VM0009-避免生态系统转换方法学VIP专享VIP免费

Approved VCS Methodology
VM0009
Version 3.0, 6 June 2014
Sectoral Scope 14
Methodology for Avoided
Ecosystem Conversion
VM0009, Version 3.0
Sectoral Scope 14
This methodology was developed by Wildlife Works and ecoPartners.
About Wildlife Works
Wildlife Works Carbon LLC, one of the world’s leading REDD project development companies, was
originally established to help local landowners in the developing world to monetize their forest and
biodiversity assets, whether they are governments, communities, ownership groups or private individuals.
Wildlife Works pioneered a novel business model that uses the marketplace to bring innovative economic
solutions to wildlife conservation, reduce human/wildlife conflict and protect forests in the developing
world.
The company’s first project at Rukinga, Kenya has been operating for over a decade protecting wildlife
and forests. This history has enabled Wildlife Works to launch the Kasigau Corridor REDD project,
through which the company has expanded the area under protection to over 500,000 acres. Wildlife
Works continues to bring the benefits of direct carbon financing to Kenyan communities, while
simultaneously securing a contiguous wildlife migration corridor between Tsavo East and West National
Parks.
Building on this successful model, Wildlife Works plans to leverage its experience in Southeastern Kenya
to future REDD projects around the globe, with a goal to protect 5 million hectares from deforestation.
Wildlife Works is committed to protecting wildlife, forests and biodiversity, with a direct, hands-on
approach to creating alternative livelihoods.
Contributing Authors: Jeremy Freund, Mike Korchinsky, Simon C. Bird, Gordon Smith
About ecoPartners
ecoPartners works with project developers, forest owners and verification bodies to build successful
forest carbon offset projects. ecoPartners specializes in the technical aspects of project design, planning
and development: remote sensing, biometrics and accounting methodologies, with significant experience
validating and verifying projects under the Climate Action Reserve (CAR) Standard, Verified Carbon
Standard (VCS), and Climate Community & Biodiversity (CCB) Standard. We help our clients navigate
methodologies, mitigate risk, build long-term capacity and generate credits.
Contributing Authors: Kyle Holland, Ben Caldwell, Ryan S. Anderson, Wilson Salls, Melanie Jonas, Zach
Barbane, Paz Lozano
Page 2
VM0009, Version 3.0
Sectoral Scope 14
Table of Contents
1 Sources .............................................................................................................................................. 14
2 Summary ........................................................................................................................................... 14
2.1 Core Concepts in Accounting .................................................................................................... 17
2.2 Notation ......................................................................................................................................... 22
2.3 Application Overview .................................................................................................................. 24
3 Definitions .......................................................................................................................................... 26
3.1 Definitions ..................................................................................................................................... 26
3.2 Acronyms ..................................................................................................................................... 32
4 Applicability Conditions ................................................................................................................... 35
5 Project Boundaries ........................................................................................................................... 37
5.1 Delineating the Spatial Boundaries .......................................................................................... 37
5.2 Defining the Temporal Boundaries ........................................................................................... 38
5.3 Gases ............................................................................................................................................ 40
5.4 Selecting Carbon Pools .............................................................................................................. 40
5.5 Grouped Projects ........................................................................................................................ 43
6 Procedure for Determining the Baseline Scenario ...................................................................... 44
6.1 Identifying the Agents and Drivers ............................................................................................ 46
6.2 Delineating Project Accounting Areas ...................................................................................... 48
6.3 Identifying Baseline Types ......................................................................................................... 49
6.4 Delineating Proxy Areas ............................................................................................................. 54
6.5 Baseline Scenarios for Selected Carbon Pools ...................................................................... 55
6.6 The Baseline Emissions Models ............................................................................................... 59
6.7 Parameterizing the Baseline Emissions Models .................................................................... 60
6.8 Determining Historical Conversion (α, β and θ) ...................................................................... 65
Page 3
ApprovedVCSMethodologyVM0009Version3.0,6June2014SectoralScope14MethodologyforAvoidedEcosystemConversionVM0009,Version3.0SectoralScope14ThismethodologywasdevelopedbyWildlifeWorksandecoPartners.AboutWildlifeWorksWildlifeWorksCarbonLLC,oneoftheworld’sleadingREDDprojectdevelopmentcompanies,wasoriginallyestablishedtohelplocallandownersinthedevelopingworldtomonetizetheirforestandbiodiversityassets,whethertheyaregovernments,communities,ownershipgroupsorprivateindividuals.WildlifeWorkspioneeredanovelbusinessmodelthatusesthemarketplacetobringinnovativeeconomicsolutionstowildlifeconservation,reducehuman/wildlifeconflictandprotectforestsinthedevelopingworld.Thecompany’sfirstprojectatRukinga,Kenyahasbeenoperatingforoveradecadeprotectingwildlifeandforests.ThishistoryhasenabledWildlifeWorkstolaunchtheKasigauCorridorREDDproject,throughwhichthecompanyhasexpandedtheareaunderprotectiontoover500,000acres.WildlifeWorkscontinuestobringthebenefitsofdirectcarbonfinancingtoKenyancommunities,whilesimultaneouslysecuringacontiguouswildlifemigrationcorridorbetweenTsavoEastandWestNationalParks.Buildingonthissuccessfulmodel,WildlifeWorksplanstoleverageitsexperienceinSoutheasternKenyatofutureREDDprojectsaroundtheglobe,withagoaltoprotect5millionhectaresfromdeforestation.WildlifeWorksiscommittedtoprotectingwildlife,forestsandbiodiversity,withadirect,hands-onapproachtocreatingalternativelivelihoods.ContributingAuthors:JeremyFreund,MikeKorchinsky,SimonC.Bird,GordonSmithAboutecoPartnersecoPartnersworkswithprojectdevelopers,forestownersandverificationbodiestobuildsuccessfulforestcarbonoffsetprojects.ecoPartnersspecializesinthetechnicalaspectsofprojectdesign,planninganddevelopment:remotesensing,biometricsandaccountingmethodologies,withsignificantexperiencevalidatingandverifyingprojectsundertheClimateActionReserve(CAR)Standard,VerifiedCarbonStandard(VCS),andClimateCommunity&Biodiversity(CCB)Standard.Wehelpourclientsnavigatemethodologies,mitigaterisk,buildlong-termcapacityandgeneratecredits.ContributingAuthors:KyleHolland,BenCaldwell,RyanS.Anderson,WilsonSalls,MelanieJonas,ZachBarbane,PazLozanoPage2VM0009,Version3.0SectoralScope14TableofContents1Sources..............................................................................................................................................142Summary...........................................................................................................................................142.1CoreConceptsinAccounting....................................................................................................172.2Notation.........................................................................................................................................222.3ApplicationOverview..................................................................................................................243Definitions..........................................................................................................................................263.1Definitions.....................................................................................................................................263.2Acronyms.....................................................................................................................................324ApplicabilityConditions...................................................................................................................355ProjectBoundaries...........................................................................................................................375.1DelineatingtheSpatialBoundaries..........................................................................................375.2DefiningtheTemporalBoundaries...........................................................................................385.3Gases............................................................................................................................................405.4SelectingCarbonPools..............................................................................................................405.5GroupedProjects........................................................................................................................436ProcedureforDeterminingtheBaselineScenario......................................................................446.1IdentifyingtheAgentsandDrivers............................................................................................466.2DelineatingProjectAccountingAreas......................................................................................486.3IdentifyingBaselineTypes.........................................................................................................496.4DelineatingProxyAreas.............................................................................................................546.5BaselineScenariosforSelectedCarbonPools......................................................................556.6TheBaselineEmissionsModels...............................................................................................596.7ParameterizingtheBaselineEmissionsModels....................................................................606.8DeterminingHistoricalConversion(α,βandθ)......................................................................65Page3VM0009,Version3.0SectoralScope146.9DeterminingtPAI.........................................................................................................................806.10DeterminingtSA...........................................................................................................................816.11DeterminingtPA...........................................................................................................................836.12Determiningx0.............................................................................................................................836.13DeterminingxPAI.........................................................................................................................846.14Determiningm.............................................................................................................................846.15Determiningγ...............................................................................................................................856.16Determiningq...............................................................................................................................866.17DeterminingrU.............................................................................................................................866.18TheDecayEmissionsModel.....................................................................................................886.19TheSoilEmissionsModel..........................................................................................................886.20BaselineReevaluation................................................................................................................907ProcedureforDemonstratingAdditionality..................................................................................918QuantificationofGHGEmissionReductionsand/orRemovals................................................928.1BaselineEmissions.....................................................................................................................938.2ProjectEmissions......................................................................................................................1018.3Leakage......................................................................................................................................1048.4SummaryofGHGEmissionReductionsand/orRemovals................................................1179Monitoring........................................................................................................................................1249.1DataandParametersAvailableatValidation.......................................................................1249.2DataandParametersMonitored.............................................................................................1389.3DescriptionoftheMonitoringPlan..........................................................................................17710ReferencesandOtherInformation..............................................................................................183AppendixA:TheoreticalBackground..................................................................................................187A.1LogisticFunctionforα,βandθ...............................................................................................187A.2SoilExponentialDecayModel................................................................................................191Page4VM0009,Version3.0SectoralScope14A.3ModelforSpatialComponent..................................................................................................193A.4EquationsforTheoreticalBackground...................................................................................194AppendixB:CarbonStockandLivestockMeasurement.................................................................197B.1GeneralSamplingGuidelinesforCarbonStocks.................................................................197B.2StockEstimationTechniquesApplicabletoSpecificCarbonPools..................................200B.3GuidelinesforDeterminingLivestockPopulationsWithinProjectArea...........................214B.4GuidelinesforDevelopingAllometricEquations..................................................................214B.5MinimizingUncertaintyandCollectingConsistentData.....................................................214B.6EquationsforCarbonStockMeasurement.............................................................................215AppendixC:WoodProducts................................................................................................................230C.1EstimatingCarbonStoredinWPUsingLogProduction.....................................................231C.2EquationsforWoodProducts..................................................................................................231AppendixD:AreaSelectionCriterion..................................................................................................233AppendixE:TheParticipatoryRuralAppraisal.................................................................................235E.1AnalyzingtheAgentsofConversion......................................................................................237E.2AnalyzingtheDriversofConversion......................................................................................237AppendixF:EquationsintheMethodology........................................................................................238AppendixG:ValidationVariables........................................................................................................257AppendixH:MonitoringVariables.......................................................................................................263AppendixI:ProjectDocumentRequirementsbyBaselineType....................................................277AppendixJ:MonitoringReportRequirementsbyBaselineType...................................................292Page5VM0009,Version3.0SectoralScope14TableofPDRequirementsPDRequirements:ApplicabilityConditions.................................................................................................37PDRequirements:SpatialProjectBoundaries...........................................................................................38PDRequirements:TemporalProjectBoundaries.......................................................................................39PDRequirements:CarbonPools................................................................................................................43PDRequirements:GroupedProjects..........................................................................................................43PDRequirements:AgentsandDriversofConversion................................................................................46PDRequirements:ProjectAccountingAreas.............................................................................................49PDRequirements:IdentifyingtheBaselineType-Forest..........................................................................52PDRequirements:IdentifyingtheBaselineType-Grassland....................................................................53PDRequirements:DelineationoftheProxyAreas.....................................................................................54PDRequirements:DescribingtheBaselineScenariosforSelectedCarbonPools...................................56PDRequirements:DefiningtheReferencePeriodforPlannedTypes.......................................................70PDRequirements:DefiningtheReferencePeriodforUnplannedTypes...................................................70PDRequirements:HistoricImagerytoParameterizeα,βandθ................................................................72PDRequirements:SamplingConversiontoParameterizeα,βandθ........................................................75PDRequirements:Parameterizingα,βandθ............................................................................................78PDRequirements:MinimizingUncertaintyinParametersα,βandθ.........................................................80PDRequirements:EstimatingUncertaintyinParametersα,βandθ.........................................................80PDRequirements:ParameterizingtSA.......................................................................................................82PDRequirements:ParameterizingtPA.......................................................................................................83PDRequirements:Determiningx0..............................................................................................................84PDRequirements:Parameterizingm.........................................................................................................85PDRequirements:Determiningγ...............................................................................................................86PDRequirements:Parameterizingq..........................................................................................................86PDRequirements:ParameterizingrU.........................................................................................................87PDRequirements:EmpiricallyEstimatingλSOC.........................................................................................89Page6VM0009,Version3.0SectoralScope14PDRequirements:LiteratureEstimatesforλSOC.......................................................................................89PDRequirements:BaselineReevaluation..................................................................................................90PDRequirements:ReevaluationoftheReferenceAreaandPeriod..........................................................91PDRequirements:Re-parameterizationofα,βandθ................................................................................91PDRequirements:DemonstrationofProjectAdditionality.........................................................................92PDRequirements:LeakageMitigationStrategies....................................................................................106PDRequirements:DelineationoftheActivity-ShiftingLeakageArea......................................................109PDRequirements:DeterminingtheMarketDiscountFactor....................................................................115PDRequirements:DelineationoftheMarketLeakageArea....................................................................116PDRequirements:Ex-AnteEstimationofNERs.......................................................................................123PDRequirements:DataandParametersAvailableatValidation.............................................................138PDRequirements:DescriptionoftheMonitoringPlan.............................................................................178AlsoseeAppendixIPage7VM0009,Version3.0SectoralScope14TableofMonitoringRequirementsMonitoringRequirements:SpatialProjectBoundaries...............................................................................38MonitoringRequirements:TemporalProjectBoundaries...........................................................................39MonitoringRequirements:GroupedProjects..............................................................................................44MonitoringRequirements:DeterminingtPAI...............................................................................................81MonitoringRequirements:DeterminingxPAI..............................................................................................84MonitoringRequirements:BaselineEmissions...........................................................................................93MonitoringRequirements:BaselineEmissionsfromBiomass...................................................................94MonitoringRequirements:ApplyingtheSpatialAlgorithm..........................................................................96MonitoringRequirements:BaselineEmissionsfromSOCforTypesF-P1.a,F-P1.b,F-P2,andG-P2.....97MonitoringRequirements:CarbonNotDecayedinDW.............................................................................98MonitoringRequirements:CarbonNotDecayedinBGB............................................................................99MonitoringRequirements:CarbonNotDecayedinSOC...........................................................................99MonitoringRequirements:CarbonStoredinWoodProducts...................................................................100MonitoringRequirements:EmissionsEventsinProjectArea...................................................................102MonitoringRequirements:EmissionsfromBurningfromProjectActivities..............................................102MonitoringRequirements:CarbonStoredinWoodProductsfromProjectActivities...............................103MonitoringRequirements:LivestockGrazedintheProjectArea.............................................................103MonitoringRequirements:SyntheticFertilizerintheProjectArea...........................................................104MonitoringRequirements:LeakageMitigationStrategies........................................................................106MonitoringRequirements:CommodityProductionforLeakageMitigation...............................................107MonitoringRequirements:EstimatingEmissionsfromActivity-ShiftingLeakage.....................................107MonitoringRequirements:ChangetotheActivity-ShiftingLeakageArea................................................109MonitoringRequirements:EstimatingpLDEG...........................................................................................111MonitoringRequirements:EstimatingpLCONG.......................................................................................111MonitoringRequirements:DeterminingEmissionsfromMarketLeakage................................................112MonitoringRequirements:EnsuringNoLeakageWithinProjectProponent’sOwnership.......................114Page8VM0009,Version3.0SectoralScope14MonitoringRequirements:EnsuringConstancyofBaselineOperatorManagement...............................114MonitoringRequirements:QuantificationofGERs...................................................................................119MonitoringRequirements:ConfidenceDeduction....................................................................................119MonitoringRequirements:QuantificationofNERsUsingaLinearModel................................................120MonitoringRequirements:ReversalEvent...............................................................................................120MonitoringRequirements:ReversalEventasaResultofBaselineReevaluation...................................121MonitoringRequirements:QuantificationofNERsforaPAA...................................................................121MonitoringRequirements:BufferAccount................................................................................................121MonitoringRequirements:QuantificationofNERsacrossPAAs..............................................................122MonitoringRequirements:Vintages..........................................................................................................122MonitoringRequirements:EvaluatingProjectPerformance.....................................................................124MonitoringRequirements:DataandParametersMonitored....................................................................177MonitoringRequirements:DescriptionoftheMonitoringPlan..................................................................178MonitoringRequirements:SourcesofAllometry.......................................................................................180MonitoringRequirements:ValidatingPreviouslyDevelopedAllometry....................................................182MonitoringRequirements:ValidatingNewlyDevelopedAllometry...........................................................183AlsoseeAppendixJPage9VM0009,Version3.0SectoralScope14TableofEquationsEquationsareinAppendicesA-F:[A.1].....................................................................................................................................................194[A.2].....................................................................................................................................................194[A.3].....................................................................................................................................................194[A.4].....................................................................................................................................................195[A.5].....................................................................................................................................................195[A.6].....................................................................................................................................................195[B.1].....................................................................................................................................................215[B.2].....................................................................................................................................................215[B.3].....................................................................................................................................................216[B.4].....................................................................................................................................................216[B.5].....................................................................................................................................................217[B.6].....................................................................................................................................................217[B.7].....................................................................................................................................................217[B.8].....................................................................................................................................................218[B.9].....................................................................................................................................................218[B.10].....................................................................................................................................................218[B.11].....................................................................................................................................................219[B.12].....................................................................................................................................................219[B.13].....................................................................................................................................................220[B.14].....................................................................................................................................................221[B.15].....................................................................................................................................................221[B.16].....................................................................................................................................................221[B.17].....................................................................................................................................................222[B.18].....................................................................................................................................................222[B.19].....................................................................................................................................................223Page10VM0009,Version3.0SectoralScope14[B.20].....................................................................................................................................................223[B.21].....................................................................................................................................................224[B.22].....................................................................................................................................................224[B.23].....................................................................................................................................................224[B.24].....................................................................................................................................................225[B.25].....................................................................................................................................................225[B.26].....................................................................................................................................................225[B.27].....................................................................................................................................................226[B.28].....................................................................................................................................................226[B.29].....................................................................................................................................................227[B.30].....................................................................................................................................................227[B.31].....................................................................................................................................................227[B.32].....................................................................................................................................................228[B.33].....................................................................................................................................................228[B.34].....................................................................................................................................................229[B.35].....................................................................................................................................................229[C.1].....................................................................................................................................................231[C.2].....................................................................................................................................................232[F.1].....................................................................................................................................................238[F.2].....................................................................................................................................................238[F.3].....................................................................................................................................................239[F.4].....................................................................................................................................................239[F.5].....................................................................................................................................................239[F.6].....................................................................................................................................................240[F.7].....................................................................................................................................................240[F.8].....................................................................................................................................................241[F.9].....................................................................................................................................................241[F.10].....................................................................................................................................................241Page11VM0009,Version3.0SectoralScope14[F.11].....................................................................................................................................................241[F.12].....................................................................................................................................................242[F.13].....................................................................................................................................................242[F.14].....................................................................................................................................................242[F.15].....................................................................................................................................................243[F.16].....................................................................................................................................................243[F.17].....................................................................................................................................................243[F.18].....................................................................................................................................................244[F.19].....................................................................................................................................................244[F.20].....................................................................................................................................................244[F.21].....................................................................................................................................................244[F.22].....................................................................................................................................................245[F.23].....................................................................................................................................................245[F.24].....................................................................................................................................................245[F.25].....................................................................................................................................................246[F.26].....................................................................................................................................................246[F.27].....................................................................................................................................................246[F.28].....................................................................................................................................................246[F.29].....................................................................................................................................................247[F.30].....................................................................................................................................................247[F.31].....................................................................................................................................................248[F.32].....................................................................................................................................................248[F.33].....................................................................................................................................................248[F.34].....................................................................................................................................................248[F.35].....................................................................................................................................................249[F.36].....................................................................................................................................................249[F.37].....................................................................................................................................................249[F.38].....................................................................................................................................................249Page12VM0009,Version3.0SectoralScope14[F.39].....................................................................................................................................................250[F.40].....................................................................................................................................................250[F.41].....................................................................................................................................................250[F.42].....................................................................................................................................................250[F.43].....................................................................................................................................................251[F.44].....................................................................................................................................................251[F.45].....................................................................................................................................................251[F.46].....................................................................................................................................................252[F.47].....................................................................................................................................................252[F.48].....................................................................................................................................................252[F.49].....................................................................................................................................................252[F.50].....................................................................................................................................................253[F.51].....................................................................................................................................................253[F.52].....................................................................................................................................................253[F.53].....................................................................................................................................................254[F.54].....................................................................................................................................................254[F.55].....................................................................................................................................................254[F.56].....................................................................................................................................................255[F.57].....................................................................................................................................................255Page13VM0009,Version3.0SectoralScope141SOURCESThismethodologywasdevelopedbasedontherequirementsinthefollowingdocuments:•VCSStandard,v3.4•AFOLURequirements,v3.4•ProgramDefinitions,v3.5Thismethodologyusesthelatestversionofthefollowingtools:•VT0001ToolfortheDemonstrationandAssessmentofAdditionalityinVCSAgriculture,ForestryandOtherLandUse(AFOLU)ProjectActivities•CDMtoolEstimationofdirectandindirect(eg,leachingandrunoff)nitrousoxideemissionfromnitrogenfertilization•CDMtoolToolfortestingsignificanceofGHGemissionsinA/RCDMprojectactivities2SUMMARYAdditionalityandCreditingMethodAdditionalityProjectMethodCreditingBaselineProjectMethodThismethodologyprovidesameanstoquantifynetGHGemissionreductionsandremovals(NERs)fromprojectactivitiesthatpreventconversionofforesttonon-forestandofnativegrasslandandshrublandtoanon-nativestate.ThemethodologyaccountsforemissionsfromallallowablepoolsspecifiedbytheVCSAFOLURequirementsfortheREDDandACoGSprojectcategories,withtheexceptionofpeatsoilsandlitter.Thismethodologycanbeappliedtoaccountforavoidedemissionsfromplanneddeforestationanddegradation(APD),unplanneddeforestationanddegradation(AUDD),plannedconversion(APC),andunplannedconversion(AUC)baselinescenarios.Itusesaprojectmethodtodetermineadditionality(seesection7).Thismethodologydifferentiatesbetweeneightbaselinetypesbasedontheproximateagentofconversion,thedriversofconversion,whetherthespecificagentofconversioncanbeidentified,andtheprogressionofconversion(seeFigure2,Section6.3).Asingleprojectmayincludeoneormorebaselinetypes.Theaddition(inthisversion3.0)ofACoGSbaselinetypesfornativegrasslandecosystemsmeansthattheapplicabilityofthismethodologyhasbeendramaticallyexpanded,andnowcanbeusedtoaddressbothplannedandunplannedconversioninbothforestandnativegrasslandecosystems.Forthefivebaselinetypesassociatedwithconversionofforesttonon-forest,theagentofconversioncanincludeaprimaryagentandsecondaryagents,whichcontributetoacascadeofdegradationultimatelyleadingtoanon-foreststate.Page14VM0009,Version3.0SectoralScope14Underthismethodology,projectproponentsimplementprojectactivitiesintheprojectareaandsurroundingregionthataddresstheagentsanddriversofconversion.Whentheagentsofconversionarenotknown,theycanbeidentifiedusingexpertknowledgeoraparticipatoryruralappraisal,whichisatypeofcommunitysurvey.Insomecasesrelatedtoplannedconversion,thespecificagentofconversionmaybeknown.Identifyingtheagentsanddriversofconversionisessentialtodesigningeffectiveprojectactivitiestomitigateconversionofforestandnativegrassland.Thebaselinescenarioforaprojectisdefinedbyatleastonebaselinetype(SeeFigure3,Section6.3).Oncetheagentsanddriversofconversionareknown,thisinformationcanbeusedtoidentifybaselinetypes(section6.3).Eachbaselinetypeischaracterizedbybaselineemissionsmodelsthatareappliedtoaprojectaccountingarea.Allprojectaccountingareasmustmeeteitherthedefinitionforforestprojectaccountingareaorgrasslandprojectaccountingarea.Parameterstothesemodelsarepartiallydeterminedusingareferencearea.Descriptionsofparameterizationmethodsaredescribedinsection2.1.1,andvarybybaselinetype.Theintentofthesemodelsistoprovidesimplifiedandunifiedaccountingwithclearanduser-friendlyimplementation.Thisapproachdramaticallyreducesthenumberofparametersandequationsinthemethodologyrelativetopriorversions.Leakageisquantifiedusinganactivity-shiftingleakagearea(s)andamarketleakagearea(s),whichmayormaynotoverlapwiththereferencearea.Likethereferencearea,theactivity-shiftingleakageareaisdefinedbytheagentsanddriversofconversionforeachidentifiedbaselinetypeinthebaselinescenario.However,unlikethereferencearea,theactivity-shiftingleakagearea(s)isalsodefinedbyproximitytotheprojectareaandanticipateddirectionalshiftsinconversionactivities.Theactivity-shiftingleakageareaismorepurposefulthanabeltoranarbitrarybufferaroundtheprojectarea.Themarketleakageareaisdefinedwhenlong-livedwoodproductsoragriculturalproductsexistinthebaselinescenario,andisusedtoestimateleakageresultingfromachangeinthesupplyofdomesticlong-livedwoodproductsoragriculturalproductsasaresultofillegalorlegal-sanctionedloggingoragriculturalproduction.Residualbiomassinthebaselinescenarioisquantifiedforeachbaselinetypeusingaproxyarea.Theproxyareaisdistinctfromtheleakageareas,andmayormaynotoverlapthereferencearea.Forexample,thereferenceareamustbesimilartotheprojectaccountingareainregardstovariousconditions(seesection6)andmustbethesamesizeorgreaterthantheprojectaccountingarea,whereastheproxyareamaybeanareasmallerthantheprojectaccountingarealocatedinsideoroutsideofthereferencearea.Theproxyarea(s)characterizesthecarbonstocksassociatedwiththeendlandusesthatarenon-forestorconvertednativegrasslandinthebaselinescenario.Someexamplesoftheseendlandusesmaybepasture,subsistenceagricultureormechanizedagriculture.Theprojectproponentmeasuresbiomassforselectedcarbonpoolsintheproxyarea.Theproxyareamusthavethesamelandscapeconfigurationastheprojectaccountingareabeforeconversionandbelargeenoughtoaccommodateanadequate(perAppendixBandD)sampleofmeasurementplots,buttheproxyareaneednotbeaslargeastheprojectarea.BecausetheproxyareaallowsprojectproponentstoincludePage15VM0009,Version3.0SectoralScope14baselinetypeswithendlandusesthathavesignificantbiomass,suchasswiddenagriculture,theaccountingiscomplex.ComparedtoapproachestakenbyotherREDDandACoGSmethodologies,theapproachesusedinthismethodologydeviatesignificantlyinthreeregards.First,thebaselineemissionsmodelspredictcumulativeemissionsovertimeratherthananaerialrateofecosystemconversioninhectaresperyear.Second,importantparameterstothebaselineemissionsmodelsarefitusingsimplepointobservationsoflanduseconversionoverahistoricreferenceperiodratherthanrequiringaseriesofcomplexLandUseLandCover(LULC)classificationsoffull-coveragesatelliteimagery.Third,accountingforthevarioussourcesofemissionsfrombiomassisdramaticallysimplifiedbyrollingallsourcesofpotentialemissionsintoasinglemodelandparameterizingthemodelbasedoneasilyunderstoodbaselinetypes(section6.3).Theseapproachesmakethebaselineemissionsmodelsparticularlyattractivetoprojectproponentsforseveralreasons.First,thetimerequiredtobuildthemodelsisrelativelyshort.Almostanytypeofhistoricalimagerycanbeusedtobuildthemodel,includinggrey-scaleaerial,coloraerial,panchromatic,satellite,SARorevenLandsat7SLC-OFFimagery(despiteitsfailedsensor).Second,despitethefactthatcloudcontaminationmayresultinlimitedcoverageofthereferencearea,allcollectedimagerycanbeusedtobuildthemodelsinlieuofcloudcoverwithinindividualimages.Oncetheimageryisimportedintoageographicinformationsystem(GIS),datacollectionformodelfittingisperformedusingsimple,heads-upinterpretationofpointsamplesfromtheimagery.Asofthepublicationofthismethodology,WildlifeWorksmaintainsanArcMapGISextensiontoautomatepointinterpretationandcomputeweights(seesection6.8.6),thusfurtherfacilitatingtheuseofthebaselineemissionsmodels.Forallofthesereasons,thematiclandcoverclassificationsofcompletesetsofimagesforeachdateinthereferenceperiodarenotnecessarilyrequired.Inadditiontotherelativesimplicityandrobustnessofthebaselineemissionsmodels,thismethodologydifferentiatesamongcarbonpools,andthusprojectproponentswillfinditparticularlyattractive.Forexample,bothstandingdeadwoodandlyingdeadwoodarecomponentsofthedeadwoodpool,butstandingdeadwoodismeasuredusingaplot,whilelyingdeadwoodismeasuredusingalinetransect.Becausethedeadwoodpoolisoptional,projectproponentsmaychoosetoconservativelyomitlyingdeadwood.Thisavoidstheaddedcomplexityofsamplinglinetransectswhilestillincludingtheoptionalstandingdeadwoodpool.Suchanapproachmaybepreferabletoprojectproponentsasmeasurementsofstandingdeadwoodcaneasilybemadeatthesametimeasmeasurementsofabovegroundlivetreesonthesameplot.Thismethodologymonitorscarbonstocksusingasampleoffixedareaplotsintheprojectaccountingarea(s)andproxyarea(s).Lyingdeadwoodisestimatedusingalineintersectsample,andsoilorganiccarbon(SOC)isestimatedusingsamplesremovedfromsoilcoresorpitslocatedwithintheplotsusedforbiomassestimation.Thismethodologyalsodifferentiatesbetweenmerchantabletreesandnon-merchantabletrees.Inadditiontoimprovingsamplingtechniques,thisdifferentiationallowsprojectproponentstocharacterizetheemissionsfromPage16VM0009,Version3.0SectoralScope14biomassasaresultoflogginginthebaselinescenario.Additionally,ifanylivestockarebeinggrazedwithintheprojectarea,theemissionsfromtheselivestockarequantifiedandiftheyarefoundnottobedeminimis,theywillbeincludedinthecalculationofprojectemissions.Becausethismethodologyuniquelydifferentiatesamongcarbonpools,eachmajoraccountingsectionispurposelyorganizedbycarbonpooltofacilitateeaseofuse;thebaselinescenario,baselineemissionsandmonitoringsectionsaresubdividedbycarbonpool.Inthisway,projectproponentsmayfirstselectcarbonpoolstoincludeintheprojectboundaryandtheneasilytracetheaccountingsectionstofindtheappropriatemethods.Thisisadeparturefromothermethodologies,whichtypicallyattempttoaccountforallpoolssimultaneouslydespitethefactthatsomepoolsmightnotbeselectedforsomeprojects.Lastly,projectproponentswillfindthatthismethodologyprovidescohesivetransitionsbetweentheconceptsthatguideaccountingwhilealsoprovidingnecessaryandimportantdetailsoftheaccountingproceduresthemselves.Tounifythetextandtoneofthemethodology,complexequationsandvariableshavebeenomittedfromthebodyandplacedinseparateappendices.EquationsareplacedinAppendixF,andmanyequationsarereusedandappliedindifferentsectionsofthemethodology.Projectproponentsshouldusetheseappendicesside-by-sidewiththebodyofthemethodologyduringprojectdevelopmentandreporting.BackgroundinformationisprovidedinAppendixAinordertofacilitateunderstandingoftheaccountingconceptswithoutaffectingusability.AppendixBprovidesmethodsforestimatingcarbonstockswhichcanbeusedduringmonitoringoftheprojectaccountingarea(s),activity-shiftingleakagearea(s)andproxyarea(s).AppendixCprovidesmethodstoaccountforlong-livedwoodproductsunderthebaselinescenarioandfromprojectactivities.AppendixFisacomprehensivelistofequations,literaturesources,assumptionsandcommentsbyequationnumber,andAppendiciesGandHincludealistofvariables,variabledescriptionsandunits.Allequationscitedinthebodyofthemethodologyarehyperlinkedbyequationnumberandallequationsarehyperlinkedbysectionnumberbacktothesectionswheretheyareused.Manydefinedtermsandabbreviationsinthetextarehyperlinkedtotheirdefinitions.ProjectproponentsconsideringthismethodologyfortheirprojectareencouragedtocontactWildlifeWorksforresourcesandtechnicalassistance.2.1CoreConceptsinAccountingAccountingisunderpinnedbyobservingspecially-definedareasandbyspecifyingthebaselineemissionsmodelsusingtime-lagshifts.Thebaselineemissionsmodelsareparameterizedfor,andappliedto,projectaccountingareaswithintheprojectarea,eachhavingauniquebaselinetype.Allprojectsmusthaveatleastoneprojectaccountingareaandthereforeatleastonesetofbaselineemissionsmodels.Projectsmayhavemorethanoneprojectaccountingarea,andlikewise,multiplesetsofbaselineemissionsmodels.Page17VM0009,Version3.0SectoralScope142.1.1EmissionsModelsTheunderlyingmechanicsofthismethodologyutilizefourtypesofemissionsmodels.Thefirsttworelatetothebaselinescenarioandarereferredtoasthebaselineemissionsmodels.ThebaselineemissionsmodelsincludetheBiomassEmissionsModel(BEM)andSoilEmissionsModel(SEM)thatcharacterizethebaselinescenarioforeachaccountingareatoestimateavoidedbaselineemissionsfromforestdegradation,land-useconversionandsubsequentsoilcarbonloss.Thesebaselineemissionsmodelsmayappearcomplex,buttheirparameterizationandimplementationarefairlystraightforward.Dependingonthebaselinetype,modelparametersareselectedfromdefaultsorestimatedfromdata.TheBEMandSEMdonotaccountforcarbonstoredinlong-livedwoodproductsorthedecayofcarbonindeadwood,below-groundbiomassorsoil.TheseemissionsareaccountedforusingAppendixCandtheDecayEmissionsModel(DEM).ThefourthmodelistheLeakageEmissionsModel(LEM)whichaccountsforemissionsfromactivity-shiftingleakage.Projectemissionsareaccountedforseparatelyfromthemodelstodeterminegrosscreditgeneration.NetcreditgenerationisdeterminedbysubtractingdeductionsforcontributionstotheAFOLUPooledBufferAccount.Toaidmodeling,parametersmustmatchthetimescaleofthedatafromwhichtheyarederived.Forexample,ifdatawerecollectedonaspecificday–suchasaLandsatimage–thatspecificdatemustbeused.Ifdataiscollectedonalongertimescale(eg,monthlyorannually),thattimescalemustalsobeusedconsistently.Seesection6.7.1forfurtherexplanationonhowtoconvertlargetimescalestoaspecificdayforthepurposesofmodelingemissions.Fromavintageperspective,itisdesirabletouseanumberofdaystodeterminetheproportionofemissionsreductionsorremovalsthatoccurinpartofacalendaryearwhenmonitoringperiodsarenotdefinedbythefirstoftheyear.2.1.2AreasTheconceptofanareaistospecifyalocationwhereemissionsarecharacterizedormeasured.Thismethodologyusessixtypesofareas(seeTable1).Theprojectareaistheareaundercontroloftheprojectproponentandiswheretheprojectactivitiesmaybeimplementedtoaddresstheagentsanddriversofconversion,thuspreventingemissionsfromtheprojectaccountingarea(s).Theprojectaccountingareaisanareawithintheprojectareathatissubjecttoconversionunderthebaselinescenarioandisassociatedwithabaselinetype.Allprojectaccountingareasmustmeetthedefinitionforeitherforestprojectaccountingareaorgrasslandprojectaccountingarea.Insomecaseswherethereexistsmultiplebaselinetypesforoneprojectarea,therewillbemultipleprojectaccountingareaswithinasingleprojectarea(seeFigure1).Inthismethodology,thegeneraltermprojectaccountingareaisusedwheninstructionsorrequirementscoverbothforestprojectaccountingareasandgrasslandprojectaccountingareas.ThetermsforestprojectPage18VM0009,Version3.0SectoralScope14accountingareaorgrasslandprojectaccountingareaareusedwheninstructionsorrequirementsspecificallyapplytoonlyforestedornativegrasslandbaselinetypes.Associatedwitheachprojectaccountingareaisareferenceareathatislocatedinthesameregionastheprojectareaandwherehistoricalconversionisobserved.Thereferenceareaissimilartotheprojectaccountingareainmostrespects,andrepresentswhatwouldhavehappenedtotheprojectaccountingareainthebaselinescenarioovertime.Thebaselinescenarioisfurthercharacterizedusingproxyareas,andoneproxyareamustbedefinedforeachidentifiedbaselinetype.Theproxyareaisdefinedinmuchthesamewayasthereferencearea.Liketheprojectaccountingarea,thecarbonpoolsintheproxyareaaremeasuredthroughmonitoringtoestablishtheresidualcarbonstocksafterconversion.Finally,emissionsfromleakagearemeasuredusinganactivity-shiftingleakageareaandamarketleakagearea.Amarketleakageareaisrequiredonlywhenthebaselinescenarioincludescommerciallogging.Theactivity-shiftingleakageareaisdefinedsimilarlytothereferenceandproxyareas,butalsorelativetotheproximityofagentsofconversion.Anactivity-shiftingleakageareaisassociatedwitheachprojectaccountingarea.Thedefinitionofthemarketleakageareaissimilar,butmustbeselectedbasedonwherebaselineloggingentitiescouldshifttheirproduction.Ifthebaselinescenarioincludesillegalorlegally-sanctionedcommerciallogging,therewillbenomorethanonemarketleakagearea.Table1:Descriptionofcarbonaccountingareas.Forexactdefinitions,pleaseseesection3.AreaDescriptionQuantitySizerelativetoprojectareaProjectareaTheareaundercontroloftheprojectproponentwhichcontainsatleastoneprojectaccountingarea.OnlyoneEqualProjectaccountingareaTheareatowhichthebaselineemissionsmodelsareapplied.Aforestornativegrasslandareawithintheprojectareathatissubjecttoconversioninthebaselinescenarioasdelineatedbysection6.2.OneforeachidentifiedbaselinetypeLessthanorequalReferenceareaAnareainthesameregionastheprojectareathatissimilartotheprojectareainregardstoactingagentsofconversion,actingdriversofconversion,socio-economicconditions,culturalOneforeachidentifiedbaselinetypeGreaterthanorequalPage19VM0009,Version3.0SectoralScope14conditionsandlandscapeconfiguration.ProxyareaTheareawhereresidualcarbonstocks(afterconversion,theendstate)areestimatedforeachbaselinetype.OneforeachidentifiedbaselinetypeNoprescribedsizeActivity-shiftingleakageareaTheareawhereleakageresultingfromtheactivitiesoftheagentofconversionwouldlikelyoccurduetotheprojectactivity(ies).OneforeachidentifiedbaselinetypeNoprescribedsizeMarketleakageareaTheareawhereleakagewouldlikelyoccurresultingfromachangeinthesupplyofwoodproductsduetotheprojectactivity(ies).OneifthebaselinescenarioincludescommercialloggingNoprescribedsizeFigure1:Threeexampleconfigurationsofareasforasingleprojectinstance(seesection3.1forabbreviations).(a-b)Aprojectareacontainingoneprojectaccountingarea,oneassociatedreferencearea,proxyareaandactivity-shiftingleakagearea.Page20VM0009,Version3.0SectoralScope14(c)Aprojectareacontainingtwoprojectaccountingareas,andanassociatedreferencearea,proxyareaandactivity-shiftingleakageareaforeachprojectaccountingarea.Theproxyareashappentobeidentical.2.1.3ShiftsTheconceptofashiftistoaccountfortemporaldifferencesintheonsetofdegradationandconversioninthebaselinescenariorelativetohistoricobservationsinthereferencearea.Ashiftcouldalsoaccountforthedelaybetweenthebeginningofdegradationandultimatelyconversion.Shiftsaremathematicalexpressionsorparametersthatadjusttermsofthebaselineemissionsmodelssothattheparameterizedmodelsreflectadefensiblebaselinescenario.Althoughnotalwaysexplicitlydefinedasshiftsinthetext,severalshiftsareemployedinthismethodologydependingonthebaselinetypeforaparticularprojectaccountingarea.Formostprojects,thebaselineemissionsmodelsareaffectedbyashifttoapplyhistoricobservationsmadeinthereferenceareatotheprojectaccountingareaaftertheprojectstartdate.Anothershiftisassociatedwithemissionsfromsoilrelativetodegradationbecausetheseemissionsareassumedtooccurafterconversion.Page21VM0009,Version3.0SectoralScope142.2NotationThenotationusedinthismethodologyisintendedtoclearlycommunicatethevariablesandmathematicalprocessesintendedforquantifyingcarbonstockandprojectgreenhousegasbenefits.Thenotationadopteddiffersinsomewaysfromthatseeninotherforestcarbonmethodologies.Thesedeviationsimprovetheclarityandreadabilityofthisdocument.2.2.1EquationsEquationsinthismethodologyarenumberedandbracketed(eg,[F.7]).TheequationsthemselvesarelocatedinAppendixFandarereferencedinthetextbynumber.TheintentisthatAppendixFwillbeprintedandusedasaseparatedocumentinconjunctionwiththetextofthemethodology.EquationsinAppendixFcontainadditionalinformationincludingcitations,literaturesourcesandcomments.Insomeinstances,similaroperationsareperformedondifferentvariablesinmultipleplaces.Forexample,estimatingabove-groundcarbonstockinthemerchantabletree,non-merchantabletree,andnon-treebiomasspoolsinvolvesummingplotlevelmeasurements,dividingbyplotarea,summingacrossplotsinastratum,andmultiplyingbystratumarea.Agenericequationisgiventoestimateeachpoolandtherelevantvariableorequationcanbesubstitutedfor𝑥𝑥asindicatedbythemethodology.2.2.2VariablesVariablesinthismethodologyandtheirunitsareenumeratedinthelistofvariablesinAppendixGandH.TheintentisthatAppendixGandHwillbeprintedandusedasaseparatedocumentinconjunctionwiththetextofthemethodology.Formostofthesevariables,theirunitsareintonnesofcarbondioxideequivalents.Thevariables𝑥𝑥and𝑦𝑦(withandwithoutsubscripts)aresometimesusedasplaceholdervariables—theymaystandinforanothervariableortheresultsofanequationasindicatedbythemethodologytext.Thevariables𝑥𝑥and𝑦𝑦arealsousedtoindicategeographiccoordinatesinthedevelopmentoftheconversionandsoilcarbonlossmodelsinthebaselinescenariosection(seesection6).Themeaningofthesevariablesshouldbeclearbasedonthecontextprovidedinthemethodologytext.2.2.3SummationsSummationsusesetnotation.Setsofvariablesareindicatedusingscriptnotation.Forexample,𝒮𝒮representsthesetofallstrataintheprojectarea,while𝒫𝒫𝑘𝑘representsthesetofallplotsinstratum𝑘𝑘.Setnotationgreatlyreducesthenumberofvariablesusedinthemethodologyaswellasthecomplexityofsummations.2.2.4ElementsElementsofasetaredenotedusingsubscriptnotation.Asumovertheelementsofasetisindicatedbythenotation∑𝐴𝐴𝑘𝑘𝑘𝑘∈𝒮𝒮.ThisparticularexamplesumindicatesthesumoftheareaofallPage22VM0009,Version3.0SectoralScope14strata,where𝐴𝐴𝑘𝑘indicatestheareaofstratum𝑘𝑘.Thenumberofelementsinasetisindicatedbyfunctionalnotation#(𝒮𝒮)wherethepoundsignstandsfor“countof”.2.2.5StandardDeviationsandVariancesStandarddeviationisindicatedbythe𝜎𝜎symbol,withsubscriptsusedtoindicatethequantityforwhichitisestimated.Varianceisindicatedbythe𝜎𝜎2symbolandisthesquareofstandarddeviation.StandarddeviationsmaynotbeinunitstCO2e.2.2.6StandardErrorsEstimatedstandarderrorisindicatedbythe𝑈𝑈symbol,withadditionalsubscriptsusedtoindicatethequantityforwhichtheuncertaintyisestimated.StandarderrorsarealwaysinunitstCO2e.2.2.7TheoreticalParametersandParameterizedModelsParameterstomodelaredenotedbyvariables,suchastheprojectshiftparameter𝛾𝛾.Whensuchparametershavea“hat”onthem–suchastheparameter𝛾𝛾�–theyrefertoavalueratherthanatheoretical,unknownquantity.2.2.8MonitoringPeriodsMonitoringperiodsarenotatedusingbracketedsuperscripts[𝑚𝑚].Thefirstmonitoringperiodisdenotedby[𝑚𝑚=1],thesecondmonitoringperiod[𝑚𝑚=2]andsoforth.Thesuperscript[m=0]isusedtoindicatethevalueofcarbonpoolsatprojectstart.Thesevaluesremainconstantthroughouttheprojectcreditingperiod.Inthecasewhereprojectvalidationandthefirstverificationeventfallonthesamedate,then[m=0]parameterswillbeequalto[m=1]parameters.Thesesuperscriptsshouldnotbeconfusedwithreferencestoequationnumbers,asequationnumbersareneverinsuperscript.Norshouldtheybeconfusedwithpowersofnumberswhicharenotenclosedinbrackets.Alsoseethedefinitionformonitoringperiod.AmonitoringeventisthereportingandverificationofNERsclaimedforamonitoringperiod.2.2.9Baseline,ProjectandLeakageEstimatesEstimatesrelatedtoemissions,emissionsreductions,emissionsremovals,andcarbonstocksforthebaseline,project,andleakagearespecificallydenotedwithB,PandLinthesubscriptsofvariables,respectively.2.2.10AveragesforCarbonPoolsAveragecarbon(measuredbytCO2e/ha)towhichaccountingisappliedisdenotedbyalower-case𝑐𝑐,withsubscriptstodifferentiatebetweencarbonpoolsasindicatedinthelistofvariables.Forexample,𝑐𝑐𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚]indicatestheaveragecarbonstockinabove-groundmerchantabletreesintheprojectareainmonitoringperiod[𝑚𝑚].Subscriptsfromcarbonpoolsareacronymslistedinsection3.1.Page23VM0009,Version3.0SectoralScope142.2.11TotalsforCarbonPoolsTotalcarbon(measuredbytCO2e)towhichaccountingisappliedisdenotedbyacapital𝐶𝐶,withsubscriptstodifferentiatebetweencarbonpoolsasindicatedinthelistofvariables.Forexample,𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚]indicatesthetotalcarbonstockinabove-groundmerchantabletreesinmonitoringperiod[𝑚𝑚].Subscriptsfromcarbonpoolsareacronymslistedinsection3.1.2.2.12EmissionsforCarbonPoolsandDecaySourcesTotalemissions(measuredbytCO2e)fromaccountingaredenotedbyacapital𝐸𝐸,withsubscriptstodifferentiatebetweencarbonpoolsasindicatedinthelistofvariables.Forexample,𝐸𝐸𝐵𝐵𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚]indicatesthetotalemissionsfromabove-groundmerchantabletreesatmonitoringperiod[𝑚𝑚]inthebaselinescenario.Subscriptsfromcarbonpoolsareacronymslistedinsection3.1.2.2.13QuantifiedUncertaintiesUncertaintiesinmajorcarbonpoolsareexpressedasstandarderrorSE(measuredbytCO2e)andaredenotedusingacapitalletter𝑈𝑈.Forexample,𝑈𝑈𝑃𝑃[𝑚𝑚]isusedtoindicatetheuncertaintyinestimatedtotalcarbonstocksforselectedcarbonpoolsintheprojectaccountingareaatmonitoringperiod[𝑚𝑚].2.2.14VectorsVectorsareindicatedusingboldface;forexample𝜽𝜽isthevectorofcovariateparameterstothelogisticfunctionofconversionaredescribedinsection6.8.Thisvectormayincludenumerouselementssuchasthenumericeffectsofpopulationdensity,roaddensityorper-capitahouseholdincomeonpredictedconversion.2.2.15MatricesMatricesareintentionallynotusedinthismethodologytoavoidcomplexityandconfusion.2.3ApplicationOverviewThismethodologymaybeappliedinmultiplewaysandatdifferentstagesofprojectdevelopment.Forthepurposesofprojectvalidation,whenmonitoringdataarenotyetavailable,literatureestimatesforcarbonstocksinselectedcarbonpoolsmaybeused(seesection8.4.7).Ifvalidationandthefirstverificationoccursimultaneously,measurementsfrommonitoringmaybeusedtoestimatecarbonstocks.Duringsubsequentmonitoringevents,directmeasurementsfromthevariousareasmustbeusedtocalculateNERs.Uponthefirstapplicationofthemethodologytoaproject,projectproponentsmustidentifytheprojectareapersection5,andthebaselinescenariopersection6.Theprocesswillresultinatleastoneprojectaccountingareaandoneassociatedreferencearea.Formanyprojectproponents,theprojectareawillbetheareatowhichtheprojectproponenthaslegaltitletothePage24VM0009,Version3.0SectoralScope14carbonstocksintheselectedcarbonpools.ForREDDandACoGSprojects,theboundariesoftheprojectareamaybeprotectedasaprojectactivity.ThebaselinescenariomaybeidentifiedusingexpertknowledgeoraPRA(seeAppendixE).Dependingontheidentifiedagentsanddriversofconversion,thebaselinescenariomaycontainseveralbaselinetypes.Forinstance,aportionoftheprojectareamaybesubjecttolegally-sanctionedcommercialloggingwhichultimatelyresultsinnon-forestwhileadifferentportionoftheprojectareamaybesubjecttolanduseconversioncausedbycharcoalproduction.Becausetheagentsanddriversaredifferent,theprojectproponentmustdefinetwobaselinetypesintheproject’sbaselinescenario.Inthisexample,onebaselinetypeisF-P1.aandtheothermaybetypeF-U1.Foreachidentifiedbaselinetype,projectproponentsmustdelineateprojectaccountingareaswithinthegreaterprojectarea(seesection6.2).Likewise,theprojectproponentmustdelineateareferenceareatoparameterizethebaselineemissionsmodels(seesection6.8.1),aproxyareatoestimateresidualcarbonstocksinthebaselinescenario(seesection6.4),andanactivityshiftingleakagearea(seesection8.3.2.1)foreachidentifiedbaselinetype.Formostprojects,therewillbeonlyonebaselinetypeandhenceoneprojectaccountingarea,referencearea,proxyareaandactivityshiftingleakagearea.Forsomeprojects,theprojectaccountingareamayencompasstheentireprojectarea.Oncebaselinetypesandareashavebeendefined,thebaselineemissionsmodelsmustbeparameterized.Forvalidationpurposes,asmallsamplesizeof300interpretationpointsineachreferenceareamaybeusedtoestimatetheconversionparameters,whileforverificationpurposesalargersamplesizeshouldbeused(seesection6.8).Ifasmallsamplesizeisselectedtoestimatetheconversionparametersforverificationpurposes,thecalculationofNERsmaybereducedasaresultofaconfidencededuction(seesection8.4.1.1).Likewise,fortheestimationofcarbonstocksintheprojectaccountingareasandtheproxyareas,asmallsamplesizeofmeasurementplotsmayresultinaconfidencededuction.Theconfidencedeductionisanincentiveforprojectproponentstoinvestadequateamountoftimeandmoneyintomodelparameterizationandcarbonstockmonitoringwithoutprescribingabsoluterequirementsonsamplesizes.Forvalidationandverificationpurposes,theprojectproponentmustdocumenttheprojectdesignandcalculatedNERsusingtheProjectDescriptionRequirements(PDRequirements)andtheMonitoringRequirements.Demonstrationoftheserequirementsmaybepresentedinadocument(s)referencedfromthePDormonitoringreports,orinthePDormonitoringreportsthemselves.Demonstrationoftheserequirementsalongwithcompleted,VCS-approvedtemplatesmustbeprovidedtotheValidation/VerificationBody(VVB).ProjectproponentsmustnotethatinadditiontotheProjectDescriptionRequirementsandtheMonitoringRequirements,projectsmustadheretoallVCSruleswhenapplyingthismethodology(ie,thePDRsandMRscoveralltherequirementsofthismethodology,buttheydonotnecessarilycovereachandeveryVCSrequirementsrelevanttotheproject).Page25VM0009,Version3.0SectoralScope14Oncethebaselineemissionsmodelshavebeenvalidated,theprojectproponentneedonlymonitorcarbonstocksintheprojectaccountingareasandproxyareas,andmonitordegradationintheactivityshiftingleakageareas.Theprojectproponentmaychoosetomonitorlogproductionasaresultofprojectactivitiesintheprojectareatodeterminecarbonstoredinwoodproducts.Theprojectproponentmayalsochoosetomonitortheburningofbiomassasaresultofprojectactivities.However,mostprojectemissionswillbecapturedinthere-measurementofplotsintheprojectaccountingareasevenifthereisanaturaldisturbanceeventorloggingaftertheprojectstartdate.3DEFINITIONS3.1DefinitionsInadditiontothedefinitionssetoutinVCSdocumentProgramDefinitions,thefollowingdefinitionsandacronymsapplytothismethodology:Activity-ShiftingLeakageAreaTheareawhereleakageresultingfromtheactivitiesoftheagentofconversionwouldlikelyoccurduetotheprojectactivity(ies).AgentofConversionPeople,groupsofpeopleororganizationsresponsiblefordegradationanddeforestationornativegrasslandconversion.AllometricEquationAstatisticalmodelusedtopredictbiomassgiventhemeasurementofcloselyrelatedattributesofatreeorshrub,suchasdiameter(DBH)orstemcount.BaselineTypeOneoffivetypesthataddresstheAFOLURequirementsforplanned,unplannedmosaicandunplannedfrontierconversion.BaselineEmissionsForanymonitoringperiod,baselineemissionsEBΔ[m]areasumofestimatedemissionsoverselectedcarbonpoolsandtimebetweenmonitoringevents.BaselineEmissionsModelsTheBiomassEmissionsModelandSoilEmissionsModelthatcharacterizethebaselinescenario.BaselineReevaluationRevisionofthebaselinescenariowhichoccursatleastevery10years(seesection6.20).BiomassEmissionsModel(BEM)Amodelthatcharacterizestheemissionsfrombiomassinthebaselinescenario.Page26VM0009,Version3.0SectoralScope14CarbonFractionTheproportionofbiomassthatiscarbon,whichmayvarybyspecies.CascadeofDegradationAprimaryagentandsecondaryagent(s),andtheirassociateddrivers,thateventuallydegradetheforesttoanon-foreststate.Thesecondaryagentsareultimatelyresponsiblefordeforestation.ClassofAgentsAgroupofagentsofconversionthatsharethesamedriverofconversion.ConversionTheremovalorreplacementofvegetationand/ordisturbanceofsoil.ConversionParameterstheparametersofthebaselineemissionsmodelsthatdescribethebehaviorofdegradationandconversionovertime.CovariateAvariablepossiblypredictiveoftheoutcomeunderstudy;inthiscasequantifiablesocial,economic,orpoliticalfactorsthatmayimprovemodelfit.DecayEmissionsModel(DEM)Amodelthatcharacterizestheexponentialdecayofcertaincarbonpoolsinthebaselinescenarioorasresultofprojectactivity(ies).DegradationPleaseseecurrentVCSdefinition.Inaddition,degradationcanincludeanyintermediatestateofconversion.DriversofConversionGeographic,climaticorotherphysical,socialand/oreconomicconditionsthatcauseconversion.EmissionsModelOneofthefouremissionsmodels(BiomassEmissionsModel,SoilEmissionsModel,DecayEmissionsModelorLeakageEmissionsModel).EndLandUseTheutilityofadiscretepieceoflandthatisonaverageoveritsareanon-forest(eg,pastureland,grazingland,openpitmines,urbanlivingspace,subsistenceagricultureormechanizedagriculture).ForeignAgentsGroupsoriginatingoutsidetheregioninwhichtheprojectresides(eg,agroupofsettlersthatemigratesafardistanceinlandfromthecoast).Page27VM0009,Version3.0SectoralScope14ForestedProjectAccountingAreaAprojectaccountingareathatmeetsthedefinitionofforestasoftheprojectstartdateandforatleast10yearspriortotheprojectstartdate.ForestedMeetsthedefinitionofforestonaverageacrosstheareatowhichitisapplied.GrasslandConversionTheconversionofgrasslandinitsnaturalstatetooneofanthropogenicuse(eg,agriculture,development(includinghousing)orotheranthropogenicland-usediscernablefromremotelysensedimagery).Conversiontograzinglandsand/orpastureisexcludedfromthisdefinition.GrasslandProjectAccountingAreaAprojectaccountingareathatmeetsthedefinitionofnativegrasslandorshrublandasoftheprojectstartdateandforatleast10yearspriortotheprojectstartdate.ImminentConversionTheriskoflandusechangeinaportionoftheprojectaccountingareaandwithin10yearsoftheprojectstartdatebytheagentsofconversion.LeakageEmissionsModelAmodelthatcharacterizestheemissionsfromleakageunderconditionsthatwouldhaveoccurredintheactivity-shiftingleakageareahadtheprojectactivity(ies)notbeenimplemented.LogProductionThecarboninlogsremovedfromaloggingunitontoalandingwhichissubsequentlyprocessedandaportionturnedintolong-livedwoodproducts.Long-LivedWoodProductsProductsderivedfromtheharvestedwoodofamerchantabletreesuchassawntimberandplywoodthatareassumedtoremainordecayduringtheprojectcreditingperiod.MarketLeakageAreaTheareawhereleakagewouldlikelyoccurresultingfromachangeinthesupplyofwoodproductsduetotheprojectactivity(ies).MerchantableTreeAtreecontainingwoodofcommercialvalue,size,anddesirablequality.MonitoringPeriodAnintervaloftimefollowingtheprojectstartdateandprojectcreditingperiodstartdatedesignatedforsystematicallyverifyingprojectclaimsofGHGemissionsreductionsand/orremovalsandprojectadditionality.Specifically,anintervaloftimefromt[m−1]tot[m]wherePage28VM0009,Version3.0SectoralScope14t[m−1]≥0(theprojectcreditingperiodstartdate)andt[m−1]<t[m].Thelengthofthemonitoringperiodist[m]−t[m−1]wheremdenotesthenumberofanysinglemonitoringperiodandtthenumberofdaysaftertheprojectcreditingperiodstartdatethatistheendofthemonitoringperiod.Thelengthofeachmonitoringperiodmustbelessthanorequaltofiveyears.NativeEcosystemPleaseseecurrentVCSdefinition.Anativeecosystemmustincludeindigenousspecies,butdoesnotneedtobeexclusivelyindigenous.NativeGrasslandAgrasslandwhichincludesindigenousgrassspecies,andmayincludesomedensityoftreestoolowtobedefinedasforest(suchasawoodland).Theremayexistsomepatchesofforestwhichmeetthedefinitionofforest,butanareadefinedasnativegrasslanddoesnotmeetthedefinitionofforest,onaverage,acrossthearea.NativeShrublandAshrublandwhichincludesindigenousshrubandwoodyspecies,andmayincludesomedensityoftreestoolowtobedefinedasforest.Theremayexistsomepatchesofforestwhichmeetthedefinitionofforest,butanareadefinedasnativeshrublanddoesnotmeetthedefinitionofforest,onaverage,acrossthearea.NetGHGEmissionReductionsandRemovals(NERs)Tonnesofcarbondioxideequivalent(tCO2e)emissionsthatarereducedorremovedfromtheatmosphereduetoprojectactivitiesduringtheprojectcreditingperiod.Non-DecayPoolAcarbonpoolthatdoesnotdecayovertime.Non-ForestNotmeetingthecountry-specificdefinitionofforest.Non-MerchantableTreeAllothertreesthatdonotmeetthedefinitionofamerchantabletree.Non-TreeBiomassBiomassthatincludesgrasses,sedges,herbaceousplantsandnon-treewoodybiomass.Non-TreeWoodyBiomassBiomassthatincludeswoodyshrubsandanytreestoosmallforcarbonstockestimationusingtheallometricequationderivedorselectedfortrees.Page29VM0009,Version3.0SectoralScope14ParticipatoryRuralAppraisalAvoluntarysurveyofthepopulacesurroundingtheprojectareathatcanbeusedtoidentifytheagentsanddriversofconversion,delineatethereferencearea,andidentifystrategiestomitigateconversionintheprojectarea.PeatSoilSeecurrentVCSdefinitionforpeatland.PermanentPlotAplotwithfixedareaandlocationusedtorepeatedlymeasurechangeincarbonstocksovertime.PlannedCommercialDeforestationAdeforestationscenariowheretheimmediateagentofdeforestationisknownandthereiscommercialharvestinthebaselinescenario(baselinetypeF-P1.aandF-P1.b).PlannedNon-CommercialConversionAconversionscenariowheretheimmediateagentofconversionisknownandthereisnocommercialharvestofwoodproductsinthebaselinescenario(baselinetypeF-P2andG-P2).PrimaryAgentAnagentofconversionthatinitiatescascadeofdegradationultimatelyleadingtoconversion.Withouttheprimaryagent,conversionwouldnotoccur.ProjectAccountingAreaAnareawithintheprojectareathatmeetsthedefinitionofforestornativegrasslandandissubjecttoconversioninthebaselinescenario.Allprojectaccountingareaswillmeetthedefinitionofeitheraforestprojectaccountingareaorgrasslandprojectaccountingarea.ProjectAreaTheareacontrolledbytheprojectproponentwhereprojectactivitiesmaybeimplemented.ProjectEndDateThedateoftheendofthelastmonitoringperiodandtheconclusionoftheProjectCreditingPeriod.ProjectEmissionsEmissionsforanymonitoringperiod[m]asestimatedbytheeventsofwoodybiomassconsumption.ProjectShiftPeriodTheperiodoftimebetweenconversionobservedinthereferenceareaandtheprojectstartdate,denotedbyγ.Page30VM0009,Version3.0SectoralScope14ProjectPerformanceAcomparisonofex-postcreditgenerationtoex-anteestimatesovertime.ProxyAreaTheareawhereresidualcarbonstocks(afterconversion,theendstate)areestimatedforeachbaselinetype.ReferenceAreaAnareainthesameregionastheprojectareathatissimilartotheprojectaccountingareainregardstoactingagentsofconversion,actingdriversofconversion,socio-economicconditions,culturalconditionsandlandscapeconfiguration.Thisareaisusedtoestimatetheconversionparameters(seesection6.8.1).ReferencePeriodAhistoricperiodoftimeinthesameregionastheprojectthatissimilarinactingagentsofconversion,actingdriversof,socio-economicconditions,culturalconditionsandlandscapeconfigurationtotheprojectarea.SecondaryAgentAnagentofconversionthatfollowsaftertheprimaryagentinthecascadeofdegradationultimatelyleadingtoconversion.Asecondaryagentmaynotbepresentforconversiontooccur.ShrublandConversionTheconversionofshrublandinitsnaturalstatetooneofanthropogenicuse(eg,agriculture,development(includinghousing)orotheranthropogenicland-usediscernablefromremotelysensedimagery).Conversiontograzinglandsand/orpastureisexcludedfromthisdefinition.SoilEmissionsModel(SEM)AmodelthatcharacterizestheemissionsfromSOCinthebaselinescenario.SpecificAgentofConversionAnagentofconversionthatcanbeidentifiedbynameandthatresidesinaknownarea,andthatisdirectlyresponsibleforconversionorthebeginningofcascadeofdegradation.StratificationTheprocessofgroupinghomogenoussubgroupsofagivenpopulationtoreducesamplingmeasurementerror.TemporalProjectBoundaryTheperiodoftimewhenconversionismitigatedintheprojectareaasaresultofprojectactivities,theboundariesofwhicharedefinedbytheprojectstartdateandprojectenddate.Page31VM0009,Version3.0SectoralScope14ThreatenedPerimeterTheperimeteroftheprojectareathatisvulnerabletoconversionbybeingaccessibletothelocalagentsofconversion.TypeofAgentEitheraprimaryagentorasecondaryagent.UnplannedConversionAconversionscenariowheretheimmediateagentofconversionisunknown(baselinetypeF-U1,G-U1,F-U2,G-U2andF-U3).WoodyBiomassBiomassresultingfromsecondarygrowth.3.2AcronymsACoGSAvoidedConversionofGrasslandsandShrublandsAGMTAbove-groundmerchantabletree(seemerchantabletree)AGOTAbove-groundothertree(seenon-merchantabletree)AGNTAbove-groundnon-treeAFOLUAgriculture,ForestryandOtherLandUseAPCAvoidedPlannedConversionAPDAvoidedPlannedDeforestationASActivity-shiftingAUCAvoidedUnplannedConversionAUDDAvoidedUnplannedDeforestationandDegradationBBaselineBABufferaccountBEBaselineemissionsBEMBiomassEmissionsModelBGBBelow-groundbiomassPage32VM0009,Version3.0SectoralScope14BGMTBelow-groundmerchantabletreeBGOTBelow-groundothertreeBGNTBelow-groundnon-treeBRBaselinereevaluationBRNBurningofbiomassCFCarbonfractionCONConversionDDecayDBHDiameteratbreastheightDEGDegradationDEMDecayEmissionsModelDFDeforestationDMDDemandDOMDomesticDNADesignatedNationalAuthorityDWDeadwoodEMEmissionsmodelsFForestFAOFoodandAgricultureOrganizationGGrasslandGERsGrossEmissionReductionsGHGGreenhousegasGISGeographicInformationSystemGLBGlobalPage33VM0009,Version3.0SectoralScope14IPCCIntergovernmentalPanelonClimateChangeIRLSIterativelyReweightedLeastSquareISOInternationalOrganizationforStandardizationLEmissionsfromleakageLDLyingdeadwoodLEMLeakageEmissionsModelLSLivestockLTRLitterMCMoisturecontentMEMarketleakageMRMonitoringrequirementNERsNetGHGEmissionReductionsand/orRemovalsPProjectPAPrimaryAgentPDProjectDescriptionPDRProjectdescriptionrequirementPEProjectemissionsPXProxyareaRAReferenceareaREDDReducedEmissionsfromDeforestationandDegradationRMSERootMean-SquaredErrorPAProjectareaPAAProjectaccountingareaPAIProjectactivityinstancePage34VM0009,Version3.0SectoralScope14PRAParticipatoryRuralAppraisalRSRoot-to-shootratioSEMSoilEmissionsModelSASecondaryagentSDStandingdeadwoodSEStandarderrorSFSyntheticfertilizerSLSlashSPSpatialalgorithmSPCSpeciesSOCSoilorganiccarbonSUPSupplyUNFCCCUnitedNationsFrameworkConventiononClimateChangeVVBValidation/VerificationBodyVCSVerifiedCarbonStandardVCSAVerifiedCarbonStandardAssociationVCUVerifiedCarbonUnitWPLong-livedwoodproducts4APPLICABILITYCONDITIONSThismethodologyappliestoprojectactivitiesthatpreventconversionofforesttonon-forestandofnativegrasslandtoanon-nativestate.Thismethodologyisapplicableunderthefollowingconditions:1.Thedriversandagentsofconversioninthebaselinescenariomustbeconsistentwiththosedescribedinsection6ofthismethodology,andtheendlanduseinthebaselinescenarioisnon-forest(inthecaseofREDDprojectactivities)orconvertednativePage35VM0009,Version3.0SectoralScope14grassland(inthecaseofACoGSprojectactivities).Accordingly,theprojectactivitymustbeAPDorAUDDforforestedprojectaccountingareasandAPCorAUCforgrasslandprojectaccountingareas.2.Allprojectaccountingareasmusthavebeeninanunconvertedstate(ie,forestornativegrassland)foratleast10yearspriortotheprojectstartdate,accordingtothefollowing:a.Landinallforestedprojectaccountingareashasqualifiedasforest,onaverage,acrosstheprojectaccountingareas,asdefinedbyFAO2010orbytheresidingdesignatednationalauthority(DNA)fortheprojectcountryforaminimumof10yearspriortotheprojectstartdate.b.Landinallgrasslandprojectaccountingareashasqualifiedasnativegrasslandorshrublandforaminimumof10yearspriortotheprojectstartdate.3.Forprojectaccountingareaswithanunplannedbaselinetype,aconversionthreatmustexistforeachprojectaccountingareaasdemonstratedbyoneofthefollowingtwooptions:a.Imminentconversion(seedefinition)mustbepredictedbyasurvey,wheremorethan60%ofrespondentspredicttheendlanduseidentifiedinthebaselinescenario.ThesurveymustmeettherequirementsofAppendixE.ORb.Asoftheprojectstartdate,somepointwithin2kilometersoftheperimeteroftheprojectaccountingareahasbeenconvertedtotheendlanduseidentifiedinthebaselinescenario1.4.InthecaseofbaselinetypeF-U1,atleast25%oftheprojectareaboundaryiswithin120metersofdeforestationandatleast25%oftheprojectareaboundaryisadjacenttothereferencearea(seesection6.3).5.InthecaseofbaselinetypeG-U1,atleast25%oftheprojectareaboundaryisadjacenttothereferencearea(seesection6.3).6.InthecaseofbaselinetypeF-U2,atleast25%oftheprojectareaboundaryiswithin120metersofdeforestation(seesection6.3).7.Theprojectaccountingarea(s)mustnotcontainpeatsoil.8.Foreachprojectaccountingarea,areferenceareacanbedelineatedforeachbaselinetypeinthebaselinescenariothatmeetstherequirements,includingtheminimumsizerequirement,ofsection6.8.1ofthismethodology.9.Asoftheprojectstartdate,historicimageryofthereferencearea(s)existswithsufficientcoveragetomeettherequirementsofsection6.8.4ofthismethodology.1Theappropriatenessofthe2kilometerproximityisdescribedinBroadbentetal.,2008.Page36VM0009,Version3.0SectoralScope1410.Projectactivitiesareplannedorimplementedtomitigateecosystemconversionbyaddressingtheagentsanddriversofconversionasdescribedinsection8.3.1ofthismethodology.11.Theprojectproponenthasaccesstotheactivity-shiftingleakagearea(s)andproxyarea(s)toimplementmonitoring(seesections8.3.2.1and6.4),orhasaccesstomonitoringdatafromtheseareasforeverymonitoringevent.12.Ifloggingisincludedinthebaselinescenarioandamarketleakageareaisrequiredaspersection8.3,thentheprojectproponenthasaccessto(ormonitoringdatafrom)themarketleakageareaifmeasurementisneeded(seesection8.3.3).13.Thismethodologyisapplicabletoallgeographies.However,ifSOCisaselectedcarbonpoolandthedefaultvaluefromsection6.19.2isselected,thentheprojectmustbelocatedinatropicalecosystem.14.Iflivestockarebeinggrazedwithintheprojectareaintheprojectscenario,theremustbenomanuremanagementtakingplace,asemissionsfromN2Oasaresultofmanuremanagementarenotquantifiedoraddressedinthismethodology.15.ForACoGSprojecttypes,projectactivitiesmustnotresultinsignificantGHGemissions.AllGHGemissionsfromprojectactivitiesmustbeshowntobedeminimis(seesection8.3.1).PDRequirements:ApplicabilityConditionsTheprojectdescriptionmustincludethefollowing:PDR.1Foreachapplicabilitycondition,astatementofwhetheritappliestotheproject.Iftheapplicabilityconditiondoesnotapplytotheproject,justificationforthisconclusion.PDR.2Whereapplicabilityconditionsapply,credibleevidenceintheformsofanalysis,documentationorthird-partyreportstosatisfythecondition.PDR.3Definitionofforestusedbytheprojectproponentanditssource.5PROJECTBOUNDARIESThephysicalandtemporalconstraintsoftheprojectaswellasthegreenhousegasesandcarbonpoolsmustbeclearlydelineatedanddefinedbytheprojectproponent.BoundsmustconformtothelatestVCSrequirementsandthismethodology,andmustbeclearlyandobjectivelydefinedtofacilitatemonitoringandevaluationpertherequirementsinthissection.5.1DelineatingtheSpatialBoundariesTheprojectareamaybeacombinationofforest,non-forest,nativegrassland,orconvertednativegrassland.Howeverthebaselineemissionsmodelscanonlybeappliedtotheforestornativegrasslandareassubjecttoconversioninthebaselinescenario(seesection6.2).ProjectPage37VM0009,Version3.0SectoralScope14accountingareas,onaverageovertheirentirety,mustmeetthedefinitionofforestornativegrasslandgiveninsection3(thismeansthatnoteverystratummustmeetthedefinitionofforestornativegrassland).Theprojectareamayconsistofmultiplecontiguousornon-contiguousparcels.Thegeographicorphysicalboundariesoftheprojectareamustbeclearlydelineatedusing,atminimum,thefollowing:•Nameoftheprojectarea(compartmentorallotmentnumber,localname)•Digitalmapsofthearea,includinggeographiccoordinatesofvertices•Totallandarea•Detailsofownership,includinguserrightsand/orlandtenureinformation•Topography•Roads•Majorriversandperennialstreams•Landuse/vegetationtypeclassificationThesizeoftheprojectareacannotincreaseaftertheendofthefirstmonitoringperiod.PDRequirements:SpatialProjectBoundariesTheprojectdescriptionmustincludethefollowing:PDR.4Adigital(GIS-based)mapoftheprojectareawithatleasttheaboveminimumrequirementsfordelineationofthegeographicboundaries.PDR.5Credibledocumentationdemonstratingcontroloftheprojectarea.MonitoringRequirements:SpatialProjectBoundariesThemonitoringreportmustincludethefollowing:MR.1Adigital(GIS-based)mapoftheprojectareawithatleasttheaboveminimumrequirementsfordelineationofthegeographicboundaries.5.2DefiningtheTemporalBoundariesTemporalboundariesdefinetheperiodoftimewhendegradation,deforestationandconversionintheprojectareaaremitigatedbyprojectactivities.Page38VM0009,Version3.0SectoralScope14Thefollowingtemporalboundariesmustbedefined:•Theprojectstartdate.•Theprojectcreditingperiod(projectsmayuseanhistoricalcreditingperiodunderspecificcircumstances,consistentwithcurrentVCSrules).•Thelengthoftheprojectcreditingperiod.•Thedatesandperiodicityofbaselinereevaluationandmonitoringperiods.AbaselinereevaluationaftertheprojectstartdateandmonitoringmustconformtothecurrentVCSrequirements.Theprojectcreditingperiodstartdatemayoccuraftertheprojectstartdate.Iftheprojectcreditingperiodstartdateismorethan10yearsaftertheprojectstartdate,thenasoftheprojectcreditingperiodstartdate,abaselinereevaluationmustoccurpriortotheendofthefirstmonitoringperiod(seesection6.20).PDRequirements:TemporalProjectBoundariesTheprojectdescriptionmustincludethefollowing:PDR.6Theprojectstartdate.PDR.7Theprojectcreditingperiodstartdateandlength.PDR.8Thedatesformandatorybaselinereevaluationaftertheprojectstartdate.PDR.9Atimelineincludingthefirstanticipatedmonitoringperiodshowingwhenprojectactivitieswillbeimplemented.PDR.10Atimelineforanticipatedsubsequentmonitoringperiods.MonitoringRequirements:TemporalProjectBoundariesThemonitoringreportmustincludethefollowing:MR.2Theprojectstartdate.MR.3Theprojectcreditingperiodstartdate,enddateandlength.Page39VM0009,Version3.0SectoralScope145.3GasesProjectproponentsmustaccountforsignificantsourcesofthefollowingincludedgreenhousegasesasspecifiedinTable2.Table2:IncludedGHGSourcesGasSourcesInclusionJustificationCO2(CarbonDioxide)FluxincarbonpoolsYesMajorpoolconsideredintheprojectscenarioCH4(Methane)BurningofbiomassNoConservativelyexcludedLivestockYesArequiredsourcewhenemissionsfromgrazingarenotdeminimisN2O(NitrousOxide)BurningofbiomassNoConservativelyexcludedLivestockNoExcludedonthebasisofapplicabilitycondition14.SyntheticfertilizerYesIncludedifnotdeminimis5.4SelectingCarbonPoolsProjectproponentsmustaccountfortherequiredcarbonpoolsandmayadditionallyselectfromtheoptionalpoolslistedinTable3forforestedprojectaccountingareasandTable4forgrasslandprojectaccountingareas.Table2:RequiredandPptionalCarbonPoolsforForestedProjectAccountingAreasandJustifications.PoolRequiredJustificationAGMTAbove-groundmerchantabletreeYes,ifbaselinescenarioorprojectactivity(ies)includetheharvestoflong-livedwoodproducts.Otherwise,accountingforthiscarbonpoolisnotrequired.Majorpoolconsideredwhenaccountingforemissionsfromlong-livedwoodproductsAGOTAbove-groundother(non-merchantable)treeYesMajorpoolconsideredPage40VM0009,Version3.0SectoralScope14AGNTAbove-groundnon-treeYes,ifthebaselinescenarioincludesperennialtreecrops.Otherwise,accountingforthiscarbonpoolisoptional.Maybeconservativelyexcluded,thoughitisnotconservativetoexcludeifthebaselinescenarioincludesperennialtreecropsBGMTBelow-groundmerchantabletreeOptionalMaybeconservativelyexcludedBGOTBelow-groundother(non-merchantable)treeOptionalMaybeconservativelyexcludedBGNTBelow-groundnon-treeOptionalMaybeconservativelyexcludedLTRLitterNoAlwaysconservativelyexcludedDWDeadwoodYes,ifAGMTisselectedMaybeasignificantreservoirfromslashunderthebaselinescenarioSDStandingdeadwoodOptionalMaybeconservativelyexcludedLDLyingdeadwoodOptionalMaybeconservativelyexcludedSOCSoilorganiccarbonOptionalMaybeconservativelyexcludedWPLong-livedwoodproductsYes,ifAGMTisselectedMaybeasignificantreservoirunderthebaselinescenarioTable3:Requiredandoptionalcarbonpoolsforgrasslandprojectaccountingareasandjustifications.PoolRequiredJustificationAGMTAbove-groundmerchantabletreeYes,ifbaselineincludesperennialcrops.Otherwise,accountingforthiscarbonpoolisoptionalMaybeconservativelyexcludedAGOTAbove-groundother(non-merchantable)treeYes,ifbaselineincludesperennialcrops.Otherwise,MaybeconservativelyexcludedPage41VM0009,Version3.0SectoralScope14accountingforthiscarbonpoolisoptionalAGNTAbove-groundnon-treeYes,ifbaselineincludesperennialcrops.Otherwise,accountingforthiscarbonpoolisoptionalMaybeconservativelyexcludedBGMTBelow-groundmerchantabletreeOptionalMaybeconservativelyexcludedBGOTBelow-groundother(non-merchantable)treeOptionalMaybeconservativelyexcludedBGNTBelow-groundnon-treeOptionalMaybeconservativelyexcludedLTRLitterNoAlwaysconservativelyexcludedDWDeadwoodOptionalMaybeconservativelyexcludedSDStandingdeadwoodOptionalMaybeconservativelyexcludedLDLyingdeadwoodOptionalMaybeconservativelyexcludedSOCSoilorganiccarbonOptionalMaybeconservativelyexcludedWPLong-livedwoodproductsNoDeminimisToavoidconfusion,thismethodologyusestheterm“tree”and“non-tree”throughoutforbothREDDandACoGScarbonpools.ForACoGScarbonpools,thisshouldbereadas“woody”and“non-woody”respectively,assetoutintheAFOLURequirements.Optionalpoolsmaybeexcludedifitcanbedemonstratedthatitisconservativetodoso(ie,exclusionofthepoolwillleadtofeweremissionreductions).Theprojectproponentmustuseex-anteestimates(seesection8.4.7)todemonstrateconservativeexclusionofoptionalpools.ConservativeexclusionsmustalwaysmeetcurrentVCSrequirements.MerchantabletreescontainingbiomassinAGMTandBGMTaredifferentiatedfromnon-merchantabletreescontainingbiomassinAGOTandBGOT.Foraccounting,theimportantdistinctionbetweentheseclassesoftreesisthat,underthebaselinescenarioandasaresultofprojectactivitiesthatincludelogging,carbonstoredinlong-livedwoodproductsmustbeconsidered(seesections8.1.6and8.2.3).Merchantabletreesmustbedefinedbyexpertknowledge,thePRAorthird-partypublications.Page42VM0009,Version3.0SectoralScope14Requiredandoptionallyselectedcarbonpoolsarereferredtoasthesetofselectedcarbonpoolsdenotedby𝒞𝒞(seesection2.2fornotation).PDRequirements:CarbonPoolsTheprojectdescriptionmustincludethefollowing:PDR.11Alistofthegreenhousegasesconsidered.PDR.12Alistoftheselectedcarbonpoolsandevidencefortheconservativeexclusionofanyoptionalpools.PDR.13Thedefinitionandevidencetosupportthedefinitionofamerchantabletreeifthebaselinescenarioorprojectactivitiesincludelogging.5.5GroupedProjectsGroupedprojectsareallowed,whereeachprojectactivityinstanceistreatedasaprojectaccountingareainasingleprojectarea.Allprojectactivityinstancesthataregroupedmustbeinthesameregionandmusteachmeetalltheapplicabilityconditionsofthismethodology,includingapplicabilityconditionsrelatedtothebaselinescenario(seesections4and6).Allprojectactivityinstancesmustbeexactlythesamewithregardtocommonreferenceareas,baselinescenarios,proxyareas,activity-shiftingleakageareasandmarketleakageareasasdescribedintheprojectdescription(seereportingrequirementsinsections6,6.8.1and8.3.3).Projectdocumentationmayvarywithrespecttocarbonstockestimation,asstratificationandplotlocationwillvarybyprojectactivityinstance(seereportingrequirementsinsection9),andprojectemissions(seereportingrequirementsinsection8.2).Eachprojectactivityinstancemusthaveaprojectactivityinstancestartdateandthoseprojectactivityinstancessharingthesameprojectactivityinstancestartdateandbaselinetypemustbegroupedintoasingleprojectaccountingarea.PDRequirements:GroupedProjectsIfgroupedprojectsaredeveloped,thentheprojectdescriptionmustincludethefollowing:PDR.14Alistanddescriptionsofallenrolledprojectactivityinstancesinthegroupatthetimeofvalidation.Page43VM0009,Version3.0SectoralScope14PDR.15Amapofthedesignatedgeographicareawithinwhichallprojectactivityinstancesinthegroupwillbelocated,indicatingthatallinstancesareinthesameregion.PDR.16Amapofthecommonreferencearea,proxyarea,activity-shiftingleakagearea,andmarketleakagearea.MonitoringRequirements:GroupedProjectsThemonitoringreportmustincludethefollowing:MR.4Alistanddescriptionsofallinstancesinthegroup.MR.5Amapofthelocationsorboundariesofallinstancesinthegroupindicatingthatallinstancesareinthesameregion.6PROCEDUREFORDETERMININGTHEBASELINESCENARIOThebaselinescenariointhismethodologyhingesontheidentificationoftheagentsanddriversofconversionandanunderstandingofhow,whenandwheretheymighthaveactedintheprojectarea.Upondeterminingthebaselinetype(Section6.3),theendlanduseinthebaselinescenario(Sections6.4and6.5),andhistoricalpatternsofconversion(Section6.8),theproponentdevelopsaBEM(Sections6.6and6.7)andSEM(Section6.19)inordertocalculatetheemissionspredictedtooccurintheabsenceoftheproject.Theselectedbaselinetypeisconfirmedtorepresentthemostplausiblebaselinescenariobyconsideringalternativescenariosinsection7.Figure2:DeterminationoftheBaselineScenarioPage44VM0009,Version3.0SectoralScope14Section6providesdetailedguidanceforhowtodeterminethebaselinescenarioandtheemissionspredictedtooccurintheabsenceoftheproject.Sincetheremaybemultiplegroupsofagentsactingdifferentlyinthebaselinescenario,morethanoneprojectaccountingareamayberequiredwithinagivenprojectarea.Aprojectaccountingareaistheareaforwhichauniquesetofbaselineemissionsmodelsareparameterizedandappliedtodeterminebaselineemissions.Iftheagentsaresequential,theycontributetoacascadeofdegradation.Inthecascadeofdegradation,thefirstagentistheprimaryagentandthesubsequentagentsarethesecondaryagents.Oftentheprimaryagentcreatesnewroadsorinfrastructure,providingnewaccesspointstosecondaryagentsthatultimatelyconvertdegradedforesttonon-forest.Eachagentmaybeassociatedwithdifferentdrivers.Itisimportanttoidentifytheagentsanddriversofconversioninordertodesignprojectactivitiesthatwillsuccessfullymitigateconversionandinordertocharacterizethebaselinescenario.Thebaselinescenarioforeachbaselinetypeischaracterizedbybaselineemissionsmodelsthatpredictswhatwouldhavehappenedineachprojectaccountingareahadtheprojectnotbeeninitiated.Thebaselineemissionsmodelsincorporateallthenecessaryaccountingforemissionsfromdegradation,deforestation,conversionandlossofSOC.Thebaselinescenarioforeachselectedcarbonpoolisdescribedinsection6.5.Thebaselineemissionsmodelsareafunctionoftimeandsomeexternal,quantifiabledriversofconversionsuchaspopulationdensity,lengthofroadintheregionormedianhouseholdincome.Theseexternal,quantifiabledriversofconversionarecalledcovariatesduetotheircorrelationwithobservedconversionintheregion.Thefundamentalbasisforthesemodelsarethreeparameters(α,β,andθ)estimatedbyobservingconversioninareferenceareaoverahistoricalreferenceperiod.Thereferenceareamaysurroundtheprojectarea,maybeneartotheprojectareaorbeinthesamegeographicregionastheprojectarea.Thebaselinescenariomayincludelegally-sanctionedcommercialloggingiftheprojectproponentcandemonstratethatasaresultoflegally-sanctionedcommerciallogging,theprojectareawouldhavebeenultimatelydeforestedinthebaselinescenarioresultingfromacascadeofdegradation.Thismaybethecaseifduringthecourseofcommerciallogging,theprimaryagentcreatesnewroadsorinfrastructurewhichprovidesnewaccesspointstosecondaryagentsthatultimatelydegradetheforesttonon-forest.Thebaselinescenariomayincorporateprojectaccountingareaswithbaselinetypesthatinvolve:•Plannedorunplannedavoidedconversionanddegradationinadditiontodeforestation.•Spatiallyexplicitaccountingforconversion.Thebaselineemissionsmodelsforeachprojectaccountingareaareparameterizeddifferentlydependingontheassociatedbaselinetype.Theprojectproponentshouldfirstidentifythebaselinetypeforeachprojectaccountingareainsection6.3andthenselectthenecessaryPage45VM0009,Version3.0SectoralScope14parametersasindicatedinFigure3insection6.7.Ifmorethanoneprojectaccountingareaisidentified,thenapplythesesectionsindependentlytoeachprojectaccountingarea.Finally,aproxyareaisusedtocharacterizetheendcarbonstocksinthebaselinescenarioforeachidentifiedbaselinetype(seesection6.4).Ifajurisdictionalbaselinehasbeenestablishedandisapplicabletotheprojectactivity,itmaybeusedperVCSrequirements.PDRequirements:DeterminingtheBaselineScenarioTheprojectdescriptionmustincludethefollowingwithrespecttothebaselinescenario:PDR.17Showthattheidentifiedbaselinetypeisthemostplausiblebaselinescenarioidentifiedinsection7.6.1IdentifyingtheAgentsandDriversThissectionistobeappliedtoidentifytheagentsanddriversofconversionandsubsequentlydefineprojectaccountingareas.Thebaselinescenariomustincludeatleastoneagentofconversion,butmayincludemore.Theseagentsmayactsequentiallytocauseconversioninthebaselinescenario.ThePRAcanbeusedtoidentifytheseagents(seeAppendixE).TheprojectproponentmustprovidetheinformationinthebelowPDrequirementsregardlessofwhetheraPRAisused.Wheretheagents(orclassofagents)anddriversofconversionarenotclearyidentifiable,statisticsabouttheagentsanddriversobtainedfrompublishedorunpublishedsourcesmaybeusedtodemonstratetheirprevalence.If,duringvalidation,theagents(orclassofagents)anddriversofconversionarefoundtobenotclearlyidentifiableandpublishedorunpublishedsourcesarenotavailabletoshowtheirprevalence,aparticipatoryruralappraisal(PRA)mustbeconductedpertheguidanceinAppendixE.ThePRAisatoolthatsufficestoidentifytheagents(orclassofagents)anddriversofconversionintheeventthattheagentsanddriversarenotclearlyidentifiable.PDRequirements:AgentsandDriversofConversionTheprojectdescriptionmustincludethefollowing:PDR.18Alistoftheagentsanddriversofconversion,includingquantitativedescriptionsofagentmobilities.PDR.19Anarrativedescribingtheagentsanddriversofconversion.Page46VM0009,Version3.0SectoralScope14PDR.20Descriptionsofagentsanddriversincludinganyusefulstatisticsandtheirsources.PDR.21Alistofexternaldrivers(covariates)ofconversionusedinthemodel,ifany,thatmaybeidentifiedaspartofaPRA,expertknowledgeorliterature(eg,medianhouseholdincome,roaddensity,rainfall).6.1.1PrimaryAgentsandDriversDistinguishingbetweentheprimaryandsecondaryagentsanddriversisimportantforTypeF-P1.aandF-P1.b,inwhichlegally-sanctionedcommercialloggingoragricultureprecedesdeforestation.ForgrasslandbaselinetypesG-P2,G-U1andG-U2,itisassumedthatthereisnograsslanddegradationbeforeconversion.Therefore,onlyasingleagentorclassofagentsanddriverscanresultintheconversionofnativegrassland.IntypeF-P1.aandF-P1.bbaselines,theagentcarryingoutthelegally-sanctionedconversionistheprimaryagent.Theprimaryagentprovidestheaccessandinfrastructuretothesecondaryagentsofconversion.Asaresult,theemissionsfrombiomassintheearlyyearsofthebaselinescenarioarenotlogisticovertime,butratherlinearasaresultofaregulatedharvestschedule.Otherbaselinetypesmayalsohaveprimaryandsecondaryagentsactinginacascadeofdegradation.However,theemissionsfrombiomassresultingfromprimaryandsecondaryagentsareassumedtobelogisticovertimeasdemonstratedbyobservinghistoricalconversioninthereferencearea.6.1.2SecondaryAgentsandDriversBaselineemissionsresultingfromthesecondaryclassofagentsareassumedtobelogisticovertimeasdemonstratedbyobservingconversioninthereferencearea.ForthesecondaryagentsinbaselinetypeF-P1.a(APD),ifaspecificagentisidentifiedinthebaselinescenario,thereferenceareamustbedeterminedbasedontheactivitiesofthemost-likelyagentwhowouldhaveacquiredcontrolofandclearedtheprojectarea.Ifnot,thereferenceareawillbebasedonthemost-likelyclassofagentstohaveactedintheprojectarea.Thereferenceareamustbeappropriatefortheagentsanddriversofdeforestationthattheprojectproponentidentifies,andbeinconformancewiththecriteriainAppendixD.UndertheF-P1.bscenario,thefrontierconfigurationisassumedforthebaseline,aconsequenceoftheroadnetworkcreatedbytheprimaryagentsofdeforestation.Thereferenceareamustbeappropriatefortheagentsanddriversofdeforestationthattheprojectproponentidentifies,andbeinconformancewiththecriteriainAppendixD.Page47VM0009,Version3.0SectoralScope146.2DelineatingProjectAccountingAreasThissectionistobeappliedtodelineateeachprojectaccountingareabasedonconstraintstoconversion.Projectaccountingareasmustbedefinedbasedontheconstraintsassociatedwiththeidentifiedagentsanddriversofconversion.Agentsmaybeconstrainedbyareasthataretooremote,steep,infertileorrockytobeaccessedandconverted.ProjectaccountingareasmustnotoverlapandpercurrentVCSrequirements,forestedprojectaccountingareasmustbeforestedandgrasslandprojectaccountingareasmustmeetthedefinitionofnativegrasslandsasoftheprojectstartdateandforatleast10yearspriortotheprojectstartdate.Eachprojectaccountingareamustbesubjecttoconversioninthebaselinescenario.Forexample,iftheagentofconversionisconstrainedbysteepslopes,theprojectaccountingareawouldnotcontaintheseinaccessibleslopes.Eachprojectaccountingareamustbemeasuredtodetermineitsareainhectares.Theprojectaccountingareamaybeoptionallydelineatedbasedontheresultsofaparticipatoryruralappraisalorexpertknowledge(seeAppendixE).Thegeographicorphysicalboundariesoftheprojectaccountingareasmustbeclearlydelineatedbyconsidering,atminimum,thefollowing:•Topography•Roads•Majorriversandperennialstreams•Landuse/vegetationtypeclassification•TotalareaForAUCbaselinetypes(G-U1andG-U2),theprojectproponentmusttakeintoaccountthepatchsizeatwhichlandconversiontypicallyoccurs(eg,areasunsuitableforcropsmaystillbeplowediftheyareasmallpartofalargersuitableparcel).Theminimumpatchsizemustbe250mx250m.Thesetofalldelineatedprojectaccountingareasintheprojectareaisdenoted𝒜𝒜.Thesumoftheseareasmustbelessthanorequaltotheprojectarea.Page48VM0009,Version3.0SectoralScope14PDRequirements:ProjectAccountingAreasTheprojectdescriptionmustincludethefollowing:PDR.22Adigital(GIS-based)mapoftheprojectaccountingareas,includingaerialorsatelliteimageryshowingthattheyarecomprisedofforestornativegrasslandasoftheprojectstartdateand10yearspriortotheprojectstartdate.PDR.23Justifytheprojectaccountingareasusingtheidentifiedagentsanddriversofconversion,constraintstoconversion,andattributeslistedaboveinsection6.2.ForAvoidedUnplannedConversion(AUC)baselinetypesG-U1andG-U2(seesection6.3),theprojectdescriptionmustincludethefollowing:PDR.24Selectionofpatchsizeatwhichlandconversiontypicallyoccurs.PDR.25Justificationofselectionofpatchsizefordelineationofprojectaccountingarea.MonitoringRequirements:ProjectAccountingAreasThemonitoringreportmustincludethefollowing:MR.6Adigital(GIS-based)mapoftheprojectaccountingareaswithatleasttheaboveminimumrequirementsfordelineationofthegeographicboundaries.6.3IdentifyingBaselineTypesThissectionistobeappliedseparatelytoeachprojectaccountingareatoidentifyitsbaselinetype.Thebaselineemissionsmodelsaccountforemissionsdifferentlydependingonthebaselinetype.AdecisiontreeispresentedinFigure3.Todeterminethebaselinetypeforaprojectaccountingarea,firstdeterminewhethertheareaqualifiesasforestornativegrassland.Thebaselinescenarioforeachbaselinetypeisgiveninsection6.5,whichmustmatchmostplausiblebaselinescenarioidentifiedinsection7.Page49VM0009,Version3.0SectoralScope14Figure3:DecisionTreetoDetermineBaselineTypePage50VM0009,Version3.0SectoralScope146.3.1ForestBaselineTypesWheredeforestationisinitiatedbytheprimaryagentthroughlegally-sanctionedcommercialharvest(eg,saleoftimberasroundwood)andtheareaisultimatelyconvertedtonon-forestbythesecondaryagentthroughplanneddeforestation(eg,conversiontoagriculture),thebaselinetypeisF-P1.a.Wheredeforestationisinitiatedbytheprimaryagentthroughlegally-sanctionedcommcercialharvestandtheareaisultimatelyconvertedtonon-forestbythesecondaryagentthroughunplanneddeforestation(eg,subsistanceagriculture),thebaselinetypeisF-P1.b.Wheredeforestationoccursinaplannedfashionbutdoesnottakeplaceasaresultoflegally-sanctionedactivities(eg,clearingforaplantation),itisplannednon-commercialconversionandthebaselinetypeisF-P2(eg,thelandisillegallyloggedorclearedforagriculture).Thebaselineforthelegally-sanctionedcommercialharvestcomponentofbaselinetypesF-P1.aandF-P1.bisestablishedusingmanagementplansfromtheprimaryagent.ThesecondaryagentsofconversionofF-P1.aandF-P1.bbeingcarriedoutbythesecondaryagentsofconversionareassumedtofollowafrontierpatternofdeforestationstemmingfromtheroads.Theprojectproponentmustdemonstratethatinfrastructurethatleadstodeforestationwouldhaveexistedinthebaseline.Todothis,projectsmayproducepermits,constructionplans,contractsortenders,budgets,orotherevidenceoftheintenttoconstructroads.Alternatively,theproponentmustdemonstratethatitisinfactcommonpracticeforcomparablecommercialloggingoutfitstobuildroadsandotheraccessinfrastructureinordertolegallydegradeunderaloggingconcessionandthattheprimaryagenthassufficientaccesstotheprojectareatobuildinfrastructureintheforestprojectaccountingarea.Thiscanincludethedemonstrationofamajorroad(s)leadingtotheprojectarea,grantinglargemachineryaccesstotheprojectareaand/ordefinitiveplanstobuildsuchinfrastructureinthenearfuture.Thecombinationofdemonstratingtheconstructionoflogginginfrastructureinthereferenceareaandroadshavingeitherbeenalreadybuiltorplansforsuchroadsshowingclearaccessupto(butnotnecessarilywithin)theforestprojectaccountingareawillsatisfytherequirementtoshowthatsuchinfrastructurewouldhavebeenbuiltinthebaseline.ForbaselinetypeF-P1.b,aspatialalgorithmofthebaselineemissionsmodelsisrequiredtoconservativelydeterminebaselineemissionsovertime(seesections8.1.1.5.1and8.1.2.4.1).IfthebaselinescenariodoesnotmeetthedefinitionofAPD,thendeterminethelengthofperimeteralongtheboundariesoftheprojectareathatiswithin120metersofdeforestationthatoccurredwithin10yearspriortotheprojectstartdate.Ifthislengthislessthan25%oftheentireperimeteroftheprojectarea,thenthebaselinetypeisF-U3.If25%ormoreoftheprojectareaperimeteris120metersorlessfromdeforestation,andif25%ormoreoftheprojectareaperimeteralsoabutsthereferencearea,thenthebaselinetypeisF-U1.If25%ormoreoftheprojectareaperimeteris120metersorlessfromdeforestationbutdoesnotabutthereferenceareathenthebaselinetypeisF-U2.Page51VM0009,Version3.0SectoralScope14PertheVCSAFOLURequirements,theconfigurationofTypeF-U1andF-U2mustbemosaicwhileTypeF-U3maybemosaicorfrontier.TypeF-U3requiresaspatialalgorithmofthebaselineemissionsmodelstoconservativelydeterminebaselineemissionsovertime(seesection8.1.1.5.1).IfthebaselinetypeisF-U1,alsoseetherequirementsinsection8.4.1.2.Theselectedbaselinetypemustnotchangeaftervalidationandremainsineffectfortheentireprojectlifetime.PDRequirements:IdentifyingtheBaselineType-ForestTheprojectdescriptionmustincludethefollowing:PDR.26IfTypesF-P1.a,F-P1.borF-P2areselected,justificationformeetingthedefinitionofAPDinthecurrentVCS-approvedAFOLURequirements.PDR.27IfTypeF-P1.aorF-P1.bisselected,evidenceoflegally-sanctionedcommercialharvestinthebaselinescenario.PDR.28IfTypeF-P1.aisselected,evidenceoflegally-sanctioneddeforestationinthebaselinescenario.PDR.29IfTypeF-P1.bisselected,evidenceoffrontierconfiguration:ProjectsmustdemonstratethattheagentofdegradationhadaccesstotheprojectareaANDthatcomparableagentscreateroadsforextractionoftimberAND/ORProjectsmayproducepermits,constructionplans,contractsortenders,budgets,orotherevidenceoftheintenttoconstructroads.PDR.30IfTypeF-U1isselected,aspatialanalysisoftheprojectareashowingthatatleast25%oftheperimeteriswithin120metersofdeforestationthatoccurredwithin10yearspriortotheprojectstartdateandshowingthatthereferenceareaisadjacenttoatleast25%oftheprojectarea.PDR.31IfTypeF-U2isselected,aspatialanalysisoftheprojectareashowingthatatleast25%oftheperimeteriswithin120metersofdeforestationthatoccurredwithin10yearspriortotheprojectstartdate.PDR.32IfTypesF-U1,F-U2orF-U3isselected,aspatialanalysisoftheprojectareashowingthatitiswithin120metersofdeforestationthatoccurredwithin10yearspriortotheprojectstartdate.Page52VM0009,Version3.0SectoralScope146.3.2GrasslandBaselineTypesForeachgrasslandprojectaccountingarea,determinewhetherthebaselinescenariomeetsthecurrentdefinitionofavoidedplannedconversionintheVCSAFOLURequirements.Theprojectproponentmustprovideevidencethattheprojectareawasintendedtobeconvertedintheabsenceoftheproject,andmustmeetthedefinitionofanthropogenicland-useconversion.Nativegrasslandandshrublandconversionshallbedefinedas,andlimitedto,theconversionofnativegrasslandorshrublandfromitsnaturalstatetooneofanthropogenicuse.Thisincludestheland-usecategoriesofagriculture,development(includinghousing)orotheranthropogenicland-usediscernablefromremotelysensedimagery.Conversiontograzinglandsand/orpastureshallnotbeincludedinthegrassland/shrublandconvertedcategory,forthefollowingreasons:•Insomecases,cattleorothergrazingactuallyresultsinincreasedcarbonstocks,andthereforemaynotrepresentanetcarbonreduction.•Itisconservativetoexcludepasture/grazinglandsfromtheconvertedcategory.Pasture/grazinglandsarehighlydifficulttoidentifyusingnominalremotesensingtechniques,andwouldthusproveimpossibletorecognizeusingtheBEMmodel.Theconversionofnativegrassland/shrublandshouldbediscernableusingthesametechniquesasusedforREDDtypebaselinemodels.Pixelpattern,textureandcontextshouldbeemployedtodelineateanthropogenicallyconvertednativegrassland/shrublandfromitsnaturalstate,justasdeforestedareasaredelineatedfromnaturalforestwithintheBEM.Incaseswheretheagentofconversionisnotthelandowner,theprojectproponentmaydeterminethebaselinescenariousinghistoricalandcurrentconversionactivitiesofthemostlikelyagentwhowouldhaveacquiredtheprojectareaintheabsenceoftheproject.IfthebaselinescenariomeetsthedefinitionofAPC,thenthebaselinetypeisplannedconversion(G-P2).IfthebaselinescenariodoesnotmeetthedefinitionofAPC,butstillmeetsthedefinitionofnativegrassland/shrublandconversion,determinetheportionoftheprojectareaperimeterthatabutsthereferencearea.If25%ormoreoftheprojectareaperimeterabutsthereferencearea,thenthebaselinetypeisG-U1.Conversely,iflessthan25%oftheprojectareaperimeterabutsthereferencearea,thenthebaselinetypeisG-U2.IfthebaselinetypeisG-U1,alsoseetherequirementsinsection8.4.1.2.PDRequirements:IdentifyingtheBaselineType-GrasslandTheprojectdescriptionmustincludethefollowing:PDR.33IfTypeG-P2isselected,justificationformeetingthedefinitionofAPCinthecurrentVCS-approvedAFOLURequirements.Justificationmustincludeevidenceofintenttoconverttheprojectareaandthattheconvertedland-usecategorywouldmeetthedefinitionofnativegrassland/shrublandconversion.Page53VM0009,Version3.0SectoralScope14PDR.34IfTypeG-U1isselected,aspatialanalysisoftheprojectareashowingthatthereferenceareaisadjacenttoatleast25%oftheprojectarea.6.4DelineatingProxyAreasThissectionistobeappliedseparatelyforeachidentifiedprojectaccountingarea,howeverproxyareasforeachprojectaccountingareamaypartiallyorentirelyoverlap.Therefore,anindividualproxyareamustbeidentifiedforeachprojectaccountingarea,buttwoormoreproxyareasmayshareidenticalboundaries.Theproxyareaisusedtoestimateresidualcarbonstocksoftheendlanduseinthebaselinescenarioassociatedwithaparticularprojectaccountingarea.Itmustbelocatedinthesamegeneralregionastheprojectarea,butnotnecessarilyadjacenttotheprojectarea.Theproxyareamustalsobephysicallyaccessibletotheprojectproponent,asongoingground-basedmeasurementwillbenecessary.Foreachprojectaccountingarea,theproxyareamustbesimilartothecorrespondingprojectaccountingareawithrespecttovegetation,landscapeconfigurationandclimaticconditions.Theproxyareamustrepresentareasalreadyconvertedtotheendlanduse(eg,non-forestorconvertednativegrassland)inthebaselinescenarioasoftheprojectstartdate.Thereisnominimumormaximumsizefortheproxyarea,howeveritmusthaveasimilarlandscapeconfigurationtotheprojectaccountingarea.Theproxyareamustnotincludetheprojectareabutmayoverlapwiththereferencearea.Theproxyareamustnotbealteredafterthefirstmonitoringperiodunlessthereisabaselinereevaluation(seesection6.20).TheproxyareamustbedelineatedpertherequirementsofAppendixD.PDRequirements:DelineationoftheProxyAreasTheprojectdescriptionmustincludethefollowinginformationwithrespecttotheproxyarea:PDR.35Amapofthedelineatedboundaries.PDR.36Mapsorotherevidencethattheproxyarea’ssitecharacteristicsandlandscapeconfigurationissimilartoitsrespectiveprojectaccountingarea,including:•Vegetation;•Climaticconditions(eg,meantemperature,rainfall,etc.);•Topographicconstraintstoconversion(slope,aspect,elevation);•Landuseand/orlandcover;•Soilmap(ifavailable)orothersoilinformation;Page54VM0009,Version3.0SectoralScope14•Applicableinfrastructure(eg,waterways,roads,railroad,airports,provisionofelectricity,andotheraccesspoints);and•Ownership/tenureboundariesthatinfluenceconversion(eg,governmentholdings,privateholdingsandreserves).PDR.37Anarrativedescribingtherationaleforselectionofproxyareaboundaries,includingtheproxyarea’ssimilaritytothecorrespondingprojectaccountingareawithrespecttovegetation,soilandclimaticconditions.PDR.38Resultsofaspatialanalysistodemonstratetheproxyareaisconverted,onaverage,asoftheprojectstartdate.6.5BaselineScenariosforSelectedCarbonPoolsThefollowingsectionsdescribehowthebaselineemissionsmodelsareappliedtoeachpoolandanyadditionalassumptionsusedindeterminingbaselineemissions.TheBGBpoolisdescribedinsection6.5.4,andtheDWpoolisdescribedinsection6.5.2.AccountingforemissionsfromdecayrelativetosourceofemissionsisoutlinedinTable5below.Table4:DecayEmissionsbyCarbonPoolCarbonPoolSoilBelow-GroundDeadWoodWoodProductsAGMTDecayinDW(fromslash)DecayinWP(fromlogexportbywoodproducttype)AGOTDecaynotConsidered(notapplicable)AGNTBGMTDecayfromBGBBGOTBGNTSOCDecayinSOC(asaresultofland-useconversion)SDDecaynotConsidered(notapplicable)LDPage55VM0009,Version3.0SectoralScope14Thecategoriesshownacrossthetopofthetable(columns)aredecaypoolsperAFOLUrequirements.Theleftsideofthetable(rows)showscarbonpoolsdefinedbythismethodology.Table5showstheintersectionofthesetwocategories.Wherethereareblankspaces,thecarbonpoolsarenotapplicabletothedecaypools.Forexample,theAGMT(Above-GroundMerchantableTree)carbonpooldoesnotapplytotheBelow-Grounddecaypool,thusthecellwheretheyintersectisleftblank.Theresidualcarbonstocksassociatedwiththeendlanduseinthebaselinescenarioarecharacterizedbytheproxyareaforallbaselinetypes(seesection6.4).6.5.1BaselineScenarioforLivestockLivestockgrazingmayoccurinthebaselinescenario,butanyemissionsfromthisactivityareconservativelyassumedtobezeroandarenotcredited.Livestockgrazingorconversiontopasturemustnotbetheprimarydriverofconversion,asdecribedinsection6.3.2.Anyemissionsfromlivestockgrazingintheprojectarea,however,mustbequantifiedasdescribedinsection8.2.4.PDRequirements:DescribingtheBaselineScenariosforSelectedCarbonPoolsTheprojectdescriptionmustincludethefollowing:PDR.39Aqualitativedescriptionofthebaselinescenarioforeachselectedcarbonpool.6.5.2BaselineScenarioforAGMTInbaselinetypesF-P1.aandF-P1.b,above-groundcommercialportionsofcommerciallyviabletreesareassumedtoberemoved(seesection8.1.6.1),andthenconvertedtolong-livedwoodproducts(seesection8.1.6),accountedforasinAppendixC.Thenon-merchantableportionofmerchantabletrees(ie,theslash)isdecayedlinearlyovertenyears(seesection8.1.3).Primaryagentsarepresumedtoinitiatetheremovalofmerchantabletrees;thisinitialdegradationbyprimaryagentsisfollowedbysecondaryagentsofconversionwhoremoveremainingmerchantabletrees.Itisconservativetoaccountfortheemissionsfromloggingslashasadecaysource,evenifinrealitythesematerialswouldhavebeenburnedorusedforfuel.SimilarlyinbaselinetypesF-P2,F-U1,F-U2,F-U3,G-P2,G-U1andG-U2,above-groundcommercialportionsofcommerciallyviabletreesareassumedtoberemoved(seesections8.1.6.2,8.1.6.3and8.1.6.4),andthenconvertedtolong-livedwoodproductsbytheagentsofconversion(seesection8.1.6).Theportionsofmerchantabletreesthatdonothavecommercialvaluearelikewisedecayedlinearlyovertenyears(seesection8.1.3).ThesameprocessthatoccursinF-P2,F-U1,F-U2,G-U1andG-U2isassumedtooccurinbaselinetypeF-U3,butmerchantabletreesareconservativelyassumedtoberemovedfirstinthestratumwiththelowestcarbonstocksandlastinthestratumwiththehighestcarbonstocks(seesection8.1.1.5).Page56VM0009,Version3.0SectoralScope14Thebaselinescenarioforabove-groundmerchantabletreesisdirectlyrelatedtotheBEM(seesection8.1.1),whichpredictstheemissionsfromconversionanddegradationovertime,thedecayofwoodproductsovertime(seesection8.1.6),anddecayofslash(seesection8.1.3).Inallcases,itispossiblethatabove-groundmerchantabletreebiomasswillexistaftertheagentsofconversionhaveactedupontheforestornativegrassland.Thisresidualbiomassmustbedeterminedusingpermanentplotmeasurementsintheproxyarea(seesection6.4),asprescribedinAppendixB.Theproportionofabove-groundmerchantabletreesthatisconvertedtolong-livedwoodproductsisaddressedunderthescenarioforwoodproducts(seesection6.5.8).6.5.3BaselineScenarioforAGOTandAGNTInbaselinetypesF-P1.a,F-P1.b,F-P2,F-U1,F-U2,F-U3,G-P2,G-U1andG-U2,above-groundportionsoftreesthatarenotcommerciallyviable(ie,othertreesthatarenotmerchantable)andabove-groundnon-treebiomassareassumedtobeimmediatelyburnedduringclearingofthelandorconvertedtofuelwoodandburned(seesection8.1.1).ThesameprocessisassumedtooccurinbaselinetypeF-U3whereAGOTandAGNTareconservativelyassumedtobeconvertedtoanemissionfirstinthestratumwiththelowestcarbonstocksandlastinthestratumwiththehighestcarbonstocks(seesection8.1.1.5).Thebaselinescenarioforabove-groundothertreesandnon-treesischaracterizedbytheBEM.Inallcases,itispossiblethatAGOTandAGNTbiomasswillexistaftertheagentsofconversionhaveactedupontheforest.Thisresidualbiomassmustbedeterminedusingpermanentplotmeasurementsintheproxyarea(seesection6.4),asprescribedinAppendixB.6.5.4BaselineScenarioforBGMT,BGOT,andBGNTTheonlybelow-groundportionsoftreesandotherbelow-groundbiomassaffectedinduringcommercialactivityinF-P1.aandF-P1.bareconservativelyassumedtobethatofmerchantabletreeskilledbylogging.Thisbelow-groundbiomassisdecayedovertenyears(seesection8.1.4).Afterthecompletionofcommercialactivity,below-groundbiomassisassumedtoberemovedortodecayovertimeinthesoilaslandisdeforestedandconvertedtoitsendlanduse.InbaselinetypesF-P2,F-U1,F-U2,F-U3,G-P2,G-U1andG-U2,below-groundbiomassisassumedtobepartiallyremovedortobegindecayatthetimeofconversion(seesection8.1.4).Below-groundbiomassinTypeF-U3isconservativelyassumedtobepartiallyremovedfirstinthestratumwiththelowestcarbonstocksandlastinthestratumwiththehighestcarbonstocks(seesection6.4).Thebaselinescenarioforbelow-groundbiomassisdirectlyrelatedtothebaselineemissionsmodel.Itisassumedthatbelow-groundbiomassisnotconvertedtolong-livedwoodproducts.Page57VM0009,Version3.0SectoralScope146.5.5BaselineScenarioforSDPriortodeforestation,standingdeadwoodisassumedtobeinsignificantlyimpactedbycommercialagentsinbaselinetypesF-P1.aandF-P1.b.Followingcompletionofcommercialactivity,themassofstandingdeadwoodnotobservedintheproxyarea(seesection6.4),ascomparedtotheproject,isassumedtoberemoved,burnedorconvertedtofuelwoodbysecondaryagents.LikewiseinbaselinetypesF-P2,F-U1,F-U2,F-U3,G-P2,G-U1andG-U2,thedifferencebetweenstandingdeadwoodstocksintheprojectandtheproxyareaisassumedtobeimmediatelyremoved,burnedorconvertedtofuelwood.ThesameprocessisassumedtooccurinbaselinetypeF-U3,thoughstandingdeadwoodisconservativelyassumedtoberemovedfirstinthestratumwiththelowestcarbonstocksandlastinthestratumwiththehighestcarbonstocks(seesection8.1.1.5).ThebaselinescenarioforstandingdeadwoodisdirectlyrelatedtotheBEM,whichpredictsemissionsfromdegradationanddeforestationovertime.Inallcases,itispossiblethatstandingdeadwoodwillexistaftertheagentsofconversionhaveactedupontheforest.Thisresidualbiomassmustbedeterminedusingpermanentplotmeasurementsintheproxyarea(seesection6.4),asprescribedinAppendixB.Itisassumedthatstandingdeadwoodisnotconvertedtolong-livedwoodproducts.6.5.6BaselineScenarioforLDLyingdeadwoodisassumedtobeimpactedonlyslightlybycommercialagentsinbaselinetypesF-P1.aandF-P1.b.Followingcompletionofcommercialactivity,thedifferenceinlyingdeadwoodstocksbetweentheprojectandproxyareaisassumedtoberemoved(seesection6.4),burnedorconvertedtofuelwoodbysecondaryagents.InbaselinetypesF-P2,F-U1,F-U2,F-U3,G-P2,G-U1andG-U2,thedifferenceinlyingdeadwoodstocksbetweentheprojectandproxyareaisassumedtoberemoved,burnedorconvertedtofuelwoodbeginningimmediately.InbaselinetypeU3,lyingdeadwoodisconservativelyassumedtoberemovedfirstinthestratumwiththelowestcarbonstocksandlastinthestratumwiththehighestcarbonstocks.Thebaselinescenarioforlyingdeadwoodisdirectlyrelatedtothebaselineemissionsmodel,whichpredictsemissionsfromdegradation,deforestationandconversionovertime.Inallcases,itispossiblethatlyingdeadwoodwillexistaftertheagentsofconversionhaveactedupontheforest.Thisresidualbiomassmustbedeterminedusingpermanentplotmeasurementsintheproxyarea(seesection6.4),asprescribedinAppendixB.Itisassumedthatlyingdeadwoodisnotconvertedtolong-livedwoodproducts.Page58VM0009,Version3.0SectoralScope146.5.7BaselineScenarioforSOCSoilisassumedtoloseitsorganiccarbonovertimeasaresultoflandconversiontoagriculture(E.Davidson&Ackerman,1993).Thislossisassumedtofollownotonlyconversiontoagriculture,butanynon-forestendstatewithlowersoilcarbonstocksthantheprojectarea.Thetotallossisestablishedbymeasurementsintheproxyarea(seesection6.4),whiletherateisdeterminedusingoneofthreeoptionsgiveninsection6.15.CommercialagentsinbaselinetypesF-P1.aandF-P1.baccountforonlyslightsoilcarbonlossbecausetheydegradetheareabutdonotdeforestit.Assecondaryagentssubsequentlyactonandultimatelydeforesttheareasoilcarbonisassumedtoeventuallyreachequilibriumasdeterminedbymeasurementswithintheproxyarea.InbaselinetypesF-P2,F-U1,F-U2,F-U3,G-P2,G-U1andG-U2itisassumedthatsoilcarbonwilldepletetotheSOCmeasuredintheproxyareaafteralongperiodoftime(seesections6.4and8.1.2.1).ThebaselinescenarioforsoilcarbonischaracterizedbytheSEM(seesections8.1.2.1,8.1.2.2and8.1.2.3),whichpredictstheSOCemissionsfromconversionovertime(seesectionA.2foradescriptionofthemodel).Residualsoilcarbonmustbedeterminedusingpermanentplotmeasurementsintheproxyarea(seesection6.4),asprescribedinAppendixB.6.5.8BaselineScenarioforWPBiomassremaininginwoodproductsisassumedtoberestrictedtoAGMTbiomass(seesections8.1.6.2,8.1.6.3and8.1.6.4).Theproportionofbiomassremaininginwoodproductsfollowstheprocedureinsection8.1.6andAppendixC.6.6TheBaselineEmissionsModelsThissectionmustbeappliedseparatelyforeachidentifiedprojectaccountingarea.ThebaselineemissionsmodelscharacterizethebaselinescenarioandincludetheBEMandtheSEMforaparticularprojectaccountingarea.TheBEMpredictscumulativeemissionsfrombiomassasaresultofdegradation,deforestationandconversionwhiletheSEMpredictscumulativeemissionsfromSOCasaresultofconversion.TheBEMforbaselinetypesF-P1.aandF-P1.bisgivenby[F.2]andincludesalinearcomponentforemissionsfromplannedcommercialharvestandalogisticcomponentforemissionsfromdegradation.TheBEMsfortheotherbaselinetypesaregivenby[F.3],[F.4]and[F.5].Theoreticalbackgroundonthelogisticnatureofdegradation,deforestationandconversionarepresentedinAppendixA.Thelogisticnatureofecosystemconversionisjustifiedusingestablishedresourceeconomictheory.Page59VM0009,Version3.0SectoralScope14TheSEMisgivenby[F.6],[F.7]and[F.8];itisalsobasedonalogisticmodelofecosystemconversion.ItassumesthatSOCbeginstodecayintheprojectaccountingareawhenitisclearedfromforestornativegrassland.Thebaselineemissionsmodelsmustbeparameterizedintermsofdaysrelativetotheprojectstartdate(seesection6.7.1fordiscussionofdataresolution).ThemodelspredictbaselineemissionsastCO2e.Theseunifiedmodelsdramaticallysimplifybaselineaccountingrelativetootherapproaches,asallthatisrequiredistodeterminethebaselinetypeandselectparametersbasedonTable6insection6.7.6.7ParameterizingtheBaselineEmissionsModelsThissectionmustbeappliedseparatelyforeachidentifiedprojectaccountingarea.UseTable6toidentifyparameterstothebaselineemissionsmodels.Projectproponentsshouldfirstdeterminethebaselinetypepersection6.3.Allparametersaresetatthetimeofprojectvalidationorbaselinereevaluation.Notethatparameterswithsuperscript[𝑚𝑚]aredeterminedforeachmonitoringperiodandarespecifiedinsection9.Figure4A:ExampleofBEMforBaselineTypesF-P1.aandF-P1.bConversionoccursatalinearratefromthetimeofarrivaloftheprimaryagents(tPA)untilthetimeofarrivalofthesecondaryagents(tSA),afterwhichconversionfollowsalogisticcurve.Actualcurvesforeachprojectmayvary.%ConvertedTimeBEMTypeF-P1Page60VM0009,Version3.0SectoralScope14Figure4B:ExampleofBiomassEissionsModelforBaselinetypesF-P2andG-P2.Conversionfollowsasteeplogisticcurve,reflectingtherapidconversionratesofbaselinetypesF-P2andG-P2.Actualcurvesforeachprojectmayvary.Figure4C:ExampleofBEMforBaselineTypesF-U1andG-U1%ConvertedTimeBEMTypesF-P2andG-P2%ConvertedTimeBEMTypesF-U1andG-U1Page61VM0009,Version3.0SectoralScope14Conversionfollowsalogisticcurve.NotethattheBEMforF-U1andG-U1arerescaledin[F.5]soestimatedbaselineemissionsstartatzeroasoftheprojectstartdate.Actualcurvesforeachprojectmayvary.Figure4D:ExampleofBEMforBaselineTypesF-U2,F-U3,andG-U2Conversionfollowsalogisticcurve.Actualcurvesforeachprojectmayvary.%ConvertedTimeBEMTypesF-U2,F-U3,andG-U2Page62VM0009,Version3.0SectoralScope14Table5:SelectionofConversionParametersbyBaselineTypeParameterExplanationSectionF-P1F-P2F-U1F-U2F-U3G-P2G-U1G-U2𝛂𝛂Averageeffectsoftimeandothercovariatesondegradation,deforestationandconversion(conversionparameters)6.8𝛃𝛃Effectoftimeondegradation,deforestationandconversion(conversionparameters)6.8𝛉𝛉Effectofcovariatesondegradation,deforestationandconversion(conversionparameters)6.8𝐭𝐭𝐏𝐏𝐏𝐏𝐏𝐏Timeofprojectactivityinstancestartdaterelativetoprojectstartdateforaprojectactivityinstanceinagroupedproject(days)6.9𝐭𝐭𝐒𝐒𝐒𝐒Arrivaltimeofsecondaryagentsafterstartofcommerciallogging(days)6.10𝐭𝐭𝐏𝐏𝐏𝐏Timepriortotheprojectstartdatewhentheprimaryagentbegancommercialloggingintheprojectaccountingarea(daysrelativetotheprojectstartdate,negative)6.11𝐱𝐱𝟎𝟎Covariatesasoftheprojectstartdate.6.12𝐱𝐱𝐏𝐏𝐏𝐏𝐏𝐏Covariatesasoftheprojectactivityinstancestartdateforaprojectactivityinstanceinagroupedproject(days)6.13𝐦𝐦Commercialdegradationperyear(tCO2e/yr)6.14𝛄𝛄Timeshiftfrombeginningofhistoricreferenceperiodtoprojectstartdate(daysrelativetoprojectstartdate)6.15(ifincl.soil)(ifincl.soil)𝐪𝐪Timeshiftbetweenstartofdegradationandconversion(days)6.16Page63VM0009,Version3.0SectoralScope14𝐫𝐫𝐔𝐔Convertedareaorthreatenedperimeterintheprojectareaattheprojectstartdate(hectares)6.17+indicatesthatvaluemustbeconservativelysettozerounlessjustified;indicatesbothF-P1.aandF-P1.b)Page64VM0009,Version3.0SectoralScope146.7.1ResolutionofParameterValuesInordertoaidmodeling,wheneverpossible,timeisparameterizedintermsofdaysinthismethodology.Monitoringandmeasurementneednothavethatprecision.Forexample,iftheprecisionofthedataavailablefor𝑚𝑚isonamonthlybasis,theconversionshouldsimplybemadefrommonthstodays.Itisalwaysconservativetousealargernumberfortime(eg,toroundupwhenconvertingunitsoftime).6.8DeterminingHistoricalConversion(𝜶𝜶,𝜷𝜷and𝜽𝜽)Thissectionistobeappliedseparatelyforeachidentifiedprojectaccountingarea.Areferenceareaandhistoricreferenceperiodareusedtofind𝛼𝛼,𝛽𝛽and𝜃𝜃,theparametersthatareusedtodepictthehistoricpatternofecosystemconversiontobeappliedtotheprojectaccountingareainthebaselinescenario.Thereferenceareaisusedtodeterminethelandscapepatternofconversionwhilethereferenceperiodisusedtodeterminethechangeinthecumulativeproportionofconversionovertime.Theparameter𝛽𝛽istheeffectoftimeonthecumulativeproportionwhile𝜃𝜃,avector,istheeffectofcertaincovariatesonthecumulativeproportion.Theparameter𝛼𝛼isrelatedtothecombinedeffectsoftheotherparametersatthestartofthehistoricreferenceperiod.Thismethodologydoesnotspecifyafixedlengthforthehistoricreferenceperiod.Instead,thereferenceperiodisdefinedbytheavailabilityofhistoricimagesofthereferenceareaandtheoccurrenceofimportantpasteventsrelated.Specificrequirementsforthereferenceareaandhistoricreferenceperiodaregiveninsections6.8.1and6.8.2.6.8.1DelineatingReferenceAreasThereferenceareaisdefineddifferentlyforbaselinetypesF-P1.a,F-P1.b,F-P2,F-U1,F-U2,F-U3,G-P2,G-U1andG-U2.Whilethereferenceareaisdefineddifferentlyforthebaselinetypesmentioned,thereferenceareaselectioncriteriaoutlinedbelowmustbeappliedtoallbaselinetypes.Areferenceareamustbedelineatedforeachprojectaccountingarea.Referenceareasmayoverlap.6.8.1.1ReferenceAreaSelectionRequirementsThereferenceareamustaddressthefollowingcriteriainordertoensurethattheagentsanddriversofconversionaresimilartothoseoftheprojectaccountingarea,aswellastoprovethatthoseagentsperformedsimilarlyinthereferenceareatothewaytheywouldhaveperformedintheprojectaccountingareaunderthebaselinescenario.Page65VM0009,Version3.0SectoralScope141.Thelocationandsizeofthereferencearearelativetotheprojectaccountingarea:a.Apairofmapsshowingtheboundariesandsizeofthereferenceareaandtheprojectaccountingarea,includinganindicationoftheirlocationsrelativetoeachother.b.Writtenjustificationfortheselectionofthelocationofthereferencearea.2.Adescriptionofthedriversofconversion,includingthefollowing,relativetotheprojectarea:a.Writtendescriptionofthesocio-economicconditionsinthereferenceareaandprojectaccountingareaincludingthefollowingdatawhereavailable:i.Censusdatadepictingrelevantdemographicsandsocioeconomicconditionsii.PRAdataiii.Economicstudiesiv.Mapsdepictingdemographicdataandsocio-economicconditionsb.Writtendescriptionoftheculturalconditions,suchashistoricalevents,culturalshifts,migrationpatterns,tribaltraitsandcharacteristics,andcurrentculturalpatternsincludingthefollowingdatawhereavailable:i.PRAdataii.Publicationsrelevanttotheculturalconditionsintheareaiii.Mapsdepictingculturaldata3.Thelocation(s)oftheagentsofconversionrelativetotheprojectaccountingareaandsurroundingregionincludingthefollowing:a.Apairedcomparisonofmapsofthereferenceareaandprojectaccountingarea,includinglocationsofsettlementsorotherpopulationcenters.Forsubsequentuseindeterminingthemobilitiesoftheagentsofconversion.4.Themobilitiesoftheagentsofconversionrelativetotheprojectaccountingarea,includingthefollowing:a.Writtendescriptionofthemobilityofallprimaryandsecondaryagentsintheprojectaccountingareaandreferencearea.Acceptabledatasourcesshouldbeusedtodemonstratemobility,includinggeographicand/oranthropogenicfactorsthatmayinfluencetheirmovementoraccess.5.Landscapeconfigurationofthereferenceareaandtheprojectaccountingarea,includingallofthefollowingfactors:a.Apairedcomparisonofmapsofthereferenceareaandprojectaccountingarea,whichmustincludethefollowingcriteria:i.Topographicconstraintstoconversion(slope,aspect,elevation);Page66VM0009,Version3.0SectoralScope14ii.Landuseand/orlandcover;iii.Soilmap(ifavailable)orothersoilinformation;iv.Applicableinfrastructure(eg,waterways,roads,railroad,airports,provisionofelectricity,andotheraccesspoints);v.Distancetoimportantmarkets;andvi.Ownership/tenureboundariesthatinfluenceconversion(eg,governmentholdings,privateholdingsandreserves).b.Writtenjustificationofsimilaritiesbetweentheprojectandreferenceareausingacceptabledatasources.Foreachreferenceareaselectioncriteriasetoutabove,acceptabledatasourcesmayincludeanyoffollowingverifiableformsofevidence:•Mapswithunderlyingdatafromofficialorcommonlyacceptedsources(eg,UN/FAO,NationalorJurisdictionalgovernment,WRI,IPCC,etc.);•Aparticipatoryruralappraisal(PRA)orothersuchlocallyapplicablesurvey;•Publishedand/orrefereedliteraturesources;or•Expertknowledgeoriginatingfromlocalorgenerallyacceptedsources.•Documentedobservationsfromthereferenceareanotincludedinothersurveys.PDRequirements:DelineationoftheReferenceAreaforPlannedandUnplannedTypesTheprojectdescriptionmustincludethefollowinginformationwithrespecttoeachreferencearea:PDR.40Amapofthedelineatedboundaries,demonstratingthatthereferenceareawasheldbytheidentifiedbaselineagentoragentsanddoesnotincludetheprojectarea.PDR.41Resultsofaspatialanalysistodemonstratethereferenceareahadasmuchforestornativegrasslandastheprojectaccountingareaatsomepointintimeduringthehistoricreferenceperiod.PDR.42Evidencethatthemanagementpracticesofthebaselineagentinthereferenceareaaresimilartothosethatwouldhavebeenappliedtotheprojectaccountingareaorareasinthebaseline.PDR.43Adescriptionoftherationaleforselectionofreferenceareaboundariesrelativetotherespectiveprojectaccountingarea.Page67VM0009,Version3.0SectoralScope146.8.1.2BaselineTypesF-P1.a,F-P1.b,F-P2andG-P2Thereferenceareaisdefinedbywhatwouldhavehappenedintheprojectaccountingareainaplanneddeforestationscenario(forforest)orplannedconversionscenario(fornativegrassland).WherethespecificprimaryagentofconversioncanbeidentifiedforbaselinetypesF-P2andG-P2,thereferenceareaisdefinedbyanareaandforaperiodoftimecontrolledbythatsamespecificprimaryagentofconversion.Wherethespecificprimaryagentofconversioncannotbeidentified,thereferenceareaisdefinedbyanareaandforaperiodoftimecontrolledbytheclassofagentsthatcontainstheprimaryagent.Forexample,ifthereislogginginoraroundtheprojectareaandthecompanydoingthisloggingisidentifiable,thiscompanywouldbeconsideredthespecificprimaryagentofconversion.However,iftheidentityofthisloggingcompanyisunknown,thentheprimaryagentofconversionwouldbeconsideredapartofaclassofagentscarryingoutloggingoperations.Allagentsinaclasssharethesamedriversofconversion.Thereferenceareamaybelandholdingsoftheagentorareasdirectlyaffectedbytheagent.Thereferenceperiodmaybeginwhentheagentacquiredaccesstothereferenceareaorwhenthelandmanagementobjectivesforthereferenceareachanged.AsopposedtobaselinetypesF-P2andfG-P2(forwhichthereexistsonlyasingleagentofconversion),wherebaselinetypesF-P1.aorF-P1.bareselected,thereferenceareamustbeappropriateforthespecificprimaryagent(orclassofprimaryagentwherethespecificprimaryagentcannotbeidentified)andthespecificsecondaryagent(orclassofsecondaryagentswherethespecificsecondaryagentcannotbeidentified)ofdeforestation.Theprojectproponentmustidentifythereferenceareaaslandholdingsofthespecificagentsofconversionorofanagentintheclassofagents.Thereferenceareamusthaveasmuchforestastheforestprojectaccountingareaatsomepointintimeduringthehistoricreferenceperiodifthebaselinecovertypeisforest.Or,thereferenceareamusthaveasmuchnativegrasslandasthegrasslandprojectaccountingareaatsomepointintimeduringthehistoricreferenceperiodifthebaselinecovertypeisnativegrassland.Ifareferenceareabasedonasingleagentcannotbelocatedtomeetthisrequirement,landholdingsfrommultipleagentsintheclassofagentsmaybecombinedtomeetthisrequirement.Theforestornativegrasslandmanagementpracticesusedbytheagentinreferenceareamustbesimilartothatofthelikelyforestornativegrasslandmanagementpracticesappliedtotheprojectaccountingareainthebaselinescenario.Thereferenceareamustnotincludetheprojectareaandmustnotbealteredduringthehistoricreferenceperiod.PDR.44ThedocumentationrequiredinthereferenceareaselectionrequirementsthattheselectedreferenceareameetstheReferenceAreaSelectionRequirements.Page68VM0009,Version3.0SectoralScope14PDRequirements:DefiningtheReferenceAreaforPlannedBaselineTypesTheprojectdescriptionmustincludethefollowingwithrespecttothereferencearea:PDR.45EvidencethatsecondaryagentshavebeenconsideredinthedelineationofthereferenceareaforbaselinetypesF-P1.a,F-P1.b.6.8.1.3BaselineTypesF-U1,F-U2,F-U3,G-U1andG-U2Thereferenceareamustbeinthesamegeneralregionastheprojectarea,butnotnecessarilyadjacenttotheprojectarea.Atsomepointintimeduringthehistoricreferenceperiod,thereferenceareamustcontainasmuchforestedarea(forF-U1,F-U2andF-U3)ornativegrassland(forG-U1andG-U2)astheprojectaccountingarea.Thereferenceareamustnotincludetheprojectareaandmustnotbealteredduringthehistoricreferenceperiod.Theboundariesofthereferenceareamustincludeoneormoreofthefollowing:•Environmental,naturalorpoliticalboundaries.•Majortransportationinfrastructuresuchashighwaysorrailroads.•Landownership/tenureboundaries.•Latitudinalorlongitudinaldegreeboundaries.ThereferenceareamustbedelineatedpertheReferenceAreaSelectionRequirements(section6.8.1.1).6.8.2DefiningtheHistoricReferencePeriodThereferenceperiodisdefineddifferentlyforbaselinetypesF-P1.a,F-P1.b,F-P2,F-U1,F-U2,F-U3,G-P2,G-U1andG-U2.Areferenceperiodmustbedelineatedforeachprojectaccountingarea.Referenceperiodsmustnotoverlapwherereferenceareasoverlap.6.8.2.1BaselineTypesF-P1.a,F-P1.b,F-P2andG-P2Ifthespecificagentofconversioncanbeidentified,thereferenceperiodmustbeestablishedwhentheagentacquiredcontrolofthereferenceareaorwhenthelandmanagementpracticesemployedinthereferenceareachanged.Wherelandholdingsfrommorethanoneagentinaclassofagentsareusedtodefinethereferencearea,thereferenceperiodmustbeestablishedbytheagentthatfirstacquiredcontrolofthelandholdingorwhenthelandmanagementpracticesemployedinthelandholdingchanged.Controlcanbeobtainedbytheestablishmentoftitlewhilelandmanagementcanchangeasaresultofachangeinlaws,accesstomarketsforwoodproductsoraccesstonewtechnologies,forexample.Page69VM0009,Version3.0SectoralScope14PDRequirements:DefiningtheReferencePeriodforPlannedTypesTheprojectdescriptionmustincludethefollowingwithrespecttothereferenceperiod:PDR.46Establishedreferenceperiodboundaries.PDR.47Thedatewhentheagentacquiredcontrolofthereferenceareaorwhenthelandmanagementpracticesemployedinthereferenceareachanged.6.8.2.2BaselineTypesF-U1,F-U2,F-U3,G-U1andG-U2Ifthespecificagentofconversioncannotbeidentified,thereferenceperiodmustbeestablishedbyimportanthistoriceventsasidentifiedbytheinformationobtainedfromexpertknowledgeortheparticipatoryruralappraisalandcorrespondinganalysisofagentsanddriversofconversion.Theseeventsincludethefollowing:•Thearrivaltimeofspecificforeignagentsofconversion,ifany;•Thetimeswhenthedriversofconversionbecameapparent,ifany;and•Thetimesofsignificanteconomicgrowthordecline.Historicimageryofthereferenceareamustbeacquiredfortimesbeforeandaftertheseeventsandthisimagerymustbeusedtoparameterizethebaselineemissionsmodelspersection6.8.3.Ifnoimportanteventsareidentified,thenthereferenceperiodshouldbeestablishedbythetimesofavailablehistoricimagesofthereferencearea.PDRequirements:DefiningtheReferencePeriodforUnplannedTypesTheprojectdescriptionmustincludethefollowingwithrespecttothereferenceperiod:PDR.48Establishedreferenceperiodboundaries.PDR.49Alistofavailablehistoricimageryforthereferencearea.PDR.50Atimelineofimportanteventsastheyrelatetotheagentsanddriversofconversion.PDR.51Narrativerationalefortheselectionofthereferenceperiod.6.8.3AnalyzingEcosystemConversionintheReferenceAreaThebaselinescenarioischaracterizedbyobservingecosystemconversioninthereferenceareaassumingthesamewouldoccurintheprojectaccountingareaintheabsenceoftheprojectactivity.Theparameters𝛼𝛼,𝛽𝛽and𝜽𝜽areestimatedfromobservationsoflandcoverchangeinthePage70VM0009,Version3.0SectoralScope14referenceareaoverthereferenceperiodbasedonalogisticfunction(seeAppendixA).Onceestimated,theseparametersdepicttheshapeofthelogisticfunctionandthecumulativeemissionsthatwouldhaveoccurredatanypointintimeaftertheprojectstartdate.Toanalyzeecosystemconversionandestimate𝛼𝛼,𝛽𝛽and𝜽𝜽,historicalimagerymustbeacquiredandinterpretedforlandcover(seesection6.8.4).Interpretationisaccomplishedusingasetofpointsdistributedacrossthereferencearea(seesections6.8.5through6.8.7).Weightsarecomputedfrominterpretationpointstoaccountforcloudcontamination,coverageandtimedifferencesinimageacquisitiondates(seesection6.8.6).Measuresmustbetakentominimizeuncertaintyanduncertaintymustbeestimated(seesections6.8.9and6.8.10).Sections6.8.4through6.8.8illustratethisapproachusingafictitiousexample,assumingareferenceareaof10kmby10kmindimension(100km2)andaprojectstartdateofJanuary12011.Tofacilitatethisapproachtoanalyzingecosystemconversion,WildlifeWorksmaintainsafreeArcMapGISextensiontogenerateandautomatepointinterpretationandweighting.6.8.4SelectingHistoricalImageryEcosystemconversionissampledfromavailablehistoricalimageryofthereferenceareaoverthereferenceperiod.Theprojectproponentmusthave“doublecoverage”foratleast90%ofthereferenceareaovertheentirereferenceperiod(seeAppendixA).FulfillmentofthisrequirementcanbedemonstratedbyaligningadotgridofpointsoverthereferenceareausingaGIS.Then,foreachco-registeredimageinthesystem,thosegridpointsthatfalloverthecloud-free,visibleportionofeachimagearecopiedtoanewfile.Thisisdoneforallimagesandproducesthesamenumberofshapefilesasnumberofimages.Allderivedshapefilesarethenmergedtoformasinglefile.Oneoftheattributesforeachpointinthemergedfileshouldcontainacountofcorrespondingtimeperiodsonwhichitfalls.Forexample,ifoneparticulargridpointwasobservedtofallontothecloud-freeportionsofsiximages,thentheattributecountofthatpointinthemergedshapefilewouldbesix.Inthemergedfile,thosepointswithacountlessthantwoshouldbediscarded(hencetheremainingpointsinthemergedfilerepresenting"double-coverage").Thenumberofremainingpointsshouldcompriseatleast90%ofthetotalnumberofpointswithinthereferencearea.Theminimumspatialresolutionoftheimagerymustbe30m.Wherepossible,multi-spectralimageryshouldbeenhancedusingaTasseled-Captransformation,PrincipalComponentsAnalysis(PCA)orothersimilartransformationtofacilitatethedifferentiationofforestvegetationfromotherlandcovers.Toensurethattheselectedimageryisofadequatespatialresolutiontoallowfortheidentificationanddiscernmentbetweennatural,unconvertedstatusandconvertedstatus,theprojectproponentmustprovideevidence,byprovidingoneofthefollowingtotheVVB:1.Asetofgeo-referencedphotostakenonthegroundinareasthatrepresentbothunconvertedandconvertedlandcover.TheauditorshouldcheckthatthesephotosPage71VM0009,Version3.0SectoralScope14satisfytheburdenofproofthatadequateshape,textureandcontextisdiscernableinordertoidentifylandcoverstatechangebetweenunconvertedandconvertedstatus.2.High-resolutionimagerycoincidingwithbothunconvertedandconvertedareaswithinthereferencearea(s).ThisimageryshouldbeofsignificantlyhigherspatialresolutionincomparisontotheimageryusedforthecollectionofdatafortheBEM,andshouldonlybeusedtodeterminetheadequacyofthespatialresolutionofthedatatobeinterpreted.Accuracyandresolutionofthevalidationimageryshouldbeatthediscretionoftheauditor.Thedatesofhistoricimageryshouldbeplottedonalineplotandthisplotshouldbeinterpretedforstationarityinthetimeseriesofimagery(seeFigure4).Thisisnecessarytoensuretheestimatedtimecomponentsoftheimageweightsperequation[A.3]areunbiased.Thetimeseriesisstationaryiftheimagedatesaredistributed,onaverage,acrosstheentirehistoricreferenceperiod.Figure4:LinePlottoDemonstrateApproximateStationarityofHistoricalImagery.Alineplotofthetimeseriesofhistoricimagestovisuallyconfirmstationarity.Thetimeseriesisstationaryiftheimagesarewelldistributedthroughoutthereferenceperiod.Allimagerymustbespatiallyregisteredtothesamecoordinatesystemwithaccuracylessthan10%RootMean-SquaredError(RMSE)asmeasuredbytheerrorrelativetothepixeldiagonaloftheimagebeingevaluatedorrelativetotheabsolutedifferencebetweenthegreatesterrorandthesmallesterror,onaverageacrossallimages(Congalton,1991).Theaccuracyofspatialregistrationisassessedempirically;eachimageisrelativetoothercollocatedimagesoragroundcontrolpoint.Obliqueimageryshouldbeavoidedtomaintainaccuratespatialregistration.PDRequirements:HistoricImagerytoParameterize𝛼𝛼,𝛽𝛽and𝜃𝜃Theprojectdescriptionmustincludethefollowing:PDR.52Amapofthereferenceareashowingtheareaof"double-coverage".PDR.53Quantificationof"doublecoverage"(greaterthan90%).Page72VM0009,Version3.0SectoralScope14PDR.54Alineplotofthehistoricimagedatestoconfirmstationarity.PDR.55Evidencethatallimagepixelsarenotmorethan30mx30m.PDR.56Empiricalevidencethatimageryisregisteredtowithin10%RMSE,onaverage.6.8.5DeterminingSampleSizeSamplesizedeterminationisoptional,butaminimumsamplesizemaybeestimatedwithin+/-15%oftheestimatedproportionofconversioninthereferenceareaduringthehistoricreferenceperiod.Tooptionallydeterminesamplesize,apilotsampleofinterpretationpointsmaybedistributedacrossthereferenceareaeitherrandomlyorsystematicallyonagridtoestimatetheultimatesamplesizeusedtoestimate𝛼𝛼,𝛽𝛽and𝜽𝜽(foranexample,seeFigure5).Thepilotsampleshouldbelargeenoughtoobtainaroughestimateofthepopulationvariance.Dependingonthesizeofthereferenceareaandtheprevalenceofconversionduringthereferenceperiod,agoodminimumsamplesizeisapproximately300pointsinthereferencearea.Ifagridisused,thenitmustfeaturearandomorigin.Figure5:SystematicVersusRandomSamplingTypesofsamplepointsdistributedacrosstheexamplereferencearea:random(left)andsystematic(right).Forestornativegrasslandstate(forest/non-forestornativegrassland/anthropogenicconversion)isobservedateachinterpretationpointthatfallsonthecloud-freeportionofeachimage.VisuallyPage73VM0009,Version3.0SectoralScope14interpretallimagesateachpointandrecordforestornativegrasslandstate(0forforest/nativegrasslandor1fornon-forest/anthropogenicconversion)andtheimagedateinatable,onetableforeachpoint,forallpointsinthepilotsampleandallimages.Wheninterpretingapoint,useitscontexttodeterminethepresenceofforest/nativegrassland.Forexample,ifthepointfallsontoapixelanditisunclearwhetherthepixelisforested,butitisclearthatallsurroundingpixelsareagriculture,itscontextimpliesthatforestisabsentatthepoint.Foreachimage,recordthenumberofpointsthatfallonthecloud-freeportioninalist.Next,foreachpoint,sortitstablebyimagedatefromoldesttomost-recent(forexampleseeFigure6).Discardthosepointsforwhichthefirstconversionentryinthetableis1(forestornativegrasslandabsent);conversioncannotbeobservedwithoutinitiallyobservingforestornativegrassland.Eachrowineachtableforeachnon-discardedpointisnowanobservationasdefinedbyequation[F.11].Foreachrow,calculateanobservationweightusingequation[A.6]foreachstateobservationwhere#(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)isthenumberofrowsinthetableand#(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑡𝑡𝑖𝑖)isthenumberofpointsrecordedinthelistfortheimagewithitsimagedate.Figure6:TableofStateObservationsforaSamplePointintheReferenceAreaImageDateStateObservationWeight19/6/199200.3404523/10/199400.223633/13/199500.5436146/1/199800.6452659/22/199810.436367/15/200110.6235471/30/200310.1146983/9/200310.123391/29/200510.63760104/11/200710.3548Tableforanon-discardedxi,yisamplepointssortedbyimagedate.Next,foreachremainingtable–oneforeachnon-discardedpoint–aggregateitsrowsintoasinglemastertable.Foreachrowinthemastertable,normalizeitsweightbydividingeachweightbythesumofallweights,sothatalltheweightsaddtoone.Themastertablemaystillincludelocationsinthereferenceareathatdonotexperienceconversionduringthereferenceperiod.Page74VM0009,Version3.0SectoralScope14Themastertable,constructedfromthepilotsample,containsrowsthatcorrespondtoobservationsofforeststate,observationtimesandweights.Iftheexactdateoftheimageisknown,theexactdateshouldbeincludedinthemastertable(ifnotknownexactly,seeguidanceinsection6.7.1).AHorvitz-Thompsonestimatorofthestandarddeviationofconversionstate𝜎𝜎𝐸𝐸𝐸𝐸inthereferenceareaisgiveninequation[F.13]where𝑜𝑜𝑖𝑖correspondstoanobservedstate,𝑤𝑤𝑖𝑖correspondstoanormalizedweightforthe𝑖𝑖𝑡𝑡ℎrowandℐisthesetofallrowsinthemastertable.Theminimumsamplesize𝑚𝑚𝐷𝐷𝐷𝐷inthespaceofthereferencearearequiredforparameterizing𝛼𝛼,𝛽𝛽and𝜽𝜽towithin+/-15%onaverageisestimatedby[F.12].Thisisthenumberofsamplepointstobeplacedinthereferenceareatoparameterize𝛼𝛼,𝛽𝛽and𝜽𝜽.Thisnumberdiffersfrom𝑛𝑛𝐷𝐷𝐷𝐷whichrepresentsthetotalnumberofstateobservationsacrossbothtimeandspace.6.8.6SamplingConversionTheBEMisdesignedaroundtheconceptthatnaturalandconvertedland-usecategoriesaredifficult,andinsomecasesimpossible,todistinguishusingtraditionalwall-to-wall,pixel-basedremotesensingtechniques.Thisisbecausesuchtechniquesusepixel-by-pixelanalysisofspectralreflectancepropertiesalone,andoftenfailtodelineatetheland-usecategoriesrequiredtoaccuratelycalculateecosystemconversionrates(eg,nativegrasslandfromanthropogenicallyconvertedgrassland,etc.).Thatsaid,theBEMrequiresmanual,“heads-up”imageinterpretationofthesamplesetdescribedbelow,whichisoverlaidontheremotelysensedimagerycollectedasdescribedinSection6.8.4.Thisallowsfortheidentificationofland-usecategoriesusingshape,textureandcontextattributes,whichtypicallycanonlybecompletedbyhumananalystsengagedinmanualimageinterpretation.ItshouldbenotedthattheBEMdoesnotsupportautomated,pixel-by-pixelclassificationtechniques,andprojectproponentsshouldnotattempttoreplaceorsidestepmanualimageinterpretationwithanautomatedprocesssuchasamaximumlikelihoodornearestneighborclassifier,asthistendstointroducesignificanterrorsintothemodel.Samplingconversiontoparameterize𝛼𝛼,𝛽𝛽and𝜽𝜽issimilartotheprocedureforestimatingsamplesizeusingapilotsampleinsection6.8.5,exceptthatthesamplesizemustbeatleast𝑚𝑚�𝐷𝐷𝐷𝐷toachieve+/-15%averageprecisioninestimatedparameters.Theobservedstatevector𝒐𝒐,timevector𝒕𝒕andtheweightvector𝒘𝒘usedtofitthemodelcomprisecolumnsofthemastertable.PDRequirements:SamplingConversiontoParameterize𝛼𝛼,𝛽𝛽and𝜃𝜃Theprojectdescriptionmustincludethefollowing:PDR.57Thesamplesize.PDR.58Amapofthereferenceareashowingthesamplepointlocations.Page75VM0009,Version3.0SectoralScope146.8.7DiscardedSamplePointsWhensamplingecosystemconversioninthereferencearea,somesamplepointsmustbediscardedbecauseintheirinitialobservationstheywerealreadyinastateofconversionoragriculture.Conversioncannotbeobservedwithoutinitiallyobservingforestornativegrassland.Assuch,thesepointsmustnotbeconsideredwhenestimatingtheminimumsamplesize.Inthemastertable,anattributeshouldberetainedforallnon-discardedsamplepointssothatthesesamplepointscanbemappedbacktolocationsinthereferencearea.TheWildlifeWorksexporttotextfiletoolautomaticallydiscardssamplepointswhoseinitialobservationswereconverted,astheyareofnousetotheBEMmodel.6.8.8Parameterizing𝜶𝜶,𝜷𝜷and𝜽𝜽Thelogisticfunctiondefinedbyequation[A.4]isfitusingthesampledatadepictingpatternsofconversioninthereferenceareaaswellasconversiondataforthehistoricreferenceperiod.Thesampleconversiondataincludethestateobservationvector𝒐𝒐andthetimevector𝒕𝒕(seeAppendixA).Aplotofthesevectorsshowsthatlandcoverstatesarezerosandones(foranexample,seeFigure6).Thetimevectorisexpressedasthenumbersofdaysrelativetotheprojectstartdate.Ifthehistoricreferenceperiodoccursbeforetheprojectstartdate,thevaluesofthetimevectorwillbenegative.Uponbaselinereevaluation,somevalueswillbepositivebecauselandcoverstateisobservedaftertheprojectstartdateuptothetimeofbaselinereevaluation.Figure7:PlotofExampleStateObservationsOverTimePage76VM0009,Version3.0SectoralScope14Agraphofthestatevectorovertimefortheexamplereferenceareashowingonesandzeros.Covariatedataarecollectedforinterpretationpointinthereferencearea.Assuch,covariatedatamayneedtobeinterpolatedfromtheirsources(eg,censusdatathatmayonlybecollectedonceevery10years).Thesedataareusedtoestimatethelinearpredictorofthelogisticfunctionwhere𝜽𝜽istheparametervector(seeAppendixA).Inordertoavoidthepossibilityofperverseincentiveinmodelfitting,covariatedatamustoriginatefromthefollowingsources:•Governmentpublications.•Publicationsbyanindependentthirdparty.