VM0011-从伐木到保护林方法学:计算防止计划退化的温室气体效益VIP专享VIP免费

Approved VCS Methodology
VM0011
Version 1.0
Sectoral Scope 14
Methodology for Improved Forest
Management - Logged to Protected
Forest
Approved VCS Methodology
VM0011
Version 1.0
Calculating GHG Benefits from
Preventing Planned Degradation
Methodology for Improved Forest
Management: Calculating GHG
Benefits from Logged to Protected
Forest
Methodology for Improved Forest
Management: Calculating GHG
Approved VCS Methodology
VM0011
Version 1.0
Sectoral Scope 14
Methodology for Improved Forest
Management Logged to Protected
Forest:
Calculating GHG Benefits from
Preventing Planned Degradation
© 2011 Carbon Planet Limited
VM0011, Version 1.0
Sectoral Scope 14
2
Scope
This Methodology provides a procedure to determine the net greenhouse gas (GHG) emission
reductions associated with an Improved Forest Management - Logged to Protected Forest (IFM-LtPF)
activity where the baseline activity is selective logging.
Authors
Samuel Phua, Sunil Sharma, Marnie Telfer, Helen Chandler
Acknowledgements
The authors would like to acknowledge contributions from Hilary Smith, Sophie Bickford, Megan Vovers,
Davide Ross, Dave Sag, Jesse Reynolds, James Saunders and Remco Marcelis.
This work is copyright Carbon Planet Limited © 2009-2010 and is licensed under the Creative Commons
Attribution-Noncommercial-No Derivative Works 2.5 Australia License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-nd/2.5/au/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.
VM0011, Version 1.0
Sectoral Scope 14
3
Executive Summary
The Methodology provides a procedure to determine the net anthropogenic greenhouse gas (GHG)
emission reductions associated with an Improved Forest Management - Logged to Protected Forest
(IFM-LtPF) activity which prevents the degradation of a forest through the cessation of a baseline activity
of selective logging.
The Methodology is written to be compliant with VCS 2007.1. The Methodology specifically applies to
previously logged or intact tropical forests, where the baseline activity can be clearly demonstrated and
substantiated to be selective logging.
The key components of the Methodology are:
(1) Applicability criteria and decision pathway for applying this Methodology based on the
availability of data sources
(2) Justification for a baseline activity of selective logging, additionality and definition of project
boundary
(3) Accounting for carbon changes of the baseline activity of selective logging
(4) Accounting for emissions due to implementation of the baseline and IFM-LtPF project activity
(5) Leakage assessment and management
(6) Uncertainty analysis
(7) Monitoring methodology
The application of this Methodology is based on the justification that selective logging is the most likely
baseline activity above all other possible land use alternatives.
The Methodology calculates the net anthropogenic emission reductions by firstly estimating emissions
due to forest degradation and the implementation of the baseline activity, selective logging. From this,
GHG emissions associated with the implementation of the IFM-LtPF project activity, plus any emissions
due to leakage of the baseline activity occurring outside the Project Area (as a result of the IFM-LtPF
project activity), are subtracted from the baseline emissions to provide the net anthropogenic emission
reductions of the IFM-LtPF project.
The baseline scenario, selective logging, as defined in the Methodology, involves the annual removal of
merchantable trees with a minimum diameter at breast height as defined by the relevant authority in the
host country. According to the data available, the Methodology provides guidance on determining the
quantity and type of wood product that would be removed, as well as the nature of its fate as a result
of the baseline scenario. In summary, emissions due to carbon lost from forest degradation from
selective logging are attributable to (i) emissions from the oxidation of both short-term and long-term
harvested wood products that are removed from the Project Area, (ii) emissions from the decay of the
trimmings and branches, as well as any residual stand damage accumulating in the dead wood pool,
and (iii) emissions from carbon that is forfeited due to forest growth that did not occur (foregone) as a
result of the selective logging. These emissions are offset by (iv) regrowth in already harvested areas
following logging.
ApprovedVCSMethodologyVM0011Version1.0SectoralScope14MethodologyforImprovedForestManagement-LoggedtoProtectedForestApprovedVCSMethodologyVM0011Version1.0CalculatingGHGBenefitsfromPreventingPlannedDegradationMethodologyforImprovedForestManagement:CalculatingGHGBenefitsfromLoggedtoProtectedForestMethodologyforImprovedForestManagement:CalculatingGHGApprovedVCSMethodologyVM0011Version1.0SectoralScope14MethodologyforImprovedForestManagement–LoggedtoProtectedForest:CalculatingGHGBenefitsfromPreventingPlannedDegradation©2011CarbonPlanetLimitedVM0011,Version1.0SectoralScope142ScopeThisMethodologyprovidesaproceduretodeterminethenetgreenhousegas(GHG)emissionreductionsassociatedwithanImprovedForestManagement-LoggedtoProtectedForest(IFM-LtPF)activitywherethebaselineactivityisselectivelogging.AuthorsSamuelPhua,SunilSharma,MarnieTelfer,HelenChandlerAcknowledgementsTheauthorswouldliketoacknowledgecontributionsfromHilarySmith,SophieBickford,MeganVovers,DavideRoss,DaveSag,JesseReynolds,JamesSaundersandRemcoMarcelis.ThisworkiscopyrightCarbonPlanetLimited©2009-2010andislicensedundertheCreativeCommonsAttribution-Noncommercial-NoDerivativeWorks2.5AustraliaLicense.Toviewacopyofthislicense,visithttp://creativecommons.org/licenses/by-nc-nd/2.5/au/orsendalettertoCreativeCommons,171SecondStreet,Suite300,SanFrancisco,California,94105,USA.VM0011,Version1.0SectoralScope143ExecutiveSummaryTheMethodologyprovidesaproceduretodeterminethenetanthropogenicgreenhousegas(GHG)emissionreductionsassociatedwithanImprovedForestManagement-LoggedtoProtectedForest(IFM-LtPF)activitywhichpreventsthedegradationofaforestthroughthecessationofabaselineactivityofselectivelogging.TheMethodologyiswrittentobecompliantwithVCS2007.1.TheMethodologyspecificallyappliestopreviouslyloggedorintacttropicalforests,wherethebaselineactivitycanbeclearlydemonstratedandsubstantiatedtobeselectivelogging.ThekeycomponentsoftheMethodologyare:(1)ApplicabilitycriteriaanddecisionpathwayforapplyingthisMethodologybasedontheavailabilityofdatasources(2)Justificationforabaselineactivityofselectivelogging,additionalityanddefinitionofprojectboundary(3)Accountingforcarbonchangesofthebaselineactivityofselectivelogging(4)AccountingforemissionsduetoimplementationofthebaselineandIFM-LtPFprojectactivity(5)Leakageassessmentandmanagement(6)Uncertaintyanalysis(7)MonitoringmethodologyTheapplicationofthisMethodologyisbasedonthejustificationthatselectiveloggingisthemostlikelybaselineactivityaboveallotherpossiblelandusealternatives.TheMethodologycalculatesthenetanthropogenicemissionreductionsbyfirstlyestimatingemissionsduetoforestdegradationandtheimplementationofthebaselineactivity,selectivelogging.Fromthis,GHGemissionsassociatedwiththeimplementationoftheIFM-LtPFprojectactivity,plusanyemissionsduetoleakageofthebaselineactivityoccurringoutsidetheProjectArea(asaresultoftheIFM-LtPFprojectactivity),aresubtractedfromthebaselineemissionstoprovidethenetanthropogenicemissionreductionsoftheIFM-LtPFproject.Thebaselinescenario,selectivelogging,asdefinedintheMethodology,involvestheannualremovalofmerchantabletreeswithaminimumdiameteratbreastheightasdefinedbytherelevantauthorityinthehostcountry.Accordingtothedataavailable,theMethodologyprovidesguidanceondeterminingthequantityandtypeofwoodproductthatwouldberemoved,aswellasthenatureofitsfateasaresultofthebaselinescenario.Insummary,emissionsduetocarbonlostfromforestdegradationfromselectiveloggingareattributableto(i)emissionsfromtheoxidationofbothshort-termandlong-termharvestedwoodproductsthatareremovedfromtheProjectArea,(ii)emissionsfromthedecayofthetrimmingsandbranches,aswellasanyresidualstanddamageaccumulatinginthedeadwoodpool,and(iii)emissionsfromcarbonthatisforfeitedduetoforestgrowththatdidnotoccur(foregone)asaresultoftheselectivelogging.Theseemissionsareoffsetby(iv)regrowthinalreadyharvestedareasfollowinglogging.VM0011,Version1.0SectoralScope144Themonitoringmethodologyprovidesguidanceforthemonitoringoftheparametersemployedtocalculatecarbonchangesduetoforestdegradation,aswellasemissionsduetoimplementationofprojectandbaselineactivities.Followingtheimplementationofthemonitoringmethodology,theresultsareappliedtotheabove-mentionedaccountingcomponents(3)to(6)torevisethenetanthropogenicGHGemissionreductionsforthesubsequentreportingperiod.TheapplicationoftheMethodologyisintendedtonotonlymitigateGHGs,buttotriggeralongtermsustainableshiftinthestatusoftheforestinthecoveredregion,henceaidingintheconservationofbiodiversity.Inaddition,localcommunitieswillhavenewavenuesforrevenuesthatreplaceandexceedrevenuestobederivedfromtheremovaloftheirforest.VM0011,Version1.0SectoralScope145TableofContents1Introduction............................................................................................................................................................................................91.1MethodologyApplicabilityCriteria...................................................................................................................................91.2MethodologyOverview........................................................................................................................................................101.2.1NetAnthropogenicGHGEmissionReductions.............................................................................................101.2.2DataSourcesRequired.............................................................................................................................................111.2.3Significance.....................................................................................................................................................................121.2.4VCUsandtheNon-PermanenceRiskWithholdingBufferPercentage..............................................122ProjectBaseline,AdditionalityandBoundary.......................................................................................................................142.1ProjectBaselineJustificationandAdditionality.........................................................................................................142.1.1SelectionofBaselineAmongstAlternativeScenarios................................................................................142.1.2EstablishmentoftheBaselineScenario:SelectiveLogging....................................................................162.1.3Additionality...................................................................................................................................................................162.2ProjectBoundaries..................................................................................................................................................................162.2.1GeographicBoundary................................................................................................................................................172.2.1.1ProjectAreaandLandEligibility.......................................................................................................................172.2.1.1.1StratificationoftheProjectArea..................................................................................................................172.2.1.2Leakagearea(s).........................................................................................................................................................182.2.2TemporalBoundaries.................................................................................................................................................182.2.2.1Projectcreditingperiod........................................................................................................................................182.2.2.2Monitoringandreportingperiods..................................................................................................................182.2.2.3Historicalreferenceperiod..................................................................................................................................192.2.3CarbonPools.................................................................................................................................................................192.2.4GHGSourcesandSinks............................................................................................................................................202.2.4.1ConsiderationofGHGs.........................................................................................................................................203BaselineAccounting..........................................................................................................................................................................243.1EstimationofEmissionsfromDegradation.................................................................................................................243.2CalculationofPrimaryParametersintheProjectArea.........................................................................................283.2.1ExistingInventoryDataPathway..........................................................................................................................283.2.1.1Validationofexistingforestinventorydata................................................................................................283.2.1.2WherealessdetailedFIRisavailable............................................................................................................293.2.1.2.1Carboninthemerchantablelogsusingwooddensitymethod....................................................293.2.1.2.2CarbonintheAGBofthegrowingstockusingBCEFmethod......................................................333.2.1.3WhereadetailedFIRisavailable.....................................................................................................................343.2.1.3.1Carboninthemerchantablelogsusingvolumeallometricmethod..........................................343.2.1.3.2CarbonintheAGBofthegrowingstockusingbiomassallometricmethod.........................373.2.2MeasuredDataPathway...........................................................................................................................................393.2.3DeterminationofAnnualHarvestVolumeandNetHarvestArea.......................................................40VM0011,Version1.0SectoralScope1463.2.3.1WheretheFIRorequivalentdocumentcontainsadetailedharvestingplan............................403.2.3.2Whereadetailedharvestingplanisnotavailable..................................................................................403.2.4AnnualTotalCarbonintheMerchantableLogs.........................................................................................413.2.5AnnualTotalCarbonintheAbovegroundBiomassoftheGrowingStock.....................................413.3CarbonChangesDuetoDegradationUndertheBaselineScenario..............................................................423.3.1NetCarbonfromtheDeadwoodPool..............................................................................................................423.3.1.1Carbonfromresidualstanddamage.............................................................................................................433.3.1.2Carboninbranchesandtrimmings................................................................................................................443.3.1.3CarbonemissionsduetodecayoftheDWpool.....................................................................................453.3.2NetCarbonfromtheLong-termHWPPool..................................................................................................473.3.2.1Carbonduetolong-termHWPresidues.....................................................................................................483.3.2.2Carbonduetooxidationofthelong-termHWPpool..........................................................................493.3.3NetCarbonfromtheShort-termHWPPool.................................................................................................523.3.3.1Carboninshort-termHWPs-commerciallyharvestedfuelwood...................................................543.3.3.2Carboninshort-termHWPs-pulplog..........................................................................................................553.3.4CarbonintheGrowthForegoneDuetoSelectiveLogging...................................................................563.3.5CarbonintheRegrowthafterSelectiveLogging.........................................................................................583.4BaselineActivityEmissions..................................................................................................................................................593.4.1EmissionsDuetoHarvestingOperations........................................................................................................603.4.2EmissionsDuetoOn-sitePreparation..............................................................................................................623.4.3EmissionsDuetoLogHauling..............................................................................................................................643.4.4EmissionsDuetoLogTransport..........................................................................................................................653.4.5EmissionsDuetoTimberProcessing.................................................................................................................673.4.5.1Emissionsfromprocessingwheregridelectricityisavailable............................................................683.4.5.2Emissionsfromprocessingwhereageneratorisrequired.................................................................693.4.6EmissionsDuetoLogDistribution......................................................................................................................704ActualProjectActivityEmissions................................................................................................................................................734.1EmissionsDuetoProjectPlanning.................................................................................................................................744.1.1EmissionsDuetoAdministration.........................................................................................................................744.1.2EmissionsDuetoTravel...........................................................................................................................................764.1.2.1Emissionsduetoflights........................................................................................................................................764.1.2.2Emissionsduetogroundtransport................................................................................................................774.2EmissionsDuetoDesign.....................................................................................................................................................794.2.1EmissionsDuetoFlights..........................................................................................................................................794.2.2EmissionsDuetoGroundTransport..................................................................................................................804.3EmissionsDuetoMonitoring............................................................................................................................................814.3.1EmissionsDuetoFlights..........................................................................................................................................814.3.2EmissionsDuetoGroundTransport..................................................................................................................824.4EmissionsDuetoNaturalDisturbances........................................................................................................................824.5EmissionsDuetoIllegalHarvesting...............................................................................................................................884.5.1FieldInventoryMethod............................................................................................................................................88VM0011,Version1.0SectoralScope1474.5.2UsingSatelliteData....................................................................................................................................................895LeakageAssessmentandManagement..................................................................................................................................915.1IdentifyingLeakage................................................................................................................................................................915.2LeakageDuetoActivityShifting......................................................................................................................................935.2.1IntensificationofLoggingOperations...............................................................................................................935.2.2ShiftedLoggingOperations...................................................................................................................................985.2.3ShiftedBaselineActivityEmissions.....................................................................................................................995.3MarketLeakage........................................................................................................................................................................996UncertaintyAssessment..............................................................................................................................................................1016.1IdentifyingUncertainty.......................................................................................................................................................1016.1.1CalculatingUncertainty..........................................................................................................................................1016.2OverallIFM-LtPFProjectUncertainty..........................................................................................................................1026.3UncertaintyinBaselineAccounting.............................................................................................................................1036.3.1DegradationUncertainty.....................................................................................................................................1046.3.2BaselineEmissionSourcesUncertainty........................................................................................................1046.4UncertaintyinActualProjectAccounting.................................................................................................................1056.5UncertaintyinLeakageAccounting.............................................................................................................................1056.6UncertaintyDeduction.......................................................................................................................................................1066.7ReducingUncertainty.........................................................................................................................................................1077Monitoring..........................................................................................................................................................................................1097.1MonitoringMethodology.................................................................................................................................................1097.1.1MonitoringPlan........................................................................................................................................................1097.1.2ProcedureforEstablishingthePermanentSamplePlots(PSPs)andMeasurement...............1097.1.2.1StratificationoftheProjectArea...................................................................................................................1107.1.2.2Shapeandsizeofplots.....................................................................................................................................1107.1.2.3DeterminingthenumberofPSPs.................................................................................................................1107.1.2.4SamplingdesignforthePSPs........................................................................................................................1127.1.2.5ParametermeasurementinthePSPs..........................................................................................................1127.1.3MonitoringFrequency............................................................................................................................................1137.2MonitoringImplementation............................................................................................................................................1137.2.1ParametersObtainedfromtheLiterature/ReportstobeReviewed/Verified(NotMonitored)1147.2.2ParameterstobeMeasuredOnce(NotMonitored)...............................................................................1177.2.3ParameterstobeMonitored..............................................................................................................................1197.2.4ValidatingorDerivingtheParameters...........................................................................................................1217.2.4.1Validatingorderivingthewooddensity...................................................................................................1217.2.4.2Validatingorderivingthevolumeandbiomassallometricequations.......................................1227.2.4.3Validatingorderivingthebranch-trimfactor.........................................................................................1237.2.5Non-PermanenceRiskAssessment..................................................................................................................1237.2.5.1Bufferdetermination...........................................................................................................................................123VM0011,Version1.0SectoralScope1487.3QualityAssuranceandQualityControl......................................................................................................................1247.3.1QA/QCforConductingFieldMeasurements..............................................................................................1247.3.2QA/QCforSelectingLiteratureValues..........................................................................................................1257.3.3QA/QCforDataEntryandArchiving..............................................................................................................1267.3.4QA/QCforContractProcurement....................................................................................................................1277.4ExpostCalculationofNetAnthropogenicGHGEmissionReductions......................................................1278References..........................................................................................................................................................................................129Appendices.............................................................................................................................................................................................132AppendixA:DefinitionsandAcronyms.............................................................................................................................132A.1DefinitionofTerms.....................................................................................................................................................132A.2ListofAcronymsUsed..............................................................................................................................................136A.3GeneralNotationofParameters..........................................................................................................................137AppendixB:GuidanceforParameterSelection.............................................................................................................138B.1WoodDensity................................................................................................................................................................138B.2CarbonFraction............................................................................................................................................................139B.3ResidualStandDamage............................................................................................................................................139B.4LumberRecoveryFactor...........................................................................................................................................140B.5HWPRateofOxidation.............................................................................................................................................141B.6HarvesterFuelConsumptionFactor...................................................................................................................141B.7ElectricityDemandofSawmillProcesses.........................................................................................................141B.8FuelConsumptionCharts.........................................................................................................................................142B.9ForestProductType...................................................................................................................................................143AppendixC:UnitConversionandGWPCalculations.................................................................................................145C.1ConvertingMassofCarbon(tC)toCarbonDioxide(tCO2)...................................................................145C.2ConvertingOtherGHGstoCarbonDioxideEquivalents(CO2-e)........................................................145C.3ConvertingUnitsforFuelEmissionFactor......................................................................................................146AppendixD:ExampleSolutiontoEquations3-22aand3-22b............................................................................147VM0011,Version1.0SectoralScope1491IntroductionTheMethodologyhereinisapplicabletoaprojectactivitythatreducesgreenhousegas(GHG)emissionsbypreventingthedegradationofaforest,eitherintact1orpreviouslylogged,thathasbeenlegallyauthorisedbylocal,nationalorsub-nationalregulatorybodiestobeharvested.AcommonpracticeofIFMintropicalforestsisselectivelogging.Inselectiveloggingoperations(whichisthebaselinescenariooftheMethodology),treesthatmeettherequirementsasspecifiedbytherelevantauthorityinthehostcountryof(i)minimumdiameteratbreastheight,(ii)species,(iii)accessibility,and(iv)treequality,areconsideredmerchantable.1.1MethodologyApplicabilityCriteriaTheMethodologyisapplicableunderthecriteriaandconditionspresentedinTable1-1:Table1-1.MethodologyapplicabilitycriteriaCriteriaDescriptionProjectTypeImprovedForestManagement-LoggedtoProtectedForest;withnoremovals(e.g.harvesting,plannedbiomassburning)occurringintheProjectAreauponimplementationoftheactualproject(withtheexceptionoffellingsampletreesforvalidatingorderivingproject-specificparameterspresentedinSection7.2.4).ConditionoftheForestIntactforestorpreviouslyloggedforest(alsoknownasforestdegradedduetologging)LandwithintheProjectAreamusthavequalifiedasforestatleast10yearsbeforetheprojectstartdate.TypeofForestTropicalforestsincludingevergreentropicalrainforests,moistdeciduousforests,tropicaldryforestsandtropicaluplandforests(seeAppendixAfordefinition),exceptpeatswampforests.ForestProductTypeHarvestedwoodproductsi.e.,sawlog,pulplogandcommerciallyharvestedfuelwood(SeeAppendicesAandB.9).DriverofDegradationLegallysanctionedlogging(timberandcommerciallyharvestedfuelwood)undertakeninaccordancewiththerelevantlaws,regulationsandcodesofpracticeofthecountryinwhichtheMethodologyisbeingapplied.BaselineActivitiestobeDisplacedLegallysanctionedselectiveloggingforspecificforestproducttypespresentedabove.ProjectAreaMustbedesignated,sanctionedorapprovedbytherelevantauthorityinthehostcountryfortheselectivelogging1Definedhereinasforeststhathavenotyetbeenlogged.VM0011,Version1.0SectoralScope1410CriteriaDescriptionCarbonPoolsCarbonPoolsconsidered:•Abovegroundbiomass(AGB)ofalltreesasdefinedbytherelevantauthorityinthehostcountry•Harvestedwoodproducts(HWPs)basedondomesticproductionnotdomesticconsumption•Deadwood(DW).CarbonPoolsnotconsidered:•Abovegroundbiomass(non-trees)•Belowgroundbiomass•Soil•Litter.1.2MethodologyOverview1.2.1NetAnthropogenicGHGEmissionReductionsTheMethodologyestimatesthenetanthropogenicGHGemissionreductionsassociatedwithanIFM-LtPFproject()thatreplacesabaselineofselectivelogginginatropicalforest.Itdoesthisbyestimatingtheannualtotalcarbonemissionsassociatedwiththebaselinescenario()andbysubtractingtheemissionsassociatedwithprojectactivity()andleakage(),inyear,t,yearselapsedsincethestartoftheIFM-LtPFprojectactivity.Theparameters,andaredeterminedinSections3,4and5,respectively.ThenetanthropogenicGHGemissionreductionsintonnesofcarbondioxideequivalents(tCO2-e)oftheIFM-LtPFprojectactivitywillbe2calculatedasfollows:Equation1-1ParameterDescriptionUnitAnnualnetanthropogenicGHGemissionreductionsinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eAnnualtotalcarbonemissionsassociatedwiththebaselinescenarioinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-e2Throughout,fourmaintermsareused:“mustbe”,“shouldbe”,“willbe”and“canbe”.Theterm“mustbe”representsanactiontobetaken,accordingtoamandatoryconditionspecifiedintheStandardsorGuidelines;theterm“shouldbe”representsanactiontobetaken,accordingtoabestpracticecondition;theterm“willbe”representsanactiontobetaken,asdevelopedspecificallyinthisMethodology;whilsttheterm“canbe”isusedtoindicatepossibility.CIFMLtPF,tCbaseline,tCactual,tCleakage,tCbaseline,tCactual,tCleakage,tCIFMLtPF,tCbaseline,tCactual,tCleakage,tCIFMLtPF,tCbaseline,tVM0011,Version1.0SectoralScope1411ParameterDescriptionUnitAnnualtotalcarbonemissionsassociatedwiththeprojectactivityinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eAnnualtotalcarbonemissionsassociatedwithleakageinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eTheterm“exante”isdefinedastheestimationofthenetGHGemissionreductions,beforethestartoftheIFM-LtPFprojectactivity,fortheprojectcreditingperiod.Theterm“expost”isdefinedasthecalculationoftheactualnetGHGemissionreductionsfortheyearselapsedsincethestartoftheIFM-LtPFprojectactivity.SeeAppendixAoftheMethodologyforalistofdefinitionsofotherterms.ForanexanteestimationofannualnetanthropogenicGHGemissionreductions,,equationsinSections3and4forbaselineaccountingandactualprojectactivityemissions,respectively,mustbeapplied.Theexanteestimationforleakageassessmentwillbezero.TheProjectProponentmustprovideestimatesofthevaluesofthoseparametersthatarenotavailablebeforethestartofthemonitoringactivitiesandmustretainaconservativeapproachinmakingtheseestimates.1.2.2DataSourcesRequiredDuetothenatureofIFM-LtPFprojects,theemissionreductionswillbelargelydependentonemissionsarisingfromthebaselinescenario(),which,inturn,isafunctionofemissionsfromtheimplementationofthebaselineactivity(i.e.selectivelogging)()andprimarily,theemissionsarisingfromforestdegradationduetothebaselineactivity().ThemethodtocalculatedependsontheavailabledatafortheProjectArea.ThisIFM-LtPFMethodologyincludes:(1)protectingcurrentlyloggedordegradedforestsfromfurtherlogginganddegradation;and(2)protectingunloggedforeststhatwouldbeloggedintheabsenceofcarbonfinance.Forboth,theProjectProponentmustprovidedocumentaryevidencetoprovethattheProjectAreawillbelegallyharvestediftheIFM-LtPFprojectisnotimplementedintheareaandmustincludethesedocumentsProjectDescription(PD).Thefollowingdocumentaryevidencesarerelevant,butnotlimitedto:(i)AlegallyauthorisedletteroradocumentthatclearlydemonstratestheareawillbeselectivelyloggedintheabsenceoftheIFM-LtPFproject;and(ii)AnapprovedForestInventoryReport(FIR)oranequivalentdocumentincludingaforestmanagementplanoratimberharvestingplan.Thisdocumentmustalsoincludemap(s)ofthegeographicalextentoftheProjectAreawhereselectivelogginghasoccurredorwouldoccur;or(iii)PreparationoftheFIRoranequivalentdocument(bytherelevantauthorityinthehostcountry)whichspecifiesthegeographicalextentoftheProjectAreawhereselectiveloggingwouldoccur.Figure1-1presentsaschematicofthedual-pathwayfordataavailabilityindeterminingasuitablemethod.TheExistingInventoryDatapathwayrepresentsthecasewhereaForestInventoryReport(FIR)oranequivalentdocument,isavailable.Withinthispathway,twomethodsexistfordeterminingCactual,tCleakage,tCIFMLtPF,tCbaseline,tCemissions,tCdegradation,tCdegradation,tVM0011,Version1.0SectoralScope1412emissionsduetodegradationoftheProjectArea.Theseare:(i)combinedmethodsofwooddensityandbiomassconversionandexpansionfactor(BCEF)or(ii)allometricequations.Thechoiceofmethodisbasedonthelevelofdetailintheexistinginventorydata.TheMeasuredDatapathwaymustbeappliedforthefollowingcases:(i)wherethereisnoForestInventoryReport(FIR)orequivalentdocumentavailable(ii)wheretheFIRisstillinpreparationbytherelevantauthorityinthehostcountry(iii)wherethevalidationofexistingdataisnotaccepted(seeSection3.2.1.1).Inordertoapplythispathway,upfrontmonitoringisrequired,andcarbonemissionswillbebasedonthedataobtainedfromthemeasurementstakeninthePermanentSamplePlots(PSPs)intheforestusingallometricequations(seeSection7.1.2).Figure1-1.SchematicofdatasourcesrequiredforIFM-LtPFMethodology1.2.3SignificanceTotestforthesignificanceofemissionsources,theProjectProponentmustusethemostrecentCDMTool-“ToolfortestingsignificanceofGHGemissionsinA/RCDMprojectactivities”(seeCDM-EB,2007a).1.2.4VCUsandtheNon-PermanenceRiskWithholdingBufferPercentageAprocedurefordeterminingthenon-permanenceriskrating(i.e.,thepotentialreversibilityofsequestered/protectedcarbon)isdescribedinSection7.2.5.Theoutcomeoftheriskratingisthedeterminationofthenon-permanencebufferwithholdingpercentage()requiredtocalculatethenumberofcarboncreditstobedepositedintheVCSbufferwithholdingpool.Thelatteriscalculatedasfollows:Equation1-2NPbuffer%CCNPbuffer,tNPbuffer,t%Cdegradation,tVM0011,Version1.0SectoralScope1413ParameterDescriptionUnitAnnualcarboncreditsdepositedintheVCSnon-permanencebufferwithholdingaccountinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eAnnualbufferwithholdingpercentagerequiredfortheVCSbufferwithholdingpoolinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)%Annualtotalcarbonemissionsassociatedwithdegradationasaresultofthebaselineactivityinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eThenumberofVCUsthatcanbetradedannuallyfromtheIFM-LtPFprojectactivityisdeterminedbysubtractingthecarboncreditsdepositedinthebufferaccountfromthecarboncreditsdeterminedpostuncertaintydeductionissuedinyeart:Equation1-3ParameterDescriptionUnitAnnualtotaltradeableVerifiedCarbonUnitsinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eAnnualcarboncreditspostuncertaintydeductioninyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eAnnualcarboncreditsdepositedintheVCSnon-permanencebufferwithholdingaccountinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eCCNPbuffer,tNPbuffer,t%Cdegradation,tVCUtCCIFMLtPF,tCCNPbuffer,tVCUtCCIFMLtPF,tCCNPbuffer,tVM0011,Version1.0SectoralScope14142ProjectBaseline,AdditionalityandBoundary2.1ProjectBaselineJustificationandAdditionalitySincetheMethodologyislimitedtoabaselinescenarioofselectivelogging,itmustthereforebedemonstratedthatselectiveloggingisthemostlikelybaselinescenarioaboveallotherpossiblescenarios.2.1.1SelectionofBaselineAmongstAlternativeScenariosTheproceduretoidentifythebaselinescenarioasselectiveloggingforaVCSIFM-LtPFprojectactivity,hasbeenadaptedfromSteps1and2ofthe“CombinedtooltoidentifythebaselinescenarioanddemonstrateadditionalityinA/RCDMprojectactivities”(CDM-EB,2007b,pp.2-7).Step1:IdentifycrediblealternativebaselinescenariostotheproposedVCSIFM-LtPFprojectactivity.Sub-step1a:IdentifyallrealisticandcrediblealternativebaselinescenariostotheproposedVCSIFM-LtPFprojectactivity.RealisticandcrediblebaselinescenarioswouldbethosethatmayhaveoccurredintheProjectAreaintheabsenceoftheVCSIFM-LtPFprojectactivity.Thescenariosmusttakeintoaccountrelevantnationalandorsectoralpoliciesandcircumstancessuchashistoricallanduseandpractices,andeconomictrendsandmustatleastinclude(CDM-EB,2007b,p.2):•continuationofpre-projectlanduse•theprotectionofthelandwithintheProjectAreawithoutbeingregisteredundertheVCSasanIFM-LtPFprojectactivity.Toidentifyrealisticandcrediblebaselinescenarios,datafromthefollowingsourcesmustbeapplied:(i)landuserecords(ii)fieldsurveys(iii)dataandfeedbackfromstakeholders.Toestablishthatallidentifiedbaselinescenariosarecredible,theProjectProponentmustascertainthefollowing:•alllanduseswithintheProjectAreaoftheproposedIFM-LtPFprojectactivitythatarecurrentlyexisting,orhaveexistedbutnolongerexist,aredeemedcredible•forallotherbaselinescenarios,credibilitymustbejustifiedandjustificationmustincludeelementsofspatialplanninginformation,ifapplicable,orlegalrequirements.Intheabsenceofadequatejustification,anassessmentofeconomicfeasibilityoftheproposedalternativebaselinescenariomustbeprovided.Sub-step1b:Identifyrealisticandcrediblealternativebaselinescenarioswithenforcedmandatorylegislationandregulations.VM0011,Version1.0SectoralScope1415ForthealternativebaselinescenariosidentifiedinSub-step1a,theProjectProponentmustdemonstratethatthesealternativescomplywithmandatoryapplicablelegislationandregulationsinthehostcountry.Inthecasewhereanidentifiedalternativedoesnotcomplywithmandatoryapplicablelegislationandregulations,theProjectProponentmustdemonstratethatnon-complianceofsuchlegislationandregulationsarethecurrentpracticesinthehostcountry,totheextentthatthelegislationandregulationsaresystematicallynotenforcedandthatnon-complianceofsuchlegislationandregulationsiswidespread.Alternativebaselinescenariosthatdonotcomplywithmandatoryapplicablelegislationandregulationsinthehostcountry,andwherewidespreadnon-compliancecannotbedemonstrated,mustberemovedfromthelistofrealisticandcrediblebaselinescenarios.SelectiveloggingmustbepresentinthelistfromSub-steps1aand1bfortheMethodologytobeapplicable.Step2:Determinealternativebaselinescenarios.Sub-step2a:Identifybarriersthatwouldpreventtheimplementationofatleastonealternativebaselinescenario.ForthealternativebaselinescenariosidentifiedinSub-step1b,theProjectProponentmustidentifyanybarriersthatpreventtheimplementationofatleastoneofthealternatives.ThebarriersmustnotbespecifictotheProjectProponentbutmustapplytotheactivityitself,regardlessoftheentitythatisdevelopingtheproject.AlistofpotentialbarrierscanbefoundinCDM-EB(2007b),pp.4-5.Sub-step2b:Eliminatebaselinescenariosthatarepreventedbytheidentifiedbarriers.DeterminewhichbaselinescenariosidentifiedintheSub-step1barepreventedbyatleastoneofthebarrierslistedinSub-step2a.Eliminatethesescenariosfromthelist(ofalternativebaselinescenarios)producedinSub-step1b.SelectiveloggingmustbepresentintheresultantlistfortheMethodologytobeapplicable.InapplyingSub-steps2aand2b,theProjectProponentmustprovidetransparentanddocumentedevidence,andofferconservativeinterpretationsofthisdocumentedevidence,astohowitdemonstratestheexistenceandsignificanceoftheidentifiedbarriers.Anecdotalevidencecanbeincluded,butthisaloneisnotsufficientproofofbarriers(CDM-EB,2007b,point17,p.6).AlistofthetypesofevidenceacceptablecanbefoundinCDM-EB(2007b),pp.6-7.Sub-step2c:Determinethebaselinescenario.FromSub-step2b,therefinedlistofalternativebaselinescenariosthatareincompliancewithmandatoryapplicablelegislationandregulations(orforwhichwidespreadnon-compliancecanVM0011,Version1.0SectoralScope1416bedemonstrated),andarenotpreventedbybarriers,mustcontainselectiveloggingasanalternativebaselineforthecurrentMethodologytobeapplied.Ifselectiveloggingistheonlyalternativescenariothatisnotpreventedbyanybarrier,thenthisscenarioisidentifiedasthebaselineactivity.IfthereareseveralalternativebaselinescenariosinthelistproducedfromSub-step2b(andthismayincludetheproposedIFM-LtPFprojectactivityundertakenwithoutbeingregisteredasaVCSactivity),thenapplytheInvestmentAnalysisprocedure(CDM-EB,2007b,Step3,pp.7-11)todemonstratethatselectiveloggingisthemosteconomicallyand/orfinanciallyattractivebaselinescenarioamongstallthealternativebaselinescenarios.Selectiveloggingmustbedemonstratedtobethemosteconomicallyand/orfinanciallyattractivebaselinescenariofortheMethodologytobeapplicable.2.1.2EstablishmentoftheBaselineScenario:SelectiveLoggingUpondemonstratingthatthemostconservativebaselinescenarioisselectivelogging,andinordertoestablishthisbaseline,theProjectProponentmustprovidethefollowinginformation:(i)documentedhistoryoftheoperator(e.g.,operatorshallhavefiveto10yearsofmanagementrecordstoshownormalhistoricalpractices)(ii)legalrequirementsforforestmanagementandlanduseinthearea;and(iii)proofthatoperator‟senvironmentalpracticesequalorexceedthosecommonlyconsideredaminimumstandardamongsimilarlandownersinthearea.IftheProjectProponentisnotaloggingoperator,butinsteadanewmanagemententitywithnohistoryofloggingpracticesintheprojectregionandwhotakesoverownershipofapropertyspecificallytoreduceforestemissions,thenthebaselineofselectiveloggingistobebasedontheprojectedmanagementplansofthepreviouspropertyowners.TheestablishedbaselinemustrepresentwhatwouldhavemostlikelyoccurredintheabsenceoftheIFM-LtPFproject.2.1.3AdditionalityForthespecificcaseofdemonstrationandassessingadditionality,theProjectProponentmustusethelatestversionoftheVCStoolfortheDemonstrationandAssessmentofAdditionalityinVCSAgricultureForestryandOtherLandUseProject.2.2ProjectBoundariesProjectboundariesmustbedefinedintermsofthefollowingcategories:•Geographicboundary•Temporalboundaries•Carbonpools•GHGsinksandsources.VM0011,Version1.0SectoralScope14172.2.1GeographicBoundaryTheGeographicBoundaryincludestheProjectAreaandtheleakagearea(s)andisdescribedinthesectionsbelow.ThelandeligibilityfortheProjectAreaisdiscussedinSection2.2.1.1.2.2.1.1ProjectAreaandLandEligibilityTheProjectAreaistheforestareawithinthedefinedGeographicBoundarywhichwouldbedegradedthroughselectiveloggingunderthebaselinescenario.Theterm“forestarea”mustbeappropriatelydefinedinawaythatisconsistentwiththethresholdsusedtodefinetheterm“forest”inthehostcountrywheretheprojectactivitywillbeimplemented.WherethecountryhasadoptedaforestdefinitionfortheKyotoProtocol,theminimumthresholdsofthevegetationindicatorsusedfordefining“forest”willbeused(seeAppendixA).Otherwise,thedefinitionusedtodefine“forest”inthenationalGHGinventorywillbeused.TheProjectAreamustbedesignated,sanctionedorapprovedbytherelevantauthorityinthehostcountry.TheProjectProponentmustprovidesanctionedorapproveddocument(s)whichdesignatesorspecifiesthegeographicalboundaryoftheProjectArea.TheProjectProponentmustalsoprovidethefollowinginformationabouttheProjectArea:name,localname,compartmentnumber,harvestingblocks,identificationnumberandareaforeachforestcompartmentintheProjectArea,thegeographicco-ordinatesobtainedfromtheGlobalPositioningSystem(GPS)orfromthegeo-referenceddigitalmapsand,digitalorGISmaps.Inaddition,theProjectProponentrequirestoprovidedigitalmapofthegeographicboundarydistinguishingtheProjectAreaandtheLeakageArea.InthecasethisMethodologyisusedformultiplediscretelandparcels,eachlandparcelistreatedasaseparateProjectAreaandrequiresallthedetailinformation/documentationaswellasthedigitalmapsasstatedabove.IftheProjectAreahasalreadybeenstratified,similarinformationmustbeprovidedforeachstratumincludingstratifiedmapsfortheProjectArea.Aftertheprojecthascommenced,theProjectAreawillremainfixedthroughoutthecreditingperiod.2.2.1.1.1StratificationoftheProjectAreaStratificationoftheProjectAreaisrequiredtodividetheforestareaintorelativelyhomogeneousunitsor„strata‟inordertominimisevariationamongthestrata.Thestratificationenhancesthemeasuringprecisionandalsominimisesthecostofmeasurement.WherestratificationoftheProjectAreahasnotbeendone,stratificationisrequiredbeforeestablishingPSPsformonitoring.Variouscriteriaincludingforestparameterssuchasspecies,canopydensity,treeheight,age,etc.,aswellasphysicalparameterssuchasslopeanddrainagecondition,aretobeusedtodefinethestratification.Themostappropriatecriteriaforstratificationaretobethosewhicharedirectlyrelatedtothevariablestobemeasuredandmonitored.Theforeststratificationcanbeperformedusingforesttypemaps,topographicmaps,interpretationofaerialphotographsandsatellitedatawithsubsequentfieldverification.RemotesensingandGISsoftwareisusefulforspatialanalysisandmappingforstratification.TheProjectAreaisasummationoftheareasdefiningeachstratum,j:VM0011,Version1.0SectoralScope1418Equation2-1ParameterDescriptionUnitProjectAreawheretheIFM-LtPFprojectactivitywillbeimplemented;determinedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0yearhaProjectAreawithineachstratumj,(wherej=1,2,3...Jstrata)wheretheIFM-LtPFprojectactivitywillbeimplemented;determinedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0yearhaBothandareemployedinbothSections3.2and3.3tocalculateemissionsfromdegradationduetoselectivelogging.InthecaseofexistingstratificationintheProjectArea,theProjectProponentmustreviewthestratausingthelatestavailablemapsanddatasources.IftheexistingstratificationisnotrelevantforimplementingtheGHGproject,theProjectProponentmustupdatethestrata,followingtheapproachdiscussedabove,andderiveaProjectAreamapbasedontherevisedstratification.TheProjectProponentmustdescribetheapproachusedforstratifyingtheProjectAreaandalsoincludeGISmap(s)illustratingeachstratumwithspecificdetail.Thesemapsmustberevisedifthereisanyupdateinthestratificationintheeventthatthereisachangeinthecarbonintheexistingstratum.2.2.1.2Leakagearea(s)Theleakagearea(s)isdefinedasthearea(s)towhichtheactivity(i.e.selectivelogging)hasshifted.Thisappliestolandsownedand/oroperatedbytheProjectProponentoutsidetheProjectBoundary,aswellastootherareaswithinthehostcountry(causedbymarketleakageeffects),sincebothactivityshiftingandmarketleakageareconsideredintheIFM-LtPFMethodology.Section5addressesleakageaccountinginmoredetail.TheProjectProponentmustidentifythestrataintheleakageareasimilartotheProjectAreathroughanalysingtheforestandtopographicalcharacteristicsasdescribedinSection2.2.1.1.1.Theseareasmustalsobeillustratedinthemapsoftheproject.2.2.2TemporalBoundaries2.2.2.1ProjectcreditingperiodTheprojectcreditingperiodshallbedeterminedinaccordancewithapplicableVCSrules.2.2.2.2MonitoringandreportingperiodsThemonitoringperiodcorrespondstothetimetakenbetweenonemonitoringeventandtheimmediatenextmonitoringeventforcollectingmeasurementsinthePSPsintheProjectArea,andforreviewingnon-monitoredparameters.Accordingtointernationalindustrypracticesforforestcarbonassessment,Aproject,t0Aproject,j,t0j1JAproject,t0Aproject,j,t0Aproject,t0Aproject,j,t0VM0011,Version1.0SectoralScope1419themaximumintervalbetweenonemonitoringeventandtheimmediatenext,shouldnotexceedfiveyears(Pearsonetal.,2005).Theresultsofprojectmonitoringmustbeusedtore-calculatetheemissionsassociatedwiththeprojectandthismustbeincludedinareportsubmittedforindependentverificationbyanaccreditedthirdparty.2.2.2.3HistoricalreferenceperiodThehistoricalreferenceperiodisapredeterminedamountoftimebeforetheprojectstartdate,fromwhichdatacanbetakeninordertomakeexanteestimationofnaturaldisturbancesandillegalharvestingandalsotoanalyseleakageduetoimplementationoftheproject.Afive-yeartimeframeforahistoricalreferenceperiodascloseaspossibletotheprojectstartdateshallbeusedsoastolimituncertaintyofthedatacollected.2.2.3CarbonPoolsTable2-3presentsthejustification,forinclusionorexclusionofcarbonpoolsinthepresentIFM-LtPFMethodologyinaccordancewithapplicableVCSrules.Table2-3.SummaryofcarbonpoolseligibleundertheMethodologyCarbonPoolStatusforIFM-LtPFMethodologyJustificationAbovegroundBiomass(tree#)IncludedAnticipatedtosignificantlyincreaseunderIFM-LtPFAbovegroundBiomass(non-tree)NotincludedUnlikelytodecreaseasaresultoftheprojectactivities,orincreaseduetothebaselineBelowgroundBiomassNotincludedUnlikelytodecreaseasaresultoftheprojectactivities,orincreaseduetothebaselineDeadwoodIncludedAnticipatedtosignificantlydecreaseunderIFM-LtPFLitterNotincludedUnlikelytodecreaseasaresultoftheprojectactivities,orincreaseduetothebaselineSoilNotincludedUnlikelytodecreaseasaresultoftheprojectactivities,orincreaseduetothebaselineVM0011,Version1.0SectoralScope1420CarbonPoolStatusforIFM-LtPFMethodologyJustificationHarvestedWoodProductsIncludedAnticipatedtosignificantlydecreaseunderIFM-LtPF#Treesareperennialplantsandprimarilyconstituteforestbiomass.TheFAOconsidersalllivingtreeswithaminimumdiameterof10cm(overbark)whenestimatingthebiomassinatropicalforest(Brown,1997).ThisMethodologyappliestoalltreeswithaminimumdiameteratbreastheightasspecifiedbytherelevantauthorityinthehostcountry.2.2.4GHGSourcesandSinks2.2.4.1ConsiderationofGHGsThesixprimaryGHGsthatcontributetoclimatechange(WBCSDandWRI,2004)andtheirglobalwarmingpotentials(Forsteretal.,2007)arelistedinTable2-4.Forsteretal.(2007)presentglobalwarmingpotentials(GWPs)forthreegiventimehorizons:20-year,100-yearand500-yearintheIPCC‟sFourthAssessmentReport(AR4)(IPCC,2007).TheProjectDevelopershalluseGWPofthe100-yeartimehorizonasspecifiedintheVCSrules.Table2-4presentstheGWPsforthesixprimaryGHGsfor100-yeartimehorizoninaccordancetotheIPCC‟sSecondAssessmentReport.However,hydrofluorocarbons,perfluorocarbonsandsulphurhexafluoridearesyntheticindustrialgasesandthereforenotincludedunderAgriculture,ForestryandOtherLandUse(AFOLU)methodologies.MethaneandnitrousoxidegasesarenotincludedforsoilfluxessincesoilisnotincludedasacarbonpoolinthisMethodology.However,methaneandnitrousoxidegasesareincludedforcalculatingemissionsfromfossilfueluseinmachinery,subjecttosignificance(seeSection1.2.3).ThissignificanceaccountingapproachisinlinewithIPCC‟sdefinitionofgoodpractice(Penmanetal.,2003)andtheCDM“ToolfortestingsignificanceofGHGemissionsinA/RCDMprojectactivities”(CDM-EB,2007a).Carbondioxideisincludedsinceitisintuitivelypresentinbothsourcesandsinks.Tables2-5and2-6presentpotentialsourcesandsinksforCO2,CH4andN2Oandwhetherornotasource/sinkisincludedinthebaselineandactualprojectimplementation,respectively.Table2-4.Thesixprimarygreenhousegasesthatcontributetoclimatechange(WBCSDandWRI,2004)andtheirassociatedglobalwarmingpotentialsfora100-yeartimehorizonGreenhouseGasChemicalFormulaGlobalWarmingPotential(100-yearhorizon)ConsiderationcarbondioxideCO21includedVM0011,Version1.0SectoralScope1421GreenhouseGasChemicalFormulaGlobalWarmingPotential(100-yearhorizon)ConsiderationmethaneCH421notincludedforsoilfluxes;includedforfossilfueluseinmachinerybutsubjecttosignificance.Itisalsoincludedtocalculateemissionsfromnaturaldisturbancessuchasforestfires,subjecttosignificance(seeSection1.2.3).nitrousoxideN2O310notincludedforsoilfluxes;includedforfossilfueluseinmachinerybutsubjecttosignificance.Itisalsoincludedtocalculateemissionsfromnaturaldisturbancessuchasforestfires,subjecttosignificance(seeSection1.2.3).hydrofluorocarbonsHFCsseeForsteretal.(2007)forlistofHFCsnotincludedperfluorocarbonsPFCsseeForsteretal.(2007)forlistofPFCsnotincludedsulphurhexafluorideSF623,900notincludedWhereCH4andN2Oaredeterminedtobeinsignificant(determinedfromSection1.2.3)totheoverallcalculations,andHFCs,PFCsandSF6arenotincluded,thenCO2becomesthesolecontributor.ThroughoutthisMethodology,evenifCO2becomesthesolecontributortowardGHGemissions,itisexpressedasCO2-e.VM0011,Version1.0SectoralScope1422Table2-5.Sourcesandsinksforthethreeprimarygreenhousegases(furthertoconsiderationstatedinTable2-3),carbondioxide,methaneandnitrousoxideforbaselineconsiderationintheProjectAreaGreenhouseGasSource(S)/Sink(CS)ProjectAreaBaselineConsiderationandJustificationcarbondioxideForestdegradation(S)included;carbonstockdeterminationFossilfueluseinmachinery(S)included;sinceloggingisthebaselineactivityElectricityconsumption(S)includedForestfires(S)notincludedCommerciallyharvestedfuelwood(S)includedFuelwoodgatheredfordomesticuse(S)notincludedBiomassburninginthecourseoflanduseconversion(S)notincludedEmbodiedcarboninAGB(CS)included,carbonstockdeterminationForestregrowth(CS)includedHarvestedwoodproducts(SandCS)includedDeadwood(SandCS)includedmethanePestilence(S)notincluded;unlikelyscenarioBiomassburninginthecourseoflanduseconversion(S)notincluded;unlikelyscenarioFossilfueluseinmachinery(S)includedbutsubjecttosignificance;sinceloggingisthemostlikelyscenarioDeadwood(SandCS)notincludednitrousoxideBiomassburninginthecourseoflanduseconversion(S)notincluded;unlikelyscenarioFossilfueluseinmachinery(S)includedbutsubjecttosignificance;sinceloggingisthemostlikelyscenarioVM0011,Version1.0SectoralScope1423Table2-6.Sourcesforthethreeprimarygreenhousegases(furthertoconsiderationstatedinTable2-3),carbondioxide,methaneandnitrousoxidefortheactualprojectimplementationGreenhouseGasSource^ActualProjectActivityConsiderationandJustificationcarbondioxideElectricityconsumptionincludedFlightsincludedGroundtravelincludedAerialsurveillanceincludedNaturaldisturbancessuchasforestfiresincludedmethaneElectricityconsumptionincludedbutsubjecttosignificanceFlightsincludedbutsubjecttosignificanceGroundtravelincludedbutsubjecttosignificanceAerialsurveillanceincludedbutsubjecttosignificanceNaturaldisturbancessuchasforestfiresincludedbutsubjecttosignificancenitrousoxideElectricityconsumptionincludedbutsubjecttosignificanceFlightsincludedbutsubjecttosignificanceGroundtravelincludedbutsubjecttosignificanceAerialsurveillanceincludedbutsubjecttosignificanceNaturaldisturbancessuchasforestfiresincludedbutsubjecttosignificance^Notethatfortheactualprojectimplementation,therearenosinksforGHGemissionsandassuch,theterm„sink(CS)‟isnotstated.VM0011,Version1.0SectoralScope14243BaselineAccounting3.1EstimationofEmissionsfromDegradationSection3oftheMethodologyprovidesthemethodforcalculatingemissionsforthebaselineactivity.AstheMethodologyisdevelopedforabaselineactivityoflegallysanctionedselectivelogging,theannualGHGemissionsresultingwillbeduetodegradationoftheProjectArea(),aswellasannualemissionsduetotheselectiveloggingoperations():Equation3-1ParameterDescriptionUnitAnnualtotalcarbonemissionsassociatedwiththebaselinescenarioinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eAnnualtotalcarbonemissionsassociatedwithdegradationasaresultofthebaselineactivityinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eAnnualtotalcarbonemissionsassociatedwiththebaselineactivityofselectiveloggingoperationsinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eForanIFM-LtPFproject,determinationofGHGemissionreductionsreliesoncomparingabaselinescenarioofselectiveloggingtoa“withGHGproject”scenariothatassumesalltheselectiveloggingwillcease.EmissionsfromdegradationduetothebaselineselectiveloggingoperationsaredeterminedbyconductingacarbonmassbalanceovertheentireProjectArea.InthebaselinescenariodescribedbythisMethodology,selectivelogginginvolvestheharvestingofmerchantabletreeslargerthantheminimumdiameteratbreastheightasspecifiedbytherelevantauthorityinthehostcountry.TheselectiveloggingoperationshavebeentreatedasanannualeventresultingintheremovalofaspecifiedvolumeofmerchantablelogsfromtheharvestedmerchantabletreesintheProjectArea.Theannualharvestvolume,i.e.themerchantablelogs‟volume,isobtainedfromtheinventoriedgrowingstockoftheforestbyemployingasustainableandcommonlyusedmethodinthehostcountry.Heretheterm“growingstock”impliesthetotalvolume(overbark)ofallthelivingtreesasdefinedbytherelevantauthorityinthehostcountry.ThegrowingstockdatafortheProjectAreaiseitheravailablefromtheExistingInventoryDatapathwayorMeasuredDatapathwaybeforethestartdateoftheIFM-LtPFproject.Cdegradation,tCemissions,tCbaseline,tCdegradation,tCemissions,tCbaseline,tCdegradation,tCemissions,tVM0011,Version1.0SectoralScope1425Atthesiteoftheloggingoperations,thefelledtreesareconvertedtomerchantablelogs.Thebranches,barkandfoliagearetrimmedoffthefelledtreesandleftontheforestfloor,becomingpartofthedeadwood(DW)poolanddecayingslowlyovertime.Treesthataredamagedduringtheloggingoperationsareconsideredasresidualstanddamage,andarealsoincludedascarboninputtotheDWpool.CarbonemissionsfromtheDWpoolintotheatmosphereareaccountedforbyconsideringthenetaccumulationperyearintothepool,multipliedbytherateofdecayofthedrymatter.Thesubsequentprocessingofmerchantablelogsisdependentupontheirspeciestype,diameterclassandend-productuse.Somemerchantablelogsaretakentoanon-siteprocessingplant(i.e.asawmill)resultinginsawntimber.Withfurthervalue-addedprocessing,thesesawntimbersareconvertedintolong-termharvestedwoodproducts(ltHWPs).OthermerchantablelogsareremoveddirectlyfromtheProjectArea,forexamplecommerciallyharvestedfuelwood,andareconvertedintoshort-termharvestedwoodproducts(stHWPs).Long-termHWPsaredefinedasthosewithahalf-lifeofover30years,whileshort-termHWPsarethosewithahalf-lifeofapproximately2years(IPCC,2006,Vol4,Table12-2).ItispossibleforaProjectAreatohaveacombinationofbothltHWPsandstHWPs.InthecaseofmerchantablelogsintendedtobeusedinthemanufactureofltHWPs,theproportionoflogconvertedtosawntimberisknownasthelumberrecoveryfactor.Theremainingproportionofthemerchantablelog(residuesthatincludesawdustandwoodchips)issetasidewithintheprojectboundaryandcaneitherdecayinthestockpileorbeutilisedasanenergysourceforprocessing.TheemissionsfromltHWPsarethenaccountedforbyapplyinga(delayed)rateofoxidationoftheltHWPpool.InthecaseofmerchantablelogsintendedtobeusedinthemanufactureofstHWPs,thestHWPsarefurtherclassifiedintocommerciallyharvestedfuelwoodandpaperproducts.Forcommerciallyharvestedfuelwood,immediateoxidationoccurswhenthefuelwoodisconsumed.Forpaperproducts,emissionsduetopaperproductsareaccountedforbyapplyinga(delayed)rateofoxidationofthestHWP(tobeconvertedintopaperproductsonly)pool.Overthelifetimeofloggingoperations,thepreviouslyharvestedareaswillexperienceregrowth.Thecarbonincreaseintheforestduetoregrowthmustbesubtractedfromthecarbonlostduetodegradation.Conversely,theloggingoperationsremovetreeseveryyearwhichwouldotherwiseexperiencegrowth.Thislossingrowth,definedastheamountofgrowthforegone,mustbedeterminedandaddedtotheoverallcarbonlostduetodegradation.Thetotalcarbonemissionsassociatedwithdegradationasaresultofthebaselineactivityaccountsforalloftheseprocessesandiscalculatedasfollows:Equation3-2Cdegradation,tCDWdecay,tCltHWPoxidation,tCstHWPoxidation,tCgrowth_foregone,tCregrowth,t4412VM0011,Version1.0SectoralScope1426ParameterDescriptionUnitAnnualtotalcarbonemissionsassociatedwithdegradationasaresultofthebaselineactivityinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eAnnualcarbonleavingthedeadwoodpoolduetothedecayofdeadwoodinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCAnnualcarbonduetothecombineddelayedoxidationoflong-termharvestedwoodproductsandimmediateoxidationoflong-termharvestedwoodproductsresiduesinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCAnnualcarbonduetoimmediateoxidationofshort-termharvestedwoodproducts(commerciallyharvestedfuelwood)anddelayedoxidationofshort-termharvestedwoodproducts(paperproducts)inyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCAnnualcarbonlostduetogrowthforegoneintheabovegroundbiomassintheProjectAreainyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCAnnualcarbonincreaseinthebiomassduetoregrowthfollowinglogginginyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tC44/12Theratioofmolecularweightofcarbondioxidetocarbon,seeAppendixCtCO2-etC-1ExanteestimationsofwillbemadeusingdatafromForestInventoryReport(FIR)oranequivalentdocument,ormeasureddatausingthesequenceofequationsinSection3.2.Figure3-1presentsaschematicofthedual-pathwayfordataavailabilityindeterminingasuitablemethodtoapply.Asthebaselinereferstoselectiveloggingthathasbeensanctionedbythehostcountry‟sauthority,itismostlikelythataForestInventoryReport(FIR)oranequivalentdocument,isavailable:theExistingInventoryDatapathway.Cdegradation,tCDWdecay,tCltHWPoxidation,tCstHWPoxidation,tCgrowth_foregone,tCregrowth,tCdegradation,tVM0011,Version1.0SectoralScope1427Figure3-1.SchematicofaccountingapproachbasedonavailabledataTherearetwomethodsfordeterminingthequantityofcarboninmerchantablelogsandthegrowingstockwithintheExistingInventoryDatapathway,dependingonthedetailofdataintheFIR:WooddensityplustheBiomassConversionandExpansionFactor(BCEF)methods,ortheuseoftheallometricmethod(seeSection3.2.1).ThemethodsareselectedbasedonthelevelofinformationprovidedintheFIRorequivalentdocument.ForalessdetailedFIR,whereonlystratifiedvolumeperhectareandareadataisprovided,thewooddensityplusBCEFmethodsmustbeapplied.ForamoredetailedFIR,whereinformationontreespecies,diameteratbreastheight(DBH)andheightoftreesisprovided,carboniscalculatedusingvolumeandbiomassallometricequations.FortheExistingInventoryDatapathway,priortoapplyingeitherthewooddensityandBCEForallometricmethods,theFIRmustbevalidatedconservativelyaccordingtoSection3.2.1.1.VM0011,Version1.0SectoralScope1428InthecasewherethereislegalapprovalforselectiveloggingintheProjectAreaandtheFIRoranequivalentdocumentisunderpreparationbytherelevantauthorityinthehostcountry,thereisonlyonepathwayfordeterminingthequantityofcarboninmerchantablelogsandthegrowingstock:theMeasuredDatapathway.ThispathwayisbasedonthedataobtainedfrommeasurementsinPermanentSamplePlots(PSPs)intheProjectArea(seeSection7.1.2).3.2CALCULATIONOFPRIMARYPARAMETERSINTHEPROJECTAREAThissectionfirstpresentsthemethodtovalidatetheexistinginventorydata.Then,thecalculationstoobtaintheprimaryparameters:annualcarboninmerchantablelogs,,annualcarbonintheAGBofthegrowingstock,andannualnetharvestarea,arepresented.3.2.1EXISTINGINVENTORYDATAPATHWAY3.2.1.1ValidationofexistingforestinventorydataTheExistingInventoryDatapathwayapplieswhereanexistinglegallyapprovedFIRoranequivalentdocument,presentsinventorydatanotmorethanfiveyearsold.AccordingtoPearsonetal.