxymodelisusedtoestimatenitrousoxideflux:MRR.83Completereferencestothesourceofanydatacollectedfromliteratureorreports.MRR.84Datacollectionprocedures,plansorprotocolsforanydatacollecteddirectlyfromtheprojectarea.9.2.3.2.3ModelFitting,Selection,andGoodnessofFitThismethodologyisnotprescriptivewithregardtomodelformandfittingprocedures,asvarioustypesofmodelsmaybeappropriatedependingontheobservedrelationshipbetweencovariatesandresponsevariables.However,themodelmustbefitusingsoundandwell-documentedstatisticalmethods.TheVM0024,Version1.0SectoralScope14Page81modelmustpredictnitrousoxidefluxintCO2e/day(orunitsthatcanbeconvertedappropriately)fromsomecombinationofmeasureablecovariates.Theprojectproponentsmustconsideravarietyofmodelformsanddatatransformationsasappropriatetothedatacollected.Duringmodelfitting,attentionshouldbepaidtooutliersandoverlyinfluentialdatapoints.Residualplotsshouldbeanalyzedtoconfirmthatmodelfittingassumptionshavebeenmet.ModelselectionandgoodnessoffitmustbeevaluatedasdescribedinAppendixF.PDRequirements:ModelFitforNitrousOxideTheprojectdescriptionmustincludethefollowingifanproxymodelisusedtoestimatenitrousoxideflux:PDR.82Justificationthattheproxyisanequivalentorbettermethod(intermsofreliability,consistencyorpracticality)todeterminethevalueofinterestthandirectmeasurement.MonitoringRequirements:ModelFitforNitrousOxideThefirstmonitoringreportmustincludethefollowingifanproxymodelisusedtoestimatenitrousoxideflux:MRR.85Theformoftheselectedmodel.MRR.86Summarystatisticsofthemodelfitasappropriatetothefittingofthemodel.MRR.87Theestimatedmodelparameters.MRR.88Adescriptionoftherangeofcovariatedatawithwhichthemodelwasfit.9.2.3.2.4PredictingNitrousOxideFluxWhenaproxymodelisused,measurementoftheselectedcovariatesreplacesdirectmeasurementofnitrousoxidefluxateachverificationevent.CovariatesmustbemeasuredaccordingtotheproceduresoutlinedbytheprojectproponentinSection9.2.2.2.1andtheiractualvaluesreported.Usethemeasuredvaluesasinputstothestatisticalmodel.Inthecasethatthereisuncertaintyaboutthevalueofacovariatemodelinput,choosethevaluethatresultsinthemostconservative(ie,largest)estimateofnitrousoxideemissionsflux.Modelsmustnotbeextrapolatedmorethan10%(thatis,noindependentvariablesthatexceedtherangefromwhichthemodelwasfitbymorethan10%mustbeinputintothemodel).VM0024,Version1.0SectoralScope14Page82MonitoringRequirements:ModelPredictionforNitrousOxideThefirstmonitoringreportmustincludethefollowingifanproxymodelisusedtoestimatenitrousoxideflux:MRR.89Thevaluesofanymeasuredcovariates.MRR.90Thepredictednitrousoxideflux.9.2.3.3DirectMeasurementIfusingdirectmeasurements,theprojectproponentmustmeasurenitrousoxidefluxusingchambers.TheprojectproponentmayusetheprotocolsprescribedinAppendixBasthebasisforfluxmeasurementinthemonitoringplan.Monitoringofgasfluxesisinherentlyuncertainwhenaggregatedoverspaceandtime.Thismethodologyaddressesthisuncertaintybyprovidingrequirementsthatensurethefluxesareoverestimated,ratherthanunderestimated,usingconservativenessasamediatortoaccuracy.Theserequirementsincludeguidelinesforstratification,arequirementformakingmeasurementsinthestratumexpectedtohavethehighestemissions,andguidelinesforthepointsintimeduringwhichmeasurementsaremade.ToconvertmonitoringdatafromfluxperacreperdaytofluxperdayasrequiredinSection8.2.3,useequation[G.12].9.2.3.3.1StratificationStratificationmustbeusedtodeterminethestratumthatislikelytoyieldthegreatestnitrousoxideemissionsfluxoverthecourseofayear.AppendixA,SectionA.1,providesgeneralguidelinesforstratifyingtheprojectarea.Directmeasurementsmustoccurinthestratumthatislikelytoyieldthegreatestnitrousoxideemissionsflux,andmayoptionallybemadeinotherstrataaswell,usingappropriatearea-weightedstratificationestimatorsasprovidedinAppendixAtodetermineaweighted-averageestimateoffluxfortheprojectarea.Strataboundariesmaychangeovertime.Ifthisoccurs,theprojectproponentmustensurethatthestratumlikelytoyieldthegreatestnitrousoxidefluxisalwaysmeasured.VM0024,Version1.0SectoralScope14Page83PDRequirements:StratificationforNitrousOxideEmissionsTheprojectdescriptionmustincludethefollowingifdirectmeasurementisusedtoestimatenitrousoxideflux:PDR.83Descriptionforhowthestrataweredelineated.PDR.84Map(s)oftheinitialstrataboundariesindicatingwhichstratumislikelytoyieldthegreatestnitrousoxideemissionsflux.PDR.85JustificationperthecriteriainSection9.2.2.3.1forthestratumthatislikelytoyieldthegreatestnitrousoxideemissionsflux.MonitoringRequirements:StratificationforNitrousOxideEmissionsThemonitoringreportmustincludethefollowingifdirectmeasurementisusedtoestimatenitrousoxideflux:MRR.91Map(s)ofthecurrentstrataboundaries.MRR.92Adescriptionofchangestothestrataboundaries(ifapplicable).9.2.3.3.2ChamberMeasurementsInmostcases,chambermeasurementsfornitrousoxidefluxwillbecollocatedwithmethaneflux.Intheeventthattheyarenotcollocated,therequirementsofSection9.2.2.4.1mustbeusedtoidentifythelocationofchambersfornitrousoxide.9.2.3.4FrequencyofMeasurementTherearetwooptionsforthefrequencyofnitrousoxidefluxmeasurements:1.InconjunctionwithchambersamplesofmethanefluxperSection9.2.2.4.1(ifapplicable);or2.Approximatelyoncepercalendarmonth,aminimumof12samplesthatarenolessthansevendaysapart.Foreitheroption,nitrousoxidefluxmustbecalculatedasthemeanofallmeasurements.VM0024,Version1.0SectoralScope14Page84MonitoringRequirements:ChamberSamplingforNitrousOxideThemonitoringreportmustincludethefollowing:MRR.93Tableofsamplingeventdatesforthemonitoringperiod,includingthetimeofdaysampleswerecollected,waterlevelrelativetothesoilsurface,soiltemperature,andairtemperature.MRR.94Copyoffielddatasheetsdocumentingtimeintervalswhensampleswerecollected,sampleidentificationnumber,andverificationofthetotalnumberofsamplesreceivedbythelaboratory.9.2.4MonitoringProjectEnergyConsumptionUnitsofenergythatareconsumedasaresultofprojectactivitiesandmonitoringactivitiesmustbemonitoredusingthedirectmeasurementapproachorthecostapproach(seeSections9.2.4.1and9.2.4.2).MonitoringRequirements:EnergyConsumptionMeasurementMethodThemonitoringreportmustincludethefollowing:MRR.95Theselectedapproachtomonitoringenergyconsumption.9.2.4.1DirectMeasurementofEnergyConsumptionIfdirectmeasurementisused,theprojectproponentmustmaintainseparaterecordsofenergyconsumptionforeachenergytypelistedinTable10(seeSection8.1.1).Thetotalunitsofenergyconsumedduringthemonitoringperiodforeachenergytypeisrecordedas𝐺𝑃Δ(𝑡𝑦)[𝑚].MonitoringRequirements:DirectMeasurementofEnergyConsumptionThemonitoringreportmustincludethefollowing:MRR.96EnergyconsumptionforeachenergytypelistedinSection8.1.1.MRR.97Referencestorecordsofenergyconsumption.9.2.4.2CostApproachtoEnergyConsumptionThecostapproachtoestimatingenergyconsumptionassumesthattheprojectproponentdoesnotpossessdefinitive,itemizedrecordsofenergyexpenditures,giventhatenergyandfuelcostsoftenareVM0024,Version1.0SectoralScope14Page85paiddirectlybydredgingsubcontractorsandactualenergyconsumptionisnotoftenreported.Ifthecostapproachisused,theprojectproponentmustextrapolateenergyconsumptionbasedontheprojectbudgetandhistoricenergycosts.Theprojectproponentmustadheretothefollowingprocedure:1.Determinetheproportionofthedredgingbudgetestimatedforfuel(orelectricity)purchases,2.Identifytheenergytype(s)likelytohavebeenusedinthecourseofdredging,and3.Calculatetheestimatedenergyconsumptionbyenergytypeusingpublishedhistoricenergyprices(eg,U.S.EnergyInformationAdministration)atthetimeofdredgingactivities.Theestimateoftotalunitsofenergyconsumedduringthemonitoringperiodforeachenergytypeisrecordedas𝐺𝑃Δ(𝑡𝑦)[𝑚].Theprojectproponentmustjustifyhowtheenergypricesandproportionallocatedtoenergytypeisconservative;themostconservativescenariowillalwaysbetoassumethelowestenergypricesandallocatethehighestemissionfactorforeachtype.MonitoringRequirements:CostApproachtoEnergyConsumptionThemonitoringreportmustincludethefollowing:MRR.98Justificationfortheproportionofdredgingbudgetallocatedforfuel(orelectricity)purchases.MRR.99Justificationforchoiceofenergytype(s).MRR.100Documentationofhistoricenergycostsatthetimeofdredgingactivities.MRR.101Justificationofestimateofenergyconsumption.9.2.5MonitoringProjectSedimentTransportEmissionsfromenergyconsumptionarebaseduponthemassofsedimenttransportedasaresultofprojectactivities.Themassofsedimenttransportedisgivenbyequation[G.2]where𝑀𝑃Δ[𝑚]isthemassofsedimentdredgedfromthesedimentsourceasaresultofprojectactivitiesduringthemonitoringperiod,𝑉𝑃Δ[𝑚]isthevolumeoftransportedsediment,and𝑑𝑃Δ[𝑚]isthedensityofthetransportedsediment.Theestimatedvolumeoftransportedsedimentmustbebaseduponthevolumeofthecatchmentareatowhichdredgedsedimentistransported.Giventhatdredgedsedimentislikelytobeasolid-liquidmixture,thedensitymustbemeasuredasequation[G.1].VM0024,Version1.0SectoralScope14Page86MonitoringRequirements:MonitoringSedimentTransportThemonitoringreportmustincludethefollowing:MRR.102Justificationfortheestimateofvolumeofdredgedsedimenttransported.MRR.103Justificationfortheestimateofthedensityofdredgedsediment.MRR.104Estimatedmassofsedimenttransported.9.2.6MonitoringAllochthonousCarbonForprojectsthatdonotmeetthecriteriafortheconservativeexclusionofallochthonouscarbonimport(perSection5.2.1),theprojectproponentmustmonitorallochthonouscarbonsedimentation.Accretionmeasurements(ie,withamarkerhorizontechnique)mustbeusedtoestimatethefractionofallochthonousmineral-associatedcarbonwithsedimentation.Basedonliteraturevaluesfortheprojectarea,aconservativedeductionmustbeassessedaccordingtotheproceduresdescribedinAppendixE.6.4andusingequation[E.4].Usingregionallyappropriateliterature,theprojectproponentmustuseapeer-acceptedcorrectionfactor(typically≤3%ofthemineralcontentisboundbyorganicmatter,seeAndrewsetal.2011)forthetypeofwetlandsystem(eg,fluvial,non-fluvial)inordertocomputethemassofthemineral-associatedcarbonthatmustbesubtractedfromtotalsoilcarbonaccumulationduringthemonitoringperiod.MonitoringRequirements:MonitoringAllochthonousCarbonThemonitoringreportmustincludethefollowing:MRR.105Reference(s)totheregionallyappropriateliteratureusedtodeterminethecorrectfactorformineral-associatedcarbon.9.2.7MonitoringBaselineMethaneFluxBaselinemonitoringformethanemustbeconductedinasuitablereferencearea(asdefinedinSection6.3.1).Methanemonitoring(chamberoreddycovariance)mustconformtotherequirementsinSections9.2.2andmustusethesamplingdesignsandspecificationsoutlinedinAppendicesBandC.9.2.8ProceduresforQualityControlandAssuranceThemonitoringplanmustspecifyspecificmeasuresforqualitycontrolandassurance.ThesemeasuresmustconformtotherequirementsinSections9.2.8.1,9.2.8.2and9.2.8.3.VM0024,Version1.0SectoralScope14Page879.2.8.1FieldMeasurementsTheprojectproponentmustdevelopamonitoringplanthatincludesadetailedfieldsamplingprotocol.Fielddatamustbespot-checkedforerrorsinsampling,transcription,andanalysis(seeSection9).Theprojectdescriptionmustdescribethetypeandfrequencyoftrainingforfieldpersonnelresponsibleforsamplingcarbonstocks,fluxes,andcovariates.Themonitoringreportmustdocumentthetypeandtrainingfieldpersonnelreceivedduringthemonitoringperiod.PDRequirements:FieldTrainingforFieldSamplingTheprojectdescriptionmustincludethefollowing:PDR.86Adescriptionofthetypeandfrequencyoftrainingoffieldpersonnelresponsibleforsamplingcarbonstocks,fluxes,andcovariates.MonitoringRequirements:FieldTrainingforFieldSamplingThemonitoringreportmustincludethefollowing:MRR.106Thetypeandfrequencyoftrainingoffieldpersonnelduringthemonitoringperiod.9.2.8.2DataTranscriptionandAnalysisProjectproponentsmustdocumentaprocedureforensuringhighqualitydataisusedindeterminingemissionsreductionsandremovals.Thisproceduremustincludemethodsforrecordingandarchivingdata,checkingdataforerrors,andanalyzingdatainatransparentmanner.Totheextentpossible,analysismethodsshouldbemaintainedthroughoutthelifetimeoftheproject(eg,usingthesamespreadsheets,software,andcomputercodeforallcalculationsmadeduringtheprojectlifetime).Apercentageofanydataenteredmanuallyshouldberandomlycheckedfortranscriptionerrors,preferablybyapersonnotinvolvedintheinitialentry.9.2.8.3CarbonStockMeasurementsAllcarbonstockdatafromindividualplotsmustbeprovidedtothevalidation/verificationbody,alongwithallspreadsheetsorcomputercodeusedtocalculateproject-levelcarbonstocksandassociateduncertainties.Dataanalysisshouldbecarefullycheckedfortranscriptionorcalculationerrors.Thedistributionofbiomassestimatesbyplotshouldbeexaminedandcomparedtoavailableliteraturetoconfirmthatreasonableresultshavebeenachieved;asimilarproceduremustbefollowedforSOC.AnyplotswithunusuallyhighorlowbiomassorSOC(ie,outliers)shouldbeexaminedclosely.Itisgoodpracticetore-measureasubsetofbiomassplotstoverifytheaccuracyoffieldmeasurementswhennon-VM0024,Version1.0SectoralScope14Page88destructivesamplingtechniquesareused.Whendestructivesamplingisused,evidenceofcalibrationofinstruments(suchasscales)mustbeprovided.MonitoringRequirements:CarbonStockMeasurementsThemonitoringreportmustincludethefollowing:MRR.107BiomassandSOCcarbonstockdataforallplots,alongwithanyancillaryspreadsheetsorcomputercodeusedtogeneratethesepredictions.MRR.108ListofoutlierswithunusuallyhighorlowbiomassorSOC,includingjustificationfortheircontinuedinclusion.MRR.109Resultsofaccuracyassessmentifnon-destructivesamplingtechniquesareused.Otherwise,justificationforwhyaccuracyneednotbeformallyaddressed.9.2.8.4EddyCovarianceDataTheprojectproponentmusttakedirectmeasurementsofmethanefluxusingeddycovariance.TheprojectproponentmayusetheprotocolsprescribedinAppendixCasthebasisforfluxmeasurementinthemonitoringplan..RefertoSection9.2.2.4.2foreddycovariancesamplingrequirements.RequirementsforcalibrationarefoundinSectionC.2.5.PDRequirements:QualityControlandAssuranceofEddyCovarianceDataTheprojectdescriptionmustincludethefollowing:PDR.87Anymethodologydeviations.Suchdeviationsmustincludethetextthatisbeingmodifiedandtheproposednewlanguage.VM0024,Version1.0SectoralScope14Page89MonitoringRequirements:QualityControlandAssuranceofEddyCovarianceDataThemonitoringreportmustincludethefollowing:MRR.110Descriptionofprocessingsoftwareused,assumptions,anddataqualitycontrolmeasures,whichmustincludetheselectedmethodofcoordinaterotation,detrending,anddensityfluctuationcorrection.9.2.8.5LaboratoryAnalysesTheanalysisofmethaneand/ornitrousoxidefromchambersamples(seeSections9.2.2.3.2and9.2.3.3,AppendixB)mustmeetorexceedUSEPAQA/QCrequirements.Theselectedlaboratorymustprovidewrittenpre-analysissampleprocessingprocedures,specificchemistrytestmethodsanddetectionlimitsfortheanalysis.SampleanalysesmustfollowtheEPAMethod3C(DeterminationofCarbonDioxide,Methane,Nitrogen,andOxygenfromStationarySources).InstrumentcalibrationmustcomplywithEPAProtocolGaseousCalibrationStandards.SoilsamplesmustbeanalyzedforbulkdensityandSOCbyaqualifiedlaboratoryfollowingthemethodsofNelsonandSommers1996andBall1964,respectively,orcomparablemethods.ThechosenlaboratorymusthavearigorousQualityAssuranceprogramthatmeetsorexceedstheUSEPAQA/QCrequirementsorsimilarinternationalstandardsforlaboratoryprocedures,analysisreproducibility,andchainofcustody.Thelaboratorymustalsoprovideadocumentthatdefinesthepre-analysissampleprocessingprocedures,andthespecificchemistrytestmethodstheyuseatthelaboratory,includingtheminimumdetectionlimitsforeachconstituentanalyzed.MonitoringRequirements:LaboratoryAnalysesThemonitoringreportmustincludethefollowingifsamplesaresenttoalaboratory:MRR.111DocumentationofthelaboratoryQA/QCprotocols,themethodsofsampleanalysis,andgeneralcalibrationproceduresusedthelaboratoriesconductingtheanalysis.VM0024,Version1.0SectoralScope14Page909.3DataandParametersAvailableatValidationDataUnit/Parameter𝐴𝑃𝐴DataunitacreDescriptionSizeofprojectareaEquations[G.10],[G.12]SourceofdataGISanalysispriortosamplingJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresapplied-PurposeofdataCommentsDataUnit/Parameter𝑒(𝑡𝑦)DataunittCO2e/gal,tCO2e/scf,tCO2e/kWhDescriptionEmissionscoefficientforenergytypetyEquations[G.3],[G.14]SourceofdataEmissionfactorsinSection8.1.1,Table10JustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedSelectedfrompublishedvaluesPurposeofdataCommentsDataUnit/Parameter𝑔𝐵(𝑡𝑦)Dataunitgal/tonne,scf/tonne,kWh/tonneDescriptionEnergyconsumedpermetrictonneofsedimentdredgedinthebaselineEquations[G.3]SourceofdataDocumentationprovidedbyprojectproponentJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedDirectmeasurementVM0024,Version1.0SectoralScope14Page91PurposeofdataCommentsDataUnit/Parameter𝑝𝐵(𝑡𝑦)Dataunitproportion(unitless)DescriptionProportionofenergyforenergytypetyconsumedinthebaselinescenarioEquations[G.3]SourceofdataDocumentationprovidedbyprojectproponentJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedCalculatedfromdirectmeasurementPurposeofdataCommentsPDRequirements:DataandParametersAvailableatValidationTheprojectdescriptionmustincludethefollowing:PDR.88Thevalueofeachvariable,dataandparameter.PDR.89Theunits,descriptions,source,purposeandcommentsforeachvariablereportedinthePD.9.4DataandParametersMonitoredDataUnit/Parameter𝐶𝑃𝐶𝑆(𝑐)[𝑚]DataunittCO2eDescriptionCumulativeprojectcarbonstockinpoolcatendofmonitoringperiodEquations[G.7]SourceofdataSamplingofcarbonstocksDescriptionofmeasurementmethodsandprocedurestobeappliedSeeAppendixDFrequencyofAtleasteveryfiveyearsVM0024,Version1.0SectoralScope14Page92monitoring/recordingQA/QCprocedurestobeappliedIndependentreviewofequationsandcheckagainstliteratureestimates.SeeSection9.2.8.3PurposeofdataCalculationmethodCommentsDataUnit/Parameter𝑑𝐿𝑄𝐷[𝑚]Dataunitkg/m3DescriptionDensityofliquidindredgedsedimentEquations[G.1]SourceofdataDirectmeasurementDescriptionofmeasurementmethodsandprocedurestobeappliedSeeSection9.2.5Frequencyofmonitoring/recordingWheresedimentistransported,Everymonitoringperiod.QA/QCprocedurestobeappliedComparedatafrommultiplesamples.SeeSection9.2.8.1PurposeofdataCommentsDataUnit/Parameter𝑑𝑆𝐿𝐷[𝑚]Dataunitkg/m3DescriptionDensityofsolidsindredgedsedimentEquations[G.1]SourceofdataDirectmeasurementDescriptionofmeasurementmethodsandprocedurestobeappliedSeeSection9.2.5Frequencyofmonitoring/recordingWheresedimentistransported,EverymonitoringperiodQA/QCprocedurestobeappliedComparedatafrommultiplesamples.SeeSection9.2.8.1PurposeofdataVM0024,Version1.0SectoralScope14Page93CommentsDataUnit/Parameter𝑓𝐵Δ𝐶𝐻4[𝑚]DataunittCO2e/ac/dayDescriptionBaselinemethaneemissionsfluxperunitareaEquations[G.5]SourceofdataStaticchamberoreddycovariancemeasurementDescriptionofmeasurementmethodsandprocedurestobeappliedSeeSection9.2.7Frequencyofmonitoring/recordingEverymonitoringperiodQA/QCprocedurestobeappliedComparisonofdatafrommultiplesamplesandindependentreviewofcalculations.SeeSections9.2.8.1,9.2.8.4,and9.2.8.5PurposeofdataCommentsDataUnit/Parameter𝑓𝑃Δ𝐶𝐻4[𝑚]DataunittCO2e/ac/dayDescriptionMethaneemissionsfluxperunitareawithinprojectareaEquations[G.10]SourceofdataStaticchamberoreddycovariancemeasurementDescriptionofmeasurementmethodsandprocedurestobeappliedSeeSection9.2.2.3Frequencyofmonitoring/recordingEverymonitoringperiodQA/QCprocedurestobeappliedComparisonofdatafrommultiplesamplesandreviewofmonitoringrecords.SeeSections9.2.8.1,9.2.8.4,and9.2.8.5PurposeofdataCommentsDataUnit/Parameter𝑓𝑃Δ𝑁2𝑂[𝑚]VM0024,Version1.0SectoralScope14Page94DataunittCO2e/ac/dayDescriptionNitrousoxideemissionsfluxperunitareawithinprojectareaEquations[G.12]SourceofdataStaticchamberoreddycovariancemeasurementDescriptionofmeasurementmethodsandprocedurestobeappliedSeeSection9.2.3.3Frequencyofmonitoring/recordingEverymonitoringperiodQA/QCprocedurestobeappliedComparisonofdatafrommultiplesamplesandreviewofmonitoringrecords.SeeSections9.2.8.1,9.2.8.4,and9.2.8.5PurposeofdataCommentsDataUnit/Parameter𝐺𝑃Δ(𝑡𝑦)[𝑚]Dataunitgal,scf,kWDescriptionEnergyconsumedinprojectareaforenergytypetyovermonitoringperiodEquations[G.14]SourceofdataDirectmeasurementapproachorcostapproachDescriptionofmeasurementmethodsandprocedurestobeappliedSeeSections9.2.4.1and9.2.4.2Frequencyofmonitoring/recordingEverymonitoringperiodwhensedimentistransportedQA/QCprocedurestobeappliedIndependentreviewofcalculationsandmonitoringrecords.SeeSections9.2.8.1and9.2.8.2PurposeofdataCommentsDataUnit/Parameter𝑝𝑆𝐿𝐷[𝑚]Dataunitproportion(unitless)DescriptionProportionofsolidsbyweightinthedredgedsedimentEquations[G.1]SourceofdataDirectmeasurementofdredgedsedimentVM0024,Version1.0SectoralScope14Page95DescriptionofmeasurementmethodsandprocedurestobeappliedSeeSection9.2.5Frequencyofmonitoring/recordingEverymonitoringperiodwhensedimentistransportedQA/QCprocedurestobeappliedComparisonofdatafrommultiplesamplesandreviewofmonitoringrecords.SeeSections9.2.8.1and9.2.8.2PurposeofdataCommentsDataUnit/Parameter𝑡[𝑚]DataunitdaysDescriptionElapsedtimefromprojectstartattheendofthemonitoringperiodEquations[G.11],[G.13]SourceofdataMonitoringrecordsDescriptionofmeasurementmethodsandprocedurestobeappliedN/AFrequencyofmonitoring/recordingEverymonitoringperiodQA/QCprocedurestobeappliedN/APurposeofdataCommentsDataUnit/Parameter𝑡[𝑚−1]DataunitdaysDescriptionElapsedtimefromprojectstartatthebeginningofthemonitoringperiodEquations[G.11],[G.13]SourceofdataMonitoringrecordsDescriptionofmeasurementmethodsandprocedurestobeappliedN/AFrequencyofEverymonitoringperiodVM0024,Version1.0SectoralScope14Page96monitoring/recordingQA/QCprocedurestobeappliedN/APurposeofdataCommentsDataUnit/Parameter𝑉𝑃Δ[𝑚]Dataunitm3DescriptionVolumeofsedimentdredgedfromthesedimentsourceovermonitoringperiodEquations[G.2]SourceofdataDirectmeasurementDescriptionofmeasurementmethodsandprocedurestobeappliedSeeSection9.2.5Frequencyofmonitoring/recordingEverymonitoringperiodwhensedimentistransportedQA/QCprocedurestobeappliedIndependentreviewofcalculationsandmonitoringrecords.SeeSection9.2.8.2PurposeofdataCommentsVM0024,Version1.0SectoralScope14Page97MonitoringRequirements:DataandParametersMonitoredThemonitoringreportmustincludethefollowing:MRR.112Thevalueofeachvariable,dataandparameter.MRR.113Theunits,descriptions,source,purpose,referencestocalculationsandcommentsforeachvariablereportedintheMonitoringReport.MRR.114Forthosevariablesobtainedfromdirectmeasurement,adescriptionofmeasurementmethodsandprocedures.Thesemaysimplybereferencestocomponentsofthemonitoringplan.MRR.115Forthosevariablesobtainedfromdirectmeasurement,adescriptionofmonitoringequipmentincludingtype,accuracyclassandserialnumber(ifapplicable).Thesemaysimplybereferencestocomponentsofthemonitoringplan.MRR.116Proceduresforqualityassuranceandcontrol,includingcalibrationofequipment(ifapplicable).9.5GroupedProjectsGroupedprojectsareallowableinordertopermittheexpansionofprojectactivitiesafterinitialvalidation.Forsuchprojects,projectdocumentationmaydifferbyprojectactivityinstancewithrespecttocarbonstockestimation,asstratificationandplotlocationwillvary.Otherwise,thesamemonitoringrequirementssetoutinSection9apply.AsperSection9.2.1.1,duringthefirstverificationincludingnewprojectactivityinstances,allnewplotsmustbemeasured.IftheoriginalprojectareaisstratifiedforSOCorbiomass,thensubsequentprojectactivityinstancesmustbesimilarlystratifiedaswell,perSection9.2.1.2.VM0024,Version1.0SectoralScope14Page98MonitoringRequirements:MonitoringGroupedProjectsThemonitoringreportmustincludethefollowingwhennewprojectactivityinstancesareaddedtotheproject:MRR.117Listanddescriptionsofallprojectactivityinstancesintheproject.MRR.118Projectactivityinstancestartdates.MRR.119Mapindicatinglocationsofprojectactivityinstancesaddedtothegroup.MRR.120Listofadditionalstratificationsusedforadditionalprojectactivityinstances;justificationforwhyfluxmeasurementsarestilllocatedinthemostconservativestratum(9.2.2,9.2.3).MRR.121Asprojectactivityinstancesareadded,themonitoringplanmustbeupdatedtoreflectadditionalmonitoringtimesandplotlocations.10REFERENCESBaldocchi,D.,B.B.Hincks,T.P.Meyers.1988.Measuringbiosphere-atmosphereexchangesofbiologicallyrelatedgaseswithmicrometeorologicalmethods.Ecology,69:1331-1340.Baldocchi,D.,andCoauthors,2001:FLUXNET:Anewtooltostudythetemporalandspatialvariabilityofecosystem-scalecarbondioxide,watervapor,andenergyfluxdensities.BulletinoftheAmericanMeteorologicalSociety,82,2415-2434.Ball,D.F.1964.Loss-on-ignitionasanestimateoforganicmatterandorganiccarboninnon-calcareoussoils.JournalofSoilScience15:84–92.Burba,G.,andD.Anderson2007:IntroductiontotheEddyCovarianceMethod:GeneralGuidelinesandConventionalWorkflow.Li-CORBiosciences.Callaway,J.C.,E.L.Borgnis,R.E.Turner,andC.S.Milan.2012.CarbonsequestrationandsedimentaccretioninSanFranciscoBaytidalwetlands.EstuariesandCoasts.DOI10.1007/s12237-012-9508-9.Couvillion,B.R.;Barras,J.A.;Steyer,G.D.;Sleavin,William;Fischer,Michelle;Beck,Holly;Trahan,Nadine;Griffin,Brad;andHeckman,David,2011,LandareachangeincoastalLouisianafrom1932to2010:U.S.GeologicalSurveyScientificInvestigationsMap3164,scale1:265,000,12p.pamphlet.Couwenberg,J.2009.Methaneemissionsfrompeatsoils:facts,MRV-ability,emissionsfactors.WetlandsInternationalEde.ProducedfortheUN-FCCCmeetingsBonn,Germany.16pp.VM0024,Version1.0SectoralScope14Page99Craft,C.B.,E.D.Seneca,andS.W.Broome.1991.LossonignitionandKjeldahldigestionforestimatingorganiccarbonandtotalnitrogeninestuarinemarshsoils:calibrationwithdrycombustion.Estuaries14:175–179.Dahl,T.E.2006.StatusandtrendsofwetlandsintheconterminousUnitedStates1998to2004.U.S.DepartmentoftheInterior,FishandWildlifeService,Washington,D.C.112pp.EPAFinalMandatoryReportingofGreenhouseGasesRuleTableC-1.ReleasedOctober30,2009.http://www.epa.gov/ghgreporting/documents/pdf/2009/GHG-MRR-FinalRule.pdf.Folse,T.M.,J.L.West,M.K.Hymel,J.P.Troutman,L.A.Sharp,D.K.Weifenbach,T.E.McGinnis,L.B.Rodrigue,W.M.Boshart,D.C.Richardi,C.M.Miller,andW.B.Wood.2008,revised2012.AStandardOperatingProceduresManualfortheCoast-wideReferenceMonitoringSystem-Wetlands:MethodsforSiteEstablishment,DataCollection,andQualityAssurance/QualityControl.LouisianaCoastalProtectionandRestorationAuthority.BatonRouge,LA.207pp.Henri,O.,A.F.Lotter,andG.Lemcke.2001.Lossonignitionasamethodforestimatingorganicandcarbonatecontentinsediments:reproducibilityandcomparabilityofresults.JournalofPaleolimnology25:101–110.Hsieh,Cheng-I,G.Katul,andT.Chi.2000.Anapproximateanalyticalmodelforfootprintestimationofscalarfluxesinthermallystratifiedatmosphericflows.AdvancesinWaterResources,23:765-772.IPCCLULUCFGoodPracticeGuidance2003.http://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf.html.Kadlec,R.H.andS.D.Wallace.2009.TreatmentWetlands.CRCPress.Taylor&FrancisGroup,BocaRaton,FL.Klemas,V.2011.Remotesensingofwetlands:casestudiescomparingpracticaltechniques.JournalofCoastalResearch,27:418-427.Kljun,N.,P.Calanca,M.W.Rotach,andH.P.Schmid.2004.Asimpleparameterisationforfluxfootprintpredictions.Boundary-LayerMeteorology,112:503-523.Knaus,R.M.,andCahoon,D.R.1990.Improvedcryogeniccoringdeviceformeasuringsoilaccretionandbulkdensity.JournalofSedimentaryPetrology60:622-623.Kormann,R.andF.X.Meixner.2001.Ananalyticalfootprintmodelfornonneutralstratification.Boundary-LayerMeteorology,99:207–224.LI-COR,Inc.2012.EddyPro4.0HelpandUser'sGuide.LI-COR,Inc.Lincoln,NE.Lundberg,C.J.2012.GreenhouseGasEmissionsandNutrientDynamicsinRestoredWetlandsoftheMississippiRiverBasin.Ph.D.Dissertation,LouisianaStateUniversity,BatonRouge,LA.VM0024,Version1.0SectoralScope14Page100Mauder,M.,T.Foken,R.Clement,J.A.Elbers,W.Eugster,T.Grunwald,B.Heusinkveld,andO.Kolle.2008.QualitycontrolofCarboEuropefluxdata-Part2:inter-comparisonofeddycovariancesoftware.Biogeosciences,5:451-462.Nelson,D.W.andL.E.Sommers.1996.Totalcarbon,organiccarbon,andorganicmatter.In:MethodsofSoilAnalysis,Part2,2nded.,A.L.Pageetal.,Ed.Agronomy.9:961-1010.Am.Soc.ofAgron.,Inc.Madison,WIParkin,T.B.andR.T.Venterea.2010.Samplingprotocols.Chapter3.Chamber–basedTraceGasFluxMeasurements.In:SamplingProtocolsR.F.Follett,ed.Pp3-1to3-39.www.ars.usda.gov/research/GRACEnet.Schuepp,P.H.,M.Y.Leclerc,J.I.Macpherson,andR.L.Desjardins.1990.Footprintpredictionofscalarfluxesfromanalyticalsolutionsofthediffusionequation.Boundary-LayerMeteorology,50:355-373.Smith,C.J.,R.D.DeLaune,andW.H.Patrick,Jr.1983.NitrousoxideemissionfromGulfCoastwetlands.GeochimicaetCosmochimicaActa,47:1805-1814.SteigerJ.,GurnellA.M.,GoodsonJ.M.2003.Quantifyingandcharacterizingcontemporaryripariansediment.RiverResearchandApplications19:335–352Steyer,G.D.etal.2012AppendixD-2WetlandMorphologyTechnicalReport,PreparedfortheLouisianaCoastalProtectionandRestorationAuthority.U.S.ArmyCorpsofEngineers.1993.Methodsofmeasuringsedimentationratesinbottomlandhardwoods.USArmyCorpsofEngineersWaterwaysExperimentStation.WRPTechnicalNoteSDCP-4.1.Vicksburg,MS.7pp.U.S.EPAEmissions&GenerationResourceIntegratedDatabase(eGRID).http://www.epa.gov/cleanenergy/energy-resources/egrid/index.html.U.S.EPAMethod3C-DeterminationofCarbonDioxide,Methane,Nitrogen,andOxygenfromStationarySource.,CFRVol.56,No.104p24522,May30.1991.VCS.2012.VCSModuleVMD0021:EstimationofStocksintheSoilCarbonPool.http://v-c-s.org/methodologies/estimation-stocks-soil-carbon-pool-v10.Webb,E.K.,Pearman,G.,andLeuning,R.1980.Correctionoffluxmeasurementsfordensityeffectsduetoheatandwatervaportransfer.QuarterlyJournaloftheRoyalMeteorologicalSociety,106:85-100.Whalen,S.C.(2005).BiogeochemistryofMethaneExchangebetweenNaturalWetlandsandtheAtmosphere.EnvironmentalEngineeringScience,22(1),73-93.Yu,K.,DeLaune,R.D.,andBoeckx,P.(2006).DirectmeasurementofdenitrificationactivityinaGulfcoastfreshwatermarshreceivingdivertedMississippiRiverwater.Chemosphere,65:2449-2455.VM0024,Version1.0SectoralScope14Page101Yu,K.,Faulkner,S.P.,andBaldwin,M.J.(2008).Effectofhydrologicalconditionsonnitrousoxide,methane,andcarbondioxidedynamicsinabottomlandhardwoodforestanditsimplicationforsoilcarbonsequestration.GlobalChangeBiology,14(4),798-812.VM0024,Version1.0SectoralScope14Page102APPENDIXA:DEFAULTSTRATIFICATIONANDSAMPLEUNITALLOCATIONMETHODSStratification,inwhichapopulationtobesampledisdividedintosub-populationsofknownsize,canbeusedinmeasurementsofmanyvariablestoimprovesamplingeffectiveness,andcanhelpreduceuncertaintywhenitwouldbecost-prohibitivetoconductstatisticalsamplingofsufficientdensitytoadequatelyrepresenttheentirepopulation.Thedefaultstratificationmethods,includingguidelinesforthestratificationcriteriaofindividualvariables,aredescribedinSections9.1,9.2.1.2,9.2.2.3.1,and9.3.2.3.1.Here,formulasthatcanbeusedtoestimatemeansandtotalsfromstratifiedsamplesareprovided,aswellasguidelinesforefficientlyallocatingsamplingunitstoidentifiedstrata.Stratificationshouldalwaysbedonepriortomeasurement,suchthatthestratumsizesareknownexactly.Stratificationmaybeperformedpriortoanymeasurementevent.Differentstratificationschemesmaybeusedforestimatingdifferentvariablesaccordingtothepreferencesoftheprojectproponent.A.1SampleSizeandPlotAllocationInstratifiedrandomsampling,thefollowingequationsmaybeusedtoestimatethesamplesizerequiredtoattainatargetedprecisionlevel.Notethatthismethodologydoesnotrequirethatsamplesizebecalculatedinthisway—theseequationsareprovidedsolelyfortheconvenienceoftheuser.Estimatingsamplesizeasdescribedhererequiresanestimateofthemeanandstandarddeviationofthevariabletobeestimated.Thesequantitiesmaybeestimatedfromliteratureorfromapilotsample.Theprojectproponentshouldrecognizethatactualstandarderrorofasampledstatisticwillbesubjecttorandomerror,andthatifthemeanandstandarddeviationusedtoestimatethesamplesizediffersignificantlyfromthosepropertiesintheactualpopulation,thesamplesizeactuallyrequiredforthetargetedprecisionlevelwillalsofromthatestimated.Themostefficientallocationofplotstostratadependsontherelativesizesofthestrata,theestimatedmeansandwithinstratavariability,andpotentiallythecostsofsamplingeachstratum.Threemethodsareavailableforallocatingsampleunits,whicharedescribedbelow.Actualsamplingunitswithinstratashouldbechosensystematicallywitharandomstartingpointorrandomly.A.1.1ProportionalAllocationProportionalallocationallocatessamplingunitstostratainproportiontotheirsize.Givenatargetedprecisionlevel,thetotalrequiredsamplesizemaybecalculatedas:VM0024,Version1.0SectoralScope14Page103𝑛̂𝑇𝑂𝑇𝐴𝐿=1(E×𝑥̅𝑍×𝜎̂𝑥̅)2+nN[A.1]VariablesE-Theallowabledegreeoferror(eg,0.15for+/-15%)𝑥̅-Theestimatedmeanofthequantitytobeestimated𝑍-Zstatisticfromanormaldistributionassociatedwiththedesiredconfidencelevel(1.96for95%confidence).𝜎̂𝑥̅-TheestimatedstandarddeviationofthequantitytobeestimatednN-Therelativesizeofasamplingunitwithrespecttotheentirepopulationtobesampled(forexample,insamplingwithfixedareaplots,thisistheratiooftheplotsizetothetotalprojectareasize)SectionReferences9.2.1,AppendixD,AppendixECommentsTheestimatedrequiredsamplesizeTheplotsareallocatedtostratainproportiontostratasizeasfollows:𝑛̂(𝑘)=𝑛̂𝑇𝑂𝑇𝐴𝐿𝑎(𝑘)𝐴𝑃𝐴[A.2]Variables𝑛̂𝑇𝑂𝑇𝐴𝐿-Theestimatedtotalrequirednumberofplots𝑎(𝑘)-Theareaofstratumk𝐴𝑃𝐴-ThetotalprojectareaSectionReferences9.2.1,AppendixD,AppendixECommentsThenumberofplotstobeallocatedtostratumkVM0024,Version1.0SectoralScope14Page104A.1.2NeymanAllocationSometimesstratadifferintheirdegreeofwithin-stratumvariability.Inthiscase,theoverallstandarderrorwillbeminimizedifsamplingeffortsareconcentratedtowardthosestratawithhighestvariability.Ifestimatesofthestandarddeviationofeachstratumareavailable,thefollowingequationsmaybeusedtoallocatesamplingunits:𝑤(𝑘)=𝑎(𝑘)𝜎̂(𝑘)∑𝑎(𝑗)(𝑗)∈𝒮𝜎̂(𝑗)[A.3]Variables𝑎(𝑘)-Theareaofstratumk𝜎̂(𝑘)-Theestimatedstandarddeviationofthequantitytobeestimatedwithinstratum𝒮-Thesetofallstrata𝑎(𝑖)–Thearea𝜎̂(𝑗)–ThestandarddeviationSectionReferences9.2.1,AppendixD,AppendixECommentsTheproportionoftotalsamplesizetobeallocatedtostratumkVM0024,Version1.0SectoralScope14Page105𝑛̂𝑇𝑂𝑇𝐴𝐿=∑𝑎(𝑘)2𝜎̂(𝑘)2𝑤(𝑘)(𝑘)∈𝒮(E×𝑥̅Z×nN)2+∑𝑎(𝑘)(𝑘)∈𝒮𝜎̂(𝑘)2[A.4]Variables𝑎2(𝑘)-𝑎(𝑘)-Theareaofstratumk𝜎̂2(𝑘)-Theestimatedstandarddeviationofthequantitytobeestimatedwithinstratum𝒮-ThesetofallstrataE-Theallowabledegreeoferror(eg,0.15for+/-15%)𝑥̅-Theestimatedmeanofthequantitytobeestimated𝑤(𝑘)–proportionoftotalsamplesizetobeallocatedtostratumk𝑍-Zstatisticfromanormaldistributionassociatedwiththedesiredconfidencelevel(1.96for95%confidence).nN-Therelativesizeofasamplingunitwithrespecttotheentirepopulationtobesampled(forexample,insamplingwithfixedareaplots,thisistheratiooftheplotsizetothetotalprojectareasize)SectionReferences9.2.1,AppendixD,AppendixECommentsTheestimatedtotalrequirednumberofplotsVM0024,Version1.0SectoralScope14Page106𝑛̂(𝑘)=𝑛̂𝑇𝑂𝑇𝐴𝐿𝑤(𝑘)[A.5]Variables𝑤(𝑘)–proportionoftotalsamplesizetobeallocatedtostratumk𝑛̂𝑇𝑂𝑇𝐴𝐿-TheestimatedtotalrequirednumberofplotsSectionReferences9.2.1,AppendixD,AppendixECommentsThenumberofplotstobeallocatedtostratumkA.1.3OptimalAllocationAthirdallocationmethodincorporatesbothinformationaboutwithinstratavariabilityandthepotentialforvaryingcostsforsamplingdifferentstrata:𝑤(𝑘)=𝑎(𝑘)𝜎̂(𝑘)/√𝑐(𝑘)∑𝑎(𝑗)(𝑗)∈𝒮𝜎̂(𝑗)/√𝑐(𝑗)[A.6]Variables𝑎(𝑘)-Theareaofstratumk𝑎(𝑗)–Theareaofstratumj𝜎̂(𝑘)-Theestimatedstandarddeviationofthequantitytobeestimatedwithinstratum𝒮-ThesetofallstrataE-Theallowabledegreeoferror(eg,0.15for+/-15%)𝑐(𝑘)or𝑐(𝑗)-ThecostofsamplingstratumkorjSectionReferences9.2.1,AppendixD,AppendixECommentsTheproportionoftotalsamplesizetobeallocatedtostratumkA.2TotalsandStandardErrorsfromStratifiedSamplesThetotalofaquantityofinterestmaybeestimatedfromastratifiedsampleVM0024,Version1.0SectoralScope14Page107𝑇̂=∑𝑎(𝑘)𝑛(𝑘)∑𝑦(𝑗,𝑘)(𝑗)∈𝒫(𝑘)(𝑘)∈𝒮[A.7]Variables𝑎(𝑘)-Theareaofstratumk𝒮-Thesetofallstrata𝑛(𝑘)–Numberofsamplingunitsinstratum𝑘𝒫(𝑘)–Setofallsamplingunitsinstratum𝑘𝑦(𝑗,𝑘)-Aquantityestimatedforormeasuredonsamplingunit𝑗instratum𝑘SectionReferences9.2.1,AppendixD,AppendixECommentsTheestimatedtotalquantityinthesampledarea√∑[𝑎(𝑘)2𝜎̂(𝑘)2#(𝒫(𝑘))(𝑁𝑃𝑂𝑆𝑆𝐼𝐵𝐿𝐸(𝑘)−#(𝒫(𝑘))𝑁𝑃𝑂𝑆𝑆𝐼𝐵𝐿𝐸(𝑘))](𝑘)∈𝒮[A.8]Variables𝑎(𝑘)-Theareaofstratumk𝜎̂(𝑘)2-Theestimatedwithin-stratumvarianceofstratumk𝒮-Thesetofallstrata𝒫(𝑘)–Setofallsamplingunitsinstratum𝑘𝑁𝑃𝑂𝑆𝑆𝐼𝐵𝐿𝐸(𝑘)=totalnumberofpossibleplotsinstratum𝑘SectionReferencesD.1,D.2CommentsTheestimatedstandarderrorofthetotalVM0024,Version1.0SectoralScope14Page108APPENDIXB:DEFAULTSTATICCHAMBERMEASUREMENTMETHODSTheprojectproponentmaydeviatefromthemethodsprovidedinthisappendixpertherequirementsofSection9.GHGemissionsfluxeshavebeenmeasuredwiththestatic(closed)ordynamic(withaircirculation)chambertechniquesonawidevarietyofwetlandsites(MooreandRoulet1991).Thereareanumberofchambertechniquesthatareusedtoisolatesoilrespirationordevelopcarbonbudgetsandsophisticatedsoilfluxsystemsarecommerciallyavailable.Whilethereareacceptablevariationsinequipmentandtechniques,thisguidancefocusesondescribingastaticchambermethod,withdiscretetimeseriesofgasmeasurementsduringeachmonitoringperiod,tocalculatemethanefluxforbaselineandprojectmonitoring.Nitrousoxideorcarbondioxidefluxesmaybesampledinthesamemanner,dependingonprojectrequirements.Withattentiontominimizingchamberandsoildisturbance,periodicsamplingwithstaticchamberscanprovideanestimateofprojectareaGHGemissionsonadailytimescale,whichisthenextrapolatedtoannualestimates.Themethodsdescribedherearespecifictoherbaceousmarsheswherevegetationheightsaretypicallylessthan1.0m,andpresentoptimalconditionstosampleallcontributionsofGHGexchange,particularlysoildiffusion,ebullition,andplant-mediatedtransportofmethane.Closedchambermethodsthatonlyisolatesoilprocesses,byexcludingvegetation,mayunderestimatethecontributionofmethanereleasefromplants(throughxylemtransporttotheatmosphere),whichcanbeconsiderablefromcertainwetland‘shunt’speciesthathavewelldevelopedaerenchyma.Therefore,vegetationmustnotbeexcludedfromwetland-basedsampling,butanexceptionexistswhenopenwatersamplingmaybenecessaryforquantifyingfluxesfromthishabitattype.Clippingofemergentplantsabovethewaterleveltoaccommodatethedimensionsofthefluxchamberisallowableimmediatelypriortosampling.Thetechniqueofusingdynamicchamberswithsemi-continuousmeasurementsofGHGsmayalsobeusedbutwillrequireajustificationofthetechniqueanddescriptionbytheprojectproponent.B.1ChamberDescriptionChambersizeordesignmustbescaledtoaccommodatetheexistingvegetationheightandsealthesoilsurfacesothatplant-mediated,diffusion,andebullitionfluxesarecaptured.ChamberdesignguidelinesdescribedherefollowthatofYuetal.