VM0015-避免无计划毁林的方法学VIP专享VIP免费

VM0015, Version 1.1
Sectoral Scope 15
Page 0
Approved VCS Methodology
VM0015
Version 1.1, 3 December 2012
Sectoral Scope 14
Methodology for
Avoided Unplanned Deforestation
VM0015, Version 1.1
Sectoral Scope 15
Page 1
This methodology is developed by:
Acknowledgements
FAS and Idesam acknowledge the leading author of this methodology, Mr. Lucio Pedroni (Carbon
Decisions International), the World Bank’s BioCarbon Fund for publishing the draft methodology for
mosaic deforestation, and Marriott International for supporting financially the development and validation
of the “frontier methodology”, which greatly facilitated the development of this methodology.
Methodology Developers
Amazonas Sustainable Foundation
BioCarbon Fund
Carbon Decisions International
Institute for the Conservation and Sustainable Development of
Amazonas
Author
Lucio Pedroni (Carbon Decisions International)
Collaborators
Institute for the Conservation
and Sustainable Development
of Amazonas
Carbon Decisions
International
Amazonas Sustainable
Foundation
Mariano Cenamo
Álvaro Vallejo
Virgilio Viana
Mariana Pavan
Peter Schlesinger
João Tezza
Gabriel Carrero
Juan Felipe Villegas
Gabriel Ribenboim
Thais Megid
Victor Salviati
The BioCarbon Fund would like to acknowledge the many persons that contributed to the initial drafts of
the methodology with informal reviews, suggestions, and corrections. In addition to the collaborators of
Carbon Decisions International, listed above, a special thank is due to: Andrea Garcia, Ben de Jong,
Bernhard Schlamadinger, Kenneth Andrasko, Marc Steiniger, Sandra Brown, Sebastian Scholz, Tim
Pearson, and Tom Clemens.
VM0015, Version 1.1
Sectoral Scope 15
Page 2
TABLE OF CONTENTS
Table of Contents .................................................................................................................................... 2
Sources ................................................................................................................................................... 6
Summary Description of the Methodology ................................................................................................ 6
Part 1 Scope, applicability conditions and additionality .......................................................................... 9
Scope of the methodology ............................................................................................................. 9 1
Applicability conditions ................................................................................................................ 15 2
Additionality ................................................................................................................................ 15 3
Part 2 - Methodology steps for ex-ante estimation of GHG emission reductions ..................................... 15
Step 1: Definition of boundaries ................................................................................................... 16 1
1.1 Spatial boundaries ............................................................................................................... 17
1.1.1 Reference region ........................................................................................................... 17
1.1.2 Project area................................................................................................................... 20
1.1.3 Leakage belt ................................................................................................................. 20
1.1.4 Leakage management areas ......................................................................................... 24
1.1.5 Forest ........................................................................................................................... 25
1.2 Temporal boundaries ........................................................................................................... 25
1.2.1 Starting date and end date of the historical reference period .......................................... 25
1.2.2 Starting date of the project crediting period of the AUD project activity ........................... 25
1.2.3 Starting date and end date of the first fixed baseline period ........................................... 26
1.2.4 Monitoring period .......................................................................................................... 26
1.3 Carbon pools........................................................................................................................ 26
1.4 Sources of GHG emissions .................................................................................................. 28
Step 2: Analysis of historical land-use and land-cover change ..................................................... 29 2
2.1 Collection of appropriate data sources .................................................................................. 29
2.2 Definition of classes of land-use and land-cover ................................................................... 30
2.3 Definition of categories of land-use and land-cover change .................................................. 32
2.4 Analysis of historical land-use and land-cover change .......................................................... 33
2.4.1 Pre-processing .............................................................................................................. 33
2.4.2 Interpretation and classification ..................................................................................... 34
2.4.3 Post-processing ............................................................................................................ 35
2.5 Map accuracy assessment ................................................................................................... 36
2.6 Preparation of a methodology annex to the PD ..................................................................... 37
VM0015,Version1.1SectoralScope15Page0ApprovedVCSMethodologyVM0015Version1.1,3December2012SectoralScope14MethodologyforAvoidedUnplannedDeforestationVM0015,Version1.1SectoralScope15Page1Thismethodologyisdevelopedby:AcknowledgementsFASandIdesamacknowledgetheleadingauthorofthismethodology,Mr.LucioPedroni(CarbonDecisionsInternational),theWorldBank’sBioCarbonFundforpublishingthedraftmethodologyfor“mosaicdeforestation”,andMarriottInternationalforsupportingfinanciallythedevelopmentandvalidationofthe“frontiermethodology”,whichgreatlyfacilitatedthedevelopmentofthismethodology.MethodologyDevelopersAmazonasSustainableFoundationBioCarbonFundCarbonDecisionsInternationalInstitutefortheConservationandSustainableDevelopmentofAmazonasAuthorLucioPedroni(CarbonDecisionsInternational)CollaboratorsInstitutefortheConservationandSustainableDevelopmentofAmazonasCarbonDecisionsInternationalAmazonasSustainableFoundationMarianoCenamoÁlvaroVallejoVirgilioVianaMarianaPavanPeterSchlesingerJoãoTezzaGabrielCarreroJuanFelipeVillegasGabrielRibenboimThaisMegidVictorSalviatiTheBioCarbonFundwouldliketoacknowledgethemanypersonsthatcontributedtotheinitialdraftsofthemethodologywithinformalreviews,suggestions,andcorrections.InadditiontothecollaboratorsofCarbonDecisionsInternational,listedabove,aspecialthankisdueto:AndreaGarcia,BendeJong,BernhardSchlamadinger,KennethAndrasko,MarcSteiniger,SandraBrown,SebastianScholz,TimPearson,andTomClemens.VM0015,Version1.1SectoralScope15Page2TABLEOFCONTENTSTableofContents....................................................................................................................................2Sources...................................................................................................................................................6SummaryDescriptionoftheMethodology................................................................................................6Part1–Scope,applicabilityconditionsandadditionality..........................................................................9Scopeofthemethodology.............................................................................................................91Applicabilityconditions................................................................................................................152Additionality................................................................................................................................153Part2-Methodologystepsforex-anteestimationofGHGemissionreductions.....................................15Step1:Definitionofboundaries...................................................................................................1611.1Spatialboundaries...............................................................................................................171.1.1Referenceregion...........................................................................................................171.1.2Projectarea...................................................................................................................201.1.3Leakagebelt.................................................................................................................201.1.4Leakagemanagementareas.........................................................................................241.1.5Forest...........................................................................................................................251.2Temporalboundaries...........................................................................................................251.2.1Startingdateandenddateofthehistoricalreferenceperiod..........................................251.2.2StartingdateoftheprojectcreditingperiodoftheAUDprojectactivity...........................251.2.3Startingdateandenddateofthefirstfixedbaselineperiod...........................................261.2.4Monitoringperiod..........................................................................................................261.3Carbonpools........................................................................................................................261.4SourcesofGHGemissions..................................................................................................28Step2:Analysisofhistoricalland-useandland-coverchange.....................................................2922.1Collectionofappropriatedatasources..................................................................................292.2Definitionofclassesofland-useandland-cover...................................................................302.3Definitionofcategoriesofland-useandland-coverchange..................................................322.4Analysisofhistoricalland-useandland-coverchange..........................................................332.4.1Pre-processing..............................................................................................................332.4.2Interpretationandclassification.....................................................................................342.4.3Post-processing............................................................................................................352.5Mapaccuracyassessment...................................................................................................362.6PreparationofamethodologyannextothePD.....................................................................37VM0015,Version1.1SectoralScope15Page3Step3:Analysisofagents,driversandunderlyingcausesofdeforestationandtheirlikelyfuture3development...............................................................................................................................373.1Identificationofagentsofdeforestation.................................................................................383.2Identificationofdeforestationdrivers....................................................................................383.3Identificationofunderlyingcausesofdeforestation...............................................................393.4Analysisofchainofeventsleadingtodeforestation..............................................................403.5Conclusion...........................................................................................................................40Step4:Projectionoffuturedeforestation.....................................................................................4144.1Projectionofthequantityoffuturedeforestation...................................................................414.1.1Selectionofthebaselineapproach................................................................................424.1.2Quantitativeprojectionoffuturedeforestation................................................................434.2Projectionofthelocationoffuturedeforestation...................................................................504.2.1Preparationoffactormaps............................................................................................514.2.2Preparationofdeforestationriskmaps...........................................................................524.2.3Selectionofthemostaccuratedeforestationriskmap...................................................534.2.4Mappingofthelocationsoffuturedeforestation.............................................................54Step5:Definitionoftheland-useandland-coverchangecomponentofthebaseline...................5555.1Calculationofbaselineactivitydataperforestclass.............................................................565.2Calculationofbaselineactivitydataperpost-deforestationforestclass.................................575.3CalculationofbaselineactivitydataperLU/LCchangecategory...........................................60Step6:Estimationofbaselinecarbonstockchangesandnon-CO2emissions.............................6166.1Estimationofbaselinecarbonstockchanges.......................................................................616.1.1EstimationoftheaveragecarbonstocksofeachLU/LCclass........................................616.1.2Calculationofcarbonstockchangefactors....................................................................696.1.3Calculationofbaselinecarbonstockchanges................................................................726.2Baselinenon-CO2emissionsfromforestfires.......................................................................81Step7:Exanteestimationofactualcarbonstockchangesandnon-CO2emissionsintheproject7area............................................................................................................................................847.1Exanteestimationofactualcarbonstockchanges...............................................................847.1.1Exanteestimationofactualcarbonstockchangesduetoplannedactivities..................847.1.2Exanteestimationofcarbonstockchangesduetounavoidableunplanneddeforestationwithintheprojectarea.................................................................................................................907.1.3Exanteestimatednetactualcarbonstockchangesintheprojectarea..........................907.2Exanteestimationofactualnon-CO2emissionsfromforestfires..........................................91VM0015,Version1.1SectoralScope15Page47.3Totalexanteestimationsfortheprojectarea.......................................................................92Step8:Exanteestimationofleakage...........................................................................................9288.1ExanteestimationofthedecreaseincarbonstocksandincreaseinGHGemissionsduetoleakagepreventionmeasures.........................................................................................................938.1.1Carbonstockchangesduetoactivitiesimplementedinleakagemanagementareas.....938.1.2ExanteestimationofCH4andN2Oemissionsfromgrazinganimals..............................968.1.3TotalexanteestimatedcarbonstockchangesandincreasesinGHGemissionsduetoleakagepreventionmeasures......................................................................................................998.2ExanteestimationofthedecreaseincarbonstocksandincreaseinGHGemissionsduetoactivitydisplacementleakage.........................................................................................................998.3Exanteestimationoftotalleakage.....................................................................................101Step9:ExantetotalnetanthropogenicGHGemissionreductions.............................................10299.1Significanceassessment....................................................................................................1029.2Calculationofex-anteestimationoftotalnetGHGemissionsreductions............................1029.3Calculationofex-anteVerifiedCarbonUnits(VCUs)..........................................................102Part3–Methodologyformonitoringandre-validationofthebaseline..................................................105Task1:MonitoringofcarbonstockchangesandGHGemissionsforperiodicalverifications......10511.1MonitoringofactualcarbonstockchangesandGHGemissionswithintheprojectarea......1051.1.1Monitoringofprojectimplementation...........................................................................1061.1.2Monitoringofland-useandland-coverchangewithintheprojectarea..........................1061.1.3Monitoringofcarbonstockchangesandnon-CO2emissionsfromforestfires..............1071.1.4Monitoringofimpactsofnaturaldisturbancesandothercatastrophicevents................1121.1.5TotalexpostestimatedactualnetcarbonstockchangesandGHGemissionsintheprojectarea...............................................................................................................................1131.2Monitoringofleakage.........................................................................................................1131.2.1MonitoringofcarbonstockchangesandGHGemissionsassociatedtoleakagepreventionactivities...................................................................................................................1131.2.2MonitoringofcarbonstockdecreaseandincreasesinGHGemissionsduetoactivitydisplacementleakage................................................................................................................1141.2.3Totalexpostestimatedleakage..................................................................................1151.3ExpostnetanthropogenicGHGemissionreductions.........................................................116Task2:Revisitingthebaselineprojectionsforfuturefixedbaselineperiod.................................11622.1Updateinformationonagents,driversandunderlyingcausesofdeforestation....................1162.2Adjustmentoftheland-useandland-coverchangecomponentofthebaseline...................1172.2.1Adjustmentoftheannualareasofbaselinedeforestation............................................117VM0015,Version1.1SectoralScope15Page52.2.2Adjustmentofthelocationoftheprojectedbaselinedeforestation................................1172.3Adjustmentofthecarboncomponentofthebaseline..........................................................117LITERATURECITED...........................................................................................................................118Appendix1:Definitionoftermsfrequentlyusedinthemethodology.....................................................122Appendix2:Indicativetables...............................................................................................................128Appendix3:Methodstoestimatecarbonstocks...................................................................................132Appendix4:Methodstoestimateemissionsfromentericfermentationandmanuremanagement........157Appendix5:Dataandparametersusedinthismethodology................................................................161Appendix6:Listoftablesusedinthismethodology.............................................................................199VM0015,Version1.1SectoralScope15Page6SOURCESThismethodologyisbasedonthedraftREDDprojectdescriptionforthe“ReservadoJumaConservationProject”inAmazonas(Brazil),whosebaselinestudy,monitoringandprojectdesigndocumentswerepreparedbyIDESAM,theAmazonasSustainableFoundation(FAS)andtheGovernmentofAmazonas(SDS/SEPLAN-AM),withinputsandreviewfromaselectedgroupofexpertsandscientistsinBrazil.Themethodologyisanadaptationtoallkindsof“UnplannedDeforestation”ofthedraftmethodologyfor“MosaicDeforestation”developedbytheBioCarbonFundfortheREDDprojectactivity“Ankeniheny-ZahamenaBiologicalCorridor”inMadagascar,whosebaselinestudy,monitoringandprojectdesigndocumentsarebeingpreparedbytheMinistryoftheEnvironment,Water,ForestsandTourismofMadagascarwithassistanceofConservationInternationalandtheInternationalBankforReconstructionandDevelopmentasTrusteeoftheBioCarbonFund.SUMMARYDESCRIPTIONOFTHEMETHODOLOGYThismethodologyisforestimatingandmonitoringgreenhousegas(GHG)emissionsofprojectactivitiesthatavoidunplanneddeforestation(AUD).Italsogivestheoptiontoaccountforcarbonstockenhancementsinforeststhatwouldbedeforestedinthebaselinecase,whenthesearemeasurableandsignificant.CreditsforreducingGHGemissionsfromavoideddegradationareexcludedinthismethodology.Themethodologyhasnogeographicrestrictionsandisapplicablegloballyunderthefollowingconditions:a)Baselineactivitiesmayincludeplannedorunplannedloggingfortimber,fuel-woodcollection,charcoalproduction,agriculturalandgrazingactivitiesaslongasthecategoryisunplanneddeforestationaccordingtothemostrecentVCSAFOLUguidelines.b)Projectactivitiesmayincludeoneoracombinationoftheeligiblecategoriesdefinedinthedescriptionofthescopeofthemethodology(seetable1andfigure2).c)Theprojectareacanincludedifferenttypesofforest,suchas,butnotlimitedto,old-growthforest,degradedforest,secondaryforests,plantedforestsandagro-forestrysystemsmeetingthedefinitionof“forest”.d)Atprojectcommencement,theprojectareashallincludeonlylandqualifyingas“forest”foraminimumof10yearspriortotheprojectstartdate.e)Theprojectareacanincludeforestedwetlands(suchasbottomlandforests,floodplainforests,mangroveforests)aslongastheydonotgrowonpeat.Peatshallbedefinedasorganicsoilswithatleast65%organicmatterandaminimumthicknessof50cm.Iftheprojectareaincludesaforestedwetlandsgrowingonpeat(e.g.peatswampforests),thismethodologyisnotapplicable.Themethodologyrequirestheuseofexistingdeforestationbaselinesifthesemeettheapplicabilitycriteriaofthemethodology.Leakageinthismethodologyissubjecttomonitoring,reporting,verificationandaccounting(MRV-A).However,iftheprojectareaislocatedwithinabroadersub-nationalornationalregionthatissubjecttoMRV-AofGHGemissionsfromdeforestationunderaVCSorUNFCCCregistered(andVCSendorsed)program(=“jurisdictionalprogram”),leakagemaybesubjecttospecialprovisionsbecauseanychangeincarbonstocksorincreaseinGHGemissionsoutsidetheprojectareawouldbesubjecttoMRV-AunderVM0015,Version1.1SectoralScope15Page7thebroaderjurisdictionalprogram.Insuchcases,themostrecentVCSJurisdictionalandNestedREDD+(JNR)Requirementsshallbeapplied.Themethodologydefinesfourspatialdomains:abroad“referenceregion”,the“projectarea”,a“leakagebelt”,anda“leakagemanagementarea”.Theprojectarea,leakagebeltandleakagemanagementareasaresubsetsofthereferenceregionandarealwaysspatiallydistinct(notoverlapping)areas(seefigure1).Figure1.Spatialdomainsconsideredinthismethodologya)FrontierconfigurationVM0015,Version1.1SectoralScope15Page8b)MosaicconfigurationThe“referenceregion”istheanalyticaldomainfromwhichinformationonhistoricaldeforestationisextractedandprojectedintothefuturetospatiallylocatetheareathatwillbedeforestedinthebaselinecase.The“projectarea”isthearea(orareas)underthecontroloftheprojectparticipantsinwhichtheAUDprojectactivitywillbeimplementedandGHGemissionreductionsaccounted.The“leakagebelt”istheareawhereanydeforestationabovethebaselineprojectionwillbeconsideredleakage.ItmustbedefinedonlyifMRV-Aforleakageisrequired.The“leakagemanagementarea”isthearea(orareas)specificallydesignedtoimplementactivitiesthatreducetheriskofactivitydisplacementleakage.Theseareareasdedicatedtoenhancedcrop-landandgrazinglandmanagement,agro-forestry,silvo-pastoralactivitiesandreforestationactivities.Attheprojectstartdate,leakagemanagementareasshallbenon-forestland.Thebaselineprojectionsmustberevisitedevery10yearsandadjusted,asnecessary,basedonland-useandland-coverchangesobservedduringthepastperiodandchangesatthelevelofagents,driverandunderlyingcausesofdeforestation,whicharesubjecttomonitoring.Theperiodoftimeduringwhichavalidatedbaselinemustnotbereassessediscalled“fixedbaselineperiod”inthismethodology.Thebaselinemaybereassessedbeforethefixed10yearbaselineexpiresonlyifanapplicablejurisdictionalbaselinebecomesavailable.TheboundaryoftheleakagebeltmustberevisitedattheendofeachfixedbaselineperiodandanytimewhenanAFOLUprojectlocatedintheproject´sleakagebeltareaisregisteredundertheVCS.Insuchcase,theprojectareaofthenewAFOLUprojectmustbeexcludedfromtheleakagebeltareafromtheVM0015,Version1.1SectoralScope15Page9dateofitsregistration1.ChangesintheleakagebeltboundaryshallbemonitoredandaresubjecttoVCSverification.Emissionsofnon-CO2gasesinthebaselineareconservativelyomitted,exceptCH4emissionsfrombiomassburning,whichcanbecountedwhenfireisthemaintechnologyusedtodeforestandwhentheprojectproponentconsidersthatignoringthissourceofemissionswouldsubstantiallyunderestimatethebaselineemissions.However,CH4emissionsfromforestfiresintheprojectcasemustbeaccountedwhentheyaresignificant.Ifleakagemustbeestimatedandaccounted,thenthemethodologyconsiderstwopotentialsourcesofleakage:(i)Ifmoredeforestationintheleakagebeltareaisobservedduringprojectimplementation,thiswillbeconsideredasactivitydisplacementleakage,andthedecreaseincarbonstocksandincreaseofGHGemissions(ifemissionsfromforestburningareincludedinthebaseline)mustbesubtractedinthecalculationoftheproject’snetanthropogenicGHGemissionsreductions.(ii)Ifleakagepreventionmeasuresincludetreeplanting,agriculturalintensification,fertilization,fodderproductionand/orothermeasurestoenhancecroplandandgrazinglandareasinleakagemanagementareas,thenanydecreaseincarbonstocksandincreaseinGHGemissionsassociatedwiththeseactivitiesisestimatedandsubtractedinthecalculationoftheproject’snetanthropogenicemissionsreductions.AnydecreaseincarbonstockorincreaseinGHGemissionsattributedtotheprojectactivitymustbeaccountedwhenitissignificant,otherwiseitcanbeneglected.SignificanceinthismethodologyisassessedusingthemostrecentCDM-approvedandVCS-endorsedversionofthe“ToolfortestingsignificanceofGHGemissionsinA/RCDMprojectactivities”2.PART1–SCOPE,APPLICABILITYCONDITIONSANDADDITIONALITYSCOPEOFTHEMETHODOLOGY1ThismethodologyisforestimatingandmonitoringGHGemissionsofprojectactivitiesthatavoidunplanneddeforestation(AUD).Theforestlandscapeconfigurationcanbemosaic,frontieroratransitionbetweenthetwo.Carbonstockenhancementsinforeststhatwouldbedeforestedinthebaselinecasecanalsobeaccountedunderthismethodology.However,creditsforreducingGHGemissionsfromavoideddegradationareexcluded.Baselineactivitiesandprojectactivitiesmayincludeharvestingoftimber,fuel-woodcollectionandcharcoalproduction3.Projectactivitiesmayincludesomelevelofplanneddeforestation,butplanneddeforestationisexcludedfromthebaseline.1ThisistoavoiddoublecountingofemissionswhenanewVCSAFOLUregisteredprojectand/oritsleakagebeltarelocated(partiallyortotally)intheleakagebeltoftheproposedAUDproject.2Availableat:http://cdm.unfccc.int/EB/031/eb31_repan16.pdf3Accountingforcarbonstockdecreaseduetotimberharvesting,fuel-woodcollectionandcharcoalproductionismandatoryinboththebaselineandprojectscenariosifthedecreaseissignificant.Theincreaseofcarbonstocksinforeststhatwouldbedeforestedinabsenceoftheprojectactivityisoptionalinthismethodologyandcanconservativelybeomitted.VM0015,Version1.1SectoralScope15Page10TheeligiblecategoriesofprojectactivitycoveredbythismethodologyarerepresentedwiththelettersAtoHintable1andfigure2.Table1.ScopeofthemethodologyPROJECTACTIVITYProtectionwithoutlogging,fuelwoodcollectionorcharcoalproductionProtectionwithcontrolledlogging,fuelwoodcollectionorcharcoalproductionBASELINEDeforestationOld-growthwithoutloggingABOld-growthwithloggingC1D1DegradedandstilldegradingE1F1SecondarygrowingG1H1No-deforestation2Old-growthwithoutloggingNochangeDegradationOld-growthwithloggingIFMIFM-RILDegradedandstilldegradingIFMIFMSecondarygrowingNochangeDegradation1.Accountingforcarbonstockincreaseintheprojectscenarioisoptionalandcanconservativelybeomitted.2.Ifthebaselineisnotdeforestation,thechangeincarbonstocksisnotcoveredinthismethodology.Figure2.CategoriesincludedinthescopeofthismethodologyVM0015,Version1.1SectoralScope15Page11VM0015,Version1.1SectoralScope15Page12VM0015,Version1.1SectoralScope15Page13VM0015,Version1.1SectoralScope15Page14ProjectStartDateThresholdofforestdefinitionC/ha/hatimeMax10yearsH–AvoidedDeforestationofSecondaryForestwithLoggingintheProjectCase+CarbonStockIncrease(optional)VM0015,Version1.1SectoralScope15Page15APPLICABILITYCONDITIONS2Themethodologyhasnogeographicrestrictionsandisapplicablegloballyunderthefollowingconditions:a)Baselineactivitiesmayincludeplannedorunplannedloggingfortimber,fuel-woodcollection,charcoalproduction,agriculturalandgrazingactivitiesaslongasthecategoryisunplanneddeforestationaccordingtothemostrecentVCSAFOLUrequirements.b)Projectactivitiesmayincludeoneoracombinationoftheeligiblecategoriesdefinedinthedescriptionofthescopeofthemethodology(table1andfigure2).c)Theprojectareacanincludedifferenttypesofforest,suchas,butnotlimitedto,old-growthforest,degradedforest,secondaryforests,plantedforestsandagro-forestrysystemsmeetingthedefinitionof“forest”.d)Atprojectcommencement,theprojectareashallincludeonlylandqualifyingas“forest”foraminimumof10yearspriortotheprojectstartdate.e)Theprojectareacanincludeforestedwetlands(suchasbottomlandforests,floodplainforests,mangroveforests)aslongastheydonotgrowonpeat.Peatshallbedefinedasorganicsoilswithatleast65%organicmatterandaminimumthicknessof50cm.Iftheprojectareaincludesaforestedwetlandsgrowingonpeat(e.g.peatswampforests),thismethodologyisnotapplicable.DemonstratethatthemethodologyisapplicabletotheproposedAUDprojectactivity.ADDITIONALITY3AdditionalityoftheproposedAUDprojectactivitymustbedemonstratedusingeitherthemostrecentVCS-approvedVT0001ToolfortheDemonstrationandAssessmentofAdditionalityinVCSAFOLUProjectActivities4notingthefollowing:TheearlieststartdateoftheproposedAUDprojectactivityisJanuary1st,2002.However,thestartdatecanbeearlierthanJanuary1st,2002,providedtherequirementsforprojectswithastartdatepriorto2002,assetoutinthemostrecentversionoftheVCSStandard,aremet.PART2-METHODOLOGYSTEPSFOREX-ANTEESTIMATIONOFGHGEMISSIONREDUCTIONSTheninemethodologystepsthatwillleadtothecalculationofexantenetanthropogenicGHGemissionreductionsaresummarizedinFigure3.InthePDrefertoeachofthesestepsandsub-stepsusingthesametitlesandnumberssothattheapplicationofthemethodologycantransparentlybevalidated.4Availableatwww.v-c-s.orgVM0015,Version1.1SectoralScope15Page16Figure3.ExantemethodologystepsSTEP1:DEFINITIONOFBOUNDARIES1Thepurposeofthisstepistodefinethefollowingcategoriesofprojectboundaries:1.1Spatialboundaries;1.2Temporalboundaries;1.3Carbonpools;and1.4Sourcesofemissionsofgreenhousegases(otherthancarbonstockchanges).Step4.Projectionoftheannualareasandlocationofdeforestationinthereferenceregioninthewithoutprojectcase.Step1.DefinitionoftheboundariesoftheproposedAUDprojectactivity:spatialboundaries,temporalboundaries,carbonpoolsandsourcesofgreenhousegasemissions.Step3.Analysisofagents,driversandunderlyingcausesofdeforestation,andsequencingofthetypicalchainofeventsleadingtoland-useandland-coverchange.Step5.Identificationofforestclassesintheareasthatwillbedeforestedunderthebaselinescenarioandofpost-deforestationland-useclassesintheprojectarea.Step7.Exanteestimationofactualcarbonstockchangesandnon-CO2emissionsundertheprojectscenario.Step2.Analysisofhistoricalland-useandland-coverchangeinthereferenceregiongoingbackabout10-15yearsfrompresent.Step9.ExantecalculationofnetanthropogenicGHGemissionreductions.Step8.Exanteestimationofleakageassociatedtoleakagepreventionmeasuresandactivitydisplacement.Step6.Estimationofbaselinecarbonstockchangesand,whereforestfiresareincludedinthebaselineassessment,ofnon-CO2emissionsfrombiomassburning.VM0015,Version1.1SectoralScope15Page171.1SpatialboundariesDefinetheboundariesofthefollowingspatialfeatures:1.1.1Referenceregion;1.1.2Projectarea;1.1.3Leakagebelt;1.1.4Leakagemanagementareas;and1.1.5Forest.Thereferenceregionisthelargestunitoflandandtheprojectarea,leakagebeltandleakagemanagementareasaresubsetsofthereferenceregion.Foreachspatialfeature,thecriteriausedtodefinetheirboundariesmustbedescribedandjustifiedinthePD.VectororrasterfilesinacommonprojectionandGISsoftwareformatsshallbeprovidedinordertoallowtheidentificationoftheboundariesunambiguously.1.1.1ReferenceregionTheboundaryofthereferenceregionisthespatialdelimitationoftheanalyticdomainfromwhichinformationaboutrates,agents,drivers,andpatternsofland-useandland-coverchange(LU/LC-change)willbeobtained,projectedintothefutureandmonitored.Thereferenceregionshouldcontainstratawithagents,driversandpatternsofdeforestationthatinthe10-15yearperiodpriortothestartdateoftheproposedAUDprojectactivityaresimilartothoseexpectedtoexistwithintheprojectarea.Theboundaryofthereferenceregionshallbedefinedasfollows:1.Ifsub-nationalornationalbaselinesexist,thatmeetVCSspecificguidanceonapplicabilityofexistingbaselines,suchbaselinesmustbeused.Anypre-existingbaselineshouldbeanalyzedandifitmeetsthecriterialistedintable2,itshouldbeused.Inbothcases,theexistingbaselinewilldeterminetheboundaryofthereferenceregion.2.Ifnosuchapplicablesub-nationalornationalbaselineisavailable,thenationaland,whereapplicable,sub-nationalgovernmentshallbeconsultedtodeterminewhetherthecountryorsub-nationalregionhasbeendividedinspatialunitsforwhichdeforestationbaselineswillbedeveloped.Ifsuchdivisionsexistandareendorsedbythenationalorsub-nationalgovernment,theymustbeusedtodeterminetheboundaryofthereferenceregion.3.Ifsuchdivisionsdonotexist,abaselinemustbedevelopedforareferenceregionencompassingtheprojectarea,theleakagebeltandanyothergeographicarea(stratumi)thatisrelevanttodeterminethebaselineoftheprojectarea.4.Ageographicareaisrelevantfordeterminingthebaselineoftheprojectareawhenagents,driversandoveralldeforestationpatternsobservedinitduringthe10-15yearperiodprecedingthestartdateoftheproposedAUDprojectactivityrepresentacredibleproxyforpossiblefuturedeforestationpatternsintheprojectarea.VM0015,Version1.1SectoralScope15Page18Table2.CriteriadeterminingtheapplicabilityofexistingbaselinesApplicabilitycriteria1Theexistingbaselinemustcoverabroadergeographicalregionthantheprojectarea.Ifaleakagebeltmustbedefined1,thebroaderregionmustincludetheleakagebeltarea.2Theexistingbaselinemustcoveratleastthedurationofthefirstfixedbaselineperiodandisnotoutdated2.3Theexistingbaselinemustdepictthelocationoffuturedeforestationonayearlybase.4Thespatialresolutionoftheexistingbaselinemustbeequalorfinerthantheminimummappingunitof“forestland”thatwillbeusedformonitoringdeforestationduringthefixedbaselineperiod.5MethodsusedtodeveloptheexistingbaselinemustbetransparentlydocumentedandbeconsistentwithaVCSapprovedandapplicablebaselinemethodology.1.IftheprojectareaislocatedwithinajurisdictionalprogramthemostrecentVCSJNRRequirementsmustbeappliedtodeterminewhetheraleakagebeltisrequired.Inallothercases,aleakagebeltisrequired.2.Abaselineisconsideredoutdated10yearsafteritsestablishment.Thereferenceregionmayincludeoneorseveraldiscreteareas.Itmustbelarger5thantheprojectareaandincludetheprojectarea.Wherethecurrentsituationwithintheprojectareaisexpectedtochange(e.g.becauseofpopulationgrowth,infrastructuredevelopmentoranyotherplausiblereason),thereferenceregionshouldbedividedinistrata,eachrepresentingproxiesforthechrono-sequenceofcurrentandfutureconditionswithintheprojectarea.Theboundaryofsuchstratamaybestatic(fixedduringafixedbaselineperiod)ordynamic6(changingeveryyear),dependingonthemodelingapproachesused.ThreemaincriteriaarerelevanttodemonstratethattheconditionsdeterminingthelikelihoodofdeforestationwithintheprojectareaaresimilarorexpectedtobecomesimilartothosefoundwithinthereferenceregionAgentsanddriversofdeforestationexpectedtocausedeforestationwithintheprojectareainabsenceoftheproposedAUDprojectactivitymustexistorhaveexistedelsewhereinthereferenceregion.Thefollowingrequirementsaretobemet:5Brownetal.(2007)suggestthefollowingruleofthumb:Forprojectsabove100,000ha,thereferenceregionshouldbeabout5-7timeslargerthantheprojectarea.Forprojectsbelow100,000ha,thereferenceregionshouldbe20-40timesthesizeoftheprojectarea.Thesefiguresareindicatives;theexactratiobetweenthetwoareasdependsontheparticularregionalandprojectcircumstances.Whereaprojectactivitydealswithanentireisland,thereferenceregionmustincludeotherislandsorforestedlandscapeswithsimilarconditions.6Dynamic=withshiftingboundaries,accordingtomodeledchangesatthelevelofdrivervariablessuchaspopulation,infrastructureandothertobedeterminedbytheprojectproponent.VM0015,Version1.1SectoralScope15Page19-Agentgroups:Deforestationagent´sgroups(asidentifiedinstep3)expectedtoencroachintotheprojectareamustexistorhaveexistedandcauseddeforestationelsewhereinthereferenceregionduringthehistoricalreferenceperiod.-Infrastructuredrivers.Ifneworimprovedinfrastructure(suchasroads,railroads,bridges,hydroelectricreservoirs,etc.)isexpectedtodevelopnearorinsidetheprojectarea7,thereferenceregionmustincludeastratumwheresuchinfrastructurewasbuiltinthepastandwheretheimpactonforestcoverwassimilartotheoneexpectedfromtheneworimprovedinfrastructureintheprojectarea.-Otherspatialdriversexpectedtoinfluencetheprojectarea.Anyspatialdeforestationdriverconsideredrelevantaccordingtotheanalysisofstep3(e.g.resettlementprograms,miningandoilconcessions,etc.)mustexistorhaveexistedelsewhereinthereferenceregion.Thehistoricalimpactofsuchdriversmusthavebeensimilartotheoneexpectedintheprojectarea.Landscapeconfigurationandecologicalconditions:Atleastthreeofthefollowingfourconditionsmustbesatisfied:-Forest/vegetationclasses:Atleast90%oftheprojectareamusthaveforestclassesorvegetationtypesthatexistinatleast90%oftherestofthereferenceregion.-Elevation:Atleast90%oftheprojectareamustbewithintheelevationrangeofatleast90%oftherestofthereferenceregion.-Slope:Theaverageslopeofatleast90%oftheprojectareashallbewithin10%oftheaverageslopeofatleast90%oftherestofthereferenceregion.-Rainfall:Theaverageannualrainfallinatleast90%oftheprojectareashallbewithin10%oftheaverageannualrainfallofatleast90%oftherestofthereferenceregion.Socio-economicandculturalconditions:Thefollowingconditionsmustbemet:-Legalstatusoftheland:Thelegalstatusoftheland(private,forestconcession,conservationconcession,etc.)inthebaselinecasewithintheprojectareamustexistelsewhereinthereferenceregion.Ifthelegalstatusoftheprojectareaisauniquecase,demonstratethatlegalstatusisnotbiasingthebaselineoftheprojectarea(e.g.bydemonstratingthataccesstothelandbydeforestationagentsissimilartootherareaswithadifferentlegalstatus).-Landtenure:Theland-tenuresystemprevalentintheprojectareainthebaselinecaseisfoundelsewhereinthereferenceregion.-Landuse:Currentandprojectedclassesofland-useintheprojectareaarefoundelsewhereinthereferenceregion.-Enforcedpoliciesandregulations:Theprojectareashallbegovernedbythesamepolicies,legislationandregulationsthatapplyelsewhereinthereferenceregion.7Areasofplanneddeforestationinthebaselinecasemustbeexcludedfromtheprojectarea.VM0015,Version1.1SectoralScope15Page201.1.2ProjectareaTheprojectareaistheareaorareasoflandunderthecontroloftheprojectproponentonwhichtheprojectproponentwillundertaketheprojectactivities.Attheprojectstartdate,theprojectareamustincludeonlyforestland.Anyareaaffectedbyplanneddeforestationduetotheconstructionofplannedinfrastructure(exceptifsuchplannedinfrastructureisaprojectactivity)mustbeexcludedfromtheprojectarea.Theprojectareamustincludeareasprojectedtobedeforestedinthebaselinecaseandmayincludesomeotherareasthatarenotthreatenedaccordingtothefirstbaselineassessment(seefigure1).Suchareaswillnotgeneratecarboncredits,buttheymaybeincludediftheprojectproponentconsidersthatfuturebaselineassessments,whichhavetobecarriedoutatleastevery10years,arelikelytoindicatethatafuturedeforestationthreatwillexist,alsothedemonstrationisnotpossibleatthetimeofvalidation.Wherelessthan80percentofthetotalproposedareaoftheprojectisundercontrolatvalidation,newdiscreteunitsoflandmaybeintegratedintoanexistingprojectareaifincludedinthemonitoringreportatthetimeofthefirstverification.Forthefullrulesandrequirementsregardingcontrolovertheentireprojectareaatvalidation,pleaseseethemostrecentversionoftheVCSAFOLUrequirements.Theboundaryoftheprojectareashallbedefinedunambiguouslyasfollows:Name(ornames,asappropriate)oftheprojectarea.Physicalboundaryofeachdiscreteareaoflandincludedintheprojectarea(usingappropriateGISsoftwareformats).Descriptionofcurrentland-tenureandownership,includinganylegalarrangementrelatedtolandownershipandtheAUDprojectactivity.ListoftheprojectparticipantsandbriefdescriptionoftheirrolesintheproposedAUDprojectactivity.1.1.3LeakagebeltIftheprojectareaislocatedwithinajurisdictionalprogram,leakagemaynothavebeassessedandaleakagebeltmaynotberequiredbecauseanydecreaseincarbonstocksorincreaseinGHGemissionsoutsidetheprojectareawouldbemeasured,reported,verifiedandaccountedunderthejurisdictionalprogram8.Insuchcases,themostrecentVCSJNRRequirementsshallbeapplied.Inallothercases,leakageissubjecttoMRV-Ainanareacalled“leakagebelt”inthismethodology.Theleakagebeltisthelandareaorlandareassurroundingoradjacenttotheprojectareainwhichbaselineactivitiescouldbedisplacedduetotheprojectactivitiesimplementedintheprojectarea.Todefinetheboundaryoftheleakagebelt,twomethodologicaloptionscanbeused:Opportunitycostanalysis(OptionI);andMobilityanalysis(OptionII).Underbothoptions,theboundaryoftheleakagebeltmustberevisitedattheendofeachfixedbaselineperiod,asopportunitycostsandmobilityparametersarelikelytochangeovertime.Inaddition,the8Insuchcases,thesub-nationalornationalgovernmentmaydefinespecificsub-nationalornationalpoliciesandregulationstodealwiththeissueofleakage.VM0015,Version1.1SectoralScope15Page21boundaryoftheleakagebeltmayhavetoberevisitedwhenotherVCS-AFOLUprojectsareregisterednearbytheprojectarea,asfurtherexplainedbelow.Ifmobilityparametersoropportunitycostsareprojectedforeachfutureyear,theboundaryoftheleakagebeltthatwillremainstaticforthewholedurationofthefixedbaselineperiodshallbetheonedeterminedforthelastyearofthefixedbaselineperiod.OptionI:OpportunitycostanalysisThisoptionisapplicablewhereeconomicprofitisanimportantdriverofdeforestation.TodemonstratethatOptionIisapplicable,usehistoricalrecords,i.e.demonstratethatatleast80%oftheareadeforestedinthereferenceregion(orsomeofitsstrata)duringthehistoricalreferenceperiod9hasoccurredatlocationswheredeforestingwasprofitable(i.e.foratleastoneproduct,PPxl>1).Alternatively,useliteraturestudies,surveysandothercredibleandverifiablesourcesofinformation.IfOptionIisnotapplicable,useOption2.Ifthemainmotivationiseconomicprofit,agentsnotallowedtodeforestwithintheprojectareawillonlydisplacedeforestationoutsidetheprojectareaifdoingsobringseconomicbenefitstothem.Basedonthisrationaleleakagecanonlyoccuronlandoutsidetheprojectareawherethetotalcostofestablishingandgrowingcropsorcattleandtransportingtheproductstothemarketislessthanthepriceoftheproducts(i.e.opportunitycostsare>0).Toidentifythislandareadothefollowing:a)Listthemainland-usesthatdeforestationagentsarelikelytoimplementwithintheprojectareainthebaselinecase,suchascattleranchingand/ordifferenttypesofcrops.b)Findcredibleandverifiablesourcesofinformationonthefollowingvariables:S$x=AveragesellingpricepertonofthemainproductPx(orproductmixtureincaseofagro-forestryormixedproductionsystems)thatwouldbeestablishedintheprojectareainthebaselinecase(meat,croptypeA,croptypeB,etc.);SPxl=Mostimportantsellingpoints(spatiallocations)foreachmainproductPxinthereferenceregion.PCxi=Averageinsituproductioncostspertonofproduct.Stratifythereferenceregionasnecessaryinistrata,asproductioncostsmayvarydependingonlocalconditions(soil,technologyavailabletotheproducer,etc.).TCv=AveragetransportcostperkilometerforonetonofproductPxtransportedondifferenttypesofland-uses(e.g.pasture,cropland,forest),roads,railroads,navigablerivers,etc.usingthemosttypicaltransporttechnologyavailabletotheproducer.Note:Forsimplicity,currentpricesandcostscanbeusedtoprojectopportunitycosts.Priceandcostprojectionsshallonlybeusedifreliableandverifiablesourcesofinformationareavailable.c)UsingaGIS,generateforeachmainproductasurfacerepresentingtheleasttransportcostofonetonofproducttothemostimportantsellingpointswithinthereferenceregion.Dothisbyconsideringthemosttypicaltransporttechnologyavailabletodeforestationagents.9Seesection1.2.1forthedefinitionof“historicalreferenceperiod.”VM0015,Version1.1SectoralScope15Page22d)Foreachmainproduct,addtothesurfacecreatedintheprevioussteptheaverageinsitucostforproducingonetonofproduct.Theresultisasurfacerepresentingthetotalcostofproducingandbringingtothemarketonetonofproduct.e)Foreachmainproduct,subtractfromtheaveragepriceofonetonofproductthetotalcostsurfacecreatedinthepreviousstep.Theresultisasurfacerepresentingpotentialprofitabilityofeachproduct.Note:Ifseveralproductsexistandcanbeproducedonthesamesite,themaximumvalueofallpotentialprofitabilitysurfaceswillrepresenttheopportunitycostofconservingtheforest.f)Theleakagebeltistheareawherethesurfacecreatedinthepreviousstep(potentialprofitability)hasapositivevalueatthelastyearofthefixedbaselineperiod.Theabovemethodologyprocedurecanbesummarizedasfollows:Alandunit(pixelorpolygonl)isinsidetheleakagebeltifthepotentialprofitabilityofatleastoneproduct(PPxl)ispositive,wherePPxliscalculatedasfollows:∑Where:PPxlPotentialprofitabilityofproductPxatlocationl(pixelorpolygon);$/tS$xSellingpriceofproductPx;$/tPCxiAverageinsituproductioncostsforonetonofproductPxinstratumi;$/tTCvAveragetransportcostperkilometerforonetonofproductPxonland,riverorroadoftypev;$/t/kmTDvTransportdistanceonland,riverorroadoftypev;kmv1,2,3…V,typeofsurfacetoonwhichtransportoccurs;dimensionlessNote:OptionIisbasedontheassumptionthatdeforestationagentsintheprojectareawillnotdisplacetheiractivitiesbeyondthereferenceregion,whereotherforestedareaswithpotentiallypositiveopportunitycostsmayexist.Demonstratethatthisassumptioniscredibleusingexpertopinion,participativeruralappraisal(PRA),literatureand/orotherverifiablesourcesofinformation.Iftheevidencecollectedisnotconvincing,useOptionII(mobilityanalysis).OptionII:MobilityanalysisMobilityanalysiscanalwaysbeusedbutmustbeusedwhereOptionIisnotapplicable,i.e.whenlessthan80%oftheareadeforestedinthereferenceregion(orsomeofitsstrata)duringthehistoricalreferenceperiodhasoccurredatlocationswheredeforestingwasprofitable.Withthisoption,thepotentialmobilityofdeforestationagentsisassessedusingmulti-criteriaanalysis.Thefollowingmethodologystepsshallbeapplied:VM0015,Version1.1SectoralScope15Page23a)Usinghistoricaldata,expertopinion,participativeruralappraisal(PRA),literatureand/orotherverifiablesourcesofinformationlistallrelevantcriteriathatfacilitate(atleastonecriterion)andconstrain(atleastonecriterion)themobilityofthemaindeforestationagentsidentifiedinstep3.Theoverallsuitabilityofthelandfortheactivitiesofdeforestationagentsshallbeconsidered.b)Foreachcriterion,generateamapusingaGIS.c)Usingmulti-criteriaanalysis,determinetheboundaryoftheleakagebelt.Justifyanyassumptionandweightassignedtotheindividualcriteria.d)MethodsusedtoperformtheanalysisshallbetransparentlydocumentedandpresentedtoVCSverifiersatthevalidation.ConsiderationofotherVCSAFOLUprojectsIftheleakagebeltareaoftheproposedAUDprojectincludestheareaorpartoftheareasofotherVCSAFOLUprojects,dothefollowingtoavoiddoublecountingofemissions:ExcludefromtheleakagebeltareaoftheproposedAUDprojecttheprojectareaoftheotherVCSAFOLUproject(s).a)Theexclusionshallenterintoforceattheregistrationdateoftheotherprojectb)Carbonaccountingshallconsidertheexclusionoftheprojectareaoftheotherprojectbeginningwiththestartdateoftheotherprojectsc)AnexcludedareashallagainbeincludedintheleakagebeltareaoftheproposedAUDprojectatthetimetheotherprojecthasnotverifieditsemissionreductionsformorethanfiveconsecutiveyears,orwhenitendsitsprojectcreditingperiodundertheVCS.IftheleakagebeltoverlapswiththeleakagebeltofotherVCSAFOLUprojects,dothefollowing:a)IdentifythecarbonpoolsandsourcesofGHGemissionsthataremonitoredbytheotherprojects.OnlyforcommoncarbonpoolsandsourcesofGHGemissionstheboundaryoftheleakagebeltareacanbemodifiedasfurtherexplainedbelow.b)Analyzetheoverlappingarea(s)withtheproponentsofeachoftheotherVCSAFOLUprojectsandcometoanagreementwiththemonthelocationoftheboundariesofthedifferentleakagebelts,sothattherewillbenooverlapsandgapsbetweenthedifferentleakagebeltareasaswellascarbonpoolsandGHGsources.c)Asanindicativerule,thepercentageofforestlandareawithintheleakagebeltofaprojectrelativetothetotalforestareaofallleakagebeltsshallbesimilartothepercentageofbaselinedeforestationoftheprojectrelativetothetotalbaselinedeforestationofallprojects:%LKBA=BLDA/(BLDA+BLDB+…+BLDN)(2.a)%LKBB=BLDB/(BLDA+BLDB+…+BLDN)(2.b)…%LKBN=BLDN/(BLDA+BLDB+…+BLDN)(2.n)VM0015,Version1.1SectoralScope15Page24Where:%LKBAPercentageoftheoverlappingleakagebeltsareatobeassignedtoProjectA;%%LKBBPercentageoftheoverlappingleakagebeltsareatobeassignedtoProjectB;%%LKBNPercentageoftheoverlappingleakagebeltsareatobeassignedtoProjectN;%BLDATotalareaofprojectedbaselinedeforestationduringthefixedbaselineperiodofProjectA(seePDofprojectA);haBLDBTotalareaofprojectedbaselinedeforestationduringthefixedbaselineperiodofProjectB(seePDofprojectB);haBLDNTotalareaofprojectedbaselinedeforestationduringthefixedbaselineperiodofProjectN(seePDofProjectN);haNote:Theproponentsofthedifferentprojectsshallagreeonthecriteriausedtodefinetheboundariesoftheirleakagebeltsintheoverlappingareasandarenotrequiredtousetheaboverule.However,iftheydecidetousethisrule,theareaoftheoverlappingleakagebeltsassignedtoProjectAshallbetheclosesttotheboundaryofProjectA;theareaoftheoverlappingleakagebeltsassignedtoProjectBshallbetheclosesttotheboundaryofProjectBandsoon(theareaoftheoverlappingleakagebeltsassignedtoProjectNshallbetheclosesttotheboundaryofProjectN).d)Thefinalboundaryoftheleakagebeltofeachprojectissubjecttovalidationandperiodicalverification.AprojectmayreportasmallerleakagebeltonlyifanotherVCSregisteredprojecthasincludedinitsleakagebelttheportionleftout.e)Iftheproponentsofthedifferentprojectsdonotagreeonhowtosplittheoverlappingleakagebeltarea,eachprojectwillhavetoincludeinitsleakagebelttheoverlappingareas.f)A“LeakageBeltAgreement”betweentheproponentsofthedifferentprojectsmustbesignedandpresentedtoVCSverifiersatthetimeofvalidation/verification.TheagreementshallcontainthemapsoftheagreedleakagebeltsandeachprojectshallhaveadigitalcopyofthesemapsintheprojectionandGISsoftwareformatsusedineachproject.g)IfaprojectendsorhasnotpresentedaverificationtotheVCSformorethanfiveconsecutiveyears,theotherprojectsparticipatinginthe“leakagebeltagreement”shallamendtheagreementinordertoensurethatthewholeareaoftheoriginallyoverlappingleakagebeltsisalwayssubjecttoMRV-A.TheamendmentissubjecttoVCSverification.Ifnoamendmentismade,theproposedprojectwillhavetoincludeinitsleakagebeltthelandareathatisnolongerbesubjecttoMRV-AbyaanotherVCSproject.1.1.4LeakagemanagementareasThesearenon-forestareaslocatedoutsidetheprojectboundaryinwhichtheprojectproponentintendstoimplementactivitiesthatwillreducetheriskofactivitydisplacementleakage,suchasafforestation,reforestationorenhancedcropandgrazinglandmanagement.TheboundaryofsuchareasmustbedefinedaccordingtoexistingmanagementplansorotherplansrelatedtotheproposedAUDprojectactivity.SuchplansshallbemadeavailabletotheVCSValidation/VerificationBody(VVB)atthetimeofvalidation.TheboundaryofleakagemanagementareasmustbeclearlydefinedusingthecommonVM0015,Version1.1SectoralScope15Page25projectionandGISsoftwareformatsusedintheprojectandshallbereassessedandvalidatedateachfixedbaselineperiod1.1.5ForestTheboundaryoftheforestisdynamicandwillchangeovertime.Itmustbedefinedusinganexplicitandconsistentforestdefinitionoverdifferenttimeperiods.Inthebaselinecase,changesintheboundaryofforestlandwillbeprojected,andthebaselineprojectionsmustbereassessedatleastevery10years.Intheprojectareaandleakagebelt,theexpostboundaryofforestlandwillbesubjecttoperiodicalmonitoring,verificationandreporting(MRV).Todefinetheboundaryoftheforest,specify:Thedefinitionofforestthatwillbeusedformeasuringdeforestationduringtheprojectcreditingperiod(seeappendix1forcriteriatodefine“forest”).TheMinimumMappingUnit(MMU).TheMMUsizeoftheLULCmapscreatedusingRSimpageryshallnotbemorethanonehectareirrespectiveofforestdefinition.AninitialForestCoverBenchmarkMapisrequiredtoreportonlygrossdeforestationgoingforward.Itshoulddepictthelocationswhereforestlandexistsattheprojectstartdate.Thebaselineprojectionsinstep4.2willgenerateonesuchmapforeachfutureyearofthefixedbaselineperiodand,optionally,projectcreditingperiod.Areascoveredbycloudsorshadowsshouldbeanalyzedbycomplementingtheanalysisofopticalsensordatawithnon-opticalsensordata.However,ifsomeobscuredareasremainforwhichnospatiallyexplicitandverifiableinformationonforestcovercanbefoundorcollected(usingground-basedorothermethods),suchareasshallbeexcluded(maskedout).Thisexclusionwouldbe:Permanent,unlessitcanreasonablybeassumedthattheseareasarecoveredbyforests(e.g.duetotheirlocation).Temporalincaseinformationwasavailableforthehistoricalreferenceperiod,butnotforaspecificmonitoringperiod.Inthiscase,theareawithnoinformationmustbeexcludedfromthecalculationofnetanthropogenicGHGemissionreductionsofthecurrentmonitoringperiod,butnotforsubsequentperiods,wheninformationmaybecomeavailableagain.Wheninformationbecomesavailableagain,andthelandappearswithvegetationparametersbelowthethresholdsfordefining“forest”,thelandshouldbeconsideredas“deforested”.1.2TemporalboundariesDefinethetemporalboundarieslistedbelow.1.2.1StartingdateandenddateofthehistoricalreferenceperiodThestartingdateshouldnotbemorethan10-15yearsinthepastandtheenddateascloseaspossibletotheprojectstartdate.TheprojectstartdateisthedateatwhichtheadditionalAUDprojectactivitieshaveoraretobestarted.1.2.2StartingdateoftheprojectcreditingperiodoftheAUDprojectactivityThelengthoftheprojectcreditingperiodshallbeestablishedassetoutonthemostrecentversionoftheVCSStandard.VM0015,Version1.1SectoralScope15Page261.2.3StartingdateandenddateofthefirstfixedbaselineperiodThefixedbaselineperiodshallbe10years.Thestartingandenddatesmustbedefined.1.2.4MonitoringperiodTheminimumdurationofamonitoringperiodisoneyearandthemaximumdurationisonefixedbaselineperiod.1.3CarbonpoolsThesixcarbonpoolslistedintable3areconsideredinthismethodology.Table3.CarbonpoolsincludedorexcludedwithintheboundaryoftheproposedAUDprojectactivityCarbonpoolsIncluded/TBD1/ExcludedJustification/ExplanationofchoiceAbove-groundTree:IncludedCarbonstockchangeinthispoolisalwayssignificantNon-tree:TBDMustbeincludedincategorieswithfinallandcoverofperennialcropBelow-ground+TBDOptionalandrecommendedbutnotmandatoryDeadwood+TBDRecommendedonlywhensignificantHarvestedwoodproducts+IncludedTobeincludedwhensignificantLitterTBDRecommendedonlywhensignificant.Soilorganiccarbon+TBDRecommendedwhenforestsareconvertedtocropland.NottobemeasuredinconversionstopasturegrassesandperennialcropaccordingtoVCSProgramUpdateofMay24th,2010.1.TBD=ToBeDecidedbytheprojectproponent.Thepoolcanbeexcludedonlywhenitsexclusiondoesnotleadtoasignificantover-estimationofthenetanthropogenicGHGemissionreductionsoftheAUDprojectactivity.2.TheVCSdefinesas“significant”thosecarbonpoolsandsourcesthataccountmorethan5%ofthetotalGHGbenefitsgenerated(VCS2007.1,2008p.17).Todeterminesignificance,themostrecentversionofthe“ToolfortestingsignificanceofGHGemissionsinA/RCDMprojectactivities”shallbeused10.3.+=TheVCSAFOLURequirementsrequiremethodologiestoconsiderthedecayofcarboninsoilcarbon,belowgroundbiomass,deadwoodandharvestedwoodproducts.Notethattheimmediatereleaseofcarbonfromthesepoolsinthebaselinecasemustnotbeassumed.CarbonpoolsthatareexpectedtodecreasetheircarbonstocksintheprojectscenariocomparedtothebaselinecasemustbeincludediftheexclusionwouldleadtoasignificantoverestimationofthenetanthropogenicGHGemissionreductionsgeneratedduringthefixedbaselineperiod.10Availableat:http://cdm.unfccc.int/EB/031/eb31_repan16.pdfVM0015,Version1.1SectoralScope15Page27CarbonpoolsconsideredinsignificantaccordingtothelatestVCSAFOLUrequirementscanalwaysbeneglected.Above-groundbiomassoftreesmustalwaysbeselectedbecauseitisinthispoolthatthegreatestcarbonstockchangewilloccur.Non-treebiomassmustbeincludedifthecarbonstockinthispoolislikelytoberelativelylargeinthebaselinecomparedtotheprojectscenariosuchaswhenshort-rotationwoodycorpsarecommonlyplantedintheregionwheretheprojectareaislocated.Thesignificancecriterionshallapply.Below-groundbiomassoftreesisrecommended,asitusuallyrepresentsbetween15%and30%oftheabove-groundbiomass.Harvestedwoodproductsmustbeincludedifremovaloftimberisassociatedwithsignificantlymorecarbonstoredinlong-termwoodproductsinthebaselinecasecomparedtotheprojectscenario.Thesignificancecriterionshallapply.Whenincluded,short-livedfraction(decayinginlessthan3years)isassumedtodecayinmidiatlyattheyearofdeforestation(t=t),themedium-livedfraction(decayingin3-100years)isassumedtodecayina20-yearperiodandthelong-termfractionisassumedtoneverdecay(i.e.itneverresultsinanemission).Thus,itisconservativetoassumethat100%ofthecarbonstockinwoodproductsislong-lived.Inmostcasestheexclusionofacarbonpoolwillbeconservative,exceptwhenthecarbonstockinthepoolishigherinthebaselinecomparedtotheprojectscenario.Theinclusionofacarbonpoolisrecommended(butnotmandatory)wherethepoolislikelytorepresentanimportantproportion(>10%)ofthetotalcarbonstockchangeattributabletotheprojectactivity(“expectedmagnitudeofchange”).Forexcludedpools,brieflyexplainwhytheexclusionisconservative.Whentheexclusionofacarbonpoolisnotconservative,demonstratethattheexclusionwillnotleadtoasignificantoverestimationofthenetanthropogenicGHGemissionreduction.Iftheexclusionissignificant,thepoolmustbeincluded.Carbonpoolsthatareexcludedornotsignificantaccordingtotheexanteassessmentdonotneedtobemonitoredexpost.InmostcasesthesamecarbonpoolsshallbeconsideredforallcategoriesofLU/LCchange.However,includingdifferentcarbonpoolsfordifferentcategoriesofLU/LCchangeisalloweddependingon“significance”,“conservativeness”and“expectedmagnitudeofchange”.Forinstance,harvestedwoodproductsmayonlybeconsideredinthecategorieswherethispoolexists.Thefinalselectionofcarbonpoolspercategoryisdoneinstep2.3.WithinacategoryofLU/LC-change,thesamecarbonpoolsmustbeselectedforthetwoclassesinvolved.Table1inappendix2providesanindicationofthelevelofpriorityforincludingdifferentcarbonpoolsdependingonthecategoryofLU/LCchange.Ifapoolisconservativelyexcludedatvalidation,projectproponentcannotinsubsequentmonitoringandverificationperiodsdecidetomeasure,reportandverifytheexcludedcarbonpool.However,thereverseispossiblei.e.,ifapoolisincludedatvalidation,itmaybeconservativelyexcludedinsubsequentmonitoringandverificationperiodsprovidedallmethodologyrequirementsareappliedtocarryouttheestimationsandtheseareindependentlyverified.FurtherguidanceontheselectionofVM0015,Version1.1SectoralScope15Page28carbonpoolscanbefoundinthemostrecentversionoftheGOFC-GOLDsourcebookforREDD11andfurtherdetailsaregiveninappendix3.1.4SourcesofGHGemissionsThetwosourcesofGHGemissionslistedintable4areconsideredinthismethodology.Table4.SourcesandGHGincludedorexcludedwithintheboundaryoftheproposedAUDprojectactivitySourcesGasIncluded/TBD1/excludedJustification/ExplanationofchoiceBiomassburningCO2ExcludedCountedascarbonstockchangeCH4TBDSeeguidancebelowN2OExcludedConsideredinsignificantaccordingtoVCSProgramUpdateofMay24th,2010LivestockemissionsCO2ExcludedNotasignificantsourceCH4TBDSeeguidancebelowN2OTBDSeeguidancebelow1.TBD=ToBeDecidedbytheprojectproponent.Thesourcecanbeexcludedonlywhenitsexclusiondoesnotleadtoasignificantover-estimationofthenetanthropogenicGHEemissionreductionsoftheAUDprojectactivity.2.TheVCSdefinesas“significant”thosecarbonpoolsandsourcesthataccountmorethan5%ofthetotalGHGbenefitsgenerated(VCS2007.1,2008p.17).Todeterminesignificance,themostrecentversionofthe“ToolfortestingsignificanceofGHGemissionsinA/RCDMprojectactivities”shallbeused12.SourcesofemissionsthatareexpectedtoincreaseintheprojectscenariocomparedtothebaselinecasemustbeincludediftheexclusionwouldleadtoasignificantoverestimationofthetotalnetanthropogenicGHGemissionreductionsgeneratedduringthefixedbaselineperiod.SourcesconsideredinsignificantaccordingtothelatestVCSAFOLUrequirementscanalwaysbeneglected.Theinclusionofasourceisrecommended(butnotmandatory)wherethesourceislikelytorepresentanimportantproportion(>10%)ofthetotalemissionsreductionsattributabletotheprojectactivity(“expectedmagnitudeofchange”).Theexclusionofasourceisallowedonlyiftheomissionisconservativeorthesourceisinsignificant.SourcesofGHGemissionsthatarenotsignificantaccordingtotheexanteassessmentdonotneednottobemonitoredexpost.11GOFC-GOLD,2012.Asourcebookofmethodsandproceduresformonitoringandreportinganthropogenicgreenhousegasemissionsandremovalscausedbydeforestation,gainsandlossesofcarbonstocksinforestsremainingforestsandforestation.Availableat:http://www.gofc-gold.uni-jena.de/redd/12Availableat:http://cdm.unfccc.intVM0015,Version1.1SectoralScope15Page29Forexcludedsources,brieflyexplainwhytheexclusionisconservative.Inthebaselinescenario:Non-CO2emissionsfromfiresusedtoclearforestscanbecountedwhensufficientdataareavailabletoestimatethem.However,accountingfortheseemissionscanconservativelybeomitted.GHGemissionsfromland-usesimplementedondeforestedlands(includingfrombiomassburning)areconservativelyomittedinthismethodology.Intheprojectscenario:Itisreasonabletoassumethattheprojectactivity,includingwhenharvestactivitiesareplanned(suchasloggingfortimber,fuel-woodcollectionandcharcoalproduction),produceslessemissionsofGHGthanthebaselineactivitiesimplementedpriorandafterdeforestationonthedeforestedlands.Therefore,theomissionofcertainsourcesofGHGemissions,suchastheconsumptionoffossilfuels,willnotcauseanoverestimationofthenetanthropogenicGHGemissionreductions.However,non-CO2emissionsfromforestfiresmustbecountedintheprojectscenariowhentheyaresignificant.Intheestimationofleakage:GHGemissionsbysourcesthatareattributabletoleakagepreventionmeasures(e.g.thoseimplementedinleakagemanagementareas)andthatareincreasedcomparedtopre-existingGHGemissionscountasleakageandshouldbeestimatedandcountediftheyaresignificant.Non-CO2emissionsfromdisplacedbaselineactivities,whichareconservativelyomittedinthebaseline,canbeignored,asintheworstcasescenariotheywouldbesimilartobaselineemissions.However,ifnon-CO2emissionsfromforestfiresusedtoclearforestsarecountedinthebaseline,theymustalsobecountedintheestimationofactivitydisplacementleakage.STEP2:ANALYSISOFHISTORICALLAND-USEANDLAND-COVERCHANGE2Thegoalofthisstepistocollectandanalyzespatialdatainordertoidentifycurrentland-useandland-coverconditionsandtoanalyzeLU/LCchangeduringthehistoricalreferenceperiodwithinthereferenceregionandprojectarea.Thetaskstobeaccomplishedarethefollowing:2.1Collectionofappropriatedatasources;2.2Definitionofclassesofland-useandland-cover;2.3Definitionofcategoriesofland-useandland-coverchange;2.4Analysisofhistoricalland-useandland-coverchange;2.5Mapaccuracyassessment;and2.6PreparationofamethodologyannextothePD.2.1CollectionofappropriatedatasourcesCollectthedatathatwillbeusedtoanalyzeland-useandland-coverchangeduringthehistoricalreferenceperiodwithinthereferenceregionandprojectarea.Itisgoodpracticetodothisforatleastthreetimepoints,about3-5yearsapart.Forareascoveredbyintactforests,itissufficienttocollectdataforonesingledate,whichmustbeasclosestaspossibletotheprojectstartdate(<2years).VM0015,Version1.1SectoralScope15Page30Asaminimumrequirement:Collectmediumresolutionspatialdata13(from10mx10muptoamaximumof100mx100mresolution)fromopticalandnon-opticalsensorsystems,suchas(butnotlimitedto)Landsat14,SPOT,ALOS,AVNIR2,ASTER,IRSsensordata)coveringthepast10-15years.Collecthighresolutiondatafromremotesensors(<5x5mpixels)and/orfromdirectfieldobservationsforground-truthvalidationoftheposterioranalysis.Describethetypeofdata,coordinatesandthesamplingdesignusedtocollectthem.Intabularformat(table5),providethefollowinginformationaboutthedatacollected:Table5.DatausedforhistoricalLU/LCchangeanalysisVector(Satelliteorairplane)SensorResolutionCoverageAcquisitiondateSceneorpointidentifierSpatialSpectral(km2)(DD/MM/YY)Path/LatitudeRow/LongitudeWherealreadyinterpreteddataofadequatespatialandtemporalresolutionareavailable,withsomecaution15thesecanalsobeconsideredforposterioranalysis.2.2Definitionofclassesofland-useandland-coverIdentifyanddescribetheland-useandland-cover(LU/LC)classespresentinthereferenceregionattheprojectstartdate.ALU/LCclassisauniquecombinationofland-useandland-coverforwhich:a)Theboundarycanbedefinedathandofremotelysenseddataand/orothersourcesofinformation,suchasmapsofvegetation,soil,elevation,managementcategory,etc.,asdefinedbytheprojectproponenttounambiguouslydefineaLU/LCclass;and13Guidanceontheselectionofdatasources(suchasremotelysenseddata)canbefoundinchapter3A.2.4oftheIPCC2006GLAFOLUandinthelatestversionoftheGOFC-GOLDsourcebookonREDD.14OnMay31,2003,thescan-line-corrector(SLC)aboardLandsat7failed,producinghorizontalzero-filledwedgesin22%ofscenesfromthatpointon.Thenadirportionoffullsceneimagesisusuallyintact,thoughbotheastandwestofnadirgapsextendtothesceneedges.Gap-fillingfunctionshavebeencreated,butalgorithmicmechanismsthatblur,average,orotherwisechangespatialrelationshipsbetweenpixelsspanningthesegapstoexistingpixelsinthescenebeingfilledareunsatisfactoryfromtheperspectiveofthespatialmodelingneedsofREDD.Instead,usersshouldfillinthesegapspost-processingwithspatiallyandspectrallysatisfactoryclassificationsfromothersources(suchasothercomplimentaryopticalandradarplatforms).15Existingmapsshouldbeusedwithcautionbecausetheyoftendonotreportdocumentation,errorestimates,whethertheywereofthesiteorregioninquestionorextractedfromanationalmap,orwhethertheywereobtainedbychangedetectiontechniquesratherthanbystaticmapcomparison,etc.IfdataabouthistoricalLU/LCand/orLU/LC-changeisalreadyavailable,informationabouttheminimummappingunit,themethodsusedtoproducethesedata,anddescriptionsoftheLU/LCclassesand/orLU/LC-changecategoriesmustbecompiled,includingonhowtheseclassesmaymatchwithIPCCclassesandcategories.VM0015,Version1.1SectoralScope15Page31b)Carbonstocksperhectare(tCO2-eha-1)16withineachclassareabouthomogeneousacrossthelandscape.Carbonstocksmustonlybeestimatedforclassesinsidetheprojectarea,leakagebeltandleakagemanagementareas,whichwillbedoneinstep6.ThefollowingcriteriashallbeusedtodefinetheLU/LCclasses:Theminimumclassesshallbe“ForestLand”and“Non-ForestLand”.“Forest-land”willinmostcasesincludestratawithdifferentcarbonstocks.Forest-landmustthereforebefurtherstratifiedinforestclasseshavingdifferentaveragecarbondensitieswithineachclass.“Non-ForestLand”maybefurtherstratifiedinstratarepresentingdifferentnon-forestclasses.IPCCclassesusedfornationalGHGinventoriesmaybeusedtodefinesuchclasses(CropLand,GrassLand,Wetlands,Settlements,andOtherLand).SeeIPCC2006GLAFOLUChapter3,Section3.2,p.3.5foradescriptionoftheseclasses.However,whereappropriatetoincreasetheaccuracyofcarbonstockestimates,additionalordifferentsub-classesmaybedefined.ThedescriptionofaLU/LCclassmustincludecriteriaandthresholdsthatarerelevantforthediscriminationofthatclassfromallotherclasses.SelectcriteriaandthresholdsallowingatransparentdefinitionoftheboundariesoftheLU/LCpolygonsofeachclass.Suchcriteriamayincludespectraldefinitionsaswellasothercriteriausedinpost-processingofimagedata,suchaselevationabovesealevel,aspect,soiltype,distancetoroads17andexistingvegetationmaps.Whereneeded,inthecolumn“description”oftable6refertomoredetaileddescriptionsinthemethodologicalannextobepreparedinstep2.6.Forallforestclassespresentintheprojectarea,specifywhetherloggingfortimber,fuelwoodcollectionorcharcoalproductionarehappeninginthebaselinecase.Ifdifferentcombinationsofclassesandbaselineactivitiesarepresentintheprojectarea,definedifferentclassesforeachcombination,evenifcarbonstocksaresimilarattheprojectstartdate.Ifaforestclasshaspredictablygrowingcarbonstocks(i.e.theclassisasecondaryforest)andtheclassislocatedbothintheprojectareaandleakagebelt,twodifferentclassesmustbedefined(seestep6.1forexplanations).InmostcasesonesingleLand-UseandLand-CoverMaprepresentingthespatialdistributionofforestclassesattheprojectstartdatewillbesufficient.However,wherecertainareasoflandareexpectedtoundergosignificantchangesincarbonstockduetogrowthordegradationinthebaselinecase,asequenceofLand-UseandLand-CoverMapsrepresentingthemosaicofforest-classesofeachfutureyearmaybegenerated.16Thecarbonstockperhectareissometimesreferredtoas“carbondensity”intheliterature.17Someclassesmaybedefinedusingindirectcriteria(e.g.“Intactold-growthforest”=Forestatmorethan500mfromthenearestroad;“Degradedforest”=Forestwithin500mfromthenearestroad.Inthisexample,theassumptionismadethatloggingactivitiesusuallydonotoccur,orareofverylowintensity,whenthetreesareatmorethan500mfromthenearestroad).TheuseofindirectcriteriashallbebrieflyjustifiedinthePDathandofverifiableinformation,suchasindependentstudies,literature,etc.Usingadefinitionof“degradedforest”asinthisexample,theboundaryofthepolygonclass“degradedforest”wouldbeafunctionofhowtheroadnetworkdevelopsovertime,whichimpliesthatsuchdevelopmentwillhavetobemonitored.VM0015,Version1.1SectoralScope15Page32Thegenerationofsuchasequenceofmapsismandatoryonlyforareaswithintheprojectboundarythatareundergoingdegradationinthebaselinecase,i.e.categoriesC,D,Eand/orFarepresentintheprojectarea(seetable1andfigure2).Anyassumptiononchangingcarbonstocksinthebaselinecasemustbedocumentedathandofcredibleandverifiablesourcesofinformation,suchasmeasurementsinplotsrepresentingachrono-sequence,publishedliterature,andothersources,asappropriate.ListtheresultingfinalLU/LC-classesintable6.Table6.ListofalllanduseandlandcoverclassesexistingattheprojectstartdatewithinthereferenceregionClassIdentifierTrendinCarbonstock1Presencein2Baselineactivity3Description(includingcriteriaforunambiguousboundarydefinition)IDclNameLGFWCP12…Cl1.Noteif“decreasing”,“constant”,“increasing”2.RR=Referenceregion,LK=Leakagebelt,LM=LeakagemanagementAreas,PA=Projectarea3.LG=Logging,FW=Fuel-woodcollection;CP=CharcoalProduction(yes/no)4.Eachclassshallhaveauniqueidentifier(IDcl).Themethodologysometimesusesthenotationicl(=1,2,3,…Icl)toindicate“initial”(pre-deforestation)classes,whichareallforestclasses;andfcl(=1,2,3,…Fcl)toindicatefinal”(post-deforestation)classes.Inthistableallclasses(“initial”and“final”)shallbelisted.2.3Definitionofcategoriesofland-useandland-coverchangeIdentifyallLU/LC-changecategoriesthatcouldoccurwithintheprojectareaandleakagebeltduringtheprojectcreditingperiodinboth,thebaselineandprojectcase.Thiscanbedonebyanalyzingaland-usechangematrixthatcombinesallLU/LC-classespreviouslydefined.ListtheresultingLU/LC-changecategoriesintable7.aand7.b:Table7.a.Potentialland-useandland-coverchangematrixIDclInitialLU/LCclassI1I2I…InFinalLU/LCclassF1I1/F1I2/F1I…/F1In/F1F2I1/F2I2/F2I…/F2In/F2F…I1/F…I2/F…I…/F3In/F…FnI1/FnI2/FnI…/FnIn/FnVM0015,Version1.1SectoralScope15Page33Table7.b.Listofland-useandland-coverchangecategoriesIDctNameTrendinCarbonstockPresenceinActivityinthebaselinecaseNameTrendinCarbonstockPresenceinActivityintheprojectcaseLGFWCPLGFWCPI1/F1I1/F2I1/F…I2/F1I2/F2I2/F…I…/F1I…/F2I…/F…2.4Analysisofhistoricalland-useandland-coverchangeUsingthedatacollectedinstep2.1,dividethereferenceregioninpolygons18representingtheLU/LC-classesandLU/LC-changecategoriesdefinedinsteps2.2and2.3.Inthecaseoftheprojectarea,LU/LC-changeanalysisisrequiredtoexcludeanyareawithforeststhatarelessthan10yearsoldattheprojectstartdate.UseexistingLU/LCorLU/LC-changemapsiftheclassesandcategoriesarewelldescribedinthesemaps,sothattheycanbeusedforcompletingsteps2.2and2.3.Whereprocesseddataofgoodqualityarenotavailable,unprocessedremotelysenseddatamustbeanalyzedtoproduceLU/LCmapsandLU/LC-changemaps.Giventheheterogeneityofmethods,datasourcesandimageprocessingsoftware,LU/LC-changedetectionshouldbeperformedbytrainedinterpreters.Typically,theanalysisofLU/LC-changeinvolvesperformingthefollowingthreetasks:2.4.1Pre-processing;2.4.2Interpretationandclassification;and2.4.3Post-processing.2.4.1Pre-processingPre-processingtypicallyincludes:a)GeometriccorrectionstoensurethatimagesinatimeseriesoverlayproperlytoeachotherandtootherGISmapsusedintheanalysis(i.e.forpost-classificationstratification).Theaveragelocationerrorbetweentwoimagesshouldbe<1pixel.18Rasterorgriddataformatsareallowed.VM0015,Version1.1SectoralScope15Page34b)Cloudandshadowremovalusingadditionalsourcesofdata(e.g.radar,aerialphotographs,field-surveys).c)Radiometriccorrectionsmaybenecessary(dependingonthechange-detectiontechniqueused)toensurethatsimilarobjectshavethesamespectralresponseinmulti-temporaldatasets.d)Reductionofhaze,asneeded.SeethemostrecentversionoftheGOFC-GOLDsourcebookforREDDorconsultexpertsandliteratureforfurtherguidanceonpre-processingtechniques.Dulyrecordallpre-processingstepsforlaterreporting.2.4.2InterpretationandclassificationTwomaincategoriesofchangedetectionexistandcanbeused(seeIPCC2006GLAFOLU,Chapter3A.2.4):(1)Post-classificationchangedetection:TwoLU/LCmapsaregeneratedfortwodifferenttimepointsandthencomparedtodetectLU/LCchanges.ThetechniquesarestraightforwardbutarealsosensitivetoinconsistenciesininterpretationandclassificationoftheLU/LCclasses.(2)Pre-classificationchangedetection:ThesearemoresophisticatedapproachestoLU/LC-changedetection.Theyalsorequiremorepre-processingofthedata(i.e.radiometriccorrections).ThebasicapproachistocomparebystatisticalmethodsthespectralresponseofthegroundusingtwodatasetsacquiredatdifferentdatestodetectthelocationswhereachangehasoccurredandthentoallocatedifferentpatternsofspectralchangetospecificLU/LC-changecategories.Thisapproachislesssensitivetointerpretationinconsistenciesbutthemethodsinvolvedarelessstraightforwardandrequireaccesstotheoriginalunclassifiedremotelysenseddata.AsseveralmethodsareavailabletoderiveLU/LCandLU/LC-changemapsfrommulti-temporaldatasets,themethodologydoesnotprescribeanyspecificmethod.Asageneralguidance:Automatedclassificationmethodsshouldbepreferredbecausetheinterpretationismoreefficientandrepeatablethanavisualinterpretation.Independentinterpretationofmulti-temporalimagesshouldbeavoided(butisnotforbidden).Interpretationisusuallymoreaccuratewhenitfocusesonchangedetectionwithinterdependentassessmentoftwomulti-temporalimagestogether.Atechniquethatmaybeeffectiveisimagesegmentationfollowedbysupervisedobjectclassification.Minimummappingunitsizeshallnotbemorethanonehectareirrespectiveofforestdefinition.SeethemostrecentversionoftheGOFC-GOLDsourcebookonREDDorconsultexpertsandliteratureforfurtherguidanceonmethodstoanalyzeLU/LC-changeusingremotelysenseddata.Dulyrecordallinterpretationandclassificationstepsforlaterreporting.VM0015,Version1.1SectoralScope15Page352.4.3Post-processingPost-processingincludestheuseofnon-spectraldatatofurtherstratifyLU/LC-classeswithheterogeneouscarbondensityinLU/LCclasseswithhomogenouscarbondensity.Post-classificationstratificationcanbeperformedefficientlyusingaGeographicalInformationSystem(GIS).Currentremotesensingtechnologyisunabletodiscriminatecarbondensityclasses,althoughsomeprogressisbeingmadeusinglidarandothertechnologiesthatcombinedwithfield-surveyscanbeusedunderthismethodology.Someforesttypes(e.g.broadleavedforest,coniferousforests,mangroves)canbediscriminatedwithhighaccuracyusingremotely-senseddataonly.LU/LC-classesthatcannotbestratifiedfurtherusingremotesensingtechniquesbutthatarelikelytocontainabroadrangeofcarbondensityclassesshouldbestratifiedusing:Biophysicalcriteria(e.g.climateorecologicalzone,soilandvegetationtype,elevation,rainfall,aspect,etc.)19;Disturbanceindicators(e.g.vicinitytoroads;forestryconcessionareas;etc.);age(incasesofplantationsandsecondaryforests);Landmanagementcategories(e.g.protectedforest,indigenousreserve,etc.);and/orOthercriteriarelevanttodistinguishcarbondensityclasses.SeethemostrecentversionoftheGOFC-GOLDsourcebookforREDDandIPCC2006GLAFOLUforfurtherguidanceonstratification.ThecriteriafinallyusedshouldbereportedtransparentlyinthePDandreferencedtointable6.Someiterationbetweensteps2.2,2.3,and2.4.3maybenecessary.Dulyrecordallpost-processingstepsforlaterreporting.Attheendofstep2,thefollowingproductsshouldbepreparedforthereferenceregionandprojectarea:a)AForestCoverBenchmarkMapforatleastthemostrecentdate(2yearsfromtheprojectstartdate)and10(2)years20priortotheprojectstartdate,showingonly“forest”and“non-forest”.b)ALand-UseandLand-CoverMapforatleastthemostrecentdate(2yearsfromtheprojectstartdate)depictingtheLU/LC-classesdefinedinstep2.2.Ifsuchamapcannotbegeneratedatthelevelsofaccuracyrequiredbythismethodology(seestep2.5),areasofthedifferentLU/LC-classesmaybeestimatedbysamplingtechniques(e.g.byoverlayingagridofdotsonthesatelliteimageandthencountingthepointsfallingineachLU/LC-class,orbysamplingthelandscapewithhigherresolutionimagesandthenclassifyingthesampledimages),orbyusingothersourcesofdata,suchasofficialstatisticaldataonland-use(e.g.agriculturalcensusdata):c)ADeforestationMapforeachsub-periodanalyzed,depictingatleastthecategory“deforestation”.Manyprojectswillhavesomelevelofno-dataareasbecauseofcloud-cover.Inthiscasechangeratesshouldbecalculatedforeachtimestepbasedonlyonareasthatwerenotcloud-obscuredineitherdateinquestion.Then,amaximumpossibleforestcovermapshouldbemadeforthemostrecentyear(2yearsfromtheprojectstartdate).Thehistoricalratein%shouldbe19IPCC2006GuidelinesforNationalGHGInventoriesprovidedefaultclimateandsoilclassificationschemesinAnnex3A.5andguidanceonstratifyingLU/LCareasinSection3.3.2.20Thisistoexcludefromtheprojectareaforeststhatarelessthan10yearsoldattheprojectstartdate.VM0015,Version1.1SectoralScope15Page36multipliedbythemaximumforestcoverareaatthestartoftheperiodforestimatingthetotalareaofdeforestationduringtheperiod.d)ALand-UseandLand-CoverChangeMapforatleastthemostrecentperiodanalyzed(3-5years)depictingtheLU/LC-changecategoriesdefinedinstep2.3.Inmostcases,thismapwillbepreparedbycombiningtheDeforestationMapofthemostrecentperiod(3-5years)withthemostrecentLand-UseandLand-CoverMap.IftheareaoftheLU/LC-classeswasestimatedusingsamplingtechniquesorothersourcesofinformation,aLU/LC-ChangeMapisnotrequired.e)ALand-UseandLand-CoverChangeMatrixforatleastthemostrecentperiodanalyzed,derivedfromtheLU/LC-changemaportheDeforestationMapandthepost-deforestationland-usedatamentionedabove,showingactivitydataforeachLU/LC-changecategory.Seeappendix2,table4foranexampleofaLU/LCchangematrix.2.5MapaccuracyassessmentAverifiableaccuracyassessmentofthemapsproducedinthepreviousstepisnecessarytoproduceacrediblebaseline21.Theaccuracymustbeestimatedonaclass-by-class(LU/LCmap)and,whereapplicable,category-by-category(LU/LC-changemap)basis,respectively.Anumberofsamplepointsonthemapandtheircorrespondingcorrectclassification(asdeterminedbyground-surveysorinterpretationofhigherresolutiondataascollectedinstep2.1)canbeusedtocreateanerrormatrixwiththediagonalshowingtheproportionofcorrectclassificationandtheoff-diagonalcellsshowingtherelativeproportionofmisclassificationofeachclassorcategoryintotheotherclassor,respectively,categories.Basedontheerrormatrix(alsocalledconfusionmatrix),anumberofaccuracyindicescanbederived(seee.g.Congalton,1991andPontius,2000).TheminimumoverallaccuracyoftheForestCoverBenchmarkMapshouldbe90%.TheminimumclassificationaccuracyofeachclassorcategoryintheLand-UseandLand-CoverMapandLand-UseandLand-CoverChangeMap,respectively,shouldbe80%.Iftheclassificationofaclassorcategoryislowerthan80%:Considermergingtheclass/categorywithotherclasses/categories22;orExcludefromtheForestCoverBenchmarkMaptheforest-classesthatarecausingthegreatestconfusionwithnon-forestclassesaccordingtotheerrormatrix(e.g.initialsecondarysuccessionandheavilydegradedforestmaybedifficulttodistinguishfromcertaintypesofgrasslandorcropland,suchasagro-forestryandsilvo-pastoralsystemsnotmeetingthedefinitionof“forest”).ThisimpliesconservativelyreducingtheareaoftheForestCoverBenchmarkMap.Bothcommissionerrors(falsedetectionofaclass/category,suchas“deforestation”)andomissionerrors(non-detectionofactualclass/category,suchas“deforestation”)shouldbeestimatedandreported.21SeeChapter5ofIPCC2003GPG,Chapter3A.2.4ofIPPC2006GuidelinesforAFOLU,andthemostrecentversionoftheGOFC-GOLDSourcebookonREDDforguidanceonmapaccuracyassessment.22Thetradeoffofmergingclassesorcategoriesisthatcarbonestimateswillbesubjecttoahigherdegreeofvariability.VM0015,Version1.1SectoralScope15Page37Ifground-truthingdataarenotavailablefortimeperiodsinthepast,theaccuracycanbeassessedonlyatthemostrecentdate,forwhichground-truthingdatacanbecollected.Wheretheassessmentofmapaccuracyrequiresmergingoreliminatingclassesorcategoriestoachievetherequiredmapaccuracy,thedefinitionsintheprevioussub-stepsmustbeadjustedaccordingly.Thefinalmapsandtheclass/categorydefinitionsmustbeconsistent.2.6PreparationofamethodologyannextothePDLU/LC-changeanalysisisanevolvingfieldandwillbeperformedseveraltimesduringtheprojectcreditingperiod.Aconsistenttime-seriesofLU/LC-changedatamustemergefromthisprocess.Ingeneral,thesamesourceofremotelysenseddataanddataanalysistechniquesmustbeusedwithinaperiodforwhichthebaselineisfixed(fixedbaselineperiod).However,ifremotelysenseddatahavebecomeavailablefromnewandhigherresolutionsources(e.g.fromadifferentsensorsystem)duringthisperiod,thesecanonlybeusediftheimagesbasedoninterpretationofthenewdataoverlaptheimagesbasedoninterpretationoftheolddatabyatleast1yearandtheycrosscalibratetoacceptablelevelsbasedoncommonlyusedmethodsintheremotesensingcommunity.Toachieveaconsistenttime-series,theriskofintroducingartifactsfrommethodchangemustbeminimized.Forthisreason,thedetailedmethodologicalproceduresusedinpre-processing,classification,postclassificationprocessing,andaccuracyassessmentoftheremotelysenseddata,mustbecarefullydocumentedinanAnnextothePD.Inparticular,thefollowinginformationmustbedocumented:a)Datasourcesandpre-processing:Type,resolution,sourceandacquisitiondateoftheremotelysenseddata(andotherdata)used;geometric,radiometricandothercorrectionsperformed,ifany;spectralbandsandindexesused(suchasNDVI);projectionandparametersusedtogeo-referencetheimages;errorestimateofthegeometriccorrection;softwareandsoftwareversionusedtoperformpre-processingtasks;etc.b)Dataclassificationandpost-processing:DefinitionoftheLU/LCclassesandLU/LC-changecategories;classificationapproachandclassificationalgorithms;coordinatesanddescriptionoftheground-truthingdatacollectedfortrainingpurposes;ancillarydatausedintheclassification,ifany;softwareandsoftwareversionusedtoperformtheclassification;additionalspatialdataandanalysisusedforpost-classificationanalysis,includingclasssubdivisionsusingnon-spectralcriteria,ifany;etc.c)Classificationaccuracyassessment:Accuracyassessmenttechniqueused;coordinatesanddescriptionoftheground-truthdatacollectedforclassificationaccuracyassessment;post-processingdecisionsmadebasedonthepreliminaryclassificationaccuracyassessment,ifany;andfinalclassificationaccuracyassessment.STEP3:ANALYSISOFAGENTS,DRIVERSANDUNDERLYINGCAUSESOF3DEFORESTATIONANDTHEIRLIKELYFUTUREDEVELOPMENTUnderstanding“who”isdeforestingtheforest(the“agent”)andwhatdrivesland-usedecisions(“drivers”and“underlyingcauses”)isnecessaryfortwomainsreasons:(i)Estimatingthequantityandlocationoffuturedeforestation;and(ii)Designingeffectivemeasurestoaddressdeforestation,includingleakagepreventionmeasures.VM0015,Version1.1SectoralScope15Page38Thisanalysisisperformedthroughthefollowingfivesub-steps23:3.1Identificationofagentsofdeforestation;3.2Identificationofdeforestationdrivers;3.3Identificationofunderlyingcauses;3.4Analysisofchainofeventsleadingtodeforestation;and3.5Conclusion3.1IdentificationofagentsofdeforestationIdentifythemainagentgroupsofdeforestation(farmers,ranchers,loggers,etc.)andtheirrelativeimportance(i.e.theamountofhistoricalLU/LC-changethatcanbeattributedtoeachofthem).Todothisidentification,useexistingstudies,themapspreparedinstep2,expert-consultations,field-surveysandotherverifiablesourcesofinformation,asneeded.Sometimes,therelativeimportanceofeachagentcanbedeterminedfromtheLU/LC-changematrixdevelopedinstep2.4,sinceeachagentusuallyconvertsforestsforaspecificpurpose(cattleranching,cash-cropproduction,subsistencefarming,etc.).Iftherelativeimportanceofdifferentagentsisspatiallycorrelated(e.g.smallfarmersareconcentratedinthehills,whileranchersontheplanes)itmaybeusefultostratifythereferenceregion,theprojectareaandtheleakagebeltaccordingly(inIRRstrata),andtocontinuethebaselineassessmentforeachstratumiseparatelyinordertoincreasetheaccuracyoftheprojections.Foreachidentifiedagentgroup,providethefollowinginformation:a)Nameofthemainagentgrouporagent;b)Briefdescriptionofthemainsocial,economic,culturalandotherrelevantfeaturesofeachmainagentgroup.Limitthedescriptiontoaspectsthatarerelevanttounderstandwhytheagentgroupisdeforesting;c)Briefassessmentofthemostlikelydevelopmentofthepopulationsizeoftheidentifiedmainagentgroupsinthereferenceregion,projectareaandleakagebelt;d)Statisticsonhistoricaldeforestationattributabletoeachmainagentgroupinthereferenceregion,projectareaandleakagebelt.3.2IdentificationofdeforestationdriversForeachidentifiedagentgroup,analyzefactorsthatdrivetheirland-usedecisions.Thegoalistoidentifytheimmediatecausesofdeforestation.Twosetsofdrivervariableshavetobedistinguished:a)Drivervariablesexplainingthequantity(hectares)ofdeforestation(tobeusedinstep4.1and4.3,asappropriate),suchas:Pricesofagriculturalproducts;23SeeAngelsenandKaimowitz(1999)andChomizetal.(2006)forcomprehensiveanalysisofdeforestationagentsanddrivers.VM0015,Version1.1SectoralScope15Page39Costsofagriculturalinputs;Populationdensity;Ruralwages;Etc.b)Drivervariablesexplainingthelocationofdeforestation,alsocalled“predisposingfactors”(deJong,2007)(tobeusedinstep4.2),suchas:Accesstoforests(suchasvicinitytoexistingroads,railroads,navigableriversandcoastallines);Slope;Proximitytomarkets;Proximitytoexistingorindustrialfacilities(e.g.sawmills,pulpandpapermills,agriculturalproductsprocessingfacilities,etc.);Proximitytoforestedges;Proximitytoexistingsettlements;Spatialvariablesindicatingavailabilitywithintheforestoflandwithgoodecologicalconditionstoexpandagriculturalactivities,suchassoilfertilityandrainfall;Managementcategoryoftheland(e.g.nationalpark,indigenousreserve,etc.);Etc.Foreachofthesetwosetsofvariables:1)Listthe1to5keydrivervariablesandprovideanyrelevantsourceofinformationthatprovidesevidencethattheidentifiedvariableshavebeenadriverfordeforestationduringthehistoricalreferenceperiod.2)Brieflydescribeforeachmainagentgroupidentifiedinstep3.1howthekeydrivervariableshaveandwillmostlikelyimpactoneachagentgroup’sdecisiontodeforest.3)Foreachidentifiedkeydrivervariableprovideinformationaboutitslikelyfuturedevelopment24,byprovidinganyrelevantsourceofinformation.4)Foreachidentifieddrivervariablebrieflydescribetheprojectmeasuresthatwillbeimplementedtoaddressthem33,ifapplicable.3.3IdentificationofunderlyingcausesofdeforestationTheagents’characteristicsanddecisionsarethemselvesdeterminedbybroaderforces,theunderlyingcausesofdeforestation,suchas:Land-usepoliciesandtheirenforcement;Populationpressure;Povertyandwealth;Warandothertypesofconflicts;Propertyregime;Etc.24Thisdoesnotapplytospatialvariables,suchslope,elevationetc.VM0015,Version1.1SectoralScope15Page401)Listthe1to5keyunderlyingcausesandciteanyrelevantsourceofinformationthatprovidesevidencethattheidentifiedvariableshavebeenanunderlyingcausefordeforestationduringthehistoricalreferenceperiod.2)Brieflydescribehoweachkeyunderlyingcausehasdeterminedandwillmostlikelydeterminethekeydriversidentifiedinstep3.2andthedecisionsofthemainagentgroupsidentifiedinstep3.1.3)Foreachidentifiedkeyunderlyingcauseprovideinformationaboutitslikelyfuturedevelopment,bycitinganyrelevantsourceofinformation.4)Foreachidentifiedunderlyingcausedescribetheprojectmeasuresthatwillbeimplementedtoaddressthem,ifapplicable.3.4AnalysisofchainofeventsleadingtodeforestationBasedonthehistoricalevidencecollected,analyzetherelationsbetweenmainagentgroups,keydriversandunderlyingcausesandexplainthesequenceofeventsthattypicallyhasleadandmostlikelywillleadtodeforestation.Consultlocalexperts,literatureandothersourcesofinformation,asnecessary.BrieflysummarizetheresultsofthisanalysisinthePD.3.5ConclusionTheanalysisofstep3mustconcludewithastatementaboutwhethertheavailableevidenceaboutthemostlikelyfuturedeforestationtrendwithinthereferenceregionandprojectareais:InconclusiveorConclusive.