(2005),carbonintheabovegroundbiomass(AGB)islikelytochangeatamuchfasterratethanthecarbonstockinthesoil.ItisthusappropriatethatmonitoringoftheAGBintheforestbecarriedoutatfive-yearlyintervals.ThismonitoringperiodalsocomplieswiththecarbonverificationandcertificationoftheprojectsundertheCleanDevelopmentMechanism(CDM)policy(Pearsonetal.,2005).Furthermore,thedataintheFIRmusthavebeenobtainedfromanadequatenumberofrepresentativesampleplotsinstratasimilartotheProjectArea.ThedataintheFIR,orequivalentdocument,shouldonlybeemployedaftervalidationbytheProjectProponentusingthefollowingprocedure:Step1:StratifytheProjectAreabyfollowingtheproceduredescribedinSection2.2.1.1.1andcheckwiththeexistingstratificationtoverifywhetheritissimilartotheProjectAreastratificationornot.Step2:IftheexistingstratificationisnotsimilartotheProjectAreastratification,theexistinginventorydatamustnotbeused.ApplytheMeasuredDatapathway.Step3:IftheexistingstratificationissimilartotheProjectAreastratification,randomlyestablish6to10preliminarysampleplotsineachstratumassuggestedformeasuringthevariance(Pearsonetal.,2005)andmeasurethetreesinthesampleplotsfortheirdiameteratbreastheightandtreeheight.GuidanceonthesizeandshapeofthesampleplotstobeestablishedisdescribedinSection7.1.2.2.Step4:EstimatethecarbonintheAGBforeachforestproducttype(ifspecified)foreachstratumusingthebiomassallometricmethodaspresentedinSection3.2.1.2.Step5:CalculatethecarbonintheAGBperhectareandthe95percentconfidenceintervalforeachstratumfromthemeasureddata.A95percentconfidenceintervalisconsideredanappropriatemeasureforcarbonstock(Pearsonetal.,2005;Brown,2002).Step6:EstimatethecarbonintheAGBperhectareforeachforestproducttype(ifspecified)foreachstratumfromtheexistingdataintheFIRorequivalentdocument,asstatedinSection3.2.1.TheCmerch,tCAGB_gstock,tANHA_annual,tVM0011,Version1.0SectoralScope1429specificmethodchoseninSection3.2.1dependsonthetypeofdatapresentedintheFIRorequivalentdocument.Step7:Comparethemeanvaluesbetweenthemeasuredandexistingdata:Ifthemeanvaluefortheexistingdataiswithinthe95percentconfidenceintervalofthemeasureddata,usethelowerboundofthe95percentconfidenceinterval.Thisisaconservativeestimateofcarbonstockforthebaselinescenario.Ifthemeanvaluefortheexistingdataisgreaterthanthe95percentconfidenceinterval,usethemeanvalueofthemeasureddataasaconservativeestimateofcarbonstockforthebaselinescenario.Ifthemeanvaluefortheexistingdataislowerthanthe95percentconfidenceinterval,usetheexistingdata,whichisaconservativeestimateofcarbonstockforthebaselinescenario.IftheFIRoranequivalentdocumentcontainsinventorydatacollectedmorethanfiveyearsago,ortheinventorydatahasbeenobtainedwithoutproperstratificationandsamplingoftheProjectArea,thentheProjectProponentmusttaketheMeasuredDatapathwayforcalculatingcarbonemissionsforthebaselinescenario.3.2.1.2WherealessdetailedFIRisavailableForalessdetailedFIR,onlystratifiedvolumeperhectareandareadataisprovided.Thus,thewooddensityandBCEFmethodsmustbeappliedtocalculatecarboninmerchantablelogsandgrowingstock.3.2.1.2.1CarboninthemerchantablelogsusingwooddensitymethodA.WhereinventorydatadoesnotdistinguishbetweendifferentforestproducttypesStep1:Selectasustainableandcommonlyemployedmethodofthehostcountrytoconvertgrowingstockdatatomerchantablelogs‟volumetoberemoved.TheProjectProponentmustjustifyinthePDthatthechosenmethodisappropriate,anddemonstratethatthemethodiscommonlyemployedinthehostcountry.Step2:ApplythemethodselectedandjustifiedinStep1tostratalevelgrowingstockdata(),toobtainmerchantablelogs‟volumeperhectareinstratum,j().Step3:Choosethemostapplicablewooddensityforaforestwithcorrespondingclimateregionandecologicalzone3(seeAppendixB,SectionB.1,TableB-1).Step4:Choosethemostapplicablecarbonfraction4ofwoodfromthefollowingdatasources:(i)Nationalcarbonfraction(e.g.fromNationalGHGInventory)(ii)DefaultIPCCcarbonfractionofwoodforaforestwithcorrespondingclimatedomain(seeAppendixB,SectionB.2,TableB-2).3AsdefinedinIPCC(2006)Table4-1,p4.46,forclimateregionandecologicalzoneofforests.4ThroughouttheMethodology,whendeterminingcarbonfraction,wheremerchantablelogsarereferredto,thecarbonfractionofwoodapplies.Whereabovegroundbiomassisreferredto,thecarbonfractionofabovegroundbiomassapplies.Vgstock,j,t0Vmerch,j,t0VM0011,Version1.0SectoralScope1430Step5:Applythefollowingequationtoconvertthemerchantablelogs‟volumetocarbonperhectareinthestratum,j,usingthewooddensityandcarbonfraction:Equation3-3ParameterDescriptionUnitAveragecarbonperhectareinmerchantablelogsinstratumj,(wherej=1,2,3...Jstrata)determinedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0yeartCha-1Wooddensityforthetropicalforestwithcorrespondingclimateregionandecologicalzone(seeAppendixB)(td.m.)m-3Carbonfractionofwoodforthetropicalforest(seeAppendixB)tC(td.m.)-1Averagemerchantablelogs‟volumeperhectareinstratumj,(wherej=1,2,3...Jstrata)determinedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0yearm3ha-1Step6:ConvertthestratalevelaveragecarbonperhectaretotheaveragecarbonperhectareinthemerchantablelogsfortheentireProjectArea:Equation3-4ParameterDescriptionUnitAveragecarbonperhectareinmerchantablelogsintheProjectAreadeterminedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0yeartCha-1Averagecarbonperhectareinmerchantablelogsinstratumj,(wherej=1,2,3...Jstrata)determinedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0yeartCha-1ProjectAreawithineachstratumj,(wherej=1,2,3...Jstrata)wheretheIFM-LtPFprojectactivitywillbeimplemented;determinedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0yearhaCmerch,j,t0DCFwoodVmerch,j,t0Cmerch,j,t0DCFwoodVmerch,j,t0Cmerch,t0Cmerch,j,t0Aproject,j,t0j1JAproject,t0Cmerch,t0Cmerch,j,t0Aproject,j,t0VM0011,Version1.0SectoralScope1431ParameterDescriptionUnitProjectAreawheretheIFM-LtPFprojectactivitywillbeimplemented;determinedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0yearhaB.WhereinventorydatadistinguishbetweendifferentforestproducttypesThisMethodologyaccountsforthreeforestproducttypes:sawlog,pulplogandcommerciallyharvestedfuelwood.Thesecanbecategorisedintolong-termandshort-termharvestedwoodproductsaspresentedinAppendixB,SectionB.9,FigureB-1.Ifthegrowingstockofdifferentforestproducttypesp,perhectareatthestratalevelj,isavailable,calculatetheaveragecarboninthemerchantablelogsperhectarefortheseforestproducttypesusingthefollowingprocedure:Step1:Selectasustainableandcommonlyemployedmethodofthehostcountrytoconvertgrowingstockdatatothemerchantablelogs‟volumetoberemoved,forthedifferentforestproducttypes.TheProjectProponentmustjustifythatthechosenmethodisappropriateanddemonstratethatthemethodiscommonlyemployedinthehostcountry.Step2:ApplythemethodselectedandjustifiedinStep1,tostratalevelgrowingstockdata()toobtainthemerchantablelogs‟volumeperhectareatthestratalevelj().Step3:Choosethemostapplicablewooddensityforaforestwithcorrespondingclimateregionandecologicalzone4(seeAppendixB,sectionB.1,TableB-1).Step4:ChoosethemostapplicablecarbonfractionofwoodfromthedatasourcespresentedinStep4ofSection3.2.1.2.1,A.Step5:Applythefollowingequationtoestimateaveragecarbonperhectareoftheforestproducttypesatthestratalevel:Equation3-5ParameterDescriptionUnitAveragecarbonperhectareinmerchantablelogsofforestproducttypep,instratumj,(wherej=1,2,3...Jstrata)determinedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0yeartCha-1Wooddensityforthetropicalforestwithcorrespondingclimateregionandecologicalzone(seeAppendixB)(td.m.)m-3Carbonfractionofwoodforthetropicalforest(seeAppendixB)tC(td.m.)-1Aproject,t0Vgstock,p,j,t0Vmerch,p,j,t0Cmerch,p,j,t0DCFwoodVmerch,p,j,t0Cmerch,p,j,t0DCFwoodVM0011,Version1.0SectoralScope1432ParameterDescriptionUnitAveragemerchantablelogs‟volumeperhectareofforestproducttypep,instratumj,(wherej=1,2,3...Jstrata)determinedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0yearm3ha-1Step6:TheaveragecarbonperhectareinthemerchantablelogsfordifferentforestproducttypesintheProjectAreaiscalculatedasfollows:Equation3-6ParameterDescriptionUnitAveragecarbonperhectareinmerchantablelogsofforestproducttypep,intheProjectAreadeterminedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0yeartCha-1Averagecarbonperhectareinmerchantablelogsofforestproducttypep,instratumj,(wherej=1,2,3...Jstrata)determinedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0yeartCha-1ProjectAreawithineachstratumj,(wherej=1,2,3...Jstrata)wheretheIFM-LtPFprojectactivitywillbeimplemented;determinedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0yearhaProjectAreawheretheIFM-LtPFprojectactivitywillbeimplemented;determinedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0yearhaStep7:TheaveragecarbonperhectareinallthemerchantablelogsincludingthedifferentforestproducttypesintheProjectArea,iscalculatedasfollows:Equation3-7Vmerch,p,j,t0Cmerch,p,t0Cmerch,p,j,t0Aproject,j,t0j1JAproject,t0Cmerch,p,t0Cmerch,p,j,t0Aproject,j,t0Aproject,t0Cmerch,t0Cmerch,p,t0p1PVM0011,Version1.0SectoralScope1433ParameterDescriptionUnitAveragecarbonperhectareinmerchantablelogsintheProjectAreadeterminedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0yeartCha-1Averagecarbonperhectareinmerchantablelogsofforestproducttypep,intheProjectAreadeterminedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0yeartCha-13.2.1.2.2CarbonintheAGBofthegrowingstockusingBCEFmethodThecarbonintheAGBofthegrowingstockcanbecalculatedbyapplyingthestratum-levelBCEFmethodaspresentedinFigure3-1usingthefollowingprocedure:Step1:ChoosethemostapplicableBCEFvalueforeachstratumintheProjectAreafromthefollowingdatasources:(i)Nationalfactor(e.g.fromNationalGHGInventory)(ii)DefaultIPCCBCEFforthecorrespondingforest,climateandgrowingstockintheProjectArea(seeIPCC,2006,Chapter4,Table4.5,pp.4.51-4.52).IfafactorfortheforesttypeandtheclimaticregionoftheProjectAreaisnotfound,selectthefactorwiththeclosestcorrespondinginformation.Step2:ChoosethemostapplicablecarbonfractionintheAGBoftreesfromthedatasourcespresentedinStep4ofSection3.2.1.2.1,A.Step3:ApplythefollowingequationtoconverttheaveragegrowingstockperhectaretoaveragecarbonperhectareintheAGBinthegrowingstockinstratumj,usingthevaluesforBCEFandcarbonfraction:Equation3-8ParameterDescriptionUnitAveragecarbonperhectareintheabovegroundbiomassofthegrowingstockinstratumj,(wherej=1,2,3...Jstrata)determinedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0yeartCha-1Biomassconversionandexpansionfactorforconvertingaveragegrowingstockperhectaretocarbonintheabovegroundbiomassforstratumj,(wherej=1,2,3...Jstrata)(td.m.)m-3Carbonfractionintheabovegroundbiomassoftreesforthetropicalforest(seeAppendixB)tC(td.m.)-1Cmerch,t0Cmerch,p,t0CAGB_gstock,j,t0BCEFjCFAGBVgstock,j,t0CAGB_gstock,j,t0BCEFjCFAGBVM0011,Version1.0SectoralScope1434ParameterDescriptionUnitAveragegrowingstockperhectareforstratumj,(wherej=1,2,3...Jstrata)determinedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0yearm3ha-1Step4:ConverttheaveragecarbonperhectareintheAGBofthestrataleveltothewholeforestlevel:Equation3-9ParameterDescriptionUnitAveragecarbonperhectareintheabovegroundbiomassofthegrowingstockintheProjectAreadeterminedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0yeartCha-1Averagecarbonperhectareintheabovegroundbiomassofthegrowingstockinstratumj,(wherej=1,2,3...Jstrata)determinedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0yeartCha-1ProjectAreawithineachstratumj,(wherej=1,2,3...Jstrata)wheretheIFM-LtPFprojectactivitywillbeimplemented;determinedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0yearhaProjectAreawheretheIFM-LtPFprojectactivitywillbeimplemented;determinedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0yearha3.2.1.3WhereadetailedFIRisavailableIftheFIRoranequivalentdocumentprovidesfieldinventorydataontreespecies,diameteratbreastheight(DBH)andtreeheight(H)ofthegrowingstockatthesampleplotlevels,ineachstratumj,thevolumeallometricmethodcanbeusedforestimatingthecarboninthemerchantablelogsandintheAGBofthegrowingstock.3.2.1.3.1CarboninthemerchantablelogsusingvolumeallometricmethodUsethefollowingstepstocalculatethecarboninthemerchantablelogsapplyingthevolumeallometricmethod:A.WhereinventorydatadoesnotdistinguishbetweendifferentforestproducttypesStep1:ToestimatethegrowingstockperhectareusingDBHandtreeheightforeachtree,selectspecies-specificorgroupofspecies-specificvolumeallometricequationsfromthefollowingdatasources:Vgstock,j,t0CAGB_gstock,t0CAGB_gstock,j,t0Aproject,j,t0j1JAproject,t0CAGB_gstock,t0CAGB_gstock,j,t0Aproject,j,t0Aproject,t0VM0011,Version1.0SectoralScope1435(i)Publishedpeerreviewedstudiesforequationsfromtropicalforestswithcorrespondingclimateregionandecologicalzone(e.g.AkindeleandLemay,2006;SeguraandKanninen,2005)(ii)Publisheddocumentsfromtherelevantforestryauthorityofthehostcountry,e.g.NationalInventoryReport.Ifspecies-specificorgroupofspecies-specificvolumeallometricequationsarenotavailable,generalvolumeequationscanbeobtainedfromtherelevantforestryauthorityofthehostcountry.Forthiscase,theProjectProponentisrequiredtoverifytheapplicabilityofthisequationinthefirstmonitoringevent(seeSection7.2.4.2).Iftheequationisnotapplicable,deriveaProjectArea-specificequation(seespecificallyStep5ofSection7.2.4.2forguidelines).Step2:Applythefollowingequationtosumthevolumeofeachtreen,ofspeciesi,insampleplots,toobtaintheaveragegrowingstockinallthesampleplotswithinastratumj:Equation3-10ParameterDescriptionUnitAveragegrowingstockperhectareforstratumj,(wherej=1,2,3...Jstrata)determinedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0yearm3ha-1Volumeallometricequationasafunctionofdiameteratbreastheightandheight;determinedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0yeardimensionlessDiameteratbreastheightforindividualtreen(wheren=1,2,3...Niforspecies,i),ofspeciesi(wherei=1,2,3...Ispecies)insampleplots(wheres=1,2,3...Ssampleplot),ofstratumj,(wherej=1,2,3...Jstrata)determinedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0yearcmHeightforindividualtreen,(wheren=1,2,3...Niforspecies,i),ofspeciesi,(wherei=1,2,3...Ispecies)insampleplots,(wheres=1,2,3...Ssampleplot),ofstratumj,(wherej=1,2,3...Jstrata)determinedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0yearmTotalareaofsampleplotss,(wheres=1,2,3...Ssampleplot),instratumj,(wherej=1,2,3...Jstrata)determinedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0yearhaVgstock,j,t01As,j,t0fV(DBHn,i,s,j,t0,Hn,i,s,j,t0)n1Nii1Is1SVgstock,j,t0fV(DBHn,i,s,j,t0,Hn,i,s,j,t0)DBHn,i,s,j,t0Hn,i,s,j,t0As,j,t0VM0011,Version1.0SectoralScope1436Step3:Afterestimatinggrowingstockperhectareatthestratalevel,tocalculatethecarboninthemerchantablelogs(),applySteps2to6asshownintheSection3.2.1.2.1,A.B.WhereinventorydatadistinguishbetweendifferentforestproducttypesIfthedifferentforestproducttypesaredistinguishedbasedontheDBHofthetree,andaretobeaccountedforinGHGemissionscalculations,applythefollowingsteps:Step1:ToestimategrowingstockperhectareforeachproducttypeusingDBHandtreeheightforeachtree,selectspecies-specificorgroupofspecies-specificvolumeallometricequationsfromthedatasourcespresentedinStep1ofSection3.2.1.3.1,A.Ifspecies-specificorgroupofspecies-specificvolumeallometricequationsarenotavailable,generalvolumeequationscanbeobtainedfromtherelevantforestryauthorityofthehostcountry.Forthiscase,theProjectProponentisrequiredtoverifytheapplicabilityofthisequationinthefirstmonitoringevent(seeSection7.2.4.2).Iftheequationisnotapplicable,deriveaProjectArea-specificequation(seespecificallyStep5ofSection7.2.4.2forguidelines).Step2:Applytheallometricequationstoindividualtreen,ofspeciesi,todeterminetheaveragegrowingstockperhectareoftheforestproducttypep,inastratumj,asfollows:Equation3-11ParameterDescriptionUnitAveragegrowingstockperhectareforproducttypep,instratumj,(wherej=1,2,3...Jstrata)determinedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0yearm3ha-1Volumeallometricequationasafunctionofdiameteratbreastheightandheightfortheforestproducttypep;determinedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0yeardimensionlessDiameteratbreastheightforindividualtreen(wheren=1,2,3...Niforspecies,i),ofspeciesi,(wherei=1,2,3...Ispecies)insampleplots(wheres=1,2,3...Ssampleplot),ofstratumj,(wherej=1,2,3...Jstrata)determinedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0yearcmHeightforindividualtreen,(wheren=1,2,3...Niforspecies,i),ofspeciesi,(wherei=1,2,3...Ispecies)insampleplots,(wheres=1,2,3...Ssampleplot),ofstratumj,(wherej=1,2,3...Jstrata)determinedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0yearmCmerch,t0Vgstock,p,j,t01As,j,t0fV(DBHn,i,s,j,t0,Hn,i,s,j,t0)pn1Nii1Is1SVgstock,p,j,t0fV(DBHn,i,s,j,t0,Hn,i,s,j,t0)pDBHn,i,s,j,t0Hn,i,s,j,t0VM0011,Version1.0SectoralScope1437ParameterDescriptionUnitTotalareaofsampleplotss,(wheres=1,2,3...Ssampleplot)instratumj,(wherej=1,2,3...Jstrata)determinedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0yearhaStep3:Afterestimatinggrowingstockperhectarefordifferentforestproducttypesp,atthestratalevel,tocalculatetheaveragecarbonperhectareinthemerchantablelogs(),applySteps1to7asshownintheSection3.2.1.2.1,B.3.2.1.3.2CarbonintheAGBofthegrowingstockusingbiomassallometricmethodThecarbonintheAGBofthegrowingstockperhectarecanbecalculatedbasedonthecarbonfractionandgrowingstock.ThegrowingstockiscalculatedbyapplyingbiomassallometricequationsasafunctionofDBH,treeheight,andwooddensity.ThismethodofcarbonestimationintheAGBofthegrowingstockisalsousedforestimatingthecarboninthegrowthforegoneduetoselectiveloggingasdescribedinSection3.3.4.ThedataonDBHandtreeheightareobtainedfrommeasurementoftreesinthePSPsusingthemethodpresentedinSection7.1.2.CalculatethecarbonintheAGBofthegrowingstockapplyingthebiomassallometricmethodbyusingthefollowingprocedure:Step1:Selectspecies-specificorgroupofspecies-specificbiomassallometricequationsforestimatingtheAGBusingthetreemeasurementsfromthefollowingdatasources:(i)Publishedpeerreviewedstudiesforequationsfromtropicalforestswithcorrespondingclimateregionandecologicalzone(e.g.Pearsonetal.,2005)(ii)Publisheddocumentsfromtherelevantauthorityofthehostcountry,e.g.NationalInventoryReport.Ifspecies-specificorgroupofspecies-specificbiomassallometricequationsarenotavailable,generalbiomassallometricequationscanbeobtainedfromliteraturesuchastheIPCCGPGLULUCF(2003),Chapter4,Annex4A.1,Table4.A.1,p.4.114,orPearsonet.al.(2005),AppendixC,p.43.Forthiscase,selectthemostapplicableallometricequationforatropicalforestwithcorrespondingclimateregionandecologicalzoneandverifytheapplicabilityofthisequationinthefirstmonitoringevent(seeSection7.2.4.2).Iftheequationisnotapplicable,deriveaProjectArea-specificequation(seespecificallySteps1and5inSection7.2.4.2forguidelines).Step2:Findspecies-specificorgroupofspecies-specificwooddensitiesfromthedatasourcespresentedinAppendixB,SectionB.1.Step3:ApplythebiomassallometricequationtoconverttheDBH,treeheightandwooddensitytotheAGBofalltheindividualtreesn,ofspeciesi,inthesampleplots,ofthestratumj:Equation3-12As,j,t0Cmerch,t0BAGB_gstock,j,t01As,j,t0fB(DBHn,i,s,j,t0,Hn,s,i,j,t0,Di)n1Nii1Is1SVM0011,Version1.0SectoralScope1438ParameterDescriptionUnitAverageabovegroundbiomassofthegrowingstockinstratumj,(wherej=1,2,3...Jstrata)determinedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0year(td.m.)ha-1Biomassallometricequationasafunctionofdiameteratbreastheight,heightdeterminedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0year,andwooddensitydimensionlessDiameteratbreastheightforindividualtreen,(wheren=1,2,3...Niforspecies,i),ofspeciesi,(wherei=1,2,3...Ispecies)insampleplots,(wheres=1,2,3...Ssampleplot),ofstratumj,(wherej=1,2,3...Jstrata)determinedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0yearcmHeightforindividualtreen,(wheren=1,2,3...Niforspecies,i),ofspeciesi(wherei=1,2,3...Ispecies)insampleplots,(wheres=1,2,3...Ssampleplot),ofstratumj,(wherej=1,2,3...Jstrata)determinedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0yearmWooddensityforspecies,i;ifDiisnotavailable,thedensity(D)forthetropicalforestwiththecorrespondingclimateregionandecologicalzone(td.m.)m-3Totalareaofsampleplotss,(wheres=1,2,3...Ssampleplot),instratumj,(wherej=1,2,3...Jstrata)determinedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0yearhaNotethatforestimatingtheannualaveragegrowthforegoneintheProjectAreaduetoselectivelogging,theAGBofthemerchantabletrees(,seeEquation3-36a)areobtainedbyapplyingtheDBHandheightofthemerchantabletreesatthestratumlevel,and,respectively,toEquation3-12inmonitoringeventsm1andm2.Similarly,theannualaverageregrowthoftheAGBinthenaturallydisturbedarea(,seeEquation4-17b)isestimatedbyapplyingtheDBHandheightofalltreesand,respectively,inthesampleplotestablishedinthenaturallydisturbedareas,,toEquation3-12(seeStep5ofSection4.4).NotethatthesubscriptsinEquation3-12mustconsequentlybereplacedwiththesubscript.Step4:ConverttheaverageAGBforthestrataleveltoaverageAGBintheProjectArea:BAGB_gstock,j,t0fB(DBHn,i,s,j,t0,Hn,s,i,j,t0,Di)DBHn,i,s,j,t0Hn,i,s,j,t0DiAs,j,t0BAGB_merch,j.m1andBAGB_merch,j.m2DBHn,i,s,j,tHn,i,s,j,tBAGB_nd,j.m1andBAGB_nd,j.m2DBHtree_nd,n,i,snd,j,tHtree_nd,n,i,snd,j,tsndsndVM0011,Version1.0SectoralScope1439Equation3-13ParameterDescriptionUnitAverageabovegroundbiomassperhectareofthegrowingstockintheProjectAreadeterminedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0year(td.m.)ha-1Averageabovegroundbiomassofthegrowingstockinstratumj,(wherej=1,2,3...Jstrata)determinedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0year(td.m.)ha-1ProjectAreawithineachstratumj,(wherej=1,2,3...Jstrata)wheretheIFM-LtPFprojectactivitywillbeimplemented;determinedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0yearhaProjectAreawheretheIFM-LtPFprojectactivitywillbeimplemented;determinedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0yearhaStep5:ChoosethecarbonfractionoftheAGBfromthedatasourcespresentedinStep4ofSection3.2.1.2.1,A.Step6:ConverttheaverageAGBtoaveragecarbonperhectareintheAGBintheProjectArea:Equation3-14ParameterDescriptionUnitAveragecarbonperhectareintheabovegroundbiomassofthegrowingstockintheProjectAreadeterminedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0yeartCha-1AverageabovegroundbiomassperhectareofthegrowingstockintheProjectAreadeterminedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0year(td.m.)ha-1Carbonfractionintheabovegroundbiomassoftreesforthetropicalforest(seeAppendixB)tC(td.m.)-13.2.2MEASUREDDATAPATHWAYBAGB_gstock,t0BAGB_gstock,j,t0Aproject,j,t0j1JAproject,t0BAGB_gstock,t0BAGB_gstock,j,t0Aproject,j,t0Aproject,t0CAGB_gstock,t0BAGB_gstock,t0CFAGBCAGB_gstock,t0BAGB_gstock,t0CFAGBVM0011,Version1.0SectoralScope1440IftheProjectProponenthasobtainedapprovalforselectiveloggingfromtherelevantauthorityofthehostcountryandalsoprovidesevidenceofpreparationoftheFIRoranequivalentdocument,thendatacollectionthroughfieldmeasurementsinPSPs(seeSection7.1.2)afterproperstratification(seeSection2.2.1.1.1)isrequired.ThisapproachhasbeentermedasMeasuredDatapathwayinthisMethodology.ThedatacollectedthroughthemeasurementinthePSPsprovidesthediameteratbreastheight(DBH)andtreeheight(H)ofthegrowingstockatthesampleplotlevels,ineachstratumj.ThevolumeandbiomassallometricmethodsdescribedfortheExistingInventoryDatapathwaywherethedetailedFIRisavailable,Sections3.2.1.3.1and3.2.1.3.2,respectively,willbeusedforcalculatingthecarboninthemerchantablelogsandtheAGBinthegrowingstock.3.2.3DETERMINATIONOFANNUALHARVESTVOLUMEANDNETHARVESTAREA3.2.3.1WheretheFIRorequivalentdocumentcontainsadetailedharvestingplanInthecasewheretheFIRorequivalentdocument,containsadetailedharvestingplan,theplanmustprovideadetailedprescriptionforselectivelogging,clearlystatingthetotalvolumeofwoodtobeharvested,theannualnetharvestarea,aswellasaspecificationoftheperiodwhenselectiveloggingoperationsaretobecarriedoutintheProjectArea.Sincethedocumentislegallyapprovedbytherelevantauthorityinthehostcountry,thetotalvolumeofwoodtobeharvestedmustbeconvertedtoanannualharvestvolume()basedonthegrowingstock()andtheareawheretheselectiveloggingoccurs,i.e.,theannualnetharvestarea().Thelatter,ifknown,isthesummationoftheannualnetharvestareaatthestratumlevel().TheseparametersmustbeusedincalculatingthenetGHGemissionreductionsforthebaselinescenario.3.2.3.2WhereadetailedharvestingplanisnotavailableInthecasewheretheProjectProponenthasobtainedtheapprovalforselectiveloggingandalsoprovidesevidenceofthepreparationoftheFIRorequivalentdocument,butthisdocumentisnotcomplete,theannualharvestvolumeandannualnetharvestarea(atthestratumlevel)arecalculatedfromthegrowingstockdataobtainedfromfieldmeasurementsinthePSPs(i.e.theMeasuredDatapathway)usingthefollowingprocedure:Step1:TheProjectProponentmustselectasustainableandcommonlyemployedmethodinthehostcountryandprepareatimberharvestingplanfortheselectiveloggingintheProjectArea.TheProjectProponentmustdemonstratethattheplanisrealisticandsustainableandwillbeimplementedforselectiveloggingiftheIFM-LtPFprojectdoesnotgoahead.Thistimberharvestingplanmustprovidetheannualharvestvolume(volumeofmerchantablelogstoberemoved)()andtheannualnetharvestarea(),which,ifknown,isthesummationoftheannualnetharvestareaatthestratumlevel(),wheretheharvestingwouldoccur.Step2:Sincetheannualharvestvolumeandannualnetharvestareaarebasedonthemeasureddata,theProjectProponentmustobtainapprovalfromtherelevantauthorityinthehostcountryandalsoprovidethedocumentaryevidenceinthePD.Vmerch,tVgstock,t0ANHA_annual,tANHA_annual,j,tVmerch,tANHA_annual,tANHA_annual,j,tVM0011,Version1.0SectoralScope1441TheProjectProponentmustalsoprovideevidenceordocumentationthatthechosenmethodforpreparingthetimberharvestingplanissustainableandacommonlyemployedmethodinthehostcountry.3.2.4ANNUALTOTALCARBONINTHEMERCHANTABLELOGSTheannualtotalcarboninthemerchantablelogs,iscalculatedbymultiplyingtheaveragecarbonperhectareinthemerchantablelogsbytheannualnetharvestareaapplyingEquation3-15a.Inthecasewheretheannualnetharvestareaatthestratumlevelisknown,applyEquation3-15b:Equation3-15aEquation3-15bParameterDescriptionUnitAnnualtotalcarboninthemerchantablelogsharvestedintheProjectAreainyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCAveragecarbonperhectareinthemerchantablelogsdeterminedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0yeartCha-1Averagecarbonperhectareinthemerchantablelogsinstratumj,(wherej=1,2,3...Jstrata)determinedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0yeartCha-1AnnualnetharvestareafortheProjectAreainyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)haAnnualnetharvestareafortheProjectAreainstratumj,(wherej=1,2,3...Jstrata)inyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)ha3.2.5ANNUALTOTALCARBONINTHEABOVEGROUNDBIOMASSOFTHEGROWINGSTOCKTheannualtotalcarbonintheAGBofthegrowingstock,iscalculatedbymultiplyingtheaveragecarbonperhectareintheAGBofthegrowingstockbytheannualnetharvestareaapplyingEquation3-16a.Inthecasewheretheannualnetharvestareaatthestratumlevelisknown,applyEquation3-16b.Equation3-16aCmerch,tCmerch,tCmerch,t0ANHA_annual,tCmerch,tCmerch,j,t0ANHA_annual,j,tj1JCmerch,tCmerch,t0Cmerch,j,t0ANHA_annual,tANHA_annual,j,tCAGB_gstock,tCAGB_gstock,tCAGB_gstock,t0ANHA_annual,tVM0011,Version1.0SectoralScope1442Equation3-16bParameterDescriptionUnitAnnualtotalcarbonintheabovegroundbiomassofthegrowingstockharvestedeveryyearintheProjectAreainyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCAveragecarbonperhectareintheabovegroundbiomassofthegrowingstockdeterminedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0yeartCha-1Averagecarbonperhectareintheabovegroundbiomassofthegrowingstockinstratumj,(wherej=1,2,3...Jstrata)determinedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0yeartCha-1AnnualnetharvestareafortheProjectAreainyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)haAnnualnetharvestareafortheProjectAreainstratumj,(wherej=1,2,3...Jstrata)inyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)ha3.3CARBONCHANGESDUETODEGRADATIONUNDERTHEBASELINESCENARIOTheprimaryparameters,annualnetharvestarea,,annualtotalcarboninthemerchantablelogs,,andannualtotalcarbonintheAGBofthegrowingstock,,calculatedinSection3.2,arethenusedtocalculateeachofthefiveparametersofEquation3-2todeterminetheannualcarbonlostfromdegradation.Theproceduresforcalculatingthesefiveparametersareprovidedinthesubsequentsections.3.3.1NETCARBONFROMTHEDEADWOODPOOLTheDWpoolcontainscarbonincoarsewoodydebris,standingdeadtreesandotherdeadmaterialnotincludedinthelitterorsoilcarbonpools(IPCC,2006,p.4.73).TheMethodologyassumesthattheproportionofDWaccumulationtotheDWpoolandrateofdecayfromthepoolduetonaturalmortalityanddisturbancewillbethesameforboththebaselineandwith-projectscenarios,andisthereforenotincluded.InthisMethodology,forthebaselinescenarioofselectivelogging,theadditions(alsoreferredtoasinputs)tothecarbonintheDWpoolare:(i)Carbonfromresidualstanddamage(ii)Carboninbranchesandtrimmings.CAGB_gstock,tCAGB_gstock,j,t0ANHA_annual,j,tj1JCAGB_gstock,tCAGB_gstock,t0CAGB_gstock,j,t0ANHA_annual,tANHA_annual,j,tANHA_annual,tCmerch,tCAGB_gstock,tVM0011,Version1.0SectoralScope1443ThecarbonfromDWisafunctionofthe(delayed)decayofthecombinedinputstotheDWpoolandisgivenby:Equation3-17ParameterDescriptionUnitAnnualcarbonleavingthedeadwoodpoolduetothedecayofdeadwoodinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCAnnualtotalcarboninputtothedeadwoodpoolinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCRateofdecayofthedeadwoodpoolyr-1Theannualtotalcarboninputintothedeadwoodpooliscalculatedasfollows:Equation3-18ParameterDescriptionUnitAnnualtotalcarboninputtothedeadwoodpoolinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCAnnualcarbonintheresidualstanddamageinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCAnnualcarboninbranchesandtrimmingsleftoverfromharvestinginyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tC3.3.1.1CarbonfromresidualstanddamageIntheprocessofselectivelogging,theresidualstandisdamagedeitherbybeingknockeddown,snappedoff,orduetolimbbreakage.Thefractionofresidualstandthatisdamagedovertheamountoftimberthatisextracted,isdenotedasthefactorforresidualstanddamage,.Dataoncarbonimpactfromdamagetoresidualstandbyselectiveloggingisverylimited(Brownet.al.,2005).Brownetal.