VM0012-改善温带和北方森林的森林管理方法学VIP专享VIP免费

VM0012, Version 1.2
Sectoral Scope 14
Copyright ©2012 3GreenTree Ecosystem Services Ltd.
Approved VCS Methodology
VM0012
Version 1.2
Sectoral Scope 14
Improved Forest Management in
Temperate and Boreal Forests (LtPF)
©2013 3GreenTree Ecosystem Services Ltd
VM0012, Version 1.2
Sectoral Scope 14
Copyright ©2012 3GreenTree Ecosystem Services Ltd.
This methodology is developed by:
3GreenTree Ecosystem Services Ltd. ERA Ecosystem Restoration Associates Inc.
The previous revision of this methodology to Version 1.2 received support from Camco Group International
Inc.
VM0012, Version 1.2
Sectoral Scope 14
Copyright ©2013 3GreenTree Ecosystem Services Ltd. 1
Table of Contents
1 SOURCES ............................................................................................................................................................ 3
2 SUMMARY DESCRIPTION OF THE METHODOLOGY ..................................................................................... 3
2.1 Baseline and Project Scenario Steps: ........................................................................................................... 3
2.2 Monitoring Steps: ........................................................................................................................................... 4
3 DEFINITIONS ....................................................................................................................................................... 4
4 APPLICABILITY CONDITIONS ........................................................................................................................... 5
5 PROJECT BOUNDARY ....................................................................................................................................... 6
5.1 Spatial Project Boundaries: ........................................................................................................................... 6
5.2 Temporal Project Boundaries ........................................................................................................................ 6
5.3 Leakage Assessment Boundaries ................................................................................................................. 6
5.4 Selected Carbon Pools and Emissions Sources: .......................................................................................... 6
6 PROCEDURE FOR DETERMINING THE BASELINE SCENARIO: ................................................................... 7
7 PROCEDURE FOR DEMONSTRATING ADDITIONALITY .............................................................................. 10
8 QUANTIFICATION OF GHG EMISSION REDUCTIONS AND REMOVALS .................................................... 11
8.1 Baseline Emissions: .................................................................................................................................... 11
8.1.1 Model Selection and Use ...................................................................................................................... 12
8.1.2 Calculating the Baseline Carbon Balance ............................................................................................ 13
8.1.3 Live Biomass Gain ................................................................................................................................ 14
8.1.4 Live Biomass Loss ................................................................................................................................ 15
8.1.5 Dead Organic Matter Dynamics (∆CBSL,DOM) ........................................................................................ 16
8.1.6 Harvested Wood Products .................................................................................................................... 20
8.1.7 Carbon storage in harvested wood products (∆CBSL,STORHWP,t) ............................................................. 21
8.1.8 Fossil fuel emissions associated with logging, transport, and manufacture ........................................ 24
8.2 Project Emissions ........................................................................................................................................ 26
8.2.1 Project Scenario Area Stratification ...................................................................................................... 27
8.2.2 Determining Actual Onsite Carbon Stocks ........................................................................................... 27
8.2.3 Ex-Post Calculations of Carbon Stocks ................................................................................................ 27
8.2.4 Updating the Modeled Project Carbon Balance ................................................................................... 29
8.2.5 Calculating the Project Carbon Balance ............................................................................................... 29
8.2.6 Live Biomass Gain ................................................................................................................................ 30
8.2.7 Live Biomass Loss ................................................................................................................................ 30
8.2.8 Dead Organic Matter Dynamics (∆CPRJ,DOM) ........................................................................................ 32
8.2.9 Harvested Wood Products .................................................................................................................... 35
8.2.10 Carbon storage harvested wood products (∆CPRJ,STORHWP,t) ............................................................... 36
8.2.11 Fossil fuel emissions associated with logging, transport, and manufacture ...................................... 39
8.3 Leakage ....................................................................................................................................................... 40
8.3.1 Activity Shifting Leakage: ..................................................................................................................... 40
8.3.2 Market Leakage: ................................................................................................................................... 40
8.3.3 Market Leakage Option 1 VCS Default Market Leakage Discount Factors ...................................... 41
8.3.4 Market Leakage Option 2 CAR Market Leakage Formula ................................................................ 41
VM0012,Version1.2SectoralScope14Copyright©20123GreenTreeEcosystemServicesLtd.ApprovedVCSMethodologyVM0012Version1.2SectoralScope14ImprovedForestManagementinTemperateandBorealForests(LtPF)©20133GreenTreeEcosystemServicesLtdVM0012,Version1.2SectoralScope14Copyright©20123GreenTreeEcosystemServicesLtd.Thismethodologyisdevelopedby:3GreenTreeEcosystemServicesLtd.ERAEcosystemRestorationAssociatesInc.ThepreviousrevisionofthismethodologytoVersion1.2receivedsupportfromCamcoGroupInternationalInc.VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.1TableofContents1SOURCES............................................................................................................................................................32SUMMARYDESCRIPTIONOFTHEMETHODOLOGY.....................................................................................32.1BaselineandProjectScenarioSteps:...........................................................................................................32.2MonitoringSteps:...........................................................................................................................................43DEFINITIONS.......................................................................................................................................................44APPLICABILITYCONDITIONS...........................................................................................................................55PROJECTBOUNDARY.......................................................................................................................................65.1SpatialProjectBoundaries:...........................................................................................................................65.2TemporalProjectBoundaries........................................................................................................................65.3LeakageAssessmentBoundaries.................................................................................................................65.4SelectedCarbonPoolsandEmissionsSources:..........................................................................................66PROCEDUREFORDETERMININGTHEBASELINESCENARIO:...................................................................77PROCEDUREFORDEMONSTRATINGADDITIONALITY..............................................................................108QUANTIFICATIONOFGHGEMISSIONREDUCTIONSANDREMOVALS....................................................118.1BaselineEmissions:....................................................................................................................................118.1.1ModelSelectionandUse......................................................................................................................128.1.2CalculatingtheBaselineCarbonBalance............................................................................................138.1.3LiveBiomassGain................................................................................................................................148.1.4LiveBiomassLoss................................................................................................................................158.1.5DeadOrganicMatterDynamics(∆CBSL,DOM)........................................................................................168.1.6HarvestedWoodProducts....................................................................................................................208.1.7Carbonstorageinharvestedwoodproducts(∆CBSL,STORHWP,t).............................................................218.1.8Fossilfuelemissionsassociatedwithlogging,transport,andmanufacture........................................248.2ProjectEmissions........................................................................................................................................268.2.1ProjectScenarioAreaStratification......................................................................................................278.2.2DeterminingActualOnsiteCarbonStocks...........................................................................................278.2.3Ex-PostCalculationsofCarbonStocks................................................................................................278.2.4UpdatingtheModeledProjectCarbonBalance...................................................................................298.2.5CalculatingtheProjectCarbonBalance...............................................................................................298.2.6LiveBiomassGain................................................................................................................................308.2.7LiveBiomassLoss................................................................................................................................308.2.8DeadOrganicMatterDynamics(∆CPRJ,DOM)........................................................................................328.2.9HarvestedWoodProducts....................................................................................................................358.2.10Carbonstorageharvestedwoodproducts(∆CPRJ,STORHWP,t)...............................................................368.2.11Fossilfuelemissionsassociatedwithlogging,transport,andmanufacture......................................398.3Leakage.......................................................................................................................................................408.3.1ActivityShiftingLeakage:.....................................................................................................................408.3.2MarketLeakage:...................................................................................................................................408.3.3MarketLeakageOption1–VCSDefaultMarketLeakageDiscountFactors......................................418.3.4MarketLeakageOption2–CARMarketLeakageFormula................................................................41VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.28.3.5MarketLeakageOption3–LeakageAssessmentTool......................................................................438.4SummaryofGHGEmissionReductionand/orRemovals...........................................................................478.5SummaryGrossEmissionsReductionsand/orRemovalsEquation..........................................................478.5.1SummaryNetEmissionsReductionsand/orRemovalsEquation.......................................................478.5.2CalculatingVerifiedCarbonUnits(VCU’s)fortheProject...................................................................478.5.3CalculationofanUncertaintyFactor....................................................................................................489MONITORING....................................................................................................................................................509.1DataandParametersAvailableatValidation..............................................................................................509.2DataandParametersMonitored.................................................................................................................669.3DescriptionoftheMonitoringPlan..............................................................................................................729.3.1ProjectMonitoringRequirements.........................................................................................................729.3.2MonitoringAnnualSpatialInventoryChanges.....................................................................................729.3.3CarbonStockMonitoringFieldPlotSamplingDesignandStratification.............................................739.3.4StratificationforFieldPlotSampling:...................................................................................................739.3.5FieldPlotSamplingFramework............................................................................................................739.3.6QualityAssurance/QualityControl(QA/QC)Methods.........................................................................769.3.7LeakageMonitoring..............................................................................................................................779.3.8Frequencyofmonitoring.......................................................................................................................779.3.9UseofMonitoringDatatoUpdateCarbonStockCalculations............................................................779.3.10UpdatingofMonitoringPolygons.......................................................................................................7810ReferencesandOtherInformation...............................................................................................................79VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.31SOURCESThisdocumentreflectsanupdatetoVM0012ImprovedForestManagementonPrivatelyOwnedPropertiesinTemperateandBorealForests(LtPF)v.1.0,whichwasdeveloped3GreenTreeEcosystemServices,Ltd.andERAEcosystemRestorationAssociates,andapprovedbyVCSonApril19,2011.ThisupdateremovestheapplicabilityconditionsrelatedtofeesimpleownershiptobecomeconsistentwiththeVCSVersion3definitionsandrequirementsrelatedtorightofuse.ThedocumenthasbeenreorganizedtomatchtheVCSVersion3ProjectDocumentTemplatestructure,withoutmateriallyaffectingtheoriginalcontent.Thefollowingdocumentswereusedtoinformandguidethecreationofthismethodology:-VCSStandard2007.1(VoluntaryCarbonStandard,2008d)-VCSProgramGuidelines2007.1(VoluntaryCarbonStandard,2008e)-VCSGuidanceforAFOLUProjects(VoluntaryCarbonStandard,2008a)-VCSToolforAFOLUMethodologicalIssues(VoluntaryCarbonStandard,2008b)-ToolforAFOLUNon-PermanenceRiskAnalysisandBufferDetermination-Proposed(VoluntaryCarbonStandard,2010a)-CARForestProjectProtocolVersion3.0and3.2(ClimateActionReserve,2010)-VM0003MethodologyforImprovedForestManagementthroughExtensionofRotationAge,v1.02SUMMARYDESCRIPTIONOFTHEMETHODOLOGYThismethodologyforImprovedForestManagement–LoggedtoProtectedForestquantifiesGHGemissionreductions/removalsfromprojectsonlandwithforestsremainingforestsandwherecarbonsequestrationoccurswhenlogginginthebaselinescenarioisavoidedintheprojectscenario.2.1BaselineandProjectScenarioSteps:1.Determineprojecteligibilityandapplicabilityofthismethodology.2.Establishtheprojectarea(=privatepropertyboundary).3.Establishaprojecttimehorizon.4.Determinemultiplecredibleandrealisticbaselinescenarios.5.Selectthebaselinescenario6.Testforadditionalityusingdesignatedtoolsandrequirements.7.Selecttheapplicablecarbonpoolsandemissionsourcesfortheprojectarea.8.Createdetailedbaselinescenarioandprojectscenarioassumptions:a.Spatiallystratifythecurrentlandcoverandlanduseconditionsbyarea,ifnecessary:b.Determinethetimberharvestinglandbasearea(s)c.Projectthebaselineandprojectscenarioforestmanagementschedule,includingforestregenerationpractices,foraminimumofonerotation.Includespatiallylocatedharvestablevolumeandareabyanalysisunitandyear,identifystandlevelharvestingmethodsandassumptions,andidentifyadditionalrelevantscenariomodelinginformation.d.Projectthenetannualecosystemcarbonstockchangesovertimeunderthebaselineandprojectscenarios,includingchangesduetoharvestremovals,regeneration,standgrowth,mortality,andanyadditionalfactorsthatmateriallyaffectcarbonbalance.9.Calculateannualizedandprojecttotalex-antecarbonpoolflowsandGHGEmissionsforthebaselineandprojectscenarios.VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.410.CalculatethenetchangeinGHGemissionsbetweentheex-anteecosystemcarbonprojectionsforthebaselineandprojectscenarios,onanannualizedbasis.11.AssessleakageriskstodeterminealeakagefactortobeappliedtothenetannualGHGemissionchanges.12.CalculateandestimatetheexpectednetVCU’s,includingcalculatingVCSpermanencebufferrequirements.13.CalculateandapplyanuncertaintyfactortonetGHGemissionreductions.2.2MonitoringSteps:1.Determinethedataandassumptionstobemonitoredtoassessex-postcarbonstockchangesintheprojectarea.2.Determineremotesensingactivitiesformonitoringex-postlandusechangesontheprojectarea.3.Developandimplementasystematicfieldplotnetworkforestimatingandmonitoringactualstandlevelbiomasswithintheprojectboundary.4.Developandimplementaleakagemonitoringplan.5.Developarecord-keepingproceduretorecordandarchivemonitoringactivities,results,andrelatedmanagementactions.6.Designaqualityassurance/qualitycontrolprogramrelatedtomonitoring.3DEFINITIONSBorealForest-asperFAOecologicalzonedefinitionsandmapping(FAO,2001):“TheBoreal,orsubarctic,domainisfoundonlyinthehigherlatitudesoftheNorthernHemispherebetween50-55to65-70degrees.Ithasatleastoneandupto4monthwithanaveragetemperatureabove10oC.Anotherfeatureisthelargeannualrangeoftemperature.Rainfallislow,generallybelow500mm.Thenorthernboundary,approximatelytheisothermof10oCforthewarmestmonth(usuallyJuly),coincidesratherwellwiththepolewardlimitoftreegrowth.”Clearcut-Harvestremovalof>90%ofmerchantabletreeswithinadefinedareaDeminimis–carbonemissionsdeemedtobeinsignificantorimmaterialtothetotalGHGcalculations.Unlessotherwisespecified,deminimisreferstoactivitiesresultingin<5%changeinthetotalprojectGHGemissionreductions.See(CDM,2007a)forfurtherdetails.Loggingslash-Deadwoodresidues(includingfoliage)leftontheforestflooraftertimberremovalRightofUse–AsdefinedinthemostrecentversionoftheVCSStandard.TemperateForest–asperFAOecologicalzonedefinitionsandmapping(FAO,2001):“Thetemperatedomainoccupiesamedialpositionwithinthemiddlelatitudes–usuallybetweenthesubtropicaldomainequator-wardsandtheborealdomainpole-wards.Theboundarieswiththesubtropical-andborealdomainare8monthsand4months,respectively,withaveragetemperaturesof10°Corabove.Itsmaindistributionisinthenorthernhemisphere”.TimberHarvestLandBase(THLB)–asub-setoftheprojectarealandbasesubjecttotimberharvesting,includingspatiallylocatedareasorreasonablevolume-basedproxieswithintheprojectboundarieswhicharecurrentlyconsideredbiologicallyandeconomicallyfeasiblefortimberharvestingaspertypicalregionalloggingpracticesrelevanttotheprojectsite.RemovalsfromtheTHLBmayinclude,butarenotlimitedto:non-forestareas;non-commercialforesttypes;physicallyinoperableorinaccessibleareasduetoterrain,soils,etc.;currentandfutureroadsandothernon-forestclearings;legallyrequiredorvoluntarybuffersandprotectedareas(i.e.VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.5riparianzones,wildlifeareas,sensitivesites,etc.),longrununeconomicalstands,andotherareaswhicharenoteligibleforharvestingundertypicalorcommonpracticesdeterminedinthebaselineandprojectscenarios.ExamplesofdeterminingTHLBcanbefoundwithinBritishColumbiaTimberSupplyAnalysisdocumentationathttp://www.for.gov.bc.ca/hts/tsas.htminTimberSupplyArea(TSA)AnalysisReports(i.e.pg.10,http://www.for.gov.bc.ca/hts/tsa/tsa13/tsr2/analysis.pdf);however,projectsmustusemethodstypicaloflocalforestestatemodelingandtimbersupplyanalyses.NotethattheTHLBisaprimarystratificationwhichidentifiesareaseligibleforharvestingactivities;allprojectrequirementsapplytotheentireprojectarea.Tree-Aperennialwoodyplantwithadiameteratbreastheight>5cmandaheightgreaterthan1.3m.Acronyms:CAR–ClimateActionReserveCDM-CleanDevelopmentMechanismGPGLULUCF-IntergovernmentalPanelonClimateChange‘sGoodPracticeGuidanceforLand-Use,LandUseChangeandForestryIFM-ImprovedForestManagement(VCSprojecttype)LtPF–LoggedtoProtectedForest(VCSIFMprojectsub-type)PD-ProjectDescriptionVCS-VerifiedCarbonStandardVCU-VerifiedCarbonUnits4APPLICABILITYCONDITIONSThismethodologyisapplicableto:1.ProjectswhichmeetthemostrecentapprovedcriteriaforVCSImprovedForestManagement–LoggedtoProtectedForest(IFM-LtPF)eligibleprojects,and;2.ProjectslocatedinTemperateandBorealDomainGlobalEcologicalZones(asdefinedbyFAO(FAO,2001))whichareforestlandsremainingforestlands(asdefinedbyIPCC(IPCC,2003)),andwhichcanmeetIPCCGPGLULUCFTierIIIinventoryanddatarequirements(IPCC,2003);and,3.ProjectsthatmeetthemostcurrentapprovedVCSStandardrequirementsforownership;and,4.Projectsonpropertieswherethestartingaverageannualillegal,unplanned,andfuelwoodremovalsarelessthan5%oftotalannualharvestlevels(inCO2e)inthebaselinescenario1;and,1Thismethodologydoesnotprovidespecificequationsandmethodsforthetreatmentofillegalandunplannedharvestingorfuelwoodremoval.Therefore,projectswithnon-deminimislevels(determinedusingtheToolforTestingSignificanceofGHGEmissionsinA/RCDMProjects(CDM,2007a))oftheseactivitiesinthestartingcondition(oraslocalcommonpracticeapplicabletotheprojectarea)areineligible.Ifmonitoringrevealsconditionschangeduringtheprojectduration,projectswillnotnecessarilyberenderedineligibleforthismethodology,butrathermustdemonstratethatnewnon-deminimisillegalorunplannedharvests,andfuelwoodremovalnetemissionsreductionsareaccountedforintheprojectscenariopriortothenextverification,inamannerequivalenttothetermsLBFELLINGS,i,tandLBOTHER,i,t(seesection8.2.7).Theseadditionalequationsandmethodswillconstituteamethodologyrevision,subjecttothelatestapprovedVCSrevision-approvalprocess.VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.65.Projectswhichdonotencompassmanagedpeatlandforests(peatlandasdefinedbyIPCCGPGLULUCF);and,6.Projectswherethetotalpercentageofwetlandsintheprojectareaisnotexpectedtochangeaspartofprojectactivities;and,7.Projectsthatcandemonstratetherewillbenoactivityshiftingtootherlandsownedormanagedbyprojectproponentsoutsidetheprojectboundaryatthebeginningoftheproject(withinthefirstyearoftheprojectstartdate)2;and,8.Projectsthatdonotincludenon-deminimisapplicationoforganicorinorganicfertilizerintheprojectscenario.5PROJECTBOUNDARY5.1SpatialProjectBoundaries:Theprojectboundaryistobedefinedbytheprojectproponentwithmapsandlegallanddescriptions.Suchpropertiesmaybecontiguousorseparatepropertiesiftheyarelocatedwithinasimilarregionandforestcondition.Notethatallspatiallyrelevantforestlandholdingsownedormanagedbytheprojectproponentwillneedtobeconsideredinleakageassessmentsandmonitoring,eveniftheyarenotincludedinthedefinedprojectarea.5.2TemporalProjectBoundariesAsperVCSrequirementsforAFOLUprojects,projectproponentsmustspecifyaproject-creditingperiodassetoutinthemostrecentversionoftheVCSStandard..5.3LeakageAssessmentBoundariesLeakagewithinthismethodologyisassessedagainstanationalleakagearea.5.4SelectedCarbonPoolsandEmissionsSources:Table1-SelectionofCarbonPoolsCarbonPoolSelected?Justification/ExplanationAbovegroundTreeBiomassYesRequiredbyVCS.Majorcarbonpoolsubjecttochangesfromthebaselinetotheprojectscenario.AbovegroundNon-treeBiomassNoExcludedbyVCS.MinorcarbonpoolsubjecttochangesfromthebaselinetotheprojectscenarioBelowgroundBiomassPoolYesRequiredbyVCS.Majorcarbonpoolsubjecttochangesfromthebaselinetotheprojectscenario.2Thismethodologydoesnotprovidespecificequationsandmethodsforcalculatingnetemissionsrelatedtoactivityshiftingleakage.VCSrequires“IFMprojectdevelopersmustdemonstratethatthereisnoleakagewithintheiroperations–i.e.,onotherlandstheymanage/operateoutsidetheboundsoftheVCScarbonproject”(VoluntaryCarbonStandard,2008a);andthemethodologyrequiresmonitoringandreportingonevidencedemonstratingnoactivityshiftingisoccurringinordertodemonstratecompliancewithVCS.If,duringtheprojectduration,activityshiftingisfoundtobeoccurring,projectshouldtoreferthelatestVCSAFOLUrequirements.VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.7DeadWoodPoolYesRequiredbyVCS.Minorcarbonpoolsubjecttochangesfromthebaselinetotheprojectscenario.LitterPoolNoExcludedbyVCSforAFOLUprojects.Minorcarbonpool–generallyconsideredasatransitionalpoolonly.SoilCarbonPoolNoOptionalinVCSAFOLUIFMprojects,butexcludedinthismethodology.Asaconservativeapproach,changestosoilcarbonfromharvestingareassumedtobedeminimis.WoodProductsPoolYesRequiredbyVCS.Allbaselinescenariosinvolvelogging.Table2-EmissionsSourcesIncluded/ExcludedfromtheProjectBoundaryEmissionsSourcesGasSelected?Justification/ExplanationUseofFertilizersCO2CH4N2ONoNoNoNon-deminimisuseoffertilizerintheprojectscenarioisexcluded.Inthebaselinescenario,fertilizeremissionsaredeemedinsignificant,aspertheVCSMay24th,2010AFOLUProgramUpdate(VoluntaryCarbonStandard,2010c).Theseexclusionsareconservative,anddonotincreasetheemissionreductions.CombustionofFossilFuelsbyVehicles/EquipmentCO2CH4N2OOptional3NoNoCarbonemissionsfromharvestingequipment,logtransport,andprimaryforestproductmanufacturingareincluded.CH4andN2Oemissionsfromequipmentareassumedtobedeminimis.Theexclusionofthesecombustiongasesdoesnotincreasetheemissionsreductionsintheproject.BurningofBiomass(onsiteslashburning)CO2CH4N2ONoNoNoHowever,carbonstockdecreasesduetobiomassburningareaccountedasacarbonstockchange.Theseexclusionassumptionsdonotincreasetheemissionreductionsintheproject.6PROCEDUREFORDETERMININGTHEBASELINESCENARIO:Thismethodologyutilizesaproject-basedbaselinescenarioapproach.3ProjectdevelopermaychoosetoexcludethispoolisitcanbedemonstratedthatitisconservativewithrespecttotheimpactonGHGemissionreductionsgenerated.VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.8TheflowofGHGemissionsovertheprojectdurationisbasedonthecreationandprojectionofareasonable,credible,andconservativebaselineharvestingscenariointheabsenceofthecarbonproject.Themostplausiblebaselinescenarioisselectedfromacomparativeassessmentoftheprojectandthebaselinealternatives,including“ataminimum,acomparativeassessmentoftheimplementationbarriersandnetbenefitsfacedbytheprojectanditsalternatives”(VoluntaryCarbonStandard,2008d).Thismethodologywillemploya3stepprocesstoselectamostlikelybaseline,andisrequiredtobeconsistentwiththeassessmentanddeterminationofadditionalityinSection74:STEP1–IdentifyPlausibleAlternativeBaselineScenariostotheVCSProjectActivityProjectproponentsmustidentifyanddocumentdescriptions,rationale,andinformationsourcesformultiple(atminimum3)realisticandcrediblepropertyforestmanagementscenariosthatwouldhavepotentiallyoccurredwithintheproposedprojectboundaryintheabsenceofthecarbonprojectactivity.Thepossiblebaselinescenariostobeevaluatedmustinclude,atminimum:1.HistoricalPracticeBaselineScenarios:continuationofpre-projecthistoricalactivitybaselineormanagementplans;2.CommonPracticeBaselineScenarios:activityontheprojectareawhichcouldhavebeenperformedwithoutthecarbonproject,basedonevidenceofcomparableforestmanagementforsimilarpropertytypesandsituationsintheregion5;Allidentifiedbaselinescenariosmust,ataminimum:1.ComplywithIFM-LtPFprojectandeligibilityrequirementsbyonlyincludingactivitiesandareaswhereforestsremainforests;2.Complywithlegalrequirementsforforestmanagementandlanduseinthearea,“unlessverifiableevidencecanbeprovideddemonstratingthatcommonpracticeintheareadoesnotadheretosuchrequirements”(VoluntaryCarbonStandard,2008d)6;3.Demonstratethatthe“projectedbaselinescenarioenvironmentalpracticesequalorexceedthosecommonlyconsideredaminimumstandardamonglandownersinthearea”(VoluntaryCarbonStandard,2008d).Realisticandcrediblebaselinescenariosmustbebasedonverifiableinformationsourcessuchaslocalorregionalland,harvest,orinventoryrecords,observablecomparableregionalpropertyevidence,formalpropertyappraisals,financialmodelingcomparedagainsttypicalpublishedregionalindustrymarketreturnratetargets,regionalstakeholderfeedback,accreditedorcertifiedprofessionals(i.e.registeredprofessionalforesters,etc.)withintheregionalrelevantindustry,andotherreasonableinformationsourcesprovidedinamannerconsistentwithtypicalregionalconsiderationsandpractices.4AlthoughonlyrequiredaspartoftheAdditionalityassessment,projectproponentsmayfindutilizingtheToolfortheDemonstrationandAssessmentofAdditionalityinVCSAFOLUProjectActivities(VCS,2010b)tobeusefulforadditionalguidanceforidentifyingandselectingbaselinescenarios.5Alsoconsideringthefinancialdriversformanagementactivitiesbasedonverifiablemarket-basedfinancialreturnexpectationsoftypicalmarketpropertyownersandinvestors(i.e.,IRR,NPV,costofcapitalhurdlerates,etc.fordatacomparisonswithavailablemarketfinancialinformation).6NotethatVCSfurtherstates:“ifitcanbeshownthattheseactivitiesresultfromlaws,statutes,regulatoryframeworksorpoliciesimplementedsince11November2001thatgivecomparativeadvantagetolessemissions-intensivetechnologiesoractivitiesrelativetomoreemissions-intensivetechnologiesoractivitiestheyneednotbetakenintoaccountandthebaselinescenariocouldrefertoahypotheticalbaselinerateofavoidedemissionsorsequestrationwithoutthenationaland/orsectorallaws,statutes,regulatoryframeworksorpoliciesbeinginplace.”(VoluntaryCarbonStandard,2008d).VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.9ProjectproponentsmayutilizetoolssuchastheInvestmentAnalysis(Step2)andBarrierAnalysis(Step3)ofthelatestapprovedversionoftheVCSToolforDemonstrationandAssessmentofAdditionalityasaninitialfiltertoexcludeprojectscenarioswhicharefinanciallyinfeasibleorfaceclearbarrierstoimplementation.Theremainingbaselinescenariosarethenfurtherevaluatedtoselectthemostlikelybaselinescenario,asfollows.STEP2–SelectionofaSingleBaselineScenariofortheProjectProjectproponentsmustselectasinglebaselinescenariofortheprojectusingthefollowingsteps:STEP2a-TheHistoricalBaselineScenario–basedonhistoricaloperatingpracticesontheproperty:Thebaselinescenariobasedonactualpropertyharvesthistorymustbeselectedif:2a.1Theprojectproponenthasatleast5yearshistoricalharvestleveldatahistory7.AllothercaseswillutilizetheCommonPracticeBaselineScenarioSelectionstepsbelow:STEP2b-TheCommonPracticeBaselineScenario–basedonpreviousowneractivities:2b.1Ifthecurrentprojectproponenthasownedthepropertyforlessthanfiveyearsthentheprojectproponentmay:i.Choosetousethepreviousmanagershistoricalactivitiesormanagementplanasrepresentativeofcommonpractice,inwhichcasethebaselinescenarioisselectedbasedontheprocessandcriteriainStep2a;or,ii.ChoosetoselectthebaselinescenariobasedoncommonpracticeandinvestmentanalysisofscenariosasoutlinedinStep2cbelow.STEP2c-TheCommonPracticeBaselineScenario–basedoncommonpracticeactivities:Forrecentorpendingchangesinprojectpropertymanagementwithouthistoricaldata(>5years)(orotherwisenotselectingahistoricalbaselinescenarioasperStep2b),theprojectproponentwillselectthebaselinescenario(s)basedonanassessmentofregionalcommonpractice8supportedbyafinancialanalysisforachievingtypicalmarketreturnsfromforestproducts.Theprojectproponentmustselectthebaselinescenariothat:2c.1GeneratesthemostfinancialattractivereturnoninvestmentfromforestproductreturnsusingtheassessmentprocessoutlinedinStep2OptionIIand/orOptionIIIinthemostrecentversionoftheVCSToolfortheDemonstrationandAssessmentofAdditionalityinVCSAFOLUProjectActivities;and,2c.2Canbedemonstratedtoberegionallycommonpracticeandlocallyoperationallyimplementable,including:a.CompliantwiththelegallyrequiredlanduseandforestmanagementpracticesinamannerconsistentwithVCSrequirements(seeStep1);7Forconvenience,projectsmayutilizeapre-existingforward-lookingforestmanagementplanasthehistoricalbaselinedata,ifthismanagementplancanbedemonstratedtobeconsistentwiththehistoricalpracticesandrates,andrepresentativeofaforwardprojectionofhistoricalharvestpractices.8VCScurrentlydefinescommonpracticeas:“Extrapolationofobservedsimilaractivitiesinthegeographicalareawithsimilarsocio-economicandecologicalconditionsastheprojectareaoccurringintheperiodbeginningtenyearspriortotheprojectstartdate”(VCS,2010b).VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.10b.Consistentwithlocalmarketcapacityforthebaselinescenarioactivitiesandproducts(i.e.logmarkets,contractorcapacity,etc.);c.Consistentwithobservableandverifiable9regionaloperationalpractices,including,atminimum:i.Harvesttypes(i.e.clearcut,selectivecut,etc.),ii.Loggingandhaulingequipmenttypesandcapabilities,iii.Annualharvestlevels(i.e.m3/year,ha/year),iv.Averageminimumharvestage,treesize,and/orstandvolume,v.Averageminimumeconomicviability(ordecisioncriteria)bystandtype,vi.Averageminimumlogutilizationspecifications(onaveragebasedonsizeand/orspecies),andwaste/breakageassumptions,vii.Averagetreeretentionpractices,includinghydro-riparianbuffers,wildlifetrees,andothersingleorgroupedmerchantableandun-merchantabletreeretention,viii.Maximumharvestslopeorotheroperabilityconstraintswhichwouldlimitregionalloggingequipment,ix.Reforestationandstandmanagementpractices;andd.Operationallyfeasibleontheprojectareausinglocalharvestingandhaulingtechnology,localinfrastructure,etc.10.ProjectproponentsmustprovideadescriptionoftheselectedbaselinescenarioandrelatedscenariomodelingassumptionswhichjustifiesandprovidessupportingevidencethatthebaselinescenarioselectedunderSTEP2creflectsacredibleassessmentoftypicalcommonpracticeforsimilarconditions,aslistedabove.STEP3–AdditionalityTestProjectproponentsmustfurtherensuretheselectedmostplausiblebaselinescenarioisconsistentwiththeoutcomeoftheadditionalityassessmentofthisscenariomadeunderSection7inthismethodology.7PROCEDUREFORDEMONSTRATINGADDITIONALITYProjectproponentsmustusethenewestversionoftheVCStool:“ToolfortheDemonstrationandAssessmentofAdditionalityinVCSAgriculture,ForestryandOtherLandUse(AFOLU)ProjectActivities”.Insummary,thistoolemploysthefollowingsteps:Step1-IdentificationofalternativelandusescenariostotheAFOLUprojectactivity;Step2-Investmentanalysistodeterminethattheproposedprojectactivityisnotthemosteconomicallyorfinanciallyattractiveoftheidentifiedlandusescenarios;orStep3-Barriersanalysis;andStep4-Commonpracticeanalysis.ProjectproponentsmustinsuretheassessmentandoutcomesofadditionalityareconsistentwiththebaselineselectionassessmentundertakeninSection6.9Demonstratedbyreviewingmodeledbaselinescenarioassumptionsincomparisonto:directlyobservableactivitiesonotherregionalproperties,verifiabledocumentationfrompreviousorcurrentowner/manageroperationalrequirements,propertyorcomparablepropertyappraisalsorvaluationdocumentassumptions,publisheddocumentsreviewingregionaloperationalpractices,comparablepublishedregionalgovernmentrequirements,testimonyofindependentlocalexpertsandprofessionals,and/orotherverifiablesources.10Forexample,abaselinescenariocouldnotbeselectedifitinvolvedusingequipment(i.e.helicopterlogging)notavailableregionally.Abaselinecouldnotbeselectedwhichprojectedalevelofharvestthelocalmills,roadinfrastructure,andcontractorcapacitycouldclearlynotphysicallyhandleannuallywithoutsignificantadditionalcapitalinvestment.Relevantindependentlocalexpertopinionmaybeusedtofurtherdemonstratethereasonablenessoflocalcapacityassumptions.VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.118QUANTIFICATIONOFGHGEMISSIONREDUCTIONSANDREMOVALS8.1BaselineEmissions:ThebaselineemissionsarecalculatedfromthebaselinescenarioselectedinSection6.Thisbaselinescenariodoesnotchangeduringtheprojectduration,however,asoutlinedinSection8.2.4,certaindataormodelparameterchangesmayrequireremodelingbaselinecarbonpoolsinfutureverifications.Allcalculationsinthismethodologyrepresentannualizednetchangesincarbonstocksbypolygon.Resultsfromeachpolygonmustthereforebesummedacrosstheprojectactivityareatodeterminetheannualtotalnetemissionsandreductions.ValidStartingInventoryRequirementsProjectproponentsmustprovideavalidstartingforestinventorymeetingthefollowingrequirements:1.Pertainingdirectlytotheentireprojectarea;and,2.Created,updated,orvalidated<10yearsago;and,3.Documentationisavailabledescribingthemethodsusedtocreate,update,orotherwisevalidatethestartinginventory,includingstatisticalanalysis,fielddata,and/orotherevidence11,12.BaselineScenarioAreaStratificationTheprocessofstratifyingthearearepresentedinthebaselinescenarioshouldincludetwosteps.Thefirstistodividethearea(ABSL)intohomogeneousunits(polygons)fromtheperspectiveofcarbonstorageandsequestration.Thesecondstepistoidentifyareaswithintheprojectareathatareeligibleforspecificforestmanagementactivitieswithinthebaselineandprojectscenario.STEP1–StratifytocreatehomogeneousunitsIftheprojectactivityareaisnothomogeneous,stratificationshouldbecarriedouttoimprovetheaccuracyandprecisionofbiomassestimates13.DifferentstratificationsmayberequiredforthebaselineandprojectscenariosinordertoimproveaccuracyintheestimatesofnetGHGremovalbysinks.ForestimationofthebaselinenetGHGremovalsbysinks,orcalculationofactualnetGHGremovals,homogeneouspolygons14shouldbedefinedonthebasisofparametersthatwillbeusedaskeyentryvariablesinthemethodsusedtoestimatechangesinbiomassstocks(forexample,growthmodelsoryieldcurves/tables).Theseinclude:1.Managementregime.Forexample,typesofharvesting(clearcutting,patchretention),andlandconversionsforroadsandlandings.2.Siteindex/anticipatedgrowthrates3.Forestspecies4.AgeclassUsefultoolsfordefiningpolygonsincludeground-truthingmapsfromsatelliteimagery,aerialphotos,andmapsofvegetation,soils,andtopography.11Notethatthismethodologyevaluatesuncertaintyusingactualresultsfromanex-postplotnetworkprogram(seeSection8.5.3)andhencedoesnotmandateastartinginventoryaccuracyrequirement.Projectproponents,however,mustprovideevidencethatthestartinginventoryhasbeenvalidatedtoregionalcommonpracticeminimumstandardsforuseinex-antemodeling.12Projectproponentsmayprovidesupportingevidenceusinglocalinventoryvalidationresultsfromoutsidetheprojectareaif:theyarebasedondirectlycomparableinventorymethods,overallaverageforestcoverandconditionarecomparable,andifthedatarefertocomparableorlargerscaleproperties.13Forfurtherdetails,seehttp://cdm.unfccc.int/methodologies/DB/YDYGY2G5VNPKVHB7B9SU12RRWRL439/view.html14Atminimum,morethanonepolygonperprojectisrequiredforthestatisticalcalculationsinSection8.5.3.VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.12Inthecasewhereaprojectareaislargeandspansadiverserangeofforesttypesandages,theareamayneedtobestratifiedintohundredsoreventhousandsofpolygons.Whenthenumberofpolygonsis≥25,theproponenthastheoptionofaggregatingsimilarpolygonsinto“analysisunits15”tofacilitatemodelingandmonitoring.Thispracticeiscommonwhenplanningmanagementactivitiesoverlargeforestmanagementareas.Theuseofanalysisunitsallowspolygonstobegroupedbasedonsimilaritiesinthepolygoncriteria,includingremovingdifferencesassociatedwithstandage.Eachanalysisunitismodeledfromtheperiodofstandinitiationtoamatureendpoint.Theattributes(e.g.biomassanddeadorganicmatterpools)ofeachanalysisunitarerecordedforeveryyearofgrowthandstoredinadatabasethatcaneasilybelinkedbacktoaspecificstandage.STEP2–IdentifyareaseligibleforspecificmanagementactivitiesToassuretheprojectincludesonlyeligiblemanagementactivities,proponentsmustidentifyareaswithintheprojectboundarythatwouldbesubjecttotimberharvestingandothermanagementactivitiesunderthebaselinescenario.Atimberharvestinglandbase(THLB)shouldbeidentifiedbaseduponharvestingplansthatreflectthehistoricalandfutureanticipatedlocationandratesoftimberextraction.SpecificinformationusedtodefinetheTHLBshouldinclude:1.Thespatiallocationandextentofforestedversusnon-forestedareas2.Merchantableandoperableforestareassuitedtoeconomictimberextraction3.Thespatiallocationandextentoflegallanduserestrictionsandlegallyrequiredprotectedareas.TheTHLBisessentiallyusedtorefineandfocusbaselineandprojectforestmanagementactivityprojectionsandmodeling,inamannerconsistentwiththeselectedscenariosandrelatedcommonpractice.8.1.1ModelSelectionandUseItwillbenecessarytoemploymathematicalmodelstoprojectannualcarbonstockchangesovertimeinthevariouscarbonpools.Althoughitmaybepossibletoutilizeaseriesofspreadsheetcalculationsforsimpleforestsituations,inmostcasescomplexforestmanagementmodels(bothatthestandandlandscape-level)willneedtobeemployed.Regardlessofthetypeofmodelused,thesamemodelmustbeusedforboththebaselineandprojectscenariostoensureconsistencyinthecarbonprojections.Ahierarchyofsuitabilityshouldbeappliedinselectinganappropriatemodel,inaccordancewiththefollowingcriteria:1.Wellestablished(i.e.,havebeenundercontinuoususeanddevelopmentfor10years,orlonger);2.Generatevaluesonanannualbasis(preferably),oratintervalsnotexceeding10years.3.Includeareasonablerepresentationofmortalityfromstand-selfthinningandnaturaldisturbanceagentsthatareregionallyappropriate.Adjustmentsmayneedtobemadebyprojectproponentstoaccountforthesefactorsiftheyarenotwellrepresented.Rationalemustbeprovidedwhenmakingadjustments.4.Outputdataareexpressedincarbonunits(tC/ha)orasbiomass(t/ha),andarecalculatedforeachoftherequiredcarbonpools(SeeTable1).Ifexpansionfactorsareusedincombinationwithgrowthandyieldmodel(s),theyshouldbebaseduponregionallyspecificstudiesandappliedonlyfortheappropriateregionandspecies.5.Welldocumentedandexpertreviewed.Inorderofpreference,theseinclude(a)ongoingpublicationsinpeer-reviewedscientificjournals,(b)documentedreviewsbyexpertpractitionersinforestry/biology/ecology,and/or(c)approvedbygovernmentforuseinforestmanagementactivities;6.Parameterized,calibrated,andtestedforthespecificconditionsoftheproject.15Atminimum,morethanoneanalysisunitisrequiredforthestatisticalcalculationsinSection8.5.3.VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.13Thefollowingcriteriaarepreferredbutnotrequired:7.Documentedasappropriateforsimulatingtheecologicalandmanagementscenariosthatdefinethebaselineandprojectcase;8.Process-basedmodelsthatsimulatecarbondynamicsdirectly(inthecaseofstand-levelmodels)orinthecaseoflandscapemodels(i.e.forestestatemodels),bedrivenbyinputsfromthesestandlevelmodels.Processmodelsthatsimulateallcarbonpoolswithinanecosystemarepreferredbecausetheirprojectionsofcarbondynamicsintherequiredandoptionalpoolsshouldbemoreaccurateandeasiertomonitorandverify.Examplesofappropriatestand-levelgrowthmodelsincludeFORECAST(Seely,Kimmins,Welham,&Scoullar,1999),andCO2FIX(Masera&etal,2003)9.Growthandyieldmodelsarecommonlyusedtoprojectproductivityinmanagedandunmanagedforeststands.Inmostcasestheiroutputisintheformofanannualmerchantabletimbervolumeincrement.ExamplesincludeTASS/TIPSY,andVDYP(BritishColumbiaMinistryofForestsandRange16),andtheUSForestService’sForestVegetationSimulator(FVS)model17.Thisapproachislessdesirablebecausevolumemustbeconvertedusingaseriesofexpansionfactorsrepresentingeachcarbonpool.AnexampleofthisapproachistheCarbonBudgetModeloftheCanadianForestService(CBMCFS3(Kurz&etal.,2009),whichusesvolumecurvesasinputdata.Fordetailsontheuseofexpansionfactors,seePearsonetal.2007.Thisextrastepinconversionintroducesthepotentialforadditionalerrorintothepoolestimates.Inaddition,projectproponentswillmakeavailable,atvalidator/verifierrequest,documentationof:1.Theappropriatenessoftheselectedmodel(s)totheparticularprojectapplication;2.Alistingandexplanationofallinputdata,outputdata,andmodelparameters/assumptions.8.1.2CalculatingtheBaselineCarbonBalanceThismethodologyemploystheIPCCgain-lossmethod(IPCC,2006a),whichrequiresthebiomasscarbonlossbesubtractedfromthebiomasscarbonincrementforthereportingyear.Thismethodisparticularlyappropriateforareaswithamixofstandsofdifferentforesttypes,and/orwherebiomasschangeisverysmallcomparedtothetotalamountofbiomass.Furtherdetailscanbefoundin(IPCC,2006a)(Ch.4).Thetotalannualcarbonbalanceinyear,t,forthebaselinescenarioiscalculatedas(∆CBSL,t,intCyr-1):∆CBSL,t=∆CBSL,P,t(1)where:∆CBSL,P,t=annualchangeincarbonstocksinallpoolsinthebaselineacrosstheprojectactivityarea;tCyr-1.