(2008)andParkinandVenterea(2010).Acylinderorboxchambermustnothaveacross-sectionalarealessthan200cm2.Thebasesealsthesoilcolumnandispermanentlyinstalledandleftinthefieldduringthemonitoringperiod.Ifthebaseisdisturbedbynaturalorhumancauses,itmustbereinstalledandallowedtoequilibrateforaminimumoftwoweekspriortoadditionalsamplecollection.Thechambertopmustbelessthan1.0minverticalheight,andisonlyinstalledorfittothepermanentlyinstalledbaseduringsamplingperiods.Itcontainstwoormoresealed(syringesepta)gascollectionportsthatallowsamplingwhenwaterlevelsarehighorlow.Oneportwillhaveatubethatextendslowerinthechamberforretrievingsampleswhenwaterlevelislow,andtheotherport(s)musthaveashortertube(s)VM0024,Version1.0SectoralScope14Page109tocollectsampleshigherinthechamberwhenwaterlevelishigh.Wherethechamberbaseandtopsealtogethertheremustbeagas-impermeablegasketorwatertrough.Cylinderorboxchambermaterialsmayconsistofstainlesssteel,aluminum,PVC,polypropylene,polyethylene,orplexiglass.Opaqueorclearchambersareacceptable.Blackmaterialmustnotbeusedgivenitspotentialforexcessiveheatingofthechamberinsunlight.Thechamberbasemusthavedrainageportsalongitsverticallengthtoeliminatechamberfloodingbetweenmonitoringperiods.Forsamplingopenwaterhabitats,chamberspecificationsarethesameasabove;however,apermanentchamberbaseorcollarisnotrequired.Ratherthechambertopmaybeoutfittedwithfloatationthatcanformasealwiththewatersurface.B.2PlotEstablishmentforChambersB.2.1ReplicationWithinastratum,theremustbeaminimumoftwoplotscomprisingthreereplicatechambersperplot.Eachplotmustoccurwithina100mradiusofarandomlychosensamplinglocationcenterpoint.Fromthecenterpoint,chambersmayberandomlylocatedwithina100mradiusofhabitatthatisrepresentativeofthestratum.Factorsthatmustbeconsideredforplotlocationincludedominantvegetationtypeandmarshsurfaceelevation.Inchoosingsamplelocations,projectproponentsmustjustifythatthelocationschosenareconservative–thatis,withinastratum,chambersshouldbelocatedinareasinwhichmethanefluxisexpectedtobegreatest(seesection9.2.2.3.1foradescriptionmethanefluxindications).Typically,thisinvolvespositioningchambersinareasthatoccupylowerelevationsinthelandscapethatstillsupportdensevegetationcoverage.Thearrangementofchamberswithinthisradiuswillbedependentonthemarshtopographyandasuitableamountofexistinghabitattore-locatechamberplotsifneededinthefuture.Therearenominimumormaximumdistancerequirementsbetweenreplicatechambersbutthechambersshouldbeplacedsuchthatsamplingcanoccurwithintheprescribedtimeintervals.B.3ChamberInstallationMostwetlandconditionswillrequiretheconstructionofboardwalkstominimizesoildisturbanceduringchamberdeploymentandsubsequentsampling.Sitespecificconditions(watertabledepth,soilpermeability)willdictatethedepthtowhichthebaseofthechamberisfittedintothesoil;thebaseshouldbeinstalledtoadepthnolowerthanthemeanwatertabledepthofthesite.Installationofchambersmaytakeplaceanytimeoftheyearandshouldoccurwhenwaterlevelsareatorbelowthesoilsurface.Thechamberbaseisinstalledtothesoilbyslicingandexcavatingatrenchthatwillaccommodateitsdimensions.Thebasemustcapturerepresentativevegetationcoverandspeciesanddisturbancetovegetationinthechamberareamustbeminimized.Toallowsoil/plantdisturbanceeffectstodiminish,theVM0024,Version1.0SectoralScope14Page110chambermustequilibrateforaminimumoftwoweekspriortoanysampling.Drainageportswillremainopenduringtheequilibrationperiodandbetweenverificationevents.PDRequirements:ChamberDescriptionTheprojectdescriptionmustincludethefollowing:PDR.90Adescriptionofthechamberdesign,withitsdimensionsortotalvolume,andcross-sectionalarea.PDR.91Diagramofchamberplotrandomizationdesignandtheresultingchamberlocationswithineachstratum,withthechambersidentifiedasreplicates.Providedateswhenchambersweredeployedineachstratum.Provideajustificationthatthelocationschosenareconservative(ie,thattheyarelikelytopredictmethaneemissionsfluxfortheentirestratumforwhichtheyarerepresentative.)B.4ChamberSamplingFluxchambermeasurementsrequirecollectingsyringegassamplesofambientairoutsideofthechamber,replicatesampleswithinthechamberbasepriortosealingwiththechambertop,andthensuccessivesamplesoveranincubationperiodlessthan2hoursaftersealingthechamber.Aminimumofthreesampleintervalsshouldbecollected:time=0hours(unsealedchamber),time=0.5hours(30minafterchambersealed),t=1.0hours(60minafterchambersealed).Exactsampletimesarerecordedduringsampling.Steps:1.Inspectthechamberbaseforanyphysicaldisturbance.2.Drainageportsthatareopentoatmospherearepluggedbeforeinsertingthechambertop.3.Samplevialsarevacuumedwitha10mlsyringe.4.Collectoneambientatmospheregassampleoutsideofthechamberandinjectintothesamplevacuumvial.5.Duplicate(n=2)gassamplesarecollectedinsidethechamberbasepriortosealingwiththetopofthechamber.6.Thechambertopissealedtothebase.Stopwatchisstartedatt=0.7.Withthechambersealed,duplicatesamplesarecollectedat30minintervalsandinjectedintovacuumvials.Oneminutepriortoeachsamplecollection,astirringprocedureisdonebyVM0024,Version1.0SectoralScope14Page111insertinga30mlsyringeintothechamberseptaandwithdrawingandexpellingthefullvolumetwice.8.Aftersamplingiscomplete,thechambertopisremovedandthedrainageportsareunplugged.Samplesmustbestoredoutofdirectsunlightduringtransporttothelaboratory.Achainofcustodyformshouldbecompletedbythefieldleadandsubmittedtothelaboratorywiththesamplestobemaintainedwiththeirrecords.Thestepsforopenwatersamplingfollowthoseforwetland-basedsampling.B.5DataProcessingandAnalysisGasconcentrationdatafromlabanalysesareinvolumetricunits(Ltracegas:Ltotalgas)andarecorrectedforchambervolume,cross-sectionalareaandlinearchangewithtimetoyieldfluxvolume(Ltracegasm-2hr-1),accordingtothefollowingequation:fv=vCHAM∗𝑐𝑣∗1/aCHAM[B.1]Variablesfv-fluxoftracegas(volumebasis)inthechamberheadspaceovertheenclosureperiod,correctedforchambervolumeandcrosssectionalarea(Ltracegasm-2hr-1)vCHAM-chambervolume(L)cv-changeingasconcentrationovertheenclosureperiod,orslopeofbestfitlinecalculatedfromsimplelinearregression(LtracegasL-1totalgashr-1)aCHAM-cross-sectionalareaofsoilenclosedbythechamberbase(m2).SectionReferences9.2.2.3CommentsGuidanceforassessinggoodnessoffitisprovidedinsectionF.3ofAppendixF.Curvefittingmethodsfornon-linearratesoftracegaschangeareoutlinedin:Parkin,T.B.andR.T.Venterea.2010.Samplingprotocols.Chapter3.Chamber–basedTraceGasFluxMeasurements.In:SamplingProtocolsR.F.Follett,ed.P.3-1to3-39.www.ars.usda.gov/research/GRACEnetVM0024,Version1.0SectoralScope14Page112Toconvertfromvolumetrictomassfluxbasis,theidealgaslawisusedinthefollowingequation:𝑓𝑃Δ=𝑓𝑣∗𝑃𝑅∗𝑇∗𝑀∗24∗0.000001∗𝐺𝐻𝐺𝑐𝑓[B.2]Variables𝑓𝑃Δ-massoftracegasflux(tCO2eac/day)fv-fluxoftracegas(volumebasis)(Ltracegasm-2hr-1)P-barometricpressure(atm)T-airtemperature(K)R-universalgasconstant(0.0820575Latm/Kmol)M-molecularweightoftracegas(g/mol)SectionReferences9.2.2.3Comments24=conversionfromhrtoday0.000001=conversionfromgtotonnes𝐺𝐻𝐺𝑐𝑓=GHGcorrectionfactortoCO2e,use21(CH4)and310(N2O)Withtheseriesofrepeatedmeasuresofgasconcentrationfromachamber,simplelinearregressionisusedtocomputetheslopeofgasconcentrationwithtime(ct),whichrepresentsonereplicateofgasflux(seeequation[B.1]).Aminimumofthreereplicatechambers(orplots)mustbeusedtocomputeameanflux(±1SEM)foragivenlocationwithinastratumforeachverificationeventorsampledate.RefertoSection9.2.2.3forchamberfluxcalculations.VM0024,Version1.0SectoralScope14Page113APPENDIXC:DEFAULTEDDYCOVARIANCEMEASUREMENTMETHODSFORMETHANETheprojectproponentmaydeviatefromthemethodsprovidedinthisappendixpertherequirementsofSection9.Eddycovarianceoreddycorrelationisawidelyacceptedmicrometeorologicaltechniquetoestimatefluxofheat,water,atmospherictracegasesandpollutantsandreliesonturbulencetocalculatefluxes.Thesemi-continuousnatureofsamplingallowsfordiurnal,seasonal,andannualbudgetsofenergyandGHGsbetweenthebiosphereandatmosphere.Measuringcarbonfluxeswiththeeddycovariancemethodhastheadvantageofcoveringbroaderspaceandmorecontinuousmeasurements,unlikechamberfluxtechniques.Thetwomethodsmaybeusedinconcertinaheterogeneouslandscapetoevaluatefluxcontributionofdistinctlandforms(hummocks,hollows,ditches,openwater;Tehetal.2011,Baldocchietal.2011)tocreateamoreaccuratelandscapeorprojectareaGHGbudget.Standardoperatingproceduresfordesigningfluxstudiesanddataanalysesarebeingunifiedbyglobalandregionalbio-meteorologicalcommunities,suchasFLUXNETandAMERIFLUX,respectively.Theinformationpresentedheredrawsfromtheirbasicguidelinesforeddycovariancemethods.OpensourcesoftwareisincreasinglyavailableforcomputingGHGfluxesthathavebeenvalidatedbya‘GoldStandard’(seeAMERIFLUX,http://public.ornl.gov/ameriflux/sop.shtml)andaselectionoftheavailablesoftwareisgiveninSection9.2.8.4.Eddyfluxisequivalenttothemeandryairdensity,multipliedbythemeancovarianceofinstantaneousdeviationsofverticalwindvelocityandthemixingratioofaconstituent(methaneandcarbondioxide)inair.Thesecovariancesarecorrectedfordensityfluctuationsduetowatervapor(Baldocchietal.2011).Theeddycovariancetechnique,whileappliedinmanydifferentecosystems,ismosteasilyappliedinareaswherethecanopyisrelativelyhomogeneousandtheterrainishorizontal.Thusherbaceouswetlandslendthemselveswelltothistechnique.Cautionisneededwhendeployingeddycovariancestations,sothatverticaldisruptions(canopyheightchanges,trees,buildings)totheboundarylayerofinterestareminimized.Thesevenmainassumptionsforeddycovariancetechniqueareoutlinedhere(fromBurbaandAnderson2007)andspecificrequirementstosatisfytheseassumptionsaredescribedthroughoutthisappendix.1.Measurementsatapointrepresentanupwindarea2.Measurementsarecollectedinthelayerofinterest(eg,constantfluxlayer)3.Thefetchisassumedtobeadequateandmeasurestheareaofinterest4.Fluxisfullyturbulent5.Terrainishorizontal6.Averageofverticalfluctuationsiszero,densityfluctuationsarenegligible,andflowconvergenceanddivergencedoesnotoccur.VM0024,Version1.0SectoralScope14Page1147.Instrumentsarecapableofdetectingsmallchangesandmeasuringatahighfrequency(>10Hz).Therearesourcesoferrorthatcanaffectfluxcomputations;however,theseerrors,suchastimelagsinmeasurementsandunleveledinstruments,areadjustedaccordingtoacceptedmethodsduringdataprocessing(seeSection9.2.8.4).C.1EddyCovarianceInstrumentationDirectmeasurementsofmethaneathighfrequencies(10-20Hz)areneededforeddycovariancecalculations.Formethane,laserabsorptionspectroscopyiscommon,andsuitableinstrumentationisequivalenttothoseoftheclosedpathLosGatostunablediodelaserspectrometer(DLT-100FastMethaneAnalyzer),theopenpathLICOR7700(WaveModulatedSpectroscopy),andtheCampbellScientificTraceGasAnalyzers.Thechosenmethaneanalyzermusthavearesolutionof≤5ppbmethaneat10Hz(@2000ppbmethane)andmeasurementfrequenciesmustnotbelessthan10Hz.Inadditiontomethane,othermeteorologicalvariablesmustbemeasuredatafrequency(≥10Hz)equivalenttothegasmeasurements,includingwindandturbulence(three-dimensionalsonicanemometer),watervapor,andairtemperature.Thechosenwatervaporanalyzermusthavearesolution≤0.005mmolH20/molair(@10mmolH20/molair).Thesonicanemometermusthavearesolution≤0.01m/sec(@standardvelocityof12m/sec).Watervapormeasurementswillbeusedtocorrectforairdensityfluctuations.C.2TowerConfigurationC.2.1OrientationofSensorsandEquipmentAsingletowermustbeusedwiththeelevatedarrayofeddycovarianceinstrumentscontainedwithina3mradiusfromthecenterofthetower.Ifaplatformisused,themaximumfootprintoftheplatformandsupportequipment(solarpanels,flowmodules,batteries)mustnotexceeda5mradiusfromthecenterofthetowerbase.Highfrequencymeasurementsofairpropertiesforeddycovariancerequireshortdistancesbetweensensorstominimizetimeresponseerrors.Instrumentationonthetowermustbeintegrated(ie,tracegasanalyzers,anemometer,andtemperaturesensors)suchthatdistanceandorientationbetweensensorssampletherepresentativeairmasspropertiesandallowfrequencyresponsecorrections.Whileconfigurationsmayvarydependingonthewinddirectionofinterest,themaximumhorizontaldistanceofmethanesensororwatervaporintakemustnotexceed1.0mfromthecenteroftheanemometer,unlesstheprojectproponentprovidesjustification.Thedistanceoftheintakesensorforairdensityandmethanesensormustbemeasuredandrecordedforelevation,inadditiontothenorthwardandeastwardseparationrelativetothecenterofthesonicanemometer.VM0024,Version1.0SectoralScope14Page115C.2.2LandscapeLocationofTowerForconservativeprojectemissionsestimates,aprimaryrequirementistolocatethetowerwithinthestratawherethehighestemissionsareanticipated,andatleastone-halfofthefootprintarea(asdefinedbythe80%meanfootprintdistance)mustincludethehighestemittingstrata(seeSection9.2.2.3.1,whichdefinescriteriafordeterminingareaslikelytohavehighestemissions).Theslopeofthesitemustnotexceed1%(1mvertical/100mhorizontaldistance)inanydirectionwithina200mradiusoftheeddycovariancetower.Thetowermaybepositionedinthelandscapetocapturespecifiedwinddirection(s)oritmaybecentrallyplacedwithinahomogeneoushabitatwithadequatefetchtomeasureallwinddirections.Ineithercase,theterrainmustbehomogeneouswithrespecttothemean80%footprintdistance.Homogeneousterrainhereisdefinedasanareathatcontainsnomorethan25%arealcoverageofpatchvegetationthatexceedstwicethedominantplantcanopyheight.Apatchisdefinedas≥100m2ofspecies(twicethedominantplantcanopyheight)covering>70%ofthe100m2.C.2.3SensorHeightAsageneralruleasensorheightof1.0mabovethecanopycanintegratefluxesfrom100mupwindunderturbulentconditions.Sensorheightabovethecanopymustbenolessthanoneandone-halfgreaterthanthedominantplantcanopyheightinthefootprintarea.Itispermissibletoincreaseordecreasesensorheightonthetowertoaccommodatechangesinplantcanopyheight,aslongasthesensorheightismaintainedabovetwicethecanopyheight.Alternately,duringdatapost-processingvegetationcanopyheightmaybeadjustedwithoutchangingsensorheight.Physicalchangesinsensorheightmustberecordedandincorporatedasoffsetsduringdataprocessing.C.2.4FetchandFluxFootprintFetchisdescribedasthehorizontalextentfromthetowerwherefluxissampled,whereasthefluxfootprintdescribeshowmuchofthemeasuredfluxcomesfromanareaatagivenhorizontaldistance.Sufficientfetchisneededtodevelopaninternalboundarylayerwherefluxesareconstantwithheight(Baldocchietal.2001).Forevery1.0mincreaseinverticalplantstructureaboveaneffectivesurface,approximately100moffetchisneededtoreadjusttheinternalboundarylayer(Businger1986,inBaldocchietal.1988).Toprovideadequatefetch,theeffectivesurface(dominantcanopyheightofinterest)mustbeprovidedbytheprojectproponentandthesensorheightmustbetwicethedominantcanopyheightwithinaminimumradiusof100mfromthetower.Ifpatchvegetationispresentitmustnotexceedthe25%areathresholdidentifiedinSectionC.2.2.C.2.4.1FootprintDistanceEstimationThemean80%footprintdistanceprovidestheverifierwithinformationtoconfirmthatfluxmeasurementsarebeingcollectedwithinanareathatishomogeneous.Here,mean80%footprintdistancecanbeestimatedwithapredictivemodelandusingdaytimeturbulenceparametersthataretypicaloftheregion(ie,fromanearbymeteorologicalstation)andthecharacteristicsofthesite.VM0024,Version1.0SectoralScope14Page116Thepredictedmean80%footprintdistancemustbeestimatedbytheprojectproponentbasedonthemethodologybyKlujnetal.(2004),whichusesturbulenceparameterstopredictthelocationordistancethatinfluencesapercentageoftheflux.Inthiscase,theprojectproponentmustprovideparameterestimatesandtheresultsofthepredictedfootprintdistancewith80%fluxcontribution(onlinefootprintparameterization,http://footprint.kljun.net/varinput.php)totheverifier,basedondataknownfortheprojectsiteorestimatesfromlocalmeteorologicalstationsforthetimeperiodofmeasurement.Theparameterestimatesmustinclude:σW=standarddeviationofdaytimeverticalvelocityfluctuations(m/s)𝑢∗=surfacefrictionvelocity(m/sec)𝑧𝑚=measurementheight(m)ℎ𝑚=planetaryboundarylayerheight(m)or1000m𝑧𝑚=roughnesslength(m)or1/10thoftheaveragecanopyheightC.2.5CalibrationCalibrationofmethanesensorsmustbeperformedbythefactoryoruseraccordingtomanufacturerguidelines.WhenLICORequipmentisused,theintervalsforchecksandcalibrationareprovidedhere,whiledetailedcalibration/zeroinstructionscanbeaccessedviatheLICORwebsite.Themethaneanalyzer(LI-7700)mustbefullycalibratedspanninga0and10ppmmethaneconcentrationstandardatleastonceannuallywithstandardgases(1%accuracy).Zeroand10ppmchecksofthemethaneanalyzerwithhydrocarbon-freeand10ppmstandardgases(accuracyforzerogases=<0.1ppmTotalHydrocarbonConcentration;accuracyfor10ppmmethane=<0.5ppmmethane)mustbeconductedataminimumoftwiceeverysixmonthsoveroneyearofdatacollection.TheLI-7200,whichmeasureswatervaporandcarbondioxide,mustbereturnedtothefactoryatleastonceeverythreeyearstoconfirmthestabilityofcoefficientvaluesonthefactorydrifttable.C.3ScaletoProjectAreaProjectfieldmonitoringdesignsmayfallintooneofseveralgeneralapproachesthatmayembraceoneuniformhabitattypeormultiplehabitattypesinasinglelocation,periodichabitatsampling,ormultipleeddycovariancetowerscontemporaneouslymeasuringdifferenthabitats.1.Stationarysinglehabitat:Thesimplestcaseisrestrictinglong-termmeasurementstoasinglelocationthatmaximizesfluxestimatesfromahomogeneoushabitatacrossseasonalatmosphericandenvironmentalevents.Theassumptionofthisapproachisthattherangeofproject-scalevariabilityinGHGemissionsisadequatelycharacterizedoveranannualperiod.2.Stationarymultiplehabitats:Theeddycovariancetowermaybeplacedasinglelocationthatgeneratesinformationfromdifferenthabitatsthathavedifferentsource/sinkeffects.Inthiscase,VM0024,Version1.0SectoralScope14Page117dataareisolatedbythewinddirectionorquadrantthatcorrespondstothehabitat(openwater,scrub-shrub,herbaceous).3.Completeorperiodiccoverageofmultiplehabitats:Forprojectareaswithdiversehabitats,eachhabitattypeisindividuallyinstrumentedandmeasuringsimultaneouslyforvalidinter-habitatcomparisons.Anotherapproachistomakeperiodicmovementstodifferenthabitatswithaneddycovariancetower.Thedegreetowhichperiodicdeploymentsindifferentlocationsapproximateaverageconditionsmustbedemonstratedbytheprojectproponent.Regardlessofthemethodchosenabovetoscalefromthetowerlocationtotheprojectarea,projectproponentsmustjustifythatthetowerlocationsselectedresultinconservativeestimatesofmethaneemissionsflux.Todothis,projectproponentsmust:1.Stratifytheprojectareabasedonmeasureablefactorsexpectedtoimpactmethaneemissionsflux.Thesefactorsmayincludebutarenotlimitedtoelevation,vegetationcover,andsalinity.2.Calculatethepercentageofthetotalprojectareathatfallsintoeachmethaneemissionsfluxstratum.3.Usingthemean80%footprintdistancedefinedabove,calculatethepercentageoftheexpectedtowerfootprintthatfallswithineachstratum.4.Demonstratethat,iftheproportionofthetowerfootprintareathatfallswithineachstratumdiffersfromtheproportionofthetotalprojectareathatfallswithineachstratum,thetowerfootprintareacontainsaproportionallygreaterareaofstrataexpectedtohavehighmethaneemissionsflux.Forexample,iftwostrataareidentified(lowandhighemissionsflux),andtheprojectareais40%lowand60%high,atowerfootprintthatincludes70%highemissionsfluxstrataand30%lowisacceptable,whileafootprintthatincludes55%highemissionsfluxstrataand45%lowisnot.Ifevidencecanbepresentedthatatowerfootprintiscompletelyhomogenousandallstrataaresampledseparately,thisrequirementcanbeconsideredsatisfied.VM0024,Version1.0SectoralScope14Page118𝑓𝑃Δ𝐶𝐻4=(𝜌𝑎̅̅̅̅𝑤′𝑠′̅̅̅̅̅̅)×5.61×10−3×21[C.1]Variables𝑓𝑃Δ𝐶𝐻4=CH4dailyflux(tCO2e/ac/day)𝜌𝑎̅̅̅̅-meanairdensityfora0.5hoursampleinterval(µmolair/m3)𝑤′𝑠′̅̅̅̅̅̅-meancovarianceofinstantaneousverticalwindvelocityandmixingratioofCH4inair𝑤′-instantaneousverticalwindvelocity(m/sec)𝑠′-instantaneousmixingratioofCH4inair(µmolgas/µmolair)SectionReferences9.2.2.3Comments5.61x10-3=unitconversionofµmolCH4/m2/stotCH4/ac/day21=conversionoftCH4totCO2eC.4DataProcessingandAnalysesDecadesofeddycovariancemethodologyresearchhasresultedinsomewidelyacceptedsequencesofprocessingstepsandcorrectionsthatshouldbeapplied.Asanevolvingscience,however,therearedebatabletopicsunderdiscussion.Thetraditionalstepsineddycovariancedataprocessingareoutlinedbelowandtheprojectproponentisresponsibleforspecifyinghowdataprocessingconformstoacceptedmethods(adaptedfromBurbaandAnderson2007).VM0024,Version1.0SectoralScope14Page119Table16:StepstoeddycovariancedataprocessingStepAcceptedmethodsReferences1.Rawdataunitconversion-rawvoltagetounitconversion2.Despike-signalsgreaterthan6timesthestandarddeviationforagivenaveragingperiod(30min)mustberemovedforverticalwindvelocityandgasconcentration3.Calibrationcoefficients-maybedoneduringdatapostprocessing;or,-userinputcorrectionsembeddedintheinstrumentsoftwareandmetadata4.Coordinaterotation-rotationtomeanverticalvelocityisequaltozeroovera30minsampleinterval;or,-planarfitmethod;or,-sonictiltcorrectionalgorithms5.Detrending-30minblockaveragingmustbeused-linearandnon-linearde-trendingshouldbejustifiedbyprojectproponent6.Frequencyresponsecorrections-correctionsmayinclude:sensorseparation,scalarpathaveraging,high-lowpassfiltering.Moore,C.J.1986.Frequencyresponsecorrectionsforeddycorrelationsystems.BoundaryLayerMeteorology,37:17-35.7.DensityfluctuationWPLcorrectionappliedtouncorrectedcovariancesorfinalfluxes.Webb,E.K.,Pearman,G.,andLeuning,R.1980.Correctionoffluxmeasurementsfordensityeffectsduetoheatandwatervaportransfer.QuarterlyJournaloftheRoyalMeteorologicalSociety,106:85-100.C.5FluxFootprintCalculationsFluxfootprintcalculationsmustemployoneofthefollowingmethods:Klujnetal.2004orKormannandMeixner2001.Witheithermethod,theprojectproponentmustprovideasummarytabledescribingtheVM0024,Version1.0SectoralScope14Page120measuredmeteorologicalconditionsandthemean80%footprintdistanceforthemonitoringperiod.Seeequation[C.1].VM0024,Version1.0SectoralScope14Page121APPENDIXD:DEFAULTBIOMASSMEASUREMENTMETHODSTheprojectproponentmustdevelopadetailedsamplingprotocolforthepurposesoffieldcrewconsistencyanddocumentation.TheprojectproponentmaydeviatefromthemethodsprovidedinthisappendixpertherequirementsofSection9.D.1AboveGroundTreeBiomassAbovegroundtree(AGT)biomassincludesonlytreesaboveaspecifieddiameterandisestimatedusingallometricequations.Foreachtreewithinagivenmeasurementplot,diameteratbreastheight(dbh)ismeasuredandinputintoanequationtoyieldanestimateofabovegroundbiomass.Someequationsmayalsorequiretreeheightand/orwooddensity.Treebiomassisthensummedforeachplot,andplotbiomassestimatesareextrapolatedacrosstheentireprojectareatoestimatetotalcarbonstocksinAGTbiomass.Projectproponentsmustchooseplotsizeanddesign.Forexample,anestedplotconfigurationmaybeutilizedinordertodecreasesamplingsizenecessarytoobtainanacceptableleveloferror.Thesamplingprotocolshouldreflecttheselectedsamplingscheme.Ineachplot,requiredmeasurementsaretakenoneverytreefallingwithintheplotbasedonthesamplingprotocol.Thesamplingprotocolshouldexplainhowtodeterminewhetheragiventreeis“in”or“out.”Theprojectproponentmaydecidewhethertocollectheightorwooddensitybasedonwhichmetricsarerequiredbyselectedallometricequations.Whenalistoftreespeciespresentintheprojectareaisavailable,allometricequationsaretobecompiled.Equationsmaybeobtainedfrompeer-reviewedscientificjournalsordevelopedbytheprojectproponent,andmaybespecies-specific,genus-specific,orgenericformequations.Equationsmustbevalidated.Whenformequationsareused,theprojectproponentmustjustifythattheyareconservativeforspeciesconsideredintheproject.Sincesmallerrorsinequationscanleadtosignificanterrorinthebiomassestimateacrosstheentireproject,itisimportantthatequationsarerepresentativeofthetreesforwhichtheyareutilized—species,locale,anddiameterrangeusedtodeveloptheequationsshouldbeconsideredwhenmakingselections.Ifequationsrequirewooddensity,theprojectproponentmaychoosetoemployspecies-orgenus-specificvaluesfrompeer-reviewedscientificjournalsinsteadofusingfield-collecteddata.Afterfieldmeasurementsarecomplete,thefollowingstepsaretakentocalculatetotalprojectareacarbonstocksinAGT:UsingEquation[D.1],applytheappropriateallometricequationandconverttheresultingbiomasstocarbonstocksforeachtree.UsingEquation[D.2],AGTcarbonstocksaresummedforeachplotthendividedbyplotareatoyieldplot-widecarbonstockdensity.UsingEquation[D.4],carbonstocksineachstratumareextrapolatedfromplot-widecarbonstockdensityandsummedacrossallstratatoyieldaverageAGTcarbonstocksfortheproject.VM0024,Version1.0SectoralScope14Page122UsingEquations[A.8],calculatestandarderroroftheaverageprojectcarbonstockestimate.D.2AboveGroundNon-TreeBiomassGrasses,sedges,otherherbaceousplants,shrubs,andtreessmallerthantheAGTpoolminimumdiameterareincludedinabovegroundnon-tree(AGNT)biomass.Woodyplants(smalltreesandshrubs)maybemeasuredusingeitherdestructively-sampledclipplotsorallometricequations,whileherbaceousplants,ifincluded,mustbemeasuredusingclipplots.Ifadistinctioninsamplingismadebetweenwoodyandherbaceousplants,aproceduretoensurethateachplantiscountedonlyoncemustbeoutlinedinthesamplingprotocol.PlotsizewillbechosenbytheprojectproponentandwilllikelybemuchsmallerthanAGTplots.ThoughplotsforAGNTsamplingareseparatemeasuringunitsfromAGTplots,theymayexistwithinAGTplots.D.2.1DestructiveSampling–ClipPlotsInthedestructivesamplingmethod,allplantsinthesamplingframewithinaplotarecutandweighedtomeasureplot-wideAGNTbiomass.Plantsshouldbecutataconsistentheightasclosetothegroundaspossible.Toaidindeterminingtheextentoftheplot,asamplingframeofthedesiredplotsizemustbelaidonthegroundandallplantswithinmustbecut.Ifpossible,biomassmustberefrigeratedassoonaspossibleafterclippinginordertoavoidmasslossduetorespiration.Iftheprojectproponentdesires,woodyandherbaceousplantsmaybedestructivelysampledseparately,withasmallerplotsizeforherbaceousplantstoimprovesamplingefficiency.Afterharvest,allbiomassshouldbeplacedinadryingovenat70°Candweighedperiodicallyuntilweightisstatic,indicatingthatdryingiscomplete.Weighalldrybiomasstodetermineplot-widedryweight.Alternatively,theprojectproponentmayelecttomeasurewetweightofallbiomassinthefieldandcollectarepresentativeandwellmixedsubsampleofwhichtomeasuredryweight.Theratioofdry-to-wetweightdeterminedbythesubsamplewouldthenbemultipliedbytheplot-widewetweighttodetermineplot-widedryweight.Aftermeasurementsarecomplete,thefollowingstepsmustbetakentocalculatetotalprojectareacarbonstocksinAGNT:UsingEquation[D.3],AGNTbiomassisconvertedtocarbonstocksandthendividedbyplotareatoyieldplot-widecarbondensity.UsingEquation[D.4],carbonstocksineachstratumareextrapolatedfromplot-widecarbonstockdensityandsummedacrossallstratatoyieldaverageAGNTcarbonstocksfortheproject.UsingEquations[A.8],calculatestandarderroroftheaverageprojectcarbonstockestimate.VM0024,Version1.0SectoralScope14Page123D.2.2AllometricEquationsAllometricequationsmaybeusedtoestimatebiomassoftreessmallerthantheAGTminimumandsmallshrubs.Itisnotonlylessimportantbutalsopotentiallyimpracticalforequationstobespecifictothespecieslevelinthisscenario.Theprojectproponentmaywishtodestructivelysampleasubsetofshrubsinordertodeveloponeormoreallometricequationssincedoingsoforshrubsisfareasierthanfortrees.ThesameprocedureusedtoestimatebiomassthroughallometricequationsusedforAGTbiomassmustbeusedtofindAGNT;refertotheAGTsection.Notethatshrubequationsmayuseadifferentmetricsuchasdiameternearrootcollar(drc)astheindependentvariable.D.3BelowgroundBiomassBelowgroundbiomassmustbeestimatedusingproportionalrelationshipsbetweenabovegroundandbelowgroundbiomass(ie,root-shootratios)orbySOCmeasurement,butnotboth.D.3.1CoarserootsCoarserootsaredefinedasroots≥2mmindiameter,theIPCCsuggestedminimumdiameterforbelowgroundbiomass.Inpartiallyorwhollyforestedwetlands,belowgroundbiomassmaybeestimatedwitheitherroot-shootratiosorSOCmeasurement.Inherbaceouswetlandcreationprojects,carbonstockincoarseroots(>2mm)iscapturedbySOCmeasurement(seeAppendixE);root-shootratiosmaynotbeusedtocalculatecoarserootcarbonstockinherbaceouswetlands.D.3.1.1Estimationusingroot-shootratiosCarbonstocksinbelowgroundbiomassmaybeestimatedbyapplyingaroot-shootratiototheestimateofabovegroundtreeand/ornon-treebiomassyieldedinEquation[D.4].Root-shootratiosfrompeer-reviewedliterature(eg,Vadeboncoeur,Hamburg,&Yanai,2007)inacomparableecosystemandlatitudemustbeusedwhenavailable.Ifnotavailable,theroot-shootratiosfromtheIPCC2006Guidelinesmaybeusedifappropriatefortheecosystem.Thecarbonconcentrationofrootsmaybedeterminedbytakingsamplesfromrootsleavingthetreebase,using50%carboncontent,orbyusingthecarboncontentofabovegroundbiomass.Ifthisapproachisutilized,roots≥2mmmustberemovedfromsoilsamplespriortoanalysis(seeAppendixE).D.3.1.2SOCMeasurementInthecaseofherbaceouswetlands—andinforestedwetlands,iftheprojectproponentprefers—carbonstocksincoarserootbiomassmaybeincludedintheSOCpool.Ifthisapproachisutilized,root-shootratiosmustnotbeused.VM0024,Version1.0SectoralScope14Page124D.3.2FinerootsThecarbonstockinfineroots(<2mm)isincludedintheSOCpool(seeAppendixE).D.4BiomassMeasurementEquations𝑥(𝑖,𝑗,𝑘)=4412×11,000×𝑓𝑆𝑃𝐶()×𝑝(𝑆𝑃𝐶)𝐶𝐹[D.1]Variables𝑓𝑆𝑃𝐶()-allometricequationforspecies𝑆𝑃𝐶,withoutputinkg𝑝(𝑆𝑃𝐶)𝐶𝐹-carbonfractionforspecies𝑆𝑃𝐶SectionReferencesD.1CommentsCarbonstocksinthe𝑖𝑡ℎtreeinplot𝑗instratum𝑘(tCO2e).4412istheratioofthemassofcarbondioxidetothemassofcarbonandisusedtoconverttoCO2eunits.11,000representsaconversionfromkgtotonnes.𝑦(𝑗,𝑘)=1𝑎(𝑗,𝑘)∑𝑥(𝑖,𝑗,𝑘)𝑖∈𝒳(𝑗,𝑘)[D.2]Variables𝑎(𝑗,𝑘)-areaofplot𝑗instratum𝑘(ac)𝑥(𝑖,𝑗,𝑘)-estimatedcarbonstocksinthe𝑖𝑡ℎtreeinplot𝑗instratum𝑘(tCO2e)𝒳(𝑗,𝑘)-setofallmeasurementsofatypeinplot𝑗instratum𝑘SectionReferencesD.1CommentsCarbonstockdensityinabovegroundtreebiomassinplot𝑗instratum𝑘(tCO2e/ac).VM0024,Version1.0SectoralScope14Page125𝑦(𝑗,𝑘)=4412×11,000×𝑝(𝑆𝑃𝐶)𝐶𝐹×𝑚𝑑(𝑗,𝑘)𝑎(𝑗,𝑘)[D.3]Variables𝑝(𝑆𝑃𝐶)𝐶𝐹-carbonfractionforspecies𝑆𝑃𝐶𝑚𝑑(𝑗,𝑘)_-drymassofnon-treesampleharvestedfromclipplotsinplot𝑗,stratum𝑘(kg)𝑎(𝑗,𝑘)-areaofplot𝑗instratum𝑘(ac)SectionReferencesD.2.1CommentsCarbonstockdensityinabovegroundnon-treebiomassinplot𝑗instratum𝑘(tCO2e/ha).𝐶𝑃𝐶𝑆(𝑐)=∑𝐴(𝑘)𝑛(𝑘)∑𝑦(𝑗,𝑘)𝑗∈𝒫(𝑘)𝑘∈𝒮[D.4]Variables𝐴(𝑘)-theareaofstratum𝑘(ac)𝑛(𝑘)-numberofplotsinstratum𝑘𝑦(𝑗,𝑘)-Carbonstockdensityinplot𝑗instratum𝑘(tCO2e/ac)𝒮-setofallstrataformonitoringperiod𝑚𝒫(𝑘)-setofallplotsinstratum𝑘SectionReferencesD.1,D.2CommentsCarbonstocksinpoolcinthesampledarea(tCO2e).VM0024,Version1.0SectoralScope14Page126𝑐𝐵𝐺(𝑝,𝑖)=𝑐𝐴𝐺(𝑝,𝑖)×𝑟/𝑠[D.5]Variables𝑐(𝑝,𝑖)𝐴𝐺𝑥-carboninabovegroundbiomassinpool𝑝instratum𝑖foragivenmonitoringperiod𝑟/𝑠–root-shootratioselectedSectionReferencesD.3CommentsCarbonstockinbelowgroundbiomassforagivenpoolinstratum𝑖.VM0024,Version1.0SectoralScope14Page127APPENDIXE:DEFAULTSOCMEASUREMENTMETHODSWetlandsoilcarboncancompriseelemental(charcoal,soot),inorganic(carbonates)andorganicstates(deadandlivingplant-animaltissue).Theorganicformisdominantinalluvialsoilswhicharetypicallypoorincarbonateorcalcitecontent.Elementalanalyzerscanprovidedirectmeasurementsoftotalsoilcarbon,whereasthelossonignitiontechniqueoforganicmattercombustioncanprovideanestimateoforganiccarbon.Chemicaloxidationoforganiccarbonmayalsobeused(NelsonandSommers1996).Soilorganiccarbon(OC)inmaturegulfcoastwetlandsisrelativelyconstantwithdepthandaverages26mg/ml(GosselinkandHatton1984).Thisverticalconsistencydevelopsassoilsaresaturatedforextendedperiodsandcompaction/oxidationisminimal.Oncewetlandcreationprojectsattainfullplantcoverageandlong-durationhydroperiods,theprocessoforganicmatterverticalaccumulationcanproceedrapidly(1.0cm/yr)bothabovethesoilsurface(vialitterdepositionandadventitiousrootgrowth)andwithintheemplacedsoil(viarootgrowth).Wetlandcreationprojectswilltypicallybeginwithamineral-basedsoilthatishomogeneousinelevation,soiltexture,andrelativelylowincarboncontent.Thecreatedwetlandsurface,ororiginalprojectsoilsurface,becomesalong-livedmarkerwherecarbonaccumulationratescanbeestimatedbymeasuringchanges:(1)withintheoriginalprojectsoil,and(2)inverticalaccretionabovetheoriginalprojectsoilsurface.Accretionabovethesurfaceandwithintheoriginalprojectsoilcompartmentsmayhavecarboninfilling(viarootgrowth)andverticalaccretionrates.Withtime,thewetlandsoilingeneralmayreachanequilibriumpointwithregardstocarbondensity.Whenthishappens,changesinsoilcarbonstockslargelytaketheformofincreasingverticalaccretionandnotnecessarilyincreasingsoilcarbondensity.Acombinedapproachofsoilcoringandartificialmarkerhorizons(suchasfeldsparclay;KnausandCahoon1990)orreferencedevices(suchassedimentreferencepins;Steigeretal.2003;USACE1993)maybeusedtoaccountforchangesincarbonstockswithinbothcompartments.E.1SamplingDesignProjectproponentsmustchooseplotsizeanddesign.Forexample,anestedplotconfigurationmaybeutilizedinordertodecreasesamplingsizenecessarytoobtainanacceptableleveloferror.Thesamplingprotocolshouldreflecttheselectedsamplingscheme.Guidanceforthedesign,allocation,anddemarcationofcorelocationswithinasoilmeasurementplotisprovidedinVCSModuleVMD0021:EstimationofStocksintheSoilCarbonPool.E.2DescriptionofSoilCompartmentsTwosoilcompartmentsmaybemonitoredforchangesincarbonstockswithtime:(1)theoriginalprojectsoil,and(2)newlyaccretedmaterialabovetheoriginalprojectsoilsurface.VM0024,Version1.0SectoralScope14Page128Theprojectproponentmaymonitorbothcompartments,orchoosetomonitorstockchangesonlywithinafixedsoilsampledepth,fortheprojectlifetime.Theprojectproponentmustidentifypriortotheprojectstartdateeitherofthesetwomethods:1)fixedsoilsampledepth;or,2)fixedsoilsampledepthplusaccretiondepth.Ifforanyreasonduringamonitoringeventaccretionmeasurementsbecomeunreliable,thefixedsoilsampledepthbecomesthebasisfordetectingstockchangesforthemonitoringperiod.E.2.1OriginalProjectSoilPriortotheprojectstartdate,theprojectproponentmustspecifyafixedsoilsampledepthfortheoriginalprojectsoil,andthisdepthwillbefixedforthelifeoftheproject.Thefixedsoilsampledepthmustnotexceed100cm.Thefixedsoilsampledepthmustbesampledinamannertoinventorycarbonandbulkpropertiesonamass-volumebasis.Thereisnorequirementonthenumberofadditionaldepthintervalsfromtheoriginalprojectsoilthatmustbesampledandanalyzedseparately.E.2.2AccretionabovetheOriginalProjectSoilSurfaceArtificialmarkerhorizons(describedinSectionE.4)mustbeusedtoassesstheverticaldepth(daccretion)ofmaterialthathasaccretedabovetheoriginalprojectsoilfrom𝑡[𝑚−1]to𝑡[𝑚].Markerhorizonsmustbedeployedataminimumofonceeveryfiveyears.E.3CoringDevicesWhensoilsaresampledforcarbonandbulkpropertyanalyses,coringdevicesmustbeusedthatareadequatetoretrievevolumetricallyintactsamples.Accretiondepthmeasurementsmaybetakenonsoilsamplesthatareexcavatedwithaknifeorslicinginstrument,buttheaccretionlayermustbecollectedwithavolumetricallycontrolledcorerforcarbonandbulkpropertyanalysis.Soildensitylargelydeterminesthesmallestdiametercorerthancanbeusedwithoutcreatingsignificantcompaction.Highlycompressibleorganicsoils(bulkdensity≤0.20g/cm3)shouldbecollectedwithacoretubediameter≥7.6cm.Soilswithabulkdensity>0.20g/cm3canbesampledwithacoretubediameter<7.6cm.Corermaterialsmayconsistofbutarenotlimitedtoaluminum,stainlesssteel,PVC,oracrylic.Coredevicesmustallowinspection/measurementofverticalcompactionofsampleversusfieldcondition.Pistoncorersshouldhaveasamplingbasethatlimitsthesamplecollectiontothespecifieddepth.McCauleypeataugersmaybeusedtocollectorganicsoilsandaredesignedtominimizecompaction.VM0024,Version1.0SectoralScope14Page129E.4ArtificialMarkerHorizonEstablishmentMarkerhorizonsmaybeestablishedwithafeldsparmarkertechnique(KnausandCahoon1990;Folseetal.2012),whichconsistsofa1-cmlayerofwhitefeldsparclaythatisevenlysprinkledonthewetlandsedimentsurfacetocreateawhitelayerwhichiseasilydistinguishablefromthenaturalsubstrateandcanbeusedtomeasuresurfaceaccretionofsedimentsovertime.Plotsizemustbeapproximately0.25m2orgreater.Aminimumofthreemarkerhorizonplotsmustbedeployedineachstratum.E.5SoilSampleCollectionSoilfromtheaccretionlayerandtheoriginalprojectsoilmaybecollectedasoneunitunlessdiscretehorizonsareidentifiablewithinthesamplingdepthfoundintheoriginalprojectsoil,inwhichcasethesoilmustbesampledinsub-incrementsofthesamplingdepth.However,theaccretionlayerformedfrom𝑡[𝑚−1]to𝑡[𝑚]mustbeseparatedfromtheoriginalprojectsoil.Theaccretionlayerandtheoriginalprojectsoilmustbeanalyzedforbulkdensityandcarboncontentseparately,exceptwhenanaccretionlayeris<1.0cm,inwhichcasetheaccretionlayermaybeincorporatedandanalyzedforbulkdensityandcarboncontentwiththeoriginalprojectsoil.Toproperlyadjustcoringdepth,ameanaccretionestimatefromastratummustbeknownpriortosamplingsoilfromthefixedsoilsampledepth.Thus,therearetwosoilsamplingdepthoptionsavailableformonitoring.SoilSamplingDepthOption1:fixedsoilsampledepthSoilSamplingDepthOption2:fixedsoilsampledepthplusaccretiondepth.Specificmethodsforefficientsamplingwilldependonlocalsoilconditions,soprescriptiverequirementsforsamplesize,volume,andsamplingdeptharenotprovidedinthismethodology.Rather,projectproponentsmustdevelopalocallyappropriatesamplingplan.Indevelopingthisplan,caremustbetakenthatthesamplingproceduresemployedacrossthedepthprofiledonotbiastheestimationofsoilorganiccarbon.Inthecasethatdiscretesoilhorizonscanbeidentifiedwithintheselectedfixedsoilsampledepth,eachhorizonmustbesampledseparately.Thevolumeofeachsoilsampletakenshouldbelargeenoughtocaptureinherentsoilstructurevariabilityacrossthedepthrangerepresentedbythesample.Inthecasethatasinglesampleisusedtorepresentadepthrange,thesamplemustbewellhomogenizedpriortoanalysis,andcaremustbetakenthatthesampleusedfororganiccarbondeterminationandbulkdensitydeterminationarerepresentativeofthesamedepthrange.Ifmultiplesamplesaretakenacrossaverticalsoilprofile(suchasbydivisionofacoreintosegments),aweightedaverageshouldbeusedtoestimatethemeancarboncontentacrosstheentiredepthprofile,wheretheweightsareproportionaltothepercentageofthetotalsampledepthrangerepresentedbyeachsubsample.RefertothemostrecentversionofVCSModuleVMD0021:EstimationofStocksintheSoilCarbonPool,theIPCCGoodPracticeGuidanceforLandUse,LandUseChange,andForestry,andNelsonandSommers(1996)formoredetailedguidanceonestablishingappropriatesamplingprotocols.VM0024,Version1.0SectoralScope14Page130E.5.1AccretionabovetheOriginalProjectSoilSurfaceTheaccretiondepthwillbemeasuredfromaminimumofthreefeldsparplotspersamplinglocationwithinastratum.Themeanoftheindividualmeasurementsfromeachplotwillrepresent(daccretion).Theaccretiondepthfromthemarkerhorizonsmaybesampledbyconventionalcoring,knifeexcavation,orcryogeniccoringtechniques.Regardlessoftechnique,atleastthreemeasurementsofthematerialthicknessabovethemarkerhorizonmustbetakenwithcalipersorarulertothenearest1.0mmandrecordedonadatasheet.Themeanaccretiondepthwillinformthetotaldepthofsubsequentsoilsampling.Theaccretiondepthmustbeknownpriortodeterminingtheoveralldepthrequiredforsoilcoring.E.5.2OriginalProjectSoilTheoriginalprojectsoilmustbesampledwithacoringtubeofanappropriatediameter(asdescribedinSectionE.3).Thethicknessof(daccretion)sedimentaccretionabovetheoriginalprojectsoilmustbeaccountedfor,whenapplicable.Otherwisetheoriginalprojectsoilissampledtothefixedsoilsampledepthdefinedfortheproject.SoilCoringProcess:1.Locatepre-determinedsampleplot.Removeemergentvegetationbyclippingtothesoilsurface.Insertcoretubeanddriveapproximately5-10cmdeeperthanthefixedsoilsampledepthorthesumofthefixeddepthandaccretiondepth.2.Measuretheverticalheightofthesoilsurfacerelativetotopofthecoretube,bothinsideandoutsideofcoretubetocalculatecompaction.Ifheightdifferenceis≥10%ofthesampledepth,removethecoretubeandre-sample.Ifheightdifference≤10%,removethecore,aidedbyacaponthetopofthecoretubetocreateavacuum,orbyinsertingahandatthebaseofthecoretube.Thecorecompactionestimatemustbedocumented.3.Transfercoretoanextrudingbase,whichmayconsistofa‘Meriwetherextruder’(Folseetal.2012)orequivalentdevicethatpermitsextrusionfromthebaseofthecore,suchthattheuppersoilissectionedfirst,anddeeperlayersthereafter.4.Iftheaccretiondepth(daccretion)is≤1cm,itmustbeconsideredtobeconservativetoincludethislayerwithintheoriginalprojectsoil(ie,onlycoretotheoriginalfixedsoilsampledepth).Iftheaccretionlayeris>1cm,recordthelayerthicknessasdaccretion.5.Extrudethecoretothemeanaccretiondepth(daccretion)asdefinedbythemarkerhorizontechnique(describedinSectionE.4andE.5.1).Thesoilfromthissampledepthisremovedandplacedinaplasticbaglabeledwithsamplelocationinformationandthesampledepthtothenearest1.0cm.VM0024,Version1.0SectoralScope14Page1316.Afterthesurfaceaccretionlayerhasbeenremoved,continuetheextrusionprocesstotheoriginalfixedsoilsampledepth,sectioningatthepre-definedintervalsoftheoriginalprojectsoil(asdescribedinsectionE.2.1).Placethesampleinaplasticbagwithsamplelocationinformationanddepositdepthtothenearest1.0cm.E.6SoilSampleAnalysesAllsoilsamplesmustbestoredonicefollowingcollectionandduringtransport.Achainofcustodyformshouldbecompletedbythefieldleadandsubmittedtothelaboratorywiththesamplestobemaintainedwiththeirrecords.SoilsamplesmustbeanalyzedforbulkdensityandSOCbyaqualifiedlaboratoryfollowingthemethodsofNelsonandSommers1996andBall1964,respectively,orcomparablemethods.ThechosenlaboratorymusthavearigorousQualityAssuranceprogramthatmeetsorexceedstheUSEPAQA/QCrequirementsorsimilarinternationalstandardsforlaboratoryprocedures,analysisreproducibility,andchainofcustody.Thelaboratorymustalsoprovideadocumentthatdefinesthepre-analysissampleprocessingprocedures,andthespecificchemistrytestmethodstheyuseatthelaboratory,includingtheminimumdetectionlimitsforeachconstituentanalyzed.Ifroot-shootratiosareusedtoestimatecarbonstocksincoarseroots(≥2mm),suchrootsmustberemovedfromsoilsamplespriortoanalysis.Inthiscase,notethatalthoughcoarserootsdonotcounttowardmassorcarboncontentinSOCcalculations,theirvolumeshouldstillcontributetosoilcorevolume.E.6.1BulkDensityForbulkdensitydetermination,coresamplesofknownvolumearecollectedinthefieldandovendriedtoaconstantweightat105C(foraminimumof48hours).Thetotalsampleisthenweighed.Thebulkdensityofthesoilcoreisestimatedas:𝜌𝑆𝑂𝐼𝐿=Msoil/Vsoil[E.1]VariablesMsoil-oven-driedmassofsamplesoilcore(g)Vsoil-volumeofsoilcore(cm3)SectionReferencesCommentsBulkdensityofsoilcorejinstratumk(g/cm3)VM0024,Version1.0SectoralScope14Page132FurtherguidanceisprovidedinNelsonandSommers(1996).E.6.2DirectCarbonDeterminationFordirectsoilcarbondetermination,individualcoresamplescollectedinthefieldareovendriedtoaconstantweightat105C(foraminimumof48hours).DriedsamplesmustbehomogenizedorgroundwithaWileyMillorballgrinder.ThepreparedsampleisanalyzedforpercentorganiccarbonorgC/gsoil(𝑐𝑓𝑠𝑜𝑖𝑙)usingeitherdrycombustionusingacontrolled-temperaturefurnace(eg,LECOCHN-2000,LECORC-412multi-carbonanalyzer,orequivalent),dichromateoxidationwithheating,orWalkley-Blackmethod.FurtherguidanceisprovidedintheIPCCLULUCFGoodPracticeGuidance(2003)andinNelsonandSommers(1996).E.6.3IndirectCarbonDeterminationIndirectcarbonestimationtechniquesmaybesubstitutedfordirectdetermination.Organiccarbon(OC)canbeestimatedreliablywiththeloss-on-ignition(LOI)method,whichcombustsorganicmatterfromasoilsample,leadingtoadirectrelationshipbetweensoilorganicmattercontentandorganiccarboncontent.LOIlabtechniquesshouldadheretothoseofdescribedinBall1964orHenrietal.2001.Whilesomevariabilitymayexistamongsamples,OCcontentshouldnotexceed50%oftheOMcontent.Table17presentstherelationshipsthatareacceptableforconvertingfromorganicmattertoorganiccarbon.Table17:Defaultequationsforestimatingorganiccarboncontentfromorganicmattercontentwithsoilsamplesanalyzedwiththeloss-on-ignitiontechniqueRegionRelationship(OCandOMonapercentdrybasis)ReferenceAtlanticOC=0.40OM+0.0025OM2Craftetal.1991GulfofMexicoOC=0.4541OMSteyeretal.2012PacificOC=0.38OM+0.0012OM2Callawayetal.2012VM0024,Version1.0SectoralScope14Page133𝑐𝑆𝑂𝐶𝑗=[∑(𝑐𝑓𝑠𝑜𝑖𝑙,𝑙∗𝜌𝑠𝑜𝑖𝑙,𝑙∗𝑑𝑠𝑜𝑖𝑙,𝑙)1−𝑥𝑙+∑(𝑐𝑓𝑠𝑜𝑖𝑙,𝑙∗𝜌𝑠𝑜𝑖𝑙,𝑙∗𝑑𝑎𝑐𝑐𝑟𝑒𝑡𝑖𝑜𝑛,𝑙)1−𝑥𝑙]∗4412∗40.47−𝑐𝑎𝑙𝑙𝑜𝑐ℎ,𝑗[E.2]Variables𝑐𝑆𝑂𝐶𝑗=totalsoilcarbonmeasuredatplotj(tCO2eac-1)x=numberofsoillayersl=soillayer𝑐𝑓𝑠𝑜𝑖𝑙=organiccarboncontentofthesoilsampleinplotjinstratumk(gC/gsoil)𝜌𝑠𝑜𝑖𝑙=soilbulkdensityofsampleinplotjinstratumk(g/cm3)𝑑𝑠𝑜𝑖𝑙=depthofasoilsamplecollectedbelowthesurfaceoftheoriginalprojectsoilsurfaceinplotjinstratumk(cm)𝑑𝑎𝑐𝑐𝑟𝑒𝑡𝑖𝑜𝑛=depthofsoilsamplecollectedaboveamarkerhorizon(feldspar)orcontrolrodorpininplotjinstratumk(cm)𝑐𝑎𝑙𝑙𝑜𝑐ℎ,𝑗=allochthonoussoilcarbonmeasuredatplotj(tCO2e/ac).Thisquantityiszeroiftheprojectmeetsthecriteriainsection5.2.1.SectionReferencesComments4412istheratioofthemassofcarbondioxidetothemassofcarbonandisusedtoconverttoCO2eunits.40.47=conversiontot/acVM0024,Version1.0SectoralScope14Page134𝐶=∑𝐴(𝑘)𝑛(𝑘)∑𝑦(𝑗,𝑘)𝑗∈𝒫(𝑘)𝑘∈𝒮[E.3]Variables𝐴(𝑘)-theareaofstratum𝑘𝑛(𝑘)-numberofplotsinstratum𝑘𝑦(𝑗,𝑘)-aquantityestimatedforormeasuredonplot𝑗instratum𝑘𝒮-setofallstrataformonitoringperiod𝑚𝒫(𝑘)-setofallplotsinstratum𝑘SectionReferencesD.1CommentsEstimatedtotalSOCstockinthesampledareaE.6.4AllochthonousCarbonDeterminationAllochthonouscarbonisestimatedusingamarkerhorizontechniqueinordertodeterminetheamountofmineralmatterthathasbeendepositedoverthemonitoringperiod.Themineral-associatedcarbonisthecomponentthatisclassifiedasallochthonouscarbon.1.Measurethetotalamountofsoilaccumulation(accretiondepth)duringthemonitoringperiod.2.Fromtheaccretiondepth,collectsoilsedimentsamplesandanalyzethesamplesforbulkdensity.3.Calculatethemineralfractionofthesoilsample.4.Useacorrectionfactortoestimatetheamountofmineral-associatedcarbon(allochthonouscarbon)tobedeductedfromthecarbonstocksassociatedwithrecentlydepositedsediment.Coresamplesofknownvolumearecollectedinthefield,homogenizedinthelaboratory,andthehomogenizedmaterialissub-sampledforcombustion(withtheloss-on-ignitiontechnique,describedinSectionE.6.3),whichremovestheorganicmatter/carbon.(Thedrybulkdensityoftotalsampleismeasuredfirst;thentheorganicandmineralcontentareseparatedbycombustion.)Thetotalremainingmaterialismineral,andmineraldensityofthesampleiscalculatedfromtheoriginalsoilsamplevolume.Themassofallochthonouscarbonofthesoilsampleabovethemarkerhorizonisestimatedas:VM0024,Version1.0SectoralScope14Page135𝑐𝑎𝑙𝑙𝑜𝑐ℎ,𝑗=∑(𝑚𝑐𝑓𝑠𝑜𝑖𝑙,𝑙∗𝜌𝑚𝑖𝑛𝑠𝑜𝑖𝑙,𝑙∗𝑑𝑎𝑐𝑐𝑟𝑒𝑡𝑖𝑜𝑛,𝑙)1−𝑥𝑙∗4412∗40.47[E.4]Variables𝑐𝑎𝑙𝑙𝑜𝑐ℎ,𝑗-allochthonoussoilcarbonmeasuredatplotj(tCO2e/ac)x=numberofsoillayersl=soillayer𝑚𝑐𝑓𝑠𝑜𝑖𝑙–mineral-associatedcarbonfractionofthesoilsampleinplot𝑗instratum𝑘(%)𝜌𝑚𝑖𝑛𝑠𝑜𝑖𝑙–mineraldensityofsampleinplot𝑗instratum𝑘(gcm-3)𝑑𝑎𝑐𝑐𝑟𝑒𝑡𝑖𝑜𝑛-depthofsoilsamplecollectedaboveamarkerhorizon(feldspar)orcontrolrodorpininplot𝑗instratum𝑘(cm)SectionReferences9.2.6Comments4412istheratioofthemassofcarbondioxidetothemassofcarbonandisusedtoconverttoCO2eunits.40.47=conversiontot/acMineralassociatedcarbonfractionofestuarinesoilsistypicallylessthan3%andalocallyrelevantdatasourcemaybeused,orsee,AndrewsJE,JickellsTD,AdamsCA,ParkesDJ,andKellySD(2011)SedimentRecordandStorageofOrganicCarbonandtheNutrientElements(N,P,andSi)inEstuariesandNear-CoastalSeas.In:WolanskiEandMcLuskyDS(eds.)TreatiseonEstuarineandCoastalScience,Vol4,pp.9–38.Waltham:AcademicPress)VM0024,Version1.0SectoralScope14Page136APPENDIXF:MODELASSESSMENTREQUIREMENTSTheprojectproponentmaynotdeviatefromthemethodsprovidedinthisappendixbecausethesemethodsarenotrelatedtomonitoringormeasurement.Thisappendixmustbefollowedtoselectandassessproxymodelsfromsections9.2.2.2and9.2.3.2.Allmodelsmustbefitusingasamplesizeofatleast30measurements.F.1ModelSelectionAcandidatesetofmodelstopredictmethaneornitrousoxideflux(theresponse)mustbefitusinganunbiasedestimatorofmodelparameters.Allmodelsmustbefittothesameresponsedataandcovariatedata.AnestimateofAkaikeInformationCriterion(AIC)mustbeusedformodelselection.ThemodelwiththelowestAICmustbeusedtopredictmethaneandnitrousoxideflux.F.2CheckingAssumptionsTheassumptionsofthestatisticalmethodsusedtofittheselectedmodelmustbelisted.Ifordinaryleastsquares(OLS)isusedtofitthemodel,thisstatisticalmethodassumesthefollowing:1.Residualsareuncorrelated.2.Residualsarehomoscedastic.3.Residualsareindependentofeachother.4.Residualsarenormallydistributed.Theassumptionsofthestatisticalmethodmustbeconfirmedonthebasisofsamplingdesign,statisticsanddiagnosticplots.Diagnosticplotsmustbeusedtocheckfor‘outlier’datapoints,whichmustbeincludedinthemodelfittingunlesstheyaredeterminedtobeerroneous.Iftheassumptionsofthestatisticalmethodarenotconfirmed,theninsomecases,acorrectionfactormayberequired.Thecorrectionfactormustbeappliedfrompeer-reviewedliteratureorastatisticalpublication.Theselectedmodelmustnotbeusediftheassumptionsofthemodelareunconfirmedorifanappropriatecorrectionfactorhasnotbeenapplied.F.3DeterminingGoodnessofFitGoodnessoffitmustbedeterminedbasedontheparametervaluesoftheselectedmodel.Theparameterestimatesmustbeunbiasedandpredictionsmustbemonotonicontheintervaloftherangeofplausiblepredictedemissions.ThecovariateandresponsedatausedtoparameterizethemodelmustbeobtainedpertherequirementsofSections9.2.2.3or9.2.3.3toensureconservativenessofmodelpredictions.BecausedatafortheparameterizationofthemodelisderivedfromconservativeVM0024,Version1.0SectoralScope14Page137measurementsasdescribedinthesesections,therearenorequirementsontheprecisionofthemodelpredictionsorparameterestimates.F.3.1EstimatesofParameterBiasLeave-one-outcrossvalidationmustbeusedtoestimatethebiasofparameterestimates.Theestimatedbiasmustnotexceed15%oftheestimatedparametervalue,onaverageacrossparameters.F.3.2ConfirmationofMonotonicityInordertoconfirmthattheselectedmodelisconservative,theprojectproponentmustprovidegraphicalplotsofthemodelpredictionsacrosstherangeofplausibleinputcovariatevalues.Withinthisrange,thefunctionmustbemonotonic—thatis,predictionsmustnotchangeconcavityandbeincreasingthroughouttherangeofplausiblepredictedemissions.Forexample,ifthefunctionisincreasingatadecreasingrate,itmustcontinuetoincreaseatadecreasingrateacrosstheintervalofplausiblepredictedemissions.VM0024,Version1.0SectoralScope14Page138APPENDIXG:EQUATIONSINMETHODOLOGY𝑑𝑃Δ[𝑚]=𝑝𝑆𝐿𝐷[𝑚]𝑑𝑆𝐿𝐷[𝑚]+(1−𝑝𝑆𝐿𝐷[𝑚])𝑑𝐿𝑄𝐷[𝑚][G.1]Variables𝒅𝑷𝚫[𝒎],𝒑𝑺𝑳𝑫[𝒎],𝒅𝑺𝑳𝑫[𝒎],𝒅𝑳𝑸𝑫[𝒎]SectionReferences9.2.5CommentsDensityofsedimentdredgedfromsedimentsource.𝑀𝑃Δ[𝑚]=𝑉𝑃Δ[𝑚]𝑑𝑃Δ[𝑚]1000[G.2]Variables𝑴𝑷𝚫[𝒎],𝑽𝑷𝚫[𝒎],𝒅𝑷𝚫[𝒎]SectionReferences9.2.5CommentsMassofsedimentdredgedfromthesedimentsourceasaresultofprojectactivities.𝐸𝐵Δ𝐸𝐶[𝑚]=−𝑀𝑃Δ[𝑚]∑𝑒(𝑡𝑦)(𝑡𝑦)∈𝒯𝐵𝐸𝐶𝑔𝐵(𝑡𝑦)[G.3]Variables𝑬𝑩𝚫𝑬𝑪[𝒎],𝑴𝑷𝚫[𝒎],𝒆(𝒕𝒚),𝒈𝑩(𝒕𝒚)SectionReferences8.1.1CommentsTotalbaselineemissionsfromenergyconsumptioninthemonitoringperiod(tCO2e).VM0024,Version1.0SectoralScope14Page139𝐹𝐵Δ𝐶𝐻4[𝑚]=𝐴𝑃𝐴×𝑓𝐵Δ𝐶𝐻4[𝑚][G.4]Variables𝑭𝑩𝜟𝑪𝑯𝟒[𝒎],APA,𝒇𝑩𝚫𝑪𝑯𝟒[𝒎]SectionReferences8.1.2,9.2.2CommentsBaselinemethaneemissionsflux(tCO2e/day).𝐸𝐵Δ𝐶𝐻4[𝑚]=−(𝑡[𝑚]−𝑡[𝑚−1])𝐹𝐵Δ𝐶𝐻4[𝑚][G.5]Variables𝑬𝑩𝜟𝑪𝑯𝟒[𝒎],𝒕[𝒎],𝒕[𝒎−𝟏],𝑭𝑩𝜟𝑪𝑯𝟒[𝒎]SectionReferences8.1.2CommentsTotalbaselinemethaneemissionsfrommethaneovermonitoringperiod(tCO2e).𝐸𝐵Δ[𝑚]=𝐸𝐵Δ𝐸𝐶[𝑚]+𝐸𝐵Δ𝐶𝐻4[𝑚][G.6]Variables𝑬𝑩𝚫[𝒎],𝑬𝑩𝚫𝑬𝑪[𝒎],𝑬𝑩𝜟𝑪𝑯𝟒[𝒎]SectionReferences8.1CommentsTotalbaselineemissionsovermonitoringperiod(tCO2e).(Ifdredgingisnotincludedinthebaselinescenario,emissionsfromenergyconsumptionarezero(seesection6.2);ifmethaneebullitionisnotincludedinthebaselinescenario,methaneemissionsarezero.)VM0024,Version1.0SectoralScope14Page140𝐶𝑃𝐶𝑆[𝑚]=∑𝐶𝑃𝐶𝑆(𝑐)[𝑚](𝑐)∈𝒞[G.7]Variables𝑪𝑷𝑪𝑺[𝒎],𝑪𝑷𝑪𝑺(𝒄)[𝒎]SectionReferences9.2.1,9.2.1.1CommentsCumulativecarbonstocksinprojectareaatendofmonitoringperiod.𝐸𝑃𝛥𝐶𝑆[𝑚]=𝐶𝑃𝐶𝑆[𝑚]−𝐶𝑃𝐶𝑆[𝑚−1]−0.131𝐸𝑃𝛥𝐶𝐻4[𝑚][G.8]Variables𝐸𝑃𝛥𝐶𝑆[𝑚],𝑪𝑷𝑪𝑺[𝒎],𝑪𝑷𝑪𝑺[𝒎−𝟏],𝑬𝑷𝜟𝑪𝑯𝟒[𝒎],SectionReferences8.2.1CommentsTotalcarbonstockemissionsoremissionsreductionsand/orremovalsintheprojectareaforthemonitoringperiod(tCO2e).Forthefirstmonitoringperiod𝐶𝑃𝐶𝑆[𝑚−1]=𝐶𝑃𝐶𝑆[𝑚=0]orthecarbonstocksintheprojectareapriortotheprojectstartdate.Lastterminequation(0.131𝐸𝑃𝛥𝐶𝐻4[𝑚])isincludedinordertoavoiddouble-countingofsequesteredcarbonthatsubsequentlywasreleasedasamethaneflux.Thecoefficient(0.131)representsaconversionforthedifferencesinmass(44CO2=16CH4)andglobalwarmingpotential(1CO2=21CH4):1tonCO2=(44/16)(1/21)=0.131.VM0024,Version1.0SectoralScope14Page141𝐸𝑃𝛥𝐶𝑆[𝑚]=−0.131𝐸𝑃𝛥𝐶𝐻4[𝑚]+∑𝐶𝑃𝐶𝑆(𝑖)[𝑚]−𝐶𝑃𝐶𝑆(𝑖)[𝑚−1](𝑖)∈𝒢[G.9]Variables𝑬𝑷𝜟𝑪𝑯𝟒[𝒎],𝑪𝑷𝑪𝑺[𝒎−𝟏],𝑪𝑷𝑪𝑺[𝒎]𝑬𝑷𝜟𝑪𝑺[𝒎]SectionReferences8.2.1CommentsTotalcarbonstockemissionsoremissionsreductionsand/orremovalsintheprojectareaforthemonitoringperiodforprojectactivityinstancesinagroupedproject(tCO2e).Firstterminequation(0.131𝐸𝑃𝛥𝐶𝐻4[𝑚])isincludedinordertoavoiddouble-countingofsequesteredcarbonthatsubsequentlywasreleasedasamethaneflux.Thecoefficient(0.131)representsaconversionforthedifferencesinmass(44CO2=16CH4)andglobalwarmingpotential(1CO2=21CH4):1tonCO2=(44/16)(1/21)=0.131.𝐹𝑃Δ𝐶𝐻4[𝑚]=𝐴𝑃𝐴×𝑓𝑃Δ𝐶𝐻4[𝑚][G.10]Variables𝑭𝑷𝜟𝑪𝑯𝟒[𝒎],𝑨𝑷𝑨,𝒇𝑷𝚫𝑪𝑯𝟒[𝒎]𝑭𝑷𝜟𝑪𝑯𝟒[𝒎]SectionReferences8.2.2,9.3.2.3CommentsMethaneemissionsfluxwithinprojectarea(tCO2e/day).VM0024,Version1.0SectoralScope14Page142𝐸𝑃Δ𝐶𝐻4[𝑚]=−(𝑡[𝑚]−𝑡[𝑚−1])𝐹𝑃Δ𝐶𝐻4[𝑚][G.11]Variables𝑬𝑷𝜟𝑪𝑯𝟒[𝒎],𝒕[𝒎],𝒕[𝒎−𝟏],𝑭𝑷𝜟𝑪𝑯𝟒[𝒎]SectionReferences8.2.2,9.2.2,9.2.2.1CommentsTotalmethaneemissionsinprojectareaovermonitoringperiod(tCO2e).𝐹𝑃Δ𝑁2𝑂[𝑚]=𝐴𝑃𝐴×𝑓𝑃Δ𝑁2𝑂[𝑚][G.12]Variables𝑭𝑷𝜟𝑵𝟐𝑶[𝒎],𝑨𝑷𝑨,𝒇𝑷𝚫𝑵𝟐𝑶[𝒎]SectionReferences9.3.3.3CommentsNitrousoxideemissionsfluxwithinprojectarea(tCO2e/day).𝐸𝑃Δ𝑁2𝑂[𝑚]=−(𝑡[𝑚]−𝑡[𝑚−1])𝐹𝑃Δ𝑁2𝑂[𝑚][G.13]Variables𝑬𝑷𝜟𝑵𝟐𝑶[𝒎],𝒕[𝒎],𝒕[𝒎−𝟏],𝑭𝑷𝜟𝑵𝟐𝑶[𝒎]SectionReferences8.2.3,9.2.3,9.2.3.1CommentsTotalnitrousoxideemissionsinprojectareaovermonitoringperiod(tCO2e).VM0024,Version1.0SectoralScope14Page143𝐸𝑃Δ𝐸𝐶[𝑚]=−∑𝐺𝑃Δ(𝑡𝑦)[𝑚]𝑒(𝑡𝑦)(𝑡𝑦)∈𝒯𝑃𝐸𝐶[G.14]Variables𝑬𝑷𝚫𝑬𝑪[𝒎],𝑮𝑷𝚫(𝒕𝒚)[𝒎],e(ty)SectionReferences8.2.4CommentsTotalemissionsfromenergyconsumptioninprojectareaovermonitoringperiod(tCO2e).𝐸𝑃Δ[𝑚]=𝐸𝑃𝛥𝐶𝑆[𝑚]+𝐸𝑃𝛥𝐶𝐻4[𝑚]+𝐸𝑃𝛥𝑁2𝑂[𝑚]+𝐸𝑃Δ𝐸𝐶[𝑚][G.15]Variables𝑬𝑷𝚫[𝒎],𝑬𝑷𝜟𝑪𝑺[𝒎],𝑬𝑷𝜟𝑵𝟐𝑶[𝒎],𝑬𝑷𝜟𝑪𝑯𝟒[𝒎],𝑬𝑷𝚫𝑬𝑪[𝒎]SectionReferences8.2CommentsTotalemissionsoremissionsreductionsand/orremovalsinprojectareaovermonitoringperiod(tCO2e).𝐸𝐺𝐸𝑅Δ[𝑚]=𝐸𝑃Δ[𝑚]−𝐸𝐵Δ[𝑚][G.16]Variables𝑬𝑮𝑬𝑹𝚫[𝒎],𝑬𝑩𝚫[𝒎],𝑬𝑷𝚫[𝒎]SectionReferences8.4.1CommentsTotalgrossemissionsreductionsand/orremovalsovermonitoringperiod(tCO2e).VM0024,Version1.0SectoralScope14Page144𝐸𝐺𝐸𝑅[𝑚]=∑𝐸𝐺𝐸𝑅Δ[𝑚]𝑚∈ℳ[G.17]Variables𝑬𝑮𝑬𝑹[𝒎],𝑬𝑮𝑬𝑹𝚫[𝒎]𝑬𝑮𝑬𝑹𝚫[𝒎]SectionReferences8.4.1.1CommentsCumulativegrossemissionsreductionsand/orremovalsovermonitoringperiod(tCO2e).𝑈𝑃𝐶𝑆[𝑚]=√∑(𝑈𝑃𝐶𝑆(𝑐)[𝑚])2(𝑐)∈𝒞[G.18]Variables𝑼𝑷𝑪𝑺[𝒎],𝑼𝑷𝑪𝑺(𝒄)[𝒎]SectionReferences8.4.2.1CommentsTotalstandarderrorofcarbonstocksovermonitoringperiod(tCO2e).𝐸𝑈Δ[𝑚]=𝐸𝐺𝐸𝑅Δ[𝑚][1.645×𝑈𝑃𝐶𝑆[𝑚]𝐶𝑃𝐶𝑆[𝑚]−0.15][G.19]Variables𝑬𝑼𝚫[𝒎],𝑬𝑮𝑬𝑹𝚫[𝒎],𝑼𝑷𝑪𝑺[𝒎],𝑪𝑷𝑪𝑺[𝒎]SectionReferences8.4.2.1CommentsConfidencedeductionformonitoringperiod(tCO2e).Thisquantitymustbegreaterthanorequaltozero.VM0024,Version1.0SectoralScope14Page145𝐸𝐵𝐴Δ[𝑚]=𝑏[𝑚]𝐸𝑃ΔCS[𝑚][G.20]Variables𝑬𝑩𝑨𝚫[𝒎],𝒃[𝒎],𝑬𝑷𝜟𝑪𝑺[𝒎]SectionReferences8.4.2.2CommentsTotalemissionsreductionsand/orremovalsallocatedtoAFOLUpooledbufferaccountovermonitoringperiod.𝐸𝑁𝐸𝑅Δ[𝑚]=𝐸𝐺𝐸𝑅Δ[𝑚]−𝐸𝑈Δ[𝑚]−𝐸𝐵𝐴Δ[𝑚]+𝐸𝐵𝑅Δ[𝑚][G.21]Variables𝑬𝑵𝑬𝑹𝚫[𝒎],𝑬𝑮𝑬𝑹𝚫[𝒎],𝑬𝑼𝚫[𝒎],𝑬𝑩𝑨𝚫[𝒎],𝑬𝑩𝑹𝚫[𝒎]SectionReferences8.4.2CommentsTotalnetemissionsreductionsand/orremovalsovermonitoringperiod(tCO2e).VM0024,Version1.0SectoralScope14Page146APPENDIXH:SUPPORTINGINFORMATIONONDEVELOPMENTOFPOSITIVELISTThemethodologyspecifiesapositivelistforadditionalitybasedonactivitypenetrationinspecificgeographicscopes.Thelevelofactivitypenetrationforaprojectactivityinagivengeographicregionisdeterminedusingappropriatecredibledata,includingfromfederalagencies(eg,USACE,USGS,USFWS).Inordertodefinetheactivityandgeographicscopeforthepositivelist,themethodologydeveloperdemonstratedboththemaximumadoptionpotentialandtheobservedadoptionoftheprojectactivity(eg,thenumberandextentoftheactivitywhichhasbeenimplemented).ThecalculatedlevelofactivitypenetrationofRWEprojectactivitiesiscurrentlydeterminedtobelessthan5percentandthelevelofactivitypenetrationofARR+RWEprojectactivitiesmeetingtheapplicabilityconditionsofthismethodologyisnegligible.Themaximumadoptionpotentialtakesintoaccounttherelevantfactorsaffectingtheadoptionoftheactivitywithintheapplicablegeographicscope,includingimplementationpotential(ie,theextentofwetlandlosswithinthegeographicscope),resourceavailability(ie,thelocalsupplyofdredgedsediments),technologicalcapacity(ie,theamountoflocallyavailabledredgingequipment),levelofservice(ie,theavailabilityofdredgingequipment),socio-economicconditions(ie,thepresenceofcompetingeconomicactivitiesoccurringinthecoastalzone),andclimaticconditions(ie,theincidenceofhurricanesandextremetidalfluctuations).Inthecaseofsocio-economicconditionsandcompetingeconomicactivities(eg,oysterfarming),themethodologydevelopersconcludedthatsuchcompetingactivitiesarenotcommonenoughtolimitordisplacecoastalwetlandreestablishmentactivities,andmoreoversucheconomicactivitiesdonotvarysignificantlyamongregionswithinthegeographicscope.Themethodologydevelopersalsoconsideredthespatialheterogeneityofclimateconditionsacrossthegeographicscope,andconcludedthatregardlessofthelikelihoodofsuchextremeclimateevents,theprojectproponentmustdemonstratealong-termtrendofwetlandloss(seesection6.1).Further,onceaprojecthasbeenestablished,themethodologyensuresthattheimpactsofaclimateeventwillbecapturedbythemonitoringactivitiesandwillbereflectedinthecarbonaccounting.Maximumadoptionpotentialdoesnotconsidercostofadoption,culturalorbehavioralbarriers,andlaws,statues,regulatoryframeworksorpolicies.H.1SynopsisThismethodologydeemsprojectactivitiesasadditional,andqualifiesthemforapositivelistbasedonlowratesofadoptionintheUnitedStates.Thetotalneedoradoptionpotentialforcoastalwetlandcreationisconservatively1.482millionac,basedonhistoriclossinthelower48statessincethe1930’s(Figure1).Approximately2.7%(39,834)acofthetotalcoastalwetlandslostintheU.S.hasbeenrebuilt.Therefore,creationofwetlandsasdescribedinthismethodology,forbothRWEandARR+RWEprojects,isdeemedadditionalinaccordancewithVCSrequirements.VM0024,Version1.0SectoralScope14Page147Figure1:EstimatesofestuarinevegetatedwetlandintheU.S.andcoastallandareainLouisianaThefollowingsections—AnalysisandSupportingTechnicalInformation—presenttheadoptionpotentialanalysisandsummariesofnationalandregion-specificwetlandchangesandcreationefforts.H.2AnalysisThisanalysisdemonstratesthatthelevelof“activitypenetration”forcreationofcoastalwetlandsiscurrentlymuchlessthan5%.Substantialneedsexistforrebuildingofwetlandslostduetovariousdirectandindirectanthropogenicfactors.However,duetofundingconstraintsonlyasmallfractionoftheneedhasbeensatisfiedasofthecompletionofthismethodology.VM0024,Version1.0SectoralScope14Page148Thepositivelistforactivitiesestablishedunderthismethodologyisbasedonademonstrationthattheprojectactivitieshaveachievedalowlevelofpenetrationrelativetotheirmaximumadoptionpotential,inaccordancewithVCSrequirements.Thisactivitypenetrationlevelisestimatedusingthefollowingequation:APy=OAy/MAPyWhere,APy=Activitypenetrationoftheprojectactivityinyeary(percentage)OAy=Observedadoptionoftheprojectactivityinyeary(eg,totalnumberofinstancesinstalledatagivendateinyeary,oramountofenergysuppliedinyeary)MAPy=Maximumadoptionpotentialoftheprojectactivityinyeary(eg,totalnumberofinstancesthatpotentiallycouldhavebeeninstalledatagivendateinyeary,ortheamountofenergythatpotentiallycouldhavebeensuppliedinyeary)Thefollowinganalysisestimatespenetrationlevel,currentasof2012,fortheconterminousUnitedStates.SinceakeylocationforapplicationofthismethodologyisLouisiana,itwillalsobedemonstratedusingstate-specificdata.Givenadequatetimeandfunding,adequatesuppliesofsedimentforwetlandareavailable,eitherfromriversornearshore/offshorelocationswheretheyareroutinelydredged.Resourceavailabilityisnotaconstraint.Asanecosystemrestorationactivity,totaldemand,marketaccess,andmarketpricearenotrelevantfactorsinthisanalysis.Implementationpotentialistheneedforwetlandrestorationandisthereforeconsideredequaltomaximumadoptionpotential.Inordertoarriveataconservativeestimateforthemaximumadoptionpotential,datafromtwostudiesareused.Thefirst(Couvillionetal.2012)providesdatafromLouisianaonlyandindicatesthattotalcoastalwetlandlossinLouisianaamountedto1,205,120ac.Thisstudyprovidesacomprehensiveanddetailedestimateofwetlandloss,includingbothcoastalfreshandsaltwaterwetlands.Thesecondisanationallevelstudy(Dahl2000,2006,2011)thatestimatestotalU.S.wetlandlossof461,000ac,butincludesonlyestuarinevegetatedwetlands,thusexcludingthelossesoftidalfreshwaterwetlands.BecausecoastalLouisianalossiscommonlyacceptedtobe40%ofthenationaltotal,thenationalvegetatedestuarinewetlandlossexcludingLouisianawasestimatedat276,000ac.Addinginthelong-termhistoricwetlandlossinLouisianaof1,205,120acwiththeless-comprehensivenationalestimateof276,000acyields1,481,720ac.Thetwostudiesusedtoderivethemaximumadoptionpotentialaredescribedinmoredetailbelow.BasedonUSGSdata(Couvillionetal.2012),approximately1.205millionacresofLouisiana’scoastalwetlandshavebeenlostandconvertedtoopenwatersincethe1930’s.Louisiana’sCoastalProtectionandRestorationAuthority(CPRA)hastrackedengineeredwetlandcreationprojectsbytheState,inadditiontoUSACEbeneficialuseprojects.CPRAestimatesthatapproximately16,137acreshavebeencreatedsince2005,includingboththeState’sprojectsandUSACEbeneficialuseprojects(TableH3,SupportingTechnicalInformation).Therefore,thecurrentlevelofactivitypenetrationinLouisianaisapproximately1.3%(16,137accreated/1,205,000aclost).VM0024,Version1.0SectoralScope14Page149Atanationalscale,theU.S.Fish&WildlifeServiceStatus&Trendsreports(Dahl2000,2006,2011)estimatethat461,000acresofvegetatedestuarinewetlandshavebeenlostsincethe1950s(TableH2,SupportingTechnicalInformation).Thisestimateexcludesthelossesoftidalfreshwaterwetlands,whichresultsinaconservative(underestimate)oftotaltidalandestuarinewetlandloss(tidalfreshwaterwetlandsarenowreportedas‘Palustrine,’whichtypicallyincludesallinlandfreshwatersystems).Forexample,amoredetailedanalysisbyStedmanandDahl(2008)showedthatthecoastalwatershedsoftheGulfofMexicoandtheAtlanticstateslostatotalof370,760acand14,980ac,respectively,offreshwaterandsaltwaterwetlands.GiventhattotalcoastalwetlandcreationasdescribedinSectionH.3.5was39,834acandthemaximumadoptionpotentialis1,481,720ac,theresultingactivitypenetrationlevelisapproximately2.7%.Withobservedadoptionlessthantheneedforreplacementofwetlands,adoptionpotentialisbelowthe5%thresholdsetbyVCSrequirements.Therefore,coastalwetlandcreationprojectsaredeemedadditional.H.3SupportingTechnicalInformationH.3.1EstuarineVegetatedWetlandLossintheUnitedStatesEstuarinevegetatedwetlandlossintheUnitedStatessincethe1950’sto2009hasbeenestimatedatapproximately461,000ac(TableH1).Basedonthemostrecentanalysisfrom2004-2009(Dahl2011),approximately111,000acofestuarinevegetatedwetlandswerelostoverthe4.5yearperiod,orapproximately25,000ac/yr.Wetlandlosspriortothe1980’smayhaveincludeddirectconversionofwetlandstoagricultureandcoastaldevelopment.Sincethe1980’s,however,conversionofwetlandstodeepopenwaterhasbeenresponsibleforwetlandlosses,asexcerptedfromDahl’sanalyses:“[The1998-2004rateofloss]wasconsistentwiththerateofsaltmarshlossrecordedfrom1986to1997(Dahl2000).Urbanandruraldevelopmentactivities,andtheconversionofwetlandstootheruplandlanduses,accountedforanestimatedlossof1,732acres(700ha)orabout3.0percentofalllossesofestuarineemergentwetland.MostofthelossesofestuarineemergentwetlandwereduetolosstodeepsaltwaterandoccurredincoastalLouisiana.”