(2005)compiledthefactorforresidualstanddamage(damageoverextracted)forvariouscountriesandrevealedastrongrelationshipwithcommercialloglength(Brownetal.,2005,Figure11,p.16).TheresultshavebeensummarisedinthisMethodologyinTableB-3inAppendixB.Thecarbonfromresidualstanddamagecanbedeterminedusingthefollowingprocedure:CDWdecay,tf(CDWint,kdecay)CDWdecay,tCDWin,tkdecayCDWin,tCRSD,tCbranch_trim,tCDWin,tCRSD,tCbranch_trim,tfRSDVM0011,Version1.0SectoralScope1444Step1:DeterminetheaveragecommercialloglengthbasedontheinventorydatafortheProjectArea.Step2:Selectanappropriateandconservativevalueforfrompublicationsspecifictothehostcountry.TableB-3,SectionB.3,AppendixBisprovidedasaguidancetodetermineasuitable.Step3:Applythefollowingequationtocalculatecarbonintheresidualstanddamage:Equation3-19ParameterDescriptionUnitAnnualcarbonintheresidualstanddamageinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCFactorforresidualstanddamage,basedonthefractionofquantityofcarbondamagedintheresidualstandtothequantityofcarbonintotalmerchantablelogsharvesteddimensionlessAnnualtotalcarboninmerchantablelogsharvestedintheProjectAreainyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)(SeeEquations3-15aand3-15b)tC3.3.1.2CarboninbranchesandtrimmingsInthebaselinescenariowhereselectiveloggingoccurs,treesaretrimmedoftheirbranches,twigs,andfoliagetoproducethemerchantablelogsintendedforprocessing.Branchesandtrimmingsisthetermusedtodenotethetrimmedcomponentssuchaslargeandsmallbranches,whosecarbonwillbetransferredintotheDWpool.Biomassfromthetwigs,foliageandbarkaretransferredintothelitterpool.InaccordancewiththeVCSrules,litterisnotincludedasacarbonpoolinthisMethodology.Hence,onlythefractionofbranchesandtrimmingsareaccountedforinthedeadwoodpool.Todeterminethisfraction,abranch-trimfactor,,isemployed(seeAppendixA).ThefactorcanbederivedfromtheratioofbiomassoflargebranchesandcoarsewoodydebrisoverthetotalAGBoftrees.Determinethecarboninbranchesandtrimmingsusingthefollowingprocedure:Step1:Findabranch-trimfactor,,frompublishedpeerreviewedliteraturefortropicalforestsofcorrespondingclimatedomainandecologicalzone.Ifthebranch-trimfactorobtainedfromtheliteraturedoesnotmatchtheforesttypeandclimaticregionoftheProjectArea,itwillrequirevalidationviathestepsoutlinedinSection7.2.4.3.Ifabranch-trimfactorcanbeobtainedfromtheliterature,proceedtoStep2.Ifabranch-trimfactorcannotbeobtainedfromtheliterature,itisconservativetosetequaltozeroinEquation3-20.CarbonfrombranchesandtrimmingsisthusomittedintheexantecalculationandmustbeincludedwhenafRSDfRSDCRSD,tfRSDCmerch,tCRSD,tfRSDCmerch,tfbranch_trimfbranch_trimCbranch_trim,tVM0011,Version1.0SectoralScope1445project-specificcanbederivedfrommeasurementsinthefirstmonitoringevent(Section7.2.4.3).Step2:ApplyinthefollowingequationtoestimatethecarbonfrombranchesandtrimmingstransferringintotheDWpool:Equation3-20ParameterDescriptionUnitAnnualcarboninbranchesandtrimmingsleftoverfromharvestinginyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCAnnualtotalcarboninthemerchantablelogsharvestedintheProjectAreainyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCThefractionofbranchesandtrimmingsintheabovegroundbiomassremainingaftertrimmingofthemerchantablelogstransferredtotheDWpooldimensionlessNote:itisconservativetousetodetermine.3.3.1.3CarbonemissionsduetodecayoftheDWpoolStep1:Selectavaluefortherateofdecay,,frompublishedpeerreviewedliterature,verifiedpublicationorequivalentdocument,fortropicalforestsofcorrespondingclimatedomainandecologicalzone(e.g.Delaneyetal.,1998)forthefirstyearoftheproject.Ifarangeofvaluesfortherateofdecayisprovidedintheliterature,theProjectProponentisrequiredtoprovidejustificationforthechoiceoftherateofdecayinthePD.Ifnojustificationcanbederived,itisconservativetoselectthelowerendoftherange.Ifinthesubsequentmonitoringevents,theProjectProponentdecidestoestimatetheprojectspecificrateofdecay,thenrefertotheguidanceproposedbyScottandBrown(2008).Step2:DeterminetheannualfractionofDWthatwouldremainintheDWpoolinyeart(yearselapsedsincethestartoftheIFM-LtPFprojectactivity)byapplyingtherateofdecayinthefollowingequation:Equation3-21fbranch_trimfbranch_trimCbranch_trim,tfbranch_trimCmerch,tCbranch_trim,tCmerch,tfbranch_trimCmerch,tCbranch_trim,tkdecayFDW_remain,tekdecaytVM0011,Version1.0SectoralScope1446ParameterDescriptionUnitAnnualfractionofcarboninthedeadwoodpoolthatwouldremaininthedeadwoodpoolinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)afterapplyingtherateofdecaydimensionlessRateofdecayofthedeadwoodpoolyr-11,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivityyrStep3:CalculatethecarbonremainingandaccumulatingintheDWpoolinyeart(yearselapsedsincethestartoftheIFM-LtPFprojectactivity).Forafixedannualharvestvolumeassetoutintheharvestingplanorequivalentdocument,implyingafixedinputintothedeadwoodpool,useEquation3-22a.Foravariableannualharvestvolumeassetoutintheharvestingplanorequivalentdocument,implyingavariableinputintothedeadwoodpool,useEquation3-22b.WhereEquation3-22bistobeused,seeAppendixDforanexampleapplication.Equation3-22aEquation3-22bParameterDescriptionUnitCumulativecarbonremaininginthedeadwoodpoolinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCAnnualfractionofcarboninthedeadwoodpoolthatwouldremaininthedeadwoodpoolinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)afterapplyingtherateofdecaydimensionlessAnnualtotalcarboninputtothedeadwoodpoolinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCStep4:CalculatethecumulativeoverallemissionsleavingtheDWpoolinyeart(yearselapsedsincethestartoftheIFM-LtPFprojectactivity):Equation3-23FDW_remain,tkdecaytCDWpool,tFDW_remain,tCDWin,tt1tCDWpool,tFDW_remain,t(t1)CDWin,tFDW_remain,t(t2)CDWin,t1FDW_remain,t(t3)CDWin,t2KFDW_remain,t(tt)CDWin,t(t1)CDWpool,tFDW_remain,tCDWin,tCDWout,tCDWin,tCDWpool,tt1tVM0011,Version1.0SectoralScope1447ParameterDescriptionUnitCumulativecarbonleavingthedeadwoodpoolandemittedintotheatmosphereinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCAnnualtotalcarboninputtothedeadwoodpoolinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCCumulativecarbonremaininginthedeadwoodpoolinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCStep5:TocalculatetheannualemissionsleavingtheDWpoolinyeart(yearselapsedsincethestartoftheIFM-LtPFprojectactivity),applythefollowingequation:Equation3-24ParameterDescriptionUnitAnnualcarbonleavingthedeadwoodpoolduetothedecayofdeadwoodinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCCumulativecarbonleavingthedeadwoodpoolandemittedintotheatmosphereinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCCumulativecarbonleavingthedeadwoodpoolandemittedintotheatmosphereinyeart-1,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCNotethatforthefirstyearoftheprojectwheret=1,Equation3-24showsthattheannualcarbonleavingtheDWpool()isequaltothecumulativecarbonleavingtheDWpool().3.3.2NetCarbonfromtheLong-termHWPPoolLong-termHWPs(ltHWPs)arethosewithahalf-lifeofover30yearswhileproductswithahalf-lifeoftwoyearsorlessareknownasshort-termHWPs(stHWPs)(IPCC,2006,Chapter12,Section12.2.2,Table12-2).TheapproachtakenforltHWPsisforanalysistobebasedondomesticharvestvolumeandnotdomesticconsumptionvolume.InthecasewhereaFIRisnotavailable(seeFigure3-1)andwherenootherinformationisavailabletodeterminewhatquantityorratioofthetotalmerchantablelogs‟volumeCDWout,tCDWin,tCDWpool,tCDWdecay,tCDWout,tCDWout,t1CDWdecay,tCDWout,tCDWout,t1CDWdecay,tCDWout,tVM0011,Version1.0SectoralScope1448isclassedasstHWPs,thenitisconservativetoassumethatallthemerchantablelogs‟volumegoesintotheltHWPpool.InordertoapplythisMethodology,dataavailabilitywithrespecttothefollowingparametersmustbedetermined:•averagecarbonintheltHWPs•lumberrecoveryfactor(seeAppendixB)•ltHWPrateofoxidation(seeAppendixB).ThecarbonfromltHWPsisacombinationoftheimmediateoxidationofltHWPresiduesasaresultoftimberprocessing,andthedelayedoxidationofltHWPs,asgivenby:Equation3-25ParameterDescriptionUnitAnnualcarbonduetothecombineddelayedoxidationoflong-termharvestedwoodproductsandimmediateoxidationoflong-termharvestedwoodproductsresiduesinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCAnnualcarbonduetotheimmediateoxidationoflong-termharvestedwoodproductsresiduesinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCAnnualnetcarbonduetothedelayedoxidationofthelong-termharvestedwoodproducts,leavingthelong-termharvestedwoodproductspoolinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tC3.3.2.1Carbonduetolong-termHWPresiduesLong-termHWPresiduesareknowntobecomprisedofsawdust,trimmingsandotherconversionlosses(Enters,2001).Thelumberrecoveryfactorformerchantablelogprocessingisrequiredinordertodeterminethecarbonassociatedwithsawmillresidues.Thiscanbedeterminedusingthefollowingprocedure:Step1:Selectalumberrecoveryfactorfromthefollowingdatasources:(i)NationallumberrecoveryfactorsinrelevantliteraturesuchasFAO(2004).VariouscountryspecificlumberrecoveryfactorshavebeencompiledinTableB-4inAppendixB;or(ii)Ifanationallumberrecoveryfactorisnotavailable,selectalumberrecoveryfactorfromacountrythatusessimilartimberprocessingtechnologytothatoftheproject‟shostcountry.CltHWPoxidation,tCltHWPresidues,tCltHWPnet_out,tCltHWPoxidation,tCltHWPresidues,tCltHWPnet_out,tVM0011,Version1.0SectoralScope1449Ifarangeforthelumberrecoveryfactorisprovided,theProjectProponentisrequiredtoprovidejustificationforthechoiceoflumberrecoveryfactorinthePD.Ifnojustificationcanbederived,itisconservativetoselecttheupperendoftherange.Step2:Assumingthatthesawmillresiduesundergooxidationinthesameyearofprocessing,annualemissionsduetoltHWPresiduesaredeterminedby:Equation3-26ParameterDescriptionUnitAnnualcarbonduetotheimmediateoxidationoflong-termharvestedwoodproductsresiduesinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCAveragecarbonperhectareinmerchantablelogsofforestproducttypep=sawlog,intheProjectAreadeterminedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0yeartCha-1LumberrecoveryfactorforproportionofmerchantablelogconvertedtoharvestedwoodproductdimensionlessAnnualnetharvestareafortheProjectAreainyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)ha3.3.2.2Carbonduetooxidationofthelong-termHWPpoolCalculatetheaverageamountofcarbonexpectedtobetransferredintotheHWPpooleachyearandstoredoverthelongterm.Woodharvestedforproductionofpaperproducts(andthelike)andcommerciallyharvestedfuelwood,suchasfrompulplog(seeHWPs-stHWPsinAppendixA),arenotconsideredtobeltHWPsandarethereforeaccountedinSection3.3.3instead.AccordingtotheIPCC‟sdefaultvaluesforoxidationofspecificltHWPs(IPCC,2006,Chapter12)itisnoteworthythattheoxidationfactorsamongtheseltHWPsdonotvarygreatly.Hence,itisassumedthatasingleoxidationfactorappliedtoltHWPswouldsuffice.Step1:SelectalumberrecoveryfactorfromthedatasourcespresentedinStep1ofSection3.3.2.1.Step2:MultiplythecarbonintheforestproducttypesuchassawlogthatcontributestotheltHWPs(derivedinEquation3-6)bythelumberrecoveryfactorandannualnetharvestarea,asgivenby:Equation3-27CltHWPresidues,tCmerch,p,t0(1flumber_recovery)ANHA_annual,tCltHWPresidues,tCmerch,p,t0flumber_recoveryANHA_annual,tCltHWPin,tCmerch,p,t0flumber_recoveryANHA_annual,tVM0011,Version1.0SectoralScope1450ParameterDescriptionUnitAnnualcarboninputtothelong-termharvestedwoodproductspoolfromsawloginyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCAveragecarbonperhectareinmerchantablelogsofforestproducttypep,intheProjectAreadeterminedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0yeartCLumberrecoveryfactorforproportionofmerchantablelogconvertedtoharvestedwoodproductdimensionlessAnnualnetharvestareafortheProjectAreainyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)haStep3:Findanappropriaterateofcarbonoxidation5()specifictoltHWPs.Forexample,ifitisknownthattheltHWPsaretobemadeintosawnwoodfurniture(i.e.solidwoodproductsfromsawlogs),thentherateofcarbonoxidationshould(closely)reflectsolidwoodproducts.TheIPCC(2006)havedefaultratesofoxidationforHWPcategories(seeAppendixB,SectionB.5,TableB-5).Ifarangeofvaluesforthecarbonrateofoxidationisprovidedintheliterature,theProjectProponentisrequiredtoprovidejustificationfortherateofcarbonoxidationinthePD.Ifnojustificationcanbederived,itisconservativetoselectthelowerendoftherange.Step4:DeterminetheannualfractionofltHWPthatwouldremainintheltHWPpoolinyeart(yearselapsedsincethestartoftheIFM-LtPFprojectactivity)byapplyingtherateofoxidationinthefollowingequation:Equation3-28ParameterDescriptionUnitAnnualfractionofltHWPthatwouldremainintheltHWPpoolinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)afterapplyingtherateofoxidationdimensionless5Theterm“rateofcarbonoxidation”issynonymouswith“rateofdecay”.HoweverinthisMethodology,forimprovedclaritytodifferentiatebetweentheratesusedbetweenlong-termharvestedwoodproducts(ltHWPs)anddeadwood(DW),“rateofcarbonoxidation”isusedinassociationwithltHWPswhile“rateofdecay”isusedinassociatedwithDW.CltHWPin,tCmerch,p,t0flumber_recoveryANHA_annual,tkltHWP_oxFltHWP_remain,tekltHWP_oxtFltHWP_remain,tVM0011,Version1.0SectoralScope1451ParameterDescriptionUnitRateofoxidationforlong-termharvestedwoodproductsyr-11,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivityyrStep5:CalculatethecarbonremainingandaccumulatingintheltHWPpoolinyeart(yearselapsedsincethestartoftheIFM-LtPFprojectactivity).Forafixedannualharvestvolumeassetoutintheharvestingplanorequivalentdocument,implyingafixedinputintotheltHWPpool,useEquation3-29a.Foravariableharvestvolumeassetoutintheharvestingplanorequivalentdocument,implyingavariableinputintotheltHWPpool,useEquation3-29b.WhereEquation3-29bistobeused,seeAppendixDforanexampleapplication:Equation3-29aEquation3-29bParameterDescriptionUnitCumulativecarbonremainingintheltHWPpoolinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCAnnualfractionofltHWPthatwouldremainintheltHWPpoolinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)afterapplyingtherateofoxidationdimensionlessAnnualcarboninputtothelong-termharvestedwoodproductspoolfromsawloginyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCStep6:CalculatethecumulativeoverallemissionsleavingtheltHWPpoolinyeart(yearselapsedsincethestartoftheIFM-LtPFprojectactivity):Equation3-30kltHWP_oxtCltHWPpool,tFltHWP_remain,tCltHWPin,tt1tCltHWPpool,tFltHWP_remain,t(t1)CltHWPin,tFltHWP_remain,t(t2)CltHWPin,t1FltHWP_remain,t(t3)CltHWPin,t2KFlHWP_remain,t(tt)CltHWPin,t(t1)CltHWPpool,tFltHWP_remain,tCltHWPin,tCltHWPout,tCltHWPin,tCltHWPpool,tt1tVM0011,Version1.0SectoralScope1452ParameterDescriptionUnitCumulativecarbonleavingtheltHWPpoolandemittedintotheatmospherefromyeart=1toyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCAnnualcarboninputtothelong-termharvestedwoodproductspoolfromsawloginyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCCumulativecarbonremainingintheltHWPpoolinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCStep7:TocalculatetheannualemissionsleavingtheltHWPpoolintyearselapsedsincethestartoftheIFM-LtPFprojectactivity,applythefollowingequation:Equation3-31ParameterDescriptionUnitAnnualnetcarbonduetothedelayedoxidationofthelong-termharvestedwoodproducts,leavingthelong-termharvestedwoodproductspoolinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCCumulativecarbonleavingtheltHWPpoolandemittedintotheatmosphereinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCCumulativecarbonleavingtheltHWPpoolandemittedintotheatmosphereinyeart-1,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCNote,thatforthefirstyearoftheprojectwheret=1,Equation3-31showsthattheannualcarbonleavingtheltHWPpool()isequaltothecumulativecarbonleavingtheltHWPpool().3.3.3NetCarbonfromtheShort-termHWPPoolCertainmerchantablelogsaredestinedtobeconvertedintoHWPswithahalf-lifeoftwoyearsorless.Thesearereferredtohereasshort-termHWPs(stHWPs;IPCC,2006,Chapter12,Section12.2.2,p.12.17).InthisMethodology,thetwoforestproducttypescontributingtostHWPsarepulplog(forpaperproducts)andcommerciallyharvestedfuelwood.SimilartoltHWPs,theapproachtakenforstHWPsisforanalysistobebasedondomesticharvestvolumeandnotdomesticconsumptionvolume.CltHWPout,tCltHWPin,tCltHWPpool,tCltHWPnet_out,tCltHWPout,tCltHWPout,t1CltHWPnet_out,tCltHWPout,tCltHWPout,t1CltHWPnet_out,tCltHWPout,tVM0011,Version1.0SectoralScope1453Inthecasewhereinventorydatadonotdistinguishtheforestproducttypesand/orwherenootherinformationisavailabletodeterminewhatquantityorratioofthetotalmerchantablelogs‟volumeisclassedintostHWPs,thenitisconservativetoassumethatallthemerchantablelogs‟volumegoesintotheltHWPpool.TheannualcarbonfromstHWPsisacombinationoftheimmediateoxidationofcommerciallyharvestedfuelwoodanddelayedoxidationofpaperproducts,orsolelyfromcommerciallyharvestedfuelwood,orsolelyfrompaperproducts.Equation3-32providestheannualcarbonfromthecombinationofbothstHWPs.Inthecasewhereoxidationisattributabletoonlycommerciallyharvestedfuelwood,theparameterforpaperproductsbecomeszero-andviceversa.VM0011,Version1.0SectoralScope1454Equation3-32ParameterDescriptionUnitAnnualcarbonduetoimmediateoxidationofshort-termharvestedwoodproducts(commerciallyharvestedfuelwood)anddelayedoxidationofshort-termharvestedwoodproducts(paperproducts)inyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCAnnualcarbonduetoimmediateoxidationofshort-termharvestedwoodproducts(commerciallyharvestedfuelwood)leavingtheprojectboundaryinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCAnnualnetcarbonduetothedelayedoxidationofshort-termharvestedwoodproducts(paperproducts),leavingtheshort-termharvestedwoodproductspoolinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tC3.3.3.1Carboninshort-termHWPs-commerciallyharvestedfuelwoodForcommerciallyharvestedfuelwood,immediateoxidationoccursuponconsumption-andthereforeisregardedasan(immediate)emissionintheyearofharvest.ThecarbonfromstHWPsisthusconsideredfromtheimmediateoxidationofthestHWPmerchantablelogs.TheannualcarbonfromstHWPs-commerciallyharvestedfuelwood,iscalculatedbymultiplyingtheaveragecarbonperhectareinthecommerciallyharvestedfuelwoodwiththeannualnetharvestarea:Equation3-33ParameterDescriptionUnitAnnualcarbonduetoimmediateoxidationofshort-termharvestedwoodproducts(commerciallyharvestedfuelwood)leavingtheprojectboundaryinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCAveragecarbonperhectareinmerchantablelogsofforestproducttypep=pulplog,intheProjectAreadeterminedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0yeartCha-1AnnualnetharvestareafortheProjectAreainyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)haCstHWPoxidation,tCstHWPcomm_FW,tCstHWPnet_out,tCstHWPoxidation,tCstHWPcomm_FW,tCstHWPnet_out,tCstHWPcomm_FW,tCmerch,p,t0ANHA_annual,tCstHWPcomm_FW,tCmerch,p,t0ANHA_annual,tVM0011,Version1.0SectoralScope14553.3.3.2Carboninshort-termHWPs-pulplogPulplogsaremainlyusedforpaperproducts.Forpaperproducts,theIPCC(2006)suggeststousea(delayed)rateofoxidation(seeAppendixB).Hence,usethefollowingprocedure:Step1:Findanappropriaterateofcarbonoxidation()specifictopaperproducts(orseeAppendixB).Ifarangeofvaluesfortherateofoxidationisprovidedintheliterature,theProjectProponentisrequiredtoprovidejustificationforthechoiceoftherateofoxidationinthePD.Ifnojustificationcanbederived,itisconservativetoselectthelowerendoftherange.Thenapplythefollowingequation:Equation3-34ParameterDescriptionUnitAnnualfractionofstHWPthatwouldremaininthestHWPpoolinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)afterapplyingtherateofoxidationdimensionlessRateofoxidationforshort-termharvestedwoodproductsyr-11,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivityyrStep2:Applythefollowingequation(notethisismodifiedfromEquation3-33becausepaperproductsarenotimmediatelyoxidized,thesegointothestHWPpool).Equation3-35ParameterDescriptionUnitAnnualcarboninputtotheshort-termharvestedwoodproductspool,forthespecificforestproducttype,pulplog,inyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCAveragecarbonperhectareinmerchantablelogsofforestproducttypep=pulplog,intheProjectAreadeterminedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0yeartCha-1AnnualnetharvestareafortheProjectAreainyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)haStep3:ApplyEquations3-29aor3-29bthroughto3-31,changingthedescriptions(andsubscripts)fromltHWPtostHWPtocalculatetheannualnetcarbonduetothedelayedoxidationofthestHWPs,leavingthestHWPpoolintyearselapsedsincestartoftheIFM-LtPFprojectactivity.kstHWP_oxFstHWP_remain,tekstHWP_oxtFstHWP_remain,tkstHWP_oxtCstHWPin,tCmerch,p,t0ANHA_annual,tCstHWPin,tCmerch,p,t0ANHA_annual,tVM0011,Version1.0SectoralScope14563.3.4CARBONINTHEGROWTHFOREGONEDUETOSELECTIVELOGGINGTheselectiveloggingoperationsremovesaprescribedamountofmerchantablelogsafterharvestingoftheselectedmerchantabletreesfromtheProjectAreaunderthebaselinescenario.Consequently,thecarbonthatwouldhavebeenstoredfromtheannualgrowthinthesetreesisforfeited.Thecarbonlosthereisdenotedascarboninthegrowthforegone,,andthiscanbecalculatedusingthefollowingprocedure:Step1:CalculatetheAGBinmerchantabletreesfromheightanddiametermeasurementsofallthemerchantabletreesinthePSPsatthestratumlevelfortwoconsecutivemonitoringeventsusingthemethodpresentedinSection3.2.1.3.2.TheprocedureforestablishingPSPsandtreemeasurementsaredescribedinSection7.1.2.ThemethodtodeterminetheannualgrowthparameterisbasedonthestockchangemethodpresentedintheapprovedCDMMethodologyforAfforestationandReforestationprojectactivities(CDM-EB,2009,p.8).ThedifferencebetweentheAGBofmerchantabletreesfromdataobtainedinthePSPmeasurementsatthestratumlevelfortwoconsecutivemonitoringeventsisdeterminedanddividedbythemonitoringperiod,i.e.thetimeintervaltakenbetweenthetwomonitoringevents(inyears),atthestratumlevelusingEquation3-36aand,fortheProjectAreausingEquation3-36b:Equation3-36aEquation3-36bParameterDescriptionUnitAveragegrowthperhectareperyearintheabovegroundbiomassinthemerchantabletreesintheProjectAreainstratumj,(wherej=1,2,3...Jstrata)inyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)(td.m.)ha-1yr-1AverageabovegroundbiomassofthemerchantabletreesintheProjectAreainstratumj,(wherej=1,2,3...Jstrata)inyear,m2-whencurrentmonitoringeventoccurs(td.m.)ha-1AverageabovegroundbiomassofthemerchantabletreesintheProjectAreainstratumj,(wherej=1,2,3...Jstrata)inyear,m1-whenprecedingmonitoringeventoccurred(td.m.)ha-1Cgrowth_foregone,tGgrowth_foregone,j,tBAGB_merch,j,m2BAGB_merch,j,m1mGgrowth_foregone,tGgrowth_foregone,j,tAproject,j,t0j1JAproject,t0Ggrowth_foregone,j,tBAGB_merch,j,m2BAGB_merch,j,m1VM0011,Version1.0SectoralScope1457ParameterDescriptionUnitMonitoringperiod,thetimetakenbetweentwoconsecutivemonitoringeventsyrAveragegrowthperhectareperyearintheabovegroundbiomassinthemerchantabletreesintheProjectAreainyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)(td.m.)ha-1yr-1ProjectAreawithineachstratumj,(wherej=1,2,3...Jstrata)wheretheIFM-LtPFprojectactivitywillbeimplemented;determinedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0yearhaProjectAreawheretheIFM-LtPFprojectactivitywillbeimplemented;determinedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0yearhaStep2:CalculatethecarboninthegrowthforegoneduetotheselectiveloggingusingEquation3-37a.Inthecasewheretheannualnetharvestareaatthestratumlevelisknown,applyEquation3-37b:Equation3-37aEquation3-37bParameterDescriptionUnitAnnualcarbonlostduetogrowthforegoneintheabovegroundbiomassintheProjectAreainyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCAveragegrowthperhectareperyearintheabovegroundbiomassinthemerchantabletreesintheProjectAreainyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)(td.m.)ha-1yr-1AveragegrowthperhectareperyearintheabovegroundbiomassinthemerchantabletreesintheProjectAreainstratumj,(wherej=1,2,3...Jstrata)inyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)(td.m.)ha-1yr-1mGgrowth_foregone,tAproject,j,t0Aproject,t0Cgrowth_foregone,tCFAGBGgrowth_foregone,tANHA_annual,tt1tCgrowth_foregone,tCFAGBGgrowth_foregone,j,tANHA_annual,j,tt1tj1JCgrowth_foregone,tGgrowth_foregone,tGgrowth_foregone,j,tVM0011,Version1.0SectoralScope1458ParameterDescriptionUnitCarbonfractionintheabovegroundbiomassoftreesforthetropicalforest(seeAppendixB)tC(td.m.)-1AnnualnetharvestareafortheProjectAreainstratumj,(wherej=1,2,3...Jstrata)inyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)ha3.3.5CarbonintheRegrowthafterSelectiveLoggingItisgoodpracticetoaccountforregrowthinthegapsfollowinglogging.TheIPCC(2006)suggestedapproachforestimatingtheregrowthisbasedonthemeanannualgrowthintheAGBafterlogging,denotedhereas.ThisMethodologyappliesaconservativeapproachforareaofregrowthbyconsideringthattheentireannualnetharvestareawouldpermitregrowtheachyear.TheannualnetharvestareafortheselectiveloggingiscalculatedinSection3.2.3.Determinecarbonintheregrowthafterselectiveloggingusingthefollowingprocedure:Step1:Selectthefactorfortheannualaveragegrowthintheabovegroundbiomassafterselectivelogging,oratime-dependentgrowthmodelfromthefollowingsources:(i)Localgrowthtablesorgrowthmodels(ii)Nationalgrowthtablesorgrowthmodels(e.g.,fromNationalGHGInventory)(iii)Publishedpeerreviewedstudiesforgrowthmodels/tablesfrompreviousloggedtropicalforestswithcorrespondingage,climateregionandecologicalzone.Step2:Determinethecarbonduetoregrowthbymultiplyingtheannualnetharvestarea(s)andtheaveragegrowthrateperhectareperyearbythecarbonfraction:Equation3-38ParameterDescriptionUnitAnnualcarbonincreaseinthebiomassduetoregrowthfollowinglogginginyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCAverageregrowthperhectareperyearoftheabovegroundbiomassafterlogginginyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)(td.m.)ha-1yr-1CFAGBANHA_annual,j,tGregrowth,tCregrowth,tGregrowth,tCFAGBANHA_annual,tt1tCregrowth,tGregrowth,tVM0011,Version1.0SectoralScope1459ParameterDescriptionUnitCarbonfractionintheabovegroundbiomassoftreesforthetropicalforest(seeAppendixB)tC(td.m.)-1AnnualnetharvestareafortheProjectAreainyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)^^ha3.4BaselineActivityEmissionsAnumberofemissionsourcesareassociatedwiththeimplementationofthebaseline(selectivelogging)activity.Omissionofanyoralloftheassociatedemissionsourcesisconservative.TheProjectProponentintendingtocalculatebaselineactivityemissionsmustselectdatarequiredinthecalculationsonaconservativebasis.Thestagesofoperationfortimberharvestinginclude,butarenotlimitedto,theprocessstepsoutlinedinFigure3-2below:Figure3-2.AnoutlineoftimberharvestingoperationsandtheassociatedemissionsourcesThetotalemissionsduetothebaselineactivity()isdeterminedfromthesummationofalltheemissionsourcespresentedinFigure3-2usingthefollowingequation:Equation3-39ParameterDescriptionUnitAnnualtotalcarbonemissionsassociatedwiththebaselineactivityofselectiveloggingoperationsinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eAnnualemissionsduetoharvestingoperationssuchasfellingandsnigginginyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eCFAGBANHA_annual,tCemissions,tCemissions,tEharvest,tEonsiteprep,tEhauling,tEtransport,tEprocessing,tEdistribution,tCemissions,tEharvest,tVM0011,Version1.0SectoralScope1460ParameterDescriptionUnitAnnualemissionsduetoon-sitepreparationsuchastrimmingoftreeheads,butts,branchesanddefectivecomponentsinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eAnnualemissionsduetologhaulinginyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eAnnualemissionsduetologtransportfromcollectiondepottoprocessingplantinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eAnnualemissionsduetoelectricityconsumptioninsawmillinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eAnnualemissionsduetotransportofthesawnproductfromthemilltothewharfforexportortothedepotforlocalusageinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eExantebaselineactivityemissionswillbemadeusingdefaultemissionfactordataandactivitydatabasedoncommonpracticeinthearea.TheProjectProponentmustensurethatthedefaultvaluesandactivitydatausedareconservative.3.4.1EmissionsDuetoHarvestingOperationsMechanicalharvestingoperations()ofmerchantablelogscontributestoGHGemissions.Thisoperationincountriescontainingtropicalforestscommonlyemployschainsaws,whileinotherregionsharvestersarecommonlyemployed.Emissionsfromlogharvestingaredeterminedusingthefollowingprocedure:Step1:Forthecommonpracticeinthehostcountry,selectthetypicalequipmenttype,sizeandtypeoffuelconsumedthatisemployedforharvesting.Informationonharvestingpracticescanbefoundfromreportsonpreviousandexistingharvestingpracticesinthehostcountry.Step2:Findthefuelconsumption(kLm-3)oftheselectedequipmentfromthefollowingdatasources:Reportsoncommonpracticeforharvestinginthehostcountryand/ormanufacturersspecificationsPublishedpeerreviewedstudiesonharvestingoperations(e.g.KlvacandSkoupy(2009)inTableB-6,AppendixB).Ifarangeforfuelconsumptionisprovided,theProjectProponentisrequiredtoprovidejustificationfortheirchoiceoffuelconsumptioninthePD.Ifnojustificationcanbederived,itisconservativetoselectthelowerendoftherange.Eonsiteprep,tEhauling,tEtransport,tEprocessing,tEdistribution,tCemissions,tEharvest,tVM0011,Version1.0SectoralScope1461Step3:SelecttheemissionfactorassociatedwiththefuelemployedforharvestingfromIPCCdefaultemissionfactorsforCO2,CH4andN2OemissionsforOff-RoadMobileSourcesandMachineryfortheForestrySector(IPCC,2006,Volume2,Chapter3,Section3.3.1,Table3.3.1,p.3.36).GuidanceforconvertingtheemissionfactorstoaCO2equivalent(CO2-e)emissionfactor()isprovidedinAppendixC.2.GuidanceforunitconversionsoffuelemissionfactorsisprovidedinAppendixC.3.Step4:Emissionsfromharvestingofarethendeterminedbyapplyingthefollowingequation:Equation3-40ParameterDescriptionUnitAnnualemissionsduetoharvestingoperationssuchasfellingandsnigginginyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eFuelconsumptionofequipmentemployedforfellingandsniggingperm3ofmerchantablelogharvestedkLm-3FuelemissionfactortCO2-ekL-1Annualvolumeofmerchantablelogsinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)(seeSection3.2.3)m3EFfuelVmerch,tEharvest,tFCharvestEFfuelVmerch,tEharvest,tFCharvestEFfuelVmerch,tVM0011,Version1.0SectoralScope14623.4.2EmissionsDuetoOn-sitePreparationEmissionsduetoon-sitepreparation()suchastrimmingoftreeheads,butts,branchesanddefectivecomponentsareestimatedusingthefollowingprocedure:Step1:Selectthetypicalequipmenttype,sizeandtypeoffuelconsumedthatisemployedfortrimmingbasedoncommonpracticeforharvestinginthehostcountry.Forexample,intropicalcountries,chainsawsarecommonlyemployed.Informationonharvestingpracticescanbefoundfromreportsonpreviousandexistingharvestingpracticesinthehostcountry.Step2:Findthefuelconsumption(kLm-3)oftheselectedequipmentfromreportsoncommonpracticeforharvestinginthehostcountryand/ormanufacturersspecifications.Ifarangeforfuelconsumptionisprovided,theProjectProponentisrequiredtoprovidejustificationfortheirchoiceoffuelconsumptionfactorinthePD.Ifnojustificationcanbederived,itisconservativetoselectthelowerendoftherange.Step3:SelecttheemissionfactorassociatedwithCO2,CH4andN2OemissionsforthefuelemployedfromIPCCdefaultemissionfactorsforOff-RoadMobileSourcesandMachineryfortheForestrySector(IPCC,2006,Volume2,Chapter3,Section3.3.1,Table3.3.1,p3.36).GuidanceforconvertingtheemissionfactorstoaCO2equivalent(CO2-e)emissionfactor()isprovidedinAppendixC.2.GuidanceforunitconversionsoffuelemissionfactorsisprovidedinAppendixC.3.Step4:Choosethemostapplicablewooddensityforaforestwithcorrespondingclimateregionandecologicalzone,andchoosethemostapplicablecarbonfractionofwoodfromthedatasourcespresentedinStep4ofSection3.2.1.2.1,A.Thendeterminethevolumeoftrimmingsandbranchesusingthefollowingequation:Equation3-41ParameterDescriptionUnitAnnualvolumeofthetrimmingsandbranchesproducedfromharvestinginyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)m3Annualcarboninbranchesandtrimmingsleftoverfromharvestinginyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCCarbonfractionofwoodforthetropicalforest(seeAppendixB)tC(td.m.)-1Wooddensityforthetropicalforestwithcorrespondingclimateregionandecologicalzone(seeAppendixB)(td.m.)m-3Eonsiteprep,tEFfuelVbranch_trim,tCbranch_trim,tCFwoodDVbranch_trim,tCbranch_trim,tCFwoodDVM0011,Version1.0SectoralScope1463Step5:Emissionsfromon-sitepreparationisthendeterminedbyapplyingthefollowingequation:Equation3-42Eonsiteprep,tFCtrim_equipEFfuelVbranch_trim,tVM0011,Version1.0SectoralScope1464ParameterDescriptionUnitAnnualemissionsduetoon-sitepreparationsuchastrimmingoftreeheads,butts,branchesanddefectivecomponentsinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eFuelconsumptionofequipmentemployedfortrimmingperm3oftrimmedmaterialkLm-3FuelemissionfactortCO2-ekL-1Annualvolumeofthetrimmingsandbranchesproducedfromharvestinginyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)m33.4.3EmissionsDuetoLogHaulingEmissionsassociatedwithloghauling()tothecollectiondepotarecalculatedusingthefollowingprocedure:Step1:Selectthetypicalequipmenttype,sizeandtypeoffuelconsumedthatisemployedforhaulingbasedoncommonpracticeforharvestinginthehostcountry.Informationonharvestingpracticescanbefoundfromreportsonpreviousandexistingharvestingpracticesinthehostcountry.Step2:Findthefuelconsumption(kLm-3)oftheselectedequipmentfromreportsoncommonpracticeforharvestinginthehostcountryand/ormanufacturersspecifications.Ifarangeforfuelconsumptionisprovided,theProjectProponentisrequiredtoprovidejustificationforthechoiceoffuelconsumptionfactorinthePD.Ifnojustificationcanbederived,itisconservativetoselectthelowerendoftherange.Step3:SelecttheemissionfactorassociatedwithCO2,CH4andN2OemissionsforthefuelemployedfromIPCCdefaultemissionfactorsforOff-RoadMobileSourcesandMachineryfortheForestrySector(IPCC,2006,Volume2,Chapter3,Section3.3.1,Table3.3.1,p.3.36).GuidanceforconvertingtheemissionfactorstoaCO2equivalent(CO2-e)emissionfactor()isprovidedinAppendixC.2.GuidanceforunitconversionsoffuelemissionfactorsisprovidedinAppendixC.3.Step4:Emissionsfromloghaulingarethendeterminedbyapplyingthefollowingequation:Equation3-43Eonsiteprep,tFCtrim_equipEFfuelVbranch_trim,tEhauling,tEFfuelEhauling,tFChaulingEFfuelVmerch,tVM0011,Version1.0SectoralScope1465ParameterDescriptionUnitAnnualemissionsduetologhaulinginyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eFuelconsumptionofequipmentforhaulingonem3ofmerchantablelogkLm-3FuelemissionfactortCO2-ekL-1Annualvolumeofmerchantablelogsinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)(seeSection3.2.3)m33.4.4EmissionsDuetoLogTransportEmissionsassociatedwithlogtransport()fromthecollectiondepottotheprocessingplantarecalculatedusingthefollowingprocedure:Step1:Selectthevehicle:type,loadcapacity(m3truck-1)andtypeoffuelconsumedforlogtransportbasedoncommonpracticefortransportinthehostcountry.Informationonharvestingpracticescanbefoundfromreportsonpreviousandexistingharvestingpracticesinthehostcountry.Step2:Determinethenumberoftrucksrequiredusingthefollowingequation:Equation3-44ParameterDescriptionUnitNumberoftrucktripsrequiredforlogtransportfromcollectiondepottoprocessingplantinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)truckAnnualvolumeofmerchantablelogsinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)(seeSection3.2.3)m3Truckloadcapacitym3truck-1Step3:Findthefuelefficiency(kmkL-1)oftheselectedvehiclefromthefollowingdatasources:(i)Manufacturersspecifications(ii)Publishedpeerreviewedstudiesonharvestingoperations(e.g.Kinjoetal.,2005).Ehauling,tFChaulingEFfuelVmerch,tEtransport,tNtrucks_transport,tVmerch,tCaptruckNtrucks_transport,tVmerch,tCaptruckVM0011,Version1.0SectoralScope1466Ifarangeforfuelefficiencyisprovided,theProjectProponentisrequiredtoprovidejustificationforthechoiceoffuelefficiencyfactorinthePD.Ifnojustificationcanbederived,itisconservativetoselecttheupperendoftherange.Step4:SelecttheemissionfactorassociatedwithCO2,CH4andN2OemissionsforthefuelemployedfromIPCCdefaultemissionfactorsforRoadTransport(IPCC,2006,Volume2,Chapter3,Section3.2.1.2,Table3.2.1-2,p.3.16-3.21).GuidanceforconvertingtheemissionfactorstoaCO2equivalent(CO2-e)emissionfactor()isprovidedinAppendixC.2.GuidanceforunitconversionsoffuelemissionfactorsisprovidedinAppendixC.3.Step5:Estimatethetransportdistancefromthecollectiondepottotheprocessingplant()usingthedigitalmapsoftheProjectArea.Iftransportroute(s)forthebaselinescenariomustbehypothesised,theProjectProponentisrequiredtoprovidejustificationfortheirderivationofthetransportrouteinthePD.Inaddition,tobeconservative,thetransportrouteproposedmustbetheminimumpossibleroute.Thetotallogtransportdistancecanbedeterminedbythefollowing:EFfuelKMtransport,tVM0011,Version1.0SectoralScope1467Equation3-45ParameterDescriptionUnitAnnualtotallogtransportdistanceinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)kmAnnuallogtransportdistancefromcollectiondepottoprocessingplantinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)kmtruck-1Numberoftrucktripsrequiredforlogtransportfromcollectiondepottoprocessingplantinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)truckConstant,indicatingreturntripdimensionlessStep6:Emissionsduetologtransportarethendeterminedbyapplyingthefollowingequation:Equation3-46ParameterDescriptionUnitAnnualemissionsduetologtransporthaulagefromfellinglocationtothecollectiondepot/sawmillinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eAnnualtotallogtransportdistanceinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)kmFuelefficiencyforvehicletypekmkL-1FuelemissionfactortCO2-ekL-13.4.5EmissionsDuetoTimberProcessingEmissionsasaresultofprocessing(),wheretheprocessingplantissituatedintheProjectArea,dependontheelectricitysourceavailableattheprocessingsite.Electricitycanbesuppliedviathenationalgrid,orwherethisisnotavailable,suppliedviaon-sitegenerators.Inaddition,millresidue/wastemayalsobeusedasanenergysourceduringtimberprocessing.KMtransport_total,tKMtransport,tNtrucks_transport,t2KMtransport_total,tKMtransport,tNtrucks_transport,t2Etransport,tKMtransport_total,tEffvehicleEFfuelEtransport,tKMtransport_total,tEffvehicleEFfuelEprocessing,tVM0011,Version1.0SectoralScope1468Toavoiddoubleaccounting,ifaprocessingplantutilisesmillresidue/wasteasanelectricitysource,thentheemissionsfromelectricitygeneratedbymillresidue/wastemustnotbeconsideredhere-astheseemissionshavealreadybeenaccountedforinSection3.3.2.1.3.4.5.1EmissionsfromprocessingwheregridelectricityisavailableIfgridelectricityisavailable,thenemissionsduetoprocessingwillbecalculatedusingthefollowingprocedure:Step1:Selectanelectricitydemandfactor()forthetimberprocessingfacilityfromthefollowingdatasources:(i)Nationalelectricitydemandfactorsinrelevantliteraturefortimberprocessing.VariouscountryspecificelectricitydemandfactorshavebeencompiledinTableB-7inAppendixB(ii)Ifanationalelectricitydemandfactorisnotavailable,selectanelectricitydemandfactorfromacountrythatusessimilartimberprocessingtechnologytothatoftheproject‟shostcountry.Ifarangefortheelectricitydemandfactorisprovided,theProjectProponentisrequiredtoprovidejustificationforthechoiceofelectricitydemandfactorinthePD.Ifnojustificationcanbederived,itisconservativetoselectthelowerendoftherange.Step2:Usingthevolumeofmerchantablelogs,determinetheelectricityconsumptionrequiredfortheprocessingmill:Equation3-47ParameterDescriptionUnitAnnualquantityofelectricityconsumptionforprocessinginyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)kWhAnnualvolumeofmerchantablelogsinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)(seeSection3.2.3)m3ElectricitydemandforprocessingpervolumeprocessedkWhm-3Step3:SelectanemissionfactorforelectricityforthehostcountryfromIEA(2009),CO2emissionsperkWhfromelectricityandheatgeneration,pp.101-103.Step4:Applythefollowingequationtodeterminetheemissionsduetoprocessing:Equation3-48edemandQprocessing,tVmerch,tedemandQprocessing,tVmerch,tedemandEprocessing,tQprocessing,tEFelectricityVM0011,Version1.0SectoralScope1469ParameterDescriptionUnitAnnualemissionsduetoelectricityconsumptioninsawmillinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eAnnualquantityofelectricityconsumptionforprocessinginyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)kWhElectricityemissionfactorforthehostcountrytCO2-ekWh-13.4.5.2EmissionsfromprocessingwhereageneratorisrequiredIfgridelectricityisnotavailable,andanon-sitegeneratorisrequiredtopowertheprocessingfacility,thencalculationofprocessingemissionsisdeterminedfromtheemissionsassociatedwithfuelconsumptionofthegenerator.ApplySteps1and2ofSection3.4.5.1todeterminetheelectricityconsumptioninvolvedforprocessing().Thenusethefollowingprocedure:Step1:Selectthetypicalloadcapacity(1/4,1/2,fullload),typeoffuelconsumedandoperatingtimeofthegeneratoremployedtopowertheprocessingfacility.Suchdatacanbeobtainedfromthefollowingdatasources:(i)Nationalreportsfromtherelevantnationalforestryauthority(ii)Publishedpeerreviewedliteratureontimberprocessingforcasesofequivalentvolumesandprocessingmodesandofacountrythatusessimilartimberprocessingtechnologytothatoftheproject‟shostcountry.Step2:Determinethepowerratingofthegeneratorfromtheelectricityrequiredforprocessingandtheoperatinghoursrequired:Equation3-49ParameterDescriptionUnitPowerratingofgeneratororgeneratorsizeinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)kWAnnualquantityofelectricityconsumptionforprocessinginyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)kWhAnnualoperatingtimeofgeneratorinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)hStep3:Usingafuelconsumptionchartforthegeneratorselectedforthebaselinecase,applythepowerrating(kW)andanappropriateloadcapacity(1/4,1/2,full)todeterminethefuelconsumptionEprocessing,tQprocessing,tEFelectricityQprocessing,tPRgenerator,tQprocessing,ttgenerator,tPRgenerator,tQprocessing,ttgenerator,tVM0011,Version1.0SectoralScope1470(kLh-1)ofthegenerator.Fuelconsumptionchartscanbefoundfrommanufacturersofgenerators(seeTableB-8,AppendixBforanexample).Step4:SelectanemissionsfactorforthefuelemployedinthegeneratorfromIPCC(2006),Volume2,Chapter2StationaryCombustion,Table2.5,p.2.22.Step5:Applythefollowingequationtodetermineemissionsduetoprocessing:Equation3-50ParameterDescriptionUnitAnnualemissionsduetoelectricityconsumptioninsawmillinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eFuelconsumptionperhourofoperationofgeneratorkLh-1Annualoperatingtimeofgeneratorinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)hFuelemissionfactortCO2-ekL-13.4.6EmissionsDuetoLogDistributionEmissionsduetodistributinglogs()arecalculatedusingthefollowingprocedure:Step1:Selectthevehicletype,loadcapacity(fore.g.m3truck-1)andtypeoffuelconsumed,forlogdistributionbasedoncommonpracticeinthehostcountry.Step2:CalculatetheannualtotalvolumeofltHWPtobedistributedperyearfromtheinputofcarboninltHWPpoolasdeterminedfromEquation3-27inSection3.3.2.2,andthemostapplicabledensityandcarbonfractionofwoodforaforestwithcorrespondingclimateregionandecologicalzone(seeSectionB-1andB-2ofAppendixB).Equation3-51ParameterDescriptionUnitAnnualvolumeoflong-termharvestedwoodproductsinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)m3Annualcarboninputtothelong-termharvestedwoodproductspoolfromsawloginyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCEprocessing,tFCgeneratortgenerator,tEFfuelEprocessing,tFCgeneratortgenerator,tEFfuelEdistribution,tVltHWP,tCltHWPin,tDCFwoodVltHWP,tCltHWPin,tVM0011,Version1.0SectoralScope1471ParameterDescriptionUnitCarbonfractionofwoodforthetropicalforest(seeAppendixB)tC(td.m.)-1Wooddensityforthetropicalforestwithcorrespondingclimateregionandecologicalzone(seeAppendixB)(td.m.)m-3Step3:Determinethenumberoftrucksrequiredfordistributionbydividingthelong-termHWPvolumebytheloadcapacityofthevehicle:Equation3-52ParameterDescriptionUnitAnnualnumberoftrucktripsrequiredforlogdistributionfromprocessingplanttodistribution/exportpointinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)truckAnnualvolumeoflong-termharvestedwoodproductsinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)m3Truckloadcapacitym3truck-1Step4:Findthefuelefficiency(kmkL-1)oftheselectedvehiclefromthefollowingdatasources:(i)Manufacturersspecifications(ii)Publishedpeerreviewedstudiesonharvestingoperations(e.g.Kinjoetal.,2005).Ifarangeforfuelefficiencyisprovided,theProjectProponentisrequiredtoprovidejustificationforthechoiceoffuelefficiencyfactorinthePD.Ifnojustificationcanbederived,itisconservativetoselecttheupperendoftherange.Step5:SelecttheemissionfactorassociatedwithCO2,CH4andN2OemissionsforthefuelemployedfromIPCCdefaultemissionfactorsforRoadTransport(IPCC,2006,Volume2,Chapter3,Section3.2.1.2,Table3.2.1-2,p3.16-3.21).GuidanceforconvertingtheemissionfactorstoaCO2equivalent(CO2-e)emissionfactor()isprovidedinAppendixC.2.GuidanceforunitconversionsoffuelemissionfactorsisprovidedinAppendixC.3.Step6:Estimatethedistancefordistributionfromtheprocessingplanttothedistribution/exportpoint()usingdigitalmaps.Ifdistributionroute(s)forthebaselinescenariomustbehypothesised,theProjectProponentisrequiredtoprovidejustificationforthederivationofadistributionrouteinthePD.Inaddition,tobeconservative,thedistributionrouteproposedmustbetheminimumpossibleroute.Thetotaldistancefordistributioncanbedeterminedbythefollowing:CFwoodDNtrucks_distrib,tVltHWP,tCaptruckNtrucks_distrib,tVltHWP,tCaptruckEFfuelKMdistrib,tVM0011,Version1.0SectoralScope1472Equation3-53ParameterDescriptionUnitAnnualtotaldistributiondistanceinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)kmAnnualdistanceoftransportfrompointofprocessingtodistribution/exportpointinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)kmtruck-1Annualnumberoftrucktripsrequiredforlogdistributionfromprocessingplanttodistribution/exportpointinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)truckConstant,indicatingreturntripdimensionlessStep7:Applythefollowingequationtodeterminetheemissionsduetologdistribution:Equation3-54ParameterDescriptionUnitAnnualemissionsduetotransportofthesawnproductfromthemilltothewharfforexportortothedepotforlocalusageinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eAnnualtotaldistributiondistanceinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)kmFuelefficiencyforvehicletypekmkL-1FuelemissionfactortCO2-ekL-1KMdistribtotal,tKMdistrib,tNtrucks_distrib,t2KMdistribtotal,tKMdistrib,tNtrucks_distrib,t2Edistribution,tKMdistribtotal,tEffvehicleEFfuelEdistribution,tKMdistribtotal,tEffvehicleEFfuelVM0011,Version1.0SectoralScope14734ActualProjectActivityEmissionsTheprojectactivityistheintroductionofforestprotectionwithoutselectivelogging(i.e.noemissionsfromharvesting)-ImprovedForestManagement(LoggedForesttoProtectedForest).However,implementingtheIFM-LtPFprojectactivitywillincurquantifiableemissions.Inaddition,theforestintheProjectAreaislikelytobedisturbedbynaturalcausessuchasfires,landslides,volcanoesetc.andmayalsobeharvestedillegally.TheProjectProponentmusttakeallpossiblemeasurestopreventcarbonemissionsfromsuchcausesandmustkeepdetailandaccuraterecordsofemissionsassociatedwiththeprojectactivitiesincludingthemonitoringoftheProjectAreafornaturaldisturbances.SuchrecordsanddatamustbesubmittedalongwiththemonitoringreporttotheVerifier.EmissionsassociatedwiththeactualprojectimplementationisgivenbyEquation4-1,andinclude,butarenotlimitedto:•administrationandplanning(electricityandfuelconsumption)()•travelfordesignandsetup(e.g.consultationandeducation)(fuelconsumption)()•travelforimplementingmonitoringplan(e.g.fromon-the-groundforestsurveillance)()•naturaldisturbancessuchasforestfires()•illegalharvesting().Equation4-1ParameterDescriptionUnitAnnualtotalcarbonemissionsassociatedwiththeprojectactivityinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eAnnualemissionsduetoadministrationandprojectplanninginyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eAnnualemissionsfromtravelfordesignandsetupinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eAnnualemissionsduetomonitoringforfieldworkinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eAnnualcarbonlossesduetonaturaldisturbance(s)inyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCEprojplan,tEdesign,tEmonitoring,tCnatdisturb,tCillegal_harvest,tCactual,tEprojplan,tEdesign,tEmonitoring,tCnatdisturb,tCillegal_harvest,t4412Cactual,tEprojplan,tEdesign,tEmonitoring,tCnatdisturb,tVM0011,Version1.0SectoralScope1474ParameterDescriptionUnitAnnualcarbonlossesduetoillegalharvestinginyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tC44/12Theratioofmolecularweightofcarbondioxidetocarbon,seeAppendixCtCO2-etC-1TheProjectProponentmustusetheguidelinesestablishedbyTheGreenhouseGasProtocol(WBCSDandWRI,2005)todeterminetheboundaryforaccountingoftheactivitiesoftheaboveemissionsources.OmissionofanyoftheaboveemissionssourcesmustfollowthesignificanceguidelinesoutlinedinSection1.2.3.Exanteactualprojectactivityemissionswillbemadeusingdefaultemissionfactordataandprojectedactivitydataforplanning,designandmonitoringbasedontheprojectimplementationrequirements.TheProjectProponentmustensurethatthedefaultvaluesandactivitydatausedareconservative.4.1EmissionsDuetoProjectPlanningProjectplanninginvolvesadministrativeactivitiesandtravel.Emissionsassociatedwithprojectplanningarecalculatedasfollows:Equation4-2ParameterDescriptionUnitAnnualemissionsduetoadministrationandprojectplanninginyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eAnnualemissionsduetoelectricityconsumptionrequiredforadministrationoftheprojectactivityinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eAnnualemissionsduetotravelforprojectplanninginyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-e4.1.1EmissionsDuetoAdministrationWhereadministrationandplanningoperationsareconductedintheproject‟shostcountry,emissionsfromtheseoperationswillbeaccountedfor.Emissionsfromsuchactivitiesincludingdataprocessingareestimatedusingthefollowingprocedure:Step1:Determineannualelectricityconsumptionfromthefollowing:Cillegal_harvest,tCactual,tEprojplan,tEadmin,tEplan_travel,tEprojplan,tEadmin,tEplan_travel,tVM0011,Version1.0SectoralScope1475(i)Electricitybillssummatedtodeterminetheannualelectricityconsumption(ii)Derivedfromloggedhoursofoperationforelectricalequipmentemployedforadministrationandplanningmultipliedbythepowerratingoftheequipment,asperthefollowingequation:Equation4-3ParameterDescriptionUnitAnnualelectricityconsumptionduetoadministrationoftheprojectactivityinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)kWhPowerratingforelectricalequipment,ee(whereee=1,2,3...EEpiecesofequipment),inyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)kWAnnualhoursofoperationperyearofelectricalequipment,ee(whereee=1,2,3...EEpiecesofequipment)inyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)hIfadministrationactivitiesoccuroutsidethehostcountry,theyarenotconsideredintheprojectaccounting.Step2:Selectanemissionfactorforelectricityfortheproject‟shostcountryfromdatasourcessuchasIEA(2009),CO2emissionsperkWhfromelectricityandheatgeneration,pp.101-103.Step3:Determinetheemissionsduetoelectricityconsumptionrequiredforadministrationandplanningbythefollowingequation:Equation4-4ParameterDescriptionUnitAnnualemissionsduetoelectricityconsumptionrequiredforadministrationoftheprojectactivityinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eAnnualelectricityconsumptionduetoadministrationoftheprojectactivityinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)kWhQadmin,tPRequip,ee,ttop_equip,ee,tee1EEQadmin,tPRequip,ee,ttop_equip,ee,tEadmin,tQadmin,tEFelectricityEadmin,tQadmin,tVM0011,Version1.0SectoralScope1476ParameterDescriptionUnitElectricityemissionfactorforthehostcountrytCO2-ekWh-14.1.2EmissionsDuetoTravelEmissionsasaresultoftraveldependonthemodeoftransport.Forprojectplanningthiswilltypicallyandprincipallybeeitheraircraftorgroundtransportationintheequationbelow.Equation4-5ParameterDescriptionUnitAnnualemissionsduetotravelforprojectplanninginyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eAnnualemissionsduetoflightsinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eAnnualemissionsduetogroundtransportationinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eNote:Iftransportationoccursoutsidethehostcountry,itwillnotbeconsideredintheprojectaccounting.4.1.2.1EmissionsduetoflightsAflightlogmustbemaintainedthroughouttheprojectlifetimetoprovidetheinformationrequiredfortheemissioncalculations.Aflightlogmusthavethefollowinginformation:(i)Departureanddestinationlocation,orairportcodesforarrivalanddeparture(ii)Numberofpassengerspertrip(iii)Typeofaircraft(iv)Dateoftravel.Emissionsduetoflightsarecalculatedusingthefollowingprocedure:Step1:Fromthetravellog,determineinyeart,foreachtripy,thedistancerequiredforeachtripandthenumberofpassengers.Step2:Usingdistanceand/oraircraftinformation,selectanappropriateflightemissionfactorfromthefollowingdatasources:(i)Publishedpeer-reviewedstudiesforairtransportation(e.g.MiyoshiandMason,2009;Babikianetal.,2002)(ii)Relevantstudiesfrominternationalindustryexperts(e.g.Ross,2009;DEFRA,2008).EFelectricityEplan_travel,tEplan_flight,tEplan_ground,tEplan_travel,tEplan_flight,tEplan_ground,tVM0011,Version1.0SectoralScope1477Step3:Calculatethetotalemissionsduetoflightsforprojectplanningusingtheemissionfactor(withunitsoftCO2-eperpassenger.km)bythefollowingequation:Equation4-6ParameterDescriptionUnitAnnualemissionsduetoflightsinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eAnnualnumberofpassengerspertripy,(wherey=1,2,3...Ytrips)inyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)passengerFlightemissionfactorfortrip,y(wherey=1,2,3...Ytrips)tCO2-e(passenger.km)-1Annualdistancetravelledpertripy,(wherey=1,2,3...Ytrips),inyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)km4.1.2.2EmissionsduetogroundtransportAgroundtransportlogmustbemaintainedthroughouttheprojectlifetimetoprovidetheinformationrequiredfortheemissioncalculations.Agroundtravellogmusthavethefollowinginformationforeachtriptaken:(i)Departureandarrivalpoints,orvolumeoffuelconsumed(ii)Typeofvehicleemployed(iii)Typeoffuelconsumed(iv)Dateoftravel.Emissionsduetogroundtransportarecalculatedusingthefollowingprocedure:Step1:Ifvolumeoffuelconsumedpertriphasbeenrecordedinthetravellog,gotoStep4.Ifthedepartureandarrivaldestinationshavebeenprovided,determinethedistancetravelledforeachtrip,y().Step2:Forthevehicleemployedandfuelconsumed,selectthefuelefficiencyofthevehiclefromthefollowingdatasources:(i)Manufacturers‟specificationsforvehicleemployed(ii)Nationaldatabaseforvehiclespecifications(e.g.GreenvehicleGuide,Australia,2010)Step3:Calculatethevolumeoffuelconsumedpertripbythefollowingequation:Eplan_flight,tKMplan_flight,y,tNplan_flight,y,tEFflight,yy1YEplan_flight,tNplan_flight,y,tEFflight,yKMplan_flight,y,tKMplan_ground,y,tVM0011,Version1.0SectoralScope1478Equation4-7ParameterDescriptionUnitAnnualvolumeoffuelconsumedpertripy,(wherey=1,2,3...Ytrips),inyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)kLFuelefficiencyforvehicletypekmkL-1Annualdistancetravelledpertripy,(wherey=1,2,3...Ytrips)inyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)kmStep4:Fromthetypeoffuelconsumed,selectthefuelemissionfactor(s)fromthefollowingsources:(i)Nationalcountry-specificfuelemissionfactors(ii)Globalfuelemissionfactors(e.g.IPCC(2006),Volume2,Chapter3,Table3.2.1,p.3.16forCO2andTable3.2.2,p.3.21forCH4andN2O).GuidanceforconvertingtheemissionfactorstoaCO2equivalent(CO2-e)emissionfactor()isprovidedinAppendixC.2.GuidanceforunitconversionsoffuelemissionfactorsisprovidedinAppendixC.3.Step5:Calculatethetotalemissionsduetogroundtransportforprojectplanningbythefollowingequations:Equation4-8ParameterDescriptionUnitAnnualemissionsduetogroundtransportationinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eAnnualvolumeoffuelconsumedpertripy,(wherey=1,2,3...Ytrips),inyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)kLFuelemissionfactortCO2-ekL-1Vfuel_plan_ground,y,tKMplan_ground,y,tEffvehicleVfuel_plan_ground,y,tEffvehicleKMplan_ground,y,tEFfuelEplan_ground,tVfuel_plan_ground,y,tEFfuely1YEplan_ground,tVfuel_plan_ground,y,tEFfuelVM0011,Version1.0SectoralScope14794.2EmissionsDuetoDesignProjectdesigninvolvestraveltothehostcountryforstakeholderconsultation(s),thusemissionsassociatedwithprojectdesignarecalculatedfrombothgroundandairtravelemissions:Equation4-9ParameterDescriptionUnitAnnualemissionsfromtravelfordesignandsetupinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eAnnualemissionsduetogroundtravelforthedesignstageinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eAnnualemissionsduetoairtravelforthedesignstageinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-e4.2.1EmissionsDuetoFlightsDeterminethedistance,numberofpassengersandemissionfactorpertripforprojectdesignusingSteps1to3inSection4.1.2.1.EmissionsfromflightsforprojectdesignandaerialsurveillanceformonitoringtheProjectAreacanbedeterminedasbelow:Equation4-10ParameterDescriptionUnitAnnualemissionsduetoairtravelforthedesignstageinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eAnnualnumberofpassengerspertripy,(wherey=1,2,3...Ytrips)inyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)passengerFlightemissionfactorfortrip,y(wherey=1,2,3...Ytrips)tCO2-e(passenger.km)-1Annualdistancetravelledpertripy,(wherey=1,2,3...Ytrips)inyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)kmEdesign,tEdesign_ground,tEdesign_flight,tEdesign,tEdesign_ground,tEdesign_flight,tEdesign_flight,tKMdesign_flight,y,tNdesign_flight,y,tEFflight,yy1YEdesign_flight,tNdesign_flight,y,tEFflight,yKMdesign_flight,y,tVM0011,Version1.0SectoralScope14804.2.2EmissionsDuetoGroundTransportDeterminethedistance,vehiclefuelefficiencyandfuelemissionfactorpertripforprojectdesignusingSteps1to3inSection4.1.2.2.EmissionsfromgroundtransportforprojectdesignandgroundpatrollingformonitoringtheProjectAreacanbedetermineasbelow:VM0011,Version1.0SectoralScope1481Equation4-11ParameterDescriptionUnitAnnualemissionsduetogroundtravelforthedesignstageinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eFuelefficiencyforvehicletypekmkL-1FuelemissionfactortCO2-ekL-1Annualdistancetravelledpertripy,(wherey=1,2,3...Ytrips)inyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)km4.3EmissionsDuetoMonitoringProjectmonitoringrequirestraveltotheProjectAreaforfieldwork,thusemissionsassociatedwithprojectmonitoringincludingtheaerialsurveillanceandgroundpatrollingarededucedfromtravelemissions:Equation4-12ParameterDescriptionUnitAnnualemissionsduetomonitoringforfieldworkinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eAnnualemissionsduetogroundtravelformonitoringteaminyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eAnnualemissionsduetoairtravelformonitoringteaminyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-e4.3.1EmissionsDuetoFlightsDeterminethedistance,numberofpassengersandemissionfactorpertripformonitoringusingSteps1to3inSection4.1.2.1.Emissionsfromflightsincludingaerialsurveillanceformonitoringcanbedeterminedasbelow:Equation4-13Edesign_ground,tKMdesign_ground,y,tEffvehicleEFfuely1YEdesign_ground,tEffvehicleEFfuelKMdesign_ground,y,tEmonitoring,tKMmonitoring_ground,tKMmonitoring_flight,tEmonitoring,tKMmonitoring_ground,tKMmonitoring_flight,tEmonitoring_flight,tKMmonitoring_flight,y,tNmonitoring_flight,y,tEFflight,yy1YVM0011,Version1.0SectoralScope1482ParameterDescriptionUnitAnnualemissionsduetoairtravelformonitoringteaminyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eAnnualnumberofpassengerspertripy,(wherey=1,2,3...Ytrips)inyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)passengerFlightemissionfactorfortrip,y(wherey=1,2,3...Ytrips)tCO2-e(passenger.km)-1Annualdistancetravelledpertripy,(wherey=1,2,3...Ytrips)inyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)km4.3.2EmissionsDuetoGroundTransportDeterminethedistance,vehiclefuelefficiencyandfuelemissionfactorpertripformonitoringusingSteps1to3inSection4.1.2.2.Emissionsfromgroundtransportincludinggroundpatrollingformonitoringcanbedeterminedasbelow:Equation4-14ParameterDescriptionUnitAnnualemissionsduetogroundtravelformonitoringteaminyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eAnnualdistancetravelledpertripy,(wherey=1,2,3...Ytrips)inyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)kmFuelemissionfactortCO2-ekL-1FuelefficiencyforvehicletypekmkL-14.4EmissionsDuetoNaturalDisturbancesNaturaldisturbancescausedbyfire(includinghumaninduced),windstorms,landslidesorvolcanoescanhaveimpactsonboththeextentoftheforestareaandthecarbon.Asaconsequence,emissionsfromEmonitoring_flight,tNmonitoring_flight,y,tEFflight,yKMmonitoring_flight,y,tEmonitoring_ground,tKMmonitoring_ground,y,tEffvehicleEFfuely1YEmonitoring_ground,tKMmonitoring_ground,y,tEFfuelEffvehicleVM0011,Version1.0SectoralScope1483suchdisturbancemustbemeasuredandfactoredoutoftheestimationoftheexpostnetanthropogenicGHGemissionreductions.Eventsduetonaturaldisturbanceswillbeidentifiedusingthefollowingprocedures:•RegularfamiliarisationwithmeteorologicalreportsoftheProjectArea-thefrequencyofmonitoringisdependentonthesusceptibilityoftheregiontonaturaldisturbances•AnalysisofbestavailablesatelliteimagerytomonitortheProjectArea,specificallytoidentifyandestimatetheareasthathavebeendisturbedwithintheProjectArea•Aerialsurveillanceand/orgroundpatrollingfollowedbyfieldcheckingtoverifytheextent(area)ofthedamageandquantificationoftheGHGemissions.Onceaneventhasbeenidentified,emissionsattributedtothatnaturallydisturbedareamustbemonitoredannuallyovertheprojectcreditingperiodandmustbeestimatedusingthefollowingprocedure:Step1:Identifythenaturallydisturbedareas,,usingsatellitedataandlocatethematthestratalevel.Thesatellitedataanalysismustfollowastandardprocedureforremotesensing,andmustbeverifiedbyafieldteam(e.g.FaganandDeFries,2009).Step2:Calculatetheareaofnaturaldisturbanceineachstratum,,usingsatellitedataandemployafieldteamtoconducton-groundverificationofthedamagedareasbymeasuringtheareaandextentofdamage.Step3:Obtainthegrowingstockperhectarefortherespectivestratum,j,wherethenaturaldisturbancehasoccurredandalsoselectappropriateBCEFatthestratumlevel(seeStep1ofSection3.2.1.2.2)andcarbonfraction(seeStep4ofSection3.2.1.2.1,A)andthenapplythefollowingequationtoobtaintheannualcarboninthenaturallydisturbedarea(s):Equation4-15ParameterDescriptionUnitAnnualcarbonintheabovegroundbiomassofthegrowingstockinthenaturallydisturbedareainstratumj,(wherej=1,2,3...Jstrata)inyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCAveragegrowingstockperhectareforstratumj,(wherej=1,2,3...Jstrata)determinedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0yearm3ha-1Annualareaofnaturaldisturbancend,(wherend=1,2,3...NDnaturallydisturbedareas)instratumj,(wherej=1,2,3...Jstrata)inyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)haAnd,tAnd,j,tCAGB_nd,j,tVgstock,j,t0BCEFjAnd,j,tnd1NDCFAGBCAGB_nd,j,tVgstock,j,t0And,j,tVM0011,Version1.0SectoralScope1484ParameterDescriptionUnitBiomassconversionandexpansionfactorforconvertinggrowingstocktocarbonintheabovegroundbiomassforstratumj,(wherej=1,2,3...Jstrata)(td.m.)m-3Carbonfractionintheabovegroundbiomassoftreesfortheforest(seeAppendixB)tC(td.m.)-1Step4:Usingdirectobservationsofthearea(s)damaged,thefieldteammustprovideanestimateofthefractionofthegrowingstocknaturallydisturbedbasedonacomparisonwithanadjacentrepresentativeundisturbedforest()withinthestratum,thenapplythefollowingequation:Equation4-16ParameterDescriptionUnitAnnualcarbonlossesintheabovegroundbiomassofthegrowingstockduetonaturaldisturbance(s)intheProjectAreainyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCAnnualcarbonintheabovegroundbiomassofthegrowingstockinthenaturallydisturbedareainstratumj,(wherej=1,2,3...Jstrata)inyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCFractionofthegrowingstocknaturallydamagedinstratumj(wherej=1,2,3...Jstrata)inyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)dimensionlessStep5:Afteranaturaldisturbance,regrowthislikelytooccurinthenaturallydisturbedareaandhence,actsasacarbonsink.Notethattherateofregrowthinthenaturallydisturbedareaisnotthesameastherateofregrowthinthegapscreatedafterselectiveharvestingunderthebaselinescenario.TheannualcarbonincreaseduetotheregrowthinthenaturallydisturbedareawillbecalculatedviaEquation4-17a.ThisMethodologyhasaccountedforthecarbonintheAGBoftrees(seeTable2-3inSection2.2.3)whichconservativelyestimatesthecarbonduetoregrowth.TheannualaverageregrowthintheAGBinthenaturallydisturbedareaisderivedbydirectmeasurementofalltrees,i.e.treeswithaminimumdiameteratbreastheightasspecifiedbytherelevantauthorityintheBCEFjCFAGBfnatdisturb,j,tCAGB_nd,tCAGB_nd,j,tfnatdisturb,j,tj1JCAGB_nd,tCAGB_nd,j,tfnatdisturb,j,tVM0011,Version1.0SectoralScope1485hostcountry(seefootnote##underTable2-3inSection2.2.3ofthisMethodology),inthesampleplots,,establishedinthenaturallydisturbedstratumduringthemonitoringevent.TheprocedureforestablishingthesampleplotsandthemeasurementtechniquesaredescribedinSection7.1.2.NumberofsampleplotswithinastratumforregrowthmeasurementisdeterminedinaccordancewithPearsonetal(2005)(seepp.15-17).Theannualaverageregrowthpostnaturaldisturbance()iscalculatedbasedontheAGBinthenaturallydisturbedareaestimatedusingStep3ofSection3.2.1.3.2,asfollow:(i)whentheregrowthismeasuredforthefirsttimeinamonitoringevent,theAGBatthestratumlevelobtainedfromthemeasurementisdividedbythenumberofyearsofregrowthpostnaturaldisturbance(ii)insubsequentmonitoringevents,thedifferenceintheAGBatthestratumlevelbetweenthetwoconsecutivemonitoringeventsaredividedbythemonitoringperiodaspresentedinEquation4-17b.Equation4-17aEquation4-17bParameterDescriptionUnitAnnualcarbonincreaseduetotheregrowthinthenaturallydisturbedareainyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCAverageregrowthperhectareperyearintheabovegroundbiomassafternaturaldisturbanceinstratumj,(wherej=1,2,3...Jstrata)inyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)(td.m.)ha-1yr-1Carbonfractionintheabovegroundbiomassoftreesfortheforest(seeAppendixB)tC(td.m.)-1Annualareaofnaturaldisturbancend,(wherend=1,2,3...NDnaturallydisturbedareas)instratumj,(wherej=1,2,3...Jstrata)inyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)^^haAverageabovegroundbiomassofthetreesintheareaofnaturaldisturbancend,(wherend=1,2,3...NDnaturallydisturbedareas)instratumj,(wherej=1,2,3...Jstrata)inyear,m2-whencurrentmonitoringeventoccurs(td.m.)ha-1sndGregrowth_nd,j,tCregrowth_nd,tCFAGBAnd,j,tGregrowth_nd,j,tnd1NDj1JGregrowth_nd,j,tBAGB_nd,j,m2BAGB_nd,j,m1mCregrowth_nd,tGregrowth_nd,j,tCFAGBAnd,j,tBAGB_nd,j,m2VM0011,Version1.0SectoralScope1486ParameterDescriptionUnitAverageabovegroundbiomassofthetreesintheareaofnaturaldisturbancend,(wherend=1,2,3...NDnaturallydisturbedareas)instratumj,(wherej=1,2,3...Jstrata)inyear,m1-whenprecedingmonitoringeventoccurred(td.m.)ha-1Monitoringperiod,thetimetakenbetweentwoconsecutivemonitoringeventsyrStep6:Inthecaseofanaturaldisturbancesuchasfire,CH4,N2OandCO2gasesaregenerated.Theemissionsofthenon-CO2gasescanbeestimatedbasedonthetotalcarbonemitted,assuggestedbytheIPCCGPGforLULUCF(IPCC,2003,Chapter3,Equation3.2.19,p.3.49).EmissionratiosforCH4andN2OcanbeobtainedfromIPCC(2003)inTable3A.1.15andanappropriateratiofornitrogen-to-carbon()forthematerialburntmustbeused.Ifthespecificcannotbefound,adefaultvalueof0.01thatappliestoleaflittercanbeusedinstead,notingthatlowervalueswouldbeappropriateforwoodymaterial(IPCC,2003,Chapter3,p.3.50).TheemissionsofbothCH4andN2Oarethenestimatedbyapplyingthefollowingequations:Equation4-18aEquation4-18bParameterDescriptionUnitAnnualemissionsduetoCH4inyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCH4Annualcarbonlossesintheabovegroundbiomassofthegrowingstockduetonaturaldisturbance(s)intheProjectAreainyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCEmissionratioforCH4dimensionlessAnnualemissionsduetoN2Oinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tN2ORatioofnitrogentocarbontNtC-1EmissionratioforN2OdimensionlessBAGB_nd,j,m1mRN/CRN/CECH4,tCAGB_nd,tRCH41612EN2O,tCAGB_nd,tRN/CRN2O4428ECH4,tCAGB_nd,tRCH4EN2O,tRN/CRN2OVM0011,Version1.0SectoralScope1487ParameterDescriptionUnitTheratioofmolecularweightofCH4tocarbontCH4tC-1TheratioofmolecularweightofN2OtoNtN2OtN-1Step7:SelectthemostcurrentGlobalWarmingPotentials(GWPs)forCH4andN2OfromUNFCCCdocumentsandapplytheGWPsinthefollowingequationtoaggregatethecarbonemissionsfromthenon-CO2gases.SeealsoSection2.2.4.1Table2.4formoreinformation.Thenapplythefollowingequation:Equation4-19ParameterDescriptionUnitAnnualcarbonfromCH4andN2Oemissionsinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCAnnualemissionsduetoCH4inyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCH4GlobalwarmingpotentialofCH4tCO2-etCH4-1AnnualemissionsduetoN2Oinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tN2OGlobalwarmingpotentialofN2OtCO2-etN2O-1Theratioofmolecularweightofcarbontocarboncarbondioxide,seeAppendixCtCtCO2-e-1Step8:CalculatethetotalcarbonemissionsduetonaturaldisturbancesbyusingtheoutputsfromEquations4-16,4-17aand4-19.Ifnaturaldisturbanceiscausedbyaneventotherthanfire,non-CO2gases(CH4andN2O)wouldnotbeproduced.HencethetermsfromEquations4-17aand4-19wouldbezero.Theregrowthinthenaturallydisturbedareaissubtractedbecauseitisconsideredasacarbonsinkinthisequation.Equation4-2016/1244/28CCH4N2O,tECH4,tGWPCH4EN2O,tGWPN2O1244CCH4N2O,tECH4,tGWPCH4EN2O,tGWPN2O12/44Cnatdisturb,tC,AGB_nd,tCregrowth_nd,tCCH4N2O,tt1tVM0011,Version1.0SectoralScope1488ParameterDescriptionUnitAnnualtotalcarbonlossesduetonaturaldisturbance(s)intheProjectAreainyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCAnnualcarbonlossesintheabovegroundbiomassofthegrowingstockduetonaturaldisturbance(s)intheProjectAreainyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCAnnualcarbonincreaseduetotheregrowthinthenaturallydisturbedareainyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCAnnualcarbonfromCH4andN2Oemissionsinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCExanteestimationsfornaturaldisturbanceswillbemadebasedonthelikelyscenariointheProjectArea.TheProjectProponentmustjustifythelikelyscenarioofnaturaldisturbancesusingthehistoricaldatafromsatelliteimageryorregional/localdocumentationfromtherelevantauthority.4.5EmissionsDuetoIllegalHarvestingUndertheIFM-LtPFprojectscenario,theProjectAreaiscompletelyprotectedandtheProjectProponentmuststopselectiveharvestingoperationaswellasharvestingbyotheragentsofdeforestation.AllharvestingoperationsintheProjectAreaduringtheProjectCreditingPeriodareconsideredasillegalharvesting.ExanteestimationsforillegalharvestingwillbemadebasedonthelikelyscenariointheProjectArea.TheProjectProponentmustjustifythelikelyscenarioofillegalharvestingusingthehistoricaldatafromsatelliteimageryorregional/localdocumentationfromtherelevantauthority.Expostcalculationforemissionsduetoillegalharvestingisdescribedbelowfortwodifferentscenariosdependinguponthemethodofdatacollected:thefieldinventorymethodorusingsatellitedatamustbeused.4.5.1FieldInventoryMethodWherefieldteamsareabletocollectdataonthequantityofwoodillegallyharvestedfromtheProjectAreathroughobservationorinterviewsbasedonParticipatoryRuralAppraisaltechniques(e.g.seeSurhoneetal.,2010)carbonlossesarequantifiedusingthefollowingprocedure:Step1:QuantifythetotalvolumeofwoodillegallyharvestedintheProjectAreathroughfieldsurveys()bymeasuringthestumpdiameteranddevelopingspeciesspecificmodeltopredicttreevolumesbasedontherelevantpeerreviewedliterature(e.g.Corral-Rivaletal.,2007)Cnatdisturb,tCAGB_nd,tCregrowth_nd,tCCH4N2O,tVillegal_harvest,tVM0011,Version1.0SectoralScope1489Step2:Choosethemostapplicablebiomassexpansionfactor(BEF)valuefromthefollowingdatasources:(i)Nationalfactor(e.g.fromNationalGHGInventory)(ii)DefaultIPCCfactor(seeIPCC,2003,Table3A.1.10;andIPCC,2006,Table4.5)ItisnoteworthythattheBEFvaluesinIPCCliteratureandnationalGHGinventoryareusuallyapplicabletoclosedcanopyforest.Ifappliedtoindividualtreesgrowinginanopenfield,theselectedBEFvaluebeincreasedbyafurther30percent(CDM-EB,2009,p.24).Step3:Choosethemostapplicablewooddensityforaforestwithcorrespondingclimateregionandecologicalzone(seeAppendixB,SectionB.1,TableB-1).Step4:Findtheappropriatefactorforresidualstanddamage(),andcarbonfraction(Step4ofSection3.2.1.2.1,A)andapplythefollowingequation(whichhasbeenbasedonIPCC(2003),Equation3.2.7,p.3.27)toobtainthetotalcarbonduetoillegalharvestingintheProjectArea:Equation4-21ParameterDescriptionUnitAnnualcarbonlossesduetoillegalharvestinginyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCAnnualvolumeofwoodsoldasdeterminedfromfieldsurveysinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)m3Biomassexpansionfactorforconvertingvolumeofextractedroundwoodtototalabovegroundbiomass(includingbark)(td.m.)m-3Wooddensityforthetropicalforestwithcorrespondingclimateregionandecologicalzone(seeAppendixB)(td.m.)m-3Carbonfractionintheabovegroundbiomassoftreesforthetropicalforest(seeAppendixB)tC(td.m.)