∆CBSL,P,t=∆CBSL,LB,t+∆CBSL,DOM,t+∆CBSl,HWP,t(2)where:∆CBSL,LB,t=annualchangeincarbonstocksinlivingtreebiomass(above-andbelowground);tCyr-1∆CBSL,DOM,t=annualchangeincarbonstocksindeadorganicmatter;tCyr-1∆CBSl,HWP,t=annualchangeincarbonstocksassociatedwithharvestedwoodproducts,tCyr-1.16http://www.for.gov.bc.ca/hre/StandDevMod/index.htm17http://www.fs.fed.us/fmsc/fvs/VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.14∆CBSL,LB,t=∆CBSL,G,t–∆CBSL,i,t(3)where:∆CBSL,G,t=annualincreaseintreecarbonstockfromgrowth;tCyr-1∆CBSL,L,t=annualdecreaseintreecarbonstockfromareductioninlivebiomass;tCyr-1.Iftheprojectareahasbeenstratified,carbonpoolsarecalculatedforeachpolygon,i,andthensummedduringagivenyear,t.8.1.3LiveBiomassGainLivebiomassgaininyear,t,polygon,i(∆CBSL,G,i.t)iscalculatedas:∆CBSL,G,t=Σ(ABSL,i●GBSL,i,t)●CF(4)where:ABSL,i,=area(ha)offorestlandinpolygon,i;GBSL,i,t=annualincrementrateintreebiomass(td.m.ha-1yr-1),inpolygon,i,and;CF=carbonfractionofdrymattertCt-1d.m.(IPCCdefaultvalue=0.5).GBSL,i,t=GBSL,AG,i,t+GBSL,BG,i,t(5a)where:GBSL,AG,i,tandGBSL,BG,i,t=annualabove-andbelowgroundbiomassincrementrates(td.m.ha-1yr-1);GBSL,BG,i,t=GBSL,AG,i,t●Ri(5b)whereRiistheroot:shootratioinpolygon,i.Rishouldideallybeestimatedforeachpolygon,butthesedataaredifficulttoderiveempirically.Hence,generalrelationshipsareacceptableaslongastheyareappropriateforthespeciesandregionassociatedwiththeproject(Cairns,1997).Equations4and5canbeuseddirectlytocalculate∆CBSL,G,twhenalltreecoverwithinapolygonisremovedbyharvesting(i.e.,clearfelling)andnoresidualstructureisretained.Incasesofpartialharvestingand/ormultipleentriesintoapolygon,theseequationsmustbeappliedseparatelytoeachoftheresultingsub-polygons(thedifferentageclassesthatarecreated).Thisensuresthatgrowthratesreflectthedifferenceinforestagebetweenthesub-polygons.TheexantecalculationofGBSL,i,t(eitherdirectly,orfromitscomponentparts)willbederivedfrommodelsthatrequireinputsderived,inpart,fromforestinventorydata.Criteriaformodelsuitabilityareprovidedin8.1.1.1.Theexactformoftheinputdatadependsonthenatureofthemodelbutmayincludesiteindex,speciescomposition,andvolume.Inventorydatausedforthispurposemust:1.Pertaindirectlytotheprojectarea,and2.Notbemorethan10yearsold.VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.15Typically,inventorydataprovideonlyageneralizeddescriptionofstandattributessuchthatonlyaveragevalues(versusspecies-specificestimates)canbeusedintheexantemodelingexercise.Somemodelswillrequireestimatesforparametervaluesnottraditionallymeasuredintypicalforestinventoriesactivities.Projectproponentsmustmakereasonableeffortstoacquiresourcesofsuchdatainaccordancewiththefollowingprioritylist(besttoleastdesirable):1.Projectareaandforest-typespecific2.Regionalestimates,fromthesameorsimilarecosystemsorforesttypes3.Nationalestimatesthatrepresentaveragesforsimilarforesttypes4.Globalestimatesforgenerallysimilarforesttypes.8.1.4LiveBiomassLossTheannualdecreaseinlivebiomasstreecarbonfromlivebiomassloss(∆CBSL,L,t;tCyr-1)isthesumoflossesfrom:1.Naturalmortality(i.e.insects,disease,competition,wind,etc.)2.Commercialroundwoodfelling3.Incidentalsources.Lossesmustbespecifictoagivenpolygon;eachpolygonmustbesummedinordertocalculatetotalannuallossacrosstheprojectactivityarea.Thelivebiomasslossesarenotemitteddirectly,butratheraretransferredtodeadorganicmatterpools.∆CBSL,L,t=Σ(LBLBSL,NATURALi,t+LBLBSL,FELLINGS,i,t+LBLBSL,OTHER,i,t)●CF(6)where:LBLBSL,NATURALi,t=annuallossoflivetreebiomassduetonaturalmortalityinpolygon,i;td.m.yr-1LBLBSL,FELLINGS,i,t=annuallossoflivetreebiomassduetocommercialfellinginpolygon,i;td.m.yr-1LBLBSL,OTHER,i,t=annuallossoflivetreebiomassfromincidentalsourcesinpolygon,i;td.m.yr-1CF=carbonfractionofdrymatter;tCt-1d.m.(IPCCdefaultvalue=0.5).LBLBSL,NATURALi,t=ABSL,i●LBBSL,i,t●fBSL,NATURAL,i,t(7)18whereABSL,i=area(ha)offorestlandinpolygon,i;LBBSL,i,t=averagelivetreebiomass(td.m.ha-1)inpolygon,i,foryear,tLBBSL,i,tiscalculatedforyear,t,beginningwithbiomassestimatesinyeart=1(theprojectstartyear)andwithannualbiomassincrements(GBSL,i,t)addedaspercalculationsinequation5a.fBSL,NATURAL,i,t=theannualproportionofbiomassthatdiesfromnaturalmortalityinpolygon,i(unitless;0<fBSL,NATURALi<1),year,t.Treemortalityisanongoingprocessduringstanddevelopment.Treesdieasaconsequenceofinsectattack,disease,competition,orsomecombinationthereof.Hence,mortalitycanbehighly18Note,forEquation7,8,and9:(fBSL,NATURAL,i,t+fBSL,HARVEST,i,t+fBSL,DAMAGE,i,t)≤1.0VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.16variablebetweenyears.Thisparametercanbeapplieduniformlyacrossananalysisunit,orindividuallytoagivenpolygon.Sourcesformortalityestimatesincludepermanentsampleplotsinsimilarstandtypes,literaturereports,andinventorydata.LBLFELLINGS,i,t=ABSL,i●LBBSL,i,t●fBSL,HARVEST,i,t(8)where:ABSL,i=area(ha)offorestlandinpolygon,iLBBSL,i,t=averagelivetreebiomass(td.m.ha-1)inpolygon,i,foryear,t(seeequation7foritscalculation).fBSL,HARVEST,i,t=theproportionofbiomassremovedbyharvestingfrompolygon,i,(unitless;0<fBSL,HARVESTIi<1),inyear,t.Dataforthisvariableshouldbeobtainedfromharvestscheduleinformation.Valuesmaybeconstrainedby(a)thevalueoffBSL,NATURAL,i,t(i.e.,fBSL,HARVEST,i,t<1-fBSL,NATURAL,i,t),and/or(b)theareaoftimberavailableforcommercialharvest.Incidentalloss(LBLBSL,OTHER,i,t;td.m.yr-1)istheadditionallivetreebiomassremovedforroadandlandingconstructioninthepolygon,i,andiscalculatedasaproportionofbiomassremovedbyharvesting:LBLBSL,OTHER,i,t=ABSL,i●LBBSL,i,t●fBSL,DAMAGE,i,t(9)where:ABSL,i=area(ha)offorestlandinpolygon,i;LBBSL,i,t=averagelivetreebiomass(td.m.ha-1)inpolygon,i,foryear,tfBSL,DAMAGE,i,t=theproportionofadditionalbiomassremovedforroadandlandingconstructioninpolygon,i,year,t(unitless;0<fBSL,DAMAGE,i,t<1)19.Dataforthisvariableshouldbebasedonregionalandlocalcomparativestudiesandexperientialinformationderivedfromthelocalforestindustry20.8.1.5DeadOrganicMatterDynamics(∆CBSL,DOM)Deadorganicmatter(DOM)includedinthismethodologycomprisesthreecomponents:standingdeadwood(minimum>5cmDBHand1.3mheight;termedsnags),lyingdeadwood(minimum>5cmDBH;LDW),andbelowgrounddeadwood(i.e.,deadroots).Standingdeadwoodis<45ºofvertical,whilelyingdeadwoodis>45ºofvertical.Carbonstoredwithindeadbelowgroundbiomassandlyingdeadwoodpoolsmustnotbeassumedtobereleasedimmediatelyfollowingdisturbance.Ratherdecaymustbemodeledusingascientificallycredibledecayfunction(suchastheexponentialmodelreferencedinEquation13)inwhichaminimumof10yearsisrequiredforcompletelossofstoredcarbon.TheannualchangeincarbonstocksinDOM(∆CBSL,DOM;tCyr-1)iscalculatedas:∆CBSL,DOM,t=∆CBSL,LDW,t+∆CBSL,SNAG,t+∆CBSL,DBG,t(10)19Projectingex-anteroadandlandingremovalsbeyondafewyearsisdifficultandcomplex.Asdescribed,fBSL,DAMAGE,i,tfunctionsasaproxyforestimatingbiomassimpactsofallnewroadsandlandingsassociatedwithannualharvestinginpolygon,i.ProjectproponentscansimulateLBLBSL,OTHER,i,tdirectly,ifappropriatemodelsareavailable.20fBSL,DAMAGE,i,tmaybezeroordeminimisincaseswhereapolygonisalreadyroaded.VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.17where:∆CBSL,LDW,t=changeinlyingdeadwood(LDW)carbonstocksinyear,t;tCyr-1∆CBSL,SNAG,t=changeinsnagcarbonstockinyear,t;tCyr-1∆CBSL,DBG,t=changeindeadbelowgroundbiomasscarbonstockinyear,t;tCyr-1.∆CBSL,LDW,t=Σ(LDWBSL,IN,i,t–LDWBSL,OUT,i,t)●CF(11a)LDWBSL,i,t+1=LDWBSL,i,t+(LDWBSL,IN,i,t–LDWBSL,OUT,i,t)(11b)where:LDWBSL,,i,t=Thetotalmassoflyingdeadwoodaccumulatedinpolygoni,attime,t(td.m.).LDWBSL,IN,i,t=annualincreaseinLDWbiomassforpolygoni,year,t(td.myr-1).LDWincreasesoccurasaresultofnaturalmortality(typically,blowdown),andasadirectorindirectresultofharvesting.LDWBSL,OUT,i,t=annuallossinLDWbiomassthroughdecay,forpolygoni,year,t,(td.myr-1)LDWBSL,IN,i,tandLDWBSL,OUT,i,taresummedacrosspolygons.CF=carbonfractionofdrymatter(IPCCdefaultvalue=0.5).LDWBSL,IN,i,t=(LBLBSL,NATURALi,t-LBLBSL,NATURALi,t●Ri)●fBSL,BLOWDOWN,i,t+((LBLBSL,FELLINGS,i,t–LBLBSL,FELLINGS,i,t●Ri)+(LBLBSL,OTHER,i,t-LBLBSL,OTHER,i,t●Ri))●fBSL,BRANCH,i,t+((LBLBSL,FELLINGS,i,t–LBLBSL,FELLINGS,i,t●Ri)+(LBLBSL,OTHER,i,t-LBLBSL,OTHER,i,t●Ri))●(1-fBSL,BRANCH,i,t)●fBSL,BUCKINGLOSS,i,t+SNAGBSL,,i,t●fBSL,SNAGFALLDOWN,i,t(12)where:LBLBSL,NATURALi,t,LBLBSL,FELLINGS,i,t,andLBLBSL,OTHER,i,tareascalculatedinequations7,8,and9,respectively.Riistheroot:shootratioinpolygon,i(seeequation5b).fBSL,BLOWDOWN,i,t=theannualproportionofliveabovegroundtreebiomasssubjecttoblowdowninpolygon,i,year,t(unitless;0<fBSL,BLOWDOWN,i,t<1).Exanteestimatesmustbederivedpreferablyfromregionalreportsinsimilarforesttypes.fBSL,BRANCH,i,t=theannualproportionofabovegroundtreebiomasscomprisedofbranches>5cmdiameterinpolygon,i(unitless;0<fBSL,BRANCH,i,t<1).Exantedataareavailablefromallometricequationsandmodels(forexample,(Kurz&Apps,2006)forCanada;(Smith,Miles,Vissage,&Pugh,2004)fortheU.S.).Intheeventslashburningwasundertakenaspartofregularmanagementactivities,thisparametershouldbereducedaccordinglytoreflecttheproportionofbiomassremaining.Estimatesshouldbeobtainedfromexpertopinion;asadefault,assume100%consumptionifslashburningoccurs.VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.18fBSL,BUCKINGLOSS,i,t=theannualproportionofthelogbolebiomassleftonsiteafterassessingand/ormerchandizingthelogboleforquality,inpolygon,i(unitless;0<fBSL,BUCKINGLOSS,i,t<1).Preferably,dataforthisvariablemustbebasedonregionalandlocalcomparativestudiesandexperientialinformationderivedfromthelocalforestindustry.Otherwise,anaveragedefaultvalueof21%canbeused,basedonUSnationalsummarystatistics(Smith,Miles,Vissage,&Pugh,2004).SNAGBSL,,i,t=thetotalmassofthesnagpoolinpolygon,i,year,t(seeequation14b).fBSL,SNAGFALLDOWN,i,t=theannualproportionofsnagbiomassinpolygon,i,year,t,thatfallsoverandthusistransferredtotheLDWpool(unitless;0<fSNAGFALLDOWN,i,t<1).Exanteestimatesforthisparametercanbederivedfrompeerreviewedliterature(forexample,(Parish,Antos,Ott,&DiLucca,2010)andforestcarbonaccountingmodelsthattracktheratesofinputandlossesfromdeadorganicmatterpools(forexample,(Kurz&etal,2009).LDWBSL,OUT,i,t=LDWBSL,,i,t●fBSL,lwDECAY,i,t(13)where:LDWBSL,,i,t=thetotalamountoflyingdeadwoodmassinpolygoni,year,t(seeequation11b).fBSL,lwDECAY,i,t=theannualproportionallossoflyingdeadbiomassduetodecay,inpolygoni,year,t(unitless;;0<fBSL,lwDECAY,i,t<1).AcommonapproachtoexanteestimationoffBSL,lwDECAY,i,tistoassumemasslossoccursinproportiontotheamountofmassremaininginaccordancewithasingleexponentialmodel,ofthegeneralform:Yt=Yoe–ktwhereYoistheinitialquantityofmaterial,Yttheamountleftattimet,andkisadecayconstant(Harmon,etal.,1986).Othertypesofexponentialmodelsareavailable(reviewedin(Harmon,etal.,1986))andmaybemoreappropriatetoparticularforesttypes(tobedescribedandjustifiedbytheprojectproponent,ifused).Exanteestimatesforthedecayparameterappropriatefortheprojectshouldbederivedfrompeer-reviewedliterature(forexample,(Harmon,etal.,1986);(Laiho&andPrescott,2004);(Harmonetal,2008)).Thechangeinstandingdeadwood(snag)carbonstockinyear,t(tCyr-1)iscalculatedas:∆CBSL,SNAG,t=Σ(SNAGBSL,IN,i,t–SNAGBSL,OUT,i,t)●CF(14a)SNAGBSL,i,t+1=SNAGBSL,i,t+(SNAGBSL,IN,i,t–SNAGBSL,OUT,i,t)(14b)where:SNAGBSL,i,t=Thetotalmassofsnagsaccumulatedinpolygoni,attimet(td.m.).SNAGBSL,IN,i,t=annualgaininsnagbiomassforpolygoni,year,t(td.myr-1).Snagbiomassdevelopsasaresultofnaturalmortality.Incaseswheresnagsarecreatedthroughmanagementactivities,theseshouldbeaccountedforhere.SNAGBSL,OUT,i,t=annuallossinsnagbiomassthroughdecay,orfalldown(i.e,transfertotheLDWpool)(td.myr-1)CF=carbonfractionofdrymatter(IPCCdefaultvalue=0.5).NotethatSNAGBSL,IN,i,tandSNAGBSL,OUT,i,taresummedacrosspolygons.SNAGBSL,IN,i,t=(LBLBSL,NATURALi,t-LBLBSL,NATURALi,t●Ri)●(1-fBSL,BLOWDOWN,i,t)(15)VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.19where:LBLBSL,NATURALi,tisascalculatedinequation7,and1-fBSL,BLOWDOWN,i,tistheproportionoflivetreeabovegroundbiomassthatdiesinpolygon,i,year,t,butremainsasstandingdeadorganicmatter(i.e.,snags)(unitless;0<fBSL,BLOWDOWN,i,t<1).Exantedefaultestimatesforthiscalculationcanbederivedfromliteraturevalues(forexample(Harmon,etal.,1986);(Runkle,2000);(Harmonetal,2008))andshouldbematchedtotheecosystemsthatmostcloselycharacterizetheprojectarea.SNAGBSL,OUT,i,t=SNAGBSL,i,t●fBSL,SWDECAY,i,t+SNAGBSL,i,t●fBSL,SNAGFALLDOWN,i,t(16)where:SNAGBSL,i,t=thetotalamountofsnagmassinpolygoni,year,t(seeequation14b).fBSL,SWDECAY,i,t=theannualproportionallossofsnagbiomassduetodecay,inpolygon,i,year,t(unitless;0<fBSL,SWDECAY,i,t<1).Aswithlyingdeadwood,acommonapproachtoestimatingfBSL,SWDECAY,i,tistoassumemasslossoccursinproportiontotheamountofmassremaininginaccordancewithasingleexponentialmodel(seeequation13).Exanteestimatesforthisparametershouldbederivedfrompeerreviewedliteratureappropriatefortheprojectsite(forexample,Vanderweletal.2006a)andforestcarbonaccountingmodelsthattracktheratesofinputandlossesfromdeadorganicmatterpoolsforeachforesttype,productivity,andage-class(see,forexample,Vanderweletal.,2006b;(Kurz&etal,2009)).fBSL,SNAGFALLDOWN,i,t=theannualproportionofsnagbiomassinpolygon,i,thatfallsoverandthusistransferredtotheLDWpool(unitless;0<fBSL,SNAGFALLDOWN,i,t<1).Seeequation12forparameterestimates.TheannualchangeinDOMderivedfromdeadbelowgroundbiomass(∆CBSL,DBG,,t;tCyr-1)iscalculatedforeachpolygonasperequation17a.Calculationof∆CBSL,DBG,tisspecifictoagivenpolygon;eachpolygonmustthereforebesummedinordertocalculatetotalannuallossacrosstheprojectactivityarea.∆CBSL,DBG,t=Σ(DBGBSL,IN,i,t–DBGBSL,OUT,i,t)●CF(17a)DBGBSL,i,t+1=DBGBSL,i,t+(DBGBSL,IN,i,t–DBGBSL,OUT,i,t)(17b)where:DGBBSL,i,t=Thetotalquantityofdeadbelowgroundbiomassaccumulatedinpolygoni,attime,t(td.m.).DBGBSL,IN,i,t=annualgainindeadbelowgroundbiomassforpolygoni,year,t(td.myr-1).Deadbelowgroundbiomassdevelopsasaresultofmortalitythroughnaturalcausesorthroughharvestingactivities.DBGBSL,OUT,i,t=annuallossindeadbelowgroundbiomassthroughdecay,(td.myr-1)CF=carbonfractionofdrymatter(IPCCdefaultvalue=0.5).DBGBSL,IN,i,t=[(ABSL,i●LBBSL,i,t●Ri)●(fBSL,NATURAL,i,t+fBSL,HARVEST,i,t+fBSL,DAMAGE,i,t)](17c)where:ABSL,i=area(ha)offorestlandinpolygon,i;VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.20LBBSL,i,t=averagelivetreebiomass(td.m.ha-1)inpolygon,i,foryear,t.LBBSL,i,tiscalculatedforyear,t,beginningwithbiomassestimatesinyeart=1(theprojectstartyear)andwithannualbiomassincrements(GBSL,i,t)addedaspercalculationsinequation5a,b.ThisvalueisthenmultipliedbyABSL,i,thearea(ha)offorestlandinpolygon,i.Riistheroot:shootratioinpolygon,i(seeequation5b).fBSL,NATURAL,i,t=theannualproportionofbiomassthatdiesfromnaturalmortalityinpolygon,i(unitless;0<fNATURALi<1),year,t(seeequation7),fBSL,HARVEST,i,t=theproportionofbiomassremovedbyharvestingfrompolygon,i,(unitless;0<fHARVESTIi<1),year,t(seeequation8),fBSL,DAMAGE,i,t=theproportionofadditionalbiomassremovedorroadandlandingconstructioninpolygon,i(unitless;0<fDAMAGE,i,t<1),year,t(seeequation9)DBGBSL,OUT,i,t=DBGBSL,i,t●fBSL,dgbDECAY,i,t(17d)where:DBGBSL,i,t=thetotalquantityofdeadbelowgroundinpolygoni,year,t(seeequation17b).fBSL,dgbDECAY,i,t=theannualproportionallossofdeadbelowgroundbiomassduetodecay,inpolygoni,year,t(unitless;;0<fBSL,lwDECAY,i,t<1).Theexanteestimationofthedecayofdeadbelowgroundbiomassshouldbedoneusingasimilarsingleexponentdecayfunctionasthatdescribedaboveforlyingdeadwoodbiomass.Estimatesforthedecayparameterappropriateforspecificprojectshouldbederivedfrompeer-reviewedliterature(seeforexample:(Moore,Trofymow,Siltanen,Prescott,&CIDET,2005));Melinetal.(2009);(Melin,Petersson,&Nordfjell,2009)).8.1.6HarvestedWoodProductsThismethodologyconsidersthenetemissionsandcarbonstoragerelatedto:a.Woodproductscreatedfromharvestedlogsremovedfromtheprojectsite,b.Thefossilfuelemissionsfromequipmentandfacilitiesinvolvedintheharvesting,transportation,andprocessingofwoodproducts.Theannualchangeemissionsassociatedwiththeproductionofharvestedwoodproducts(HWP),∆CBSl,HWP,t,iscalculatedas:∆CBSl,HWP,t=∆CBSL,STORHWP,t–∆CBSL,EMITFOSSIL,t,(18)∆CBSL,STORHWP,t=theannualchangeinharvestedcarbonthatremainsinstorageafterconversiontowoodproducts(tCyr-1)∆CBSL,EMITFOSSIL,t=theannualchangeinfossilfuelemissionsfromharvesting(loggingandlogtransport)andprocessingofthevariouswoodproducts.VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.218.1.7Carbonstorageinharvestedwoodproducts(∆CBSL,STORHWP,t)InaccordancewiththeVCSAFOLUrequirements(Version3)21,emissionsofcarbonstoredwithinharvestedwoodproductsinIFMprojectsmustbemodeledbaseduponthefollowingcriteria:a)Forshort-termwoodproductsandwoodwastethatwoulddecaywithin3years,allcarbonmustbeassumedtobelostimmediately.b)Formedium-termwoodproductsthatareretiredbetween3and100years,a20-yearlineardecayfunctionmustbeapplied.c)Forlong-termwoodproductsthatareconsideredpermanent(ie,carbonisstoredfor100yearsormore),itmaybeassumednocarbonisreleased.Theannualchangeincarbonstorageinharvestedwoodproductsinyeart(∆CBSL,STORHWP,t;tCyr-1)isdeterminedbaseduponthefollowingequation:∆CBSL,STORHWP,t=(CBSL,STORHWP,t2-CBSL,STORHWP,t1)/T(19)where:CBSL,STORHWP,t2=carbonstorageinharvestedwoodproductsatt=2;tCCBSL,STORHWP,t1=carbonstorageinharvestedwoodproductsatt=1;tCT=numberofyearsbetweenmonitoringt1andt2t:1,2,3…tyearselapsedsincetheprojectstartdateForapplicationswithinNorthAmericathismethodologyhasadapteddatafromtheForestryAppendixoftheTechnicalGuidelinesoftheUSDepartmentofEnergy’sVoluntaryReportingofGreenhouseGasesProgram(knownasSection1605(b))22tocalculateproportionsinusefortheshort-termandlong-termwoodproducts,fromwhicharemainingmedium-termwoodproductpoolcanbecalculatedanddecayedovera20-yearperiod.InthecasewherethemethodologyisappliedoutsideofNorthAmerica,theprojectproponentmustutilizeregionallyappropriatedatafromapeer-reviewedsourcetocompletethestepsbelow.Alternatively,agloballyapplicablemethodsuchasthatdefinedbyWinjumetal.(1998)23maybeutilizedtoestimatecarbonstorageinwoodproducts..Storageintheharvestedwoodproductspoolatagiventimet(CBSL,STORHWP,t;tC)iscalculatedaccordingtothefollowingstepsforeachharvestperiodh:Step1(Carboncontainedinharvestedtimber):Determinethecarboncontainedwithinharvestedtimberremovedfromtheprojectlandbase.Thiscanbecalculatedfrommeasuresoftotalmerchantablevolumegeneratedduringtheharvestperiodhusingspecies-specificwooddensitiesandstandardcarbonconversionsor21Inpreviousversions,thismethodologyusedthe“100YearMethod”followingproceduresdevelopedbyMiner(Miner,2006),whichhavebeenreplacedbytheupdatedmethodsoutlinedinthisrevisedversiontoensurecompliancewithversion3.2oftheAFOLURequirements.22http://www.eia.doe.gov/oiaf/1605/Forestryappendix[1].pdfAlsoavailableasaUSForestServiceGeneralTechnicalReportat:http://www.fs.fed.us/ne/durham/4104/papers/ne_gtr343.pdf23Winjum,J.K.,Brown,S.andSchlamadinger,B.1998.Forestharvestsandwoodproducts:sourcesandsinksofatmosphericcarbondioxide.ForestScience44:272-284VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.22estimatedfromlivebiomassremovalsafteraccountingforremovalofbelowgroundcomponents,branches,andbuckinglosses(equation20).Inaccordancewiththe1605(b)approach,theharvestedwoodcarbon(CBSL,TIMBER,h)mustbedividedintothefollowingproducttype(k)categories:1)softwoodsawlog,2)softwoodpulpwood,3)hardwoodsawlog,4)hardwoodpulpwood.ThiscanbedoneusinglocaldataifavailableorestimatedbaseduponregionandforesttypeaccordingtoTable1.4inthe1605(b)document.Table3providesrecommendationsforanalogsforareaswithinNorthAmericabutoutsideoftheconterminousUS;however,theprojectproponentmustjustifytheappropriatenessoftheselectedanalog.InthecaseofglobalprojectlocationsoutsideofNorthAmerica,theprojectproponentmustidentifyandjustifytheuseofalternativedatafrompeer-reviewedsources.CBSL,TIMBER,h=Σ[(LBLBSL,FELLINGS,i,h-LBLBSL,FELLINGS,i,h●Ri+LBLBSL,OTHER,i,h-LBLBSL,OTHER,i,h●Ri)●(1-fBSL,BRANCH,i,h)●(1-fBSL,BUCKINGLOSS,i,h)]●●CF(20)where:CBSL,TIMBER,h=carboncontainedintimberharvestedinperiodh(summedforallharvestedpolygons,i);tCLBLBSL,FELLINGS,i,h=annualremovaloflivetreebiomassduetocommercialfellinginpolygon,i;td.m.(equation8)LBLBSL,OTHER,i,h=annualremovaloflivetreebiomassfromincidentalsourcesinpolygon,i;td.m.