“Conclusive”evidenceinthismethodologymeansthatthehypothesizedrelationshipsbetweenagentgroups,drivervariables,underlyingcausesandhistoricallevelsofdeforestationcanbeverifiedathandofstatisticaltests,literaturestudies,orotherverifiablesourcesofinformation,suchasdocumentedinformationprovidedbylocalexperts,communities,deforestationagentsandothergroupswithgoodknowledgeabouttheprojectareaandthereferenceregion.Toarriveatanoverall“conclusive”conclusionwhenmultipleagentsanddriversarepresent,theevidenceobtainedforeachofthemmustleadtoa“conclusive”decisionforall.Whentheevidenceisconclusive,statewhethertheweightoftheavailableevidencesuggeststhattheoveralltrendinfuturebaselinedeforestationrateswillbe:Decreasing;Aboutconstant;Increasing.Thenproceedtostep4.Whentheevidenceisinconclusiveandthehistoricaldeforestationtrendhasbeendecreasingoraboutconstant,additionalanalysismustbecarriedoutunderstep3,suchasmoreliteraturereviews,expertconsultations,and,asthecasemaybe,additionalfieldsurveys,untilconclusiveevidenceonthemostlikelyfuturedeforestationtrendisfound,otherwiseitwillnotbepossibletocontinuewiththenextstepsofthemethodology.Ifthehistoricaldeforestationtrendhasbeenincreasingandtheevidenceisinconclusive,thedeforestationratetobeusedintheprojectionswillbetheaveragehistoricalrate(seeVM0015,Version1.1SectoralScope15Page41step4.1.1).Alternatively,additionalanalysiscouldbecarriedoutunderstep3untilfindingconclusiveevidence.Wheredifferentstratahavebeenconsideredintheanalysis,aconclusionandstatementoftrendisneededforeachstratum.Foraconservativebaselineprojection,theprojectproponentshallconsiderthatinallthescenariostheagentsanddriversofthedeforestationactivitiesarerealisticandconservative,basedonpublishedandreliabledata,andconsistentwithexistingconcreteactionsandenforcedlawsavoidingdeforestation,suchaseffectivesurveillanceandlawenforcement.STEP4:PROJECTIONOFFUTUREDEFORESTATION4Thisstepisthecoreofthebaselinemethodology.Itsobjectiveistolocateinspaceandtimethebaselinedeforestationexpectedtooccurwithinthereferenceregionduringthefirstfixedbaselineperiodand,optionally,theprojectcreditingperiod.WhereabaselinehasalreadybeendefinedforageographicareathatincludestheprojectareaanditsleakagebeltandthisbaselineisapplicableaccordingtothemostrecentVCSrequirementsonregionalbaselinesorthecriteriaspecifiedintable2,theexistingbaselinemustbeusedandthemethodologycontinueswithstep5.4.1ProjectionofthequantityoffuturedeforestationThissub-stepistodeterminethequantityofbaselinedeforestation(inhectares)foreachfutureyearwithinthereferenceregion.Whereappropriate,thereferenceregioncanbestratifiedaccordingtothefindingsofstep3anddifferentdeforestationratesbeestimatedforeachstratum25.Ifthereferenceregionisstratified,therationaleforthestratificationmustbeexplainedandamapofthestrataprovided.Brieflysummarizethestratificationcriteria,andthestratausingtable8:Table8.StratificationofthereferenceregionStratumIDDescriptionAreaatyear112…TIDiNamehahahaha12..nIRR1.Iftheboundaryofthestrataisdynamic,explaintherationaleandprovidetheestimatedannualareaofeachstratuminthetable.Ifajurisdiction(nationalorsub-nationalgovernment)hasadoptedaVCSorUNFCCCregistered(andVCSendorsed)baselinedeforestationratethatisapplicabletothereferenceregion,projectareaand25Stratamaybestatic(withfixedboundaries)ordynamic(withboundariesshiftingovertime).VM0015,Version1.1SectoralScope15Page42leakagebeltaccordingtothemostrecentVCSJNRRequirements,theadoptedratemustbeusedandnofurtheranalysisisrequiredunderthissub-step(continuewithstep4.2).Wheretheaboveconditiondoesnotexist,aprojecteddeforestationratemustbedeterminedbytheprojectproponenttakingintoaccountpossiblefuturechangesatthelevelofagents,driversandunderlyingcausesofdeforestation,aswellastheremainingforestareathatispotentiallyavailableforconversiontonon-forestuses.Thistaskisperformedthroughthefollowingthreeanalyticalsub-steps:4.1.1Selectionofthebaselineapproach;4.1.2Quantitativeprojectionoffuturedeforestation.4.1.1SelectionofthebaselineapproachToprojectfuturedeforestationthreebaselineapproachesareavailable:a)Historicalaverageapproach:Underthisapproach,therateofbaselinedeforestationisassumedtobeacontinuationoftheaverageannualratemeasuredduringthehistoricalreferenceperiodwithinthereferenceregionor,whereappropriate,withindifferentstrataofthereferenceregion.b)Timefunctionapproach:Withthisapproach,therateofbaselinedeforestationisestimatedbyextrapolatingthehistoricaltrendobservedwithinthereferenceregion(oritsstrata)asafunctionoftimeusingeitherlinearregression,logisticregressionoranyotherstatisticallysoundregressiontechnique(seestep4.1.3).Thisapproachrequiresmultipledeforestationmeasurementsduringthepast10-15years.c)Modelingapproach:Withthisapproach,therateofbaselinedeforestationwillbeestimatedusingamodelthatexpressesdeforestationasafunctionofdrivervariablesselectedbytheprojectproponents.Suchdrivervariablesmaybespatialandconsistencywiththeanalysisofstep3mustexist.Selectandjustifythemostappropriatebaselineapproachfollowingthedecisioncriteriadescribedbelow.Differentapproachescanbeusedindifferentstrataofthereferenceregion,whereappropriate.1.Thedeforestationratesmeasuredindifferenthistoricalsub-periodsinthereferenceregion(orastratumofit)donotrevealanytrend(decreasing,constantorincreasingdeforestation)and:1.1Noconclusiveevidenceemergesfromtheanalysisofagentsanddriversexplainingthedifferenthistoricaldeforestationrates:doadditionalassessmentsunderstep3,suchasmoreliteraturereviews,expertconsultations,and,asthecasemaybe,additionalfieldsurveys,untilfindingconclusiveevidence.1.2Conclusiveevidenceemergesfromtheanalysisofagentsanddriversexplainingthedifferenthistoricaldeforestationrates:useapproach“c”ifthereisatleastonevariablethatcanbeusedtoprojectthedeforestationrate,otherwiseuseapproach“a”.2.Thedeforestationratesmeasuredindifferenthistoricalsub-periodsinthereferenceregion(orastratumofit)revealacleartrendandthistrendis:2.1Adecreaseofthedeforestationrateand:Conclusiveevidenceemergesfromtheanalysisofagentsanddriversexplainingthedecreasingtrendandmakingitlikelythatthistrendwillcontinueinthefuture:useapproach“b”.VM0015,Version1.1SectoralScope15Page43Conclusiveevidenceemergesfromtheanalysisofagentsanddriversexplainingthedecreasingtrendandthisevidencealsosuggestthatthedecreasingtrendwillchangeinthefutureduetopredictablechangesatthelevelofagentsanddrivers:useapproach“c”.Noconclusiveevidenceemergesfromtheanalysisofagentsanddriversexplainingthedecreasingtrend:doadditionalassessmentsunderstep3,suchasmoreliteraturereviews,expertconsultations,and,asthecasemaybe,additionalfieldsurveys,untilfindingconclusiveevidence,thenuseapproach“b”.2.2Aconstantdeforestationrateand:Conclusiveevidenceemergesfromtheanalysisofagentsanddriversexplainingthehistoricaltrendandmakingitlikelythatthistrendwillcontinueinthefuture:useapproach“a”.Conclusiveevidenceemergesfromtheanalysisofagentsanddriversexplainingthehistoricaltrendandthisevidencealsosuggeststhatthehistoricaltrendwillchangeinthefutureduetopredictablechangesatthelevelofagentsanddrivers:useapproach“c”.Noconclusiveevidenceemergesfromtheanalysisofagentsanddriversexplainingthehistoricaltrend:doadditionalassessmentsunderstep3,suchasmoreliteraturereviews,expertconsultations,and,asthecasemaybe,additionalfieldsurveys,untilfindingconclusiveevidence,thenuseapproach“a”.2.3Anincreaseofthedeforestationrateand:Conclusiveevidenceemergesfromtheanalysisofagentsanddriversexplainingtheincreasedtrendandmakingitlikelythatthistrendwillcontinueinthefuture:useapproach“b”.Ifthefuturedeforestationtrendislikelytobehigherthanpredictedwithapproach“b”,useapproach“c”.Conclusiveevidenceemergesfromtheanalysisofagentsanddriversexplainingtheincreasedtrendbutthisevidencealsosuggeststhatthefuturetrendwillchange:useapproach“a”ordevelopamodel(approach“c”).Noconclusiveevidenceemergesfromtheanalysisofagentsanddriversexplainingtheincreasingtrend:useapproach“a”.4.1.2QuantitativeprojectionoffuturedeforestationThemethodologyprocedureistofirstprojecttheannualareasorratesofbaselinedeforestationwithinthereferenceregion(or–whereappropriate–withindifferentstrataofthereferenceregion),thentoanalyzethespatiallocationoftheseannualareasinthereferenceregion(step4.2),andfinally,todeterminetheannualareasandlocationofdeforestationintheprojectareaandleakagebelt.4.1.2.1ProjectionoftheannualareasofbaselinedeforestationinthereferenceregionThemethodtobeuseddependsonthebaselineapproachselected.VM0015,Version1.1SectoralScope15Page44Approach“a”:HistoricalaverageTheannualbaselinedeforestationareathatappliesatyearttostratumiwithinthereferenceregioniscalculatedasfollows:ABSLRRi,t=ARRi,t-1RBSLRRi,t(3)Where:ABSLRRi,tAnnualareaofbaselinedeforestationinstratumiwithinthereferenceregionatyeart;hayr-1ARRi,t-1Areawithforestcoverinstratumiwithinthereferenceregionatyeart-1:haRBSLRRi,tDeforestationrate26applicabletostratumiwithinthereferenceregionatyeart;%t1,2,3…T,ayearoftheproposedprojectcreditingperiod;dimensionlessi1,2,3…IRR,astratumwithinthereferenceregion;dimensionlessApproach“b”:TimefunctionTheannualareaofbaselinedeforestationthatappliesatayearttostratumiwithinthereferenceregionduringthefirstToptimaliyearsiscalculatedusingoneofthefollowingequations:Linearregression:ABSLRRi,t=a+bt(4.a)Logisticregression:ABSLRRi,t=ARRi/(1+e-kt)(4.b)Othertypesofregression:ABSLRRi,t=f(t)(4.c)Where:ABSLRRi,tAnnualareaofbaselinedeforestationinstratumiwithinthereferenceregionatayeart;hayr-1aEstimatedinterceptoftheregressionline;hayr-1bEstimatedcoefficientofthetimevariable(orslopeofthelinearregression);hayr-1eEulernumber(2,71828);dimensionlesskEstimatedparameterofthelogisticregression;dimensionlessARRiTotalforestareainstratumiwithinthereferenceregionattheprojectstartdate;haf(t)Afunctionoftimet1,2,3…T,ayearoftheproposedprojectcreditingperiod;dimensionlessi1,2,3…IRR,astratumwithinthereferenceregion;dimensionlessThemodelanditsparametersarederivedfromdataobtainedfromthehistoricalreferenceperiodandareusedtoprojectfuturedeforestationtrendsasshowninthefigure4below.26SeePuyravaud,J.-P.,2003.Standardizingthecalculationoftheannualrateofdeforestation.ForestEcologyandManagement,177:593-596VM0015,Version1.1SectoralScope15Page45Figure4.Approach“b”formodelingABSLRRiThemodelmustdemonstrablycomplywithstatisticalgoodpractice,andevidencethatsuchrequirementhasbeenmetshallbeprovidedtoVCSverifiersatthetimeofvalidation.IfABSLRRi,tdecreasesasafunctionoftime,ToptimaliistheperiodoftimeduringwhichABSLRRi,tyieldsapositivevalue.Afterthatperiodoftime,ABSLRRi,t=0.IfABSLRRi,tincreasesasafunctionoftime,Toptimaliistheperiodoftimebetweent=1andt=toptimali,thelatterbeingtheyearatwhichthefollowingconditionissatisfied:∑Where:AoptimaliAreaof“optimal”forestlandsuitableforconversiontonon-forestlandwithinstratumi(seebelow);haABSLRRi,tAnnualareaofbaselinedeforestationinstratumiwithinthereferenceregionatayeart;hayr-1t1,2,3…T,ayearoftheproposedprojectcreditingperiod;dimensionlessi1,2,3…IRR,astratumwithinthereferenceregion;dimensionlesstoptimaliYearatwhichToptimaliends;yrVM0015,Version1.1SectoralScope15Page46If:Toptimali>Projectcreditingperiod:ABSLRRi,tcalculatedwithequations4isapplicableduringtheentireprojectcreditingperiod.If:Toptimali<Projectcreditingperiod:ABSLRRi,tcalculatedwithequations4isapplicableonlytothefirstToptimaliyears.ForthefollowingTaverageiyearsusevalueofABSLRRi,tcalculatedfortheyeart=Toptimali:Taverageiistheperiodoftimebetweent=toptimaliandt=taveragei,thelatterbeingtheyearatwhichthefollowingconditionissatisfied:∑Where:AaverageiAreaof“average”forestlandsuitableforconversiontonon-forestlandwithinstratumi(seebelow);haABSLRRi,tAnnualareaofbaselinedeforestationinstratumiwithinthereferenceregionatayeart;hayr-1t1,2,3…T,ayearoftheproposedprojectcreditingperiod;dimensionlessi1,2,3…IRR,astratumwithinthereferenceregion;dimensionlesstoptimaliYearatwhichToptimaliends;yrtaverageiYearatwhichTaverageiends;yrIf:Toptimali+Taveragei>Projectcreditingperiod:ABSLRRi,tcalculatedfortheyeart=toptimaliisapplicableduringtheperiodoftimebetweent=toptimaliandt=taveragei.If:Toptimali+Taveragei<Projectcreditingperiod:ABSLRRi,tcalculatedfortheyeart=toptimaliisapplicableonlytothefirstTaverageiyearsfollowingafteryeartoptimali.Forthefollowing20yearsassumealineardecreaseofABSLRRi,tdowntozerohectaresperyearint=faverage+20.ABSLRRi,t=ABSLRRtaverage,i(1–1/20(t–taveragei))(7)Where:ABSLRRi,tAnnualareaofbaselinedeforestationinstratumiwithinthereferenceregionatayeart;hayr-1ABSLRRtaverage,iAnnualareaofbaselinedeforestationinstratumiwithinthereferenceregionatayeartaveragei;hayr-1taverageiYearatwhichTaverageiends;yrt1,2,3…T,ayearoftheproposedprojectcreditingperiod;dimensionlessi1,2,3…IRR,astratumwithinthereferenceregion;dimensionlessNote:Aftertaveragei+20yearsABSLRRi,twillbezerohectaresperyearinallcases..VM0015,Version1.1SectoralScope15Page47CalculationofAoptimaliandAaverageiunderApproach“b”Aoptimali(areaof“optimal”forestlandsuitableforconversiontonon-forestlandwithinstratumi)andAaveragei(areaof“average”forestlandsuitableforconversiontonon-forestlandwithinstratumi)mustbedeterminedtoavoidnon-conservativeprojectionsofbaselinedeforestationwhen“increasingdeforestation”isprojectedunderApproach“b”.Deforestationcanincreaseinthefutureonlyiftherearenoconstraintstotheconversionofforestlandtonon-forestland.Thisistypicallythecasewhentheprojectareaislocatedinacountryorregionstillwithsignificantforestcover(Olanderetal.,2006).Toassesswhetherthereisscarcityofforestlandthatisaccessibletodeforestationagentsandpotentiallyexposedtotheriskofdeforestationdothefollowing:1)Identifyland-useconstraints:Identifytheappropriatebiophysicalconstraints(e.g.soil,climate,elevationand/orslope)andappropriatesocio-economicconstraints(e.g,mobility,land-userightsand/orareaswithpresenceofconflictsandcrime)thatlimitthegeographicalareawheredeforestationagentscouldexpandtheirland-useactivitiesincurrentlyforestedareas.Considertheconstraintsastheyareperceivedbythemaingroupsofdeforestationagents,takingintoconsiderationtheirsocio-economicconditions.Todeterminehowconstraintsareperceivedbythemaingroupsofdeforestationagents,determinethethresholdconditionsunderwhichtheyhavedeforestedhistorically(forexample,rangeofslopes,typesofsoil,minimum/maximumrainfall,and/orelevationrange,arerelevanttodeterminetherangewheremaintypesofcropsandanimalscouldsurvive).Usespatialdata,literature,surveys,and/orparticipativeruralappraisal(PRA)asappropriate.2)Estimatetheremainingforestareathatcouldbeconvertedtonon-forestland:Usingtheconstraintsidentifiedabove,developaMaximumPotentialDeforestationMap,whichmapstheareacurrentlycoveredbyforeststhatispotentiallyavailableforthefurtherexpansionofnon-forestusesinthereferenceregion.3)StratifytheMaximumPotentialDeforestationMapinbroadsuitabilityclasses:Consideringtheconstraintsidentifiedabove,definecriteriaandthresholdsthatdelineate“optimal”,“average”and“sub-optimal”conditionsforeachofthemainlandusesimplementedbythemainagentgroups(e.g.bydefiningrangesofslope,rainfallortypesofsoils,orrangesofdeforestationrisksaccordingtothedeforestationriskmapcreatedforthespatialmodel(Seestep4.2)).Selectthresholdsthatarerelevantfromthepointofviewofthedeforestationagents.UsingtheselectedcriteriaandthresholdsstratifytheMaximumPotentialDeforestationMapinthreebroadsuitabilityclassesrepresenting“optimal”,“average”and“sub-optimal”areasfornon-forestuses.Whenavailablefromothersources,useexistingmaps.4)Aoptimaliwillbetheareaofthe“optimal”suitabilityclasswithinstratumi;andAaverageiwillbetheareaofthe“average”suitabilityclasswithinstratumi.Approach“c”:ModelingTheannualareaofbaselinedeforestationthatappliesatyeartinstratumiwithinthereferenceregionisestimatedusingastatisticalmodel,suchassimpleregression,multipleregressions,logisticregression,oranyotherpossiblemodeltobeproposedandjustifiedbytheprojectproponent.Theproposedmodelmustdemonstrablycomplywithstatisticalgoodpractice,andevidencethatsuchrequirementhasbeenmetshallbeprovidedtoVCSverifiersatthetimeofvalidation.Thefollowingequationsaregivenforillustrationpurposesonly:VM0015,Version1.1SectoralScope15Page48ABSLRRi,t=a+b1iV1i,t(8.a)ABSLRRi,t=a+b1iV1i,t+b2iV2i,t(8.b))(8.c)Where:ABSLRRi,tAnnualareaofbaselinedeforestationinstratumiwithinthereferenceregionatayeart;hayr-1a;b1i;b2i;...;bni;kEstimatedcoefficientsofthemodeleEulernumber(2,71828);dimensionlessV1i,t;V2i,t;...;Vni,tVariablesincludedinthemodelARRiTotalforestareainstratumiwithinthereferenceregionattheprojectstartdate;hat1,2,3…T,ayearoftheproposedprojectcreditingperiod;dimensionlessi1,2,3…IRR,astratumwithinthereferenceregion;dimensionlessThemodelmayalsobeconstructedwiththeannualareadeforested(ABSLRRi,t),orthedeforestationrate(RBSLRRi,t=percentageofremainingforestareaatyeart-1instratumitobedeforestedatyeart)asthedependentvariable,andindependentvariable(s)(e.g.populationdensityinstratumiattimet,averageopportunitycostsinstratumiattimet,etc.)fromwhichtheannualareasofdeforestation(ABSLRRi,t)orthedeforestationrates(RBSLRRi,t)areinferredfromchangesintheindependentvariables.Foreachoftheselectedindependentvariables,theremustbeadescriptionofthehistoricaldata(includingsource),anexplanationoftherationaleforusingthevariable(s),andacrediblefutureprojectionbasedondocumentedandverifiablesources.Todeterminethefuturevaluesofthevariablesincludedinthemodel,officialprojections,expertopinion,othermodels,andanyotherrelevantandverifiablesourceofinformationmustbeused.Justifywithlogicalandcredibleexplanationsanyassumptionaboutfuturetrendsofthedrivervariablesandusevaluesthatyieldconservativeestimatesoftheprojecteddeforestation(ABSLRRi,torRBSLRRi,t).Themodelanditsrationalemustbeexplainedbytheprojectproponentusinglogicalargumentsandverifiablesourcesofinformationandmustbeconsistentwiththeanalysisofstep3.Themodelmustdemonstrablycomplywithstatisticalgoodpractice,andevidencethatsuchrequirementhasbeenmetshallbeprovidedtoVCSverifiersatthetimeofvalidation.4.1.2.2ProjectionoftheannualareasofbaselinedeforestationintheprojectareaandleakagebeltLocationanalysisoffuturedeforestationwithinreferenceregionisrequiredtodeterminetheannualareasofdeforestationwithintheprojectareaandleakagebelt(step4.2).Oncelocationanalysisiscompleted,theportionofannualareasofbaselinedeforestationofeachstratumiwithintheprojectareaandleakagebeltmustbedeterminedusingaGIS.Todothisstep,step4.2.4mustbecompletedfirst.VM0015,Version1.1SectoralScope15Page494.1.2.3Summaryofstep4.1.2PresenttheresultsofthepreviousassessmentsinTables9.aand9.b.Dothisatleastforthefixedbaselineperiodand,optionally,fortheentireprojectcreditingperiod.Table9.a.AnnualareasofbaselinedeforestationinthereferenceregionProjectyeartStratumiinthereferenceregionTotal12…IRRannualcumulativeABSLRRi,tABSLRRi,tABSLRRi,tABSLRRi,tABSLRRtABSLRRhahahahahaha012...TTable9.b.AnnualareasofbaselinedeforestationintheprojectareaProjectyeartStratumiofthereferenceregionintheprojectareaTotal12…IRRannualcumulativeABSLPAi,tABSLPAi,tABSLPAi,tABSLPAi,tABSLPAtABSLPAhahahahahaha012...TVM0015,Version1.1SectoralScope15Page50Table9.c.AnnualareasofbaselinedeforestationintheleakagebeltProjectyeartStratumiofthereferenceregionintheleakagebeltTotal12…IRRannualcumulativeABSLLKi,tABSLLKi,tABSLLKi,tABSLLKi,tABSLLKtABSLLKhahahahahaha012...T4.2ProjectionofthelocationoffuturedeforestationStep4.1wastoestimatetheannualareasofbaselinedeforestationinthereferenceregion.Step4.2istoanalyzewherefuturedeforestationismostlikelytohappeninthebaselinecaseinordertomatchthelocationoftheprojecteddeforestationwithcarbonstocksanddeterminetheannualareasofbaselinedeforestationintheprojectareaandleakagebelt.Step4.2isbasedontheassumptionthatdeforestationisnotarandomeventbutaphenomenonthatoccursatlocationsthathaveacombinationofbio-geophysicalandeconomicattributesthatisparticularlyattractivetotheagentsofdeforestation.Forexample,aforestlocatedonfertilesoil,flatland,andneartoroadsandmarketsforagriculturalcommoditiesislikelytobeatgreaterriskofdeforestationthanaforestlocatedonpoorsoil,steepslope,andfarfromroadsandmarkets.Locationsathigherriskareassumedtobedeforestedfirst.Thishypothesiscanbetestedempiricallybyanalyzingthespatialcorrelationbetweenhistoricaldeforestationandgeo-referencedbio-geophysicalandeconomicvariables.Inthepreviousexample,soilfertility,slope,distancetoroadsanddistancetomarketsarethehypothesizedspatialdrivervariables(SDVi)or“predisposingfactors”(DeJong,2007).Thesevariablescanberepresentedinamap(or“FactorMap”)andoverlaidtoamapshowinghistoricaldeforestationusingaGeographicalInformationSystem(GIS).Fromthecombinedspatialdatasetinformationisextractedandanalyzedstatisticallyinordertoproduceamapthatshowsthelevelofdeforestationriskateachspatiallocation(“pixel”or“gridcell”).Thedeforestationrisk(orprobabilityofdeforestation)atagivenspatiallocationchangesatthetimewhenoneormoreofthespatialdrivervariableschangetheirvaluesduetoprojectedchanges,e.g.whenpopulationdensityincreaseswithinacertainarea,whenaroadisbuildnearby,orwhenareasrecentlydeforestedarecomingcloser,etc.Thebasictaskstoperformtheanalysisdescribedaboveare:4.2.1Preparationoffactormaps;4.2.2Preparationofriskmapsfordeforestation;4.2.3Selectionofthemostaccuratedeforestationriskmap;and4.2.4Mappingofthelocationsoffuturedeforestation.VM0015,Version1.1SectoralScope15Page51Severalmodel/softwareareavailableandcanbeusedtoperformthesetasksinslightlydifferentways,suchasGeomod,IdrisiTaiga,DinamicaEgo,Clue,andLand-UseChangeModeler.Themodel/softwareusedmustbepeer-reviewedandmustbeconsistentwiththemethodology(tobeprovenatvalidation).4.2.1PreparationoffactormapsBasedontheanalysisofstep3andstep4.1,identifythespatialvariablesthatmostlikelyexplainthepatternsofbaselinedeforestationinthereferenceregion.ObtainspatialdataforeachvariableandcreatedigitalmapsrepresentingtheSpatialFeaturesofeachvariable(i.e.theshapefilesrepresentingthepoint,linesorpolygonfeaturesortherasterfilesrepresentingsurfacefeatures).SomemodelswillrequireproducingDistanceMapsfromthemappedfeatures(e.g.distancetoroadsordistancetoalreadydeforestedlands)ormapsrepresentingcontinuousvariables(e.g.slopeclasses)andcategoricalvariables(e.g.soilqualityclasses).Ifthemodel/softwareallowsworkingwithdynamicDistanceMaps(i.e.thesoftwarecancalculateanewDistanceMapsateachtimestep),theseshouldbeused.Forsimplicity,thesemapsarecalled“FactorMaps”.OthermodelsdonotrequireFactorMapsforeachvariable,andinsteadanalyzeallthevariablesanddeforestationpatternstogethertoproduceariskmap.Wheresomeofthespatialvariablesareexpectedtochange,collectinformationontheexpectedchangesfromcredibleandverifiablesourcesofinformation.ThenprepareFactorMapsthatrepresentthechangesthatwilloccurindifferentfutureperiods.Sometimes,projectedchangescanberepresentedbyadynamicspatialmodelthatmaychangeinresponsetodeforestation.Incaseofplannedinfrastructure(e.g.roads,industrialfacilities,settlements)providedocumentedevidencethattheplannedinfrastructurewillactuallybeconstructedandthetimetableoftheconstruction.Incaseofplannednewroads,roadimprovements,orrailroadsprovidecredibleandverifiableinformationontheplannedconstructionofdifferentsegments(e.g.howmanykilometerswillbeconstructed,whereandwhen).Evidenceincludes:approvedplansandbudgetsfortheconstruction,signedconstructioncontractsoratleastanopenbiddingprocesswithapprovedbudgetsandfinance.Ifsuchevidenceisnotavailableexcludetheplannedinfrastructurefromthefactorsconsideredintheanalysis.Anyareaaffectedbyplanneddeforestationduetotheconstructionofplannedinfrastructuremustbeexcludedfromtheprojectarea.Incaseofunplannedinfrastructure(e.g.secondaryroads),provideevidencethattheunplannedinfrastructurewillactuallydevelop,e.g.fromhistoricaldevelopments.Specifically,fromawall-to-wallassessment(oratleastfiverandomlysampledobservationsinthereferenceregion)orfromliteraturesourcesappropriatetothereferenceregion,estimatetheaverageannuallength27ofnewunplannedinfrastructurepersquarekilometer28thatwasconstructedduringthehistoricalreferenceperiod.Alternatively,determinethehistoricalrateofchangeasrelatedtovariablesforwhichtherearegoodprojections(e.g.kmofnewunplannedinfrastructureasrelatedtopopulation).Toavoidprojectingunplannedinfrastructureinareaswheregeographicandsocio-economicconditionsareunfavorableforinfrastructuredevelopments(e.g.areaswithsteepslopes,swampysoils,lowopportunitycosts,etc.),developamaprepresentingaproxyofthesuitabilityforfutureinfrastructuredevelopment.Foreach27Otherparametersrelevantformodelingtheconstructionofsecondaryroadsmayalsobemeasuredinthisanalysis,suchasdistancebetweenroads,numberofdestinationsperyear,etc.Parameterstobeassessedaredependentonthemodelingapproachusedtoprojectthedevelopmentoftheroadnetworkandarethereforenotfurtherspecifiedhere.28Orperkmofofficialnewroadconstructed,orperotherlandscapefeaturesthatcanbemapped(suchasnewindustrialfacilities,settlements,miningconcessionsetc.),asappropriate.VM0015,Version1.1SectoralScope15Page52“suitability”classorgradient(usingaminimumoftwoclasses,e.g.suitable,notsuitable),determinethemostplausiblerateofunplannedinfrastructuredevelopment.Todothis,applythefollowingsteps:a)Usinghistoricaldata,expertopinion,participativeruralappraisal(PRA),literatureand/orotherverifiablesourcesofinformationlistallrelevantcriteriathatfacilitate(atleastonecriterion)andconstrain(atleastonecriterion)thedevelopmentofnewunplannedinfrastructure.b)Foreachcriterion,generateamapusingaGIS.c)Usingmulti-criteriaanalysis,determinethemostlikelyrateofunplannedinfrastructuredevelopment(e.g.kmkm-2yr-1orasimilarindicator)perdifferentsectors(suitabilityclassesorgradients)withinthereferenceregion.Projectionsofunplannedinfrastructuredevelopmentshallbeconservative,inparticularprojectionsinforestedareasshallmeetthisrequirement.TocreatetheFactorMapsuseoneofthefollowingtwoapproaches:Empiricalapproach:CategorizeeachDistanceMapinanumberofpredefineddistanceclasses(e.g.class1=distancebetween0and50m;class2=distancebetween50and100m,etc.).Inatabledescribetheruleusedtobuildclassesandthedeforestationlikelihoodassignedtoeachdistanceclass29.Thedeforestationlikelihoodisestimatedasthepercentageofpixelsthatweredeforestedduringtheperiodofanalysis(i.e.thehistoricalreferenceperiod).Heuristicapproach:Define“valuefunctions”representingthelikelihoodofdeforestationasafunctionofdistancefrompointfeatures(e.g.,sawmills)orlinearfeatures(e.g.,roads),orasafunctionofpolygonfeaturesrepresentingclasses(e.g.ofsoiltype,populationdensity)basedonexpertopinionorothersourcesofinformation.SpecifyandbrieflyexplaineachvaluefunctioninthePD.ForDistanceMaps,ausefulapproachtoestimatevaluefunctionsistosamplespatiallyuncorrelatedpointsandtheircorrespondinglocationinthemapsrepresentinghistoricaldeforestation(Land-UseandLand-CoverChangeMapsproducedwithstep2)andtouseregressiontechniques30todefinetheprobabilityofdeforestationasafunctionof“distance”.Theempiricalapproachshouldbepreferredovertheheuristicapproach.Usetheheuristicapproachonlywherethereisinsufficientinformationaboutthespatiallocationofhistoricaldeforestationorwheretheempiricalapproachdoesnotproduceaccurateresultswhenvalidatedagainstahistoricalperiod.4.2.2PreparationofdeforestationriskmapsARiskMapshowsateachpixellocationltherisk(or“probability”)ofdeforestationinanumericalscale(e.g.,0=minimumrisk;255=maximumrisk).29Whenbuildingclassesofcontinuousvariablesitisimportanttobuildclassesthataremeaningfulintermsofdeforestationrisk.Thisimpliestheparameterizationofa“valuefunction”basedonspecificmeasurements.Forinstance,thecriterion“distancetoroads”mightnothavealinearresponsetoassessthedeforestationrisk:aforestlocatedat50kmfromthenearestroadmaybesubjecttothesamedeforestationriskofaforestlocatedat100km,whileat0.5kmtheriskmaybetwiceasmuchasat1.0km.Datatomodelthevaluefunctionandbuildmeaningfulclassescanbeobtainedbyanalyzingthedistributionofsamplepointstakenfromhistoricallydeforestedareas.30e.g.logisticregression.VM0015,Version1.1SectoralScope15Page53ModelsusedifferenttechniquestoproduceRiskMapsandalgorithmsmayvaryamongthedifferentmodelingtools.Algorithmsofinternationallypeer-reviewedmodelingtoolsareeligibletopreparedeforestationriskmaps,providedtheyareshowntoconformtothemethodologyattimeofvalidation.SeveralRiskMapsshouldbeproducedusingdifferentcombinationsofFactorMapsandmodelingassumptionsinordertoallowcomparisonandselectthemostaccuratemap.AlistofFactorMaps,includingthemapsusedtoproducethemandthecorrespondingsourcesshallbepresentedinthePD(table10)togetherwithaflow-chartdiagramillustratinghowtheRiskMapisgenerated.Table10.Listofvariables,mapsandfactormapsFactorMapSourceVariablerepresentedMeaningofthecategoriesorpixelvalueOtherMapsandVariablesusedtocreatetheFactorMapAlgorithmorEquationusedCommentsIDFileNameUnitDescriptionRangeMeaningIDFileName4.2.3SelectionofthemostaccuratedeforestationriskmapConfirmingthequalityofthemodeloutput(generallyreferredtoasmodelvalidationinthemodelingcommunity)isneededtodeterminewhichofthedeforestationriskmapsisthemostaccurate.Agoodpracticetoconfirmamodeloutput(suchasariskmap)is“calibrationandvalidation”,referredtohereas“calibrationandconfirmation”(soasnottobeconfusedwithvalidationasrequiredbytheVCS).Twooptionsareavailabletoperformthistask:(a)calibrationandconfirmationusingtwohistoricalsub-periods;and(b)calibrationandconfirmationusingtiles.Option(b)shouldbepreferredwhererecentdeforestationtrendshavebeendifferentfromthoseinthemoredistantpast.a)Wheretwoormorehistoricalsub-periodshaveshownasimilardeforestationtrend,datafromthemostrecentperiodcanbeusedasthe“confirmation”dataset,andthosefromthepreviousperiodasthe“calibration”dataset.Usingonlythedatafromthecalibrationperiod,prepareforeachRiskMapaPredictionMapofthedeforestationfortheconfirmationperiod.Overlaythepredicteddeforestationwithlocationsthatwereactuallydeforestedduringtheconfirmationperiod.SelectthePredictionMapwiththebestfitandidentifytheRiskMapthatwasusedtoproduceit.PreparethefinalRiskMapusingthedatafromthecalibrationandtheconfirmationperiod.b)Whereonlyonehistoricalsub-periodisrepresentativeofwhatislikelytohappeninthefuture,dividethereferenceregionintilesandrandomlyselecthalfofthetilesforthecalibrationdatasetandtheotherhalffortheconfirmationset.Dotheanalysisexplainedabove(seeCastillo-Santiagoetal.,2007).VM0015,Version1.1SectoralScope15Page54ThePredictionMapwiththebestfitisthemapthatbestreproducedactualdeforestationintheconfirmationperiod.Thebestfitmustbeassessedusingappropriatestatisticaltechniques.Mostpeer-reviewedmodelingtools,suchasGeomod,IdrisiTaiga,LandUseChangeModeler,andDinamicaEgo,includeinthesoftwarepackageappropriateassessmenttechniques,whichcanbeusedunderthismethodology.Preferenceshouldbegiventotechniquesthatassesstheaccuracyofthepredictionatthepolygonlevel,suchasthepredictedquantityoftotaldeforestationwithintheprojectareaascomparedtotheobservedone.Oneoftheassessmenttechniquesthatcanbeusedisthe“FigureofMerit”(FOM)thatconfirmsthemodelpredictioninstatisticalmanner(Pontiusetal.2008;Pontiusetal.2007)31.TheFOMisaratiooftheintersectionoftheobservedchange(changebetweenthereferencemapsintime1andtime2)andthepredictedchange(changebetweenthereferencemapintime1andsimulatedmapintime2)totheunionoftheobservedchangeandthepredictedchange(equation9).TheFOMrangesfrom0.0,wherethereisnooverlapbetweenobservedandpredictedchange,to1.0wherethereisaperfectoverlapbetweenobservedandpredictedchange.ThehighestpercentFOMmustbeusedasthecriterionforselectingthemostaccurateDeforestationRiskMaptobeusedforpredictingfuturedeforestation.FOM=B/(A+B+C)(9)Where:FOM“FigureofMerit”;dimensionlessAAreaoferrorduetoobservedchangepredictedaspersistence;haBAreacorrectduetoobservedchangepredictedaschange;haCAreaoferrorduetoobservedpersistencepredictedaschange;haTheminimumthresholdforthebestfitasmeasuredbytheFigureofMerit(FOM)shallbedefinedbythenetobservedchangeinthereferenceregionforthecalibrationperiodofthemodel.Netobservedchangeshallbecalculatedasthetotalareaofchangebeingmodeledinreferenceregionduringthecalibrationperiodaspercentageofthetotalareaofthereferenceregion.TheFOMvalueshallbeatleastequivalenttothisvalue.IftheFOMvalueisbelowthisthreshold,theprojectproponentmustdemonstratethatatleastthreemodelshavebeentested,andthattheonewiththebestFOMisused.4.2.4MappingofthelocationsoffuturedeforestationFuturedeforestationisassumedtohappenfirstatthepixellocationswiththehighestdeforestationriskvalue.Todeterminethelocationsoffuturedeforestationdothefollowing:31Pontius,R.G.,Jr,WBoersma,J-CCastella,KClarke,TdeNijs,CDietzel,ZDuan,EFotsing,NGoldstein,KKok,EKoomen,CDLippitt,WMcConnell,AMohdSood,BPijanowski,SPithadia,SSweeney,TNTrung,ATVeldkamp,andPHVerburg.2008.Comparinginput,output,andvalidationmapsforseveralmodelsoflandchange.AnnalsofRegionalScience,42(1):11-47.Pontius,RG,Jr,RWalker,RYao-Kumah,EArima,SAldrich,MCaldasandDVergara.2007.AccuracyassessmentforasimulationmodelofAmazoniandeforestation.AnnalsofAssociationofAmericanGeographers,97(4):677-695VM0015,Version1.1SectoralScope15Page55InthemostaccurateDeforestationRiskMapselectthepixelswiththehighestvalueofdeforestationprobability.Addtheareaofthesepixelsuntiltheirtotalareaisequaltotheareaexpectedtobedeforestedinthereferenceregioninprojectyearoneaccordingtotable9.a.TheresultistheMapofBaselineDeforestationforYear1.RepeattheabovepixelselectionprocedureforeachsuccessiveprojectyearttoproduceaseriesofMapsofBaselineDeforestationforeachfutureprojectyear.Dothisatleastfortheupcomingfixedbaselineperiodand,optionally,fortheentireprojectcreditingperiod.Addallyearly(baselinedeforestationmapsinonesinglemapshowingtheexpectedBaselineDeforestationforthefixedbaselineperiodand,optionally,fortheentireprojectcreditingperiod.PresentthismapinthePD.Thedescribedpixelselectionprocedureandproductionofannualmapsofbaselinedeforestationcanbeprogrammedinmoststateoftheartmodelingtools/software.Toobtaintheannualareasofbaselinedeforestationwithintheprojectarea,combinetheannualmapsofbaselinedeforestationforthereferenceregionwithamapdepictingonlythepolygoncorrespondingtotheprojectarea.Afterthisstep,table9.bcanbefilled-out.Thesamemustbedonefortheleakagebeltareatofill-outtable9.c.STEP5:DEFINITIONOFTHELAND-USEANDLAND-COVERCHANGE5COMPONENTOFTHEBASELINEThegoalofthisstepistocalculateactivitydata32oftheinitialforestclasses(icl)thatwillbedeforestedandactivitydataofthepost-deforestationclasses(fcl)thatwillreplacetheminthebaselinecase.Afterstep4,theareaandlocationoffuturedeforestationarebothknownandpre-deforestationcarbonstockscanbedeterminedbymatchingthepredictedlocationofdeforestationwiththelocationofforestclasseswithknowncarbonstocks.Pre-deforestationcarbonstocksshallbethoseexistingorprojectedtoexistattheyearoftheprojecteddeforestation.Thisimpliesthatforestclassesinareasundergoingdegradationinthebaselinecasewillnotbetheonesexistingattheprojectstartdate,buttheonesprojectedtoexistattheyearofdeforestation.Post-deforestationcarbonstockscaneitherbedeterminedasthehistoricalarea-weightedaveragecarbonstock,orusinglocationanalysis(modeling).Applythefollowingsub-steps:5.1Calculationofbaselineactivitydataperforestclass;5.2Calculationofbaselineactivitydataperpost-deforestationclass;and5.3CalculationofbaselineactivitydataperLU/LCchangecategory.Sub-step5.3appliesonlyifthelocationofpost-deforestationclassesisknown(i.e.thelocationofpost-deforestationclasseshasbeenmodeled).32Activitydata=hectaresperyearVM0015,Version1.1SectoralScope15Page565.1CalculationofbaselineactivitydataperforestclassCombinetheMapsofAnnualBaselineDeforestationofeachfutureyearproducedinthepreviousstepwiththeLand-UseandLand-CoverMapproducedforthecurrentsituationinstep2toproduceasetofmapsshowingforeachforestclassthepolygonsthatthatwouldbedeforestedeachyearinabsenceoftheAUDprojectactivity.Extractfromthesemapsthenumberofhectaresofeachforestclassthatwouldbedeforestedandpresenttheresultsintable11(11.aforthereferenceregion33,11.bfortheprojectareaand11.cfortheleakagebeltarea).Dothisatleastforthefixedbaselineperiodand,optionally,fortheprojectcreditingperiod.InmostcasesonesingleLand-UseandLand-CoverMaprepresentingthespatialdistributionofforestclassesattheprojectstartdatewillhavebeenproducedinstep2.However,wherecertainareasoflandareexpectedtoundergosignificantchangesincarbonstocksduetogrowthordegradationinthebaselinecase,asequenceofLand-UseandLand-CoverMapsrepresentingthemosaicofforest-classesofeachfutureyearmayhavebeengeneratedinstep2,inwhichcaseitmustbeusedthisstep.Table11.aAnnualareasdeforestedperforestclassiclwithinthereferenceregioninthebaselinecase(baselineactivitydataperforestclass)AreadeforestedperforestclassiclwithinthereferenceregionTotalbaselinedeforestationinthereferenceregionIDicl>12…IclName>ABSLRRtABSLRRannualcumulativeProjectyearthahahahahaha012...TTable11.bAnnualareasdeforestedperforestclassiclwithintheprojectareainthebaselinecase(baselineactivitydataperforestclass)AreadeforestedperforestclassiclwithintheprojectareaTotalbaselinedeforestationintheprojectareaIDicl>12…IclName>ABSLPAtABSLPAannualcumulativeProjectyearthahahahahaha012...T33Table11.aisoptionalVM0015,Version1.1SectoralScope15Page57Table11.cAnnualareasdeforestedperforestclassiclwithintheleakagebeltareainthebaselinecase(baselineactivitydataperforestclass)AreadeforestedperforestclassiclwithintheleakagebeltareaTotalbaselinedeforestationintheleakagebeltareaIDicl>12…IclName>ABSLLKtABSLLKannualcumulativeProjectyearthahahahahaha012...T5.2Calculationofbaselineactivitydataperpost-deforestationforestclassTwomethodsareavailabletoprojecttheLU/LCclassesthatwillreplaceforestsinthebaselinecase;(1)“HistoricalLU/LC-change”and(2)“Modeling”.Method1:HistoricalLU/LC-changeHistoricalLU/LC-changesareassumedtoberepresentativeforfuturetrends.Hence,post-deforestationland-usesareallocatedtotheprojectedareasofannualdeforestationinsameproportionsasthoseobservedonlandsdeforestedduringthehistoricalreferenceperiodinthereferenceregion.Dividethereferenceregion(oratleasttheareaencompassingtheprojectarea,leakagebeltandleakagemanagementareas)inZzones(atleastonezone),eachrepresentingdifferentcombinationsofpossiblepost-deforestationlanduses(zone1,zone2,etc.)takingintoaccountthehistoricallocationofpost-deforestationLU/LC-classesandtherequirements(climate,soil,economicfactors)thatdifferentclasseshavetobeestablishedwithinagivenzoneinthebaselinecase.Ifmorethanonezoneexists,includeinthePDamapshowingthelocationofthesezones(MapofZonesofPost-DeforestationLandUses)andprovideabriefexplanationoftherationaleofthezoning.InTable12,reporttheareaofeachzoneandtheareasofeachpost-deforestationLU/LCclasspresentineachzone(basedinthemapsanddataproducedinstep2).VM0015,Version1.1SectoralScope15Page58Table12.Zonesofthereferenceregionencompassingdifferentcombinationsofpotentialpost-deforestationLU/LCclassesZoneTotalofallotherLU/LCclassespresentintheZoneTotalareaofeachZoneName:Name:Name:F1F2F50IDfcl1IDfcl2IDfclFclArea%ofZoneArea%ofZoneArea%ofZoneArea%ofZoneArea%ofZoneIDzNameha%ha%ha%ha%ha%1Zone10.0%0.0%0.0%0.0%-0.0%2Zone20.0%0.0%0.0%0.0%-0.0%…Zone…0.0%0.0%0.0%0.0%-0.0%ZZoneZ0.0%0.0%0.0%0.0%-0.0%Totalareaofeachclassfcl-0.0%-0.0%-0.0%-0.0%-0.0%Asmallerareathanthereferenceregioncanbeconsidered,butthissmallerareamustatleastcontaintheprojectarea,theleakagebeltandtheleakagemanagementareas.Calculatetheareaprojectedtobedeforestedineachzoneandreporttheresultintable13.b(fortheprojectarea)and13.c(fortheleakagebelt).Dothisatleastforthefixedbaselineperiodand,optionally,fortheentireprojectcreditingperiod.Doingthesameforthereferenceregion(table13.a)isoptional.Table13.a.Annualareasdeforestedineachzonewithinthereferenceregioninthebaselinecase(baselineactivitydataperzone)TotalbaselinedeforestationinthereferenceregionIDz>12…ZName>Zone1Zone2Zone3ZoneZABSLRRtABSLRRProjectyearthahahahaha0123TVM0015,Version1.1SectoralScope15Page59Table13.b.Annualareasdeforestedineachzonewithintheprojectareainthebaselinecase(baselineactivitydatazone)AreaestablishedafterdeforestationperzonewithintheprojectareaTotalbaselinedeforestationintheprojectareaIDz>12…ZName>Zone1Zone2Zone3ZoneZABSLPAtABSLPAProjectyearthahahahaha0123TTable13.c.Annualareasdeforestedineachzonewithintheleakagebeltinthebaselinecase(baselineactivitydataperzone)TotalbaselinedeforestationintheleakagebeltIDz>12…ZName>Zone1Zone2Zone3ZoneZABSLLKtABSLLKProjectyearthahahahaha0123TMethod2:ModelingThefuturespatialdistributionofpost-deforestationLU/LCclassesisdeterminedusingaspatialmodel.Twomodelingtechniquescanbeused:a)ProjectionofLU/LC-changecategories:SomedeforestationmodelingtoolscanbeusedtoprojectseveralLU/LC-changecategoriesatthesametime,insteadofjustthebroadcategory“deforestation”.Insuchcases,thenon-forestclassesaredeterminedbyeachprojectedcategoryofchange.Methodsdiscussedinsection4.2.3shallbeusedtoselectthemostaccuratepredictionmap.b)Suitabilitymodeling:Criteriamustbeidentifieddeterminingthesuitabilityofeachmainpost-deforestationLU/LCclass,suchassoiltype,elevation,slope,etc.(asselectedandjustifiedbytheprojectproponent).Usingmulti-criteriaanalysisthesuitabilityofeachpost-deforestationLU/LCclassisdeterminedforeachspatiallocation.AteachspatiallocationtheclasswiththehighestsuitabilityvalueisassumedtobetheonethatdeforestationagentswillimplementinabsenceoftheAUDprojectactivity.VM0015,Version1.1SectoralScope15Page60Showtheresultsobtainedinmapsandsummarizetheresultsintables13.band13.cabove(13.aisoptional).NotethatbyusingMethod2,eachpost-deforestationLU/LCclassfclwillrepresentoneandonlyone“zone”z(i.e.“fcl”=“z”)Themodelmustdemonstrablycomplywithstatisticalgoodpractice,andevidencethatsuchrequirementhasbeenmetshallbeprovidedtoVCSverifiersatthetimeofvalidation.5.3CalculationofbaselineactivitydataperLU/LCchangecategoryThissub-stepisonlyapplicableinconjunctionwiththeMethod2describedabove.Thegoalofthissub-stepistoidentifythecategoriesofLU/LC-change(ct)andthelevelofactivitydataofeachofthesecategories.Thisisperformedasfollows:Combinethemapsshowingthepolygonsofforestclasses(icl)thatwouldbedeforestedduringeachfutureyearproducedinstep4.2.4withthemapshowingthepost-deforestationLU/LCclasses(fcl)preparedinstep5.2.FromthecombineddatasetsproduceanewsetofmapsshowingthepolygonsofthecategoriesofLU/LCchange(ct)foreachfutureyear.Somespatialmodelingtoolscanproducethesemapsdirectly.Extractfromthemapsproducedabovethenumberofhectares(i.e.,activitydata)correspondingtoeachfutureyear.Summarizetheresultsintable14.a(optional),14.band14.cforthefixedbaselineperiodand,optionally,fortheprojectcreditingperiod.Table14.a.BaselineactivitydataforLU/LCchangecategories(ct)inthereferenceregionActivitydataperLU/LCcategoryctwithinthereferenceregionTotalbaselinedeforestationinthereferenceregionIDct12…IctName>ABSLRRtABSLRRannualcumulativeProjectyearthahahahahaha012...TVM0015,Version1.1SectoralScope15Page61Table14.b.BaselineactivitydataforLU/LCchangecategories(ct)intheprojectareaActivitydataperLU/LCcategoryctwithintheprojectareaTotalbaselinedeforestationintheprojectareaIDct12…IctName>ABSLPAtABSLPAannualcumulativeProjectyearthahahahahaha012...TTable14.c.BaselineactivitydataforLU/LCchangecategories(ct)intheleakagebeltActivitydataperLU/LCcategoryctwithintheLeakagebeltTotalbaselinedeforestationintheleakagebeltIDct12…IctName>ABSLLKtABSLLKannualcumulativeProjectyearthahahahahaha012...TSTEP6:ESTIMATIONOFBASELINECARBONSTOCKCHANGESANDNON-CO26EMISSIONSThegoalofthisstepistofinalizethebaselineassessmentbycalculating:6.1Baselinecarbonstockchanges;and(optionally)6.2Baselinenon-CO2emissionsfromforestfiresusedtoclearforests.6.1EstimationofbaselinecarbonstockchangesBeforecalculatingthebaselinecarbonstockchangesitisnecessarytoestimatetheaveragecarbonstock(tCO2-eha-1)ofeachLU/LCclass.6.1.1EstimationoftheaveragecarbonstocksofeachLU/LCclassAveragecarbonstocksmustbeestimatedonlyfor:theforestclassesexistingwithintheprojectarea34;34Inmostcasestheforestclassesexistingwithintheprojectareaattheprojectstartdatewillremainthesameinthebaselinecase.However,wherecertainareaswithintheprojectboundaryaresubjecttobaselinedegradationVM0015,Version1.1SectoralScope15Page62theforestclassesexistingwithintheleakagebelt35;thepost-deforestationclassesprojectedtoexistintheprojectareainthebaselinecase;thepost-deforestationclassesprojectedtoexistintheleakagebeltintheprojectcase;andthenon-forestclassesexistinginleakagemanagementareas.Collectexistingcarbon-stockdatafortheseclassesfromlocalpublishedstudiesandexistingforestandcarboninventories.Doadditionalfieldmeasurementsfortheclassesforwhichthereisinsufficientinformation.Followtheguidancebelow:a)Assesstheexistingdatacollectedand,whereappropriate,usethem.Itislikelythatsomeexistingdatacouldbeusedtoquantifythecarbonstocksofoneormoreclasses.Thesedatacouldbederivedfromaforestinventoryorperhapsfromscientificstudies.Analyzethesedataandusethemifthefollowingcriteriaarefulfilled:Thedataarelessthan10yearsold;Thedataarederivedfrommultiplemeasurementplots;Allspeciesaboveaminimumdiameterareincludedintheinventories;Theminimumdiameterfortreesincludedis30cmorlessatbreastheight(DBH);Dataaresampledfromgoodcoverageoftheclassesoverwhichtheywillbeextrapolated.Existingdatathatmeettheabovecriteriashallonlybeappliedacrosstheclassesfromwhichtheywererepresentativelysampledandnotbeyondthat.SeethelatestversionoftheGOFC-GOLDsourcebookonREDDandGillespie,etal.