-1Factorforresidualstanddamage,basedonthefractionofquantityofcarbondamagedintheresidualstandtothequantityofcarboninthetotalmerchantablelogsharvesteddimensionless4.5.2UsingSatelliteDataWherehighresolutionsatellitedataareused,carbonlossesarequantifiedby:fRSDCillegal_harvest,tVillegal_harvest,t1fRSDBEFDCFAGBCillegal_harvest,tVillegal_harvest,tBEFDCFAGBfRSDVM0011,Version1.0SectoralScope1490Step1:Identifyandcalculatetheillegallyharvestedareas()usingsatellitedataandlocatethematthestratalevel.Thesatellitedataanalysismustfollowastandardprocedure(e.g.Skoleetal.,1998),andmustbeverifiedbyafieldteamorteams.Step2:Verifytheareasbysendingafieldteamorteams.Step3:Obtainthegrowingstockperhectarefortherespectivestratum,j,wheretheillegalharvestinghasoccurredandalsoselectappropriateBCEF(Step1ofSection3.2.1.2.2)andcarbonfraction(Step4ofSection3.2.1.2.1,A)andthenapplythefollowingequationtoobtainthetotalcarbonperyearduetoillegalharvesting:Equation4-22ParameterDescriptionUnitAnnualcarbonlossesduetoillegalharvestinginyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCAveragegrowingstockperhectareforstratumj,(wherej=1,2,3...Jstrata)determinedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0yearm3ha-1Annualareaofillegalharvestil(whereil=1,2,3...ILillegalharvestedareas)instratumj,(wherej=1,2,3...Jstrata)inyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)haBiomassconversionandexpansionfactorforconvertinggrowingstocktotheabovegroundbiomassforstratumj,(wherej=1,2,3...Jstrata)(td.m.)m-3Carbonfractionintheabovegroundbiomassoftreesforthetropicalforest(seeAppendixB)tC(td.m.)-1Aillegal_harvest,tCillegal_harvest,tVgstock,j,t0BCEFjAillegal_harvest,j,til1ILj1JCFAGBCillegal_harvest,tVgstock,j,t0Aillegal_harvest,j,tBCEFjCFAGBVM0011,Version1.0SectoralScope14915LeakageAssessmentandManagement5.1IdentifyingLeakageTheobjectiveofleakageassessmentandmanagementistoprovideanexpostestimateoftheactualdecreaseincarbonandincreaseinGHGemissions(otherthancarbonchanges)thatariseasaresultoftheimplementationoftheprojectactivity.WhereanincreaseinGHGemissionsoccursoutsideaproject‟sboundarybutismeasurableandattributabletotheprojectactivity,thisisknownasprojectleakageandtheassociatedemissionsintonnesofCO2-eperyeararetermed.ForanIFM-LtPFprojectactivity,therearetwosourcesofleakagethatneedtobeconsideredandaddressedinthisMethodology:(i)Carbonfromdegradationduetoshiftingofthebaselineactivity,i.e.removalofharvestedwoodproductsincludingsawlog,pulplogandcommerciallyharvestedfuelwoodandemissionsfromtheassociatedactivitiesoutsidetheProjectArea,(ii)Carbonfrommarketleakage,duetoshiftsinsupplyanddemandoftheproductsandservicesaffectedbytheprojectactivity,whichinthiscaseisthesupplyanddemandoftimber.Onthisbasis,projectleakageisthecombinedtotaloftheaboveleakageparameters:Equation5-1ParameterDescriptionUnitAnnualtotalcarbonemissionsassociatedwithleakageinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eAnnualcarbonlossesduetobaselineactivityshiftinginotherlandsmanagedoroperatedbytheProjectProponentinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCAnnualcarbonduetomarketleakageeffectsinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCAnnualemissionsduetoimplementationoftheshiftedbaselineactivityinotherlandsmanagedoroperatedbytheProjectProponentinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-e44/12Theratioofmolecularweightofcarbondioxidetocarbon,seeAppendixCtCO2-etC-1Cleakage,tCLactivityshifting,tCLemissions,tCLmarket,tCleakage,t(CLactivityshifting,tCLmarket,t)4412CLemissions,tCleakage,tCLactivityshifting,tCLmarket,tCLemissions,tVM0011,Version1.0SectoralScope1492TheemissionsdeterminedinaresubsequentlyaccountedforinthenetanthropogenicGHGemissionsfortheIFM-LtPFproject(Equation1-1).Cleakage,tVM0011,Version1.0SectoralScope14935.2LeakageDuetoActivityShiftingAnyactivityshiftingduetoselectiveloggingwhichincludesremovalofharvestedwoodprojectscomprisingsawlog,pulplogandcommerciallyharvestedfuelwoodbytheProjectProponentmustbeassessedasacomponentofleakage.ActivityshiftingleakagesituationsbecomeevidentwheretheProjectProponenthas:(i)Intensifiedoperationsforselectivelogging,i.e.haslegalauthorisationforselectiveloggingandincreaseloggingoperationsinotherownedand/oroperatedlandstorecovertheharvestinglossduetotheIFM-LtPFproject;or(ii)ShiftedoperationsforselectiveloggingfromtheProjectAreatoanotherforestareawithinthehostcountry.TheProjectProponentmustprovidedocumentationforthepotentialleakageareasduetoactivityshiftingi.e.otherlandsownedand/oroperatedbytheProjectProponent,includinggeo-referencedordigitalmapsillustratingthephysicallocation(s)andtheirboundaries,existinglandusesandmanagementplansateachverificationperiod.Whenthisdocumentationhasbeenprovided,thecarbonlossesfromactivityshifting,,canbeassessedasdescribedinthefollowingsections.Equation5-2ParameterDescriptionUnitAnnualcarbonlossesduetobaselineactivityshiftinginotherlandsmanagedoroperatedbytheProjectProponentinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCAnnualcarbonlossesfromactivityshiftingduetointensificationofharvestvolumesinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCAnnualcarbonlossesfromactivityshiftingduetoshiftingofharvesttonewareainyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tC5.2.1IntensificationofLoggingOperationsActivityshiftingleakagethroughintensificationofloggingoperationsincludingremovalofsawlog,pulplogandcommerciallyharvestedfuelwoodisconsideredwheretheactualmerchantablelogs‟volumeinlandscurrentlyownedand/oroperatedbytheProjectProponent(butnotpartoftheProjectArea)sincethecommencementdateoftheIFM-LtPFprojectactivity,exceedsthecommonpracticevolumes.Toidentifyanddeterminethecarbonduetotheintensificationofloggingoperations,usethefollowingprocedure:CLactivityshifting,tCLactivityshifting,tCLIH_activityshifting,tCLSH_activityshifting,tCLactivityshifting,tCLIH_activityshifting,tCLSH_activityshifting,tVM0011,Version1.0SectoralScope1494Step1:Assignahistoricalreferenceperiodoffiveyears(RefertoSection2.2.2.3)wheretheharvestingoperationshaveoccurredoverfiveyears.Inthecasewhereharvestingoperationshavebeenconductedforlessthanfiveyears,theharvestvolumedatafromtheforestwithcomparablesituationsandconditionsatthelocalorregionalornationallevel(withconservativevalue)shallbeused.TheProjectProponentshallprovidethedatasourceandcollectionmethodforthecommonharvestvolumefromtheforestcomparablesituationsandconditionstotheVerifieralongwiththemonitoringreportforverification.Step2:Obtaintheannualvolumeofharvestforeachlandl,currentlyownedand/oroperatedbytheProjectProponentortheforestlandwithcomparablesituationsandconditionsatthelocalorregionalornationallevel(withconservativevalue),foreachhistoricalreferenceyeark,overthehistoricalreferenceperiodK.Step3:Determinetheaveragevolumeofharvestforeachlandl,currentlyownedand/oroperatedbytheProjectProponentusingthefollowingequation:Equation5-3ParameterDescriptionUnitAveragevolumeofharvestforlandl,(wherel=1,2,3...Llands),thatisownedand/oroperatedbytheProjectProponentortheforestwithcomparablesituationsandconditionsatlocalorregionalornationalleveloverthehistoricalreferenceperiodK,determinedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0yearm3yr-1Totalvolumeofharvestforlandl,(wherel=1,2,3...Llands),thatisownedand/oroperatedbytheProjectProponentduringthehistoricalreferenceyeark,(wherek=1,2,3...Khistoricalreferenceyears)m3Historicalreferenceperiod(seeSection2.2.2.3)oractualnumberofyearsofharvestingoperationyrStep4:Comparetheannualactualvolumeofharvestinyeart(yearselapsedsincethestartoftheIFM-LtPFprojectactivity)withtheaveragevolumeofharvestoverthehistoricalreferenceperioddeterminedexante,foreachlandl.Oneofthefollowingthreesituationswouldoccur:Equation5-4NoLeakageEquation5-5NoLeakageEquation5-6LeakageVhistorical_harvest,l,t0Vhistorical_harvest,l,kk1KKVhistorical_harvest,l,t0Vhistorical_harvest,l,kKVhistorical_harvest,l,t0Vactual_harvest,l,tVhistorical_harvest,l,t0Vactual_harvest,l,tVhistorical_harvest,l,t0Vactual_harvest,l,tVM0011,Version1.0SectoralScope1495ParameterDescriptionUnitAveragevolumeofharvestforlandl,(wherel=1,2,3...Llands),thatisownedand/oroperatedbytheProjectProponentoverthehistoricalreferenceperiodK,determinedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0yearm3yr-1Annualactualvolumeofharvestforlandl,(wherel=1,2,3...Llands),thatisownedand/oroperatedbytheProjectProponentinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)m3yr-1Step5:Ifthereisleakage(i.e.Equation5-6istrue),thetotalleakageintermsofthemerchantablelogs‟volumeiscalculatedasfollows:Vhistorical_harvest,l,t0Vactual_harvest,l,tVM0011,Version1.0SectoralScope1496Equation5-7ParameterDescriptionUnitAnnualtotalintensificationofharvestvolumeperyearinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)m3Annualactualvolumeofharvestforlandl,(wherel=1,2,3...Llands),thatisownedand/oroperatedbytheProjectProponentinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)m3yr-1Averagevolumeofharvestforlandl,(wherel=1,2,3...Llands),thatisownedand/oroperatedbytheProjectProponentoverthehistoricalreferenceperiodK,determinedexante-beforethestartoftheIFM-LtPFprojectactivity,hencet=0yearm3yr-1Step6:ChoosethemostapplicableBEFvaluefromthedatasourcespresentedinStep2ofSection4.5.1Step7:Choosethemostapplicablewooddensityforaforestwithcorrespondingclimateregionandecologicalzone(seeAppendixB,SectionB.1,TableB-1).Step8:Selectanappropriatefactorforresidualstanddamage()(useTableB-3,sectionB.3,AppendixB)andcarbonfraction(seeStep4ofSection3.2.1.2.1,A)andapplythefollowingequationtogetthecarbonlossduetointensificationofharvestvolumes:Equation5-8ParameterDescriptionUnitAnnualcarbonlossesfromactivityshiftingduetointensificationofharvestvolumesinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCAnnualtotalintensificationofharvestvolumeperyearinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)m3Factorforresidualstanddamage,basedonthefractionofquantityofcarbondamagedintheresidualstandtothequantityofcarboninthetotalmerchantablelogsharvesteddimensionlessBiomassexpansionfactorforconvertingvolumeofextractedroundwoodtototalabovegroundbiomass(includingbark)dimensionlessVIH_activityshifting,tVactual_harvest,l,tVhistorical_harvest,l,t0l1LVIH_activityshifting,tVactual_harvest,l,tVhistorical_harvest,l,t0fRSDCLIH_activityshifting,tVIH_activityshifting,t1fRSDBEFDCFAGBCLIH_activityshifting,tVIH_activityshifting,tfRSDBEFVM0011,Version1.0SectoralScope1497ParameterDescriptionUnitWooddensityforthetropicalforestwithcorrespondingclimateregionandecologicalzone(seeAppendixB)(td.m.)m-3Carbonfractionintheabovegroundbiomassoftreesforthetropicalforest(seeAppendixB)tC(td.m.)-1DCFAGBVM0011,Version1.0SectoralScope14985.2.2ShiftedLoggingOperationsActivityshiftingleakageduetoshiftedharvestingtoanewforestareacanbeconfirmedwheredocumentationofthemanagementplansand/orland-usedesignationsrevealthattheProjectProponenthascommencedharvestingoperationinanynewlandloggedduringthecreditingperiodafterthestartdateoftheIFM-LtPFproject.Whenthisisthecase,thecarbonlossesduetoharvestshiftingcanbedeterminedusingthefollowingprocedure:Step1:Obtainthevolumeofharvestinthenewareafrommanagementplans()Step2:ChoosethemostapplicableBEFvaluefromthedatasourcespresentedinStep2ofSection4.5.1Step3:Choosethemostapplicablewooddensityforaforestwithcorrespondingclimateregionandecologicalzone(seeAppendixB,SectionB.1,TableB-1)Step4:Selectanappropriatefactorforresidualstanddamage()(useTableB-3,SectionB.3,AppendixB)andcarbonfraction(seeStep4ofSection3.2.1.2.1,A)andapplythefollowingequationtogetthecarbonlossduetoshiftedloggingoperations:Equation5-9ParameterDescriptionUnitAnnualcarbonlossesfromactivityshiftingduetoshiftingofharvesttonewareainyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCAnnualshiftedharvestvolumefornewareainyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)m3Factorforresidualstanddamage,basedonthefractionofquantityofcarbondamagedintheresidualstandtothequantityofcarboninthetotalmerchantablelogsharvesteddimensionlessBiomassexpansionfactorforconvertingvolumeofextractedroundwoodtototalabovegroundbiomass(includingbark)dimensionlessWooddensityforthetropicalforestwithcorrespondingclimateregionandecologicalzone(seeAppendixB)(td.m.)m-3Carbonfractionintheabovegroundbiomassoftreesforthetropicalforest(seeAppendixB)tC(td.m.)-1VSH_activityshifting,tfRSDCLSH_activityshifting,tVSH_activityshifting,t1fRSDBEFDCFAGBCLSH_activityshifting,tVSH_activityshifting,tfRSDBEFDCFAGBVM0011,Version1.0SectoralScope14995.2.3ShiftedBaselineActivityEmissionsFollowingSection5.2.1.1,ifEquation5-6istrue,implyingthatharvestinghasintensified,and/orshiftedoperationsforlogginghavebeenconfirmedinSection5.2.1.2,itimpliesleakageduetoactivityshiftingofthebaselinescenariohasoccurred.Consequently,emissionsassociatedwithimplementationoftheshiftedbaselineactivitymustbeaccountedforanddeterminedusingthesameapproachaspresentedinSection3.4fordeterminingbaselineactivityemissions.Inthiscase,theparametersEarereplacedwithLinEquation3-54todistinguishbetweenthebaselineandleakagescenarios:Equation5-10ParameterDescriptionUnitAnnualemissionsduetoimplementationoftheshiftedbaselineactivityinotherlandsmanagedoroperatedbytheProjectProponentinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eAnnualshiftedemissionsduetoharvestingoperationssuchasfellingandsnigginginyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eAnnualshiftedemissionsduetoon-sitepreparationsuchastrimmingoftreeheads,butts,branchesanddefectivecomponentsinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eAnnualshiftedemissionsduetologtransportfromcollectiondepottoprocessingplantinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eAnnualshiftedemissionsduetologhaulinginyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eAnnualshiftedemissionsduetoelectricityconsumptioninsawmillinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eAnnualshiftedemissionsduetotransportofthesawnproductfromthemilltothewharfforexportortothedepotforlocalusageinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-e5.3MarketLeakageMarketeffectsduetothepresenceofanIFM-LtPFprojectcouldoccurintwomainways:CLemissions,tLharvesting,tLonsiteprep,tLhauling,tLtransport,tLprocessing,tLdistribution,tCLemissions,tLharvesting,tLonsiteprep,tLtransport,tLhauling,tLprocessing,tLdistribution,tVM0011,Version1.0SectoralScope14100(i)Intensificationofexistingharvestpractices(ii)Formationofnewenterprisesandhencenew(ormodifiedexisting)FIRsforsanctionedselectivelogging.TheProjectProponentmustdemonstratehowmarketleakagehasbeenaccountedforinaccordancewiththemostrecentversionofapplicableVCSrules.VM0011,Version1.0SectoralScope141016UncertaintyAssessmentTheassessmentofuncertaintyisarequiredcomponentofqualitymanagementproceduresforthemanagementofdataandinformation(seeSection7.3).ItisconsiderednecessarythattheProjectProponentidentifytheparametersthatsignificantlyaffecttheaccuracyofthecalculatedemissionreductionsinordertoreduceuncertaintiesrelatedtothequantificationofGHGemissionreductionsorremovalenhancements.AprocedurefortheestimationofuncertaintyoftheGHGemissionreductionsarisingfromanIFM-LtPFprojectispresentedinthissection.6.1IdentifyingUncertaintyIngeneral,estimationsofemissionreductionsthatarearesultofemissionsandremovalsfromIFMactivitieshavevarioussourcesofuncertainties.Typicallytheseuncertaintiesareassociatedwithsampledata,suchasheightanddiametermeasurementsfromPSPs,biomassgrowthandratesofdecay,activitydata,emissionfactors,andothercoefficients(e.g.lumberrecoveryfactor).Thevaluesoftheuncertaintiesassociatedwiththeseparametersarederivedfromanumberofdifferentsources:(i)IPCC(2006)defaultdataandguidelines(ii)Statisticalsampling(iii)Expertjudgementwithjustification.Wheretheuncertaintyofaparameterisnotknown,thevalueoftheparameterwillbeassignedavaluethatisindisputablyconservative,eliminatingthecorrespondinguncertainty.6.1.1CalculatingUncertaintyInaccordancewithIPCCbestpractice,themethodologyrequirestheuseof95%confidenceintervalforquantificationofrandomerrors(IPCC,2006,Volume1,Chapter3,p.3.6and3.9).Asimpleapproachtodeterminetheuncertaintyvalueoftheoverallemissionreductionsfromtheuncertaintiesoftheindividualcomponents,isbasedonthebasicerrorpropagationrulesetoutlinedbelow:Rule1Theuncertaintyorabsoluteerrorforafunction,z=x+y,whereandrepresenttheabsoluteerrorforxandy,respectively,isdeterminedbythefollowing:Equation6-1Rule2Theuncertaintyorabsoluteerrorforafunction,,where,andrepresenttheabsoluteerrorforx,yandz,respectively,isdeterminedbythefollowing:xyzx2y2fnxyzxyzVM0011,Version1.0SectoralScope14102Equation6-2Therelativeerror,orpercentageerror(U)isdetermined,forfunction,fn,asanexample,viathefollowing:Equation6-3ProjectProponentsseekingmoredetailedguidanceforcombininguncertaintieswillfinditprovidedinIPCC(2006),Volume1,Chapter3,Section3.2.3,p.3.27.TheabovemethodhasbeenpresentedfortheparametersspecifictotheIFM-LtPFprojectinthesubsequentsections.6.2OverallIFM-LtPFProjectUncertaintyThenetanthropogenicGHGemissionreductionsoftheIFM-LtPFprojectactivity,isdeducedfromthesubtractionoftheactualprojectemissions()andtheleakageemissions()fromtheproposedbaselineemissions(),aspresentedinEquation1-1inSection1.2.1.AnestimationoftheoveralluncertaintyfortheIFM-LtPFprojectisdeducedbyerrorpropagationusingthefollowingequation:Equation6-4ParameterDescriptionUnitAnnualuncertainty(absoluteerror)fortheoverallIFM-LtPFprojectinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eAnnualuncertaintyintheannualtotalGHGemissionsasaresultofthebaselinescenarioinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eAnnualuncertaintyintheactual(project)activityinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eAnnualuncertaintyinleakageinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-efnfxx2fyy2fzz2Ufnfnfn100Cactual,tCleakage,tCbaseline,tIFMLtPF,tbaseline,t2actual,t2leakage,t2IFMLtPF,tbaseline,tactual,tleakage,tVM0011,Version1.0SectoralScope14103TotrackthechangesinuncertaintyassociatedwiththeIFM-LtPFactivity,itisappropriatetousetherelativeuncertaintyinsteadoftheabsolute.Therelativeerror,orpercentageerrorisexpressedusingthefollowingequation:Equation6-5ParameterDescriptionUnitAnnualuncertainty(relativeerror)fortheoverallIFM-LtPFprojectinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)%Annualuncertainty(absoluteerror)fortheoverallIFM-LtPFprojectinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eAnnualnetanthropogenicGHGemissionreductionsinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-e6.3UncertaintyinBaselineAccountingThetotaluncertaintyrelatedtothebaselinescenario(seeEquation3-1)isapropagationoferrorassociatedwiththeuncertaintyofthedegradationplustheuncertaintyintheestimationofemissionsourcesduetotheimplementationofthebaselinecase,andisexpressedusingthefollowingequation:Equation6-6ParameterDescriptionUnitAnnualuncertaintyintheannualtotalGHGemissionsasaresultofthebaselinescenarioinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eAnnualuncertaintyintheannualemissionsproducedfromdegradationduetothebaselineactivity:selectiveloggingintheProjectAreainyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eAnnualuncertaintyintheannualemissionsfromthebaselineactivity:selectiveloggingoperationsinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eUIFMLtPF,tIFMLtPF,tCIFM_LtPF,t100UIFMLtPF,tIFMLtPF,tCIFM_LtPF,tbaseline,tdegradation,t2emissions,t2baseline,tdegradation,temissions,tVM0011,Version1.0SectoralScope141046.3.1DegradationUncertaintyTheuncertaintyassociatedwithdegradationinthebaselinescenario(seeEquation3-2)isapropagationoferrorsoftheindividualcomponentscontributingtodegradationandisexpressedusingthefollowingequation:Equation6-7ParameterDescriptionUnitAnnualuncertaintyintheannualemissionsproducedfromdegradationduetothebaselineactivity:selectiveloggingintheProjectAreainyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eAnnualuncertaintyincarbonfromthedeadwood(DW)poolduetodecayinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCAnnualuncertaintyincarbonfromthelong-termharvestedwoodproducts(ltHWP)poolduetooxidationinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCAnnualuncertaintyincarbonfromtheshort-termharvestedwoodproducts(stHWP)poolduetooxidationinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCAnnualuncertaintyinthecarbonlostduetogrowthforegoneintheannualnetharvestareainyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCAnnualuncertaintyinthecarbonincreaseinthebiomassduetoregrowthfollowinglogginginyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tC44/12Theratioofmolecularweightofcarbondioxidetocarbon,seeAppendixCtCO2-etC-16.3.2BaselineEmissionSourcesUncertaintyTheuncertaintyduetoemissionsfromtheimplementationofthebaselinecaseisdeterminedasfollows:degradation,tDWdecay,t2ltHWPoxidation,t2stHWPoxidation,t2growth_foregone,t2regrowth,t24412degradation,tDWdecay,tltHWPoxidation,tstHWPoxidation,tgrowth_foregone,tregrowth,tVM0011,Version1.0SectoralScope14105Equation6-8ParameterDescriptionUnitAnnualuncertaintyintheannualemissionsfromthebaselineactivity:selectiveloggingoperationsinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eAnnualuncertaintyinthegreenhousegasemissionssourcesg,(whereg=1,2,3...Gemissionsources)associatedwiththebaselineactivityinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-e6.4UncertaintyinActualProjectAccountingTheuncertaintyassociatedwiththeemissionsduetotheimplementationoftheactualprojectactivitycanbetrackedthrougherrorpropagationrelatedtotheindividualprojectactivityemissionsourcesasoutlinedbythefollowing:Equation6-9ParameterDescriptionUnitAnnualuncertaintyintheactualprojectactivityinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eAnnualuncertaintyinthegreenhousegasemissionssourcesg,(whereg=1,2,3...Gemissionsources)associatedwiththeactualprojectactivityinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-e6.5UncertaintyinLeakageAccountingTheuncertaintyassociatedwithleakagetakesintoaccountuncertaintyintheestimationsofemissionsduetoactivityshifting(),illegalharvesting(),naturaldisturbances()implementationoftheshiftedbaselineactivity(),andmarketeffects().emissions,t2baseline_source,g,tg1Gemissions,tbaseline_source,g,tactual,t2proj_source,g,tg1Gactual,tproj_source,g,tCLactivityshifting,tCLillegal_harvest,tCLnatural_disturb,tCLemissions,tCLmarket,tVM0011,Version1.0SectoralScope14106Equation6-10ParameterDescriptionUnitAnnualuncertaintyinleakageinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eAnnualuncertaintyassociatedwithcarbonduetoactivityshiftinginyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCAnnualuncertaintyassociatedwithcarbonduetomarketeffectsinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCAnnualuncertaintyassociatedwithcarbonduetoillegalharvestinginyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCAnnualuncertaintyassociatedwithcarbonduetonaturaldisturbancesinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCAnnualuncertaintyassociatedwithemissionsduetoimplementationoftheshiftedbaselineactivityinotherlandsmanagedoroperatedbytheProjectProponentinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity);thisparameterhasbeenmultipliedby12/44forconversionintotCtCO2-e44/12Theratioofmolecularweightofcarbondioxidetocarbon,seeAppendixCtCO2-etC-16.6UncertaintyDeductionUponestablishingtheuncertaintypercentageusingEquation6-5,applythefollowingprocedure:Step1:If,thennodeductionwillbeappliedforuncertainty.TheProjectProponentshallproceedtoSection6.7tofurtherreduceuncertaintyassociatedwithparameters.Step2:If,thenapplythefollowingequation:Equation6-11leakage,tactivityshifting,t2market,t2illegal_harvest,t2natural_disturb,t2CL_emissions,t124424412leakage,tactivityshifting,tmarket,tillegal_harvest,tnatural_disturb,tCL_emissions,tUIFMLtPF,t10%UIFMLtPF,t10%CCIFMLtPF,t100(UIFMLtPF,t10)100CIFMLtPF,tVM0011,Version1.0SectoralScope14107ParameterDescriptionUnitAnnualcarboncreditspostuncertaintydeductioninyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eAnnualuncertainty(relativeerror)fortheoverallIFM-LtPFprojectinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)%AnnualnetanthropogenicGHGemissionreductionsinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eAfterapplyingEquation6-11,theProjectProponentproceedstoSection6.7tofurtherreduceuncertaintyassociatedwithparameters,soastomaximisetheestimatesofcarboncredits.6.7ReducingUncertaintyReducingtheuncertaintyassociatedwiththenetanthropogenicGHGemissionreductionsoftheIFM-LtPFprojectactivitycanbeachievedbyidentifyingtheparameterscontributingthegreatesttotheuncertaintyandconductingappropriateprocedurestoreducetheuncertaintyoftheseparameters.Thiswillbeachievedusingthefollowingprocedure:Step1:ForeachparameterusedtocalculatethenetanthropogenicGHGemissionreductions,e.g.,derivetheratiooftheuncertaintyofeachcontributingparameteroverthemainparameter.Forexample,todeterminetheratiooftheuncertaintyoftheindividualcomponentsofthebaselinescenario:degradationandbaselineactivityemissions,thefollowingratiosmustbederived:Equation6-12Equation6-13ParameterDescriptionUnitAnnualratioofuncertaintyofemissionsduetodegradationoveruncertaintyoftheannualtotalGHGemissionsofthebaselinescenarioinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)dimensionlessAnnualuncertaintyintheannualemissionsproducedfromdegradationduetothebaselineactivity:selectiveloggingintheProjectAreainyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eCCIFMLtPF,tUIFMLtPF,tCIFM_LtPF,tCbaseline,t,Cactual,t,andCleakage,tRdegradation,tdegradation,tbaseline,tRemissions,temissions,tbaseline,tRdegradation,tdegradation,tVM0011,Version1.0SectoralScope14108ParameterDescriptionUnitAnnualuncertaintyintheannualtotalGHGemissionsasaresultofthebaselinescenarioinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eAnnualratioofuncertaintyofemissionsduetoimplementationofbaselineactivityoveruncertaintyoftheannualtotalGHGemissionsofthebaselinescenarioinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)dimensionlessAnnualuncertaintyintheannualemissionsfromthebaselineactivity:selectiveloggingoperationsinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCO2-eStep2:IdentifytheparameterswiththehighestratiosandusingthesameprocedureasinStep1,investigatetheparameterscontributingtotheidentifiedparameter.Continuethisprocessforallcalculated/derivedparametersuntilonlysourced/measuredparametersremain.Step3:ForthesourcedparametersidentifiedasthegreatestcontributorstouncertaintyfromStep2,analysethesourceoftheparametervalueandtheassociateduncertainty.IftheparameteriseitheradefaultIPCCvalueorsourcedfromliterature:(i)Cantheaccuracyoftheparameterandhencetherangeoftheuncertaintybereducedbyselectinganotherappropriatedatasource?Ifyes,providejustificationandnewdatasource(ii)Ifno,canaproject-specificparameterbemeasured?Ifyes,provideadescriptionoftheprocedureandincorporateintotheMonitoringPlan(iii)Ifno,summarisejustificationonwhytheuncertaintyoftheparametercannotbeimprovedupon.Iftheparameterisaproject-specificmeasuredvalue:(i)Cantheaccuracyoftheparameterandhencetherangeoftheuncertaintybereducedbyincreasingthestatisticalsampling?Ifyes,providestatisticalrequirementsandincorporateintoMonitoringPlan(ii)Ifno,summarisejustificationonwhytheuncertaintyoftheparametercannotbeimprovedupon.Step4:Onceuncertaintyrevisionshavebeenconducted,re-calculatethenetanthropogenicemissionreductions,,andfollowSections6.2to6.5tocalculatethereviseduncertaintyforthenetanthropogenicGHGemissionreductionsoftheIFM-LtPFprojectactivityusingEquations6-4and6-5.Comparerevisedpercentagewiththeprevious.Step5:FollowSteps1and2inSection6.6andwhererequired,accountforuncertaintydeductionusingEquation6-11.baseline,tRemissions,temissions,tCIFMLtPFVM0011,Version1.0SectoralScope141097Monitoring7.1MonitoringMethodologyThissectionprovidesthemethodologyformonitoringtheparametersemployedtocalculatecarbonchangesduetoforestdegradation,aswellasemissionsduetoimplementationoftheprojectandbaselineactivities,plusemissionsasaresultofleakage.Inaddition,theproceduresforestablishingPermanentSamplePlots(PSPs)anddatacollectionpresentedhereinalsoapplytotheMeasuredDatapathway,i.e.,thecasewherethepreparationofFIRorequivalentdocument,isinprogress(seeSection3.2.2).Aftermonitoringhasbeenimplemented,theresultsareconsequentlyappliedtorevisethenetanthropogenicGHGemissionreductionsforthesubsequentreportingperiod.7.1.1MonitoringPlanTheProjectProponentisrequiredtosubmitadetailedmonitoringplaninaccordancewiththemostrecentversionofapplicableVCSrules.StandardOperatingProcedures(SOPs),training,andcapacitybuildingwillbeprovidedbytheProjectProponenttotheidentifiedresponsibleentityasspecifiedinthePD.Thisistoensurethataccuratedataiscollectedasrequired.Thedata,itssource,theentityresponsible,thefrequencyofcollectionandtheequationitappliesto,isdetailedinthemonitoringtablesprovidedinthefollowingsections(Tables7-1to7-3).7.1.2ProcedureforEstablishingthePermanentSamplePlots(PSPs)andMeasurementForestinventoryobtainedinthePSPsthatareestablishedintheProjectAreaisrequiredfor:(i)TheMeasuredDatapathway,exanteestimationforthebaselinedegradationcalculations(seeSection3.2.2)(ii)Monitoringofthecarbonchangethroughoutthecreditingperiodtoobtainexpostestimationsofgrowthforegone(seeSection3.3.4)andemissionsduetonaturaldisturbances(seeSection4.4).Sampleplotsareeitherpermanentortemporaryinnature.FormeasuringthecarbonchangeundertheIFM-LtPFproject,PermanentSamplePlots(PSPs)aremoresuitablethanTemporarySamplePlots,astheyarestatisticallymoreaccurateandefficientinestimatingchangesinforestcarbon.ThemeasurementscollectedwithinthesameplotsunderthePSPsapproachthroughoutthecreditingperiodallowsthemonitoringofthegrowthofindividualtrees,survivors,mortality,andgrowthofnewtreesatspecifictimeintervals.Inaddition,thePSPsalsopermittheverificationbodytofind,measureatrandom,andtoverifyinquantitativeterms,thedesignandimplementationofthecarbonmonitoringplan.ThefollowingsectionsdescribetheproceduresforestablishingPSPsintheProjectArea.VM0011,Version1.0SectoralScope141107.1.2.1StratificationoftheProjectAreaTofacilitatethefieldworkandincreasetheaccuracyandprecisionoftheparametersthataretobemeasured,theProjectAreaistobedividedintosub-populationsor“strata”thatformrelativelyhomogeneousunits.Thismakesmonitoringmorecosteffectivebecauseitdecreasesthesamplingandmonitoringefforts,whilstmaintainingthesamelevelofconfidence.StratificationoftheProjectAreaispresentedinmoredetailSection2.2.1.1.1.7.1.2.2ShapeandsizeofplotsThemeasurementoftreeparametersinaPSPrequiresthedeterminationofthesizeandshapeofthePSPs.Circularorrectangularplotswithvaryingsizescanbeusedformeasuringdifferentdiameterclasstrees.Nestingofplotsispossible-asmallersizeplotisestablishedinsidealargerplotformeasuringsmalldiameterclasstrees.Figure7-1showsanexampleofnestedcircularsampleplotsformeasuringdifferentdiameterclassesinaspecifiedcircularplot.Thesampleplothasthreecircularplots:asmallplotwith4mradiustomeasuretreeswithDBHbetween5-20cm,anintermediateplotwith14mradiustomeasuretreeswithDBHbetween20-50cm,andalargeplotwith20mradiusformeasuringtreeswithDBHabove50cm.TheProjectProponentmustdecideontheappropriatesizeandshapeofthePSPbasedonthecommonpracticesemployedforforestinventoryinthehostcountry.Figure7-1Circularthree-nestsampleplotsizes(Pearsonetal.2005)7.1.2.3DeterminingthenumberofPSPsThenumberofPSPsineachstratumisdeterminedbytakingmeasurementsinpreliminarysampleplotsrandomlylaidineachstratumtoachievethedesiredlevelofprecisionusingthefollowingprocedure:Step1:Selectthenumberofpreliminarysampleplots(sp)tobeestablished(between6and10foreachstratum).Step2:Setthegeographiclocationofthepreliminarysampleplotsineachstratumbyemploying,forexample,arandomfunctionavailableintheGeographicInformationSystem(GIS)platform(e.g.ArcGIS).Step3:LocatethepreliminarysampleplotonthegroundusingGPSandmaps.Step4:EstablishthesampleplotofspecificsizeandshapeasdiscussedintheSection7.1.2.2.Step5:MeasuretheDBHandtreeheightofalltreesasdefinedbytherelevantauthorityofthehostcountry.UsethestandardforestrytechniquesandequipmentsuchasDBHtapeandclinometerformeasuringDBHandtreeheight,respectively.SeePearsonetal.