(equation9)Riistheroot:shootratioinpolygon,i(seeequation5b).1-fBSL,BRANCH,i,htheproportionoflivetreebiomassremainingafternettingoutbranchbiomass,inpolygoni(unitless;0<fBRANCH,i,t<1)(seeequation12)1-fBSL,BUCKINGLOSS,i,h=theproportionofthelogboleremainingafterin-woodslogprocessing/buckingforquality,length,etc.,inpolygon,i(unitless;0<fBUCKINGLOSS,i,t<1)(equation12)h=harvestperiod;yrStep2:(Carboncontainedinharvestedtimberaftermilling):Determinethetotalcarboninharvestedtimberthatwillenterthewoodproductspoolbyproducttypeaccountingformillefficienciesandestimatedproductdispositionpercentages(CBSL,MILL,h;tC).ThegrossquantityofcarboncontainedinharvestedtimberforeachofthefourproducttypesdescribedinStep1mustbedecrementedtoaccountforlossesduringprocessing(equation21).TheselossesincludingbarkandothermillingwastesandmaybedeterminedusinglocaldataorestimatedbaseduponregionandproducttypeaccordingtoTable1.5inthe1605(b)document.Table3providesrecommendationsforanalogsforareaswithinNorthAmericabutoutsideoftheconterminousUS;however,theprojectproponentmustjustifytheappropriatenessoftheselectedanalog.InthecaseofglobalprojectlocationsoutsideofNorthAmerica,theprojectproponentmustidentifyandjustifytheuseofalternativedatafrompeer-reviewedsources.).CBSL,MILL,h,k=(CBSL,TIMBER,h,k●fRND,k●rRND,k)(21)VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.23where:CBSL,MILL,h,k=carboncontainedinharvestedtimberaftermillinginperiodh,forproducttypek;tCCBSL,TIMBER,h,k=carboncontainedintimberharvestedinperiodh,forproducttypek;tCk=woodproducttype–(softwoodsawlog,softwoodpulpwood,hardwoodsawlog,orhardwoodpulpwood;proportionsdeterminedfromTable1.4of1605(b)document)fRND,k=fractionofgrowingstockvolumeremovedasroundwoodforproducttypek(defaultvaluesbyregioninTable1.5ofthe1605(b)document);dimensionlessrRND,k=ratioofindustrialroundwoodtogrowingstockvolumeremovedasroundwoodforproducttypek(defaultvaluesbyregioninTable1.5ofthe1605(b)document);dimensionlessStep3:(Carbonstorageinmedium-termandlong-termwoodproducts):Calculatethetotalcarbonlostinshort-livedproductsandstoredinmedium-termandlong-termproducts.Foreachharvestperiodh,carbonstoredinharvestedwoodproductsofadefinedtype(k)afteraccountingformillinglosses(CBSL,MILL,h,k)mustbeapportionedintooneofthefollowingcategories:a)Shortlivedwoodproducts:harvestedwoodproductsandwoodwastethatwilldecaywithin3years.b)Mediumlivedwoodproducts:harvestedwoodproductsandwoodwastethatwillberetiredbetween3and100yearsfromthedateofharvest.c)Longlivedwoodproducts:harvestedwoodproductsandwoodwastethatmaybeconsideredpermanent(storedfor100yearsormore).Todeterminetheproportionofharvestedwoodproducts(bytype)thatfallintoeachcategory,refertothe“InUse”columnfortheselectedforestregioninTable1.6inthe1605(b)document.Table3providesrecommendationsforanalogsforareaswithinNorthAmericabutoutsideoftheconterminousUShowever,.theprojectproponentmustjustifytheappropriatenessoftheselectedanalogatprojectvalidation.InthecaseofglobalprojectlocationsoutsideofNorthAmerica,theprojectproponentmustidentifyandjustifytheuseofalternativedatafrompeer-reviewedsourcesTable3ThreevaluesarethencalculatedfromthesedataselectedfromTable1.6inthe1605(b)document,foreachproducttype,k:theshort-livedfraction(PBSL,SLF,k),medium-livedfraction(PBSL,MLF,k),andlong-livedfraction(PBSL,LLF,k):PBSL,SLF,k=1-P3-year(22a)PBSL,LLF,k=P100-year(22b)PBSL,MLF,k=P3-year–P100-year,(22c)Eachcategoryofwoodproducts(k)storescarbonaccordingtothefollowingrules:i.Short-livedwoodproducts–immediateemissionofallcarbonuponharvestii.Medium-livedwoodproducts–noemissionofcarbonuponharvest,butcarbonstoredwilldecreaseby1/20thforthenext20yearsafterharvest,suchthatafter20yearsthetermbecomeszeroiii.Long-livedwoodproducts–nolossofcarbon.VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.24Thus,carbonstorageinharvestedwoodproductsattimetmaybecalculatedusingacohortapproachinwhichmedium-termandlong-termwoodproductsfromeachharvestperiodharetrackedindependentlyandthensummedovertheprojecttimeperiodasindicatedinequation23.CBSL,STORHWP,t,=ΣΣ((CBSL,MILL,h,k●PLLF,k)+[(CBSL,MILL,h,k●PMLF,k)●((20-h)/20)])(23)where:CBSL,STORHWP,t,=carbonstoredinharvestedwoodproductsinyeartsummedforallproducttypeskandthenoverallharvestperiodsh;tCk=woodproducttype–(softwoodsawlog,softwoodpulpwood,hardwoodsawlog,orhardwoodpulpwood;proportionsdeterminedfromTable1.4of1605(b)document)h=yearofharvest(theterm(20-h)shouldnotbeallowedtodropbelow0)Table3–RecommendedanalogousRegional1605bDataSubstitutionsforregionsforNorthAmerica,outsidetheconterminousU.S.RegionRegionalanalog1CoastalBritishColumbiaandCoastalAlaskaPacificNorthwest,WestColumbia(BritishColumbia)PacificNorthwest,EastAlpineandMontane(RockyMountainregioninBritishColumbiaandAlberta)RockyMountain,NorthBoreal(acrossCanada)andInteriorAlaskaNorthernLakeStatesGreatLakesSt-Lawrence(centralCanada)NorthernLakeStatesCarolinian(southwesternOntario)andAcadian(Maritimes)Northeast1AsperTable1.6ofthe1605(b)methodologydocument(seetext)8.1.8Fossilfuelemissionsassociatedwithlogging,transport,andmanufactureTheannualchangeinfossilfuelemissionsfromharvestingandprocessingofthevariouswoodproducts(∆CBSL,EMITFOSSIL,t)arecalculatedas:CBSL,EMITFOSSIL,t=CBSL,EMITHARVEST,t+CBSL,EMITMANUFACTURE,t+CBSL,EMITTRANSPORT,t(24)where:CBSL,EMITHARVEST,tistheannualfossilfuelemissionsassociatedwithharvestingofrawmaterial(tCyr-1)CBSL,EMITMANUFACTURE,tistheannualfossilfuelemissionsassociatedwiththemanufacturingofrawmaterial(tCyr-1)CBSL,EMITTRANSPORT,tistheannualfossilfuelemissionsassociatedwiththetransportofrawmaterial(tCyr-1)VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.25ThesimplestapproachtocalculatingCBSL,EMITFOSSIL,tistousepublishedorderivedcarbonemissionintensityfactors.Inthecaseofharvesting,BSL,CEMITHARVEST,t;tCyr-1),canbecalculated(summedacrossharvestedpolygons)as:CBSL,EMITHARVEST,t=Σ[(LBLBSL,FELLINGS,i,t-LBLBSL,FELLINGS,i,t●Ri+LBLBSL,OTHER,i,t-LBLBSL,OTHER,i,t●Ri)●(1-fBSL,BRANCH,i,t)●(1–fBSL,BUCKINGLOSS,i,t)]●CF●cHARVEST(25)where:cHARVESTisthecarbonemissionintensityfactor(tCemitted/tCrawmaterial)associatedwithharvesting(seeTable4fordefaultvalues);allothertermsareasdefinedinequation20.CBSL,EMITTRANSPORT,tmustbecalculatedafterconsiderationofthetransportdistancefromharvesttoprocessingfacility,andthemeansoftransportation.Thistermcanbecalculatedasfollows(after(Heath,etal.,2010)):CBSL,EMITTRANSPORT,t=Σ[(LBLBSL,FELLINGS,i,t-LBLBSL,FELLINGS,i,t●Ri+LBLBSL,OTHER,i,t-LBLBSL,OTHER,i,t●Ri)●(1-fBSL,BRANCH,i,t)●(1–fBSL,BUCKINGLOSS,i,t)]●CF●Σ(fBSL,TRANSPORTk●dTRANSPORTk●cTRANSPORTk)(26)where:fBSL,TRANSPORTk=thefractionofrawmaterialtransportedbytransportationtype,k.(unitless;0<fBSL,TRANSPORTk<1).dTRANSPORTk=thedistancetransportedbytransportationtype,k.(km);cTRANSPORTkisthecarbonemissionintensityfactor(kgCemitted/tCrawmaterial)associatedwithtransportationtype,k(seeTable4fordefaultvalues);allothertermsareasdefinedinequation20.CBSL,EMITMANUFACTURE,t=Σ[(LBLBSL,FELLINGS,i,t-LBLBSL,FELLINGS,i,t●Ri+LBLBSL,OTHER,i,t-LBLBSL,OTHER,i,t●Ri)●(1-fBSL,BRANCH,i,t)●(1-fBSL,BUCKINGLOSS,i,t)]●Σ(fBSL,PRODUCTk●cMANUFACTUREk)●CF(27)cMANUFACTUREkisthecarbonemissionintensityfactor(tCemitted/tCrawmaterial)associatedwithmanufactureofproducttype,k;allothertermsareasdefinedinequation19.DefaultvaluesforcMANUFACTUREkareprovidedinTable4.DataarefromacomprehensiveanalysisconductedinFinland(Pingoud,Perälä,Soimakallio,&Pussinen,2003).HighercomparativevaluesfromNorthAmericaareprovidedforharvestingandsawnwoodmanufacturingtoillustrateinherentvariability.ProjectproponentsmayusethedefaultvaluesinTable4,orsubstituteregionaldata,ifavailable.VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.26Table4–Carbonemissionintensityfactorsforharvesting,themanufactureofvariousproductcategories,k,andforvarioustransportationcategories,k.ActivityValueReferenceOther(forcomparison)Harvesting(cHARVEST)(tCemitted/tCrawmaterial)Clearcutharvest0.016(Zhang,Cormier,Lyng,Mabee,Ogino,&McLean,2010)Manufacturing(cMANUFACTUREk)(tCemitted/tCrawmaterial)Sawnwood0.04(Pingoud&Lehtila,2002)–CalculatedfromTableI&III0.1(westernUS),0.156(southernUS)(Milota,West,&Hartley,2005)Veneer,plywoodandstructuralpanels0.06(Pingoud&Lehtila,2002)–CalculatedfromTableI&IIINon-structuralpanels0.12(Pingoud&Lehtila,2002)–CalculatedfromTableI&IIIPaper(Pingoud&Lehtila,2002)–CalculatedfromTableI&IIIMechanicalpulping0.48(Pingoud&Lehtila,2002)–CalculatedfromTableI&IIIChemicalpulping0.13(Pingoud&Lehtila,2002)–CalculatedfromTableI&IIITransportation(cTRANSPORTk)(tCemitted/tCrawmaterial●km)Truck7.010-5(Heath,etal.,2010)-FromSupportingInformationTableS16Rail8.210-6(Heath,etal.,2010)-FromSupportingInformationTableS168.2ProjectEmissionsNetprojectemissionsarecalculatedbyrepeatingtheproceduresinSection8.1(BaselineEmissions),usingtheprojectscenariopolygons,data,andmodeling.Unlessotherwisenotedandjustifiedbytheprojectproponent,allmodelingmethods,calculations,assumptions,anddatasourcesshouldbeconsistentinboththebaselineandprojectscenarios,withtheexceptionofex-postmonitoringdataasoutlinedbelow.Forpurposesofefficacy,itmaybeadvantageoustore-stratifythelandbasefortheprojectscenario,ascomparedtothebaseline.Withinthismethodology,itisanticipatedthatprojectscenariosmayundertakeongoinglowlevelsofmanagementactivitiesforforestmaintenance,ecologicalenhancement,and/orriskmitigation(forexample,pestmanagement,salvage,etc.).InordertocomplywiththeIFM-LtPFprojecttypeandthismethodology,theseactivitiesmustmeetthefollowingrequirements:1.AllnetGHGemissionsfromprojectactivitiesmustbemodeledandaccountedforintheprojectscenariointhesamemannerasthebaselinescenario.2.Projectactivitiescannotremove>20%oftheharvestingvolumeprojectedinthebaselinescenariooveranequivalent10-yearperiod.3.Projectproponentsmustbeabletodemonstratethatactivities:a.haveaconservationbenefitandareconsistentwithprinciplesofmanagingforbiodiversity,ecosystemfunction,andcarbonretention.b.arerelatedtorestoration,ecologicalmanagement,oremissionsriskreductionIfaprojectscenariohasnoplannedtimberremovals,thenallrelatedequationsintheprojectemissionscalculationsinSection8.2canbesettozero.VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.27Iftheprojectscenariohasplannedactivitiesotherthanthoseinvolvingtheremovaloftimberthataffectnon-deminimislevelsofcarbonstock,theprojectmustdocumenttheseactivities,reasonablycalculatetheircarbonimpacts,andincludetheseemissionsinthetotalcarboncalculationsfortheprojectscenario.Allcalculationsinthismethodologyrepresentannualizednetchangesincarbonstocksbypolygon,whichmustthereforebesummedacrosstheprojectactivityareatodeterminetheannualtotalnetemissionsandreductions.Note,additionaldetailsformanycalculations,includingreferencesandbackgroundareprovidedwithintheequivalentBaselineEmissionssection.8.2.1ProjectScenarioAreaStratificationTheprojectscenariowillutilizethesamemethodsandstepstocreatepolygonsasoutlinedforthebaselinescenario(seeSection8.1)fromAPRJ,I.However,theprojectscenariomaybestratifieddifferentlytoaccommodatedifferentprojectmanagementactivitiesand/orchangestoinventorydataresultingfromex-postmonitoring(ifnewpolygonsarecreatedastheresultofnaturaldisturbanceevents,forexample).Theremaybedifferencesbetweentheprojectandbaselinescenariosintheareaswithinthelandbasethatareeligibleforspecificforestmanagementactivities(i.e.,theassumptionsusedtodeterminetheTHLBmaydifferintheprojectscenariorelativetothebaseline).However,theunderlyinginventoryanddataassumptionsmustbethesameinthebaselineandprojectscenarios.8.2.2DeterminingActualOnsiteCarbonStocksActualcarbonstocksmustbecalculatedpriortoeachverification,oratamaximumintervalof5years,byupdatingtheproject’sforestcarboninventoryfromthemonitoringdata.Thisisdoneby:1.Incorporatinganynewforestinventorydata(includingdatafromneworre-measuredsamplingplotsandothermonitoreddata,asoutlinedinSection9.2and9.3)obtainedduringthepreviousyearintotheinventoryestimate.2.Updatingtheforestinventoryforspatialmonitoringresults,includingannualprojectactivitiesand/ordisturbancesthathaveoccurredduringthemonitoringperiod.3.Usingtheselectedmodel(s)toprojectprior-yeardatafromtheforestinventorytothecurrentreportingyear(asdescribedinSection8.2.5).4.Comparingestimatesoflivebiomassanddeadorganicmatterinpolygonsandcalculatedfrommonitoringactivities(Section9.2and9.3)againstcurrent-yearmodeledvaluesintheprojectscenario(seeSection8.2.4).5.Makingcalibrationadjustmentstomodelsand/orparameterssuchthatthefitbetweentheequivalentmodeledandmeasuredvariablesmeetstargets(asperSection8.2.4).6.IfanychangesaremadetothemodelassumptionsorparametersusedinSection8.2,thecalculationofbaselineemissions(fromthecurrentdateforward)mustberedoneusingtheupdatedmodel(s)andparametersets.7.Calculatetheerrortermsforuseindeterminingtheuncertaintyfactor(Section8.5.3).8.2.3Ex-PostCalculationsofCarbonStocksActual(expost)annualnetcarbonstocksarecalculatedusingtheequationsinthissection.CACTUAL,i,t=CLB,i,t+CDOM,i,t(28a)where:VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.28CACTUAL,i,t=carbonstocksinallselectedcarbonpoolsinpolygon,i,year,t;tCCLB,i,t=carbonstocksinlivingtreebiomassinpolygon,i,year,t;tCCDOM,i,t=carbonstocksindeadorganicmatterinyear,t;tCLivebiomassAverageabovegroundbiomassformeasuredpolygon,i,inyear,t(BAG,i,t)isdeterminedbyconvertingtheaboveground,tree-levelmeasurements(kgbiomasspertree)describedinSection9.3.2toarea-based,stand-levelmeasurements(tha-1).Thisisachievedbysummingtheabovegroundbiomassofallthetreeswithinasampleplot,convertingkgtot,andthendividingthesumbytheplotareainha.Allplotswithinaparticularpolygonshouldbeaveragedtogetanaverageestimateofstand-levelabovegroundbiomass(tha-1).Oncetheaverageabovegroundbiomasshasbeendeterminedforeachmeasuredpolygon,belowgroundbiomassisestimatedbymultiplyingtheabovegroundbiomassbytheroot:shootratio,Ri(equation28d)andthetwoaresummedtodeterminetotalstand-levellivebiomassformeasuredpolygoni,timet,(BTOTAL,i,t).RiisdescribedinSection8.1.3.Finally,theaveragemeasuredcarbonstockinlivingtreebiomassformeasuredpolygoni,timet,(CLB,i,t)iscalculatedasshowninequation28c.ThisvalueofCLB,i,tmustbecomparedtotheequivalentcalculationoflivebiomass(LBPRJ,i,t)calculatedintheprojectscenario(Section8.2.5)(seecomparisonmethodandstepsbelow).BTOTAL,i,t=(BAG,i,t+BBG,i,t)(28b)CLB,i,t=(BTOTAL,i,t)●CF(28c)where:BAG,i,t=abovegroundtreebiomass(td.m.ha-1)measuredinpolygon,i,year,tBBG,i,t=belowgroundtreebiomass(td.m.ha-1)measuredinpolygon,i,year,t.BTOTAL,i,t=totaltreebiomass(td.m.ha-1)measuredinpolygon,i,year,tBBG,i,t=BAG,i,t●Ri(28d)CF=carbonfractionofdrymatter(IPCCdefaultvalue=0.5)DeadorganicmatterCarbonstoredindeadorganicmatterpoolsinmeasuredpolygon,i,yeart,(CDOM,i,t)iscalculatedasthesumofthatstoredinlyingdeadwoodandstandingsnags.CDOM,i,t=(DOMLDW,i,t+DOMSNAG,i,t)●CF(28e)where:DOMLDW,i,t=averagemassofdeadorganicmattercontainedinlyingdeadwood(td.m.ha-1)inmeasuredinpolygon,i,year,tDOMSNAG,i,t=averagemassofdeadorganicmattercontainedinstandingsnags(td.m.ha-1)inmeasuredinpolygon,i,year,tTheaveragequantityofdeadorganicmattercontainedinlyingdeadwoodformeasuredpolygon,i,inyear,t(DOMLDW,i,t)iscalculatedaccordingtoequations60a-cinSection9.3.2.ThevalueofDOMLDW,i,tmustbecomparedVM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.29totheequivalentcalculationoflyingdeadwoodmass(LDWPRJ,i,t)intheprojectscenario(Section8.2.8)(seecomparisonmethodandstepsbelow).Theaveragequantityofdeadorganicmattercontainedinstandingsnagsformeasuredpolygon,i,inyear,t(DOMSNAG,i,tiscalculatedbysummingthemass(abovegroundonly)ofallthemeasuredstandingdeadtreeswithinasampleplot(convertingkgtot)anddividingthesumbytheplotareainha(seeSection9.3.2).Thebelowgroundcomponentofsnagsistreatedasdeadbelowgroundbiomass(seeSection8.2.8)andisnotdirectlymeasured.AllplotswithinaparticularpolygonshouldbeaveragedtogetanaverageestimateofDOMSNAG,i,t.ThevalueofDOMSNAG,i,tmustbecomparedtotheequivalentcalculationofstandingdeadtreemass(SNAGPRJ,i,t)intheprojectscenario(Section8.2.8)(seecomparisonmethodandstepsbelow).8.2.4UpdatingtheModeledProjectCarbonBalanceInthismethodology,theexantecarbonbalancesintheprojectcasemaybederivedfromcomputermodeloutput.Inthisevent,theprecisionofthemodeledcarbonstocksshouldbeevaluatedforeachpolygonoranalysisunit(dependingonthelevelofstratificationused)usingthemethoddescribedfordeterminingmeanmodelerrorinSection8.5.3(equations60a,b).Ifthemodelerrortermistoohigh(>10%),proponentsshouldattempttoimprovethemodelfitbyre-evaluatingandadjustingmodelparametersuntilmodelerrortermis<10%.Modelerrortermsgreaterthan10%(aftermodeladjustments)willbepenalizedaccordingthecalculationoftheuncertaintyfactordescribedinSection8.5.3.Ifchangesinmodelassumptionsorparametersaremade,thebaselinescenario(fromthenextyearforward)mustberecalculatedusingtherevisedmodel.8.2.5CalculatingtheProjectCarbonBalanceThetotalannualcarbonbalanceinyear,t,fortheprojectscenarioiscalculatedas(∆CPRJ,t,intCyr-1):∆CPRJ,t=∆CPRJ,P,t(29)where:∆CPRJ,P,tistheannualchangeincarbonstocksinallpoolsintheprojectacrosstheprojectactivityarea;tCyr-1.∆CPRJ,P,t=∆CPRJ,LB,t+∆CPRJ,DOM,t+∆CPRJ,HWP,t(30)∆CPRJ,LB,t=annualchangeincarbonstocksinlivingtreebiomass(above-andbelowground);tCyr-1∆CPRJ,DOM,t=annualchangeincarbonstocksindeadorganicmatter;tCyr-1∆CPRJ,HWP,tistheannualchangeincarbonstocksassociatedwithharvestedwoodproducts,tCyr-1.∆CPRJ,LB,t=∆CPRJ,G,t–∆CPRJ,L,t(31)where:∆CPRJ,G,t=annualincreaseintreecarbonstockfromgrowth;tCyr-1∆CPRJ,L,t=annualdecreaseintreecarbonstockfromareductioninlivebiomass;tCyr-1.Iftheprojectareahasbeenstratified,carbonpoolsarecalculatedforeachpolygon,i,andthensummedduringagivenyear,t.VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.308.2.6LiveBiomassGainLivebiomassgaininyear,t,polygon,i(∆CPRJ,G,i.t)iscalculatedas:∆CPRJ,G,t=Σ(APRJ,i●GPRJ,i,t)●CF(32)where:APRJ,i,=area(ha)offorestlandinpolygon,i;GPRJ,i,t=annualincrementrateintreebiomass(td.m.ha-1yr-1),inpolygon,i,and;CF=carbonfractionofdrymattertCt-1d.m.(IPCCdefaultvalue=0.5).GPRJ,i,t=GPRJ,AG,i,t+GPRJ,BG,i,t(33a)whereGPRJ,AG,i,tandGPRJ,BG,i,taretheannualabove-andbelowgroundbiomassincrementrates(td.m.ha-1yr-1);GPRJ,BG,i,t=GPRJ,AG,i,t●Ri(33b)whereRiistheroot:shootratioinpolygon,i.Rishouldideallybeestimatedforeachpolygon,butthesedataaredifficulttoderiveempirically.Hence,generalrelationshipsareacceptable(Cairns,1997).Equations32and33canbeuseddirectlytocalculate∆CPRJ,G,twhenalltreecoverwithinapolygonisremovedbyharvesting(i.e.,clearfelling)andnoresidualstructureisretained.Incasesofpartialharvestingand/ormultipleentriesintoapolygon,theseequationsmustbeappliedseparatelytoeachoftheresultingsub-polygons(thedifferentageclassesthatarecreated).Thisensuresthatgrowthratesreflectthedifferenceinforestagebetweenthesub-polygons.TheexanteandexpostcalculationofGPRJ,i,t(eitherdirectly,orfromitscomponentparts)willbederivedfrommodelsthatrequireinputsderived,inpart,fromforestinventorydataupdatedfrommonitoringsampleplots(seeSections9.3.2and8.2.2).Criteriaformodelsuitabilityareprovidedin8.1.1.Theexactformoftheinputdatadependsonthenatureofthemodelbutmayincludesiteindex,speciescomposition,andvolume(seenotesinSection8.1).8.2.7LiveBiomassLossTheannualdecreaseinabovegroundtreecarbonfromlivebiomassloss(∆CPRJ,L,t;tCyr-1)isthesumoflossesfrom:1.Naturalmortality(i.e.insects,disease,competition,wind,etc.)2.Commercialroundwoodfelling3.Incidentalsources.Lossesmustbespecifictoagivenpolygon;eachpolygonmustbesummedinordertocalculatetotalannuallossacrosstheprojectactivityarea.Thelivebiomasslossesarenotemitteddirectly,butratheraretransferredtodeadorganicmatterpools.∆CPRJ,L,t=Σ(LBLPRJ,NATURALi,t+LBLPRJ,FELLINGS,i,t+LBLPRJ,OTHERi,t)●CF(34)where:LBLPRJ,NATURALi,t=annuallossoflivetreebiomassduetonaturalmortalityinpolygon,i;td.m.yr-1VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.31LBLPRJ,FELLINGS,i,t=annuallossoflivetreebiomassduetocommercialfellinginpolygon,i;td.m.yr-1LBLPRJ,OTHER,i,t=annuallossoflivetreebiomassfromincidentalsourcesinpolygon,i;td.m.yr-1CF=carbonfractionofdrymatter;tCt-1d.m.(IPCCdefaultvalue=0.5).LBLPRJ,NATURALi,t=APRJ,i●LBPRJ,i,t●fPRJ,NATURAL,i,t(35)24whereAPRJ,i=area(ha)offorestlandinpolygon,i;LBPRJ,i,t=averagelivetreebiomass(td.m.ha-1)inpolygon,i,foryear,tLBPRJ,i,tiscalculatedforyear,t,beginningwithbiomassestimatesinyeart=1(theprojectstartyear)andwithannualbiomassincrements(GPRJ,i,t)addedaspercalculationsinequation33a.fPRJ,NATURAL,i,t=theannualproportionofbiomassthatdiesfromnaturalmortalityinforesttype,i(unitless;0<fPRJ,NATURALi<1),year,t.Treemortalityisanongoingprocessduringstanddevelopment.Treesdieasaconsequenceofinsectattack,disease,competition,orsomecombinationthereof.Hence,mortalitycanbehighlyvariablebetweenyears.Thisparametercanbeapplieduniformlyacrossananalysisunit,orindividuallytoagivenpolygon.Expostestimatesfromregionaldatasourcesincorrespondingstandtypesarepreferred.Sourcesformortalityestimatesincludepermanentsampleplotsinsimilarstandtypes,literaturereports,andinventorydata.Somemodels(theFORECASTmodel,forexample)simulateannualbackgroundmortalityratesdirectlyandcanaccommodatevariableagestructuresfollowingpartialharvesting.LBLPRJ,FELLINGS,i,t=APRJ,i●LBPRJ,i,t●fPRJ,HARVEST,i,t(36)where:APRJ,i=area(ha)offorestlandinpolygon,iLBPRJ,i,t=averagelivetreebiomass(td.m.ha-1)inpolygon,i,foryear,t(seeequation7foritscalculation).fPRJ,HARVEST,i,t=theproportionofbiomassremovedbyharvestingfrompolygon,i,(unitless;0<fPRJ,HARVESTIi<1),inyear,t.Dataforthisvariableshouldbeobtainedfromharvestscheduleinformation.Valuesmaybeconstrainedby(a)thevalueoffPRJ,NATURAL,i,t(i.e.,fPRJ,HARVEST,i,t<1-fPRJ,NATURAL,i,t),and/or(b)theareaoftimberavailableforcommercialharvest.Incidentalloss(LBLPRJ,OTHER,i,t;td.m.yr-1)istheadditionallivetreebiomassremovedforroadandlandingconstructioninthepolygon,i,andiscalculatedasaproportionofbiomassremovedbyharvesting:LBLPRJ,OTHER,i,t=APRJ,i●LBPRJ,i,t●fPRJ,HARVEST,i,t●fPRJ,DAMAGE,i,t(37)where:APRJ,i=area(ha)offorestlandinpolygon,i;LBPRJ,i,t=averagelivetreebiomass(td.m.ha-1)inpolygon,i,foryear,t24Note,forEquation35,36,and37:(fPRJ,NATURAL,i,t+fPRJ,HARVEST,i,t+fPRJ,DAMAGE,i,t)≤1.0VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.32fPRJ,HARVEST,i,t=theproportionofbiomassremovedbyharvestingfrompolygon,i,inyear,t(unitless;0<fPRJ,HARVEST,i,t<1).fPRJ,DAMAGE,i,t=theproportionofadditionalbiomassremovedforroadandlandingconstructioninpolygon,i,year,t(unitless;0<fPRJ,DAMAGE,i,t<1)25.Dataforthisvariableshouldbebasedonregionalandlocalcomparativestudiesandexperientialinformationderivedfromthelocalforestindustry26.8.2.8DeadOrganicMatterDynamics(∆CPRJ,DOM)Deadorganicmatter(DOM)includedinthismethodologycomprisesthreecomponents:standingdeadwood(minimum>5cmDBHand1.3mheight;termedsnags),lyingdeadwood(minimum>5cmDBH;LDW),andbelowgrounddeadwood(i.e.,deadroots).Standingdeadwoodis<45ºofvertical,whilelyingdeadwoodis>45ºofvertical.TheannualchangeincarbonstocksinDOM(∆CPRJ,DOM;tCyr-1)iscalculatedas:∆CPRJ,DOM,t=∆CPRJ,LDW,t+∆CPRJ,SNAG,t+∆CPRJ,DBG,t(38)where:∆CPRJ,LDW,t=changeinlyingdeadwood(LDW)carbonstocksinyear,t;tCyr-1∆CPRJ,SNAG,t=changeinsnagcarbonstockinyear,t;tCyr-1∆CBSL,DBG,t=changeinbelowgroundcarbonstockinyear,t;tCyr-1.