(1992)formethodstoanalyzethesedata.b)Collectmissingdata.Fortheclassesforwhichnoexistingdataareavailableitwillbenecessarytoeitherobtainthedatafromfieldmeasurementortouseconservativeestimatesfromtheliterature.Fieldmeasurements:Locatethesamplingsites.Ifthelocationsoffuturedeforestationareknownatthetimeoffieldmeasurements,thesamplesitesshouldbelocatedatthelocationsexpectedtobedeforestedtoachievemaximumaccuracyofthecarbonstockestimates.Designthesamplingframeworkandconductthefieldmeasurementsfollowingtheguidanceofappendix3(seealsochapter4.3ofGPGLULUCFandinthesourcebookforLULUCFbyPearsonetal.,2005).SummarizethesamplingdesigninthePDandprovideamapandthecoordinatesofallsampledlocations.Literatureestimates:Theuseofcarbonstockestimatesinsimilarecosystemsderivedfromlocalstudies,literatureandIPCCdefaultsispermitted36,providedtheaccuracyandconservativenessoftheestimatesaredemonstrated.duetounsustainablelogging,fuelwoodcollection,charcoalproductionandotherreasons,thedecreaseincarbonstocksmustbeprojected.Ifcarbonstocksaresubjecttoenhancement,theprojectionisoptionalandcanconservativelybeomitted.35Inmostcasestheforestclassesexistingattheprojectstartdatewithintheleakagebeltwillremainthesameinthebaselinecase.However,wherecertainareaswithintheleakagebeltaresubjecttoenhancementinthebaselinecase,carbonstocksmustbeprojectedforeachyear.Ifcarbonstocksaresubjecttobaselinedegradation,projectingthechangesincarbonstocksisoptionalandcanconservativelybeomitted.VM0015,Version1.1SectoralScope15Page63Whendefaultsareused,thelowestvalueoftherangegivenintheliteraturesource(orthevaluereducedby30%)mustbeusedfortheforestclasses,andthehighestvalue(orthevalueaugmentedby30%)fornon-forestclasses.c)Calculatethecarbonstocksexistingineachforestclassintheprojectareapriortotheyearofbaselinedeforestation.Forallyearsprecedingtheyearinwhichtheprojectedbaselinedeforestationwilloccur(t<=t)carbonstocksandboundariesoftheforest-classesareassumedtoremainthesame,exceptinthefollowingcases:Ifinthebaselinecasetheforestwithincertainpolygonsoftheprojectareaisdegradingandloosingcarbonstocks,amapsequenceshowingthespatialandtemporalsequenceofforestclasseswithsuccessivelylowercarbonstocksmustbepreparedtoaccountforthedegradationoccurringpriortodeforestation.Iftheboundaryoftheforestclassesundergoingdegradationisfixed(i.e.doesnotchangeovertime)itissufficienttoshowtheestimatedchangesincarbonstocksinatable(Table15aandTable15b).Todotheprojection,usecredibleandverifiablesourcesofdatafromexistingstudies,ormeasurefieldplotsindegradedforestsofdifferentknownage.Ifinthebaselinecasetheforestwithincertainpolygonsoftheprojectareahasincreasingcarbonstocks,changesincarbonstockscanconservativelybeomitted.Ifaprojectionisdone,usecredibleandverifiablesourcesofdatafromexistingstudies,ormeasurefieldplotsinsecondaryforestsofdifferentknownage.Ifcarbonstocksintheprojectareaaredecreasingmoreintheprojectcasethaninthebaselinecase(e.g.whentheprojectactivityinvolvesloggingfortimber,fuel-woodcollectionorcharcoalproductioninareasnotsubjecttosuchactivitiesinthebaselinecase),thiswillhavetobeaccountedintheprojectcase.Ifloggingactivitiesarepresentinthebaseline,theharvestedwoodproductcarbonpoolmustbeestimatedand,ifsignificantlyhigherinthebaselinecomparedtotheprojectscenario,itwillhavetobeaccounted.ReporttheresultsoftheestimationsinTable15.a(estimatedvalues)andTable15.b(valuesusedincalculationsafterconsideringdiscountsforuncertaintiesaccordingto“f”below).Carbonstocksintheharvestedwoodproductscarbonpoolmustbeestimatedasthesumofplannedandunplannedharvestingactivitiesinthebaselinecaseandtheadditionalvolumeharvestedpriortothedeforestationeventinyeart(ifapplicable).d)Calculatethecarbonstocksexistingineachforestclassintheleakagebeltpriortotheyearofbaselinedeforestation(t=t):Forallyearsprecedingtheyearinwhichtheprojectedbaselinedeforestationwilloccur(t>t)carbonstocksandboundariesoftheforest-classesareassumedtoremainthesame,exceptinthefollowingcases:Ifinthebaselinecasetheforestwithincertainpolygonsoftheleakagebeltisgrowingandcarbonstocksareincreasing,amapsequenceshowingthespatialandtemporalsequenceofforestclasseswithsuccessivelyhighercarbonstocksmustbepreparedtoaccountforthe36Attentionmustbepaidondataunits.InthismethodologycalculationsaredoneintCO2-ewhileIPCCtablesoftenprovidedataintC(1tC=44/12tCO2-e)VM0015,Version1.1SectoralScope15Page64carbonstockenhancement.Todotheprojection,usecredibleandverifiablesourcesofdatafromexistingstudies,ormeasurefieldplotsinsecondaryforestsofdifferentknownage.Ifinthebaselinecasetheforestwithincertainpolygonsoftheleakagebeltisdegradingandloosingcarbonstocks,changesincarbonstockscanconservativelybeomittedandpreparingamapsequenceisoptionalforthesepolygons.ReporttheresultsoftheestimationsinTable15.a(estimatedvalues)andTable15.b(valuesusedincalculationsafterconsideringdiscountsforuncertaintiesaccordingto“f”below).VM0015,Version1.1SectoralScope15Page65Table15.Carbonstocksperhectareofinitialforestclassesiclexistingintheprojectareaandleakagebelt(theselectionofcarbonpoolsissubjecttothelatestVCSrequirementsonthismatter,seeTable3)Table15.a.Estimatedvalues(Inthistable,forestclassesnotundergoingdegradationorcarbonstockenhancementwillhaveaconstantcarbonstockvalueeachyear)ForspacereasonsonlythesumofCWPicl(3)isshowninthetableabove.Thisisthesumoftwocomponents,asshownbelow(thesameappliestoTable15.b.):Name:IDiclCstock+90%CICstock+90%CICstock+90%CICstock+90%CICstock+90%CICstock+90%CICstock+90%CICstock+90%CICstock+90%CItCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1012…TProjectyeartmediumlivedlonglivedCtoticlCwpicl(3)shortlivedCabiclCbbiclCdwiclCliclCsociclInitialforestclassiclAveragecarbonstockperhectare+90%CIVM0015,Version1.1SectoralScope15Page66Table15.b.Valuestobeusedafterdiscountsforuncertainties(see6.1.1.f,andAppendix2)Thespace“Notes”intable15.1.2isintendedtoinsertexplanations(orreferencestoexplanations)abouthowuncertaintieshavebeenconsidered.Cstock+90%CICstock+90%CICstock+90%CICstock+90%CICstock+90%CICstock+90%CICstock+90%CICstock+90%CICstock+90%CItCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1012…TProjectyeartmediumlivedlonglivedCwpicl(2)shortlivedmediumlivedlonglivedshortlivedmediumlivedlonglivedCwpicl(3)shortlivedCwpicl(1)Averagecarbonstockperhectare+90%CI(1)=Cstockinwoodproductsofplannedandunplannedbaselineactivities(degradation)(2)=Cstockinwoodproductsextractedinadditiontothoseextractedinplanned/unplanneddegradationactivitiesincaseofdeforestation(t=t)(3)=Totalcarbonstocksinwoodproductssupposedtobeharvestedatyeart(yearinwhichdeforestationoccurs)Name:IDiclCstockCstockchangeCstockCstockchangeCstockCstockchangeCstockCstockchangeCstockCstockchangeCstockCstockchangeCstockCstockchangeCstockCstockchangeCstockCstockchangetCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1012…TNotesProjectyeartCwpicl(3)CtoticlshortlivedmediumlivedlonglivedCabiclCbbiclCdwiclCliclCsociclInitialforestclassiclAveragecarbonstockperhectare+90%CIVM0015,Version1.1SectoralScope15Page67Where:CabiclAveragecarbonstockperhectareintheabove-groundbiomasscarbonpoolofclassicl;tCO2-eha-1CbbiclAveragecarbonstockperhectareinthebelow-groundbiomasscarbonpoolofclassicl;tCO2-eha-1CdwiclAveragecarbonstockperhectareinthedeadwoodbiomasscarbonpoolofclassicl;tCO2-eha-1CliclAveragecarbonstockperhectareinthelittercarbonpoolofLU/LCclassicl;tCO2-eha-1CsociclAveragecarbonstockperhectareinthesoilorganiccarbonpoolofLU/LCclassicl;tCO2-eha-1CwpiclAveragecarbonstockperhectareaccumulatedintheharvestedwoodproductscarbonpoolbetweenprojectstartandtheyearofdeforestationofclassicl;tCO2-eha-1Note:Inthebaselinecase,CwpclmustbesubtractedfromthesumoftheotherpoolsinthecalculationofCtotclCtoticlAveragecarbonstockperhectareinallaccountedcarbonpoolsofLU/LCicl;tCO2-eha-1e)Calculatethelong-term(20-years)averagecarbonstocksofpost-deforestationclasses:Theseclassesoftendonothaveastablecarbonstockbecausedifferentlandusesmaybeimplementedinatimesequenceorbecausethelanduseafterdeforestationimpliescarbonstockschangesovertime(e.g.incaseoftreeplantations).Thecarbonstockofpost-deforestationclassesmustbeestimatedasthelong-term(20years)averagecarbonstockandcanbedeterminedfrommeasurementsinplotsofknownage,long-termstudiesandotherverifiablesources.Foreachpost-deforestationLU/LCclass,reportthecalculationofthelong-term(20-year)averagecarbonstockusingTable16.f)Doanuncertaintyassessmentofallcarbonstockestimatesfollowingthemethodsdescribedinappendix2,Box2.Iftheuncertaintyofthetotalaveragecarbonstock(Ctotcl)ofaclassclislessthan10%oftheaveragevalue,theaveragecarbonstockvaluecanbeused.Iftheuncertaintyishigherthan10%,thelowerboundaryofthe90%confidenceintervalmustbeconsideredinthecalculationsiftheclassisaninitialforestclassintheprojectareaorafinalnon-forestclassintheleakagebelt,andthehigherboundaryofthe90%confidenceintervaliftheclassisaninitialforestclassintheleakagebeltorafinalnon-forestclassintheprojectarea.g)Calculatethearea-weightedaveragecarbonstocksofthepost-deforestationLU/LCclassesexistingwithineachzoneusingTable17.VM0015,Version1.1SectoralScope15Page68Table16.Long-term(20-years)averagecarbonstocksperhectareofpost-deforestationLU/LCclassespresentinthereferenceregion(theselectionofcarbonpoolsissubjecttothelatestVCSrequirementsonthismatter,seetable3)Table17.Long-term(20-years)areaweightedaveragecarbonstockperzone37(Insertasmanyflcclassesasneeded)37IfMethod2wasusedinstep5.2,theneachzonewillhaveonlyonepost-deforestacionclassfcl.Name:IDfcl1averagestock+90%CIaveragestock+90%CIaveragestock+90%CIaveragestock+90%CIaveragestock+90%CICstock+90%CICstock+90%CICstock+90%CIaveragestock+90%CIttCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1t000000t+1000000t+2000000t+19000000Average000000000000000000AveragetobeusedincalculationsCabfclCbbfclCdwfclClfclPorjectyearPostdeforestationclassfclF1Averagecarbonstockperhectare+90%CICwpfcl(4)shortlivedmediumlivedlonglivedCsocfclCtotfcl0-3years3-100years>100years(4)=Totalcarbonstocksinwoodproductsinpost-deforestationland-usesisconsideredinsignificantaprioriinVM0015,V2.0Name:Name:IDfcl1IDfclFclCabfclCbbfclCdwfclClfclCsocfclCwpfclCabfclCbbfclCdwfclClfclCsocfclCwpfclCabzCbbzCdwzClzCsoczCwpzCtotzCstockCstockCstockCstockCstockCstockCstockCstockCstockCstockCstockCstockCstockCstockCstockCstockCstockCstockCstockIDzNametCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-11Zone100000000000000000002Zone20000000000000000000…Zone30000000000000000000ZZoneZ0000000000000000000F50ZoneF1Areaweightedlong-term(20years)averagecarbonstocksperzonezPost-deforestationLU/LC-classesfclAfterdiscountsforuncetainties(see6.1.1.f,andAppendix2)VM0015,Version1.1SectoralScope15Page696.1.2CalculationofcarbonstockchangefactorsTheAFOLURequirementsrequiresmethodologiestoconsiderthedecayofcarbonstockinsoilcarbon,below-groundbiomass,deadwoodandharvestedwoodproductsinthebaselinecase.Inthismethodologydefaultlinearfunctionsareappliedtoaccountforthedecayofcarbonstockininitialforestclasses(icl)andincreaseincarbonstockinpost-deforestationclasses.Thisisdoneasfollows:a)Above-groundbiomass:Initialforestclasses(icl):immediatereleaseof100%ofthecarbonstock(asestimatedinTable15.b)isassumedtohappenattheendofyeart=t(=yearinwhichdeforestationoccurs).Post-deforestationclasses(fcl)(ortheirareaweightedaverageperzonez):linearincreasefrom0tCO2-e/hainyeart=tto100%ofthelong-term(20-years)averagecarbonstock(asestimatedinTable17)inyeart=t+9isassumedtohappeninthe10-yearsperiodfollowingdeforestation(i.e.1/10thofthefinalcarbonstockisaccumulatedeachyear).b)Below-groundbiomass:Initialforestclasses(icl):anannualreleaseof1/10thoftheinitialcarbonstock(asestimatedinTable15.b)isassumedtohappeneachyearbetweent=tandt=t+9.Post-deforestationclasses(fcl)(ortheirareaweightedaverageperzonez):linearincreasefrom0tCO2-e/hainyeart=tto100%ofthelong-term(20-years)averagecarbonstock(asestimatedinTable17)inyeart=t+9isassumedtohappeninthe10yearsperiodfollowingdeforestation(i.e.1/10thofthefinalcarbonstockisaccumulatedeachyear).c)Litter:Initialforestclasses(icl):immediatereleaseof100%ofthecarbonstock(asestimatedinTable15.b)isassumedtohappenattheendofyeart=t.Post-deforestationclasses(fcl)(ortheirareaweightedaverageperzonez):alinearincreasefrom0tCO2-e/hainyeart=tto100%ofthelong-term(20-years)averagecarbonstock(asestimatedinTable17)inyeart=t+9isassumedtohappeninthe10-yearsperiodfollowingdeforestation(i.e.1/10thofthefinalcarbonstockisaccumulatedeachyear).d)Deadwood:Initialforestclasses(icl):anannualreleaseof1/10thoftheinitialcarbonstock(asestimatedinTable15.b)isassumedtohappeneachyearbetweent=tandt=t+9.Post-deforestationclasses(fcl)(ortheirareaweightedaverageperzonez):alinearincreasefrom0tCO2-e/hainyeart=tto100%ofthelong-term(20-years)averagecarbonstock(asestimatedinTable17)inyeart=t+9isassumedtohappeninthe10-yearsperiodfollowingdeforestation(i.e.1/10thofthefinalcarbonstockisaccumulatedeachyear).e)Woodproducts:Initialforestclasses(icl):Threefractionsareconsidered:1)Fractiondecayinginlessthanthreeyears:Thisshort-livedfractionisassumedtobereleased100%attheendofyeart(i.e.100%ofthestockestimatedinTable15.b).VM0015,Version1.1SectoralScope15Page702)Fractiondecayingbetween3and100years:Thismedium-livedfractionisassumedtolinearlydecayin20years(i.e.eachyear1/20ofthestockestimatedinTable15.b).3)Fractiondecayinginmorethan100years:Thislong-livedfractionisassumedtoneverdecay(i.e.neverbereleasedintotheatmosphere).Post-deforestationclasses(fcl)(ortheirareaweightedaverageperzonez):itisassumedthatcarbonstocksinwoodproductsarealwaysinsignificant(i.e.carbonstockinallwoodproductsiszero).f)Soilorganiccarbon:Itisassumedthatina20-yearsperiodthecarbonstockchangesfromthelevelestimatedfortheinitialforestclasses(icl)(inTable15.b)tothelevelestimatedforthepost-deforestationclassfcl(ortheirareaweightedaverageperzonez).Thechangeoccurslinearlyandcanbeeitheradecreaseoranincrease,dependingonthecarbonstockestimatedfortheinitialforestclassandforthefinalpost-deforestationclassfclorzonez.Ifcarbonstocksinthesoilorganiccarbonpoolareincludedinthebaseline,itwillbenecessarytocalculateactivitydatapercategory(ct).Thisisbecausethelineardecay(orincrease)functioniscategory-dependent.Ifmethod2wasusedinStep5.3,Table14willprovidetheinformationonactivitydatapercategoryct.Ifmethod1wasused,itwillbenecessarytodefinecategories(frominitialforestclassesicltozonesz).UseTable18.aand18.btodescribethesecategoriesandcombinetheMapofZonesofPost-DeforestationLandUseswiththemapofinitialforestclassesandtheannualmapsofprojecteddeforestationtocalculateactivitydataofthesecategories(ctz).ReporttheresultsinTables19.a,19.band19.c.Dothisatleastforthefixedbaselineperiodandtheprojectareaandleakagebeltand,optionally,fortheentireprojectcreditingperiodandforthereferenceregion.Tables20.a,20.band20.csummarizehowcarbonstockchangefactorsarecalculated.Table18.aPotentialland-useandland-coverchangematrixInitialLU/LCclassiclIDcl12………FclIDzNameB1B2…B4B5B50Zonez1Zone1I1/Z1I2/Z1I…/Z1I4/Z1I5/Z1IFcl/Z12Zone2I1/Z2I2/Z2I…/Z2I4/Z2I5/Z2IFcl/Z2…Zone..I1/Z…I2/Z…I…/Z…I4/Z…I5/Z…IFcl/Z……Zone…I1/Z4I2/Z4I…/Z4I4/Z4I5/Z4IFcl/Z4…Zone…I1/Z5I2/Z5I…/Z5I4/Z5I5/Z5IFcl/Z5ZZoneZI1/ZZI2/ZZI…/ZZI4/ZZI5/ZZIFcl/ZZVM0015,Version1.1SectoralScope15Page71Table18.bListofland-useandland-coverchangecategories(ctz)LU/LC-ChangeCategoryInitialForestClassPost-DeforestationZoneIDctzNameIDiclNameIDiclName1ZoneCat11B11Zone12ZoneCat21B12Zone2…ZoneCat31B1…Zone3CtzZoneCat41B14Zone4Table19.aAnnualareasdeforestedineachcategoryctzwithinthereferenceregioninthebaselinecase(baselineactivitydatapercategory(ctz)38ActivitydataperLU/LCcategoryctzwithinthereferenceregionTotalbaselinedeforestationinthereferenceregionIDct>123…CtzABSLRRtABSLRRName>ZoneCat1ZoneCat2ZoneCat3ZoneCat4ZoneCat5annualcumulativeProjectyearthahahahahahaha011TTable19.bAnnualareasdeforestedineachcategoryctzwithintheprojectareainthebaselinecase(baselineactivitydatapercategory(ctz)ActivitydataperLU/LCcategoryctzwithinthereferenceregionTotalbaselinedeforestationinthereferenceregionIDct>123…CtzABSLPAtABSLPAName>ZoneCat1ZoneCat2ZoneCat3ZoneCat4ZoneCat5annualcumulativeProjectyearthahahahahahaha011T38ThistableisoptionalVM0015,Version1.1SectoralScope15Page72Table19.cAnnualareasdeforestedineachcategoryctzwithintheleakagebeltareainthebaselinecase(baselineactivitydatapercategory(ctz)ActivitydataperLU/LCcategoryctzwithinthereferenceregionTotalbaselinedeforestationinthereferenceregionIDct>123…CtzABSLLKtABSLLKName>ZoneCat1ZoneCat2ZoneCat3ZoneCat4ZoneCat5annualcumulativeProjectyearthahahahahahaha011T6.1.3CalculationofbaselinecarbonstockchangesThechoiceofthemethodtocalculatecarbonstockchangesdependsonwhetheractivitydataareavailableforclassesorforcategories.IfsoilorganiccarbonisincludedinthebaselineonlyMethod2canbeused(i.e.activitydatamustbedefinedforcategories).Ifactivitydataareavailableforclasses(Method1),thetotalbaselinecarbonstockchangeintheprojectareaatyeartiscalculatedasfollows:∑(∑∑∑∑∑∑∑∑)Where:CBSLPAtTotalbaselinecarbonstockchangewithintheprojectareaatyeart;tCO2-eABSLPAicl,tAreaofinitialforestclassicldeforestedattimetwithintheprojectareainthebaselinecase;haABSLPAicl,t-1Areaofinitialforestclassicldeforestedattimet-1withintheprojectareainthebaselinecase;ha…VM0015,Version1.1SectoralScope15Page73ABSLPAicl,t=t-19Areaofinitialforestclassicldeforestedattimet-19withintheprojectareainthebaselinecase;haCpicl,t=tAveragecarbonstockchangefactorforcarbonpoolpintheinitialforestclassiclapplicableattimet(asperTable20.a);tCO2-eha-1Cpicl,t=t+1Averagecarbonstockchangefactorforcarbonpoolpintheinitialforestclassiclapplicableattimet=t+1(=2ndyearafterdeforestation,asperTable20.a);tCO2-eha-1…Cpicl,t=t+19Averagecarbonstockchangefactorforcarbonpoolpintheinitialforestclassiclapplicableattimet=t+19(20thyearafterdevorestation,(asperTable20.a);tCO2-eha-1ABSLPAz,tAreaofthezonez“deforested”attimetwithintheprojectareainthebaselinecase;haABSLPAz,t-1Areaofthezonez“deforested”attimet-1withintheprojectareainthebaselinecase;ha…ABSLPAz,t-19Areaofthezonez“deforested”attimet-19withintheprojectareainthebaselinecase;haCpz,t=tAveragecarbonstockchangefactorforcarbonpoolpinzonezapplicableattimet=t(asperTable20.b);tCO2-eha-1Cpz,t=t+1Averagecarbonstockchangefactorforcarbonpoolpinzonezapplicableattimet=t+1((=2ndyearafterdeforestation,asperTable20.b);tCO2-eha-1…Cpz,t=t+19Averagecarbonstockchangefactorforcarbonpoolpinzonezapplicableattimet=t+19((=20thyearafterdeforestation,asperTable20.b);tCO2-eha-1icl1,2,3…Iclinitial(pre-deforestation)forestclasses;dimensionlessz1,2,3…Zzones;dimensionlessp1,2,3...Pcarbonpoolsincludedinthebaseline;dimensionlesst1,2,3…T,ayearoftheproposedprojectcreditingperiod;dimensionlessttheyearatwhichtheareaABSLPAicl,tisdeforestedinthebaselinecase.Notes:Equation10canbeappliedtoallcarbonpools,exceptsoilorganiccarbon.SeparatecalculationofeachcarbonpoolisnecessarytodothesignificanceanalysisofeachpoolinStep9.1.Equation10shouldalsobeappliedtotheleakagebeltareaand,optionally,tothereferenceregion.Calculationsmustbemadeatleastforthefixedbaselineperiodand,optionally,fortheentireprojectcreditingperiod.VM0015,Version1.1SectoralScope15Page74ReporttheresultofthecalculationsinTables21.a1-6(forthereferenceregion);Tables21.b.1-6(fortheprojectarea);andTables21.c1-6(fortheleakagebeltarea).Table20.a.Carbonstockchangefactorsforinitialforestclassesicl(Method1)short-livedmedium-livedlong-lived1t-Cabicl,t-1/10Cbbicl,t=t-1/10Cdwicl,t=t-Clicl,tusemethod2-Cwpicl,t=t-1/20Cwpicl,t=t02t+10-1/10Cbbicl,t=t-1/10Cdwicl,t=t0usemethod20-1/20Cwpicl,t=t03t+20-1/10Cbbicl,t=t-1/10Cdwicl,t=t0usemethod20-1/20Cwpicl,t=t04t+30-1/10Cbbicl,t=t-1/10Cdwicl,t=t0usemethod20-1/20Cwpicl,t=t05t+40-1/10Cbbicl,t=t-1/10Cdwicl,t=t0usemethod20-1/20Cwpicl,t=t06t+50-1/10Cbbicl,t=t-1/10Cdwicl,t=t0usemethod20-1/20Cwpicl,t=t07t+60-1/10Cbbicl,t=t-1/10Cdwicl,t=t0usemethod20-1/20Cwpicl,t=t08t+70-1/10Cbbicl,t=t-1/10Cdwicl,t=t0usemethod20-1/20Cwpicl,t=t09t+80-1/10Cbbicl,t=t-1/10Cdwicl,t=t0usemethod20-1/20Cwpicl,t=t010t+90-1/10Cbbicl,t=t-1/10Cdwicl,t=t0usemethod20-1/20Cwpicl,t=t011t+100000usemethod20-1/20Cwpicl,t=t012t+110000usemethod20-1/20Cwpicl,t=t013t+120000usemethod20-1/20Cwpicl,t=t014t+130000usemethod20-1/20Cwpicl,t=t015t+140000usemethod20-1/20Cwpicl,t=t016t+150000usemethod20-1/20Cwpicl,t=t017t+160000usemethod20-1/20Cwpicl,t=t018t+170000usemethod20-1/20Cwpicl,t=t019t+180000usemethod20-1/20Cwpicl,t=t020t+190000usemethod20-1/20Cwpicl,t=t021-Tt+20,…00000000Csocicl,tYearafterdeforestationCabicl,tCbbicl,tCdwicl,tClicl,tCwpicl,tVM0015,Version1.1SectoralScope15Page75Table20.b.Carbonstockchangefactorsforfinalclassesfclorzonesz(Method1)short-livedmedium-livedlong-lived1t+1/10Cabz+1/10Cbbz+1/10Cdwz+1/10Clzusemethod20002t+1+1/10Cabz+1/10Cbbz+1/10Cdwz+1/10Clzusemethod20003t+2+1/10Cabz+1/10Cbbz+1/10Cdwz+1/10Clzusemethod20004t+3+1/10Cabz+1/10Cbbz+1/10Cdwz+1/10Clzusemethod20005t+4+1/10Cabz+1/10Cbbz+1/10Cdwz+1/10Clzusemethod20006t+5+1/10Cabz+1/10Cbbz+1/10Cdwz+1/10Clzusemethod20007t+6+1/10Cabz+1/10Cbbz+1/10Cdwz+1/10Clzusemethod20008t+7+1/10Cabz+1/10Cbbz+1/10Cdwz+1/10Clzusemethod20009t+8+1/10Cabz+1/10Cbbz+1/10Cdwz+1/10Clzusemethod200010t+9+1/10Cabz+1/10Cbbz+1/10Cdwz+1/10Clzusemethod200011t+100000usemethod200012t+110000usemethod200013t+120000usemethod200014t+130000usemethod200015t+140000usemethod200016t+150000usemethod200017t+160000usemethod200018t+170000usemethod200019t+180000usemethod200020t+190000usemethod200021-Tt+20,…00000000Csocz,tCwpz,tYearafterdeforestationCabz,tCbbz,tCdwz,tClz,tVM0015,Version1.1SectoralScope15Page76Table20.c.Carbonstockchangefactorsforland-usechangecategories(ctorctz)(Method2)short-livedmedium-livedlong-lived1t-Cabicl,t+1/10Cabz-1/10Cbbicl,t=t+1/10Cbbz-1/10Cdwicl,t=t+1/10Cdwz-Clicl,t+1/10Clz1/20(Csocicl,t-Csocz)-Cwpicl,t=t-1/20Cwpicl,t=t02t+1+1/10Cabz-1/10Cbbicl,t=t+1/10Cbbz-1/10Cdwicl,t=t+1/10Cdwz+1/10Clz1/20(Csocicl,t-Csocz)0-1/20Cwpicl,t=t03t+2+1/10Cabz-1/10Cbbicl,t=t+1/10Cbbz-1/10Cdwicl,t=t+1/10Cdwz+1/10Clz1/20(Csocicl,t-Csocz)0-1/20Cwpicl,t=t04t+3+1/10Cabz-1/10Cbbicl,t=t+1/10Cbbz-1/10Cdwicl,t=t+1/10Cdwz+1/10Clz1/20(Csocicl,t-Csocz)0-1/20Cwpicl,t=t05t+4+1/10Cabz-1/10Cbbicl,t=t+1/10Cbbz-1/10Cdwicl,t=t+1/10Cdwz+1/10Clz1/20(Csocicl,t-Csocz)0-1/20Cwpicl,t=t06t+5+1/10Cabz-1/10Cbbicl,t=t+1/10Cbbz-1/10Cdwicl,t=t+1/10Cdwz+1/10Clz1/20(Csocicl,t-Csocz)0-1/20Cwpicl,t=t07t+6+1/10Cabz-1/10Cbbicl,t=t+1/10Cbbz-1/10Cdwicl,t=t+1/10Cdwz+1/10Clz1/20(Csocicl,t-Csocz)0-1/20Cwpicl,t=t08t+7+1/10Cabz-1/10Cbbicl,t=t+1/10Cbbz-1/10Cdwicl,t=t+1/10Cdwz+1/10Clz1/20(Csocicl,t-Csocz)0-1/20Cwpicl,t=t09t+8+1/10Cabz-1/10Cbbicl,t=t+1/10Cbbz-1/10Cdwicl,t=t+1/10Cdwz+1/10Clz1/20(Csocicl,t-Csocz)0-1/20Cwpicl,t=t010t+9+1/10Cabz-1/10Cbbicl,t=t+1/10Cbbz-1/10Cdwicl,t=t+1/10Cdwz+1/10Clz1/20(Csocicl,t-Csocz)0-1/20Cwpicl,t=t011t+1000001/20(Csocicl,t-Csocz)0-1/20Cwpicl,t=t012t+1100001/20(Csocicl,t-Csocz)0-1/20Cwpicl,t=t013t+1200001/20(Csocicl,t-Csocz)0-1/20Cwpicl,t=t014t+1300001/20(Csocicl,t-Csocz)0-1/20Cwpicl,t=t015t+1400001/20(Csocicl,t-Csocz)0-1/20Cwpicl,t=t016t+1500001/20(Csocicl,t-Csocz)0-1/20Cwpicl,t=t017t+1600001/20(Csocicl,t-Csocz)0-1/20Cwpicl,t=t018t+1700001/20(Csocicl,t-Csocz)0-1/20Cwpicl,t=t019t+1800001/20(Csocicl,t-Csocz)0-1/20Cwpicl,t=t020t+1900001/20(Csocicl,t-Csocz)0-1/20Cwpicl,t=t021-Tt+20,…00000000Clctz,tCabctz,tCwpctz,tYearafterdeforestationCsocctz,tCbbctz,tCdwctz,tVM0015,Version1.1SectoralScope15Page77Tables21.a.Baselinecarbonstockchangeinthereferenceregion39(CalculatedwithMethod1:Activitydatapercategoryinitialclassesiclandpost-deforestationclassesfclorzonesz)Table21.a.1.Baselinecarbonstockchangeintheabove-groundbiomassinthereferenceregionNote:Prepareasimilartableforallselectedcarbonpools(Table21.a.2forbelow-groundbiomass;Table21.a.3fordeadwood;Table21.a.4forlitter;Table21.a.6forwoodproducts–UseMethod2ifsoilorganiccarbonisincluded).39Thesetablesareoptional.IDicl>12…IclCabBSLRRicl,tCabBSLRRiclIDiz>12…zCabBSLRRz,tCabBSLRRzCabBSLRRtCabBSLRRName>annualcumulativeName>annualcumulativeannualcumulativeProjectyearttCO2-etCO2-etCO2-etCO2-etCO2-etCO2-eProjectyearttCO2-etCO2-etCO2-etCO2-etCO2-etCO2-etCO2-etCO2-e0000--0000------------------------------------------------------------210T0123Totalnetcarbonstockchangeintheabove-groundbiomassofthereferenceregionTCarbonstockchangesinabove-groundbiomassperpost-deforestationzonezTotalcarbonstockchangeintheabove-groundbiomassofpost-deforestationzonesinthereferenceregion…Carbonstockchangesintheabove-groundbiomassperinitialforestclassiclTotalcarbonstockchangeintheabove-groundbiomassoftheinitialforestclassesinthereferenceregionVM0015,Version1.1SectoralScope15Page78Tables21.b.Baselinecarbonstockchangeintheprojectarea(CalculatedwithMethod1:Activitydatapercategoryinitialclassesiclandpost-deforestationclassesfclorzonesz)Table21.b.1.Baselinecarbonstockchangeintheabove-groundbiomassintheprojectareaNote:Prepareasimilartableforallselectedcarbonpools(Table21.b.2forbelow-groundbiomass;Table21.b.3fordeadwood;Table21.b.4forlitter;andTable21.b.6forwoodproducts–UseMethod2ifsoilorganiccarbonisincluded).IDicl>12…IclCabBSLPAicl,tCabBSLPAiclIDiz>12…zCabBSLPAz,tCabBSLPAzCabBSLPAtCabBSLPAName>annualcumulativeName>annualcumulativeannualcumulativeProjectyearttCO2-etCO2-etCO2-etCO2-etCO2-etCO2-eProjectyearttCO2-etCO2-etCO2-etCO2-etCO2-etCO2-etCO2-etCO2-e0000--0000------------------------------------------------------------TT1122…300Carbonstockchangesintheabove-groundbiomassperinitialforestclassiclTotalcarbonstockchangeintheabove-groundbiomassoftheinitialforestclassesintheprojectareaCarbonstockchangesinabove-groundbiomassperpost-deforestationzonezTotalcarbonstockchangeintheabove-groundbiomassofpost-deforestationzonesintheprojectareaTotalnetcarbonstockchangeintheabove-groundbiomassoftheprojectareaVM0015,Version1.1SectoralScope15Page79Tables21.c.Baselinecarbonstockchangeintheleakagebeltarea(CalculatedwithMethod1:Activitydatapercategoryinitialclassesiclandpost-deforestationclassesfclorzonesz)Table21.c.1.Baselinecarbonstockchangeintheabove-groundbiomassintheleakagebeltareaNote:Prepareasimilartableforallselectedcarbonpools(Table21.c.2forbelow-groundbiomass;Table21.c.3fordeadwood;Table21.c.4forlitter;andTable21.c.6forwoodproducts–UseMethod2ifsoilorganiccarbonisincluded).Ifactivitydataareavailableforcategories(Method2),firstcalculatethecarbonstockchangefactorsofeachcategoryasshownintable20.candthencalculatethebaselinecarbonstockchangesforthereferenceregion(optional),projectareaandleakagebeltareabymultiplyingactivitydatawiththeircorrespondingemissionfactors.Dothisatleastforthefixedbaselineperiodand,optionally,fortheentireprojectcreditingperiod.ReporttheresultofthecalculationsinTables22.a1-6(forthereferenceregion);Tables22.b.1-6(fortheprojectarea);andTables22.c1-6(fortheleakagebeltarea).Note:Itispossible(andsimpler)tocalculatebaselinecarbonstockchangesusingMethod1forallcarbonpools(exceptsoilorganiccarbon)and,ifsoilorganiccarbonisincluded,usingMethod2justforthispool.IDicl>12…IclCabBSLLKicl,tCabBSLLKiclIDiz>12…zCabBSLLKz,tCabBSLLKzCabBSLLKtCabBSLLKName>annualcumulativeName>annualcumulativeannualcumulativeProjectyearttCO2-etCO2-etCO2-etCO2-etCO2-etCO2-eProjectyearttCO2-etCO2-etCO2-etCO2-etCO2-etCO2-etCO2-etCO2-e00000--00000----1------1--------2------2--------…------…--------T------T--------Totalnetcarbonstockchangeintheabove-groundbiomassoftheprojectareaCarbonstockchangesintheabove-groundbiomassperinitialforestclassiclTotalcarbonstockchangeintheabove-groundbiomassoftheinitialforestclassesintheprojectareaCarbonstockchangesinabove-groundbiomassperpost-deforestationzonezTotalcarbonstockchangeintheabove-groundbiomassofpost-deforestationzonesintheprojectareaVM0015,Version1.1SectoralScope15Page80Tables22.a.Baselinecarbonstockchangeinthereferenceregion40(CalculatedwithMethod2:Activitydatapercategoryctorctz)Table22.a.1.Baselinecarbonstockchangeintheabove-groundbiomassinthereferenceregionProjectyeartActivitydatapercategoryxCarbonstockchangefactorforabove-groundbiomassinthereferenceregionTotalbaselinecarbonstockchangeinthereferenceregionIDct=1IDct=2IDct=...IDct=CtannualcumulativeABSLRRct,tCabct,tABSLRRct,tCabct,tABSLRRct,tCabct,tABSLRRct,tCabct,tCabBSLRRtCabBSLRRhatCO2-eha-1hatCO2-eha-1hatCO2-eha-1hatCO2-eha-1tCO2-etCO2-e012...TNote:Prepareasimilartableforallselectedcarbonpools(Table22.a.2forbelow-groundbiomass;Table22.a.3fordeadwood;Table22.a.4forlitter;Table22.a.5forsoilorganiccarbon;andTable22.a.6forwoodproducts).Tables22.b.Baselinecarbonstockchangeintheprojectarea(CalculatedwithMethod2:Activitydatapercategoryctorctz)Table22.b.1.Baselinecarbonstockchangeintheabove-groundbiomassintheprojectareaProjectyeartActivitydatapercategoryxCarbonstockchangefactorforabove-groundbiomassintheprojectareaTotalbaselinecarbonstockchangeintheprojectareaIDct=1IDct=2IDct=...IDct=CtannualcumulativeABSLPAct,tCabct,tABSLPAct,tCabct,tABSLPAct,tCabct,tABSLPAct,tCabct,tCabBSLPAtCabBSLPAhatCO2-eha-1hatCO2-eha-1hatCO2-eha-1hatCO2-eha-1tCO2-etCO2-e012...TNote:Prepareasimilartableforallselectedcarbonpools(Table22.b.2forbelow-groundbiomass;Table22.b.3fordeadwood;Table22.b.4forlitter;Table22.b.5forsoilorganiccarbon;andTable22.b.6forwoodproducts).40Thesetablesareoptional.VM0015,Version1.1SectoralScope15Page81Tables22.c.Baselinecarbonstockchangeintheleakagebeltarea(CalculatedwithMethod2:Activitydatapercategoryctorctz)Table22.c.1.Baselinecarbonstockchangeintheabove-groundbiomassintheleakagebeltareaProjectyeartActivitydatapercategoryxCarbonstockchangefactorforabove-groundbiomassintheleakagebeltareaTotalbaselinecarbonstockchangeintheleakagebeltareaIDct=1IDct=2IDct=...IDct=CtannualcumulativeABSLLKct,tCabct,tABSLLKct,tCabct,tABSLLKct,tCabct,tABSLLKct,tCabct,tCabBSLLKtCabBSLLKhatCO2-eha-1hatCO2-eha-1hatCO2-eha-1hatCO2-eha-1tCO2-etCO2-e012...TNote:Prepareasimilartableforallselectedcarbonpools(Table22.c.2forbelow-groundbiomass;Table22.c.3fordeadwood;Table22.c4forlitter;Table22.c.5forsoilorganiccarbon;andTable22.c.6forwoodproducts).6.2Baselinenon-CO2emissionsfromforestfiresEmissionsfromfiresusedtoclearforestsinthebaselinecanalwaysbeomitted.Conversionofforesttonon-forestinvolvingfiresisasourceofemissionsofnon-CO2gases(CH4andN2O).Whensufficientdataonsuchforestfiresareavailablefromthehistoricalreferenceperiodandtheprojectproponentconsidersthattheseemissionsareanimportantcomponentofthebaseline,CH4emissionsfrombiomassburningcanbeestimated.Wheresuchdataareunavailable,orofinsufficientaccuracy,emissionsfrombiomassburningshouldnotbeconsidered(whichisconservative).Theeffectoffireoncarbonemissionsiscountedintheestimationofcarbonstockchanges;thereforeCO2emissionsfromforestfiresshouldbeignoredtoavoiddoublecounting.Toestimatenon-CO2emissionsfromforestfires,itisnecessarytoestimatetheaveragepercentageofthedeforestedareainwhichfirewasused,theaverageproportionofmassburntineachcarbonpool(Pburnt,p),andtheaveragecombustionefficiencyofeachpool(CEp).Theseaveragepercentagevaluesareestimatedforeachforestclass(icl)andareassumedtoremainthesameinthefuture.BasedonrevisedIPCC1996GLLULUCF,GHGemissionsfrombiomassburningcanbeestimatedasfollows.EBBtoticl,t=EBBN2Oicl,t+EBBCH4icl,t(11)Where:EBBtoticl,tTotalGHGemissionfrombiomassburninginforestclassiclatyeart;tCO2-eha-1VM0015,Version1.1SectoralScope15Page82EBBN2Oicl,tN2Oemissionfrombiomassburninginforestclassiclatyeart;tCO2-eha-1EBBCH4icl,tCH4emissionfrombiomassburninginforestclassiclatyeart;tCO2-eha-1EBBN2Oicl,t=EBBCO2icl,t12/44NCRERN2O44/28GWPN2O(12)EBBCH4icl,t=EBBCO2icl,t12/44ERCH416/12GWPCH4(13)Where:41EBBCO2icl,tPerhectareCO2emissionfrombiomassburninginslashandburninforestclassiclatyeart;tCO2-eha-1EBBN2Oicl,tPerhectareN2Oemissionfrombiomassburninginslashandburninforestclassiclatyeart;tCO2-eha-1EBBCH4icl,tPerhectareCH4emissionfrombiomassburninginslashandburninforestclassiclatyeart;tCO2-eha-1NCRNitrogentoCarbonRatio(IPCCdefaultvalue=0.01);dimensionlessERN2OEmissionratioforN2O(IPCCdefaultvalue=0.007)ERCH4EmissionratioforCH4(IPCCdefaultvalue=0.012)GWPN2OGlobalWarmingPotentialforN2O(IPCCdefaultvalue=310forthefirstcommitmentperiod)GWPCH4GlobalWarmingPotentialforCH4(IPCCdefaultvalue=21forthefirstcommitmentperiod)∑Where:EBBCO2icl,tPerhectareCO2emissionfrombiomassburningintheforestclassiclatyeart;tCO2-eha-1FburnticlProportionofforestareaburnedduringthehistoricalreferenceperiodintheforestclassicl;%Cp,icl,tAveragecarbonstockperhectareinthecarbonpoolpburntintheforestclassiclatyeart;tCO2-eha-1Pburntp,iclAverageproportionofmassburntinthecarbonpoolpintheforestclassicl;%CEp,iclAveragecombustionefficiencyofthecarbonpoolpintheforestclassicl;dimensionlesspCarbonpoolthatcouldburn(above-groundbiomass,deadwood,litter)41Referstotable5.7in1996RevisedIPCCGuidelineforLULUCFandequation3.2.19inIPCCGPG-LULUCFVM0015,Version1.1SectoralScope15Page83icl1,2,3,…Icl(pre-deforestation)forestclassest1,2,3…T,ayearoftheproposedprojectcreditingperiod;dimensionlessThecombustionefficienciesmaybechosenfromtable3.A.14ofIPCCGPGLULUCF.Ifnoappropriatecombustionefficiencycanbeused,theIPCCdefaultof0.5shouldbeused.TheNitrogentoCarbonRatio(NCR)isapproximatedtobeabout0.01.Thisisageneraldefaultvaluethatappliestoleaflitter,butlowervalueswouldbeappropriateforfuelswithgreaterwoodycontent,ifdataareavailable.EmissionfactorsforusewithaboveequationsareprovidedinTables3.A15and3.A.16ofIPCCGPGLULUCF.Reportthevaluesofallestimatedparametersinthefollowingtable.Table23.Parametersusedtocalculatenon-CO2emissionsfromforestfiresInitialForestClassParametersEBBnN2OiclEBBCH4iclEBBtoticlFburnticlCabCdwClPburntab,iclPburntdw,iclPburntl,iclCEab,iclCEdw,iclCEl,iclECO2-abECO2-dwECO2-lEBBCO2-totIDclName%tCO2eha-1tCO2eha-1tCO2eha-1%%%%%%tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-1tCO2eha-112...IclFinally,usingtheparametersspecifiedintable23andtheprojectedactivitydataforforestclassescalculatetheprojectedtotalnon-CO2emissionsfromforestfiresandreporttheresultsintable24.VM0015,Version1.1SectoralScope15Page84Table24.Baselinenon-CO2emissionsfromforestfiresintheprojectarea(TheselectionofgasesissubjecttothelatestVCSguidanceonthismatter,seetable4)ProjectyeartEmissionsofnon-CO2gassesfrombaselineforestfiresTotalbaselinenon-CO2emissionsfromforestfiresintheprojectareaIDicl=1IDicl=2IDicl=...IDicl=IclABSLPAicl,tEBBBSLtoticlABSLPAicl,tEBBBSLtoticlABSLPAicl,tEBBBSLtoticlABSLPAicl,tEBBBSLtoticlannualcumulativeEBBBSLPAtEBBBSLPAhatCO2-eha-1hatCO2-eha-1hatCO2-eha-1hatCO2-eha-1tCO2-etCO2-e012...TSTEP7:EXANTEESTIMATIONOFACTUALCARBONSTOCKCHANGESAND7NON-CO2EMISSIONSINTHEPROJECTAREAThegoalofthisstepistoprovideanexanteestimateoffuturecarbonstockchangesandnon-CO2emissionsfromforestfiresundertheprojectscenario(“actual”).SinceactualcarbonstockchangesandGHGemissionswillbesubjecttoMRV-A,therationaleofestimatingthematthebeginningofafixedbaselineperiodistoassistinguidingoptimalimplementationofemissionreductionmeasures,andtoallowreasonableprojectionsofrevenuetobemade.7.1ExanteestimationofactualcarbonstockchangesTheseareduetothefollowing:7.1.1Plannedactivitieswithintheprojectarea.7.1.2Unplanneddeforestationthatcannotbeavoided.Carbonstockchangesduetopossiblefuturecatastrophiceventscannotbepredictedandarethereforeexcludedfromtheexanteassessment.7.1.1ExanteestimationofactualcarbonstockchangesduetoplannedactivitiesItispossiblethatcertaindiscreteareasofforestwithintheprojectareawillbesubjecttoprojectactivitiesthatwillchangethecarbonstocksoftheseareascomparedtothebaseline.Suchactivitiesare:a)Planneddeforestation(e.g.tobuildprojectinfrastructure);b)Planneddegradation(e.g.timberlogging,fuel-woodcollectionorcharcoalproduction);c)Protectionwithoutharvestingleadingtocarbonsequestrationinforestclassesthatatprojectstartarebelowtheircarbonstockpotentialatmaturityinsitu.VM0015,Version1.1SectoralScope15Page85Iftheprojectactivitygeneratesasignificantdecreaseincarbonstocksduringthefixedbaselineperiod,thecarbonstockchangemustbeestimatedexanteandmeasuredexpost.Ifthedecreaseisnotsignificant,itmustnotbeaccounted,andexpostmonitoringwillnotberequired.Iftheprojectactivitygeneratesanincreaseincarbonstocks,ignoringthecarbonstockchangeisconservative.However,iftheprojectproponentwishestobecreditedforcarbonstockincreasesonareasprojectedtobedeforestedinthebaselinecase,expostmonitoringofthecarbonstockincreaseismandatory42.Changesincarbonstocksthatarenotattributabletotheprojectactivitycannotbeaccounted.Mandatoryaccountingofsignificantcarbonstockdecreases:WheretheAUDprojectactivityincludesplanneddeforestation,harvestingoftimber43,fuel-woodcollectionorcharcoalproductionabovethebaselinecasedothefollowing:a)Identifytheforestareas(polygons)withintheprojectareathatwillbesubjecttoplanneddeforestationandplanneddegradationactivities(logging,fuel-woodcollectionorcharcoalproduction)duringtheprojectcreditingperiod.b)Preparemapsshowingtheannuallocationsoftheplannedactivities.c)Identifytheforestclassesthatarelocatedwithinthesepolygons.d)Defineactivitydata(annualareas)foreachforestclass,accordingtotheplannedinterventionsandtypesofintervention.e)Estimatetheimpactoftheplannedactivitiesoncarbonstocksasfollows:Planneddeforestation:Conservativelyassumethat100%ofthecarbonstockswillbelostattheyearoftheplanneddeforestation.Areassubjecttoplannedlogging,fuel-woodcollectionorcharcoalproductionabovethebaselinecase:Conservativelyassumethatthecarbonstockoftheseareaswillbethelowestoftheproductioncycleaccordingtotheplannedlevelsofextraction.f)SummarizetheresultofthepreviousassessmentsandcalculationsinTables25.a–25.d.Tables25.band25.ccanonlybefilledoutexpostanddonotneedtobefilledoutexante(i.e.theirexantevaluesare0).Thesetablesareforunpredictablecarbonstockdecreasesthatmayhavetobemeasuredandreportedexpostduetouncontrolledforestfiresandothercatastrophiceventsthatmayoccurwithintheprojectareaduringprojectimplementation.42Ifanareaisnotprojectedtobedeforested,carbonstockincreaseintheprojectscenariocannotbeaccountedinthismethodology,astheprojectcategorywouldbeIFMandnotAUD.43Ignoringthecarbonstocksinthelong-livedwoodproductsisconservativeundertheprojectscenario.VM0015,Version1.1SectoralScope15Page86Table25.a.ExanteestimatedactualcarbonstockdecreaseduetoplanneddeforestationintheprojectareaProjectyeartAreasofplanneddeforestationxCarbonstockchange(decrease)intheprojectareaTotalcarbonstockdecreaseduetoplanneddeforestationIDcl=1IDcl=2IDcl=...IDcl=IclannualcumulativeAPDPAicl,tCtoticl,tAPDPAicl,tCtoticl,tAPDPAicl,tCtoticl,tAPDPAicl,tCtoticl,tCPDdPAtCPDdPAhatCO2-eha-1hatCO2-eha-1hatCO2-eha-1hatCO2-eha-1tCO2-etCO2-e012...TTable25.b.ExanteestimatedactualcarbonstockdecreaseduetoplannedloggingactivitiesintheprojectareaProjectyeartAreasofplannedloggingactivitiesxCarbonstockchange(decrease)intheprojectareaTotalcarbonstockdecreaseduetoplannedloggingactivitiesIDcl=1IDcl=2IDcl=...IDcl=IclannualcumulativeAPLPAicl,tCtoticl,tAPLPAicl,tCtoticl,tAPLPAicl,tCtoticl,tAPLPAicl,tCtoticl,tCPLdPAtCPLdPAhatCO2-eha-1hatCO2-eha-1hatCO2-eha-1hatCO2-eha-1tCO2-etCO2-e012...TVM0015,Version1.1SectoralScope15Page87Table25.c.ExanteestimatedactualcarbonstockdecreaseduetoplannedfuelwoodcollectionandcharcoalproductionintheprojectareaProjectyeartAreasofplannedfuel-wood&charcoalactivitiesxCarbonstockchange(decrease)intheprojectareasTotalcarbonstockdecreaseduetoplannedfuel-woodandcharcoalactivitiesIDcl=1IDcl=2IDcl=...IDcl=IclannualcumulativeAPFPAicl,tCtoticl,tAPFPAicl,tCtoticl,tAPFPAicl,tCtoticl,tAPFPAicl,tCtoticl,tCPFdPAtCPFdPAhatCO2-eha-1hatCO2-eha-1hatCO2-eha-1hatCO2-eha-1tCO2-etCO2-e012...TTable25.d.TotalexantecarbonstockdecreaseduetoplannedactivitiesintheprojectareaProjectyeartTotalcarbonstockdecreaseduetoplanneddeforestationTotalcarbonstockdecreaseduetoplannedloggingactivitiesTotalcarbonstockdecreaseduetoplannedfuel-woodandcharcoalactivitiesTotalcarbonstockdecreaseduetoplannedactivitiesannualcumulativeannualcumulativeannualcumulativeannualcumulativeCPDdPAtCPDdPACPLdPAtCPLdPACPFdPAtCPFdPACPAdPAtCPAdPAtCO2-etCO2-etCO2-etCO2-etCO2-etCO2-etCO2-etCO2-e012...TOptionalaccountingofsignificantcarbonstockincreaseConsiderationofcarbonstockincreaseduetoplannedactivitiesinareasthatwouldbedeforestedinthebaselinecaseisoptionalinthismethodologyandcanalwaysbeomitted.However,iftheprojectareaincludesdegradedandsecondaryforeststhatinthebaselinecasewouldbedeforestedandduetotheprojectactivitytheseareaswillrecoverandsequesteradditionalcarbon,creditsfortheincreasedcarbonstockscanbeclaimed.Inthecase,dothefollowing:a)Identifywithintheprojectareathepolygonsthatareatthesametimeprojectedtobedeforestedinthebaselinecaseandthatarecurrentlycoveredbysecondaryforestsordegradedforeststhathavethepotentialtogrowandaccumulatesignificantcarbonstocks;VM0015,Version1.1SectoralScope15Page88b)Identifyalsothepolygonsrepresentingareasofforeststhatwillbesubjecttoplannedlogging,fuel-woodcollectionandcharcoalproductionactivitiesundertheprojectscenarioandthathavethepotentialtogrowandaccumulatesignificantcarbonstocksaftertheperiodicalharvestcycle;c)Preparemapsshowingtheannuallocationsofthepolygonsidentifiedabove;d)Identifytheforestclassesexistinginthepolygonsidentifiedabove;e)Calculateactivitydata(annualareas)foreachforestclassinthepolygonsidentifiedabove;f)Foreachforestclasswithinthepolygons,developconservativegrowthprojectionsusingfielddata(measurementsinplotsofdifferentages),literature,existingdatabasesandothercredibleandverifiablesourcesofinformation;g)Calculatetheprojectedincreaseincarbonstocksofeachclass.Iftheclassissubjecttoperiodicalharvestingintheprojectcase,assumethatthemaximumcarbonstockisthelongtermaveragecarbonstock(theaverageofaproductioncycle).Onceaclassreachesthislevelofcarbonstock,donotallowanymorecarbonstockincreaseintheprojections;andh)SummarizetheresultofthepreviousassessmentsandcalculationsinTables26.a–26.d.Tables26.band26.ccanonlybefilledoutexpostanddonotneedtobefilledoutexante(i.e.theirexantevaluesare0).Thesetablesareforunpredictablecarbonstockincreasesthatmayhavetobemeasuredandreportedexpostduetoforestregenerationonareasaffectedbyforestfiresandcatastrophicevents.Table26.a.ExanteestimatedcarbonstockincreaseduetoplannedprotectionwithoutharvestintheprojectareaProjectyeartAreaofforestclassesgrowingwithoutharvestintheprojectcasexCarbonstockchange(increase)TotalcarbonstockincreaseduetogrowthwithoutharvestIDcl=1IDcl=2IDcl=...IDcl=IclannualcumulativeAPNiPAicl,tCtoticl,tAPNiPAicl,tCtoticl,tAPNiPAicl,tCtoticl,tAPNiPAicl,tCtoticl,tCPNiPAtCPNiPAhatCO2-eha-1hatCO2-eha-1hatCO2-eha-1hatCO2-eha-1tCO2-etCO2-e012...TVM0015,Version1.1SectoralScope15Page89Table26.b.ExanteestimatedcarbonstockincreasefollowingplannedloggingactivitiesintheprojectareaProjectyeartAreasofplannedloggingactivitiesxCarbonstockchange(increaseuptomaximumlong-termaverage)TotalcarbonstockincreaseduetoplannedloggingactivitiesIDcl=1IDcl=2IDcl=...IDcl=IclannualcumulativeAPLPAicl,tCtoticl,tAPLPAicl,tCtoticl,tAPLPAicl,tCtoticl,tAPLPAicl,tCtoticl,tCPLiPAtCPLiPAhatCO2-eha-1hatCO2-eha-1hatCO2-eha-1hatCO2-eha-1tCO2-etCO2-e012...TTable26.c.Exanteestimatedcarbonstockincreasefollowingplannedfuel-woodandcharcoalactivitiesintheprojectareaProjectyeartAreasofplannedfuel-woodandcharcoalactivitiesxCarbonstockchange(increaseuptomaximumlong-termaverage)Totalcarbonstockincreaseduetoplannedfuel-woodandcharcoalactivitiesIDcl=1IDcl=2IDcl=...IDcl=IclannualcumulativeAPFPAicl,tCtoticl,tAPFPAicl,tCtoticl,tAPFPAicl,tCtoticl,tAPFPAicl,tCtoticl,tCPFiPAtCPFiPAhatCO2-eha-1hatCO2-eha-1hatCO2-eha-1hatCO2-eha-1tCO2-etCO2-e012...TVM0015,Version1.1SectoralScope15Page90Table26.d.TotalexanteestimatedcarbonstockincreaseduetoplannedactivitiesintheprojectareaProjectyeartTotalcarbonstockincreaseduetogrowthwithoutharvestTotalcarbonstockincreaseduetoplannedloggingactivitiesTotalcarbonstockincreaseduetoplannedfuel-woodandcharcoalactivitiesTotalcarbonstockincreaseduetoplannedactivitiesannualcumulativeannualcumulativeannualcumulativeannualcumulativeCPNiPAtCPNiPACPLiPAtCPLiPACPFiPAtCPFiPACPAiPAtCPAiPAtCO2-etCO2-etCO2-etCO2-etCO2-etCO2-etCO2-etCO2-e012...T7.1.2ExanteestimationofcarbonstockchangesduetounavoidableunplanneddeforestationwithintheprojectareaSomeunplanneddeforestationmayhappenintheprojectareadespitetheAUDprojectactivity.Thelevelatwhichdeforestationwillactuallybereducedintheprojectcasedependsontheeffectivenessoftheproposedactivities,whichcannotbemeasuredexante.Expostmeasurementsoftheprojectresultswillbeimportanttodetermineactualemissionreductions.Toallowexanteprojectionstobemade,theprojectproponentshallmakeaconservativeassumptionabouttheeffectivenessoftheproposedprojectactivitiesandestimateanEffectivenessIndex(EI)between0(noeffectiveness)and1(maximumeffectiveness).TheestimatedvalueofEIisusedtomultiplythebaselineprojectionsbythefactor(1-EI)andtheresultshallbeconsideredtheexanteestimatedemissionsfromunplanneddeforestationintheprojectcase.CUDdPAt=CBSLt(1-EI)(16)Where:CUDdPAtTotalexanteactualcarbonstockchangeduetounavoidedunplanneddeforestationatyeartintheprojectarea;tCO2-eCBSLtTotalbaselinecarbonstockchangeatyeartintheprojectarea;tCO2-eEIExanteestimatedEffectivenessIndex;%t1,2,3…T,ayearoftheproposedprojectcreditingperiod;dimensionless7.1.3ExanteestimatednetactualcarbonstockchangesintheprojectareaSummarizetheresultofthepreviousassessmentsintable27.VM0015,Version1.1SectoralScope15Page91Table27.ExanteestimatednetcarbonstockchangeintheprojectareaundertheprojectscenarioProjectyeartTotalcarbonstockdecreaseduetoplannedactivitiesTotalcarbonstockincreaseduetoplannedactivitiesTotalcarbonstockdecreaseduetounavoidedunplanneddeforestationTotalcarbonstockchangeintheprojectcaseannualcumulativeannualcumulativeannualcumulativeannualcumulativeCPAdPAtCPAdPACPAiPAtCPAiPACUDdPAtCUDdPACPSPAtCPSPAtCO2-etCO2-etCO2-etCO2-etCO2-etCO2-etCO2-etCO2-e012...T7.2Exanteestimationofactualnon-CO2emissionsfromforestfiresWhereforestfireshavebeenincludedinthebaselinescenario,non-CO2emissionsfrombiomassburningmustbeincludedintheprojectscenario.Thisisdonebymultiplyingthebaselineemissionsbythefactor(1–EI).Theresultsarepresentedintable28.EBBPSPAt=EBBBSPAt(1-EI)(17)Where:EBBPSPAtTotalexanteactualnon-CO2emissionsfromforestfireduetounavoidedunplanneddeforestationatyeartintheprojectarea;tCO2-eEBBBSPAtTotalnon-CO2emissionsfromforestfireatyeartintheprojectarea;tCO2-eEIExanteestimatedEffectivenessIndex;%t1,2,3…T,ayearoftheproposedprojectcreditingperiod;dimensionlessVM0015,Version1.1SectoralScope15Page92Table28.Totalexanteestimatedactualemissionsofnon-CO2gassesduetoforestfiresintheprojectareaProjectyeartTotalexanteestimatedactualnon-CO2emissionsfromforestfiresintheProjectareaEBBPSPAtEBBPSPAannualcumulativetCO2-etCO2-e012...T7.3TotalexanteestimationsfortheprojectareaTable29.Totalexanteestimatedactualnetcarbonstockchangesandemissionsofnon-CO2gassesintheprojectareaProjectyeartTotalexantecarbonstockdecreaseduetoplannedactivitiesTotalexantecarbonstockincreaseduetoplannedactivitiesTotalexantecarbonstockdecreaseduetounavoidedunplanneddeforestationTotalexantenetcarbonstockchangeTotalexanteestimatedactualnon-CO2emissionsfromforestfiresintheprojectareaannualcumulativeannualcumulativeannualcumulativeannualcumulativeannualcumulativeCPAdPAtCPAdPACPAiPAtCPAiPACUDdPAtCUDdPACPSPAtCPSPAEBBPSPAtEBBPSPAtCO2-etCO2-etCO2-etCO2-etCO2-etCO2-etCO2-etCO2-etCO2-etCO2-e012...TSTEP8:EXANTEESTIMATIONOFLEAKAGE8ThegoalofthisstepistoprovideanexanteestimateofthepossibledecreaseincarbonstockandincreaseinGHGemissions(otherthancarbonstockchange)duetoleakage.Therationaleforestimatingleakageexanteistoassistinguidingthedesignofoptimalleakagepreventionmeasures,identifysourcesofleakagethatarepotentiallysignificant,andthereforesubjecttoMRV,andtoallowmakingreasonableprojectionsofcarbonandotherprojectrevenues.Twosourcesofleakageareconsideredinthismethodologyandmustbeaddressed:VM0015,Version1.1SectoralScope15Page938.1DecreaseincarbonstocksandincreaseinGHGemissionsassociatedwithleakagepreventionmeasures;8.2DecreaseincarbonstocksandincreaseinGHGemissionsassociatedwithactivitydisplacementleakage.8.1ExanteestimationofthedecreaseincarbonstocksandincreaseinGHGemissionsduetoleakagepreventionmeasuresToreducetheriskofactivitydisplacementleakage,baselinedeforestationagentsshouldbegiventheopportunitytoparticipateinactivitieswithintheprojectareaandinspeciallydesignatedleakagemanagementareas(outsidetheprojectarea)thattogetherwillreplacebaselineincome,productgenerationandlivelihoodoftheagentsasmuchaspossible,sothatdeforestationwillbereducedandtheriskofdisplacementminimized.Ifleakagepreventionmeasuresincludetreeplanting,agriculturalintensification,fertilization,fodderproductionand/orothermeasurestoenhancecroplandandgrazinglandareas,areductionincarbonstocksand/oranincreaseinGHGemissionsmayoccurcomparedtothebaselinecase.IfsuchdecreaseincarbonstockorincreaseinGHGemissionissignificant,itmustbeaccountedandmonitoringwillberequired.Ifitisnotsignificant,itmustnotbeaccountedandexpostmonitoringwillnotbenecessary.IfleakagepreventionactivitiesareassociatedtootherVCSorUNFCCCregistered(andVCSendorsed)projectactivities,changesincarbonstocksandGHGemissionsthatarealreadysubjecttoMRVinsuchotherregisteredprojectactivitiesmustnotbeestimatedandaccountedtoavoiddouble-counting.ThefollowingactivitiesinleakagemanagementareascouldoccasionadecreaseincarbonstocksoranincreaseinGHGemissions:8.1.1Carbonstockchangesduetoactivitiesimplementedinleakagemanagementareas;8.1.2Methane(CH4)andnitrousoxide(N2O)emissionsfromlivestockintensification(involvingachangeintheanimaldietand/oranimalnumbers).Notethatnitrousoxide(N2O)emissionsfromnitrogenfertilizationareconsideredalwaysinsignificantaccordingtothemostrecentversionoftheVCSStandard.ConsumptionoffossilfuelsisconsideredalwaysinsignificantinAUDprojectactivitiesandmustnotbeconsidered.8.1.1CarbonstockchangesduetoactivitiesimplementedinleakagemanagementareasLeakagepreventionactivitiesgeneratingadecreaseincarbonstocksshouldbeavoided,butifsuchactivitiesarenecessarythedecreaseincarbonstockassociatedtotheleakagepreventionactivitymustbeestimatedexanteandaccounted,ifsignificant.Toestimatecarbonstockchangesinleakagemanagementareasdothefollowing:a)PreparealistoftheplannedleakagepreventionactivitiesandbrieflydescribeeachoftheminthePD;b)Prepareamapoftheplannedleakagepreventionactivitiesshowingannualareasofinterventionandtypeofintervention;c)Identifytheareaswhereleakagepreventionactivitieswillimpactoncarbonstocks;VM0015,Version1.1SectoralScope15Page94d)Identifythenon-forestclasses44existingwithintheseareasinthebaselinecase;e)Measurethecarbonstocksintheidentifiedclassesoruseconservativeliteratureestimatesforeachoftheidentifiedclasses.Ifsomeclasseshavechangingcarbonstocksinthebaseline,docarbonstockprojectionsusinggrowthsdataandotherrelevantandverifiablesourcesofinformation;f)Reportintable30.atheprojectedbaselinecarbonstockchangesintheleakagemanagementareas;g)Accordingtotheplannedinterventions,estimatetheprojectedcarbonstocksintheleakagemanagementareasundertheprojectscenario.Useconservativegrowthprojections.Reporttheresultintable30.b;andh)Calculatethenetcarbonstockchangesthattheplannedleakagepreventionmeasuresareexpectedtooccasionduringthefixedbaselineperiodand,optionally,theprojectcreditingperiod.Reporttheresultsofthecalculationsintable30.cIfthenetsumofcarbonstockchangeswithinamonitoringperiodismorethanzero,leakagepreventionmeasuresarenotcausinganycarbonstockdecrease.ThenetincreaseshallconservativelybeignoredinthecalculationofnetGHGemissionreductionsoftheprojectactivity.Ifthenetsumisnegative,determinethesignificanceusingthemostrecentversionoftheEB-CDMapproved“ToolfortestingsignificanceofGHGemissionsinA/RCDMprojectactivities”.Ifthedecreaseissignificant,itmustbeaccountedintheexanteestimationofleakageandcarbonstockchangesinthelandunitswhereleakagepreventionmeasuresareimplementedwillbesubjecttoMRV.Ifthedecreaseisnotsignificant,itmustnotbeaccountedandcarbonstockchangeswillnotbesubjecttoMRV.44Forestclassescannotbepresentinleakagemanagementareasattheprojectstartdate(seesection1.1.4).VM0015,Version1.1SectoralScope15Page95Table30.a.ExanteestimatedcarbonstockchangeinleakagemanagementareasinthebaselinecaseProjectyeartCarbonstockchangesinleakagemanagementareasinthebaselinecaseTotalcarbonstockchangeinthebaselinecaseIDicl=1IDicl=2IDicl=...IDicl=IclannualcumulativeABSLLKicl,tCtoticl,tABSLLKicl,tCtoticl,tABSLLKicl,tCtoticl,tABSLLKicl,tCtoticl,tCBSLLKtCBSLLKhatCO2-eha-1hatCO2-eha-1hatCO2-eha-1hatCO2-eha-1tCO2-etCO2-e012...TTable30.b.ExanteestimatedcarbonstockchangeinleakagemanagementareasintheprojectcaseProjectyeartCarbonstockchangesinleakagemanagementareasintheprojectcaseTotalcarbonstockchangeintheprojectcaseIDfcl=1IDfcl=2IDfcl=...IDfcl=FclannualcumulativeAPSLKfcl,tCtotfcl,tAPSLKfcl,tCtotfcl,tAPSLKfcl,tCtotfcl,tAPSLKfcl,tCtotfcl,tCPSLKtCPSLKhatCO2-eha-1hatCO2-eha-1hatCO2-eha-1hatCO2-eha-1tCO2-etCO2-e012...TVM0015,Version1.1SectoralScope15Page96Table30.c.ExanteestimatednetcarbonstockchangeinleakagemanagementareasProjectyeartTotalcarbonstockchangeinthebaselinecaseTotalcarbonstockchangeintheprojectcaseNetcarbonstockchangeduetoleakagepreventionmeasuresannualcumulativeannualcumulativeannualcumulativeCBSLLKtCBSLLKCPSLKtCPSLKCLPMLKtCLPMLKtCO2-etCO2-etCO2-etCO2-etCO2-etCO2-e012...T8.1.2ExanteestimationofCH4andN2OemissionsfromgrazinganimalsToestimatetheincreaseinemissionsofmethane(CH4)andnitrousoxide(N2O)fromgrazinganimalsinleakagemanagementareasdothefollowing:a)Specifytheannualareasthatwillhavegrazingactivitiesintheleakagemanagementareas;b)Brieflydescribethetypesofanimal,forageandmanuremanagement.Usetable31toreportthekeyparametersrequiredtoperformthecalculationofGHGemissions;c)Determinethenumberofanimalsinthebaselinecaseandundertheprojectscenariobasedonavailableareasandforage.ThedifferencemustbeconsideredforthecalculationoftheincreaseinGHGemissions;andd)Methodstoestimateemissionsfromentericfermentationandmanuremanagementaregiveninappendix4.Performthefinalcalculationsusingequation18andreporttheresultsintable32.TheGHGemissionsareestimatedasfollows:Where:EgLKtEmissionsfromgrazinganimalsinleakagemanagementareasatyeart;tCO2-eyr-1ECH4fermtCH4emissionsfromentericfermentationinleakagemanagementareasatyeart;tCO2-eyr-1ECH4mantCH4emissionsfrommanuremanagementinleakagemanagementareasyeart;tCO2-eyr-1EN2OmantN2Oemissionsfrommanuremanagementinleakagemanagementareasatyeart;tCO2-eyr-1t1,2,3,…Tyearsoftheprojectcreditingperiod;dimensionlessVM0015,Version1.1SectoralScope15Page97Table31.ParametersusedfortheexanteestimationofGHGemissionsfromgrazingactivitiesParameterValueusedforcalculationsUnitDescriptionEF1kgCH4head-1yr-1EntericCH4emissionfactorforthelivestockgroupEF2kgCH4head-1yr-1ManuremanagementCH4emissionfactorforthelivestockgroupEF3kgN2O-N(kgN-1)head-1yr-1EmissionfactorforN2OemissionsfrommanuremanagementforthelivestockgroupEF4kgN2O-N(kgNH3-NandNOx-Nemitted)-1head-1yr-1EmissionfactorforN2Oemissionsfromatmosphericdepositionofforage-sourcednitrogenonsoilsandwatersurfacesDBIkgd.m.head-1day-1DailybiomassintakeNexkgNhead-1yr-1AnnualaverageNexcretionperlivestockheadFracgaskgNH3-NandNOx-Nemitted(KgN)-1FractionofmanagedlivestockmanurenitrogenthatvolatilizesasNH3andNOxinthemanuremanagementphaseVM0015,Version1.1SectoralScope14Page98Table32.ExanteestimationofleakageemissionsabovethebaselinefromgrazinganimalsinleakagemanagementareasProjectyeartannualcumulativeAforagetPforagetPopulationtECH4fermtECH4mantEdirN20mantEidN20mantEN2Oman,tEgLKtEgLKhakgd.m.yr-1NrheadstCO2-etCO2-etCO2-etCO2-etCO2-etCO2-etCO2-e012…TVM0015,Version1.1SectoralScope15Page998.1.3TotalexanteestimatedcarbonstockchangesandincreasesinGHGemissionsduetoleakagepreventionmeasuresSummarizetheresultsofthepreviousestimationsintable33,whereonlysignificantsourcesmustbereported.Table33.ExanteestimatedtotalemissionsabovethebaselinefromleakagepreventionactivitiesProjectyeartCarbonstockdecreaseduetoleakagepreventionmeasuresTotalexanteGHGemissionsfromincreasedgrazingactivitiesTotalexanteincreaseinGHGemissionsduetoleakagepreventionmeasuresannualcumulativeannualcumulativeannualcumulativeCLPMLKtCLPMLKEgLKtEgLKELPMLKtELPMLKtCO2-etCO2-etCO2-etCO2-etCO2-etCO2-e012…T8.2ExanteestimationofthedecreaseincarbonstocksandincreaseinGHGemissionsduetoactivitydisplacementleakageActivitiesthatwillcausedeforestationwithintheprojectareainthebaselinecasecouldbedisplacedoutsidetheprojectboundaryduetotheimplementationoftheAUDprojectactivity.Ifcarbonstocksintheleakagebeltareawilldecreasemoreduringprojectimplementationthanprojectedinthebaselinecase,thiswillbeanindicationthatleakageduetodisplacementofbaselineactivitieshasoccurred.Leakageduetoactivitydisplacementcanthusbeestimatedbyexpostmonitoringofdeforestationintheleakagebeltandcomparingexpostobserveddeforestationwithexanteprojectedbaselinedeforestation.Abaselinefortheleakagebeltisthereforenecessaryandmethodstoestablishthisbaselineweredescribedinsection6.1.2and6.1.3.Dotheexantebaselineassessmentoftheleakagebeltandreporttheresultintables21.c(ifMethod1isused)or22.c(ifMethod2isused):However,exante,activitydisplacementleakagecanonlybeguessedbasedontheanticipatedcombinedeffectivenessoftheproposedleakagepreventionmeasuresandprojectactivities.VM0015,Version1.1SectoralScope15Page100Thisshallbedonebymultiplyingtheestimatedbaselinecarbonstockchangesfortheprojectareabya“DisplacementLeakageFactor”(DLF)representingthepercentofdeforestationexpectedtobedisplacedoutsidetheprojectboundary45.Ifemissionsfromforestfireshavebeenincludedinthebaseline,theexanteemissionsfromforestfiresduetoactivitydisplacementleakagewillbecalculatedbymultiplyingbaselineforestfireemissionsintheprojectareabythesameDLFusedtoestimatethedecreaseincarbonstocks.Reporttheexanteestimatedleakageduetoactivitydisplacementintable34.Table34.ExanteestimatedleakageduetoactivitydisplacementProjectyeartTotalexanteestimateddecreaseincarbonstocksduetodisplaceddeforestationTotalexanteestimatedincreaseinGHGemissionsduetodisplacedforestfiresannualcumulativeannualcumulativeCADLKtCADLKEADLKtEADLKtCO2-etCO2-etCO2-etCO2-e012...T45Ifdeforestationagentsdonotparticipateinleakagepreventionactivitiesandprojectactivities,theDisplacementFactorshallbe100%.Whereleakagepreventionactivitiesareimplementedthefactorshallbeequaltotheproportionofthebaselineagentsestimatedtobegiventheopportunitytoparticipateinleakagepreventionactivitiesandprojectactivities.VM0015,Version1.1SectoralScope15Page1018.3ExanteestimationoftotalleakageSummarizetheresultallsourcesofleakageintable35.Table35.ExanteestimatedtotalleakageProjectyeartTotalexanteGHGemissionsfromincreasedgrazingactivitiesTotalexanteincreaseinGHGemissionsduetodisplacedforestfiresTotalexantedecreaseincarbonstocksduetodisplaceddeforestationCarbonstockdecreaseduetoleakagepreventionmeasuresTotalnetcarbonstockchangeduetoleakageTotalnetincreaseinemissionsduetoleakageannualcumulativeannualcumulativeannualcumulativeannualcumulativeannualcumulativeannualcumulativeEgLKtEgLKEADLKtEADLKCADLKtCADLKCLPMLKtCLPMLKCLKtCLKELKtELKtCO2-etCO2-etCO2-etCO2-etCO2-etCO2-etCO2-etCO2-etCO2-etCO2-etCO2-etCO2-e012...TVM0015,Version1.1SectoralScope15Page102STEP9:EXANTETOTALNETANTHROPOGENICGHGEMISSIONREDUCTIONS99.1SignificanceassessmentAllcarbonpoolsandsourcesofGHGemissionsconsideredinthismethodologymustbecalculatedtoassesstheirsignificance.UsethelatestEB-CDMapproved“ToolfortestingsignificanceofGHGemissionsinA/RCDMprojectactivities”todeterminethesignificanceofeachoftheexantecalculatedcarbonstockchangesandGHGemissions.ReporttheresultoftheanalysisinthePD.OnlysignificantsourcesandpoolsneedtobeaccountedinthecalculationofnetanthropogenicGHGemissionreductions(step9.2)andonlysignificantsourcesandpoolsmustbeconsideredinthemonitoringplan.9.2Calculationofex-anteestimationoftotalnetGHGemissionsreductionsThenetanthropogenicGHGemissionreductionoftheproposedAUDprojectactivityiscalculatedasfollows:REDDt=(CBSLPAt+EBBBSLPAt)–(CPSPAt+EBBPSPAt)–(CLKt+ELKt)(19)Where:REDDtExanteestimatednetanthropogenicgreenhousegasemissionreductionattributabletotheAUDprojectactivityatyeart;tCO2eCBSLPAtSumofbaselinecarbonstockchangesintheprojectareaatyeart;tCO2eNote:TheabsolutevaluesofCBSLPAtshallbeusedinequation19.EBBBSLPAtSumofbaselineemissionsfrombiomassburningintheprojectareaatyeart;tCO2eCPSPAtSumofexanteestimatedactualcarbonstockchangesintheprojectareaatyeart;tCO2eNote:IfCPSPAtrepresentsanetincreaseincarbonstocks,anegativesignbeforetheabsolutevalueofCPSPAtshallbeused.IfCPSPAtrepresentsanetdecrease,thepositivesignshallbeused.EBBPSPAtSumof(exanteestimated)actualemissionsfrombiomassburningintheprojectareaatyeart;tCO2eCLKtSumofexanteestimatedleakagenetcarbonstockchangesatyeart;tCO2eNote:IfthecumulativesumofCLKtwithinafixedbaselineperiodis>0,CLKtshallbesettozero.ELKtSumofexanteestimatedleakageemissionsatyeart;tCO2et1,2,3…T,ayearoftheproposedprojectcreditingperiod;dimensionless9.3Calculationofex-anteVerifiedCarbonUnits(VCUs)ThenumberofVerifiedCarbonUnits(VCUs)tobegeneratedthroughtheproposedAUDprojectactivityatyeartiscalculatedasfollows:VM0015,Version1.1SectoralScope15Page103VCUt=REDDt–VBCt(20)VBCt=(CBSLPAt-CPSPAt)RFt(21)Where:VCUtNumberofVerifiedCarbonUnitsthatcanbetradedattimet;tCO2-eNote:IfVCUt<0nocredits(VCUs)willbeawardedtotheproponentsoftheAUDprojectactivity.VCUscanonlybegrantedifthefollowingconditionismet:∑(22)REDDtExanteestimatednetanthropogenicgreenhousegasemissionreductionattributabletotheAUDprojectactivityatyeart;tCO2-eha-1VBCtNumberofBufferCreditsdepositedintheVCSBufferattimet;tCO2-eCBSLPAtSumofbaselinecarbonstockchangesintheprojectareaatyeart;tCO2eCPSPAtSumofexanteestimatedactualcarbonstockchangesintheprojectareaatyeart;tCO2-eha-1RFtRiskfactorusedtocalculateVCSbuffercredits;%Note:RFtisariskfactortobedeterminedusingthelatestversionoftheVCS-approvedAFOLUNon-PermanenceRiskTool.t1,2,3…T,ayearoftheproposedprojectcreditingperiod;dimensionlessSeealsothelatestversionoftheRegistrationandIssuanceProcessdocumentforinformationonthissubjectmatter46.Presenttheresultofthecalculationsintable36.46Availableat:http://www.v-c-s.orgVM0015,Version1.1SectoralScope14Page104Table36.ExanteestimatednetanthropogenicGHGemissionreductions(REDDt)andVerifiedCarbonUnits(VCUt)ProjectyeartBaselinecarbonstockchangesBaselineGHGemissionsExanteprojectcarbonstockchangesExanteprojectGHGemissionsExanteleakagecarbonstockchangesExanteleakageGHGemissionsExantenetanthropogenicGHGemissionreductionsExanteVCUstradableExantebuffercreditsannualcumulativeannualcumulativeannualcumulativeannualcumulativeannualcumulativeannualcumulativeannualcumulativeannualcumulativeannualcumulativeCBSLPAtCBSLPAEBBBSLPAtEBBBSLPACPSPAtCPSPAEBBPSPAtEBBPSPACLKtCLKELKtELKREDDtREDDVCUtVCUVBCtVBCtCO2-etCO2-etCO2-etCO2-etCO2-etCO2-etCO2-etCO2-etCO2-etCO2-etCO2-etCO2-etCO2-etCO2-etCO2-etCO2-etCO2-etCO2-e012...TVM0015,Version1.1SectoralScope15Page105PART3–METHODOLOGYFORMONITORINGANDRE-VALIDATIONOFTHEBASELINETheexpostmethodology(tobeimplementedimmediatelyafterprojectstart)includestwomaintasks:1)MonitoringofcarbonstockchangesandGHGemissionsforperiodicalverificationswithinthefixedbaselineperiod;and2)Monitoringofkeybaselineparametersforrevisitingthebaselineattheendofthefixedbaselineperiod.Appendix6providesanoverviewofthetablesthatshouldbepreparedtoreportmonitoringresults.TASK1:MONITORINGOFCARBONSTOCKCHANGESANDGHGEMISSIONS1FORPERIODICALVERIFICATIONSTherearethreemainmonitoringtasks:1.1MonitoringofactualcarbonstockchangesandGHGemissionswithintheprojectarea;1.2Monitoringofleakage;and1.3ExpostcalculationofnetanthropogenicGHGemissionreduction.PrepareaMonitoringPlandescribinghowthesetaskswillbeimplemented.Foreachtaskthemonitoringplanmustincludethefollowingsections:a)Technicaldescriptionofthemonitoringtasks.b)Datatobecollected(seeappendix5).c)Overviewofdatacollectionprocedures.d)Qualitycontrolandqualityassuranceprocedures.e)Dataarchiving.f)Organizationandresponsibilitiesofthepartiesinvolvedinalltheabove.Toallowatransparentcomparisonbetweenexanteandexpostestimates,usethesameformatsandtablespresentedinPart2ofthemethodologytoreporttheresultsofmonitoring.1.1MonitoringofactualcarbonstockchangesandGHGemissionswithintheprojectareaThistaskinvolves:1.1.1Monitoringofprojectimplementation;1.1.2Monitoringofland-useandland-coverchange;1.1.3Monitoringofcarbonstocksandnon-CO2emissions;and1.1.4Monitoringofimpactsofnaturaldisturbancesandothercatastrophicevents.VM0015,Version1.1SectoralScope15Page1061.1.1MonitoringofprojectimplementationProjectactivitiesimplementedwithintheprojectareashouldbeconsistentwiththemanagementplansoftheprojectareaandthePD.AllmapsandrecordsgeneratedduringprojectimplementationshouldbeconservedandmadeavailabletoVCSverifiersatverificationforinspectiontodemonstratethattheAUDprojectactivityhasactuallybeenimplemented.1.1.2Monitoringofland-useandland-coverchangewithintheprojectareaThecategoriesofchangesthatmaybesubjecttoMRVaresummarizedintable37.Table37.CategoriessubjecttoMRVIDTypeConditionsunderwhichmonitoringismandatoryExplanationsIAreaofforestlandconvertedtonon-forestland.MandatoryinallAUDprojectactivitiesIIAreaofforestlandundergoingcarbonstockdecrease.MandatoryonlyforAUDprojectactivitieshavingplannedlogging,fuel-woodcollectionandcharcoalproductionactivitiesabovethebaseline.Changeincarbonstockmustbesignificantaccordingtoexanteassessment,otherwisemonitoringisnotrequired.IIIAreaofforestlandundergoingcarbonstockincrease.MandatoryonlyforAUDprojectactivitieswishingtoclaimcarboncreditsforcarbonstockincrease.Increasemustbesignificantaccordingtoexanteassessmentandcanonlybeaccountedonareasthatwillbedeforestedinthebaselinecase.IftheprojectareaislocatedwithinaregionsubjecttoMRVbyajurisdictionalprogram,theMRVdatageneratedbythisprogrammustbeused.Similarly,iftheprojectareaislocatedwithinaregionthatissubjecttoamonitoringprogramthatisapprovedorsanctionedbythenationalorsub-nationalgovernment,thedatageneratedbysuchprogrammustbeused,unlesstheyarenotapplicableaccordingtothecriterialistedbelow:a)Monitoringoccursintheentireprojectareaand,iftheprojectmustmonitoraleakagebelt,intheleakagebelt.b)Ifdatafromtheexistingmonitoringprogramareusedtoperiodicallyrevisitthebaseline,monitoringmustoccurintheentirereferenceregionatleastatthebeginning,middleandendofthefixedbaselineperiod.c)AtleastcategoryI(table37)issubjecttomonitoring(conversionofforestlandtonon-forestland).d)Ittheprojectmustdoamonitoringofothercategories(IIand/orIII)andthesearenotincludedintheexistingprogram,theexistingprogramcanonlybeusedformonitoringcategoryI,andtheprojectproponentmustimplementaseparatemonitoringprogramforcategoryIIand/orIII.e)Monitoringwilloccurduringtheentirefixedbaselineperiod.VM0015,Version1.1SectoralScope15Page107f)MonitoringmethodsaretransparentlydocumentedandaresimilartothoseusedtodeterminethebaselineoftheAUDprojectactivity.g)MonitoringprotocolsanddatamustbeaccessibleforinspectionbyVCSaccreditedverifier.Ifnoexistingmonitoringprogramexistorcanbeused,monitoringmustbedonebytheprojectproponentoroutsourcedtoathirdpartyhavingsufficientcapacitiestoperformthemonitoringtasks.MethodsusedtomonitorLU/LCchangecategoriesandtoassessaccuracymustbesimilartothoseexplainedinpart2,step2.4andpart2,step2.5,respectively.Theresultsofmonitoringshallbereportedbycreatingexposttablesofactivitydataperstratum(Tables9.a,9.band9.c);perinitialforestclassicl(Tables11.a,11.band11.c);perpost-deforestationzonez(Tables13.a,13.band13.c)and,whereapplicable,percategoryofland-usechangect(Tables14.a,14.band14.c).orctz(Tables19.a,19.band19.c).1.1.3Monitoringofcarbonstockchangesandnon-CO2emissionsfromforestfiresMonitoringofcarbonstockchangesInmostcases,theexanteestimatedaveragecarbonstocksperLU/LCclass(orcarbonstockchangefactorsperLU/LCchangecategory)willnotchangeduringafixedbaselineperiodandmonitoringofcarbonstockswillnotbenecessary.However,monitoringofcarbonstocksismandatoryinthefollowingcases:Withintheprojectarea:a)Areassubjecttosignificantcarbonstockdecreaseintheprojectscenarioaccordingtotheexanteassessment.Thesewillbeareassubjecttocontrolleddeforestationandplannedharvestactivities,suchaslogging,fuelwoodcollectionandcharcoalproduction.Intheseareas,carbonstockchangesmustbeestimatedatleastonceaftereachharvestevent.b)Areassubjecttounplannedandsignificantcarbonstockdecrease,e.g.duetouncontrolledforestfiresandothercatastrophicevents.Intheseareas,carbonstocklossesmustbeestimatedassoonaspossibleafterthecatastrophicevent.Seesection1.1.4belowformoredetailedguidance.Withinleakagemanagementareas:a)Areassubjecttoplannedandsignificantcarbonstockdecreaseintheprojectscenarioaccordingtotheexanteassessment.Intheseareas,carbonstocksmustbeestimatedatleastonceaftertheplannedeventthatcausedthecarbonstockdecrease.Monitoringofcarbonstocksisoptionalinthefollowingcases:Withintheprojectarea:a)Areassubjecttocarbonstockincreaseafterplannedharvestactivities,suchaslogging,fuelwoodcollectionandcharcoalproduction.Intheseareas,thecarbonstockincreaseoccurringaftertheharvesteventcanbemeasuredandaccounted,whensignificant.b)Areasrecoveringafterdisturbances,suchunplannedforestfiresandothercatastrophicevents.Intheseareas,thecarbonstockincreaseoccurringafterthecatastrophiceventcanbemeasuredandaccounted,whensignificant.Seesection1.1.4belowformoredetailedguidance.Withinleakagemanagementareas:VM0015,Version1.1SectoralScope15Page108a)Areassubjecttocarbonstockincreaseduetoleakagepreventionmeasures.Intheseareas,thecarbonstockincreasecanbemeasuredandaccountedonlyuptotheamountnecessarytooffsetanycarbonstockdecreasecausedbyleakagepreventionmeasuresinotherleakagemanagementareasorinpreviousyears.Withintheleakagebelt:a)Areasundergoingsignificantchangesincarbonstockmaybemeasuredattheendofeachfixedbaselineperiodinordertoupdatecarbonstockinformationforthesubsequentperiod.Wherecarbonstocksaremonitored,themethodsonsamplingandmeasuringcarbonstocksdescribedinappendix3mustbeused.Someprojectproponentsmaywishtodoadditionalcarbonstockmeasurementsduringprojectimplementationtogainaccuracyandcredits.Ifnewandmoreaccuratecarbonstockdatabecomeavailable,thesecanbeusedtoestimatethenetanthropogenicGHGemissionreductionofthesubsequentfixedbaselineperiod.Forthecurrentfixedbaselineperiod,newdataoncarbonstockscanonlybeusediftheyarevalidatedbyanaccreditedVCSverifier.Ifnewdataareusedinthecurrentfixedbaselineperiod,thebaselinemustberecalculatedusingthenewdata.Theresultsofmonitoringactivitydataandcarbonstocksmustbereportedusingthesameformatsandtablesusedfortheexanteassessment:Table15ExpostcarbonstockperhectareofinitialforestclassesiclexistingintheprojectareaandleakagebeltTable16ExpostcarbonstockperhectareofinitialfinalclassesfclexistingintheprojectareaandleakagebeltTable25.aExpostcarbonstockdecreaseduetoplannedandunplanneddeforestationintheprojectarea.Table25.bExpostcarbonstockdecreaseduetoplannedloggingactivities.Table25.cExpostcarbonstockdecreaseduetoplannedfuel-woodandcharcoalactivities.Table25.dTotalexpostcarbonstockdecreaseduetoplannedactivitiesintheprojectarea.Table25.eExpostcarbonstockdecreaseduetoforestfires(seebelow).Table25.fExpostcarbonstockdecreaseduetocatastrophicevents(seebelowandsection1.1.4).Table25.gTotalexpostcarbonstockdecreaseduetoforestfiresandcatastrophicevents(seebelow)Table26.aExpostcarbonstockincreaseduetogrowthwithoutharvest.Table26.bExpostcarbonstockincreasefollowingplannedloggingactivities.Table26.cExpostcarbonstockincreasefollowingplannedfuel-woodandcharcoalactivities.Table26.dTotalexpostcarbonstockincreaseduetoplannedactivitiesintheprojectarea.Table26.eExpostcarbonstockincreaseonareasaffectedbyforestfires(seebelow).Table26.fExpostcarbonstockincreaseonareasaffectedbycatastrophicevents(seebelowandsection1.1.4).VM0015,Version1.1SectoralScope15Page109Table26.gExpostcarbonstockincreaseonareasrecoveringafterforestfiresandcatastrophicevents(seebelow).Table27Exposttotalnetcarbonstockchangeintheprojectarea(seebelow).Table25.eExpostactualcarbonstockdecreaseduetoforestfiresintheprojectareaProjectyeartAreasaffectedbyforestfiresxCarbonstockchange(decrease)TotalcarbonstockdecreaseduetoforestfiresIDcl=1IDcl=2IDcl=...IDcl=IclannualcumulativeAUFPAicl,tCtoticl,tAUFPAicl,tCtoticl,tAUFPAicl,tCtoticl,tAUFPAicl,tCtoticl,tCUFdPAtCUFdFAhatCO2-eha-1hatCO2-eha-1hatCO2-eha-1hatCO2-eha-1tCO2-etCO2-e012...TTable25.fExpostcarbonstockdecreaseduetocatastrophiceventsintheprojectareaProjectyeartAreasaffectedbycatastrophiceventsxCarbonstockchange(decrease)TotalcarbonstockdecreaseduetocatastrophiceventsIDcl=1IDcl=2IDcl=...IDcl=IclannualcumulativeACPAicl,tCtoticl,tACPAicl,tCtoticl,tACPAicl,tCtoticl,tACPAicl,tCtoticl,tCUCdPAtCUCdPAhatCO2-eha-1hatCO2-eha-1hatCO2-eha-1hatCO2-eha-1tCO2-etCO2-e012...TVM0015,Version1.1SectoralScope15Page110Table25.gTotalexpostcarbonstockdecreaseduetoforestfiresandcatastrophiceventsProjectyeartTotalcarbonstockdecreaseduetoforestfiresTotalcarbonstockdecreaseduetocatastrophiceventsTotalcarbonstockdecreaseduetoforestfiresandcatastrophiceventsannualcumulativeannualcumulativeannualcumulativeCUFdPAtCUFdPACUCdPAtCUCdPACFCdPAtCFCdPAtCO2-etCO2-etCO2-etCO2-etCO2-etCO2-e012...TTable26.eExpostactualcarbonstockincreaseonareasaffectedbyforestfiresintheprojectareaProjectyeartAreasaffectedbyforestfiresxCarbonstockchange(increase)TotalcarbonstockincreaseduetoforestfiresIDcl=1IDcl=2IDcl=...IDcl=IclannualcumulativeAUFPAicl,tCtoticl,tAUFPAicl,tCtoticl,tAUFPAicl,tCtoticl,tAUFPAicl,tCtoticl,tCUFiPAtCUFiPAhatCO2-eha-1hatCO2-eha-1hatCO2-eha-1hatCO2-eha-1tCO2-etCO2-e012...TVM0015,Version1.1SectoralScope15Page111Table26.fExpostcarbonstockincreaseonareasaffectedbycatastrophiceventsProjectyeartAreasaffectedbycatastrophiceventsxCarbonstockchange(increase)intheprojectareaTotalcarbonstockincreaseduetocatastrophiceventsIDcl=1IDcl=2IDcl=...IDcl=IclannualcumulativeACPAicl,tCtoticl,tACPAicl,tCtoticl,tACPAicl,tCtoticl,tACPAicl,tCtoticl,tCUCiPAtCUCiPAhatCO2-eha-1hatCO2-eha-1hatCO2-eha-1hatCO2-eha-1tCO2-etCO2-e012...TTable26.gTotalexpostcarbonstockincreaseonareasaffectedbyforestfiresandcatastrophiceventsProjectyeartTotalcarbonstockincreaseduetoforestfiresTotalcarbonstockincreaseduetocatastrophiceventsTotalcarbonstockincreaseduetoforestfiresandcatastrophiceventsannualcumulativeannualcumulativeannualcumulativeCUFiPAtCUFiPACUCiPAtCUCiPACFCiPAtCFCiPAtCO2-etCO2-etCO2-etCO2-etCO2-etCO2-e012...TVM0015,Version1.1SectoralScope15Page112Table27.ExpostestimatednetcarbonstockchangeintheprojectareaundertheprojectscenarioProjectyeartTotalcarbonstockdecreaseduetoplannedactivitiesTotalcarbonstockincreaseduetoplannedactivitiesTotalcarbonstockdecreaseduetofiresandcatastrophiceventsTotalcarbonstockincreaseduetofiresandcatastrophiceventsTotalexpostcarbonstockchangeintheprojectcaseannualcumulativeannualcumulativeannualcumulativeannualcumulativeannualcumulativeCPAdPAtCPAdPACPAiPAtCPAiPACFCdPAtCFCdPACFCiPAtCFCiPACPSPAtCPSPAtCO2-etCO2-etCO2-etCO2-etCO2-etCO2-etCO2-etCO2-etCO2-etCO2-e012...TMonitoringofnon-CO2emissionsfromforestfiresThesearesubjecttomonitoringandaccounting,whensignificant.Inthiscase,undertheprojectscenarioitwillbenecessarytomonitorthevariablesoftable23withintheprojectareaandtoreporttheresultsintable24.1.1.4MonitoringofimpactsofnaturaldisturbancesandothercatastrophiceventsDecreasesincarbonstocksandincreasesinGHGemissions(e.g.incaseofforestfires)duetonaturaldisturbances(suchashurricanes,earthquakes,volcaniceruptions,tsunamis,flooding,drought47,fires,tornadosorwinterstorms)orman-madeevents,includingthoseoverwhichtheprojectproponenthasnocontrol(suchasactsofterrorismorwar),aresubjecttomonitoringandmustbeaccountedundertheprojectscenario,whensignificant.Usetables25.e,25.fand25.gtoreportcarbonstockdecreasesand,optionally,tables26.e,26.fand26.gtoreportcarbonstockincreasesthatmayhappenonthedisturbedlandsaftertheoccurrenceofanevent.Usetables23and24toreportemissionsfromforestfires.Ifthearea(orasub-setofit)affectedbynaturaldisturbancesorman-madeeventsgeneratedVCUsinpastverifications,thetotalnetchangeincarbonstocksandGHGemissionsinthearea(s)thatgeneratedVCUsmustbeestimated,andanequivalentamountofVCUsmustbecancelledfromtheVCSbuffer.47Whenthe1997-1998ElNiñoepisodeprovokedseveredroughtsintheAmazonandIndonesia,largeareasoftropicalforestburned,releasing0.2to0.,4Gtofcarbontotheatmosphere(deMendonçaetal.,2004;Siegertetal.,2001;Pageetal.,2002).IfdroughtsbecomemoresevereinthefuturethroughmorefrequentandsevereelNiñoepisodes(TrenberthandHoar,1997;Timmermannetal.,1999),orthedryseasonbecomeslengthierduetodeforestation-inducedrainfallinhibition(Nobreetal.,1991;Silva-Diasetal.,2002)ortherearerainfallreductionsduetoclimatechange(Whiteetal.,1999;Coxetal.,2000),thensubstantialportionsofthe200Gtofcarbonstoredgloballyontropicalforesttreescouldbetransferredtotheatmosphereinthecomingdecades(Santillietal.,2005).VM0015,Version1.1SectoralScope15Page113NoVCUscanbeissuedtotheprojectuntilallcarbonstocklossesandincreasesinGHGemissionshavebeenoffset,i.e.untilthefollowingconditionissatisfied:∑(23)Where:REDDtExpostestimatednetanthropogenicgreenhousegasemissionreductionattributabletotheAUDprojectactivityatyeart;tCO2et1,2,3…T,ayearoftheproposedprojectcreditingperiod;dimensionless1.1.5TotalexpostestimatedactualnetcarbonstockchangesandGHGemissionsintheprojectareaSummarizetheresultsofallexpostestimationsintheprojectareausingthesametableformatusedfortheexanteassessment:Table29:TotalexpostestimatedactualnetchangesincarbonstocksandemissionsofGHGgasesintheprojectarea.1.2MonitoringofleakageMonitoringofleakagemaynotberequirediftheprojectareaislocatedwithinajurisdictionthatismonitoring,reporting,verifyingandaccountingGHGemissionsfromdeforestationunderaVCSorUNFCCCregistered(andVCSendorsed)program.Insuchcases,themostrecentVCSJNRRequirementsshallbeapplied.Inallothercircumstances,thesourcesofleakageidentifiedassignificantintheexanteassessmentaresubjecttomonitoring.Twosourcesofleakagearepotentiallysubjecttomonitoring:1.2.1DecreaseincarbonstocksandincreaseinGHGemissionsassociatedwithleakagepreventionactivities;1.2.2DecreaseincarbonstocksandincreaseinGHGemissionsinduetoactivitydisplacementleakage.1.2.1MonitoringofcarbonstockchangesandGHGemissionsassociatedtoleakagepreventionactivitiesMonitoringofthesourcesofemissionsassociatedwithleakagepreventionactivitiesmustfollowthemethodsandtoolsdescribedinpart2,step8.1ofthemethodology.Resultsmustbereportedusingthesameformatsandtablesusedintheexanteassessment:Table30.bExpostcarbonstockchangeinleakagemanagementareas.Table30.cExpostnetcarbonstockchangeinleakagemanagementareas48.48CalculationsoftotalnetcarbonstockchangesinLeakageManagementAreasusetheexanteestimatedbaselinecarbonstockchangesintheLeakageManagementAreaandthemeasuredexpostcarbonstockchanges.IfthecumulativevalueofthecarbonstockchangewithinaFixedBaselinePeriodis>0,CLPMLKtshallbesettozero.VM0015,Version1.1SectoralScope15Page114Table31ExpostparametersforestimatingGHGemissionsfromgrazingactivitiesTable32Expostestimationofemissionsfromgrazinganimalsinleakagemanagementareas.Table33ExpostestimationofnetcarbonstockchangesandGHGemissionsfromleakagepreventionactivities.1.2.2MonitoringofcarbonstockdecreaseandincreasesinGHGemissionsduetoactivitydisplacementleakageMonitoringofcarbonstockchangesDeforestationabovethebaselineintheleakagebeltareawillbeconsideredactivitydisplacementleakage.Activitydatafortheleakagebeltareamustbedeterminedusingthesamemethodsappliedtomonitoringdeforestationactivitydata(categoryI,table37)intheprojectarea.MonitoringofthecategoriesIIandIIIoutsidetheprojectareaisnotrequiredbecausenocreditsareclaimedforavoideddegradationunderthismethodology.Theresultoftheexpostestimationsofcarbonstockchangesmustbereportedusingthesametableformatsusedintheexanteassessmentofbaselinecarbonstockchangesintheleakagebelt.Table21.cExposttotalnetcarbonstockchangesintheleakagebelt(whenusingmethod1basedonactivitydataperclass).orTable22.cExposttotalnetcarbonstockchangesintheleakagebelt(whenusingmethod2basedonactivitydatapercategory).Leakagewillbecalculatedasthedifferencebetweentheexanteandtheexpostassessment.Reporttheresultsintable21.dVM0015,Version1.1SectoralScope15Page115Table21.d.Totalnetbaselinecarbonstockchangeintheleakagebelt(CalculatedwithMethod1:Activitydataperclass)ProjectyeartTotalexantenetbaselinecarbonstockchangeTotalexpostnetactualcarbonstockchangeTotalexpostleakageannualcumulativeannualcumulativeannualcumulativeCBSLLKtCBSLLKCBSLLKtCBSLLKCBSLLKtCBSLLKtCO2-etCO2-etCO2-etCO2-etCO2-etCO2-e012...TWherestrongevidencecanbecollectedthatdeforestationintheleakagebeltisattributabletodeforestationagentsthatarenotlinkedtotheprojectarea,thedetecteddeforestationmaynotbeattributedtotheprojectactivityandconsideredleakage.Theoperationalentityverifyingthemonitoringdatashalldeterminewhetherthedocumentationprovidedbytheprojectproponentrepresentssufficientevidencetoconsiderthedetecteddeforestationasnotattributabletotheprojectactivityandthereforenotleakage.MonitoringofincreasesinGHGemissionsThesemustonlybeestimatedandaccountedifemissionsfromforestfiresareincludedinthebaseline.ToestimatetheincreasedGHGemissionsduetoforestfiresintheleakagebeltareatheassumptionismadethatforestclearingisdonebyburningtheforest.Theparametervaluesusedtoestimateemissionsshallbethesameusedforestimatingforestfiresinthebaseline(table23),exceptfortheinitialcarbonstocks(Cab,Cdw)whichshallbethoseoftheinitialforestclassesburnedintheleakagebeltarea.ReporttheresultoftheestimationsusingthesametableformatsusedintheexanteassessmentofbaselineGHGemissionsfromforestfiresintheprojectarea:Table23:ParametersusedtocalculateemissionsfromforestfiresintheleakagebeltareaTable24:Expostestimatednon-CO2emissionsfromforestfiresintheleakagebeltarea1.2.3TotalexpostestimatedleakageSummarizetheresultsofallexpostestimationsofleakageusingthesametableformatusedfortheexanteassessment:Table35.Totalexpostestimatedleakage.Note:MonitoringofleakagemaybecomeobsoleteatthedatewhenaVCSorUNFCCCregistered(andVCSendorsed)programismonitoring,reporting,verifyingandaccountingGHGemissionsfromVM0015,Version1.1SectoralScope15Page116deforestationinabroaderregionencompassingtheprojectarea.Insuchcases,themostrecentVCSguidelinesonthissubjectmattershallbeapplied.1.3ExpostnetanthropogenicGHGemissionreductionsThecalculationofexpostnetanthropogenicGHGemissionreductionsissimilartotheexantecalculationwiththeonlydifferencethatexpostestimatedcarbonstockchangesandGHGemissionsmustbeusedinthecaseoftheprojectscenarioandleakage.ReporttheexpostestimatednetanthropogenicGHGemissionsandcalculationofVerifiedCarbonUnits(VCUt,andVBCt)usingthesametableformatusedfortheexanteassessment:Table36:ExpostestimatednetanthropogenicGHGemissionreductionsandVCUs.Note:AmapshowingCumulativeAreasCreditedwithintheprojectareashallbeupdatedandpresentedtoVCSverifiersateachverificationevent.ThecumulativeareacannotgenerateadditionalVCUsinfutureperiods.TASK2:REVISITINGTHEBASELINEPROJECTIONSFORFUTUREFIXED2BASELINEPERIODBaselines,independentlyfromtheapproachchosentoestablishthem,mustberevisitedovertimebecauseagents,driversandunderlyingcausesofdeforestationchangedynamically.Frequentandunpredictedupdatingofthebaselinecancreateseriousmarketuncertainties.Therefore,thebaselinemustberevisitedonlyevery10years.Whereanapplicablesub-nationalornationaljurisdictionalbaselinebecomesavailable,baselinesmaybereassessedearlierinaccordancewithsection2.2below.Tasksinvolvedinrevisitingthebaselineare:2.1Updateinformationonagents,driversandunderlyingcausesofdeforestation.2.2Adjusttheland-useandland-coverchangecomponentofthebaseline.2.3Adjust,asneeded,thecarboncomponentofthebaseline.2.1Updateinformationonagents,driversandunderlyingcausesofdeforestationInformationonagents,driversandunderlyingcausesofdeforestationinthereferenceregionmustbecollectedperiodically,astheseareessentialforimprovingfuturedeforestationprojectionsandthedesignoftheprojectactivity.Collectinformationthatisrelevanttounderstanddeforestationagents,driversandunderlyingcauses.Redostep3oftheexantemethodologyatthebeginningofeachfixedbaselineperiod.Whereaspatialmodelwasusedtolocatefuturedeforestation,newdataonthespatialdrivervariablesusedtomodelthedeforestationriskmustbecollectedastheybecomeavailable.Thesemustbeusedtocreateupdatedspatialdatasetsandnew“FactorMaps”forthesubsequentfixedbaselineperiod.VM0015,Version1.1SectoralScope15Page1172.2Adjustmentoftheland-useandland-coverchangecomponentofthebaselineIfanapplicablesub-nationalornationalbaselinebecomesavailableduringthefixedbaselineperiod,itmustbeusedforthesubsequentperiod.Usethecriteriaoftable2toassesstheapplicabilityofsub-nationalornationalbaselines.IfVCSrequirementsonregionalbaselinesareavailable,usethemostrecentversionoftheseguidelinesinsteadoftable2.Ifanapplicablesub-nationalornationalbaselineisnotavailable,thebaselineprojectionsmustberevisitedandadjustedasnecessary.Thetwocomponentsofthebaselineprojectionsthatmustbereassessedare:2.2.1Theannualareasofbaselinedeforestation;and2.2.2Thelocationofbaselinedeforestation.2.2.1AdjustmentoftheannualareasofbaselinedeforestationAttheendofeachfixedbaselineperiod,theprojectedannualareasofbaselinedeforestationforthereferenceregionneedtoberevisitedandeventuallyadjustedforthesubsequentfixedbaselineperiod.Theadjustedbaselineratesmustbesubmittedtoanindependentvalidation.Adjustmentsmustbemadeusingthemethodsdescribedinpart2ofthemethodologyandusingthedataobtainedfrommonitoringLU/LCchangesinthereferenceregionduringthepastfixedbaselineperiod,updatedinformationondeforestationagents,driversandunderlyingcasesofdeforestationand,whereapplicable,anyupdatedinformationonthevariablesincludedintheestimationoftheprojectedareasofbaselinedeforestation.2.2.2AdjustmentofthelocationoftheprojectedbaselinedeforestationUsingtheadjustedprojectionsforannualareasofbaselinedeforestationandanyimprovedspatialdataforthecreationofthefactormapsincludedinthespatialmodel,thelocationoftheprojectedbaselinedeforestationmustbereassessedusingthemethodsexplainedinpart2ofthemethodology.Allareascreditedforavoideddeforestationinpastfixedbaselineperiodsmustbeexcludedfromtherevisitedbaselineprojectionsastheseareascannotbecreditedagain.Toperformthisexclusionusethemapof“cumulativeareascredited”thatwasupdatedinallpreviousverificationevents.Note:Iftheboundaryoftheleakagebeltareawasassessedusingequation(1)oranyotherspatialmodel,theboundaryoftheleakagebeltwillhavetobereassessedattheendofeachfixedbaselineperiodusingthesamemethodologicalapproachesusedinthefirstperiod.Thiswillberequireduntilmonitoringofleakagewillbecomeunnecessary49.2.3AdjustmentofthecarboncomponentofthebaselineAdjustingthecarboncomponentofthebaselinewillnotbenecessaryinmostcases(seesection1.1.3inPart3formoredetailedguidance).However,improvedcarbonstockdataarelikelytobecomeavailableovertimeandifthisisthecase,theymustbeusedwhenrevisitingthebaselineprojections.Methodstomeasureandestimatecarbonstocksaredescribedinappendix3.49MonitoringofleakagewillbecomeobsoleteatthedatewhenaVCSorUNFCCCregistered(andVCSendorsed)programismonitoring,reporting,verifyingandaccountingemissionsfromdeforestationinabroaderareaencompassingtheprojectarea.VM0015,Version1.1SectoralScope15Page118LITERATURECITEDAchardetal.,2004.PresentationatUNFCCCWorkshopinRomeonReducingemissionsfromdeforestation.Achard,F.,H.D.Eva,H.J.Stibig,P.Mayaux,J.Gallego,T.Richards,andJ.P.Malingreau,2002.Determinationofdeforestationratesoftheworld’shumidtropicalforests,Science,297:999-1002Angelsen,A.andD.Kaimowitz,1999.Rethinkingthecausesofdeforestation:lessonsfromeconomicmodels.TheworldBankResearchObserver,Vol.14,No.1Brown,S.1997.EstimatingBiomassandBiomassChangeofTropicalForests:Aprimer.FAOForestryPaper134,UNFAO,Rome.Brown,S.andA.Dushku,2003.SpatialmodelingforLULUCFcarbonprojects:theGEOMODmodelingapproach.2003InternationalConferenceonTropicalForestsandClimateChange:“CarbonSequestrationandtheCleanDevelopmentmechanism”,Manila–October21.13p.Brown,S.,M.Hall,K.Andrasko,F.Ruiz,W.Marzoli,G.Guerrero,O.Masera,A.Dushku,B.DeJong,andJ.Cornell,2007.Baselinesforland-usechangeinthetropics:applicationtoavoideddeforestationprojects.MitigationandAdaptationStrategiesforClimateChange,12:1001-1026Castillo-Santiago,G.Hellieretal.2007.Carbonemissionsfromland-usechange:aregionalanalysisofcausalfactorsinChiapas,México.MitigationAdaptationStrategiesGlobalChange,12(6):Chomitz,K.M.,P.Buys,C.DeLuca,T.S.Thomas,andS.Wertz-Kanounnikoff,2006.Atloggerheads?AgriculturalExpansion,PovertyReduction,andEnvironmentintheTropicalForests.WorldBankPolicyResearchReport.308pp.Cox,P.M.,R.A.Betts,C.D.Jones,S.A.Spall,andI.J.Totterdell,2000.Accelerationofglobalwarmingduetocarbon-cyclefeedbacksinacoupledclimatemodel.Nature,408:184-187DeJong,B.H.J.,A.Hellier,M.A.Castillo-Santiago,andR.Tipper,2005.Applicationofthe‘Climafor’approachtoestimatebaselinecarbonemissionsofaforestconservationprojectintheLaSelvaLacandona,Chiapas,Mexico.MitigationandAdaptationStrategiesforGlobalChange,10:265-278DeJong,B.H.J.andE.EsquivelBazán,2007.Applicationofthe“Climafor”baselinetodetermineleakage:thecaseofScolelTéDeMendonçaM.J.C.,M.C.delVeraDiaz,D.C.Nepsad,R.SeroadaMotta,A.Alentar,J.C.Gomes,andR.A.Ortiz,2004.TheeconomiccostoftheuseoffireinAmazon.Ecol.Econ.49:89-105.DeFriesR.S.,R.A.Houghton,M.C.Hansen,C.B.Field,D.Skole,andJ.Townshend,2002.Carbonemissionsfromtropicaldeforestationandregrowthbasedonsatelliteobservationsforthe1980sand1990s,PNAS,99:14256-14261.Figueroa,B.,M.Kanninen,B.Louman,L.Pedroni,andM.Gómez,2004.ContenidodecarbonoenlosproductosyresiduosforestalesgeneradosporelaprovechamientoyelaserríoenlareservadeBiosferaMaya.RecursosNaturalesyAmbiente,2004:102-110.Freese,F.1962.ElementaryForestSampling.USDAHandbook232.GPOWashington,DC.91ppGillespie,A.J.R,S.Brown,andA.E.Lugo.1992.Tropicalforestbiomassestimationfromtruncatedstandtables.ForestEcologyandManagement,48:69-88.VM0015,Version1.1SectoralScope15Page119GOFC-GOLD,2010,Asourcebookofmethodsandproceduresformonitoringandreportinganthropogenicgreenhousegasemissionsandremovalscausedbydeforestation,gainsandlossesofcarbonstocksinforestsremainingforestsandforestation.,–availableat:http://www.gofc-gold.uni-jena.de/REDD/HoughtonR.A.,2006.PresentationattheUNFCCCRomeworkshoponReducingemissionsfromdeforestation.Houghton,R.A.,2005,Abovegroundforestbiomassandtheglobalcarbonbalance.GlobalChangeBiology11(6),945-958.IntergovernmentalPanelonClimateChange,1996.IPCCGuidelinesforNationalGreenhouseGasInventories.IntergovernmentalPanelonClimateChange,2003.GoodPracticeGuidanceforLandUse,LandUse-Change,andForestry.IntergovernmentalPanelonClimateChange,2006.GuidelinesforNationalGreenhouseGasInventories,Volume4,Agriculture,ForestryandOtherlandUsesIntergovernmentalPanelonClimateChange,2007.ClimateChange2007,PhysicalSciencebasis.Lesschen,J.P.,P.H.Verburg,andS.J.Staal,2005.Statisticalmethodsforanalyzingthespatialdimensionofchangesinlanduseandfarmingsystems.LUCCReportseriesNo.7,InternationalLivestockResearchInstitute(Nairobi,Kenya)andWageningenUniversity(theNetherlands),80p.