(2005)fordetails.VM0011,Version1.0SectoralScope14111Step6:UsefielddatatocalculatethecarbonintheAGBineachpreliminarysampleplotandstratumasperthecalculationinSection3.2.1.2,andemploythefollowingequationtoestimatethestandarddeviationforeachstratum():Equation7-1ParameterDescriptionUnitStandarddeviationforcarbonintheabovegroundbiomassinthestratumj,(wherej=1,2,3,...Jstrata)tCha-1Averagecarbonperhectareintheabovegroundbiomassofthegrowingstockinthepreliminarysampleplotsp(wheresp=1,2,3...SPpreliminarysampleplots),ofthestratumj,(wherej=1,2,3,...Jstrata)tCha-1Averagecarbonperhectareintheabovegroundbiomassofthegrowingstockinthestratumj,(wherej=1,2,3,...Jstrata)tCha-1Totalnumberofsamplingunitsinthestratumj,(wherej=1,2,3,...Jstrata)dimensionlessStep7:Applytheprecisionlevelof10%ofthetruevalueofthemeanatthe95%confidenceintervalforaccurateestimationofnetchangeinthecarbonstock(Pearsonetal.,2005)intheprojectarea.Step8:ApplytheequationbelowtoestimatethetotalnumberofPSPs,N,inallstratafortheentireProjectArea(Pearsonetal.,2005):Equation7-2ParameterDescriptionUnitTotalnumberofPermanentSamplePlotsintheProjectAreaNumberNumberofsamplingunitsinstratumj(wherej=1,2,3...Jstrata)NumberStandarddeviationofcarbondensityforthestratumj,(wherej=1,2,3,...Jstrata)tCha-1sdjsdj=(CAGB_gstock,sp,jCAGB_gstock,j)sp1SPNj1sdjCAGB_gstock,sp,jCAGB_gstock,jNjNNjsdjj1J2N2jerr2tstat2Njsdj2j1JNNjsdjVM0011,Version1.0SectoralScope14112ParameterDescriptionUnitSamplestatisticfromthet-distributionforthe95%confidenceleveldimensionlessAllowableerror(calculatedbymeancarbondensitybydesiredprecision)dimensionlessStep9:ThefollowingequationisthenusedtocalculatethenumberofPSPsineachindividualstratum(Pearsonetal.2005):Equation7-3ParameterDescriptionUnitNumberofPermanentSamplePlotsinstratumj,(wherej=1,2,3,...Jstrata)NumberTotalnumberofPermanentSamplePlotsintheProjectAreaNumberTotalnumberofsamplingunitsinthestratumj,(wherej=1,2,3,...Jstrata)NumberStandarddeviationofcarbondensityforthestratumj,(wherej=1,2,3,...Jstrata)tCha-1Equation7-3determinesthenumberofPSPsforeachstratumbasedonthevariabilityinthestratum.Astratumwithhighervariabilitywillrequireahighernumberofsampleplotsthanastratumwithlessvariability.Inthecaseofthenaturaldisturbances,thesampleplots,,areestablishedinthenaturallydisturbedstratumduringthemonitoringeventforestimatingthecarbonincreasedintheAGBpoolduetoregrowthinthenaturallydisturbedareas(seeStep5ofSection4.4).7.1.2.4SamplingdesignforthePSPsDifferentsamplingdesignapproachesareavailableforlayingoutthegroundlocationofthePSPsineachstratum.Someofthecommonlyusedsamplingdesignsinforestryarerandomsampling,stratifiedsampling,stratifiedrandomsampling,stratifiedsystematicsamplingandclustersampling.AsuitablesamplingdesignforestablishingthePSPsisrequiredandisimportanttoavoidbias,suchaslocatingPSPsalongaroadforexample,inordertomaintainthestatisticalrigourandvalidityofthecalculations.7.1.2.5ParametermeasurementinthePSPsAfterdeterminingthenumberofPSPsineachstratum,andthesamplingdesignforonthegroundlocationofthePSPs,fieldmeasurementswillbeconducted.ThefieldteamshouldhavesoundtstaterrnjNNjsdjNjsdjj1JnjNNjsdjsndVM0011,Version1.0SectoralScope14113knowledgeandexperienceinforestinventory,measurementproceduresandequipment.Beforethefieldworkcommences,thefieldteammustpreparethefollowing:•Aplanofthedatacollectionproceduresincludingthespecificationofmerchantabletreeintermsofspecies,minimumDBHandtreeform,rulesforborderlinetrees,locatingtreesduringthefollowingmonitoringperiod,andmeasurementtechniquesfortheDBHandtreeheight•Aplanofthedatarecordingproceduresandresources,suchaspaperformsorhandheldPDAs•Documentationofqualitycontrolandqualityassuranceprocedures•Documentationofdataarchivingmethods•Detailsoftheresponsibilitiesofthepartiesinvolved.TheProjectProponentwilldevelopStandardOperatingProcedures(SOPs)foreachoftheabovestepsandincludetheseinthePD.AfterestablishingaPSPontheground,alltreesasdefinedbytherelevantauthorityinthehostcountrywillbemeasuredfortheirDBHandtreeheight(H)usingappropriateequipment.Theequipmentemployedmusthavebeencalibratedbeforetakingtothefieldformeasurements.ThisMethodologyhasprovidedguidanceonestablishmentofthePSPsandthemeasurementintheSection7.1.2.However,theProjectProponentwillberequiredtousemethodsthatadheretogoodpracticeinternationallyaswellaslocallyinthehostcountry.AdetailofthechosenmethodsfortheProjectAreastratification,samplingdesign,intensityandtheactualtreemeasurementmustbeprovidedinthePD.SomeofthespecificresourcematerialsformonitoringthenetGHGemissionsareprovidedbythefollowingliterature:Pearsonetal.(2005);Pearsonetal.(2007);IPCC(2003);Hoover(2008).7.1.3MonitoringFrequencyUnderthismethodology,theProjectProponentshouldundertakemeasurementinthePSPsatintervalsnotexceedingfiveyears.ParametersassociatedwiththeProjectAreaandleakagemustbemonitoredannually.7.2MonitoringImplementationTheProjectProponentmustprepareamonitoringplanforestimatingcarbonchangesunderthebaselinescenario,projectimplementationandleakage.Thissectionprovidesguidanceonthespecificparameterstobemonitoredunderthesescenarios,theirreferenceinthisMethodology,theirsources,monitoringfrequencyandtherelevantequationwherethenewvalueistobeappliedforexpostcalculationsofnetanthropogenicGHGemissionreductions.Thedataandtheparametersassociatedwiththecalculationoftheannualchangeincarbonduetodegradationfromselectivelogging(inEquation3-2)havebeencategorisedintothreegroups:(i)parametersobtainedfromtheliteratureorreports(notmonitored)(ii)parametersmeasuredonce(notmonitored)(iii)parametersthatrequiremonitoring.Cdegradation,tVM0011,Version1.0SectoralScope14114Tables7-1through7-3summarisethespecificparameters,thesource(s)ofeachdataorparameter,andtheequation(s)inwhicheachoftheparametersareapplied.7.2.1ParametersObtainedfromtheLiterature/ReportstobeReviewed/Verified(NotMonitored)Table7-1providesalistofparameterstobemonitoredduringtheprojectlifetimeandusedforupdatingthenetanthropogenicGHGemissionscalculation.Section7.3.2providesQA/QCproceduresforselectingthemostappropriatevalue.TheProjectProponentmustselectthevaluewhichdoesnotleadtoanover-estimationofthenetanthropogenicGHGemissionreductions.Table7-1ParametersobtainedfromtheliteratureorreportstobereviewedorverifiedParameterSummaryofDescriptionUnitSourceoftheparameterReviewfrequencyorvalidationApplicationoftheParameterinEquation(s)Biomassconversionandexpansionfactorinstratumj(td.m.)m-3literaturevalueorderivealocalvalueReviewtheliteratureorwhererequired,verifyorderivelocalvalue3-8;4-15;4-22Biomassexpansionfactorforconvertingvolumeofextractedroundwoodtototalabovegroundbiomass(includingbark)dimensionlessliteraturevalueorderivealocalvalueReviewtheliteratureorwhererequired,verifyorderivelocalvalue4-21;5-8;5-9CarbonfractionofwoodforthetropicalforesttC(td.m.)-1literaturevalueReviewtheliteratureforappropriatevalueduringthemonitoringevent3-3;3-5;3-41;3-51;CarbonfractionintheabovegroundbiomassoftreesforthetropicalforesttC(td.m.)-1literaturevalueReviewtheliteratureforappropriatevalueduringthemonitoringevent3-8;3-14;3-37a;3-37b;3-38;4-15;4-17a;4-21;4-22;5-8;5-9Wooddensityforthetropicalforestwithcorrespondingclimateregionandecologicalzone(td.m.)m-3literaturevalueorderivealocalvalueReviewtheliteratureorwhererequired,verifyorderivelocalvalue3-3;3-5;3-41;3-51;4-21;5-8;5-9Species-specificdensityofwood,(td.m.)m-3literaturevalueReviewtheliteratureorwhererequired,verifyorderivelocalvalue3-12BCEFjBEFCFwoodCFAGBDDiVM0011,Version1.0SectoralScope14115ParameterSummaryofDescriptionUnitSourceoftheparameterReviewfrequencyorvalidationApplicationoftheParameterinEquation(s)Volumeallometricequationasafunctionofdiameteratbreastheightandheight;t=0yeardimensionlessobtainedfromliteratureReviewtheliteratureorwhererequired,verifyorderivelocalvalue3-10;3-11Biomassallometricequationasafunctionofdiameteratbreastheightandheight;t=0yeardimensionlessobtainedfromliteratureReviewtheliteratureorwhererequired,verifyorderivelocalvalue3-12Rateofdecayofthedeadwoodpoolyr-1literaturevalueReviewtheliteratureforappropriatevalueduringthemonitoringevent3-17,3-21FactorforresidualstanddamagedimensionlessliteraturevalueReviewtheliteratureforappropriatevalueduringthemonitoringevent3-19;4-21;5-8,5-9Branch-trimfactordimensionlessliteraturevalueorderivealocalvalueReviewtheliteratureorwhererequired,verifyorderivelocalvalue3-20LumberrecoveryfactordimensionlessliteraturevalueReviewtheliteratureforappropriatevalueduringthemonitoringevent3-26,3-27Rateofoxidationforlong-termharvestedwoodproductsyr-1literaturevalueReviewtheliteratureforappropriatevalueduringthemonitoringevent3-28Rateofoxidationforshort-termharvestedwoodproductsyr-1literaturevalueReviewtheliteratureforappropriatevalueduringthemonitoringevent3-34Averageregrowthperhectareperyearoftheabovegroundbiomassafterlogginginyear,t(td.m.)ha-1yr-1literaturevalueReviewtheliteratureforappropriatevalueduringthemonitoringevent3-38fV(DBHn,i,s,j,t0,Hn,i,s,j,t0)fB(DBHn,i,s,j,t0,Hn,s,i,j,t0,Di)kdecayfRSDfbranch_trimflumber_recoverykltHWP_oxkstHWP_oxGregrowth,tVM0011,Version1.0SectoralScope14116ParameterSummaryofDescriptionUnitSourceoftheparameterReviewfrequencyorvalidationApplicationoftheParameterinEquation(s)FuelemissionfactortCO2-ekL-1literaturevalueReviewtheliteratureforappropriatevalueduringthemonitoringevent3-40;3-42;3-43;3-46;3-50;3-54;4-8;4-11;4-14Fuelconsumptionofequipmentemployedforfellingandsniggingperm3ofmerchantablelogharvestedkLm-3Manufacturer‟sspecification/literaturevalueReviewtheliteratureforappropriatevalueduringthemonitoringevent3-40Fuelconsumptionofequipmentemployedfortrimmingperm3oftrimmedmaterialkLm-3Manufacturer‟sspecificationReviewtheliteratureforappropriatevalueduringthemonitoringevent3-42Fuelconsumptionofequipmentforhaulingonem3ofmerchantablelogkLm-3Manufacturer‟sspecificationReviewtheliteratureforappropriatevalueduringthemonitoringevent3-43Truckloadcapacitym3truck-1literaturevalueReviewtheliteratureforappropriatevalueduringthemonitoringevent3-44;3-52FuelefficiencyforvehicletypekmkL-1Manufacturer‟sspecification/NationalDatabaseReviewtheliteratureforappropriatevalueduringthemonitoringevent3-46;3-52;3-54;4-7;4-11;4-14ElectricitydemandforprocessingpervolumeprocessedkWhm-3literaturevalueReviewtheliteratureforappropriatevalueduringthemonitoringevent3-47EmissionfactorforelectricityinthehostcountrytCO2-ekWh-1Country-specificdatafromInternationalEnergyAgencyAnnuallyrevisedforthespecificvalue3-48;4-4TotaloperatingtimeofgeneratorinyearthNationalreportsonharvestingpracticeReviewtheliteratureforappropriatevalueduringthemonitoringevent3-49;3-50EFfuelFCharvestFCtrim_equipFChaulingCaptruckEffvehicleedemandEFelectricitytgenerator,tVM0011,Version1.0SectoralScope14117ParameterSummaryofDescriptionUnitSourceoftheparameterReviewfrequencyorvalidationApplicationoftheParameterinEquation(s)FuelconsumptionperhourofoperationofgeneratorkLh-1Manufacturer‟sfuelconsumptionchartReviewtheliteratureforappropriatevalueduringthemonitoringevent3-50Powerratingforelectricalequipment,ee,inyeartkWManufacturer‟spowerratingfortheequipmentReviewthevalueduringthemonitoringevent4-3FlightemissionfactorfortripytCO2-e(passenger.km)-1literaturevalueAnnuallyrevisedforthespecificvalue4-6,4-10;4-13EmissionratioforCH4dimensionlessliteraturevalueReviewtheliteratureforappropriatevalueduringthemonitoringevent4-18aEmissionratioforN2OdimensionlessliteraturevalueReviewtheliteratureforappropriatevalueduringthemonitoringevent4-18bRatioofnitrogentocarbondimensionlessliteraturevalueReviewtheliteratureforappropriatevalueduringthemonitoringevent4-18bGlobalwarmingpotentialofCH4tCO2-etCH4-1literaturevalueReviewtheliteratureforappropriatevalueduringthemonitoringevent4-19GlobalwarmingpotentialofN2OtCO2-etN2O-1literaturevalueReviewtheliteratureforappropriatevalueduringthemonitoringevent4-197.2.2ParameterstobeMeasuredOnce(NotMonitored)Table7-2providesalistofparametersmeasuredexanteandusedinthecalculationforthenetanthropogenicGHGemissionreductions.Theseparametersanddataarevalidatedorverifiedbutnotmonitored.Table7-2ParameterstobemeasuredoncebutnotmonitoredFCgeneratorPRequip,ee,tEFflight,yRCH4RN2ORN/CGWPCH4GWPN2OVM0011,Version1.0SectoralScope14118ParameterSummaryofDescriptionUnitSourceoftheparameterMeasurementFrequencyApplicationoftheParameterinEquation(s)ProjectAreaattime,t=0haGPSdata,GISmapsandsatellitedataValidated/VerifiedbeforetheIFM-LtPFprojectstartdate2-1;3-4;3-6;3-9;3-13;3-36b;ProjectAreawithineachstratum,j,attime,t=0haGPSdata,GISmapsandsatellitedataValidated/VerifiedbeforetheIFM-LtPFprojectstartdate2-1;3-4;3-6;3-9;3-13Totalareaofsampleplots,s,instratum,j,t=0yearhaExantefieldmeasurementinthesampleplotsValidated/VerifiedbeforetheIFM-LtPFprojectstartdate3-10;3-11;3-12Diameteratbreastheightt=0yearcmExantefieldmeasurementinthesampleplotsValidated/VerifiedbeforetheIFM-LtPFprojectstartdate3-10;3-11;3-12Heightforindividualtree,t=0yearmExantefieldmeasurementinthesampleplotsValidated/VerifiedbeforetheIFM-LtPFprojectstartdate3-10;3-11;3-12AnnualnetharvestareafortheProjectAreainyear,thaExante,obtainedfromtheharvestingplanValidated/VerifiedbeforetheIFM-LtPFprojectstartdate3-15a;3-16a;3-26;3-27;3-33;3-35;3-37a;3-38Annualnetharvestareaatthestratumlevelinyear,thaExante,obtainedfromtheharvestingplanValidated/VerifiedbeforetheIFM-LtPFprojectstartdate3-15b;3-16b;3-37bAnnuallogtransportdistancefromcollectiondepottoprocessingplantkmtruck-1DigitalmapsValidated/VerifiedbeforetheIFM-LtPFprojectstartdate3-45Annualdistanceoftransportfrompointofprocessingtodistribution/exportpointkmtruck-1DigitalmapsValidated/VerifiedbeforetheIFM-LtPFprojectstartdate3-53Totalvolumeofharvestforlandlthatisownedand/oroperatedbytheProjectProponentoverthehistoricalreferenceperiodm3ProjectProponentrecordsValidated/VerifiedbeforetheIFM-LtPFprojectstartdate5-3Aproject,t0Aproject,j,t0As,j,t0DBHn,i,s,j,t0Hn,i,s,j,t0ANHA_annual,tANHA_annual,j,tKMtransport,tKMdistrib,tVhistorical_harvest,l,kVM0011,Version1.0SectoralScope141197.2.3ParameterstobeMonitoredTable7-3providesalistofparameterstobemonitoredduringtheprojectlifetimewhicharethenemployedtoupdatethenetanthropogenicGHGemissionreductionscalculation.Table7-3ParameterstobemonitoredintheProjectAreaParameterSummaryofDescriptionUnitSourceoftheparameterMeasurementFrequencyApplicationoftheParameterinEquation(s)Diameteratbreastheightforindividualtreen,ofspeciesi,insampleplots,ofstratumj,inyeartcmMeasuredusingDBHtapeAtintervalsnotexceedingfiveyearsafterthefirstmonitoringevent3-12Diameteratbreastheightforindividualtreen,ofspeciesi,insampleplotinthenaturallydisturbedareasnd,ofstratumj,inyeartcmMeasuredusingDBHtapeAtintervalsnotexceedingfiveyearsafterthefirstmonitoringevent3-12Heightforindividualtreen,ofspeciesi,insampleplots,ofstratumj,inyeartmMeasuredusingtreeheightmeasurementequipmentAtintervalsnotexceedingfiveyearsafterthefirstmonitoringevent3-12Heightforindividualtreen,ofspeciesi,insampleplotinthenaturallydisturbedareasnd,ofstratumi,inyeartmMeasuredusingtreeheightmeasurementequipmentAtintervalsnotexceedingfiveyearsafterthefirstmonitoringevent3-12Hoursofoperationofelectricalequipmentee,inyearthElectricalequipmenttimelogbookAnnual4-3Distancetravelledpertripy,foratotalofYtripsinyeartkmFlighttravellogAnnual4-6NumberofpassengerspertripyinyeartNumberFlighttravellogAnnual4-6Distancetravelledpertripy,foratotalofYtripsinyeartkmVehicletravellogAnnual4-7DBHn,i,s,j,tDBHtree_nd,n,i,snd,j,tHn,i,s,j,tHtree_nd,n,i,snd,j,ttop_equip,ee,tKMplan_flight,y,tNplan_flight,y,tKMplan_ground,y,tVM0011,Version1.0SectoralScope14120ParameterSummaryofDescriptionUnitSourceoftheparameterMeasurementFrequencyApplicationoftheParameterinEquation(s)AnnualvolumeoffuelconsumedpertripyinyeartkLVehicletravellogAnnual4-8Distancetravelledpertripy,foratotalofYtripsinyeartkmFlighttravellogAnnual4-10NumberofpassengerspertripyinyeartNumberFlighttravellogAnnual4-10Distancetravelledpertripy,foratotalofYtripsinyeartkmVehicletravellogAnnual4-11Distancetravelledpertripy,foratotalofYtripsinyeartkmFlighttravellogAnnual4-13Numberofpassengerspertripy,inyeartpassengerFlighttravellogAnnual4-13Distancetravelledpertripy,foratotalofYtripsinyeartkmVehicletravellogAnnual4-14Areaofnaturaldisturbancend,instratumjinyearthaSatelliteimageryandfieldmeasurementAnnual4-15;4-17aFractionoftheforestnaturallydamagedinstratumj,inyeartdimensionlessFieldsurveyAnnual4-16Volumeofwoodsoldasdeterminedfromfieldsurveysinyeartm3FieldsurveyAnnual4-21Areaofillegalharvestinstratumj,inyearthaSatellitedataAnnual4-22Vfuel_plan_ground,y,tKMdesign_flight,y,tNdesign_flight,y,tKMdesign_ground,y,tKMmonitoring_flight,y,tNmonitoring_flight,y,tKMmonitoring_ground,y,tAnd,j,tfnatdisturb,j,tVillegal_harvest,tAillegal_harvest,j,tVM0011,Version1.0SectoralScope14121ParameterSummaryofDescriptionUnitSourceoftheparameterMeasurementFrequencyApplicationoftheParameterinEquation(s)Annualactualvolumeofharvestforlandlthatisownedand/oroperatedbytheProjectProponentortheforestwithcomparablesituationsandconditioninlocalorregionalornationlevelinyeartm3yr-1ProjectProponentrecordsAnnual5-4to5-77.2.4ValidatingorDerivingtheParametersTocalculatetheannualchangeincarbonduetodegradation,thecarboninmerchantablelogsandAGBmustbecalculated.Goodpractice(IPCC,2003)suggeststheuseoflocallyderivedspecies-specificorgroupofspecies-specificdefaultvaluesforthenetanthropogenicGHGemissionreductionscalculation.However,theapplicationofdefaultparametersavailableintheIPCCliterature,nationalinventoryreportsorpublishedpeer-reviewedstudiesisacceptableiftheparameterisapplicabletoaforesttypeandclimaticregionsimilartotheProjectArea(CDM-EB,2009,p.26).WherethedefaultparameterdoesnotmatchtheforesttypeandclimaticregionoftheProjectArea,itisrequiredtovalidatetheparametersusingthedestructivesamplingapproachdescribedinthefollowingsection.7.2.4.1ValidatingorderivingthewooddensityWherethedefaultvalueforwooddensityisnotobtainedfromtheforesttypeandclimaticregionsimilartotheProjectArea,validateorderivethewooddensityusingthefollowingproceduresbasedonPearsonetal.(2005)andCDM-EB(2009):Step1:Select20-30trees6representingallDBHclassesfoundintheProjectAreaduringthefirstmonitoringevent(withinfiveyearsfromtheprojectstartdate).Step2:MeasuretheDBHandheightofalltrees.Step3:Fellthetreesandseparateeachtreeintothefollowingcomponents:merchantablelog,largebranches,smallbranches(lessthan10cmdiameter),andfoliage.Step4:Cutthemerchantablelogsintoatleastfivesections,andthelargebranchesintoatleastthreesections.Step5:Todeterminethetotalvolumeofthemerchantablelogsandlargebranches,measurethelengthandthediameteratbothendsofeachsectionofthelogs/branches;andcalculatethetotalvolumeasinPearsonetal.(2005),AppendixB,Method1,step6a,p.40.6AccordingtotheCDMatleastfivetreesrepresentingallDBHclasses,issufficientforthedestructivesamplingmethodforverifyingdefaultvaluesorequations.However,thisMethodologysuggestsusingatleast20trees,whichprovidesagreaterrepresentationofthetreesintheProjectArea.Vactual_harvest,l,tVM0011,Version1.0SectoralScope14122Step6:Obtainacompletecross-sectionalsamplefromeachlogandlargebranchandmeasurethefreshweightandcalculatethevolumeofeachsample.Oven-drythesamplesat70degreesfor24hoursandmeasurethedryweight.Estimatethewooddensity(D)fortheforesttypesaswellasspecies-specificwooddensity(Di)bydividingthedryweightbythevolume.Step7:Selectthewooddensity.Ifthewooddensityfortheforesttypesandthespecies-specificwooddensityintheProjectAreaderivedfromthedirectmeasurementarewithin±10%(CDM-EB,2009,p.26)ofthecorrespondingdefaultwooddensitiesorlowerthanthemeasuredvalue,itisconservativetousetheselecteddefaultvaluesforwooddensities.Ifthedefaultwooddensitiesaregreaterthanthemeasuredwooddensitiesby10%ormore,itisconservativetousethewooddensitiesderivedfromthesamples.Ifthedefaultwooddensitiesarelowerthanthemeasuredwooddensitiesby10%ormore,itisconservativetousethedefaultwooddensities.7.2.4.2ValidatingorderivingthevolumeandbiomassallometricequationsWherethedefaultvolumeandbiomassallometricequationsdonotmatchtheforesttypeandclimaticregionoftheProjectArea,itisrequiredtovalidateorderivetheallometricequationsusingthefollowingdestructivesamplingprocedure:Step1:FollowSteps1to5inSection7.2.4.1tocalculatethetotalvolumeofthemerchantablelogsandlargebranches.Step2:Measurethefreshweightandovendryweightofthesmallbranchesandfoliageofallthefelledtrees.Step3:Estimatethebiomassofthelogsandlargebranchesusingthetotalvolumeandwooddensity(seeSection7.2.4.1)(biomass=volumexwooddensity).DerivethetotalAGBbyaddingtheovendrybiomassoftheleavesandsmallbranchestothebiomassofthelargebranchesandlogs.Step4:Applythevolumeandbiomassallometricequationstothemeasureddatafor20-30treesandobtainthemeanvolumeandAGBforthesetrees.Step5:Selecttheequations.IfthevolumesandAGBoftheharvestedtreesderivedfromthedirectmeasurementarewithin±10%ofthemeanvaluespredictedbythedefaultallometricequations,orthepredictionislowerthanthemeasuredvalue,itisconservativetousetheselecteddefaultallometricequation.IfthedefaultallometricequationsoverestimatethepredictioncomparedwiththemeasuredvolumeorAGB,developaproject-specificvolumeand/orAGBallometricequationbyapplyingregressiontotreevolumeand/orAGBasanindependentvariabletoDBHandheight.Thewooddensityisalsousedasanindependentvariableforthebiomassallometricequation.VM0011,Version1.0SectoralScope141237.2.4.3Validatingorderivingthebranch-trimfactorIfabranch-trimfactor,,cannotbeobtainedfromtheliterature,orthebranch-trimfactorobtainedfromtheliteraturedoesnotmatchtheforesttypeandclimaticregionoftheProjectArea,itisrequiredtoderiveorvalidate,respectively,aproject-specificbranch-trimfactorinthefirstmonitoringeventusingthefollowingtheprocedure:Step1:FollowSteps1to3inSection7.2.4.2andobtainthebiomassoflargeandsmallbranchesandthetotalAGB.Step2:Calculatethebranch-trimfactorastheratioofbiomassoflargebranchestotheAGBofthetreeviathefollowingequation:Equation7-4ParameterDescriptionUnitThefractionofbranchesandtrimmingsintheabovegroundbiomassremainingaftertrimmingofthemerchantablelogstransferredtotheDWpooldimensionlessBiomassinlargeandsmallbranchesinyearm1offirstmonitoringeventtd.m.Biomassintheabovegroundbiomassofsampletreesinyearm1offirstmonitoringeventtd.m.Step3:Ifabranch-trimfactorwasemployedinexanteestimations,comparetheproject-specificbranch-trimfactorandtheestimatedbranch-trimfactor.Iftheestimatedbranch-trimfactoriswithin±10%ofthebranch-trimfactorvalue,orthevalueislowerthantheestimatedvalue,itisconservativetousetheselectedbranch-trimfactor.Step4:Ifthebranch-trimfactorvalueishigherthantheestimatedvalue,usetheestimatedvaluefortheproject.7.2.5Non-PermanenceRiskAssessment7.2.5.1BufferdeterminationTheamountofcreditsaprojectmustallocateforbufferreservesintheAFOLUPooledBufferAccount,,isbasedontheproject‟spotentialforfuturecarbonloss.ThemethodtocalculatehasbeenpresentedinSection1.2.4,Equation1-2.Toobtaintheproject‟snon-permanencebufferwithholdingpercentage,,ariskratinginrelationtoitspotentialforreversalofthesequestered/protectedcarbonwillbedeterminedusingthemostrecentversionofVCStoolforAFOLUNon-PermanenceRiskAnalysisandBufferDetermination.TheriskassessmentmustbeclearlydocumentedandsubstantiatedinthePDand/ormonitoringreport.Oncetheamountofcreditstobedepositedinthebufferaccountisdetermined,thetradeablecarboncredits,,canbecalculatedusingEquation1-3,Section1.2.4.fbranch_trimfbranch_trimBbranch_trim,m1BAGB_trees,m1fbranch_trimBbranch_trim,m1BAGB_trees,m1CCNPbuffer,tCCNPbuffer,tNPbuffer,t%VCUtVM0011,Version1.0SectoralScope141247.3QualityAssuranceandQualityControlQualityassurance(QA)andqualitycontrol(QC)areimportantforverifyingandcertifyingcarbonchangesthroughoutthecreditingperiod.TheProjectProponentmusthaveQAandQCsystemsinplaceattheprojectdevelopmentstageinordertoprovideenoughconfidencetoallthestakeholdersonthereliability,accuracyandprecisionofthemeasurement.Accurateandprecisedatacollectionandanalysisrequiresatrainedfieldteam,appropriateequipment,standarddatacollectionproceduresandrecording,analysisandstorageofdata.ThePDmustdescribetheQAandQCapproachfortheIFM-LtPFprojectandmustcontainStandardOperatingProcedures(SOPs)for:(i)Conductingfieldmeasurement(ii)Selectingliteraturevalues(iii)Dataentry,maintenanceandarchiving(iv)Contractprocurement.ToensuregoodpracticeinmonitoringandinventoryacomprehensiveQAandQCsystemwillbeimplemented.TheprocedureswillbebasedonISO9001andencompasstheelementsasdefinedintherelevantsectionsoftheIPCC2006GuidelinesforNationalGreenhouseGasInventories.ApplyingtheframeworkproposedbyISO9001willensurethatallproceduresandsystemswillbesubjectedtointernalauditsaswellasbeingindependentlyverified.TheQA/QCandverificationsystemwilladoptacontinuousimprovementmodelwithaparticularemphasisonthekeyparameterswithintheMethodologythatwillbemonitored.7.3.1QA/QCforConductingFieldMeasurementsThecapacityandskillsetoffieldteamsemployedtoestablishandcollectmeasurementdatainPSPsassociatedwithcarboninventorywillbeassessedbyqualifiedpersonnelusingacombinationoftheoreticalandpracticalassessment.Allfieldteamswillreceiveextensivetrainingsothattheyarefullycognisantofallproceduresandunderstandtheimportanceofcollectingaccuratedata.Appropriatetrainingwillbedevelopedencompassingacontinuousimprovementsystem.TheQA/QCsystemwilldocumentandallowtraceabilityoftheskillsets,trainingandcontinuousimprovementofallpersonnelassociatedwiththeproject.Iftheparticularrequiredskillsetsaredeemedunsatisfactorythentheapplicablepersonnelwillberequiredtoundergoaformaltrainingprogramconductedbysuitablyqualifiedpersonnel.ThiswillberecordedintheappropriateQAmodule.StandardOperatingProcedures(SOPs)willbedevelopedtoencompassallthestepsrequiredtoestablishthecarboninventoryassociatedwiththemajorpools,namelyAGB,DWandwhereapplicableHWPs.TheSOPswillbesufficientlyrobusttoensurethatanynewpersonsentintothefieldshouldbeabletorepeatthepreviousmeasurements.VM0011,Version1.0SectoralScope14125SOPsassociatedwiththenumberandplacementofPSPswillalsobedevelopedtoensuretheirappropriateimplementation.SOPsassociatedwiththeuseandaccuracyofallequipmentusedtotakemeasurementswillbedevelopedandimplemented.AllPSPsandmeasurementswillinthefirstinstancebeestablishedundertheguidanceofappropriatelyqualifiedpersonnel.ThequalificationsandexpertiseoftheseauthorisedstaffwillbeidentifiedintheappropriateQAmodule.Anevaluationofallfieldteamswillbeconductedtoidentifyerrorsinfieldtechniques,verifythemeasurementprocessandcorrectanyidentifiedproblemsbeforeanymeasurementsareundertaken.AllPSPsandassociatedpersonnelwhoestablishedandobtainedtheassociatedmeasurementswillbesubjectedtoarandomauditprogramtoensuretheaccuracyandprecisionofdatacollected.Theauditprogramwillinitiallyconsistof10%ofPSPsbeingre-measuredbysuitablyqualifiedpersonnel.Theauditprogramwillbefluidinnaturesothatittargetsthoseplotsandpersonnelthatshowasignificantstandarddeviation.SOPswillbewrittentoencompassthisaswellasasystemthatensuresthatallPSPsandorspecificmeasurementsarere-takenandre-calculated.SOPswillbewrittentoensurethatanyfielddatacollectedovertimeiscomparedtotheoriginaldataanddiscrepanciesareverifiedagain.7.3.2QA/QCforSelectingLiteratureValuesTheselectionofappropriateandcurrentdatafromtheliteratureisrequiredinordertoreduceuncertaintyofthenetanthropogenicemissionreductionsoftheIFM-LtPFproject.TypesofdatarequiredfromliteratureforthecurrentMethodologyare:EmissionfactorsRateofoxidation/decayForestryparametersandconversionfactors,i.e.biomassexpansionfactor,biomassconversionandexpansionfactors,wooddensityandcarbonfractionForestryprocessfactors,i.e.lumberrecoveryfactor,residualstanddamageGrowthmodelsAllometricequations.TheProjectProponentisrequiredtochoosevalues/modelsfromtheliteraturefromproject(s)andarea(s)withfeaturesandcharacteristicssimilartotheIFM-LtPFProjectArea,forexampleatropicalforestwithcorrespondingclimateregionandecologicalzone.Inadditionwhenselectingdataorparametersfromtheliterature,theProjectProponentmustadoptaconservativeapproachinregardstothenetanthropogenicGHGemissionreductions.ThisimpliesthatiftwoormorevaluesareavailablefortheforesttypesandconditionintheProjectArea,thevaluewhichdoesnotleadtoanover-estimationofthenetGHGemissionreductionsmustalwaysbechosen.Literaturevaluesmustbeobtainedfromthefollowingsourcesintheorderofthemostpreferreddatasource:(i)Peer-reviewedliteraturevaluesprovidingproject-specificdata(ii)Country-specificdataVM0011,Version1.0SectoralScope14126(iii)GlobalIPCCdefaultvalues.Whenrecordingliteraturevalues,theProjectProponentisrequiredtoprovidethefollowinginformationinorderforthedatatobeverified:(1)Sourceofdata,date,table/figure,pagenumber,fromwhichthedataisderived(2)CorrespondingfeaturesthatmatchwiththeProjectArea,i.e.foresttype,climatezone,etc.(3)Correspondinguncertainty(absoluteorrelative)(4)Anexplanationofthechoiceofparameterfromtherange,ifarangeisprovided.TheProjectProponentmustchooseavaluethatpresentsthenetanthropogenicemissionreductionsasconservative.7.3.3QA/QCforDataEntryandArchivingAccordingtotheguidelinespublishedbytheIPCC(2006)itisaprerequisitethatallcalculationsleadingtoemissionorremovalestimatesshouldbefullyreproducible.Assuch,QCproceduresmustbecreatedtoaddresspotentialerrorsassociatedwithinputdata,theconversionofalgorithmsofacalculationandtheoutput.Inaddition,becauseoftherelativelylongtermnatureoftheIFM-LtPFprojectactivity,dataarchiving(maintenanceandstorage),QAproceduresandSOPswillbeestablishedtoensurethetraceabilityofdataanalysisandthedocumentationofcalculationsoverthelifetimeoftheproject.AssuchthefollowingactivitieswillbedevelopedintoformalSOPs.