∆CPRJ,LDW,t=Σ(LDWPRJ,IN,i,t–LDWPRJ,OUT,i,t)●CF(39a)LDWPRJ,i,t+1=LDWPRJ,i,t+(LDWPRJ,IN,i,t–LDWPRJ,OUT,i,t)(39b)where:LDWPRJ,i,t=Thetotalmassoflyingdeadwoodaccumulatedinpolygoniattimet(td.m.).LDWPRJ,IN,i,t=annualincreaseinLDWbiomassforpolygoni,year,t(td.mha-1yr-1).LDWincreasesoccurasaresultofnaturalmortality(typically,blowdown),andasadirectorindirectresultofharvesting.LDWPRJ,OUT,i,t=annuallossinLDWbiomassthroughdecay,forpolygoni,year,t,(td.mha-1yr-1)LDWPRJ,IN,i,tandLDWPRJ,OUT,i,taresummedacrosspolygons.CF=carbonfractionofdrymatter(IPCCdefaultvalue=0.5).LDWPRJ,IN,i,t=(LBLPRJ,NATURALi,t-LBLPRJ,NATURALi,t●Ri)●fPRJ,BLOWDOWN,i,t+((LBLPRJ,FELLINGS,i,t–LBLPRJ,FELLINGS,i,t●Ri)+(LBLPRJ,OTHER,i,t-LBLPRJ,OTHER,i,t●Ri))●fPRJ,BRANCH,i,t+25Projectingexanteroadandlandingremovalsbeyondafewyearsisdifficultandcomplex.Asdescribed,fPRJ,DAMAGE,i,tfunctionsasaproxyforestimatingbiomassimpactsofallnewroadsandlandingsassociatedwithannualharvestinginpolygon,i.ProjectproponentscansimulateLBLPRJ,OTHER,i,tdirectly,ifappropriatemodelsareavailable.26fPRJ,DAMAGE,i,tmaybezeroordeminimisincaseswhereapolygonisalreadyroaded.VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.33((LBLPRJ,FELLINGS,i,t–LBLPRJ,FELLINGS,i,t●Ri)+(LBLPRJ,OTHER,i,t-LBLPRJ,OTHER,i,t●Ri))●(1-fPRJ,BRANCH,i,t)●fPRJ,BUCKINGLOSS,i,t+SNAGPRJ,,i,t●fPRJ,SNAGFALLDOWN,i,t(40)where:LBLPRJ,NATURALi,t,LBLPRJ,FELLINGS,i,t,andLBLPRJ,OTHER,i,tareascalculatedinequations35,36,and37,respectively.Riistheroot:shootratioinpolygon,i(seeequation33b).fPRJ,BLOWDOWN,i,t=theannualproportionofliveabovegroundtreebiomasssubjecttoblowdowninpolygon,i,year,t(unitless;0<fPRJ,BLOWDOWN,i,t<1).Exanteestimatesmustbederivedfromregionalreportsinsimilarforesttypes.fPRJ,BRANCH,i,t=theannualproportionofabovegroundtreebiomasscomprisedofbranches>5cmdiameterinpolygon,i(unitless;0<fPRJ,BRANCH,i,t<1).Exantedataareavailablefromallometricequationsandmodels(forexample,(Kurz&Apps,2006)forCanada;(Smith,Miles,Vissage,&Pugh,2004)fortheU.S.).Intheeventslashburningisundertaken,thisparametershouldbereducedaccordinglytoreflecttheproportionofbiomassremaining.Estimatesshouldbeobtainedfromexpertopinion;asadefault,assume100%consumption.fPRJ,BUCKINGLOSS,i,t=theannualproportionofthelogbolebiomassleftonsiteafterassessingand/ormerchandizingthelogboleforquality,inpolygon,i(unitless;0<fPRJ,BUCKINGLOSS,i,t<1).Preferably,dataforthisvariablemustbebasedonregionalandlocalcomparativestudiesandexperientialinformationderivedfromthelocalforestindustry.Otherwise,anaveragedefaultvalueof21%canbeused,basedonUSnationalsummarystatistics(Smith,Miles,Vissage,&Pugh,2004).SNAGPRJ,i,t=thetotalmassofthesnagpoolinpolygon,i,year,t(seeequation42b).fPRJ,SNAGFALLDOWN,i,t=theannualproportionofsnagbiomassinpolygon,i,year,t,thatfallsoverandthusistransferredtotheLDWpool(unitless;0<fPRJ,SNAGFALLDOWN,i,t<1).Exanteestimatesforthisparametercanbederivedfrompeerreviewedliterature(forexample,(Parish,Antos,Ott,&DiLucca,2010)andforestcarbonaccountingmodelsthattracktheratesofinputandlossesfromdeadorganicmatterpools(forexample,(Kurz&etal,2009).LDWPRJ,OUT,i,t=LDWPRJ,i,t●fPRJ,lwDECAY,i,t(41)where:LDWPRJ,i,t=thetotalamountoflyingdeadwoodmassinpolygoni,year,t(seeequation39b).fPRJ,lwDECAY,i,t=theannualproportionallossoflyingdeadbiomassduetodecay,inpolygoni,year,t(unitless;;0<fPRJ,lwDECAY,i,t<1).AcommonapproachtoexanteestimationoffPRJ,lwDECAY,i,tistoassumemasslossoccursinproportiontotheamountofmassremaininginaccordancewithanasingleexponentialmodel,ofthegeneralform:Yt=Yoe–ktwhereYoistheinitialquantityofmaterial,Yttheamountleftattimet,andkisadecayconstant(Harmon,etal.,1986).Othertypesofexponentialmodelsareavailable(reviewedin(Harmon,etal.,1986))andmaybemoreappropriatetoparticularforesttypes(tobedescribedandjustifiedbytheprojectproponent,ifused).Exanteestimatesforthedecayparameterappropriatefortheprojectshouldbederivedfrompeer-reviewedliterature(forexample,(Harmon,etal.,1986);(Laiho&andPrescott,2004);(Harmonetal,2008)).VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.34Thechangeinstandingdeadwood(snag)carbonstockinyear,t(tCyr-1)iscalculatedas:∆CPRJ,SNAG,t=Σ(SNAGPRJ,IN,i,t–SNAGPRJ,OUT,i,t)●CF(42a)SNAGPRJ,i,t+1=SNAGPRJ,i,t+(SNAGPRJ,IN,i,t–SNAGPRJ,OUT,i,t)(42b)where:SNAGPRJ,i,t=Thetotalmassofsnagsaccumulatedinpolygoniattimet(td.m.)SNAGPRJ,IN,i,t=annualgaininsnagbiomassforpolygoni,year,t(td.mha-1yr-1).Snagbiomassdevelopsasaresultofnaturalmortality.Incaseswheresnagsarecreatedthroughmanagementactivities,theseshouldbeaccountedforhere.SNAGPRJ,OUT,i,t=annuallossinsnagbiomassthroughdecay,orfalldown(i.e,transfertotheLDWpool)(td.mha-1yr-1)CF=carbonfractionofdrymatter(IPCCdefaultvalue=0.5).NotethatSNAGPRJ,IN,i,tandSNAGPRJ,OUT,i,taresummedacrosspolygons.SNAGPRJ,IN,i,t=(LBLPRJ,NATURALi,t-LBLPRJ,NATURALi,t●Ri)●(1-fPRJ,BLOWDOWN,i,t)(43)where:LBLPRJ,NATURALi,tisascalculatedinequation35,and1-fPRJ,BLOWDOWN,i,tistheproportionoflivetreeabovegroundbiomassthatdiesinpolygon,i,year,t,butremainsasstandingdeadorganicmatter(i.e.snags)(unitless;0<fPRJ,BLOWDOWN,i,t<1).Exantedefaultestimatesforthiscalculationcanbederivedfromliteraturevalues(forexample(Harmon,etal.,1986);(Runkle,2000);(Harmonetal,2008))andshouldbematchedtotheecosystemsthatmostcloselycharacterizetheprojectarea.SNAGPRJ,OUT,i,t=SNAGPRJ,i,t●fPRJ,SWDECAY,i,t+SNAGPRJ,i,t●fPRJ,SNAGFALLDOWN,i,t(44)where:SNAGPRJ,i,t=thetotalamountofsnagmassinpolygoni,year,t(seeequation42b).fPRJ,SWDECAY,i,t=theannualproportionallossofsnagbiomassduetodecay,inpolygon,i,year,t(unitless;0<fPRJ,SWDECAY,i,t<1).Aswithlyingdeadwood,acommonapproachtoestimatingfPRJ,SWDECAY,i,tistoassumemasslossoccursinproportiontotheamountofmassremaininginaccordancewithanasingleexponentialmodel(seeequation41).Exanteestimatesforthisparametercanbederivedfrompeerreviewedliteratureappropriatefortheprojectsite(forexample,Vanderweletal.2006a)andforestcarbonaccountingmodelsthattracktheratesofinputandlossesfromdeadorganicmatterpoolsforeachforesttype,productivity,andage-class(see,forexample,Vanderweletal.,2006b;(Kurz&etal,2009)).fPRJ,SNAGFALLDOWN,i,t=theannualproportionofsnagbiomassinpolygon,i,thatfallsoverandthusistransferredtotheLDWpool(unitless;0<fPRJ,SNAGFALLDOWN,i,t<1).Seeequation40forparameterestimates.TheannualchangeinDOMderivedfromdeadbelowgroundbiomass(∆CPRJ,DBG,,t;tCyr-1)iscalculatedforeachpolygonasperequation45a.Calculationof∆CPRJ,DBG,tisspecifictoagivenpolygon;eachpolygonmustthereforebesummedinordertocalculatetotalannuallossacrosstheprojectactivityarea.VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.35∆CPRJ,DBG,t=Σ(DBGPRJ,IN,i,t–DBGPRJ,OUT,i,t)●CF(45a)DBGPRJ,i,t+1=DBGPRJ,i,t+(DBGPRJ,IN,i,t–DBGPRJ,OUT,i,t)(45b)where:DGBPRJ,i,t=Thetotalquantityofdeadbelowgroundbiomassaccumulatedinpolygoniattimet(td.m.).DBGPRJ,IN,i,t=annualgainindeadbelowgroundbiomassforpolygoni,year,t(td.mha-1yr-1).Deadbelowgroundbiomassdevelopsasaresultofmortalitythroughnaturalcausesorthroughharvestingactivities.DBGPRJ,OUT,i,t=annuallossindeadbelowgroundbiomassthroughdecay,(td.mha-1yr-1)CF=carbonfractionofdrymatter(IPCCdefaultvalue=0.5).DBGPRJ,IN,i,t=[(APRJ,i●LBPRJ,i,t●Ri)●(fPRJ,NATURAL,i,t+fPRJ,HARVEST,i,t+fPRJ,DAMAGE,i,t)](45c)where:APRJ,i=area(ha)offorestlandinpolygon,i;LBPRJ,i,t=averagelivetreebiomass(td.m.ha-1)inpolygon,i,foryear,t.LBPRJ,i,tiscalculatedforyear,t,beginningwithbiomassestimatesinyeart=1(theprojectstartyear)andwithannualbiomassincrements(GPRJ,i,t)addedaspercalculationsinequation33a,b.ThisvalueisthenmultipliedbyAPRJ,i,thearea(ha)offorestlandinpolygon,i.Riistheroot:shootratioinpolygon,i(seeequation33b).fPRJ,NATURAL,i,t=theannualproportionofbiomassthatdiesfromnaturalmortalityinpolygon,i(unitless;0<fNATURALi<1),year,t(seeequation35),fPRJ,HARVEST,i,t=theproportionofbiomassremovedbyharvestingfrompolygon,i,(unitless;0<fPRJ,HARVESTIi<1),year,t(seeequation36),fPRJ,DAMAGE,i,t=theproportionofadditionalbiomassremovedbyforroadandlandingconstructioninpolygon,i(unitless;0<fPRJ,DAMAGE,i,t<1),year,t(seeequation37),DBGPRJ,OUT,i,t=DBGPRJ,i,t●fPRJ,dgbDECAY,i,t(45d)where:DBGPRJ,i,t=thetotalquantityofdeadbelowgroundinpolygoni,year,t(equation17b).fPRJ,dgbDECAY,i,t=theannualproportionallossofdeadbelowgroundbiomassduetodecay,inpolygoni,year,t(unitless;0<fPRJ,lwDECAY,i,t<1).Theexanteestimationofthedecayofdeadbelowgroundbiomassshouldbedoneusingasimilarsingleexponentdecayfunctionasthatdescribedaboveforlyingdeadwoodbiomass.Estimatesforthedecayparameterappropriateforspecificprojectshouldbederivedfrompeer-reviewedliterature(seeforexample:(Moore,Trofymow,Siltanen,Prescott,&CIDET,2005);(Melin,Petersson,&Nordfjell,2009).8.2.9HarvestedWoodProductsSeeSection8.1.6forvariousdiscussionandbackgroundonHWPcalculations.Theannualchangeinemissionsassociatedwiththeproductionofharvestedwoodproducts(HWP),∆CBSl,HWP,t,iscalculatedas:VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.36∆CPRJ,HWP,t=∆CPRJ,STORHWP,t–∆CPRJ,EMITFOSSIL,t,(46)∆CPRJ,STORHWP,t=theannualchangeinharvestedcarbonthatremainsinstorageafterconversiontowoodproducts(tCyr-1)∆CPRJ,EMITFOSSIL,t=theannualchangeinfossilfuelemissionsfromharvesting(loggingandlogtransport)andprocessingofthevariouswoodproducts.8.2.10Carbonstorageharvestedwoodproducts(∆CPRJ,STORHWP,t)Ifharvestingisoccurringintheprojectcase,seeSection8.1.7foradiscussionofkeyissues.Theannualchangeincarbonstorageinharvestedwoodproductsinyeart(∆CPRJ,STORHWP,t;tCyr-1)isdeterminedbaseduponthefollowingequation:∆CPRJ,STORHWP,t=(CPRJ,STORHWP,t2-CPRJ,STORHWP,t1)/T(47)where:CPRJ,STORHWP,t2=carbonstorageinharvestedwoodproductsatt=2;tCCPRJ,STORHWP,t1=carbonstorageinharvestedwoodproductsatt=1;tCT=numberofyearsbetweenmonitoringt1andt2t:1,2,3…tyearselapsedsincetheprojectstartdateStorageintheharvestedwoodproductspoolatagiventimet(CPRJ,STORHWP,t;tC)iscalculatedaccordingtothefollowingstepsforeachharvestperiodh:Step1(Carboncontainedinharvestedtimber):Determinethecarboncontainedwithinharvestedtimberremovedfromtheprojectlandbase.Thiscanbecalculatedfrommeasuresoftotalmerchantablevolumegeneratedduringtheharvestperiodhusingspecies-specificwooddensitiesandstandardcarbonconversionsorestimatedfromlivebiomassremovalsafteraccountingforremovalofbelowgroundcomponents,branches,andbuckinglosses(equation48).Inaccordancewiththe1605(b)approach,theharvestedwoodcarbon(CPRJ,TIMBER,h)mustbedividedintothefollowingproducttype(k)categories:1)softwoodsawlog,2)softwoodpulpwood,3)hardwoodsawlog,4)hardwoodpulpwood.ThiscanbedoneusinglocaldataifavailableorestimatedbaseduponregionandforesttypeaccordingtoTable1.4inthe1605(b)document.Table3providesrecommendationsforanalogsforareaswithinNorthAmericabutoutsideoftheconterminousUS;howevertheprojectproponentmustjustifytheappropriatenessoftheselectedanalog.InthecaseofglobalprojectlocationsoutsideofNorthAmerica,theprojectproponentmustidentifyandjustifytheuseofalternativedatafrompeer-reviewedsourcesCPRJ,TIMBER,h=Σ[(LBLPRJ,FELLINGS,i,h-LBLPRJ,FELLINGS,i,h●Ri+LBLPRJ,OTHER,i,h-LBLPRJ,OTHER,i,h●Ri)●(1-fPRJ,BRANCH,i,h)●(1-fPRJ,BUCKINGLOSS,i,h)]●●CF(48)where:VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.37CPRJ,TIMBER,h=carboncontainedintimberharvestedinperiodh(summedforallharvestedpolygons,i);tCLBLPRJ,FELLINGS,i,h=annualremovaloflivetreebiomassduetocommercialfellinginpolygon,i;td.m.(equation36)LBLPRJ,OTHER,i,h=annualremovaloflivetreebiomassfromincidentalsourcesinpolygon,i;td.m.(equation37)Riistheroot:shootratioinpolygon,i(seeequation33b).1-fPRJ,BRANCH,i,htheproportionoflivetreebiomassremainingafternettingoutbranchbiomass,inpolygoni(unitless;0<fBRANCH,i,t<1)(seeequation12)1-fPRJ,BUCKINGLOSS,i,h=theproportionofthelogboleremainingafterin-woodslogprocessing/buckingforquality,length,etc.,inpolygon,i(unitless;0<fBUCKINGLOSS,i,t<1)(equation40)h=harvestperiod;yrStep2:(Carboncontainedinharvestedtimberaftermilling):Determinethetotalcarboninharvestedtimberthatwillenterthewoodproductspoolbyproducttypeaccountingformillefficienciesandestimatedproductdispositionpercentages(CPRJ,MILL,h;tC).ThegrossquantityofcarboncontainedinharvestedtimberforeachofthefourproducttypesdescribedinStep1mustbedecrementedtoaccountforlossesduringprocessing(equation49).TheselossesincludingbarkandothermillingwastesandmaybedeterminedusinglocaldataorestimatedbaseduponregionandproducttypeaccordingtoTable1.5inthe1605(b)document.Table3providesrecommendationsforanalogsforareaswithinNorthAmericabutoutsideoftheconterminousUS;however,theprojectproponentmustjustifytheappropriatenessoftheselectedanalog..The1605(b)documentalsoprovidesspecificexamplesdemonstratingtheuseofvaluesfromTables1.4and1.5todeterminenetcarbonstorageinwoodproducttypesaftermilling(Seeexamples1.4and1.5onpages25-27).InthecaseofglobalprojectlocationsoutsideofNorthAmerica,theprojectproponentmustidentifyandjustifytheuseofalternativedatafrompeer-reviewedsourcesCPRJ,MILL,h,k=(CPRJ,TIMBER,h,k●fRND,k●rRND,k)(49)where:CPRJ,MILL,h,k=carboncontainedinharvestedtimberaftermillinginperiodh,forproducttypek;tCCPRJ,TIMBER,h,k=carboncontainedintimberharvestedinperiodh,forproducttypek;tCk=woodproducttype–(softwoodsawlog,softwoodpulpwood,hardwoodsawlog,orhardwoodpulpwood;proportionsdeterminedfromTable1.4of1605(b)document)fRND,k=fractionofgrowingstockvolumeremovedasroundwoodforproducttypek(defaultvaluesbyregioninTable1.5ofthe1605(b)document);dimensionlessrRND,k=ratioofindustrialroundwoodtogrowingstockvolumeremovedasroundwoodforproducttypek(defaultvaluesbyregioninTable1.5ofthe1605(b)document);dimensionlessVM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.38Step3:(Carbonstorageinmedium-termandlong-termwoodproducts):Calculatethetotalcarbonlostinshort-livedproductsandstoredinmedium-termandlong-termproducts.Foreachharvestperiodh,carbonstoredinharvestedwoodproductsofadefinedtype(k)afteraccountingformillinglosses(CPRJ,MILL,h,k)mustbeapportionedintooneofthefollowingcategories:d)Shortlivedwoodproducts:harvestedwoodproductsandwoodwastethatwilldecaywithin3years.e)Mediumlivedwoodproducts:harvestedwoodproductsandwoodwastethatwillberetiredbetween3and100yearsfromthedateofharvest.f)Longlivedwoodproducts:harvestedwoodproductsandwoodwastethatmaybeconsideredpermanent(storedfor100yearsormore).Todeterminetheproportionofharvestedwoodproducts(bytype)thatfallintoeachcategory,refertothe“InUse”columnfortheselectedforestregioninTable1.6inthe1605(b)document.Table3providesrecommendationsforanalogsforareaswithinNorthAmericabutoutsideoftheconterminousUS;theprojectproponentmustjustifytheappropriatenessoftheselectedanalog.ThreevaluesarethencalculatedfromthesedataselectedfromTable1.6inthe1605(b)document,foreachproducttype,k:theshort-livedfraction(PPRJ,SLF,k),medium-livedfraction(PPRJ,MLF,k),andlong-livedfraction(PPRJ,LLF,k):PPRJ,SLF,k=1-P3-year(50a)PPRJ,LLF,k=P100-year(50b)PPRJ,MLF,k=P3-year–P100-year,(50c)Eachcategoryofwoodproducts(k)storescarbonaccordingtothefollowingrules:iv.Short-livedwoodproducts–immediateemissionofallcarbonuponharvestv.Medium-livedwoodproducts–noemissionofcarbonuponharvest,butcarbonstoredwilldecreaseby1/20thforthenext20yearsafterharvest,suchthatafter20yearsthetermbecomeszerovi.Long-livedwoodproducts–nolossofcarbon.Thus,carbonstorageinharvestedwoodproductsattimetmaybecalculatedusingacohortapproachinwhichmedium-termandlong-termwoodproductsfromeachharvestperiodharetrackedindependentlyandthensummedovertheprojecttimeperiodasindicatedinequation51.CPRJ,STORHWP,t,=ΣΣ((CPRJ,MILL,h,k●PLLF,k)+[(CPRJ,MILL,h,k●PMLF,k)●((20-h)/20)])(51)where:CPRJ,STORHWP,t,=carbonstoredinharvestedwoodproductsinyeartsummedforallproducttypeskandthenoverallharvestperiodsh;tCk=woodproducttype–(softwoodsawlog,softwoodpulpwood,hardwoodsawlog,orhardwoodpulpwood;proportionsdeterminedfromTable1.4of1605(b)document)h=yearofharvest(theterm(20-h)shouldnotbeallowedtodropbelow0)VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.398.2.11mustFossilfuelemissionsassociatedwithlogging,transport,andmanufactureTheannualchangeinfossilfuelemissionsfromharvestingandprocessingofthevariouswoodproducts(∆CPRJ,EMITFOSSIL,t)arecalculatedas:∆CPRJ,EMITFOSSIL,t=CPRJ,EMITHARVEST,t+CPRJ,EMITMANUFACTURE,t+CPRJ,EMITTRANSPORT,t(52)WhereCPRJ,EMITHARVEST,t=theannualfossilfuelemissionsassociatedwithharvestingofrawmaterial(tCyr-1)CPRJ,EMITMANUFACTURE,t=theannualfossilfuelemissionsassociatedwiththemanufacturingofrawmaterial(tCyr-1)CPRJ,EMITTRANSPORT,t=theannualfossilfuelemissionsassociatedwiththetransportofrawmaterial(tCyr-1)ThesimplestapproachtocalculatingCPRJ,EMITFOSSIL,tistousepublishedorderivedcarbonemissionintensityfactors.Inthecaseofharvesting,PRJ,CEMITHARVEST,t;tCyr-1),canbecalculatedas:CPRJ,EMITHARVEST,t=Σ[(LBLPRJ,FELLINGS,i,t-LBLPRJ,FELLINGS,i,t●Ri+LBLPRJ,OTHER,i,t–LBLPRJ,OTHER,i,t●Ri)●(1-fPRJ,BRANCH,i,t)●(1-fPRJ,BUCKINGLOSS,i,t)]●CF●cHARVEST(53)where:cHARVEST=carbonemissionintensityfactor(tCemitted/tCrawmaterial)associatedwithharvesting(seeTable4fordefaultvalues);allothertermsareasdefinedinequation19.CPRJ,EMITTRANSPORT,tmustbecalculatedafterconsiderationofthetransportdistancefromharvesttoprocessingfacility,andthemeansoftransportation.Thistermcanbecalculatedasfollows(after(Heath,etal.,2010)):CPRJ,EMITTRANSPORT,t=Σ[(LBLPRJ,FELLINGS,i,t-LBLPRJ,FELLINGS,i,t●Ri+LBLPRJ,OTHER,i,t-LBLPRJ,OTHER,i,t●Ri)●(1-fPRJ,BRANCH,i,t)●(1–fPRJ,BUCKINGLOSS,i,t)]●CF●Σ(fPRJ,TRANSPORTk●dTRANSPORTk●cTRANSPORTk)(54)where:fPRJ,TRANSPORTk=thefractionofrawmaterialtransportedbytransportationtype,k.(unitless;0<fPRJ,TRANSPORTk<1).dTRANSPORTk=thedistancetransportedbytransportationtype,k.(km);cTRANSPORTk=thecarbonemissionintensityfactor(kgCemitted/tCrawmaterial)associatedwithtransportationtype,k(seeTable4fordefaultvalues);allothertermsareasdefinedinequation48.CPRJ,EMITMANUFACTURE,t=Σ[(LBLPRJ,FELLINGS,i,t-LBLPRJ,FELLINGS,i,t●Ri+LBLPRJ,OTHER,i,t–LBLPRJ,OTHER,i,t●Ri)●(1-fPRJ,BRANCH,i,t)●(1-fPRJ,BUCKINGLOSS,i,t)]●Σ(fPRJ,PRODUCTk●cMANUFACTUREk)●CF(55)VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.40cMANUFACTUREk=thecarbonemissionintensityfactor(tCemitted/tCrawmaterial)associatedwithmanufactureofproducttype,k;allothertermsareasdefinedinequation48.DefaultvaluesforcMANUFACTUREkareprovidedinTable4.DataarefromacomprehensiveanalysisconductedinFinland(Pingoud,Perälä,Soimakallio,&Pussinen,2003).HighercomparativevaluesfromNorthAmericaareprovidedforharvestingandsawnwoodmanufacturingtoillustrateinherentvariability.ProjectproponentsmayusethedefaultvaluesinTable4,orsubstituteregionaldata,ifavailable.8.3LeakageLeakageisdefinedasanyincreaseinGHGemissionsthatoccursoutsidetheprojectboundary(butwithinthesamecountry),andismeasurableandattributabletotheprojectactivities.AllleakagemustbeassessedandaccountedforinGHGcalculations.Positiveleakageeffectsmustbediscounted.8.3.1ActivityShiftingLeakage:Activityshiftingleakageoccurswhentheactualagentofharvestingmovestoanareaoutsideoftheprojectboundaryandinitiatescompensatoryharvestingactivitieselsewhere.ActivityshiftingleakageinIFMprojectscanresultfromcurrentactivitiesshiftingwithintheprojectproponent’soperationsduetotheimplementationofthecarbonproject.Thiseffectivelyoffsetsaportionofthebenefitsofthecarbonprojectemissionsreductions.Theprojectproponentwilldemonstratethat,asperVCSrequirementsforIFMprojectsandtheapplicabilityconditionsofthismethodology,thereisnoleakageduetoactivityshiftingwithintheprojectproponents’landsuponthestartupoftheproject27,usingthefollowingsteps:STEP1-Theprojectproponentmustannuallyprovidetothevalidatorand/orverifierthelocationsanddescriptionsofallforestlandswithintheprojectcountryoverwhichtheprojectproponenthasownership,management,orlegallysanctionedrightsofuse.STEP2-Projectproponentsmustdemonstrateannuallythatthereisnoactivityshiftingleakagetoareasthatareoutsidetheprojectareabutwithintheprojectproponentsoperatingareas,andthatthemanagementplansand/orland-usedesignationsofallotherlandsoperatedbytheprojectproponenthavenotmateriallychangedasaresultoftheprojectactivity(e.g.,harvestrateshavenotbeenincreased).Demonstrationmethodsmustinclude:1.Historicalrecordsshowingtrendsinharvestvolumespairedwithrecordsfromtheprojecttimeperiodshowingnodeviationfromhistoricaltrends,or2.Forestmanagementplansprepared≥24monthspriortothestartoftheprojectshowingharvestplansonallowned/managedlandspairedwithrecordsfromtheprojecttimeperiodshowingnodeviationfrommanagementplans;and/or3.Otherevidenceandjustificationtodemonstrateactivityshiftingrelatedtotheprojectisnotoccurring28.8.3.2MarketLeakage:Marketleakageriskoccurswhenaprojectsignificantlyreducestheproductionofacommoditycausingachangeinthesupplyandmarketdemandequilibriumthatresultsinashiftofproductionelsewheretomakeupforthelostsupply.VCSprovidesprojectproponentswithtwooptionsforquantifyingmarketleakage,whicharefurtherdefinedforthismethodology:27Seefootnote4(andapplicabilitycriterion7)forfurtherrequirementsintheeventactivityshiftingisfoundtobeoccurringinlateryearsoftheprojectduration.28TheonusisontheprojectproponenttodemonstrateandjustifythatthesourceofdataandthegeographicscaleandscopeusedtoassessactivityshiftingareappropriatefortheprojecttomeettherequirementsofVCSandthemethodology.VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.411.ApplythemostcurrentVCSmarketleakagetooltodetermineadiscountfactortothenetchangeincarbonstockassociatedwiththeactivitythatreducestimberharvest(seeSection8.3.3);or,2.Developaproject-specificmarketleakagefactorthataccountsforcountrylevelleakagewithinsimilarforesttypes29.Thismethodologyallowstwovariationsonthisoption:a.UtilizetheCARForestProtocol3.2marketleakageequation,iftheprojectislocatedwithincountrieswhereCARapplies,orcandemonstrateequivalentmarketconditions(currentlyCARappliesonlyintheUSbutisdevelopingprotocolassumptionsforMexicoandCanada)(seeSection8.3.4);orb.Utilizeadetailedleakageriskassessmentformprovidedinthismethodologyandproviderelatedadditionalsupportingevidencefortheassessmentsmadetherein(seeSection8.3.5).8.3.3MarketLeakageOption1–VCSDefaultMarketLeakageDiscountFactorsInexercisingthisoption,projectproponentsmustutilizethemostcurrentapprovedVCSleakagediscountmethodasoutlinedinthemostrecentVCSAFOLUrequirementsdocument30.Projectswilldeterminetheappropriatediscountfactorinaccordancewiththemostrecentrequirementsformarketleakage.Projectproponentsmustprovidejustificationandevidenceofhowtheleakagediscountfactorisdetermined.ForprojectproponentsusingMarketLeakageOption1:TheoutcomeoftheVCSLeakageDiscountFactordetermination=thevalueforMLFy(56a)Tocalculatetheprojectmarketleakage(LEY,tCO2eyr-1):LEY=MLFy•ERy,GROSS(56b)Where,MLFy=Marketleakagefactor,ascalculatedabove.ERy,GROSS=thegrossdifferenceintheoverallannualcarbonchangebetweenthebaselineandprojectscenariosinyear‘y’(intonnesCO2eyr-1).Thistermiscalculatedinequation57.8.3.4MarketLeakageOption2–CARMarketLeakageFormulaBasedonthefactthattheCARforestprotocoliswidelyacceptedinNorthAmerica,thoroughlyreviewed,generallymutuallyrecognizedbyVCS,anddevelopedforasinglecountryleakagecondition;itisconsideredavalidapproachtoleakagediscountfactorswhenappliedtoprojectslocatedinCAR-eligiblejurisdictions(currentlytheUnitedStates).Further,projectproponentsmayjustifytheapplicationoftheCARleakageformulaforlogmarketconditionsfundamentallysimilartotheUnitedStatesandwhicharecurrentlyunderdevelopmentasCARjurisdictions(i.e.CanadaandMexicopending).TheCARleakageformulaiscalculatedasperthelatestapprovedCARForestProtocol.ThecurrentlyapprovedcalculationisprovidedFigure1,whichistobereplacedbythemostuptodateapprovedCARmethodasrequired:29Specifically:“…marketleakageshallbeaccountedforatthecountry-scaleappliedtothesamegeneralforesttypeastheproject(i.e.,forestscontainingthesamecommercialspeciesastheforestintheprojectarea)....”(VoluntaryCarbonStandard,2008b).30NotetheVCSMay24thAFOLUProgramUpdate,whichspecifiesusingtheratioofmerchantablebiomasstototalbiomassintheprojectversusleakagearea.VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.42Figure1-CARForestryProtocolv.3.2MarketLeakageProcess3132ForprojectproponentsusingLeakageOption2:UtilizetheCARformulas(Equation6.10–showninFigure1),withvariablescalculatedasfollows:Note:forconsistency,y=n=t.BChv,n=Σ[(LBLBSL,FELLINGS,i,t-LBLBSL,FELLINGS,i,t●Ri+LBLBSL,OTHER,i,t-LBLBSL,Other,i,t●Ri)●(1-fBSL,BRANCH,i,t)●(1-fBSL,BUCKINGLOSS,i,t)]●CF●44/12(56c.1)Ascalculatedusingthebaselinescenariodata,andwhere:LBLBSL,FELLINGS,i,t=annualremovaloflivetreebiomassduetocommercialfellinginpolygon,i;td.m.yr-1(equation6)31“SecondaryEffects”=MarketLeakage32Figure1istobereplacedwiththelatestapprovedCARForestProtocolSecondaryEffectscalculationsatthetimeofPDvalidation.VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.43LBLBSL,OTHER,i,t=annualremovaloflivetreebiomassfromincidentalsourcesinpolygon,i;td.m.yr-1(equation6)1-fBSL,BRANCH,i,t=theproportionofabovegroundlivetreebiomassremainingafternettingoutbranchbiomass,inpolygoni(unitless;0<fBRANCH,i,t<1)(seeequation12)1-fBSL,BUCKINGLOSS,i,t=theproportionofthelogboleremainingafterprocessingforquality,inpolygon,i(unitless;0<fBUCKINGLOSS,i,t<1)(equation12)Ri=theroot:shootratioinpolygon,iCF=carbonfractionofdrymatter(IPCCdefaultvalue=0.5).AChv,n=Σ[(LBLPRJ,FELLINGS,i,t-LBLPRJ,FELLINGS,i,t●Ri+LBLPRJ,OTHER,i,t-LBLPRJ,Other,i,t●Ri)●(1-fPRJ,BRANCH,i,t)●(1-fPRJ,BUCKINGLOSS,i,t)]●CF●44/12(56c.2)Ascalculatedusingtheprojectscenariodata,andwhere:LBLPRJ,FELLINGS,i,t=annualremovaloflivetreebiomassduetorestorationfellinginpolygon,i;td.m.yr-1(equation6)LBLPRJ,OTHER,i,t=annualremovaloflivetreebiomassfromincidentalsourcesinpolygon,i;td.m.yr-1(equation6)1-fPRJ,BRANCH,i,t=theproportionofabovegroundlivetreebiomassremainingafternettingoutbranchbiomass,inpolygoni(unitless;0<fBRANCH,i,t<1)(seeequation12)1-fPRJ,BUCKINGLOSS,i,t=theproportionofthelogboleremainingafterprocessingforquality,inpolygon,i(unitless;0<fBUCKINGLOSS,i,t<1)(equation12)CF=carbonfractionofdrymatter(IPCCdefaultvalue=0.5).SEy=LEy(56c.3)where:SEy=SecondaryEffectsinyear‘y’(tCO2e)calculatedusingequationsinFigure1andequations56c.1,56c.2and56c.3.LEY=Leakageinyeary(intonnesCO2eyr-1)–usedinequation58.8.3.5MarketLeakageOption3–LeakageAssessmentToolCurrently,theVCSmethodforassessingleakageusedinOption1doesnotprovideamechanismforweightingleakageintodifferentbiomassareas,andalsodoesnotprovideamechanismtoseparatedomesticversusinternationalleakageproportions.Thismethodologythereforeprovidesathirdoptiontoprojectproponentswhowishtoundertakeanassessmentofmarketleakageconditionsmoredetailedandspecifictotheirprojectlocationandcondition.ThistoolsetsoutaproceduretoweighttheVCSleakagecategoriesaccordingtopublicallyavailableforestproductsmarketdataforwheretheleakageriskismostlikelytobeleakedto(orreplacedfrom).VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.44FollowingTable5,theprojectproponentmustconducttheriskanalysisasfollows:1.Determinetheproportionofleakageexpectedtobereplacedbyinternationalsources(i.e.proportionofinternationalleakage)versusdomesticsources,and;2.Forthedomesticproportion,determinetheproportionofleakagetoothernationalbiomassforests,basedontheVCSdefaultvaluesandcategories,andtheratioofmerchantablebiomasstototalbiomassontheprojectsiteversustheleakagesites.WhereaprojectisunabletoprovideanyrelevantpublishedjustificationorsupportingevidenceforariskfactorselectioninTable5,thentheprojectisnoteligibletousethistoolandmustuseoneoftheotherprovidedoptionstoassessmarketleakagerisk.Table5-MarketLeakageOption3AssessmentTable1.InternationalLeakageProportionInordertodeterminetheproportionofpotentialleakagewhichwilloccurwithindomesticmarketsversusinternationalmarkets,theprojectproponentmustcalculatetheproportionoftheprojectleakagewhichisexpectedtobereplacedfromdomestic(in-projectcountry)sourcesversustheproportionthatwilllikelybereplacedfrominternationalsource(andhence,beinternationalleakage,whichisgivenaleakageriskofzeroinVCS).Itisassumedthattheforestproductsmarketisefficient,andanyleakagewillbereplacedproportionallyacrosstheprojectcountriescurrentnationalforestproductsmarketconditions.Thefollowingcalculationprovidesamethodtoestimatetheproportionofleakagewhichisdomesticversusinternational.InternationalLeakageFactor=(FPTO_DOMESTIC)(DOM.DEMANDFROM_INTL)+(FPTO_EXPORT)(EXP.DEMANDFROM_INTL)Where,FPTO_DOMESTIC=Totalprojectcountryforestproductsdeliveredtodomesticmarkets(%)FPTO_EXPORT=Totalprojectcountryforestproductsdeliveredtoexport(international)markets(%)DOM.DEMANDFROM_INTL=ProportionoftotalprojectcountryForestProductstoInternationalMarkets(%)EXP.DEMANDFROM_INTL=Weightedsumoftheproportionsofkeymarketswhicharesuppliedfromnon-projectcountrysources(%)Definitions:“Domestic”=projectcountry“International”=sumofallnon-projectcountrieswhichindividuallyrepresent>10%ofthetotalprojectcountry’sforestproductsproduction,andwhichcollectivelyrepresent>80%ofthetotalprojectcountry’sforestproductsexportproduction.“ForestProducts”=themarketdatautilizedmustbedemonstratedtoberepresentativeof>80%oftheprojectharvestedwoodproductsproductmix.ProponentsmayuseforestproductsvolumeorvalueaslongVM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.45astheunitsareconsistentandcomparableacrossmarketsandusedconsistentlywithinthisentiretool.“Keymarket(s)”=collectivelymustrepresent>80%oftheprojectcountry’sdomestic,import,andexportsupply,eitheronalogbasisorlumberbasis.Individualmarketcountriesrepresenting<10%ofthetotaldomesticorexportmarketmaybeexcluded.Example:ExampleofCanadian-basedprojectsunderthistool(StatsCanData&FAOdata)(onlytheUSmarketmeetsthekeymarketdefinitionforCanadianforestproductsproduction):FPTO_DOMESTIC=20%FPTO_EXPORT=80%(>90%toUS=single‘KeyMarket’)DOM.DEMANDFROM_INTL=10%(i.e.10%ofthedomesticmarketissuppliedbynon-Canadiansupply)EXP.DEMANDFROM_INTL=65%(i.e.65%oftheUSmarketissuppliedbynon-Canadiansupply)LFINTL=(FPTO_DOMESTIC)(DOM.DEMANDFROM_INTL)+(FPTO_EXPORT)(EXP.DEMANDFROM_INTL)LFINTL=(0.200.10)+(0.800.65)=54%Therefore,54%ofthemarketleakageisexpectedtobereplacedbyinternationalsources,whichisassignedaleakagefactorof“0”.Theremainingdomestic/nationalleakage,46%,isthenfurtherconsideredinthebiomassratiocalculationsbelow.InternationalLeakageFactor(LFINTL)LFINTL=(FPTO_DOMESTIC)(DOM.DEMANDFROM_INTL)+(FPTO_EXPORT)(EXP.DEMANDFROM_INTL)2.ProportionalLeakagebyBiomassRatio:VCSDefaultBiomassRatioCategories(see:VCS2008May24,2010ProgramUpdate)Calculatedas:((ProjectBiomassRatio–LeakageBiomassRatio)/(ProjectBiomassRatio))100>15%33Lowermerchantablebiomasstototalbiomass(t/ha)+/-15%merchantablebiomasstototalbiomass(t/ha)>15%Highermerchantablebiomasstototalbiomass(t/ha)StartingVCSDefaultLeakageFactors34:20%40%70%33VCSdoesnotspecifyaquantitativerangefordetermining“higher”,“lower”or“similar”biomassratios,andhencea15%factorhasbeenselectedtorepresentareasonablerangeofbiomassratios.ThisfactorisconsistentwithotherapprovedVCSandACRIFMmethodologyapproaches.34Thesefactorsarefromthe2008VCSleakagecalculationmethod,andshouldberetainedforuseinthisleakagetoolOption3regardlessofnewVCSmarketleakagetoolcalculations.VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.461a.2aCalculatingWeightedAverageLeakageBiomassRatio:Thisisatypicalweightedaveragecalculation,withtheobjectiveofcreatinganaveragedifferenceinbiomassratiobetweentheprojectandthenationalleakageareas,weightedbytheproportionoftimbersupplycomingfromeachleakageforesttype:-Identifynationalforesttype(orecotype)datawheremerchantablelogvolumebiomassandtotalforestbiomassestimatesareavailable(i.e.frompublishednationalinventorydatasources,etc.)-Determinethebiomassratioineachnationalforesttype(ratioofmerchantablevolumeinbiomass(t/ha)tototalbiomass(t/ha);-Determinetheproportionofthedomesticnationalmarketthatissuppliedbyeachofthenationalforesttypes(%);-Determinethedifferencebetweentheforesttypecontainingtheprojectandeachleakageareabiomassratio(BiomassRatioDifference(%)=((ProjectBiomassRatio–LeakageAreaBiomassRatio)/ProjectBiomassRatio)100);-SelecttheVCSdefaultleakagefactorforeachnationalforesttype,basedonthedifferencebetweentheprojectbiomassratioandeachnationalforesttypebiomassratio(seebiomassratiocategoriesabove);-Multipletheproportion(%)ofmarketsuppliedbyeachleakageforesttypebytheVCSDefaultLeakageFactorfromeachforesttypetodeterminetheweightedaverageVCSLeakageFactorforbiomassratios.Example(simplified,using4nationalforesttypes):Projectislocatedinnationalforesttype1(biomassratio=0.65):ForestType1:BiomassRatio=0.65;25%ofnationaltimberinventoryForestType2:BiomassRatio=0.75;30%ofnationaltimberinventoryForestType3:BiomassRatio=0.55;25%ofnationaltimberinventoryForestType4:BiomassRatio=0.75;20%ofnationaltimberinventoryBiomassRatiodifferencebetweenleakageareaandprojectarea:ForestType1=(0.65–0.65)/0.65=0=40%VCSLeakageFactorForestType2=(0.65–0.75)/0.65=-15.4%=20%VCSLeakageFactorForestType3=(0.65–0.55)/0.65=15.4%=70%VCSLeakageFactorForestType4=(0.65–0.75)/0.65=-15.4%=20%VCSLeakageFactorWeightedAverage=(25%40%)+(30%20%)+(25%70%)+(20%20%)=37.4%ExampleWeightedBiomassDiscountFactor=37.4%VCSDefaultLeakageDiscountFactor,byforesttype(selectedby+-15%criteria)20%40%70%ProportionalofMarketSuppliedbyNationalForestTypeineachLeakageDiscountCategory(note:X+Y+Z=100%):=X=Y=ZProportionalBiomassLeakageDiscountFactor(LFBIOMASS):LFBIOMASS=(20%X)+(40%Y)+(70%Z)3.MARKETLEAKAGEFACTOR(MLFy):=(1-LFINTL)35LFBIOMASS35Theinverseoftheinternationalleakagefactoristheportionofthemarketleakagerelatedtonationalleakage.Internationalleakageisgivenaleakagefactordiscountof“0”inVCS.VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.47ForprojectproponentsutilizingLeakageOption3,projectmarketleakage(LEY;tCO2eyr-1)iscalculatedas:LEY=MLFy•ERy,GROSS(56d)Where,MLFy=themarketleakagefactorinyear,y(ascalculatepersection8.3.5)ERy,GROSS=thegrossdifferenceintheoverallcarbonbalancebetweenthebaselineandprojectscenariosinyear,y(tCO2eyr-1).Seeequation57foritscalculation.8.4SummaryofGHGEmissionReductionand/orRemovalsThenetGHGemissionsandremovalsarecalculatedforeachscenariofollowingthemethodsoutlinedinSection8.1and8.2.8.5SummaryGrossEmissionsReductionsand/orRemovalsEquationGrosscarbonemissionsreductions(ERy,gross;tCO2eyr-1)createdbythecarbonprojectarecalculatedannuallyasthedifferencebetweenthebaselineandprojectscenarionetemissionreductions/emissions:ERy,GROSS=(∆CBSL,t-∆CPRJ,t)●44/12(57)Where,∆CBSL,t=totalnetbaselinescenarioemissionscalculatedfromequation1(tCyr-1).∆CPRJ,t=totalnetprojectscenarioemissionscalculatedfromequation29(tCyr-1).44/12=factortoconvertCtoCO2e8.5.1SummaryNetEmissionsReductionsand/orRemovalsEquationTheannualnetcarbonemissionsreductionsistheactualnetGHGremovalsbysinksfromtheprojectscenariominusthenetGHGremovalsbysinksfromthebaselinescenario,werethencalculatedbyapplyingtheleakageanduncertaintydiscountfactors(butnottheVCSpermanencebuffer),onanannualizedbasis:ERy=ERy,GROSS-LEy(58)where:ERy=thenetGHGemissionsreductionsand/orremovalsinyeary(theoverallannualcarbonchangebetweenthebaselineandprojectscenarios,netalldiscountfactorsexceptthepermanencebuffer)(tCO2eyr-1).ERy,GROSS=thedifferenceintheoverallannualcarbonchangebetweenthebaselineandprojectscenarios(tCO2eyr-1).LEy=Leakageinyeary(tCO2eyr-1),ascalculatedinequation56b.8.5.2CalculatingVerifiedCarbonUnits(VCU’s)fortheProjectThenumberofVCU’stheprojectavailableforissuanceandsaleinyear,y(VCUy;tCO2eyr-1),iscalculatedas:VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.48VCUy=ERy•(1–ERy,ERR)–BRy(59)where:ERy=thenetGHGemissionsreductionsand/orremovalsinyear(tCO2eyr-1),ascalculatedinequation58.ERy,ERR=theuncertaintyfactorforyear,y,(calculatedinSection8.5.3),expressedasaproportion.BRy=estimatedVCU-equivalenttCO2eissuedtotheVCSBufferPoolinyear,y,calculatedusingthelatestversionoftheVCSAFOLUNon-PermanenceRiskTool.BRyiscalculatedbymultiplyingthemostcurrentverifiedpermanenceriskBufferWithholdingPercentagefortheprojectbythechangeincarbonstocks(differencebetweenbaselineandprojectscenario)fortheprojectareaasperthelatestapprovedVCSAFOLURequirements(VoluntaryCarbonStandard,2008a).8.5.3CalculationofanUncertaintyFactorEstimatedcarbonemissionsandremovalsarisingfromAFOLUactivitieshaveuncertaintiesassociatedwithforestinventory,carbonstocks,biomassgrowthrates,modelingerror,andtheirvariousexpansionfactors,equationsandcoefficients.Useofconservativeestimates,peer-reviewedscientificdataandanalysis,andhighqualityinventorysamplingprocedures,willmitigateuncertainty,andimproveaccuracyasnewandreliabledataareacquiredovertime.Tobeconservative,thismethodologyemploysanover-ridingprojectconfidencedeductionasaproxyforcollectiveprojectuncertaintybyassessingstatisticaluncertaintyintheforestcarboninventoryandassociatedmodeling.TheapproachisbasedpartlyonCAR’s“ConfidenceDeduction”module(ClimateActionReserve,2010).Projectproponentsarerequiredtoapplythisuncertaintyfactortothenetemissionreductionsclaimedbytheprojecteachyearbasedontheresultsofthelatestex-postinventoryfielddatacollectionandmodelingoutput.Notethatphysicalfieldplotmeasurementerroriscalculatedandcompareddirectlyagainstasetofminimumaccuracythresholdrequirements,asdescribedinSection9.RefertoSection8.1forguidanceontheprocessofstratificationandhowpolygonsandanalysisunitsaredefined.Themethodologymonitoringsectionspecifiesthatallanalysisunitsorpolygons36willhaverepresentationbyoneormorefieldplots.However,duetothedifficultyofdeterminingtheindependenceofplotdatawithinindividualhomogeneouspolygons(i.e.aspecificallysimilarforesttype,site,andage),itwillbenecessarytoonlycalculateasinglecarbondensityobservationforeachindividualpolygonsampled;eitherthroughtheuseofasingleplotwithinthatpolygon,orcalculationofthemeanofmultipleplotswithinthatpolygon.Throughoutthesecalculationsaplotobservation,subscripti,isdefinedtorepresentthemeanofallplotswithinagivenpolygon.Theproject-leveluncertaintyfactoriscalculatedasfollows:Step1–Calculatetheaveragepercentmodelerror(EM)fortheprojectbasedontheaveragearea-weighteddifferencebetweenmeasuredvaluesinmonitoredplotobservationsandmodel-predictedvaluesusingEquations60a,b.Inthecasewhereanalysisunitshavebeenusedforstratification,thedifferencebetweentheplotobservationandmodel-predictedvalue(bothexpressedonaperhectarebasis)foragivenanalysisunit(yd,h,i)isweightedbytheareaofitsassociatedanalysisunit(APRJ,h)(Eq.60a).Theuseofanarea-weightingfactorplacesmoreemphasisonanalysisunitsthatrepresentarelativelylargerproportionofthetotalprojectarea.Inthecase36Ifpolygonsaretheprimarystratificationunitbeingusedbytheproject,theneachpolygonshallhavefieldplotrepresentation.Ifpolygonsaregroupedintoanalysisunitsfortheproject,theneachanalysisunitshallhavefieldplotrepresentation(notingthatnotallpolygonswillhaveplotrepresentationwithinagivenanalysisunit).VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.49whereonlypolygonsareusedinthestratification,theareaweightingterm(seeequations60a-c)wouldchangetotheareaofthepolygon(APRJ,i),andthesubscript,h,isdroppedfromtheyd,h,iterminequations60a-e.EM=100•(∑yd,h,i/∑(APRJ,h•ym,h,i))(60a)where:Thesummationisacrossallplotobservations,i,andacrossallanalysisunits,h;yd,h,i=APRJ,h•(ym,h,i-yp,h,i)(60b)EM=Meanmodelerrorfortheproject(%)yd,h,i=thearea-weighteddifferencebetweenmeasuredandpredictedcarbonstorageinanalysisunit,h,plotobservation,i(tC)ym,h,i=carbonstoragemeasuredinanalysisunit,h,plotobservation,i(tCha-1)yp,h,i=carbonstoragepredictedbymodelforanalysisunit,h,plotobservation,i(tCha-1)APRJ,h=areaofprojectanalysisunit,h(ha)Step2–Calculatetheinventoryerror(EI)ata90%confidenceintervalexpressedasapercentageofthemeanarea-weightedinventoryestimatefromthemeasuredplots.Thismethodologywasdesignedtoaccommodatecomplexlandscapesconsistingofhundredstothousandsofpolygons,whichcanbefurthergroupedintoanalysisunits.Inventoryerrorisestimatedbaseduponthedifferencebetweenmodeledandmeasuredvaluesformonitoringplotsestablishedinpolygonsorinpolygonsgroupedwithinanalysisunits.Inventoryerror,EI,isestimatedbyfirstcalculatingthestandarderrorofthearea-weighteddifferencesbetweentheplotobservationmeasurementandtheassociatedmodel-predictedcarbonstorage(bothonaperhectarebasis)foranalysisunitsorpolygons.Thestandarderroristhenmultipliedbythet-valueforthe90%confidenceinterval.FinallyEIisexpressedinrelativeterms(inEquation60c)bydividingthe90%confidenceintervalofthearea-weighteddifferencesbetweenpredictedandmeasuredvaluesinallplotsbythearea-weightedaverageofthemeasuredvaluesinallmonitoringplots.EI=100•[SE1.654/((1/N)•∑(APRJ,h•ym,h,i))](60c)Where,EI=Inventoryerrorfortheproject(%)SE=theprojectlevelstandarderroroftheareaweighteddifferencesbetweenmeasuredplotobservationandpredictedvaluesofcarbonstorage.N=totalnumberofplotobservationsinallanalysisunitsorpolygons371.654=the90%confidenceintervalt-value37Forclarity,theplotobservationsamplesize(N)isequivalenttothenumberofpolygonssampled(forprojectsusingeitherapolygonoranalysisunitstratificationmethod).Asnoted,asingleplotobservationiscreatedforeachpolygonusingthemeanwhentherearemultipleplotswithinapolygon.Thus,insomesituationsthenumberofactualinstalledplotsmaybehigherthanthenumberofplotobservations(N).VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.50Allothertermsasdefinedinequation60a.SE=S/√N(60d)Where,N=totalnumberofplotobservationsinallanalysisunitsorpolygons(seeFootnote37)S=thestandarddeviationoftheareaweighteddifferencesbetweenmeasuredandpredictedvaluesofcarbonstorageacrossallanalysisunitorpolygons.S=√[(1/N–1)•∑(yd,h,i-ybard)2](60e)Where,ybard=theproject-levelmeanoftheareaweighteddifferencesbetweenmeasuredplotobservationandpredictedvaluesofcarbonstorage.Seeequation60bforthecalculationofyd,h,iAllothertermsasdefinedinequation60band60c.Step3-Thetotalerrorfortheproject(EP;%)iscalculatedbyaddingthemodelandinventoryerrorterms,ascalculatedinSteps1and2.EP=EM+EI(60f)Step4–ComparetheresultofStep3againstTable6todeterminetheuncertaintyfactor:Table6-UncertaintyFactorCalculationEstimatedProjectError,EP(%)UncertaintyFactor(=ERY,ERR)0–10%=1.5%38>10%=1.5%+EP–10%Theuncertaintyfactoriscalculatedateachverificationandappliedannuallyuntilthenextverification.9MONITORING9.1DataandParametersAvailableatValidationSelectionofparametervaluesandassumptionsrequiresabalancebetweenaccuracyandconservativeness.Accuracyshouldalwaysprevailexceptwhenalternativevaluesareofequivalentaccuracy,inwhichcasethemoreconservativevalueisused,themoreconservativebeingthevaluethatprovidestheleastover-estimationofnetanthropogenicGHGremovalsbysinks.38Tobeconservative,theminimumuncertaintyfactorissetto1.5%toaccountforpossibleuncertaintywithinotherunmeasuredassumptionsusedincalculationsandmodeling.VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.51Data/parameterABSL,iDataunitHaDescription:Areaofbaselinepolygon,iUsedinVariousequationsfromEquation#4-17.SourceofdataGPScoordinatesand/orremotesensingand/orinventoryrecordsMeasurementproceduresn/aComments:Data/parameter∆C,tDataunittCyr-1Description:Theannualcarbonbalanceinthebaselineorprojectscenarioforyear,tUsedinEquation57,labeledbybaseline(BSL)andproject(PRJ).SourceofdataCalculatedinequation1(Section8.1);equation29(Section8.2).LabeledwithsubscriptBSLandPRJ,respectively.Measurementproceduresn/aComments:Variableusedinbothbaseline(BSL)andproject(PRJ)scenario,valuesmaybedifferentData/parameter∆CP,tDataunittCyr-1Description:Theannualchangeincarbonstocksinallpoolsinthebaselineorprojectscenarioacrosstheprojectactivityareaforyear,tUsedinCalculationof∆C,tSourceofdataCalculatedinequation2(Section8.1);equation30(Section8.2)Measurementproceduresn/aComments:Variableusedinbothbaseline(BSL)andproject(PRJ)scenario,valuesmaybedifferentData/parameter∆CLB,tDataunittCyr-1Description:Theannualchangeincarbonstocksinlivingtreebiomass(above-andbelowground)foryear,tUsedinCalculationof∆CP,tSourceofdataCalculatedinequation3(Section8.1);equation31(Section8.2)Measurementproceduresn/aComments:Variableusedinbothbaseline(BSL)andproject(PRJ)scenario,valuesmaybedifferentVM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.52Data/parameter∆CDOM,tDataunittCyr-1Description:Theannualchangeincarbonstocksindeadorganicmatterforyear,tUsedinCalculationof∆CP,tSourceofdataCalculatedinequation10(Section8.1);equation38(Section8.2)Measurementproceduresn/aComments:Variableusedinbothbaseline(BSL)andproject(PRJ)scenario,valuesmaybedifferentData/parameter∆CHWP,tDataunittCyr-1Description:Theannualchangeincarbonstocksinharvestedwoodproductsforyear,tUsedinCalculationof∆CP,tSourceofdataCalculatedinequation18(Section8.1);equation46(Section8.2)Measurementproceduresn/aComments:Variableusedinbothbaseline(BSL)andproject(PRJ)scenario,valuesmaybedifferentData/parameter∆CG,tDataunittCyr-1Description:Theannualchangeincarbonstocksduetolivebiomassgainforyear,tUsedinCalculationof∆CLB,tSourceofdataCalculatedinequation4(Section8.1);equation32(Section8.2)Measurementproceduresn/aComments:Variableusedinbothbaseline(BSL)andproject(PRJ)scenario,valuesmaybedifferentData/parameter∆CL,tDataunittCyr-1Description:Theannualchangeincarbonstocksduetolivebiomasslossforyear,tUsedinCalculationof∆CLB,tSourceofdataCalculatedinequation6(Section8.1);equation34(Section8.2)Measurementproceduresn/aComments:Variableusedinbothbaseline(BSL)andproject(PRJ)scenario,valuesmaybedifferentVM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.53Data/parameter∆CLDW,tDataunittCyr-1Description:Theannualchangeinlyingdeadwoodcarbonstocksforyear,tUsedinCalculationof∆CDOM,tSourceofdataCalculatedinequations11a,12,13(Section8.1);equations39a,40,41(Section8.2)Measurementproceduresn/aComments:Variableusedinbothbaseline(BSL)andproject(PRJ)scenario,valuesmaybedifferentData/parameter∆CSNAG,tDataunittCyr-1Description:Theannualchangeinstandingdeadwoodcarbonstocksforyear,tUsedinCalculationof∆CDOM,tSourceofdataCalculatedinequations14a,15,16(Section8.1);equations42a,43,44(Section8.2)Measurementproceduresn/aComments:Variableusedinbothbaseline(BSL)andproject(PRJ)scenario,valuesmaybedifferentData/parameter∆CDBG,tDataunittCyr-1Description:Theannualchangeindeadbelowgroundcarbonstocksforyear,tUsedinCalculationof∆CDOM,tSourceofdataCalculatedinequations17a,17c,17d(Section8.1);equations45a,45c,45d(Section8.2)Measurementproceduresn/aComments:Variableusedinbothbaseline(BSL)andproject(PRJ)scenario,valuesmaybedifferentData/parameterCFDataunittCt-1d.m.Description:CarbonfractionofdrymatterSourceofdataIPCCdefaultvalue=0.5,ifmorerelevantvaluesarenotavailableMeasurementproceduresn/aComments:VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.54Data/parameterRiDataunitunitlessDescription:Root:shootratioinpolygon,iSourceofdataIfproject-specificvalueshavenotbeenmeasured,useCairns1997).Measurementproceduresn/aComments:Rootallocationcanbevarybysiteproductivity;relativelymorebiomassmaybeallocatedtorootsinpoorthanrichersoilsData/parameterBEFDataunitunitlessDescription:BiomassexpansionfactorsforconversionofproductivitymetricstobiomassSourceofdataThesourceofdatamustbechosenwithpriorityfromhighertolowerpreferenceasfollows:(a)Existinglocalandforesttype-specific;(b)Nationalandforesttype-specificoreco-region-specific(e.g.fromnationalGHGinventory);(c)Foresttype-specificoreco-region-specificfromneighboringcountrieswithsimilarconditions.Sometimes(c)mightbepreferableto(b);(d)Globallyforesttypeoreco-region-specific(e.g.IPCCliterature:Table3A.1.10ofGPG-LULUCF)Measurementproceduresn/aComments:BEFsareagedependent,anduseofaveragedatamayresultinsignificanterrorsforbothyoungandoldstands–asBEFsareusuallylargeforyoungstandsandquitesmallforoldstands.Data/parameterfBRANCH,i,tDataunitunitlessDescription:Theannualproportionofabovegroundtreebiomasscomprisedofbranches>5cmdiameterinpolygon,iSourceofdataThesourceofdatamustbechosenwithpriorityfromhighertolowerpreferenceasfollows:(a)Researchpublicationsrelevanttotheprojectarea;(b)Nationalandspecies-specificorgroupofspecies-specific(e.g.fromNationalGHGinventory);(c)Species-specificorgroupofspecies-specificfromneighboringcountrieswithsimilarconditions.Sometimes(b)maybepreferableto(a);(d)Globallyspecies-specificorgroupofspecies-specific(e.g.IPCCGPG-LULUCF).Measurementproceduresn/aVM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.55Comments:Variableusedinbothbaseline(BSL)andproject(PRJ)scenario,samevalueData/parameterfBUCKINGLOSS,i,tDataunitunitlessDescription:Annualproportionofthelogbolebiomassleftonsiteafterassessingand/ormerchandizingthelogboleforquality,inpolygon,iSourceofdataPreferably,dataforthisvariablemustbebasedonregionalandlocalcomparativestudiesandexperientialinformationderivedfromthelocalforestindustry.Otherwise,anaveragedefaultvalueof21%canbeused,basedonUSnationalsummarystatistics(Smith,Miles,Vissage,&Pugh,2004).Measurementproceduresn/aComments:Variableusedinbothbaseline(BSL)andproject(PRJ)scenario,valuesmaybedifferentData/parameterP3-yearandP100-yearDataunitunitlessDescription:Theproportionoftotalcarbonstoredinwoodproductsafter3years(P3-year);andtheproportionofharvestedwoodstoredfor100years(P100-year),forproducttype,k.SourceofdataCalculatedforthebaselineandprojectcaseMeasurementproceduresn/aComments:Data/parameterPBSL,SLF,PBSL,MLF,PBSL,LLFDataunitunitlessDescription:Theshort-livedfraction(PSLF),medium-livedfraction(PMLF),andlong-livedfraction(PLLF),respectively,forproducttype,kSourceofdataCalculatedasperequations22a-c(baseline)andequations50ac(project)Measurementproceduresn/aComments:Data/parameterfTRANSPORTkDataunit(unitless;0<fBSL,TRANSPORTk<1).Description:Thefractionofrawmaterialtransportedbytransportationtype,k.VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.56SourceofdataEstimatedbasedonHeathetal.2006SupplementaryMeasurementproceduresn/aComments:Variablesusedinbothbaseline(BSL)andproject(PRJ)scenario,valuesmaybedifferentData/parametercHARVESTDataunittCemitted/tCrawmaterialDescription:ThecarbonemissionintensityfactorassociatedwithharvestingSourceofdataSeeTable4Measurementproceduresn/aComments:Data/parametercMANUFACTUREkDataunittCemitted/tCrawmaterialDescription:Thecarbonemissionintensityfactorassociatedwithmanufactureofproduct,kSourceofdataSeeTable4Measurementproceduresn/aComments:Data/parametercTRANSPORTkDataunittCemitted/tCrawmaterial●kmDescription:Thecarbonemissionintensityfactorassociatedwiththetransportofrawmaterialbytransportationtypeofproduct,kSourceofdataSeeTable4Measurementproceduresn/aComments:Data/parameterdTRANSPORTkDataunitkmDescription:Thedistancetransportedbytransportationtype,k.SourceofdataEstimatedbasedonHeathetal.2006SupplementaryMeasurementproceduresn/aComments:VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.57Data/parameterCEMITTRANSPORT,tDataunittCyr-1Description:TheannualfossilfuelemissionsassociatedwiththetransportofrawmaterialSourceofdataHeathetal.2006SupplementaryMeasurementproceduresn/aComments:Variablesusedinbothbaseline(BSL)andproject(PRJ)scenario,valuesmaybedifferentData/parameterGAG,i,tDataunittd.m.ha-1yr-1Description:Annualincrementrateinabovegroundbiomass(td.m.ha-1yr-1),inpolygon,i,SourceofdataModeled(SeeSection8.1&Section8.2)Measurementproceduresn/aComments:Variableusedinbothbaseline(BSL)andproject(PRJ)scenario,valuesmaybedifferentData/parameterGBG,i,tDataunittd.m.ha-1yr-1Description:Annualincrementrateinbelowgroundbiomass(td.m.ha-1yr-1),inpolygon,i,SourceofdataCalculatedfromGAGandRiMeasurementproceduresn/aComments:Variableusedinbothbaseline(BSL)andproject(PRJ)scenario,valuesmaybedifferentData/parameterLBLNATURALi,tDataunittd.m.yr-1Description:Annuallossoflivetreebiomassduetonaturalmortalityinpolygon,i;td.m.yr-1SourceofdataModeled(SeeSection8.1&Section8.2)Measurementproceduresn/aComments:Variableusedinbothbaseline(BSL)andproject(PRJ)scenario,valuesmaybedifferentData/parameterLBLFELLINGSi,tDataunittd.m.yr-1Description:Annuallossoflivetreebiomassduetocommercialfellinginpolygon,i;td.m.yr-1VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.58SourceofdataModeled(SeeSection8.1&Section8.2)Measurementproceduresn/aComments:Variableusedinbothbaseline(BSL)andproject(PRJ)scenario,valuesmaybedifferentData/parameterLBLOTHERi,tDataunittd.m.yr-1Description:Annuallossoflivetreebiomassfromincidentalsourcesinpolygon,i;td.m.yr-1SourceofdataModeled(SeeSection8.1&Section8.2)Measurementproceduresn/aComments:Variableusedinbothbaseline(BSL)andproject(PRJ)scenario,valuesmaybedifferentData/parameterLBi,tDataunittd.m.yr-1Description:Averagelivetreebiomassinpolygon,i,foryear,tSourceofdataCalculatedfromGi,tMeasurementproceduresn/aComments:Variableusedinbothbaseline(BSL)andproject(PRJ)scenario,valuesmaybedifferentData/parameterfBSL,NATURAL,i,tDataunitunitless;0<fNATURAL,i,t<1Usedin:Equation7,Section8Description:Theannualproportionofbiomassthatdiesfromnaturalmortalityinforesttypeanalysisunitorpolygon,i,year,t.SourceofdataLiteraturereports,and/orinventorydata.MeasurementproceduresComments:Data/parameterfBSL,HARVEST,i,tDataunitunitless;0<fBSL,HARVESTIi<1Usedin:Equation8,Section8.1Description:Theproportionofbiomassremovedbyharvestingfrompolygon,i,inyear,t.SourceofdataLiteraturereports,and/orinventorydata.MeasurementproceduresVM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.59Comments:Data/parameterfBSL,DAMAGE,i,tDataunitunitless;0<fBSL,DAMAGE,i,t<1Usedin:Equation9,Section8Description:Theproportionofadditionalbiomassremovedforroadandlandingconstructioninpolygon,i,year,tSourceofdataLiteraturereports,and/orinventorydata.MeasurementproceduresComments:Data/parameterfBSL,BLOWDOWN,i,tDataunitunitless;0<fBSL,BLOWDOWN,i,t<1Usedin:Equation12,Section8.1Description:Theannualproportionofliveabovegroundtreebiomasssubjecttoblowdowninpolygon,i,year,t.SourceofdataLiteraturereports,and/orinventorydata.MeasurementproceduresComments:Data/parameterfBSL,SNAGFALLDOWN,i,tDataunitunitless;0<fBSL,SNAGFALLDOWN,i,t<1Usedin:Equations12&16,Section8.1Description:Theannualproportionofsnagbiomassinpolygon,i,year,t,thatfallsoverandthusistransferredtotheLDWpool.SourceofdataLiteraturereports,and/orinventorydata.MeasurementproceduresComments:Data/parameterfBSL,lwDECAY,i,tDataunitunitless;;0<fBSL,lwDECAY,i,t<1Usedin:Equation13,Section8.1Description:Theannualproportionallossoflyingdeadbiomassduetodecay,inpolygoni,year,t,SourceofdataLiteraturereports,and/orinventorydata.MeasurementproceduresVM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.60Comments:Data/parameterfBSL,SWDECAY,i,tDataunitunitless;0<fBSL,SWDECAY,i,t<1Usedin:Equation16,Section8.1Description:Theannualproportionallossofsnagbiomassduetodecay,inpolygon,i,year,t.SourceofdataLiteraturereports,and/orinventorydata.MeasurementproceduresComments:Data/parameterSNAGBSL,i,tDataunittd.m.yr-1Description:Thetotalamountofsnagmassinpolygoni,year,tSourceofdataCalculatedinequations14b,15,16MeasurementproceduresComments:Data/parameterDBG,i,tDataunittd.m.yr-1Description:Thetotalquantityofdeadbelowgroundbiomassaccumulatedinpolygonisincetheprojectstart;tbiomass.SourceofdataCalculatedinequations17b,17c,17d(Section8.1);Calculatedinequations45b,45c,45d(Section8.2)MeasurementproceduresModeled.Comments:Variableusedinbothbaseline(BSL)andproject(PRJ)scenario,valuesmaybedifferentData/parameter∆CSTORHWP1,tDataunittCyr-1Usedin:Thecalculationoftheannualchangeinemissionsassociatedwiththeproductionofharvestedwoodproducts(HWP),∆CBSl,HWP,t,Description:AnnualharvestedcarbonthatremainsinpermanentstorageafterconversiontowoodproductsduringprimaryprocessingSourceofdataCalculatedinequation19(Section8.1)andequation47(Section8.2)MeasurementproceduresComments:Variableusedinbothbaseline(BSL)andproject(PRJ)scenario,valuesmayVM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.61bedifferentData/parameterCMILL,h,kDataunittCUsedin:Thecalculationoftheannualchangeinthecarbonstoredinharvestedwoodproducts(HWP),∆CBSL,HWP,t,Description:Thecarboncontainedinharvestedtimberaftermillinginperiodh,forproducttypekSourceofdataCalculatedinequation21(Section8.1)andequation49(Section8.2)MeasurementproceduresComments:Variableusedinbothbaseline(BSL)andproject(PRJ)scenario,valuesmaybedifferentData/parameterCTIMBER,hDataunittCUsedin:Thecalculationoftheannualchangeinthecarbonstoredinharvestedwoodproducts(HWP),∆CBSL,HWP,t,Description:ThecarboncontainedintimberharvestedinperiodhSourceofdataCalculatedinequation20(Section8.1)andequation48(Section8.2)MeasurementproceduresComments:Variableusedinbothbaseline(BSL)andproject(PRJ)scenario,valuesmaybedifferentData/parameterCSTORHWP,h,tDataunittCUsedin:Thecalculationoftheannualchangeinthecarbonstoredinharvestedwoodproducts(HWP),∆CBSL,HWP,t,Description:Thecarbonstoredinharvestedwoodproductsinyeartsummedforallproducttypeskandthenoverallharvestperiodsh;tCSourceofdataCalculatedinequation23(Section8.1)andequation51(Section8.2)MeasurementproceduresComments:Variableusedinbothbaseline(BSL)andproject(PRJ)scenario,valuesmaybedifferentData/parameterfRND,kDataunitdimensionlessVM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.62Usedin:Thecalculationofcarboncontainedinharvestedtimberaftermillinginperiodh,forproducttypek(CMILL,h,k).Description:ThefractionofgrowingstockvolumeremovedasroundwoodforproducttypekSourceofdata(defaultvaluesbyregioninTable1.5ofthe1605(b)document)MeasurementproceduresComments:Variableusedinbothbaseline(BSL)andproject(PRJ)scenarioData/parameterrRND,kDataunitdimensionlessUsedin:Thecalculationofcarboncontainedinharvestedtimberaftermillinginperiodh,forproducttypek(CMILL,h,k).Description:Theratioofindustrialroundwoodtogrowingstockvolumeremovedasroundwoodforproducttypek.Sourceofdata(defaultvaluesbyregioninTable1.5ofthe1605(b)document)MeasurementproceduresComments:Variableusedinbothbaseline(BSL)andproject(PRJ)scenarioData/parameter∆CEMITFOSSIL,tDataunittCyr-1Usedin:Thecalculationoftheannualchangeinthecarbonstoredinharvestedwoodproducts(HWP),∆CHWP,t,Description:Fossilfuelemissionsfromharvesting(loggingandlogtransport)andprocessingofthevariouswoodproducts.SourceofdataCalculatedinequation24(Section8.1)andequation52(Section8.2)MeasurementproceduresComments:Variableusedinbothbaseline(BSL)andproject(PRJ)scenario,valuesmaybedifferentData/parameterCEMITHARVEST,tDataunittCyr-1Usedin:Thecalculationof∆CEMITFOSSIL,tDescription:Annualfossilfuelemissionsassociatedwithharvestingofrawmaterial.SourceofdataCalculatedinequation25(Section8.1)andequation53(Section8.2)VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.63MeasurementproceduresComments:Variableusedinbothbaseline(BSL)andproject(PRJ)scenario,valuesmaybedifferentData/parameterCEMITMANUFACTURE,tDataunittCyr-1Usedin:Thecalculationof∆CEMITFOSSIL,tDescription:Annualfossilfuelemissionsassociatedwiththemanufacturingofrawmaterial.SourceofdataCalculatedinequation27(Section8.1)andequation55(Section8.2)MeasurementproceduresComments:Variableusedinbothbaseline(BSL)andproject(PRJ)scenario,valuesmaybedifferentData/parameterCEMITTRANSPORT,tDataunittCyr-1Usedin:Thecalculationof∆CEMITFOSSIL,tDescription:Annualfossilfuelemissionsassociatedwiththetransportofrawmaterial.SourceofdataMustbecalculatedafterconsiderationofthetransportdistancefromharvesttoprocessingfacility,andthemeansoftransportation(afterHeathetal.2006Supplementary).AnexampleofcalculationstepsisprovidedinSection8.1.MeasurementproceduresComments:Variableusedinbothbaseline(BSL)andproject(PRJ)scenario,valuesmaybedifferentData/parameterLEyDataunittCO2eyr-1Usedin:ThecalculationofMarketLeakage(Option1)Description:theprojectmarketleakageinyear,ySourceofdataCalculatedinSection8.3.2,Option1MeasurementproceduresComments:Data/parameterSEyDataunittCO2eyr-1Usedin:ThecalculationofMarketLeakage(Option2)Description:Theprojectmarketleakageinyear,yVM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.64SourceofdataCalculatedinSection8.3.2,Option2MeasurementproceduresComments:Data/parameterMLFyDataunitUnitlessUsedin:CalculationofLEyinyear,yDescription:TheprojectmarketleakageSourceofdataCalculatedinSection8.3.2MeasurementproceduresComments:Data/parameterBChv,nDataunittCO2eyr-1Usedin:CalculationofSEyDescription:Theestimatedaveragebaselineamountofonsitecarbonharvestedinreportingperiod,n(priortodeliverytoamill).SourceofdataCalculatedinSection8.3.2MeasurementproceduresComments:Data/parameterAChv,nDataunittCO2eyr-1Usedin:CalculationofSEyDescription:Theactualonsitecarbonharvestedinreportingperiod,n(priortodeliverytoamill).SourceofdataCalculatedinSection8.3.2MeasurementproceduresComments:Data/parameterERy,GROSSDataunittCO2eyr-1Usedin:CalculationofLEyDescription:Thegrossdifferenceintheoverallannualcarbonchangebetweenthebaselineandprojectscenariosinyear,ySourceofdataCalculatedinequation57VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.65MeasurementproceduresComments:Data/parameterERy,DataunittCO2eyr-1Usedin:CalculationofVCUyDescription:ThenetGHGemissionsreductionsand/orremovalsinyeary(theoverallannualcarbonchangebetweenthebaselineandprojectscenarios,netalldiscountfactorsexceptthepermanencebuffer)SourceofdataCalculatedinequation58MeasurementproceduresComments:Data/parameterVCUy,DataunittCO2eyr-1Description:AmountofVerifiedCarbonUnitstheprojectestimatesareavailableforissuanceandsaleinyear‘y’SourceofdataCalculatedinequation59MeasurementproceduresComments:Data/parameterEMDataunit%Usedin:Thecalculationofuncertaintyfactor(Section8.5.3)Description:Anestimateofmodelerrorbasedontherelativearea-weighteddifferencebetweenofmodel-predictedvaluesofcarbonstorageandthosevaluesmeasuredinfieldplotsSourceofdataModeloutputandfielddataMeasurementproceduresComments:Data/parameterEIDataunit%Usedin:Thecalculationofuncertaintyfactor(Section8.5.3)Description:AnestimateofInventorysamplingerrorcalculatedasthe90%confidencelimitofthearea-weighteddifferencesbetweenthemodel-predictedvaluesofcarbonstorageandthosevaluesmeasuredinfieldplotsVM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.66SourceofdataModeloutputandfielddataMeasurementproceduresComments:Data/parameterEPDataunit%Usedin:Thecalculationofuncertaintyfactor(Section8.5.3)Description:AnestimateoftotalprojecterrorbasedsumofthemodelandinventoryerrortermsSourceofdataModeloutputandfielddataMeasurementproceduresComments:Data/parameterERy,ERR,DataunitUnitlessUsedin:CalculationofVCUyDescription:Theuncertaintyfactorcalculatedforyear‘y’inSection8.5.3SourceofdataCalculatedinSection8.5.3MeasurementproceduresComments:Data/parameterBRy,DataunittCO2eyr-1Usedin:CalculationofVCUyDescription:EstimatedVCU-equivalenttCO2eissuedtotheVCSBufferPoolinyear,y.SourceofdataCalculatedusingthelatestversionoftheVCSAFOLUNon-PermanenceRiskToolMeasurementproceduresComments:9.2DataandParametersMonitoredThefollowingparametersmustbemonitoredduringtheprojectactivity.Whenapplyingallrelevantequationsprovidedinthismethodologyfortheex-antecalculationofnetanthropogenicGHGremovalsbysinks,projectproponentsmustprovidetransparentestimatesfortheparametersthataremonitoredduringthecreditingperiod.Theseestimatesmustbebasedonmeasuredorexistingpublisheddatawherepossibleandprojectproponentsmustretainaconservativeapproach:ifdifferentvaluesforaparameterareequallyplausible,avaluethatprovidestheleastover-estimationofnetanthropogenicGHGremovalsbysinksmustbeselected.VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.67Data/parameterAPRJ,i,DataunitHaUsedinVariousequationsinequation#32-60Description:Areaofforestlandinpolygon,iSourceofdataMonitoringofpolygonsandstandboundariesmustbedonepreferablyusingaGeographicInformationSystem(GIS),whichallowsforintegratingdatafromdifferentsources(includingGPScoordinatesandRemoteSensingdata).MeasurementproceduresComments:Data/parameterAp,i,tDataunitm2Usedin:CalculationofmeanabovegroundbiomassBAGandDOMSNAGinSection9.3.2and8.2.3.Description:Areaofsampleplotinpolygon,i,attime,tSourceofdataRecordingandarchivingofsizeofsampleplotsMeasurementproceduresComments:Data/parameterDBH,tDataunitcmUsedin:CalculationofmeanabovegroundbiomassBAGinSection9.3.2and8.2.3.Description:Diameteratbreastheightmeasuredforeachtreeinthesampleplotsattime,tSourceofdataFieldmeasurementsinsampleplotsMeasurementproceduresTypicallymeasuredat1.3mheightaboveground.MeasurealltreesaboveminimumDBH(5cm)inthesampleplotsthatresultfromtheIFMprojectactivity.Comments:Data/parameterHeight,tDataunitmUsedin:CalculationofmeanabovegroundbiomassBAGinSection9.3.2and8.2.3.Description:Treeheightmeasuredforeachtreeinthesampleplotsattime,tSourceofdataFieldmeasurementsinsampleplotsVM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.68Comments:Data/parameterL,tDataunitmUsedin:CalculationofmeanmassofDOMLDWinSection9.3.2and8.2.3.Description:Lengthofthetransectstouseddeterminevolumeoflyingdeadwoodinthesampleplotsattime,t(default100m)SourceofdataFieldmeasurementsMeasurementproceduresComments:Data/parameterdn,tDataunitcmUsedin:CalculationofmeanmassofDOMLDWinSection9.3.2and8.2.3.Description:Diameterofeachpiecenofdeadwoodalongthetransectsinthesampleplotsattime,tSourceofdataFieldmeasurementsMeasurementproceduresMeasuredusingtheline-intersectmethod(Section9).Comments:Data/parameterDLDW,c,i,tDataunit(td.m.m-3)Usedin:CalculationofmeanmassofDOMLDWinSection9.3.2and8.2.3.Description:Densityofdeadwoodindensityclass,calongthetransectinpolygon,i,attime,tSourceofdataFieldmeasurementsMeasurementproceduresMeasuredusingthelineintersectmethod(Section9).Comments:Data/parameterN,tDataunitunitlessUsedin:CalculationofmeanmassofDOMLDWinSection9.3.2and8.2.3.Description:Totalnumberofwoodpiecesintersectingtransectsinthesampleplotsattime,tSourceofdataFieldmeasurementsMeasurementproceduresMeasuredusingtheline-intersectmethod(Section9).VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.69Comments:Data/parameterBAGi,tDataunittd.m.ha-1(d.m.=drymatter)Usedin:Calculationofcarbonstocksinabove-andbelowgroundlivingtreebiomassinequations28b&28c,Section8.2.3.Description:Averagetotalabovegroundbiomassinpolygon,i,foryear,tSourceofdataCalculatedfromHeighti,t,DBHi,t,andAp,i,tMeasurementproceduresComments:CalculatedData/parameterBBGi,tDataunittd.m.ha-1(d.m.=drymatter)Usedin:Calculationofcarbonstocksinabove-andbelowgroundlivingtreebiomassinequations28b&28c,Section8.2.3.Description:Averagetotalbelowgroundbiomassinpolygon,i,foryear,tSourceofdataEstimatedfromBAGi,tMeasurementproceduresComments:EstimatedData/parameterBTOTAL,i,tDataunittd.m.ha-1(d.m.=drymatter)Usedin:Calculationofcarbonstocksinabove-andbelowgroundlivingtreebiomassinequation28c,Section8.2.3.Description:Averagetotallivebiomassinpolygon,i,foryear,tSourceofdataCalculatedfromBAGi,tandBBGi,tMeasurementproceduresComments:CalculatedData/parameterDOMLDW,i,tDataunittd.m.ha-1(d.m.=drymatter)Usedin:Calculationofcarbonstocksindeadorganicmatter(equation28e,Section8.2.3)Description:Averagemassofdeadorganicmattercontainedinlyingdeadwoodinpolygon,i,year,tSourceofdataCalculatedfromL,i,t,dn,i,t,DLDW,c,i,t,andNi,tMeasurementproceduresVM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.70Comments:CalculatedData/parameterDOMSNAG,i,tDataunittd.m.ha-1(d.m.=drymatter)Usedin:Calculationofcarbonstocksindeadorganicmatter(equation28e,Section8.2.3)Description:Averagemassofdeadorganicmattercontainedinstandingdeadwoodinpolygon,i,year,tSourceofdataCalculatedfromHeighti,t,DBHi,t,andAp,i,tofdeadtreesmeasuredinsampleplotsdescribedinSection9MeasurementproceduresComments:CalculatedData/parameterfPRJ,NATURAL,i,tDataunitunitless;0<fNATURAL,i,t<1Usedin:Equation35,Section8.2Description:Theannualproportionofbiomassthatdiesfromnaturalmortalityinpolygon,i,year,t.SourceofdataPermanentsampleplotsinsimilarstandtypes,literaturereports,andinventorydataMeasurementproceduresComments:Data/parameterfPRJ,HARVEST,i,tDataunitunitless;0<fPRJ,HARVESTIi<1Usedin:Equation36,Section8.2Description:Theproportionofbiomassremovedbyharvestingfrompolygon,i,inyear,t.SourceofdataPermanentsampleplotsinsimilarstandtypes,literaturereports,andinventorydataMeasurementproceduresComments:Data/parameterfPRJ,DAMAGE,i,tDataunitunitless;0<fPRJ,DAMAGE,i,t<1Usedin:Equation37,Section8.2Description:Theproportionofadditionalbiomassremovedforroadandlandingconstructioninpolygon,i,year,tVM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.71SourceofdataPermanentsampleplotsinsimilarstandtypes,literaturereports,andinventorydataMeasurementproceduresComments:Data/parameterfPRJ,BLOWDOWN,i,tDataunitunitless;0<fPRJ,BLOWDOWN,i,t<1Usedin:Equation40,Section8.2Description:Theannualproportionofliveabovegroundtreebiomasssubjecttoblowdowninpolygon,i,year,t.SourceofdataPermanentsampleplotsinsimilarstandtypes,literaturereports,andinventorydataMeasurementproceduresComments:Data/parameterfPRJ,SNAGFALLDOWN,i,tDataunitunitless;0<fPRJ,SNAGFALLDOWN,i,t<1Usedin:Equation40&44,Section8.2Description:Theannualproportionofsnagbiomassinpolygon,i,year,t,thatfallsoverandthusistransferredtotheLDWpool.SourceofdataPermanentsampleplotsinsimilarstandtypes,literaturereports,andinventorydataMeasurementproceduresComments:Data/parameterfPRJ,lwDECAY,i,tDataunitunitless;;0<fPRJ,lwDECAY,i,t<1Usedin:Equation41,Section8.2Description:Theannualproportionallossoflyingdeadbiomassduetodecay,inpolygoni,year,t,SourceofdataPermanentsampleplotsinsimilarstandtypes,literaturereports,and/orinventorydataMeasurementproceduresComments:Data/parameterfPRJ,SWDECAY,i,tVM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.72Dataunitunitless;0<fPRJ,SWDECAY,i,t<1Usedin:Equation44,Section8.2Description:Theannualproportionallossofsnagbiomassduetodecay,inpolygon,i,year,t.SourceofdataPermanentsampleplotsinsimilarstandtypes,literaturereports,and/orinventorydataMeasurementproceduresComments:9.3DescriptionoftheMonitoringPlanTheobjectiveoftheprojectmonitoringprogramistoreliablymonitorchangesincarbonstocksrelatedtothecalculationofVCU’spriortoeachverification.Inparticular,theprogramwillmonitoringchangesinspatialforestinventoryconditionsandcollectfielddataoncarbonstockstocompareagainstmodeledcarbonstocksandtocalculateanuncertaintyfactor.9.3.1ProjectMonitoringRequirementsTheprojectmustdevelopandmaintainanuptodatemonitoringplanwhichincludes:1.Spatialinventorychangemonitoringprocedures2.Carbonstockfieldplotsamplingmonitoringprocedures3.StandardOperatingProcedures(SOPs)formonitoringactivities4.QualityControl/QualityAssuranceandDataArchivingproceduresTheseelementsmustmeettherequirementsdescribedinthesectionsbelow.Theresultsofimplementingthemonitoringplanmustbeproducedinaprojectmonitoringreportforeachmonitoringperiod;priortoeachverification.9.3.2MonitoringAnnualSpatialInventoryChangesProjectproponentswillundertakeanddocumentannualmonitoringtoidentifyandupdatespatialchangesintheforestinventorydata(i.e.changesinforestpolygonsduetoplannedorunplannedprojectactivitiesandnaturaldisturbanceswhichchangetheclassificationofspatialareaswithintheprojectboundary).Projectswillundertakeremoteandground-basedmonitoring(forexample:satelliteandaerialphotography,aerialobservation,groundobservation,aerialandground-basedGPSmapping,etc.)toidentifyandupdateinventorydatafor:a.Naturaldisturbanceevents>4ha(i.e.fires,pest&diseaseoutbreaks,slidesandotherdisturbances;b.Plannedprojectactivities(i.e.harvests,roadconstruction,reforestation,etc.);andc.Unplannedman-madedisturbances(forexample,non-deminimisillegalorunplannedharvests).Annualspatialmonitoringactivitieswillbedocumentedanddated,andinventorydataupdatesidentifiedbydateorothernotations.VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.739.3.3CarbonStockMonitoringFieldPlotSamplingDesignandStratification9.3.4StratificationforFieldPlotSampling:Whenanareaisnothomogeneous,stratificationgenerallyreducesmonitoringcostsbygroupingareaswithlowvariationincarbonstocks(Pearsonetal.2007).Stratificationformonitoringsampledesignshouldbeconsistentwiththatemployedforthecalculationofcarbonstocksinthebaseline(Section8.1)andproject(Section8.2)scenarios.Theprojectproponenthastheoptiontofurtherstratifymodeledpolygonsoranalysisunitstofacilitateefficientfieldcarbonstockmonitoring.Inparticular,projectsmayneedtofurtherstratifymodeledpolygonsoranalysisunitstogainsamplingrepresentationwithinanalysisunitageclasses.Forexample,ananalysisunitmightincludesimilarforesttypepolygonsthatrangefrom40-200years.Formonitoringplotsampling,theanalysisunitwouldlikelyneedtobestratifiedintoageclasseswithsimilarstandcarboncontent.Anystratificationundertakenformonitoringpurposesmustbedocumentedandjustified,includingdocumentinganyvariationfromstratificationmadeformodelinginSection8.1and8.2.Monitoringstratificationmaybeupdatedbasedonmonitoringresults(seeSection9.3.10).9.3.5FieldPlotSamplingFrameworkTheobjectiveofthefieldplotnetworkistodeterminethestatisticalaccuracyofthemodeledcarbonstocksbypolygonoranalysisunit.Thefield-measuredvaluesofthetreebiomassanddeadorganicmatterpoolsdescribedbelowwillbecomparedagainsttheassociatedmodeledvaluesdescribedinSection8.2todetermineerrorinthemodeledvalueforaparticularpolygonoranalysisunit(seeSection8.2.2).Somedeviationofthefield-measuredvaluesfromthemodeledvaluescanbeexpected,whichisthenaccountedforintheuncertaintyfactorcalculation(Section8.5.3).The“SourcebookforLandUse,Land-UseChangeandForestryProjects”(Pearson,Walker,&Brown,2005)providesmethodsandprocedurestogenerateaccurateandpreciseestimatesofchangesincarbonstocks.