•Peerreviewedliterature.ThesesourcesmustbepubliclyavailablepercurrentVCSrequirements.TheparametersarefoundusingIRLSwithaninitialweightvector𝒘𝒘thatcorrectsforspatialandtemporalartifactsfromsamplinghistoricimagery(seeVenables&Ripley,2002forinformationonmodelfittingwithIRLS).Page77VM0009,Version3.0SectoralScope14Givenallpossiblecovariateparameters𝜽𝜽,selectthebestsubsetofcovariateparameters𝜽𝜽�usingAICasameasureoffit.ForinformationonmodelselectionseeDavidson(2003)andFreedman(2009).Thefitmodelmustbeplottedwithconversionstateovertimeandtheprojectstartdate(foranexampleseeFigure8).Figure8:GraphofanExampleLogisticFunctionDeterminedby𝛼𝛼,𝛽𝛽and𝜃𝜃.Agraphoftheestimatedlogisticfunctionovertimefortheexamplereferencearearelativetotheprojectstateattimezeroforaforestedbaselinetype.PDRequirements:Parameterizing𝛼𝛼,𝛽𝛽and𝜃𝜃Theprojectdescriptionmustincludethefollowing:PDR.59Thecovariatesthatwereconsideredandtheirdatasources.PDR.60Theparametersin𝜃𝜃thatwereevaluatedduringmodelselection.PDR.61Theparametersin𝜃𝜃�oftheselectedmodel.Page78VM0009,Version3.0SectoralScope14PDR.62Therationaleusedforselecting𝜃𝜃�includingcomparisonsofAIC.6.8.9MinimizingUncertaintyObservationerrormustbemitigatedasmuchaspossiblebydevelopingaprotocolfortheinterpretationoflandcoverstatefromremotely-sensedimagery.Trainingshouldideallybeprovidedtotheinterpreter(s).Observationdatamustbecheckedforinconsistencies.Forexample,observationsofforeststateovertimeatanyonepointinspaceprobablydonottransitionfromforesttonon-forest,andthenbacktoforestduringthereferenceperiod(foranexample,seeFigure9).Alistof"impossible"or"unlikely"forestornativegrasslandstatetransitionsmustbedeveloped,andeachpointthatmatchesthecriteriashouldbereexamined.Figure9:TableofStateObservationstoIdentifyPossibleErrors.ImageDateStateObservation19/6/1992023/10/1994033/13/1995046/1/1998059/22/1998167/15/2001171/30/2003083/9/2003191/29/20051104/11/20071Tableforan𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖samplepointfeaturingapotentialinterpretiveerroratimagedate1/2003.Arandomsubsetofsampledpointsmustbeinterpretedbyadifferentpersonthanthefirstpointinterpreter,andtheseobservationsmustbecheckedagainsttheobservationsmadebytheinterpreterorinterpretiveteammemberstoidentifyanysystematicmisinterpretation.Ifitisnotpossibletodeterminethecorrectstateforapoint,itisconservativetomarkthetransitiontoaconvertedstatetoalaterdateinthehistoricreferenceperiodwhenthattransitionisapparent.Ifdesirable,theconversiondateofapointorsetofpointsmaybedeterminedbyaskingpersonswithfirst-handknowledgeofthatconversiondate.Allsystematicerrorsmustbecorrected.Page79VM0009,Version3.0SectoralScope14PDRequirements:MinimizingUncertaintyinParameters𝛼𝛼�,𝛽𝛽̂and𝜃𝜃�Theprojectdescriptionmustincludethefollowing:PDR.63Aprotocolforinterpretinglandcoverstatefromimagery,whichmustincludeguidanceforinterpretingthefollowing:•Discerningconversionfeaturesusingshape,textureandcontextinthereferencearealandscape•Addressingseasonalvariationofvegetation(phenology)withinimagery•Identifyingandaddressingthecharacteristicsofspecificlandscapeconfigurations(ie,mosaicforest,grassland,etc.)PDR.64Theresultsofanindependentcheckoftheinterpretation.PDR.65Evidencethatsystematicerrors,ifany,fromtheindependentcheckoftheinterpretationwerecorrected.6.8.10EstimatingUncertaintyUncertaintyinestimatedparameters𝛼𝛼�,𝛽𝛽̂and𝜽𝜽�isestimatedusing[F.13].Thisisthestandarderrorofweightedpointobservationswherethe𝑖𝑖𝑡𝑡ℎobservationofforeststateis𝑜𝑜𝑖𝑖,multipliedbythecurrentestimatedbaselineemissionsintheprojectaccountingareaacrossallselectedcarbonpools(seesection8.1).PDRequirements:EstimatingUncertaintyinParameters𝛼𝛼�,𝛽𝛽̂and𝜃𝜃�Theprojectdescriptionmustincludethefollowing:PDR.66Theestimateduncertainty𝜎𝜎�𝐸𝐸𝐸𝐸from[F.13]andstatisticalsummariesfrommodelfittingsoftware,ifavailable.PDR.67Referencetouncertaintycalculations.6.9Determining𝒕𝒕𝑷𝑷𝑷𝑷𝑷𝑷Thissectionistobeappliedseparatelyforeachidentifiedprojectaccountingareawhentheprojectisagroupedproject.Theparameter𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃isthenumberofdaysaftertheprojectstartuntiltheprojectactivityinstancestartdatefortheprojectactivityinstanceassociatedwithaparticularprojectaccountingarea.Page80VM0009,Version3.0SectoralScope14MonitoringRequirements:Determining𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃Themonitoringreportmustincludethefollowingiftheprojectisagroupedproject:MR.7Foreachprojectactivityinstanceinthegroup,itsprojectactivityinstancestartdate.MR.8Foreachprojectaccountingarea,thevalueof𝑡𝑡̂𝑃𝑃𝑃𝑃𝑃𝑃.6.10Determining𝒕𝒕𝑺𝑺𝑺𝑺ThissectionistobeappliedseparatelyforeachidentifiedforestprojectaccountingareahavingabaselinetypeF-P1.aorF-P1.b.Theparameter𝑡𝑡𝑆𝑆𝑆𝑆isthenumberofdaysaftertheprimaryagentbeginscommerciallogginguntilwhenthesecondaryagentofdeforestationislikelytobegindegradingtheforestprojectaccountingareaunderthebaselinescenario.ThisparametercanbedeterminedfromtheresultsofthePRAorexpertknowledge.Inmanycasesoflegally-sanctionedcommerciallogging,itisthelengthoftheloggingperiodtoharvestthefirstregulatedharvestunit.Often,duetounsustainableharvestplans,corruption,orindifference,thelogginginfrastructuremaybeexploitedbysecondaryagentsinthecascadeofdegradation.Often,afterthecommerciallyviabletimberhasbeenremovedfromtheprimaryagent’sfirstharvestunit,theprimaryagentwillabandonthatareaandsecondaryagentswillentertofurtherdegradeandultimatelydeforestthearea.Page81VM0009,Version3.0SectoralScope14Figure10:CuttingCycleUnderaTypeF-P1.aProjectScenario.Whenunsustainableharvestoccurs,aftertheprimaryagentsabandonatimberharvestareatomovetoanotherarea(1to2inthefigureabove),secondaryagentswillmoveinandcontinuetodegradeanddeforestthatarea.Thelengthoftimebetweentheentryofprimaryagentstoaharvestareaandthearrivalofsecondaryagentsis𝑡𝑡𝑆𝑆𝑆𝑆.Inthecasewhentheparameteristhelengthofthefirstcuttingcycleandtheprimaryagent’sharvestplansfortheforestprojectaccountingareacannotbeobtained,thefirstobservedinstanceofdeforestationapparentlycausedbysecondaryagentscanbeusedasaconservativevaluefortheparameter(parameterizedintermsofdaysafterthestartofthehistoricreferenceperiod).Whenevaluatingpossiblevaluesforthisparameter,alargernumberisalwaysmoreconservativethanasmallernumber.Thisparametermustbegreaterthanorequaltozero.PDRequirements:Parameterizing𝑡𝑡𝑆𝑆𝑆𝑆Theprojectdescriptionmustincludethefollowing:PDR.68Theparameter𝑡𝑡̂𝑆𝑆𝑆𝑆asthenumberofdaysaftertheprimaryagentbeginscommerciallogginguntilwhenthesecondaryagentofdeforestationislikelytobegindegradingtheforestprojectaccountingarea.Page82VM0009,Version3.0SectoralScope14PDR.69Adescriptionofhow𝑡𝑡̂𝑆𝑆𝑆𝑆wasobtained.PDR.70Harvestplansfortheforestprojectaccountingareaunderthebaselinescenario,resultsfromthePRAoranalysisofthereferenceareatodeterminetheparameter.6.11Determining𝒕𝒕𝑷𝑷𝑷𝑷ThissectionistobeappliedseparatelyforeachidentifiedforestprojectaccountingareahavingabaselinetypeF-P1.aorF-P1.b.Theparameter𝑡𝑡𝑃𝑃𝑃𝑃isthenumberofdaysrelativetotheprojectstartdatewhentheprimaryagentbeganorwouldhavebegunlegally-sanctionedcommercialloggingintheforestprojectaccountingarea.Thiscanonlybeestablishedbyharvestplanspreparedfortheforestprojectaccountingareaorbypublicrecord.Inmostcases,theprimaryagentwouldhavestartedcommercialloggingintheforestprojectaccountingareaattheprojectstartdateandinthesecases,theparametershouldbesettozero.(ForbaselinetypeF-P2andG-P2,theparameterisalwayszero.)Inothercaseswhentheprimaryagenthasalreadystartedloggingasoftheprojectstartdate,theparameterwillbenegative(daysrelativetotheprojectstartdateattimezero).Inothercaseswhentheprimaryagentwouldhavestartedloggingaftertheprojectstartdate,theparameterwillbepositive.PDRequirements:Parameterizing𝑡𝑡𝑃𝑃𝑃𝑃Theprojectdescriptionmustincludethefollowing:PDR.71Theparameter𝑡𝑡̂𝑃𝑃𝑃𝑃asthenumberofdaysrelativetotheprojectstartdatewhentheprimaryagentbeganorwouldhavebegunlegally-sanctionedcommercialloggingintheforestprojectaccountingarea.PDR.72Adescriptionofhow𝑡𝑡̂𝑃𝑃𝑃𝑃wasobtained.PDR.73Harvestplansfortheforestprojectaccountingareaunderthebaselinescenarioorpublicrecordstosupportthedeterminationoftheparameter.6.12Determining𝒙𝒙𝟎𝟎Thissectionistobeappliedseparatelyforeachidentifiedprojectaccountingarea.Theparameter𝒙𝒙0isavectorofcovariatedataasoftheprojectstartdate.Seesection6.8.8andAppendixAformoreinformationoncovariates.Page83VM0009,Version3.0SectoralScope14Ifcovariatevaluesareusedtopredictarateofconversionhigherthantherateobservedinthereferenceareaduringthehistoricreferenceperiod,theprojectproponentmustprovideclearevidencetosubstantiatetheuseofthecovariatedata.PDRequirements:Determining𝑥𝑥0Ifcovariatestoconversionareused,theprojectdescriptionmustincludethefollowing:PDR.74Atableofcovariatevaluesasoftheprojectstartdateandadescriptionofhowthevaluesweredeterminedincludinganyinterpolationorextrapolationmethods.Ifcovariatesareusedtopredictarateofconversionhigherthantherateofobservedinthereferenceareaduringthehistoricreferenceperiod,theprojectdescriptionmustincludethefollowing:PDR.75Justificationforwhytherateofconversionpredictedbycovariatesexceedstherateindicatedfromhistoricalconversionpatterns.6.13Determining𝒙𝒙𝑷𝑷𝑷𝑷𝑷𝑷Thissectionistobeappliedseparatelyforeachidentifiedprojectaccountingareawhentheupedproject.Theparameter𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃isavectorofcovariatedataasoftheprojectactivityinstancestartdatefortheprojectactivityinstanceassociatedwithaparticularprojectaccountingarea.Seesection6.8.8andAppendixAformoreinformationoncovariates.MonitoringRequirements:Determining𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃Themonitoringreportmustincludethefollowingiftheprojectisagroupedproject:MR.9Atableofcovariatevaluesasoftheprojectactivityinstancestartdatesandadescriptionofhowthevaluesweredeterminedincludinganyinterpolationorextrapolationmethods.6.14Determining𝒎𝒎ThissectionistobeappliedseparatelyforeachidentifiedforestprojectaccountingareahavingabaselinetypeF-P1.aorF-P1.b.Theparameter𝑚𝑚istheaveragecarboninmerchantabletreescuteachyearasaresultoflegally-sanctionedcommerciallogging.Itisnotthevolumeofharvestedwood.IfAGMTandPage84VM0009,Version3.0SectoralScope14BGMTareselectedcarbonpoolsthenitmustincludecarboninboththeabove-groundandbelow-groundportionsofmerchantabletreescuteachyear.IfonlyAGMTisselectedthenitneedonlyincludetheabove-groundportion.Theprojectproponentmustestimate𝑚𝑚usingtimberharvestplans,ifavailable,whichapplytotheforestprojectaccountingareaandweredevelopedbythespecificagentofdeforestationunderthebaselinescenario.Intheabsenceoftimberharvestplans,𝑚𝑚maybeconservativelydeterminedfromthemeasurementofcarbonstocksinmerchantabletreesintheforestprojectaccountingareausingequation[F.1]where𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚=0]and𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚=0]aredeterminedpriortothefirstmonitoringeventoratthefirstmonitoringevent,and𝑡𝑡𝑚𝑚isthenumberofdaysintheprojectlifetimeorthelengthoftimetheprimaryagentwouldhaveharvestedtheentiremerchantabletreesinthebaselinescenario.IfBGMTisnotaselectedpool,then𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚=0]canbesettozero.If𝑡𝑡𝑚𝑚istheprojectlifetime,thismethodcanonlybeusediftheprojectenddateisafterthedateonwhichtheprimaryagentwouldhaveconcludedlegally-sanctionedcommercialloggingintheforestprojectaccountingareaunderthebaselinescenario.Regardlessofwhichmethodisusedtoestimate𝑚𝑚,timberharvestsinthebaselinescenariomustcomplywiththelegalmaximumallowablecutaspublishedbytherelevantnationalauthorityofthecountrywheretheprojectislocated.Thisparametermustbegreaterthanzero.Thismethodologydeliberatelyomitsprescribingaccountingforre-growthandresidualdamageinordertoconservativelysimplifyaccounting.Incommerciallogging,theemissionsfromresidualdamagewillexceedcarbonsequestrationfromre-growth.PDRequirements:Parameterizing𝑚𝑚Theprojectdescriptionmustincludethefollowing:PDR.76Theparameter𝑚𝑚�astheaveragecarboninmerchantabletreescuteachyearasaresultoflegally-sanctionedcommerciallogging.PDR.77Documentationofhow𝑚𝑚wasdetermined.Thismayincludeananalysisofcarbonstocksinmerchantabletreesintheforestprojectaccountingarea,timberharvestplansfortheprojectaccountingareaorreferencetoapublicationcontainingthemaximumallowablecutapplicabletotheprojectarea.Theparametermustbegreaterthanzero.6.15Determining𝜸𝜸Thissectionistobeappliedseparatelyforeachidentifiedprojectaccountingareahavingaplannedbaselinetype(F-P1.a,F-P1.b,F-P2orG-P2).Theparameter𝛾𝛾isthenumberofdaysbetweenthebeginningofthehistoricalreferenceperiodandtheprojectstartdate.Page85VM0009,Version3.0SectoralScope14PDRequirements:Determining𝛾𝛾Theprojectdescriptionmustincludethefollowing:PDR.78Theprojectshiftparameter𝛾𝛾asthenumberofdaysbetweenthebeginningofthehistoricalreferenceperiodandtheprojectstartdate.6.16Determining𝒒𝒒Thissectionistobeappliedseparatelyforeachidentifiedprojectaccountingarea.Theparameter𝑞𝑞isthenumberofdaysbetweentheonsetofdegradationandthebeginningofconversion.Thisparametercanbedeterminedbyexpertknowledge,resultsfromthePRAorreportsfrompeer-reviewedliterature.Itisalwaysconservativetosetthisparameterequaltozeroandanyothervaluemustbejustified.Whenevaluatingpossiblevaluesforthisparameter,itisalwaysconservativetoselectalowernumber.Thisparametermustbegreaterthanorequaltozero.PDRequirements:Parameterizing𝑞𝑞Theprojectdescriptionmustincludethefollowing:PDR.79Theparameter𝑞𝑞asthenumberofdaysbetweentheonsetofdegradationandthebeginningofconversion.PDR.80Ifthedefaultofzeroisnotselectedfor𝑞𝑞,thenajustificationforthedeterminationof𝑞𝑞.6.17Determining𝒓𝒓𝑼𝑼ThissectionistobeappliedseparatelyforeachidentifiedprojectaccountingareahavingabaselinetypeofTypeF-U2,F-U3,orG-U2.Theparameter𝑟𝑟𝑈𝑈issettopositionthebaselineemissionsmodelsrelativetotheonsetrateofconversionimmediatelyadjacenttotheprojectareaattheprojectstartdate.Therearetwopermissiblemethodsbywhichthisparametercanbedetermined:1.Inthefirstmethod,theratioofconvertedperimetertothetotalthreatenedperimeteralongtheboundariesoftheprojectareamustbemeasuredasoftheprojectstartdate.Convertedperimeterisdefinedasthetotalperimeterthathasbeenconvertedpriortotheprojectstartdatewithin120metersinsideoroutsidetheprojectareaboundary,whichcanbemeasuredfromanypointintimeupuntiltheprojectstartdate.ThreatenedPage86VM0009,Version3.0SectoralScope14perimeterisdefinedasthatwhichisvulnerableasoftheprojectstartdatetoconversionbybeingaccessibletothelocalagentsofconversionandhasnotyetbeenconverted.Threatenedperimeterdoesnotincludeconvertedperimeter.Examplesofnon-threatenedperimeterincludeperimeterthatabutsanationalpark,issurroundedbysteepslopesthatprohibitaccesstotheprojectareaboundary(asdefinedbyprojectproponent),orisadjacenttowater.Forforestbaselinetypes,non-threatenedperimeteralsomayincludenaturally-occurringnon-forestwithin120moftheprojectareaboundary.𝑟𝑟𝑈𝑈=𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝Forexample,considerthesituationinwhichtheprojectareahasatotalperimeterof500km.If200kmofthisperimeterisadjacenttoanationalpark,and30kmisnaturally-occurringnon-forestwithin120moneithersideoftheperimeter,thenthetotalthreatenedperimeteris270km.If150kmofthisperimeterbecomesconverted,then𝑟𝑟𝑈𝑈willbe(150/270,or0.556).2.Alternatively,𝑟𝑟𝑈𝑈canbequantifiedusingtheratioofconvertedareawithintheprojectareatothesumofallprojectaccountingareaslesstheareathatisconverted.Conversionisdefinedasareathathasbeenconvertedpriortotheprojectstartdatefromforesttonon-forestorfromnativegrasslandtoanthropogenicconversion.𝑟𝑟𝑈𝑈=𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎Bothofthesemethodsrelyontheidentificationofconversionrelativetotheprojectareaboundaryorintheprojectarea.Imagesordatausedtodetermineconversionmustnotbeolderthantenyearspriortotheprojectstartdate.Bothofthesemethodsrequireimagesordatafromtwopointsintimebeanalyzed.Measurementunitsforthedenominatorandthenumeratormustbethesame.Dependingonthestateofconversionattheprojectstartdate,theratiomaybegreaterthanone.PDRequirements:Parameterizing𝑟𝑟𝑈𝑈Theprojectdescriptionmustincludethefollowing:PDR.81Theparameter𝑟𝑟̂𝑈𝑈astheratioofconvertedperimetertototalthreatenedperimeter,ortheratioofconvertedareatototalprojectaccountingarea(s),asoftheprojectstartdate.PDR.82Descriptionofhow𝑟𝑟̂𝑈𝑈wasobtained.PDR.83ResultsofGISanalysistodetermineormeasure𝑟𝑟̂𝑈𝑈intheprojectareaincludingthedatesofimagesusedtoidentifyconversion.Page87VM0009,Version3.0SectoralScope146.18TheDecayEmissionsModelThissectionistobeappliedseparatelyforeachidentifiedprojectaccountingarea.TheDecayEmissionsModelaccountsfordecayfrombiomassanddeadwoodfromallpoolsconsidered.Itusesthesameparametersfromsection6.7astheBEM.Noadditionalparametersarerequired.TheDecayEmissionsModelisgivenby[F.10],andpredictslineardecayoveraten-yearperiod.TheDecayEmissionsModelfordeadwoodandbelow-groundbiomassarebasedontheVCSdefaultdecaymodelsforthesepools.6.19TheSoilEmissionsModelThissectionmustbeappliedseparatelyforeachidentifiedprojectaccountingareaifSOCisanincludedcarbonpool.TheSEMisgivenby[F.6],[F.7]and[F.8];itpredictstheexponentialdecayofSOCovertime.TheDecayEmissionsModelforcarboninsoil,givenby[F.9],contains𝜆𝜆𝑆𝑆𝑆𝑆𝑆𝑆,aparameterthatcharacterizesthedecayofSOCovertime.Theparameter𝜆𝜆𝑆𝑆𝑆𝑆𝑆𝑆shouldbedeterminedusingadefaultvalueorempiricalestimationpersection6.19.1.6.19.1Determining𝝀𝝀𝑺𝑺𝑺𝑺𝑺𝑺IfSOCisincludedasacarbonpooltheparameter𝜆𝜆𝑆𝑆𝑆𝑆𝑆𝑆mustbedeterminedwiththeuseofoneofthethreemethodsasoutlinedinsections6.19.2,6.19.3and6.19.4.6.19.2DefaultValuesfor𝝀𝝀𝑺𝑺𝑺𝑺𝑺𝑺Thedefaultvaluefor𝜆𝜆𝑆𝑆𝑆𝑆𝑆𝑆is0.2andisderivedfromE.Davidson&Ackerman(1993).Projectslocatedintropicalclimatesmayapplythisdefaultvalue.Thisisadefaultthatmaybecomeoutofdateandissubjecttoperiodicre-assessment.Allotherprojectsmustempiricallyestimate𝜆𝜆𝑆𝑆𝑆𝑆𝑆𝑆oruseappropriatedecayratesfrompeer-reviewedliterature.6.19.3EmpiricallyEstimating𝝀𝝀𝑺𝑺𝑺𝑺𝑺𝑺Inorderfortheprojectproponenttoestimate𝜆𝜆𝑆𝑆𝑆𝑆𝑆𝑆fromempiricallymeasureddata,theprojectproponentmustperforma“spacefortime”substitution,asitisimpracticaltorepeatedlysamplethesamerecently-convertedforestornativegrasslandpatchovertheprojectcreditingperiod(requiredtogenerateenoughmeasurementstoderiveasoildecaycurve).Thespacefortimesubstitutionallowstheprojectproponenttomakemanymeasurementsatthesamepointintime,overarangeofagriculturalfields,distributedspatiallywithinthereferencearea,thatwereconvertedatknowntimes.Givenexpertknowledgeofthereferencearea,includingknowledgeoffarmingpracticesandculture,theprojectproponentmayapplyempiricallymeasuredsoilcarbonresultstoPage88VM0009,Version3.0SectoralScope14mathematicallyderiveavaluefor𝜆𝜆𝑆𝑆𝑆𝑆𝑆𝑆.Thisshouldinvolveastatisticallysoundmethodsuchastemporalregressionortrendanalysis,andmustbeacceptedbythevalidatoratprojectvalidation.Iftheprojectproponentoptstomeasure𝜆𝜆𝑆𝑆𝑆𝑆𝑆𝑆empirically,measurementsmustbetakenwithinthesamereferenceareathatmeetstherequirementslistedinsection6.8.1.ThisservestoensurethatparameterizationoftheDecayEmissionsModelisrepresentativeofcommonfarmingpracticesintheregion.PDRequirements:EmpiricallyEstimating𝜆𝜆𝑆𝑆𝑆𝑆𝑆𝑆If𝝀𝝀𝑺𝑺𝑺𝑺𝑺𝑺isestimatedusingdata,theprojectdescriptionmustincludethefollowing:PDR.84Descriptionofhowsamplesfromthereferenceareawereselectedincludingstratification,ifany.PDR.85Amapofsamplelocationsinthereferencearea.PDR.86Atableshowingtheconversiontimeforeacharea(farmorotherwise)fromwhichsamplesweretaken.PDR.87Descriptionofandstatisticsforthemethodappliedtoestimate𝜆𝜆̂𝑆𝑆𝑆𝑆𝑆𝑆.PDR.88Graphofprojecteddecaymodeloverprojectlifetime.6.19.4LiteratureEstimatesfor𝝀𝝀𝑺𝑺𝑺𝑺𝑺𝑺Literatureestimatesmaybetakenfrompeer-reviewedscientificorgovernmentpublicationsratherthanusingthedefaultvalueorempiricallyestimating𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠.Publicationsmustcomefromthesameecotypeandsoiltypeastheproject,includethesamesoilprofileconsidered,haveanadequatesamplesizeandpublishedmeasuresofprecision(perAppendixB),andbegenerallyrepresentativeoftheprojectarea.Thefieldexperimentsperformedbytheauthorsofthepeer-reviewedliteraturemustbebasedondatafromreplicatedfieldexperimentswhosemanagementtreatmentswithadurationofatleastfiveyears.PDRequirements:LiteratureEstimatesfor𝜆𝜆𝑆𝑆𝑆𝑆𝑆𝑆Ifanalternate𝝀𝝀𝑺𝑺𝑺𝑺𝑺𝑺isused,theprojectdescriptionmustincludethefollowing:PDR.89Inclusionofdecaymodelonwhichparameterisbased.Page89VM0009,Version3.0SectoralScope14PDR.90Explicitdescriptionofreferencedliterature,includingprojectlocation,samplingmethodology,includedspecies,samplesize,durationoffieldexperiments,anddecayparameteruponwhichdecayisbased.PDR.91Graphofprojecteddecaymodeloverprojectlifetime.PDR.92Ifdecaymodelisbasedonanyotherelementbesidescarbon,defenseofabilitytopredictcarbondecaymustbeprovided.6.20BaselineReevaluationThebaselinescenariomustbereevaluatedpercurrentVCSrequirements.Priortobaselinereevaluation,theprojectproponentmaychoosetoconductanewPRAandsubsequentanalysestore-appraisethebaselinescenario(seesection6.1).Theprojectproponentmustreassesscertainelementsofthebaselinescenariopersections6.20.1and6.20.2.PDRequirements:BaselineReevaluationUponabaselinerevision,theprojectdescriptionmustincludethefollowingasofthecurrentmonitoringperiod:PDR.93Allrequireddocumentationasspecifiedinsection6fortheprojectpriortothebaselinereevaluation.PDR.94Allrequireddocumentationasspecifiedinsection6fortheprojectafterthebaselinereevaluationincludingthereevaluationperiod.PDR.95Anarrativeofthereevaluationincludinganyobstaclesandhowtheywereovercome.6.20.1ReevaluationoftheReferenceAreaandPeriodThissectionistobeappliedseparatelyforeachidentifiedprojectaccountingarea.Thereferenceareamayberesizedtobelargerorsmallerthanpriortobaselinereevaluationtoreflectthefollowingchanges:•RefinetheboundariesofthereferenceareaanddelineatenewboundariestoexcludeanynewREDDprojectsoradditionstotheprojectarea,basedontheresultsofthenewPRAorexpertknowledge.•Extendthereferenceperiod–thenewperiodshouldreflectthetimesincethestartoftheoriginalreferenceperioduptothetimeofthemostrecentbaselinereevaluation.Page90VM0009,Version3.0SectoralScope14Thenewreferenceareamustmeetallrequirementsspecifiedinsection6.8.1.Ifthenewreferenceareadoesnotmeettheserequirements,thentheprojectisnoteligibleforadditionalcreditingformonitoringperiodssubsequenttothebaselinereevaluationuntilanewreferenceareacanbedefinedthatmeetstherequirementsspecifiedinsection6.8.1.Projectsthatsharethesamereferenceareaareeligibleforcreditingforallmonitoringperiods.PDRequirements:ReevaluationoftheReferenceAreaandPeriodUponabaselinerevision,theprojectdescriptionmustincludethefollowingasofthecurrentmonitoringperiod:PDR.96Amapofthenewreferencearea.6.20.2Re-parameterizationof𝜶𝜶,𝜷𝜷and𝜽𝜽Thissectionistobeappliedseparatelyforeachidentifiedprojectaccountingarea.Thebaselineemissionsmodelsmustbere-parameterizedbyaddingnewobservationsoflandcoverstatepersection6.7andthevaluesfor𝛼𝛼,𝛽𝛽and𝜃𝜃mustbere-estimatedpersection6.8.Thedatafromobservationsofpriorreferenceareasshouldremainunchangedeventhoughtheboundariesofthepriorreferenceareasmaybedifferentthanthoseofthecurrentreferencearea.There-parameterizedvaluesmustbeusedforallmonitoringperiodssubsequenttobaselinereevaluation.PDRequirements:Re-parameterizationof𝛼𝛼,𝛽𝛽and𝜃𝜃Uponabaselinerevision,theprojectdescriptionmustincludethefollowingasofthecurrentmonitoringperiod:PDR.97Summaryofnewdataobservedinthenewreferencearea.PDR.98There-parameterizedvalues𝛼𝛼�,𝛽𝛽̂and𝜃𝜃�.7PROCEDUREFORDEMONSTRATINGADDITIONALITYThismethodologyusesaprojectmethodfordeterminingadditionality.ProjectproponentsmustdemonstrateadditionalityusingthelatestversionoftheVCSToolfortheDemonstrationandAssessmentofAdditionalityinVCSAgriculture,ForestryandOtherLandUse(AFOLU)ProjectActivities.Page91VM0009,Version3.0SectoralScope14Thecommonpracticetestmustdemonstratethatprojectactivitieswilladdressatleastonedriverofconversioninsuchawaythatthedriverwouldnothavebeenaddressedhadtheprojectnotbeenundertaken.PDRequirements:DemonstrationofProjectAdditionalityTheprojectdescriptionmustincludethefollowing:PDR.99Alistofalternativelandusescenariostotheproject.PDR.100Justificationfortheselectedbaselinescenario.Thisjustificationcanincludeexpertknowledge,resultsfromtheparticipatoryruralappraisalandex-anteestimatesofavoidedemissions(seesections6.1and8.4.7).PDR.101Aninvestmentorbarriersanalysisprovingthattheprojectisnotthemosteconomicaloption.PDR.102Acommonpracticeanalysisincludingalistofprojectactivitiesandthedriversofconversionthattheyaddress.PDR.103EvidentcompliancewiththeminimumrequirementsoftheaforementionedVCStool.Thisevidencemaybethesameastheevidenceprovidedtomeetreportingrequirementslistedinsection4.8QUANTIFICATIONOFGHGEMISSIONREDUCTIONSAND/ORREMOVALSCumulativeemissionsreductionsand/orremovalsarequantifiedasthosesincetheprojectcreditingperiodstartdateuptotheendofthecurrentmonitoringperiod.Currentgrossemissionsreductionsand/orremovals(GERs)arequantifiedasthedifferencebetweencumulativeemissionsuptotheendofthecurrentmonitoringperiodandcumulativeemissionsuptotheendofthepreviousmonitoringperiod,minusanyprojectemissionsthathaveoccurredduringthecurrentmonitoringperiod,emissionsfromleakageandcarbonnotdecayedincertaindecaypools(seesection8.4.1andFigure11).Netemissionsreductionsand/orremovals(NERs)areGERsminusaconfidencededuction(ifany)andbufferpoolallocation(seesection8.4.3).NERsaredeterminedforeachprojectaccountingareaandiftheprojectareacontainsmultipleprojectaccountingareas,summedacrossprojectaccountingareas(seesections8.4.3and8.4.5).Foreachprojectaccountingarea,applysections8.1,8.2,8.3.2,and8.4.1.Ifthebaselinescenarioincludeslegally-sanctionedorillegallogging,usesection8.3.3todeterminemarketleakage,ifany.Usesection8.4.1todetermineGERsforeachprojectaccountingarea.IfthePage92VM0009,Version3.0SectoralScope14baselinetypeforaprojectaccountingareaisF-U1orG-U1seethespecialrequirementsinsection8.4.1.2.Figure11:FlowDiagramfortheQuantificationofGHGEmissionsReductionsand/orRemovals8.1BaselineEmissionsThissectionistobeappliedseparatelyforeachidentifiedprojectaccountingarea.Thebaselineemissions𝐸𝐸𝐵𝐵Δ[𝑚𝑚]forthecurrentmonitoringperiodaregivenby[F.15].Thisisafunctionofthecumulativebaselineemissionsatthebeginningandendofthecurrentmonitoringperiodasgivenby[F.16].Afterthisquantityisverified,itbecomesfixedwhendeterminingemissionsatsubsequentmonitoringevents.Itispossiblethat𝐸𝐸𝐵𝐵Δ[𝑚𝑚]couldbelessthanzeroduetoconditionsintheproxyareaandparametereffectsinthebaselineemissionsmodelsovertime.However,formostprojects,thisvaluewillbepositiveindicatingbaselineemissionswouldhaveoccurredintheabsenceoftheproject.Ifanyofthefollowingpoolsarenotselected,theircorrespondingvaluesin[F.15]arezero:SOC,BGB,DWorWP.MonitoringRequirements:BaselineEmissionsThemonitoringreportmustincludethefollowing:MR.10Calculationsofcurrentbaselineemissions𝐸𝐸BΔ[𝑚𝑚]asofthecurrentmonitoringperiod.Page93VM0009,Version3.0SectoralScope14MR.11Calculationsofbaselineemissions𝐸𝐸BΔ[𝑚𝑚−1]frompriormonitoringperiods.MR.12Calculationsofcumulativebaselineemissionsforeachselectedpool(𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚]and𝐸𝐸𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚])andundecayedcarbon(𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚],𝐶𝐶𝐵𝐵𝐷𝐷𝐷𝐷[𝑚𝑚],𝐶𝐶𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚]and𝐶𝐶𝐵𝐵𝑊𝑊𝑊𝑊[𝑚𝑚]),asofthecurrentmonitoringperiod.8.1.1CalculatingBaselineEmissionsfromBiomassBaselineemissionsfrombiomassaredeterminedbasedonthebaselinetypeandselectedcarbonpools.Foreachselectedcarbonpoolinbiomass(BM),theappropriateBEMisappliedtocalculatebaselineemissionsperthefollowingsections.BaselineemissionsfrombiomassforthecurrentmonitoringperiodarebasedontheaveragecarbonstockinselectedcarbonpoolsfromAGMT,AGOT,AGNT,BGMT,BGOTandBGNTgivenby[F.17]fortheprojectaccountingareaand[F.18]fortheproxyarea.Thissetofselectedcarbonpoolsinbiomassℬisasubsetofallselectedcarbonpools𝒞𝒞(seesection5.4).Thecumulativebaselineemissionsfrombiomass𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚]asofmonitoringperiod[𝒎𝒎]arecalculatedbyequations[F.19],[F.20],[F.21],and[F.22]discussedinsections8.1.1.1,8.1.1.2,8.1.1.3and8.1.1.4.Onceverified,thesequantitiesdonotchangewhencalculatingbaselineemissionsforsubsequentmonitoringperiods.MonitoringRequirements:BaselineEmissionsfromBiomassThemonitoringreportmustincludethefollowing:MR.13Calculationsofcumulativebaselineemissionsfrombiomass𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚]forthecurrentmonitoringperiod.MR.14Calculationsofcumulativebaselineemissionsfrombiomass𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚]forallpriormonitoringperiods.8.1.1.1CalculatingCumulativeBaselineEmissionsfromBiomassforTypeF-P1.aThecumulativebaselineemissionsfrombiomass𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚]asofmonitoringperiod[𝑚𝑚]arecalculatedby[F.19].Thevariables𝑐𝑐𝑃𝑃𝐵𝐵𝐵𝐵[𝑚𝑚=0]istheaveragecarbonstocksinbiomassasmeasuredintheprojectaccountingareapriortothefirstmonitoringeventforF-P1.a.𝑐𝑐𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚]istheaveragecarbonstocksinbiomassasmeasuredintheproxyarea,𝑡𝑡[𝑚𝑚]isthetimeofthemonitoringeventand𝑥𝑥[𝑚𝑚]isthemonitoredcovariatesasofthetimeofthemonitoringevent.Thesevariablesaremonitoredpersection9.Page94VM0009,Version3.0SectoralScope148.1.1.2CalculatingCumulativeBaselineEmissionsfromBiomassforTypesF-P2andG-P2Thecumulativebaselineemissionsfrombiomass𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚]asofmonitoringperiod[𝑚𝑚]arecalculatedby[F.20].Thevariable𝑐𝑐𝑃𝑃𝐵𝐵𝑀𝑀[𝑚𝑚=0]istheaveragecarbonstocksinbiomassasmeasuredintheprojectaccountareapriortothefirstmonitoringevent,𝑐𝑐𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚]istheaveragecarbonstocksinbiomassasmeasuredintheproxyarea,𝑡𝑡[𝑚𝑚]isthetimeofthemonitoringeventand𝑥𝑥[𝑚𝑚]isthemonitoredcovariatesasofthetimeofthemonitoringevent.Thesevariablesaremonitoredpersection9.8.1.1.3CalculatingCumulativeBaselineEmissionsfromBiomassforTypesF-U1andG-U1Thecumulativebaselineemissionsfrombiomass𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚]asofmonitoringperiod[𝑚𝑚]arecalculatedby[F.22].Thevariable𝑐𝑐𝑃𝑃𝐵𝐵𝐵𝐵[𝑚𝑚=0]istheaveragecarbonstocksinbiomassasmeasuredintheprojectaccountareapriortothefirstmonitoringevent,𝑐𝑐𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚]istheaveragecarbonstocksinbiomassasmeasuredintheproxyarea,𝑡𝑡[𝑚𝑚]isthetimeofthemonitoringeventand𝑥𝑥[𝑚𝑚]isthemonitoredcovariatesasofthetimeofthemonitoringevent.Thesevariablesaremonitoredpersection9.8.1.1.4CalculatingCumulativeBaselineEmissionsfromBiomassforTypesF-U2andG-U2Thecumulativebaselineemissionsfrombiomass𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚]asofmonitoringperiod[𝑚𝑚]arecalculatedby[F.21].Thevariable𝑐𝑐𝑃𝑃𝐵𝐵𝐵𝐵[𝑚𝑚=0]istheaveragecarbonstocksinbiomassasmeasuredintheprojectaccountareapriortothefirstmonitoringevent,𝑐𝑐𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚]istheaveragecarbonstocksinbiomassasmeasuredintheproxyarea,𝑡𝑡[𝑚𝑚]isthetimeofthemonitoringeventand𝑥𝑥[𝑚𝑚]isthemonitoredcovariatesasofthetimeofthemonitoringevent.Thesevariablesaremonitoredpersection9.8.1.1.5CalculatingCumulativeBaselineEmissionsfromBiomassforTypeF-U3andF-P1.bWhenthebaselinetypeisTypeF-U3orF-P1.b,aspatialmodelcalledthespatialalgorithmisusedtoconservativelyestimatebaselineemissionsfrombiomassbycarbonpoolperAFOLUrequirements(seesection8.1.1.5.1).Thecumulativebaselineemissionsfrombiomass𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚]asofmonitoringperiod[𝑚𝑚]arecalculatedby[F.24]usingthespatialalgorithm(seesection8.1.1.5.1).Onceverified,thisquantitydoesnotchangewhencalculatingbaselineemissionsforsubsequentmonitoringperiods.8.1.1.5.1TheSpatialAlgorithmforBiomassOfallpossiblespatialmodels,thespatialalgorithmisthemostconservativepossiblefordepletingcarbonstocksinthebaselinescenario.Toimplementthespatialalgorithm,firstordertheestimatesofaveragecarbonstocksacrossallselectedcarbonpoolsinbiomassfromlowesttohighest,1,2…𝑛𝑛bystratumforallstratainthePage95VM0009,Version3.0SectoralScope14projectaccountingarea.Use[F.23]toestimatetheaveragecarboninbiomassforeachstratum𝑠𝑠.Thisorderingshouldbeconductedatthefirstmonitoringperiodandthentheordershouldbefixedforsubsequentmonitoringperiods.Everymonitoringperiod,applythespatialalgorithmgivenby[F.24]todeterminecumulativeemissionsforeachselectedcarbonpoolinbiomass.Thespatialalgorithmusestheweightedaveragecarbonstocksacrossallstratacurrentlybeingdepletedinthebaseline.Weightedaveragecarbonstocksarecalculatedasin[B.35].Thespatialalgorithmisdenotedas𝐵𝐵𝐵𝐵𝑀𝑀𝑆𝑆𝑆𝑆�𝑤𝑤𝑐𝑐𝑃𝑃𝑖𝑖𝐵𝐵𝐵𝐵[𝑚𝑚=0],𝑐𝑐𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚],𝑡𝑡[𝑚𝑚],𝑥𝑥[𝑚𝑚]�.Theaveragecarboninbiomassintheproxyarea𝑐𝑐𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚]isgivenby[F.18].MonitoringRequirements:ApplyingtheSpatialAlgorithmThemonitoringreportmustincludethefollowing:MR.15Theorderofstratafromlowestcarbonstockstohighestcarbonstocksbasedontheaverageacrossallpools.MR.16Calculationsforeachstepwhicharecarriedthroughfrommonitoringperiodtomonitoringperiod.MR.17Calculationsofcumulativebaselineemissionsfrombiomass𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚]forpriormonitoringperiods.8.1.2CalculatingBaselineEmissionsfromSOCBaselineemissionsfromSOCaredeterminedbasedonthebaselinetypeiftheSOCpoolisselected.TheappropriateSEMisappliedtocalculatebaselineemissionsperthefollowingsections.BaselineemissionsfromSOCforthecurrentmonitoringperiodarebasedontheaveragecarbonstockinSOCintheprojectaccountingareaandintheproxyarea.ThecurrentbaselineemissionsfromSOC𝐸𝐸BΔ𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚]areestimatedas[F.26]fromalltypesotherthanF-P1.bandF-U3,whichisthedifferenceincumulativebaselineemissionsforthecurrentmonitoringperiod𝐸𝐸𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚]andthecumulativebaselineemissionsforthepriormonitoring𝐸𝐸𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚−1](fixedatpriormonitoringevent).CurrentbaselineemissionsfromSOC𝐸𝐸BΔ𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚]areusedtocalculatecarbonnotdecayedinsoil(seesection8.1.5).ForbaselinetypesF-P1.bandF-U3,currentbaselineemissionsfromSOC𝐸𝐸BΔ𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚]arecalculatedasin[F.29],usingthespatialalgorithmin8.1.2.4.1.Page96VM0009,Version3.0SectoralScope14MonitoringRequirements:BaselineEmissionsfromSOCforTypesF-P1.a,F-P1.b,F-P2,andG-P2Themonitoringreportmustincludethefollowing:MR.18AnestimateofcurrentbaselineemissionsfromSOC𝐸𝐸BΔ𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚]asofthecurrentmonitoringperiod.MR.19AnestimateofcumulativebaselineemissionsfromSOC𝐸𝐸𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚]forthecurrentmonitoringperiod.MR.20CalculationsofcumulativebaselineemissionsfromSOC𝐸𝐸𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚]forallpriormonitoringperiods.8.1.2.1CalculatingBaselineEmissionsfromSOCforTypesF-P1.a,F-P2,andG-P2BaselineemissionsfromSOCforTypesF-P1.a,F-P2,andG-P2arecalculatedusingtheSEM.ThecumulativebaselineemissionsfromSOC𝐸𝐸𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚]asofmonitoringperiod[𝑚𝑚]areestimatedby[F.25].Onceverified,thisquantitydoesnotchangewhencalculatingbaselineemissionsforsubsequentmonitoringperiods.8.1.2.2CalculatingBaselineEmissionsfromSOCforTypeF-U1andG-U1baselineemissionsfromSOCforTypesF-U1andG-U1areestimatedusingtheSEM.ThecumulativebaselineemissionsfromSOC𝐸𝐸𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚]asofmonitoringperiod[𝑚𝑚]areestimatedby[F.27].Onceverified,thisquantitydoesnotchangewhencalculatingbaselineemissionsforsubsequentmonitoringperiods.8.1.2.3CalculatingBaselineEmissionsfromSOCforTypesF-U2andG-U2BaselineemissionsfromSOCforTypesF-U2andG-U2areestimatedusingtheSEM.ThecumulativebaselineemissionsfromSOC𝐸𝐸𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚]asofmonitoringperiod[𝑚𝑚]areestimatedby[F.28].Onceverified,thisquantitydoesnotchangewhencalculatingbaselineemissionsforsubsequentmonitoringperiods.8.1.2.4CalculatingBaselineEmissionsfromSOCforTypesF-U3andF-P1.bBaselineemissionsfromSOCforTypesF-U3,andF-P1.bareestimatedusingtheSEM.ThecumulativebaselineemissionsfromSOC𝐸𝐸𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚]asofmonitoringperiod[𝑚𝑚]areestimatedby[F.29].Onceverified,thisquantitydoesnotchangewhencalculatingbaselineemissionsforsubsequentmonitoringperiods.Page97VM0009,Version3.0SectoralScope148.1.2.4.1TheSpatialAlgorithmforSOCOfallpossiblespatialmodels,thespatialalgorithmisthemostconservativepossiblefordepletingcarbonstocksinthebaselinescenario.Toimplementthespatialalgorithm,firstordertheestimatesofaveragecarbonstocksinSOCfromlowesttohighest,1,2…𝑛𝑛bystratumforallstrataintheprojectaccountingarea.Thisorderingshouldbeconductedatthefirstmonitoringperiodandthentheordershouldbefixedforsubsequentmonitoringperiods.Everymonitoringperiod,applythespatialalgorithmgivenby[F.29]todeterminecumulativeemissionsforSOC.Thespatialalgorithmusestheweightedaveragecarbonstocksacrossallstratacurrentlybeingdepletedinthebaseline.Weightedaveragecarbonstocksarecalculatedasin[B.35].Thespatialalgorithmisdenotedas𝑆𝑆𝑆𝑆𝑀𝑀𝑠𝑠𝑠𝑠�𝑐𝑐𝑃𝑃𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚=0],𝑐𝑐𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚],𝑡𝑡[𝑚𝑚],𝑥𝑥[𝑚𝑚]�.8.1.3CalculatingCarbonNotDecayedinDWCalculatecarboninnon-decayedDWusing[F.36]whereℳisthesetofallmonitoringperiodsincludingthecurrentandpastmonitoringperiods.ThecumulativeemissionsfromDW𝐸𝐸𝐵𝐵𝐷𝐷𝐷𝐷[𝑚𝑚]arecalculatedby[F.34]wherecumulativeemissionsfromAGMT𝐸𝐸𝐵𝐵𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚]arecalculatedinsections8.1.6.1,8.1.6.2and8.1.6.3andtheslashportionoftotalabove-groundcarbonstock𝑝𝑝𝑆𝑆𝑆𝑆[𝑚𝑚]isestimatedinB.2.7aspartofmonitoring(seesection9).Onceverified,thisquantitydoesnotchangewhencalculatingbaselineemissionsforsubsequentmonitoringperiods.Forthefirstmonitoringperiod,thecumulativeemissionsfromthepriormonitoringperiod,DW𝐸𝐸𝐵𝐵𝐷𝐷𝐷𝐷[𝑖𝑖−1]arezeroMonitoringRequirements:CarbonNotDecayedinDWThemonitoringreportmustincludethefollowing:MR.21Anestimateofcarbonstoredinnon-decayedDW𝐶𝐶B𝐷𝐷𝐷𝐷[𝑚𝑚]forthecurrentmonitoringperiod.MR.22AnestimateofcumulativebaselineemissionsfromDW𝐸𝐸𝐵𝐵𝐷𝐷𝐷𝐷[𝑚𝑚]forthecurrentmonitoringperiod.MR.23AnestimateofcumulativebaselineemissionsfromAGMT𝐸𝐸𝐵𝐵𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚]forthecurrentmonitoringperiod.MR.24CalculationsofcumulativebaselineemissionsfromDW𝐸𝐸𝐵𝐵𝐷𝐷𝐷𝐷[𝑚𝑚]forallpriormonitoringperiods.Page98VM0009,Version3.0SectoralScope14MR.25CalculationsofcumulativebaselineemissionsfromAGMT𝐸𝐸𝐵𝐵𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚]forallpriormonitoringperiods.8.1.4CalculatingCarbonNotDecayedinBGBCalculatecarboninnon-decayedBGBusing[F.32]whereℳisthesetofallmonitoringperiodsincludingthecurrentandpastmonitoringperiods.ThecumulativeemissionsfromBGB𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚]arecalculatedby[F.30]wherecumulativeemissionsfrombiomass𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚]arecalculatedinsection8.1.1or8.1.1.5.Onceverified,thisquantitydoesnotchangewhencalculatingbaselineemissionsforsubsequentmonitoringperiods.Forthefirstmonitoringperiod,thecumulativeemissionsfromthepriormonitoringperiod,BGB𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵[𝑖𝑖−1]arezero.MonitoringRequirements:CarbonNotDecayedinBGBThemonitoringreportmustincludethefollowing:MR.26Anestimateofcarbonstoredinnon-decayedBGB𝐶𝐶B𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚]forthecurrentmonitoringperiod.MR.27AnestimateofcumulativebaselineemissionsfromBGB𝐸𝐸𝐵𝐵𝐵𝐵𝐺𝐺𝐵𝐵[𝑚𝑚]forthecurrentmonitoringperiod.MR.28CalculationsofcumulativebaselineemissionsfromBGB𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚]forallpriormonitoringperiods.8.1.5CalculatingCarbonNotDecayedinSOCCalculatecarboninnon-decayedSOCusing[F.33],where𝝀𝝀𝑺𝑺𝑺𝑺𝑺𝑺isdeterminedinsection6.19.1and𝓜𝓜isthesetofallmonitoringperiodsincludingthecurrentandpastmonitoringperiods.ThecumulativeemissionsfromSOC𝑬𝑬𝑩𝑩𝑺𝑺𝑺𝑺𝑺𝑺[𝒎𝒎]arecalculatedinsection8.1.2.1,8.1.2.2or8.1.2.3.Onceverified,thisquantitydoesnotchangewhencalculatingbaselineemissionsforsubsequentmonitoringperiods.Forthefirstmonitoringperiod,thecumulativeemissionsfromthepriormonitoringperiod,SOC𝐸𝐸𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆[𝑖𝑖−1]arezero.MonitoringRequirements:CarbonNotDecayedinSOCThemonitoringreportmustincludethefollowing:MR.29Anestimateofcarbonstoredinnon-decayedSOC𝐶𝐶B𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚]forthecurrentmonitoringperiod.Page99VM0009,Version3.0SectoralScope148.1.6DeterminingCarbonStoredinWPIfloggingisincludedinthebaselinescenario,carbonstoredinlong-livedwoodproductsmustbeaccountedforusingAppendixC.TouseAppendixC,certainmeasurementsofcarbonstocksintheprojectaccountingareaarerequiredfrommonitoring(seesection9),determinedusingAppendixB.UsethefollowingsectionstoestimatecumulativeemissionsfromAGMT,𝐸𝐸𝐵𝐵𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚]in[C.1]bybaselinetype.MonitoringRequirements:CarbonStoredinWoodProductsThemonitoringreportmustincludethefollowing:MR.30Carbonstoredinlong-livedwoodproducts𝐶𝐶𝐵𝐵𝑊𝑊𝑊𝑊[𝑚𝑚]after100years.MR.31Calculationstodetermine𝐶𝐶𝐵𝐵𝑊𝑊𝑊𝑊[𝑚𝑚].8.1.6.1CalculatingCumulativeEmissionsfromAGMTforTypesF-P1.aandF-P1.bCalculatecumulativeemissionsfromAGMT𝐸𝐸𝐵𝐵𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚]using[F.37].IftheBGMTpoolisnotselectedthenset𝑐𝑐𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚=0],𝑐𝑐𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚=0]and𝑟𝑟𝑅𝑅𝑅𝑅tozero.Thisquantityisusedinsections8.1.3and8.1.6,butnotdirectlyinthecalculationofcumulativebaselineemissions.Thevariable𝑐𝑐𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚=0]istheaveragecarbonstocksinabove-groundmerchantabletreesasmeasuredintheprojectaccountingareapriortothefirstmonitoringevent,𝑐𝑐𝐵𝐵𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚]istheaveragecarbonstocksinabove-groundmerchantabletreesasmeasuredintheproxyarea,𝑡𝑡[𝑚𝑚]isthetimeofthemonitoringeventand𝑥𝑥[𝑚𝑚]isthemonitoredcovariatesasofthetimeofthemonitoringevent.Thesevariablesaremonitoredpersection9.8.1.6.2CalculatingCumulativeEmissionsfromAGMTforTypesF-P2andG-P2ForTypeF-P2,calculatecumulativeemissionsfromAGMT𝐸𝐸𝐵𝐵𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚]using[F.38].IftheBGMTpoolisnotselectedthenset𝑐𝑐𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚=0],𝑐𝑐𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚=0]and𝑟𝑟𝑅𝑅𝑅𝑅tozero.Thisquantityisusedinsections8.1.3and8.1.6,butnotdirectlyinthecalculationofcumulativebaselineemissions.Thevariable𝑐𝑐𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚=0]istheaveragecarbonstocksinabove-groundmerchantabletreesasmeasuredintheprojectaccountingareapriortothefirstmonitoringevent,𝑐𝑐𝐵𝐵𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚]istheaveragecarbonstocksinabove-groundmerchantabletreesasmeasuredintheproxyarea,𝑡𝑡[𝑚𝑚]isthetimeofthemonitoringeventand𝑥𝑥[𝑚𝑚]isthemonitoredcovariatesasofthetimeofthemonitoringevent.Thesevariablesaremonitoredpersection9.Page100VM0009,Version3.0SectoralScope148.1.6.3CalculatingCumulativeEmissionsfromAGMTforTypesF-U1andG-U1ForTypesF-U1,andG-U1calculatecumulativeemissionsfromAGMT𝐸𝐸𝐵𝐵𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚]using[F.39].IftheBGMTpoolisnotselectedthenset𝑐𝑐𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚=0],𝑐𝑐𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚=0]and𝑟𝑟𝑅𝑅𝑅𝑅tozero.Thisquantityisusedinsections8.1.3and8.1.6,butnotdirectlyinthecalculationofcumulativebaselineemissions.Thevariable𝑐𝑐𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚=0]istheaveragecarbonstocksinabove-groundmerchantabletreesasmeasuredintheprojectaccountingareapriortothefirstmonitoringevent,𝑐𝑐𝐵𝐵𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚]istheaveragecarbonstocksinabove-groundmerchantabletreesasmeasuredintheproxyarea,𝑡𝑡[𝑚𝑚]isthetimeofthemonitoringeventand𝑥𝑥[𝑚𝑚]isthemonitoredcovariatesasofthetimeofthemonitoringevent.Thesevariablesaremonitoredpersection9.8.1.6.4CalculatingCumulativeEmissionsfromAGMTforTypesF-U2,F-U3,andG-U2ForTypesF-U2andF-U3,calculatecumulativeemissionsfromAGMT𝐸𝐸𝐵𝐵𝐴𝐴𝐴𝐴𝑀𝑀𝑇𝑇[𝑚𝑚]using[F.40].IftheBGMTpoolisnotselectedthenset𝑐𝑐𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚=0],𝑐𝑐𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚=0]and𝑟𝑟𝑅𝑅𝑅𝑅tozero.Thisquantityisusedinsections8.1.3and8.1.6,butnotdirectlyinthecalculationofcumulativebaselineemissions.Thevariable𝑐𝑐𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚=0]istheaveragecarbonstocksinabove-groundmerchantabletreesasmeasuredintheprojectaccountingareapriortothefirstmonitoringevent,𝑐𝑐𝐵𝐵𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚]istheaveragecarbonstocksinabove-groundmerchantabletreesasmeasuredintheproxyarea,𝑡𝑡[𝑚𝑚]isthetimeofthemonitoringeventand𝑥𝑥[𝑚𝑚]isthemonitoredcovariatesasofthetimeofthemonitoringevent.Thesevariablesaremonitoredpersection9.8.2ProjectEmissionsProjectemissionsforanymonitoringperiod[𝑚𝑚]arecalculatedfromtheeventsofbiomassconsumptionthroughfire,burning,loggingorotherdisturbance.Currentprojectemissionsforthecurrentmonitoringperiod𝐸𝐸𝑃𝑃Δ[𝑚𝑚]areestimatedas[F.41].Emissionsfromforestfire,grassfire,naturaldisturbancesandloggingareinherentlycapturedbythemonitoringofcarbonstocksintheprojectarea.Totalprojectemissionsforthecurrentmonitoringperiodcanbenegativeifsomemajordisturbanceeventoccurs.Theprojectproponentmusthavesufficientongoingobservationoftheprojectlandssuchthatdisturbancethatislikelytobegreaterthandeminimiswillbedetected.Theseobservationsmayconsistofstaffontheground,aerialobservation,remotesensing,orsomeothermethodthatcapturesconversioninatimelymanner.Thissectionistobeappliedtoeachprojectaccountingarea.8.2.1CalculatingEmissionsfromChangesinProjectStocksEmissionsfromforestfires,grassfires,naturaldisturbance,loggingandothereventswithintheprojectaccountingareasareinherentlycapturedbythemonitoringofforestcarbonstocks.Nevertheless,mapsofsignificanteventsarenecessarytoaidverificationofcarbonstockPage101VM0009,Version3.0SectoralScope14estimates.Currentemissionsfromchangesinprojectcarbonstocksarecalculatedin[F.41]asthelasttermontheleft-handside,thedifferencebetweencarbonstocksfromthepriormonitoringperiodandthecurrentmonitoringperiod.Inordertoestimatethesecarbonstocks,theprojectaccountingareasmayneedtobere-stratifiedperAppendixBaspartofmonitoring(seesection9).MonitoringRequirements:EmissionsEventsinProjectAreaThemonitoringreportmustincludethefollowing:MR.32Amapoftheboundariesofanysignificantdisturbanceintheprojectaccountingareasduringthemonitoringperiod.MR.33Evidencethatplotswereinstalledintothesedisturbedareasandweremeasuredpersection9.8.2.2CalculatingEmissionsfromBurningCurrentemissionsfromtheburningofwoodyorherbaceousbiomassasaresultofprojectactivitiesintheprojectareamustberecordedastheweight(intonnes)ofwoodyorherbaceousbiomassconsumedduringeachburningevent.Iftheproductionofsustainablecharcoaloccurswithintheprojectaccountingareas,thenitmustbeaccountedforunderemissionsfromburning.Emissionsfromthecontrolledburningofwoodyorherbaceousbiomassareequivalenttothesumofallburningeventsℰ[𝑚𝑚]duringthemonitoringperiodasdefinedby[F.42].MonitoringRequirements:EmissionsfromBurningfromProjectActivitiesThemonitoringreportmustincludethefollowing:MR.34Atableofeventswhenwoodyorherbaceousbiomasswasburnedduringthemonitoringperiod,showingtheweightofwoodyorherbaceousbiomassintonnesandthedateconsumed.8.2.3DeterminingCarbonStoredinWPIfloggingisaprojectactivity,theprojectproponentcanchoosetomeasurethemassoflogsexportedfromtheprojectaccountingareasandthenapplyanequationtoaccountformillinginefficiencies,wastageanddecayatthemillusingproceduresinAppendixC.WoodlostduetowastageandmillinginefficienciesovertimeiscalculatedanddecayedperAppendixC.Page102VM0009,Version3.0SectoralScope14MonitoringRequirements:CarbonStoredinWoodProductsfromProjectActivitiesThemonitoringreportmustincludethefollowing:MR.35Carbonstoredinlong-livedwoodproducts𝐶𝐶𝑃𝑃Δ𝑊𝑊𝑊𝑊[𝑚𝑚]after100years.MR.36Scalereportsorrecordsofcarboninlogproductionbywoodproductstype𝐶𝐶𝑃𝑃𝑡𝑡𝑡𝑡[𝑚𝑚].MR.37Calculationstodetermine𝐶𝐶𝑃𝑃Δ𝑊𝑊𝑊𝑊[𝑚𝑚].8.2.4CalculatingGHGEmissionsfromLivestockGrazingIfgrazingoflivestockoccurswithintheprojectareaduringthecurrentmonitoringperiod,theprojectproponentmustcalculategreenhouseemissionsasaresultofgrazing.Currentgreenhousegasemissionsfromlivestock𝐸𝐸𝑃𝑃Δ𝐿𝐿𝐿𝐿[𝑚𝑚]isgivenbyequation[F.43],basedonIPCCGoodPracticeGuidelinesandIPCCGuidelinesforNationalGreenhouseGasInventories.Thisprocedureinvolvestheidentificationoflivestockspecies,theirIPCCdefaultemissionsfactors(seeTable14),andthenumberofheadperspecies.Thenumberofheadperspeciesoflivestockgrazingwithintheprojectareaismonitoredpertherequirementsinsection9.3.2.Insomeprojects,emissionsfromgrazingmaybedeemeddeminimisasperVCSrequirements.MonitoringRequirements:LivestockGrazedintheProjectAreaThemonitoringreportmustincludethefollowing:MR.38Areportorrecordofthenumberoflivestockperspeciesoflivestock𝑛𝑛𝐿𝐿𝐿𝐿𝑖𝑖beinggrazedwithintheprojectareanLSi.MR.39EmissionsreleasedduetolivestockgrazingEPΔLS[m].MR.40CalculationstodetermineEPΔLS[m].Table14:IPCCDefaultEmissionFactorsforLivestockinDevelopedandDevelopingCountriesIPCCDefaultEmissionFactors(kgCH4head-1yr-1)LivestockDevelopedcountriesDevelopingcountriesBuffalo5555Sheep85Goats55Page103VM0009,Version3.0SectoralScope14Camels4646Horses1818MulesandDonkeys1010Deer2020Alpacas88Swine1.518.2.5CalcuatingN2OEmissionsfromtheUseofSyntheticFertilizersIfprojectactivitiesincludestheuseofsynthecitcnitrogenfertilzerstoimproveagriculturalyields,thenN2Oemissionsmustbequantified.UsetheCDMtoolEstimationofdirectandindirect(eg,leachingandrunoff)nitrousoxideemissionfromnitrogenfertilizationtocalculateemissionsreleasedduetouseofsyntheticfertilizerEPΔSF[m].MonitoringRequirements:SyntheticFertilizerintheProjectAreaThemonitoringreportmustincludethefollowing:MR.41Areportorrecordofthequantityofsyntheticfertilizerappliedintheprojectarea.MR.42EmissionsreleasedduetouseofsyntheticfertilizerEPΔSF[m].MR.43CalculationstodetermineEPΔSF[m].8.3LeakageThissectionistobeappliedseparatelyforeachidentifiedprojectaccountingarea.Activity-shiftingleakageresultsfromtheactivitiesoftheagentofconversionduetotheprojectactivitiesandappliestoallprojects.Marketleakageappliestoprojectsthatcauseareductioninthesupplyofcommodities(eitherlegallysanctioned,illegalorboth)inthebaselinescenario.Theapplicabilityofthesetypesofleakagedependsuponthebaselinetype.Emissionsfromactivity-shiftingleakagearecalculatedusingtheLeakageEmissionsModelandanactivity-shiftingleakagearea,whileemissionsfrommarketleakageareestimatedusingamarketleakageareaanddefaultvaluesspecifiedintheAFOLURequirements.Tocalculatemarketleakage,theprojectproponentmustuseeithertheproductionapproach(section8.3.3.4)ordiscountapproach(section8.3.3.3)asdeemedappropriatethroughtheflowchartinfigure13.Totalemissionsfromleakageforthecurrentmonitoringperiod𝐸𝐸𝐿𝐿Δ[𝑚𝑚]arecalculatedby[F.44].Thecumulativeemissionsfromleakageforthecurrentmonitoringperiodaregivenby[F.45],thesumPage104VM0009,Version3.0SectoralScope14ofcumulativeemissionsfromactivity-shiftingleakageinforeststrata𝐸𝐸𝐿𝐿𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚],theactivity-shiftingleakageingrasslandstrata𝐸𝐸𝐿𝐿𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚]andmarketleakage𝐸𝐸𝐿𝐿𝑀𝑀𝑀𝑀[𝑚𝑚]forthecurrentmonitoringperiod.Onceestimatedforthecurrentmonitoringperiod,thesecumulativeemissionsfromleakage𝐸𝐸𝐿𝐿[𝑚𝑚]arefixedforsubsequentmonitoringperiods.Ifmarketleakageisnotconsidered,thencumulativeemissionsfrommarketleakage𝐸𝐸𝐿𝐿𝑀𝑀𝑀𝑀[𝑚𝑚]shouldbesettozero(seesection8.3.3).Iftheemissionsfromactivity-shiftingleakageinforeststrata𝐸𝐸𝐿𝐿𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚],ingrasslandstrata𝐸𝐸𝐿𝐿𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚]ormarketleakage𝐸𝐸𝐿𝐿𝑀𝑀𝑀𝑀[𝑚𝑚]arenegative(indicating“negativeleakage”),thentheirvaluemustbesettozero.Ifthetotalemissionsfromleakageforthecurrentmonitoringperiodarenegative(indicating“negativeleakage”)thenthevalueof𝐸𝐸𝐿𝐿Δ[𝑚𝑚]shouldbesettozero.8.3.1LeakageMitigationStrategiesProjectsmustincludeactivitiesdesignedtoreduceecosystemconversionresultingfromatleastoneofthedriversidentifiedinsection6.1.Thetypesofactivitiesmostappropriatevarybasedonthespecificdriversidentified,aswellaslocalsocio-economicconditions.ProjectactivitiesmustnotresultinasignificantincreaseinprojectGHGemissions.EmissionsfromprojectactivitiesmustbeshowntobedeminimisusingeitherpeerreviewedliteratureortheuseoftheCDMA/RmethodologicalToolfortestingsignificanceofGHGemissionsinA/RCDMprojectactivities.Examplesoftheseactivitiesmayinclude,butarenotlimitedto:•Developingeconomicopportunitiesforlocalcommunitiesthatencourageprotection,suchasemploymentasprotected-areaguardsorecotourismguides.