(http://home.medewerker.uva.nl/j.p.lesschen/bestanden/LUCC%20report%207.pdf)Loetsch,F.andHaller,K.1964.ForestInventory.Volume1.BLV-VERLAGSGESELLSCHAFT,München.MalhiY.,T.Naker,O.L.Phillips,S.Almeida,E.Alvarez,L.Arroyo,J.Chave,C.I.Czimezik,A.DiFiore,N.Higuchi,T.J.Killeen,S.G.Laurance,W.F.Lewis,L.M.M.Montoya,A.Monteagudo,D.A.Neill,P.N.Vargas,S.Patina,N.C.A.Pitman,C.A.Quesada,J.N.M.Silva,A.T.Lezama,R.V.Martinez,J.Terborgh,B.Vinceti,andJ.Lloyd,2004.Theabove-groundwoodproductivityandnetprimaryproductivityof100Neotropicalforestplots.GlobalChangeBiol.,10:563-591.NobreC.A.,P.Sellers,andJ.Shukla,1991.RegionalclimatechangeandAmazoniandeforestationmodel.J.Clim.4:957-988.OlanderL.P.,B.C.Murry,H.Gibbs,andM.Steininger,2006.Establishingcrediblenationalbaselinesforeffortstoreduceemissionsfromdegradationanddeforestation.CoalitionforRainforestNations.PageS.E.,F.Siegert,J.O.Rieley,V.BoehmHans-Dieter,A.Jaya,andS.Lenin,2002.TheamountofcarbonreleasedfrompeatandforestfiresinIndonesiaduring1997.Nature,420:61-65.PearsonT.,S.WalkerandS.Brown.2005.SourcebookforLandUse,LandUseChangeandForestryProjects.BioCarbonFund(WorldBank)andWinrockInternational,WashingtonD.C.,p.64Pontius,R.G.Jr.,S.Peethambaram,andJ-CCastella,2011.ComparisonofthreemapsatMultipleResolutions:acasestudyoflandchangesimulationinChoDonDistrict,Vietnan.AnnalsoftheAssociationofAmericanGeographers,101(1):45-62.Pontius,R.G.Jr.andH.Chen,2006.GEOMODModeling.ClarkUniversity.VM0015,Version1.1SectoralScope15Page120Pontius,R.G.Jr.,2002.Statisticalmethodstopartitioneffectsofquantityandlocationduringcomparisonofcategoricalmapsatmultipleresolutions.PhotogrammetricEngineeringandRemoteSensing,68(1):1041-1049Pontius,R.G.,J.D.Cornell,C.A.S.Hall,2001.Modelingthespatialpatternofland-usechangewithinGEOMOD2:applicationandvalidationinCostaRica.Agriculture,EcosystemsandEnvironment:85,191-203.Pontius,R.G.,Jr.,2000.Quantificationerrorversuslocationerrorincomparisonofcategoricalmaps.PhotogrammetricEngineeringandRemoteSensing,66:1011-1016Pontius,R.G.,Jr,WBoersma,J-CCastella,KClarke,TdeNijs,CDietzel,ZDuan,EFotsing,NGoldstein,KKok,EKoomen,CDLippitt,WMcConnell,AMohdSood,BPijanowski,SPithadia,SSweeney,TNTrung,ATVeldkamp,andPHVerburg.2008.Comparinginput,output,andvalidationmapsforseveralmodelsoflandchange.AnnalsofRegionalScience,42(1):11-47.Pontius,RG,Jr,RWalker,RYao-Kumah,EArima,SAldrich,MCaldasandDVergara.2007.AccuracyassessmentforasimulationmodelofAmazoniandeforestation.AnnalsofAssociationofAmericanGeographers,97(4):677-695Puyravaud,J.-P.,2003.Standardizingthecalculationoftheannualrateofdeforestation.ForestEcologyandManagement,177:593-596.Reyesetal.,1992.Wooddensitiesoftropicaltreespecies.USDASantilliM.,P.Moutinho,S.Schwartzman,D.Nepstad,L.CurranandC.Norbe,2005.TropicaldeforestationandtheKyotoProtocol,andeditorialessay.ClimaticChange,71:267-276.Sathaye,J.A.andK.Andrasko,2007.Landusechangeandforestryclimateprojectregionalbaselines:areview.MitigationandAdaptationStrategiesforGlobalChange,12:971-1000.Schlamandinger,B.,H.Carlens,N.Bird,I.Emmer,J.F.Garcia-Quijano,L.F.Jara,B.Muys,C.Robledo,A.Stilma,andT.Tennigkeit,2006.Guidingprinciplesforincludingavoidanceofemissionfromdeforestation,forestdegradationanddevegetation(DDD)intheinternationalresponsetoclimatechange.SubmissionbytheENCOFORprojectteamwww.joanneum.at/encofor.SeealsoSubmissiontotheUNFCCC/SBSTA/2006/L.25SiegertF.,G.Ruecker,A.Hinrichs,andA.A.Hoffmann,2001.IncreaseddamagefromfiresinloggedforestsduringdroughtscausedbyElNiño.Nature,414:437-440.Sierra,C.A.etal.,2007.TotalcarbonstocksinatropicalforestlandscapeofthePorceregion,Colombia.ForestEcologyandManagement,243:299-309.Silva-DiasM.A.F.,S.Rutledge,P.Kabat,P.L.Silva-Dias,C.Nobre,G.Fisch,A.J.Dolman,E.Zipser,M.Garstang,A.O.Manzi,J.D.Fuentes,H.R.Rocha,J.Marengo,A.Plana-Fattori,L.D.A.Sa,R.C.S.Alvala,M.O.Andreae,P.Artaxo,R.Gielow,andL.Gatti,2002.CloudsandrainprocessesinabiosphereatmosphereinteractioncontextintheAmazonRegion.J.Geophys.Res.-Atmos.,107:8072-8092.Smith,Diana,1954.Maximummoisturecontentmethodfordeterminingspecificgravityofsmallwoodsamples.ForestProductsLaboratory,ForestService,U.S.DepartmentofAgriculture.9pp.Soares-Filho,B.S.,D.C.Nepstad,L.M.Curran,G.C.Cerqueira,R.A.Garcia,C.A.Ramos,E.Voll,A.McDonald,P.Lefevre,andP.Schlesinger,2006.ModelingconservationintheAmazonbasin.Nature,440:520-523.VM0015,Version1.1SectoralScope15Page121TimmermannA.,J.Oberhuber,A.Bacher,M.Esch,M.Latif,andE.Roeckner,1999.IncreasedElNiñofrequencyinaclimatemodelforcedbyfuturegreenhousewarming.Geophys.Res.Lett.24:3057-3060.TrenberthK.E.andT.J.Hoar,1997.ElNiñoandClimateChange.Geophys.Res.Lett.24:3057-3060.“VoluntaryCarbonStandard–GuidanceforAgriculture,ForestryandOtherLandUseProjects(VCS2007.1,2008).”VCSAssociation.Availableat:www.v-c-s.orgWenger,K.F.(ed).1984.Forestryhandbook(2ndedition).NewYork:JohnWileyandSons.WhiteA.M.,G.R.Cannell,andA.D.Friend,1999.Climatechangeimpactsonecosystemsandtheterrestrialcarbonsink:anewassessment.GlobalEnviron.Change,9(Suppl.1):S21-S30.Winjum,J.K.,Brown,S.andSchlamadinger,B.1998.Forestharvestsandwoodproducts:sourcesandsinksofatmosphericcarbondioxide.ForestScience44:272-284VM0015,Version1.1SectoralScope15Page122APPENDIX1:DEFINITIONOFTERMSFREQUENTLYUSEDINTHEMETHODOLOGYActivityDataistheannualarea(hayr-1)lostoracquiredbyaLU/LCclassclatagivenyeartortheannualareaofacategoryofLU/LCchangectforagivenyeart.BaselineScenarioistheexpectedchangeinlanduseandlandcover(LU/LC)intheabsenceofanyprojectactivitydesignedtoreduceemissionsfromdeforestation,forestdegradation,orenhancecarbonstocks.BaselineisthesumofcarbonstockchangesandGHGemissionsthatwouldoccurintheabsenceoftheproposedREDDprojectactivity.BroadCategoryisthetermusedinthismethodologytoidentifythreemaincategoriesofLU/LC-change:deforestation,forestdegradation(withcarbonstockdecrease)andforestregeneration(withcarbonstockincrease)(seefigureA1-1):FigureA1-1.Broadcategoriesofland-useandland-coverchangeCarbonDensity(orcarbonstockperhectare)istheamountofcarbon(asCO2-e)perhectare(ha-1)estimatedtobepresentintheaccountedcarbonpoolsofaLU/LCClassatyeart.CarbonStockisthecarbondensityofanareatimesthenumberofhectaresinthearea.CarbonStockChangeFactor:see“EmissionFactor”.CategoryofLU/LC-Change(orsimply“category”)isthechangefromoneLU/LCclasstoanotherthatoccursduringagivenperiodoftime.CategoryisthetermusedinIPCCreportstorefertospecificsourcesofemissionsorremovalsofgreenhousegases.UndertheAFOLUsector,“categories”areland-use/land-cover(LU/LC)transitions.REDDmethodologiesdealwiththefollowingcategories:IntactforestCroplandGrasslandWetlandSettlementOtherLandForestLandNon-ForestLandForestRegenerationForestDegradationDeforestationDegradedforestManagedforestVM0015,Version1.1SectoralScope15Page123(a)ForestLandtoForestLand(degradationandregenerationofforestlandremainingforestland)(b)ForestLandtoCropLand(deforestationfollowedbyagriculture)(c)ForestLandtoGrassLand(deforestationfollowedbypasture)(d)ForestLandtoSettlements(deforestationfollowedbysettlements)(e)ForestLandtoWetlands(deforestationfollowedbywetlands)(f)ForestLandtoOtherLand(deforestationfollowedbyotherland)Activitiesthatconvertnonforestlandbacktoforest(CropLandtoForestLand,GrassLandtoForestLand,etc.)areconsideredafforestationandreforestationandareexcludedfromthisREDDmethodology.Class.SeeLU/LCClass.Deforestationisthedirect,human-inducedandlong-term(orpermanent)conversionofforestlandtonon-forestland50.Itoccurswhenatleastoneoftheparametervaluesusedtodefine“forestland”isreducedfromabovethethresholdfordefining“forest”tobelowthisthresholdforaperiodoftimethatislongerthantheperiodoftimeusedtodefine“temporarilyun-stocked”51.Forexample,ifacountrydefinesaforestashavingacrowncovergreaterthan30%and“temporarilyun-stocked”asamaximumperiodof3years,thendeforestationwouldnotberecordeduntilthecrowncoverisreducedbelow30%foratleastthreeconsecutiveyears52.Countryshoulddevelopandreportcriteriabywhichtemporaryremovalorlossoftreecovercanbedistinguishedfromdeforestation.EligibleLand.Toavoiddoublecountingofemissionreductions,landareasregisteredundertheCDMortheVCSoranyothercarbontradingscheme(bothvoluntaryandcompliance-oriented)shouldbetransparentlyreportedandexcludedfromtheprojectarea.EmissionFactor(orCarbonStockChangeFactor)isthedifferencebetweenthecarbondensityofthetwoLU/LCclassesdescribingacategoryofLU/LCchange.Fixedbaselineperiodistheperiodoftimeforwhichthevalidatedbaselineisfixed,whichundertheVCScanbeupto10years.Afterthisperiodoftime,thebaselinemustbereassessedusingaVCSapprovedmethodology.50Forestareaandcarbonstocklossesduetonaturaldisturbances(landslides,consequencesofvolcaniceruptions,andseelevelrise,amongother)arenotconsidered“deforestation”.51AccordingtoIPCC(GPGLUUCF,2003,Chapter4.2.6.2.)“Theidentificationofunitsoflandsubjecttodeforestationactivitiesrequiresthedelineationofunitsoflandthat:(a)Meetorexceedthesizeofthecountry’sminimumforestarea(i.e.,0.05to1ha);and(b)Havemetthedefinitionofforeston31December1989;and(c)Haveceasedtomeetthedefinitionofforestatsometimeafter1January1990astheresultofdirecthuman-induceddeforestation.”52Deforestationcanbetheresultofanabruptevent(deforestation=forestnon-forest),inwhichcasethechangeinland-coverandland-useoccursimmediatelyandsimultaneously;orofaprocessofprogressivedegradation(deforestation=forestdegradedforestnon-forest),inwhichcasethechangeinland-coveroccurswhenoneoftheparametersusedfordefining“forestland”fallsbelowitsminimumthreshold,butthechangeinland-usemayhavealreadyoccurredorwilloccurlater(e.g.useofthelandfortheproductionofcropsorgrazinganimals).Land-useisthusnotareliableindicatorforidentifyingaforestclassorfordefiningacategoryofchange..VM0015,Version1.1SectoralScope15Page124Forestisalandwithwoodyvegetationconsistentwiththethresholdsusedtodefine“forestland”inthecountrywheretheREDDprojectactivitywillbeimplemented.WherethecountryhasadoptedaforestdefinitionfortheKyotoProtocol,theminimumthresholdsofthevegetationindicators(minimumarea,treecrowncoverandheight)53usedfordefining“forests”,ascommunicatedbytheDNA54consistentwithdecision11/CP.7and19/CP.9,shouldbeused.Otherwise,thedefinitionusedtodefine“ForestLand”innationalGHGinventoryshouldbeused.Landdefinedas“forestland”canincludeareasthatdonot,butatmaturityinsitucouldpotentiallyreach,thethresholdsusedtodefine“forestland”.Todistinguishbetween“non-forest”(andhence“deforested”)and“temporarilyun-stocked”areasinmanagedforests,thedefinitionof“forest”shouldincludethemaximumperiodoftimethatthewoodyvegetationcanremainbelowthethresholdsusedtodefine“forestland”.Thismaximumperiodcanbespecificforeachcategoryofland-use/land-coverchange(LU/LC-change).Forinstance,itcouldbezeroyearsforconversionfrom“forestlandtocropland”,butupto5ormoreyearsfortransitionsbetweenforestclasses(e.g.ageclasses)55.Areascoveredwithplantedforestsaswellaswithanyotheranthropogenicvegetationtypethatmeetthedefinitionof“forest”sincetheearliestdateofthehistoricalreferenceperiodusedtoassessdeforestationcanbeconsidered“forestland”.Hence,“forests”canbenatural,semi-natural,oranthropogenicandtheymayincludeprimaryorold-growthforests(intactorlogged),secondaryforests,plantedforests,agro-forestryandsilvo-pastoralsystems.Forestdegradationis“forestlandremainingforestland”butgraduallylosingcarbonstocksasaconsequenceofdirect-humanintervention(e.g.logging,fuel-woodcollection,fire,grazing,etc.)56.Unitsofforestlandsubjecttodegradationareallocatedtodifferentforestclassesovertime,witheachsuccessiveclasshavingalowercarbondensitythanthepreviousone.Thedifferenceinaveragecarbondensitybetweentwocontiguousforestclassesshouldbeatleast10%.Thedifferencereferstotheupperandlowerlevelsoftheconfidenceintervalsofthetwocontiguousforestclassesinthedegradationsequence(figureA1-2).Forestmanagement.Areassubjecttosustainableforestmanagement(withloggingactivities)representaparticularclassof“degradedforest”.Anundisturbednaturalforestthatwillbesubjectto53“Forestisaminimumareaoflandof0.05–1.0hectareswithtreecrowncover(orequivalentstockinglevel)ofmorethan10–30percentwithtreeswiththepotentialtoreachaminimumheightof2–5metersatmaturityinsitu.Aforestmayconsisteitherofclosedforestformationswheretreesofvariousstoreysandundergrowthcoverahighportionofthegroundoropenforest.Youngnaturalstandsandallplantationswhichhaveyettoreachacrowndensityof10–30percentortreeheightof2–5metersareincludedunderforest,asareareasnormallyformingpartoftheforestareawhicharetemporarilyun-stockedasaresultofhumaninterventionsuchasharvestingornaturalcausesbutwhichareexpectedtoreverttoforest”.54DNA=DesignatedNationalAuthorityoftheCleanDevelopmentMechanism55Projectproponentsshouldreportonhowtheydistinguishbetweendeforestationandareasthatremainforestsbutwheretreecoverhasbeenremovedtemporarily,notablyareasthathavebeenharvestedorhavebeensubjecttootherhumanornaturaldisturbancebutforwhichitisexpectedthatforestwillbereplantedorregeneratenaturally.SeeIPCCGPGLULUCF,2003,Chapter.4.2.6.2.1forfurtherguidanceonthisissue.56AccordingtoIPCCGPGLLUCF“forestdegradation”is“adirect,human-induced,long-term(persistingforXyearsormore)oratleastY%offorestcarbonstock[andforestvalues]sincetimeTandnotqualifyingasdeforestation”.NotethatX,Y%andTarenotquantified.SeeIPCC2003(ReportonDefinitionsandMethodologicalOptionstoInventoryEmissionsfromDirectHuman-inducedDegradationofForestsandDevegetationofOtherVegetationTypes,Chapter2.2)foradiscussiononthedefinitionof“forestdegradation”,inparticulartable2.1foralternativedefinitionsofdirecthuman-inducedforestdegradation.VM0015,Version1.1SectoralScope15Page125sustainableforestmanagementwilllosepartofitscarbon,butthelosswillpartiallyrecoverovertime.Inthelong-term,asustainableharvestingandre-growthcyclewillmaintainaconstantaveragecarbondensityintheforest.Sincethisaveragecarbondensityislowerthanintheoriginalforest,sustainablymanagedforestscanbeconsideredadegradedforestclass.Dependingonthemagnitudeandtimeframeofthecarbonstockchanges,managedforestscouldbeclassifiedintoonesingle“managedforest”class(withacarbondensityequivalenttotheaverageoftheentiremanagementcycle)ortodifferentsub-classesrepresentingdifferentaveragecarbondensities(figureA1-2).ForestRegenerationis“forestlandremainingforestland”butgraduallyenhancingitscarbonstockasaconsequenceofdirect-humanintervention.Unitsofforestlandsubjecttoregenerationareallocatedtodifferentforestclassesovertime,witheachsuccessiveforestclasshavingahighercarbondensitythanthepreviousone.Thedifferenceinaveragecarbondensitybetweentwocontiguousforestclassesshouldbeatleast10%.Thedifferencereferstotheupperandlowerlevelsoftheconfidenceintervalsofthetwoforestclasses.A1-2.Carbondensityin“forestlandremainingforestland”(livingtreebiomass)ForestdegradationForestmanagementForestregenerationVM0015,Version1.1SectoralScope15Page126FrontierDeforestationistheconversionofforestlandtonon-forestlandoccurringwhentheagriculturalfrontierexpandsasaresultofimprovedaccesstoforestintoareaswithrelativelylittlehumanactivity.HistoricalReferencePeriodisatimeperiodprecedingthestartingdateoftheproposedREDDprojectactivity.ItisanalyzedtodeterminethemagnitudeofdeforestationandforestdegradationinthereferenceregionandtoidentifyagentsanddriversofDDandthechainofeventsleadingtoland-use/land-coverchange.InordertobeusefulforunderstandingrecentandlikelyfutureDDtrends,thestartingdateofthehistoricalreferenceperiodshouldbeselectedbetween10and15yearsinthepast,andtheenddateascloseaspossibletopresent.LeakageisthedecreaseincarbonstocksandtheincreaseinGHGemissionsattributabletotheimplementationoftheREDDprojectactivitythatoccursoutsidetheboundaryoftheProjectarea.LeakageBeltisthegeographicalareasurroundingoradjacenttotheprojectareawhichactivitydisplacementleakagecouldoccur.LeakageManagementArea(s)areareasoutsidetheprojectareainwhichactivitiesareimplementedtoavoidleakage.Attheprojectstartdate,leakagemanagementareasmustbenon-forestlandLU/LCClass(orsimply“class”)isauniquecombinationoflanduseandlandcoverhavingaspecificcarbondensityattimet.LU/LCPolygonisadiscreteareafallingintoasingleLU/LCclass.Monitoringperiodistheperiodoftime(inyears)betweentwomonitoringandverificationevents.Typicallyitisafractionofthefixedbaselineperiod.Theminimumdurationisoneyearandthemaximumisthedurationofthefixedbaselineperiod.MosaicDeforestationistheconversionofforestlandtonon-forestlandoccurringinapatchypatternwherehumanpopulationandassociatedagriculturalactivitiesandinfrastructure(roads,towns,etc.)arespreadoutacrossthelandscapeandmostareasofforestwithinsuchaconfiguredregionorcountryarepracticallyalreadyaccessible.PlannedDeforestationisthelegallyauthorizedconversionofforestlandtonon-forestlandoccurringinadiscreteareaofland.Deforestationwithinanareacanbeplanned(designatedandsanctioned)orunplanned(unsanctioned).Planneddeforestationcanincludeawidevarietyofactivitiessuchasnationalresettlementprogramsfromnon-forestedtoforestedregions;acomponentofanationallandplantoreducetheforestestateandconvertittootherindustrial-scaleproductionofgoodssuchassoybeans,pulpwoodplantations,andoilpalmplantations;orplanstoconvertwell-managedcommunity-ownedforeststoothernon-forestuses.Otherformsofplanneddeforestationcouldalsoincludedecisionsbyindividuallandowners,whoselandislegallyzonedforagriculture,toconverttheirsayselectivelyloggedforesttocropproduction.Theseplanneddeforestationactivitieswouldbeacomponentofsomelandplanningormanagementdocumentandcouldbereadilyverified.ProjectActivityistheseriesofplannedstepsandactivitiesbywhichtheproponentintendstoreducedeforestationandforestdegradationand/orenhanceforestregeneration.Projectareaistheareaorareasoflandonwhichtheproponentwillundertaketheprojectactivities.Nolandsonwhichtheprojectactivitywillnotbeundertakencanbeincludedintheprojectarea.Projectcreditingperiod.PleaseseecurrentVCSdefinition.VM0015,Version1.1SectoralScope15Page127ProjectScenarioistheexpectedchangeinlanduseandlandcoverwithintheboundaryoftheprojectarearesultingfromtheundertakingoftheprojectactivity.ProjectTermistheprojectedlifetimeoftheREDDprojectactivity,whichundertheVCSisequivalenttotheprojectcreditingperiod.Referenceregionisthespatialdelimitationoftheanalyticdomainfromwhichinformationaboutdeforestationanddegradationagents,driversandLU/LC-changeisobtained,projectedintothefutureandmonitored.ThereferenceregionincludestheProjectarea57andisdefinedbytheprojectproponentusingtransparentcriteria.ItmustcontainLU/LCclassesanddeforestationagentsanddriverssimilartothosefoundintheprojectareaunderthebaselineandprojectscenarios.Zoneisastratumofthereferenceregioncontainingadistinctivemixoffinalpost-deforestationclassesfcl57Themethodologythusadoptsasocalled“StratifiedRegionalBaseline”(SRB)approach,whichhasbeenrecommendedinrecentliterature(SatayeandAndrasko,2007;Brownetal.,2007)VM0015,Version1.1SectoralScope15Page128APPENDIX2:INDICATIVETABLESTable1.Guidanceoncarbonpoolselectiondependingontheland-use/land-coverchangecategoryconsidered58Typeofland-use/land-covertransitionLivingbiomass(trees)DeadorganicmatterSoilAbove-groundBelow-groundWoodproductsDeadwoodLitterOrganicmatterForesttocropland+++++++++Foresttopasture++++++++Foresttoshiftingcultivation++++++Foresttodegradedforest+++++++++=includealways;++=inclusionrecommended;+=inclusionpossibleTable2.Presentavailabilityofopticalmid-resolution(10-60m)sensors(GOFC-GOLD,2008)NationSatellite&sensorResolution&coverageCost(archive59)FeatureU.S.A.Landsat-5TM30m180×180km2600US$/scene0.02US$/km2Imagesevery16daystoanysatellitereceivingstation.Operatingbeyondexpectedlifetime.U.S.A.Landsat-7ETM+30m60×180km2600US$/scene0.06US$/km2OnApril2003thefailureofthescanlinecorrectorresultedindatagapsoutsideofthecentralportionofimages,seriouslycompromisingdataqualityU.S.A./JapanTerraASTER15m60×60km260US$/scene0.02US$/km2DataisacquiredonrequestandisnotroutinelycollectedforallareasIndiaIRS-P2LISS-III&AWIFS23.5&56mExperimentalcraftshowspromise,althoughimagesarehardtoacquireChina/BrazilCBERS-2HRCCD20mExperimental;Braziluseson-demandimagestobolstertheircoverage.Algeria/China/Nigeria/Turkey/U.K.DMC32m160×660km23000€/scene0.03€/km2Commercial;BrazilusesalongsideLandsatdataFranceSPOT-5HRVIR5-20m60×60km22000€/scene0.5€/km2CommercialIndonesia&ThailandusedalongsideLandsatdata58ModifiedfromGOFC-GOLD,2008.SeethemostrecentversionoftheGOFC-GOLDsourcebookforREDD,asnewremotesensingplatformsarebecomingavailable.59Someacquisitionscanbeprogrammed(e.g.,DMC,SPOT).Thecostofprogrammeddataisgenerallyatleasttwicethecostofarchiveddata.VM0015,Version1.1SectoralScope15Page129Table3.Exampleofapotentiallanduse-changematrixInitialForestlandFinalClass1Class2Class3Class4Class5ForestLandClass1Category1/1Category2/1Category3/1Category4/1Category5/1Class2Category1/2Category2/2Category3/2Category4/2Category5/2Class3Category1/3Category2/3Category3/3Category4/3Category5/3Class4Category1/4Category2/4Category3/4Category4/4Category5/4Class5Category1/5Category2/5Category3/5Category4/5Category5/5GrasslandClass6Category1/6Category2/6Category3/6Category4/6Category5/6CroplandClass7Category1/7Category2/7Category3/7Category4/7Category5/7WetlandClass8Category1/8Category2/8Category3/8Category4/8Category5/8SettlementClass9Category1/9Category2/9Category3/9Category4/9Category5/9OtherLandClass10Category1/10Category2/10Category3/10Category4/10Category5/10Table4.Exampleofaland-use/land-coverchangematrixInitialForestlandFinalareaOldgrowthforestsDegradedoldgrowthforestSecondaryforestPlantationsFinalintactmanagedinitialintermediateadvancedinitialintermediateadvancedyoungmidmatureForestLandOld-growthintact100100managed156Degradedinitial123intermediate213advanced235Secondaryinitial22intermediate134advanced112Plantationsyoung111115mid123mature11Grasslandunimproved11121118improved112Cropland1123310Wetland0Settlement0OtherLand0InitialArea1037575795222154NetChange-3-1-2-40-5-5-331-10Notes:Numbersrepresenthectaresoractivitydata(inthiscasenumbersareforillustrativepurposesonly,theydonotrepresentanyrealcase).VM0015,Version1.1SectoralScope15Page130ColumnandrowstotalsshownetconversionofeachLU/LC-class.“Initial”indicatestheareaoftheLU/LC-classatthestartingdateoftheperiodassessed,and“Final”theareaoftheclassattheenddateoftheassessmentperiod.Netchanges(bottomrows)arethefinalareaminustheinitialareaforeachoftheLU/LC-classesshownattheheadofthecorrespondingcolumn.BlankentriesindicatenoLU/LC-changetheperiodassessed.Table5.Approximatevaluesofdailybiomassintake(d.m.–drymass)fordifferenttypeofanimals60AnimalTypeDailyFeedIntake(MJhead-1day-1)DailyBiomassIntake(kgd.m.head-1day-1)SheepDevelopedCountries202.0DevelopingCountries91.3GoatsDevelopedCountries141.4DevelopingCountries141.4Mules/AssesDevelopedCountries606.0DevelopingCountries606.0Sources:FeedintakefromCrutzenetal.(1986).60TakenformAR-AM0003version2VM0015,Version1.1SectoralScope15Page131Box1:GeomodGeomodisaland-useland-coverchangesimulationmodelimplementedinIdrisi,aGISsoftwaredevelopedbyClarkUniversity(Pontiusetal.,2001;Brownetal.,2007).GeomodhasbeenusedfrequentlytoanalyzebaselinescenariosofdeforestationatcontinentalscaleforAfrica,AsiaandLatinAmerica;atthecountryscaleforCostaRicaandIndia;andatlocalscalewithinIndia,Egypt,UnitesStatesandseveralcountriesinLatinAmerica(PontiusandChen,2006).Geomodisagrid-basedmodelthatpredictsthetransitionfromoneLU/LCclasstoanotherLU/LCclass,i.e.thelocationofgridcellsthatchangeovertimefromclass1toclass2.Hence,Geomodcanbeusedtopredictareaslikelytochangefromforestclass1tonon-forestclass2(deforestation)overagiventime.GeomodcreatestheLU/LC-changeriskmapempirically,byusingseveraldriverimagesandtheland-covermapfromthebeginningtime.Forexample,Geomod’sdeforestationriskmapshaverelativelyhighvaluesatlocationthathavebiogeophysicalattributessimilartothoseofthedeforestedland(=“developedland”inGeomod’sjargon)ofthebeginningtime,andhasrelativelylowvaluesatlocationsthathavebiogeophysicalattributessimilartothoseofforestedland(“non-developed”land)ofthebeginningtime.VM0015,Version1.1SectoralScope15Page132APPENDIX3:METHODSTOESTIMATECARBONSTOCKSSamplingframeworkThesamplingframework,includingsamplesize,plotsize,plotshapeandplotlocationshouldbespecifiedinthePD.Areastobesampledinforestclassesshouldbeatlocationsexpectedtobedeforestedaccordingtothebaselineprojections.Thesamplingareasfornon-forestclassesshouldbeselectedwithinthereferenceregionatlocationsthatrepresentachrono-sequenceof10to30yearssincethedeforestationdate.TemporaryorpermanentplotsPlotscanbetemporaryorpermanentdependingonthespecificprojectcircumstances,interestsandneeds,butingeneraltemporaryplotsshouldbesufficient.Wherechangesincarbonstocksaretobemonitored,permanentsamplingplotsarerecommended.Permanentsampleplotsaregenerallyregardedasstatisticallyefficientinestimatingchangesinforestcarbonstocksbecausetypicallythereishighcovariancebetweenobservationsatsuccessivesamplingevents.However,itshouldbeensuredthattheplotsaretreatedinthesamewayasotherlandswithintheprojectboundary,e.g.,duringloggingoperations,andshouldnotbedestroyedoverthemonitoringinterval.Ideally,staffinvolvedinforestmanagementactivitiesshouldnotbeawareofthelocationofmonitoringplots.Wherelocalmarkersareused,theseshouldnotbevisible.Iftreesmarkersarerequired(e.g.ifplotsarealsousedforecologicalorstructuralmonitoring),theseshouldbeasunconspicousaspossibleandnobiasinthetreatmentofplotscomparedtothesurroundingforestmustbegranted.Permanentplotsmayalsobeconsideredtoreducetheuncertaintyoftheaveragecarbondensityofaforestclassundergoingcarbonstockchangesduetomanagementandtodetectchangesincarbonstocksinducedbyclimatechangeorlarge-scalenaturaldisturbances.DefinitionofthesamplesizeandallocationamongLU/LC-classesThenumberofsampleplotsisestimatedasdependentonaccuracy,variabilityoftheparametertoestimateineachclassandcosts.Thesamplesizecalculationalsocorrespondstothemethodofsamplesdrawnwithoutreplacement.WhereatthebeginningofaREDDprojectactivityaccuratedataforsamplesizeestimationandallocationarenotavailable,thesamplingsizecaninitiallybeestimatedbyusingadesiredlevelofaccuracy(10%ofsamplingerrorat90%confidencelevel),andbyallocatingtheestimatedsamplesizeproportionallytotheareaofeachclass61,usingrespectivelyequations1,and2.Then,oncedataoncarbonstockvariabilitywithineachclassbecomeavailable,thesamplesizeandallocationisrecalculatedusingthemethodologydescribedbyWenger(1984)62,whichalsoaccountsforthecostofsampling(seeequations3and4).Equation1waschosenbecauseitworkswithpercentagesratherthanabsoluteunits(biomass,carbon,orCO2),andcoefficientvariationdatacouldbemoreeasytofindintheliteratureatthebeginningofaprojectactivity.TheinitialallocationofthesampleplotsshallbeproportionaltotheareaoftheLU/LC-61Loetsch,F.andHaller,K.1964.ForestInventory.Volume1.BLV-VERLAGSGESELLSCHAFT,München.62Wenger,K.F.(ed).1984.Forestryhandbook(2ndedition).NewYork:JohnWileyandSons.VM0015,Version1.1SectoralScope15Page133classes,butwithminimumof5plotsperclass.Thet-studentfora95%confidencelevelisapproximatelyequalto2whenthenumberofsampleplotisover30.Asthefirststep,use2asthet–studentvalue,andiftheresulting“n”islessthan30,usethenew“n”togetanewt-studentvalueandconductthenewestimationofthesamplesize.Thisprocesscanberepeateduntilthecalculatednisstabilized.NCVtECVtnstst22222%)(%)(%(A3-1)NNnnclcl(A3-2)Where:cl=1,2,3,….ClLU/LCclassesCl=TotalnumberofLU/LCclassestst=t-studentvaluefora90%confidencelevel(initialvaluet=2)n=totalnumberofsampleunitstobemeasured(inallLU/LCclasses)E%=allowablesampleerrorinpercentage(10%)CV%=thehighestcoefficientofvariation(%)reportedintheliteraturefromdifferentvolumeorbiomassforestinventoriesinforestplantations,naturalforests,agro-forestryand/orsilvo-pastoralsystems.ni=numberofsamplesunitstobemeasuredinLU/LCclassclthatisallocatedproportionaltothesizeoftheclass.Ifestimatedncl<3,setncl=3.Ni=maximumnumberofpossiblesampleunitsforLU/LCclasscl,calculatedbydividingtheareaofclassclbythemeasurementplotarea.N=populationsizeormaximumnumberofpossiblesampleunits(allLU/LCclasses),ClclclNN1InequationA3-2thestandarddeviationofeachLU/LCclass(Scl)shallbedeterminedusingtheactualdatafromthelatestfieldmeasurement.Theallowableerrorisanabsolutevalue,andcanbeestimatedas10%oftheobservedoverallaveragecarbonstockperhectare.ItispossibletoreasonablymodifytheLU/LCclasslimitsandthesamplesizeaftereachmonitoringeventbasedontheactualvariationofthecarbonstockchangesdeterminedfromtaking“n”sampleplots.WherecostsforselectingandmeasuringplotsarenotasignificantconsiderationthenthecalculationandallocationofthesamplesizecanbesimplifiedbysettingCclequalto1acrossallLU/LCclasses.ClclclclclClclclclclstCSWCSWEtn112(A3-3)VM0015,Version1.1SectoralScope15Page134ClclclclclclclclclCSWCSWnn1(A3-4)Where:cl=1,2,3,…ClLU/LCclassesCl=totalnumberofLU/LCclassestst=t-studentvaluefora95%confidencelevel,withn-2degreesoffreedomE=allowableerror(10%ofthemean)Scl=standarddeviationofLU/LCclassclncl=numberofsamplesunitstobemeasuredinLU/LCclassclthatisallocatedproportionaltoclclclCSW.Ifncl<3,setncl=3.Wcl=Ncl/Nn=totalnumberofsampleunitstobemeasured(inallLU/LCclasses)Ncl=maximumnumberofpossiblesampleunitsforLU/LCclasscl,calculatedbydividingtheareaofLU/LCclassclbythemeasurementplotareaN=populationsizeormaximumnumberofpossiblesampleunits(allstrata),ClclclNN1Ci=costtoselectandmeasureaplotoftheLU/LCclassclSampleplotsizeTheplotareaahasmajorinfluenceonthesamplingintensity,timeandresourcesspentinthefieldmeasurements.Theareaofaplotdependsonthestanddensity.Therefore,increasingtheplotareadecreasesthevariabilitybetweentwosamples.AccordingtoFreese(1962)63,therelationshipbetweencoefficientofvariationandplotareacanbedenotedasfollows:212122/aaCVCV(A3-5)Wherea1anda2representdifferentsampleplotareasandtheircorrespondingcoefficientofvariation(CV).Thus,byincreasingthesampleplotarea,variationamongplotscanbereducedpermittingtheuseofsmallsamplesizeatthesameprecisionlevel.Usually,thesizeofplotsisbetween100m2fordense63Freese,F.1962.ElementaryForestSampling.USDAHandbook232.GPOWashington,DC.91ppVM0015,Version1.1SectoralScope15Page135standsand1000m2foropenstands64.PlotlocationToavoidsubjectivechoiceofplotlocations(plotcenters,plotreferencepoints,movementofplotcenterstomore“convenient”positions),thepermanentsampleplotsshallbelocatedeithersystematicallywitharandomstart(whichisconsideredgoodpracticeinIPCCGPG-LULUCF)orcompletelyrandomlyinsideeachdefinedstratum.ThiscanbeaccomplishedwiththehelpoftheprojectGISplatformandaGPSinthefield.Thegeographicalposition(GPScoordinate),administrativelocation,stratumandstand,seriesnumberofeachplot,aswellastheprocedureusedforlocatingthemshallberecordedandarchived.Also,itisrecommendedthatthesamplingplotsareasevenlydistributedaspossible.Forexample,ifonestratumconsistsofthreegeographicallyseparatedsites,thenitisproposedtoDividethetotalstratumareabythenumberofplots,resultingintheaveragearearepresentedbyeachplot;Dividetheareaofeachsitebythisaverageareaperplot,andassigntheintegerpartoftheresulttothissite.e.g.,ifthedivisionresultsin6.3plots,then6plotsareassignedtothissite,and0.3plotsarecarriedovertothenextsite,andsoon.However,remoteareasandareaswithpooraccessibility(eitherbecauseofphysicalorsocialbarrierssuchasunsafeareas)maybeexcludedforthelocationofsamplingplots,usingatransparentandconservativeprocedure,suchascreatingabufferzonealongroads,pathsornavigableriversthatmaybeusedforreachingthesamplingplots.Inthiscase,therepresentativenessoftheplotsforthecorrespondingstratummustbeensured.Theexacttotalnumberofplotsisunknownatthebeginningofthefieldsamplingandthusaperfectlyevendistributionofsamplingplotsisnotpossible.Thisisalsothecaseifpreexistinginventorydataisused.Inanycase,theunevendistributionofsamplingplotswillbeacceptedprovidedthatstatisticalrepresentativenessandtheuseofstandardsamplingtechniquesaregranted,clearlyreportedandarchived.EstimationofcarbonstocksThetotalaveragecarbonstockperhectare(=carbondensity)inaLU/LCclassisestimatedbythefollowingequation:clclclclclclclCwpCsocClCdwCbbCabCtot(A3-6)Where:Ctotcl=AveragecarbonstockperhectareinallaccountedcarbonpoolsoftheLU/LC-classcl;tCO2-eha-1Note:Cwpclissubtractedifclisaninitialpre-deforestationforestclassinthebaselinecase.Itisaddedifclisafinalpost-deforestationclassoraforestclassnotdeforestedintheprojectscenario.64Itisrecommendedtousesampleplotsofequalareaforthestrata.Thismethodologycannotbeusedifsampleplotsareavarieswithinthesamestratum.Thedensityoftreestobeconsideredistheoneatmaturityofthetrees.VM0015,Version1.1SectoralScope15Page136Cabcl=Averagecarbonstockperhectareintheabove-groundbiomasscarbonpooloftheLU/LCclasscl;tCO2-eha-1Cbbcl=Averagecarbonstockperhectareinthebelow-groundbiomasscarbonpooloftheLU/LCclasscl;tCO2-eha-1Cdwcl=AveragecarbonstockperhectareinthedeadwoodcarbonpooloftheLU/LCclasscl;tCO2-eha-1Clcl=AveragecarbonstockperhectareinthelittercarbonpooloftheLU/LCclasscl;tCO2-eha-1Csoccl=AveragecarbonstockperhectareinthesoilorganiccarbonpooloftheLU/LCclasscl;tCO2-eha-1Cwpcl=AveragecarbonstockperhectareinthewoodproductscarbonpooloftheLU/LCclasscl;Note:SeemethodologyPart2onmandatorycarbonpools.Estimationofcarbonstocksinthelivingbiomasscarbonpools(CabclandCbbcl)Inaforestmostofthecarbonisstoredinthetreecomponentofthelivingbiomass.Hence,foramajorityofforestclassesitissufficienttoestimatethecarbonstockinthetreecomponentandtoignorethecarbonstockinthenon-treevegetationcomponent.However,theremightbesituationswherecarbonstocksinthenon-treevegetationcomponentaresignificantlyincreasedintheLU/LC-classesadoptedafterdeforestation(e.g.coffeeplantations).Undersuchcircumstances,carbonstocksinthenon-treevegetationcomponentshouldbeestimated65.Thelivingbiomasscomponentsthataremeasuredandtheminimumdiameteratbreastheight(DBH)abovewhichtreesaremeasuredshouldbespecifiedinthePD.Carbonstocksinthelivingbiomassaregivenbythefollowingequations:clclclCabntCabtCab(A3-7)clclclCbbntCbbtCbb(A3-8)Where:Cabcl=Averagecarbonstockperhectareintheabove-groundbiomasscarbonpooloftheLU/LCclasscl;tCO2-eha-1Cabtcl=Averagecarbonstockperhectareintheabove-groundtreebiomasscarbonpooloftheLU/LCclasscl;tCO2-eha-1Cabntcl=Averagecarbonstockperhectareintheabove-groundnon-treebiomasscarbonpooloftheLU/LCclasscl;tCO2-eha-1Cbbcl=Averagecarbonstockperhectareinthebelow-groundbiomasscarbonpooloftheLU/LCclasscl;tCO2-eha-165ThesamecarbonpoolsaretobeestimatedforthetwoclassesofaLU/LC-changecategoryVM0015,Version1.1SectoralScope15Page137Cbbtcl=Averagecarbonstockperhectareinthebelow-groundtreebiomasscarbonpooloftheLU/LCclasscl;tCO2-eha-1Cbbntcl=Averagecarbonstockperhectareinthebelow-groundnon-treebiomasscarbonpooloftheLU/LCclasscl;tCO2-eha-1Treecomponent(CabtclandCbbcl)Thecarbonstockoftreescanbeestimatedusing:(a)Existingforestinventorydata;or(b)Directfieldmeasurements.(a)Estimationsusingforestinventorydata(SeethemostrecentversionoftheGOFC-GOLDsourcebookforREDDformoredetails)Forestinventorydatatypicallycomesintwodifferentforms:(1)Standtablesand(2)Stocktables.(a.1)Standtablesprovidethenumberoftreesindiameter(DBH)classes.Themethodbasicallyinvolvesestimatingthebiomassperaveragetreeofeachdiameterclassofthestandtable,multiplyingbythenumberoftreesintheclass,andsummingacrossallclasses.Themid-pointdiameterofadiameterclassshouldbeusedincombinationwithanallometricbiomassregressionequation(explainedlater).Standtablesoftenincludetreeswithaminimumdiameterof30cmormore,whichessentiallyignoresasignificantamountofcarbonparticularlyforyoungerforestsorheavilylogged.ToovercomethisproblemGillespieetal.(1992)developedatechniquethatcanbeusedtoestimatethenumberoftreesinlowerdiameterclasses(seeBox1).(a.2)Stocktablesindicatethevolumeofmerchantabletimberbydiameterclassortotalperhectare.Ifvolumedataarejustforcommercialspeciesdonotusethemforestimatingcarbonstocks,becausealargeandunknownproportionofthetotalvolumeisexcluded.Box1.AddingdiameterclassestotruncatedstandtablesDBH-ClassMidpointDiameterNumberofStemsperhacmcmNr10-1915-20-2925-30-393535.140-494511.850-59554.7………DBHclass1=30-39cm,DBHclass2=40-49cmRatio=35.1/11.8==2.97VM0015,Version1.1SectoralScope15Page138ThebiomassdensitycanbecalculatedfromVolumeOverBark(VOB)bymultiplyingthisvaluewiththeBiomassConversionandExpansionFactor(BCEF).WhenusingthisapproachanddefaultvaluesoftheBCEFprovidedintheIPCCGLAFOLU,itisimportantthatthedefinitionsofVOBmatch.ThevaluesofBCEFfortropicalforestsintheAFOLUreportarebasedonadefinitionofVOBasfollows:“Inventoriedvolumeoverbarkoffreebole,i.e.fromstumporbuttresstocrownpointorfirstmainbranch.Inventoriedvolumemustincludealltrees,whetherpresentlycommercialornot,withaminimumdiameterof10cmatbreastheightorabovebuttressifthisishigher”.ValuesoftheBCEFaregivenintable4.5oftheIPCCGLAFOLUguidelines,andthoserelevanttotropicalhumidbroadleafandpineforestsareshowninthetable1.Table1.ValuesofBCEFforapplicationtovolumedata(ModifiedbyGOFC-GOLD(2008)fromtable4.5inIPCCGLAFOLU)ForesttypeGrowingstockvolume–averageandrange(VOB,m3/ha)<2021-4041-6061-8080-120120-200>200Naturalbroadleaf4.02.82.11.71.51.31.02.5-12.01.8-3041.2-2.51.2-2.21.0-1.80.9-1.60.7-1.1Conifer1.81.31.00.80.80.70.71.4-2.41.0-1.50.8-1.20.7-1.20.6-1.01.6-0.90.6-0.9IncaseswherethedefinitionofVOBdoesnotmatchexactlythedefinitiongivenabove,GOFC-GOLD(2008)recommendthefollowing:IfthedefinitionofVOBalsoincludesstemtopsandlargebranchesthenthelowerboundoftherangeforagivengrowingstockshouldbeused;IfthedefinitionofVOBhasalargeminimumtopdiameterortheVOBiscomprisedoftreeswithparticularlyhighbasicwooddensitythentheupperboundoftherangeshouldbeused.ForestinventoriesoftenreportvolumesfortreesaboveaminimumDBH.ToincludethevolumeofDBHclassesbelowtheminimumDBH,GOFC-GOLD(2008)proposesVolumeExpansionFactors(VEF).However,duetolargeuncertaintiesinthevolumeofsmallerDBHclasses,inventorieswithaminimumdiameterthatishigherthan30cmshouldnotbeused.Volumeexpansionfactorsrangefromabout1.1to2.5,andarerelatedtotheVOB30asfollowstoallowconversionofVOB30toaVOB10equivalent:ForVOB30<250m3/hausethefollowingequation:))30ln(209.0300.1(VOBExpVEF(A3-9)ForVOB30>250m3/hauseVEF=1.9SeeBox2forademonstrationoftheuseoftheVEFcorrectionfactorandBCEFtoestimatebiomassdensity.VM0015,Version1.1SectoralScope15Page139Box2.Useofvolumeexpansionfactor(VEF)andbiomassconversionandexpansionfactor(BCEF)TropicalbroadleafforestwithaVOB30=100m3/ha(1)CalculatetheVEF:VEF=Exp(1.300-0.209Ln(100))=1.40(2)CalculateVOB10:VOB10=100m3/hax1.40=140m3/ha(3)TaketheBCEFfromthetable1above:BCEFfortropicalhardwoodwithgrowingstockof140m3/ha=1.3(4)Calculateabove-groundbiomassdensity:=1.3x140=182t/haBelow-groundtreebiomass(roots)isalmostnevermeasured,butinsteadisincludedthrougharelationshiptoabove-groundbiomass(usuallyaroot-to-shootratio).Ifthevegetationstratacorrespondwithtropicalorsubtropicaltypeslistedintable2(modifiedbyGOFC-GOLD,2008fromtable4.4inIPCCGLAFOLUtoexcludenon-forestornon-tropicalvaluesandtoaccountforincorrectvalues)thenitmakessensetoincluderoots.VM0015,Version1.1SectoralScope15Page140Table2.Roottoshootratios(Modified66byGOFC-GOLD,2008)fromtable4.4inIPCCGLAFOLU)DomainEcologicalZoneAbove-groundbiomassRoot-to-shootratioRangeTropicalTropicalrainforest<125t.ha-10.200.09-0.25>125t.ha-10.240.22-0.33Tropicaldryforest<20t.ha-10.560.28-0.68>20t.ha-10.280.27-0.28SubtropicalSubtropicalhumidforest<125t.ha-10.200.09-0.25>125t.ha-10.240.22-0.33Subtropicaldryforest<20t.ha-10.560.28-0.68>20t.ha-10.280.27-0.28(b)EstimationsusingdirectfieldmeasurementsTwomethodsareavailabletoestimatethecarbonstockoftrees:(1)AllometricEquationsmethod,and(2)BiomassExpansionFactors(BEF).TheAllometricEquationsmethodshouldbefavoredovertheBEFmethod.However,ifnobiomassequationsareavailableforagivenspeciesorforesttype,theBEFmethodshallbeused.(b.1)Allometricmethod1.Inthesampleplots,identifytheplotuniqueidentificationnumberandrecordthemeasurementdate.Thenidentifythetreespeciesandidentificationnumbersandmeasurethediameteratbreastheight(DBH,at1.3maboveground),andpossibly,dependingontheformoftheallometricequation,theheightofallthetreesaboveaminimumDBH.2.Chooseorestablishtheappropriateallometricequationsforeachspeciesorspeciesgroupj.abjjHDBHfTBab),((A3-10)Where:TBabj=above-groundbiomassofatreeofspecies,orspeciesgroup,orforesttypej,kgtree-166ThemodificationcorrectsanerrorinthetablebasedoncommunicationswithKarelMulroney,theleadauthorofthepeerreviewedpaperfromwhichthedatawereextracted.VM0015,Version1.1SectoralScope15Page141Note:theunit(Kgtree-1)couldalsobettree-1ortha-1,dependingonthetypeofallometricequationfj(DBH,H)ab=anallometricequationforspecies,orgroupofspecies,orforesttypej,linkingabove-groundtreebiomass(inkgtree-1–seethenoteabove)todiameteratbreastheight(DBH)andpossiblytreeheight(H).Theallometricequationsarepreferablylocal-derivedandforesttype-specific.Whenallometricequationsdevelopedfromabiome-widedatabase,suchasthoseinAnnex4A.2,Tables4.A.1and4.A.2ofGPGLULUCF,areused,itisnecessarytoverifybydestructivelyharvesting,withintheprojectarea(orwithintheforestclass),butoutsidethesampleplots,afewtreesofdifferentspeciesandsizesandestimatetheirbiomassandthencompareagainsttheselectedequation.Thenumberoftreestobefelledwilldependonthenumberofspeciesandtherangeofsizeoftreesthemodel(s)willrepresent.Asageneralrule,thereshouldbetwotreessampledforeach5cmDBHwidthclass.Incaseofmixedspeciesnaturalforests,thesampleshouldrepresentallstrataexistingintheforest.Ifthebiomassestimatedfromtheharvestedtreesiswithinabout10%ofthatpredictedbytheequation,thenitcanbeassumedthattheselectedequationissuitablefortheproject;otherwise,itwillberequiredtodevelopfullallometricmodelsvalidfortheproject.Inthiscase,thesamplemustbeincreaseduntilobtaininganappropriatedstatisticalfit(allmodelvariablesshouldbestatisticallysignificantandthesquaredrofequationshouldbeatleast0.7).Ifresourcespermit,thecarboncontentcanbedeterminedinthelaboratory.Finally,allometricequationsareconstructedrelatingthebiomasswithvaluesfromeasilymeasuredvariables,suchasbasalareaortreediameterandtotalheight(seeChapter4.3inGPGLULUCF).Alsogenericallometricequationscanbeused,aslongasitcanbeproventhattheyareconservative.3.Estimatethecarbonstockintheabove-groundbiomassofalltreesmeasuredinthepermanentsampleplotsusingtheallometricequationsselectedorestablishedforeachspecies,groupofspeciesorforesttype.jtrtrCFTBabTCab(A3-11)Where:TCab,tr=Carbonstockinabove-groundbiomassoftreetr;kgCtree-1(ortCtree-1)TBabtr=Above-groundbiomassoftreetr;kgtree-1(orttree-1)CFj=Carbonfractionfortreetr,ofspecies,groupofspeciesorforesttypej;tC(td.m.)