VM0017-采用可持续农业土地管理方法学VIP专享VIP免费

VM0017, Version 1
Sectoral Scope 14
Page 1
Approved VCS Methodology
VM0017
Version 1.0
Sectoral Scope 14
Adoption of Sustainable Agricultural
Land Management
VM0017, Version 1
Sectoral Scope 14
Page 2
Table of Contents
SECTION I: SUMMARY AND APPLICABILITY OF THE BASELINE AND MONITORING
METHODOLOGY ............................................................................................................................................... 4
I.1 BRIEF DESCRIPTION................................................................................................................................. 4
I.2 APPLICABILITY CONDITIONS ................................................................................................................... 4
I.3 SELECTED CARBON POOLS AND EMISSION SOURCES ................................................................................ 6
I.4 SUMMARY DESCRIPTION OF MAJOR BASELINE AND PROJECT METHODOLOGICAL STEPS .......................... 7
I.4.1 Baseline methodology .................................................................................................................... 7
I.4.2 Project methodology ...................................................................................................................... 8
I.4.3 Monitoring methodology ............................................................................................................... 8
SECTION II: BASELINE METHODOLOGY DESCRIPTION ............................................................... 9
II.1 PROJECT BOUNDARY ............................................................................................................................... 9
II.2 PROCEDURE FOR SELECTION OF MOST PLAUSIBLE BASELINE SCENARIO .................................................. 9
II.3 ADDITIONALITY ...................................................................................................................................... 9
II.4 ESTIMATION OF BASELINE GHG EMISSIONS AND REMOVALS .................................................................. 9
II.4.1 Baseline emissions due to fertilizer use ......................................................................................... 9
II.4.2 Baseline emissions due to the use of N-fixing species ................................................................... 9
II.4.3 Baseline emissions due to burning of biomass .............................................................................. 9
II.4.4 Baseline removals from existing woody perennials ....................................................................... 9
II.4.5 Baseline emissions from use of fossil fuels in agricultural management ...................................... 9
II.4.6 Equilibrium soil organic carbon density in management systems ............................................... 10
II.4.7 Baseline removals due to changes in soil organic carbon .......................................................... 10
II.4.8 Total baseline emissions and removals ....................................................................................... 10
SECTION III: PROJECT METHODOLOGY DESCRIPTION .............................................................. 11
III.1 ESTIMATION OF PROJECT GHG EMISSIONS AND REMOVALS. ................................................................. 11
III.1.1 Project emissions due to fertilizer use ......................................................................................... 11
III.1.2 Project emissions due to the use of N-fixing species ................................................................... 11
III.1.3 Project emissions due to burning of biomass .............................................................................. 11
III.1.4 Project removals from woody perennials .................................................................................... 12
III.1.5 Project emissions due to use of fossil fuels for agricultural management................................... 12
III.1.6 Project equilibrium soil organic carbon density in management systems ................................... 12
III.1.7 Project estimate of soil organic carbon with transitions ............................................................. 13
III.1.8 Estimate of project removals due to changes in soil organic carbon .......................................... 14
III.1.9 Actual net GHG emissions and removals by sinks ...................................................................... 14
III.2 ESTIMATION OF LEAKAGE ..................................................................................................................... 15
III.3 ESTIMATION OF NET ANTHROPOGENIC GHG EMISSIONS AND REMOVALS ............................................. 15
SECTION IV: MONITORING METHODOLOGY DESCRIPTION ...................................................... 16
IV.1 BASELINE GHG EMISSIONS AND REMOVALS ......................................................................................... 16
IV.1.1 Sampling design .......................................................................................................................... 16
IV.1.2 Data to be collected and archived for baseline GHG emissions and removals........................... 17
IV.2 *EX-ANTE AND EX-POST NET ANTHROPOGENIC GHG EMISSIONS AND REMOVALS ................................ 19
IV.2.1 Data to be collected and archived for ex-ante project GHG emissions and removals ................ 19
IV.2.2 Data to be collected and archived for ex-ante leakage ............................................................... 19
IV.2.3 Monitoring of project implementation ......................................................................................... 19
IV.2.4 Sampling design .......................................................................................................................... 19
IV.2.5 Data to be collected and archived for project GHG emissions and removals ............................ 21
IV.2.6 Data to be collected and archived for leakage ............................................................................ 23
IV.2.7 Conservative approach ................................................................................................................ 25
VM0017, Version 1
Sectoral Scope 14
Page 3
IV.2.8 Uncertainty analysis .................................................................................................................... 25
IV.2.9 Other information ........................................................................................................................ 28
SECTION V: LISTS OF VARIABLES, ACRONYMS AND REFERENCES ....................................... 28
V.1 VARIABLES USED IN EQUATIONS (UPDATED THIS LIST) ......................................................................... 28
V.2 ACRONYMS ........................................................................................................................................... 31
SECTION VI: TOOLS .................................................................................................................................. 32
VI.1 ESTIMATION OF DIRECT NITROUS OXIDE EMISSION FROM N-FIXING SPECIES AND CROP RESIDUES ......... 32
VI.2 ESTIMATION OF EMISSIONS FROM THE USE OF FOSSIL FUELS IN AGRICULTURAL MANAGEMENT ............ 33
VI.3 ESTIMATION OF NON-CO2 EMISSIONS FROM THE BURNING OF CROP RESIDUES ..................................... 34
SECTION VII: REFERENCES ..................................................................................................................... 36
VM0017,Version1SectoralScope14Page1ApprovedVCSMethodologyVM0017Version1.0SectoralScope14AdoptionofSustainableAgriculturalLandManagementVM0017,Version1SectoralScope14Page2TableofContentsSECTIONI:SUMMARYANDAPPLICABILITYOFTHEBASELINEANDMONITORINGMETHODOLOGY...............................................................................................................................................4I.1BRIEFDESCRIPTION.................................................................................................................................4I.2APPLICABILITYCONDITIONS...................................................................................................................4I.3SELECTEDCARBONPOOLSANDEMISSIONSOURCES................................................................................6I.4SUMMARYDESCRIPTIONOFMAJORBASELINEANDPROJECTMETHODOLOGICALSTEPS..........................7I.4.1Baselinemethodology....................................................................................................................7I.4.2Projectmethodology......................................................................................................................8I.4.3Monitoringmethodology...............................................................................................................8SECTIONII:BASELINEMETHODOLOGYDESCRIPTION...............................................................9II.1PROJECTBOUNDARY...............................................................................................................................9II.2PROCEDUREFORSELECTIONOFMOSTPLAUSIBLEBASELINESCENARIO..................................................9II.3ADDITIONALITY......................................................................................................................................9II.4ESTIMATIONOFBASELINEGHGEMISSIONSANDREMOVALS..................