•Developingalternativeincomesnotderivedfromconversion.•Introducingimprovedagriculturalpracticesthatresultinadecreaseddemandfornewlyclearedland.•Developingsustainablemeansofproducingfuelwood.•Developingsustainably-producedtimbertoreplacesupplyeliminatedbyconservationofprojectlands.•Securelandtenuretoenableongoingsustainablemanagementoflandsorinvestmentinproductivecapacityoflands.Projectactivitiesmustbemonitoredtodemonstratetheireffectonleakagemitigation.Possiblemonitoringapproachesvarybyprojectandmayinclude:•Thenumberofpeoplethatdirectlybenefitfromtheactivity.•Thenumberofunitsdistributedasaresultofanactivity(suchasnumberoftrees,foodstuffs,vaccinesordollars).•Thetimedevotedtoimplementinganactivity.Page105VM0009,Version3.0SectoralScope14•Communitysurveysabouttheeffectivenessofanactivity.PDRequirements:LeakageMitigationStrategiesTheprojectdescriptionmustincludethefollowing:PDR.104Alistofprojectactivitiesdesignedtomitigateleakage.MonitoringRequirements:LeakageMitigationStrategiesThemonitoringreportmustincludethefollowing:MR.44Adescriptionofprojectactivitiesthathavebeenimplementedsincetheprojectstartdateandtheestimatedeffectsoftheseactivitiesonleakagemitigation.8.3.1.1CommodityProductionforLeakageMitigationMitigationactivitiescanavoidleakagebyincreasingproductionelsewhere,toreplaceproductionforgonebytheproject(seesection8.3.3.4).Also,mitigationactivitiescanreducedemandfortheforgonegoodsandservices.Anexampleofreplacingforgonesupplywouldbeaprojectthathelpsfarmersincreasecropproductivity,increasingthetotalamountofcropsproducedwithoutincreasingtheareafarmed.Anexampleofreducingdemandwouldbeconvertinglocalpeoplefrominefficientthree-stonehearthsforcookingtoefficientwoodstoves,allowingthesameamountoffoodtobecookedwithsubstantiallylessconsumptionoffuelwood.Foreachtypeofcommoditythatisbeingreducedorreplaced,amountsmustbemonitoredandverified.Amountsareproductionincreasedorconsumptiondecreased,noteffortoractivity.Forexample,wherefuelconsumptiondecreasedasaresultofaprogramthatgetsfamiliestoswitchfromopen-hearthcookingfirestoefficientstoves,theprojectproponentwouldhavetomonitorusageofstovesandfuel,andcalculatethereductionintheamountofwoodfuelconsumed.Itwouldnotbesufficienttomerelyreportthenumberofstovesdistributed.Therearetwoalternativeapproachestoquantifyingmitigation.Oneapproachistoimplementspecificactivitiesandmonitorthoseactivities.Forexample,aprojectcouldprovidetechnicalassistancetofarmersoraccesstohighyieldingseedsandmeasureincreasesincropyieldsonfarmsthatareassisted.Alternatively,totalproductioninthecountrycanbemonitored.If,acrosstheentirecountry,totalproductionofacategoryofgoodsremainsconstantorincreases,thentherewas100%replacementofthepredictedamountofforgoneproductionofthatcategoryofgoods.Page106VM0009,Version3.0SectoralScope14MonitoringRequirements:CommodityProductionforLeakageMitigationThemonitoringreportmustincludethefollowing:MR.45Alistofmitigationactivitiesreducedemandforforgonegoodsandservices.MR.46Quantitiesforthereductionorreplacementofgoodsandservicesiftheyareusedinsection8.3.3.4.MR.47Methodsformeasuringthereductionorreplacementofgoodsandservices.8.3.2EstimatingEmissionsfromActivity-ShiftingLeakageActivity-shiftingleakageisestimatedbydirectlyobservingconversion(and,inthecaseofforestbaselinetypes,degradation)intheactivity-shiftingleakagearea(seesection8.3.2.1).TheprojectproponentmustestablishleakageplotspertherequirementsinthissectionandinAppendixB.Theactivity-shiftingleakageareaisidentifiedbytheprojectproponentasanareatowhichactivity-shiftingleakageismostlikelytobedisplaced,andmustbemonitoredthroughouttheprojectlifetimeforleakagethatmaybecausedtotheprojectactivity.Intheinstancewherethereisnoaccessibleforestornativegrasslandfortheagentsofconversionotherthantheproject,thenactivity-shiftingleakagefromtheprojectcannotoccur.Inthisinstance,thereneednotbeanactivityshiftingleakagearea.ThiscanbedemonstratedusingthePRAand/orexpertknowledge,coupledtoanalysisofforested,nativegrasslandornativeshrublandareasaccessibletotheagentsofconversion,thosenearesttotheproject.Inallothercases,theremustbeoneactivityshiftingleakageareaforeachprojectaccountingarea.Cumulativeemissionsfromactivity-shiftingleakageforthecurrentmonitoringperiod𝐸𝐸𝐿𝐿𝐴𝐴𝐴𝐴[𝑚𝑚]areestimatedby[F.46]and[F.47]usingtheLeakageEmissionsModel.Onceverified,thisquantitybecomesfixedforsubsequentmonitoringperiods.Forthefirstmonitoringperiod,cumulativeemissionsfromactivity-shiftingleakage𝐸𝐸𝐿𝐿𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚]and𝐸𝐸𝐿𝐿𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚]arezero.Carbonstocksintheprojectaccountingareaandtheproxyarea,𝑐𝑐𝑃𝑃[𝑚𝑚]and𝑐𝑐𝐵𝐵[𝑚𝑚]arethesumofallselectedcarbonpoolsforthecurrentmonitoringperiod(tCO2e/ha).MonitoringRequirements:EstimatingEmissionsfromActivity-ShiftingLeakageThemonitoringreportmustincludethefollowing:MR.48Calculatedcumulativeemissionsfromactivity-shiftingleakageforthecurrentmonitoringperiod𝐸𝐸𝐿𝐿𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚],𝐸𝐸𝐿𝐿𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚]andsupportingcalculations.Page107VM0009,Version3.0SectoralScope14MR.49Calculatedcumulativeemissionsfromactivity-shiftingleakageforthepriormonitoringperiods𝐸𝐸𝐿𝐿𝐴𝐴𝐴𝐴[𝑚𝑚]and𝐸𝐸𝐿𝐿𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚].Ifanactivity-shiftingleakageareaisnotinstalled,thenincluderesultsfromtheparticipatoryruralappraisaland/orexpertknowledge,withananalysisofthenearestsuitableforestcoverforactivityshiftingleakage.8.3.2.1DelineatingtheActivity-ShiftingLeakageAreaTheactivity-shiftingleakageareamustbeinthesamegeneralregionastheprojectarea,butnotnecessarilyadjacenttotheprojectarea.Asoftheprojectstartdate,theactivity-shiftingleakageareamustbeentirelyunconverted(ie,inaforestornativegrasslandstate),andnolargerthantheprojectaccountingarea,ornolargerthanthegeographicareainthecaseofgroupedprojects.Theactivity-shiftingleakageareamustnotincludetheprojectareabutcanoverlapwiththereferencearea.Inmanycases,thereferenceareawillcontaintheactivity-shiftingleakagearea.Theactivity-shiftingleakageareamaynotbealteredafterthefirstmonitoringperiodunlessabaselinereevaluationistriggeredpersection6.20.Theactivity-shiftingleakageareamustbedelineatedpertherequirementsofAppendixD.If,uponapplicationofAppendixD,theresultantactivity-shiftingleakageareaissmallerthantheprojectaccountingareaorcannotbedefined(haszerosize),theprojectproponentmustprovideclearjustificationforthesizeofthearea.Thismaybethecaseiftheprojectproponentisprotectingthelastremainingforest,nativegrasslandornativeshrublandintheregionasaprojectactivity.Inthiscase,theremaybefewornoareastowhichtheagentscanshifttheiractivity.Forforeignagentswhoseactivitiesmaynotberestrictedtothegeneralregionoftheprojectarea,theprojectproponentmustshowthattheforeignagentsareunlikelytoshifttheiractivitiesoutsidetheactivity-shiftingleakagearea.Theboundariesoftheactivity-shiftingleakageareamayberevisedwithoutrequiringabaselinereevaluationifoneofthefollowingcriteriaismet:1.Conservationactivityisestablishedintheactivity-shiftingleakageareasuchthattheagentsofconversionnolongerhaveaccesstotheactivity-shiftingleakageareaoraportionthereof.2.Inthecaseofagroupedprojectwhereanewprojectactivityinstance(s)isaddedsuchthatanewactivity-shiftingleakageareamustbecreatedforitsassociatedprojectaccountingarea.Themonitoringreportmustreflectallchangestotheactivity-shiftingleakagearea.Inthecaseofforestsrefertosection8.3.2.3andfornativegrasslandsrefertosection8.3.2.4forrequirementsforeach.Page108VM0009,Version3.0SectoralScope14PDRequirements:DelineationoftheActivity-ShiftingLeakageAreaTheprojectdescriptionmustincludethefollowinginformationwithrespecttotheactivity-shiftingleakagearea:PDR.105Amapofthedelineatedboundaries.PDR.106Mapsofthelandscapeconfiguration,including:Topography(elevation,slope,aspect);Recentlanduseandlandcover(eitherathematicmapcreatedbytheprojectproponentorpubliclyavailablemap);Accesspoints;Soilclassmaps(ifavailable);Locationsofimportantmarkets;Locationsofimportantresourceslikewaterwaysorroads;andLandownership/tenureboundaries.PDR.107Anarrativedescribingtherationaleforselectionofactivity-shiftingleakageareaboundaries.Iftheactivity-shiftingleakageareaissmallerthantheprojectaccountingareaorcannotbedefined,justificationforthesizeofthearea.Ifforeignagentshavebeenidentifiedasanagentofconversion,justificationthattheyareunlikelytoshifttheiractivitiesoutsidetheactivity-shiftingleakagearea.PDR.108Resultsofaspatialanalysistodemonstratetheactivity-shiftingleakageareaisentirelyinanon-convertedstate(eg,forestedornativegrassland)asoftheprojectstartdate.PDR.109Resultsofaspatialanalysistodemonstratetheactivity-shiftingleakageareaisnolargerthantheprojectaccountingarea.MonitoringRequirements:ChangetotheActivity-ShiftingLeakageAreaThemonitoringreportmustincludethefollowingifthereisachangetotheactivity-shiftingleakagearea:MR.50Adescriptionandjustificationofthechangetotheactivity-shiftingleakagearea.MR.51Amapofthedelineatedboundaries.MR.52Mapsofthelandscapeconfiguration,including:Page109VM0009,Version3.0SectoralScope14Topography(elevation,slope,aspect);Recentlanduseandlandcover(eitherathematicmapcreatedbytheprojectproponentorpubliclyavailablemap);Accesspoints;Soilclassmaps(ifavailable);Locationsofimportantmarkets;Locationsofimportantresourceslikewaterwaysorroads;andLandownership/tenureboundaries.MR.53Anarrativedescribingtherationaleforselectionofactivity-shiftingleakageareaboundaries.Iftheactivity-shiftingleakageareaissmallerthantheprojectaccountingareaorcannotbedefined,justificationforthesizeofthearea.MR.54Resultsofaspatialanalysistodemonstratetheactivity-shiftingleakageareaisentirelyinanon-convertedstate(eg,forestedornativegrassland)asoftheprojectstartdate.MR.55Resultsofaspatialanalysistodemonstratetheactivity-shiftingleakageareaisnolargerthantheprojectaccountingarea.8.3.2.2TheLeakageEmissionsModelTheLeakageEmissionsModelgivenby[F.48]and[F.49]estimatescumulativeemissionsfromactivity-shiftingleakageandisbasedontheparameterizationof𝛼𝛼,𝛽𝛽and𝜃𝜃andothersfromsection6.7.Equation[F.48]isforforestedprojectaccountingareaswhile[F.49]isforgrasslandprojectaccountingareas.Uponbaselinereevaluation,theleakagemodelisupdatedtoreflectthere-parameterizationof𝛼𝛼,𝛽𝛽and𝜃𝜃(seesection6.20)andotherparametersremainunchangedpersection6.20.8.3.2.3Estimating𝒑𝒑𝑳𝑳𝑫𝑫𝑫𝑫𝑫𝑫[𝒎𝒎]forForestTheparameter𝑝𝑝𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷[𝑚𝑚]isestimatedatleasteveryfiveyearsusingAppendixBandmonitoringrequirements(seeAppendixB.2.8andsection9).Thisparametermustbeappliedateachmonitoringevent,includingforthefirstmonitoringperioddespitezeroleakage.AlthoughAppendixBdoesnotprescribesamplesizestoestimatethisparameter,itisintheprojectproponent’sbestinteresttochoosealargeenoughsamplesizeinordertominimizesamplingvariationthatmayresultinsuddenleakageevents.Conversionofasingleplotinthefifthmonitoringperiod,forexample,wouldhaveasignificanteffectonthisparameteriftheprojectproponentonlymonitored15leakageplots.Page110VM0009,Version3.0SectoralScope14MonitoringRequirements:Estimating𝑝𝑝𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷Themonitoringreportmustincludethefollowing:MR.56Theestimatedvalue𝑝𝑝̂𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷[𝑚𝑚]forthecurrentmonitoringperiodandsupportingcalculations.MR.57Thecalculatedvalue𝑝𝑝̂𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷[𝑚𝑚=0]calculatedforthefirstmonitoringperiod.8.3.2.4Estimating𝒑𝒑𝑳𝑳𝑪𝑪𝑪𝑪𝑪𝑪𝑮𝑮[𝒎𝒎]forGrasslandsTheparameter𝑝𝑝𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝐺𝐺[𝑚𝑚]isestimatedatleasteveryfiveyearsusingAppendixBandmonitoringrequirements(seeAppendixB.2.11andsection9).Thisparametermustbeappliedeachmonitoringeventincludingforthefirstmonitoringperioddespitezeroleakage.AlthoughAppendixBdoesnotprescribesamplesizestoestimatethisparameter,itisintheprojectproponent’sbestinteresttochoosealargeenoughsamplesizeinordertominimizesamplingvariationthatmayresultinsuddenleakageevents.Conversionofasingleplotinthefifthmonitoringperiod,forexample,wouldhaveasignificanteffectonthisparameteriftheprojectproponentonlymonitored15leakageplots.MonitoringRequirements:Estimating𝑝𝑝𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝐺𝐺Themonitoringreportmustincludethefollowing:MR.58Theestimatedvalue𝑝𝑝̂𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝐺𝐺[𝑚𝑚]forthecurrentmonitoringperiodandsupportingcalculations.MR.59Thecalculatedvalue𝑝𝑝̂𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝐺𝐺[𝑚𝑚=0]calculatedforthefirstmonitoringperiod.8.3.3DeterminingEmissionsfromMarketLeakageMarketleakageoccurswhenproductionofcommodities–mostlikelytimberoragriculturalproducts–shiftselsewheretomakeupforthelostsupplyresultingfromprojectactivities.Marketleakageisthatwhichisnotdirectlycausedbytheagentsofconversion,butistheconsequenceofsupplyanddemandeffectsinthenationalcommoditymarket.Forexample,areductioninsupplyofwoodproductsmayresultinincreasedloggingelsewherewithinnationalboundaries.TheprojectproponentmustaccountforthisshiftinproductionpercurrentAFOLURequirementsandtheflowchartprovidedinFigure12.Applysections8.3.3.2,8.3.3.3and8.3.3.4ofthismethodologyaccordingtotheflowchart.Whentheagentsanddriversofconversiononlyuselandconvertedinthebaselineforsubsistence,nomarketleakagewilloccurasaresultoftheproject,andpotentialleakage,ifany,Page111VM0009,Version3.0SectoralScope14isrestrictedtotheactivity-shiftingtype(seesection8.3.2).Ifemissionsfrommarketleakagedonotneedtobeaccountedfor,thecumulativeemissionsfrommarketleakage𝐸𝐸𝐿𝐿𝑀𝑀𝑀𝑀[𝑚𝑚]foreverymonitoringperiodwillbezero.Commoditiesproducedforexportoutsidethecountryoforigindonotneedtobeconsidered,perAFOLURequirements.Ifthereisnochangeinmarketcommoditiesduetotheproject,marketleakagedoesnotoccurandneednotbeaccountedfor.InbaselinetypesF-P1.aandF-P1.b,marketleakageispartiallyaneffectofthereductionintimberharvestedfromtheprojectarea.Inthecasethatallavailablecomparableconcessions(thosewithequivalentorsubstitutableproducts)withinthesamenationalboundarieshavebeenallocated,andalllegallysanctionedoperatorsarecuttingtothemaximumallowablelimit,thenthesupplyoflegaltimberfromthenationalmarketisfixed.Inthiscase,thereisnomoretimberlegallyavailableforharvest,andsoachangeintheharvestvolumetomeetdemandcannotoccur.Iftherearebarrierstoanalterationoftherateofillegalloggingwhichfollowslegallogging(ie,primaryandsecondaryagents)orillegalloggingcannotincreaseinthesamecountry,thenleakagefromillegalloggingmaybedeminimisornotoccur.If,ontheotherhand,comparableconcessionsareavailableorotherlegalorillegaloperatorscanincreasetheirharvestvolumes,thenleakagecanoccurasaresultoftheproject.Inthiseventuality,projectproponentsmustapplythediscountapproachtodeterminemarketleakagefromwoodproducts(section8.3.3.3)andtheproductionapproach(section8.3.3.4)forothercommodities.Theproponentmustdemonstratethatnoleakagehasoccurredinsidetheprojectproponent’sownershippersection8.3.3.1.MonitoringRequirements:DeterminingEmissionsfromMarketLeakageThemonitoringreportmustincludethefollowing:MR.60Theselectedapproachtodeterminingemissionsfrommarketleakage.MR.61Estimatedcumulativeemissionsfrommarketleakageforthecurrentmonitoringperiod𝐸𝐸𝐿𝐿𝑀𝑀𝑀𝑀[𝑚𝑚]andsupportingcalculations.MR.62Calculatedcumulativeemissionsfrommarketleakageforthepriormonitoringperiods𝐸𝐸𝐿𝐿𝑀𝑀𝑀𝑀[𝑚𝑚].Page112VM0009,Version3.0SectoralScope14Figure12:DecisionTreetoDetermineMrketLeakageApproach.Page113VM0009,Version3.0SectoralScope148.3.3.1EnsuringNoLeakageWithinProjectProponent’sOwnershipTheprojectproponentmustdemonstratethatnoleakageoccursoutsidetheprojectareabutwithintheprojectproponent’soperations,includingareaswheretheprojectproponentowns,manages,orhaslegallysanctionedrightstouselandwithinthecountrywheretheprojectislocated.Theprojectproponentmustidentifyotherlocationsunderitscontrolandshowthatmanagementplansandland-usedesignationshavenotchangedasaresultoftheproject.Incaseswheretheprojectproponentisanentitywithaconservationmission,thisrequirementmaybesatisfiedwithdocumentedevidencethatitisagainsttheorganization’spolicytochangethelanduseofotherownedandmanagedlands,alongwithevidencethatsuchapolicyhasbeenfollowedhistorically.MonitoringRequirements:EnsuringNoLeakageWithinProjectProponent’sOwnershipThemonitoringreportmustincludethefollowing:MR.63Providelocation-by-locationevidencethatmanagementplansandland-usedesignationsofallareasundertheprojectproponent’scontrolwithinthecountryhavenotchangedasaresultoftheproject.Forentitieswithaconservationmission,provideevidenceoftheorganization’spolicynottochangethelanduseofotherownedandmanagedlands,andevidenceofcompliancewithsuchapolicy.8.3.3.2EnsuringConstancyofBaselineOperatorManagementForbaselinetypesF-P1.aF-P-1.b,F-P2andG-P2,ifthespecificagentofconversionisknown,themanagementplanand/orland-usedesignationsforthebaselineagent’sotherlandsmustbedemonstratedtohavebeenunchangedduetoprojectimplementation.MonitoringRequirements:EnsuringConstancyofBaselineOperatorManagementThemonitoringreportmustincludethefollowing:MR.64ProvideevidenceintheformofGISimagery,PRAevidence,orthebaselineoperator’smanagementplanthatmanagementplansorland-usedesignationshavenotchangedinthebaselineoperator’sotherlands.8.3.3.3DiscountApproachforWoodProductsIftheprojectsthataffectthesupplyofwoodproducts,leadtoincreasedGHGemissionsinotherlocationsinthesamecountry,thenmarketleakagehasoccurred.Thediscountapproachtodeterminingemissionsisoneofthreemethodstodetermineadiscountfactor𝑝𝑝𝐿𝐿𝑀𝑀𝑀𝑀:Page114VM0009,Version3.0SectoralScope141.Usethemostconservativediscountfactorof0.7fromTable7,2.QuantifytheratioofmerchantablebiomasstobiomassinamarketleakageareaanduseTable7,or3.Identifyandjustifyadiscountfactorusingpeer-reviewpublication,governmentpublicationorscientificliterature.Ifnecessary,establishthemarketleakageareapersection8.3.3.3.1.Inthemarketleakagearea,estimate𝑐𝑐𝐿𝐿𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴and𝑐𝑐𝐿𝐿𝐵𝐵𝐵𝐵,where𝑐𝑐𝐿𝐿𝐵𝐵𝐵𝐵isgivenby[F.50]andℬisthesetofallselectedcarbonpoolsinbiomass(fromAGMT,AGOT,AGNT,BGMT,BGOTandBGNT).TheseestimatesmustbeestablishedatthetimeofvalidationusingAppendixBorliterature.Cumulativeemissionsfrommarketleakagearequantifiedby[F.51].Table6:MarketDiscountFactorsbyProportionofMerchantableBiomass(ie,marketleakageareatoprojectarea)𝒑𝒑𝑳𝑳𝑴𝑴𝑴𝑴Condition0.1Projectactivityleadstoashiftinharvestsacrosstimeperiodsbutminimalchangeintotaltimberharvestovertime0.2𝑐𝑐𝐿𝐿𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝐿𝐿𝐵𝐵𝐵𝐵>𝑐𝑐𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚=1]𝑐𝑐𝑃𝑃𝐵𝐵𝐵𝐵[𝑚𝑚=1]0.4𝑐𝑐𝐿𝐿𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝐿𝐿𝐵𝐵𝐵𝐵>𝑐𝑐𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚=1]𝑐𝑐𝑃𝑃𝐵𝐵𝐵𝐵[𝑚𝑚=1]+0.150.4𝑐𝑐𝐿𝐿𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝐿𝐿𝐵𝐵𝐵𝐵<𝑐𝑐𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚=1]𝑐𝑐𝑃𝑃𝐵𝐵𝐵𝐵[𝑚𝑚=1]−0.150.7𝑐𝑐𝐿𝐿𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝐿𝐿𝐵𝐵𝐵𝐵<𝑐𝑐𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚=1]𝑐𝑐𝑃𝑃𝐵𝐵𝐵𝐵[𝑚𝑚=1]Ifthelowestfactorinthetableisselected,itmustbejustifiedbytheprojectproponent.PDRequirements:DeterminingtheMarketDiscountFactorTheprojectdescriptionmustincludethefollowing:PDR.110Theselecteddiscountfactor𝑝𝑝𝐿𝐿𝑀𝑀𝑀𝑀.PDR.111Calculationsof𝑐𝑐𝐿𝐿𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴inthemarketleakagearea,includingreferencestoliteratureifcited.Page115VM0009,Version3.0SectoralScope14Ifthelowestdiscountfactor(0.1)isselectedfromTable7orisnotdeterminedusingamarketleakagearea(suchasfromliterature),theprojectdescriptionmustincludethefollowing:PDR.112Justificationfortheselectionofthediscountfactor.8.3.3.3.1DelineatingtheMarketLeakageAreaThemarketleakageareamustbeinthesamecountryastheprojectarea,butnotnecessarilyadjacenttotheprojectarea.Asoftheprojectstartdate,themarketleakageareamustbeentirelyun-converted(ie,stillforestornativegrassland)andbeaslargeasorlargerthantheprojectaccountingarea.Themarketleakageareamustnotincludetheprojectareaorthereferencearea.Themarketleakageareamustnotbealteredafterthetimeofvalidation.PDRequirements:DelineationoftheMarketLeakageAreaTheprojectdescriptionmustincludethefollowinginformationwithrespecttothemarketleakageareaifsuchanareaisdefined:PDR.113Amapofthedelineatedboundaries.PDR.114Mapsofthelandscapeconfiguration,including:•Topography(elevation,slope,aspect);•Recentlanduseandlandcover(eitherathematicmapcreatedbytheprojectproponentorpubliclyavailablemap);•Accesspoints;•Soilclassmaps(ifavailable);•Locationsofimportantmarkets;•Locationsofimportantresourceslikewaterwaysorroads;and•Landownership/tenureboundaries.PDR.115Anarrativedescribingtherationaleforselectionofmarketleakageareaboundaries.PDR.116Resultsofaspatialanalysistodemonstratethemarketleakageareaisentirelyforestedasoftheprojectstartdate.PDR.117Resultsofaspatialanalysistodemonstratethemarketleakageareaisaslargeorlargerthantheprojectaccountingarea.Page116VM0009,Version3.0SectoralScope148.3.3.4ProductionApproachforOtherCommoditiesIfchangeshaveoccurredinthesupplyofmarketcommoditiesorwoodproducts,thenmarketleakagehasoccurred.Ifthecommoditiesareonlywoodproducts,thenthediscountapproach(section8.3.3.3)ortheproductionapproachmaybeusedtocalculateleakage.However,ifthecommoditiesincludeanycommoditiesotherthanwoodproducts,theproductionapproachmustbeusedtocalculatemarketleakage.Tocalculatemarketleakageusingtheproductionapproach,applytheVCSGlobalCommodityLeakageModule:ProductionApproachandtherelevantcriteriaandproceduresfromtheassociatedJNRLeakageTool.Suchmoduleandtoolmustbeappliedinamannerappropriatetoproject-levelapplication.WhereVCSissuesarelevantproject-levelleakagetoolandproductionapproachleakagemodule,projectproopnentsmustapplythelatestversionofsuchmoduleandtherelevantcriteriaandproceduresfromtheassociatedtool.ForuseoftheVCSproductionapproach,thetotalareaofavoidedconversionofforesttonon-forestandavoidedconversionofnativegrasslandtonon-grasslandmustbecalculated,whichasstatedabove,isreferredtointheabove-mentionedVCSleakagetoolgenerallyas“areaofavoideddeforestation.”Tocalculatethe“areaofavoideddeforestation”𝐴𝐴𝐵𝐵Δ𝑃𝑃𝑃𝑃𝑃𝑃[𝑚𝑚]referencedinthetool,use[F.52].Thecumulativeemissionsfrommarketleakageforthepriormonitoringperiods𝐸𝐸𝐿𝐿𝑀𝑀𝑀𝑀[𝑚𝑚]mustbethesumofallcalculatedmarketleakageperthetool,acrossallcurrentandpriormonitoringperiods.Itisimportanttonotethatthemethodologyaccountsformarketleakageonacumulativebasiswhilethetoolonamonitoringperiodbasis(hencetheΔinthesubscriptof𝐴𝐴𝐵𝐵Δ𝑃𝑃𝑃𝑃𝑃𝑃[𝑚𝑚]).Ifnocarbonpoolsinbiomassareselected(seesection5.4)thenlet𝑐𝑐𝑃𝑃𝐵𝐵𝐵𝐵[𝑚𝑚]−𝑐𝑐𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚]=1in[F.52]andthecalculationof𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚].8.4SummaryofGHGEmissionReductionsand/orRemovalsToquantifyNERs,firstquantifyGERsincludingtheconfidencededuction(ifany)andsubtractthebufferaccountallocation.Forvalidationandplanningpurposes,ex-anteestimatesmaybegenerated(seesections8.4.1and8.4.3).Ex-anteestimatesarenoteligibleforcrediting(seesection8.4.7).Thesequantitiesshouldbecalculatedforeachprojectaccountingarea.Ifmultipleprojectaccountingareasexistintheprojectarea,thenNERsshouldbesummedacrossprojectaccountingareaspersection8.4.5.8.4.1QuantifyingGrossEmissionsReductionsTheGERsforamonitoringperiod[𝑚𝑚]andprojectaccountingareaarequantifiedas[F.53].QuantifiedGERsshouldberoundeddowntothenearestwholenumber.Page117VM0009,Version3.0SectoralScope14Figure13:HypotheticalGraphofGrossEmissionsReductionsOverTime.ThisfigurerepresentshypotheticalGERsovertime,wherethedifferencebetweentheprojectandthebaselinestocksaretheGERs,andmonitoredproxystocksdeterminethelowestpossiblestocksinthebaseline.ThetemporarydropinGERsinyear40ofthisgraphrepresentsamajoremissionseventsuchasfireorhurricanethatresultedinaneffluxofGHGgasesfromtheproject.Thishypotheticalgraphdoesnotshowdiscountsforleakageoruncertainty.Page118VM0009,Version3.0SectoralScope14MonitoringRequirements:QuantificationofGERsThemonitoringreportmustincludethefollowing:MR.65QuantifiedGERsforthecurrentmonitoringperiodincludingreferencestocalculations.MR.66QuantifiedGERsforthepriormonitoringperiod.MR.67AgraphofGERsbymonitoringperiodforallmonitoringperiodstodate.8.4.1.1DeterminingDeductionsforUncertaintyTheconfidencededuction𝐸𝐸𝑈𝑈[𝑚𝑚]isdeterminedby[F.57],whichisalinearcombinationofweightedstandarderrorsofestimatesfrombaselineemissionsmodelsandcarbonstockmeasurements.Theconfidencedeductionisnotbasedonpropagationoferror.Iftheconfidencededuction𝐸𝐸𝑈𝑈[𝑚𝑚]isnegative,thenitshouldbesettozero.MonitoringRequirements:ConfidenceDeductionThemonitoringreportmustincludethefollowing:MR.68Theconfidencededuction𝐸𝐸𝑈𝑈[𝑚𝑚]andestimatedstandarderrorsusedtodeterminetheconfidencededuction.MR.69Referencetocalculationsusedtodeterminetheconfidencededuction.8.4.1.2UsingaLinearModelforGrossEmissionsReductionsAlinearmodelforGERsmaybeusedforprojectaccountingareaswithbaselinetypeF-U1orG-U1iftheGERspredictedbythelinearmodelareconservativelylessthanGERsquantifiedby[F.53]foreachprojectaccountingarea.AlinearmodelforGERsmaybeoptionallyusedforotherprojectaccountingareasaslongastheGERsgeneratedbythelinearmodelareconservativelylessthanGERsquantifiedby[F.53]foreachprojectaccountingarea.Whenusingalinearmodel,thequantifiedGERsmustberoundeddowntothenearestwholenumber.ThelinearmodelmaychangefrommonitoringperiodtomonitoringperiodaslongastheGERspredictedbythelinearmodelareconservativelylessthan[F.53],andemissionsattimezeroarezero(ie,themodelinterceptiszero).Page119VM0009,Version3.0SectoralScope14MonitoringRequirements:QuantificationofNERsUsingaLinearModelThemonitoringreportmustincludethefollowingifalinearmodelisselected:MR.70ThelinearmodelusedtogenerateGERsforthecurrentmonitoringperiod.MR.71AgraphofGERsfromthelinearmodelbymonitoringperiodforallmonitoringperiodstodatethatusedalinearmodel.8.4.2DeterminingReversalsIntheeventthatthequantifiedGERsforanymonitoringperiodarenegativeasaresultofcarbonstocklosses,theprojectproponentmustfollowtheVCSproceduresforlossevents.Ifsubsequenttobaselinereevaluationpersection6.20,thenewbaselineemissionsmodelsfallbelowtheoldmodelthisdoesnotconstituteareversal.Rather,ifcreditsweregeneratedfromavoidedconversionpriortobaselinereevaluationatalevelgreaterthanpredictedbythenewbaselinemodelafterbaselinereevaluation,thentheprojectproponentmaynotgenerateanynewcreditsfromavoidedconversionuntilthenewbaselineemissionsmodelsreachesthepreviouslevelofpredictedconversionthatgeneratedthesecredits.Attheendoftheprojectcreditingperiod,theprojectproponentmustestimatethefinallevelofcumulativebaselineemissionsusingthemostcurrentbaselineemissionsmodelandusethisestimatetoquantifythetotalnumberofcumulativecreditsperequation[F.53].Ifthisestimateisgreaterthanthenumberofcreditsissuedduringtheprojectcreditingperiod,thenthisdifferencemustbeaddressedthroughtheAFOLUPooledBufferAccount.MonitoringRequirements:ReversalEventThemonitoringreportmustincludethefollowingifthereisareversal:MR.72Adescriptionofthereversalincludingwhichpoolscontributedtothereversalandreasonsforitsoccurrence.8.4.2.1DeterminingReversalsasaResultofBaselineReevaluationIfimmediatelyuponbaselinereevaluationGERsforthecurrentmonitoringperiod𝐸𝐸ΔGER[𝑚𝑚](asdeterminedby[F.53])arenegative,thiseventdoesnotconstituteareversaliftheprojectproponentcandemonstratethatthiseventwascausedbynewdataobservedinthereferencearea.Howeverifthiseventisnotareversal,theprojectisnoteligibleforcreditinguntilthesumofGERsto-date𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺[𝑚𝑚]asdeterminedby[F.54]areonceagainpositive.Page120VM0009,Version3.0SectoralScope14IfafterbaselinereevaluationGERsforsubsequentmonitoringperiodsafterthemonitoringperiodimmediatelyfollowingthebaselinereevaluationarenegative,thoseGERs𝐸𝐸Δ𝐺𝐺𝐺𝐺𝐺𝐺[𝑚𝑚]constitutereversals.MonitoringRequirements:ReversalEventasaResultofBaselineReevaluationThemonitoringreportmustincludethefollowingifthereisareversalasaresultofbaselinereevaluation:MR.73Adescriptionofthereversalincludingasummaryofnewdataobtainedinthereferencearea.8.4.3QuantifyingNetEmissionsReductionsforaPAAThetotalNERsgeneratedduringamonitoringperiod[𝑚𝑚]aredeterminedby[F.55],whichareGERsminusbufferaccountallocation.MonitoringRequirements:QuantificationofNERsforaPAAThemonitoringreportmustincludethefollowing:MR.74QuantifiedNERsforthecurrentmonitoringperiodincludingreferencestocalculations.MR.75QuantifiedNERsforthepriormonitoringperiod.MR.76AgraphofNERsbymonitoringperiodforallmonitoringperiodstodate.8.4.4DeterminingBufferAccountAllocationDeterminingtheallocationofGERstothebufferaccountshouldconformtocurrentVCSrequirements.ThoseGERsallocatedtothebufferaccountaredenotedby𝐸𝐸𝐵𝐵𝐵𝐵[𝑚𝑚].MonitoringRequirements:BufferAccountThemonitoringreportmustincludethefollowing:MR.77ReferencetotheVCSrequirementsusedtodeterminethebufferaccountallocation.MR.78Referencetocalculationsusedtodeterminethebufferaccountallocation.Page121VM0009,Version3.0SectoralScope148.4.5QuantifyingNetEmissionsReductionsacrossPAAsInthecasewheretherearemultipleprojectaccountingareasinasingleprojectarea,theNERsforeachprojectaccountingareawillbequantifiedindividually,andthensummedtodeterminethetotalNERsforthecurrentmonitoringperiodfortheproject.MonitoringRequirements:QuantificationofNERsacrossPAAsThemonitoringreportmustincludethefollowing:MR.79QuantifiedNERsforthecurrentmonitoringperiodincludingreferencestocalculations.MR.80QuantifiedNERsforthepriormonitoringperiod.MR.81AgraphofNERsbymonitoringperiodforallmonitoringperiodstodate.8.4.6DeterminingVintagesinaMonitoringPeriodWhenthecurrentmonitoringperiodspansmorethanonecalendaryear,NERsmustbeallocatedbyyearproportionaltothenumberofcalendarsdaysineachyearrelativetothetotalnumberofdaysinthecurrentmonitoringperiod.MonitoringRequirements:VintagesThemonitoringreportmustincludethefollowing:MR.82QuantifiedNERsbyvintageyearforthecurrentmonitoringperiodincludingreferencestocalculations.8.4.7Ex-AnteEstimationofNERsUndertheVCS,ex-anteestimatesofthenetcarbonbenefitsoftheprojectareonlyrequiredtodeterminewhetherdecreasesincarbonpoolsorincreasesinGHGemissionsareinsignificantandneednotbemeasuredandmonitored.Additionally,ex-anteestimatesofprojectbenefitsmaybeusefultoprojectproponentsforplanningpurposes.Usetheprojectcreditingperiodtoestimateex-anteprojectbenefits.Themostsignificantfactorinestimatingprojectcarbonbenefitsislikelytobeanestimateofavoidedbaselineemissions,whichisderivedfromanestimateofcarbonstocksandthebaselinemodels.Estimatesofex-anteavoidedbaselineemissionscanbemadebyassumingthatthetotalcarbonstockintheprojectareaisequaltotheinitialcarbonstockforeachfuturemonitoringperiod.Thisconservativelyignoresgrowthoftheexistingforestornativegrassland,assumingthateachcarbonpoolisatasteadystatepriortoprojectinitiation.TheprojectedavoidedPage122VM0009,Version3.0SectoralScope14baselineemissionsareestimatedbyapplyingthebaselineemissionsmodelsasdescribedinsections6wheremonitoringperiod[𝑚𝑚]alwaysindicatestheinitialcarbonstockorIPCCdefaults.Ifprojectactivitiesincludewoodybiomassburning,controlledgrasslandburning,orthesustainableproductionofcharcoalorlogging,estimatesofemissionsduetotheseactivitiesshouldbeincludedintheex-anteestimateofprojectbenefitsusingtheproceduresinsections8.4.1and8.4.3.Theprojectproponentmayassumethatthedemandforcharcoalremainsconstantataratedeterminedpriortoprojectimplementation.Becauseex-antedataforleakagemonitoringareunlikelytobeavailable,ex-anteestimatesofleakageshouldbeestimatedusingexpertknowledgeand,ifavailable,experiencewithpastprojects.Forthepurposeofassessingthesignificanceofdecreasesincarbonpoolsorincreasesofemissionsduetoprojectactivities,itisconservativetounderestimateavoidedbaselineemissionsandoverestimateleakageandprojectemissionsinex-anteestimatesofcarbonbenefits.Usingtheassumptionsoutlinedabove,estimatetheex-anteNERs𝐸𝐸Δ𝑁𝑁𝑁𝑁𝑁𝑁[𝑚𝑚]foreachmonitoringperiod[𝑚𝑚]as[F.55]where𝐸𝐸Δ𝐺𝐺𝐺𝐺𝐺𝐺[𝑚𝑚]isGERsforthecurrentmonitoringperiod,𝐸𝐸𝑈𝑈[𝑚𝑚]istheconfidencedeductionand𝐸𝐸𝐵𝐵𝐵𝐵[𝑚𝑚]isthebufferaccountallocation.Reportingofex-anteestimatesisonlyrequirediftheprojectproponentdemonstratesthatacarbonpoolisexpectedtoincreaseinthebaselineoraprojectemissionssourceisexcludedfromaccountingunderthedeminimisrule.PDRequirements:Ex-AnteEstimationofNERsInthecasewhenex-anteestimatesareusedtoprovethesignificanceofemissionssourcesorestimatethequantityofNERsovertheprojectcreditingperiod,theprojectdescriptionmustincludethefollowing:PDR.118Theprojectedavoidedbaselineemissions,projectemissionsandleakageforeachmonitoringperiodandvintageyearoverthelifetimeoftheproject.PDR.119Anarrativedescriptionofsourcesusedtoestimatetheleakagerateanddemonstrationthattheestimatedrateisconservative.PDR.120Ifincludedinprojectactivities,adescriptionofproceduresusedtoestimatetherateofbiomassburning,charcoalproductionorlogginganddemonstrationthattheseestimatesareconservative.8.4.8EvaluatingProjectPerformanceProjectperformancemustbeevaluatedeachmonitoringeventanddeviationsfromex-anteNERsmustbedescribed.Deviationsincreditgenerationfromex-anteestimatesmayresultfromPage123VM0009,Version3.0SectoralScope14changesinthequalityofdata(literatureestimatesversuscarbonstockestimates),occurrenceofdisturbanceeventsorbaselinere-evaluation.MonitoringRequirements:EvaluatingProjectPerformanceThemonitoringreportmustincludethefollowing:MR.83ComparisonofNERspresentedforverificationrelativetoNERsfromex-anteestimates.MR.84Descriptionofthecauseandeffectofdeviationsfromex-anteestimates.9MONITORINGTheproceduresappropriateforestimatingthecarbonstockineachpooltobemonitoredaredetailedinAppendixB.Theyprovideameansofestimatingthetotalcarbonstockinselectedpoolswithintheprojectaccountingareaandtheuncertaintyofthatestimateatagivenpointintime.Theseproceduresareusedbothforestablishingtheinitialcarbonstockwithintheprojectaccountingareaandthecarbonstockateachmonitoringevent[𝑚𝑚].ProjectproponentsmaydeviatefromtheproceduresdetailedinAppendixBpercurrentVCSrequirement,includingadescriptionofthedeviationandjustificationforthedeviation.Inadditiontomonitoringcarbonstocks,projectproponentsmustmonitorspeciesandheadsoflivestockwithintheprojectareatodeterminegreenhousegasemissionsfromgrazingactivities.TheproceduresforthemeasurementoflivestockheadsaredetailedinAppendixB.ProjectproponentsmaydeviatefromtheproceduresdetailedinAppendixBpercurrentVCSrequirement,includingadescriptionofthedeviationandjustificationforthedeviation.9.1DataandParametersAvailableatValidationSee,belowforacompletelistofallvariables,dataandparametersandadescriptionofthefrequencyofmonitoringforeach,thesevariablesarealsoshowninAppendixG.ThesearetheonlyvariablesthatmustbereportedinthePD.Data/Parameter𝛼𝛼DataunitUnitlessDescriptionCombinedeffectsof𝛽𝛽and𝜃𝜃atthestartofthehistoricreferenceperiodEquations[F.3],[F.5],[F.6],[F.8]SourceofdataReferenceareaandhistoricreferenceperiodValueappliedPage124VM0009,Version3.0SectoralScope14JustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedTimeandplaceinwhichthelogisticmodelisfit.PurposeofDataCommentsData/Parameter𝛽𝛽DataunitUnitlessDescriptionEffectoftimeonthecumulativeproportionofconversionovertimeEquations[F.2],[F.3],[F.4],[F.5],[F.6],[F.7],[F.8]SourceofdataReferenceareaandhistoricreferenceperiodValueappliedJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedTimeandplaceinwhichthelogisticmodelisfit.PurposeofDataCommentsData/Parameter𝛾𝛾DataunitDaysDescriptionTimeshiftfrombeginningofhistoricreferenceperiodtoprojectstartdateEquations[F.3],[F.6]SourceofdataHistoricreferenceperiodValueappliedJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedTimeinwhichthelogisticmodelisfit.PurposeofDataCommentsData/Parameter𝜃𝜃DataunitUnitlessPage125VM0009,Version3.0SectoralScope14DescriptionEffectofcertaincovariatesonthecumulativeproportionofconversionovertimeEquations[F.2],[F.3],[F.4],[F.5],[F.6],[F.7],[F.8]SourceofdataReferenceareaandhistoricreferenceperiodValueappliedJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedTimeandplaceinwhichthelogisticmodelisfit.PurposeofDataCommentsData/Parameter𝜆𝜆𝑆𝑆𝑆𝑆𝑆𝑆DataunitProportion(unitless)DescriptionExponentialsoilcarbondecayparameterEquations[F.9],[F.33]SourceofdataDefaultvalues,literatureestimatesorempiricalestimationbasedonreferenceareasamplingValueappliedJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedAconservativedefaultorvaluesderivedfromdirectmeasurementbytheprojectproponentorfromtheliteratureareacceptable.PurposeofDataCommentsData/Parameter𝜎𝜎�𝐸𝐸𝐸𝐸DataunitStandarddeviation(unitless)DescriptionTheestimatedstandarddeviationofthestateobservationsusedtofitthelogisticfunctionEquations[F.12],[F.14],[B.31]SourceofdataRemotesensingimageinterpretationValueappliedJustificationofchoiceofdataordescriptionofPage126VM0009,Version3.0SectoralScope14measurementmethodsandproceduresappliedPurposeofDataCommentsData/ParameterℬDataunitSetDescriptionThesetofallselectedcarbonpoolsinbiomass.Isasubsetof𝒞𝒞Equations[F.17],[F.18],[F.23],[F.50]SourceofdataPDDValueappliedJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedPurposeofDataCommentsData/Parameter𝒞𝒞DataunitSetDescriptionThesetofallselectedcarbonpoolsEquationsSourceofdataMonitoringrecordsValueappliedJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedPurposeofDataCommentsData/ParameterℐDataunitSetPage127VM0009,Version3.0SectoralScope14DescriptionThesetofallobservationsofconversion.Whensuperscriptedwithamonitoringperiod,theconversionobservationsaretakenforleakageanalysisEquations[F.13]SourceofdataRemotesensingimageinterpretationorfieldobservationsintheleakageareaValueappliedJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedPurposeofDataCommentsData/ParameterℳDataunitSetDescriptionThesetofallmonitoringperiodsEquations[F.32],[F.33],[F.36],[F.54],[F.56]SourceofdataMonitoringrecordsValueappliedJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedPurposeofDataCommentsData/Parameter𝒯𝒯DataunitSetDescriptionThesetofallspecies/categoriesoflivestockEquations[F.43]SourceofdataMonitoringrecordsValueappliedJustificationofchoiceofdataordescriptionofPage128VM0009,Version3.0SectoralScope14measurementmethodsandproceduresappliedPurposeofDataCommentsData/Parameter𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃DataunithaDescriptionAreaofprojectaccountingareaEquations[F.2],[F.3],[F.4],[F.5],[F.6],[F.7],[F.8],[F.41],[F.52],[F.57]SourceofdataGISanalysispriortosamplingValueappliedJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedPurposeofDataCommentsData/Parameter𝐴𝐴𝑃𝑃𝑃𝑃DataunithaDescriptionAreaofproxyareaEquations[F.57]SourceofdataGISanalysispriortosamplingValueappliedJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedPurposeofDataCommentsData/Parameter𝑐𝑐𝐿𝐿𝑝𝑝DataunittCO2e/haDescriptionCarbonstocksinprojectleakageareaEquations[F.50]Page129VM0009,Version3.0SectoralScope14SourceofdataLeakageareasamplingValueappliedJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedDirectmeasurementPurposeofDataCommentsData/Parameter𝑓𝑓𝐿𝐿𝐿𝐿𝑖𝑖DataunitkgCH4head-1yr-1DescriptionEmissionfactorforthedefinedlivestockpopulation,𝑖𝑖Equations[F.43]SourceofdataIPCCdefaultvaluesValueappliedJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedObtaineddirectlyfromIPCCdefaultvalues.PurposeofDataCommentsData/Parameter𝑚𝑚DataunittCO2e/yrDescriptionAveragecarboninmerchantabletreescuteachyearasaresultoflegally-sanctionedcommercialloggingEquations[F.2]SourceofdataTimberharvestplansormeasurementofcarbonstocksinmerchantabletreesintheprojectaccountingareaValueappliedJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedShouldusethemostaccurateofthetwodatasourcesifbothareavailablePurposeofDataCommentsPage130VM0009,Version3.0SectoralScope14Data/Parameter𝑛𝑛𝑑𝑑DataunitDescriptionNumberofspatialpointsinthereferenceareaEquations[F.14]SourceofdataRemotesensingimageinterpretationValueappliedJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedPurposeofDataCommentsData/Parameter𝑜𝑜𝑖𝑖DataunitBinaryDescriptionStateobservationforthe𝑖𝑖𝑡𝑡ℎsamplepointinthereferenceareaEquations[F.13]SourceofdataRemotesensingimageinterpretationValueappliedJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedPurposeofDataCommentsData/Parameter𝑝𝑝𝐿𝐿𝑀𝑀𝑀𝑀DataunitUnitlessDescriptionPortionofleakagerelatedtomarketEquations[F.51]Sourceofdata8.3.3ValueappliedPage131VM0009,Version3.0SectoralScope14JustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedPurposeofDataCommentsData/Parameter𝑞𝑞DataunitDaysDescriptionLagbetweenstartofdegradationandconversionEquations[F.3],[F.4],[F.5]SourceofdataExpertknowledge,resultsfromthePRAorreportsfrompeer-reviewedliteratureValueappliedJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedCommonlyacceptedmethodsinthesocialsciences,choicedeterminedandjustifiedbyprojectproponentPurposeofDataCommentsData/Parameter𝑟𝑟𝐶𝐶𝐶𝐶𝑏𝑏DataunitUnitlessDescriptionCarbonfractionofbiomassforburnedwoodorherbaceousmaterialbEquations[F.42]SourceofdataLiteratureestimatesordirectmeasurementValueappliedJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedPurposeofDataCommentsData/Parameter𝑟𝑟𝑅𝑅𝑅𝑅Page132VM0009,Version3.0SectoralScope14DataunitUnitlessDescriptionExpansionfactorforabove-groundbiomasstobelow-groundbiomass(root/shootratio)Equations[F.30]SourceofdataReviewedliterature,allometry,orIPCCdefaultvaluesValueappliedJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedPurposeofDataCommentsData/Parameter𝑟𝑟𝑈𝑈DataunitUnitlessDescriptionOnsetproportionofconversionimmediatelyadjacenttoprojectareaEquations[F.4]SourceofdataGISanalysisandimageinterpretationValueappliedJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedPositionsthebaselineemissionsmodelsrelativetotheinstantaneousrateofconversionPurposeofDataCommentsData/Parameter𝑡𝑡DataunitDaysDescriptionTimesinceprojectstartdateEquations[F.2],[F.3],[F.4],[F.5],[F.6],[F.7],[F.8],[F.10]SourceofdataMonitoringrecordsValueappliedJustificationofchoiceofdataordescriptionofPage133VM0009,Version3.0SectoralScope14measurementmethodsandproceduresappliedPurposeofDataCommentsData/Parameter𝑡𝑡𝑖𝑖DataunitDaysDescriptionThepointintimeoftheobservationmadeatpointiEquations[F.11],[A.6]SourceofdataRemotesensingimageinterpretationValueappliedJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedPurposeofDataCommentsData/Parameter𝑡𝑡𝑃𝑃𝑃𝑃DataunitDaysDescriptionTimepriortotheprojectstartdatewhentheprimaryagentbegancommercialloggingintheprojectaccountingareaEquations[F.1],[F.2],[F.3],[F.6]SourceofdataHarvestplanspreparedfortheprojectaccountingarea,orbypublicrecordValueappliedJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedShouldusethemostaccurateofthetwodatasourcesifbothareavailablePurposeofDataCommentsData/Parameter𝑡𝑡𝑚𝑚DataunitDaysPage134VM0009,Version3.0SectoralScope14DescriptionLengthofprojectorlogginginbaselinescenarioEquations[F.1]SourceofdataPDValueappliedJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedPurposeofDataCommentsData/Parameter𝑡𝑡𝑃𝑃𝑃𝑃DataunitDaysDescriptionLengthofprojectcreditingperiodEquations[F.5]SourceofdataPDValueappliedJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedPurposeofDataCommentsData/Parameter𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃DataunitDaysDescriptionNumberofdaysaftertheprojectstartdateforthestartofaprojectactivityinstanceinagroupedprojectEquations[F.2],[F.3],[F.4],[F.5],[F.6],[F.7],[F.8]SourceofdataPDValueappliedJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedShouldusethemostaccurateofthetwodatasourcesifbothareavailablePage135VM0009,Version3.0SectoralScope14PurposeofDataCommentsData/Parameter𝑡𝑡𝑆𝑆𝑆𝑆DataunitDaysDescriptionArrivaltimeofsecondaryagentsafterstartofcommercialloggingEquations[F.2]SourceofdataParticipatoryruralappraisal,orexpertknowledgeValueappliedJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedShouldusethemostaccurateofthetwodatasourcesifbothareavailablePurposeofDataCommentsData/Parameter𝑤𝑤𝑖𝑖DataunitUnitlessDescriptionWeightappliedtothe𝑖𝑖𝑡𝑡ℎsamplepointinthereferenceareaEquations[A.6],[F.13]SourceofdataRemotesensingimageinterpretationValueappliedJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedPurposeofDataCommentsData/Parameter𝑥𝑥DataunitUnitlessDescriptionCovariatevaluesEquations[F.2],[F.3],[F.4],[F.5],[F.6],[F.7],[F.8]SourceofdataParticipatoryRuralAppraisal,analysisofpublicrecords,and/orexpertinterpretationofinventorydataorremotelysensedimageryPage136VM0009,Version3.0SectoralScope14ValueappliedJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedShouldusethemostaccurateofthedatasourcesifbothareavailablePurposeofDataCommentsData/Parameter𝑥𝑥𝑖𝑖DataunitGeographiccoordinatesDescriptionLatitudeofthe𝑖𝑖𝑡𝑡ℎsamplepointEquations[F.11],[A.6]SourceofdataRemotesensingimageinterpretationValueappliedJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedPurposeofDataCommentsData/Parameter𝑥𝑥𝑜𝑜DataunitUnitlessDescriptionCovariatevaluesasoftheprojectstartdateEquations[F.4],[F.5],[F.6],[F.7],[F.8]SourceofdataParticipatoryRuralAppraisal,analysisofpublicrecords,and/orexpertinterpretationofinventorydataorremotelysensedimageryValueappliedJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedShouldusethemostaccurateofthedatasourcesifbothareavailablePurposeofDataCommentsData/Parameter𝑥𝑥𝑆𝑆𝑆𝑆Page137VM0009,Version3.0SectoralScope14DataunitUnitlessDescriptionCovariatevaluesasofthearrivalofthesecondaryagentsEquations[F.2]SourceofdataParticipatoryRuralAppraisal,analysisofpublicrecords,and/orexpertinterpretationofinventorydataorremotelysensedimageryValueappliedJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedShouldusethemostaccurateofthedatasourcesifbothareavailablePurposeofDataCommentsData/Parameter𝑦𝑦𝑖𝑖DataunitGeographiccoordinatesDescriptionLongitudeofthe𝑖𝑖𝑡𝑡ℎsamplepointEquations[F.11],[A.6]SourceofdataRemotesensingimageinterpretationValueappliedJustificationofchoiceofdataordescriptionofmeasurementmethodsandproceduresappliedPurposeofDataCommentsPDRequirements:DataandParametersAvailableatValidationTheprojectdescriptionmustincludethefollowing:PDR.121ThevalueforeachvariableinAppendixG.9.2DataandParametersMonitoredSeebelowforacompletelistofallvariablesmonitored,dataandparametersandadescriptionofthefrequencyofmonitoringforeach,thesevariablesarealsoshowninAppendixH.ThesePage138VM0009,Version3.0SectoralScope14variablesmustbereportedinthemonitoringreportalongwithmetricsforleakagemitigationpersection8.3.1.Generally,AppendixBshouldbeusedtomonitortheprojectaccountingarea,activity-shiftingleakageareaandproxyarea.However,theprojectproponentcanrequestadeviationfromthesemethodsprovidedinAppendixB.Alldeviationsmustbeidentifiedinthemonitoringplan.Data/Parameter:𝒲𝒲[𝑚𝑚]Dataunit:SetDescription:ThesetofallburnedwoodorherbaceousmaterialEquations[F.42]Sourceofdata:MonitoringrecordsDescriptionofmeasurementmethodsandprocedurestobeapplied:N/AFrequencyofmonitoring/recording:EverymonitoringperiodQA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPurposeofdata:Calculationmethod:Comments:Data/Parameter:𝐴𝐴𝐵𝐵Δ𝑃𝑃𝑃𝑃𝑃𝑃[𝑚𝑚]Dataunit:haDescription:AreaofavoidedconversionEquations[F.52]Sourceofdata:GeneratedfromequationDescriptionofmeasurementmethodsandprocedurestobeapplied:8.3.3.4Frequencyofmonitoring/recording:EverymonitoringperiodQA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPage139VM0009,Version3.0SectoralScope14Purposeofdata:Calculationmethod:Comments:Data/Parameter:𝐴𝐴𝑃𝑃1[𝑚𝑚=0]Dataunit:haDescription:Areaofprojectaccountingareastratum1priortofirstverificationeventEquations[F.24]Sourceofdata:GISanalysispriortosamplingDescriptionofmeasurementmethodsandprocedurestobeapplied:GISanalysisofbestavailabledataB.1.1Frequencyofmonitoring/recording:FirstmonitoringperiodQA/QCprocedurestobeapplied:Cross-checkofGISanalysisPurposeofdata:Calculationmethod:Comments:Data/Parameter:𝐴𝐴𝑃𝑃2[𝑚𝑚=0]Dataunit:haDescription:Areaofprojectaccountingareastratum2priortofirstverificationeventEquations[F.24]Sourceofdata:GISanalysispriortosamplingDescriptionofmeasurementmethodsandprocedurestobeapplied:GISanalysisofbestavailabledataB.1.1Frequencyofmonitoring/recording:FirstmonitoringperiodQA/QCprocedurestobeapplied:Cross-checkofGISanalysisPage140VM0009,Version3.0SectoralScope14Purposeofdata:Calculationmethod:Comments:Data/Parameter:𝐴𝐴𝑃𝑃𝑛𝑛[𝑚𝑚=0]Dataunit:haDescription:Areaofprojectaccountingareastratum𝑛𝑛priortofirstverificationeventEquations[F.24]Sourceofdata:GISanalysispriortosamplingDescriptionofmeasurementmethodsandprocedurestobeapplied:GISanalysisofbestavailabledataB.1.1Frequencyofmonitoring/recording:FirstmonitoringperiodQA/QCprocedurestobeapplied:Cross-checkofGISanalysisPurposeofdata:Calculationmethod:Comments:Data/Parameter:𝐵𝐵𝑏𝑏[𝑚𝑚]Dataunit:TonnesDescription:Biomassinburnedwoodorherbaceousmaterial𝑏𝑏Equations[F.42]Sourceofdata:MeasurementsofbiomassDescriptionofmeasurementmethodsandprocedurestobeapplied:ScaleFrequencyofmonitoring/recording:EverymonitoringperiodQA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPage141VM0009,Version3.0SectoralScope14Purposeofdata:Calculationmethod:Comments:Data/Parameter:𝑐𝑐𝐵𝐵[𝑚𝑚]Dataunit:tCO2e/haDescription:BaselinecarbonstocksattheendofthecurrentmonitoringperiodEquations[F.2],[F.3],[F.4],[F.5],[F.6],[F.7],[F.57]Sourceofdata:ProxyareasamplingDescriptionofmeasurementmethodsandprocedurestobeapplied:B.2,6.4Frequencyofmonitoring/recording:Everytimemeasured(≤5yrs)QA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPurposeofdata:Calculationmethod:Comments:Data/Parameter:𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚]Dataunit:tCO2eDescription:CarbonnotdecayedinBGBattheendofthecurrentmonitoringperiodEquations[F.16]Sourceofdata:ProxyareasamplingDescriptionofmeasurementmethodsandprocedurestobeapplied:8.1.4Frequencyofmonitoring/recording:EverymonitoringperiodQA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPage142VM0009,Version3.0SectoralScope14Purposeofdata:Calculationmethod:Comments:Data/Parameter:𝐶𝐶𝐵𝐵𝐷𝐷𝐷𝐷[𝑚𝑚]Dataunit:tCO2eDescription:CarbonnotdecayedinDWattheendofthecurrentmonitoringperiodEquations[F.16]Sourceofdata:ProxyareasamplingDescriptionofmeasurementmethodsandprocedurestobeapplied:8.1.3Frequencyofmonitoring/recording:EverymonitoringperiodQA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPurposeofdata:Calculationmethod:Comments:Data/Parameter:𝐶𝐶𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚]Dataunit:tCO2eDescription:CarbonnotdecayedinSOCattheendofthecurrentmonitoringperiodEquations[F.16]Sourceofdata:ProxyareasamplingDescriptionofmeasurementmethodsandprocedurestobeapplied:8.1.5Frequencyofmonitoring/recording:EverymonitoringperiodQA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPage143VM0009,Version3.0SectoralScope14Purposeofdata:Calculationmethod:Comments:Data/Parameter:𝐶𝐶𝐵𝐵𝑊𝑊𝑊𝑊[𝑚𝑚]Dataunit:tCO2eDescription:CarbonnotdecayedinWPattheendofthecurrentmonitoringperiodEquations[F.16]Sourceofdata:ProxyareasamplingDescriptionofmeasurementmethodsandprocedurestobeapplied:AppendixCFrequencyofmonitoring/recording:EverymonitoringperiodQA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPurposeofdata:Calculationmethod:Comments:Data/Parameter:𝑐𝑐𝐵𝐵𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚]Dataunit:tCO2e/haDescription:Baselinecarbonstocksinabove-groundmerchantabletreesattheendofthecurrentmonitoringperiodEquations[F.37],[F.38],[F.39],[F.40]Sourceofdata:ProxyareasamplingDescriptionofmeasurementmethodsandprocedurestobeapplied:AppendixB.2.1Frequencyofmonitoring/recording:Everytimemeasured(≤5yrs)QA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPage144VM0009,Version3.0SectoralScope14Purposeofdata:Calculationmethod:Comments:Data/Parameter:𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚]Dataunit:tCO2e/haDescription:Baselinecarbonstocksinbelow-groundmerchantabletreesattheendofthecurrentmonitoringperiodEquations[F.37],[F.38],[F.39],[F.40]Sourceofdata:ProxyareasamplingDescriptionofmeasurementmethodsandprocedurestobeapplied:AppendixB.2.1Frequencyofmonitoring/recording:Everytimemeasured(≤5yrs)QA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPurposeofdata:Calculationmethod:Comments:Data/Parameter:𝐶𝐶𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚=0]Dataunit:tCO2eDescription:Projectcarbonstocksinabove-groundmerchantabletreesatprojectstartEquations[F.1]Sourceofdata:ProjectaccountingareasamplingDescriptionofmeasurementmethodsandprocedurestobeapplied:AppendixB.2.1Frequencyofmonitoring/recording:FirstmonitoringperiodQA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPage145VM0009,Version3.0SectoralScope14Purposeofdata:Calculationmethod:Comments:Data/Parameter:𝐶𝐶𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚=0]Dataunit:tCO2eDescription:Projectcarbonstocksinbelow-groundmerchantabletreesatprojectstartEquations[F.1]Sourceofdata:ProjectaccountingareasamplingDescriptionofmeasurementmethodsandprocedurestobeapplied:AppendixB.2.3Frequencyofmonitoring/recording:FirstmonitoringperiodQA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPurposeofdata:Calculationmethod:Comments:Data/Parameter:𝑐𝑐𝐵𝐵𝑏𝑏[𝑚𝑚]Dataunit:tCO2e/haDescription:BaselinescenarioaveragecarbonstockinselectedcarbonpoolsEquations[F.18][F.24]Sourceofdata:ProxyareasamplingDescriptionofmeasurementmethodsandprocedurestobeapplied:AppendixB.1.5Frequencyofmonitoring/recording:Everytimemeasured(≤5yrs)QA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPage146VM0009,Version3.0SectoralScope14Purposeofdata:Calculationmethod:Comments:Data/Parameter:𝑐𝑐𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚]Dataunit:tCO2e/haDescription:BaselinecarbonstocksinbiomassattheendofthecurrentmonitoringperiodEquations[F.19],[F.20],[F.21],[F.24],[F.52]Sourceofdata:AppendixB.2Descriptionofmeasurementmethodsandprocedurestobeapplied:Everytimemeasured(≤5yrs)Frequencyofmonitoring/recording:ReviewofmonitoringrecordsQA/QCprocedurestobeapplied:Purposeofdata:Calculationmethod:Comments:Data/Parameter:𝑐𝑐𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚]Dataunit:tCO2e/haDescription:BaselinesoilcarbonstocksattheendofthecurrentmonitoringperiodEquations[F.25],[F.27],[F.28]Sourceofdata:ProxyareasamplingDescriptionofmeasurementmethodsandprocedurestobeapplied:AppendixB.2.6Frequencyofmonitoring/recording:Everytimemeasured(≤5yrs)QA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPage147VM0009,Version3.0SectoralScope14Purposeofdata:Calculationmethod:Comments:Data/Parameter:𝑐𝑐𝑃𝑃[𝑚𝑚]Dataunit:tCO2e/haDescription:ProjectcarbonstocksattheendofthecurrentmonitoringperiodEquations[F.41],[F.57]Sourceofdata:ProjectaccountingareasamplingDescriptionofmeasurementmethodsandprocedurestobeapplied:AppendixB.2Frequencyofmonitoring/recording:Everytimemeasured(≤5yrs)QA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPurposeofdata:Calculationmethod:Comments:Data/Parameter:𝑐𝑐𝑃𝑃[𝑚𝑚−1]Dataunit:tCO2e/haDescription:ProjectcarbonstocksatthebeginningofthecurrentmonitoringperiodEquations[F.41]Sourceofdata:ProjectaccountingareasamplingDescriptionofmeasurementmethodsandprocedurestobeapplied:AppendixB.2Frequencyofmonitoring/recording:PriormonitoringperiodQA/QCprocedurestobeapplied:AlreadyreviewedPage148VM0009,Version3.0SectoralScope14Purposeofdata:Calculationmethod:Comments:Data/Parameter:𝑐𝑐𝑃𝑃[𝑚𝑚=0]Dataunit:tCO2e/haDescription:ProjectcarbonstockspriortofirstverificationeventEquations[F.7]Sourceofdata:ProjectaccountingareasamplingDescriptionofmeasurementmethodsandprocedurestobeapplied:AppendixB.2Frequencyofmonitoring/recording:FirstmonitoringperiodQA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPurposeofdata:Calculationmethod:Comments:Data/Parameter:𝑐𝑐𝑃𝑃1𝐵𝐵𝐵𝐵[𝑚𝑚=0]Dataunit:tCO2e/haDescription:Projectcarbonstocksinbiomassinstratum1priortofirstverificationeventEquations[F.24]Sourceofdata:ProjectaccountingareasamplingDescriptionofmeasurementmethodsandprocedurestobeapplied:AppendixB.2Frequencyofmonitoring/recording:FirstmonitoringperiodQA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPage149VM0009,Version3.0SectoralScope14Purposeofdata:Calculationmethod:Comments:Data/Parameter:𝑐𝑐𝑃𝑃2𝐵𝐵𝐵𝐵[𝑚𝑚=0]Dataunit:tCO2e/haDescription:Projectcarbonstocksinbiomassinstratum2priortofirstverificationeventEquations[F.24]Sourceofdata:ProjectaccountingareasamplingDescriptionofmeasurementmethodsandprocedurestobeapplied:AppendixB.2Frequencyofmonitoring/recording:FirstmonitoringperiodQA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPurposeofdata:Calculationmethod:Comments:Data/Parameter:𝑐𝑐𝑃𝑃3𝐵𝐵𝐵𝐵[𝑚𝑚=0]Dataunit:tCO2e/haDescription:Projectcarbonstocksinbiomassinstratum3priortofirstverificationeventEquations[F.24]Sourceofdata:ProjectaccountingareasamplingDescriptionofmeasurementmethodsandprocedurestobeapplied:AppendixB.2Frequencyofmonitoring/recording:FirstmonitoringperiodQA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPage150VM0009,Version3.0SectoralScope14Purposeofdata:Calculationmethod:Comments:Data/Parameter:𝑐𝑐𝑃𝑃𝑛𝑛𝐵𝐵𝐵𝐵[𝑚𝑚=0]Dataunit:tCO2e/haDescription:Projectcarbonstocksinbiomassinstratum𝑛𝑛priortofirstverificationeventEquations[F.24]Sourceofdata:ProjectaccountingareasamplingDescriptionofmeasurementmethodsandprocedurestobeapplied:AppendixB.2Frequencyofmonitoring/recording:FirstmonitoringperiodQA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPurposeofdata:Calculationmethod:Comments:Data/Parameter:𝑐𝑐𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚=0]Dataunit:tCO2e/haDescription:Projectcarbonstocksinabove-groundmerchantabletreespriortofirstverificationeventEquations[F.37],[F.38],[F.39],[F.40]Sourceofdata:ProjectaccountingareasamplingDescriptionofmeasurementmethodsandprocedurestobeapplied:AppendixB.2.1Frequencyofmonitoring/recording:FirstmonitoringperiodQA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPage151VM0009,Version3.0SectoralScope14Purposeofdata:Calculationmethod:Comments:Data/Parameter:𝑐𝑐𝑃𝑃𝐵𝐵𝐵𝐵[𝑚𝑚=0]Dataunit:tCO2eDescription:ProjectcarbonstocksinbiomasspriortofirstverificationeventEquations[F.19],[F.20],[F.21],[F.52]Sourceofdata:ProjectaccountingareasamplingDescriptionofmeasurementmethodsandprocedurestobeapplied:AppendixB.2Frequencyofmonitoring/recording:FirstmonitoringperiodQA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPurposeofdata:Calculationmethod:Comments:Data/Parameter:𝑐𝑐𝑃𝑃𝑏𝑏[𝑚𝑚]Dataunit:tCO2e/haDescription:AveragecarboninbiomassintheprojectaccountingareaEquations[F.17]Sourceofdata:ProjectaccountingareasamplingDescriptionofmeasurementmethodsandprocedurestobeapplied:AppendixB.2Frequencyofmonitoring/recording:Everytimemeasured(≤5yrs)QA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPurposeofdata:Page152VM0009,Version3.0SectoralScope14Calculationmethod:Comments:Data/Parameter:𝑐𝑐𝑃𝑃𝑠𝑠𝑏𝑏[𝑚𝑚]Dataunit:tCO2e/haDescription:Averagecarboninbiomassforeachprojectaccountingareastratum𝑠𝑠Equations[F.23]Sourceofdata:ProjectaccountingareasamplingDescriptionofmeasurementmethodsandprocedurestobeapplied:AppendixB.2Frequencyofmonitoring/recording:Everytimemeasured(≤5yrs)QA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPurposeofdata:Calculationmethod:Comments:Data/Parameter:𝑐𝑐𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚=0]Dataunit:tCO2e/haDescription:ProjectsoilcarbonstockspriortofirstverificationeventEquations[F.25],[F.27],[F.28]Sourceofdata:ProjectaccountingareasamplingDescriptionofmeasurementmethodsandprocedurestobeapplied:AppendixB.2.6Frequencyofmonitoring/recording:FirstmonitoringperiodQA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPurposeofdata:Page153VM0009,Version3.0SectoralScope14Calculationmethod:Comments:Data/Parameter:𝐶𝐶𝑃𝑃𝛥𝛥𝑊𝑊𝑊𝑊[𝑚𝑚]Dataunit:tCO2eDescription:ProjectcarbonstocksinwoodproductsattheendofthecurrentmonitoringperiodEquations[F.41]Sourceofdata:ProjectaccountingareasamplingDescriptionofmeasurementmethodsandprocedurestobeapplied:AppendixCFrequencyofmonitoring/recording:EverymonitoringperiodQA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPurposeofdata:Calculationmethod:Comments:Data/Parameter:𝐸𝐸𝛥𝛥𝐺𝐺𝐺𝐺𝐺𝐺[𝑚𝑚]Dataunit:tCO2eDescription:GERsforthecurrentmonitoringperiodEquations[F.55],[F.57]Sourceofdata:AreameasurementsDescriptionofmeasurementmethodsandprocedurestobeapplied:8.4.1Frequencyofmonitoring/recording:EverymonitoringperiodQA/QCprocedurestobeapplied:ReviewofGERcalculationsPage154VM0009,Version3.0SectoralScope14Purposeofdata:Calculationmethod:Comments:Data/Parameter:𝐸𝐸Δ𝐺𝐺𝐺𝐺𝐺𝐺[𝑖𝑖]Dataunit:tCO2eDescription:GERsformonitoringperiod𝑖𝑖Equations[F.54]Sourceofdata:AreameasurementsDescriptionofmeasurementmethodsandprocedurestobeapplied:8.4.1Frequencyofmonitoring/recording:PriormonitoringperiodQA/QCprocedurestobeapplied:ReviewofGERcalculationsPurposeofdata:Calculationmethod:Comments:Data/Parameter:𝐸𝐸Δ𝑁𝑁𝑁𝑁𝑁𝑁[𝑖𝑖]Dataunit:tCO2eDescription:NERsformonitoringperiod𝑖𝑖Equations[F.56]Sourceofdata:AreameasurementsDescriptionofmeasurementmethodsandprocedurestobeapplied:8.4.3Frequencyofmonitoring/recording:PriormonitoringperiodQA/QCprocedurestobeapplied:ReviewofNERcalculationsPurposeofdata:Page155VM0009,Version3.0SectoralScope14Calculationmethod:Comments:Data/Parameter:𝐸𝐸𝐵𝐵[𝑚𝑚]Dataunit:tCO2eDescription:CumulativebaselineemissionsattheendofthecurrentmonitoringperiodEquations[F.15]Sourceofdata:ProxyareameasurementsDescriptionofmeasurementmethodsandprocedurestobeapplied:8.1Frequencyofmonitoring/recording:EverymonitoringperiodQA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPurposeofdata:Calculationmethod:Comments:Data/Parameter:𝐸𝐸𝐵𝐵[𝑚𝑚−1]Dataunit:tCO2eDescription:CumulativebaselineemissionsatthebeginningofthecurrentmonitoringperiodEquations[F.15]Sourceofdata:ProxyareameasurementsDescriptionofmeasurementmethodsandprocedurestobeapplied:8.1Frequencyofmonitoring/recording:PriormonitoringperiodPage156VM0009,Version3.0SectoralScope14QA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPurposeofdata:Calculationmethod:Comments:Data/Parameter:𝐸𝐸𝐵𝐵𝛥𝛥[𝑚𝑚]Dataunit:tCO2eDescription:ChangeinbaselineemissionsEquations[F.9],[F.10],[F.14],[F.53],[F.57]Sourceofdata:ProxyareameasurementsDescriptionofmeasurementmethodsandprocedurestobeapplied:8.1Frequencyofmonitoring/recording:EverymonitoringperiodQA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPurposeofdata:Calculationmethod:Comments:Data/Parameter:𝐸𝐸𝐵𝐵Δ𝐵𝐵𝐵𝐵𝐵𝐵[𝑖𝑖]Dataunit:tCO2eDescription:Changeinbaselineemissionsfrombelow-groundbiomassduringmonitoringperiod𝑖𝑖Equations[F.32]Sourceofdata:MonitoringtheproxyareaDescriptionofmeasurementmethodsandprocedurestobeapplied:AppendixB.2.3Frequencyofmonitoring/recording:PriormonitoringperiodPage157VM0009,Version3.0SectoralScope14QA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPurposeofdata:Calculationmethod:Comments:Data/Parameter:𝐸𝐸𝐵𝐵Δ𝐷𝐷𝐷𝐷[𝑖𝑖]Dataunit:tCO2eDescription:Baselineemissionsfromdeadwoodinmonitoringperiod𝑖𝑖Equations[F.36]Sourceofdata:MeasurementsintheproxyareaDescriptionofmeasurementmethodsandprocedurestobeapplied:AppendixB.2.4andB.2.5Frequencyofmonitoring/recording:PriormonitoringperiodQA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPurposeofdata:Calculationmethod:Comments:Data/Parameter:𝐸𝐸𝐵𝐵𝛥𝛥𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚]Dataunit:tCO2eDescription:BaselinechangeinemissionsfromsoilcarbonEquations[F.15],[F.33]Sourceofdata:MeasurementsintheproxyareaDescriptionofmeasurementmethodsandprocedurestobeapplied:8.1.2.1,8.1.2.2,8.1.2.3,AppendixB.2.6Frequencyofmonitoring/recording:EverymonitoringperiodPage158VM0009,Version3.0SectoralScope14QA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPurposeofdata:Calculationmethod:Comments:Data/Parameter:𝐸𝐸𝐵𝐵Δ𝑆𝑆𝑆𝑆𝑆𝑆[𝑖𝑖]Dataunit:tCO2eDescription:Baselineemissionsfromsoilcarboninmonitoringperiod𝑖𝑖Equations[F.33]Sourceofdata:MeasurementsintheproxyareaDescriptionofmeasurementmethodsandprocedurestobeapplied:8.1.2.1,8.1.2.2,8.1.2.3,AppendixB.2.6Frequencyofmonitoring/recording:PriormonitoringperiodQA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPurposeofdata:Calculationmethod:Comments:Data/Parameter:𝐸𝐸𝐵𝐵𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚]Dataunit:tCO2eDescription:Cumulativebaselineemissionsfromabove-groundcommercialtreesattheendofthecurrentmonitoringperiodEquations[F.34],[F.51]Sourceofdata:MeasurementsintheproxyareaDescriptionofmeasurementmethodsandprocedurestobeapplied:8.1.6.1,8.1.6.2,8.1.6.3Page159VM0009,Version3.0SectoralScope14Frequencyofmonitoring/recording:EverymonitoringperiodQA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPurposeofdata:Calculationmethod:Comments:Data/Parameter:𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚]Dataunit:tCO2eDescription:Cumulativebaselineemissionsfrombelow-groundbiomassattheendofthecurrentmonitoringperiodEquations[F.31]Sourceofdata:MeasurementsintheproxyareaDescriptionofmeasurementmethodsandprocedurestobeapplied:8.1.4Frequencyofmonitoring/recording:EverymonitoringperiodQA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPurposeofdata:Calculationmethod:Comments:Data/Parameter:𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚−1]Dataunit:tCO2eDescription:Cumulativebaselineemissionsfrombelow-groundbiomassatthebeginningofthecurrentmonitoringperiodEquations[F.31]Sourceofdata:MeasurementsintheproxyareaDescriptionofmeasurementmethods8.1.4Page160VM0009,Version3.0SectoralScope14andprocedurestobeapplied:Frequencyofmonitoring/recording:PriormonitoringperiodQA/QCprocedurestobeapplied:N/APurposeofdata:Calculationmethod:Comments:Data/Parameter:𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚]Dataunit:tCO2eDescription:CumulativebaselineemissionsfrombiomassattheendofthecurrentmonitoringperiodEquations[F.16],[F.30],[F.52]Sourceofdata:MeasurementsintheproxyareaDescriptionofmeasurementmethodsandprocedurestobeapplied:8.1.1,8.1.1.5.1Frequencyofmonitoring/recording:EverymonitoringperiodQA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPurposeofdata:Calculationmethod:Comments:Data/Parameter:𝐸𝐸𝐵𝐵𝐷𝐷𝐷𝐷[𝑚𝑚]Dataunit:tCO2eDescription:CumulativebaselineemissionsfromdeadwoodattheendofthecurrentmonitoringperiodEquations[F.35]Sourceofdata:MeasurementsintheproxyareaPage161VM0009,Version3.0SectoralScope14Descriptionofmeasurementmethodsandprocedurestobeapplied:8.1.3Frequencyofmonitoring/recording:EverymonitoringperiodQA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPurposeofdata:Calculationmethod:Comments:Data/Parameter:𝐸𝐸𝐵𝐵𝐷𝐷𝐷𝐷[𝑚𝑚−1]Dataunit:tCO2eDescription:CumulativebaselineemissionsfromdeadwoodatthebeginningofthecurrentmonitoringperiodEquations[F.35]Sourceofdata:MeasurementsintheproxyareaDescriptionofmeasurementmethodsandprocedurestobeapplied:8.1.3Frequencyofmonitoring/recording:PriormonitoringperiodQA/QCprocedurestobeapplied:N/APurposeofdata:Calculationmethod:Comments:Data/Parameter:𝐸𝐸𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚]Dataunit:tCO2eDescription:CumulativebaselineemissionsfromsoilcarbonattheendofthecurrentmonitoringperiodEquations[F.16],[F.26]Sourceofdata:MeasurementsintheproxyareaPage162VM0009,Version3.0SectoralScope14Descriptionofmeasurementmethodsandprocedurestobeapplied:8.1.2.1,8.1.2.2,8.1.2.3Frequencyofmonitoring/recording:EverymonitoringperiodQA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPurposeofdata:Calculationmethod:Comments:Data/Parameter:𝐸𝐸𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚−1]Dataunit:tCO2eDescription:CumulativebaselineemissionsfromsoilcarbonatthebeginningofthecurrentmonitoringperiodEquations[F.26]Sourceofdata:MeasurementsintheproxyareaDescriptionofmeasurementmethodsandprocedurestobeapplied:8.1.2.1,8.1.2.2,8.1.2.3Frequencyofmonitoring/recording:PriormonitoringperiodQA/QCprocedurestobeapplied:N/APurposeofdata:Calculationmethod:Comments:Data/Parameter:𝐸𝐸𝐵𝐵𝐵𝐵[𝑚𝑚]Dataunit:tCO2eDescription:CumulativeemissionsallocatedtothebufferaccountattheendofthecurrentmonitoringperiodEquations[F.55]Sourceofdata:N/APage163VM0009,Version3.0SectoralScope14Descriptionofmeasurementmethodsandprocedurestobeapplied:8.4.4Frequencyofmonitoring/recording:EverymonitoringperiodQA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPurposeofdata:Calculationmethod:Comments:Data/Parameter:𝐸𝐸𝐿𝐿[𝑚𝑚]Dataunit:tCO2eDescription:CumulativeemissionsfromleakageattheendofthecurrentmonitoringperiodEquations[F.44]Sourceofdata:Measurementsintheleakagearea(s)Descriptionofmeasurementmethodsandprocedurestobeapplied:8.3Frequencyofmonitoring/recording:EverymonitoringperiodQA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPurposeofdata:Calculationmethod:Comments:Data/Parameter:𝐸𝐸𝐿𝐿[𝑚𝑚−1]Dataunit:tCO2eDescription:CumulativeemissionsfromleakageatthebeginningofthecurrentmonitoringperiodEquations[F.44]Sourceofdata:Measurementsintheleakagearea(s)Page164VM0009,Version3.0SectoralScope14Descriptionofmeasurementmethodsandprocedurestobeapplied:8.3Frequencyofmonitoring/recording:PriormonitoringperiodQA/QCprocedurestobeapplied:N/APurposeofdata:Calculationmethod:Comments:Data/Parameter:𝐸𝐸𝐿𝐿𝛥𝛥[𝑚𝑚]Dataunit:tCO2eDescription:ChangeinemissionsduetoleakageEquations[F.53]Sourceofdata:N/ADescriptionofmeasurementmethodsandprocedurestobeapplied:8.3Frequencyofmonitoring/recording:EverymonitoringperiodQA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPurposeofdata:Calculationmethod:Comments:Data/Parameter:𝐸𝐸𝐿𝐿𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚]Dataunit:tCO2eDescription:Cumulativeemissionsfromactivity-shiftingleakageinforestedstrataattheendofthecurrentmonitoringperiodEquations[F.45]Sourceofdata:Measurementsintheactivity-shiftingleakageareaPage165VM0009,Version3.0SectoralScope14Descriptionofmeasurementmethodsandprocedurestobeapplied:8.3Frequencyofmonitoring/recording:EverymonitoringperiodQA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPurposeofdata:Calculationmethod:Comments:Data/Parameter:𝐸𝐸𝐿𝐿𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚]Dataunit:tCO2eDescription:Cumulativeemissionsfromactivity-shiftingleakageinnativegrasslandstrataattheendofthecurrentmonitoringperiodEquations[F.44],[F.45]Sourceofdata:Measurementsintheactivity-shiftingleakageareaDescriptionofmeasurementmethodsandprocedurestobeapplied:8.3.3.4Frequencyofmonitoring/recording:EverymonitoringperiodQA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPurposeofdata:Calculationmethod:Comments:Data/Parameter:𝐸𝐸𝐿𝐿𝑀𝑀𝑀𝑀[𝑚𝑚]Dataunit:tCO2eDescription:CumulativeemissionsfrommarketleakageattheendofthecurrentmonitoringperiodEquations[F.45]Sourceofdata:MeasurementsinthemarketleakageareaPage166VM0009,Version3.0SectoralScope14Descriptionofmeasurementmethodsandprocedurestobeapplied:8.3Frequencyofmonitoring/recording:EverymonitoringperiodQA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPurposeofdata:Calculationmethod:Comments:Data/Parameter:𝐸𝐸𝑃𝑃𝛥𝛥[𝑚𝑚]Dataunit:tCO2eDescription:ChangeinprojectemissionsEquations[F.53]Sourceofdata:MonitoringrecordsforForestFire,Burning,logging,woodproducts,andnaturaldisturbanceeventsDescriptionofmeasurementmethodsandprocedurestobeapplied:8.2Frequencyofmonitoring/recording:EverymonitoringperiodQA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPurposeofdata:Calculationmethod:Comments:Data/Parameter:𝐸𝐸𝑃𝑃𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥[𝑚𝑚]Dataunit:tCO2eDescription:CumulativeprojectemissionsduetoburningattheendofthecurrentmonitoringperiodEquations[F.41]Sourceofdata:MonitoringplotsintheprojectPage167VM0009,Version3.0SectoralScope14Descriptionofmeasurementmethodsandprocedurestobeapplied:8.2.2Frequencyofmonitoring/recording:EverymonitoringperiodQA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPurposeofdata:Calculationmethod:Comments:Data/Parameter:𝐸𝐸𝑃𝑃𝛥𝛥𝐿𝐿𝐿𝐿[𝑚𝑚]Dataunit:tCO2eDescription:Cumulativeprojectemissionsduetolivestockgrazingwithintheprojectarea.Equations[F.43]Sourceofdata:MonitoringintheprojectareaDescriptionofmeasurementmethodsandprocedurestobeapplied:8.2.4Frequencyofmonitoring/recording:Everytimemeasured(≤5yrs)QA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPurposeofdata:Calculationmethod:Comments:Data/Parameter:𝐸𝐸𝑃𝑃𝛥𝛥𝑆𝑆𝑆𝑆[𝑚𝑚]Dataunit:tCO2eDescription:Cumulativeprojectemissionsduetotheuseofsyntheticfertilizerswithintheprojectarea.Equations[F.53]Sourceofdata:MonitoringintheprojectareaPage168VM0009,Version3.0SectoralScope14Descriptionofmeasurementmethodsandprocedurestobeapplied:8.2.5Frequencyofmonitoring/recording:Everytimemeasured(≤5yrs)QA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPurposeofdata:Calculationmethod:Comments:Estimationofdirectandindirect(eg,leachingandrunoff)nitrousoxideemissionfromnitrogenfertilizationData/Parameter:𝐸𝐸𝑈𝑈[𝑚𝑚]Dataunit:tCO2eDescription:CumulativeconfidencedeductionattheendofthecurrentmonitoringperiodEquations[F.55]Sourceofdata:N/ADescriptionofmeasurementmethodsandprocedurestobeapplied:8.4.1.1Frequencyofmonitoring/recording:EverymonitoringperiodQA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPurposeofdata:Calculationmethod:Comments:Data/Parameter:𝑛𝑛𝐿𝐿𝐿𝐿𝑖𝑖Dataunit:CountDescription:Thenumberofheadoflivestockspecies/categoryiintheprojectareaEquations[F.43]Page169VM0009,Version3.0SectoralScope14Sourceofdata:MonitoringintheprojectareaDescriptionofmeasurementmethodsandprocedurestobeapplied:8.2.4Frequencyofmonitoring/recording:Everytimemeasured(≤5yrs)QA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPurposeofdata:Calculationmethod:Comments:Data/Parameter:𝑝𝑝𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷[𝑚𝑚]Dataunit:Proportion(unitless)Description:PortionofleakageduetodegradationinforestattheendofthecurrentmonitoringperiodEquations[F.46],[F.47],[F.48],[F.49]Sourceofdata:MonitoringintheleakageareaDescriptionofmeasurementmethodsandprocedurestobeapplied:8.3.2.3Frequencyofmonitoring/recording:Everytimemeasured(≤5yrs)QA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPurposeofdata:Calculationmethod:Comments:Data/Parameter:𝑝𝑝𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷[𝑚𝑚=0]Dataunit:Proportion(unitless)Description:PortionofleakageduetodegradationpriortofirstverificationeventEquations[F.48]Page170VM0009,Version3.0SectoralScope14Sourceofdata:MonitoringintheleakageareaDescriptionofmeasurementmethodsandprocedurestobeapplied:8.3.2.3Frequencyofmonitoring/recording:FirstmonitoringperiodQA/QCprocedurestobeapplied:ProjectverificationPurposeofdata:Calculationmethod:Comments:Data/Parameter:𝑝𝑝𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝐺𝐺[𝑚𝑚=0]Dataunit:Proportion(unitless)Description:PortionofleakageduetonativegrasslandspriortothefirstverificationeventEquations[F.47],[F.49]Sourceofdata:MonitoringintheleakageareaDescriptionofmeasurementmethodsandprocedurestobeapplied:8.3.2.4Frequencyofmonitoring/recording:FirstmonitoringperiodQA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPurposeofdata:Calculationmethod:Comments:Data/Parameter:𝑝𝑝𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝐺𝐺[𝑚𝑚]Dataunit:Proportion(unitless)Description:PortionofleakageduetonativegrasslandsconversionatthebeginningofthecurrentmonitoringperiodEquations[F.47],[F.49]Page171VM0009,Version3.0SectoralScope14Sourceofdata:MonitoringintheleakageareaDescriptionofmeasurementmethodsandprocedurestobeapplied:8.3.2.4Frequencyofmonitoring/recording:Everytimemeasured(≤5yrs)QA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPurposeofdata:Calculationmethod:Comments:Data/Parameter:𝑝𝑝𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝐺𝐺[𝑚𝑚−1]Dataunit:Proportion(unitless)Description:PortionofleakageduetonativegrasslandsconversionattheendofthecurrentmonitoringperiodEquations[F.47],[F.49]Sourceofdata:MonitoringintheleakageareaDescriptionofmeasurementmethodsandprocedurestobeapplied:8.3.2.4Frequencyofmonitoring/recording:Everytimemeasured(≤5yrs)QA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPurposeofdata:Calculationmethod:Comments:Data/Parameter:𝑝𝑝𝑆𝑆𝑆𝑆[𝑚𝑚]Dataunit:Proportion(unitless)Description:ProportionofAGMTthatisnotmerchantableandgoesintoslashestimatedfrominventoryEquations[F.34]Page172VM0009,Version3.0SectoralScope14Sourceofdata:EstimatedfrominventoryDescriptionofmeasurementmethodsandprocedurestobeapplied:8.1.6.3Frequencyofmonitoring/recording:Everytimemeasured(≤5yrs)QA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPurposeofdata:Calculationmethod:Comments:Data/Parameter:𝑡𝑡[𝑖𝑖−1]Dataunit:DaysDescription:Timefromprojectstartdatetobeginningofmonitoringperiod𝑖𝑖Equations[F.32],[F.33]Sourceofdata:MonitoringrecordsDescriptionofmeasurementmethodsandprocedurestobeapplied:N/AFrequencyofmonitoring/recording:PriormonitoringperiodQA/QCprocedurestobeapplied:N/APurposeofdata:Calculationmethod:Comments:Data/Parameter:𝑡𝑡[𝑚𝑚]Dataunit:DaysDescription:TimefromprojectstartdatetoendofcurrentmonitoringperiodEquations[F.19],[F.20],[F.24],[F.21],[F.25],[F.27],[F.28],[F.32],[F.33],[F.36],[F.37],[F.38],[F.39],[F.40]Sourceofdata:MonitoringrecordsPage173VM0009,Version3.0SectoralScope14Descriptionofmeasurementmethodsandprocedurestobeapplied:N/AFrequencyofmonitoring/recording:EverymonitoringperiodQA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPurposeofdata:Calculationmethod:Comments:Data/Parameter:𝑡𝑡[𝑚𝑚−1]Dataunit:DaysDescription:TimefromprojectstartdatetobeginningofcurrentmonitoringperiodEquations[F.10],[F.36]Sourceofdata:MonitoringrecordsDescriptionofmeasurementmethodsandprocedurestobeapplied:N/AFrequencyofmonitoring/recording:PriormonitoringperiodQA/QCprocedurestobeapplied:N/APurposeofdata:Calculationmethod:Comments:Data/Parameter:𝑈𝑈𝐵𝐵[𝑚𝑚]Dataunit:tCO2eDescription:TotaluncertaintyinproxyareacarbonstockestimateEquations[F.57]Sourceofdata:N/APage174VM0009,Version3.0SectoralScope14Descriptionofmeasurementmethodsandprocedurestobeapplied:N/AFrequencyofmonitoring/recording:EverymonitoringperiodQA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPurposeofdata:Calculationmethod:Comments:Data/Parameter:𝑈𝑈𝐸𝐸𝐸𝐸[𝑀𝑀]Dataunit:tCO2eDescription:TotaluncertaintyinBaselineEmissionsModelsEquations[F.57]Sourceofdata:N/ADescriptionofmeasurementmethodsandprocedurestobeapplied:N/AFrequencyofmonitoring/recording:EverymonitoringperiodQA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPurposeofdata:Calculationmethod:Comments:Data/Parameter:𝑈𝑈𝑃𝑃[𝑚𝑚]Dataunit:tCO2eDescription:TotaluncertaintyinprojectaccountingareacarbonstockestimateEquations[F.57]Sourceofdata:N/APage175VM0009,Version3.0SectoralScope14Descriptionofmeasurementmethodsandprocedurestobeapplied:N/AFrequencyofmonitoring/recording:EverymonitoringperiodQA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPurposeofdata:Calculationmethod:Comments:Data/Parameter:𝑤𝑤𝑐𝑐𝑃𝑃𝑃𝑃[𝑚𝑚=𝑜𝑜]Dataunit:tCO2eDescription:WeightedaveragecarbonstocksforbiomassorSOCintheprojectforthesetofselectedstrataEquations[F.29][F.24]Sourceofdata:InventoryDescriptionofmeasurementmethodsandprocedurestobeapplied:Inventory,GISFrequencyofmonitoring/recording:EverymonitoringperiodQA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPurposeofdata:Calculationmethod:Comments:Data/Parameter:𝑥𝑥[𝑚𝑚]Dataunit:VariesDescription:CovariatevaluesEquations[F.19],[F.20],[F.21],[F.24],[F.25],[F.27],[F.28],[F.37],[F.38],[F.39],[F.40],Page176VM0009,Version3.0SectoralScope14Sourceofdata:ParticipatoryRuralAppraisal,analysisofpublicrecords,and/orexpertinterpretationofinventorydataorremotelysensedimageryDescriptionofmeasurementmethodsandprocedurestobeapplied:N/AFrequencyofmonitoring/recording:Everytimemeasured(≤5yrs)QA/QCprocedurestobeapplied:ReviewofmonitoringrecordsPurposeofdata:Calculationmethod:Comments:MonitoringRequirements:DataandParametersMonitoredThemonitoringreportmustincludethefollowing:MR.85ListofparametersfromAppendixH,theirvaluesandthetimelastmeasured.MR.86Qualityassuranceandqualitycontrolmeasuresemployedforeach.MR.87Descriptionoftheaccuracyofeach.9.3DescriptionoftheMonitoringPlanTherequirementsforsamplingdependonthebaselinetypeidentifiedfortheprojectandtheselectedcarbonpools.Poolsmaybeconservativelyexcludedifthesumofallemissionsfromoptionalpoolsnotselectedislessthan5%ofthetotalprojectbenefitfortheprojectlifetime.Theconservativeexclusionofdeminimispoolscanbedemonstratedusingex-anteestimates(seesection8.4.7).ConservativeexclusionsmustalwaysmeetcurrentVCSrequirements.Allplotsmustbemeasuredforthefirstverification.Allleakageplots,proxyareaplotsandprojectaccountingareaplotsmustberemeasuredatleasteveryfiveyears,orafterasignificanteventthatchangesstocksintheproxyorprojectaccountingareas.Notethatplotsmaynotbere-measuredeverymonitoringperiodifthelengthofthemonitoringperiodislessthanfiveyearsandtherearenosignificanteventsthatchangecarbonstocks.Allheadsoflivestockbeinggrazedwithintheprojectareamustbemeasuredforthefirstverification(unlessdeemedtobedeminimis)andremeasuredatleasteveryfiveyears.Page177VM0009,Version3.0SectoralScope14AlldeviationsfromAppendixBmustbedescribedinthemonitoringreport.Ateverymonitoring(verification)event,newdeviationstothemonitoringplanmustbedescribedinthemonitoringreport.PDRequirements:DescriptionoftheMonitoringPlanInthecasewhenex-anteestimatesareusedtoprovethesignificanceofemissionssourcesorestimatethequantityofNERsovertheprojectcreditingperiod,theprojectdescriptionmustincludethefollowing:PDR.122Summaryofsamplingproceduresfortheprojectaccountingareas,withacopyofasamplingprotocolusedtocarryoutmeasurements.PDR.123Summaryofsamplingproceduresfortheproxyareas,withacopyofasamplingprotocolusedtocarryoutmeasurements.PDR.124Summaryofsamplingproceduresfortheactivity-shiftingleakageareas,withacopyofasamplingprotocolusedtocarryoutmeasurements.MonitoringRequirements:DescriptionoftheMonitoringPlanThemonitoringreportmustincludethefollowing:MR.88Documentationoftrainingforfieldcrews.MR.89Ifincludedinprojectactivities,adescriptionofproceduresusedtoestimatetherateofbiomassburningandcharcoalproductionanddemonstrationthattheseestimatesareconservative.MR.90Documentationofdataqualityassessmentsuchasacheckcruiseandplotsofthedatasuchasdiameterdistributionsbystrataorplot.MR.91Mapsofastratification(ifany)andreferencestoplotallocation.MR.92ListofplotGPScoordinates.MR.93Descriptionofplotsizesandlayout(suchastheuseofnestsandtheirsizes)foreachcarbonpool.MR.94Ifapplicable,adetaileddescriptionoftheprocessusedtodevelopallometricequations,toinclude:Page178VM0009,Version3.0SectoralScope14SamplesizeDistribution(eg,diameter)ofthesampleModelfittingprocedureModelselectionMR.95Theestimatedcarbonstock,standarderrorofthetotalforeachstock,andthesamplesizeforeachstratumintheareaselected.MR.96Logexportmonitoringrecordsandstandardoperatingprocedureintheprojectarea,ifthereiscommercialharvestintheprojectscenario.MR.97DeviationsfromthemeasurementmethodssetoutinAppendixBorthemonitoringplan,percurrentVCSrequirement.MR.98Thefrequencyofmonitoringforeachplotforallplots–allplotsshouldbemeasuredforthefirstverification.Allleakageplotsshouldbemeasuredeveryverification,andallproxyandprojectaccountingareaplotsatleasteveryfiveyears,orafterasignificanteventthatchangesstocks.9.3.1MonitoringCarbonStocksThismethodologyemploysfixedareaplotscoupledwithallometricequationsforestimatingcarbonstocksintrees.Carbonstocksindeadwoodareestimatedusingfixedareaplotsforthestandingdeadwoodpoolandlineintersectsamplingforthelyingdeadwoodpool.Allometricequationsordestructivesamplingmaybeusedforestimatingnon-treecarbonstocks.Soilcarbonisestimatedusingsoilsamplescollectedfromsoilcoresorpits.Carboninlogproductiontowoodproductsisestimatedbyestimatingmerchantablevolumeonfixedareameasurementplots.Thesesamplingproceduresaredesignedtodetectbothincreasesincarbonstocks,suchasthosethatoccurasaresultofforestgrowth,anddecreasesincarbonstocks,suchaschangesthatmaytakeplaceasaresultofdegradationornaturaldisturbanceevents.Carbonstocksmustbeestimatedforthefirstmonitoringperiodbysamplingallplotsinallstrataintheproject,activity-shiftingleakageandproxyareas.Afterthefirstmonitoringperiod,allplotsandallstrataintheprojectandtheactivity-shiftingleakageareasmustbere-measuredatleasteveryfiveyears,aprocesswhichmaybeaccomplishedonanintermittentlyrotatingbasis.Ifthebaselinescenarioincludescommercialwoodproductsandtheprojectproponentelectstousethemarketleakagearea,theproponentmustmeasureAGMTinthemarketleakagearea.Projectproponentsmustinstallastratifiedrandomsampleofpermanentplotsintheprojectareaandleakageareasand,ifrequiredbasedontheselectedpoolsandguidanceabove,theproxyarea.Itisrecommendedthatallquantitiesselectedformeasurementbemeasuredonthesameplots(asdescribedinAppendixB),butdifferentsamplingschemesforeachpoolmaybeemployediftheprojectproponentdeterminesthatthisimprovestheefficiencyofsampling.InPage179VM0009,Version3.0SectoralScope14particular,soilcarbonstocksmayrequireasamplingframeworkdistinctfromthatappliedforotherpools.9.3.2MonitoringLivestockIflivestockgrazingisoccurringwithintheprojectareaboundary,thenumberofeachspeciesoflivestockbeinggrazedmustbedetermined.Itisrecommendedthattheprojectproponentconductaheadcountofalllivestockspecieswithintheprojectareatodetermineexactpopulationnumbers,butdifferentsamplingschemesforlivestockestimationmaybeemployediftheprojectproponentfindsthatthisimprovestheefficiencyofsampling.Foradetaileddescriptionofproceduresformonitoringlivestockpopulationswithintheprojectarea,refertoAppendixB.Itisalwaysconservativetoovercountthenumberoflivestockbeinggrazedintheprojectarea.9.3.3AllometricEquationsWhenavailable,allometricequationsfromexistingIPCC,government,orpeerreviewedliteraturemaybeused.Equationsshouldbederivedfromtreesofawiderangeofdiametersand,ifincluded,heightsandshouldnotbeusedbeyondthesizerangeforwhichtheyweredeveloped.Whenequationsareselectedfromliterature,justificationmustbeprovidedfortheirapplicabilitytotheprojectareaconsideringclimatic,edaphic,geographicalandtaxonomicsimilaritiesbetweentheprojectlocationandthelocationinwhichtheequationwasderived.Whenpossible,species-specificequationsshouldbeused.Ifgeneralizedequationsdevelopedforwidescaleapplicationareused,theymustbevalidatedusingtheproceduresbelow.Allometricequationsmaychangeorbesupplementedeachmonitoringperiodasallometryimproves.Everymonitoringperiodallselectedequationsmustbejustifiedperthefollowingsections.MonitoringRequirements:SourcesofAllometryThemonitoringreportmustincludethefollowing:MR.99Alistofallselectedallometricequationsusedtoestimatebiomassfortreesandnon-trees.MR.100Foreachselectedallometricequation,alistofspeciestowhichitisbeingappliedandtheproportionofthetotalcarbonstockspredictedbytheequation.MR.101Foreachselectedallometricequation,indicationofwhenitwasfirstemployedtoestimatecarbonstocksintheprojectarea(monitoringperiodnumberandyearofmonitoringevent).MR.102Foreachselectedallometricequation,indicationofwhetherwasvalidatedpersections9.3.3.1or9.3.3.2.Page180VM0009,Version3.0SectoralScope14MR.103Documentationofthesourceofeachselectedallometricequationandjustificationfortheirapplicabilitytotheprojectareaconsideringclimatic,edaphic,geographicalandtaxonomicsimilaritiesbetweentheprojectlocationandthelocationinwhichtheequationwasderived.9.3.3.1ValidatingPreviouslyDevelopedAllometricEquationsWhenequationsaretakenormodifiedfromexistingliteraturethatisnotsimilartotheprojectareaasdescribedaboveorareselectedfromabiome-widedatabase,suchasthoseprovidedinTables4.A.1to4.A.3oftheGPG-LULUCF(IPCC,2006),theymustbeverifiedbymeasurementsoftreeswithintheprojectareaorinstandssimilartotheprojectstandsinthesameforesttypeasprojectstandsandneartheprojectarea.Itisalwaysbestandmostaccuratetouseequationsdevelopedfromtreesintheprojectareaorfromexistingliteraturethatisbasedonresearchinareassimilartotheprojectarea.Theprojectproponentshouldcommittoimproveandupdateallometricequationsovertimetoreduceuncertainty.Equationsmaybevalidatedbyshowinggoodcorrespondenceofpredictionsfromtheequationtofieldmeasurementsofbiomassbasedon:(a)destructiveharvestingoftreesinorneartheprojectarea,(b)directphysicalmeasurementsofatleastthebole,andmajorbranchsegmentscombinedwithvalidexpansionfactorsforbranchesandfoliageor,(c)acombinationofdirectmeasurementofbolesanduseofconservativeexpansionfactorsorasamplingapproachforbranchesthatprecludesdouble-countingbranchandbolemeasurement.Anequationmustbevalidatedusingarepresentativesamplewithinthesizerangeobservedintheinventory.Thesamplesizemustbeatleast30unlessthenumberoftreestowhichitisbeingappliedislessthan100,inwhichcaseitmustbeequalto30%ofthenumberoftreestowhichitisbeingapplied.Anequationisvalidif:1.Thepredictedbiomassiswithin+/-15%ofthatmeasured,usingthemeasurementmethodsdescribedabove,determinedbytheratioofthesumofallmeasurementstothesumofallpredictions(ratioofsums).2.ORthecumulativebiomassforallmeasuredtreesinthevalidationsamplearegreaterthanthatpredictedbytheequation.3.ORanadjustmentfactorisappliedtotheequationthatresultsinthepredictedbiomassbeingwithin+/-15%ofthemeasuredbiomassusingthemethodsdescribedabove.Inthecasewheretherepresentativesampledoesnotincludeatreethatisaslargeorlargerthanthelargesttreeintheinventory(aright-censoredsample),theprojectproponentmustdemonstratethattheequationselecteddoesnotover-predictbiomassforverylargetreesbydemonstratingtwoadditionalcriteria.Page181VM0009,Version3.0SectoralScope141.Thatthebiomassmeasurementofthelargesttreeintherepresentativesampleisgreaterthanitspredictedbiomassbytheequation.2.Thattheequationbehavessimilarlybeyondtherangeofmeasurementstakenfortherepresentativesample.Todemonstratethis,dothefollowing:a.Findthefirstorderderivativeoftheequation.b.Determinethevalueofthederivativegiventhemeasurementsofthelargesttreeintherepresentativesample.c.Determinethevalueofthederivativegiventhemeasurementsofthelargesttreeininventorytowhichtheequationisapplied.d.Comparethevaluesfrom(b)and(c).Thevaluefrom(c)mustbenomorethan10%greaterthanthevaluefrom(b).MonitoringRequirements:ValidatingPreviouslyDevelopedAllometryThemonitoringreportmustincludethefollowing:MR.104Alistofallometricequationsvalidatedbydestructivesampling.MR.105Foreach,thenumberoftrees(ornon-trees)destructivelysampledandthelocationwherethemeasurementweremaderelativetotheprojectarea.MR.106Afieldprotocolusedtomeasuredestructivelysampledtrees(ornon-trees).MR.107Justificationthatthefieldprotocolforthedestructivemeasurementmethodconservativelyestimatesbiomass.MR.108Foreachallometricequationinthelist,afigureshowingallthedescriptivemeasurementsofbiomasscomparedtopredictedvaluesfromitsselectedallometricequation.9.3.3.2ValidatingNewlyDevelopedAllometricEquationsIfallometricequationsaredevelopedfortheprojectarea,theguidanceprovidedbyParresol(1999)shouldbeusedtofitappropriatestatisticalmodels.Newmodelsmustbevalidatedusingleave-one-outcrossvalidationasfollows:Assumeamodeloftheform𝑦𝑦=𝑓𝑓(𝒙𝒙),where𝑦𝑦ismeasuredbiomassand𝒙𝒙isavectorofregressors.1.Temporarilyremoveobservation�𝑦𝑦𝑖𝑖,𝒙𝒙𝑖𝑖�fromthedatasetusedtofitthemodel.Page182VM0009,Version3.0SectoralScope141.Refitthemodel,𝑓𝑓−𝑖𝑖,withtheremainingdatapointsanduseittoestimate𝑦𝑦�𝑖𝑖,thepredictedbiomassatthepointthatwasremovedfromthedatasetpriortomodelfittingasgivenbyequation[B.24].2.Estimatethecross-validatederrorforthisdatapoint,𝑒𝑒̂𝑖𝑖,expressedasaproportionofthetruebiomassusingequation[B.25].3.Repeat1-3foreachobservation.4.Calculatethemeancross-validatederror𝐸𝐸�asequation[B.26],where𝒳𝒳isthesetofallobservationsusedinmodelfitting.Thedevelopedequationisconsideredvalidif𝐸𝐸�<15%.MonitoringRequirements:ValidatingNewlyDevelopedAllometryThemonitoringreportmustincludethefollowing:MR.109Alistofallometricequationscrossvalidated.MR.110Foreach,thenumberoftrees(ornon-trees)destructivelysampledtobuildtheequationandthelocationwherethemeasurementsweremaderelativetotheprojectarea.MR.111Afieldprotocolusedtomeasuretrees(ornon-trees)whendevelopingtheequation.MR.112Justificationthatthefieldprotocolforthemeasurementmethodtobuildtheequationconservativelyestimatesbiomass.MR.113Foreachallometricequationinthelist,thevalueof𝐸𝐸�.10REFERENCESANDOTHERINFORMATIONArellano-Neri,O.,&Frohn,R.C.(2001).Image-basedlogisticregressionparametersofdeforestationinRondonia,Brazil.InIGARSS2001.ScanningthePresentandResolvingtheFuture.Proceedings.IEEE2001InternationalGeoscienceandRemoteSensingSymposium(Cat.No.01CH37217)(Vol.00,pp.2236–2237).IEEE.doi:10.1109/IGARSS.2001.977960Avery,T.E.,&Burkhart,H.E.(2002).ForestMeasurements(5thed.,p.456).NewYork:McGraw-HillHigherEducation.Broadbent,E.,Asner,G.,Keller,M.,Knapp,D.,Oliveira,P.,&Silva,J.(2008).ForestfragmentationandedgeeffectsfromdeforestationandselectiveloggingintheBrazilianAmazon.BiologicalConservation,141(7),1745–1757.doi:10.1016/j.biocon.2008.04.024Page183VM0009,Version3.0SectoralScope14Congalton,R.(1991).Areviewofassessingtheaccuracyofclassificationsofremotelysenseddata.RemoteSensingofEnvironment,37(1),35–46.doi:10.1016/0034-4257(91)90048-BDavidson,A.C.(2003).StatisticalModels(p.736).Cambridge,UK:CambridgeUniversityPress.Davidson,E.,&Ackerman,I.(1993).Changesinsoilcarboninventoriesfollowingcultivationofpreviouslyuntilledsoils.Biogeochemistry,20(3),161–193.Retrievedfromhttp://www.springerlink.com/index/6617U13K3561VW04.pdfFreedman,D.A.(2009).StatisticalModels:TheoryandPractice(2nded.).Cambridge,UK:CambridgeUniversityPress.Freese,F.(1962).ElementaryForestSampling.Washington,D.C.:USDepartmentofAgricultureHandbook232.IPCC.(2003).LUCFSectorGoodPracticeGuidance.Goodpracticeguidanceforlanduse,land-usechangeandforestry.RetrievedOctober15,2010,fromhttp://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf_contents.htmlKaimowitz,D.,Mendez,P.,Puntodewo,A.,&Vanclay,J.K.(2002).SpatialregressionanalysisofdeforestationinSantaCruz,Bolivia.InC.Wood&R.Porro(Eds.),DeforestationandlanduseintheAmazon(Vol.1,pp.41–65).Gainesville:UniversityPressofFlorida.Retrievedfromhttp://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.61.9344&amp;rep=rep1&amp;type=pdfLinkie,M.,Smith,R.J.,&Leader-Williams,N.(2004).MappingandpredictingdeforestationpatternsinthelowlandsofSumatra.BiodiversityandConservation,13(10),1809–1818.doi:10.1023/B:BIOC.0000035867.90891.eaLohr,S.L.(2009).Sampling:DesignandAnalysis(AdvancedSeries)(2nded.,p.608).PacificGrove,Calif:DuxburyPress.Ludeke,a,Maggio,R.,&Reid,L.(1990).AnanalysisofanthropogenicdeforestationusinglogisticregressionandGIS.JournalofEnvironmentalManagement,31(3),247–259.doi:10.1016/S0301-4797(05)80038-6Mahapatra,K.,&Kant,S.(2005).Tropicaldeforestation:amultinomiallogisticmodelandsomecountry-specificpolicyprescriptions.ForestPolicyandEconomics,7(1),1–24.doi:10.1016/S1389-9341(03)00064-9Olson,J.S.(1963).EnergyStorageandtheBalanceofProducersandDecomposersinEcologicalSystemsAuthor(s):JerryS.OlsonPublishedby:EcologicalSocietyofAmericaStableURL:http://www.jstor.org/stable/1932179YouruseoftheJSTORarchiveindicatesyouracce.America,44(2),322–331.Page184VM0009,Version3.0SectoralScope14Parresol,B.R.(1999).Assessingtreeandstandbiomass:areviewwithexamplesandcriticalcomparisons.ForestScience,45(4),573–593.Retrievedfromhttp://www.ingentaconnect.com/content/saf/fs/1999/00000045/00000004/art00014Seabrook,L.,McAlpine,C.,&Fensham,R.(2007).Spatialandtemporalanalysisofvegetationchangeinagriculturallandscapes:Acasestudyoftwobrigalow(Acaciaharpophylla)landscapesinQueensland,Australia.Agriculture,Ecosystems&Environment,120(2-4),211–228.doi:10.1016/j.agee.2006.09.005Shiver,B.D.,&Borders,B.E.(1996).SamplingTechniquesforForestResourceInventory(p.356).JohnWileyandSons.Inc.Simpson,W.T.,&Sagoe,J.A.(1991).RelativeDryingTimesof650TropicalWoodsEstimationbyGreenMoistureContent,SpecificGravity,andGreenWeightDensity.USDAFSGTR-71(pp.1–27).MadisonWI.Stephens,S.E.,Walker,J.a,Blunck,D.R.,Jayaraman,A.,Naugle,D.E.,Ringelman,J.K.,&Smith,A.J.(2008).Predictingriskofhabitatconversioninnativetemperategrasslands.Conservationbiology:thejournaloftheSocietyforConservationBiology,22(5),1320–30.doi:10.1111/j.1523-1739.2008.01022.xVCS.(2010).ToolforthedemonstrationandassessmentofadditionalityinVCSAgriculture,Forestryandotherlanduse(AFOLU)projectActivitiesToolVT001(pp.1–12).Washington,D.C.Retrievedfromwww.v-c-s.org/.../VCS-Tool-VT0001_Tool-for-Demonstration-and-Assessment-of-Additionality-in-AFOLU-Project-Acitivities.pdfVenables,W.N.,&Ripley,B.D.(2002).ModernAppliedStatisticswithS(4thed.,p.495).NewYork,NY:Springer.Williamson,G.B.,&Wiemann,M.C.(2010).Measuringwoodspecificgravity...Correctly.AmericanJournalofBotany,97(3),519–24.doi:10.3732/ajb.0900243Winjum,J.,Brown,S.,&Schlamadinger,B.(1998).Forestharvestsandwoodproducts:sourcesandsinksofatmosphericcarbondioxide.ForestScience,44(2),272–284.Retrievedfromhttp://www.ingentaconnect.com/content/saf/fs/1998/00000044/00000002/art00012Page185VM0009,Version3.0SectoralScope14APPENDIXA:THEORETICALBACKGROUNDA.1LogisticFunctionfor𝜶𝜶,𝜷𝜷and𝜽𝜽Thisbackgroundsectioncontainsgeneralinformationaboutthemodelandtheselectedapproachtofittingthemodelratherthanspecificmethodsusedtobuildthebaselineemissionsmodels,andisnotrequiredtorunthemodelitself.Naturalresourceconversionovertimeisinherentlyboundedbythesizeoftheareathatissubjecttoconversionandhasbeenshowntoexhibitlogisticbehaviorovertime(Arellano-Neri&Frohn,2001;Kaimowitz,Mendez,Puntodewo,&Vanclay,2002;Linkie,Smith,&Leader-Williams,2004;Ludeke,Maggio,&Reid,1990;Mahapatra&Kant,2005).Figure14illustratesthisbehavior:therateofecosystemconversionislowatbeginning,steadilyincreasesandtapersoffattheendofthetimeperiod.Figure14:GeneralizedGraphofLogisticConversionOverTimeThelogisticmodelofconversion,showingthetransitionfromforesttonon-forestofagivenareaThisbehaviorcanbeinterpretedusingeconomictheory(eg,seeReisandGuzman1992).Atthebeginningofconversioninanarea,agentsarescarceandresourcesareplentiful;thisleadstoPage187VM0009,Version3.0SectoralScope14increasingresourceexploitation.Conversely,towardtheend,agentsareplentifulandresourcesarescarce,decreasingexploitation.Basedontheseconceptsandtheirsupportintheliteratureasdescribedabove,thismethodologyassumesthatecosystemconversionislogisticwhenboundedbythereferenceareaorprojectaccountingarea(s).Specifically,itassumesthatconversionovertimeexhibitstheimplicitformdefinedbyequation[A.4].Theparametervector𝜽𝜽includedinequation[A.4]representstheaforementionednumericcovariatestoconversionwhichareidentifiedusingexpertknowledgeortheparticipatoryruralappraisal.Thefunction𝜂𝜂iscalledthelinearpredictorgiventimeandconversioncovariateparameters𝜽𝜽.Fittingequation[A.4]isequivalenttoestimatingthelinearpredictoras𝜂𝜂̂wherethelinearpredictorisdefinedbyequation[A.5].A.1.1ProbabilitiesandWeightsforConversionStateFitting[A.4]requiressomehistoricinformationaboutthelandcoverstateinthespaceofthereferenceareaovertime.Observationsoflandcoverstateinthereferenceareacanbemadeoverthereferenceperiodasafirststeptofittingequation[A.4].Theseobservationscanbemadeusingasampleofuniquepointsintimeandspacewherethestateobservationforthe𝑖𝑖𝑡𝑡ℎsamplepointisdefinedby[F.11],whichisafunctionoftime𝑡𝑡𝑖𝑖,latitude𝑥𝑥𝑖𝑖andlongitude𝑦𝑦𝑖𝑖.Stateobservationsinspacecanbemadeatrandomoronalattice(systematicgrid).Sincestatesareobservedinhistoricimages,however,observationsintimecanonlybemadeatthetimesforwhichimageryisavailable.Spatialavailabilityofhistoricimageryoverthereferenceareamightnotbeuniform.Additionally,theentirespaceofthereferenceareamightnotbeequallyobservedovertime.Tocorrectforanyresultingbias,weestimatetheprobabilityofobservinganyoneparticularsamplepointusingequation[A.1].Theprobabilityofobservinganimageintimeisnotindependentofspace.Forexample,considerascenarioinwhichagovernmententityobtainedaerialimageryalongahighwayforaroadexpansionprojectinthereferenceareafiveyearspriortotheprojectstartdate.Then,asecondsetofimagerywasobtainedaftertheroadexpansionwascomplete.Equation[A.3]accountsforthefactthattheprobabilityofobservinganimageinthereferenceareaatanygiventimeisdependentonthatimage’sproximitytotheconstructionproject.Theconditionalprobabilityofobservingasamplepointinspacegiventimeis[A.2]andtheprobabilityofobservinganysamplepointintimeissimplytheintensityoftheprocess[A.3].Hencethecorrectionfactorisproportionaltotheinverseoftheprobabilityofobservinganyoneparticularsamplepointwhichis[A.6],andiscalledtheobservationweight.Figure15:ExamplesforCalculatingObservationWeightsAnexampleofthreeimagesatdifferenttimesusedtocalculatetheobservationweightsofsamplepoints.Page188VM0009,Version3.0SectoralScope14Forexample,tocalculatetheobservationweightofapoint(𝑥𝑥,𝑦𝑦,𝑡𝑡)asdefinedbyequation[A.6],onemustknowthenumberoftimesthepointwasobservedinthereferenceareaandthenumberimagesthatthepointfallsontoduringthereferenceperiodwherethepointfallsontointhecloud-freeportionofeachimage.Iftherearesixpointsinthereferenceareaandthreeimagesinthehistoricreferenceperiod,asshowninFigure15,thentheweightofpointAattime3inthefigureiscalculatedas13×4=112whiletheweightofpointDattime2iscalculatedas11×5=15.PointDattime2isgivenmoreweightthanpointAattime3becauseitisobservedlessoften.Themodeldefinedbyequation[A.4]isfitusingiterativelyreweightedleastsquares(IRLS)withinitialweights𝒘𝒘,theobservationweights,andgiventheobservedcovariatesandstates𝒐𝒐invectorformat.SeeVenables&Ripley(2002)forinformationonhowtofitalogisticmodelwithIRLSusingthefreestatisticalprogramR.AkaikeInformationCriterion(AIC)isusedtoselectthebestnestedmodelin𝜽𝜽.SeeDavidson(2003)orFreedman(2009)forinformationaboutlinearpredictorsandlogisticmodels.Theresidualsofthemodeldefinedbyequation[A.4]areassumedtobestationaryoverthereferenceperiod.Thatis,themeanandvarianceoftheresidualsaretimeinvariant.Aftermodelselectionandfitting,thecumulativeconversionasaproportionofanareacanbepredictedforfuturetimesusingequation[A.4].0123401234XYABCDEFImage1Time10123401234XYABCDEFImage2Time20123401234XYABCDEFImage3Time3Page189VM0009,Version3.0SectoralScope14A.1.2LinearBehaviorofEmissionsfromLegally-SanctionedCommercialLoggingInaplannedcommercialscenario,abaselineoperatorwoulddegradetheforestatagivenlinearratemandatedbythecuttinglimitsplacedbythenationalgovernmentortheconcession.Whenharvestisnotsustainable(eg,morevolumeisextractedthanincrementalgrowthinagiventimeandspace)thantheforestisdegraded.Ifthebaselineoperatorprotectstheareaharvestedfromdeforestationduringforestoperationsbutnotafterwards,deforestationisprecededbylineardegradation.Figure16:GraphofCumulativeEmissionsfromConversionfortheDifferentBaselineTypesThefigureshowsageneralizedgraphofcumulativeemissionsovertime.Anequalvolumeperunittimeisdegradedunderaplannedcommercialscenariountilsecondaryagentsarriveandbegindeforestation,followingalogisticmodelafter𝑡𝑡𝑠𝑠𝑠𝑠fortypeF-P1.aandF-P1.b,whileforotherbaselinetypesemissionsfollowthelogisticmodelfrom𝑡𝑡0.Thecombinedemissionsfromthelineardegradationandthesubsequentlogarithmicdeforestationareexplainedbythebaselineemissionsmodel,equation[F.19],andillustratedbytheabovegeneralizedgraphoflineardegradationfollowedbydeforestation.A.1.3RelationshipoftheLogisticFunctiontoOtherFunctionTypesThelogisticfunctionspecifiedby[A.4]isrelatedtoavarietyofratefunctionsemployedinotherREDD+programsandmethodologies.Theratefunctionof[A.4]correspondstoitsfirst-orderderivativewithrespecttoitslinearpredictor:Page190VM0009,Version3.0SectoralScope14exp[𝜂𝜂(𝑡𝑡,𝜽𝜽)](1+exp[𝜂𝜂(𝑡𝑡,𝜽𝜽)])2.ThedifferenttypesoffunctionsaredisplayedgraphicallyinFigure17.Traditionally,otherREDD+nationalandsub-nationalprogramsandmethodologieshaveemployedlinearfunctionstoestimatefutureconversionratetrends.Thelogisticfunctionspecifiedby[A.4]representstheeconomictheoryofresourceconsumption(ie,ecosystemconversion)withinadiscreteareaovertime,aspresentedinsection[A.1].NoneoftheotherratefunctionsgenerallyusedinREDD+programsprovidethesamedepictionofthisresourceeconomictheory.IftheeconomictheorypresentedinsectionA.1isacceptedasthemostrealisticdepictionofresourceconsumption,itcanthenbestatedthatthelogisiticfunctionmaybeamorereasonableapproximationoftheconversionprocessthanotherfunctiontypes.Figure17:GraphsofGeneralFunctionalFormsA.2SoilExponentialDecayModelThisbackgroundsectioncontainsgeneralinformationabouttheexponentialdecaymodelforsoilwhichunderpinstheSEMandtheselectedapproachtofittingtheexponentialdecaymodel,ratherthanspecificinstructionsonhowtobuildthemodel.Page191VM0009,Version3.0SectoralScope14Literaturesuggeststhattheamountofcarbonlossinsoilfollowingconversionfromforesttonon-forestorfromnativegrasslandtoanthropogenicconversionfollowsanexponentialdecay(loss)curveduetodecompositionprocesses.Themajorityoflossoccurswithintheuppermostsoilhorizons(eg,top20-30cm)forsoilandwithinthefirstfewyearsforalldecayingpools(Olson1963,DavidsonandAckerman1993).Anexponentialdecayfunctionintegratescumulativeloss,where𝜆𝜆representstheexponentialsoilCdecayparameteranddescribesdecayofthecarbonthatwilleventuallybelost.Followingecosystemconversion,onlyaportionofthecarbonstockislost;ie,organiccarbonstocksdeclinetowardsanewequilibriumlevelovertime,reachingsomemaximumcarbonlossproportionthatultimatelydependsonboththedepthofthesoilcolumnandcultivationpracticesovertimeforsoil.Thesefactorsvaryonaproject-by-projectbasis.Henceaprojectdeveloper’sselectedvaluefor𝜆𝜆beevaluatedonaproject-by-projectbasis(seesection6.19).Persection6.19,projectproponentsmustselectanexponentialdecayparameter,𝜆𝜆,byeither1.Usingavaluefrompeer-reviewedscientificliteraturethatisasappropriatefortheproject(seesection6.19.4),2.Estimatetheparameter,𝜆𝜆̂,usingempiricallymeasureddatapersection6.19.3,or3.Utilizetheconservativedefaultvaluefortheselectedpool.Thedefaultvalueprovidedinthismethodologyisonlyappropriateforthetropics(seesection6.19.2).Iftheprojectproponentchosesoption2,measurementsamplingofsoilcarbonfromtheproxyarea(seesection6.4)isusedtoestimateλ𝑆𝑆𝑆𝑆𝑆𝑆usingaprocessknownasa"spacefortimesubstitution",awelldocumentedmethodintheecologicalliterature.ThisprocessassumesthatsoilCstocksintheproxyarea(thathasbeenpreviouslyconverted)arerepresentativeofthesoilClevelsthatwouldbeobtainedovertimeintheprojectareaifitweretobeconvertedtosomeendlanduse.Ifthesampledataareobtainedfromsoilcolumnswithequaldepthandthedataarecollectedfromagriculturalsoilsofknownage,thenthesamplemeanshouldbeusedtoestimateλ𝑆𝑆𝑆𝑆𝑆𝑆,perDavidson&Ackerman,1993.Itshouldbenotedthatthismethodologydoesnotexplicitlyprescribedurationoftimerequiredtoaccuratelyderiveavalueforλ𝑆𝑆𝑆𝑆𝑆𝑆.Theauthorswerepurposelyinexplicitinthisregard,asitisintheproponent’sbestinteresttocollectdatathatrepresentsaperiodoftimeafterthesoilcarbonstockhasreachedanewequilibriumstate(nolongerdeclining).Ifλ𝑆𝑆𝑆𝑆𝑆𝑆isderivedfromconvertedareasthatare“toorecent”,clearlytheestimateofproportionalsoilloss,λ𝑆𝑆𝑆𝑆𝑆𝑆willbebiasedtowardlessdecaythanmayultimatelyoccur.Itisthereforerecommendedtosampleinfarmsbetween5and20yearsinagetocapturecompletesoilcarbondecayintropicalecosystems.Page192VM0009,Version3.0SectoralScope14Figure18:ExponentialDecayModelThisfiguredepictstheexponentialnatureofdecayinthesoilcarbonpool.A.3ModelforSpatialComponentThespatialmodelappliestobaselinetypeU3.Thismodeldoesnotattempttodeterminewhereecosystemconversionismostlikelytohaveoccurredintheproject,butratherconservativelyassumesthatthestratumwiththelowestcarbonstocksisharvestedfirst.Strataarethenassumedtobedeforestedsequentiallymovingfromlowesttothehigheststockedstrata.Thisapproachisthusthemostconservativeaccountingpossibleforthepotentialpatternsofconversion.Itavoidsthecomplexitiesandsourcesoferrorinherentinattemptstopredictthespatialpatternsofconversionthatcouldleadtoanover-issuanceofNERs.Page193VM0009,Version3.0SectoralScope14A.4EquationsforTheoreticalBackground𝑃𝑃(𝑡𝑡𝑖𝑖,𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)=𝑃𝑃(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖𝑡𝑡𝑖𝑖)𝑃𝑃(𝑡𝑡𝑖𝑖)[A.1]Variables𝑃𝑃(𝑡𝑡𝑖𝑖,𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)=probabilityofobservationinapointinspaceandtime𝑡𝑡𝑖𝑖=thetimeofthe𝑖𝑖𝑡𝑡ℎsamplepoint𝑥𝑥𝑖𝑖=thelatitudeofthe𝑖𝑖𝑡𝑡ℎsamplepoint𝑦𝑦𝑖𝑖=thelongitudeofthe𝑖𝑖𝑡𝑡ℎsamplepointSectionReferencesA.1.1CommentsProbabilityofobservinganyonesamplepointinspaceandtime.