-14.Calculatethecarbonstockinabove-groundbiomassperplotonaperareabasis.Calculatebysummingthecarbonstockinabove-groundbiomassofalltreeswithineachplotandmultiplyingbyaplotexpansionfactorthatisproportionaltotheareaofthemeasurementplot.Ifcarbonstockiscalculatedinkilograms,itisdividedby1,000toconvertfromkgtotonnes.10001plTRtrtrplXFTCabPCab(A3-12)VM0015,Version1.1SectoralScope15Page142APXF000,10(A3-13)Where:PCabpl=Carbonstockinabove-groundbiomassinplotpl;tCha-1TCabtr=Above-groundbiomassoftreetr;kgtree-1(orttree-1)XF=Plotexpansionfactorfromperplotvaluestoperhectarevalues;dimensionlessAP=Plotarea;m2tr=1,2,3,…TRplnumberoftreesinplotpl;dimensionless5.CalculatetheaveragecarbonstockbyaveragingacrossallplotswithinaLU/LCclass.clPLplplclPLPCabCabcl112/44(A3-14)Where:Cacl=Averagecarbonstockperhectareinabove-groundbiomassinLU/LCclasscl;tCO2-eha-1.PCabpl=Carbonstockinabove-groundbiomassinplotpl;tCha-144/12=RatioconvertingCtoCO2-epl=1,2,3,…PLclplotsinLU/LCclasscl;dimensionlessPLcl=TotalnumberofplotsinLU/LCclasscl;dimensionless6.Estimatethecarbonstockinthebelow-groundbiomassoftreetrusingroot-shootratiosandabove-groundcarbonstockandapplysteps4and5tobelow-groundbiomass.jtrtrRTCabTCbb(A3-15)10001TRtrtrplXFTCbbPCbb(A3-16)lPLplplclPLPCbbCbbl112/44(A3-17)Where:TCbbtr=Carbonstockinbelow-groundbiomassoftreetr;kgCtree-1(ortCtree-1)TCabtr=Carbonstockinabove-groundbiomassoftreetr;kgCtree-1(ortCtree-1)VM0015,Version1.1SectoralScope15Page143Rj=Root-shootratioappropriateforspecies,groupofspeciesorforesttypej;dimensionlessPCbbpl=Carbonstockinbelow-groundbiomassinplotpl;tCha-1XF=Plotexpansionfactorfromperplotvaluestoperhectarevaluestr=1,2,3,…TRplnumberoftreesinplotpl;dimensionlessCbbcl=Averagecarbonstockperhectareinbelow-groundbiomassinLU/LCclasscl;tCO2-eha-144/12=RatioconvertingCtoCO2-epl=1,2,3,…PLlplotsinLU/LCclasscl;dimensionlessPLcl=totalnumberofplotsinLU/LCclasscl;dimensionless(b.2)BiomassExpansionFactor(BEF)Method1.Inthesampleplots,identifytheplotuniqueidentificationnumberandrecordthemeasurementdate.Thenidentifythetreespeciesandidentificationnumbersandmeasurethediameteratbreastheight(DBH,at1.3maboveground),andpossibly,dependingontheformofthevolumeequation,theheightofallthetreesaboveaminimumDBH.2.Estimatethevolumeofthecommercialcomponentpereachtreebasedonlocallyderivedequationsbyspecies,speciesgrouporforesttype.Then,sumforalltreeswithinaplot,andexpressitascommercialvolumeperunitofarea(m3ha-1).Itisalsopossibletocombinestepb.1andstepb.2ifthereareavailablefieldinstrumentsthatmeasurevolumeperhectaredirectly(e.g.aBitterlichrelascope).Thevolumeperplotisanancillaryvariable,anditmaybeneededinsomecasestoestimatetheproperbiomassexpansionfactorortheroot-shootratio.67VjtrHDBHfV),((A3-18)XFVVTRtrtrpl1(A3-19)APXF000,10(A3-20)Where:Vtr=Commercialvolumeoftreetr;m3tree-1Vpl=Commercialvolumeofplotpl;m3plot-167Seeforexample:Brown,S.1997.EstimatingBiomassandBiomassChangeofTropicalForests:Aprimer.FAOForestryPaper134,UNFAO,Rome.VM0015,Version1.1SectoralScope15Page144fj(DBH,H)V=acommercialvolumeequationforspeciesorspeciesgroupj,linkingcommercialvolumetodiameteratbreastheight(DBH)andpossiblytreeheight(H).tr=1,2,3,…TRpnumberoftreesinplotp;dimensionlessXF=PlotexpansionfactorfromperplotvaluestoperhectarevaluesAP=plotarea;m23.Chooseabiomassexpansionfactor(BEF)andaroot-shootratio(R).TheBEFandroot-shootratiovarywithlocalenvironmentalconditions,foresttype,speciesandageoftrees,andthevolumeofthecommercialcomponentoftrees,therefore,theyshouldbecalculatedforeachplotinagivenLU/LCclass.Usetheresultfrom‘2’tochoosethem.Theseparameterscanbedeterminedbyeitherdevelopingalocalregressionequationorselectingfromnationalinventory,annex3A.1table3A.1.10ofGPGLULUCF,orfrompublishedsources.IfasignificantamountofeffortisrequiredtodeveloplocalBEFsandroot-shootratio,involving,forinstance,harvestoftrees,thenitisrecommendednottousethismethodbutrathertousetheresourcestodeveloplocalallometricequationsasdescribedintheallometricmethodabove(referstoChapter4.3inGPGLULUCF).Ifthatisnotpossibleeither,nationalspeciesspecificdefaultsforBEFandRcanbeused.SincebothBEFandtheroot-shootratio(R)areageorstanddensitydependent,itisdesirabletouseage-dependentorstanddensity-dependentequations(forexample,volumeperhectare).StemwoodvolumecanbeverysmallinyoungstandsandBEFcanbeverylarge,whileforoldstandsBEFisusuallysignificantlysmaller.ThereforeusingaverageBEFvaluemayresultinsignificanterrorsforbothyoungstandsandoldstands.Itispreferabletouseallometricequations,iftheequationsareavailable,andasasecondbestsolution,touseage-dependentorstanddensity-dependentBEFs(butforveryyoungtrees,multiplyingasmallnumberforstemwoodwithalargenumberfortheBEFcanresultinsignificanterror).4.Convertthevolumeofthecommercialcomponentofeachtreeinaplotintocarbonstockinabove-groundbiomassandbelow-groundbiomasspertreeviabasicwooddensity,BEF,root-shootratioandcarbonfraction(applicabletothespecies):jpljtrtrCFBEFDVTCab(A3-21)trpljtrtrRTCabTCbb,,(A3-22)Where:TCabtr=Carbonstockinabove-groundbiomassoftreetr;kgCtree-1TCbbtr=Carbonstockinbelow-groundbiomassoftreetr;kgCtree-1Vtr=Commercialvolumeoftreetr;m3tree-1Dj=Wooddensityforspeciesj;tonnesd.m.m-3(SeeIPCCGPG-LULUCF,2003table3A.1.9orUSDAwooddensitytable68)68Reyesetal.,1992.Wooddensitiesoftropicaltreespecies.USDAVM0015,Version1.1SectoralScope15Page145BEFpl=Biomassexpansionfactorforconvertingvolumesofextractedroundwoodtototalabove-groundbiomass(includingbark),applicabletotreetr,inplotp;dimensionless.CFj=Carbonfractionapplicabletotreetrofspeciesj;tonnesC(tonned.m.)-1.Rj,pl,tr=Root-shootratio,applicabletotreetrofspeciesjinplotp;dimensionless5.Continuewithstepa.4oftheallometricequationmethodtocalculatethecarbonstockinabove-groundandbelow-groundbiomassbyaggregatingsuccessivelyatthetree,plot,andLU/LCclasslevels.Non-treecomponent(CabntclandCbbntcl)Intropicalforestsnon-treevegetationincludespalms,shrubs,herbaceousplants,lianasandotherepiphytes.Thesetypesofplantsaredifficulttomeasure.Unlesstheyformasignificantcomponentoftheecosystem,theyshouldnotbemeasured,whichisconservativeastheirbiomassisusuallymuchreducedintheLU/LCclassesadoptedafterdeforestation.Carbonstockestimationsforthenon-treevegetationcomponentsareusuallybasedondestructiveharvesting,dryingandweighting.ThesemethodsaredescribedintheSourcebookforLULUCFprojects(Pearsonetal.,2005)fromwhichmostofthefollowingexplanationsaretaken.Forherbaceousplants,asquareframeof1m2madefromPVCpipeoranotherappropriatedmaterialissufficientforsampling.Forshrubsandotherlargenon-treevegetation,similarorlargerframesshouldbeused(about1-2m2,dependingonthesize,distributionandfrequencyofthisvegetation).Forspecificforestspecies(e.g.bamboo)orcroptypes(e.g.coffee)itisalsopossibletodevelopallometricequations.Whenusingdestructivesampling,applythefollowingsteps:a.Placetheclipframeatthesamplingsite.Ifnecessary,opentheframeandplacearoundthevegetation.b.Clipallvegetationwithintheframetogroundlevel.Cuteverythinggrowingwithinthequadrate(groundsurfacenotthree-dimensionalcolumn)andsamplethis.c.Weighthesampleandremoveawell-mixedsub-samplefordeterminationofdry-to-wetmassratio.Weightthesub-sampleinthefield,thenoven-drytoconstantmass(usuallyat~70oC).d.Calculatethedrymassofeachsample.Whereasub-samplewastakenfordeterminationofmoisturecontentusethefollowingequation:samplewholeofmassfreshmassfreshsubsamplemassdrysubsamplemassDry(A3-23)e.Thecarbonstockintheabove-groundnon-treebiomassperhectareiscalculatedbymultiplyingthedrymassbyanexpansionfactorcalculatedfromthesample-frameorplotsizeandthenbymultiplyingbythecarbonfractionandCO2/Cratio.ForcalculatingtheaveragecarbonstockperLU/LCclass,averageoverallsamples:VM0015,Version1.1SectoralScope15Page146clPLclplplplclPLCFXFDMCabnt112/44(A3-24)Where:Cabntcl=Averagecarbonstockperhectareintheabove-groundnon-treebiomasscarbonpooloftheLU/LCclasscl;tCO2-eha-1DMpl=Drymassofsamplepl;tonnesofd.m.XF=Plotexpansionfactor=[10.000/PlotArea(m2)];dimensionlessCFpl=Carbonfractionofsamplepl;tonnesC(tonned.m.)-144/12=RatioconvertingCtoCO2-epl=1,2,3,…PLplplotsinLU/LCclasscl;dimensionlessPLcl=TotalnumberofplotsinLU/LCclasscl;dimensionlessf.Thecarbonstockperhectareofthebelow-groundnon-treebiomassiscalculatedbymultiplyingtheestimatedabove-groundestimatebyandappropriateroottoshootratio.Estimationofcarbonstocksinthedeadwoodcarbonpool(Cdwcl)CarbonstocksinthedeadwoodcarbonpoolcanbesignificantinforestclassesalthoughisusuallyinsignificantorzeroinmostagriculturalandpastoralLU/LCclasses.However,ifburningisusedtoclearslash,deadwoodmaybeasignificantcomponentofcarbonstocksinagricultural/pasture,especiallyintheshortterm.Therefore,inmostcasesitwillbeconservativetoignorethedeadwoodcarbonpool.Deadwoodcomprisestwotypes:standingdeadwoodandlyingdeadwood.Differentsamplingandestimationproceduresareusedtoestimatethecarbonstocksofthetwocomponents.Cdwcl=Csdwcl+Cldwcl(A3-25)Where:Cdwcl=AveragecarbonstockperhectareinthedeadwoodcarbonpooloftheLU/LCclasscl;tCO2-eha-1Csdwcl=AveragecarbonstockperhectareinthestandingdeadwoodcarbonpooloftheLU/LCclasscl;tCO2-eha-1Cñdwcl=AveragecarbonstockperhectareinthelyingdeadwoodcarbonpooloftheLU/LCclasscl;tCO2-eha-1Standingdeadwoodshallbemeasuredusingthesamplingcriteriaandmonitoringfrequencyusedformeasuringlivetrees.Lyingdeadwoodshallbemeasuredusingthetransectmethodasexplainedbelow.ThedescriptionofthemethodtomeasurelyingdeadwoodistakenfromHarmonandSexton(1996).VM0015,Version1.1SectoralScope15Page147Standingdeadwood(Csdwcl)a.Withintheplotsdelineatedforlivetrees,thediameteratbreastheight(DBH)ofstandingdeadtreescanalsobemeasured.Inaddition,thestandingdeadwoodiscategorizedunderthefollowingfourdecompositionclasses:1.Treewithbranchesandtwigsthatresemblealivetree(exceptforleaves);2.Treewithnotwig,butwithpersistentsmallandlargebranches;3.Treewithlargebranchesonly;4.Bole(trunk)only,nobranches.b.Forclasses2,3and4,theheightofthetree(H)andthediameteratgroundlevelshouldbemeasuredandthediameteratthetopshouldbeestimated.Heightcanbemeasuredusingaclinometer.c.Topdiametercanbeestimatedusingarelascopeorthroughtheuseofatransparentmeasuringruler.Holdtherulerapproximately10-20cmfromyoureyeandrecordtheapparentdiameterofthetopofthetree.Thetruediameteristheequalto:)()(tan)(tan)(mmeasurmentRulermrulertoeyeceDismtreetoeyeceDismdiameterTrue(A3-26)Distancecanalsobemeasuredwithalaserrangefinder.d.Fordecompositionclass1thecarboncontentofeachdeadtreeisestimatedusingtheallometricorBEFmethodsappliedforlivetreesandbysubtractingoutthebiomassofleaves(about2-3%oftheabove-groundbiomassforhardwood/broadleafspeciesand5-6%forsoftwood/coniferspecies).e.Forclasses2,3and4,whereitisnotclearwhatproportionoftheoriginalbiomasshasbeenlost,itisconservativetoestimatethebiomassofjustthebole(trunk)ofthetree.ThevolumeiscalculatedusingDBHandheightmeasurementsandtheestimateofthetopdiameter.Itisthenestimatedasthevolumeofatruncatedcone:2122213/1)3(rrrrHmVolume(A3-27)Where:H=Heightofthetree;metersr1=Radiusatthebaseofthetree;metersr2=Radiusatthetopofthetree;metersThevolumeisconvertedtodrybiomassusingtheappropriatewooddensityDjandthentocarbondioxideequivalentsusingthecarbonfractionCuffandCO2/Cratio(44/12),asintheBEFmethod,butignoringtheBiomassExpansionFactor.f.ToaggregatethecarbonstockofeachstandingdeadtreeattheplotlevelandthenattheLU/LCclasslevel,continuewithstepa.4oftheallometricequationmethod.VM0015,Version1.1SectoralScope15Page148Lyingdeadwood(Cldwcl)Lyingdeadwoodismostefficientlymeasuredusingtheline-intersectmethod.Onlycoarsedeadwoodaboveapredefinedminimumdiameter(e.g.>10cm)ismeasuredwiththismethod–deadwoodwithsmallerdiametercanbemeasuredwithlitter.a.Ateachplotlocation,layouttwolinesof50meterseitherinasinglelineoratrightangles.Thelinesshouldbeoutsidetheboundariesoftheplottoavoiddamagetoseedlingsintheplotsduringmeasurement,andalsotobiasingthedeadwoodpoolbydamagingduringtreemeasurement.Alternatively,separateandindependentsamplingoflyingdeadwoodmaybeused,inwhichcasedeadwoodtransectsmustberandomlylocated(toavoidsubjectivechoiceofplotslocations),withoutsamplereplacement,usingthesameprocedureusedforlivetrees69.Theirlocationmustalsobepermanentlymarkedandtheircoordinatesreported.b.Alongthelengthofthelines,measurethediameterofeachintersectingpieceofcoarsedeadwoodaboveapredefinedminimumdiameter(e.g.>10cm).Calipersworkbestformeasuringthediameter.Apieceofdeadwoodshouldonlybemeasuredif:(a)morethan50%ofthelogisabove-groundand(b)thesamplinglinecrossesthroughatleast50%ofthediameterofthepiece.Ifthelogishollowattheintersectionpoint,measurethediameterofthehollow:thehollowportioninthevolumeestimatesshouldbeexcluded.c.Assigneachpieceofdeadwoodtooneofthethreefollowingdensityclasses:1.Sound2.Intermediate3.RottenTodeterminewhatdensityclassapieceofdeadwoodfitsinto,eachpieceshouldbestruckwithamachete.Ifthebladedoesnotsinkintothepiece(thatis,itbouncesoff),itisclassifiedassound.Ifitsinkspartlyintothepieceandtherehasbeensomewoodloss,itisclassifiedasintermediate.Ifthebladesinksintothepiece,thereismoreextensivewoodlossandthepieceiscrumbly,itisclassifiedasrotten.d.Atleast10randomdeadwoodsamplesofeachthreedensityclasses,representingarangeofspeciespresent,shouldbecollectedfordensitydetermination.Thisdeterminationcanbeaccomplishedusingthemaximummoisturecontentmethod(Smith1954),whichdoesnotrequiresamplevolumedetermination.Usingachainsaworahandsaw,cutacompetediscorapieceofreasonablesizefromtheselectedpieceofdeadwoodandbringtothelaboratoryforwooddensitydetermination.e.Submergewoodsamplesinwateruntilsaturationisreached.Weightsaturatedsamples.Then,drysamplesat105°Cfor26hours.Extractandweightsamplesagain.Dothislastweightquickly,withdrawingsamplesfromovenimmediatelybeforeweightingthem,sothatnomoistureisabsorbedbydriedsamplesbeforeobtainingweights.69Usingthisalternateapproach,transectsmaybelocatedinplacesdistanttolivetreesplots,increasingsamplingcosts.Eveniflyingdeadwoodstocksareveryhomogeneousinallthestrata,implyingthatfewersampleswillberequired,thecostofadditionaldisplacementsandworkwon’tprobablycompensateforthedecreaseinsamplesnumber.VM0015,Version1.1SectoralScope15Page149f.Calculatethewooddensityforeachdensityclass(sound,intermediate,rotten)fromthepiecesofdeadwoodcollected.Densityiscalculatedbythefollowingequation:111.53Dmpspopo(A3-28)Where:Dm=Deadwooddensity;gcm-3Ps=Saturatedweightofsample;gPo=Anhydrousweightofsample,g1.53=WooddensityconstantAveragethedensitiestogetasingledensityvalueforeachclass.g.Foreachdensityclass,thevolumeiscalculatedseparatelyasfollows:LdddhamVolumen8...)/(2222123(A3-29)Where:d1,d2,...,dn=Diametersofintersectingpiecesofdeadwood;cmL=Lengthoftheline;metersh.TheperhectarecarbonstockinthelyingdeadwoodcarbonpoolofeachLU/LCclassiscalculatedasfollows:clPLplpldcdcDCdcdcclPLCFDVolumeCldwcl1112/44(A3-30)Where:Cldwcl=AveragecarbonstockperhectareinthelyingdeadwoodcarbonpooloftheLU/LCclasscl;tCO2-eha-1Volumedc=Volumeoflyingdeadwoodinthedensityclassdc;m3Ddc=Deadwooddensityofclassdc;tonnesd.m.m-3CFdc=Carbonfractionofthedensityclassdc;tonnesC(tonned.m.)-144/12=RatioconvertingCtoCO2-epl=1,2,3,…PLclplotsinLU/LCclasscl;dimensionlessPLcl=TotalnumberofplotsinLU/LCclasscl;dimensionlessdc=1,2,3deadwooddensityclasses;dimensionlessDC=Totalnumberofdensityclasses(3);dimensionlessVM0015,Version1.1SectoralScope15Page150Estimationofcarbonstocksinthelittercarbonpool(CLcl)Insomeforestecosystemlittercarbonstocksinthelittercarbonpoolcanbeasignificantcomponentofthetotalcarbonstockwhileinanthropogenicecosystem,particularlyinagriculturalorpastoralsystems,litterisalmostabsent.Litterisdefinedasalldeadorganicsurfacematerialontopofthemineralsoilnotconsideredinthelyingdeadwoodpool.Someofthismaterialisrecognizable(forexampledeadleaves,twigs,deadgrassesandsmallbranches)andsomeisunidentifiable(decomposedfragmentsofdifferentcomponentsoforiginallylivebiomass.Todifferentiatesmallwoodydebrisfromthelyingdeadwooditisnecessarytodefineadiameter(i.e.10cm)belowwhichsmalldeadwoodpiecesareclassifiedaslitterandabovewhichtheyareconsidereddeadwood.Iflitterismeasured,itshouldbesampledatthesametimeoftheyearateachmonitoringeventinordertoeliminateseasonaleffects.Thesamplingtechniqueissimilartotheoneusedfornon-treevegetation:asquareframeof1.0m2madefromPVCpipeoranothersuitablematerialcanbeused.ThefollowingdescriptionofthesamplinganddataanalysistechniquesistakenfromthesourcebookforLULUCFprojects(Pearsonetal.,2005).a.Placethesamplingframeatthesamplesite.b.Collectallthelitterinsidetheframe.Piecesoftwigsorwoodthatcrosstheborderoftheframeshouldbecutusingaknifeorpruningscissors.Placeallthelitteronatarpaulinbesidetheframeorinsideaweightingbag.Weighthesampleon-site,thenoven-drytoaconstantweight.c.Wheresamplebulkisexcessive,thefreshweightofthetotalsampleshouldberecordedinthefieldandasub-sampleofmanageablesize(approximately80-100g)takenformoisturecontentdetermination,fromwhichthetotaldrymasscanbecalculated.d.Calculatethedrymassofthesample.Whereasub-samplewastakenfordeterminationofthemoisturecontentuseequation23toestimatethedrymassofthewholesample.e.Thecarbonstockperhectareinthelittercarbonpooliscalculatedbymultiplyingthedrymassbyanexpansionfactorcalculatedfromthesample-frameorplotsizeandthenbymultiplyingbythecarbonfractionandCO2/Cratio.ForcalculatingtheaveragecarbonstockperLU/LCclass,averageoverallsamples(seeequation24).Estimationofcarbonstocksinsoilorganiccarbonpool(Csoccl)MethodstoestimatecarbonstocksinthesoilorganiccarbonpoolaredescribedinthesourcebookforLULUCFprojects(Pearsonetal.,2006)fromwhichthefollowingexplanationshavebeentaken.Threetypesofvariablesmustbemeasuredtoestimatesoilorganiccarbonstocks:(1)depth,(2)bulkdensity(calculatedfromtheoven-driedweightofsoilfromaknownvolumeofsampledmaterial),and(3)theconcentrationsoforganiccarbonwithinthesample.Thesampledepthshouldbeconstant,30cmisusuallyasufficientsamplingdepth.a.Steadilyinsertthesoilprobetoa30cmdepth.Ifthesoiliscompacted,usearubbermallettofullyinsert.Iftheprobewillnotpenetratetothefulldepth,donotforceitasitislikelyastoneorVM0015,Version1.1SectoralScope15Page151rootthatisblockingitsrouteand,ifforced,theprobewillbedamaged.Instead,withdrawtheprobe,cleanoutanycollectedsoilandinsertinanewlocation.b.Carefullyextracttheprobeandplacethesampleintoabag.Becausethecarbonconcentrationoforganicmaterialsismuchhigherthanthatofthemineralsoil,includingevenasmallamountofsurfacematerialcanresultinaseriousoverestimationofsoilcarbonstocks.c.Toreducevariability,aggregatefoursamplesfromeachcollectionpointforcarbonconcentrationanalysis.d.Ateachsamplingpoint,taketwoadditionalaggregatedcoresfordeterminationofbulkdensity.Whentakingthecoresformeasurementsofbulkdensity,careshouldbetakentoavoidanyexcessorlossofsoilfromthecores.e.Soilsamplescanbesenttoaprofessionallaboratoryforanalysis.Commerciallaboratoriesexistthroughouttheworldandroutinelyanalyzeplantandsoilsamplesusingstandardtechniques.Itisrecommendedtheselectedlaboratorybecheckedtoensuretheyfollowcommonlyacceptedstandardprocedureswithrespecttosamplepreparation(forexample,mixingandsieving),dryingtemperaturesandcarbonanalysismethods.Forbulkdensitydetermination,ensurethelaboratorydriesthesamplesinanovenat105oCforaminimumof48hours.Ifthesoilcontainscoarse,rockyfragments,thecoarsefragmentsmustberetainedandweighted.Forsoilcarbondetermination,thematerialissievedthrougha2mmsieve,andthenthoroughlymixed.Thewell-mixedsampleshouldnotbeoven-driedforthecarbonanalysis,butonlyair-dried;however,thecarbonconcentrationdoesneedtobeexpressedonanovendrybasisat105oC.Thedrycombustionsmethodusingocontrolledtemperaturefurnace(forexample,aLECOCHN-2000orequivalent)istherecommendedmethodfordeterminingtotalsoilcarbon,buttheWalkley-Blackmethodisalsocommonlyused.f.Calculatethebulkdensityofthemineralsoilcore:)/()()()/()/(3333mcgfragmentsrockofdensitycgfragmentscoarseofmasscmvolumecorecmgmassdryovencmgdensityBulk(A3-31)Wherethebulkdensityisforthe<2mmfraction,coarsefragmentsare>2mm.Thedensityofrockfragmentsisoftengivenas2.65g/cm3.g.Usingthecarbonconcentrationdataobtainedfromthelaboratory,theamountofcarbonperunitareaisgivenby:100)])()/([()/(3CcmdepthsoilcmgdensitybulksoilhatCsoccl(A3-32)Intheaboveequation,Cmustbeexpressedasadecimalfraction.Forexample,2.2%carbonisexpressedas0.022intheequation.h.ThecarbonstockperhectareinthesoilorganiccarbonpooliscalculatedbyaveragingthecarbonstockestimatespereachLU/LCclass:plPLplplclPLCsocCsocpl1(A3-33)VM0015,Version1.1SectoralScope15Page152Where:Csoccl=AveragecarbonstockperhectareinthesoilorganiccarbonpooloftheLU/LCclasscl;tCO2-eha-1Csocpl=Carbonstockperhectareinthesoilorganiccarbonpoolestimatedfortheplotpl;tCO2-eha-1pl=1,2,3,…PLplplotsinLU/LCclasscl;dimensionlessPLpl=TotalnumberofplotsinLU/LCclasscl;dimensionlessEstimationofcarbonstocksintheharvestedwoodproductscarbonpool(Cwpcl)Thewoodproductscarbonpoolmustbeincludedwherethereistimberharvestinthebaselinescenariopriortoorintheprocessofdeforestationandwhereprojectactivitiesmaysignificantlyreducethepool.Thewoodproductscarbonpoolmay(optionally)beincludedwherebaselineactivitiesmaysignificantlyreducethepool.Inthiscase,CwpclmustbesubtractedinthecalculationofCtotclinthebaselinecaseandcanbeaddedinthecalculationofCtotclintheprojectcase.Carbonstocksinwoodproductsarethosestocksthatbecomewoodproductspoolatthetimeofdeforestation.Theyaredividedinthreefractions,asfollows:Short-termwoodproducts:woodproductsandwastethatwoulddecaywithin3years;allcarbonshallbeassumedtobelostimmediately;Medium-termwoodproducts:woodproductsthatareretiredbetween3and100years;forthisgroupofwoodproducts,a20-yearlineardecayfunctionshallbeapplied;Long-termwoodproducts:woodproductsthatareconsideredpermanent(i.e.carbonisstoredfor100yearsormore);itmaybeassumedthatnocarbonisreleased.Accountingforcarbonstocksinwoodproductsinthebaselinecaseshouldonlytakeplaceatthetimeofdeforestation(yeart).Intheprojectcase,Cwpclcanbeaccountedattheyearsofplannedtimberharvest,inwhichcasemonitoringismandatory.Theproportionofcarbonstockstoredineachfractionofthewoodproductscarbonpoolmustbeobtainedfromspecificstudiesapplicabletothelocalconditionsorfromcountry-specificdataaboutthevolumeoftimberharvestedperforestclasses.Ifdataontheproportionofcarbonstocksineachfractionofthewoodproductcarbonpoolareunavailable,itisconservativetoassumethat100%ofthecarbonisstoredinthelong-termfractioninthebaselinecase(inwhichcasenocarbonisreleasedintotheatmosphereinthebaselinecase),andthat100%ofthecarbonisstoredinshort-termfractionintheprojectcase(inwhichcaseallcarbonisemittedimmediatelyintheprojectcase).Ifdataoncarbonstocksineachfractionofwoodproductsareavailableandiftimberharvestplans,specifyingharvestintensityperforestclassintermsofvolumeextractedperha,areavailablefortheProjectareauseMethod1.IfapprovedharvestplansarenotavailableuseMethod2.Method1:DirectVolumeExtractionEstimationStep1:Calculatethebiomasscarbonofthecommercialvolumeextractedsincetheprojectstartdateandintheprocessofdeforestationasfollows:VM0015,Version1.1SectoralScope15Page15311,,,,,,)1244((1ttjJjjticljwticlticlwCFDVEXABSLPACXB(A3-34)Where:CXBw,icl,t=Meancarbonstockperhectareofextractedbiomasscarbonbyclassofwoodproductwfromforestclassiclattimet;tCO2-eha-1icl=1,2,3,…Iclinitialpre-deforestationforestclasses;dimensionlessw=1,2,3…WWoodproductclass(sawn-wood,wood-basedpanels,otherindustrialround-wood,paperandpaperboard,andother);dimensionlesst=1,2,3…Tyears,ayearoftheprojectcreditingperiod;dimensionlesst=theyearatwhichtheareaABSLPAicl,tisdeforestedinthebaselinecase;dimensionlessj=1,2,3…Jtreespecies;dimensionlessABSLPAicl,t=Areaofforestclassicldeforestedatyeart;haVEX,w,j,fcl,t=Volumeoftimberforproductclassw,ofspeciesj,extractedfromwithinforestclassfclattimet;m3Dj=Meanwooddensityofspeciesj;td.m.m-3CFj=Carbonfractionofbiomassfortreespeciesj;tCt-1d.m.44/12=RatioofmolecularweightofCO2tocarbon;dimensionlessStep2:Calculatethecarbonstockinthewoodproductscarbonpoolextractedfromthebiomassattimet(yearofdeforestation).WwwticlwticlSTFCXBCwp1,,,)1((A3-35)Where:Cwpicl,t=Carbonstockinthewoodproductscarbonpoolininitialforestclassiclattimet;tCO2-eha-1icl=1,2,3,…Iclforestclasses;dimensionlessw=1,2,3…WWoodproductclass(sawn-wood,wood-basedpanels,otherindustrialround-wood,paperandpaperboard,andother);dimensionlesst=1,2,3…Tyears,ayearoftheprojectcreditingperiod;dimensionlessCXBw,icl,t=Meanstockofextractedbiomasscarbonbyclassofwoodproductwfromforestclassiclattimet;tCO2-eha-1STFw=Fractionofwoodproductsandwastethatwillbeemittedtotheatmospherewithin3years;allcarbonshallbeassumedtobelostimmediately;dimensionlessVM0015,Version1.1SectoralScope15Page154Step3:Calculatethebiomasscarbonextactedattimetthatbecomesthemedium-termwoodproductsatthetimeofdeforestation.(A3-36)Where:Cwpmt,icl,t=Carbonstockinthemedium-termwoodproductscarbonpoolatthetimeofdeforestationtoftheinitialforestclassicl;tCO2-eha-1Cwpicl,t=Carbonstockinthewoodproductscarbonpoolatthetimeofdeforestationtoftheinitialforestclassicl;tCO2-eha-1STFw=Fractionofwoodproductsandwastethatwillbeemittedtotheatmospherewithin3years;allcarbonshallbeassumedtobelostimmediately;dimensionlessLTFw=Fractionofwoodproductsthatareconsideredpermanent(i.e.carbonisstoredfor100yearsormore);itmaybeassumednocarbonisreleasedStep4:Calculatethebiomasscarbonextactedattimetthatbecomesthelong-termwoodproductsatthetimeofdeforestation.(A3-37)Where:Cwplt,icl,t=Carbonstockinthelong-termwoodproductscarbonpoolatthetimeofdeforestationtoftheinitialforestclassicl;tCO2-eha-1Cwpicl,t=Carbonstockinthewoodproductscarbonpoolatthetimeofdeforestationtoftheinitialforestclassicl;tCO2-eha-1STFw=Fractionofwoodproductsandwastethatwillbeemittedtotheatmospherewithin3years;allcarbonshallbeassumedtobelostimmediately;dimensionlessMTFw=Fractionofwoodproductsthatareretiredbetween3and100years;forthisgroupofwoodproducts,a20-yearlineardecayfunctionshallbeappliedMethod2:CommercialinventoryestimationStep1:Calculatethebiomasscarbonofthecommercialvolumeextractedpriortoorintheprocessofdeforestation:iclticlticlPcomBCEFCabCXB1,,(A3-38)Where:CXBicl,t=Meanstockofextractedbiomasscarbonfrominitialforestclassiclattimet;tCO2-eha-1Cabicl,t=Meanabove-groundbiomasscarbonstockininitialforestclassiclattimet;tCO2-eha-1))1()1((,,,,wwticlticlticlmtLTFSTFCwpCwpCwp,,,,((1)(1))lticlticlticltwwCwpCwpCwpSTFMTFVM0015,Version1.1SectoralScope15Page155BCEF=Biomassconversionandexpansionfactorforconversionofmerchantablevolumetototalabovegroundtreebiomass;dimensionlessPcomicl=Commercialvolumeasapercentoftotalabovegroundvolumeininitialforestclassicl;dimensionlesst=1,2,3…Tyears,ayearoftheprojectcreditingperiod;dimensionlessicl=1,2,3,…Iclforestclasses;dimensionlessStep2:Identifythewoodproductclass(es)(w,definedhereassawn-wood,wood-basedpanels,otherindustrialround-wood,paperandpaperboard,andother)thataretheanticipatedenduseoftheextractedcarboncalculatedinstep1.Itisacceptablepracticetoassigngrosspercentagesofvolumeextractedtowoodproductclassesonthebasisoflocalexpertknowledgeofharvestactivitiesandmarkets.Step3:Calculatethebiomasscarbonextractedattimetthatbecomesthewoodproductsatthetimeofdeforestation.WwwticlwticlSTFCXBCwp1,,,)1((A3-39)Where:Cwpicl,t=Carbonstockinwoodproductspoolininitialforestclassiclattimet;tCO2-eha-1icl=1,2,3,…Iclforestclasses;dimensionlessw=Woodproductclass(sawn-wood,wood-basedpanels,otherindustrialround-wood,paperandpaperboard,andother);dimensionlesst=1,2,3…Tyears,ayearoftheprojectcreditingperiod;dimensionlessCXBw,icl,t=Meanstockofextractedbiomasscarbonbyclassofwoodproductwfrominitialforestclassiclattimet;tCO2-eha-1STFw=Fractionofwoodproductsandwastethatwillbeemittedtotheatmospherewithin3years;allcarbonshallbeassumedtobelostimmediately;dimensionlessStep4:Calculatethebiomasscarbonextactedattimetthatbecomesthemedium-termwoodproductsatthetimeofdeforestation.(A3-40)Where:))1()1((,,,,wwticlticlticlmtLTFSTFCwpCwpCwpVM0015,Version1.1SectoralScope15Page156Cwpmt,icl,t=Carbonstockinthemedium-termwoodproductscarbonpoolatthetimeofdeforestationtoftheinitialforestclassicl;tCO2-eha-1Cwpicl,t=Carbonstockinthewoodproductscarbonpoolatthetimeofdeforestationtoftheinitialforestclassicl;tCO2-eha-1STFw=Fractionofwoodproductsandwastethatwillbeemittedtotheatmospherewithin3years;allcarbonshallbeassumedtobelostimmediately;dimensionlessLTFw=Fractionofwoodproductsthatareconsideredpermanent(i.e.carbonisstoredfor100yearsormore);itmaybeassumednocarbonisreleasedStep5:Calculatethebiomasscarbonextactedattimetthatbecomesthelong-termwoodproductsatthetimeofdeforestation.(A3-41)Where:Cwplt,icl,t=Carbonstockinthelong-termwoodproductscarbonpoolatthetimeofdeforestationtoftheinitialforestclassicl;tCO2-eha-1Cwpicl,t=Carbonstockinthewoodproductscarbonpoolatthetimeofdeforestationtoftheinitialforestclassicl;tCO2-eha-1STFw=Fractionofwoodproductsandwastethatwillbeemittedtotheatmospherewithin3years;allcarbonshallbeassumedtobelostimmediately;dimensionlessMTFw=Fractionofwoodproductsthatareretiredbetween3and100years;forthisgroupofwoodproducts,a20-yearlineardecayfunctionshallbeapplied,,,,((1)(1))lticlticlticltwwCwpCwpCwpSTFMTFVM0015,Version1.1SectoralScope15Page157APPENDIX4:METHODSTOESTIMATEEMISSIONSFROMENTERICFERMENTATIONANDMANUREMANAGEMENTEstimationofCH4emissionsfromentericfermentation(ECH4ferm,t,t)Theamountofmethane70emittedbyapopulationofanimalsiscalculatedbymultiplyingtheemissionrateperanimalbythenumberofanimalsabovethebaselinecase.Toreflectthevariationinemissionratesamonganimaltypes,thepopulationofanimalsisdividedintosubgroups,andanemissionfactorperanimalisestimatedforeachsubgroup.AsperIPCCGPG2000andIPCC2006GuidelinesforAFOLU,usethefollowingequation71:41001,04CHttGWPPopulationEFfermECH(A4-1))365/(DBIPforagePopulationtt(A4-2)Where:ECH4fermt=CH4emissionsfromentericfermentationatyeart;tCO2eEF1=EntericCH4emissionfactorforthelivestockgroup;kgCH4head-1yr-1Populationt=Equivalentnumberofforage-fedlivestockatyeart;headsPforaget=Productionofforageatyeart;kgd.m.yr-1DBI=Dailybiomassintake;kgd.m.head-1day-1GWPCH4=GlobalwarmingpotentialforCH4(withavalueof21forthefirstcommitmentperiod);dimensionless0.001=Conversionfactorofkilogramsintotonnes;dimensionless365=Numberofdayperyear;dimensionlesst=1,2,3,…TyearsoftheprojectcreditingperiodTheproductionofforagecanbeestimatedbycollectingproductionratesfromtheliteraturethatrepresentstheshrubspecies,climate,soilconditionsandotherfeaturesoftheareasinwhichforagewillbeproduced.Samplingsurveysisalsoagoodoption.Country-specificemissionfactorsforentericCH4emissionsaredocumentedinpeerreviewedliteratureorcanbeobtainedfromnationalGHGinventories.Defaultvaluesaregivenintable10.10and10.11inthe70Methaneisproducedinherbivoresasaby-productofentericfermentation,adigestiveprocessbywhichcarbohydratesarebrokendownbymicroorganismsintosimplemoleculesforabsorptionintothebloodstream.Bothruminantanimals(e.g.,cattle,sheep)andsomenon-ruminantanimals(e.g.,pigs,horses)produceCH4,althoughruminantsarethelargestsourcesincetheyareabletodigestcellulose,duetothepresenceofspecificmicroorganismsintheirdigestivetracts.TheamountofCH4thatisreleaseddependsonthetype,age,andweightoftheanimal,thequalityandquantityofthefeed,andtheenergyexpenditureoftheanimal.71Refertoequation10.19andequation10.20inIPCC2006GLAFOLUorequation4.12andequation4.13inGPG2000foragriculture.VM0015,Version1.1SectoralScope15Page158IPCC2006GuidelinesforAFOLU.WhenselectingemissionfactorsitisimportanttoselectthosefromaregionthatissimilartotheProjectarea.ThetablesinAnnex10A.1oftheIPCC2006GuidelinesforAFOLUspecifytheanimalcharacteristicsuchasweight,growthrateandmilkproductionusedtoestimatetheemissionfactors.Thesetablesshouldbeconsultedinordertoensurethatthelocalconditionsaresimilar.Inparticular,dataonaveragemilkproductionbydairylivestockshouldbeanalyzedwhenselectinganemissionfactorfordairylivestock.Toestimatetheemissionfactor,thedataintable10A.1caninterpolatedusingthedataonthelocalaveragemilkproduction.Fordataondailybiomassintakeuselocaldataordatathatareapplicabletothelocalconditionsaccordingtopeer-reviewedliteratureorthenationalGHGinventory.Whenselectingavaluefordailybiomassintake,ensurethatthechosendataareapplicabletoboththeforagetypestobeproducedandthelivestockgroup(seealsotable5inappendix2).EstimationofCH4emissionsfrommanuremanagement(ECH4mant)72ThestorageandtreatmentofmanureunderanaerobicconditionsproducesCH4.Theseconditionsoccurmostreadilywhenlargenumbersofanimalsaremanagedinconfinedarea(e.g.dairyfarms,beeffeedlots,andswineandpoultryfarms),andwheremanureisdisposedofinliquidbasedsystems.ThemainfactorsaffectingCH4emissionsaretheamountofmanureproducedandtheportionofmanurethatdecomposesanaerobically.Theformerdependsontherateofwasteproductionperanimalandthenumberofanimals,andthelatteronhowthemanureismanaged.Whenmanureisstoredortreatedasaliquid(e.g.inlagoons,ponds,tanks,orpits),itdecomposesanaerobicallyandcanproduceasignificantquantityofCH4.Thetemperatureandtheretentiontimeofstoragegreatlyaffecttheamountonmethaneproduced.Whenmanureishandledasasolid(e.g.instacksorpiles),orwhenitisdepositedonpasturesandrangelands,ittendstodecomposeundermoreaerobicconditionsandlessCH4isproduced.CH4emissionsfrommanuremanagementfortheforage-fedlivestockcanbeestimatedusingIPCCmethods73.42001,04CHttGWPPopulationEFmanECH(A4-3)Where:ECH4mant,t=CH4emissionsfrommanuremanagementatyeart;tCO2eEF2=ManuremanagementCH4emissionfactorforthelivestockgroup;kgCH4head-1yr-1Populationt=Equivalentnumberofforage-fedlivestockatyeart;headsGWPCH4=GlobalwarmingpotentialforCH4(withavalueof21forthefirstcommitmentperiod);dimensionless0.001=Conversionfactorofkilogramsintotonnes;dimensionlesst=1,2,3,…Tyearsoftheprojectcreditingperiod72TakenfromAR-AM0006version173Refertoequation10.22inAFOLUvolumeoftheIPCC2066Guidelinesorequation4.15inGPG2000foragriculture.VM0015,Version1.1SectoralScope15Page159Thebestestimateofemissionswillusuallybeobtainedusingcountry-specificemissionfactorsthathavebeenpublishedinpeer-reviewedliteratureorinthenationalGHGinventory.Itisrecommendedthatcountry-specificemissionfactorsbeusedthatreflecttheactualdurationofstorageandtypeoftreatmentofanimalmanureinthemanagementsystemused.Ifappropriatecountry-specificemissionfactorsareunavailable,defaultemissionfactorspresentedintable10.14-10.16ofIPCC2006GuidelinesforAFOLUmaybeused.Theseemissionfactorsrepresentthoseforarangeoflivestocktypesandassociatedmanagementsystems,byregionalmanagementpracticesandtemperature.Whenselectingadefaultfactor,besuretoconsultthesupportingtablesinAnnex10A.2ofIPCC2006GuidelinesforAFOLU,forthedistributionofmanuremanagementsystemsandanimalwastecharacteristicsusedtoestimateemissions.Selectanemissionfactorforaregionthatmostcloselymatchesthecircumstancesofthelivestockthatarefedforagefromtheprojectarea.EstimationofN2Oemissionsfrommanuremanagement(EN2Omant)74Nitrousoxideemissionsfrommanuremanagementvarysignificantlybetweenthetypeofmanagementsystemused,andcanalsoresultinindirectemissionsduetootherformsofnitrogenlossfromthesystem.TheN2OemissionsfrommanuremanagementcanbeestimatedusingmethodprovidedintheIPCC2006GuidelinesforAFOLU,orinIPCCGPG200075tttOmanEindNOmanEdirNOmanEN222(A420328/44001,02NttGWPEFNexPopulationOmanEdirN(A4-5)ONgasttGWPEFFracNexPopulationOmanEindN2428/44001,02(A4-6)Where:EN2Omanfcl,t=N2Oemissionsfrommanuremanagementatyeart;tCO2e1EdirN2Omant=DirectN2Oemissionsfrommanuremanagementatyeart;tCO2eEindNOmant=IndirectN2Oemissionsfrommanuremanagementatyeart;tCO2ePopulationt=Equivalentnumberofforage-fedlivestockatyeart;headsNex=AnnualaverageNexcretionperlivestockhead;kgNhead-1yr-1EF3=EmissionfactorforN2Oemissionsfrommanuremanagementforthelivestockgroup;kgN2O-N(kgN-1)head-1yr-1EF4=EmissionfactorforN2Oemissionsfromatmosphericdepositionofforage-sourcednitrogenonsoilsandwatersurfaces;kgN2O-N(kgNH3-NandNOx-Nemitted)-1head-1yr-1Note:TheuseoftheIPCCdefaultfactor0.01isrecommended.74TakenfromAR-AM0006version175Refertoequations10.25,10.26and10.27inAFOLUvolumeoftheIPCC2006Guidelinesand/orequation4.18inGPG2000foragriculture.VM0015,Version1.1SectoralScope15Page160Fracgas=FractionofmanagedlivestockmanurenitrogenthatvolatilizesasNH3andNOxinthemanuremanagementphase;kgNH3-NandNOx-Nemitted(KgN)-1GWPN2O=GlobalwarmingpotentialforN2O(310forthefirstcommitmentperiod);dimensionless44/28=ConversionofN20-NemissionstoN2Oemissions0.001=Conversionfactorofkilogramsintotonnes;dimensionlessThebestestimateoftheannualnitrogenexcretionratesforeachlivestockgroupwillusuallybeobtainedusingcountry-specificratesfrompublishedpeerreviewedliteratureorfromthenationalGHGinventory.Ifcountry-specificdatacannotbecollectedorderived,orappropriatedataarenotavailablefromanothercountrywithsimilarconditions,defaultnitrogenexcretionratescanbeobtainedfromtable10.19ofIPCC2006GuidelinesforAFOLU.Thepossibledatasourcesforemissionfactorsaresimilar.Defaultemissionfactorsaregivenintable10.21and11.3oftheIPCC2006GuidelinesforAFOLUanddefaultvaluesforvolatilizationofNH3andNOx(Fracgas)inthemanuremanagementsystemarepresentedintable10.22ofthesameIPCC2006Guidelines.ForEF4theIPCCdefaultvalue0.01isrecommended(equation10.27,IPCC2006GuidelinesforAFOLU).VM0015,Version1.1SectoralScope14Page161APPENDIX5:DATAANDPARAMETERSUSEDINTHISMETHODOLOGYNotationDescriptionUnitEquationObservationSourceMonitoring±90%CI90%ConfidenceIntervalAAreaoferrorduetoobservedchangepredictedaspersistenceha9calculatedeachrenewaloffixedbaselineperiodaEstimatedinterceptoftheregressionlinehayr-14a,calculatedeachrenewaloffixedbaselineperioda1anda2sampleplotareashaA3-5calculatedeachrenewaloffixedbaselineperiodAaverageiAreaof“average”forestlandsuitableforconversiontonon-forestlandwithinstratumha6calculatedeachrenewaloffixedbaselineperiodABSLLKCumulativeareaofbaselinedeforestationwithintheleakagebeltatyearthaTable9c,Table11c,Table13c,Table14c,Table19ccalculatedeachrenewaloffixedbaselineperiodABSLLKct,tAreaofcategoryctdeforestedattimetwithintheleakagebeltinthebaselinecasehameasuredorestimatedfromliteratureeachrenewaloffixedbaselineperiodABSLLKfcl,tAreaoffinal(post-deforestation)forestclassfcldeforestedattimetwithintheleakagebeltinthebaselinecasehacalculatedeachrenewaloffixedbaselineperiodVM0015,Version1.1SectoralScope14Page162NotationDescriptionUnitEquationObservationSourceMonitoringABSLLKi,tAnnualareaofbaselinedeforestationinstratumiwithintheleakagebeltatyeart;haTable9.ccalculatedeachrenewaloffixedbaselineperiodABSLLKicl,tAreaofinitial(pre-deforestation)forestclassicldeforestedattimetwithintheleakagebeltinthebaselinecasehaTable30acalculatedeachrenewaloffixedbaselineperiodABSLLKtAnnualareaofbaselinedeforestationwithintheleakagebeltatyeart;haTable9c,Table11c,Table13c,Table14c,Table19ccalculatedeachrenewaloffixedbaselineperiodABSLPACumulativeareaofbaselinedeforestationintheprojectareaatyearthaTable9b,Table11b,Table13b,Table14b,Table19bcalculatedeachrenewaloffixedbaselineperiodABSLPAct,tAreaofcategoryctdeforestedattimetwithintheprojectareainthebaselinecasehaTable22b1measuredorestimatedfromliteratureeachrenewaloffixedbaselineperiodABSLPAi,tAnnualareaofbaselinedeforestationinstratumiwithintheprojectareaatyeart;haTable9bcalculatedeachrenewaloffixedbaselineperiodABSLPAicl,tAreaofinitial(pre-deforestation)forestclassicldeforestedattimetwithintheprojectareainthebaselineha10calculatedeachrenewaloffixedbaselineperiodVM0015,Version1.1SectoralScope14Page163NotationDescriptionUnitEquationObservationSourceMonitoringcaseABSLPAtAnnualareaofbaselinedeforestationintheprojectareaatyearthaTable9b,Table11b,Table13b,Table14b,Table19bcalculatedeachrenewaloffixedbaselineperiodABSLPAz,tAreaofthezonez“deforested”attimetwithintheprojectareainthebaselinecase;haha10calculatedeachrenewaloffixedbaselineperiodABSLRRcumulativeareaofbaselinedeforestationinthereferenceregionatyearthaTable9.a,Table11a,Table13a,Table14a,Table19acalculatedeachrenewaloffixedbaselineperiodABSLRRct,tAreaofcategoryctdeforestedattimetwithinthereferenceregioninthebaselinecasehaTable22.a.1measuredorestimatedfromliteratureeachrenewaloffixedbaselineperiodABSLRRi,tAnnualareaofbaselinedeforestationinstratumiwithinthereferenceregionatyeartha3,4a,4b,4c,5,6,7,8a,8b,8c,calculatedeachrenewaloffixedbaselineperiodABSLRRtaverage,iAnnualareaofbaselinedeforestationinstratumiwithintheReferenceregionatayeartaverageiha7calculatedeachrenewalofFixedBaselinePeriodVM0015,Version1.1SectoralScope14Page164NotationDescriptionUnitEquationObservationSourceMonitoringABSLRRtAnnualareaofbaselinedeforestationinthereferenceregionatyearthaTable9.a,Table11a,Table13a,Table14a,Table19acalculatedeachrenewaloffixedbaselineperiodACPAicl,tAnnalareawithintheProjectAreaaffectedbycatastrophicevensinclassiclatyearthaTable25f,Table26fmeasuredexposteachtimeacatastrophiceventoccursAforagetAreaunderforegeabovethebaselineinleakagemanagementareashaTable32calculatedexante,measuredexpostannuallyAoptimaliAreaof“optimal”forestlandsuitableforconversiontonon-forestlandwithinstratumiha5calculatedeachrenewaloffixedbaselineperiodAPPlotaream2A3-13measuredorestimatedfromliteratureonlyonceatprojectstartandwhenmandatoryAPDPAicl,tAreasofplanneddeforestationinforestclassiclatyeartintheprojectareahaTable25aexanteandexpostmeasuredorestimatedfromliteratureannuallyAPFPAicl,tAnnualareaofplannedfuel-woodandcharcoalactivitiesinforestclassiclatyeartintheprojectareahaTable25,Table26cexanteandexpostcalculatedexante,measuredexpostannuallyAPLPAicl,tAreasofplannedloggingactivitiesinforestclassiclatyeartintheprojectareahaTable25b,Table26bexanteandexpostcalculatedexante,measuredexpostannuallyVM0015,Version1.1SectoralScope14Page165NotationDescriptionUnitEquationObservationSourceMonitoringAPNiPAicl,tAnnualareaofforestclassiclwithincreasingcarbonstockwithoutharvestatyeartintheprojectareahaTable26aexanteandexpostcalculatedexante,measuredexpostannuallyAPSLKfcl,tAnnualareaofclassfclwithdecreasingcarbonstockinleakagemanagementareasintheprojectcaseatyearthaTable30bmeasuredexpostannuallyARRiTotalforestareainstratumiwithinthereferenceregionattheprojectstartdateha4.b,8.cmeasuredorestimatedfromliteratureeachrenewaloffixedbaselineperiodARRi,t-1Areawithforestcoverinstratumiwithinthereferenceregionayeart-1ha3calculatedeachrenewaloffixedbaselineperiodAUFPAicl,tAreasaffectedbyforestfiresinclassiclinwhichcarbonstockrecoveryoccursatyearthaTable25e,Table26emeasuredexpostannuallyBAreacorrectduetoobservedchangepredictedaschangeha9measuredorestimatedfromliteratureeachrenewaloffixedbaselineperiodbEstimatedcoefficientofthetimevariable(orslopeofthelinearregression)dimensionless4.a,7,8.a,8.bcalculatedeachrenewaloffixedbaselineperiodBCEFBiomassconversionandexpansionfactorforconversionofmerchantablevolumetototalabovegroundtreebiomassdimensionlessA3-9,A3-36measuredorestimatedfromliteratureonlyonceatprojectstartVM0015,Version1.1SectoralScope14Page166NotationDescriptionUnitEquationObservationSourceMonitoringBEFplBiomassexpansionfactorforconvertingvolumesofextractedroundwoodtototalabove-groundbiomass(includingbark),applicabletotreetr,inplotpldimensionlessA3-21measuredorestimatedfromliteratureonlyonceatprojectstartBLDA,BLDB,…BLDNTotalareaofprojectedbaselinedeforestationduringthefixedbaselineperiodofProjectAha2.a,2.b,2.nPDofprojectA;PDofprojectB,…PDofProjectN;eachrenewaloffixedbaselineperiodCAreaoferrorduetoobservedpersistencepredictedaschangeha9calculatedCabfclAveragecarbonstockperhectareintheabove-groundbiomasscarbonpooloffinalpost-deforestationclassfcltCO2eha-1Table16,Table17measuredorestimatedfromliteratureCabclAveragecarbonstockperhectareintheabove-groundbiomasscarbonpoolofLU/LCclasscltCO2eha-1A3-6,A3-14,A3-36measuredorestimatedfromliteratureonlyonceatprojectstartandwhenmandatoryCabiclAveragecarbonstockperhectareintheabove-groundbiomasscarbonpoolofinitialforestclassicltCO2eha-1Table15a,A3-38measuredorestimatedfromliteratureCabiclCabntclAveragecarbonstockperhectareintheabove-groundnon-treebiomasscarbonpoolofLU/LCclasscltCO2-eha-1A3-7,A3-24measuredorestimatedfromliteratureonlyonceatprojectstartandwhenmandatoryVM0015,Version1.1SectoralScope14Page167NotationDescriptionUnitEquationObservationSourceMonitoringCabtclAveragecarbonstockperhectareintheabove-groundtreebiomasscarbonpoolofLU/LCclasscltCO2-eha-1A3-7measuredorestimatedfromliteratureonlyonceatprojectstartandwhenmandatoryCabzAveragecarbonstockperhectareintheabove-groundbiomasscarbonpoolperzoneztCO2-eha-1Table17measuredorestimatedfromliteratureonlyonceatprojectstartandwhenmandatoryCaclAveragecarbonstockperhectareinabove-groundbiomassinLU/LCclasscltCO2-eha-1A3-14CbbclAveragecarbonstockperhectarebelow-groundbiomasscarbonpoolofLU/LCclasscltCO2-eha-1A3-6,A3-17measuredorestimatedfromliteratureonlyonceatprojectstartandwhenmandatoryCbbfclAveragecarbonstockperhectarebelow-groundbiomasscarbonpooloffinalpost-deforestationclassfcltCO2-eha-1Table16,Table17measuredorestimatedfromliteratureCbbiclAveragecarbonstockperhectarebelow-groundbiomasscarbonpoolofinitialforestclassicltCO2-eha-1Table15measuredorestimatedfromliteratureCbbntclAveragecarbonstockperhectarebelow-groundnon-treebiomasscarbonpoolofLU/LCclasscltCO2-eha-1A3-8measuredorestimatedfromliteratureonlyonceatprojectstartandwhenmandatoryCbbfclAveragecarbonstockperhectarebelow-groundbiomasscarbonpooloffinalpost-tCO2-eha-1measuredorestimatedfromliteratureVM0015,Version1.1SectoralScope14Page168NotationDescriptionUnitEquationObservationSourceMonitoringdeforestationclassfclCbbtclAveragecarbonstockperhectarebelow-groundtreebiomasscarbonpoolofLU/LCclasscltCO2-eha-1A3-8measuredorestimatedfromliteratureonlyonceatprojectstartandwhenmandatoryCbbzAveragecarbonstockperhectarebelow-groundtreebiomasscarbonpoolperzoneztCO2-eha-1Table17measuredorestimatedfromliteratureonlyonceatprojectstartandwhenmandatoryCdwfclAveragecarbonstockperhectareintheinthedeadwoodbiomasscarbonpooloffinalpost-deforestationclassfcltCO2-eha-1Table16,Table17measuredorestimatedfromliteratureonlyonceatprojectstartandwhenmandatoryCdwclAveragecarbonstockperhectareintheinthedeadwoodbiomasscarbonpoolofLU/LCclasscltCO2-eha-1A3-6,A3-25measuredorestimatedfromliteratureonlyonceatprojectstartandwhenmandatoryCdwiclAveragecarbonstockperhectareintheinthedeadwoodbiomasscarbonpoolofinitialforestclassicltCO2-eha-1Table15measuredorestimatedfromliteratureCdwzAveragecarbonstockperhectareintheinthedeadwoodbiomasscarbonpoolperzoneztCO2-eha-1Table17measuredorestimatedfromliteratureonlyonceatprojectstartandwhenmandatoryCEp,iclAveragecombustionefficiencyofthecarbonpoolpintheforestclassdimensionless14measuredorestimatedfromliteratureonlyonceatprojectstartVM0015,Version1.1SectoralScope14Page169NotationDescriptionUnitEquationObservationSourceMonitoringCFdcCarbonfractionofthedensityclassdctonnesC(tonned.m.)-1A3-30measuredorestimatedfromliteratureonlyonceatprojectstartandwhenmandatoryCFjCarbonfractionfortreetr,ofspecies,groupofspeciesorforesttypejtonnesC(tonned.m.)