(Dahl2006)“[The2004-2009rateofloss]ofintertidalemergentwetlandincreasedtothreetimesthepreviouslossratebetween1998and2004.Themajorityoftheselosses(83%)wastodeepwaterbaybottomsoropenocean.”H.3.2VegetatedWetlandLossinCoastalWatershedsintheAtlanticandGulfofMexicoAnanalysisofcoastalwatershedvegetatedwetlandchangesintheeasternUnitedStates(1998-2004)(StedmanandDahl2008)showedthattheGulfofMexicoandAtlanticstateshadnetwetlandlossesincoastalwatershedstotaling370,760acand14,980ac,respectively,whenincludingbothfreshandVM0024,Version1.0SectoralScope14Page150saltwaterwetlands.Totalsaltwatervegetatedwetlandlosswas64,970ac,ofwhich96%(or62,370ac)wasconversiontoopensaltwater.TableH1:Historicandcontemporaryestimatesofestuarinevegetatedwetlandacreagesincethemid-1950’sfortheUnitedStatesandAtlantic/GulfofMexicoregionsbasedonsimilarmappingtechniquesTimeperiodConterminousUSEstuarinevegetatedwetland(ac)(Dahl2006,Dahl2011)AtlanticCoastalWatershedVegetatedwetland(ac)(StedmanandDahl2008)GOMCoastalWatershedVegetatedwetland(ac)(StedmanandDahl2008)1950’s5,000,0001970’s4,854,0001980’s4,623,00019984,604,2001,842,3203,108,11020044,571,7001,822,7803,062,68020094,539,700NotesUSwetlandloss(1950’s-2009)461,000acAtlanticwetlandloss(98-04)19,540acGOMwetlandloss(98-04)45,430acH.3.3WetlandLossinLouisianaThemostrecentstudybyCouvillionetal.(2012)summarizedwetlandlossduring1932-2010andintervalsinbetween.CumulativewetlandlossinLouisianafrom1932-2010wasestimatedat1,205,120ac.Trendanalysesofcomparablesatelliteimagerywerelimitedtothe1985-20104timeperiod,whichshowedalossrateof10,605ac/yr.H.3.4ProportionofCoastalWetlandLossinLouisianaComparedtotheU.S.Basedonanumberofanalyses,Louisianawetlandlosshasbeencommonlyacceptedtobe40%ofthenationaltotal.ThisissupportedbytherecentanalysesbyCouvillionetal.(2012)andDahl(2011),whichshowedthattheannuallossrateinLouisiana(-10,605ac/yr,from1985-2010)was42%ofthenationalrate(-25,000ac/yr2004-2009).4ThecalculationofwetlandlossratesinLouisianaissensitivetowaterlevelduringimageryacquisition.Morerecentandfrequentsatelliteimageryhasallowedforalargenumberofimagestobeanalyzedandreduceduncertainty.VM0024,Version1.0SectoralScope14Page151H.3.5WetlandCreationintheUnitedStatesandLouisianaThemostsignificantnationwidewetlandcreationefforthasbeenaccomplishedwithbeneficialplacementofdredgedsedimentsbytheUSACE(TableH2).Morerecently,astatewetlandcreationprogramhasbeendevelopedinLouisianabytheCoastalProtectionandRestorationAuthority(CPRA)(TableH3).IncludingLouisiana,marshcreationandnourishmentbytheUSACEhastotaledapproximately32,355acfrom2007-2012(TableH2).Thereareseveralreasonswhythesedataproduceaconservativeoverestimateofactualwetlandcreation.First,theUSACEpresentsbothwetland‘creation’and‘nourishment’together.Second,thereare11non-coastaldistrictswhichareincludedinthestatisticspresentedinTableH2(althoughthenon-coastaldistrictscompriseonly5percentofthetotaldredgingconductedbytheUSACE).Third,theassumedconversionvalueof1ac=6,250CYmaybelowforsomeareas.Forexample,theactualCYofsedimentneededforanacreofwetlandcreationrangesfromapproximately6,000CYto16,000CY(calculatedfromdatainTableH3).InLouisiana,engineeredwetlandcreationprojectshavebeentrackedmorepreciselythanUSACEnationwideprojects.BasedonCPRA’sdataset,approximately7,479acofwetlandshavebeencreatedinLouisianaduringFY2005-2012TableH3),notincludingtheUSACE’sbeneficialuseprojects(whichareincludedinTableH2).Combiningbothdatasetsresultsinanestimateof39,834ac(nationwideUSACE=32,355ac;Louisianastateprojects=7,479ac)ofwetlandcreationandnourishmentthathasoccurrednationwidethrougheffortsoftheUSACEandtheStateofLouisiana,whichcomprisethemostsignificantsourcesofwetlandcreationwithdredgedmaterial.TableH2:EstimatednationwideUSACEwetlandcreationandnourishmentfrombothcoastalandnon-coastalareasoftheU.S.AcreageestimatesarederivedfromdredgedisposalstatisticsfromtheUSACENavigationDataCenter:http://www.navigationdatacenter.us/dredge/drgdisp.htm(DisposalType=WetlandCreationandNourishment).Formoreinformation,contactU.S.ArmyCorpsofEngineers,CEIWR-NDC,7701TelegraphRoad,CaseyBldg.,Alexandria,Virginia22315-3868,pointofcontact:NDC(703)428-9061.YearContractsCubicYards(Bid)Dollars(Bid)EstimatedAcres52007938,075,031$69,878,7226,0922008949,108,000$55,467,6947,8575Assumesthat6,250CYofsedimentisneededtocreateoneacreofwetland,basedonUSACE,2006,LouisianaCoastalAreaBeneficialUseofDredgeMaterial:http://www.lca.gov/Studies/budmat.aspx.VM0024,Version1.0SectoralScope14Page1522009725,582,361$56,902,2374,0932010937,481,966$107,437,1925,9972011617,705,385$28,221,4542,8332012834,263,868$94,759,2775,482EstimatedTotal32,355acTableH3:WetlandcreationacreageconstructedinLouisianaduringFY2005-2012byCPRAandUSACE(datacourtesyofCPRA)Louisiana(Federal/State/Other)Louisiana(USACEBeneficialUse)TotalYearCYACCYACAC2004-2005244,4412614,686,7905155412005-2006009,286,1706046042006-20076,099,37292016,018,3501,2282,1482007-20081,593,6292628,726,6255227842008-200911,653,1481,3508,134,8492481,5982009-201021,303,0003,48319,613,3741,5915,0742010-20116,300,0009427,325,0002,5142,6082011-201216,764,5601,34415,125,0001,4372,781Total63,958,1507,479118,916,1588,65816,137H.4ReferencesCouvillion,B.R.;Barras,J.A.;Steyer,G.D.;Sleavin,William;Fischer,Michelle;Beck,Holly;Trahan,Nadine;Griffin,Brad;andHeckman,David,2011,LandareachangeincoastalLouisianafrom1932to2010:U.S.VM0024,Version1.0SectoralScope14Page153GeologicalSurveyScientificInvestigationsMap3164,scale1:265,000,12p.pamphlet.Dahl,T.E.2011.StatusandtrendsofwetlandsintheconterminousUnitedStates2004to2009.U.S.DepartmentoftheInterior;FishandWildlifeService,Washington,D.C.108pp.Dahl,T.E.2006.StatusandtrendsofwetlandsintheconterminousUnitedStates1998to2004.U.S.DepartmentoftheInterior,FishandWildlifeService,Washington,D.C.112pp.Dahl,T.E.2000.StatusandtrendsofwetlandsinconterminousUnitedStates1986to1997.U.S.DepartmentoftheInterior,FishandWildlifeService,Washington,D.C.82p.Stedman,S.andT.E.Dahl.2008.StatusandtrendsofwetlandsinthecoastalwatershedsoftheEasternUnitedStates1998to2004.NationalOceanicandAtmosphericAdministration,NationalMarineFisheriesServiceandU.S.DepartmentoftheInterior,FishandWildlifeService.USACE.2006.LouisianaCoastalAreaBeneficialUseofDredgeMaterial.http://www.lca.gov/Studies/budmat.aspxVM0024,Version1.0SectoralScope14Page154APPENDIXI:JUSTIFICATIONFORTHEEXCLUSIONOFALLOCHTHONOUSCARBONINTHELOUISIANACOASTALZONEI.1IntroductionManyestuarinewetlandsareexportersorsourcesofcarbontothecontinentalshelf,typicallytermed‘carbonoutwelling’.Netburialofcarbonintidalwetlandsoilsisusuallyontheorderof<200gC/m2/yr(McLeodetal.2011),whileanexcessof100-200gC/m2/yrofcarbonisexportedtoinshoreandoffshoreareas(Nixon1980;alsoseeTable1).Thesource,transportandfateofcarbonalongtheestuary-offshoregradientarecomplicatedprocesses,butlargely,estuarinewetlandsystemsaretypicallyunderstoodascarbonsourcestoestuarine-offshoresystems.Highenergy,macrotidalsaltmarshesmayreceivesubstantialmineralsediments(andassociatedcarbon)nearthemouthoftheestuary.Thesourceofcarbonmaycomefromuplandhabitats,whichmaybereplenished,orwithintheestuarinesystemaswetlandsareerodedorreworked.Stevensonetal.(1988)raisedtheconsiderationofsealevelriseandsedimentsupplyastowhyestuaries—especiallysouthernmicrotidalsystems—aresusceptibletowetlandloss.Inadditiontosealevelrise,theauthorsmaintainthatsedimentstarvationthroughreductionsinterrigenoussedimentsourcesisakeyfactorofundernourishmentofwetlands:FromStevensonetal.1988:Differencesintidaldynamics,seasonalchangesinsealevelsandhighertemperaturesmayhelpexplainwhy,intheU.S.,southernmarshesaremoresusceptibletoexportandeventualerosionthannorthernmarshes.Wehypothesizethatanotherfactor,therecentreductionsofterrigenoussedimentinputsfromthesouthernriversystemsoftheU.S.,mayalsobecritical.Sedimentstarvationmayhaveledtoundernourishmentofwetlandsystemsofthecoastalzoneoverthelasthalfcenturywhichmaybereflectedinthenetexportmeasuredinthetidalmarshesinthisregion.Furthermore,wepostulatethatchangesinsedimentinputsaremoreimportantthaneustaticsealevelriseincausingthepastlossesofmarsheswhicharenowundergoingmasserosion.Therehasbeenasystemicreductioninsedimentdeliverytocoastalwetlandsnationwideduetochangesinland-use(Europeansettlementandlandclearing)andexpansionofdambuildingonmajorrivers(Syvitskietal.2009).TheChesapeakeBayareaandLouisianadeltaserveasexamplesoftheobservedmodernsediment-drivendegradationofwetlandstoopenwater(Kirwanetal.2011).I.2SupportfromtheLiteratureTheliteraturefromcoastalLouisianabroadlysupportstheunderstandingthatitswetlandsaresourcesofcarbontotheGulfofMexico(seeestimatesinTableI.1).Moreover,inthelastcenturytherehasbeenasystematicreductioninallochthonousmineralsediment(withitsassociatedcarbon)tothewetlandsduetoconstructionofleveesalongtheMississippiRiver(BlumandRoberts2009).Asaconsequence,theestuariesarenotreceivingsubstantialexternalsourcesofsedimentsorcarbon.ThefollowingsummaryprovidesadescriptiononcarbonexchangeinLouisianaestuariesandprovidestherationaleastowhyVM0024,Version1.0SectoralScope14Page155accountingfortheimportofcarbontocreatedwetlandsprojectsisnotrelevantforthecoastalregionofLouisiana.Namely,thereisanabsenceofrealexternalsourcesofcarbontothecoastalbasins,mostofthecarbonisexchangedamonghabitatsinthecoastalbasins,andanyimportofcarbonintheprojectareawillbesubstantiallyoffsetbythecarbonthattheprojectwillexport.1.ExportofCarbonfromLouisianaEstuaries:Louisianaestuariesareebb-dominatedsystemsexhibitingaconsistentpatternofexportingofParticulateOrganicCarbon(POC)andTotalOrganicCarbon(TOC)totheGulfofMexico.ThishasbeenshownformostoftheLouisianacoastalareas,including:BaratariaBasin(Lietal.2011;Dasetal.2010,2011;WilsonandAllison2008;Feijteletal.1985;Happetal.1977),BretonSound(WilsonandAllison2008),andFourleagueBay(Sternetal.1991;Maddenetal.,1988;Perezetal.2000).WilsonandAllison(2008)estimatedthatBaratariaandBretonSoundestuariesexport3.7x104and4.6x104MTPOCannually,respectively,andthemagnitudeoftheseestimateswascorroboratedbyDasetal.2011.ThemagnitudeofDissolvedOrganicCarbon(DOC)thatisexportedissixfoldgreaterthanparticulateforms(Dasetal.2011).2.ExternalSedimentSupplyConstraintstoLouisianaWetlands:AnallochthonoussedimentdeficittoLouisianacoastalwetlandsoccurredfollowingtheleveeconstructionalongtheMississippiRiverandpersiststoday(BlumandRoberts2009).InareviewpaperofmineralandorganiccontributionstotidalfreshwaterwetlandaccretionfromMainetoLouisiana,Neubauer(2008)showedthatLouisianafreshwaterwetlandsexhibitedthelowestmineralaccumulationrates.MuchofthecontemporarysedimentdepositioninLouisianawetlandsisaresultoftheredistributionofsedimentandorganicmatterwithinthesystem.Organicmatter(orcarbon)cancomefromupperbasinwetlandsandbedepositedindownstreamprojectareas,ormayarriveattheprojectsitefromlowerinthebasinwithstormsandfronts(Reed1989).Inanycase,thesourceofthecarboncomesfromeitherthenaturalexportofsurroundinghealthywetlandsorfromshorelineerosion.DeLauneetal.(2013)describedoneexampleofhownon-restoredwetlanderosioncanserveasasourceofsedimentsthataretransportedthroughtheestuary:“asmarshesdegradeanderode,thereisalossofmaterialthroughnettransportofmineralandorganicmatterthroughtidalinletstothecoastalocean(Lietal2009,2011).Thetranslocationoforganicandmineralmaterialfromthemarshtothecoastalwatersfurtherexacerbatescoastallandloss.”3.CarbonQuality,Storage,andAvertingEmissions:Dasetal.(2011)proposedthat“thefateofcarbonfromerodedwetlandsremainsincompletelyknown”butevidencefromtheirstudyaswellasanotherrecentstudy(WilsonandAllison,2008)“potentiallysuggestthatabout40%ofPOCreleasedfromerodingmarshesisexportedtothecoastalGulfofMexico”.Thus,organicmatterstorageisoccurringwithintheestuary’swetlandsandbays.Whilethefateandtransformationoforganicmatterfrominteriorwetlandstotheoffshoreenvironmentisn’tentirelycertain,thereisreasonableevidencethatthesourceofallochthonouscarbontoaprojectareainLouisianawillbesimilarinqualitytothatwhichwillbereleasedfromtheprojectarea(WilsonandAllison,2008).Thatis,thesourceofcarbonislargelyderivedwithinthesystem.ThereisalsoincreasingVM0024,Version1.0SectoralScope14Page156evidencethatMississippiRiverwater,whichcouldenterfromthemouthofadjacentestuariesinLouisiana,hasahigherfractionoflabilecarbonthanpreviouslyassumed(Mayeretal.2008).Thedesignandlocationofwetlandcreationprojectsofferbenefitsintheformofcapturingorganicsedimentsthatcouldotherwisebelostoffshoreorpotentiallyoxidizedinshallowbaywaters.Thedecayoforganicmatterintheemergentwetlandenvironmentisslowerthantheestuarineopenwatersettingduetothepresenceofanaerobicconditions,acidicporewater,andthepresenceofdecayinhibitors(secondarymetaboliccompoundsorhumicacids)(Bianchietal.2011).Alongtheterrestrialtomarinegradient,thelikelihoodofemissionswithorganicmatterdecayisincreasedasexposureorresidencetimeunderoxicconditionsisprolonged,aprocesstermed‘diageneticoxygenexposuretime’(Bianchietal.2011).Thecombinationofphysicalenergy,photo-degradation,oxygenexposure,andstrongionicgradientscanacceleratethecarbondecayprocessalongtheestuarine-offshoregradient.Thus,undertheprojectcondition,allochthonouscarbonhasagreaterlikelihoodofpreservationinthewetlandsystem.Insummary,forCoastalLouisiana,itcanbeconservativelyassumedthattransportoforganicmatterwillnotcausecarbonaccretionestimatestobesignificantlyoverestimated,andthusallochthonouscarbonmaybeneglected.TableI.1:Summaryofcarbonexportfromestuaries,withspecialconsiderationofLouisianaestuariesLocationCarbonExport6HabitatTypeSourceReviewofestuaries100-200SaltmarshesNixon1980BaratariaBay,LA165Forestedupland-estuaryinterfaceHopkinsonandDay1979BaratariaBay,LA150-250EntireestuaryFeijteletal.1985BaratariaBay,LA25-540(150)7EntireestuaryHappetal.1977BaratariaBay,LA57EstuaryopenwaterareaDasetal.2010I.3LiteratureCitedBianchi,T.andJ.E.Bauer.2011.ParticulateOrganicCarbonCyclingandTransformation.TreatiseonEstuarineandCoastalScience,Vol.5,69-117,DOI:10.1016/B978-0-12-374711-2.00503-9Blum,M.D.andH.H.Roberts.2009.DrowningoftheMississippiDeltaduetoinsufficientsedimentsupplyandglobalsea-levelrise.NatureGeoscience2:488-491.6Units:gCm-2yr-17Consideringthemagnitudeoferrorsinvolvedintheassumptionsuponwhichthecalculationswerebased,thestudyreportedanorganiccarbonexportof25to540gCm-2yr-1toinshorewaters,withthemostprobablevaluearound150gCm-2yr-1.VM0024,Version1.0SectoralScope14Page157Das,A.,D.Justic,andE.Swenson.2010.Modelingestuarine-shelfexchangesinadeltaicestuary:Implicationsforcoastalcarbonbudgetsandhypoxia.EcologicalModelling221:978-985Das,A.,D.Justic,E.Swenson,R.E.Turner,M.Inoue,andD.Park.2011.Coastallandlossandhypoxia:the‘outwelling’hypothesisrevisited.EnvironmentalResearchLetters6:1-9DeLaune,R.D.,M.Kongchum,J.R.White,andA.Jugsujinda.2013.Freshwaterdiversionsasanecosystemmanagementtollformaintainsoilorganicmatteraccretionincoastalmarshes.Catena,http://dx.doi.org/10.1016/j.catena.2013.02.012.Feijtel,T.C.,R.D.DeLaune,andW.H.Patrick.1985.CarbonflowincoastalLouisiana.MarineEcologyProgressSeries24:255-260.Happ,G.,J.G.GosselinkandJ.W.Day,Jr1977.TheseasonaldistributionoforganiccarboninaLouisianaestuary.EstuarineandCoastalMarineScience5:695-705Hopkinson,C.S.,Day,J.W.,Jr.(1979).Aquaticproductivityandwaterqualityattheupland-estuaryinterfaceinBaratariaBasin,Louisiana.In:Livingston,R.