(i)Numbersenteredintospreadsheetswillreferencethedatasourcesandcellscontainingderiveddataas“results”willbeclearlymarked(ii)Allcalculationswillbepresentedintheformofformulassothatauditingtoolscanbeusedtotrackbackfromaresulttothedatasource,andcalculationscanbeevaluatedbyanalysingtheformulae(iii)Alldatabases,spreadsheetsandrecordingsheetswillbeclearlyreferencedbyname,version,author,updates,intendeduseandcheckingprocedures,sothatitcanbeusedasadatasourceofthederivedresultsandreferencedfurtherasrequiredintheinventoryprocess(iv)Whenusingdatabases,thesourceofdatatablesmustbereferencedtothedatasourceusingareferencingcolumn(v)Whereverpossible,queriesaretobeusedwhenusingdatabasesasameanstotrackbacktothedatatable(vi)Wherequeriesarenotpracticalandnewtablesofdataneedtobegenerated,scriptsormacroswhereverused,aretoberecordedandreferencedinareferencingcolumn(vii)Alldataaretobearchivedelectronicallysothatthesecanbestoredandbackedupandkeptforatleasttwoyearsaftertheendofthecreditingperiod.SOPswillbedevelopedtoensurethatthisoccursinatimelymanner(viii)Beforeanycalculationisimplementeditmustbepeerreviewedforaccuracyandrelevance(includingunitconversionfactors)bytwopersonnelwiththerelevantskillsandauthority(ix)AllcalculationsmustbecheckedbyatleastoneappropriatelyskilledindependentpersontoensuretheyareaccurateandconsistentwithapplicabletimeseriesVM0011,Version1.0SectoralScope14127(x)Whereverpossible,estimatesandcalculationsaretobecomparedwithliteraturevalues.Iftheyareconsideredsignificantlydifferent(5%)theyaretobecheckedforaccuracy.7.3.4QA/QCforContractProcurementSOPswillbedevelopedfortheprocurementofsuppliersorcontractors.Thisistoensurethatanyanalysisundertakenmeetsinternationallyrecognisedstandardsandthatcontractorsifused,adoptbestpracticewhenundertakingspecifictasks.7.4ExpostCalculationofNetAnthropogenicGHGEmissionReductionsAfterthecompletionofthemonitoringplanasoutlinedintheprevioussections,thebaselinedegradation,projectactivity,andleakageemissionsandtheiruncertainties,mustberevisedandadjustedattheendofeachmonitoringperiod.ThenetanthropogenicGHGemissionreductionsonthebasisoftheexpostmeasuredparameterscanberecalculatedviathefollowingsteps:Step1:Calculateannualtotalcarbonemissionsduetodegradationofthebaselineactivity,,usingproceduresoutlinedinSections3.2and3.3.Step2:Calculateannualtotalcarbonemissionsduetoimplementationofbaselineactivity,,usingproceduresoutlinedinSection3.4.Step3:Calculateannualtotalcarbonemissionsassociatedwiththebaselinescenario,,usingEquation3-1,Section3.1.Step4:Calculateannualtotalcarbonemissionsassociatedwiththeprojectactivity,,usingproceduresoutlinedinSection4.Step5:Calculatetheannualtotalcarbonemissionsassociatedwithleakage,,usingproceduresoutlinedinSection5.Step6:CalculatethenetanthropogenicGHGemissionreductions,,usingEquation1-1,Section1.2.1.Step7:DeterminetheabsoluteuncertaintiesforallparametersemployedinthecalculationofthenetanthropogenicGHGemissionreductionsusingtheprocessoutlinedinSections6.2to6.5.UsingEquations6-4and6-5,calculatetheabsoluteandrelativeuncertainty,respectively,associatedwiththenetanthropogenicGHGemissionreductions.Followtheprocedure(Steps1and2)inSection6.6toascertainifanuncertaintydeductionmustbeapplied.ProceedtoSection6.7toreducetheuncertaintyofthenetanthropogenicGHGemissionreductions.RevisethecalculationofthenetanthropogenicGHGemissionreductions.Step8:Determinethenon-permanencebufferwithholdingpercentage,,fromtheNon-PermanenceRiskAssessment(Section7.2.4)andcalculatethecarboncreditstobedepositedintheVCSbufferwithholdingpool,,usingEquation1-2,Section1.2.4.Cdegradation,tCemissions,tCbaseline,tCactual,tCleakage,tCIFMLtPF,tNPbuffer,t%CCNPbuffer,tVM0011,Version1.0SectoralScope14128Step9:Inthecasewhere<,calculatethecarboncreditsthatcanbetradedafternon-permanencebuffercreditshavebeenconsidered,,usingEquation1-3,Section1.2.4.Step10:Inthecasewhere>,andcarbonislostfromtheproject,theprojectwillbesubjectedtoproceduresforcancellationofbuffercreditsinaccordancewithVCSrules.TheexpostcalculationofthenetGHGanthropogenicemissionreductionspresentedinthemonitoringreportmustbeverified.Cactual,tCbaseline,tVCUtCactual,tCbaseline,tVM0011,Version1.0SectoralScope141298ReferencesAkindele,S.O.,Lemay,V.M.(2006).DevelopmentoftreevolumeequationsforcommontimberspeciesintropicalrainforestareasofNigeria,ForestEcology&Management,226,41-48.BabikianR.,LukachkoS.,WaitzI.(2002).Thehistoricalfuelefficiencycharacteristicsofregionalaircraftfromtechnological,operational,andcostperspectives,JournalofAirTransportManagement,accessed20December2009fromhttp://web.mit.edu/aeroastro/people/waitz/publications/Babikian.pdfBrown,S.(1997).EstimatingBiomassandBiomassChangeofTropicalForests:aPrimer,FAOForestryPaper-134,accessed1March2010fromhttp://www.fao.org/docrep/W4095E/w4095e06.htm#Brown,S.(2002).Measuring,monitoringandverificationofcarbonbenefitsforforest-basedprojects,PhilosophicalTransactionsofTheRoyalSociety,360,1669-1683.Brown,S.PearsonT.,Moore,N.,ParveenA.,Ambagis,S.,Shoch,D.(2005).Impactofselectiveloggingonthecarbonstocksoftropicalforests:RepublicofCongoasacasestudy.Deliverable6:LoggingImpactoncarbonstocks,ReportsubmittedtoUnitedStatesAgencyforInternationalDevelopment,CooperativeAgreementNo.EEM-A-00-03-00006-00.CDM-EB(2007a).ToolfortestingsignificanceofGHGemissionsinA/RCDMprojectactivities.EB31,ReportAnnex16,1/3-3/3version01,UnitedNationsFrameworkontheConventionofClimateChangeaccessed15July2009fromhttp://cdm.unfccc.int/methodologies/ARmethodologies/tools/ar-am-tool-04-v1.pdf.CDM-EB(2007b).CombinedtooltoidentifythebaselinescenarioanddemonstrateadditionalityinA/RCDMprojectactivities.EB35,Annex19,pp.1-13.CDM-EB(2007c).Estimationofdirectnitrousoxideemissionfromnitrogenfertilization.EB33,ReportAnnex16,1-6,UnitedNationsFrameworkontheConventionofClimateChange,accessed15July2009fromhttp://cdm.unfccc.int/Reference/tools/ar/methAR_tool07_v01.pdf.CDM-EB(2009).Approvedafforestationandreforestationbaselinemethodology,AR-AM0005/Version04,Afforestationandreforestationprojectactivitiesimplementedforindustrialand/orcommercialuses,pp.34.Corral-Rivas,J.J.,Barrio-Anta,M.,Aguirre-Calderon,O.,Dieguez-Aranda,U.(2007).UseofstumpdiametertoestimatediameteratbreastheightandtreevolumeformajorpinespeciesinElSalto,Durango(Mexico).Forestry,80(1),pp29-40.DEFRA(2008).GuidelinestoGHGConversionFactors,AnnexesupdatedApril2008,p.11.Delaney,M.,Brown,S.,LugoA.E.,Torres-Lezama,A.,andBelloQuintero,N.(1998).ThequantityandturnoverofdeadwoodinpermanentforestplotsinsixlifezonesofVenezuela,Biotropica,30,2-11.Ducey,M.J.,Zarin,D.J.,Vasconcelos,S.S.andAraujo,M.M.(2009).BiomassequationsforforestregrowthintheeasternAmazonusingrandomizedbranchsampling,ACTAAmazonica,39(2),349-360.Enters,T.(2001).Trashortreasure?LoggingandmillresiduesinAsiaandthePacific.AsiaPacificForestryCommission.FAORAPPublication:2001/16.FAO(2004).ReducedImpactLogginginTropicalForests.Literaturesynthesis,analysisandprototypestatisticalframework.November2004,287pp.FoodandAgriculturalOrganization,assessed27September2009fromhttp://www.fao.org/forestry/foris/foph/x0001e/x0001E00.HTM.Fagan,M.,DeFries,R.(2009).MeasurementandMonitoringoftheWorld’sForestsAReviseandSummaryofRemoteSensingTechnicalCapability,2009-2015.ResourcesforFuture,pp129.VM0011,Version1.0SectoralScope14130Forster,P.,Ramaswamy,V.Artaxo,P.,Berntsen,T.,Betts,R.,Fahey,D.W.,Haywood,J.,Lean,J.,Lowe,D.C.,Myhre,G.,Nganga,J.,Prinn,R.,Raga,G.,Schulz,M.,VanDorland,R.(2007).ChangesinAtmosphericConstituentsandinRadiativeForcinginClimateChange2007:ThePhysicalScienceBasis.ContributionofWorkingGroupItotheFourthAssessmentReportoftheIntergovernmentalPanelonClimateChange.S.Solomon,D.Qin,M.Manning,Z.Chen,M.Marquis,K.B.Averyt,M.TignorandH.L.Miller(Eds).Cambridge,UnitedKingdomandNewYork,NY,USA,CambridgeUniversityPress,p.212ff.GreenvehicleGuide,Australia(2010).GreenVehicleGuide,AnAustralianGovernmentInitiative,accessed1March2010fromhttp://www.greenvehicleguide.gov.au/GVGPublicUI/Home.aspxHoover,C.M.(2008).(Ed.)FieldMeasurementsforForestCarbonMonitoringALandscape-ScaleApproach.USDAForestService,240pp.IEA(2009).IEAStatistics:EmissionsfromFuelCombustionHighlights(2009Ed).CO2emissionsperkWhfromelectricityandheatgeneration,pp.101-103.IPCC(2003).GoodPracticeGuidanceonLandUse,LandUseChangeandForestry,IPCCNationalGreenhouseGasInventoriesProgramme,InstituteforGlobalEnvironmentalStrategies,Japan.IPCC(2006).2006IPCCGuidelinesforNationalGreenhouseGasInventories.PreparedbytheNationalGreenhouseGasInventoriesProgramme,EgglestonH.S.,BuendiaL.,MiwaK.,NgaraT.andTanabeK.(eds).InstituteforGlobalEnvironmentalStrategies,Japan.IPCC(2007).ClimateChange2007:SynthesisReport.ContributionofWorkingGroupsI,IIandIIItotheFourthAssessmentReportoftheIntergovernmentalPanelonClimateChangePachauri,R.KandReisinger,A.(Eds.),IPCC,Geneva,Switzerland,104pp.IPCC(1995).ClimateChange1995:SynthesisReportClimateChange1995:SynthesisofScientific-TechnicalInformationRelevanttoInterpretingArticle2oftheUNFrameworkConventiononClimateChangeContributionofWorkingGroupsI,IIandIIItotheSecondAssessmentReport.ISO(2006).Greenhousegases-Part2:Specificationwithguidanceattheprojectlevelforquantification,monitoringandreportingofgreenhousegasemissionreductionsorremovalenhancements.ISO14064-2:2006(E),28pp.Kinjo,M.,Ohuchi,T.,Kii,H.,Murase,Y.(2005).StudiesonlifecycleassessmentofSugilumber.JournaloftheFacultyofAgricultureKyushuUniversity,50(2),343-351.Klvac,R.,Skoupy,A.(2009).Characteristicfuelconsumptionandexhaustemissionsinfullymechanizedloggingoperations.JournalofForestResearch,14(6),328-334Lehtonen,A.,Mäkipää,R.,Heikkinen,J.,Sieväne,R.,Liski,J.(2004).Biomassexpansionfactors(BEFs)forScotspine,Norwayspruceandbirchaccordingtostandageforborealforests,ForestEcologyandManagement,188,211-224.Miyoshi,C.,Mason,K.J.(2009).Thecarbonemissionsofselectedairlinesandaircrafttypesinthreegeographicmarkets.JournalofAirTransportManagement,15,138-147.Pearson,T.R.H.,WalkerS.,Brown,S.L.(2005).TheSourceBookforLandUse,LandUseChangeandForestryProjects.BioCarbonFundandWinrockInternational,64pp.Pearson,T.R.H.,BrownS.L.,Birdsey,R.A.(2007).MeasurementGuidelinesfortheSequestrationofForestCarbon.USForestService,accessed23July2009fromhttp://www.nrs.fs.fed.us/pubs/3292.VM0011,Version1.0SectoralScope14131Penman,J.,Gytarsky,M.,Hiraishi,T.,Krug,T.,Kruger,D.,Pipatti,R.,Buendia,L.,Miwa,K.,Ngara,T.,Tanabe,K.,Wagner,F.(2003).(Eds)DefinitionsandMethodologicalOptionstoInventoryEmissionsfromDirectHuman-inducedDegradationofForestsandDevegetationofOtherVegetationTypes.IPCCNationalGreenhouseGasInventoriesProgramme,accessed23July2009fromhttp://www.ipcc-nggip.iges.or.jp/public/gpglulucf/degradation_contents.html.Ross,D.P.(2009).GHGEmissionsResultingfromAircraftTravel,accessed1March2010fromhttp://www.carbonplanet.com/downloads/Flight_Calculator_Information_v9.2.pdf.Skole,D.L.,Salas,W.A.,Taylor,V.(1998).GlobalObservationofForestCover:FineResolutionDataandProductDesignStrategy,ReportofaWorkshop,GlobalObservationofForestandLandCoverDynamics,p.40.Segura,M.,Kanninen,M.(2005).AllometricmodelsfortreevolumeandtotalabovegroundbiomassinatropicalhumidforestinCostaRica.Biotropica,37(1),2–8.Scott,N.A.,BrownS.(2008).Chapter9.MeasuringtheDecompositionofDownDead-Wood,FieldMeasurementsforForestCarbonMonitoring,SpringerNetherlands.Surhone,L.M.,Timpledon,M.T.,Marseken,S.(2010).ParticipatoryRuralAppraisal.VerlagDrMuellerAG&CO,pp96.Tucker,J.M.,Brodizio,E.S.andMoran,E.F.(1998).RatesofforestregrowthineasternAmazonia:acomparisonofAltamiraandBragantinaregions,ParaState,Brazil,Interciencia,23(2),64-73.WBCSDandWRI(2004).ACorporateAccountingandReportingStandard(RevisedEdition),WorldBusinessCouncilforSustainableDevelopmentandWorldResourcesInstitute,113pp.WBCSDandWRI(2005).TheGHGProtocolforProjectAccounting,WorldBusinessCouncilforSustainableDevelopmentandWorldResourcesInstitute,148pp.VM0011,Version1.0SectoralScope14132AppendicesAppendixA:DefinitionsandAcronymsSomeoftheimportantdefinitionsoftermsusedthroughouttheproposedMethodologyhavebeenadaptedfromtheGPGLULUCFpublishedbytheIPCC(2003).ThedefinitionoftermsarepresentedinAppendixA.1.TheacronymsusedthroughouttheMethodologyrepresentinternationallydefinedtermsusedwidelybytheVerifiedCarbonStandard(seeVCS),theIntergovernmentalPanelonClimateChange(seeIPCC),theUnitedNationsFrameworkConventiononClimateChange(seeUNFCCC),andinthedisciplinesofagriculture,forestryandgeography.A.1DefinitionofTermsAbovegroundBiomass,AGBLivingbiomassofthetreesabovethegroundthatincludesstems,stumps,branches,bark,seedsandfoliage.WoodDensity,DRatiobetweenovendrybiomassandfreshstem-woodvolumewithoutbark;unitsof(tonneofdrymatter)m-3;usedasaparameterinequations.BranchesandtrimmingsThetrimmedcomponentssuchaslargeandsmallbranches,whosecarbonistransferredintothedeadwoodpoolafterharvesting.Branch-trimfactorFactoraccountingonlyforthecarboninthelargeandsmallbranchesthatremainontheforestfloorafterthetrimmingprocessandwhosecarbonistransferredintothedeadwoodpool.BiomassConversionandExpansionFactor,BCEFFactorconvertinggrowingstocktoabovegroundbiomass,unitsof(tonneofdrymatter)m-3;usedasaparameterinequations.BiomassExpansionFactor,BEFBiomassexpansionfactorforconvertingvolumeofextractedroundwoodtototalAGB(includingbark).CarbonFraction,CFRatiobetweenquantityofcarbonanddrybiomass,unitsof(tonnesofcarbon)(tonneofdrymatter)-1;usedasaparameterinequations.CarbonPoolReservoirthathasthepotentialtoaccumulate(orlose)carbonoveraperiodoftime.InIFM-LtPFprojectactivity,thepoolstobeconsideredareabovegroundbiomass,deadwoodandwoodproducts.VM0011,Version1.0SectoralScope14133CommercialLogLengthThelengthofmerchantablelogsabovethestumpheighttotheminimumtopdiameter.CreditingPeriodSynonymouswithprojectcreditingperiodasdefinedinVCSrulesDeadwood,DWNon-livingbiomassofwoodyvegetationnotcontainedinthelitter,eitherstandingorlyingabovethesoillevel,andstumpslargerorequalto10cmindiameter,oranationally-specifieddiameter;usedasasubscriptinequations.DryMatterBiomassthathasbeendriedtoanoven-drycondition,wherethetemperatureoftheovenisusuallyheldat70oC.ExanteBeforeanactivity;theestimationofthenetGHGemissionreductions,beforethestartoftheIFM-LtPFprojectactivity,fortheprojectcreditingperiod.ExpostAfteranactivity;thecalculationoftheactualnetGHGemissionreductionsfortheyearselapsedsincethestartoftheIFM-LtPFprojectactivity.ForestLandwithbiomassthatisdefinedbyaminimumarea,leveloftreecrowncoverandtreeheight.UndertheKyotoProtocol,rangesforthethreeparametersare:0.05-1.0hectarewithcrowncover(orequivalentstockinglevel)ofmorethan10-30%comprisingtrees,withthepotentialofthetreestoreachaheightof2-5metresatmaturityinsitu.ForestDegradationBiomassthatislostthroughameasurabledecreaseincanopycover,butwhichisnotsufficienttoreducecanopycovertobelowthepercentrangespecifiedforforestintherelevantcountry(Penmanetal.,2003).ForestInventoryReport,FIRAlegallyapprovedorsanctioneddocumentbytherelevantauthorityofthehostcountrythatincludes,butisnotlimitedto,inventorydata,forestmanagementplan,andotherforestinventoryfindingsobtainablefromthehostcountry‟sforestinventorydatabase.ForestProductTypeForestproducttypeincludessawlog,pulplogandcommerciallyharvestedfuelwood.Thedefinitionoftheseproductsareobtainedfromtherelevantauthorityofthehostcountry.VM0011,Version1.0SectoralScope14134Fuelwood,FWBiomasscollectedforenergyproductionpurposesthatincludescommercialfellingsandtreesdamagedbynaturalcauses,butdoesnotincludewoodthatisproducedasaby-productorresidualmatterfromindustrialprocessingofmerchantablelogs.GrowingStockThetotalvolume(overbark)ofalllivingtreeswithDBHlargerthantheminimumDBHasspecifiedbytherelevantauthorityinthehostcountry.HarvestedWoodProducts,HWPsMerchantablelogsthatwillbecraftedintoproducts,eitherclassedaslong-termorshort-termproducts.Anexampleofmerchantablelogsthatwillbemadeintolong-termHWPs(ltHWPs)issawlogs.Examplesofmerchantablelogsthatwillbemadeintoshort-termHWPs(stHWPs)arepulplogsandlogscommerciallyharvestedforfuelwood.LumberRecoveryFactorRatioofthevolumeofsawnwoodproducts(ltHWPs)recoveredfromharvestedsawlogvolumes.LumberrecoveryfactorsubtractedfromunityresultsinsawmillresiduesfromtheprocessingofltHWPs.MerchantableLogsMarketableportionofthemerchantabletreesasdefinedbytheminimumdiameteratbreastheightandtreetop,asspecifiedbytherelevantauthorityinthehostcountry.MerchantableTreesTreeswithaminimumDBHandtreeformasdefinedbytherelevantauthorityinthehostcountry.MinimumDBHThediameteratbreastheightusedfordefiningamerchantabletreeasspecifiedbytherelevantauthorityinthehostcountry.MonitoringeventTheimplementationofthemonitoringactivityformeasuringtheparametersfornetGHGemissionreductionsafterthecommencementoftheIFM-LtPFproject.MonitoringperiodThetimetakenbetweenmonitoringeventsforcollectingmeasurementsinthePSPsintheProjectArea,andforreviewingnon-monitoredparameters.Non-treeForthepurposeofthisMethodology,non-treehasbeenbroadlydefinedasallthevegetationexceptthetreeswiththeminimumDBHasspecifiedbytherelevantauthorityinthehostcountry(seefootnote##onpage18).Itcomprisesofgroundvegetation(seedlings,saplings,herbsandshrubs),hangingveinsandlianasandalsowoodyclimbers.VM0011,Version1.0SectoralScope14135ProjectAreaGeographicareainwhichtheIFM-LtPFprojectactivitywillbeimplementedthatreduceemissionsfromforestdegradation.ProjectBoundaryEncompasses(i)geographicalboundary,(ii)creditingperiod,(iii)sourcesandsinksandassociatedGHGs,and(iv)carbonpools.InthisMethodology,onthebasisthattheoverarchingcomponentisthegeographicalboundary,theProjectBoundaryisthereforereferredtoasthegeographicalareainwhichtheprojectactionsandactivitieswillbeimplemented.ResidualStandDamage,RSDDamagetonon-harvestedtreesduetoharvestingoperations.Theresidualstandaredamagedeitherbybeingknockeddown,snappedofforduetolimbbreakage.TropicalForestsForestsgrowinginthetropicalregionandcomprisedofthefollowingfourbroadforestclasses:EvergreenTropicalRainforest,MoistDeciduousTropicalForest,DryTropicalForestandUplandTropicalForest(FAO,1998).VM0011,Version1.0SectoralScope14136A.2ListofAcronymsUsedAbbreviationTermVM0011,Version1.0SectoralScope14137A.3GeneralNotationofParametersParametersymboltypeDescriptionofparameterfunctionandunittypeaperhectarevalueavalueinanyparticularyearatCO2-evalueinanyparticularyearanabsolutevalueReferenceNotesFAO(1998).GuidelinesfortheManagementofTropicalForests1.TheProductionofWood,FAOForestryPaper135.IPCC(2003).GoodPracticeGuidanceonLandUse,LandUseChangeandForestry,IPCCNationalGreenhouseGasInventoriesProgramme,InstituteforGlobalEnvironmentalStrategies,Japan.Penman,J.,Gytarsky,M.,Hiraishi,T.,Krug,T.,Kruger,D.,Pipatti,R.,Buendia,L.,Miwa,K.,Ngara,T.,Tanabe,K.,Wagner,F.(2003).(Eds)DefinitionsandMethodologicalOptionstoInventoryEmissionsfromDirectHuman-inducedDegradationofForestsandDevegetationofOtherVegetationTypes.IPCCNationalGreenhouseGasInventoriesProgramme,accessed23July2009fromhttp://www.ipcc-nggip.iges.or.jp/public/gpglulucf/degradation_contents.html.XXXXVM0011,Version1.0SectoralScope14138AppendixB:GuidanceforParameterSelectionB.1WoodDensityGuidanceonselectingsuitablewooddensitydependsonthetypeofdataavailableanditsapplication:ExistingInventoryDataPathway-BCEFMethod:WhereLessDetailedFIRisAvailableWherelessdetailedFIRinformationisavailableandspeciestypesarenotknown,ameantreedensity(td.m.)m-3forthetropicalregionmostappropriatetotheProjectAreashouldbeemployed.Thearithmeticmeanandmostcommonwooddensityvalues(td.m.)m-3fortropicaltreespeciesintropicalAfrica,AmericaandAsiapresentedinTableB-1,isbasedonastudybyReyesetal.(1992)usingapproximately1280treespecies.TableB-1Arithmeticmeanfortropicaltreespeciesbytropicalregion(Reyesetal.1992)TropicalRegionArithmeticMean,(td.m.)m-3Africa0.50America0.60Asia0.57ExistingInventoryDataPathway-AllometricMethod:WhereDetailedFIRisAvailableWherespeciesareknown,species-specificorgroupofspecies-specificwooddensityshouldbeselectedfromthefollowingsources:(i)Nationalspecies-specificorgroupofspecies-specificdensities(e.g.,fromNationalGHGinventory)(ii)Species-specificorgroupofspecies-specificdensitiesfromneighbouringcountriesofasimilarclimateregionandecologicalzone(iii)Globallyspecies-specificdensities(e.g.IPCC,2006a,Chapter4,Table4.13,p.4.64).Suchdatatypesshouldbeappliedateitherthespecieslevel,forexample,inbiomassallometricequationsthatemployspeciesdensity,alongwithDBHandH,,orappliedtodetermineaweightedaveragedensity,basedonthedominantspeciesmeasuredineachvolume.AProjectAreaspecificaveragedensitycanbeemployed,seeSection7.2.4.1onhowtoderivethisvalue.MeasuredDataPathway-AllometricMethod:WhereFIRDataisnotAvailableGuidanceondensityselectionisthesameasforExistingInventoryDataPathway-AllometricMethod.fi(DBHi,Hi,Di)VM0011,Version1.0SectoralScope14139B.2CarbonFractionWherespecies-specificcarbonfractiondataisnotavailable,thecarbonfractionshouldbeobtainedfromIPCC(2006a),Chapter4,Table4.3,p.4.48,presentedhereforthetropicalandsubtropicalclimatedomaininTableB-2:TableB-2Carbonfractionforalloftreeandwoodcomponentfortropicalforests(adaptedfromIPCC,2006,Chapter4,Table4.3,p.4.49)PartofTreeParameterCarbonFraction,tC(td.m.)-1ReferencesWood0.49Feldpauschetal.,inIPCC(2006a)Wood,treeDBH<10cm0.46Hughesetal.,inIPCC(2006a)Wood,treeDBH≥10cm0.49Alloftree(AGB)0.47AndreaeandMerlet,Chambersetal.,LascoandPulhininIPCC(2006a)DefaultIPCCvalue,Alloftree0.47McGroddyetal.,inIPCC(2006a)B.3ResidualStandDamageBrownetal.(2005)compiledthefactorforresidualstanddamage(damageoverextracted)forvariouscountriesandrevealedastrongrelationshipwithaveragecommercialloglength.TheresultshavebeensummarisedinthisMethodologyinTableB-3below.TableB-3Factorforresidualstanddamage(compiledfromBrownet.al.,2005,Figure11,p.16)fRSD(tCdamagedtCextracted-1)CommericalLogLength(m)CountryReference1.7422CongoBrownetal.(2005)2.3017MalaysiaPinardandPutz(1996)2.7810.8BelizeBrownetal.(2005)CFwoodCFwoodCFwoodCFAGBCFAGBVM0011,Version1.0SectoralScope14140fRSD(tCdamagedtCextracted-1)CommericalLogLength(m)CountryReference3.109.8BoliviaPearsonetal.(2005)B.4LumberRecoveryFactorThelumberrecoveryfactorforsawlogprocessingisrequiredinordertocalculatethevolumeofthelong-termHWPcarbonpool.Thisfactorvaryfromcountrytocountry(seeTableB-4),andaredependentonanumberofvariablesthatincludeskilledlabour,equipmentused,andsawmillfacilities(FAO,2004;Pulkki,1997).TableB-4.Country-specificlumberrecoveryfactorsCountry(andSawmilldetails),(Range,WhereProvided)ReferenceConventionalloggingsawmills(forcomparativepurposes)0.35FAO(2004)Cameroon,Malaysia-Sarawakforgeneraluseintheabsenceofcountry-specificfactor0.36-0.57,dependentonlumbermarketFAO(2004)Ghanaaverageof0.40,maximumof0.50Loehnertzetal.(1996)Indonesia(general)0.45Silitonga(1987)Brazil,OldAmazon0.47Verissimoetal.(1992)Indonesia,EastKalimantan0.50Muladi(1996)Malaysia(general)0.50BhargavaandKugan(1988)PapuaNewGuineaaverageof0.52(0.44-0.56)Kilkki(1992)Brazil,MaranhaoState0.55Loehnertzetal.(1996)Philippinesaveragevaluenotprovided(0.56-0.68)Niedermaier(1984)flumber_recoveryVM0011,Version1.0SectoralScope14141B.5HWPRateofOxidationTherateofoxidationreferstotheproportionoftheHWPpool(s)whichisoxidized,therebyreleasingcarbontotheatmosphere.ThreeapproachescanbeusedtoestablishtheproductdecayprofileforHWP(Ford-Robertson,2003):(i)lineardecayoverthelifetime-sothereisnothingleftattheendofthatperiod(ii)exponentialdecaywithagivenhalf-life-inordertogenerateanequivalent“tonne-year”impact,thehalflifeisequivalenttohalfofthelifetimeusedforlineardecay(iii)instantdecayofallemissionsattheendoftheproductlife-aswiththeexponentialdecay,thelifeusedishalfofthatusedforlineardecay.TheIPCCdefaultapproach(IPCC,2006b,Chapter12,Section12.2.2,p.12.17)assumesthatthecarboninwoodymaterialfollowsafirst-orderoxidation.ItisbasedontheassumptionthatHWPsarediscardedfromuse.TableB-5presentstheIPCCdefaultratesofoxidationforHWPcategories(ltHWPsandstHWPs).TableB-5.RateofoxidationforHarvestedWoodProducts(adaptedfromIPCC(2006b),Chapter12,Table12.2,p.12.17)HarvestedWoodProductsCategoryRateofoxidationltHWPs,e.g.solidwood0.023stHWPs,e.g.paperproducts0.347B.6HarvesterFuelConsumptionFactorKlvacandSkoupy(2009)derivedfuelconsumptionemissionfactorsforequipmentrequiredforharvestingoperations,aslistedinTableB-6.TableB-6.Equipmenttypesandfuelconsumptionforharvestingoperations(KlvacandSkoupy,2009)OperationEquipmentFactorDataUnitFellingharvesterFuelconsumption,1.28-1.73Lm-3B.7ElectricityDemandofSawmillProcessesTheelectricitydemandfactorcanbeemployedtodeterminetheelectricityconsumption(kWh)requiredforaparticularvolumeofmerchantablelogs.TableB-7presentsdatafromthreeinternationalsawmillprocessesandshowsthatanapproximaterangefortheelectricitydemand()is20-40kWhm-3.kltHWP_oxFCharvestedemandVM0011,Version1.0SectoralScope14142Wherethecountryspecificvaluefortheelectricitydemandisavailable,itshouldbeused.Ifthisisnotthecase,thenafactorfromacountrythatusessimilartimberprocessingtechnologytothatoftheproject‟shostcountryshouldbeused.TableB-7.ElectricitydemandforsawmillprocessinginvariouscountriesCountryElectricity(kWhday-1)HarvestVolume(m3day-1)edemand(kWhm-3)DataSourceIndonesia6002030Budiono(unknown)Brazil275613620PooleandPinheiro(2003)NewZealand--26-41Lietal.(2006)B.8FuelConsumptionChartsThefuelconsumptionrateofthegeneratorcanbederivedfromfuelconsumptionchartsforgenerators.AnexampleisshowninTableB-8usingthegeneratorsize(kW)andtheanticipatedload.TableB-8Fuelconsumptionchartforadieselgenerator(DieselServiceandSupply,2009)GeneratorSize(kW)1/4Load(kLh-1)FullLoad(kLh-1)GeneratorSize(kW)1/4Load(kLh-1)FullLoad(kLh-1)200.0020.0065000.0420.135400.0060.0157500.0620.202600.0070.01810000.0820.2691000.010.02812500.1020.3361250.0120.03415000.1220.4031500.0140.04117500.1420.472000.0180.05520000.1620.5373000.0260.08122500.1820.604VM0011,Version1.0SectoralScope14143B.9ForestProductTypeClassificationofforestproducttypesintoshort-termandlong-termharvestedwoodproductsispresentedinFigureB-1below:FigureB-1.Classificationofforestproducttypesintoshort-termandlong-termharvestedwoodproductsReferenceNotesBhargava,S.K.,Kugan,F.(1988).Developmentofforestsectorplanning,Malaysia:assessmentofloggingwasteandmillresiduesinSabah.FoodandAgricultureOrganizationoftheUnitedNations,UnitedNationsDevelopmentProgram,FO:DP/MAL/85/004,WorkingPaper4.26pp.Brown,S.PearsonT.,Moore,N.,ParveenA.,Ambagis,S.,Shoch,D.(2005).Impactofselectiveloggingonthecarbonstocksoftropicalforests:RepublicofCongoasacasestudy.Deliverable6:LoggingImpactoncarbonstocks,ReportsubmittedtoUnitedStatesAgencyforInternationalDevelopment,CooperativeAgreementNo.EEM-A-00-03-00006-00.Budiono,C.(unknown).Utilisationofbiomasswasteofwoodbasedindustry,accessed25July2009fromhttp://www.dtn.go.th/dtn/tradeinfo/file/files_1/chayun-budiono.pdfDieselServiceandSupplyInc.(2009).ApproximateFuelConsumptionChart,accessed25July2009fromhttp://www.dieselserviceandsupply.com/Diesel_Fuel_Consumption.aspx.FAO(2004).ReducedImpactLogginginTropicalForests.Literaturesynthesis,analysisandprototypestatisticalframework.November2004,287pp.FoodandAgriculturalOrganization,assessed27September2009fromhttp://www.fao.org/forestry/foris/foph/x0001e/x0001E00.HTMFord-Robertson,J.,(2003).ImplicationsofHarvestedWoodProductsAccounting:AnalysisofIssuesRaisedbyPartiestotheUNFCCCandDevelopmentofaSimpleDecayApproachMAFTechnicalPaperNo.2003/5.IPCC(2006a).2006IPCCGuidelinesforNationalGreenhouseGasInventories,Chapter4-ForestLand,p.4.48.IPCC(2006b).2006IPCCGuidelinesforNationalGreenhouseGasInventories,Chapter12-HarvestedWoodProducts,p.12.17.Kilkki,R.(1992).Reductionofwoodwastebysmall-scalelogproductionandconversionintropicalhighforest.ForestHarvestingCaseStudyNo.1.FoodandAgricultureOrganizationoftheUnitedNations,Rome,Italy,33pp.Klvac,R.,Skoupy,A.(2009).Characteristicfuelconsumptionandexhaustemissionsinfullymechanizedloggingoperations.JournalofForestResearch,14(6),328-334Li,J.,McCurdy.M.,Pang,S.(2006).Energydemandinwoodprocessingplants.NZJournalofForestry,51(2),13-18.LoehnertzS.P.,Cooz,I.V.,Guerrero,J.(1996).Hardwoodsawingtechnologyinfivetropicalcountries.ForestProductsJournal46(2),51-56.VM0011,Version1.0SectoralScope14144Muladi,S.(1996).QuantificationanduseofdipterocarpwoodresidueineastKalimantan.In:A.SchulteandD.SchoÅNne(eds.).DipterocarpForestEcosystems:TowardsSustainableManagement.WorldScientificPublishingCo.Pte.Ltd.,Singapore.pp.603-615.Niedermaier,P.(1984).Plywoodsubstitutesurgedformaximumforestutilization:PartsIandII.ThePhilippineLumberman30(7&8),11-16;8-13,30.Pearson,T.R.H.,BrownS.,Vaca,R.,Quispe,J.,Ambagis,S.andShock,D.(2005).Impactofselectiveloggingonthecarbonstocksoftropicalforests:BoliviaandtheRepublicofCongoascasestudies.SubmittedtotheCanadianJournalofForestResearch.Poole,A.andPinheiro,P.(2003).DevelopingenergyprofilesforsawmillsintheAmazonregion-FirstfieldvisittoRondolandiaandJi-Parana,accessed25July2009fromhttp://www.inee.org.br/down_loads/biomassa/AmazonSawmill.pdf.Pulkki,R.E.(1997).LiteratureSynthesisonLoggingImpactsinMoistTropicalForests.FAOWorkingPaperGFSS/WP/06.Reyes,G.,Brown,S.,Chapman,J.,Lugo,A.E.(1992).WoodDensitiesofTropicalTreeSpecies.USDAForestService,GeneralTechnicalReportSO-88,SouthernForestExperimentStation,NewOrleans,Louisiana,USA.Silitonga,T.(1987).WoodresidueidentificationatoriginatingpointsofIndonesia.SpecialcountryreportpreparedfortheProgrammeonWoodResiduesIdentificationatOriginatingPointsoftheFoodandAgricultureOrganizationoftheUnitedNations,TheRepublicofIndonesia,DepartmentofForestry.42pp.VerissimoA.,Barreto,P.,Mattos,M.,Tarifa,R.,Uhl,C.(1992).LoggingimpactsandprospectsforsustainableforestmanagementinanoldAmazonianfrontier:thecaseofParagominas.ForestEcologyandManagement55(1-4),169-199.VM0011,Version1.0SectoralScope14145AppendixC:UnitConversionandGWPCalculationsC.1ConvertingMassofCarbon(tC)toCarbonDioxide(tCO2)Massofcarbon,whichisthetypicalunitexpressedinAFOLUprojects,isconvertedtomassofcarbondioxidegasusingthefollowingrelationship:EquationC-1ParameterDescriptionUnitMassofcarbondioxidetCO2MassofcarbontC44/12MolecularratioofcarbondioxidetocarbontCO2tC-1C.2ConvertingOtherGHGstoCarbonDioxideEquivalents(CO2-e)OtherGHGsconsideredinthisMethodologysubjecttosignificanceasdeterminedinSection1.2.3,aremethane(CH4)andnitrousoxide(N2O).Non-CO2gasemissionfactorsmustbeexpressedincarbondioxideequivalentsbymultiplyingtheiremissionfactorsbytheircorrespondingglobalwarmingpotentials(GWPs)andsummatingtheresultstogethertoobtainanoverallemissionfactorintermsofcarbondioxideequivalents:EquationC-2ParameterDescriptionUnitEFCH4Emissionfactorformethanegas,activitydata-specifictCH4(activitydataunit#)-1EFN2OEmissionfactorfornitrousoxidegas,activitydata-specifictN2O(activitydataunit)-1GWPCH4Globalwarmingpotentialofmethane(seeTable2-4)tCO2-etCH4-1GWPN2OGlobalwarmingpotentialofnitrousoxide(seeTable2-4)tCO2-etN2O-1#activitydataunitistheunitoftheactivitydataofeitherthecarbonsourceorsink,e.g.methaneemissions,tCH4(kLoffuel)-1WhereCH4andN2Oaredeterminedtobeinsignificant(determinedfromSection1.2.3)totheoverallcalculations,andHFCs,PFCsandSF6arenotincluded,thenCO2becomesthesolecontributor.mCO2mcarbon4412mCO2mcarbonEFEFCH4GWPCH4EFN2OGWPN2OVM0011,Version1.0SectoralScope14146ThroughoutthisMethodology,evenifCO2becomesthesolecontributortowardGHGemissions,itisexpressedasCO2-e.GlobalWarmingPotentials(GWPs)forCH4andN2OmustbeselectedfromthemostrecentUNFCCCpublications(e.g.UNFCCC,2004).C.3ConvertingUnitsforFuelEmissionFactorIPCC(2006)emissionfactorsforGHGs(CO2,CH4andN2O)arerecordedinunitsofkgofGHG(TJoffuel)-1.Assuch,foreachGHG,theemissionfactormustbemultipliedbythefuel‟sheatingvalue(inTJkg-1)anddensity(kgkL-1)toobtainanemissionfactorintGHGkL-1.(e.g.tCO2-ekL-1,tCH4kL-1andtN2OkL-1).EquationC-3ParameterDescriptionUnitFuelemissionfactorforthegreenhousegas(CO2,CH4orN2O)tGHGkL-1IPCCfuelemissionfactorforgreenhousegas(CO2,CH4orN2O)kgGHGTJ-1HeatingvalueoffuelTJkg-1DensityoffuelkgkL-1HeatingvalueanddensityoffuelscanbefoundfromtheIPCCEmissionFactorDatabase(2009).ACO2equivalent(CO2-e)fuelemissionfactor()canbederivedusingtheglobalwarmingpotential(GWP)ofeachgasasoutlinedinSectionC.2.ReferenceNotesIPCC(2006).2006IPCCGuidelinesforNationalGreenhouseGasInventories.PreparedbytheNationalGreenhouseGasInventoriesProgramme,EgglestonH.S.,BuendiaL.,MiwaK.,NgaraT.andTanabeK.(eds).InstituteforGlobalEnvironmentalStrategies,Japan.IPCCEmissionFactorDatabase(2009).http://www.ipcc-nggip.iges.or.jp/EFDB/find_ef_main.phpUNFCCC(2004).InformationonGlobalWarmingPotentials:TechnicalPaper,FCCC/TP/2004/3,pp.12.Efuel_GHGEFIPCCfuel_GHGHVfuelfuel1000EFfuel_GHGEFIPCCfuel_GHGHVfuelfuelEFfuelVM0011,Version1.0SectoralScope14147AppendixD:ExampleSolutiontoEquations3-22aand3-22bEquation3-22aisstraight-forwardandthereforewillnotberepresentedhere.However,themathematicalexpressionofEquation3-22biscomplexandthereforewarrantsanorderofexamplesolutionofitsapplication.ThisexampleappliesalsotoEquation3-29bastheproceduretotheorderofsolutionissimilar.ForapplyingthisexampletoEquation3-29b,replacethesubscript“DW”with“ltHWP”or/and“stHWP”asrequired.Equation3-22bParameterDescriptionUnitCumulativecarbonremaininginthedeadwoodpoolinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCAnnualfractionofcarboninthedeadwoodpoolthatwouldremaininthedeadwoodpoolinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)afterapplyingtherateofdecaydimensionlessAnnualtotalcarboninputtothedeadwoodpoolinyeart,(wheret=1,2,3...tyearselapsedsincethestartoftheIFM-LtPFprojectactivity)tCThisexampleassumesthataspecificprojecthasalifetimeof5years.Hence,theapplicationofEquation3-22bbecomes:Year1Year2Year3Year4Year5CDWpool,tFDW_remain,t(t1)CDWin,tFDW_remain,t(t2)CDWin,t1FDW_remain,t(t3)CDWin,t2KFDW_remain,t(tt)CDWin,t(t1)CDWpool,tFDW_remain,tCDWin,tCDWpool,1FDW_remain,1CDWin,1CDWpool,2FDW_remain,1CDWin,2FDW_remain,2CDWin,1CDWpool,3FDW_remain,1CDWin,3FDW_remain,2CDWin,2FDW_remain,3CDWin,1CDWpool,4FDW_remain,1CDWin,4FltHWP_remain,2CltHWPin,3FDW_remain,3CDWin,2FDW_remain,4CDWin,1CDWpool,5FDW_remain,1CDWin,5FDW_remain,2CDWin,4FDW_remain,3CDWin,3FDW_remain,4CDWin,2FDW_remain,5CDWin,1VM0011,Version1.0SectoralScope14148TablesD-1andD-2presenttheapplicationofEquations3-21throughto3-23,forafixedandvariableinputtothedeadwoodpool,applyingEquations3-22aand3-22b,respectively.Forparameterdescriptions,pleaserefertothedescriptiontablesforrelevantequationsusedinSection3.3.1(fordeadwoodpool)andSection3.3.2(forlong-termHWPpool).TableD-1.Numericalexampleforafixedinputintothedeadwoodpool(applyingEquation3-22a)Assumethathasbeencalculatedtohaveafixedannualvalueof54,000tCanddeterminedtobe0.03yr-1ProjectLifetimeEquation3-18Equation3-21Equation3-22aEquation3-23(yr)(tC)(tC)(dimensionless)(tC)154,0000.97052,4041,596254,0000.942103,2594,741354,0000.914152,6129,388454,0000.887200,50515,495554,0000.861246,98423,016Pleasenotethatduetonumericalrounding,thevaluespresentedinthistablemaynotexactlyreflectyourcalculatedvalues.TableD-2.Numericalexampleforavariableinputintothedeadwoodpool(applyingEquation3-22b)Assumethathasbeencalculatedtohaveavariableannualvalue(seeColumn2)anddeterminedtobe0.03yr-1ProjectLifetimeEquation3-18Equation3-21Equation3-22bEquation3-23(yr)(tC)(tC)(dimensionless)(tC)CDWin,tkdecaytCDWin,tFDW_remain,tCDWpool,tCDWout,tCDWin,tkdecaytCDWin,tFDW_remain,tCDWpool,tCDWout,tVM0011,Version1.0SectoralScope14149154,0000.97052,4041,596226,0000.94276,0873,913330,0000.914102,9527,048412,0000.887111,55410,446513,0000.861120,87314,127Pleasenotethatduetonumericalrounding,thevaluespresentedinthistablemaynotexactlyreflectyourcalculatedvalues.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