(Pearson,Brown,&Birdsey,2007).Projectproponentscansubstituteothercomparablepublishedandpeer-reviewedforestcarbonsamplingandmeasurementmanualsandtechniquesiftheyaredemonstratedtobeapplicableandconsistentwiththedatacollectionrequirementsofthismethodology.TypeandNumberofSamplingPlotsPlotTypeForforestryactivities,bothpermanentandtemporarysamplingplotshavebeenusedtoestimatechangesincarbonpools(Pearson,Brown,&Birdsey,2007).Permanentsampleplotsareregardedasstatisticallymoreefficientforestimatingchangesinforest-carbonstocksovertimethantemporaryplotsbecausethereishighcovariancebetweenobservationsinsuccessivesamplingevents(Pearson,Brown,&Birdsey,2007).Moreover,theuseofpermanentplotsallowforefficientverification.Hence,themajorityofplotsusedinthemonitoringprogramshouldbegeo-referenced,permanentlyre-measurableplotswithalltreesmarked.Geo-referencedtemporaryplotsmayalsobeusedforefficientsupplementaldatacollection.NumberofPlots,Precision,andSampleSizeTheproponentwilldevelopaplotnetworkwithrepresentationineverypolygonoranalysisunit39(basedontheprimarystratificationmethodidentifiedinSection8.1andusedthroughouttheprojectcalculations)andadesign39SeeSection8.5.3foradditionalclarificationonplotrequirements.Ifusingapolygonstratification,representationofeachpolygonisrequired;ifusingananalysisunitstratification,representationofeachanalysisunitisrequired(andnoteachpolygonwithintheanalysisunit).VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.74targetofestablishingenoughplotssuchthattheestimateofcarbonstocksacrossallpolygonoranalysisunitswillliewithin10percentofthetruevalueofthemeanatthe90-percentconfidencelevel40.Projectproponentsmaydevelopinitialestimatesofthenumberofplotsneededformonitoringusingvarianceestimatesfromexistingorcomparableforestinventorydataandfollowingproceduresoutlinedin(Pearsonetal.2007),orotherpeerreviewedpublishedmethods.Forpracticalpurposesitisrecognizedthatonlargeorcomplexprojectareastheplotnetworkmayneedtobedevelopedacrossseveralyears(nolongerthan5years)toapproachthetargetlevelofprecision.Samplessizesshouldbeevaluatedforsuitabilityfollowingtheinitialmonitoringperiodandthenadjustedasappropriatetoachievethedesiredlevelofprecision.PlotSamplingDesignPlotLayoutPermanentsampleplotscanbelocatedatrandomorsystematicallyusingaplotgrid.Thelatterapproachresultsingreaterprecisionifsomeareaswithinpolygonshavehighercarboncontentthanothers(Pearson,Brown,&Birdsey,2007).SizeandShapeofSamplePlotsPlotshapeandsizecanbedeterminedbytheprojectproponentbasedonlocalcommonpracticeandthemostsuitablemethodsfortheprojectconditions,solongastheproceduresarefullydocumentedinprojectSOP’sandtheresultsprovideverifiablestatisticalsamplingasrequiredbythismethodology.Projectsmayconsiderconsistentfixedareasquareorcircularplots,orconsideravariablenestedplotareadesignwhichmaybebettersuitedtohighlyvariablestanddiameterconditions((see(Pearson,Brown,&Birdsey,2007)).MeasurementandDataAnalysisTechniquesTreesAlthoughthetreecarbonstockisestimatedmostaccuratelyandpreciselybydirectmethods(wherebyallthetreesinasampleplotaboveaminimumdiameterareharvested,driedandweighed),itisexpectedthisapproachwillbeimpracticalformostprojects.Therefore,treebiomassshouldbeestimatedfromallometricbiomassequationsthatpredictabovegroundbiomassfrommathematicalrelationshipsbetweenDBHand/orheightandspecies.Allometricbiomassequationshavebeenpublishedformanyspeciesandregions.Theprojectproponentshouldselectthemostappropriateequationsbydeterminingwhichpublishedequationsaremostrepresentativeofthespeciesandconditionsontheprojectsite.Otherfactorsthatshouldbetakenintoaccountincludetherelativestatisticalaccuracyoftheequations,andthenumberandsizerangeofthesamplesusedtogeneratetheequationparameters.AlllivingtreeswithinasampleplotwithDBH≥5cmmustbemeasuredforheight(m)anddiameter(cm)atbreastheight(1.3m).Tree-levelmeasurements(kgbiomasspertree)mustbeconvertedtoarea-basedstand-levelmeasurements(tha-1).AdescriptionofthestepsandequationsemployedintheprocessareprovidedinSection8.2.3.DeadOrganicMatterAnefficientmethodforsamplinglyingdeadwoodistheline-intersect(Pearson,Brown,&Birdsey,2007).Forexample,(Harmon&Sexton,1996)useaminimum100mlinelength41.Placingtwo50-msectionsoflineatright40TheuncertaintyfactorcalculationinSection8.5.3accountsfor,andpenalizestheprojectcreditsforhigheruncertaintyerror,andhencethistargetisprovidedasguidanceforplotnetworkdesigntoachievethelowestuncertaintyfactor.VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.75anglesacrosstheplotcenteralsoisanefficientandvalidapproach.Toallowre-measurementofthesame“deadwoodplot”,itisimportanttoaccuratelyrecordwherethelinewasplaced.Thediametersofallpiecesofwoodthatintersectthelinearemeasuredandthedensityclassnoted.Aminimumdiameterformeasurementisdefinedinthismethodologyas5cm(Harmon&Sexton,1996).Eachpieceofdeadwoodwillbeassignedtooneofthreedensityclasses,sound(1),intermediate(2),androtten(3)(detailsbelow).Thevolumeperunitareaiscalculatedforeachdensityclass,c,as:VLDW,c=π2[(d12+d22…dn2)/8L](60a)where:d1,d2,dn=diameter(cm)ofeachofnpiecesintersectingtheline,andL=thelengthoftheline(100mdefault(Harmon,etal.,1986).ThemassofLDWindensityclass,c(tha-1),is:MLDW,c=VLDW,cDLDW,c(60b)where:VLDW,c=thevolumeperunitareacalculatedforeachdensityclass,c,ascalculatedin60a.DLDW,c=thedensityofLDWindensityclass,c(td.m.m-3)ThetotalmassofLDWineachplotsummedoveralldensityclasses(tha-1)is:DOMLDW=∑MLDW,c(60c)where:MLDW,c=themassofLDWindensityclass,c(tha-1),isascalculatedin60b.Akeystepinthismethodisclassifyingthedeadwoodintoitscorrectdensityclassandthensamplingasufficientnumberoflogsineachclasstoderiveareasonableestimateofwooddensity.Ideallyatleast10logsshouldbesampledforeachdensityclass(Pearson,Brown,&Birdsey,2007).Foragivenpieceofdeadwood,afieldcharacterizationofitsdensityclasscanbemadebystrikingitwithastrongsharpblade.Ifthebladebouncesoffitisclassedassound,ifitentersslightlyitisofintermediatedensity,andifthewoodfallsapartitisrotten.Samplesofdeadwoodineachclasswillthenbecollectedtodeterminetheirdensityinthelaboratory,afterdryingfor48hours.Massofdeadwoodiscalculatedastheproductofvolumeperdensityclassandthewooddensityforthatclass(asperequations60a-c)42.Thetotalmassoflyingdeadwoodforagivenpolygonshouldbecalculatedastheaverageofalltransectsmeasuredforthatpolygon.Thisvalueisthenusedforcalculationsofcarbonstorageindeadorganicmatter(DOMLDW,i,t),asdescribedinSection8.2.3.41Othersamplelinelengthsmaybeusedifreferencedfromotherpublishedsources(i.e.see(Harmonetal,2008)).42Alternatively,projectsmayuseotherpublisheddecaysamplingclassificationsandmethods,andinparticularmayfindusefuladditionalmethodsoutlinedinHarmonetal.2008.WoodyDetritusDensityandDensityReductionFactorsforTreeSpeciesintheUnitedStates:ASynthesis.USDAForestServiceGTRNRS-29.VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.76Standingdeadwoodshouldbemeasuredinthesameplotsasusedformeasuringlivetrees.Snagssuitabilityisdefinedusingthesamecriteriaforlivetrees.However,measurementrecordswilldifferslightlyfromthoseforlivetrees,dependingonthedegreetowhichbranchesandtwigsarepresent.Ifthesnagpossessesbranchesandtwigsanditsstructureresemblesalivetree(butwithoutleaves),thisshouldbeindicatedinthefielddatarecords.FromthemeasurementofDBH,theamountofbiomasscanthenbeestimatedusingtheappropriateallometricbiomassequationandsubtractingthebiomassofleaves.Snagsmaypossessonlyafractionoftheirfullcomplementofsmallandlargebranches,onlylargebranches,ornobranchesatall.Theseconditionswillberecordedinthefieldmeasurements.Brancheswillthenbeclassifiedinproportiontothesizeofthestandingdeadtreesothatthetotalbiomasscanbereducedaccordinglytoaccountforlessofthedeadtreeremaining.Whenatreehasnobranchesandisonlythebole,biomasscanbeestimatedfrommeasurementsofitsbasaldiameterandheightandanestimateoftopdiameter.Oncethebiomassofstandingdeadtreeswithinaplothasbeencalculated,thetree-levelmeasurements(kgbiomasspertree)mustbeconvertedtoarea-basedstand-levelmeasurements(tha-1)bysummingthetotalmass(aboveground+belowground)ofallthestandingdeadtreeswithinasampleplot(convertingkgtot)anddividingthesumbytheplotareainha.Allplotswithinaparticularpolygonshouldbeaveragedtogetanaverageestimateofstand-levellivebiomass(tha-1).Thisvalueisanestimateoftheaveragesnagbiomassvariable(DOMSNAG,i,t)usedinSection8.2.3.9.3.6QualityAssurance/QualityControl(QA/QC)MethodsThemonitoringplanorassociatedSOPsshouldincludeQA/QCproceduresfor:(1)collectingreliablefieldmeasurements;(2)verifyinglaboratoryprocedures;(3)verifyingdataentry;and(4)dataarchiving.QA/QCforFieldMeasurementsAsetofStandardOperatingProcedures(SOP)mustbedevelopedforfieldcarbonmeasurements.TheSOPswilldetailallphasesofthefieldmeasurementssothatthemeasurementscanberepeatedreliably.AdocumentwillbeproducedandfiledwiththeprojectdocumentsverifyingthatallQA/QCstepshavebeentaken.FieldcrewsmustbetrainedinallfielddatacollectionSOPsandrecordsoftrainingkeptbytheprojectproponent.Anauditprogramforfieldmeasurementsandsamplingmustbeestablished.Atypicalauditprogramshouldconsistofthreetypesofchecks.Duringahotcheck,auditorsobservemembersofthefieldcrewduringactualdatacollection(thisisprimarilyfortrainingpurposes).Coldchecksoccurwhenfieldcrewsarenotpresentfortheaudit.Blindchecksrepresentthecompletere-measurementofaplotbytheauditors.Hotchecksallowthecorrectionoferrorsintechnique.Measurementvariancecanbecalculatedthroughblindchecks.Ataminimum,10%ofthemeasuredfieldplotswillbecheck-cruisedusingblindcheckswith100%re-measurementofallvariables.Minimumthresholdsinmeasurementerrorareasfollows:1.DBH(standingliveanddead):+/-10%standarderrorat90%confidenceinterval2.Height(standingliveanddead):+/-10%standarderrorat90%confidenceinterval3.TreeCount:+/-10%standarderrorat90%confidenceintervalTheseareminimumthresholdsformonitoringplotfieldaccuracy,andwillrequirere-measurementorre-establishmentofplotsasnecessarytomeettheserequirements.VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.77QA/QCforLaboratoryMeasurementsSOPswillbepreparedandfollowedforeachlaboratoryanalyses.TypicalstepsintheSOPforlaboratorymeasurementswillincludecalibratingstandardsforinstrumentsused.Wherepractical,10percentofthesampleswillbere-analyzed/re-weighedfollowingthecheckcruisethresholdsoutlinedabove.QA/QCforDataEntryProjectsmustdevelopprocedurestoensureproperentryofdataandconversionbetweenpaperandelectronicformats.Dataanomalieswillberesolvedusingtheoriginalfielddata,orre-measurementofdataiffeasible.Ifthereareanomaliesthatcannotberesolved,theplotwillbeomittedfromtheanalysis.DataArchivingTheprojectwillprovidedataarchivingSOPswhichprovideproceduresforsecurelyretainingandmaintainingthefollowingrecordsforeachmonitoringperiodfor2yearspastthedurationoftheproject:1.Originalcopiesofthefieldmeasurement,checkplots,laboratorydata,andrelateddatasummarieswillbemaintainedintheiroriginalandelectronicform2.Copiesofallmonitoringdataanalyses,models,modelinputandoutputfiles,carboncalculationsrequiredforthismethodology,GISinventorydatedbyyear,andcopiesofthemonitoringreports.3.Recordsoftheversionandrelevantchangehistoryofsoftwareordatastoragemediachangedbetweenmonitoringperiods.9.3.7LeakageMonitoringActivityshiftingleakagemonitoringrequiresreportingthe‘demonstrationofactivityshifting’annually,asrequiredbyVCS,andasperthemethodsoutlinedinsection8.3.1.Marketleakagemonitoringrequirementsdependontheselectedoption:1.MarketLeakageOption1–VCSDefaultMarketLeakageDiscountFactors:a.Nofurtherleakagemonitoringrequired2.MarketLeakageOption2–CARMarketLeakageFactora.Theprojectproponentwillannuallyupdatetheleakagecalculationusingthemostcurrentprojectplanharvestlevels.3.MarketLeakageOption3–LeakageAssessmentToola.Projectproponentsmustre-evaluatethedataandcalculationsateachverification.9.3.8FrequencyofmonitoringPermanentsampleplotsmustbere-measuredatintervalsof≤5years.Spatialmonitoringandleakagemonitoring,aretobemonitoredannually.9.3.9UseofMonitoringDatatoUpdateCarbonStockCalculationsDatagatheredthroughthemonitoringprocessmustbeusedto:1.UpdatetheprojectinventorydataandrelatedmodelingandmonitoringstratificationasperSection8.2.2and9.3.10;2.UpdateleakagecalculationsinSection8.3;3.UpdatetheinventoryerrorestimatesusedinthecalculationoftheuncertaintyfactordescribedinSection8.5.3;and,VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.784.UpdateandimprovecalculationsofcarbonstocksinSection8.2andpossiblySection8.1asdescribedinSection8.2.2.9.3.10UpdatingofMonitoringPolygonsTheex-poststratificationandpolygonassignmenttospecificanalysisunits(seeSection9.3.2)mustbeupdatedonanannualbasisand,atminimumpriortoeachverification,foranyofthefollowingreasons:1.Errorsintheinventoryfromfieldsamplingorothermonitoring.Ifthecriteriausedtoallocateapolygonarenotinaccordancewithfieldevidence,thatpolygonshouldbeupdatedandre-assignedaccordinglyifnecessary.Anynon-deminimisupdatesduetoerrorsintheinventorywillrequirerecalculationofboththeannualprojectemissions(Section8.2.5)andtheannualbaselineemissions(Section8.1.2)priortothenextverification;2.Changestospatialinventoryfrommonitoringfornaturaldisturbanceandplanned/unplannedprojectactivities.Updateswillbemadeforanymonitoredeventthataffectsthecriteriausedtodefineagivenpolygonoranalysisunitintheprojectinventory.Notethatdisturbanceoractivityeventsmayresultincreationofanewpolygon,oranagereclassificationforthestand,and/orare-assignmentofthepolygon.Theseupdatesonlyaffectthecalculationofcarbonemissionsfromtheprojectscenario(Section8.2.5).3.Establishedpolygonsmaybemergediftheoriginaljustificationfortheirseparatecreationnolongerapplies.Theseupdatesonlyaffectthecalculationofcarbonemissionsfromtheprojectscenario(Section8.2.5).VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.7910ReferencesandOtherInformationCairns,M.A.(1997).RootBiomassAllocationintheWorld'sUplandForests.Oecologia,111:1-11.CDM.(2007a).ToolforTestingSignificanceofGHGEmissionsinA/RCDMProjects.CDM-ExecutiveBoard.ClimateActionReserve.(2010).ForestProjectProtocolVersion3.2.SanFrancisco:ClimateActionReserve.FAO.(2001).FRA2000-GlobalEcologicalZoningfortheGlobalForestResourceAssessment2000-FinalReport.Rome:FoodandAgriculturalOrganizationoftheUnitedNations.Harmonetal.(2008).WoodyDetritusDensityandDensityReductionFactorsforTreeSpeciesintheUnitedStates:ASynthesis.USDAForestServiceGTRNRS-29.Harmon,M.,&Sexton,J.(1996).Guidelinesformeasurementsofwoodydetritusinforestecosystems.USLTERPublicationNo.20.Seattle,WA:USLTERNetworkOffice,UniversityofWashington.Harmon,M.,Franklin,J.,Swanson,F.,Sollins,P.,Gregory,S.,Lattin,J.,etal.(1986).Ecologyofcoarsewoodydebrisintemperateecosystems.Heath,L.,Maltby,V.,Miner,R.,Skog,K.,Smith,J.,Unwin,J.,etal.(2010)..GreenhousegasandcarbonprofileoftheU.S.forestproductsindustryvaluechain..Environ.Sci.Technol.,44:3999-4005.Supplementarydata.IPCC.(2003a).Estimation,reportingandaccountingofharvestedwoodproducts–technicalpaper.Bonn,Germany:UNFCCCpaperFCCC/TP/2003/7,UNFCCCSecreariat.IPCC.(2003).GoodPracticeGuidanceforLandUse,Land-UseChangeandForestry(GPG-LULUCF).Japan:InstituteforGlobalEnvironmentalStrategies(IGES)fortheIPCC.IPCC.(2006a).GoodPracticeGuidanceforLandUse,Land-UseChangeandForestry.Japan:InstituteforGlobalEnvironmentalStrategies(IGES)fortheIPCC.Kimmins,J.,Mailly,D.,&Seely,B.(1999).Modellingforestecosystemnetprimaryproduction:thehybridsimulationapproachusedinFORECAST.Ecol.Modeling,122:195-224.Kurz,W.,&Apps,M.(2006).DevelopingCanada'snationalforestcarbonmonitoring,accountingandreportingsystemtomeetthereportingrequirementsoftheKyotoProtocol..MitigationandAdaptationStrategiesforGlobalChange,11(1):33-43.Kurz,W.,&etal.(2009).CBM-CFS3:Amodelofcarbon-dynamicsinforestryandland-usechangeimplementingIPCCstandards.Ecologicalmodelling,220:480–504.Laiho,R.,&andPrescott,C.(2004).Decayandnutrientdynamicsofcoarsewoodydebrisinnorthernconiferousforests:asynthesis..Can.J.For.Res.,34:763–777.Masera,O.,&etal.(2003).Modelingcarbonsequestrationinafforestation,agroforestryandforestmanagementprojects:theCO2FIXV.2approach.EcologicalModelling,164(2003):177–199.Melin,Y.,Petersson,H.,&Nordfjell,T.(2009).DecompositionofstumpandrootsystemsofNorwayspruceinSweden:amodelingapproach.ForestEcologyandManagement,257:1445-1451..VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.80Milota,M.,West,C.,&Hartley,I.(2005).Gate-to-gatelife-cycleinventoryofsoftwoodlumberproduction..WoodandFiberScience,CorrimSpecialIssue,37:47–57..Miner,R.(2006).The100-yearmethodforforecastingcarbonsequestrationinforestproductsinuse.MitigationandAdaptationStrategiesforGlobalChange,1-12.Moore,T.,Trofymow,J.,Siltanen,M.,Prescott,C.,&CIDET,W.G.(2005).Patternsofdecompositionandcarbon,nitrogen,andphosphorusdynamicsoflitterinuplandforestandpeatlandsitesincentralCanada.Can.J.For.Res.,35:133-142.Parish,R.,Antos,J.,Ott,P.,&DiLucca,M.(2010).SnaglongevityofDouglas-fir,westernhemlock,andwesternredcedarfrompermanentsampleplotsincoastalBritishColumbia..ForestEcologyandManagement,259:633–640.Pearson,T.,Brown,S.,&Birdsey,R.(2007).Measurementguidelinesforthesequestrationofforestcarbon.USDAForServ.,North.Res.Station.Gen.Tech.Rep.NRS-18.Pearson,T.,Walker,S.,&Brown,S.(2005).SourcebookforLanduse,Land-useChangeandForestryProjects.WinrockInternational;BioCarbonFund.Perlack,R.,Wright,L.,Turhollow,A.,Graham,R.,Stodkes,B.,&Erback,D.(2005).Biomassasfeedstockforabioenergyandbioproductsindustry:Thetechnicalfeasibilityofabillion-tonannualsupply.OakRidge,Tennessee:ORNL.Pingoud,K.,&Lehtila,A.(2002).FossilCarbonEmissionsAssociatedWithCarbonFlowsofWoodProducts.MitigationandAdaptionStrategiesforGlobalChange,7(1)63-83.Pingoud,K.,Perälä,A.,Soimakallio,S.,&Pussinen,A.(2003).Greenhousegasimpactsofharvestedwoodproducts.Evaluationanddevelopmentofmethods.VTTTiedotteitaResearchNotes2189.Runkle,J.(2000).Canopytreeturnoverinold-growthmesicforestsofeasternNorthAmerica..Ecology,81:554-567.Seely,B.,Kimmins,J.,Welham,C.,&Scoullar,K.(1999).Definingstand-levelsustainability,exploringstand-levelstewardship.J.For.,97:4-11.Smith,W.,Miles,P.,Vissage,J.,&Pugh,S.(2004).ForestresourcesoftheUnitedStates,2002.NorthCentralResearchStation,ForestService-USDA,Gen.Tech.Rep.NC-241..VCS.(2010b).ToolfortheDemonstrationandAssessmentofAdditionalityinVCSAgriculture,ForestryandOtherLandUse(AFOLU)ProjectActivities.WashingtonD.C.:VerifiedCarbonStandard.VCS.(2011d).VCSProgramDefinitions,v3.1.WashingtonD.C.:VerifiedCarbonStandards.VoluntaryCarbonStandard.(2008a).GuidanceforAgriculture,ForestryandOtherLandUseProjects.Washington,D.C.:VCSAssociation.VoluntaryCarbonStandard.(2010c).May24,2010AFOLUProgramUpdate.WashingtonD.C.:VCSAssociation.VoluntaryCarbonStandard.(2008b).ToolforAFOLUMethodologicalIssues.WashingtonD.C.:VCSAssociation.VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.81VoluntaryCarbonStandard.(2010a).ToolforAFOLUNon-PermanenceRiskAnalysisandBufferDetermination.WashingtonD.C.:VCSAssociation.VoluntaryCarbonStandard.(2008d).VoluntaryCarbonStandard2007.1.WashingtonD.C.:VCSAssociation.VoluntaryCarbonStandard.(2008e).VoluntaryCarbonStandardProgramGuidelines.Washington,D.C.:VCSAssociation.Zhang,Y.M.,Cormier,D.,Lyng,R.,Mabee,W.,Ogino,A.,&McLean,H.(2010).Lifecycleemissionsandcostofproducingelectricityfromcoal,naturalgas,andwoodpelletsinOntario,Canada..Environ.Sci.Technol.,44:538-544.VM0012,Version1.2SectoralScope14Copyright©20133GreenTreeEcosystemServicesLtd.82DOCUMENTHISTORYVersionDateCommentv1.019Apr2011Initialversionreleasedv1.14May2012Updates:1)Removedapplicabilityconditionthatprojectsmustbedevelopedonfeesimpleorfreeholdprivateownershipproperties.v1.223July2013Updates:1)Emissionsfromharvestingequipment,logtransport,andprimaryforestproductmanufacturingweremadeoptional.2)Proceduresforcalculatingstorageinharvestedwoodproductshavebeenupdatedfrom100-yearmethodtoamethodthataccountsfordecayofcarboninshort-term,mediumtermandlong-termwoodproductsinaccordancewiththeVCSrules.3)Minoreditstolanguageweremade(eg,theterm‘must’hasbeenusedwhereaprocedureisrequiredbythemethodology).

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