................................................9II.4.1Baselineemissionsduetofertilizeruse.........................................................................................9II.4.2BaselineemissionsduetotheuseofN-fixingspecies...................................................................9II.4.3Baselineemissionsduetoburningofbiomass..............................................................................9II.4.4Baselineremovalsfromexistingwoodyperennials.......................................................................9II.4.5Baselineemissionsfromuseoffossilfuelsinagriculturalmanagement......................................9II.4.6Equilibriumsoilorganiccarbondensityinmanagementsystems...............................................10II.4.7Baselineremovalsduetochangesinsoilorganiccarbon..........................................................10II.4.8Totalbaselineemissionsandremovals.......................................................................................10SECTIONIII:PROJECTMETHODOLOGYDESCRIPTION..............................................................11III.1ESTIMATIONOFPROJECTGHGEMISSIONSANDREMOVALS..................................................................11III.1.1Projectemissionsduetofertilizeruse.........................................................................................11III.1.2ProjectemissionsduetotheuseofN-fixingspecies...................................................................11III.1.3Projectemissionsduetoburningofbiomass..............................................................................11III.1.4Projectremovalsfromwoodyperennials....................................................................................12III.1.5Projectemissionsduetouseoffossilfuelsforagriculturalmanagement...................................12III.1.6Projectequilibriumsoilorganiccarbondensityinmanagementsystems...................................12III.1.7Projectestimateofsoilorganiccarbonwithtransitions.............................................................13III.1.8Estimateofprojectremovalsduetochangesinsoilorganiccarbon..........................................14III.1.9ActualnetGHGemissionsandremovalsbysinks......................................................................14III.2ESTIMATIONOFLEAKAGE.....................................................................................................................15III.3ESTIMATIONOFNETANTHROPOGENICGHGEMISSIONSANDREMOVALS.............................................15SECTIONIV:MONITORINGMETHODOLOGYDESCRIPTION......................................................16IV.1BASELINEGHGEMISSIONSANDREMOVALS.........................................................................................16IV.1.1Samplingdesign..........................................................................................................................16IV.1.2DatatobecollectedandarchivedforbaselineGHGemissionsandremovals...........................17IV.2EX-ANTEANDEX-POSTNETANTHROPOGENICGHGEMISSIONSANDREMOVALS................................19IV.2.1Datatobecollectedandarchivedforex-anteprojectGHGemissionsandremovals................19IV.2.2Datatobecollectedandarchivedforex-anteleakage...............................................................19IV.2.3Monitoringofprojectimplementation.........................................................................................19IV.2.4Samplingdesign..........................................................................................................................19IV.2.5DatatobecollectedandarchivedforprojectGHGemissionsandremovals............................21IV.2.6Datatobecollectedandarchivedforleakage............................................................................23IV.2.7Conservativeapproach................................................................................................................25VM0017,Version1SectoralScope14Page3IV.2.8Uncertaintyanalysis....................................................................................................................25IV.2.9Otherinformation........................................................................................................................28SECTIONV:LISTSOFVARIABLES,ACRONYMSANDREFERENCES.......................................28V.1VARIABLESUSEDINEQUATIONS(UPDATEDTHISLIST).........................................................................28V.2ACRONYMS...........................................................................................................................................31SECTIONVI:TOOLS..................................................................................................................................32VI.1ESTIMATIONOFDIRECTNITROUSOXIDEEMISSIONFROMN-FIXINGSPECIESANDCROPRESIDUES.........32VI.2ESTIMATIONOFEMISSIONSFROMTHEUSEOFFOSSILFUELSINAGRICULTURALMANAGEMENT............33VI.3ESTIMATIONOFNON-CO2EMISSIONSFROMTHEBURNINGOFCROPRESIDUES.....................................34SECTIONVII:REFERENCES.....................................................................................................................36VM0017,Version1SectoralScope14Page4SectionI:SummaryandapplicabilityofthebaselineandmonitoringmethodologyAcknowledgements:TheBioCarbonFundacknowledgestheleadauthorofthismethodology:NeilBird.Wearealsogratefultoexternalreviewers,TimmTennigkeit,MatthiasSeebauer,GiulianaZanchi,andinternalreviewersfromtheWorldBank,NeetaHoodaandRamaChandraReddythatcontributedtothedevelopmentofthismethodology.I.1BriefdescriptionThismethodologyproposestoestimateandmonitorgreenhousegasemissionsofprojectactivitiesthatreduceemissionsinagriculturethroughadoptionofsustainablelandmanagementpractices(SALM)intheagriculturallandscape.Inthismethodology,SALMisdefinedasanypracticethatincreasesthecarbonstocksontheland.ExamplesofSALMare(butarenotlimitedto)manuremanagement,useofcovercorps,andreturningcompostedcropresidualstothefieldandtheintroductionoftreesintothelandscape.Themethodologyisapplicabletoareaswherethesoilorganiccarbonwouldremainconstantordecreaseintheabsenceoftheproject.ThemethodologyinitscurrentformisapplicableonlyforuseofRoth-Cmodel.TheestimatesofuncertaintyandActivityBaselineandMonitoringSurvey(ABMSa)inthecurrentmethodologyareadaptedfortheRoth-Cmodelonly.Applicationofthemethodologyforuseofothermodelswillrequireataminimum,revisionstoestimatesofuncertaintyandABMSspecifictothemodelapplied.Ifhowever,theparametersusedbyanothermodelcorrespondtosomeorallparametersincludedinthismethodology,thenthemethodologyisapplicable,providedapplicabilityconditionsofthemethodologyaremet.Thismethodologyisbasedontheproject“WesternKenyaSmallholderAgricultureCarbonFinanceproject”inKenya.Thebaselinestudy,monitoringandprojectdocumentarebeingpreparedbytheFoundationViPlanterartrad(“Weplanttrees”)withassistancefromUniqueForestryConsultantsltd.,theSwedishInternationalAgency(Sida)andtheInternationalBankforReconstructionandDevelopmentasTrusteeoftheBiocarbonFund.I.2ApplicabilityconditionsThismethodologyisapplicabletoprojectsthatintroducesustainableagriculturelandmanagementpractices(SALM)intoanagriculturallandscapesubjecttothefollowingconditions:a)Landiseithercroplandorgrasslandatthestartoftheproject;b)Theprojectdoesnotoccuronwetlands;c)Thelandisdegradedandwillcontinuetobedegradedorcontinuetodegrade;d)Theareaoflandundercultivationintheregionisconstantorincreasinginabsenceoftheproject;e)Forestland,asdefinedbythenationalCDMforestdefinition,intheregionisconstantordecreasingovertime;f)Theremustbestudies(forexample:scientificjournals,universitytheses,localresearchstudiesorworkcarriedoutbytheprojectproponent)thatdemonstratethattheuseoftheRoth-Cmodel1isappropriatefor:(a)theIPCCclimaticregionsof2006IPCCAFOLU1ForROTH-Cseehttp://www.rothamsted.bbsrc.ac.uk/aen/carbon/rothc.htm.VM0017,Version1SectoralScope14Page5Guidelinesb,or(b)theagroecologicalzone(AEZ)inwhichtheprojectissituated,usingoneofoptionspresentedbelow:2Option1:ThestudiesusedinsupportoftheprojectshouldmeettheguidanceonmodelapplicabilityasoutlinedinIPCCAFOLU2006guidelinesinordertoshowthatthemodelisapplicablefortherelevantIPCCclimaticregion.Theguidancenotesthatanappropriatemodelshouldbecapableofrepresentingtherelevantmanagementpracticesandthatthemodelinputs(i.e.,drivingvariables)arevalidatedfromcountryorregion-specificlocationsthatarerepresentativesofthevariabilityofclimate,soilandmanagementsystemsinthecountry.Option2:Whereavailable,theuseofnational,regionalorglobal3levelagroecologicalzone(AEZ)classificationisappropriatetoshowthatthemodelhasbeenvalidatedforsimilarAEZs.ItisrecognizedthatnationallevelAEZclassificationsarenotreadilyavailable;thereforethismethodologyallowstheuseoftheglobalandregionalAEZclassification4.Whereaprojectareaconsistsofmultiplesites,itisrecognizedthatstudiesdemonstratingmodelvalidityusingeitherOption1orOption2maynotbeavailableforeachofthesitesintheprojectarea.Insuchcasesthestudyusedshouldbecapableofdemonstratingthatthefollowingtwoconditionsaremet:(i)Themodelisvalidatedforatleast50%ofthetotalprojectareawheretheprojectareacoversupto50,000ha5;oratleast75%ofthetotalprojectareawhereprojectareacoversgreaterthan50,000ha;and(ii)Theareaforwhichthemodelisvalidatedgeneratesatleasttwo-thirdsofthetotalprojectemissionreductions.Explanation/justificationApplicabilityconditions(a)-(d)allowforthesimplificationofthebaseline.Withtheseconditionsweconservativelyassumethatthelandsofagivenlandusetypearedegradinginabsenceoftheproject.Specificallyitislikelythat:a)ifthelandiscropland,thenitwillremaincroplandinabsenceoftheproject;otherwiseb)thelandisgrasslandsthatwillremaingrasslandorbeconvertedtocroplandsinabsenceoftheproject.2TheIPCCclimaticregionsareshowninFigure3A.5.1page3.38.3Theagro-ecologicalzone(AEZ)methodologyisstandardizedframeworkforthecharacterizationofclimate,soilandterrainconditionsrelevanttoagriculturalproduction.Cropmodellingandenvironmentalmatchingproceduresareusedtoidentifycrop-specificlimitationsofprevailingclimate,soilandterrainresources,underassumedlevelsofinputsandmanagementconditions.4ThedetailsofglobalagroecologicalzonesclassificationoutlinedbyFoodandAgriculturalOrganizationofUnitedNations(FAO),Rome,ItalyandInternationalInstituteforAppliedSystemsAnalysis,Laxenburg,Austriaareavailableat:http://www.iiasa.ac.at/Research/LUC/GAEZ/index.htm5Theprojectareaof50,000haisreasonabletakingintoaccountthewiderangeofsoilcarbonsequestrationrates,whichdependonclimate,soilandlandusecharacteristics.TheprojectareaisalsoinfluencedbytheratesofSALMadoptionthatareinturninfluencedbyfactorssuchasfarmerawarenesstoSALM,institutionalsupportandextensionsystems.Assumingaconservativesoilsequestrationrateof0.5tC/ha/yrappliedinCDMA/Rmethodologies,aprojectof50,000haislikelytogenerate25,000tC/ha/yr,andisconsideredreasonabletakingintoaccounttheimplementation,monitoringandverificationcosts.VM0017,Version1SectoralScope14Page6DegradationshallbedemonstratedusingthelatestversionoftheCDMEBapprovedtoolToolfortheidentificationofdegradedordegradinglandsforconsiderationinimplementingCDMA/Rprojectactivities.cApplicabilitycondition(e)ensuresthat,inabsenceoftheproject,thelandwouldlikelynothavebeen:a)abandonedandallowedtonaturallyregeneratetoforest,orb)afforestedorreforested.Withtheseapplicabilityconditionswecanconservativelyassumethatthesoilorganiccarbonwouldremainconstantordecreasewithtimeinabsenceoftheproject.Finally,themethodologyreliesonmodelledsoilorganiccarbon.Toassurethatthemodelresultsarereasonable,theremustbestudies(forexample;scientificjournals,universitytheses,localresearchstudiesorworkcarriedoutbytheprojectproponent)thatdemonstratetheuseoftheselectedmodelisvalidfortheprojectregion.Thisisfulfilledwithapplicabilitycondition(f)inaccordancewiththeVCSguidanceincludedinSection2.3oftheVCSStandardVersion3.1onquantificationofGHGemissionsand/orremovalsrelatedtothemethodology.I.3SelectedcarbonpoolsandemissionsourcesTable1:SelectedcarbonpoolsCarbonpoolsSelected(answerwithYesorNo)Explanation/justificationAbovegroundYesAcarbonpoolcoveredbySALMpractices.TheincreaseinabovegroundbiomassofwoodyperennialsplantedaspartoftheSALMpracticesispartofthemethodology.TheincreaseinabovegroundbiomassofannualcropsisnotconsideredsinceintheIPCCaccountingsystem,annualcropsareignored.TheabovegroundbiomassiscalculatedusingtheCDMA/RToolEstimationofcarbonstocksandchangeincarbonstocksoftreesandshrubsinA/RCDMprojectactivitiesdandSimplifiedbaselineandmonitoringmethodologiesforsmall-scaleafforestationandreforestationprojectactivitiesunderthecleandevelopmentmechanismimplementedongrasslandsorcroplandsAR-AMS0001eBelowgroundYesBelow-groundbiomassstockisexpectedtoincreaseduetotheimplementationoftheSALMactivities.TheincreaseinbelowgroundbiomassofwoodyperennialsplantedaspartoftheSALMpracticesispartofthemethodology.TheincreaseinbelowgroundbiomassofannualcropsisnotconsideredsinceintheIPCCaccountingsystem,annualcropsareignored.ThebelowgroundbiomassiscalculatedusingtheCDMA/RToolEstimationofcarbonstocksandchangeincarbonstocksoftreesandshrubsinA/RCDMprojectactivitiesdandSimplifiedbaselineandmonitoringmethodologiesforsmall-scaleafforestationandreforestationprojectactivitiesunderthecleandevelopmentmechanismimplementedonVM0017,Version1SectoralScope14Page7grasslandsorcroplandsAR-AMS0001eDeadwoodNoNoneoftheapplicableSALMpracticesdecreasedeadwood.Itcanbeconservativelyignored.LitterNoNoneoftheapplicableSALMpracticesdecreasetheamountoflitter.Itcanbeconservativelyignored.SoilorganiccarbonYesAmajorcarbonpoolcoveredbySALMpractices.WoodproductsNoNoneoftheapplicableSALMpracticesdecreasetheamountofwoodproducts.Itcanbeconservativelyignored.Table2:EmissionssourcesincludedinorexcludedfromtheprojectboundarySourcesGasIncluded/excludedExplanation/justificationUseoffertilizersCO2ExcludedNotapplicableCH4ExcludedNotapplicableN2OIncludedMaingasforthissource.ThesearecalculatedusingtheCDMA/RToolEstimationofdirectnitrousoxideemissionfromnitrogenfertilization(version01)fUseofN-fixingspeciesCO2ExcludedNotapplicableCH4ExcludedNotapplicableN2OIncludedMaingasforthissource.ThesearecalculatedusingthetoolEstimationofdirectnitrousoxideemissionfromN-fixingspeciesandcropresidues(SectionVI.1)BurningofbiomassCO2ExcludedHowever,carbonstockdecreasesduetoburningareaccountedasacarbonstockchangeCH4IncludedNon-CO2emissionsfromtheburningofbiomass.ThesearecalculatedusingthetoolEstimationofnon-CO2emissionsfromtheburningofcropresidues(SectionVI.3)N2OIncludedNon-CO2emissionsfromtheburningofbiomass.ThesearecalculatedusingEstimationofnon-CO2emissionsfromtheburningofcropresidues(SectionVI.3)BurningoffossilfuelsCO2IncludedCO2andnon-CO2emissionsarecalculatedusingthetoolEstimationofemissionsfromtheuseoffossilfuelsinagriculturalmanagementCH4IncludedN2OIncludedI.4SummarydescriptionofmajorbaselineandprojectmethodologicalstepsI.4.1BaselinemethodologyThebaselineemissionsandremovalsareestimatedusingthefollowingsteps:1.Identifyanddelineatetheprojectboundary;VM0017,Version1SectoralScope14Page82.Identifythebaselinescenarioanddemonstrateadditionality;3.Estimatetheannualemissionsfromtheuseofsyntheticfertilizers;4.EstimatetheannualemissionsfromtheuseofN-fixingspecies;5.Estimatetheannualemissionsfromtheburningofagriculturalresidues;6.Estimatetheannualremovalsfromexistingwoodyperennials;7.Estimatetheannualemissionsfromtheuseoffossilfuelsforagriculturalmanagement;and8.Estimatetheequilibriumsoilorganiccarboninthebaselineassumingnochangesinagriculturalmanagementoragriculturalinputs.I.4.2ProjectmethodologyTheprojectemissionsandremovalsareestimatedusingthefollowingsteps:1.Estimatetheannualemissionsfromtheuseofsyntheticfertilizers;2.EstimatetheannualemissionsfromtheuseofN-fixingspecies;3.Estimatetheannualemissionsfromtheburningofagriculturalresidues;4.Estimatetheannualemissionsandremovalsfromwoodyperennials;5.Estimatetheannualemissionsfromtheuseoffossilfuelsforagriculturalmanagement;Usingthemodelestimatetheparametersin6,7and8below:6.Estimatetheequilibriumsoilorganiccarbonintheprojectbasedonestimatedormeasuredchangesinagriculturalmanagementoragriculturalinputs;7.Converttheequilibriumsoilorganiccarbonintheprojecttotransientsoilorganiccarbonassumingalineartransitionperiod;8.Estimatetheannualemissionsandremovalsfromsoilorganiccarbon;and9.Estimateleakagefromtheincreaseintheuseofnon-renewablebiomassthatoccursfromthedisplacementofbiomassusedforenergytoagriculturalinputs.I.4.3MonitoringmethodologyThefollowingstepsarerequiredaspartofthemonitoringmethodology:1.Recordtheamountoffossilfuelsusedintheproject;2.Recordtheamountofsyntheticfertilizersusedintheproject;3.EstimatetheamountofproductionofbiomassbyN-fixingspeciesintheproject;4.Estimatetheamountofagriculturalresiduesburntintheproject;5.Recordtheproductionfromareasofvarioustypesofagriculturallandmanagement;6.Measurethechangesinbiomassinwoodyperennials;7.Estimatethereductionintheamountofbiomassusedforenergythatisaresultoftheproject.ThesummarydescriptionofmajorbaselineandprojectmethodologicalstepsnotedabovehasbeenelaboratedinthesectionsII,IIIandIVofthemethodology.VM0017,Version1SectoralScope14Page9SectionII:BaselinemethodologydescriptionII.1ProjectboundaryThe“projectboundary”geographicallydelineatesalllandsthatareunderthecontroloftheprojectproponentfortheproposedsustainableagriculturallandmanagement(SALM)activities6.TheSALMprojectactivitiesmaycontainmorethanonediscreteareaofland.II.2ProcedureforselectionofmostplausiblebaselinescenarioThebaselinescenarioisidentifiedasexistingorhistoricallandmanagementpractices.TheprojectproponentshallusethemostrecentversionoftheCombinedtooltoidentifythebaselinescenarioanddemonstratetheadditionalityinA/RCDMprojectactivitiesg,mutatismutandis.II.3AdditionalityTheprojectproponentshallusethemostrecentversionoftheCombinedtooltoidentifythebaselinescenarioanddemonstratetheadditionalityinA/RCDMprojectactivities,mutatismutandis.II.4EstimationofbaselineGHGemissionsandremovalsII.4.1BaselineemissionsduetofertilizeruseThebaselineemissionsfromsyntheticfertilizeruse,BEFt,arecalculatedusingthelatestversionoftheCDMA/RToolEstimationofdirectnitrousoxideemissionfromnitrogenfertilizationf.Emissionsfrommanureapplicationarenotexpectedtochangewiththeproject,astheprojectactivitydoesnotresultinachangeinanimalpopulation.Forthisreasonthebaselineemissionsfrommanureapplicationcanbeignored.II.4.2BaselineemissionsduetotheuseofN-fixingspeciesThebaselineemissionsfromtheuseofN-fixingspecies,BENt,arenotcalculated,buttheprojectproponentshallrecordtheareaunderN-fixingspeciespriortoprojectimplementation.II.4.3BaselineemissionsduetoburningofbiomassThebaselineemissionsduetoburningofbiomass,BEBBt,arecalculatedusingthetoolEstimationofnon-CO2emissionsfromtheburningofcropresidues(SectionVI.3).II.4.4BaselineremovalsfromexistingwoodyperennialsThebaselineremovalsfromwoodyperennials,BRWPt,arecalculatedusingthelatestversionoftheCDMA/RToolEstimationofcarbonstocksandchangeincarbonstocksoftreesandshrubsinA/RCDMprojectactivitiesd.II.4.5BaselineemissionsfromuseoffossilfuelsinagriculturalmanagementThebaselineemissionsduetocombustionoffossilfuelsinagriculturalmanagementinbaseline,BEFFt,iscalculatedusingthetoolEstimationofemissionsfromcombustiontheuseoffossilfuelsinagriculturalmanagement(SectionVI.2).6InaccordancewiththeVCSrules.VM0017,Version1SectoralScope14Page10II.4.6EquilibriumsoilorganiccarbondensityinmanagementsystemsUsingananalyticmodelthathasbeenacceptedinscientificpublications(forexample:Roth-Csoilorganiccarbonmodelh)estimatethesoilorganiccarbon(SOC)densitytoadepthof30cm,atequilibriuminidentifiedmanagementpracticesoncroplandandgrassland.Soilcarbonmodellingshouldcountonlybiomassinputstosoilfromwithintheprojectboundary.TheSOCdensityshouldbeestimatedusingarea-weightedaveragevaluesofmodelinputparametersforeachmanagementpracticeidentifiedinStep4underuncertaintyanalysis.Thebaselinesoilorganiccarbonatequilibriumcanbeestimatedusing:GGGCCCmmGtmGmmCtmCtequilSOCBASOCBABS,,,,,,,1Where:tequilBS,BaselineSOCinequilibriumyeart,tCtmCCBA,,Baselineareasincroplandwithmanagementpractice,mC,yeart,haCmCSOC,Soilorganiccarbondensityatequilibriumforcroplandwithmanagementpractice,mC,tC/hamCAnindexforcroplandmanagementtypes,unitlesstmGGBA,,Baselineareasingrasslandwithmanagementpractice,mG,yeart,haGmGSOC,Soilorganiccarbondensitytoadepthof30cm,atequilibriumforgrasslandwithmanagementpractice,mG,tC/hamGAnindexforgrasslandmanagementtypes,unitlessII.4.7BaselineremovalsduetochangesinsoilorganiccarbonSincetheapplicabilityconditionslimittheprojecttolandsthatareunderagriculturalpressureandaredegrading,itcanbeconservativelyassumedthatthebaselineremovalsduetochangesinSOCarezero.Therefore0tBRS2Where:tBRSBaselineremovalsduetochangesinsoilorganiccarboninyeart,tCO2e.II.4.8TotalbaselineemissionsandremovalsThetotalbaselineemissionsandremovalsaregivenby:tttttBRWPBEBBBEFFBEFBE3Where:tBEBaselineemissionsinyeart,tCO2etBEFBaselineemissionsduetonitrogenfertilizeruseinyeart,tCO2e.VM0017,Version1SectoralScope14Page11tBEFFBaselineemissionsduetouseoffossilfuelsinagriculturalmanagementinyeart,tCO2e.tBEBBBaselineemissionsduetobiomassburninginyeart,tCO2e.tBRWPBaselineremovalsduetochangesinwoodyperennialsinyeart,tCO2e.SectionIII:ProjectmethodologydescriptionIII.1EstimationofprojectGHGemissionsandremovalsWherethesumofincreaseingreenhousegasemissionsfromeachoftheidentifiedemissionsourcesinthemethodologyandleakageduetodisplacementofrenewablebiomassisinsignificantthesecanbeignored7.III.1.1ProjectemissionsduetofertilizeruseTheprojectemissionsfromsyntheticfertilizeruse,PEFt,arecalculatedusingthelatestversionoftheCDMA/RToolEstimationofdirectnitrousoxideemissionfromnitrogenfertilization(version01)f.Emissionsfrommanureapplicationarenotexpectedtochangewiththeproject,astheprojectactivitydoesnotresultinachangeintheanimalpopulation.Forthisreasontheprojectemissionsfrommanureapplicationcanbeignored.III.1.2ProjectemissionsduetotheuseofN-fixingspeciesOnlytheemissionsduetoincreasedareaunderN-fixingspeciesshallbeaccounted.IftheareacroppedwithN-fixingspeciesintheprojectismorethan50%largerthantheareaunderN-fixingspeciesinthebaselinethentheprojectemissionsfromtheuseofN-fixingspecies,PENt,arecalculatedusingthetoolEstimationofdirectnitrousoxideemissionfromN-fixingspeciesandcropresidues(SectionVI.1).InallothercasesestimationofemissionsfromN-fixingspeciesisnotrequired.Thisdifferentiationisbasedontheassumptionthat:a)theprojectdoesnotoccuronwetlands;b)theprojectoccursondegradedlandssothatthelandsarelikelynitrogendeficient.TheseassumptionsmeanthatthenitrogenemissionstendtobesmallerthanestimatedbytheTier1IPCCestimationmethodology.III.1.3ProjectemissionsduetoburningofbiomassTheprojectemissionsduetoburningofbiomass,PEBBt,arecalculatedusingthetoolEstimationofnon-CO2emissionsfromtheburningofcropresidues(SectionVI.3).7Significanceisdefinedsothatthesumofincreaseingreenhousegasemissionsfromthedisplacementofrenewablebiomassandeachofemissionsourcesidentifiedinthemethodologyislessthan5%oftheemissionreductionsbytheproject.ThesignificanceoftheemissionwillbetestedusingthelatestversionoftheCDMEBapprovedToolfortestingsignificanceofGHGemissionsinA/RCDMprojectactivities(http://cdm.unfccc.int/methodologies/ARmethodologies/tools/ar-am-tool-04-v1.pdfVM0017,Version1SectoralScope14Page12III.1.4ProjectremovalsfromwoodyperennialsTheprojectremovalsfromwoodyperennials,PRWPt,arecalculatedusingportionsofCDMA/RSimplifiedbaselineandmonitoringmethodologiesforsmall-scaleafforestationandreforestationprojectactivitiesunderthecleandevelopmentmechanismimplementedongrasslandsorcroplandsAR-AMS0001e.III.1.5ProjectemissionsduetouseoffossilfuelsforagriculturalmanagementTheprojectemissionsduetotheuseoffossilfuelsforagriculturalmanagement,PEFFt,arecalculatedusingthetoolEstimationofemissionsfromtheuseoffossilfuelsinagriculturalmanagement(SectionVI.2)III.1.6ProjectequilibriumsoilorganiccarbondensityinmanagementsystemsUndertakeanActivityBaselineandMonitoringSurvey(ABMS)toidentifythedominantagriculturalmanagementpracticesforcroplandsandgrasslands.TheABMSshouldestimateorrecorddetailsofeachmanagementpractice.ForexamplewhenusingtheRoth-Cmodel,oneshouldrecord;1.itsarea;2.theaverageannualbiomassproductionfromwithintheprojectboundary;3.theaveragebiomassleftonsiteorinput;4.theaveragenumberandtypeofgrazinganimals;5.theamountofmanureinput;and6.theamountofnitrogenfertilizersinput.Usingananalyticmodelthathasbeenacceptedinscientificpublicationsandvalidatedfortheprojectregion(forexample:Roth-Csoilorganiccarbonmodeli)estimatethesoilorganiccarbon(SOC)density,toadepthof30cm,atequilibriumineachoftheidentifiedmanagementpracticesineachofthelandusecategories(croplandandgrassland).Thesoilcarbonmodellingshouldcountonlybiomassinputstosoilfromwithintheprojectboundary.Thedetailsofeachmanagementpracticethatarerecordedwilldependonthechoiceofsoilmodelselectedandthetypeofactivitybeingpromoted.Forexample,iftheactivityisimprovingtheuseofcropresiduesthenforusewiththeRoth-Cmodel,theABMSshouldrecord:Areaofeachcrop(ha)Productivityofeachcrop(kg/ha)Theamountofcropresidues(kg/ha)8ExistingcropresiduemanagementpracticesandtheirfrequencyFuturecropresiduemanagementpracticesthatwillbeimplementedwiththeprojectIftheprojectactivityincludesimprovingthemanagementofmanure,thenforusewiththeRoth-Cmodel,theABMSshouldalsorecord:Areaofgrazing(ha)ThenumberoflivestockperanimaltypeTheamountofmanureproduced(kg/haorkg/an)9Existingmanuremanagementpracticesandtheirfrequency8Amountofcropresiduesneednotbemeasureddirectly.ItcanalsobeestimatedfromthecropproductionusingequationslistedinTable11.2inVolume4ofthe2006IPCCGuidelines9Amountofmanureneednotbemeasureddirectly.ItcanalsobeestimatedfromthenumberandtypeofanimalusingvaluesfromTable10A-4inChapter10ofthe2006IPCCGuidelines.VM0017,Version1SectoralScope14Page13FuturemanuremanagementpracticesthatwillbeimplementedwiththeprojectIftheprojectactivityincludesimprovedtillagepractices,thenforusewiththeRoth-Cmodel,theABMSshouldrecord:Areaundertillage(ha)TypeanddepthoftillageExistingtillingpracticesandtheirfrequencyFuturetillingpracticesthatwillbeimplementedwiththeprojectIftheprojectactivityincludesagroforestry,then,forusewiththeRoth-Cmodel,theABMSshouldrecord:Areaofagroforestry(ha)NumberandspeciesoftreesusedDiameteratbreastheight(DBH)oftreesFuturenumbersoftreesthatwillbeimplementedwiththeprojectTheapplicabilityoftheselectedmodelandparametersrecordedforthevariousactivities,andsoilandclimatetypesaredependentontheactualproject.Sincetheseareprojectspecificandnotmethodologyspecific,theyshouldbediscussedindetailintheprojectdescription.TheSOCdensityshouldbeestimatedusingarea-weightedaveragevaluesofmodelinputparametersforeachmanagementpracticeidentified.Theprojectsoilorganiccarbonatequilibriumcanbeestimatedusing:GGGCCCmtmGtmGmtmCtmCtequilSOCPASOCPAPS,,,,,,,,,4Where:tequilPS,ProjectSOCinequilibriumyeart,tCtmCCPA,,Projectareasincroplandwithmanagementpractice,mC,yeart,hatmCCSOC,,Soilorganiccarbondensityatequilibriumforcropland,toadepthof30cm,withmanagementpractice,mC,atyeart,tC/hamCAnindexforcroplandmanagementtypes,unitlesstmGGPA,,Projectareasingrasslandwithmanagementpractice,mG,yeart,hatmGGSOC,,Soilorganiccarbondensityatequilibrium,toadepthof30cm,forgrasslandwithmanagementpractice,mG,atyeart,tC/hamGAnindexforgrasslandmanagementtypes,unitlessIII.1.7ProjectestimateofsoilorganiccarbonwithtransitionsTheestimateofsoilorganiccarbonwithtransitionscanbeestimatedusing:tPSDPStDttequilt1,15VM0017,Version1SectoralScope14Page14Where:tPSEstimateoftheprojectSOCinyeart,tCtequilPS,EstimateoftheprojectSOCinequilibriumyeart,tCDThetransitionperiodrequiredforSOCtobeatequilibriumafterachangeinlanduseormanagementpractice,yeartTimeincrement=1yearForvaluesoft-D+1lessthanzero(thestartoftheproject)assumethattequilPS,=0,tequilBS.Thesevaluesarerequiredifoneistryingtoestimatetheabsolutesoilorganiccarboninthebaseline.SincetheultimategoalofthemethodologyistheincreaseordecreaseinSOCwiththeprojectthesevaluesarenotrequiredsincetheyappearinboththebaselineandprojectestimationtechnique.ValueofDmaybechosenfrompublisheddatafromlocalorregionalstudiesorthemodellingexercise.Inabsenceofsuchdata,theIPCCTier1methodologydefaultfactorof20yearsmayalsobeused.III.1.8EstimateofprojectremovalsduetochangesinsoilorganiccarbonTheestimateofprojectremovalsduetochangesinsoilorganiccarbonisgivenby:12441tttPSPSPRS6Where:tPRSEstimateofprojectremovalsduetochangesinsoilorganiccarboninyeart,tCO2e.tPSEstimateoftheprojectSOCinyeart,tC1tPSEstimateoftheprojectSOCinyeart-1,tCIII.1.9ActualnetGHGemissionsandremovalsbysinksTheactualnetGHGemissionsandremovalsbysinksaregivenby:tttttttPRSPRWPPEBBPENPEFFPEFPE7Where:tPEEstimateofactualnetprojectGHGemissionsandremovalsbysinksinyeart,tCO2etPEFEstimateofprojectemissionsduetonitrogenfertilizeruseinyeart,tCO2e.tPEFFEstimateofprojectemissionsduetoburningoffossilfuelsforagriculturalmanagementinyeart,tCO2e.tPENEstimateofprojectemissionsduetotheincreaseuseofN-fixingspeciesinyeart,tCO2e.tPEBBEstimateofprojectemissionsduetobiomassburninginyeart,tCO2e.tPRWPEstimateofprojectremovalsduetochangesinbiomassofwoodyperennialsinyeart,tCO2e.VM0017,Version1SectoralScope14Page15tPRSEstimateofprojectremovalsduetochangesinsoilorganiccarboninyeart,tCO2e.III.2EstimationofleakageTheonepotentialsourceofleakageisanincreaseintheuseoffuelwoodand/orfossilfuelsfromnon-renewablesourcesforcookingandheatingpurposesduetothedecreaseintheuseofmanureand/orresidualsasanenergysource.Leakageduetotheincreaseintheuseoffuelwoodfromnon-renewablesourcesforcookingandheatingpurposesmaybeasignificantsourceofleakageifmanureorotheragriculturalresidualsusedforcookingandheatingaretransferredtothefieldsaspartoftheproject.Intheproject,thiscouldbeminimizedbytheintroductionofwoodyperennialsforfuelinthelandscapeand/orimprovementofenergyefficiencyofbiomassforcookingandheating.Insituationsofthisformofleakage,theleakagefromaswitchtonon-renewablebiomassuse,LNRBt,iscalculatedinaccordancewithSectionIV.2.6(whichisadaptedfromthesmallscalemethodologyAMS-I.E.SwitchfromNon-RenewableBiomassforThermalApplicationsbytheUserj.)However,wherethisissignificant,leakageduetoswitchtofossilfuels(tLFF)shallbeestimatedinaccordancewithEquation11inSectionIV.2.6.Table3:EmissionssourcesincludedinorexcludedfromleakageSourcesGasIncluded/excludedJustification/ExplanationofchoiceSoilorganiccarbonstockchangesCO2ExcludedApplicabilityconditionCH4ExcludedNotapplicableN2OExcludedNotapplicableIncreasefossilfuelforcookingCO2IncludedCH4ExcludedNotapplicableN2OExcludedNotapplicableIncreasenon-renewablebiomassforcookingCO2IncludedCH4ExcludedNotapplicableN2OExcludedNotapplicableIII.3EstimationofnetanthropogenicGHGemissionsandremovalsTheestimationofnetanthropogenicGHGremovalbysinksismadeusing:ttttLHEPEBER8Where:tREstimateofnetanthropogenicGHGemissionsandremovalsinyeart,tCO2etPEEstimateofactualnetprojectGHGemissionsandremovalsinyeart,tCO2eVM0017,Version1SectoralScope14Page16tBEBaselineemissionsandremovalsinyeart,tCO2etLHETheleakagefromaswitchtonon-renewablebiomassorfossilfuelinplaceofthebiomassusedforcooking/heatingdivertedtoagriculturalsysteminyeart,tCO2eSectionIV:MonitoringmethodologydescriptionIV.1BaselineGHGemissionsandremovalsIV.1.1SamplingdesignTheprojectproponentshallusetheCDMEBapprovedGeneralGuidelinesForSamplingAndSurveysForSmall-ScaleCDMProjectActivitieskforsamplingandsurveydesign.Atthestartoftheproject,theprojectproponentshallundertakeanActivityBaselineandMonitoringSurvey(ABMS)toidentifythedominantagriculturalmanagementpracticesforcroplandsandgrasslands.TheABMSshouldestimateorrecorddetailsofeachmanagementpractice.ForexamplewhenusingtheRoth-Cmodel,oneshouldrecord;1.itsarea;2.theannualbiomassproductionfromwithintheprojectboundary;3.theannualbiomassleftonthefields;4.thenumberandtypeofgrazinganimals;5.theamountofmanureinput;6.theamountofnitrogenfertilizersinput;7.theamountofN-fixingspecies;8.theamountofbiomassburnt;and9.theexistenceandamountofwoodyperennials(treesandbushes).Theinformationrecordedwilldependonthechoiceofsoilmodelselectedandthetypeofactivitybeingpromoted.Forexample,iftheprojectactivityisimprovingtheuseofcropresiduesthenforusewiththeRoth-Cmodel,theABMSshouldrecordinthebaseline:Areaofeachcrop(ha)Productivityofeachcrop(kg/ha)Theamountofcropresidues(kg/ha)10ExistingcropresiduemanagementpracticesandtheirfrequencyFuturecropresiduemanagementpracticesthatwillbeimplementedwiththeprojectIftheprojectactivityincludesimprovingthemanagementofmanure,thenforusewiththeRoth-Cmodel,theABMSshouldrecordinthebaseline:Areaofgrazing(ha)ThenumberoflivestockperanimaltypeTheamountofmanureproduced(kg/haorkg/an)1110Amountofcropresiduesneednotbemeasureddirectly.ItcanalsobeestimatedfromthecropproductionusingequationslistedinTable11.2inVolume4ofthe2006IPCCGuidelines.11Amountofmanureneednotbemeasureddirectly.ItcanalsobeestimatedfromthenumberandtypeofanimalusingvaluesfromTable10A-4inChapter10ofthe2006IPCCGuidelines.VM0017,Version1SectoralScope14Page17ExistingmanuremanagementpracticesandtheirfrequencyFuturemanuremanagementpracticesthatwillbeimplementedwiththeprojectIftheprojectactivityincludesimprovedtillagepractices,thenforusewiththeRoth-Cmodel,theABMSshouldrecordinthebaseline:Areaundertillage(ha)TypeanddepthoftillageExistingtillingpracticesandtheirfrequencyFuturetillingpracticesthatwillbeimplementedwiththeprojectIftheprojectactivityincludesagroforestry,thenforusewiththeRoth-Cmodel,theABMSshouldrecordinthebaseline:Areaofagroforestry(ha)NumberandspeciesoftreesusedDiameteratbreastheight(DBH)oftreesFuturenumbersoftreesthatwillbeimplementedwiththeprojectTheapplicabilityoftheselectedmodelandparametersrecordedforthevariousactivities,andsoilandclimatetypesaredependentontheactualproject.Sincetheseareprojectspecificandnotmethodologyspecific,theyshouldbediscussedindetailintheprojectdescription.Othermodelinputparametersthatmayberequiredbytheselectedmodel,suchasclimaticdata,claycontentandtextureofsoilslcanbeacquiredfromglobalornationaldatasetsanddonotneedtobemeasuredbytheprojectproponent.Theprojectproponentmayuseclimaticdatacollectedbythemeteorologicalstation/sinproximitytotheprojectareaorusepublisheddataanddeterminetherelevanceofthisdatatotheprojectinthefollowingways:Thedatabeingappliedtotheprojecthasbeenobtainedfromoneormoremeteorologicalstation/swhosemeteorologicalcoverageincludestheprojectarea.Thedatabeingappliedtotheprojecthasbeenobtainedfromoneormoremeteorologicalstation/swhosemeteorologicalcoveragecanbeshowntobeapplicabletotheprojectareabasedonexpertopinion.Wheredatafromameteorologicalstation/sisnotavailable,projectentitiesmayusepublishedclimaticdatabydemonstratingthatsuchdataisapplicabletotheprojectarea,usingexpertopinion.Itisrecommendedthattheprojectproponentstratifiesbycropsystem,tillagesystem,useofcropresidues,applicationofmanureandclaycontentofsoilsandrelevantclimaticvariablesasaminimum.IV.1.2DatatobecollectedandarchivedforbaselineGHGemissionsandremovalsSectionData/ParameterUnitDescriptionRecordingfrequencySourceII.4.10tBSNkgSyntheticfertilizeruseProjectstartABMSII.4.20,tiCropkgd.m./haHarvestedannualdrymatteryieldforcropiProjectstartABMSII.4.20,tiAreahatotalannualareaharvestedofcropiorN-fixingtreesiProjectstartABMSII.4.20,tiAreaburnthaannualareaofcropiorN-fixingtreesiburntProjectstartABMSVM0017,Version1SectoralScope14Page18II.4.30,tCMBtd.m.MassofcropresiduesburntProjectstartABMSII.4.30,tGMBtd.m.MassofgrasslandsresiduesburntProjectstartABMSII.4.3FCunitlessCombustionfactorsthatdependonvegetationtypeProjectstartNationalorregionalstudiesII.4.4SeeA/RMethodologicalToolEstimationofcarbonstocksandchangeincarbonstocksoftreesandshrubsinA/RCDMprojectactivitiesdforacompletelistofdataandparameterscollectedandarchived.II.4.5LitresFossilfuelconsumedinvehicleorequipmentrecordedbyvehicleandfueltypeProjectstartABMSII.4.60,,tmCCBAhaBaselineareasincroplandwithmanagementpractice,mCProjectstartABMSII.4.60,,tmCCSOCtC/haSoilorganiccarbondensity,toadepthof30cm,atequilibriumforcroplandwithmanagementpractice,mCProjectstartModelledII.4.60,,tmCCBPt/ha/monthBaselineproductionincroplandpermonthwithmanagementpracticefromwithintheproject,mCProjectstartABMSII.4.60,,tmCCBRt/tprod/monthBaselinefractionofproductionreturnedasresiduespermonth(calculatedfrom0,,tmCCBP)incroplandwithmanagementpractice,mCProjectstartABMSII.4.60,,tmCCBMt/ha/monthBaselinemanureinputincroplandpermonthwithmanagementpractice,mCProjectstartABMSII.4.60,,tmCCBCCBaselinecovercropflagpermonthincroplandpermonthwithmanagementpractice,mCProjectstartABMSII.4.60,,tmGGBAhaBaselineareasingrasslandwithmanagementpractice,mG,ProjectstartABMSII.4.60,,tmGGSOCtC/haSoilorganiccarbondensity,toadepthof30cm,atequilibriumforgrasslandwithmanagementpractice,mGProjectstartModelledVM0017,Version1SectoralScope14Page19II.4.60,,tmGGBPt/ha/monthBaselineproductioningrasslandpermonthwithmanagementpracticefromwithintheproject,mGProjectstartABMSII.4.60,,tmGGBRt/tprod/monthBaselinefractionofproductionreturnedasresidualspermonth(calculatedfrom0,,tmGGBP)ingrasslandwithmanagementpractice,mGProjectstartABMSII.4.60,,tmGGBMt/ha/monthBaselinemanureinputingrasslandpermonthwithmanagementpractice,mGProjectstartABMSII.4.60,,tmGGBCCBaselinecovercropflagpermonthingrasslandpermonthwithmanagementpractice,mGProjectstartABMSII.4.6mTemp°CAveragetemperaturepermonthProjectstartDatarelevanttotheprojectareaII.4.6mPrecmmAverageprecipitationpermonthProjectstartDatarelevanttotheprojectareaII.4.6mEvapmm/dayAverageevapotranspirationpermonthProjectstartDatarelevanttotheprojectareaIV.2Ex-anteandex-postnetanthropogenicGHGemissionsandremovalsIV.2.1Datatobecollectedandarchivedforex-anteprojectGHGemissionsandremovalsRecordallassumptionsandsourcesofassumptions.IV.2.2Datatobecollectedandarchivedforex-anteleakageTheonlysourceofleakagepossibleasaresultoftheprojectistheleakagefromaswitchtonon-renewablebiomassuseorfossilfuels.Procedurestoestimateleakagehavebeenincludedex-post;theex-anteestimateofleakageiszero.IV.2.3MonitoringofprojectimplementationTheprojectproponentshouldrecordwheneachfarmerwithintheprojectareaentersintoagreementtoadoptsustainableagriculturallandmanagementpractices.EachfarmershouldbegivenauniqueID.Theirname,locationoftheirlands,anddateofenteringintotheagreementandleavingtheagreementshouldberecorded.IV.2.4SamplingdesignTheprojectproponentshallusetheCDMEBapprovedGeneralGuidelinesForSamplingAndSurveysForSmall-ScaleCDMProjectActivitiesmforsamplingandsurveydesign.TheyshouldundertakeanActivityBaselineandMonitoringSurvey(ABMS)onaregularbasis(annuallyorbi-annually)toidentifytheactualagriculturalmanagementpracticesadoptedoncroplandsandVM0017,Version1SectoralScope14Page20grasslands.TheABMSshouldestimateorrecorddetailsofeachmanagementpractice.ForexamplewhenusingtheRoth-Cmodel,oneshouldrecord;1.itsarea;2.theannualbiomassproduction;3.theannualbiomassleftonthefields;4.thenumberandtypeofgrazinganimals;5.theamountofmanureinput;6.theamountofnitrogenfertilizersinput;7.theamountofN-fixingspecies;8.theamountofbiomassburnt;and9.thebiomassofwoodyperennials(treesandbushes).Thefollowingparametersneedtoberecordedannually.1.Regionaltotalbiomassproduction;2.Annualtemperature,precipitationandevapotranspirationand3.Fertilizerprice.4.TheamountoffossilfuelusedforagriculturalmanagementTheinformationrecordedwilldependonthechoiceofsoilmodelselectedandthetypeofactivitybeingpromoted.Forexample,iftheactivityisimprovingtheuseofcropresiduesthenforusewiththeRoth-Cmodel,theABMSshouldrecord:Areaofeachcrop(ha)Productivityofeachcrop(kg/ha)Theamountofcropresidues(kg/ha)12ExistingcropresiduemanagementpracticesandtheirfrequencyFuturecropresiduemanagementpracticesthatwillbeimplementedwiththeprojectIftheprojectactivityincludesimprovingthemanagementofmanure,thenforusewiththeRoth-Cmodel,theABMSshouldrecord:Areaofgrazing(ha)ThenumberoflivestockperanimaltypeTheamountofmanureproduced(kg/haorkg/an)13ExistingmanuremanagementpracticesandtheirfrequencyFuturemanuremanagementpracticesthatwillbeimplementedwiththeprojectIftheprojectactivityincludesimprovedtillagepractices,thenforusewiththeRoth-Cmodel,theABMSshouldrecord:Areaundertillage(ha)TypeanddepthoftillageExistingtillingpracticesandtheirfrequencyFuturetillingpracticesthatwillbeimplementedwiththeproject12Amountofcropresiduesneednotbemeasureddirectly.ItcanalsobeestimatedfromthecropproductionusingequationslistedinTable11.2inVolume4ofthe2006IPCCGuidelines.13Amountofmanureneednotbemeasureddirectly.ItcanalsobeestimatedfromthenumberandtypeofanimalusingvaluesfromTable10A-4inChapter10ofthe2006IPCCGuidelines.VM0017,Version1SectoralScope14Page21Iftheprojectactivityincludesagroforestry,thenforusewiththeRoth-Cmodel,theABMSshouldrecord:Areaofagroforestry(ha)NumberandspeciesoftreesusedDiameteratbreastheight(DBH)oftreesFuturenumbersoftreesthatwillbeimplementedwiththeprojectItisrecommendedthattheprojectproponentstratifiestheprojectareabycropsystem,tillagesystem,useofcropresidues,applicationofmanureandclaycontentofsoilsandrelevantclimaticvariablesasaminimum.Theapplicabilityoftheselectedmodelandparametersrecordedforthevariousactivities,andsoilandclimatetypesaredependentontheactualproject.Sincetheseareprojectspecificandnotmethodologyspecific,theyshouldbediscussedindetailintheprojectdescription.Othermodelinputparametersthatmayberequiredbytheselectedmodel,suchasclimaticdata,claycontentandtextureofsoilslcanbeacquiredfromglobalornationaldatasetsanddonotneedtobemeasuredbytheprojectproponent.IV.2.5DatatobecollectedandarchivedforprojectGHGemissionsandremovalsSectionData/ParameterUnitDescriptionRecordingfrequencySourceIII.1.1tPSNkg/yearSyntheticfertilizeruseperyearAnnuallyABMSIII.1.1tCPA,ha/yearAreasincroplandAnnuallyABMSIII.1.1tGPA,ha/yearAreasingrasslandAnnuallyABMSIII.1.1tPFUSD/kgthepriceofinorganicfertilizerAnnuallyNationalorregionalstudiesIII.1.2tiCrop,kgd.m./haHarvestedannualdrymatteryieldforcropiAnnuallyABMSIII.1.2tiArea,Ha/yeartotalannualareaharvestedofcropiorN-fixingtreesiAnnuallyABMSIII.1.2tiAreaburnt,Ha/yearannualareaofcropiorN-fixingtreesiburntAnnuallyABMSIII.1.3tCMB,td.m./yearMassofcropresiduesburntAnnuallyABMSIII.1.3tGMB,td.m./yearMassofgrasslandsresiduesburntAnnuallyABMSIII.1.3FCunitlessCombustionfactorsthatdependonvegetationtypeProjectstartNationalorregionalstudiesIII.1.4SeeSimplifiedbaselineandmonitoringmethodologiesforsmall-scaleafforestationandreforestationprojectactivitiesunderthecleandevelopmentmechanismimplementedongrasslandsorcroplandsAR-AMS0001eforacompletelistofdataandparameterscollectedandarchived.III.1.5LitresFossilfuelconsumedinAnnuallyABMSVM0017,Version1SectoralScope14Page22vehicleorequipmentrecordedbyvehicleandfueltypeIII.1.6tmCCPA,,haProjectareasincroplandwithmanagementpractice,mCAnnuallyABMSIII.1.6tmCCSOC,,tC/haSoilorganiccarbondensity,toadepthof30cm,atequilibriumforcroplandwithmanagementpractice,mCEveryfiveyearsModelledIII.1.6tmCCPP,,t/ha/monthProductionincroplandpermonthwithmanagementpracticefromwithintheproject,mCAnnuallyABMSIII.1.6tmCCPR,,t/tprod/monthProjectfractionofproductionreturnedasresiduespermonth(calculatedfromtmCCPP,,)incroplandwithmanagementpractice,mCAnnuallyABMSIII.1.6tmCCPM,,t/ha/monthProjectmanureinputincroplandpermonthwithmanagementpractice,mCAnnuallyABMSIII.1.6tmCCPCC,,Projectcovercropflagpermonthincroplandpermonthwithmanagementpractice,mCAnnuallyABMSIII.1.6tmGGPA,,haProjectareasingrasslandwithmanagementpractice,mGAnnuallyABMSIII.1.6tmGGSOC,,tC/haSoilorganiccarbondensity,toadepthof30cm,atequilibriumforgrasslandwithmanagementpractice,mGEveryfiveyearsModelledIII.1.6tmGGPP,,t/ha/monthProductioningrasslandpermonthwithmanagementpractice,fromwithintheproject,mGAnnuallyABMSIII.1.6tmGGPR,,t/tprod/monthProjectfractionofproductionreturnedasresidualspermonth(calculatedfromtmGGPP,,)ingrasslandwithmanagementpractice,mGAnnuallyABMSVM0017,Version1SectoralScope14Page23III.1.6tmGGPM,,t/ha/monthProjectmanureinputingrasslandpermonthwithmanagementpractice,mGAnnuallyABMSIII.1.6tmGGPCC,,Projectcovercropflagpermonthingrasslandpermonthwithmanagementpractice,mGAnnuallyABMSIII.1.6mTemp°CAveragetemperaturepermonthOverthepreviousfiveyearsDatarelevanttotheprojectareaIII.1.6mPrecmmAverageprecipitationpermonthOverthepreviousfiveyearsDatarelevanttotheprojectareaIII.1.6mEvapmm/dayAverageevapotranspirationpermonthOverthepreviousfiveyearsDatarelevanttotheprojectareaIII.1.6DYearsTransitionperiodEveryfiveyearsNationalorregionalstudiesIV.2.6DatatobecollectedandarchivedforleakageTheonlysourceofleakagepossibleasaresultoftheprojectistheleakagefromaswitchtonon-renewablebiomassuseattributabletotheproject.Iftheprojectplanincludesthediversionofbiomassusedforcookingandheatingtothefields(forexample,manureoragriculturalresiduals)thentheprojectproponentshouldestimatethepossibleleakage.Theprojectproponentshouldrecordtheamountofbiomassusedforcookingandheatingpurposesthatisdivertedtotheagriculturalsystem.Itisconservativelyassumedthatthisisreplacedbynon-renewablebiomassorlocallyusedfossilfuels.TheABMSsurveyisexpectedtoprovideinformationtoassesswhetherornotnon-renewablebiomassfromoutsidetheprojectorfossilfuelsareusedforthepurposeofcookingorheatingbythesurveyedprojecthouseholdstoreplacethebiomassdivertedtoagriculturalfields.IftheABMSsurveydatashowsthat10%orfewerprojecthouseholdsusenon-renewablebiomassfromoutsidetheprojectorfossilfuelstoreplacethebiomassdivertedtoagriculturalfields,thentheleakageisconsideredinsignificantandignored.InsituationswhereABMSsurveydatashowsthatmorethan10%oftheprojecthouseholdsusenon-renewablebiomassfromoutsidetheprojectorfossilfuelstoreplacethebiomassdivertedtoagriculturalfields,thentheleakageisconsideredsignificantandshallbeestimatedbasedonthehouseholdenergyuseinformationcollectedthroughtheABMSSurveytocalculatetheleakage.tttLFFLNRBLHE9Where:tLHETheleakagefromaswitchtonon-renewablebiomassorfossilfuelinplaceofthebiomassusedforcooking/heatingdivertedtoagriculturalsysteminyeart,tCO2etLNRBLeaLeakagefromaswitchtonon-renewablebiomassuseinyeart,,tCO2eVM0017,Version1SectoralScope14Page24tLFFLeakagefromswitchtofossilfuelinyeart,tCO2efuelfossilbiomasstbiomasstEFNCVfNRBBLNRB,10tLNRBLeakagefromaswitchtonon-renewablebiomassuseinyeart,tCO2etbiomassB,Quantityofbiomassfromoutsidetheprojectthatreplacesbiomassusedforcooking/heatingdivertedtoagriculturalsysteminyeart,tonnesfNRBFractionofnon-renewablebiomassfromoutsidetheprojectinyeartbiomassNCVNetcalorificvalueofthenon-renewablebiomassfromoutsidetheprojectfuelfossilEFEmissionfactoroffossilfuelassubstitutefornon-renewablebiomassfuelfossilfuelfossiltfuelfossiltEFNCVBLFF11tfossilfuelB,Quantityoffossilfuelthatreplacesthebiomassusedforcooking/heatingdivertedtoagriculturalsysteminyeart,tonnesfuelfossilNCVNetcalorificvalueofthefossilfuelthatissubstitutedfuelfossilEFEmissionfactoroffossilfuelasasubstitutionfornon-renewablebiomassSectionData/ParameterUnitDescriptionRecordingfrequencySourceIII.2tbiomassB,tfossilfuelB,tonnes/yearQuantityofbiomassfromoutsidetheprojectorfossilfuelusedinplaceoftheamountofbiomassusedincookingandheatingdivertedtotheagriculturalsystemintheprojectAnnuallyABMSVM0017,Version1SectoralScope14Page25III.2tNRBf,dimensionlessFractionofbiomassthatcomesfromnon-renewablesourcesStartoftheprojectIfthedataonfNRB,tisavailable,itiscalculatedaspertheprocedureofAMSI.Emethodology.Forsituations,wherethedataonfNRB,tisnotavailablefNRB,t=1shallbeused(i.e.,fNRB,tvalueisfixedat1),whichisconservative.III.2biomassNCV/fuelfossilNCVTJ/tonneNetcalorificvalueofthenon-renewablebiomassorfossilfuelsubstitutedStartoftheprojectIPCCdefaults,NationalorregionalstudiesIII.2EFfossilfueltCO2/TJEmissionfactorfortheprojectedfossilfuelconsumptionStartoftheprojectDefaultvalueof81.6tCO2/TJIasperAMSI.EIV.2.7ConservativeapproachSinceemissionsreducedarecalculatedasthebaselineemissionsminusprojectemissions,anapproachthat:1)ignoresemissionsinthebaseline;and/or2)ignoresemissionremovals(sequestration)intheprojectisconservative.Ignoringeitherofthesetwoitemswillmeanthatemissionreductionsareunderestimated.Themethodologyusesaconservativeapproachbecauseapplicabilityconditionslimititsuseto:a)Landiseithercroplandorgrasslandatthestartoftheprojectb)Theprojectdoesnotoccuronwetlandsc)Thelandisdegradedandwillcontinuetobedegradedorcontinuetodegraded)Theareaoflandundercultivationisconstantorincreasinginabsenceoftheprojecte)Forestland,asdefinedbythenationalCDMforestdefinition,intheareaisconstantordecreasingovertimeWiththeseassumptionsthemethodologyconservativelyignoresemissionsfromSOCinthebaseline.Themethodologyusesaconservativeapproachbecauseitassumesthatleakagecausedbythedisplacementofbiomassusedforcookingandheatingpurposestothefieldsastheresultoftheproject,causesanincreaseintheuseofnon-renewablebiomassorfossilfuels.IV.2.8UncertaintyanalysisTheprojectproponentshallusetheCDMEBapprovedGeneralGuidelinesforSamplingandSurveysforSmall-ScaleCDMProjectActivitiesowithaviewtoreducinguncertaintyofmodelinputVM0017,Version1SectoralScope14Page26parameters.Thegenerationofmodelparametersfollowsthestandardproceduresonsurveysandqualityassuranceinthecollectionandorganizationofdata.TheprojectproponentwillestimatetheuncertaintyoftheagriculturalinputparameterstothesoilorganicmodelusingtheABMSasrequiredunderSection4.1ofVCSstandardv3.1.Iftheprojectareaisstratified,thesamplingeffortshouldrepresenttherelevantstratainthesampleframe.Wherethereisnospecificsurveyguidancefromnationalinstitutions,theprojectproponentshalluseaprecisionof15%atthe95%confidencelevelasthecriteriaforreliabilityofsamplingefforts.Thisreliabilityspecificationshallbeappliedtodeterminethesamplingrequirementsforassessingparametervalues.ThesamplingintensitycouldbeincreasedtoensurethatthemodelparametersestimatedfromtheABMSleadtotheachievementofadesiredprecisionof15%atthe95%confidencelevel)fortheestimateofgreenhousegasemissionreductionsfromtheproject.Theprojectproponentshouldcalculatethesoilmodelresponseusingthemodelinputparameterswiththeupperandlowerconfidencelevels.Therangeofmodelresponsesdemonstratestheuncertaintyofthesoilmodelling.Step1:Calculatethevaluesforallinputparametersattheupperandlowerconfidencelimit.Calculatethemean,pXandstandarddeviation,pforallparametersmeasuredinABMS,andthenthestandarderrorinthemeanisgivenby:pppnSE12Where:pSEStandarderrorinthemeanofparameter,pinyeartpThestandarddeviationoftheparameterpinyeartpnNumberofsamplesusedtocalculatethemeanandstandarddeviationofparameterpAssumingthatvaluesoftheparameterarenormallydistributedaboutthemean,theminimumandmaximumvaluesfortheparametersaregivenby.ppppSEXPSEXP96.196.1maxmin13Where:minPTheminimumvalueoftheparameteratthe95%confidenceintervalmaxPThemaximumvalueoftheparameteratthe95%confidenceintervalpSEStandarderrorinthemeanofparameter,pinyeart1.96Thevalueofthecumulativenormaldistributionat95%confidenceintervalVM0017,Version1SectoralScope14Page27Step2:CalculatetheprojectremovalsduetochangesinsoilorganiccarbonwiththeminimumandmaximumvaluesoftheinputparametersTheprojectremovalsduetochangesinsoilorganiccarbonusingtheminimumandmaximumvaluesoftheparametersisgivenby),Pr,,(),Pr,,(maxminminmaxmax,minmaxmaxminmin,tClayContennecipitatioeTemperaturPModelPRStClayContennecipitatioeTemperaturPModelPRStt14Where:tPRSmin,Theminimumvalueofprojectremovalsduetochangesinsoilorganiccarbonatthe95%confidenceintervaltPRSmax,Themaximumvalueofprojectremovalsduetochangesinsoilorganiccarbonatthe95%confidenceintervalStep3:CalculatetheuncertaintyinthemodeloutputTheuncertaintyintheoutputmodelisgivenby:ttttPRSPRSPRSUNC2min,max,15Step4:AdjusttheestimateofsoilsequestrationbasedontheuncertaintyinthemodeloutputIftheuncertaintyofsoilmodelsislessthanorequalto15%ofthemeanvaluethentheprojectproponentmayusetheestimatedvaluewithoutanydeductionforconservativenessorincreaseinsampling.Iftheuncertaintyofsoilmodelsisgreaterthan15%butlessthanorequalto30%ofthemeanvalue,thentheprojectproponentmayusetheestimatedvaluesubjecttoadeductioncalculatedas%)15(,tttDeductionUNCPRSPRS16Andthefollowingtermwillbeusedinequation7inplaceofPRSttDeductionttAdjPRSPRSPRS,,17Where:tPRSEstimateofprojectremovalsduetochangesinsoilorganiccarboninyeart,tCO2e.UncPRSEstimateofuncertaintyinthemeanofchangesinsoilorganiccarboninyeart,tCO2e.tDeductionPRS,Acalculateddeductiontotheestimateofthechangeinsoilorganicremovalsyeart,tCO2e.tAdjPRS,Anadjustedestimateofprojectremovalsduetochangesinsoilorganiccarboninyeart,tCO2e.Inthisway,whentheuncertaintyis15%orlessthan15%thereisnodeductionandwhentheuncertaintyisbetween15and30%adeductionascalculatedinStep4abovewillapply.VM0017,Version1SectoralScope14Page28Iftheuncertaintyofsoilmodelsisgreaterthan30%ofthemeanvaluethentheprojectproponentshouldincreasethesamplesizeoftheinputparametersuntilthesoilmodeluncertaintyisbetterthan±30%.IV.2.9OtherinformationEveryfiveyearsthemeansofparameterswillbetestedforsignificantdifferenceusingt-tests.Ifthemeansaresignificantlydifferentthenthesoilmodelshallbeupdatedbasedonthenewdataandrelevantdatasuchasstudiesconductedintheregion.Itisnotincumbentthattheprojectproponentshallundertakesuchstudiesaspartoftheprojectactivitybutshallmakeuseofdatageneratedelsewhereaspartofongoingresearch/othereffortsintheregionforupdatingthemodel.Suchdatacanbeusedtorefinethemodelovertimeanddecreaseuncertainty.SectionV:Listsofvariables,acronymsandreferencesV.1VariablesusedinequationsEquation1tequilBS,BaselineSOCinequilibriumyeart,tCtmCCBA,,Baselineareasincroplandwithmanagementpractice,mC,yeart,haCmCSOC,Soilorganiccarbondensityatequilibriumforcroplandwithmanagementpractice,mC,tC/hamCAnindexforcroplandmanagementtypes,unitlesstmGGBA,,Baselineareasingrasslandwithmanagementpractice,mG,yeart,haGmGSOC,Soilorganiccarbondensityatequilibriumforgrasslandwithmanagementpractice,mG,tC/hamGAnindexforgrasslandmanagementtypes,unitlessEquation2tBRSBaselineremovalsduetochangesinsoilorganiccarboninyeart,tCO2e.Equation3tBEBaselineemissionsinyeart,tCO2etBEFBaselineemissionsduetonitrogenfertilizeruseinyeart,tCO2e.tBEFFBaselineemissionsduetouseoffossilfuelsinagriculturalmanagementinyeart,tCO2e.tBENBaselineemissionsduetotheuseofN-fixingspeciesinyeart,tCO2e.tBEBBBaselineemissionsduetobiomassburninginyeart,tCO2e.tBRWPBaselineremovalsduetochangesinwoodyperennialsinyeart,tCO2e.VM0017,Version1SectoralScope14Page29Equation4tequilPS,ProjectSOCinequilibriumyeart,tCtmCCPA,,Projectareasincroplandwithmanagementpractice,mC,yeart,hatmCCSOC,,Soilorganiccarbondensityatequilibriumforcroplandwithmanagementpractice,mC,atyeart,tC/hamCAnindexforcroplandmanagementtypes,unitlesstmGGPA,,Projectareasingrasslandwithmanagementpractice,mG,yeart,hatmGGSOC,,Soilorganiccarbondensityatequilibriumforgrasslandwithmanagementpractice,mG,atyeart,tC/hamGAnindexforgrasslandmanagementtypes,unitlessEquation5tPSProjectestimateoftheprojectSOCinyeart,tCtequilPS,ProjectestimateoftheprojectSOCinequilibriumyeart,tCDThetransitionperiodrequiredforSOCtobeatequilibriumafterachangeinlanduseormanagementpractice,yeartTimeincrement=1yearEquation6tPRSEstimateofprojectremovalsduetochangesinsoilorganiccarboninyeart,tCO2e.tPSEstimateoftheprojectSOCinyeart,tCEquation7tPEEstimateofactualnetGHGemissionsandremovalsbysinksinyeart,tCO2etPEFEstimateofprojectemissionsduetonitrogenfertilizeruseinyeart,tCO2e.tPEFFEstimateofprojectemissionsduetoburningoffossilfuelsforagriculturalmanagementinyeart,tCO2e.tPENEstimateofprojectemissionsduetotheuseofN-fixingspeciesinyeart,tCO2e.tPEBBEstimateofprojectemissionsduetobiomassburninginyeart,tCO2e.tPRWPEstimateofprojectduetochangesinbiomassofwoodyperennialsinyeart,tCO2e.tPRSEstimateofprojectremovalsduetochangesinsoilorganiccarboninyeart,tCO2e.VM0017,Version1SectoralScope14Page30Equation8tREstimateofnetanthropogenicGHGemissionsandremovalsinyeart,tCO2etPEEstimateofactualnetGHGemissionsandremovalsinyeart,tCO2etBEBaselineemissionsandremovalsinyeart,tCO2etLHETheleakagefromaswitchtonon-renewablebiomassorfossilfuelinplaceofthebiomassusedforcooking/heatingdivertedtoagriculturalsysteminyeart,tCO2eEquation9tLHETheleakagefromaswitchtonon-renewablebiomassorfossilfuelinplaceofthebiomassusedforcooking/heatingdivertedtoagriculturalsysteminyeart,tCO2etLNRBLeakagefromaswitchtonon-renewablebiomassuseinyeart,,tCO2etLFFLeakagefromswitchtofossilfuelinyeart,tCO2eEquation10tLNRBLeakagefromaswitchtonon-renewablebiomassuseinyeart,tCO2etbiomassB,Quantityofbiomassfromoutsidetheprojectusedinplaceofthebiomassusedforcooking/heatingdivertedtoagriculturalsysteminyeart,tonnesfNRBFractionofnon-renewablebiomassfromoutsidetheprojectinyeartbiomassNCVNetcalorificvalueofthenon-renewablebiomassfromoutsidetheprojectfuelfossilEFEmissionfactoroffossilfuelassubstitutefornon-renewablebiomassEquation11tfossilfuelB,Quantityoffossilfuelusedinplaceofthebiomassusedforcooking/heatingdivertedtoagriculturalsysteminyeart,tonnesfuelfossilNCVNetcalorificvalueofthefossilthatissubstitutedfuelfossilEFEmissionfactoroffossilfuelasasubstitutionfornon-renewablebiomassEquation12pSEStandarderrorinthemeanofparameter,pinyeartpThestandarddeviationoftheparameterpinyeartpnNumberofsamplesusedtocalculatethemeanandstandarddeviationofparameterpVM0017,Version1SectoralScope14Page31pSEStandarderrorinthemeanofparameter,pinyeartEquation13minPTheminimumvalueoftheparameteratthe95%confidenceintervalmaxPThemaximumvalueoftheparameteratthe95%confidenceintervalpSEStandarderrorinthemeanofparameter,pinyeart1.96Thevalueofthecumulativenormaldistributionat95%confidenceintervalEquation14,15tPRSmin,Theminimumvalueofprojectremovalsduetochangesinsoilorganiccarbonatthe95%confidenceintervaltPRSmax,Themaximumvalueofprojectremovalsduetochangesinsoilorganiccarbonatthe95%confidenceintervalEquation16,17tPRSEstimateofprojectremovalsduetochangesinsoilorganiccarboninyeart,tCO2e.UncPRSEstimateofuncertaintyinthemeanofchangesinsoilorganiccarboninyeart,tCO2e.tDeductionPRS,Acalculateddeductiontotheestimateofthechangeinsoilorganicremovalsyeart,tCO2e.tAdjPRS,Anadjustedestimateofprojectremovalsduetochangesinsoilorganiccarboninyeart,tCO2e.V.2AcronymsA/RAfforestation/reforestationCDMCleanDevelopmentMechanismABMSActivityBaselineandMonitoringSurveySALMsustainableagriculturallandmanagementSOCsoilorganiccarbonVM0017,Version1SectoralScope14Page32SectionVI:ToolsVI.1EstimationofdirectnitrousoxideemissionfromN-fixingspeciesandcropresiduesThistoolcanbeusedforbothexanteandexpostestimationofthenitrousoxideemissionsfromtheuseofnitrogenfixingspeciesandcropresidueswithintheboundaryofaVCSproject.Forexpostestimationpurposes,activitydata(quantitiesofcropresidues)aremonitoredorestimated.Itisimportanttonotethatfortheprojectemissions,itisonlythenewareaunderN-fixingcropthatisinputtotheformulae.AstheprojectproponentmayusevariousN-fixingspecies,itisimportanttoidentifyandrecordthespeciestypeandestimatetheamountofinputsfromeachspecies.Thedirectnitrousoxideemissionsfromtheuseofnitrogen-fixingspeciesandcropresiduescanbeestimatedusingequationsasfollows:31,,21022ONONtCRtNdirectGWPMWEFFON18IitiBGtiBGmovedtiAGtiAGnewftitititCRNRFracNRFracCAreaburntAreaCropF1,,,,Re,,,,Re,,,,119Where:tNdirectON,2DirectN2Oemissionasaresultofnitrogenapplicationwithintheprojectboundary,t-CO2-einyeartFCR,tAmountofNincropresidues(aboveandbelowground),includingN-fixingcropsreturnedtosoilsannually,kgNyr-1inyeartEF1EmissionFactorforemissionsfromNinputs,tonne-N2O-N(tonne-Ninput)-1AsnotedinIPCC2006Guidelines(table11.1),thedefaultemissionfactor(EF1)is1%ofappliedN,andthisvalueshouldbeusedwhencountry-specificfactorsareunavailable.Theprojectproponentmayuseemissionfactorsfromthepeerreviewedscientificliteraturethatarespecificfortheprojectarea.ONMW2RatioofmolecularweightsofN2OandN(44/28),tonne-N2O(t-N)-1GWPN2OGlobalWarmingPotentialforN2O,kg-CO2-e(kg-N2O)-1(IPCCdefault=310,validforthefirstcommitmentperiod).tiCrop,Harvestedannualdrymatteryieldforcropiinyeart,kgd.m.ha-1ForN-fixingtreesusetheabovegroundbiomass.tiArea,totalannualareaharvestedofN-fixingcropiortreesiinyeart,hayr-1tiAreaburnt,annualareaofN-fixingcropiortreesburntinyeart,hayr-1fCcombustionfactor(dimensionless)(see2006IPCCGuidelines,Table2.6)newFracRefractionoftotalareaundercropthatisrenewedannually.ForcountrieswherepasturesarerenewedonaverageeveryXyears,FracRenew=1/X.ForannualcropsFracRenew=1.ForN-fixingtreesassumethattheyshedtheirVM0017,Version1SectoralScope14Page33leaveseveryyeararesimilartoannualcropstiAGR,,ratioofabove-groundresiduesdrymatter(AGDM,i,t)toharvestedyieldforcropiinyeart(Cropi,t),kgd.m.(kgd.m.)-1(see2006IPCCGuidelines,Table11.2)ForNB-fixingtreesusetheratioofleafbiomasstoabovegroundbiomass.Fordeciduoustrees0.02isareasonablevaluetiAGN,,Ncontentofabove-groundresiduesforcropi,kgN(kgd.m.)-1(see2006IPCCGuidelines,Table11.2)ForN-fixingtreesassume0.027(defaultvalueforN-fixingforages)Thisvalueshouldbeusedwhencountry-specificfactorsareunavailable.movedFracReFractionofabove-groundresiduesofcropiremovedannuallyforpurposessuchasfeed,beddingandconstruction,kgN(kgcrop-N)-1.Surveyofexpertsincountryisrequiredtoobtaindata.IfdataforFracRemovedarenotavailable,assumenoremoval.tiBGR,,Ratioofbelow-groundresiduestoharvestedyieldforcropi,kgd.m.(kgd.m.)-1.(see2006IPCCGuidelines,Table11.2)ForN-fixingtreesassume0.01(assumesthatfinerootsare7%oftotalrootbiomass,thattotalrootbiomassis25%ofabovegroundbiomassandthereisa50%finerootturnover).Thisvalueshouldbeusedwhencountry-specificfactorsareunavailable.tiBGN,,Ncontentofbelow-groundresiduesforcropi,kgN(kgd.m.)-1.(see2006IPCCGuidelines,Table11.2)ForN-fixingtreesassume0.022(defaultvalueforN-fixingforages)Thisvalueshouldbeusedwhencountry-specificfactorsareunavailable.VI.2EstimationofemissionsfromtheuseoffossilfuelsinagriculturalmanagementThefollowingtoolisderivedfromtheA/RMethodologicalToolEstimationofGHGemissionsrelatedtofossilfuelcombustioninA/RCDMprojectactivitiesn.TheCO2emissionsarecalculatedusingthefollowingequations:∑20Where:Emissionsduetotheuseoffossilfuelsinagriculturalmanagement,tCO2eNote:inthemethodologythereisaprefixBorPdependingonwhethertheyarebaselineorprojectemissionsEmissionfromfossilfuelcombustioninvehicle/equipmenttypejduringyeart,tCO2e/yrjTypeofvehicle/equipmentJTotalnumberoftypesofvehicle/equipmentusedintheprojectactivityVM0017,Version1SectoralScope14Page34Itisassumedthattheamountoffuelcombustedisavailable.Themethodmaybeusedinestimatingvehicle/equipmentemission,whenthevehicle/equipmentiscaptive(i.e.controlledbytheprojectproponent)andtheentirefuelconsumptionscanbemonitored.Ifthisisnotavailable,theamountoffuelcombustedcanbeestimatedusingfuelefficiency(forexamplel/100km,l/t-km,l/hour)ofthevehicleandtheappropriateunitofusefortheselectedfuelefficiency(forexamplekmdrivenifefficiencyisgiveninl/100km).Theequationisasfollows.Where:Emissionfromfossilfuelcombustioninvehicle/equipmenttypejduringyeart,tCO2e/yrConsumptionoffossilfuelinvehicle/equipmenttypejduringyeart,litres/yrEmissionfactorforthetypeoffossilfuelcombustedinvehicleorequipment,jForgasolineEFCO2e=0.002810tperlitre.FordieselEFCO2e=0.002886tperlitre14jTypeofvehicle/equipmentJTotalnumberoftypesofvehicle/equipmentusedintheprojectactivityVI.3Estimationofnon-CO2emissionsfromtheburningofcropresiduesTheCO2emissionsfromtheburningofcropresiduesandgrasslandsarenotincludedinthemethodologyasperIPCCconvention.Thenon-CO2emissionsburningthisbiomass,EBBtarecalculatedusingthefollowingequations:324,24,1021.03.207.07.2ONCHFtGONCHFtCtGWPGWPCMBGWPGWPCMBEBB20Where:tEBBEmissionsduetobiomassburninginyeart,tCO2etCMB,Massofcropresiduesburntinyeart,tonnes2.7,0.07Emissionsfactorsfortheburningofcropland,gCH4/kgandgN2O/kg,respectivelyFromTable2.5,2006IPCCGuidelinesforNationalGreenhouseGasInventoriestGMB,Massofgrasslandsresiduesburntinyeart,tonnes2.3,0.21Emissionsfactorsfortheburningofgrassland,gCH4/kgandgN2O/kg,respectivelyFromTable2.5,2006IPCCGuidelinesforNationalGreenhouseGasInventories4CHGWPGlobalwarmingpotentialofCH4(IPCCdefault:21forthefirstcommitmentperiodoftheKyotoProtocol);tCO2e/tCH4FCCombustionfactorsthatdependonvegetationtype(seeTable4),unitless14ThesevaluescalculatedfromIPCC2006Table3.3.1assuming2-strokegasolineengineforgasolinecombustionanddefaultvaluesforenergycontentof47.1GJ/tand45.66GJ/tforgasolineanddieselrespectively(IEA.2004.EnergyStatisticsManual.http://www.iea.org/stats/docs/statistics_manual.pdf)VM0017,Version1SectoralScope14Page35Table4:CombustionfactorvaluesforfiresinarangeofvegetationtypesVegetationtypeSubcategoryMeanValueSavannaGrasslands/Pastures(earlydryseasonburns)Tropical/sub-tropicalgrassland0.74Grassland-Allsavannagrasslands(earlydryseasonburns)0.74SavannaGrasslands/Pastures(mid/latedryseasonburns)Tropical/sub-tropicalgrassland0.92Tropicalpasture~0.35Savanna0.86Allsavannagrasslands(mid/latedryseasonburns)0.77OthervegetationtypesPeatland0.50TropicalWetlands0.70Agriculturalresidues(Postharvestfieldburning)Wheatresidues0.90Maizeresidues0.80Riceresidues0.80Sugarcane0.80FromTable2.6,2006IPCCGuidelinesforNationalGreenhouseGasInventoriesVM0017,Version1SectoralScope14Page36SectionVII:ReferencesaABMS:CropproductionandActivitybaselineandMonitoringSurveyGuidelineforSustainableAgriculturalLandManagementpractices(SALM)bIPCC.2006,2006IPCCGuidelinesforNationalGreenhouseGasInventories,Volume4:Agriculture,Forestry,andOtherLandUse.PreparedbytheNationalGreenhouseGasInventoriesProgramme,EgglestonH.S.,BuendiaL.,MiwaK.,NgaraT.andTanabeK.(eds).Published:IGES,Japan.http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.htmlcA/RmethodologicalTool“ToolfortheidentificationofdegradedordegradinglandsforconsiderationinimplementingCDMA/Rprojectactivities”(Version01)EB41,Annex15.http://cdm.unfccc.int/methodologies/ARmethodologies/tools/ar-am-tool-13-v1.pdfdA/RMethodologicalTool“EstimationofcarbonstocksandchangeincarbonstocksoftreesandshrubsinA/RCDMprojectactivities(Version02.1.0)EB60,Annex13.http://cdm.unfccc.int/methodologies/ARmethodologies/tools/ar-am-tool-14-v2.1.0.pdfeAR-AMS0001“Simplifiedbaselineandmonitoringmethodologiesforsmall-scaleA/RCDMprojectactivitiesimplementedongrasslandsorcroplandswithlimiteddisplacementofpre-projectactivities(Version6.0)”.http://cdm.unfccc.int/methodologies/DB/91OLF4XK2MEDIRIWUQ22X3ZQAOPBWYfA/RMethodologicaltool“Estimationofdirectnitrousoxideemissionfromnitrogenfertilization”(Version01)EB33,Annex16.http://cdm.unfccc.int/methodologies/ARmethodologies/tools/ar-am-tool-07-v1.pdfgA/RMethodologicaltool“CombinedtooltoidentifythebaselinescenarioanddemonstrateadditionalityinA/RCDMprojectactivities”(Version01)EB35,Annex19.http://cdm.unfccc.int/methodologies/ARmethodologies/tools/ar-am-tool-02-v1.pdfhKColeman&DSJenkinson(2008)ROTHC-26.3-amodelfortheturnoverofcarboninsoil.http://www.rothamsted.bbsrc.ac.uk/aen/carbon/rothc.htmiKColeman&DSJenkinson(2008)ROTHC-26.3-amodelfortheturnoverofcarboninsoil.http://www.rothamsted.bbsrc.ac.uk/aen/carbon/rothc.htmjAMS-I.E.:SwitchfromNon-RenewableBiomassforThermalApplicationsbytheUser(Version4.0).http://cdm.unfccc.int/filestorage/M/I/6/MI6Z47XJAVRTKN3BWSQ1Y8FD2E9ULG/EB60_repan20_%20AMS-I.E_ver04.pdf?t=eG58bHdnOWkyfDDxWVo4h67XHCltxDQuoxY7kGeneralguidelinesforsamplingandsurveysforsmall-scaleCDMprojectactivities(Version1)EB50,Annex30.http://cdm.unfccc.int/EB/050/eb50_repan30.pdflFAO/IIASA/ISRIC/ISSCAS/JRC,2009.HarmonizedWorldSoilDatabase(version1.1).FAO,Rome,ItalyandIIASA,Laxenburg,Austriahttp://www.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/index.htmlmGeneralguidelinesforsamplingandsurveysforsmall-scaleCDMprojectactivities(Version1)EB50,Annex30.http://cdm.unfccc.int/EB/050/eb50_repan30.pdfnA/RMethodologicalTool“EstimationofGHGemissionsrelatedtofossilfuelcombustioninA/RCDMprojectactivities”(Version01)EB33Annex14.http://cdm.unfccc.int/methodologies/ARmethodologies/tools/ar-am-tool-05-v1.pdf

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