𝑃𝑃(𝑡𝑡𝑖𝑖,𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)=#(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)×#(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑡𝑡𝑖𝑖)#(ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)×#(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜)[A.2]Variables𝑃𝑃(𝑡𝑡𝑖𝑖,𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)=probabilityofobservationinapointinspaceandtime𝑡𝑡𝑖𝑖=thetimeofthe𝑖𝑖𝑡𝑡ℎsamplepoint𝑥𝑥𝑖𝑖=thelatitudeofthe𝑖𝑖𝑡𝑡ℎsamplepoint𝑦𝑦𝑖𝑖=thelongitudeofthe𝑖𝑖𝑡𝑡ℎsamplepointSectionReferencesA.1.1CommentsTheconditionalprobabilityofobservingasamplepointinspacegiventime.𝑃𝑃(𝑡𝑡𝑖𝑖)=1#(ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)[A.3]Variable𝑃𝑃(𝑡𝑡𝑖𝑖)=probabilityofobservinganysamplepointintimeSectionReferencesA.1.1,6.8.4CommentsTheprobabilityofobservinganysamplepointintimewithagivennumberofhistoricalimagesPage194VM0009,Version3.0SectoralScope14𝐹𝐹𝐷𝐷𝐷𝐷(𝑡𝑡,𝜂𝜂)=11+exp[−𝜂𝜂(𝑡𝑡,𝜃𝜃)][A.4]Variables𝐹𝐹𝐷𝐷𝐷𝐷=proportionofcumulativeconversion𝜂𝜂=linearpredictorgiventimeandconversioncovariates;𝑡𝑡=time𝜃𝜃=parametervectorofcovariatesSectionReferencesA.1,6.8.8CommentsLogisticmodelofcumulativeconversionboundedbyareferenceorprojectarea.(Arellano-Neri&Frohn,2001;Kaimowitzetal.,2002;Linkieetal.,2004;Ludekeetal.,1990;Mahapatra&Kant,2005)𝜂𝜂=𝛼𝛼+𝛽𝛽𝛽𝛽+𝜃𝜃𝑥𝑥𝑇𝑇+𝛿𝛿𝑃𝑃𝑃𝑃[A.5]Variables𝛼𝛼=combinedeffectsof𝛽𝛽and𝜃𝜃atthestartofthehistoricreferenceperiod𝛽𝛽=effectoftimeonthecumulativeproportionofconversionovertime𝑡𝑡=timesinceprojectstartdate𝜃𝜃=parametervectorofcovariates𝑥𝑥𝑇𝑇=covariatevalue𝛿𝛿𝑃𝑃𝑃𝑃=projectlagparameterSectionReferencesA.1Commentslinearpredictorgiventimeandconversioncovariates𝑤𝑤𝑖𝑖∝1#(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)×#(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑡𝑡𝑖𝑖)[A.6]Variables𝑤𝑤𝑖𝑖=observationweightofpoint𝑖𝑖#(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)=numberofobservationsthroughouttimeatpoint𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖#(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑡𝑡𝑖𝑖)=numberofobservationsacrossspaceattime𝑡𝑡𝑖𝑖SectionReferencesA.1.1Page195VM0009,Version3.0SectoralScope14CommentsObservationweightPage196VM0009,Version3.0SectoralScope14APPENDIXB:CARBONSTOCKANDLIVESTOCKMEASUREMENTB.1GeneralSamplingGuidelinesforCarbonStocksSampleplotsareusedtoestimatecarbonstocksinselectedpoolsataparticularpointintime.ChangesinmeasuredcarbonstocksareusedinconjunctionwiththecumulativeemissionsmodeltoquantifythenetGHGemissionsorremovalsasaresultofprojectactivities.Changesonmeasuredplotsshouldreflectbothchangesduetonaturalprocessessuchasgrowthandmortalityandchangesduetohumanactivity,suchasmanagement,harvest,ordegradation.Inordertoavoidbias,plotsshouldbemarkedinconspicuously,sothatifdegradationormanagementactivitiesdooccurinthearea,theyapplyuniformlytobothareaswithinanestablishedmonitoringplotandareasoutsideofthoseplots.Projectproponentsmaycarryouttheirinventoryusingeitherarandomorasystematic(grid-based)samplewithineachstratum.Systematicsamplinghelpsensureuniformcoverageoftheareasampledandcanbecostefficient,butrisksbiasifthesamplingunitscoincidewithperiodicityinthepopulation.Tominimizethisrisk:•Projectproponentsmustidentifyanyperiodicvariationpotentiallypresentintheprojectareaduetotopography,managementhistory,orotherfactorsanddocumenthowthesamplingdesignavoidsbiasthatmayresultfromtheseperiodicities.•Ifline-plotcruisesorotherlinearlybasedmethodsareused,effortshouldbemadetomakecruiselinesrunperpendiculartoslopes,ratherthanalongcontours,wheneverpossible.•Systematicsamplesshouldemployarandomizedstartpoint.Theoptimumplotsizeinacarboninventoryisafunctionofthevariabilityincarbonstocksinherentinthepopulationandmeasurementcosts,includingthecostoftravelingbetweenplotswithintheareatobemeasured.Ingeneral,asplotsizeincreases,thevarianceincarbonstocksacrossplotswithinapopulationdecreases.Asidefromstratification,inventoryprecisioncanbeimprovedbyincreasingeitherthesizeornumberofplotsmeasured.Plotsizeshouldbechosenbytheprojectproponentbasedonexperiencewithsimilarforesttypes,reviewsoftechnicalliterature,and,optionally,apilotsample.Ifapilotsampleisused,plotscanoptionallybeinstalledusingthelargestplotradiusunderconsiderationandmeasurementsofdistancefromplotcentertoeachtreerecorded.Thisallowsforthesyntheticconstructionofplotsofsmallersize.Therequiredsamplesizetoobtainthetargetedprecisionlevelforeachplotradiusunderconsiderationcanthenbecomputedusingtheappropriateequationsdescribedbelow.Ifapilotsampleisnotfeasibleordesired,thebetween-plotvarianceofanewplotsizecanbeestimatedfromthebetweenplotvarianceofaknownplotsizeusingequation[B.1].Itshouldbenotedthatmanyprojectproponentsperform"feasibilitystudies"inapotentialprojectarea;thispresentsanoptimalopportunitytoestablishandmeasureapilotsampleandexplorealternativesamplingmethodologies(whichmayrequireadeviationfromthemethodsprovidedinthisappendix).Page197VM0009,Version3.0SectoralScope14Projectproponentsmayusedifferent-sizedplotsfordifferentcarbonpools.Forexample,projectproponentsmaychoosetouseanestedplotdesigninwhichsmalltreesaremeasuredonaplotofsmallerradiusthantheradiusoftheplotforlargetrees.B.1.1StratificationforImprovingSamplingEfficiencyStratificationisrecommended(butnotstrictlyrequired)asatoolforminimizingsamplingerror.Iftwoormorestratacanbeidentifiedwithintheprojectareawithsimilarcarbonstocksandrelativelysmallvarianceinrelationtothevarianceofthetotalprojectarea,stratificationshouldreduceuncertaintyincarbonstockestimation.Theequationspresentedhereassumestratificationisused.However,iftheprojectareaisnotstratified,theequationslistedinthissectionarestillapplicable.Inthiscase,allsumsacrossstrataincludeonlyasingleelement.Thestandarderrorequationsgiveninthismethodologyassumethatstratumsizesareknownexactly.Toensurethisassumptionisvalid,stratashouldbedelineatedpriortoandindependentofsampling.Stratificationmayberevisedatanymonitoringperiodpriortosubsequentforestre-measurement.B.1.2StratificationforDelineatingHarvestableAreasAGISanalysisshouldbeusedtodelineateharvestableareasconsideringslope,accessconstraints,localregulations(eg,requiredstreambuffersorrestrictionsonharvestunitsize),foresttype,availableharvestandskiddingtechniques,managementplans,etc.Estimatesofcarbonstocksinmerchantabletreeandwoodproductsratiosshouldbecalculatedonlyfromdatacollectedinstrataclassifiedasharvestableaccordingtothisanalysis.Documentallassumptionsusedtodelineateharvestableareas.Intheprojectareathesumdelineatedharvestableareaswillprobablybeequaltothesizeofoneormoreprojectaccountingareas.B.1.3EstimatingRequiredSampleSizeandPlotAllocationThismethodologymakesnospecificrequirementswithregardtothesamplesizeusedinacarbonstockinventory.Rather,guidelinesforestimatingrequiredsamplesizeasafunctionofdesiredprecisionareprovided.Themethodologydiscountscreditgenerationbasedonthemagnitudeofsamplingerrorthatresultsfromaninventory.Ifaninventorydoesnotachieveadesireddegreeofprecisionex-post,projectproponentsmaychoosetoinstalladditionalplotsinordertodecreaseuncertaintyandreduceconfidencedeductions,regardlessofthesamplesizessuggestedbytheequationsprovidedinthissection.Eachstratummustcontainatleasttwosampleplots.Inplanninginventoryactivities,theprojectproponentmayusethefollowingguidelinesforestimatingsamplesizeandallocatingplotstostrata.Thisstepisnotrequired,butmaybeusefulinplanninganinventoryofcarbonstocksthatminimizesexpendituresrequiredtoachieveaspecifiedprecisionlevel.Thethreemethodsbelowcanbeusedtoestimatethenumberofplotsandallocationofthoseplotstostratathatwillmaximizesamplingefficiencybasedontheamountofinformationavailablepriortosampling.ApilotsampleorliteraturereviewmaybeconductedtoinitiallyestimatethemeanandstandardPage198VM0009,Version3.0SectoralScope14deviationofcarbonstocksineachstratumbeforemakinguseoftheseguidelines.Formoreinformationonhowtodeterminethesizeofapilotsamplesee(Avery&Burkhart,2002)B.1.3.1ProportionalAllocationIftheonlyinformationavailableistheareaofeachstratumasdelineatedonaGIS,proportionalallocationcanbeused.Determinethetotalestimatedsamplesize𝑛𝑛�𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇usingequation[B.2],thendeterminethenumberofplots𝑛𝑛�𝑘𝑘ineachstratum𝑘𝑘usingequation[B.3].B.1.3.2NeymanAllocationIftheareaofeachstratumaswellasanestimateofthepopulationvarianceofeachstratumisavailable,Neymanallocationcanbeexpectedtoimprovesamplingefficiencyoverproportionalallocation,andisthuspreferred.Firstdeterminetheproportionofplots,𝑤𝑤𝑘𝑘,thatwillfallineachstratumusingequation[B.4].Estimatethetotalsamplesize𝑛𝑛�𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇usingequation[B.5]where𝜎𝜎�𝑘𝑘2canbeestimatedfromapilotsampleusingequation[B.8].Finally,estimatethenumberofplots𝑛𝑛�𝑘𝑘ineachstratum𝑘𝑘usingequation[B.7].B.1.3.3OptimalAllocationIfforthearea,anestimateofvarianceandanestimateoftherelativecostofsamplingisavailableforeachstratum,optimalallocationcanbeused.Firstdeterminetheproportionofplots,𝑤𝑤𝑘𝑘,thatwillfallineachstratumusingequation[B.6].Estimatethetotalsamplesize𝑛𝑛�𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇usingequation[B.5]where𝜎𝜎�𝑘𝑘2canbeestimatedfromapilotsampleusingequation[B.8].Finally,estimatethenumberofplots𝑛𝑛�𝑘𝑘ineachstratum𝑘𝑘usingequation[B.7].Thecostestimateneednotbeinanyparticularunit,onlyarelativecostisrequired(eg,ifthesamplingcostofonestratumistwicethatofanotherduetoremoteaccess,thevalues1and2maybeusedfortherelativecosts).B.1.4EstimatingMeans,TotalsandStandardErrorsforStratifiedSamplesTheestimatedtotalquantityofinterestwithinasampledareaisgivenbyequation[B.9],where𝒚𝒚𝒋𝒋,𝒌𝒌istheplot-levelquantityofinterestfromplot𝐣𝐣instratum𝒌𝒌,giveninunitsperunitarea.Forexample,ifthequantityofinterestistotalcarbonstockintrees,𝒚𝒚𝒋𝒋,𝒌𝒌wouldrepresenttheresultofapplyinganallometricequationtoeachmeasuredtreeinplot𝐣𝐣,convertingtocarbonunits,summingtheresults,anddividingbytheareaofplot𝒋𝒋asdescribedintheproceduresgivenbelowforestimatingcarbonstocksinabove-groundtrees.Inthecaseofmonitoringdegradationintheactivity-shiftingleakagearea,𝒚𝒚𝒋𝒋,𝒌𝒌istheobserveddegradationonaleakageplot(seesectionB.2.8).Thestandarderrorofthetotalisestimatedfirstbycalculatingthebetween-plotvariance𝜎𝜎�𝑘𝑘2withineachstratumusingequation[B.8],thenestimatingthestandarderrorusingequation[B.10].Thisestimateincludesthefinitepopulationcorrectionfactor𝑁𝑁𝑃𝑃,𝑘𝑘−#(𝒫𝒫𝑘𝑘)𝑁𝑁𝑃𝑃,𝑘𝑘.Notethat𝑁𝑁𝑃𝑃,𝑘𝑘,thetotalnumberofpossibleplotsinstratum𝑘𝑘,isgivenbydividingtheareaofthestratumbytheplotsize.ThePage199VM0009,Version3.0SectoralScope14finitepopulationcorrectionfactorcanbeconservativelyexcludedfromthestandarderrorformulaandshouldnotbeusedinestimatingsoilcarbonstocks.Alsonotethatseparatevarianceestimatorsareusedforlineintersectsamplesoflyingdeadwoodandareprovidedinthatsectionbelow.Inthecasethataprojectareaisnotstratified,theprovidedequationsarestillapplicable,butsummationsacrossstrataincludeonlyasingleelement.B.1.5SummingPoolsandUncertaintiesTotalcarbonstockswithinanareacanbeestimatedbysimplysummingthetotalsestimatedusingthemethodsgivenbelowasshowninequation[B.33].Thestandarderrorofsuchasumcanbeestimatedfromtheindividualstandarderrorsusingequation[B.34].B.2StockEstimationTechniquesApplicabletoSpecificCarbonPoolsB.2.1EstimatingtheAverageCarboninAGMTandAGOTVariables:𝑐𝑐𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚]and𝑐𝑐𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚]Carbonstocksinlivetreesareestimatedusingallometricequations.Allometricequationscommonlyrequirerecordingthediameteratbreastheightandspeciesorspeciesgroupforeachtreewithinthemeasurementplots.Someequationsrequireadditionalmeasurements,suchasheightorwooddensity.Whenwooddensitymeasurementsarerequired,theguidanceprovidedbyWilliamson&Wiemann(2010)shouldbefollowedindatacollection.Allometricequationsshouldbechosenordevelopedbasedontheguidanceinsection9.3.3.Itisveryimportanttouseordevelophighqualityallometricequationsthatareapplicabletotheregionandspeciesbeinginventoried.Toensureaconsistentinventoryacrossmonitoringperiods,theprojectproponentshouldclearlydocumenttreemeasurementprocedures,includingproceduresforlocatingandmonumentingplots;recordingandarchivingdata;calibratingequipment;includingorexcludingtreesthatfallontheedgeofaplot;andrulesformeasuringtreesthatlean,haveirregularstems,buttresses,orstiltroots.Notethatmerchantableandnon-merchantabletreesaresampledusingidenticalmethodsandutilizethesameplots,butstockestimatesforeachpoolmustbecomputedseparatelyforuseinthebaselineemissionsmodel.Priortosampling,theprojectproponentmustconductaGISanalysisasdescribedinsectionB.1.2todeterminewhichstrataoftheprojectareaareharvestable.Further,projectproponentsmustdocumentclearrulesforclassifyingindividualtreesasmerchantableornon-merchantable.Theserulesshouldconsider,ataminimum,species,sizeclass,anddefect.Merchantabilitystatusofeachmeasuredtreeshouldbeassignedinthefield,andrecordedonfielddatasheets.Trainingshouldbeprovidedtofieldcrewstoensurethattheapplicationoftheserulesisconsistent.Page200VM0009,Version3.0SectoralScope14Projectproponentsmayelecttousedifferentplotsizes(ie,anesteddesign)formeasurementoftreesbasedontheirsizetoimproveinventoryefficiency.Toestimatetheaveragecarbonstockinmerchantableornon-merchantableabove-groundtrees:1.Estimatethecarbonstockofeachmeasuredtreeusinganappropriateallometricequationasgiveninequation[B.11](seesection9.3.3todetermineappropriateallometricequations).Notethatthisequationassumestheselectedallometricequationcomputesbiomassinkilograms,andmayneedtobemodifiedifequationswithotherunitsareapplied.2.Sumthebiomassofalltreeswithineachplotanddividebyplotareaasgiveninequation[B.14],where𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘isthecarbonstockintonnesCO2eoftree𝑖𝑖onplot𝑗𝑗instratum𝑘𝑘asestimatedinstep3.Thisprovidesanestimateoftheplotleveltotalbiomassperunitarea.3.Useequation[B.9]asdiscussedinsectionB.1.4toestimatetheaveragecarbonstockinabove-groundtrees,where𝑦𝑦𝑗𝑗,𝑘𝑘istheplotlevelestimateofCO2e/haproducedinstep(2).4.Useequations[B.8]and[B.10]toestimatethestandarderrorofthetotalcarbonstockinabove-groundtrees,where𝑦𝑦𝑗𝑗,𝑘𝑘istheplotlevelestimateofCO2e/haproducedinstep(2).B.2.1.1PalmBiomassTheallometricequationbasedmethodsdescribedfortreescanbeappliedtoestimatingabove-groundbiomassofpalmsaswell.Table4.A.2oftheIPCCGoodPracticeGuidanceforLandUse,LandUseChangeandForestryprovidesasourceofallometricequationsrelevanttopalms.Additionally,morelocallyrelevantequationsmaybeavailableinthetechnicalliterature.Allometricequationsforpalmstypicallyarebaseduponheight,ratherthandiameter.Heightcanbemeasuredusinganelectronichypsometer,heightpole,orclinometerandtape.Proceduresforconductingthesemeasurementsmustbeclearlydocumentedandbeconsistentwiththeexpectedinputsoftheselectedequations.Totalpalmbiomassanditsassociatedstandarderrorcanbecalculatedusingthestepsaboveasdescribedforabove-groundtreebiomass.B.2.2EstimatingtheAverageCarboninAGNTVariables:𝑐𝑐𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚]Non-treebiomassincludesgrasses,sedges,herbaceousplants,woodyshrubsandanytreessmallerthantheminimumdiameterspecifiedforusingthemethodsdescribedfortreebiomass.Non-treebiomasscanbeestimatedusingeitherdestructivesamplinginaclippedplot,allometricequations,oracombinationofthetwoapproaches.Clipplotsareappropriateforannualplantsandsmallshrubs.Allometricequationsareappropriateforperennialsandlargeshrubs.Ifbothmethodsareusedsimultaneously,clearrulesmustbeestablishedtoensurenodoublecountingofnon-treebiomassoccurs.Page201VM0009,Version3.0SectoralScope14B.2.2.1DestructiveSamplingMethodInthismethod,above-groundbiomassisestimatedbyharvestingthebiomassinaplotofknownarea,dryingandweighingtheharvestedsample,andcalculatingthemassperunitarea.Alternatively,wetmassmaybemeasuredoneachplotandempiricallyadjustedtocompensateformoisturecontent.Theseplotsconstituteseparatemeasurementunitsfromtheplotsusedfortreebiomassestimation,thoughtheymayexistinsidethetreeplot.Theareaoftheclippedplotwilltypicallybemuchsmallerthantheareaoftreebiomassplotsandmaybeselectedbytheprojectproponent.Largeplotsallowformoreprecisionintheestimationofcarbonstocks,butrequiremoreefforttosample.Ifpermanentplotsareused,thelocationoftheclipplotwithinthelargertreeplotshouldnotbethesameduringeachmeasurementperiodtoavoidbiasthatmayresultfromclippingthesameareaduringeachmeasurementperiod,asrepeatedclippingmayimpacttheproductivityofthesite.Iftheplothappenstofallinalocationwithlittletononon-treebiomass(forexample,becausealargetreeoccupiesmostoftheplotarea),theplotshouldnotbemoved.Inthefield,asamplingframecanbeplacedoverthegroundtoaccuratelydeterminetheareatobeclipped.Allvegetationoriginatingwithinthisframeshouldbeclippedtoaconsistentheightabovetheground,preferablyasneartogroundlevelasisfeasible.Eachsampleshouldthenbedriedandweighed.1.Clipallabove-groundbiomasswithineachclipplotanddetermineitsdrymass.Thiscanbedonebyeither(a)collectingbiomassandlaterdryingandweighingitinalab,or(b)collectingarepresentativeandwellmixedsubsampleofbiomasstoestimateaveragemoisturecontent.Thissubsampleisthendriedandweighedinthelabandequation[B.16]canbeusedtoestimatethedrybiomass.2.EstimatetheplotlevelcarbonstockintonnesCO2eoneachplotusingequation[B.15].3.Useequation[B.9]asdiscussedinsectionB.1.4toestimatetheaveragecarbonstockinabove-groundnon-treebiomass,where𝑦𝑦𝑗𝑗,𝑘𝑘istheplotlevelestimateofCO2e/haproducedinstep(2).4.Useequations[B.8]and[B.10]toestimatethestandarderrorofthetotalcarbonstockinabove-groundnon-treebiomass,where𝑦𝑦𝑗𝑗,𝑘𝑘istheplotlevelestimateofCO2e/haproducedinstep(2).B.2.2.2AllometricEquationMethodAllometricequationscanbeappliedtoestimatetheabove-groundbiomassofnon-trees.Theseequationsmightbesize-classorspecies-specific,andmaybebasedon,eg,stemdiameter,percentcover,ornumberofstems.Thegeneralprocedureforestimatingcarbonstocksinabove-groundtreesisapplicabletonon-treeswhenapplyingallometricequations.1.Estimatethecarbonstockrepresentedbyeachmeasurementusinganappropriateallometricequationasgiveninequation[B.12](seesection9.3.3todetermineappropriateallometricequations).Notethatthisequationassumestheselectedallometricequationcomputesbiomassinkilograms,andmayneedtobemodifiedifequationswithotherunitsareapplied.Page202VM0009,Version3.0SectoralScope142.Sumthebiomassofalltreeswithineachplotanddividebyplotareaasgiveninequation[B.14],where𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘isthecarbonstockintonnesCO2eoftree𝑖𝑖onplot𝑗𝑗instratum𝑘𝑘asestimatedinstep3.Thisprovidesanestimateoftheplotleveltotalbiomassperunitarea.3.Useequation[B.9]asdiscussedinsectionB.1.4toestimatetheaveragecarbonstockinabove-groundnon-treebiomass,where𝑦𝑦𝑗𝑗,𝑘𝑘istheplotlevelestimateofCO2e/haproducedinstep(4).4.Useequations[B.8]and[B.10]toestimatethestandarderrorofthetotalcarbonstockinabove-groundtrees,where𝑦𝑦𝑗𝑗,𝑘𝑘istheplotlevelestimateofCO2e/haproducedinstep(4).B.2.3EstimatingtheAverageCarboninBGMT,BGOTandBGNTVariables:𝑐𝑐𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚],𝑐𝑐𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚],and𝑐𝑐𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚]Below-groundbiomassisestimatedbyapplyingaroottoshootratio(suchasthosegiveninTable4.4oftheIPCCGuidelinesforNlGreenhouseGasInventories)orequation(suchasthosedocumentedbyCairnsetal1997)totheabove-groundbiomassestimatefortheabove-groundlargetree,above-groundsmalltree,andabove-groundnon-treecarbonpools.Ratiosorequationsaretobeselectedbytheprojectproponent.Theymustbesuitedtotheregionandvegetationtypetowhichtheyaretobeappliedandmustbejustifiedbytheprojectproponentthroughareviewofpeer-reviewedscientificliteratureorthroughsupportingfieldevidence.1.Estimatetheabove-groundcarbonstockoftherelevantpool(treesornon-treebiomass)usingtheguidanceofthatsection.2.Estimatethebelow-groundbiomassbymultiplyingtheselectedroot:shootratiobytheabove-groundbiomassestimate(whenaratioisselected),orbyapplyingtheselectedequationtotheabove-groundestimateforeachtreeornon-treecarbonstockestimate.3.Sumthebelow-groundbiomassofallmeasurementunitswithineachplotanddividebyplotareaasgiveninequation[B.14]where𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘isthebelow-groundcarbonstockintonnesCO2eoftree𝑖𝑖onplot𝑗𝑗instratum𝑘𝑘asestimatedinstep3.Thisprovidesanestimateoftheplotlevelbelow-groundbiomassperunitarea.4.Useequation[B.9]asdiscussedinsectionB.1.4toestimatetheaveragecarbonstockinbelow-groundbiomass,where𝑦𝑦𝑗𝑗,𝑘𝑘istheplotlevelestimateofCO2e/haproducedinstep(3).5.Useequations[B.8]and[B.10]toestimatethestandarderrorofthetotalcarbonstockinbelow-groundbiomass,where𝑦𝑦𝑗𝑗,𝑘𝑘istheplotlevelestimateofCO2e/haproducedinstep(3).B.2.4EstimatingtheAverageCarboninSDVariables:𝑐𝑐𝑆𝑆𝑆𝑆[𝑚𝑚]Page203VM0009,Version3.0SectoralScope14Carboninstandingdeadwoodisestimatedonfixedareaplotsbyfirstcategorizingstandingdeadtreesintotwodecompositionclasses:•Treeswithbranchesandtwigsthatresemblelivetrees(exceptforleaves)(ClassI)•Treesthatshowlossoftwigs,branchesorbolemass(ClassII)B.2.4.1DecayClassIThecarbonstockintreesofdecayClassI(intacttrees)isestimatedusingtheallometricequationapproachasdescribedforlivetrees:1.Estimatethecarbonstockrepresentedbyeachtreeusinganappropriateallometricequationasgiveninequation[B.13](seesection9.3.3todetermineappropriateallometricequations).Notethatthisequationassumestheselectedallometricequationcomputesbiomassinkilograms,andmayneedtobemodifiedifequationswithotherunitsareapplied.B.2.4.2DecayClassIIThecarbonstockofstandingtreesindecayClassIIisconservativelyestimatedasthebiomassinonlytheremainingbole.Diameteratbreastheightandheightanddensityshouldbemeasuredoneachtreeindecompositionclass2.Thediameteratthetopofthestemcanbemeasuredusingarelascopeorsimilarinstrument,oritcanbeconservativelyassumedtobezero.Wooddensityshouldbeestimatedusingasampletakenfromeachtree.SeeWilliamson&Wiemann(2010)forpropertechniquesforestimatingspecificgravityandconvertingbetweenspecificgravityanddensityestimates.Thevolumeoftheboleofeachdeadtreeisthenestimatedasthefrustumofacone.ToestimatethecarbonstockforeachdecayClassIIdeadtree:1.Estimatethevolumeoftheboleusingequation[B.17].2.Estimatethecarbonstockforeachdeadtreeusingequation[B.18]where𝑣𝑣𝑖𝑖,𝑗𝑗,𝑘𝑘isthevolumeofthe𝑖𝑖𝑡𝑡ℎtreeindecayclassIIinplot𝑗𝑗,stratum𝑘𝑘ascalculatedinstep(1).B.2.4.3TotalStandingDeadWoodToestimatethetotalcarbonstockinthestandingdeadpool:1.Sumthecarbonstocksofdeadtreeswithineachplot(bothdecayClassIanddecayClassII)anddividebyplotareaasgiveninequation[B.14]where𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘isthecarbonstockintonnesCO2eoftree𝑖𝑖onplot𝑗𝑗instratum𝑘𝑘asestimatedfortherelevantdecayclassasdescribedabove.Usetreesinbothdecayclassesforthissummation.Thisprovidesanestimateoftheplotleveltotalbiomassperunitarea.2.Useequation[B.9]asdiscussedinsection6.5.5toestimatetheaveragecarbonstockinstandingdeadwood,where𝑦𝑦𝑗𝑗,𝑘𝑘istheplotlevelestimateofCO2e/haproducedinstep(1).Page204VM0009,Version3.0SectoralScope143.Useequations[B.8]and[B.10]toestimatethestandarderrorofthetotalcarbonstockinabove-groundstandingdeadwood,where𝑦𝑦𝑗𝑗,𝑘𝑘istheplotlevelestimateofCO2e/haproducedinstep(1).B.2.5EstimatingtheAverageCarboninLDVariables:𝑐𝑐𝐿𝐿𝐿𝐿[𝑚𝑚]Lyingdeadwoodissampledusingthelineintersectmethod.Ateachplot,establishtwotransectsofatleast50mlengththroughtheplotcenter.Thefirsttransectshouldbeorientedatarandomangle,whilethesecondtransectshouldbeorientedperpendicularlytothefirsttransect.Recordthediameteranddensityclassofeachpieceoflyingdeadwoodthatintersectstheverticalplaneestablishedbyeachtransect.Thediametershouldbemeasuredatthepointofintersection.Ifapieceoflyingdeadwoodisforkedandintersectsthetransectatmorethanonepoint,eachpointofintersectionshouldberecordedseparately.Theminimummeasurementdiametermaybeestablishedonaproject-specificbasis,butshouldbedocumentedandheldconstantacrossallmeasurementperiods.Eachpieceofmeasuredwoodshouldbeclassifiedassound,intermediateorrottenusingthemachetetestasrecommendedbytheIPCCGoodPracticeGuidanceforLand-Use,LandUseChangeandForestry(4.3.3.5.3)(IPCC,2006).Themeanovendrydensityofdeadwood,𝜌𝜌̅𝑑𝑑,ineachdecayclass𝑑𝑑,mustbeestimatedasthemeanofasampletakendownlogswithintheprojectarea.SeeWilliamson&Wiemann(2010)forpropertechniquesforestimatingspecificgravityandconvertingbetweenspecificgravityanddensityestimates.Thesampleshouldbelargeenoughtoachieveastandarderrorofthemeanwithin+/-15%ata95%confidencelevel.1.Estimatethetotalcarbonstock𝑦𝑦𝑗𝑗,𝑘𝑘,perunitareaforstratum𝑘𝑘transect𝑗𝑗asequation[B.19]where𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑑𝑑isthediameterofthe𝑖𝑖𝑡𝑡ℎpieceoflyingdeadwoodequationindensityclass𝑑𝑑,transect𝑗𝑗,stratum𝑘𝑘.2.From𝑦𝑦𝑗𝑗,𝑘𝑘,estimate𝑦𝑦𝑘𝑘,thetotalcarbonstockinlyingdeadwoodinstratum𝑘𝑘asequation[B.20].3.From𝑦𝑦𝑗𝑗,𝑘𝑘,estimatethevarianceofcarboninlyingdeadwoodinstratum𝑘𝑘,𝜎𝜎�𝑘𝑘2,asequation[B.21].4.Estimatetheaveragestockinlyingdeadwoodasequation[B.22].5.Estimatethestandarderrorofthetotalcarbonstockinlyingdeadwood𝑈𝑈𝐿𝐿𝐿𝐿asequation[B.23].Theestimationofcarboninlyingdeadwoodmaybeconservativelyomittedatthediscretionoftheprojectproponent.B.2.6EstimatingtheAverageSoilOrganicCarbonVariables:𝑐𝑐𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚]Page205VM0009,Version3.0SectoralScope14Whenthesoilcarbonpoolisselected,soilcarbonmustbemeasuredusingapurposivesampleintheproxyareasandarandomsampleintheprojectaccountingareas.Indesigningthissample,projectproponentsshouldtakecaretoensurethatthesamplingschemeincorporatesalltypesoflanduseandstatesthatoccurwithintheproxyareaunderthebaselinescenario(ie,fallowfields,activefields,etc.).Toderivearepresentativesampleandreduceuncertainty,itisrecommendedthattheproxyareabestratified(eg,soiltaxonomicclass,landscapeposition,landuse)andtheensuingsamplingschemebedesignedaccordingtothesestrata.Astratifiedrandomapproachissuggestedinordertoachievemaximumexplanationofagriculturalvarianceinthereferencearea.Thestratificationschemeandsamplesizeappliedforestimationofsoilcarbonmaybedifferentfromthatusedforestimationofcarboninbiomasspools.Itisfurthersuggestedthatsamplesaretakenfromsimilarstrataintheprojectareaandreferencearea,soastoachieveanaccuratecomparisonofdifferentlandusetypespresentintheprojectecosystem.Furtherguidanceonsampleallocation(eg,Neymanallocation)canbefoundsectionB.1.2above.Estimationofsoilcarbonstocksrequirescollectionofsoilsamplesfromthefieldthatarelateranalyzedinalaboratory.Ingeneral,threevariablesarerequiredtoestimatesoilcarboncontent:bulkdensity,theorganiccarboncontent,andsoildepth.Multiplealiquotsofsoil,fromdifferentdepths,maybemeasuredseparately,butwhencalculatingthenumberofplotsforthepurposeofcalculationstatisticalconfidenceintervalseachlocationonlycountsasonesample.Soilcarbonstocksaretypicallynotestimatedovertheentiredepthofthesoilcolumn,butareratherestimatedintheupperhorizonsofthesoilwherethemajorityofsoilcarbonispresent.Sampledepthmaybeselectedbytheprojectproponent,butaconsistenttotaldepthforsoilsamplingshouldbeestablished,andthisdepthshouldbenolessthanthedepthtowhichsoilisdisturbedduringfarming,typicallyaminimumof30cm.Samplesmaybeextractedusingasoilcoreorbydiggingasoilpit.Becauseofthehighdegreeofspatialvariabilityinsoilcarbonstocks,itisrecommendedthatseveralsamplesbetakenfromdifferentrandomlyselectedlocationswithineachsamplingsite(ie,farmreferenceregionorstandinprojectarea)andmixedpriortomeasurementinthelaboratory.Alternatively,severalsamplesfordifferentsoilhorizonsmaybeanalyzedseparatelyandanalysisresultscombinedafter-the-fact.Ifsoilpitsareused,multiplehorizonsshouldbeextracted(atleast3arerecommended)toensurethatthesoilisbeingmeasuredtoasufficientspatialresolutionalongitsdepth.Bulkdensityandcarbonconcentrationshouldbemeasuredforeachindividualsoilhorizon,asitisimportanttoapplytheseindividualmeasurementstoachievemass-equivalentmeasurement.Aconsistenttotaldepthforsoilsamplingshouldbeestablished,andthisdepthshouldbenolessthanthedepthtowhichsoilisdisturbedduringfarming,typicallyaminimumof30cm.Insoilswithcoarsefragments(>2mm),bothdensityandcarbonconcentrationshouldbebasedonthefinefractionofthesoil.Toaccomplishthis,thesoilsamplemustbesievedthrougha2mmsieve,withthevolumeofcoarsefragmentsdeterminedseparately(bywaterimmersionorbyweighingthefragmentsanddividingbythedensityofrockfragments,oftengivenas2.65g/65).Seecorrectionfactorinequation[B.27].Also,thedensityoffinesoilcanbecalculatedbydividingthemassoffinesoilbythetotalvolumeofthesample,withoutseparatecalculationofthevolumeormassofPage206VM0009,Version3.0SectoralScope14coarsefragments.Whatevermethodused,itshouldbecompletelydocumentedandconsistentlyapplied.Ifbulkdensityforthewithin-projectmeasurementsdifferssignificantlyfromthereferenceareameasurements(suchasduetocompactionthatresultsfromharvestingoperations),measurementsshouldbeevaluatedonamass-equivalentbasis.SeeEllert,Janzen&Entz,(2002)andEllert&Bettany(1995)forappropriatemethods.Theguidanceprovidedinsection4.3.3.5.4oftheGPG-LULUCF(IPCC,2006)shouldbeadheredtowhenchoosinglaboratorymethodsforanalyzingsoilcarboncontent.Bulkdensityandcarbonconcentrationshouldbeevaluatedbyalaboratorythatfollowsinternationallyrecognizedstandards(eg,FAOstandards)tominimizeerrorsandbias.Tocollectfieldsamplessuitableforlaboratoryestimatesoforganiccarbon:1.Removeallvegetationandlitterfromthesurfaceoftheselectedsamplelocation.Includingevensmallamountsofsurfaceorganicmaterialcansignificantlybiasestimatesofsoilcarbonstocks.2.Insertasoilcarbonprobetotheselecteddepth(typically30cm),usingarubbermalletifnecessaryduetosoilcompaction.3.Extractsoilfromthecorerorprobeintoabagandclearlylabelwiththesamplinglocationandanindicatorthatthesampleisforsoilcarbondetermination(ratherthanbulkdensity)4.Itisrecommendedthatthisprocessberepeatedseveraltimesateachsamplinglocation(eg,eachplotmaycontainfourseparateSOCsamples)andresultsaggregatedtoreducetheimpactofsmallscalespatialvariabilityinsoilcarboncontent.5.Sendthesampletoalaboratoryfororganiccarbonanalysis.Tocollectfieldsamplessuitableforlaboratoryanalysisofbulkdensity:1.Digasoilpitateachsamplinglocationtoatleasttheselectedsoilsamplingdepth(typically30cm).2.Insertasoilringwithknownvolumeintothesideofthepittocollectaknownvolumeofsoil.Careshouldbetakentoensurenosoilfallsfromthering,butdonotpacksoilintothering.3.Takeadditionalsamplesthroughoutthedepthofthepittorepresentthechangeinbulkdensitywithdepth.Forexample,ina30cmpitonesamplemaybetakenatthemidpointoftheupperhalfofthesamplingpitandasecondsampleandthemidpointofthelowerhalfofthepit.Eachsampleincrementshouldbetakenfromadifferent,undisturbedverticalcolumnofsoilfromthesideofthepit.4.Combinethesoilsamplestakeninabagclearlylabeledasabulkdensitysampleandrecordtherepresentativevolumeofsoil(volumeoftheringmultipliedbythenumberofringstaken.Page207VM0009,Version3.0SectoralScope145.Sendthesampletoalaboratoryforbulkdensityanalysis.Toestimatethetotalstockinsoilcarbon:1.Calculatethecorrectedbulkdensityforeachplotusingequation[B.27].2.Estimatethesoilcarbonstockperunitarea,𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗,𝑘𝑘,forplot𝑗𝑗,stratum𝑘𝑘usingequation[B.28].3.Estimatetheaveragestockinsoilcarbonasequation[B.9].4.Estimatethevariancewithineachstratumasequation[B.8].5.Estimatethestandarderrorofthetotalcarbonstockinsoilcarbonasequation[B.10],excludingthefinitepopulationcorrectionfactor�𝑁𝑁𝑃𝑃,𝑘𝑘−#(𝒫𝒫𝑘𝑘)𝑁𝑁𝑃𝑃,𝑘𝑘�.B.2.7EstimatingtheProportionofCarboninSlashandWoodProductClassesVariables:𝑝𝑝𝑆𝑆𝑆𝑆[𝑚𝑚],𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[𝑚𝑚],𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[𝑚𝑚],𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟[𝑚𝑚],𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[𝑚𝑚]Merchantablevolumeisusedtocomputecarbonstocksinlogproduction.TheseestimatedstockscanthenbecomparedtothetotalcarboninmerchantabletreesasdescribedinsectionC.1toestimatewoodproductsratiosthatareusedinaccountingforcarbonstocksinlonglivedwoodproducts.Measurementsrequiredforthesecalculationscanbetakenonthesameplotsusedforcarbonstockestimation.Whensamplingisusedtoestimatewoodproductratiosforinputintoharvestedwoodproductscalculations,projectproponentsmuststratifytheareatodeterminewhichareasareharvestableaccordingtotheguidanceprovidedinsectionB.1.2.Datausedforcalculationsinthissectionshouldbetakenonlyfromstrataclassifiedasharvestable.Foreachmerchantabletreemeasuredinthefield,recorditslikelyproductclassamongthefollowing:1.Sawnwood(dimensionlumber,etc.)2.Woodbasepanels(plywood,decorativepanels,etc.)3.Otherindustrialroundwood(poles,pilings,fenceposts,etc.)4.PaperandpaperboardDeterminationoflikelyproductclassesshouldbebasedonlocalknowledgeofmarketsandshouldconsider,ataminimum,species,sizeclass,anddefects.Determineoflikelyproductclassesshouldbebasedonlocalknowledgeofmarketsandshouldconsider,ataminimum,species,sizeclass,anddefects.Merchantabilityshouldalsoconsiderthecostofextractionandwherethecostofloggingandtransportationisgreaterthanthemarketvalueofthewood,thetreesshouldbeclassifiedasnon-merchantable.Projectproponentsmustdocumentrulesforassigningtreestoproductclassesbasedonrelevantlocalknowledgeandtrainingshouldbeprovidedtofieldcrewstoensureconsistentapplicationoftheserules.Documentedrulesformerchantabilityshouldbeappliedconsistentlyforagivenmonitoringperiod.Page208VM0009,Version3.0SectoralScope14Foreachmerchantabletreespecies,avolumeequationmustbeselected.Iflocallyderivedvolumeequationsortablesareavailabletheyshouldbeused,withfieldsamplingdesignedtocollectthespecificdatarequiredbytheselectedequationortable.Projectproponentsshoulddocumentthesourceandjustifytheapplicabilityofallvolumeequationsutilized.Iflocallyderivedequationsarenotavailable,volumecanbeestimatedusingtheequationsprovidedinthismethodology.1.OneachmerchantabletreepermeasurementplotrecordtheDBH,merchantableheight,topdiameter(orafixeddiameterthatdefinesmerchantableheight),species,andlikelyproductclass.Thiscanbedonewhilemakingmeasurementsfortotalabove-groundcarbonasdescribedinsectionB.1.2.Calculatethetotalabove-groundcarbonstockofeachmeasuredtreeusinganallometricequationasdescribedinstep(1)ofsectionB.2.1.3.Calculatethemerchantablevolumeofeachmeasuredtreeusingequation[B.17]oralocallyrelevantequationorvolumetable.4.Calculatethecarbonstockinthemerchantablepartoftheboleusingequation[B.18]where𝑣𝑣𝑖𝑖,𝑗𝑗,𝑘𝑘isthevolumeofthe𝑖𝑖𝑡𝑡ℎtreeinplot𝑗𝑗,stratum𝑘𝑘ascalculatedinstep(3).5.Confirmthatthecarbonstockinthemerchantablepartoftheboleislessthanthecarbonstockinthetotalabove-groundbiomassofthetree.Ifitisnot,investigatethevolumeandallometricequationsselectedandcheckforcalculationerrors.6.Calculatethecarbonstockinslashbysubtractingthebolecarbonstockcalculatedinstep(4)fromthetotalcarbonstockcalculatedinstep2asgiveninequation[B.29].7.Foreachplot,estimatethetotalcarbonstockinslashandinthemerchantablebolesofeachcategoryanddividebyplotareaasgiveninequation[B.14]where𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘isthecarbonstockineitherslash(step6)orthemerchantablepartofthebole(step4)asappropriate.Thisresultsin5quantitiesperplot(𝑐𝑐𝑆𝑆𝑆𝑆,𝑗𝑗,𝑘𝑘,𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑗𝑗,𝑘𝑘,𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑗𝑗,𝑘𝑘,𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑗𝑗,𝑘𝑘,and𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑗𝑗,𝑘𝑘).8.Foreachofthe5quantitiesestimatedinstep7useequation[B.9]asdiscussedinsectionB.1.4toestimatethetotalcarbonintherelevantcategorywhere𝑦𝑦𝑗𝑗,𝑘𝑘istheplotlevelestimateintCO2e/haproducedinstep(7).9.Calculatethewoodproductsratioforeachcategorybydividingtheestimateoftotalcarbonintherelevantcategoryascalculatedinstep(8)bythesumofthefivetotalsasgiveninequation[B.30].Thefiveresultingratiosshouldsumto1.0.B.2.8EstimatingProportionofDegradationinForestsDegradationintheactivity-shiftingleakageareamustbeassessedbyavisualsampleonplotswithintheactivity-shiftingleakagearea.Thissampleisusedattheendofthefirstmonitoringperiodinordertoestimatethelagperiodfortheleakagemodelandateverysubsequentmonitoringperiodinordertoestimateactualemissionsduetoleakage.BecausetheleakagePage209VM0009,Version3.0SectoralScope14areaisunlikelytobeunderthecontroloftheprojectproponent,thesamplingmethodsdescribedaredesignedtobefastandrequirenomodificationtothesite.Projectproponentsmustbeabletoaccesstheleakagearea,however,toperformtherequiredsampling.Withintheactivity-shiftingleakagearea,randomlyselectasampleofpointlocationswithuniformprobabilitywithaminimumsamplesize𝑚𝑚�𝐿𝐿determinedbyequation[B.31].Thesepointlocationsbecomethecornersofthefixed-areaplotsusedtoestimatedegradation,deforestationandconversionintheleakageareapermanentlythroughouttheprojectlifetime.Selectplotdimensionssothateachplotareaislargeenoughthatdegradationwillbeobservedifdegradationisoccurringontheadjacentlandscape.Itisrecommendedthatplotsbeatleastonehectare(eg,a100mx100msquareplot).Thedimensionsofallplotsshouldbethesame.Visittheseplotstoobservetheproportionofdegradation.Theproportionofdegradationcanbeestimatedusingeither(a)estimatesofcrowncovertakenwithasphericaldensitometer(forforestedbaselinetypes);(b)visualestimatesofdegradation.Neithertheplotboundariesnorlocationsshouldbevisiblymarkedontheground,astheymostlikelyexistinareasoutsidetheproject'scontrolandvisiblemarkingmayleadtopreferentialtreatmentoftheseplots.Rather,theyshouldbemonumentedusingaGPSandoptionallyaburiedmonument.Thesesampleplotsmustbeobservedatleasteveryfiveyearstoestimateleakage.Useequation[B.9]toestimate𝑝𝑝𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷where𝑦𝑦𝑗𝑗,𝑘𝑘areplot-levelmeasurementsofdegradationobtainedusingeithermethoddescribedbelow.Regardlessofthemethodapplied,uncertaintyinmeasurementshouldbereducedasmuchaspossiblebydevelopingafieldprotocolforsamplingforestdegradation.Trainingshouldbeprovidedtocollectionteams.B.2.9SphericalDensiometerMethodAsphericaldensitometerconsistsofasmallhemisphericalmirrorengravedwithagridandisusedtoestimatecrownclosurebycountingportionsofthegridthroughwhichcanopygapsarevisible.Thismethodcanbeusedforforestedbaselinetypes(F-P1.a,F-P1.b,F-P2,F-U1,F-U2andF-U3).Thesphericaldensiometermethodofestimatingpercentdegradationismorerepeatableandlesssubjectivethanvisualassessment,andthusshouldbepreferredwhenfeasible.Attimes,however,estimatingdegradationusingthismethodwillnotbepossible.Forexample,indrought-deciduousforeststhedryseasonismostsuitableforfieldwork,butatthistimethecanopyisinaleaf-offcondition.Tousethismethod,crowncovermustbeestimatedinboththeleakageareaandinnon-degradedforestwithintheprojectarea.1.NavigatetotherandomlydeterminedplotlocationwithaGPS.Page210VM0009,Version3.0SectoralScope142.Usingacompass,walkapredeterminedpaththroughthedegradationplot,stoppingperiodicallytotakecrowncoverestimates.ApotentialcrowncoversamplingschemeisillustratedinFigure19.3.Calculatetheproportionofdegradationineachleakageplotbydividingtheaveragecanopycoverintheleakageareaplotbytheaveragecanopycovermeasuredinundegradedstrataoftheprojectareaestimatedusingthesameprocedure.Page211VM0009,Version3.0SectoralScope14Figure19:PlotSamplingSchemeforSphericalDensiometerInthissamplingscheme,therandomGPSstartlocationislocatedatthenorthwestcorneroftheplot.Bypacingandusingacompass,theobserverwalkstheperimeterandcenterofthe2.25hectareplotandobservescrowncoverat9pointsintheplot,asillustrated.Crowncovershouldbeobservedaccordingtotheinstructionsprovidedwiththesphericaldensiometerandconvertedtoapercent.Thistypicallyinvolvesmentallysubdividingeachgridcellonthedensiometerintofoursmallerpointsandcountingthenumberofpointsinwhichcanopyopeningsarevisible.Themostcommondensiometershave24largesquareswhicharethensubdividedintoatotalof96points.Thepercentcoverforthesedensiometerscanbegivenbyequation[B.32].Itisgoodpracticetotakefourdensiometerreadingsateachobservationpoint,onefacingineachcardinaldirection,andaveragetheresults.Thepercentcrowncoverfromallreadingsmadewithinaplotshouldbeaveraged(ie,ninepointswithfourreadingsateachpoint),withthataverageconstitutingasingleobservationfortheentireplot.GPSStartLocation75m75mPage212VM0009,Version3.0SectoralScope14B.2.10VisualEstimatesofDegradationIfthedensiometermethodisnotpractical,visualestimatesofdegradationcanbemadeintheleakagearea.Walkthroughouteachplotintheleakageareaandobservethepercentageofabove-groundbiomassthatisabsentasevidencedbypresenceofstumpsforeachplotarea.RecordafactorforeachplotusingthefollowingordinalscaleinTable10.Notethatfornativegrasslandbaselinetypes(G-P2,G-U1andG-U2),theordinalscalemaybeconfinedtoeither0or1(notconvertedandconverted,respectively).Alsonotethatfornativegrasslandbaselinetypes,visualestimatesofdegradationmaybeobtainedusingremote-sensingdata(suchasGeo-EyeorIkonosimagery).Table7:FactorsforVisuallyEstimatingDegradation.FactorProportionofdegradation0.00%0.20-19%0.420-39%0.640-59%0.860-79%(severedegradation)1.080-100%(includingcompleteconversion)Protocolsforestimatingthepercentageofabsentbiomassmustbedevelopedbytheprojectproponentandtheirconservativenessjustifiedatvalidationandverification.B.2.11EstimatingActivity-ShiftingLeakageinGrasslandsMonitoringmethodsforactivity-shiftingleakagemustusealand-useland-coverclassificationoftheappropriateleakagearea(s)todeterminethelanduseconversionfromnativegrasslandsintheseareas.Thisland-coverclassificationmaybeasupervised,pixel-basedclassificationoruseapointinterpretationapproachasinsection6.8.Itshouldbenotedthattheactivity-shiftingleakagemodelisseparateandunrelatedtotheBEM,andwesuggestthischoiceofremotesensingclassificationtypesonlyfortheactivity-shiftingleakagemodel.Asstatedinsection6.8.6,theBEMdoesnotsupportautomated,pixel-by-pixelclassificationtechniques,andprojectproponentsshouldnotattempttoreplaceorsidestepmanualimageinterpretationfortheBEMwithanautomatedprocesssuchasamaximumlikelihoodornearestneighborclassifier.Thatsaid,whicheverapproachisselectedfortheactivitiyshiftingleakagemodel,itmustmeettheminimumtolerancesforprecisionandaccuracyrequiredwhenconstructingtheprojectbaseline.Ifinthebaselinenativegrasslandsexistinadegradedstatelongerthanagivenmonitoringperiod(eg,duetoovergrazing),theprojectproponentsmustinstallpermanentmonitoringplotsintheunconvertedportionoftheactivity-shiftingleakagearea(s).Allselectedpoolsfornativegrasslandsmustbemeasuredintheseplots.Page213VM0009,Version3.0SectoralScope14B.3GuidelinesforDeterminingLivestockPopulationsWithinProjectAreaAcompletelistofalllivestockspeciesandpopulationspresentwithintheprojectareaboundaryshouldbecompiled.Todeterminethenumberofheadsoflivestockbeinggrazedwithintheprojectareaboundary,itisrecommendedthattheprojectproponentsconductaninventoryofthenumberoflivestockwithineachspeciescategory.Thismayinvolvedirectlycountingeachanimalthatisgrazedwithintheprojectarea,ifpossible.Thenumberoflivestockheadsthataregrazedwithintheprojectareashouldaccuratelyreflectchangesinpopulationsizeduetodeathsorpopulationgrowth.Itisalwaysconservativetoovercountthenumberofheadsoflivestockgrazedwithintheprojectarea.Iftheproposedmethodofinventoryisimpracticalfordeterminingthenumberoflivestockgrazedwithintheprojectarea,theprojectproponentmaychoosetoemployanalternativesamplingschemethattheyhavedeterminedtoimprovesamplingefficiency.AnydeviationsfromadirectcountofindividuallivestockmustbejustifiedwithinthemonitoringreportpercurrentVCSrequirement.Allsamplesmustgiveanestimateofthenumberofheadsoflivestockbyspecieswithanoverallprecisionof+/-15%atthe90%confidencelevel.B.4GuidelinesforDevelopingAllometricEquationsAllometricequationsforshrubscanbedevelopedbyharvestingarepresentativesamplefromtheprojectarea,dryingandweighingthesample,andrelatingthesampledbiomasstovariableseasilymeasuredinthefield.Theindependentvariablesthataresuitableforpredictingshrubbiomassmayvaryacrossenvironmentsandvegetationtypesandmayincludebutarenotlimitedtonumberofstems,stemdiameter,height,sizeclass,crowndiameter,andpercentcover.Insomesituations,developingacontinuousequationthatrepresentsshrubmassasafunctionofoneormoreoftheabovevariablesisnotpractical.Inthiscase,asimpleaverageofthebiomassofthesamplecollectedperstemorperplantcanbeusedinstead.Whereappropriatetoprojectvegetationtypes,separateaveragesfordifferentsizeclassesandspeciesofshrubsshouldbeused.Whendevelopingallometricequationsfortrees,measurementsoftreevolume,densityorbiomassmustbemadeacrossarangeoftreesizes.Modelsmustbeusedtopredictbiomassbasedoncovariatemetricssuchasdiameter,heightandspecificgravity.Allallometricequationsmustbevalidatedpersection9.3.3.2.B.5MinimizingUncertaintyandCollectingConsistentDataToensurethatcarbonstocksareestimatedinawaythatisaccurate,verifiable,transparent,andconsistentacrossmeasurementperiods,theprojectproponentmustestablishanddocumentclearstandardoperatingproceduresandproceduresforensuringdataquality.Ataminimum,theseproceduresmustinclude:Page214VM0009,Version3.0SectoralScope14•Comprehensivedocumentationofallfieldmeasurementscarriedoutintheprojectarea.Thisdocumentmustbedetailedenoughtoallowreplicationofsamplingintheeventofstaffturnoverbetweenmonitoringperiods.•Trainingproceduresforallpersonsinvolvedinfieldmeasurementordataanalysis.Thescopeanddateofalltrainingmustbedocumented.•Aprotocolforassessingtheaccuracyofplotmeasurementsusingacheckcruiseandaplanforcorrectingtheinventoryiferrorsarediscovered.•Protocolsforassessingdataforoutliers,transcriptionerrors,andconsistencyacrossmeasurementperiods.•Datasheetsmustbesafelyarchivedforthelifeoftheproject.Datastoredinelectronicformatsmustbebackedup.B.6EquationsforCarbonStockMeasurement𝜎𝜎�22=𝜎𝜎�12�𝑎𝑎1𝑎𝑎2[B.1]Variables𝜎𝜎�22=varianceofplotofsize2(unknownplot)𝜎𝜎�12=varianceofplotsize1(knownplot)𝑎𝑎1=areaofplotofsize1𝑎𝑎2=areaofplotofsize2SectionReferencesB.1CommentsThisequationisusedtoestimatetheeffectofchangingplotareaonbetween-plotvariance.𝑎𝑎1isassumedtobeaplotareaassociatedwithanestimatedvariance𝜎𝜎�12,while𝑎𝑎2istheplotareaforwhichvarianceistobeestimated.Freese(1962)𝑛𝑛�𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇=1�0.15×𝑥𝑥̅1.96×𝜎𝜎�𝑥𝑥��2+𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝∑𝐴𝐴𝑘𝑘𝑘𝑘∈𝒮𝒮[B.2]Page215VM0009,Version3.0SectoralScope14Variables𝑛𝑛�𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇=estimatedtotalnumberofplotsrequired𝑥𝑥̅=estimatedmeanofaquantitytobesampledinthearea𝜎𝜎�𝑥𝑥̅=estimatedstandarddeviationofaquantitytobesampledinthearea𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝=areaofaplot𝒮𝒮=setofallstratainthearea.𝐴𝐴𝑘𝑘=areaofstratum𝑘𝑘𝒮𝒮=setofallstratainthearea.SectionReferencesB.1.3.1CommentsThisequationisusedtoestimatesamplesizewhenstratum-specificestimatesofstandarddeviationareunavailable.0.15representsanallowableerrorof15%ofthemean,while1.96representstheZstatisticfromanormaldistributionassociatedwiththe95%confidencelevel.Avery&Burkhart(2002)𝑛𝑛�𝑘𝑘=𝑛𝑛�𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐴𝐴𝑘𝑘∑𝐴𝐴𝑘𝑘𝑘𝑘∈𝒮𝒮[B.3]Variables𝑛𝑛�𝑘𝑘=estimatedtotalnumberofplotsrequiredinstratum𝑘𝑘𝑛𝑛�𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇=estimatedtotalnumberofplotsrequired𝐴𝐴𝑘𝑘=areaofstratum𝑘𝑘𝒮𝒮=setofallstratainthearea.SectionReferencesB.1.3.2CommentsThisequationisusedtoestimatetherequirednumberofplotsinstratumkunderproportionalallocation.Avery&Burkhart(2002)𝑤𝑤𝑘𝑘=𝐴𝐴𝑘𝑘𝜎𝜎�𝑘𝑘∑𝐴𝐴𝑗𝑗𝑗𝑗∈𝒮𝒮𝜎𝜎�𝑗𝑗[B.4]Variables𝑤𝑤𝑘𝑘=theproportionofplotsallocatedtostratum𝑘𝑘𝐴𝐴𝑗𝑗or𝐴𝐴𝑘𝑘=areaofstratum𝑗𝑗or𝑘𝑘𝜎𝜎�𝑗𝑗or𝜎𝜎�𝑘𝑘=estimatedstandarddeviationofaquantitytobesampledinstratum𝑗𝑗or𝑘𝑘𝒮𝒮=setofallstratainthearea.SectionReferencesB.1.3.2Page216VM0009,Version3.0SectoralScope14CommentsThisequationisusedtoestimatetheproportionofplotsineachstratumunderNeymanallocation.Avery&Burkhart(2002);Shiver&Borders(1996)𝑛𝑛�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡=∑𝐴𝐴𝑘𝑘2𝜎𝜎�𝑘𝑘2𝑤𝑤𝑘𝑘𝑘𝑘∈𝒮𝒮�0.15×∑𝐴𝐴𝑘𝑘𝑘𝑘∈𝒮𝒮×𝑥𝑥̅1.96×𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�2+∑𝐴𝐴𝑘𝑘𝑘𝑘∈𝒮𝒮𝜎𝜎�𝑘𝑘2[B.5]Variables𝑛𝑛�𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇=estimatedtotalnumberofplotsrequired(count)𝐴𝐴𝑘𝑘=areaofstratum𝑘𝑘𝑤𝑤𝑘𝑘=theproportionofplotsallocatedtostratum𝑘𝑘𝑥𝑥̅=estimatedmeanofaquantitytobesampledintheprojectarea𝜎𝜎�𝑘𝑘=estimatedstandarddeviationofaquantitytobesampledinstratum𝑘𝑘𝒮𝒮=setofallstrataintheareaSectionReferencesB.1.3.2,B.1.3.3CommentsThisequationisusedtoestimatethetotalsamplesizeofastratifiedsample.Avery&Burkhart(2002);Shiver&Borders(1996)𝑤𝑤𝑘𝑘=𝐴𝐴𝑘𝑘𝜎𝜎�𝑘𝑘/�𝑐𝑐𝑘𝑘∑𝐴𝐴𝑗𝑗𝑗𝑗∈𝒮𝒮𝜎𝜎�𝑗𝑗/�𝑐𝑐𝑗𝑗[B.6]Variables𝑤𝑤𝑘𝑘=theproportionofplotsallocatedtostratum𝑘𝑘𝐴𝐴𝑗𝑗or𝐴𝐴𝑘𝑘=areaofstratum𝑗𝑗or𝑘𝑘𝜎𝜎�𝑗𝑗or𝜎𝜎�𝑘𝑘=estimatedstandarddeviationofaquantitytobesampledinstratum𝑗𝑗or𝑘𝑘𝒮𝒮=setofallstratainthearea.