-1A3-11,A3-21,A3-24measuredorestimatedfromliteratureonlyonceatprojectstartCFplCarbonfractionofsamplepltonnesC(tonned.m.)-1A3-24calculatedonlyonceatprojectstartandwhenmandatoryCiCosttoselectandmeasureaplotoftheLU/LCclassclA3-3;A3-4estimatedeachrenewaloffixedbaselineperiodcl1,2,3…ClLU/LCclassesdimensionlessA3-3measuredorestimatedfromliteratureeachrenewaloffixedbaselineperiodCldwfclAveragecarbonstockperhectareinthelyingdeadwoodcarbonpooloffinalpost-deforestationclassfcltCO2-emeasuredorestimatedfromliteratureCldwfclClclAveragecarbonstockperhectareinthelittercarbonpoolofLU/LCclasscltCO2-eha-1A3-6measuredorestimatedfromliteratureonlyonceatprojectstartandwhenmandatoryCldwclAveragecarbonstockperhectareinthelyingdeadwoodcarbonpooloftheLU/LCclasscltCO2-eA3-25,A3-30measuredorestimatedfromliteratureonlyonceatprojectstartandwhenmandatoryCldwiclAveragecarbonstockperhectareinthelyingdeadwoodcarbonpoolofinitialforesttCO2-emeasuredorestimatedfromliteratureVM0015,Version1.1SectoralScope14Page170NotationDescriptionUnitEquationObservationSourceMonitoringclassiclClfclAveragecarbonstockperhectareinthelittercarbonpoolofLU/LCclassfcltCO2-eha-1Table16,Table17measuredorestimatedfromliteratureonlyonceatprojectstartandwhenmandatoryCliclAveragecarbonstockperhectareinthelittercarbonpoolofLU/LCclassicltCO2-eha-1Table15measuredorestimatedfromliteratureonlyonceatprojectstartandwhenmandatoryClzAveragecarbonstockperhectareinthelittercarbonpoolperzoneztCO2-eha-1Table17measuredorestimatedfromliteratureonlyonceatprojectstartandwhenmandatoryCpAveragecarbonstockperhectareinthecarbonpoolptCO2-eha-1Table7bcalculatedonlyonceatprojectstartCp,icl,tAveragecarbonstockperhectareinthecarbonpoolpburntatyeartintheforestclassicl;tCO2-eha-114calculatedonlyonceatprojectstartCsocfclAveragecarbonstockperhectareinthesoilorganiccarbonpooloffinalpost-deforestationclassfcltCO2-eha-1Table16,table17measuredorestimatedfromliteratureCsoczAveragecarbonstockperhectareinthesoilorganiccarbonpoolperzoneztCO2-eha-1Table17measuredorestimatedfromliteratureonlyonceatprojectstartandwhenmandatoryCsdwclAveragecarbonstockperhectareinthestandingdeadwoodcarbonpooloftheLU/LCclasscltCO2-eha-1A3-25measuredorestimatedfromliteratureonlyonceatprojectstartandwhenmandatoryVM0015,Version1.1SectoralScope14Page171NotationDescriptionUnitEquationObservationSourceMonitoringCsociclAveragecarbonstockperhectareinthesoilorganiccarbonpoolofinitialforestclassicltCO2-eha-1Table15measuredorestimatedfromliteratureonlyonceatprojectstartandwhenmandatoryCsocclAveragecarbonstockperhectareinthesoilorganiccarbonpoolofLU/LCclasscltCO2-eha-1A3-6,A3-33measuredorestimatedfromliteratureonlyonceatprojectstartandwhenmandatoryCsocplCarbonstockperhectareinthesoilorganiccarbonpoolestimatedfortheplotpl;tCO2-eha-1A3-33measuredorestimatedfromliteratureonlyonceatprojectstartct1,2,3…CtcategoriesofLU/LCchange(frominitialforestclassesicltofinalpost-deforestationclassesfcl)dimensionlesscalculatedeachrenewaloffixedbaselineperiodCtotclAveragecarbonstockperhectareinallaccountedcarbonpoolsofLU/LCclasscltCO2-eha-1A3-6calculatedonlyonceatprojectstartandwhenmandatoryCtotfcl,tAveragecarbonstockofallaccountedcarbonpoolsinnon-forestclassfclattimet;CO2-eha-1Table30bcalculatedonlyonceatprojectstartCtoticlAveragecarbonstockofallaccountedcarbonpoolsinforestclassicltCO2-eha-1Table15calculatedonlyonceatprojectstartandwhenmandatoryCtoticl,tAveragecarbonstockofallaccountedcarbonpoolsinforestclassiclattimettCO2-eha-1Table25a,Table30acalculatedonlyonceatprojectstartandwhenmandatoryCtotzAveragecarbonstockofallaccountedcarbonpoolsperzoneztCO2-eha-1Table17calculatedonlyonceatprojectstartandwhenmandatoryVM0015,Version1.1SectoralScope14Page172NotationDescriptionUnitEquationObservationSourceMonitoringctz1,2,3…CtzcategoriesofLU/LCchange(frominitialforestclassesicltopostdeforestationzonesz)dimensionlesscalculatedeachrenewaloffixedbaselineperiodCV%Thehighestcoefficientofvariation(%)reportedintheliteraturefromdifferentvolumeorbiomassforestinventoriesinforestplantations,naturalforests,agro-forestryand/orsilvo-pastoralsystems%A3-1,A3-5literatureonlyonceatprojectstartandwhenmandatoryCwpfclAveragecarbonstockperhectareintheharvestedwoodproductscarbonpooloffinalpost-deforestationclassfcltCO2-eha-1Table16,Table17onlyonceatprojectstartandwhenmandatoryCwpclAveragecarbonstockperhectareintheharvestedwoodproductscarbonpoolofLU/LCclasscltCO2-eha-1A3-6,A3-35,A3-37measuredorestimatedfromliteratureonlyonceatprojectstartandwhenmandatoryCwpiclAveragecarbonstockperhectareintheharvestedwoodproductscarbonpoolofinitialforestclassicltCO2-eha-1Table15,A3-35,A3-36,A3-37,A3-39,A3-40,A3-41onlyonceatprojectstartandwhenmandatoryCwplt,icl,tCarbonstockinthelong-termwoodproductscarbonpoolatthetimeofdeforestationtoftheinitialforestclassiclA3-37,A3-41VM0015,Version1.1SectoralScope14Page173NotationDescriptionUnitEquationObservationSourceMonitoringCwpmt,icl,tCarbonstockinthemedium-termwoodproductscarbonpoolatthetimeofdeforestationtoftheinitialforestclassiclA3-36,A3-40CwpzAveragecarbonstockperhectareintheharvestedwoodproductscarbonpoolperzoneztCO2-eha-1Table17measuredorestimatedfromliteratureonlyonceatprojectstartandwhenmandatoryCXBw,icl,tMeancarbonstockperhectareofextractedbiomasscarbonbyclassofwoodproductwfromforestclassiclattimettCO2-eha-1A3-34,A3-35,A3-39measuredorestimatedfromliteratureonlyonceatprojectstartandwhenmandatoryd1,d2,...,dnDiametersofintersectingpiecesofdeadwoodcmA3-29measuredorestimatedfromliteratureonlyonceatprojectstartandwhenmandatoryDBHDiameteratBreastHeightcmA3-18measuredorestimatedfromliteratureonlyonceatprojectstartandwhenmandatoryDBIDailybiomassintakekgd.m.head-1day-1A4-2,Table31measuredorestimatedfromliteratureeachrenewaloffixedbaselineperioddc1,2,3deadwooddensityclassesdimensionlessA3-30definedDCTotalnumberofdensityclasses(3)dimensionlessA3-30definedVM0015,Version1.1SectoralScope14Page174NotationDescriptionUnitEquationObservationSourceMonitoringCabctAveragecarbonstockchangefactorintheabove-groundbiomasscarbonpoolofcategorycttCO2-eha-1Table22.a.1calculatedonlyonceatprojectstartandwhenmandatoryCabBSLLKtTotalbaselinecarbonstockchangesfortheabove-groundbiomasspoolintheleakagebelttCO2-eTable22.c.1calculatedeachrenewaloffixedbaselineperiodCabBSLLKtCumuativelbaselinecarbonstockchangesfortheabove-groundbiomasspoolintheleakagebelttCO2-eTable22.c.1calculatedeachrenewaloffixedbaselineperiodCabBSLPACumulativebaselinecarbonstockchangesfortheabove-groundbiomasspoolintheprojectareatCO2-eTable22.b.1calculatedeachrenewaloffixedbaselineperiodCabBSLPAtTotalbaselinecarbonstockchangesfortheabove-groundbiomasspoolintheprojectareatCO2-eTable22.b.1calculatedeachrenewaloffixedbaselineperiodCabBSLRRCumulativebaselinecarbonstockchangesfortheabove-groundbiomasspoolinthereferenceregiontCO2-eTable22.a.1calculatedeachrenewaloffixedbaselineperiodCabBSLRRtTotalbaselinecarbonstockchangesfortheabove-groundbiomasspoolinthereferenceregiontCO2-eTable22.a.1calculatedeachrenewaloffixedbaselineperiodVM0015,Version1.1SectoralScope14Page175NotationDescriptionUnitEquationObservationSourceMonitoringCADLKCumulativetotaldecreaseincarbonstocksduetodisplaceddeforestationtCO2-eTable34,Table35calculatedannuallyCADLKtTotaldecreaseincarbonstocksduetodisplaceddeforestationatyearttCO2-eTable34,Table35calculatedannuallyCbbctAveragecarbonstockchangefactorinthebelow-groundbiomasscarbonpoolofcategorycttCO2-eha-1calculatedonlyonceatprojectstartandwhenmandatoryCBSLPAftTotalbaselinecarbonstockchangeinfinalclasseswithintheprojectareaatyearttCO2-ecalculatedeachrenewaloffixedbaselineperiodCBSLPATotalbaselinecarbonstockchangesintheprojectareatCO2-eTable36calculatedeachrenewaloffixedbaselineperiodABSLPAct,tAreaofcategoryctdeforestedattimetwithintheprojectareainthebaselinecasehaTable22.b.1calculatedeachrenewaloffixedbaselineperiodCBSLLKCumulativecarbonstockchangesinleakagemanagementareasinthebaselinecasetCO2-eTable21d,Table30a,Table30ccalculatedeachrenewaloffixedbaselineperiodCBSLLKtAnnualcarbonstockchangesinleakagemanagementareasinthebaselinecaseatyearttCO2-eTable21d,Table30a,Table30ccalculatedeachrenewaloffixedbaselineperiodCBSLPAfTotalcumulativebaselinecarbonstockchangeinfinalclasseswithintheprojectareatCO2-ecalculatedeachrenewaloffixedbaselineperiodVM0015,Version1.1SectoralScope14Page176NotationDescriptionUnitEquationObservationSourceMonitoringatyeartCBSLPAftTotalannualbaselinecarbonstockchangeinfinalclasseswithintheprojectareaatyearttCO2-ecalculatedeachrenewaloffixedbaselineperiodCBSLPATotalnetcumulativebaselinecarbonstockchangeinfinalclasseswithintheprojectareaatyearttCO2-e10calculatedeachrenewaloffixedbaselineperiodCBSLPAiTotalcumulativebaselinecarbonstockchangeininitialforestclasseswithintheprojectareaatyearttCO2-ecalculatedeachrenewaloffixedbaselineperiodCBSLPAitTotalbaselinecarbonstockchangeininitialforestclasseswithintheprojectareaatyearttCO2-ecalculatedeachrenewaloffixedbaselineperiodCBSLPAtTotalbaselinecarbonstockchangewithintheprojectareaatyearttCO2-e19,21,Table36calculatedeachrenewaloffixedbaselineperiodCBSLtTotalbaselinecarbonstockchangeatyeartintheprojectareatCO2-e16calculatedeachrenewaloffixedbaselineperiodCdwctAveragecarbonstockchangefactorinthedeadwoodbiomasscarbonpoolofcategorycttCO2-eha-1calculatedonlyonceatprojectstartandwhenmandatoryCFCdPACumulativedecreaseincarbonstockduetoforestfirestCO2-eTable25g,Table27expostcalculatedCFCdPAVM0015,Version1.1SectoralScope14Page177NotationDescriptionUnitEquationObservationSourceMonitoringandcatastrophiceventsatyeartintheprojectareaCFCdPAtTotaldecreaseincarbonstockduetoforestfiresandcatastrophiceventsatyeartintheprojectareatCO2-eTable25g,Table27expostcalculatedannuallyCFCiPACumulativeincreaseincarbonstockduetoforestfiresandcatastrophiceventsatyeartintheprojectareatCO2-eTable26g,Table27expostcalculatedannuallyCFCiPAtTotalincreaseincarbonstockduetoforestfiresandcatastrophiceventsatyeartintheprojectareatCO2-eTable26g,Table27expostcalculatedannuallyClctAveragecarbonstockchangefactorinthelittercarbonpoolofcategorycttCO2-eha-1calculatedonlyonceatprojectstartandwhenmandatoryCLKTotalcumulativedecreaseincarbonstockswithintheleakagebeltatyearttCO2-eTable35,Table36calculatedeachrenewaloffixedbaselineperiodCLKtTotaldecreaseincarbonstockswithintheleakagebeltatyearttCO2-e19,Table35,Table36calculatedeachrenewaloffixedbaselineperiodCLPMLKCumulativecarbonstockdecreaseduetoleakagepreventionmeasuresTable30c,Table33,Table35exanteandexpostcalculatedannuallyCLPMLKtCarbonstockdecreaseduetoleakagepreventionmeasuresTable30c,Table33,exanteandexpostcalculatedannuallyVM0015,Version1.1SectoralScope14Page178NotationDescriptionUnitEquationObservationSourceMonitoringatyeartTable35CptCarbonstockchangefactorapplicabletopoolpattimettCO2-ecalculatedeachrenewaloffixedbaselineperiodCPAdPACumulativedecreaseincarbonstockduetoallplannedactivitiesatyeartintheprojectareatCO2-eTable25d,Table27,Table29exanteandexpostcalculatedannuallyCPAdPAtTotaldecreaseincarbonstockduetoallplannedactivitiesatyeartintheprojectareatCO2-eTable25d,Table27,Table29exanteandexpostcalculatedannuallyCPAiPACumulativeincreaseincarbonstockduetoallplannedactivitiesatyeartintheprojectareatCO2-eTable26d,Table27,Table29exanteandexpostcalculatedannuallyCPAiPAtTotalincreaseincarbonstockduetoallplannedactivitiesatyeartintheprojectareatCO2-eTable26d,Table27,Table29exanteandexpostcalculatedannuallyCPDdPACumulativedecreaseincarbonstockduetoplanneddeforestationatyeartintheprojectareatCO2-eTable25aexanteandexpostcalculatedannuallyCPDdPAtTotaldecreaseincarbonstockduetoplanneddeforestationatyeartintheprojectareatCO2-eTable25aexanteandexpostcalculatedannuallyCPFdPACumulativedecreaseincarbonstockduetoplannedfuel-woodandcharcoaltCO2-eTable25c,Table25dexanteandexpostcalculatedannuallyVM0015,Version1.1SectoralScope14Page179NotationDescriptionUnitEquationObservationSourceMonitoringactivitiesatyeartintheprojectareaCPFdPAtTotaldecreaseincarbonstockduetoplannedfuel-woodandcharcoalactivitiesatyeartintheprojectareatCO2-eTable25c,Table25dexanteandexpostcalculatedannuallyCPFiPACumulativeincreaseincarbonstockduetoplannedfuel-woodandcharcoalactivitiesatyeartintheprojectareatCO2-eTable26c,Table26dexanteandexpostcalculatedannuallyCPFiPAtTotalincreaseincarbonstockduetoplannedfuel-woodandcharcoalactivitiesatyeartintheprojectareatCO2-eTable26c,Table26dexanteandexpostcalculatedannuallyCpicl,t=tAveragecarbonstockchangefactorforcarbonpoolpintheinitialforestclassiclapplicableattimettCO2-eha-110CPLdPACumulativedecreaseincarbonstockduetoplannedloggingactivitiesatyeartintheprojectareatCO2-eTable25b,Table25dexanteandexpostcalculatedannuallyCPLdPAtTotaldecreaseincarbonstockduetoplannedloggingactivitiesatyeartintheprojectareatCO2-eTable25b,Table25dexanteandexpostcalculatedannuallyCPLiPACumulativeincreaseincarbonstockduetoplannedloggingactivitiesatyeartinthetCO2-eTable26b,Table26dexanteandexpostcalculatedannuallyVM0015,Version1.1SectoralScope14Page180NotationDescriptionUnitEquationObservationSourceMonitoringprojectareaCPLiPAtTotalincreaseincarbonstockduetoplannedloggingactivitiesatyeartintheprojectareatCO2-eTable26b,Table26dexanteandexpostcalculatedannuallyCPNiPACumulativeincreaseincarbonstockduetoplannedprotectionofgrowingforestclassesintheprojectareaatyearttCO2-eTable26a,Table26dexanteandexpostcalculatedannuallyCPNiPAtTotalincreaseincarbonstockduetoplannedprotectionofgrowingforestclassesintheprojectareaatyearttCO2-eTable26a,Table26dexanteandexpostcalculatedannuallyCPSLKTotalcumulativecarbonstockchangeinleakagemanagementareasintheprojectcasetCO2-eTable30b,Table30cexanteandexpostcalculatedannuallyCPSLKtTotalannualcarbonstockchangeinleakagemanagementareasintheprojectcasetCO2-eTable30b,Table30cexanteandexpostcalculatedannuallyCPSPACumulativeprojectcarbonstockchangewithintheprojectareaatyearttCO2-eTable27,Table29,Table36exanteandexpostcalculatedannuallyCPSPAtTotalprojectcarbonstockchangewithintheprojectareaatyearttCO2-e19,21,Table27,Table29,Table36exanteandexpostcalculatedannuallyVM0015,Version1.1SectoralScope14Page181NotationDescriptionUnitEquationObservationSourceMonitoringCpz,t=tAveragecarbonstockchangefactorforcarbonpoolpinzonezapplicableattimet=ttCO2-eha-110calculatedeachrenewalofthabaselineCsocctAveragecarbonstockchangefactorinthesoilorganiccarbonpoolofcategorycttCO2-eha-1calculatedonlyonceatprojectstartandwhenmandatoryCtotct,tCarbonstockchangefactor(alsocalledemissionfactor)forallaccountedcarbonpoolsincategoryctattimettCO2-eha-1calculatedonlyonceatprojectstartandwhenmandatoryCtotctAveragecarbonstockchangefactorinallaccountedcarbonpoolsofcategorycttCO2-eha-1calculatedonlyonceatprojectstartandwhenmandatoryCtoticl,tAveragecarbonstockchangeofallaccountedcarbonpoolsinforestclassiclattimettCO2-eha-1Table25b,Table25c,Table25e,Table25f,Table26a,Table26b,Table26c,Table26e,Table26fcalculatedeachrenewalofthabaselineCUCdPACumulativedecreaseincarbonstockduetocatastrophiceventsatyeartintheprojectareatCO2-eTable25f,Table25gexpostcalculatedannuallyCUCdPAtTotaldecreaseincarbonstockduetocatastrophiceventsatyeartintheprojectareatCO2-eTable25f,Table25gexpostcalculatedannuallyVM0015,Version1.1SectoralScope14Page182NotationDescriptionUnitEquationObservationSourceMonitoringCUCiPACumulativeincreaseincarbonstockinareasaffectedbycatastrophicevents(aftersuchevents)atyeartintheprojectareatCO2-eTable26f,Table26gexpostcalculatedannuallyCUCiPAtTotalincreaseincarbonstockinareasaffectedbycatastrophicevents(aftersuchevents)atyeartintheprojectareatCO2-eTable26f,Table26gexpostcalculatedannuallyCUDdPACumulativeactualcarbonstockchangeduetounavoidedunplanneddeforestationatyeartintheprojectareatCO2-eTable27,Table29exanteandexpostcalculatedannuallyCUDdPAtTotalactualcarbonstockchangeduetounavoidedunplanneddeforestationatyeartintheprojectareatCO2-e16,Table27Table29exanteandexpostcalculatedannuallyCUFdPACumulativeotaldecreaseincarbonstockduetounplanned(andplanned–whereapplicable)forestfiresintheprojectareatCO2-eTable25e,Table25gexpostcalculatedannuallyCUFdPAtTotaldecreaseincarbonstockduetounplanned(andplanned–whereapplicable)forestfiresatyeartintheprojectareatCO2-eTable25e,Table25gexpostcalculatedannuallyVM0015,Version1.1SectoralScope14Page183NotationDescriptionUnitEquationObservationSourceMonitoringCUFiPACumulativeincreaseincarbonstockinareasaffectedbyforestfires(aftersuchevents)intheprojectareatCO2-eTable26e,Table26gexpostcalculatedannuallyCUFiPAtTotalincreaseincarbonstockinareasaffectedbyforestfires(aftersuchevents)atyeartintheprojectareatCO2-eTable26e,Table26gexpostcalculatedannuallyCwpctAveragecarbonstockchangefactorintheharvestedwoodproductscarbonpoolofcategorycttCO2-eha-1calculatedonlyonceatprojectstartandwhenmandatoryREDDCumulativemetanthropogenicgreenhousegasemissionreductionattributabletotheAUDprojectactivitytCO2-e21exanteandexpostcalculatedannuallyREDDtNetanthropogenicgreenhousegasemissionreductionattributabletotheAUDprojectactivityatyearttCO2-e19,20,23,Table36exanteandexpostcalculatedannuallyDdcDeadwooddensityofclassdctonnesd.m.m-3A3-30measuredorestimatedfromliteratureonlyonceatprojectstartandwhenmandatoryDjMeanwooddensityofspeciesjtd.m.m-3A3-34measuredorestimatedfromliteratureonlyonceatprojectstartDLFDisplacementLeakageFactor%definedeachrenewaloffixedbaselineperiodVM0015,Version1.1SectoralScope14Page184NotationDescriptionUnitEquationObservationSourceMonitoringDmDeadwooddensitygcm-3A3-28measuredorestimatedfromliteratureonlyonceatprojectstartandwhenmandatoryDMplDrymassofsamplepl;tonnesofd.m.A3-24measuredorestimatedfromliteratureonlyonceatprojectstartandwhenmandatoryeEulernumber(2,71828)dimensionless4.b,8.cE%allowablesampleerrorinpercentage(10%)%A3-1Eallowableerror(10%ofthemean)%A3-3EADLKCumulativetotalincreaseinGHGemissionsduetodisplacedforestfirestCO2-eTable34,Table35exanteandexpostcalculatedannuallyEADLKtTotalexanteincreaseinGHGemissionsduetodisplacedforestfiresatyearttCO2-eTable34,Table35exanteandexpostcalculatedannuallyEBBBSPACumulativebaselinenon-CO2emissionsfromforestfireatyeartintheprojectareatCO2-e17,19,Table24,Table36exanteandexpostcalculatedannuallyEBBBSLPAtSumof(ortotal)baselinenon-CO2emissionsfromforestfireatyeartintheprojectareatCO2-e19,Table24,Table36exanteandexpostcalculatedannuallyEBBBSLtoticlSumof(ortotal)actualnon-tCO2-eTable24exanteandexcalculatedannuallyVM0015,Version1.1SectoralScope14Page185NotationDescriptionUnitEquationObservationSourceMonitoringCO2emissionsfromforestfireatyeartinstrataiinforestclassiclpostEBBCH4iclCH4emissionfrombiomassburninginforestclassicltCO2-e11,13exanteandexpostcalculatedannuallyEBBCO2iclPerhectareCO2emissionfrombiomassburninginslashandburninforestclassicltCO2-eha-112,13,14calculatedonlyonceatprojectstartEBBN2OiclN2OemissionfrombiomassburninginforestclassicltCO2-e11,12exanteandexpostcalculatedannuallyEBBPSPACumulative(ortotal)actualnon-CO2emissionsfromforestfireatyeartintheprojectareatCO2-eTable28,Table29,Table36exanteandexpostcalculatedannuallyEBBPSPAtSumof(ortotal)actualnon-CO2emissionsfromforestfireatyeartintheprojectareatCO2-e17,19,Table28,Table29,Table36exanteandexpostcalculatedannuallyEBBtoticlTotalGHGemissionfrombiomassburninginforestclassicltCO2-e11exanteandexpostcalculatedannuallyECH4fermtCH4emissionsfromentericfermentationatyearttCO2-e18,A4-1calculatedannuallyECH4mantCH4emissionsfrommanuremanagementatyearttCO2-e18,A4-3calculatedannuallyEdirN2OmantDirectN2OemissionsfrommanuremanagementatyearttCO2-eA4-4,A4-5,Table32calculatedannuallyEF1EntericCH4emissionfactorforthelivestockgroupkgCH4head-1yr-1A4-1,Table31calculatedeachrenewaloffixedbaselineperiodVM0015,Version1.1SectoralScope14Page186NotationDescriptionUnitEquationObservationSourceMonitoringEF2ManuremanagementCH4emissionfactorforthelivestockgroupkgCH4head-1yr-1A4-3,Table31measuredorestimatedfromliteratureeachrenewaloffixedbaselineperiodEF3EmissionfactorforN2OemissionsfrommanuremanagementforthelivestockgroupkgN2O-N(kgN-1)head-1yr-1A4-5,Table31measuredorestimatedfromliteratureeachrenewaloffixedbaselineperiodEF4EmissionfactorforN2Oemissionsfromatmosphericdepositionofforage-sourcednitrogenonsoilsandwatersurfaceskgN2O-N(kgNH3-NandNOx-Nemitted)-1head-1yr-1A4-6,Table31measuredorestimatedfromliteratureeachrenewaloffixedbaselineperiodEgLKCumulativeEmissionsfromgrazinganimalsinleakagemanagementareasatyearttCO2-eTable32,Table33,Table35calculatedannuallyEgLKtEmissionsfromgrazinganimalsinleakagemanagementareasatyearttCO2-e18,Table32,Table33,Table35calculatedannuallyEIExanteestimatedEffectivenessIndex%16definedannuallyEindNOmantIndirectN2OemissionsfrommanuremanagementatyearttCO2-eA4-4,A4-5calculatedannuallyELKCumulativesumofexanteestimatedleakageemissionsatyearttCO2-e19,Table35,Table36calculatedannuallyELKtSumofexanteestimatedleakageemissionsatyearttCO2-e19,Table35,Table36calculatedannuallyVM0015,Version1.1SectoralScope14Page187NotationDescriptionUnitEquationObservationSourceMonitoringELPMLKCumulativeotalexincreaseinGHGemissionsduetoleakagepreventionmeasurestCO2-eTable33calculatedannuallyELPMLKtAnnualtotalincreaseinGHGemissionsduetoleakagepreventionmeasuresatyearttCO2-eTable33calculatedannuallyEN2OmantN2OemissionsfrommanuremanagementatyearttCO2-e18,A4-4,Table32calculatedannuallyERCH4EmissionratioforCH4(IPCCdefaultvalue=0.012)dimensionless13definedeachrenewaloffixedbaselineperiodERN2OEmissionratioforN2O(IPCCdefaultvalue=0.007)dimensionless12definedeachrenewaloffixedbaselineperiodFburnticlProportionofforestareaburnedduringthehistoricalreferenceperiodintheforestclassicl%14,Table23measuredorestimatedfromliteratureonlyonceatprojectstartfcl1,2,3…Fclfinal(post-deforestation)non-forestclassesdimensionlessmeasuredorestimatedfromliteratureeachrenewaloffixedbaselineperiodfj(DBH,H)abanallometricequationforspecies,orgroupofspecies,orforesttypej,linkingabove-groundtreebiomass(inkgtree-1)todiameteratbreastheight(DBH)andpossiblytreeheight(H).A3-10measuredorestimatedfromliteratureonlyonceatprojectstartVM0015,Version1.1SectoralScope14Page188NotationDescriptionUnitEquationObservationSourceMonitoringFOM“FigureofMerit”dimensionless9ThisismeasureofgoodnessoffitbetweenobservedandpredicteddeforestationcalculatedeachrenewaloffixedbaselineperiodFracgasFractionofmanagedlivestockmanurenitrogenthatvolatilizesasNH3andNOxinthemanuremanagementphasekgNH3-NandNOx-Nemitted(KgN)-1Table31calculatedeachrenewaloffixedbaselineperiodfj(DBH,H)Vacommercialvolumeequationforspeciesorspeciesgroupj,linkingcommercialvolumetodiameteratbreastheight(DBH)andpossiblytreeheight(H)A3-20calculatedeachrenewaloffixedbaselineperiodf(t)Afunctionoftime4.ccalculatedeachrenewaloffixedbaselineperiodGWPCH4GlobalWarmingPotentialforCH4(IPCCdefaultvalue=21forthefirstcommitmentperiod)dimensionless13definedeachrenewaloffixedbaselineperiodGWPN2OGlobalWarmingPotentialforN2O(IPCCdefaultvalue=310forthefirstcommitmentperiod)dimensionless12definedeachrenewaloffixedbaselineperiodVM0015,Version1.1SectoralScope14Page189NotationDescriptionUnitEquationObservationSourceMonitoringHHeightofthetreemetersA3-27measuredorestimatedfromliteratureonlyonceatprojectstartandwhenmandatoryi1,2,3..IRRAstratumwithinthereferenceregiondimensionlessInmostequationsdefinedeachrenewaloffixedbaselineperiodicl1,2,3…Iclinitial(pre-deforestation)forestclassesdimensionless10measuredorestimatedfromliteratureeachrenewaloffixedbaselineperiodIDclIdentifierofaland-use/land-coverclassIDctIdentifierofaland-use/land-coverchangecategory(frominitialclassicltofinalclassfcl)IDctzIdentifierofaland-use/land-coverchangecategory(frominitialclassicltozonez)IDfclIdentifierofafinalpost-deforestationclassfclIDiIdentifierofastrtumiinthereferenceregionIDiclIdentifierofaninitialforestclassiclIDzIdentifierofazonejnumberoforganicfertilizertypesdimensionlessdefinedannuallykEstimatedparameterofthelogisticregressiondimensionless4.b,8.ccalculatedeachrenewaloffixedbaselineperiodVM0015,Version1.1SectoralScope14Page190NotationDescriptionUnitEquationObservationSourceMonitoringLLengthofthelinemA3-29measuredorestimatedfromliteratureonlyonceatprojectstartandwhenmandatoryLTFwFractionofwoodproductsthatareconsideredpermanent(i.e.carbonisstoredfor100yearsormore);itmaybeassumednocarbonisreleasedA3-36,A3-40%LKBPercentageoftheoverlappingleakagebeltsareatobeassignedtoproject,A,B…..N%2.a,2.b,2.ncalculatedAteachverificationMTFwFractionofwoodproductsthatareretiredbetween3and100yearsA3-37,A3-41ntotalnumberofsampleunitstobemeasured(inallLU/LCclasses)dimensionlessA3-1,A3-2calculatedeachrenewaloffixedbaselineperiodNPopulationsizeormaximumnumberofpossiblesampleunits(allLU/LCclasses)dimensionlessA3-2measuredeachrenewaloffixedbaselineperiodnclnumberofsamplesunitstobemeasuredinLU/LCclassclthatisallocatedproportionaltoclclclCSW.dimensionlessA3-2,A3-4eachrenewaloffixedbaselineperiodNCRNitrogen/Carbonratio(IPCCdefaultvalue=0.01)dimensionless12definedeachrenewaloffixedbaselineperiodNexAnnualaverageNexcretionperlivestockheadkgNhead-1yr-1A4-6,Table31measuredorestimatedfromeachrenewaloffixedbaselineperiodVM0015,Version1.1SectoralScope14Page191NotationDescriptionUnitEquationObservationSourceMonitoringliteratureniNumberofsamplesunitstobemeasuredinLU/LCclassclthatisallocatedproportionaltothesizeoftheclass.Ifestimatedncl<3,setncl=3A3-2NiMaximumnumberofpossiblesampleunitsforLU/LCclasscl,calculatedbydividingtheareaofclassclbythemeasurementplotareaA3-2OFwFractionofwoodproductsthatwillbeemittedtotheatmospherebetween5and100yearsoftimberharvestdimensionlessA3-35,A3-37measuredorestimatedfromliteratureonlyonceatprojectstartpCarbonpoolthatcouldburn(above-groundbiomass,deadwood,litter)dimensionless10definedeachrenewaloffixedbaselineperiodPburntp,iclAverageproportionofmassburntinthecarbonpoolpintheforestclassicl;%14measuredorestimatedfromliteratureonlyonceatprojectstartPCabplCarbonstockinabove-groundbiomassinplotpltCha-1A3-13calculatedonlyonceatprojectstartandwhenmandatoryPCbbplCarbonstockinbelow-groundbiomassinplotpltCha-1A3-16calculatedonlyonceatprojectstartandwhenmandatoryVM0015,Version1.1SectoralScope14Page192NotationDescriptionUnitEquationObservationSourceMonitoringPcomiclCommercialvolumeasapercentoftotalabovegroundvolumeininitialforestclassicldimensionlessA3-36,A3-38measuredorestimatedfromliteratureonlyonceatprojectstartandwhenmandatoryPCxiAverageinsituproductioncostsforonetonofproductPxinstratumi$/t1ThisvariablemayhavedifferentvalueswithindifferentstrataofthereferenceregionmeasuredorestimatedfromliteratureeachrenewaloffixedbaselineperiodPforagetProductionofforageatyeartkgd.m.yr-1A4-2,Table32calculatedexante,measuredexposteachrenewaloffixedbaselineperiodpl1,2,3,…PLclplotsinLU/LCclasscldimensionlessA3-14,A3-17,A3-24,A3-33calculatedonlyonceatprojectstartandwhenmandatoryPLclTotalnumberofplotsinLU/LCclasscldimensionlessA3-14,A3-17,A3-24,A3-34calculatedonlyonceatprojectstartandwhenmandatoryPoAnhydrousweightofsamplegA3-28measuredorestimatedfromliteratureonlyonceatprojectstartandwhenmandatoryPopulationtEquivalentnumberofforage-fedlivestockatyeartnumberofheadsA4-1,Table32calculatedexante,measuredexpostannuallyPPi,tProportionofstratumithatiswithintheprojectareaattimet%calculatedeachrenewaloffixedbaselineperiodVM0015,Version1.1SectoralScope14Page193NotationDescriptionUnitEquationObservationSourceMonitoringPPxlPotentialprofitabilityofproductPxatthelocationl(pixelorpolygon)$/t1calculatedeachrenewaloffixedbaselineperiodPsSaturatedweightofsamplegA3-28measuredorestimatedfromliteratureonlyonceatprojectstartandwhenmandatoryPxProductxproducedinthereferenceregiondimensionless1measuredorestimatedfromliteratureeachrenewaloffixedbaselineperiodr1RadiusatthebaseofthetreemetersA3-27measuredorestimatedfromliteratureonlyonceatprojectstartandwhenmandatoryr2RadiusatthetopofthetreemetersA3-27measuredorestimatedfromliteratureonlyonceatprojectstartandwhenmandatoryRBSLRRi,tPercentageofremainingforestareaatyeart-1instratumitobedeforestedatyeart%3UsedasanalternativetoABSLRRi,tinbaselineapproach"c"calculatedeachrenewaloffixedbaselineperiodRFtRiskfactorusedtocalculateVCSbuffercredits%21estimatedeachrenewaloffixedbaselineperiodRjRoot-shootratioappropriateforspecies,groupofspeciesorforesttypejdimensionlessA3-18measuredorestimatedfromliteratureonlyonceatprojectstartRj,pl,trRoot-shootratio,applicabletotreetrofspeciesjinplotpldimensionlessA3-22measuredorestimatedfromliteratureonlyonceatprojectstartVM0015,Version1.1SectoralScope14Page194NotationDescriptionUnitEquationObservationSourceMonitoringSclstandarddeviationofLU/LCclassclA3-4S$xSellingpriceofproductPx$/t1measuredorestimatedfromliteratureeachrenewaloffixedbaselineperiodSLFwFractionofwoodproductsthatwillbeemittedtotheatmospherewithin5yearsoftimberharvestdimensionlessA3-35,A3-37measuredorestimatedfromliteratureonlyonceatprojectstartSPxlSellingpointlofproductPxmap1measuredorestimatedfromliteratureeachrenewaloffixedbaselineperiodSTFwFractionofwoodproductsandwastethatwillbeemittedtotheatmospherewithin3years;allcarbonshallbeassumedtobelostimmediately;dimensionlessA3-35,A3-37,A3-40,A3-41t1,2,3…TayearoftheproposedprojectcreditingperioddimensionlessalmostallequationsdefinedttheyearatwhichtheareaABSLPAicl,tisdeforestedinthebaselinecasedimensionless10,A3-34definedt1Startdateofthehistoricalreferenceperioddimensionlesst2EnddateofthehistoricalreferenceperioddimensionlessVM0015,Version1.1SectoralScope14Page195NotationDescriptionUnitEquationObservationSourceMonitoringTaverageiNumberofyearsinwhichAaverageiisdeforestedinthebaselinecaseyrcalculatedeachrenewaloffixedbaselineperiodtaverageiYearatwhichTaverageiendsyr6,7calculatedeachrenewaloffixedbaselineperiodTBabjabove-groundbiomassofatreeofspecies,orspeciesgroup,orforesttypejkgtree-1orttree-1A3-10calculatedonlyonceatprojectstartTBabtrAbove-groundbiomassoftreetrkgtree-1orttree-1A3-11,A3-13,A3-21calculatedonlyonceatprojectstartTCabtrCarbonstockinabove-groundbiomassoftreetrkgCtree-1ortCtree-1A3-11,A3-21calculatedonlyonceatprojectstartTCbbtrCarbonstockinbelow-groundbiomassoftreetrkgCtree-1A3-16,A3-22calculatedonlyonceatprojectstartandwhenmandatoryTCvAverageTransportCostperkilometerforonetonofproductPxonland,riverorroadoftypev$/t/km1measuredorestimatedfromliteratureeachrenewaloffixedbaselineperiodTDvTransportDistanceonland,riverorroadoftypev$/t/km1calculatedeachrenewaloffixedbaselineperiodThrpDurationofthehistoricalreferenceperiodyrdefinedonlyonceatprojectstartToptimaliNumberofyearssincethestartoftheAUDprojectactivityinwhichAoptimalinstratumiisdeforestedinthebaselinecaseyrcalculatedeachrenewaloffixedbaselineperiodVM0015,Version1.1SectoralScope14Page196NotationDescriptionUnitEquationObservationSourceMonitoringtoptimaliYearatwhichToptimaliendsyr5,6calculatedeachrenewaloffixedbaselineperiodtr1,2,3,…TRplnumberoftreesinplotpldimensionlessA3-13measuredorestimatedfromliteratureonlyonceatprojectstartandwhenmandatorytstt-studentvaluefora95%confidencelevel(initialvaluet=2)dimensionlessA3-1tstTsub-optimaliNumberofyearsinwhichAsub-optimaliisdeforestedinthebaselinecaseyrcalculatedeachrenewaloffixedbaselineperiodv1,2,3,…Vtypeofsurfaceonwhichtransportoccursdimensionless1measuredorestimatedfromliteratureeachrenewaloffixedbaselineperiodV1i,t;V2i,t;...;Vni,tVariablesincludedinadeforestationmodel8UnitofeachvariabletobespecifiedbytheprojectproponentmeasuredorestimatedfromliteratureeachrenewaloffixedbaselineperiodVBCtNumberofBufferCreditsdepositedintheVCSBufferattimet;tCO2-e20,21,Table36calculatedannuallyVCUtNumberofVerifiedCarbonUnits(VCUs)tobemadeavailablefortradeattimettCO2-e20,Table36calculatedannuallyVEFVolumeExpansionFactordimensionlessA3-9measuredorestimatedfromliteratureonlyonceatprojectstartVM0015,Version1.1SectoralScope14Page197NotationDescriptionUnitEquationObservationSourceMonitoringVEXw,j,fcl,tVolumeoftimberforproductclassw,ofspeciesj,extractedfromwithinforestclassfclattimetm3A3-34measuredorestimatedfromliteratureonlyonceatprojectstartandwhenmandatoryVOB10VolumeOverBarkabove10cmDBHm3A3-9measuredorestimatedfromliteratureonlyonceatprojectstartVOB30VolumeOverBarkabove30cmDBHm3A3-9measuredorestimatedfromliteratureonlyonceatprojectstartVolumedcVolumeoflyingdeadwoodinthedensityclassdcm3A3-30measuredorestimatedfromliteratureonlyonceatprojectstartandwhenmandatoryVplCommercialvolumeofplotplm3plot-1A3-19measuredorestimatedfromliteratureonlyonceatprojectstartandwhenmandatoryVtrCommercialvolumeoftreetrm3A3-18,A3-21measuredorestimatedfromliteratureonlyonceatprojectstartandwhenmandatoryw1,2,3…WWoodproductclass(sawn-wood,wood-basedpanels,otherindustrialround-wood,paperandpaperboard,andother);dimensionlessA3-34definedonlyonceatprojectstartandwhenmandatoryWclNcl/NA3-4WWwWoodwasteforwoodproductclassw.ThefractiondimensionlessA3-35,A3-37measuredorestimatedfromonlyonceatprojectstartVM0015,Version1.1SectoralScope14Page198NotationDescriptionUnitEquationObservationSourceMonitoringimmediatelyemittedthroughmillinefficiencyliteratureXFPlotexpansionfactorfromperplotvaluestoperhectarevaluesdimensionlessA3-12,A3-13,A3-16,A3-19,A3-20,A3-24calculatedonlyonceatprojectstartandwhenmandatoryz1,2,3,…Zpostdeforestationzoneshavingacharacteristicmixtureoffinalpost-deforestationclasses(fcl)VM0015,Version1.1SectoralScope14Page199APPENDIX6:LISTOFTABLESUSEDINTHISMETHODOLOGYTableExanteExpostAtvalidationAtverificationAtbaselineupdateTable1ScopeofthemethodologyITable2CriteriadeterminingtheapplicabilityofexistingbaselinesITable3CarbonpoolsincludedorexcludedwithintheboundaryoftheproposedAUDprojectactivityYYTable4SourcesandGHGincludedorexcludedwithintheboundaryoftheproposedAUDprojectactivityYYTable5DatausedforhistoricalLU/LCchangeanalysisYYYTable6ListofalllanduseandlandcoverclassesexistingattheprojectstartdatewithinthereferenceregionYYTable7.aPotentialland-useandland-coverchangematrix(initialforestclassesicltofinalpost-deforestationclassesfcl)Y-M2,ctY-M2,ctTable7.bListofland-useandland-coverchangecategoriesct(initialforestclassesicltofinalpost-deforestationclassesfcl)Y-M2,ctY-M2,ctTable8StratificationofthereferenceregionYYTable9.aAnnualareasofbaselinedeforestationinthereferenceregionYYTable9.bAnnualareasofbaselinedeforestationintheprojectareaYYYTable9.cAnnualareasofbaselinedeforestationintheleakagebeltYYYTable10Listofvariables,mapsandfactormapsYYTable11.aAnnualareasdeforestedperforestclassiclwithinthereferenceregioninthebaselinecase(baselineactivitydataperforestclass)YYVM0015,Version1.1SectoralScope14Page200TableExanteExpostAtvalidationAtverificationAtbaselineupdateTable11.bAnnualareasdeforestedperforestclassiclwithintheprojectareainthebaselinecase(baselineactivitydataperforestclass)YYYTable11.cAnnualareasdeforestedperforestclassiclwithintheleakagebeltareainthebaselinecase(baselineactivitydataperforestclass)YYYTable12Zonesofthereferenceregionencompassingdifferentcombinationsofpotentialpost-deforestationLU/LCclasses(Asmallerareathanthereferenceregioncanbeconsidered,butthissmallerareamustatleastcontaintheprojectarea,theleakagebeltandtheleakagemanagementareas.)YYTable13.aAnnualareasdeforestedineachzonewithinthereferenceregioninthebaselinecase(baselineactivitydataperzone)YYYTable13.bAnnualareasdeforestedineachzonewithintheprojectareainthebaselinecase(baselineactivitydataperzone)YYYTable13.cAnnualareasdeforestedineachzonewithintheleakagebeltareainthebaselinecase(baselineactivitydataperzone)YYYTable14.aBaselineactivitydataforLU/LCchangecategories(ct)inthereferenceregionY-M2,ctY-M2,ctTable14.bBaselineactivitydataforLU/LCchangecategories(ct)intheprojectareaY-M2,ctY-M2,ctY-M2,ctTable14.cBaselineactivitydataforLU/LCchangecategories(ct)intheleakagebeltY-M2,ctY-M2,ctY-M2,ctTable15.aCarbonstocksperhectareofinitialforestclassesiclexistingintheprojectareaandleakagebelt(theselectionofcarbonpoolsissubjecttothelatestVCSrequirementsonthismatter,seeTable3):EstimatedvaluesYY-EYVM0015,Version1.1SectoralScope14Page201TableExanteExpostAtvalidationAtverificationAtbaselineupdateTable15.bCarbonstocksperhectareofinitialforestclassesiclexistingintheprojectareaandleakagebelt(theselectionofcarbonpoolsissubjecttothelatestVCSrequirementsonthismatter,seeTable3):Valuestobeusedafterdiscountsforuncertainties(see6.1.1.f,andAppendix2)YY-EYTable16Long-term(20-years)averagecarbonstocksperhectareofpost-deforestationLU/LCclassespresentinthereferenceregion(theselectionofcarbonpoolsissubjecttothelatestVCSrequirementsonthismatter,seetable3)YYTable17Long-term(20-years)areaweightedaveragecarbonstockperzonezone(IfMethod2wasusedinstep5.2,theneachzonewillhaveonlyonepost-deforestationclassfcl)YYTable18.aPotentialland-useandland-coverchangematrix(initialforestclassesicltopost-deforestationzonesz)Y-M2,ctzY-M2,ctzTable18.bListofland-useandland-coverchangecategories(ctz)(initialforestclassesicltopost-deforestationzonesz)Y-M2,ctzY-M2,ctzTable19.aAnnualareasdeforestedineachcategoryctzwithinthereferenceregioninthebaselinecase(baselineactivitydatapercategory(ctz)Y-M2,ctzY-M2,ctzTable19.bAnnualareasdeforestedineachcategoryctzwithintheprojectareainthebaselinecase(baselineactivitydatapercategory(ctz)Y-M2,ctzY-M2,ctzY-M2,ctzTable19.cAnnualareasdeforestedineachcategoryctzwithintheleakagebeltinthebaselinecase(baselineactivitydatapercategory(ctz)Y-M2,ctzY-M2,ctzY-M2,ctzTable20.aCarbonstockchangefactorsforinitialforestclassesicl(Method1)Y-M1Y-M1Table20.bCarbonstockchangefactorsforfinalclassesfclorzonesz(Method1)Y-M1Y-M1VM0015,Version1.1SectoralScope14Page202TableExanteExpostAtvalidationAtverificationAtbaselineupdateTable20.cCarbonstockchangefactorsforland-usechangecategories(ctorctz)(Method2)Y-M2,ctY-M2,ctzY-M2,ctY-M2,ctzTable21.a.1Baselinecarbonstockchangeintheabove-groundbiomassinthereferenceregion(Y-M1)(Y-M1)Table21.a.2Baselinecarbonstockchangeinthebelow-groundbiomassinthereferenceregion(Y-M1)(Y-M1)Table21.a.3Baselinecarbonstockchangeinthedeadwoodinthereferenceregion(Y-M1)(Y-M1)Table21.a.4Baselinecarbonstockchangeinthelitterinthereferenceregion(Y-M1)(Y-M1)BaselinecarbonstockchangeinthesoilorganiccarboninthereferenceregionMethod2mustbeusedTable21.a.6Baselinecarbonstockchangeinthewoodproductsinthereferenceregion(Y-M1)(Y-M1)Table21.b.1Baselinecarbonstockchangeintheabove-groundbiomassintheprojectareaY-M1Y-M1(A)Y-M1Table21.b.2Baselinecarbonstockchangeinthebelow-groundbiomassintheprojectareaY-M1Y-M1(A)Y-M1Table21.b.3BaselinecarbonstockchangeinthedeadwoodintheprojectareaY-M1Y-M1(A)Y-M1Table21.b.4BaselinecarbonstockchangeinthelitterintheprojectareaY-M1Y-M1(A)Y-M1BaselinecarbonstockchangeinthesoilorganiccarbonintheprojectareaMethod2mustbeusedTable21.b.6BaselinecarbonstockchangeinthewoodproductsintheprojectareaY-M1Y-M1(A)Y-M1Table21.c.1Baselinecarbonstockchangeintheabove-groundbiomassintheleakagebeltareaY-M1Y-M1(A)Y-M1Table21.c.2Baselinecarbonstockchangeinthebelow-groundbiomassintheleakagebeltareaY-M1Y-M1(A)Y-M1Table21.c.3BaselinecarbonstockchangeinthedeadwoodintheleakagebeltareaY-M1Y-M1(A)Y-M1VM0015,Version1.1SectoralScope14Page203TableExanteExpostAtvalidationAtverificationAtbaselineupdateTable21.c.4BaselinecarbonstockchangeinthelitterintheleakagebeltareaY-M1Y-M1(A)Y-M1BaselinecarbonstockchangeinthesoilorganiccarbonintheleakagebeltareaMethod2mustbeusedTable21.c.6BaselinecarbonstockchangeinthewoodproductsintheleakagebeltareaY-M1Y-M1(A)Y-M1Table22.a.1Baselinecarbonstockchangeintheabove-groundbiomassinthereferenceregion(Y-M2)(Y-M2)Table22.a.2Baselinecarbonstockchangeinthebelow-groundbiomassinthereferenceregion(Y-M2)(Y-M2)Table22.a.3Baselinecarbonstockchangeinthedeadwoodinthereferenceregion(Y-M2)(Y-M2)Table22.a.4Baselinecarbonstockchangeinthelitterinthereferenceregion(Y-M2)(Y-M2)Table22.a.5Baselinecarbonstockchangeinthesoilorganiccarboninthereferenceregion(Y-M2)(Y-M2)Table22.a.6Baselinecarbonstockchangeinthewoodproductsinthereferenceregion(Y-M2)(Y-M2)Table22.b.1Baselinecarbonstockchangeintheabove-groundbiomassintheprojectareaY-M2Y-M2(A)Y-M2Table22.b.2Baselinecarbonstockchangeinthebelow-groundbiomassintheprojectareaY-M2Y-M2(A)Y-M2Table22.b.3BaselinecarbonstockchangeinthedeadwoodintheprojectareaY-M2Y-M2(A)Y-M2Table22.b.4BaselinecarbonstockchangeinthelitterintheprojectareaY-M2Y-M2(A)Y-M2Table22.b.5BaselinecarbonstockchangeinthesoilorganiccarbonintheprojectareaY-M2Y-M2(A)Y-M2Table22.b.6BaselinecarbonstockchangeinthewoodproductsintheprojectareaY-M2Y-M2(A)Y-M2Table22.c.1Baselinecarbonstockchangeintheabove-groundbiomassintheleakagebeltareaY-M2Y-M2(A)Y-M2Table22.c.2Baselinecarbonstockchangeinthebelow-groundbiomassintheleakagebeltareaY-M2Y-M2(A)Y-M2VM0015,Version1.1SectoralScope14Page204TableExanteExpostAtvalidationAtverificationAtbaselineupdateTable22.c.3BaselinecarbonstockchangeinthedeadwoodintheleakagebeltareaY-M2Y-M2(A)Y-M2Table22.c.4BaselinecarbonstockchangeinthelitterintheleakagebeltareaY-M2Y-M2(A)Y-M2Table22.c.5BaselinecarbonstockchangeinthesoilorganiccarbonintheleakagebeltareaY-M2Y-M2(A)Y-M2Table22.c.6BaselinecarbonstockchangeinthewoodproductsintheleakagebeltareaY-M2Y-M2(A)Y-M2Table23Parametersusedtocalculatenon-CO2emissionsfromforestfiresYYYTable24Baselinenon-CO2emissionsfromforestfiresintheprojectarea(TheselectionofgasesissubjecttothelatestVCSguidanceonthismatter,seetable4)YY(A)YTable25.aExanteestimatedactualcarbonstockdecreaseduetoplanneddeforestationintheprojectareaYYYTable25.bExanteestimatedactualcarbonstockdecreaseduetoplannedloggingactivitiesintheprojectareaYYYTable25.cExanteestimatedactualcarbonstockdecreaseduetoplannedfuelwoodcollectionandcharcoalproductionintheprojectareaYYYTable25.dTotalexantecarbonstockdecreaseduetoplannedactivitiesintheprojectareaYYYTable26.aExanteestimatedcarbonstockincreaseduetoplannedprotectionwithoutharvestintheprojectareaYYYTable26.bExanteestimatedcarbonstockincreasefollowingplannedloggingactivitiesintheprojectareaYYYTable26.cExanteestimatedcarbonstockincreasefollowingplannedfuel-woodandcharcoalactivitiesintheprojectareaYYYVM0015,Version1.1SectoralScope14Page205TableExanteExpostAtvalidationAtverificationAtbaselineupdateTable26.dTotalexanteestimatedcarbonstockincreaseduetoplannedactivitiesintheprojectareaYYYTable26.eExpostcarbonstockincreaseonareasaffectedbyforestfiresYTable26.fExpostcarbonstockincreaseonareasaffectedbycatastrophicevents(seebelowandsection1.1.4).YTable26.gExpostcarbonstockincreaseonareasrecoveringafterforestfiresandcatastrophiceventsYTable27ExanteestimatednetcarbonstockchangeintheprojectareaundertheprojectscenarioYYYTable28Totalexanteestimatedactualemissionsofnon-CO2gassesduetoforestfiresintheprojectareaYYYTable29Totalexanteestimatedactualnetcarbonstockchangesandemissionsofnon-CO2gassesintheprojectareaYYYTable30.aExanteestimatedcarbonstockchangeinleakagemanagementareasinthebaselinecaseYYYTable30.bExanteestimatedcarbonstockchangeinleakagemanagementareasintheprojectcaseYYYTable30.cExanteestimatednetcarbonstockchangeinleakagemanagementareasYYYTable31ParametersusedfortheexanteestimationofGHGemissionsfromgrazingactivitiesYYYTable32ExanteestimationofleakageemissionsabovethebaselinefromgrazinganimalsinleakagemanagementareasYYYTable33ExanteestimatedtotalemissionsabovethebaselinefromleakagepreventionactivitiesYYYTable34ExanteestimatedleakageduetoactivitydisplacementYYYVM0015,Version1.1SectoralScope14Page206TableExanteExpostAtvalidationAtverificationAtbaselineupdateTable35ExanteestimatedtotalleakageYYYTable36ExanteestimatednetanthropogenicGHGemissionreductions(t)andVoluntaryCarbonUnits(VCUt)YYYIInformativeYYes,tobepreparedY-M1Yes,tobepreparedifMethod1(ActivityDataperclasses)isusedY-M2,ctYes,tobepreparedifMethod2(activitydatapercategoryct)isusedY-M2,ctzYes,tobepreparedifMethod2(activitydatapercategoryctz)isusedY-EYes,tobepreparedifcarbonstockenhancementisaccounted()OptionalTobepreparedonlyifapplicable(A)ActualchangesinsteadofbaselinechangesVM0015,Version1.1SectoralScope14Page207DOCUMENTHISTORYVersionDateCommentv1.012Jun2011Initialversionreleased.v1.13Dec2012Themethodologywasrevisedtoaccountforthedecayofcarbonfromthebelow-groundbiomass,deadwood,soilcarbonandmeditum-termharvestedwoodproductspoolsRevisionsweremadetosection6.1.2andAppendix3.Additionalrevisionshavealsobeenincorporatedintothemethodology.Specifically,litterisincludedasanoptionalpool,samplingtechniquesareprovidedasanoptionfordevelopingland-use/landcovermaps,thestepstoanalysedeforestationconstraintsisremoved,andaprocesstoprojectfutureland-use/landcoverwithzonesisprovided.Thefollowingminorupdateshavealsobeenincorporatedintothemethodology:Theword“guidelines”whenreferringtoJurisdictionalandNestedREDDwaschangedto“requirements”.Equations6.a,6.band6.cwerecorrectedtoavoidnegativeareas.Equations7.band12.cwerecorrected(“e”istheEulerNumber).TheminimumthresholdrequirementsfortheFigureofMerit(FOM)werechangedandmadeconsistentwiththecorrespondingmoduleofVM0007.ThedefinitionoftheminimummappingunitwasupdatedtobeconsistentwiththedefinitionfoundintheVCSJNRRequirements.AnerrorwascorrectedinequationA3-17(thefactor44/12toconverttonsofCtotonsofCO2-ewasmissing).

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