(ed.)Ecologicalprocessesincoastalandmarinesystems.PlenumPress,NewYork,p.291-314Kirwan,M.L.,A.B.Murray,J.P.Donnelly,andD.R.Corbett.2011.RapidwetlandexpansionduringEuropeansettlementanditsimplicationformarshsurvivalundermodernsedimentdeliveryrates.Geology39:507–510;doi:10.1130/G31789.1;Li,C.Y.,J.R.White,C.Chen,H.Lin,E.Weeks,K.Galcan,S.Bargu.2011.SummertimetidalflushingofBaratariaBay:transportsofwaterandsuspendedsediments.JournalofGeophysicalResearchOceans:116,C04009.http://dx.doi.org/10.1029/2010JC006566.Madden,C.J.J.W.DayandJ.M.Randall.1988.FreshwaterandmarinecouplinginestuariesoftheMississippiRiverdeltaicplain.LimnologyandOceanography33:982-1004.Mayer,L.M.,L.L.Schick,andM.A.Allison.2008.InputofnutritionallyrichorganicmatterfromtheMississippiRivertotheLouisianaCoastalZone.EstuariesandCoasts31:1052-1062.McLeod,E.,G.L.Chmura,S.Bouillon,R.Salm,M.Björk,C.M.Duarte,C.E.Lovelock,W.H.Schlesinger,andB.R.SillimanAblueprintforbluecarbon:towardanimprovedunderstandingoftheroleofvegetatedcoastalhabitatsinsequesteringCO2.FrontiersinEcologyandtheEnvironment.doi:10.1890/110004.Neubauer,S.C.2008.Contributionsofmineralandorganiccomponentstotidalfreshwatermarshaccretion.Estuarine,CoastalandShelfScience78:78-88.Reed,D.J.1989.Patternsofsedimentdepositiontosubsidingcoastalsaltmarshes,TerrebonneBay,Louisiana:Theroleofwinterstorms.Estuaries12:222-227.Stern,M.K.,J.W.DayandK.G.Teague.1991.Nutrienttransportinariverine-influenced,tidalfreshwaterbayouinLouisiana.Estuaries14:382-394.VM0024,Version1.0SectoralScope14Page158Stevenson,J.C.,Ward,L.G.andKearney,M.S.,1988.Sedimenttransportandtrappinginmarshsystems:Implicationsoftidalfluxstudies.Mar.Geol.,80:37-59.Syvitski,J.P.Metal.2009.Sinkingdeltasduetohumanactivities.NatureGeoscience.doi:10.1038/ngeo629Wilson,C.A.andM.A.Allison.2008.AnequilibriumprofilemodelforretreatingshorelinesinsoutheastLouisiana.Estuarine,CoastalandShelfScience.80:483-494VM0024,Version1.0SectoralScope14Page159APPENDIXJ:LISTOFVARIABLESData/ParameterUnitDescriptionSourceofDataMeasurementMethodUsedinEquationsFrequencyofMonitoring/RecordingQA/QC𝑨𝑷𝑨acreAreaofprojectareaGISanalysispriortosampling[G.10],[G.12]--𝒃[𝒎]%BufferwithholdingpercentagecalculatedasrequiredbytheVCSAFOLUNon-PermanenceRiskToolVCSAFOLUNon-PermanenceRiskToolN/A[G.20]EverymonitoringperiodN/A𝑪𝑷𝑪𝑺[𝒎]tCO2eCumulativeprojectcarbonstocksatendofcurrentmonitoringperiodSamplingactivities[G.7][G.8],[G.9],[G.19]AtleasteveryfiveyearsIndependentreviewofequationsandcheckagainstliteratureestimates.SeeSection9.2.8.3𝑪𝑷𝑪𝑺[𝒎−𝟏]tCO2eCumulativeprojectcarbonatbeginningofcurrentmonitoringperiodSamplingactivities[G.7][G.8],[G.9]AtleasteveryfiveyearsIndependentreviewofequationsandcheckagainstliteratureestimates.SeeSection9.2.8.3𝑪𝑷𝑪𝑺(𝒄)[𝒎]tCO2eCumulativeprojectcarboninpoolcatendofcurrentmonitoringperiodSamplingactivitiesAppendixD[G.7]AtleasteveryfiveyearsIndependentreviewofequationsandcheckagainstliteratureestimates.SeeSection9.2.8.3VM0024,Version1.0SectoralScope14Page160Data/ParameterUnitDescriptionSourceofDataMeasurementMethodUsedinEquationsFrequencyofMonitoring/RecordingQA/QC𝒅𝑳𝑸𝑫[𝒎]kg/m3DensityofliquidindredgedsedimentMonitoringrecords,directmeasurement9.2.5[G.1]EverymonitoringperiodwhensedimentistransportedComparedatafrommultiplesamples.SeeSection9.2.8.1𝒅𝑺𝑳𝑫[𝒎]kg/m3DensityofsolidsindredgedsedimentMonitoringrecords.directmeasurement9.2.5[G.1]EverymonitoringperiodwhensedimentistransportedComparedatafrommultiplesamples.SeeSection9.2.8.1𝒅𝑷𝚫[𝒎]kg/m3DensityofsedimentdredgedfromsedimentsourceMonitoringrecords,directmeasurement9.2.5[G.2],[G.1]EverymonitoringperiodwhensedimentistransportedComparedatafrommultiplesamples.SeeSection9.2.8.1𝑬𝑩𝑨𝚫[𝒎]tCO2eEmissionsreductionsand/orremovalsallocatedtoAFOLUpooledbufferaccountovercurrentmonitoringperiodMonitoringrecords8.4.2[G.21],[G.20]EverymonitoringperiodIndependentreviewofequationsandmonitoringrecords.SeeSection9.2.8.2𝑬𝑩𝚫[𝒎]tCO2eTotalbaselineemissionsovercurrentmonitoringperiodMonitoringrecords8.1[G.6],[G.16]EverymonitoringperiodIndependentreviewofequationsandmonitoringrecords.SeeSection9.2.8.2VM0024,Version1.0SectoralScope14Page161Data/ParameterUnitDescriptionSourceofDataMeasurementMethodUsedinEquationsFrequencyofMonitoring/RecordingQA/QC𝑬𝑩𝜟𝑪𝑯𝟒[𝒎]tCO2eTotalbaselineemissionsfrommethaneovercurrentmonitoringperiodMonitoringrecords8.1.2[G.5]EverymonitoringperiodIndependentreviewofequationsandmonitoringrecords.SeeSection9.2.8.2𝑬𝑩𝚫𝑬𝑪[𝒎]tCO2eTotalbaselineemissionsfromenergyconsumptionovercurrentmonitoringperiodMonitoringrecords8.1.1[G.6],[G.3]EverymonitoringperiodwhensedimentistransportedIndependentreviewofequationsandmonitoringrecords.SeeSection9.2.8.2𝑬𝑩𝑹𝚫[𝒎]tCO2eTotalemissionsreductionsand/orremovalsforbufferreleaseovercurrentmonitoringperiodMonitoringrecords8.4.2[G.21]EverymonitoringperiodIndependentreviewofcalculationsandmonitoringrecords.SeeSection9.2.8.2𝑬𝑮𝑬𝑹[𝒎]tCO2eCumulativegrossemissionsreductionsand/orremovalsatendofcurrentmonitoringperiodMonitoringrecords8.4.1.1[G.17]EverymonitoringperiodIndependentreviewofGERcalculations.SeeSection9.2.8.2𝑬𝑮𝑬𝑹𝚫[𝒎]tCO2eTotalgrossemissionsreductionsand/orremovalsovercurrentmonitoringperiodMonitoringrecords8.4.1,8.4.2[G.16],[G.17],[G.19],[G.20],[G.21]EverymonitoringperiodIndependentreviewofGERcalculations.SeeSection9.2.8.2𝑬𝑵𝑬𝑹𝚫[𝒎]tCO2eTotalnetemissionsreductionsand/orremovalsovercurrentmonitoringperiodMonitoringrecords8.4.2[G.21]EverymonitoringperiodIndependentreviewofNERcalculations.SeeSection9.2.8.2VM0024,Version1.0SectoralScope14Page162Data/ParameterUnitDescriptionSourceofDataMeasurementMethodUsedinEquationsFrequencyofMonitoring/RecordingQA/QC𝑬𝑷𝚫[𝒎]tCO2eTotalprojectareaemissions/emissionsremovalsovercurrentmonitoringperiodMonitoringrecords8.2[G.15],[G.16]EverymonitoringperiodIndependentreviewofcalculationsandmonitoringrecords.SeeSection9.2.8.2𝑬𝑷𝜟𝑪𝑯𝟒[𝒎]tCO2eTotalmethaneemissionsinprojectareaovercurrentmonitoringperiodMonitoringrecords8.2.2[G.15],[G.8],[G.9],[G.11]EverymonitoringperiodIndependentreviewofcalculationsandmonitoringrecords.SeeSection9.2.8.2𝑬𝑷𝜟𝑪𝑺[𝒎]tCO2eTotalcarbonstockemissionsoremissionsreductionsand/orremovalsinprojectareaovercurrentmonitoringperiodMonitoringrecords8.2.1[G.15],[G.8],[G.9],EverymonitoringperiodIndependentreviewofcalculationsandmonitoringrecords.SeeSections9.2.8.2and9.2.8.3𝑬𝑷𝚫𝑬𝑪[𝒎]tCO2eTotalemissionsfromenergyconsumptioninprojectareaovercurrentmonitoringperiodMonitoringrecords8.2.4[G.15],[G.14]EverymonitoringperiodwhensedimentistransportedIndependentreviewofcalculationsandmonitoringrecords.SeeSection9.2.8.2𝑬𝑷𝜟𝑵𝟐𝑶[𝒎]tCO2eTotalnitrousoxideemissionswithinprojectareaovercurrentmonitoringperiodMonitoringrecords8.2.3,[G.15],[G.13]EverymonitoringperiodIndependentreviewofcalculations.SeeSection9.2.8.2VM0024,Version1.0SectoralScope14Page163Data/ParameterUnitDescriptionSourceofDataMeasurementMethodUsedinEquationsFrequencyofMonitoring/RecordingQA/QC𝒆(𝒕𝒚)tCO2e/gal,tCO2e/scf,tCO2e/kWhEmissionscoefficientforenergytypetyEmissionfactorsinSection8.1.1,Table10Selectedfrompublishedvalues[G.3],[G.14]𝑬𝑼𝚫[𝒎]tCO2eConfidencedeductionforcurrentmonitoringperiodMonitoringrecords8.4.2.1[G.19],[G.21]EverymonitoringperiodIndependentreviewofcalculationsandmonitoringrecords.SeeSection9.2.8.2𝒇𝑩𝚫𝑪𝑯𝟒[𝒎]tCO2e/ac/dayBaselinemethaneemissionsfluxperunitareaMonitoringrecordsandstaticchamberoreddycovariancemeasurement9.2.7[G.5]EverymonitoringperiodComparisonofdatafrommultiplesamplesandindependentreviewofcalculations.SeeSections9.2.8.1,9.2.8.4,and9.2.8.5𝑭𝑩𝜟𝑪𝑯𝟒[𝒎]tCO2e/dayBaselinemethaneemissionsfluxMonitoringrecordsandstaticchamberoreddycovariancemeasurement9.2.7[G.5]EverymonitoringperiodComparisonofdatafrommultiplesamplesandreviewofmonitoringrecords.SeeSections9.2.8.1,9.2.8.4,and9.2.8.5VM0024,Version1.0SectoralScope14Page164Data/ParameterUnitDescriptionSourceofDataMeasurementMethodUsedinEquationsFrequencyofMonitoring/RecordingQA/QC𝒇𝑷𝚫𝑪𝑯𝟒[𝒎]tCO2e/ac/dayMethaneemissionsfluxperunitareawithinprojectareaMonitoringrecordsandstaticchamberoreddycovariancemeasurement9.2.2.3[G.10]EverymonitoringperiodComparisonofdatafrommultiplesamplesandreviewofmonitoringrecords.SeeSections9.2.8.1,9.2.8.4,and9.2.8.5𝒇𝑷𝚫𝑵𝟐𝑶[𝒎]tCO2e/ac/dayNitrousoxideemissionsfluxperunitareawithinprojectareaMonitoringrecordsandstaticchamberoreddycovariancemeasurement9.2.3.3[G.12]EverymonitoringperiodComparisonofdatafrommultiplesamplesandreviewofmonitoringrecords.SeeSections9.2.8.1,9.2.8.4,and9.2.8.5𝑭𝑷𝜟𝑪𝑯𝟒[𝒎]tCO2e/dayMethaneemissionsfluxwithinprojectareaMonitoringrecordsandstaticchamberoreddycovariancemeasurement9.2.2.3[G.11],[G.10]EverymonitoringperiodComparisonofdatafrommultiplesamplesandindependentreviewofcalculations.SeeSections9.2.8.1,9.2.8.4,and9.2.8.5VM0024,Version1.0SectoralScope14Page165Data/ParameterUnitDescriptionSourceofDataMeasurementMethodUsedinEquationsFrequencyofMonitoring/RecordingQA/QC𝑭𝑷𝜟𝑵𝟐𝑶[𝒎]tCO2e/dayNitrousoxideemissionsfluxwithinprojectMonitoringrecordsanddirectmeasurement,defaultvalues,orproxyvaluesdevelopedbytheprojectproponent9.2.3[G.13],[G.12]EverymonitoringperiodComparisonofdatafrommultiplesamplesandindependentreviewofcalculations.SeeSections9.2.8.1,9.2.8.4,and9.2.8.5𝒈𝑩(𝒕𝒚)gal/tonne,scf/tonne,kWh/tonneEnergyconsumedpermetrictonneofsedimentdredgedinthebaselineDocumentationprovidedbyproponentDirectmeasurement[G.3]--𝑮𝑷𝚫(𝒕𝒚)[𝒎]gal,scf,kWEnergyconsumedinprojectareaforenergytypetyovercurrentmonitoringperiodMonitoringrecordsanddirectmeasurementorcostapproach8.2.4[G.14]EverymonitoringperiodwhensedimentistransportedIndependentreviewofcalculationsandmonitoringrecords.SeeSections9.2.8.1and9.2.8.2𝑴𝑷𝚫[𝒎]tonnesMassofsedimentdredgedfromthesedimentsourceovercurrentmonitoringperiodMonitoringrecords8.1.1,9.2.5[G.3],[G.2]EverymonitoringperiodwhensedimentistransportedProjectverificationandindependentreviewofcalculations.SeeSection9.2.8.2VM0024,Version1.0SectoralScope14Page166Data/ParameterUnitDescriptionSourceofDataMeasurementMethodUsedinEquationsFrequencyofMonitoring/RecordingQA/QC𝒑𝑩(𝒕𝒚)proportion(unitless)ProportionofenergyforenergytypetyconsumedinthebaselinescenarioDocumentationprovidedbyproponentCalculatedfromdirectmeasurement[G.3]--𝒑𝑺𝑳𝑫[𝒎]proportion(unitless)ProportionofsolidsbyweightinthedredgedsedimentSamplingactivities,directmeasurement9.2.5[G.1]EverymonitoringperiodwhensedimentistransportedComparisonofdatafrommultiplesamplesandreviewofmonitoringrecords.SeeSections9.2.8.1and9.2.8.2𝒕[𝒎]daysElapsedtimefromprojectstartattheendofthecurrentmonitoringperiodMonitoringrecordsN/A[G.11],[G.13]EverymonitoringperiodN/A𝒕[𝒎−𝟏]daysElapsedtimefromprojectstartatthebeginningofthecurrentmonitoringperiodMonitoringrecordsN/A[G.11],[G.13]EverymonitoringperiodN/A𝑼𝑷𝑪𝑺[𝒎]tCO2eTotalstandarderrorinprojectcarbonstocksmeasuredduringthecurrentmonitoringperiodMonitoringrecordsN/A[G.19],[G.18]EverymonitoringperiodIndependentreviewofcalculationsandmonitoringrecords.SeeSection9.2.8.2VM0024,Version1.0SectoralScope14Page167Data/ParameterUnitDescriptionSourceofDataMeasurementMethodUsedinEquationsFrequencyofMonitoring/RecordingQA/QC𝑼𝑷𝑪𝑺(𝒄)[𝒎]tCO2eTotalstandarderrorinprojectcarbonstocksforpoolcmeasuredduringthecurrentmonitoringperiodMonitoringrecords[A.8][G.18]EverymonitoringperiodIndependentreviewofcalculationsandmonitoringrecords.SeeSection9.2.8.2𝑽𝑷𝚫[𝒎]m3VolumeofsedimentdredgedfromthesedimentsourceovercurrentmonitoringperiodMonitoringrecords9.2.5[G.2]EverymonitoringperiodwhensedimentistransportedIndependentreviewofcalculationsandmonitoringrecords.SeeSection9.2.8.2VM0024,Version1.0SectoralScope14Page168APPENDIXK:SUMMARYOFPROJECTDESCRIPTIONREQUIREMENTSPDR#CategoryRequirementsPDR.1ApplicabilityConditionsForeachapplicabilitycondition,credibleevidenceintheformofanalysis,documentationorthird-partyreportstosatisfythecondition.PDR.2GHGSourcesAlistoftheincludedGHGsources.PDR.3CarbonPoolsAlistoftheselectedcarbonpools.PDR.4AllochthonousCarboninSoilCarbonPoolNarrativejustificationthattheimportoforganicmatterwillnotcausecarbonaccretionestimatestobesignificantlyoverestimatedincludingcitationstocasestudies,literatureormodels.PDR.5AllochthonousCarboninSoilCarbonPoolDescriptionofthedominantsourcesofsedimentswithrespecttoexternal(ie,fluvial)inputsorinternal(withinestuaryortidalfreshwaterwetland)recycling.PDR.6AllochthonousCarboninSoilCarbonPoolProximityoftheprojectareawithrespecttodirectfluvialinputsornear-shoresedimentsources.PDR.7AllochthonousCarboninSoilCarbonPoolAnannualmassestimateofthetotalcarbonimportedorexportedfromtheestuaryortidalfreshwaterwetlandwheretheprojectislocated.PDR.8AllochthonousCarboninSoilCarbonPoolDescriptionoftheprojectareawithrespecttotidalenergy(suchasflood-orebb-dominated)ortidaldispersiveflux.PDR.9DelineatingSpatialBoundariesGIS-basedmapsoftheprojectareawith,ataminimum,thefeatureslistedabove.PDR.10DelineatingSpatialBoundariesDocumentationthattheentireprojectareais/wasopenwaterattheprojectstartdate.PDR.11DelineatingSpatialBoundariesEvidencethattheprojectareameetsthedefinitionoftidalorestuarineopenwaterwetlandswhichoncesupportedemergentwetlandvegetation.PDR.12DelineatingSpatialBoundariesEvidencethattheprojectareaiscompliantwiththemostcurrentversionoftheVCSAFOLURequirementsregardingtheclearingofnativeecosystems.PDR.13DelineatingSpatialBoundariesIfemissionsfrommethaneareincludedinthebaselinescenario,anestimateoftheaveragewaterdepthintheprojectareapriortotheimplementationofprojectactivities(seeSection6.3).PDR.14DelineatingSpatialBoundariesDocumentationthattheprojectproponenthascontrolovertheprojectareaasdescribedinmostrecentversionoftheVCSAFOLURequirements,Section3.4.PDR.15DelineatingSpatialBoundariesDocumentationoftheassessmentofeffectstohydrologicallyconnectedareasasfurtherVM0024,Version1.0SectoralScope14Page169describedinSection8.3.1.PDR.16DelineatingSpatialBoundariesDocumentationofprojectedsealevelriseinthevicinityoftheprojectarea,evidencethatexistinglandformsorconstructedfeaturesareexpectedtowithstandprojectsealevelrise,andadescriptionofthepost-constructionsoilsurfaceelevationrelativetomeansealevel.PDR.17TemporalProjectBoundariesTheprojectstartdate.PDR.18TemporalProjectBoundariesTheprojectcreditingperiodstartdateandlength.PDR.19TemporalProjectBoundariesThedatebywhichmandatorybaselinereassessmentmustoccuraftertheprojectstartdate.PDR.20TemporalProjectBoundariesAtimelineincludingthefirstanticipatedmonitoringperiodshowingwhenprojectactivitieswillbeimplemented.PDR.21TemporalProjectBoundariesAtimelineforanticipatedsubsequentmonitoringperiods.PDR.22GroupedProjectsAlistanddescriptionsofallenrolledprojectactivityinstancesinthegroupatthetimeofvalidation.PDR.23GroupedProjectsAmapofthedesignatedgeographicareawithinwhichallprojectactivityinstancesinthegroupmaybelocated,indicatingthatallinstancesareinthesameregion.PDR.24GroupedProjectsAlistofeligibilitycriteriaforprojectactivityinstances.PDR.25BaselineScenarioResultsofacomparativeassessmentoftheimplementationbarriersandnetbenefitsfacedbytheprojectanditsalternatives,andjustificationforthemostplausiblebaselinescenario.PDR.26BaselineScenarioDocumentationtodemonstratethattheprojectareapreviouslymetthedefinitionofawetlandbeforeconvertingtoopenwaterorsimilardegradedstate.Documentationmustincludehydrologicaldatatoshowevidenceoflong-termpatternsofwetlandloss.PDR.27BaselineScenarioTheselectedmethodfordemonstratingthebaselinescenariointheprojectarea(regionallandusechangeorspatialanalysis).PDR.28RegionalLandUseChangeForBaselineScenarioAreferencetothedocumentprovidingevidenceofcontinuedlandlossorstaticconditioninthebasinforaperiodof10yearspriortotheprojectstartdate.PDR.29RegionalLandUseChangeForBaselineScenarioAsummaryofthereferenceddocumentindicatingwhereinthedocumenttheevidenceisprovided.PDR.30RegionalLandUseChangeForBaselineScenarioDocumentationofwatermanagementactivities(eg,riverdiversions)thatcouldinfluencethebaselinescenario.PDR.31SpatialAnalysisforBaselineScenarioAreportdescribinghowtheanalysiswasconducted,includingdatasourcesanddates,demonstrationofconformancewiththerequirementslistedinSection6.1.2,andjustificationVM0024,Version1.0SectoralScope14Page170fortheselectionoftheregioninwhichtheanalysiswasconducted.PDR.32SpatialAnalysisforBaselineScenarioAmapoftheregioninwhichtheanalysiswasconducted.PDR.33SpatialAnalysisforBaselineScenarioThequantifiedchangeinwaterarea.PDR.34DeterminationofDredgingDetermination(yesorno)whetherdredgingisincludedinthebaselinescenario.PDR.35DeterminationofDredgingIfdredgingisincludedinthebaselinescenario,adescriptionofthesingleeventorprogrammaticdredgingprojects,includingthelikelyfateofdredgedsedimentsinthebaselinescenario.PDR.36DemonstrationofNavigabilityMapofdredgingactivities,includingjustificationforplanneddredginglocations.PDR.37DemonstrationofNavigabilityDocumentsthatdemonstratedredgingwouldhaveoccurred.PDR.38DeterminationofBaselineEnergyConsumptionForeachenergytypeinTable11,theestimateoftheunitofenergyconsumedpermetrictonneofsedimentdredged.PDR.39DeterminationofBaselineEnergyConsumptionDescriptionofequipmenttypesandmethodorprocessofsedimentdredging,transport,disposal,re-handling,sedimentproductionrates,durationofoperationsandconveyancedistances.PDR.40DeterminationofBaselineEnergyConsumptionEstimatesofcumulativesedimentquantityexcavatedandre-handled,includingtemporarydisposalanddisplacementactivities,ifapplicable.PDR.41DeterminationofBaselineEnergyConsumptionSourceofproceduresordataonwhichtheseestimatesarebased.PDR.42DeterminationofBaselineMethaneEmissionsDescriptionandjustificationfortheselectedreferencearea.PDR.43DemonstrationofProjectAdditionalityDemonstrationthatpertinentlawsandregulationshavebeenreviewedandthatnonemandatetheprojectactivities.PDR.44DemonstrationofProjectAdditionalityEvidencethatprojectactivitiescomplywithallapplicabilityconditionssetoutunderSection4.PDR.45EmissionsorEmissionsReductionsand/orRemovalsEventsinProjectAreaTheselecteddefinitionofasignificantdisturbance.PDR.46HydrologicEffectsDescriptionoftheexpectedimpactsonhydrologicallyconnectedareas,andtheagencyprocesswhichisexpectedtotakeplacepriortothecommencementofprojectactivities.PDR.47MonitoringPlanAsummaryofcarbonstocksamplingproceduresfortheprojectarea,withacopyofasamplingprotocolusedbyfieldpersonneltocarryoutmeasurements.PDR.48MonitoringPlanAsummaryoffluxmeasurementproceduresfortheprojectarea,withacopyofafluxVM0024,Version1.0SectoralScope14Page171measurementprotocolusedbyfieldpersonneltocarryoutmeasurements.PDR.49MonitoringPlanAreferencetothemonitoringplan.PDR.50MonitoringPlanAnymethodologydeviations.Suchdeviationsmustincludethetextthatisbeingmodifiedandtheproposednewlanguage.PDR.51StratificationJustificationfornotstratifyingcarbonstocks.PDR.52StratificationforSOCDescriptionforhowthestrataweredelineated.PDR.53StratificationforSOCMap(s)oftheinitialstrataboundaries.PDR.54StratificationforBiomassDescriptionforhowthestrataweredelineated.PDR.55StratificationforBiomassMap(s)oftheinitialstrataboundaries.PDR.56MeasuringCarbonStocksProposedmethodforallocatingplotstostratum.PDR.57MeasuringCarbonStocksDescriptionofplotsizesandlayout(suchastheuseofnestsandtheirsizes)foreachcarbonpool.PDR.58SoilPlotDesignDiagramofasoilplotshowingthelocationsofartificialmarkerhorizonsandcoresampleswithintheplotovertime.PDR.59SoilPlotDesignDescriptionofthefixedsoilsampledepth.PDR.60FrequencyofCarbonStockMeasurementsTheanticipatedfrequencyofmonitoringforeachplotandfluxmeasurementlocation–allcarbonstockplotsshouldbemeasuredforthefirstverification.PDR.61MonitoringMethaneTheselectedapproachformonitoringmethane.PDR.62MethaneModelsfromLiteratureJustificationofmethanefluxmodelfromtheliterature,pertherequirementsofSection9.2.2.1.PDR.63CovariatesforProxyMethaneModelsAlistofpossiblecovariatesandthesourcesofdataavailableforeach.PDR.64CovariatesforProxyMethaneModelsAlistofselectedcovariatestobeusedformodelfitting.PDR.65StratificationforMethaneEmissionsDescriptionforhowthestrataweredelineated.PDR.66StratificationforMethaneEmissionsMap(s)oftheinitialstrataboundariesindicatingwhichstratumislikelytoyieldthegreatestmethaneemissionsflux.PDR.67StratificationforMethaneEmissionsJustificationperthecriteriainSection9.2.2.3.1forthestratumthatislikelytoyieldthegreatestmethaneemissionsflux.PDR.68InstrumentationforChambersDiagramofchamberdesign.VM0024,Version1.0SectoralScope14Page172PDR.69EddyCovarianceMeasurementsThetypeofanalyzerselectedfordirectmeasurementsofmethane,includingadescriptionoftheresolutionofmeasurements(inppb)andthefrequencyatwhichmeasurementsaretobetaken(inHz).PDR.70EddyCovarianceMeasurementsAtableofmeteorologicalvariablesselectedformeasurement.Foreachvariableinthetable,justificationforitsselection,theunitofmeasurement,resolutionofmeasurementandfrequencyofmeasurement.PDR.71EddyCovarianceMeasurementsAdescriptiontheeddycovariancetowerconfigurationincludingthedistancesbetweensensors(vertical,northwardandeastwardseparation).PDR.72EddyCovarianceMeasurementsAscalediagramoftheeddycovariancetowerconfigurationshowingtherelativelocationanddistanceoftheanemometerrelativetothemethanesensor.PDR.73EddyCovarianceMeasurementsPlanviewdiagramormapoftheeddycovariancetowerdelineatingstrataandtheareaofhighestanticipatedemissionswithina100mradiusofthetower.Delineationofanypatchvegetation(twicethedominantcanopyheightandoccupying>100m2inarea)occurringwithintheestimated80%footprintarea.PDR.74EddyCovarianceMeasurementsDescriptionofdominantplantcanopyheight(inm)overanannualcycle.Anestimateofthe80%fluxfootprintdistance(inm)andparameterestimates,asfollows:𝜎𝑤=standarddeviationoftheverticalvelocityfluctuations(m/s)𝑢∗=surfacefrictionvelocity(m/sec)𝑧𝑚=measurementheight(m)ℎ𝑚=planetaryboundarylayerheight(m)or1000m𝑧𝑚=roughnesslength(m)or1/10thoftheaveragecanopyheightPDR.75MonitoringNitrousOxideTheselectedapproachformonitoringnitrousoxide.PDR.76DeterminingProjectAreaExposuretoNitrogenLoadingLocationoftheprojectareawithinaminimumdefinablewatershed,usingaUSGS,EPAorstatedelineatedwatershed.PDR.77DeterminingProjectAreaExposuretoNitrogenLoadingLocationsofallNPDESmajordischargersandpublicworksprojectsproducing>1MGDofelevatednitrogeneffluent(>3mgTN/L)dischargingintotheprojectareaandlocatedwithintheminimumdefinablewatershed.PDR.78DeterminingProjectAreaExposuretoNitrogenLoadingListofEPACWASection303ddesignatedimpairedwatersforthestate.PDR.79DefaultValuesforNitrousOxideMonitoringJustificationfortheselecteddefaultvalue.PDR.80CovariatesforProxyNitrousOxideModelsAlistofpossiblecovariatesandthesourcesofdataavailableforeach.PDR.81CovariatesforProxyNitrousOxideModelsAlistofselectedcovariatestobeusedformodelfitting.VM0024,Version1.0SectoralScope14Page173PDR.82ModelFitforNitrousOxideJustificationthattheproxyisanequivalentorbettermethod(intermsofreliability,consistencyorpracticality)todeterminethevalueofinterestthandirectmeasurement.PDR.83StratificationforNitrousOxideEmissionsDescriptionforhowthestrataweredelineated.PDR.84StratificationforNitrousOxideEmissionsMap(s)oftheinitialstrataboundariesindicatingwhichstratumislikelytoyieldthegreatestnitrousoxideemissionsflux.PDR.85StratificationforNitrousOxideEmissionsJustificationperthecriteriainSection9.2.2.3.1forthestratumthatislikelytoyieldthegreatestnitrousoxideemissionsflux.PDR.86FieldTrainingforFieldSamplingAdescriptionofthetypeandfrequencyoftrainingoffieldpersonnelresponsibleforsamplingcarbonstocks,fluxes,andcovariates.PDR.87QualityControlandAssuranceofEddyCovarianceDataAnymethodologydeviations.Suchdeviationsmustincludethetextthatisbeingmodifiedandtheproposednewlanguage.PDR.88DataandParametersAvailableatValidationThevalueofeachvariable,dataandparameterinAppendixI.PDR.89DataandParametersAvailableatValidationTheunits,descriptions,source,purposeandcommentsforeachvariablereportedinthePD.PDR.90ChamberDescriptionAdescriptionofthechamberdesign,withitsdimensionsortotalvolume,andcross-sectionalarea.PDR.91ChamberDescriptionDiagramofchamberplotrandomizationdesignandtheresultingchamberlocationswithineachstratum,withthechambersidentifiedasreplicates.Providedateswhenchambersweredeployedineachstratum.Provideajustificationthatthelocationschosenareconservative(ie,thattheyarelikelytopredictmethaneemissionsfluxfortheentirestratumforwhichtheyarerepresentative.)VM0024,Version1.0SectoralScope14Page174APPENDIXL:SUMMARYOFMONITORINGREPORTREQUIREMENTSMRR#CategoryRequirementsMRR.1ProjectActivitiesPlanforestablishmentofpermanentwetlandplantcommunityafterprojectconstruction.Planmustincludetrackingaerialextentofemergentvegetationlong-termmonitoringofsuchcommunities,aswellasplansforcontinuedmaintenanceifnecessary.Thisdocumentationmustdemonstratethattheprojectactivityresultsintheaccumulationormaintenanceofsoilcarbonstockandthat,uponcompletionoftheprojectactivities,theprojectareamustmeetthedefinitionofawetland.MRR.2ProjectActivitiesEvidencethattheprojectengineeringanddesigntakesintoaccountlocalwaterlevelelevation,tidalrange,geotechnicalcharacteristics,sealevelriseprojections,andtherangeofplantgrowthwithinthoseconstraints.MRR.3SubstrateEstablishmentPost-constructionreport,includinganas-builtdrawingshowingplanviewandcrosssectionoftheprojectareaalongwithanestimateofpost-constructionsedimentelevationrelativetoageodeticortidaldatum.MRR.4SubstrateEstablishmentAerialimageoftheprojectareawithinthreeyearspriortoconstructionandanaerialimagewithinoneyearpost-construction.MRR.5VegetationEstablishmentAdescriptionofthequantity,species,dateandlocationofvegetationestablishment,andphotographsoftheoperation.Thisdocumentationmustdemonstratethattheprojectactivityresultsintheaccumulationormaintenanceofsoilcarbonstock.MRR.6VegetationEstablishmentAerialimageoftheprojectareaindicatingwherespecieswereestablished.MRR.7TemporalProjectBoundariesTheprojectstartdate.MRR.8TemporalProjectBoundariesTheprojectcreditingperiodstartdateandlength.MRR.9TemporalProjectBoundariesEvidenceofthestartofmonitoringperthefrequencyrequirementsdescribedinSections5.4,9.2.1.1,9.2.2.4,and9.2.3.4.MRR.10GroupedProjectsAlistanddescriptionofallprojectactivityinstancesinthegroup,includingprojectactivityinstancestartdates.MRR.11GroupedProjectsAmapoftheboundariesofallprojectactivityinstancesinthegroupdemonstratingthatallinstancesareinthedesignatedgeographicregion.MRR.12BaselineEmissionsCalculationsofcurrentbaselineemissionsEBΔmasofthemonitoringperiod.MRR.13BaselineEmissionsCalculationsofbaselineemissionsEBΔm−1frompriormonitoringperiods.VM0024,Version1.0SectoralScope14Page175MRR.14EmissionsCoefficientsSourceanddateoftheemissioncoefficient.MRR.15EmissionsCoefficientsReferencetotheexactpagenumberorworksheetcellinthesource.MRR.16ProjectEmissionsorEmissionsReductionsand/orRemovalsCalculationsofcurrentprojectemissionsoremissionsreductionsand/orremovalsEPΔmasofthemonitoringperiod.MRR.17ProjectEmissionsorEmissionsReductionsand/orRemovalsCalculationsofprojectemissionsoremissionsreductionsand/orremovalsEPΔm−1frompriormonitoringperiods.MRR.18EmissionsorEmissionsReductionsand/orRemovalsEventsinProjectAreaTheselecteddefinitionofasignificantdisturbance.MRR.19EmissionsorEmissionsReductionsand/orRemovalsEventsinProjectAreaAmapoftheboundariesofanysignificantdisturbanceintheprojectareaduringthemonitoringperiod.MRR.20EmissionsorEmissionsReductionsand/orRemovalsEventsinProjectAreaEvidencethatplotswereinstalledintothesedisturbedareasandweremeasuredperSection9.2.1.MRR.21HydrologicEffectsDocumentationthattheprojectwillnothaveasignificantnegativeimpactonhydrologicallyconnectedareas.ThismayincludeaCleanWaterActpermitissuedbytheUSACE,NEPAdecision(RODorFONSI)issuedbytheappropriateleadfederalagency,orcompliancedocumentationfromlocalfloodplainmanagementagencies.MRR.22QuantificationofGERsQuantifiedGERsforthemonitoringperiodincludingreferencestocalculations.MRR.23QuantificationofGERsQuantifiedGERsforthepriormonitoringperiod.MRR.24QuantificationofGERsAgraphofGERsbymonitoringperiodforallmonitoringperiodstodate.MRR.25QuantificationofNERsQuantifiedNERsforthemonitoringperiodincludingreferencestocalculations.MRR.26QuantificationofNERsQuantifiedNERsforthepriormonitoringperiod.MRR.27QuantificationofNERsAgraphofNERsbymonitoringperiodforallmonitoringperiodstodate.MRR.28ConfidenceDeductionThecalculatedconfidencedeductionandsupportingcalculations.MRR.29ConfidenceDeductionAnymethodologydeviations.Suchdeviationsmustincludethetextthatisbeingmodifiedandtheproposednewlanguage.VM0024,Version1.0SectoralScope14Page176MRR.30AFOLUPooledBufferAccountReferencetotheVCSrequirementsusedtodeterminetheAFOLUpooledbufferaccountallocation.MRR.31AFOLUPooledBufferAccountReferencetocalculationsusedtodeterminetheAFOLUpooledbufferaccountallocation.MRR.32BufferReleaseReferencetotheVCSrequirementsusedtodeterminethereleasefromtheAFOLUpooledbufferaccount.MRR.33BufferReleaseReferencetocalculationsusedtodeterminethebufferrelease.MRR.34VintagesQuantifiedNERsbyvintageyearforthemonitoringperiodincludingreferencestocalculations.MRR.35ProjectPerformanceComparisonofNERspresentedforverificationrelativetothosefromex-anteestimates.MRR.36ProjectPerformanceDescriptionofthecauseandeffectofdifferencesfromex-anteestimates.MRR.37MonitoringPlanDocumentationoftrainingforfieldmeasurementcrews.MRR.38MonitoringPlanDocumentationofdataqualityassessment.MRR.39MonitoringPlanReferencestoplotallocationforcarbonstockmeasurement.MRR.40MonitoringPlanListofplotGPScoordinatesforplotsandfluxmeasurementdevices.MRR.41MonitoringPlanDescriptionanddiagramoffluxmeasurementsdevicesformethaneand/ornitrousoxide.MRR.42MonitoringPlanTheestimatedcarbonstock,standarderrorofthetotalforeachstock,andthesamplesizeforeachstratumintheprojectarea.MRR.43MonitoringPlanAnymethodologydeviations.Suchdeviationsmustincludethetextthatisbeingmodifiedandtheproposednewlanguage.MRR.44MonitoringPlanFrequencyofmonitoringforeachplotandfluxmeasurementlocation–allcarbonstockplotsshouldbemeasuredforthefirstverification.MRR.45StratificationforSOCMap(s)ofthecurrentstrataboundaries.MRR.46StratificationforSOCAdescriptionofchangestothestrataboundaries(ifapplicable).MRR.47StratificationforBiomassMap(s)ofthecurrentstrataboundaries.MRR.48StratificationforBiomassAdescriptionofchangestothestrataboundaries(ifapplicable)MRR.49MeasuringCarbonStocksMethodforallocatingplotstostratum.MRR.50MeasuringCarbonStocksMapofthelocationofplotswithinstrata.MRR.51MeasuringCarbonStocksDescriptionofplotsizesandlayout(suchastheuseofnestsandtheirsizes)foreachcarbonpool.VM0024,Version1.0SectoralScope14Page177MRR.52SoilPlotDesignForeachmeasuredsoilplot,adiagramshowingthelocationofinstalledartificialmarkerhorizonsandsampledcores.MRR.53SoilPlotDesignFieldreportdescribingsoilsampledepths(accretiondepthandfixedsoilsampledepth)andcoringdevicesusedtocollectsamples.Thereportmustalsoincludenumberofsoilsamplesandtheiridentificationinachainofcustodyformsubmittedtothelaboratory.MRR.54FrequencyofCarbonStockMeasurementsListofplotsmeasuredduringthemonitoringperiod–allcarbonstockplotsshouldbemeasuredforthefirstverification.MRR.55MethaneModelsfromLiteratureDemonstrationthattheselectedmodelisapplicabletotheprojectareapertherequirementsofSection9.2.2.1.MRR.56MethaneModelsfromLiteratureDescriptionofhowmodelpredictionsareconvertedtotCO2e/day.MRR.57DataCollectionforProxyMethaneModelCompletereferencestothesourceofanydatacollectedfromliteratureorreports.MRR.58DataCollectionforProxyMethaneModelDatacollectionprocedures,plansorprotocolsforanydatacollecteddirectlyfromtheprojectarea.MRR.59ModelFitforMethaneTheformoftheselectedmodel.MRR.60ModelFitforMethaneSummarystatisticsofthemodelfitasappropriatetothefittingofthemodel.MRR.61ModelFitforMethaneTheestimatedmodelparameters.MRR.62ModelFitforMethaneAdescriptionoftherangeofcovariatedatawithwhichthemodelwasfit.MRR.63ModelPredictionforMethaneThevaluesofanymeasuredcovariates.MRR.64ModelPredictionforMethaneThepredictedmethaneflux.MRR.65ProcessedChamberandEddyCovarianceFluxDataAtableofchamberfluxoreddycovarianceemissionsummarystatisticsofthemean(±1SEM)andnumberofsamplesforeachmeanintCO2e/ac/dayforeachsamplelocationwithinastratum.MRR.66StratificationforMethaneEmissionsMap(s)ofthecurrentstrataboundaries.MRR.67StratificationforMethaneEmissionsAdescriptionofchangestothestrataboundaries(ifapplicable).MRR.68InstrumentationforChambersDiagramofchamberdesign.VM0024,Version1.0SectoralScope14Page178MRR.69InstrumentationforChambersMapshowingthelocationofchambersintheprojectarea.MRR.70InstrumentationforEddyCovarianceDiagramormapofeddycovariancetowerdelineatingtheselectedfootprintareawherefluxwasintegratedfromandthecomputedmean80%footprintdistance(includingthefootprintmodelused)fromthetowerduringtheperiodofanalysis.Atableofcomputedestimatesforeachofthefollowingparameters:σw=standarddeviationoftheverticalvelocityfluctuations(m/s)u=surfacefrictionvelocity(m/sec)zm=measurementheight(m)z0=roughnesslength(m)(orcanopyheightanddensitytobeusedtoestimateroughnesslength)MRR.71InstrumentationforEddyCovarianceDescriptionofthepublishedmodelusedtodefinethefootprint.MRR.72InstrumentationforEddyCovarianceMapshowingthelocationofeddycovariancetowersintheprojectarea.MRR.73InstrumentationforEddyCovarianceDocumentationofadherencetomanufacturer-recommendedproceduresforcalibrationofthemethaneanalyzer.MRR.74EddyCovarianceDataProcessingandFluxComputationFrequencydiagramofwinddirection(0-359with30intervals)andvelocity(m/s)fortheperiodofanalysis.MRR.75EddyCovarianceDataProcessingandFluxComputationSummaryofthedatesofdatacollection,theselectedapproachforaveragingovereachperiod,explicitformulasusedforcomputingflux,numberof0.5-hrsamplesusedincalculations.MRR.76EddyCovarianceDataProcessingandFluxComputationGraphicalplotof0.5-hrGHGconcentration(ppmv),windvelocityanddirection,andtemperatureusedforthefluxcalculationsMRR.77EddyCovarianceDataProcessingandFluxComputationSummarystatistics(numberofsamples,mean,median,variance)ofGHGfluxforeachaveragingperiod.MRR.78ChamberSamplingforMethaneTableofsamplingeventdatesforthemonitoringperiod,includingthetimeofdaysampleswerecollected,waterlevelrelativetothesoilsurface,soiltemperature,andairtemperature.MRR.79ChamberSamplingforMethaneCopyoffielddatasheetsdocumentingtimeintervalswhensampleswerecollected,sampleidentificationnumber,andverificationofthetotalnumberofsamplesreceivedbythelaboratory.MRR.80EddyCovarianceMeasurementAtableofmeteorologicalvariablesselectedformeasurement.Foreachvariableinthetable,anindicationofwhetherthevariablewasmeasured,themakeandmodeloftheinstrumentusedformeasurement.MRR.81EddyCovarianceMeasurementForeachmeasuredvariable,agraphicalplotortableofthedatawithrespecttotimeduringthemonitoringperiod.Adatatableorplotmustincludeatminimum:airtemperature,methaneconcentration,methaneflux.Alistofinterpolated/missingsamples.VM0024,Version1.0SectoralScope14Page179MRR.82EddyCovarianceMeasurementDocumentationofcalibrationdatesandzerochecksformethaneanalyzer.Providethedateoflastfullcalibration(0-10ppmmethanestandard).Providedatesofcarbon-freeairgaschecksformethaneanalyzer.MRR.83DataCollectionforProxyNitrousOxideModelCompletereferencestothesourceofanydatacollectedfromliteratureorreports.MRR.84DataCollectionforProxyNitrousOxideModelDatacollectionprocedures,plansorprotocolsforanydatacollecteddirectlyfromtheprojectarea.MRR.85ModelFitforNitrousOxideTheformoftheselectedmodel.MRR.86ModelFitforNitrousOxideSummarystatisticsofthemodelfitasappropriatetothefittingofthemodel.MRR.87ModelFitforNitrousOxideTheestimatedmodelparameters.MRR.88ModelFitforNitrousOxideCovarianceDataAdescriptionoftherangeofcovariatedatawithwhichthemodelwasfit.MRR.89ModelPredictionforNitrousOxideThevaluesofanymeasuredcovariates.MRR.90ModelPredictionforNitrousOxideThepredictednitrousoxideflux.MRR.91StratificationforNitrousOxideEmissionsMap(s)ofthecurrentstrataboundaries.MRR.92StratificationforNitrousOxideEmissionsAdescriptionofchangestothestrataboundaries(ifapplicable).MRR.93ChamberSamplingforNitrousOxideTableofsamplingeventdatesforthemonitoringperiod,includingthetimeofdaysampleswerecollected,waterlevelrelativetothesoilsurface,soiltemperature,andairtemperature.MRR.94ChamberSamplingforNitrousOxideCopyoffielddatasheetsdocumentingtimeintervalswhensampleswerecollected,sampleidentificationnumber,andverificationofthetotalnumberofsamplesreceivedbythelaboratory.MRR.95EnergyConsumptionMeasurementMethodTheselectedapproachtomonitoringenergyconsumption.MRR.96DirectMeasurementofEnergyConsumptionEnergyconsumptionforeachenergytypelistedinSection8.1.1.MRR.97DirectMeasurementofEnergyConsumptionReferencestorecordsofenergyconsumption.MRR.98CostApproachtoEnergyJustificationfortheproportionofdredgingbudgetallocatedforfuel(orelectricity)purchases.VM0024,Version1.0SectoralScope14Page180ConsumptionMRR.99CostApproachtoEnergyConsumptionJustificationforchoiceofenergytype(s).MRR.100CostApproachtoEnergyConsumptionDocumentationofhistoricenergycostsatthetimeofdredgingactivities.MRR.101CostApproachtoEnergyConsumptionJustificationofestimateofenergyconsumption.MRR.102MonitoringSedimentTransportJustificationfortheestimateofvolumeofdredgedsedimenttransported.MRR.103MonitoringSedimentTransportJustificationfortheestimateofthedensityofdredgedsediment.MRR.104MonitoringSedimentTransportEstimatedmassofsedimenttransported.MRR.105MonitoringAllochthonousCarbonReference(s)totheregionallyappropriateliteratureusedtodeterminethecorrectfactorformineral-associatedcarbon.MRR.106FieldTrainingforFieldSamplingThetypeandfrequencyoftrainingoffieldpersonnelduringthemonitoringperiod.MRR.107CarbonStockMeasurementsBiomassandSOCcarbonstockdataforallplots,alongwithanyancillaryspreadsheetsorcomputercodeusedtogeneratethesepredictions.MRR.108CarbonStockMeasurementsListofoutlierswithunusuallyhighorlowbiomassorSOC,includingjustificationfortheircontinuedinclusion.MRR.109CarbonStockMeasurementsResultsofaccuracyassessmentifnon-destructivesamplingtechniquesareused.Otherwise,justificationforwhyaccuracyneednotbeformallyaddressed.MRR.110QualityControlandAssuranceofEddyCovarianceDataDescriptionofprocessingsoftwareused,assumptions,anddataqualitycontrolmeasures,whichmustincludetheselectedmethodofcoordinaterotation,detrending,anddensityfluctuationcorrection.MRR.111LaboratoryAnalysesDocumentationofthelaboratoryQA/QCprotocols,themethodsofsampleanalysis,andgeneralcalibrationproceduresusedthelaboratoriesconductingtheanalysis.MRR.112DataandParametersMonitoredThevalueofeachvariable,dataandparameterinSection9.4.MRR.113DataandParametersMonitoredTheunits,descriptions,source,purpose,referencestocalculationsandcommentsforeachvariablereportedintheMonitoringReport.MRR.114DataandParametersMonitoredForthosevariablesobtainedfromdirectmeasurement,adescriptionofmeasurementmethodsandprocedures.Thesemaysimplybereferencestocomponentsofthemonitoringplan.VM0024,Version1.0SectoralScope14Page181MRR.115DataandParametersMonitoredForthosevariablesobtainedfromdirectmeasurement,adescriptionofmonitoringequipmentincludingtype,accuracyclassandserialnumber(ifapplicable).Thesemaysimplybereferencestocomponentsofthemonitoringplan.MRR.116DataandParametersMonitoredProceduresforqualityassuranceandcontrol,includingcalibrationofequipment(ifapplicable).MRR.117MonitoringGroupedProjectsListanddescriptionsofallprojectactivityinstancesinthegroup.MRR.118MonitoringGroupedProjectsProjectactivityinstancestartdates.MRR.119MonitoringGroupedProjectsMapindicatinglocationsofprojectactivityinstancesaddedtothegroup.MRR.120MonitoringGroupedProjectsListofadditionalstratificationsusedforadditionalprojectactivityinstances;justificationforwhyfluxmeasurementsarestilllocatedinthemostconservativestratum(9.2.2,9.2.3).MRR.121MonitoringGroupedProjectsAsprojectactivityinstancesareadded,monitoringplanmustbeupdatedtoreflectadditionalmonitoringtimesandplotlocations.VM0024,Version1.0SectoralScope14Page182APPENDIXM:SOURCEOFEMISSIONSFACTORSFORENERGYCONSUMPTIONSources:Emissionsfactorsandenergycontentforfuels:EPAFinalMandatoryReportingofGreenhouseGasesRuleTableC-1,C-2(http://www.epa.gov/ghgreporting/documents/pdf/2009/GHG-MRR-FinalRule.pdf).Emissionsinkg/MMBtuaretakendirectlyfromtheEPAMandatoryreportingRule.EmissionsintCO2e/MMBtuapplyaunitconversiontotons(1ton=1,000kg)andmultiplybytheappropriateglobalwarmingpotential(1forCO2,21forCH4,310forN2O–theprojectproponentmustconfirmtheglobalwarmingpotentialsperthecurrentversionofVCSStandard).TotalemissionsareasimplesumoftheemissionsintCO2e/MMBtuofeachofthethreecoveredgases.Theemissioncoefficientiscalculatedastheproductofthetotalemissionsandtheenergycontentofthefueltype.Forupdatestothesefactors,refertotheEPAwebsite(http://www.epa.gov/ghgreporting/reporters/subpart/c.html)orthefederalregulations(40C.F.R.§98,SubpartC,TablesC-1andC-2).eGRIDregionalemissionsfactorsforelectricity:http://www.epa.gov/cleanenergy/documents/egridzips/eGRID2012V1_0_year09_GHGOutputrates.pdf(‘annualtotaloutputemissionrates’).NotetheunitconversionsrequiredtocalculatetheemissionsfromelectricityusageintermsoftCO2e,giventhateGRIDfactorsarestatedintermsoflb/MWhandlb/GWh,andintermsofCH4andN2Oemissions(vs.CO2e).Forthecurrentversionofemissionsfactors,refertohttp://www.epa.gov/cleanenergy/energy-resources/egrid/index.html.LocatetheeGRIDGHGoutputsummaryfileforthecorrectemissionyear(eg,eGRID2012providesactualgenerationdatafrom2009).Becausethereistypicallyalagofseveralyears,ifdataforthecurrentyearorrecentyearsarenotavailable,usethemostrecentdata(eg,ifeGRID2012isthemostrecentdataavailablein2013,theneGRID2012with2009datashouldbeusedforallyears2009-2013).IntheGHGsummaryfile,usedatafortheappropriateeGRIDsubregionfor‘annualtotaloutputemissionrates.’FuelTypeProponentreportsas:Emissions(kg/MMBtu)tCO2/MMBtuEmissions(kg/MMBtu)tCO2e/MMBtuEmissions(kg/MMBtu)tCO2e/MMBtuTotalEmissions(tCO2e/MMBtu)EnergyContent(MMBtu/unit)EmissionCoefficientDieselgal73.960.073960.0030.0000630.00060.0001860.074210.1380.010241Gasolinegal70.220.070220.0030.0000630.00060.0001860.070470.1250.008809Biodieselgal73.840.073840.00110.00002310.000110.00003410.073900.1280.009459CNGscf53.020.053020.0010.0000210.00010.0000310.053070.0010280.000055ElectricitykWhseeeGRIDregionalemissionsfactorCH4N20CO2VM0024,Version1.0SectoralScope14Page183DOCUMENTHISTORYVersionDateCommentv1.030Jan2014Initialversionreleased

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