𝑐𝑐𝑗𝑗or𝑐𝑐𝑘𝑘=estimatedcostofsamplingcarbonstocksinstratum𝑗𝑗or𝑘𝑘SectionReferencesB.1.3.3CommentsThisequationisusedtoestimatetheproportionofplotsineachstratumunderoptimalallocation.Shiver&Borders(1996)𝑛𝑛�𝑘𝑘=𝑛𝑛�𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑤𝑤𝑘𝑘[B.7]Page217VM0009,Version3.0SectoralScope14Variables𝑛𝑛�𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇=estimatedtotalnumberofplotsrequired𝑛𝑛�𝑘𝑘=estimatedtotalnumberofplotsrequiredinstratum𝑘𝑘𝑤𝑤𝑘𝑘=theproportionofplotsallocatedtostratum𝑘𝑘SectionReferencesB.1.3.3CommentsThisequationisusedtoestimatethenumberofplotsineachstratum.Shiver&Borders(1996)𝜎𝜎�𝑘𝑘2=∑�𝑦𝑦𝑗𝑗,𝑘𝑘�2−�∑𝑦𝑦𝑗𝑗,𝑘𝑘𝑗𝑗∈𝒫𝒫𝑘𝑘�2/#(𝒫𝒫𝑘𝑘)𝑗𝑗∈𝒫𝒫𝑘𝑘#(𝒫𝒫𝑘𝑘)−1[B.8]Variables𝜎𝜎�𝑘𝑘2=estimatedvarianceinstratum𝑘𝑘𝑦𝑦𝑗𝑗,𝑘𝑘=aquantityestimatedforormeasuredonplot𝑗𝑗instratum𝑘𝑘𝒫𝒫𝑘𝑘=setofallplotsinstratum𝑘𝑘SectionReferencesB.1.4CommentsTheequationisusedtoestimatethewithin-stratumvarianceofthevariable𝑦𝑦forstratum𝑘𝑘.𝑧𝑧=1∑𝐴𝐴𝑘𝑘𝑘𝑘∈𝒮𝒮�𝐴𝐴𝑘𝑘𝑛𝑛𝑘𝑘�𝑦𝑦𝑗𝑗,𝑘𝑘𝑗𝑗∈𝒫𝒫𝑘𝑘𝑘𝑘∈𝒮𝒮[B.9]Variables𝑧𝑧=theestimatedaverageinthesampledarea,forcarbonthisis𝑐𝑐andfordegredationthisis𝑝𝑝𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝐴𝐴𝑘𝑘=theareaofstratum𝑘𝑘𝑛𝑛𝑘𝑘=numberofplotsinstratum𝑘𝑘𝑦𝑦𝑗𝑗,𝑘𝑘=aquantityestimatedforormeasuredonplot𝑗𝑗instratum𝑘𝑘𝒫𝒫𝑘𝑘=setofallplotsinstratum𝑘𝑘𝒮𝒮=setofallstrataSectionReferencesB.1.4,B.2.1,B.2.2.2,B.2.3,B.2.4.3,B.2.6,B.2.7CommentsThisisagenericequationusedtoestimatetotalsfromplotlevelestimates.U=���𝐴𝐴𝑘𝑘2𝜎𝜎�𝑘𝑘2#(𝒫𝒫𝑘𝑘)�𝑁𝑁𝑃𝑃,𝑘𝑘−#(𝒫𝒫𝑘𝑘)𝑁𝑁𝑃𝑃,𝑘𝑘��𝑘𝑘∈𝒮𝒮[B.10]Page218VM0009,Version3.0SectoralScope14Variables𝑈𝑈=estimatedstandarderrorofthetotalfortheselectedcarbonpool𝜎𝜎�𝑘𝑘2=estimatedvarianceinstratum𝑘𝑘𝐴𝐴𝑘𝑘=areaofstratum𝑘𝑘𝑁𝑁𝑃𝑃,𝑘𝑘=totalnumberofpossibleplotsinstratum𝑘𝑘𝒫𝒫𝑘𝑘=setofallplotsinstratum𝑘𝑘𝒮𝒮=setofallstrataintheareaSectionReferencesB.2.1,B.2.2.1,B.2.2.2,B.2.3,B.2.4.3,B.2.6,CommentsThisequationisusedtoestimatethestandarderrorofthetotalfromastratifiedsamplefromafinitepopulation.Shiver&Borders(1996)𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘=4412×11,000×𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆(•)×𝑝𝑝𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆[B.11]Variables𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘=carbonstockinCO2erepresentedbytree𝑖𝑖onplot𝑗𝑗instratum𝑘𝑘𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆(•)=allometricequationforspecies𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆=carbonfractionforspecies𝑆𝑆𝑆𝑆𝑆𝑆SectionReferencesB.2.1CommentsThisequationisforthedeterminationoftheabove-groundcarbonstockforeachmeasuredtreeintheAGOTandAGMTcarbonpoolsusinganallomtetricequation.Thisequationisusedtoestimatethecarbonstockfortheithtreeinplotj,stratumk.Notethatthisequationassumestheselectedallometricequationcomputesbiomassinkilograms,andmayneedtobemodifiedifequationswithotherunitsareapplied.CarbonfractionforspeciesSPCareunitless.4412istheratioofthemassofcarbondioxidetothemassofcarbonandisusedtoconverttoCO2eunits.11,000representsaconversionfromkgtotonnes.𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘=4412×11,000×𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆(•)×𝑝𝑝𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆[B.12]Page219VM0009,Version3.0SectoralScope14Variables𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘=carbonstockinCO2erepresentedbytree𝑖𝑖onplot𝑗𝑗instratum𝑘𝑘𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆(•)=allometricequationforspecies𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆=carbonfractionforspecies𝑆𝑆𝑆𝑆𝑆𝑆SectionReferencesB.2.2.2CommentsThisequationisforthedeterminationoftheabove-groundcarbonstockforthenon-tree(AGNT)carbonpoolusinganallomtetricequation.Thisequationisusedtoestimatethecarbonstockfortheithnon-treeinplotj,stratumk.Notethatthisequationassumestheselectedallometricequationcomputesbiomassinkilograms,andmayneedtobemodifiedifequationswithotherunitsareapplied.CarbonfractionforspeciesSPCareunitless.4412istheratioofthemassofcarbondioxidetothemassofcarbonandisusedtoconverttoCO2eunits.11,000representsaconversionfromkgtotonnes.𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘=4412×11,000×𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆(•)×𝑝𝑝𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆[B.13]Variables𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘=carbonstockinCO2erepresentedbytree𝑖𝑖onplot𝑗𝑗instratum𝑘𝑘𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆(•)=allometricequationforspecies𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆=carbonfractionforspecies𝑆𝑆𝑆𝑆𝑆𝑆SectionReferencesB.2.4.1CommentsThisequationisforthedeterminationoftheabovegroundcarbonstockforeachmeasuredstandingdeadtreewithdecayclassIusinganallomtetricequation.Thisequationisusedtoestimatethecarbonstockfortheithstandingdeadwoodinplotj,stratumk.Notethatthisequationassumestheselectedallometricequationcomputesbiomassinkilograms,andmayneedtobemodifiedifequationswithotherunitsareapplied.CarbonfractionforspeciesSPCareunitless.4412istheratioofthemassofcarbondioxidetothemassofcarbonandisusedtoconverttoCO2eunits.11,000representsaconversionfromkgtotonnes.Page220VM0009,Version3.0SectoralScope14𝑦𝑦𝑗𝑗,𝑘𝑘=1𝑎𝑎𝑗𝑗,𝑘𝑘�𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘𝑖𝑖∈𝒳𝒳𝑗𝑗,𝑘𝑘[B.14]Variables𝑦𝑦𝑗𝑗,𝑘𝑘=aquantityestimatedforormeasuredonplot𝑗𝑗instratum𝑘𝑘𝑎𝑎𝑗𝑗,𝑘𝑘=areaofplot𝑗𝑗instratum𝑘𝑘𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘=aquantityestimatedforormeasuredforindividual𝑖𝑖onplot𝑗𝑗instratum𝑘𝑘𝒳𝒳𝑗𝑗,𝑘𝑘=setofallmeasurementsofatypeinplot𝑗𝑗instratum𝑘𝑘SectionReferencesB.2.1,B.2.2.2,B.2.3,B.2.4.3,B.2.7CommentsThisisagenericequationusedtoestimateplotleveltotalsexpressedperunitareafrommeasurementsmadeonindividuals.𝑦𝑦𝑗𝑗,𝑘𝑘=4412×11,000×𝑝𝑝𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆×𝑚𝑚𝑑𝑑𝑑𝑑𝑑𝑑,𝑗𝑗,𝑘𝑘𝑎𝑎𝑗𝑗,𝑘𝑘[B.15]Variables𝑦𝑦𝑗𝑗,𝑘𝑘=carbonstockinnon-treebiomassthatresultsfromadestructivesample𝑝𝑝𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆=carbonfractionforspecies𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑗𝑗,𝑘𝑘=areaofplot𝑗𝑗instratum𝑘𝑘𝑚𝑚𝑑𝑑𝑑𝑑𝑑𝑑,𝑗𝑗,𝑘𝑘=drymassofnon-treesampleharvestedfromclipplotsinplot𝑗𝑗,stratum𝑘𝑘SectionReferencesB.2.2.1CommentsThisequationisusedtoestimatethecarbonstockinnon-treebiomassthatresultsfromadestructivesample.4412istheratioofthemassofcarbondioxidetothemassofcarbonandisusedtoconverttoCO2eunits.11,000representsaconversionfromkgtotonnes.𝑚𝑚𝑑𝑑𝑑𝑑𝑑𝑑,𝑗𝑗,𝑘𝑘=𝑚𝑚𝑤𝑤𝑤𝑤𝑤𝑤,𝑗𝑗,𝑘𝑘𝑚𝑚𝑑𝑑𝑑𝑑𝑑𝑑,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑤𝑤𝑤𝑤𝑤𝑤,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠[B.16]Page221VM0009,Version3.0SectoralScope14Variables𝑚𝑚𝑑𝑑𝑑𝑑𝑑𝑑,𝑗𝑗,𝑘𝑘=drymassofnon-treesampleharvestedfromclipplotsinplot𝑗𝑗,stratum𝑘𝑘𝑚𝑚𝑤𝑤𝑤𝑤𝑤𝑤,𝑗𝑗,𝑘𝑘=wetmassofnon-treesampleharvestedfromclipplotsinplot𝑗𝑗,stratum𝑘𝑘𝑚𝑚𝑑𝑑𝑑𝑑𝑑𝑑,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠=drymassofsubsampleofnon-treebiomasscollectedtoestimatedry:wetratio𝑚𝑚𝑤𝑤𝑤𝑤𝑤𝑤,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠=wetmassofsubsampleofnon-treebiomasscollectedtoestimatedry:wetratioSectionReferencesB.2.2.1CommentsThisequationisusedtoestimatedrybiomassasafunctionoftheratioofdrytowetbiomassinasubsampleofharvestedvegetation.𝑣𝑣𝑖𝑖,𝑗𝑗,𝑘𝑘=𝜋𝜋ℎ𝑖𝑖,𝑗𝑗,𝑘𝑘(𝑟𝑟𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝑖𝑖,𝑗𝑗,𝑘𝑘2+𝑟𝑟𝑇𝑇𝑇𝑇𝑇𝑇,𝑖𝑖,𝑗𝑗,𝑘𝑘2+𝑟𝑟𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝑖𝑖,𝑗𝑗,𝑘𝑘×𝑟𝑟𝑇𝑇𝑇𝑇𝑇𝑇,𝑖𝑖,𝑗𝑗,𝑘𝑘)3[B.17]Variables𝑣𝑣𝑖𝑖,𝑗𝑗,𝑘𝑘=volumeofthe𝑖𝑖𝑡𝑡ℎtreeinplot𝑗𝑗,stratum𝑘𝑘ℎ𝑖𝑖,𝑗𝑗,𝑘𝑘=heightofthe𝑖𝑖𝑡𝑡ℎtreeinplot𝑗𝑗instratum𝑘𝑘𝑟𝑟𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝑖𝑖,𝑗𝑗,𝑘𝑘=baseradiusofthe𝑖𝑖𝑡𝑡ℎtreeinplot𝑗𝑗instratum𝑘𝑘𝑟𝑟𝑇𝑇𝑇𝑇𝑇𝑇,𝑖𝑖,𝑗𝑗,𝑘𝑘=topradiusofthe𝑖𝑖𝑡𝑡ℎtreeinplot𝑗𝑗instratum𝑘𝑘SectionReferencesB.2.4.2,B.2.7CommentsThisequationisthevolumeofatruncatedconeandisusedtoestimatethebolevolumeofstandingdeadtreesindecayclassIIandmerchantablevolumeoftreesforwoodproductscarbonestimates.Unitsforradiusandheightmustbegiveninmeters.𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘=4412×𝑝𝑝𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆×𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆×𝑣𝑣𝑖𝑖,𝑗𝑗,𝑘𝑘[B.18]Variables𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘=carbonstockforthe𝑖𝑖𝑡𝑡ℎtreeindecayclassIIinplot𝑗𝑗,stratum𝑘𝑘𝑝𝑝𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆=carbonfractionforspecies𝑆𝑆𝑆𝑆𝑆𝑆𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆=wooddensityofspecies𝑆𝑆𝑆𝑆𝑆𝑆𝑣𝑣𝑖𝑖,𝑗𝑗,𝑘𝑘=volumeofthe𝑖𝑖𝑡𝑡ℎtreeindecayclassIIinplot𝑗𝑗,stratum𝑘𝑘SectionReferencesB.2.4.2,B.2.7Page222VM0009,Version3.0SectoralScope14CommentsThisequationisusedtoestimatethecarbonstockforthe𝑖𝑖𝑡𝑡ℎtreeindecayclassIIinplot𝑗𝑗,stratum𝑘𝑘.4412istheratioofthemassofcarbondioxidetothemassofcarbonandisusedtoconverttoCO2eunits.𝑦𝑦𝑗𝑗,𝑘𝑘=4412×110,000×11,000×�𝑝𝑝𝐶𝐶𝐶𝐶𝐷𝐷𝐷𝐷×𝜌𝜌̅𝑑𝑑×𝜋𝜋2∑𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑑𝑑2𝑖𝑖∈𝒳𝒳𝑗𝑗,𝑘𝑘8𝑙𝑙𝑗𝑗𝑑𝑑∈𝒟𝒟[B.19]Variables𝑦𝑦𝑗𝑗,𝑘𝑘=totalcarbonstockinlyingdeadwoodforstratum𝑘𝑘transect𝑗𝑗𝑝𝑝𝐶𝐶𝐶𝐶𝐷𝐷𝐷𝐷=carbonfractionofdrymatterfordeadwood𝜌𝜌̅𝑑𝑑=averagedensityofdeadwoodindecayclass𝑑𝑑𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑑𝑑=diameterof𝑖𝑖𝑡𝑡ℎpieceoflyingdeadwoodontransect𝑗𝑗instratum𝑘𝑘,decayclass𝑑𝑑𝑙𝑙𝑗𝑗=lengthoftransect𝑗𝑗𝒟𝒟=thesetofalldecayclasses𝒳𝒳𝑗𝑗,𝑘𝑘=setofallmeasurementsoflyingdeadwoodinplot𝑗𝑗instratum𝑘𝑘SectionReferencesB.2.5CommentsThisequationisusedtoestimatethecarbonstockinlyingdeadwoodperunitareaforstratum𝑘𝑘transect𝑗𝑗Thevariables𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑑𝑑and𝑙𝑙𝑗𝑗mustbemeasuredinmeters.4412istheratioofthemassofcarbondioxidetothemassofcarbonandisusedtoconverttoCO2eunits.11,000representsaconversionfromkgtotonnes.110,000representsaconversionfromm2tohectares.𝑦𝑦𝑘𝑘=∑𝑙𝑙𝑗𝑗𝑦𝑦𝑗𝑗,𝑘𝑘𝑗𝑗∈ℒ𝑘𝑘∑𝑙𝑙𝑗𝑗𝑗𝑗∈ℒ𝑘𝑘[B.20]Variables𝑦𝑦𝑘𝑘=averagecarbonstockperunitareainlyingdeadwoodinstratum𝑘𝑘𝑙𝑙𝑗𝑗=lengthoftransect𝑗𝑗usedformeasuringlyingdeadwood.𝑦𝑦𝑗𝑗,𝑘𝑘=totalcarbonstockinlyingdeadwoodforstratum𝑘𝑘transect𝑗𝑗ℒ𝑘𝑘=setofalltransectsusedformeasurementoflyingdeadwoodinstratum𝑘𝑘Page223VM0009,Version3.0SectoralScope14SectionReferencesB.2.5CommentsThisequationisusedtoestimatethetotalcarbonstockinlyingdeadwoodinstratum𝑘𝑘.Thisequationisaweightedaveragewheretheweightsareproportionaltotransectlength.Inthecommoncasewherealltransectsarethesamelength,itsimplifiestotheaverage:𝑦𝑦𝑘𝑘=1#(ℒ𝑘𝑘)∑𝑦𝑦𝑗𝑗,𝑘𝑘𝑗𝑗∈ℒ𝑘𝑘(Shiver&Borders,1996)𝜎𝜎�𝑘𝑘2=∑�𝑦𝑦𝑗𝑗,𝑘𝑘�2−�∑𝑦𝑦𝑗𝑗,𝑘𝑘𝑗𝑗∈ℒ𝑘𝑘�2/#(ℒ𝑘𝑘)𝑗𝑗∈ℒ𝑘𝑘#(ℒ𝑘𝑘)−1[B.21]Variables𝜎𝜎�𝑘𝑘2=varianceofcarbonstockinlyingdeadwoodforstratum𝑘𝑘transect𝑗𝑗𝑦𝑦𝑗𝑗,𝑘𝑘=totalcarbonstockinlyingdeadwoodforstratum𝑘𝑘transect𝑗𝑗ℒ𝑘𝑘=setofalltransectsusedformeasurementoflyingdeadwoodinstratum𝑘𝑘SectionReferencesB.2.5CommentsThisequationisusedtoestimatethevarianceofcarboninlyingdeadwoodinstratum𝑘𝑘𝑐𝑐𝐿𝐿𝐿𝐿=1∑𝐴𝐴𝑘𝑘𝑘𝑘∈𝒮𝒮�𝐴𝐴𝑘𝑘𝑦𝑦𝑘𝑘𝑘𝑘∈𝒮𝒮[B.22]Variables𝑐𝑐𝐿𝐿𝐿𝐿=estimatedaveragecarbonstockinlyingdeadwoodatmonitoringperiod𝐴𝐴𝑘𝑘=areaofstratum𝑘𝑘𝑦𝑦𝑘𝑘=averagecarbonstockperunitareainlyingdeadwoodinstratum𝑘𝑘𝒮𝒮=setofallstrataintheareaSectionReferencesB.2.5CommentsThisequationisusedtoestimatetheaveragecarbonstockinlyingdeadwood.𝑈𝑈𝐿𝐿𝐿𝐿=���𝐴𝐴𝑘𝑘2𝜎𝜎�𝑘𝑘2#(ℒ𝑘𝑘)�𝑘𝑘𝑘𝑘𝒮𝒮[B.23]Page224VM0009,Version3.0SectoralScope14Variables𝑈𝑈𝐿𝐿𝐿𝐿=estimatedstandarderrorofthetotalforcarbonstockinlyingdeadwood𝐴𝐴𝑘𝑘=theareaofstratum𝑘𝑘𝜎𝜎�𝑘𝑘2=estimatedvarianceoflyingdeadwoodsamplesinstratum𝑘𝑘𝒮𝒮=setofallstrataintheareaℒ𝑘𝑘=setofalltransectsusedformeasurementoflyingdeadwoodinstratum𝑘𝑘SectionReferencesB.2.5CommentsThisequationisusedtoestimatethestandarderrorofthetotalfromalineintersectsampleusedtoestimatecarboninlyingdeadwood.Shiver&Borders(1996)y�i=f−i(xi)[B.24]Variablesy�i=predictedvalueforobservationif−i=modelfitusingallpointsindatasetexceptobservationixi=independentvariableassociatedwithobservationiSectionReferences9.3.3.2CommentsThisisthepredictedvalueatobservationithatresultsfromfittingamodelusingallpointsbutobservationiduringcrossvalidation.𝑒𝑒̂𝑖𝑖=𝑦𝑦�𝑖𝑖−𝑦𝑦𝑖𝑖𝑦𝑦𝑖𝑖×100%[B.25]Variables𝑒𝑒̂𝑖𝑖=cross-validatedresidualforobservation𝑖𝑖𝑦𝑦�𝑖𝑖=predictedvalueforobservation𝑖𝑖𝑦𝑦𝑖𝑖=observeddependentvariableforobservation𝑖𝑖SectionReferences9.3.3.2CommentsThisisthecrossvalidatedresidualforpointi,expressedasapercentage.𝐸𝐸�=∑𝑒𝑒̂𝑖𝑖𝑖𝑖∈𝒳𝒳#(𝒳𝒳)[B.26]Page225VM0009,Version3.0SectoralScope14Variables𝐸𝐸�=meancross-validatederror𝑒𝑒̂𝑖𝑖=cross-validatedresidualforobservation𝑖𝑖𝒳𝒳=thesetofallobservationsSectionReferences9.3.3.2CommentsThisequationestimatesmeancross-validatederror,ameasureofbiasinthedataset𝒳𝒳.𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑗𝑗,𝑘𝑘=𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑗𝑗,𝑘𝑘−𝑚𝑚𝑟𝑟𝑟𝑟,𝑗𝑗,𝑘𝑘𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑗𝑗,𝑘𝑘−𝑣𝑣𝑟𝑟𝑟𝑟,𝑗𝑗,𝑘𝑘[B.27]Variables𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑗𝑗,𝑘𝑘=bulkdensityoffineportionofsoilsampleinplot𝑗𝑗instratum𝑘𝑘𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑗𝑗,𝑘𝑘=drymassofsoilsampletakefromplot𝑗𝑗instratum𝑘𝑘.𝑚𝑚𝑟𝑟𝑟𝑟,𝑗𝑗,𝑘𝑘=drymassofrockfractionofsoilsampleinplot𝑗𝑗instratum𝑘𝑘𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑗𝑗,𝑘𝑘=totalvolumeofsoilsampleinplot𝑗𝑗instratum𝑘𝑘𝑣𝑣𝑟𝑟𝑟𝑟,𝑗𝑗,𝑘𝑘=volumeofcoarsefragments(>2mm)insoilsampletakeninplot𝑗𝑗instratum𝑘𝑘SectionReferencesB.2.6,CommentsThisequationestimatesthebulkdensityofsoil,correctedtoexcludetherockfraction(fragments>2mm).𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗,𝑘𝑘=4412×10×𝑝𝑝𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑗𝑗,𝑘𝑘×𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑗𝑗,𝑘𝑘×𝑑𝑑𝑗𝑗,𝑘𝑘×(1−𝑣𝑣𝑟𝑟𝑟𝑟,𝑗𝑗,𝑘𝑘𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑗𝑗,𝑘𝑘)[B.28]Variables𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗,𝑘𝑘=soilcarbonstockinplot𝑗𝑗stratum𝑘𝑘𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑗𝑗,𝑘𝑘=bulkdensityoffineportionofsoilsampleinplot𝑗𝑗instratum𝑘𝑘𝑝𝑝𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑗𝑗,𝑘𝑘=carbonfractionofsoilsampleinplot𝑗𝑗instratum𝑘𝑘𝑑𝑑𝑗𝑗,𝑘𝑘=depthofsoilsampleinplot𝑗𝑗instratum𝑘𝑘𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑗𝑗,𝑘𝑘=totalvolumeofsoilsampleinplotjinstratum𝑘𝑘𝑣𝑣𝑟𝑟𝑟𝑟,𝑗𝑗,𝑘𝑘=volumerockfragments(>2mm)insoilsampletakeninplot𝑗𝑗instratum𝑘𝑘SectionReferencesB.2.6Page226VM0009,Version3.0SectoralScope14CommentsThisequationisusedtoestimatethecarbonstockinsoilinstratum𝑘𝑘plot𝑗𝑗4412istheratioofthemassofcarbondioxidetothemassofcarbonandisusedtoconverttoCO2eunits.Theconversionfactor10representsaconversionfromkgtotonnesandfromm-2toha-1.𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ,𝑖𝑖,𝑗𝑗,𝑘𝑘=𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,i,𝑗𝑗,𝑘𝑘−𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑖𝑖,𝑗𝑗𝑗𝑗[B.29]Variables𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ,𝑖𝑖,𝑗𝑗,𝑘𝑘=Carbonstockinslashforthe𝑖𝑖𝑡𝑡ℎtreeonplot𝑗𝑗instratum𝑘𝑘𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖,𝑗𝑗,𝑘𝑘=Totalabove-groundcarbonstockforthe𝑖𝑖𝑡𝑡ℎtreeonplot𝑗𝑗instratum𝑘𝑘𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑖𝑖,𝑗𝑗,𝑘𝑘=Carbonstockinthemerchantablepartoftheboleforthe𝑖𝑖𝑡𝑡ℎtreeonplot𝑗𝑗instratum𝑘𝑘SectionReferencesB.2.7CommentsThisequationisanintermediatestepinestimatingtheslashandwoodproductsratios.𝑝𝑝𝑖𝑖=𝐶𝐶𝑖𝑖∑𝐶𝐶𝑖𝑖𝑖𝑖∈𝒲𝒲[B.30]Variables𝑝𝑝𝑖𝑖=Woodproductsratioforclass𝑖𝑖𝐶𝐶𝑖𝑖=Totalcarboninwoodproductsclass𝑖𝑖𝒲𝒲=Thesetofallwoodproductsclasses(slash,sawnwood,woodbasepanels,otherindustrialroundwood,andpaper/paperboard)SectionReferencesB.2.7CommentsThisequationcalculatestheirpercentageoftotalcarboninlogproductionexpectedtobeallocatedtoeachofthefourwoodproductsclasses.𝑚𝑚�𝐿𝐿≥�𝜎𝜎�𝐷𝐷𝐷𝐷1.640.15�2[B.31]Variables𝑚𝑚�𝐿𝐿=theestimatedminimumsamplesizeintheleakagearea.𝜎𝜎�𝐷𝐷𝐷𝐷=theestimatedstandarddeviationofthestateobservationsusedtofitthelogisticfunctionSectionReferencesB.2.8,6.8.10Page227VM0009,Version3.0SectoralScope14CommentsTheestimatedsamplesizeintheleakagearea.Basedonanormalapproximationandrewrittenfromanapproximateconfidenceintervalat90%withthresholdof+/-15%oftheestimatedmean.𝑚𝑚�𝐹𝐹𝐹𝐹hasanupperboundof98,themaximumsamplesize.Forasmallestimatedconversionrate,alargersamplethanestimatedisrecommended.Lohr(2009)𝑃𝑃=100−(1.04∗𝑛𝑛)[B.32]Variables𝑃𝑃=percentcoverestimate𝑛𝑛=numberofobservedopeningsindensiometerreadingSectionReferencesB.2.9CommentsThisformulaappliestosphericaldensitometerswith24gridcells,assumingfourpotentialcountpointspergridcell.Forestimatesoftheprojectaccountingarea𝑐𝑐𝑃𝑃=�𝑐𝑐𝑗𝑗𝑗𝑗∈𝒞𝒞Forestimatesoftheprojectaccountingarea𝑐𝑐𝐵𝐵=∑𝑐𝑐𝑗𝑗𝑗𝑗∈𝒞𝒞[B.33]Variables𝑐𝑐𝑃𝑃=averagecarbonstockintheprojectaccountingarea𝑐𝑐𝐵𝐵=averagecarbonstockintheproxyarea𝒞𝒞=thesetofselectedcarbonpoolsSectionReferencesB.1.5CommentsThisequationisusedtoestimatetheaveragecarbonstockinallselectedcarbonpools.Page228VM0009,Version3.0SectoralScope14Forestimatesoftheprojectaccountingarea𝑈𝑈𝑃𝑃=��𝑈𝑈𝑗𝑗2𝑗𝑗∈𝒞𝒞Forestimatesoftheproxyarea𝑈𝑈𝐵𝐵=��𝑈𝑈𝑗𝑗2𝑗𝑗∈𝒞𝒞[B.34]Variables𝑈𝑈𝑃𝑃=estimatedstandarderroroftotalcarbonstocksintheprojectaccountingarea𝑈𝑈𝐵𝐵=estimatedstandarderroroftotalcarbonstocksintheprojectaccountingarea𝒞𝒞=thesetofselectedcarbonpools𝑈𝑈𝑗𝑗=estimatedstandarderrorofcarbonpool𝑗𝑗SectionReferencesB.1.5CommentsThisequationisusedtocombinethestandarderrorsofthetotalsforselectedcarbonpools.𝑤𝑤𝑤𝑤𝑆𝑆𝑆𝑆=𝑐𝑐1𝐴𝐴1+𝑐𝑐2𝐴𝐴2+...𝑐𝑐𝑖𝑖𝐴𝐴𝑖𝑖𝐴𝐴𝑖𝑖+𝐴𝐴2+...𝐴𝐴𝑖𝑖[B.35]Variables𝑤𝑤𝑤𝑤𝑆𝑆𝑆𝑆=weightedaveragecarbonstocksforselectedstrata,tCO2e/ha𝑐𝑐𝑖𝑖=averagecarbonstocksinstratum𝑖𝑖,tCO2e/ha𝐴𝐴𝑖𝑖=areaofstratum𝑖𝑖,haSectionReferencesB.1.4CommentsThisequationcalculatestheaveragecarbonstocksintermsoftCO2eha-1acrossagivensetofstrataweightedbypoolsize.Page229VM0009,Version3.0SectoralScope14APPENDIXC:WOODPRODUCTSItisconservativetoomitlong-livedwoodproductsasaresultofprojectactivitiesbutrequiredtoconsidertheminthebaselinescenario.Iftheprojectproponentchoosestoestimatecarbonstoredinlong-livedwoodproductsasaresultoftheprojectactivity,seesectionC.1ofthisappendix.Carboninwoodproductsremainingafter100yearsisestimatedusing[C.1],whichwasderivedfromWinjumetal.(1998).Woodproductsareclassifiedassawnwood,woodbasepanels,otherindustrialroundwood,orpaper&paperboard,eachproducttypebeingconsideredseparately.Thefractionofwoodlosttowasteduringthemillingprocess(𝑤𝑤),giveninTable11,isconstantacrossproducttypesbutdependentuponcountrytype.Table12providesfractionsofwoodproductslastingatleast5years(𝑙𝑙𝑡𝑡𝑡𝑡)byproducttype,andannualoxidationfractions(𝑓𝑓𝑡𝑡𝑡𝑡)foreachofthethreemajorforestregionsbyproducttype.Inordertoestimateemissions-equivalentremainingsequesteredineachwoodproducttype(𝑡𝑡𝑡𝑡)after100years,theabove-groundmerchantabletreeemissionsaremultipliedbythefractionremainingaftermilling(1−𝑤𝑤),thefractionofwoodproductsthatlast5yearsormore(𝑙𝑙𝑡𝑡𝑡𝑡),andthefractionremainingafterapplyingtheoxidationfraction(𝑓𝑓𝑡𝑡𝑡𝑡)overthesubsequent95years.Allproducttypesaresummedtoobtainthetotalemissionsequivalentsequesteredinwoodproductsafter100years.Table8:MillingWoodWasteFraction(𝒘𝒘).CountryType𝒘𝒘Developing0.24Developed0.19Proportionofwoodlostduringthemillingprocess,fromWinjumetal.(1998).Table9:Long-livedWoodFractions(𝒍𝒍𝒕𝒕𝒕𝒕)andOxidationFractions(𝒇𝒇𝒕𝒕𝒕𝒕).ProductType𝒍𝒍𝒕𝒕𝒕𝒕𝒇𝒇𝒕𝒕𝒕𝒕,Boreal𝒇𝒇𝒕𝒕𝒕𝒕,Temperate𝒇𝒇𝒕𝒕𝒕𝒕,TropicalSawnwood0.80.0050.010.02Woodbasepanels0.90.0100.020.04Otherindustrialroundwood0.70.0200.040.08Paperandpaperboard0.60.0050.010.10Page230VM0009,Version3.0SectoralScope14Proportionoftimberremainingintactaswoodproductsafter5years,andannualrateoflossofwoodproductsbyforestregion,bothfromWinjumetal.(1998).Iftheprojectproponentwishes,thevaluesfor𝑙𝑙𝑡𝑡𝑡𝑡and𝑓𝑓𝑡𝑡𝑡𝑡inTable13maybeappliedtoallproducttypesineitherthebaselineorprojectscenariotoensureaconservativeestimate.Theuseofthesevaluesassumesthatallharvestedwoodgoesintowoodproductsinthebaselinescenario,andnoneofitdoesintheprojectscenario.Table10:ConservativeValuesforLong-livedWoodFractions(𝒍𝒍𝒕𝒕𝒕𝒕)andOxidationFractions(𝒇𝒇𝒕𝒕𝒕𝒕).Scenario𝒍𝒍𝒕𝒕𝒕𝒕𝒇𝒇𝒕𝒕𝒕𝒕Baseline10Project01Applicabletoallwoodproducttypes.C.1EstimatingCarbonStoredinWPUsingLogProductionIfasaresultofprojectactivitiescarbonisstoredinwoodproducts,usethemethodsprovidedinthisappendixandequation[C.2]whichisbasedonthemeasurelogproduction.C.2EquationsforWoodProducts𝐶𝐶𝐵𝐵𝑊𝑊𝑊𝑊[𝑚𝑚]=(1−𝑤𝑤)�𝐸𝐸𝐵𝐵𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚]��𝑝𝑝𝑡𝑡𝑡𝑡[𝑚𝑚]𝑙𝑙𝑡𝑡𝑡𝑡�1−𝑓𝑓𝑡𝑡𝑡𝑡�95𝑡𝑡𝑡𝑡∈𝒯𝒯[C.1]Variable𝐶𝐶𝐵𝐵𝑊𝑊𝑊𝑊[𝑚𝑚]=tCO2esequesteredinlong-livedwoodproductsafter100years𝑤𝑤=millingwoodwastefraction𝑡𝑡𝑡𝑡=woodproducttype𝐸𝐸𝐵𝐵𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚]=tCO2esequesteredinabove-groundmerchantabletreesp𝑡𝑡𝑡𝑡[𝑀𝑀]=portionofharvestedcarboninproducttype𝑡𝑡𝑡𝑡(estimatedusingAppendixB)𝑙𝑙𝑡𝑡𝑡𝑡=fractionofwoodproductsinproducttype𝑡𝑡𝑡𝑡remainingafter5years𝑓𝑓𝑡𝑡𝑡𝑡=annualoxidationfractionofwoodproductsinproducttype𝑡𝑡𝑡𝑡SectionReferences8.1.6CommentsDeterminingcarbonstoredinwoodproductsinthebaseline.Page231VM0009,Version3.0SectoralScope14𝐶𝐶𝑃𝑃Δ𝑊𝑊𝑊𝑊[𝑚𝑚]=(1−𝑤𝑤)�𝐶𝐶𝑃𝑃𝑡𝑡𝑡𝑡[𝑚𝑚]𝑙𝑙𝑡𝑡𝑡𝑡�1−𝑓𝑓𝑡𝑡𝑡𝑡�95𝑡𝑡𝑡𝑡∈𝒯𝒯[C.2]Variable𝐶𝐶𝑃𝑃Δ𝑊𝑊𝑊𝑊[𝑚𝑚]=tCO2esequesteredinlong-livedwoodproductsafter100years𝑤𝑤=millingwoodwastefraction𝑡𝑡𝑡𝑡=woodproducttype𝐶𝐶𝑡𝑡𝑡𝑡[𝑚𝑚]=Carbonmeasuredinlogproductionforeachwoodproductclass𝑙𝑙𝑡𝑡𝑡𝑡=fractionofwoodproductsinproducttype𝑡𝑡𝑡𝑡remainingafter5years𝑓𝑓𝑡𝑡𝑡𝑡=annualoxidationfractionofwoodproductsinproducttype𝑡𝑡𝑡𝑡SectionReferences8.2.3CommentsDeterminingcarbonstoredinwoodproductsintheproject.Page232VM0009,Version3.0SectoralScope14APPENDIXD:AREASELECTIONCRITERIONTheboundariesandsizeoftheareamustaddressthefollowingcriteriainordertoensurethattheagentsanddriversofconversionintheareaaresimilartothoseoftheprojectarea:1.Thelocationsoftheagentsofconversionrelativetotheprojectarea.2.Themobilitiesoftheagentsofconversionrelativetotheprojectarea.3.Thedriversofconversionincludingthefollowingrelativetotheprojectarea:a.Socio-economicconditions;andb.Culturalconditions.4.Landscapeconfigurationincludingthefollowingrelativetotheprojectaccountingarea:a.Topographicconstraintstoconversion(slope,aspect,elevation);b.Landuseand/orlandcoverconstraintstoecosystemconversion;c.Accesspointsthatmayconstrainecosystemconversion;d.Areasoflimitedsoilproductivity;e.Distancetoimportantmarkets;f.Proximitytoimportantresources(water,electricity,transportation);andg.Ownership/tenureboundariesthatconstrainconversion(governmentholdings,privateholdingsandreserves).Theinterpretationoftheabovecriteriaissubjectiveandtheprojectproponentshouldchooseboundariesfortheareathatresultinaconservativebaselinescenariowhenevaluatingtheabovecriteria.MapsshowingthefollowinganalysesmaybehelpfultotheprojectproponentandVVBforidentifyingtheboundariesandsizeofthearea:•Mappingthelocationsofagentsofconversion.•Bufferingthelocationsofagentsbasedonthedistanceoftheirmobility.•Provincial,district-levelorlocalmapsshowingtherelativesocioeconomicconditionsoflocalcommunities.•Mappingthelocationsofimportantculturalplaces.•Digitalelevationmodels.•Mapsoftopographicsurveys.•Mapsoflanduseandlandcover.•Mappingthelocationsofaccesspointsthatmayconstrainconversion.•Mapsofsoilproductivity.•Bufferingthelocationsofimportantmarketsaccordingtoagentmobility.Page233VM0009,Version3.0SectoralScope14•Mapsofimportantresources(water,electricity,transportation).•Mapsofownershipboundaries(governmentholdings,privateholdingsandreserves).Theareamaybesimilartotheprojectareabyvirtuethattheyarelocatedinthesameregionandareprobablysubjecttothesameagentsanddriversofconversion.However,forsubstantiationthatthesameagentsorclassofagentsanddriversofconversionarepresent,theprojectproponentshouldclearlydemonstratesimilaritybetweentheprojectareaandareausingthefollowingcriteria:1.Theareaandprojectareamustbelocatedwiththesameproximitytotheagentsofconversion(forinstanceiftheagentsresideinatown,theprojectareaandareamustbesimilarindistancefromatowninwhichagentsofconversionreside.Thesemaybethesameagents,ortheymaybedifferent,butsimilaragents.)2.Agentsofconversionmusthaveaccess(legalorotherwise)tothearea.Thesameagentsneednothaveaccesstoallareas,buttheagentswithaccesstoeachareamustbesimilarinregardstothedriversofconversionidentifiedinsectionE.2.3.Theareahassimilarconditionstotheprojectarea:a.Socio-economicconditions;andb.Culturalconditions.4.Theareahassimilarlandscapeconfigurationtotheprojectaccountingarea(forinstance,thesametopographyandlandcover).5.Inthecaseofthereferencearea,itmusthaveatleastthesameareaofforestornativegrasslandcoverastheprojectaccountingareaatsomepointintimeduringthehistoricreferenceperiod.Thiscanbedemonstratedbyathematicclassificationoflandcoverinthereferenceareaatsomepointinthereferenceperiodandtheprojectaccountingarea,analysisofadotgridorbysomeothercrediblemethod.Page234VM0009,Version3.0SectoralScope14APPENDIXE:THEPARTICIPATORYRURALAPPRAISALTheparticipatoryruralappraisalisavoluntarysurveyofthepopulacesurroundingtheprojectareaandmaybeusedtoidentifytheagentsanddriversofconversion,delineatethereferenceareaandidentifystrategiestomitigateecosystemconversionintheprojectarea.Theparticipatoryruralappraisalutilizesaquestionnairetoidentifytheagentsanddriversofconversion.Thesurveyshouldsampleasmanycommunitymembers,communityleaders,customaryleadersandpublicofficialsaspossiblegiventimeandexpenseconstraints.Thesamplesizeselectedbytheprojectproponentaffectsthecreditabilityoftheagentsanddriversidentifiedusingtheappraisalandaverylowsamplesizemaynegativelyaffectthevalidationopinion.Thequestionnaireshouldbeanonymousandmaycontainbothclosedandopen-endedquestions.Thequestionnairecanbeissuedinwrittenformoradministeredorallytoindividualsorgroupsofpeople,asisdeemedappropriatebylocalcultureandcustom.Incentivesshouldbeconsideredtoincreasethenumberofresponses,takingcarenottobiasresultswithsaidincentives.Thequestionsaredesignedbytheprojectproponentsonanindividualprojectbasisandshouldaddressthefollowingissues:1.Possibleagentsofconversion,including:a.Foreigngroups;b.Localgroups;c.Regionalgroups;d.Customaryandtraditionalgroups;e.Communitygroups;f.Authoritiesandgovernments;g.Illegalactivities;andh.Otherpossibleagents.2.Possibledriversofconversion,including:a.Historicproblemswithcommunitysustainability;b.Livelihoods;c.Economies;d.Ruralwages;e.Generalscarcityissues;f.Pricesofagriculturalproducts;g.Costsofagriculturalinputs;h.Human-wildlifeinteraction;i.Illegalorblackmarkets;Page235VM0009,Version3.0SectoralScope14j.Historicalandcurrentforestuses;k.Populationdensity;l.Socio-economicconditions;andm.Property-ownershipsystems;n.Otherpossibledrivers.3.Possibletimecomponentsofdegradationandconversion,including;a.Arrivalofforeigners;b.Timebetweenthebeginningofdegradationandultimateconversion(seesection6.16);c.Thelengthoftimebetweenthecreationofaccesspointsintoforestuntilsecondaryagentsentertheforestresultingindegradationandultimatelyconversion(seesections6.10and6.11)d.Changesintransportationinfrastructure;e.Eventsofsignificantimportancesuchasdroughtsorfloods;f.Regionalclimatictrends;g.Eventsofsignificantpopulationgrowth;h.Eventsofsignificanteconomicgrowthordecline;i.Expectedcommunityneeds;j.Warorotherconflicts;k.Changesinpolicies;andl.Otherpossibletimecomponents.4.Possibleconstraintstodegradationandconversion,including:a.Accessissues;b.Soilproductivity;c.Topography;d.Proximitytomarkets;e.Proximitytootherresources(water,electricity,transportation);f.Protectedareas;g.Ownershiptypes(government,private,reserve);andh.Otherpossibleconstraints.5.Relativeimportanceofdriversandagentsofconversioninrespondents’estimation(arelativenumericalrank).Page236VM0009,Version3.0SectoralScope146.Possiblesolutionstocommunityun-sustainability.E.1AnalyzingtheAgentsofConversionAnalyzeresponsesfromthesurveywithrespecttotheagentsofconversionbyfirstenumeratingtheresponsestoagent-basedquestions.Then,grouptheseresponsesbytheagentsidentifiedintheresponses.Next,rankgroupsbythenumberofresponsesthatfallwithinanyparticulargroup.Oneresponsemayfallintomorethanonegroup.Considerresponders’rankingofrelativeimportancewhenrankinggroups.Sortthelistofgroupsbydecreasingrankandforeachagentofconversioninthelist,anddescribeitsmobility.Alsoprovideadescriptionoftheagentrelativetopossibledriversofconversionandanyusefulstatisticsabouttheagentobtainedfrompublishedorunpublishedsources.Thesortedlistofagentsformsthebasisfordevelopingprojectactivitiesthatmitigateconversioninorderofimportance.Elementsofthelistmayidentifypossiblecovariateswhichcouldbeincludedasnumericdriversofconversioninthebaselineemissionsmodels.Thesecovariatesmustbequantifiable,suchaspopulationdensitydatafromperiodiccensusorheadofcattleinalocalcommunity.E.2AnalyzingtheDriversofConversionAnalyzeresponsesfromthesurveywithrespecttothedriversofconversionbyfirstenumeratingtheresponsestodriver-basedquestions.Then,grouptheseresponsesbythedriversidentifiedintheresponses.Rankthesegroupsbythenumbersofresponsesthatfallwithininanyparticulargroup.Oneresponsemayfallintomorethanonegroup.Considerresponders’rankingofrelativeimportancewhenrankinggroups.Sortthelistofgroupsbydecreasingrank.Alsoprovideanyusefulstatisticsaboutthedriverobtainedfrompublishedorunpublishedsources.Thesortedlistofdriversformsthebasisfordevelopingprojectactivitiesthatmitigateconversioninorderofimportance.Elementsofthelistmayidentifypossiblecovariateswhichcouldbeincludedasnumericdriversofconversioninthebaselineemissionsmodels.Page237VM0009,Version3.0SectoralScope14APPENDIXF:EQUATIONSINTHEMETHODOLOGY𝑚𝑚�=365�𝐶𝐶𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚=0]+𝐶𝐶𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚=0]�𝑡𝑡𝑃𝑃𝑃𝑃−𝑡𝑡𝑃𝑃𝑃𝑃[F.1]VariablesCPAGMT[m=0],CPBGMT[m=0],tPL,tPA,SectionReferences6.14CommentsAveragecarboninmerchantabletreescuteachyearasaresultoflegally-sanctionedcommerciallogging,perhectare.CPBGMT[m=0]shouldbesettozeroifBGMTisnotaselectedpool.𝐵𝐵𝐵𝐵𝑀𝑀𝑃𝑃1(𝑐𝑐𝑃𝑃,𝑐𝑐𝐵𝐵,𝑡𝑡,𝑥𝑥)=𝑚𝑚(𝑡𝑡−𝑡𝑡𝑃𝑃𝑃𝑃)365(1+𝑒𝑒𝑡𝑡−𝑡𝑡𝑆𝑆𝑆𝑆−𝑡𝑡𝑃𝑃𝑃𝑃−𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃)+𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃(𝑐𝑐𝑃𝑃−𝑐𝑐𝐵𝐵)𝑒𝑒𝑡𝑡−𝑡𝑡𝑆𝑆𝑆𝑆−𝑡𝑡𝑃𝑃𝑃𝑃−𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃+𝐻𝐻𝐴𝐴𝑃𝑃1(𝑐𝑐𝑃𝑃,𝑐𝑐𝐵𝐵)𝑡𝑡𝑡𝑡𝑃𝑃𝑃𝑃−𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃(1+𝑒𝑒𝑡𝑡−𝑡𝑡𝑆𝑆𝑆𝑆−𝑡𝑡𝑃𝑃𝑃𝑃−𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃)�1+𝑒𝑒ln�365𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃�𝑐𝑐𝑃𝑃−𝑐𝑐𝐵𝐵�𝑚𝑚(𝑡𝑡𝑆𝑆𝑆𝑆−𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃)−1�−𝛽𝛽(𝑡𝑡−𝑡𝑡𝑆𝑆𝑆𝑆−𝑡𝑡𝑃𝑃𝑃𝑃−𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃)−𝜃𝜃(𝑥𝑥−𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃−𝑥𝑥𝑆𝑆𝑆𝑆)𝑇𝑇�−𝐻𝐻𝐴𝐴𝑃𝑃1(𝑐𝑐𝑃𝑃,𝑐𝑐𝐵𝐵)where𝐻𝐻𝐴𝐴𝑃𝑃1(𝑐𝑐𝑃𝑃,𝑐𝑐𝐵𝐵)=𝑚𝑚365(1+𝑒𝑒−𝑡𝑡𝑆𝑆𝑆𝑆−𝑡𝑡𝑃𝑃𝑃𝑃−𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃)+𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃(𝑐𝑐𝑃𝑃−𝑐𝑐𝐵𝐵)𝑒𝑒−𝑡𝑡𝑆𝑆𝑆𝑆−𝑡𝑡𝑃𝑃𝑃𝑃−𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃(1+𝑒𝑒−𝑡𝑡𝑆𝑆𝑆𝑆−𝑡𝑡𝑃𝑃𝑃𝑃−𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃)�1+𝑒𝑒ln�365𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃�𝑐𝑐𝑃𝑃−𝑐𝑐𝐵𝐵�𝑚𝑚�𝑡𝑡𝑆𝑆𝑆𝑆−𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃�−1�+𝛽𝛽(𝑡𝑡𝑆𝑆𝑆𝑆+𝑡𝑡𝑃𝑃𝑃𝑃+𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃)−𝜃𝜃(𝑥𝑥𝑜𝑜−𝑥𝑥𝑆𝑆𝑆𝑆−𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃)𝑇𝑇�[F.2]Variables𝑚𝑚,cP[m],cB[m],xo,t,β,θ,x,tPA,tSA,xSA,APAA,tPL,tPAISectionReferences6.6CommentsBEMforTypesF-P1.aandF-P1.b.ForF-P1.b,thespatialalgorithmshouldbeusedfor𝐶𝐶𝑝𝑝Page238VM0009,Version3.0SectoralScope14𝐵𝐵𝐵𝐵𝑀𝑀𝑃𝑃2(𝑐𝑐𝑃𝑃,𝑐𝑐𝐵𝐵,𝑡𝑡,𝑥𝑥)=(𝑐𝑐𝑃𝑃−𝑐𝑐𝐵𝐵)𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃+𝐻𝐻𝐴𝐴𝑃𝑃2(𝑐𝑐𝑃𝑃,𝑐𝑐𝐵𝐵)𝑡𝑡𝑡𝑡𝑃𝑃𝑃𝑃−𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃1+𝑒𝑒−𝛼𝛼−𝛽𝛽(𝑡𝑡+𝛾𝛾+0.5𝑞𝑞−𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃)−𝜃𝜃(𝑥𝑥−𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃)𝑇𝑇−𝐻𝐻𝐴𝐴𝑃𝑃2(𝑐𝑐𝑃𝑃,𝑐𝑐𝐵𝐵)where𝐻𝐻𝐴𝐴𝑃𝑃2(𝑐𝑐𝑃𝑃,𝑐𝑐𝐵𝐵)=(𝑐𝑐𝑃𝑃−𝑐𝑐𝐵𝐵)𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃1+𝑒𝑒−𝛼𝛼−𝛽𝛽(𝛾𝛾+0.5𝑞𝑞−𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃)−𝜃𝜃(𝑥𝑥0−𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃)𝑇𝑇[F.3]Variables𝑚𝑚,cP[m],cB[m],tPA,t,α,β,γ,q,θ,x,APAA,tPL,tPAISectionReferences8.1.1,6.6CommentsBEMforTypeF-P2andG-P2𝐵𝐵𝐵𝐵𝑀𝑀𝑈𝑈2,3(𝑐𝑐𝑃𝑃,𝑐𝑐𝐵𝐵,𝑡𝑡,𝑥𝑥)=𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃(𝑐𝑐𝑃𝑃−𝑐𝑐𝐵𝐵)+𝐻𝐻𝐴𝐴𝑈𝑈2,3(𝑐𝑐𝑃𝑃,𝑐𝑐𝐵𝐵)𝑡𝑡𝑡𝑡𝑃𝑃𝑃𝑃1+𝑒𝑒ln�1𝑟𝑟𝑈𝑈�−𝛽𝛽(𝑡𝑡+0.5𝑞𝑞)−𝜃𝜃(𝑥𝑥)𝑇𝑇−𝐻𝐻𝐴𝐴𝑈𝑈2,3(𝑐𝑐𝑃𝑃,𝑐𝑐𝐵𝐵)where𝐻𝐻𝐴𝐴𝑈𝑈2,3(𝑐𝑐𝑃𝑃,𝑐𝑐𝐵𝐵)=𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃(𝑐𝑐𝑃𝑃−𝑐𝑐𝐵𝐵)1+𝑒𝑒ln�1𝑟𝑟𝑈𝑈�−𝛽𝛽(0.5𝑞𝑞)−𝜃𝜃(𝑥𝑥0)𝑇𝑇[F.4]VariablescP[m],cB[m],xo,t,β,θ,q,x,APAA,tPL,rU,tPAItPAISectionReferences8.1.1,6.6CommentsBEMforTypesF-U2,G-U2andF-U3𝐵𝐵𝐵𝐵𝑀𝑀𝑈𝑈1(𝑐𝑐𝑃𝑃,𝑐𝑐𝐵𝐵,𝑡𝑡,𝑥𝑥)=𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃(𝑐𝑐𝑃𝑃−𝑐𝑐𝐵𝐵)1+𝑒𝑒−𝛽𝛽(𝑡𝑡+0.5𝑞𝑞−𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃)−𝜃𝜃(𝑥𝑥−𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃)𝑇𝑇−𝛼𝛼[F.5]VariablescP[m],cB[m],xo,t,α,β,θ,q,x,APAA,tPL,tPAItPAISectionReferences8.1.1,6.6Page239VM0009,Version3.0SectoralScope14CommentsBEMforTypeF-U1andG-U1𝑆𝑆𝑆𝑆𝑀𝑀𝑃𝑃(𝑐𝑐𝑃𝑃,𝑐𝑐𝐵𝐵,𝑡𝑡,𝑥𝑥)=𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃(𝑐𝑐𝑃𝑃−𝑐𝑐𝐵𝐵)1+𝑒𝑒−𝛼𝛼−𝛽𝛽(𝑡𝑡+𝛾𝛾−𝑡𝑡𝑃𝑃𝑃𝑃−𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃)−𝜃𝜃(𝑥𝑥−𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃)𝑇𝑇�1+𝑡𝑡𝑡𝑡𝑃𝑃𝑃𝑃+𝑡𝑡𝑃𝑃𝑃𝑃𝑒𝑒−𝛼𝛼−𝛽𝛽(𝛾𝛾−𝑡𝑡𝑃𝑃𝑃𝑃−𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃)−𝜃𝜃(𝑥𝑥0−𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃)𝑇𝑇�−𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃(𝑐𝑐𝑃𝑃−𝑐𝑐𝐵𝐵)1+𝑒𝑒−𝛼𝛼−𝛽𝛽(𝛾𝛾−𝑡𝑡𝑃𝑃𝑃𝑃−𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃)−𝜃𝜃(𝑥𝑥0−𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃)𝑇𝑇[F.6]VariablescB[m],cP[m],tPA,α,β,θ,γ,t,x,xo,APAA,tPAISectionReferences8.1.1,6.6CommentsSEMforTypesF-P1.a,F-P1.b,F-P2andG-P2(forF-P2andG-P2,tPA=0).ForF-P1.b,𝐶𝐶𝑝𝑝shouldbecalculatedusingthespatialalgorithm𝑆𝑆𝑆𝑆𝑀𝑀𝑈𝑈2,3(𝑐𝑐𝑃𝑃,𝑐𝑐𝐵𝐵,𝑡𝑡,𝑥𝑥)=𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃(𝑐𝑐𝑃𝑃−𝑐𝑐𝐵𝐵)1+𝑒𝑒ln�1𝑟𝑟𝑈𝑈�−𝛽𝛽(𝑡𝑡−𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃)−𝜃𝜃(𝑥𝑥−𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃)𝑇𝑇�1+𝑡𝑡𝑡𝑡𝑃𝑃𝑃𝑃+𝑡𝑡𝑃𝑃𝑃𝑃𝑒𝑒ln�1𝑟𝑟𝑈𝑈�−𝜃𝜃(𝑥𝑥0−𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃)𝑇𝑇+𝛽𝛽𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃�−𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃(𝑐𝑐𝑃𝑃−𝑐𝑐𝐵𝐵)1+𝑒𝑒ln�1𝑟𝑟𝑈𝑈�−𝜃𝜃(𝑥𝑥0−𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃)𝑇𝑇+𝛽𝛽𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃[F.7]VariablescBSOC[m]cB[m],cP[m],xo,β,θ,t,x,APAA,rU,tPAISectionReferences8.1.1,6.6CommentsSEMforTypesF-U2,G-U2andF-U3Page240VM0009,Version3.0SectoralScope14𝑆𝑆𝑆𝑆𝑀𝑀𝑈𝑈1(𝑐𝑐𝑃𝑃,𝑐𝑐𝐵𝐵,𝑡𝑡,𝑥𝑥)=𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃(𝑐𝑐𝑃𝑃−𝑐𝑐𝐵𝐵)1+𝑒𝑒−𝛽𝛽(𝑡𝑡−𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃)−𝜃𝜃(𝑥𝑥−𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃)𝑇𝑇−𝛼𝛼�1+11+𝑒𝑒−𝛼𝛼−𝜃𝜃(𝑥𝑥0−𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃)𝑇𝑇−𝛽𝛽𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃�−𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃(𝑐𝑐𝑃𝑃−𝑐𝑐𝐵𝐵)1+𝑒𝑒−𝛼𝛼−𝜃𝜃(𝑥𝑥0−𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃)𝑇𝑇−𝛽𝛽𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃[F.8]VariablescB[m],cP[m],xo,β,θ,t,x,APAAα,tPAISectionReferencesCommentsSEMforTypeF-U1andG-U1𝐷𝐷𝐷𝐷𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆�𝐸𝐸𝐵𝐵Δ[𝑚𝑚],𝑡𝑡,𝑡𝑡[𝑚𝑚−1]�=𝐸𝐸𝐵𝐵Δ[𝑚𝑚]−365𝐸𝐸𝐵𝐵Δ[𝑚𝑚]𝜆𝜆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡−𝑡𝑡[𝑚𝑚−1])�𝜆𝜆𝑆𝑆𝑆𝑆𝑆𝑆�𝑡𝑡−𝑡𝑡[𝑚𝑚−1]�365+𝑒𝑒−−𝜆𝜆𝑆𝑆𝑆𝑆𝑆𝑆�𝑡𝑡−𝑡𝑡[𝑚𝑚−1]�365−1�[F.9]Variablest,t[m-1],λSOC,EBΔ[m]SectionReferences6.19CommentsDEMforSOC𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷,𝐵𝐵𝐵𝐵𝐵𝐵�𝐸𝐸𝐵𝐵Δ[𝑚𝑚],𝑡𝑡,𝑡𝑡[𝑚𝑚−1]�=𝐸𝐸𝐵𝐵Δ[𝑚𝑚]1+𝑒𝑒𝑡𝑡−𝑡𝑡[𝑚𝑚−1]−3650�1−𝑡𝑡−𝑡𝑡[𝑚𝑚−1]3650�[F.10]VariablesEBΔ[m],t[m],t[m-1],tSectionReferences6.18CommentsDEMforDWandBGB𝑜𝑜𝑖𝑖=�1𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎(𝑡𝑡𝑖𝑖,𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)0𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎(𝑡𝑡𝑖𝑖,𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)[F.11]Variablesti,xi,yiPage241VM0009,Version3.0SectoralScope14SectionReferences6.8.5CommentsObservationofforeststateatagivenpointinspaceandtime.𝑚𝑚�𝐸𝐸𝐸𝐸≥12�𝜎𝜎�𝐸𝐸𝐸𝐸1.640.01�2[F.12]Variablesσ�EMSectionReferences6.8.5CommentsTheminimumsamplesize𝑚𝑚�𝐸𝐸𝐸𝐸inthespaceofthereferencearearequiredforfittingthelogisticfunction.Basedonanormalapproximationandrewrittenfromanapproximateconfidencelevelat90%withthresholdof+/-1%oftheestimatedmean.+/-15%ofthemeancannotbeusedasthethresholdbecauseofproblemsassociatedwithpeakvariance.The½factorassumesatleastdouble-coveragetogetthesamplesizeinthereferencearea.𝑚𝑚�𝐸𝐸𝐸𝐸hasanupperboundof4802,themaximumsamplesize.(Lohr,2009)Constant1.64istheZvalueatthe90%confidencelevel.Constantof0.01isthelevelofprecision.𝜎𝜎�𝐸𝐸𝐸𝐸=���𝑤𝑤𝑖𝑖𝑜𝑜𝑖𝑖𝑖𝑖∈ℐ��1−�𝑤𝑤𝑖𝑖𝑜𝑜𝑖𝑖𝑖𝑖∈ℐ�[F.13]Variablesoi,wi,ℐSectionReferences6.8.5CommentsStandarddeviationofobservedconversionderivedfromanestimateofvarianceforaBernoullirandomvariable(Lohr,2009).𝑈𝑈𝐸𝐸𝐸𝐸[𝑀𝑀]=𝐸𝐸𝐵𝐵Δ[𝑚𝑚]𝜎𝜎�𝐸𝐸𝐸𝐸�𝑛𝑛𝑑𝑑[F.14]VariablesEBΔ[m],nd,σ�EMSectionReferences6.8.10Page242VM0009,Version3.0SectoralScope14CommentsAnapproximateestimateofuncertaintyforthelogisticfunctionofconversion,assuminganormalapproximation(Lohr,2009).Uncertaintyinemissionsmodelsbasedonsamplestatisticsforconversionparameters.𝐸𝐸𝐵𝐵𝛥𝛥[𝑚𝑚]=𝐸𝐸𝐵𝐵[𝑚𝑚]−𝐸𝐸𝐵𝐵[𝑚𝑚−1][F.15]Variables𝐸𝐸𝐵𝐵[𝑚𝑚],𝐸𝐸𝐵𝐵[𝑚𝑚−1]SectionReferences8.1Commentsbaselineemissionsforthecurrentmonitoringperiod𝐸𝐸𝐵𝐵[𝑚𝑚]=𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚]+𝐸𝐸𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚]−𝐶𝐶𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚]−𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚]−𝐶𝐶𝐵𝐵𝐷𝐷𝐷𝐷[𝑚𝑚]−𝐶𝐶𝐵𝐵𝑊𝑊𝑊𝑊[𝑚𝑚][F.16]Variables𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚],EBSOC[m],CBSOC[m],𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚],𝐶𝐶𝐵𝐵𝐷𝐷𝐷𝐷[𝑚𝑚],𝐶𝐶𝐵𝐵𝑊𝑊𝑊𝑊[𝑚𝑚]SectionReferences8.1Commentscumulativebaselineemissions𝑐𝑐𝑃𝑃𝐵𝐵𝐵𝐵[𝑚𝑚]=�𝑐𝑐𝑃𝑃𝑏𝑏[𝑚𝑚]𝑏𝑏∈ℬ[F.17]VariablescPb[m],BSectionReferences8.1.1CommentsProjectscenarioaveragecarbonstockinselectedcarbonpoolsfromAGMT,AGOT,AGNT,BGMT,BGOTandBGNTPage243VM0009,Version3.0SectoralScope14𝑐𝑐𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚]=�𝑐𝑐𝐵𝐵𝑏𝑏[𝑚𝑚]𝑏𝑏∈ℬ[F.18]VariablescBb[m],BSectionReferences8.1.1CommentsBaselinescenarioaveragecarbonstockinselectedcarbonpoolsfromAGMT,AGOT,AGNT,BGMT,BGOTandBGNT𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚]=𝐵𝐵𝐵𝐵𝑀𝑀𝑃𝑃1�𝑐𝑐𝑃𝑃𝐵𝐵𝐵𝐵[𝑚𝑚=0],𝑐𝑐𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚],𝑡𝑡[𝑚𝑚],𝑥𝑥[𝑚𝑚]�[F.19]VariablescBBM[m],t[m],cPBM[m=0],x[m]SectionReferences8.1.1,8.1.1.1,A.1.2Commentscumulativebaselineemissionsfrombiomass,F-P1.aandF-P1.b𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚]=𝐵𝐵𝐵𝐵𝑀𝑀𝑃𝑃2�𝑐𝑐𝑃𝑃𝐵𝐵𝐵𝐵[𝑚𝑚=0],𝑐𝑐𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚],𝑡𝑡[𝑚𝑚],𝑥𝑥[𝑚𝑚]�[F.20]VariablescPBM[m=0],cBBM[m],t[m],x[m]SectionReferences8.1.1,8.1.1.2Commentscumulativebaselineemissionsfrombiomass,F-P2andG-P2𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚]=𝐵𝐵𝐵𝐵𝑀𝑀𝑈𝑈2,3�𝑐𝑐𝑃𝑃𝐵𝐵𝐵𝐵[𝑚𝑚=0],𝑐𝑐𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚],𝑡𝑡[𝑚𝑚],𝑥𝑥[𝑚𝑚]�[F.21]VariablescPBM[m=0],cBBM[m],t[m],x[m]SectionReferences8.1.1.4Commentscumulativebaselineemissionsfrombiomass,F-U2,G-U2andF-U3Page244VM0009,Version3.0SectoralScope14𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚]=𝐵𝐵𝐵𝐵𝑀𝑀𝑈𝑈1�𝑐𝑐𝑃𝑃𝐵𝐵𝐵𝐵[𝑚𝑚=0],𝑐𝑐𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚],𝑡𝑡[𝑚𝑚],𝑥𝑥[𝑚𝑚]�[F.22]Variables𝒄𝒄𝑷𝑷𝑩𝑩𝑩𝑩[𝒎𝒎=𝟎𝟎],cBBM[m],t[m],xSectionReferences8.1.1.3Commentscumulativebaselineemissionsfrombiomass,F-U1andG-U1𝑐𝑐𝑃𝑃𝑠𝑠𝐵𝐵𝐵𝐵[𝑚𝑚]=�𝑐𝑐𝑃𝑃𝑠𝑠𝑏𝑏[𝑚𝑚]𝑏𝑏∈ℬ[F.23]VariablescPsb[m],BSectionReferences8.1.1.5.1Commentsaveragecarboninbiomassforeachstratum𝑠𝑠𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚]=𝐵𝐵𝐵𝐵𝑀𝑀𝑆𝑆𝑆𝑆�𝑐𝑐𝑃𝑃1𝐵𝐵𝐵𝐵[𝑚𝑚=0],𝑐𝑐𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚],𝑡𝑡[𝑚𝑚],𝑥𝑥[𝑚𝑚]�=𝐵𝐵𝐵𝐵𝑀𝑀𝑈𝑈2,3/𝑃𝑃1(𝑐𝑐𝑃𝑃1𝐵𝐵𝐵𝐵[𝑚𝑚=0],𝑐𝑐𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚],𝑡𝑡[𝑚𝑚],𝑥𝑥[𝑚𝑚])when𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚]≥𝐴𝐴𝑃𝑃1[𝑚𝑚=0]�𝑐𝑐𝑃𝑃1𝐵𝐵𝐵𝐵[𝑚𝑚=0]−𝑐𝑐𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚]�then𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚]=𝐵𝐵𝐵𝐵𝑀𝑀𝑈𝑈2,3(𝑤𝑤𝑤𝑤𝑃𝑃1,2𝐵𝐵𝐵𝐵[𝑚𝑚=0],𝑐𝑐𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚],𝑡𝑡[𝑚𝑚],𝑥𝑥[𝑚𝑚])when𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚]≥𝐴𝐴𝑃𝑃1[𝑚𝑚=0]𝑐𝑐𝑃𝑃1𝐵𝐵𝐵𝐵[𝑚𝑚=0]+𝐴𝐴𝑃𝑃2[𝑚𝑚=0]𝑐𝑐𝑃𝑃2𝐵𝐵𝐵𝐵[𝑚𝑚=0]−𝑐𝑐𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚]�𝐴𝐴𝑃𝑃1[𝑚𝑚=0]+𝐴𝐴𝑃𝑃2[𝑚𝑚=0]�then𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚]=𝐵𝐵𝐵𝐵𝑀𝑀𝑈𝑈2,3/𝑃𝑃1(𝑤𝑤𝑤𝑤𝑃𝑃1,2,3𝐵𝐵𝐵𝐵[𝑚𝑚=0],𝑐𝑐𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚],𝑡𝑡[𝑚𝑚],𝑥𝑥[𝑚𝑚])…𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚]=𝐴𝐴𝑃𝑃1[𝑚𝑚=0]𝑐𝑐𝑃𝑃1𝐵𝐵𝐵𝐵[𝑚𝑚=0]+𝐴𝐴𝑃𝑃2[𝑚𝑚=0]𝑤𝑤𝑤𝑤𝑃𝑃1,2𝐵𝐵𝐵𝐵[𝑚𝑚=0]+⋯+𝐴𝐴𝑃𝑃𝑛𝑛[𝑚𝑚=0]𝑤𝑤𝑤𝑤𝑃𝑃𝑖𝑖,𝑛𝑛𝐵𝐵𝐵𝐵[𝑚𝑚=0]−𝑐𝑐𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚]�𝐴𝐴𝑃𝑃1[𝑚𝑚=0]+𝐴𝐴𝑃𝑃2[𝑚𝑚=0]+⋯+𝐴𝐴𝑃𝑃𝑛𝑛[𝑚𝑚=0]�[F.24]VariablescP1BM[m=0],cBb[m],t[m],AP1[m=0],AP2[m=0]cP3BM[m=0],APn[m=0],cPnBM[m=0],cBBM[m],x[m]SectionReferences8.1.1.5.1CommentsCumulativeemissionsforeachselectedcarbonpoolinbiomass(spatialalgorithm)usedinTypesF-P1.bandF-U3.Page245VM0009,Version3.0SectoralScope14𝐸𝐸𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚]=𝑆𝑆𝑆𝑆𝑀𝑀𝑃𝑃�𝑐𝑐𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚=0]𝑐𝑐𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚],𝑡𝑡[𝑚𝑚],𝑥𝑥[𝑚𝑚]�[F.25]VariablescPSOC[m=0],t[m],cBSOC[m],t[m],x[m]SectionReferences8.1.2.1CommentscumulativebaselineemissionsfromSOC,TypesF-P1.a,F-P2,andG-P2𝐸𝐸BΔ𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚]=𝐸𝐸𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚]−𝐸𝐸𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚−1][F.26]VariablesEBSOC[m]EBSOC[m-1],EBΔSOC[m]SectionReferences8.1.2.1,8.1.2.2,8.1.2.3CommentscurrentbaselineemissionsfromSOC,TypesF-P1.a,F-P2,andG-P2𝐸𝐸𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚]=𝑆𝑆𝑆𝑆𝑀𝑀𝑈𝑈1�𝑐𝑐𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚=0]𝑐𝑐𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚],𝑡𝑡[𝑚𝑚],𝑥𝑥[𝑚𝑚]�[F.27]VariablescPSOC[m=0]cBSOC[m],t[m],x[m]SectionReferences8.1.2.2CommentscumulativebaselineemissionsfromSOC,TypesF-U1andG-U1𝐸𝐸𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚]=𝑆𝑆𝑆𝑆𝑀𝑀𝑈𝑈2,3�𝑐𝑐𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚=0]𝑐𝑐𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚],𝑡𝑡[𝑚𝑚],𝑥𝑥[𝑚𝑚]�[F.28]VariablescPSOC[m=0],cBSOC[m],t[m],x[m]SectionReferences8.1.2.3Page246VM0009,Version3.0SectoralScope14CommentscumulativebaselineemissionsfromSOC,TypeF-U2andG-U2𝐸𝐸𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚]=𝑆𝑆𝑆𝑆𝑀𝑀𝑠𝑠𝑠𝑠�𝑐𝑐𝑃𝑃1𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚=0]𝑐𝑐𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚],𝑡𝑡[𝑚𝑚],𝑥𝑥[𝑚𝑚]�=𝑆𝑆𝑆𝑆𝑆𝑆𝑈𝑈2,3/𝑃𝑃1(𝑐𝑐𝑃𝑃1𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚=0],𝑐𝑐𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚],𝑡𝑡[𝑚𝑚],𝑥𝑥[𝑚𝑚])when𝐸𝐸𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚]≥𝐴𝐴𝑃𝑃1[𝑚𝑚=0]�𝑐𝑐𝑃𝑃1𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚=0]−𝑐𝑐𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚]�then𝐸𝐸𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚]=𝑆𝑆𝑆𝑆𝑀𝑀𝑈𝑈2,3/𝑃𝑃1(𝑤𝑤𝑤𝑤𝑃𝑃1,2𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚=0],𝑐𝑐𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚],𝑡𝑡[𝑚𝑚],𝑥𝑥[𝑚𝑚])when𝐸𝐸𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚]≥𝐴𝐴𝑃𝑃1[𝑚𝑚=0]𝑐𝑐𝑃𝑃1𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚=0]+𝐴𝐴𝑃𝑃2[𝑚𝑚=0]𝑐𝑐𝑃𝑃2𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚=0]−𝑐𝑐𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚]�A𝑃𝑃1[𝑚𝑚=0]+𝐴𝐴𝑃𝑃2[𝑚𝑚=0]�then𝐸𝐸𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚]=𝑆𝑆𝑆𝑆𝑀𝑀𝑈𝑈2,3/𝑃𝑃1(𝑤𝑤𝑤𝑤𝑃𝑃1,2,3𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚=0],𝑐𝑐𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚],𝑡𝑡[𝑚𝑚],𝑥𝑥[𝑚𝑚])…𝐸𝐸𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚]=𝐴𝐴𝑃𝑃1[𝑚𝑚=0]𝑐𝑐𝑃𝑃1𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚=0]+𝐴𝐴𝑃𝑃2[𝑚𝑚=0]𝑤𝑤𝑤𝑤𝑃𝑃1,2𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚=0]+⋯+𝐴𝐴𝑃𝑃𝑛𝑛[𝑚𝑚=0]𝑤𝑤𝑤𝑤𝑃𝑃𝑖𝑖,𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚=0]−𝑐𝑐𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚]�𝐴𝐴𝑃𝑃1[𝑚𝑚=0]+𝐴𝐴𝑃𝑃2[𝑚𝑚=0]+⋯+𝐴𝐴𝑃𝑃𝑛𝑛[𝑚𝑚=0]�[F.29]VariablescP1BM[m=0],cBb[m],t[m],AP1[m=0],AP2[m=0]cP3BM[m=0],APn[m=0],cPnBM[m=0],cBBM[m],x[m]SectionReferences8.1.2.4.1CommentsCumulativeemissionsforeachselectedcarbonpoolinSOC(spatialalgorithm)usedinTypeF-P1.b,F-U3.𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚]=𝑟𝑟𝑅𝑅𝑅𝑅𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚]1+𝑟𝑟𝑅𝑅𝑅𝑅[F.30]VariablesrRS,EBBM[m]SectionReferences8.1.4CommentscumulativeemissionsfromBGBPage247VM0009,Version3.0SectoralScope14𝐸𝐸𝐵𝐵Δ𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚]=𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚]−𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚−1][F.31]VariablesEBBGB[m],EBBGB[m-1]SectionReferences8.1.4CommentscurrentemissionsfromBGB𝐶𝐶B𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚]=�𝑖𝑖∈ℳ𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷,𝐵𝐵𝐵𝐵𝐵𝐵�𝐸𝐸𝐵𝐵Δ𝐵𝐵𝐵𝐵𝐵𝐵[𝑖𝑖],𝑡𝑡,𝑡𝑡[𝑚𝑚],𝑡𝑡[𝑖𝑖−1]�[F.32]Variablest[m],t[i-1],EBΔBGB[i],M,tSectionReferences8.1.4Commentscarboninnon-decayedBGB𝐶𝐶𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆[𝑚𝑚]=�𝑖𝑖∈ℳ𝐷𝐷𝐷𝐷𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆�𝐸𝐸𝐵𝐵Δ𝑆𝑆𝑆𝑆𝑆𝑆[𝑖𝑖],𝑡𝑡[𝑚𝑚],𝑡𝑡[𝑖𝑖−1]�[F.33]Variablest[m],t[i-1],EBΔSOC[i],EBΔSOC[m],MSectionReferences8.1.5CommentsCumulativecarbonnotdecayedinSOC𝐸𝐸𝐵𝐵𝐷𝐷𝐷𝐷[𝑚𝑚]=𝑝𝑝𝑆𝑆𝑆𝑆[𝑚𝑚]𝐸𝐸𝐵𝐵𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚][F.34]VariablespSL[m],EBAGMT[m]SectionReferences8.1.3CommentsCumulativeemissionsfromDWPage248VM0009,Version3.0SectoralScope14𝐸𝐸𝐵𝐵Δ𝐷𝐷𝐷𝐷[𝑚𝑚]=𝐸𝐸𝐵𝐵𝐷𝐷𝐷𝐷[𝑚𝑚]−𝐸𝐸𝐵𝐵𝐷𝐷𝐷𝐷[𝑚𝑚−1][F.35]VariablesEBDW[m],EBDW[m-1]SectionReferences8.1.3CommentsCurrentemissionsfromDW𝐶𝐶𝐵𝐵𝐷𝐷𝐷𝐷[𝑚𝑚]=�𝑖𝑖∈ℳ𝐷𝐷𝐷𝐷𝑀𝑀𝐷𝐷𝐷𝐷,𝐵𝐵𝐵𝐵𝐵𝐵�𝐸𝐸𝐵𝐵Δ𝐷𝐷𝐷𝐷[𝑖𝑖],𝑡𝑡,𝑡𝑡[𝑚𝑚],𝑡𝑡[𝑖𝑖−1]�[F.36]VariablesEBΔDW[i]EBDW[m-1],t[m],t[i-1],tSectionReferences8.1.3CommentscumulativecarbonnotdecayedinDW𝐸𝐸𝐵𝐵𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚]=𝐵𝐵𝐵𝐵𝑀𝑀𝑃𝑃1�𝑐𝑐𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚=0]+𝑐𝑐𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚=0],𝑐𝑐𝐵𝐵𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚]+𝑐𝑐𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚],𝑡𝑡[𝑚𝑚],𝑥𝑥[𝑚𝑚]��1−𝑟𝑟𝑅𝑅𝑅𝑅1+𝑟𝑟𝑅𝑅𝑅𝑅�[F.37]VariablescPAGMT[m=0],CPBGMT[m=0],cBAGMT[m],CBBGMT[m],t[m],x[m],rRSSectionReferences8.1.6.1CommentscumulativeemissionsfromAGMT,TypeF-P1.aandF-P1.b𝐸𝐸𝐵𝐵𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚]=𝐵𝐵𝐵𝐵𝑀𝑀𝑃𝑃2�𝑐𝑐𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚=0]+𝑐𝑐𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚=0],𝑐𝑐𝐵𝐵𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚]+𝑐𝑐𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚],𝑡𝑡[𝑚𝑚],𝑥𝑥[𝑚𝑚]��1−𝑟𝑟𝑅𝑅𝑅𝑅1+𝑟𝑟𝑅𝑅𝑅𝑅�[F.38]VariablescPAGMT[m=0],CPBGMT[m=0],cBAGMT[m],CBBGMT[m],t[m],x[m],rRSSectionReferences8.1.6.2CommentscumulativeemissionsfromAGMT,TypeF-P2andG-P2Page249VM0009,Version3.0SectoralScope14𝐸𝐸𝐵𝐵𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚]=𝐵𝐵𝐵𝐵𝑀𝑀𝑈𝑈1�𝑐𝑐𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚=0]+𝑐𝑐𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚=0],𝑐𝑐𝐵𝐵𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚]+𝑐𝑐𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚],𝑡𝑡[𝑚𝑚],𝑥𝑥[𝑚𝑚]��1−𝑟𝑟𝑅𝑅𝑅𝑅1+𝑟𝑟𝑅𝑅𝑅𝑅�[F.39]VariablescPAGMT[m=0],CPBGMT[m=0],cBAGMT[m],CBBGMT[m],t[m],x[m],rRSSectionReferences8.1.6.3CommentscumulativeemissionsfromAGMT,TypesF-U1andG-U1𝐸𝐸𝐵𝐵𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚]=𝐵𝐵𝐵𝐵𝑀𝑀𝑈𝑈2,3�𝑐𝑐𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚=0]+𝑐𝑐𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚=0],𝑐𝑐𝐵𝐵𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚]+𝑐𝑐𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚],𝑡𝑡[𝑚𝑚],𝑥𝑥[𝑚𝑚]��1−𝑟𝑟𝑅𝑅𝑅𝑅1+𝑟𝑟𝑅𝑅𝑅𝑅�[F.40]VariablescPAGMT[m=0],CPBGMT[m=0],cBAGMT[m],CBBGMT[m],t[m],x[m],rRSSectionReferences8.1.6.3CommentscumulativeemissionsfromAGMT,TypeF-U2,G-U2andF-U3𝐸𝐸𝑃𝑃Δ[𝑚𝑚]=𝐸𝐸𝑃𝑃Δ𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚]+𝐸𝐸𝑃𝑃Δ𝐿𝐿𝐿𝐿[𝑚𝑚]+𝐸𝐸𝑃𝑃Δ𝑆𝑆𝑆𝑆[𝑚𝑚]+𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃�𝑐𝑐𝑃𝑃[𝑚𝑚−1]−𝑐𝑐𝑃𝑃[𝑚𝑚]�−𝐶𝐶𝑃𝑃Δ𝑊𝑊𝑊𝑊[𝑚𝑚][F.41]VariablesAPAA,EPΔBRN[m],EPΔLS[m],EPΔSF[m],CPΔWP[m],cP[m-1],cP[m]SectionReferences8.2Commentsprojectemissions𝐸𝐸𝑃𝑃Δ𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚]=�4412�0.66�𝑟𝑟𝐶𝐶𝐶𝐶𝑏𝑏𝑏𝑏∈𝒲𝒲[𝑚𝑚]𝐵𝐵𝑏𝑏[𝑚𝑚][F.42]VariablesrCFb,W[m],Bb[m]SectionReferences8.2.2Page250VM0009,Version3.0SectoralScope14CommentsProjectEmissionsfromBurning(1-0.33=0.66)accountfortheproportionofmassburnedassumedtobewater(Simpson&Sagoe,1991)44/12istheratioofthemassofcarbondioxidetothemassofcarbonusedtoconverttoCO2eunits𝐸𝐸𝑃𝑃Δ𝐿𝐿𝐿𝐿[𝑚𝑚]=��𝑓𝑓𝐿𝐿𝐿𝐿𝑖𝑖𝑛𝑛𝐿𝐿𝐿𝐿𝑖𝑖103�𝑖𝑖∈𝒯𝒯×21[F.43]VariablesEPΔLS[m],fLSi,nLSi,TSectionReferences8.2.4CommentsProjectEmissionsfromLivestockGrazing21=conversionfromtCH4totCO2e𝐸𝐸𝐿𝐿Δ[𝑚𝑚]=𝐸𝐸𝐿𝐿[𝑚𝑚]−𝐸𝐸𝐿𝐿[𝑚𝑚−1][F.44]VariablesEL[m],EL[m-1]SectionReferences8.3CommentsTotalemissionsfromleakageforthecurrentmonitoringperiod.𝐸𝐸𝐿𝐿Δ[𝑚𝑚]cannotbelessthanzero.𝐸𝐸𝐿𝐿[𝑚𝑚]=𝐸𝐸𝐿𝐿𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚]+𝐸𝐸𝐿𝐿𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚]+𝐸𝐸𝐿𝐿𝑀𝑀𝑀𝑀[𝑚𝑚][F.45]VariablesELASF[m],ELME[m],𝐸𝐸𝐿𝐿𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚]SectionReferences8.3CommentscumulativeemissionsfromleakagePage251VM0009,Version3.0SectoralScope14𝐸𝐸𝐿𝐿𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚]=𝐿𝐿𝐿𝐿𝐿𝐿�𝑐𝑐𝑃𝑃[𝑚𝑚],𝑐𝑐𝐵𝐵[𝑚𝑚],𝑝𝑝𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷[𝑚𝑚],𝑡𝑡[𝑚𝑚],𝑥𝑥[𝑚𝑚]�[F.46]Variablest[m],cB[m],cP[m],pLDEG[m],x[m]SectionReferences8.3.2CommentsCumulativeemissionsfromactivity-shiftingleakageinforestedareas𝐸𝐸𝐿𝐿𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚]=𝐿𝐿𝐿𝐿𝐿𝐿�𝑐𝑐𝑃𝑃[𝑚𝑚],𝑐𝑐𝐵𝐵[𝑚𝑚],𝑝𝑝𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝐺𝐺[𝑚𝑚],𝑡𝑡[𝑚𝑚],𝑥𝑥[𝑚𝑚]�[F.47]Variablest[m],cB[m],cP[m],pLDEG[m],x[m]SectionReferences8.3.2CommentsCumulativeemissionsfromactivity-shiftingleakageingrasslandprojectaccountingareas𝐿𝐿𝐿𝐿𝑀𝑀𝐹𝐹(𝑐𝑐𝑃𝑃,𝑐𝑐𝐵𝐵,𝑝𝑝𝐿𝐿𝐷𝐷𝐷𝐷𝐺𝐺,𝑡𝑡,𝑥𝑥)=𝑝𝑝𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷[𝑚𝑚]𝐴𝐴𝐴𝐴𝐴𝐴(𝑐𝑐𝑃𝑃−𝑐𝑐𝐵𝐵)−𝐴𝐴𝐴𝐴𝐴𝐴(𝑐𝑐𝑃𝑃−𝑐𝑐𝐵𝐵)1+𝑒𝑒ln�1𝑝𝑝𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷[𝑚𝑚=0]−1�−𝛽𝛽𝛽𝛽−𝜃𝜃(𝑥𝑥0−𝑥𝑥)𝑇𝑇[F.48]Variablesβ,θ,t,x,xo,cB[m],cP[m],pLDEG[m],pLDEG[m=0]SectionReferences8.3.2.2CommentsLeakageEmissionsModelforactivityshiftingleakageinforestedprojectaccountingareas𝐿𝐿𝐿𝐿𝑀𝑀𝐺𝐺(𝑐𝑐𝑃𝑃,𝑐𝑐𝐵𝐵,𝑝𝑝𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷,𝑡𝑡,𝑥𝑥)=𝑝𝑝𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝐺𝐺[𝑚𝑚]𝐴𝐴𝐴𝐴𝐴𝐴(𝑐𝑐𝑃𝑃−𝑐𝑐𝐵𝐵)−𝐴𝐴𝐴𝐴𝐴𝐴(𝑐𝑐𝑃𝑃−𝑐𝑐𝐵𝐵)1+𝑒𝑒ln�1𝑝𝑝𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝐺𝐺[𝑚𝑚=0]−1�−𝛽𝛽𝛽𝛽−𝜃𝜃(𝑥𝑥0−𝑥𝑥)𝑇𝑇[F.49]Variablesβ,θ,t,x,xo,cB[m],cP[m],pLDEG[m],pLDEG[m=0]Page252VM0009,Version3.0SectoralScope14SectionReferences8.3.2.2CommentsLeakageEmissionsModelforactivityshiftingleakageingrasslandprojectaccountingareas𝑐𝑐𝐿𝐿𝐵𝐵𝐵𝐵=�𝑐𝑐𝐿𝐿𝑝𝑝𝑝𝑝∈ℬ[F.50]VariablescLp,BSectionReferences8.3.3.3CommentsUsedtodeterminethediscountfactorinTable7𝐸𝐸𝐿𝐿𝑀𝑀𝑀𝑀[𝑚𝑚]=𝑝𝑝𝐿𝐿𝑀𝑀𝑀𝑀𝐸𝐸𝐵𝐵𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[𝑚𝑚][F.51]VariablespLME,EBAGMT[m]SectionReferences8.3.3.3,8.1.6CommentsCumulativeemissionsfrommarketleakageofwoodproductsunderthediscountapproach𝐴𝐴𝐵𝐵Δ𝑃𝑃𝑃𝑃𝑃𝑃[𝑚𝑚]=𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚]𝑐𝑐𝑃𝑃𝐵𝐵𝐵𝐵[𝑚𝑚]−𝑐𝑐𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚]−𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚−1]𝑐𝑐𝑃𝑃𝐵𝐵𝐵𝐵[𝑚𝑚−1]−𝑐𝑐𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚−1][F.52]VariablescPBM[m],cBBM[m],EBBM[m],𝐴𝐴𝐵𝐵Δ𝑃𝑃𝑃𝑃𝑃𝑃[𝑚𝑚],𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃SectionReferences8.3.3.4,8.3.3Page253VM0009,Version3.0SectoralScope14Comments“Areaofavoidedconversion”undertheproductionapproach.Forthefirstmonitoringperiod,theterm𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚−1]𝑐𝑐𝑃𝑃𝐵𝐵𝐵𝐵[𝑚𝑚−1]−𝑐𝑐𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚−1]=0.Thisequationconservativelyoverestimatesbaselineconversionintheprojectaccountingareabecause𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵[𝑚𝑚]mayincludeemissionsfromdegradation.𝐸𝐸Δ𝐺𝐺𝐺𝐺𝐺𝐺[𝑚𝑚]=𝐸𝐸BΔ[𝑚𝑚]−𝐸𝐸PΔ[𝑚𝑚]−𝐸𝐸LΔ[𝑚𝑚]−𝐸𝐸𝑈𝑈[𝑚𝑚][F.53]VariablesEBΔ[m],EPΔ[m],ELΔ[m],𝐸𝐸𝑈𝑈[𝑚𝑚]SectionReferences8.4.1,8.4.1.2,8.4.2,8.4.2.1CommentsGERsforthecurrentmonitoringperiod𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺[𝑚𝑚]=�𝐸𝐸Δ𝐺𝐺𝐺𝐺𝐺𝐺[𝑖𝑖]𝑖𝑖∈ℳ[F.54]VariablesM,EΔGER[m]SectionReferences8.4.2.1CommentsCumulativeGERsto-date𝐸𝐸Δ𝑁𝑁𝑁𝑁𝑁𝑁[𝑚𝑚]=𝐸𝐸Δ𝐺𝐺𝐺𝐺𝐺𝐺[𝑚𝑚]−𝐸𝐸𝐵𝐵𝐵𝐵[𝑚𝑚][F.55]VariablesEΔGER[m],𝐸𝐸Δ𝑁𝑁𝑁𝑁𝑁𝑁[𝑚𝑚],EBA[m]SectionReferences8.4.3,8.4.7CommentsNERsforthecurrentmonitoringperiodPage254VM0009,Version3.0SectoralScope14𝐸𝐸𝑁𝑁𝑁𝑁𝑁𝑁[𝑚𝑚]=�𝐸𝐸Δ𝑁𝑁𝑁𝑁𝑁𝑁[𝑖𝑖]𝑖𝑖∈ℳ[F.56]VariablesM,EΔNER[i]SectionReferences8.4.7CommentsCumulativeNERsto-date𝐸𝐸𝑈𝑈[𝑚𝑚]=𝐸𝐸𝐵𝐵Δ[𝑚𝑚]�1.64𝐸𝐸𝐵𝐵Δ[𝑚𝑚]+𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑃𝑃[𝑚𝑚]+𝐴𝐴𝑃𝑃𝑃𝑃𝑐𝑐𝐵𝐵[𝑚𝑚]��𝑈𝑈𝐸𝐸𝐸𝐸[𝑀𝑀]�2+�𝑈𝑈𝑃𝑃[𝑚𝑚]�2+�𝑈𝑈𝐵𝐵[𝑚𝑚]�2−0.15�[F.57]VariablescP[m],cB[m],EBΔ[m],UEM[M],UB[m],UP[m],APX,APAA,EU[m],𝐸𝐸𝐵𝐵Δ[𝑚𝑚]SectionReferences8.4.1.1CommentsConfidencedeductionbasedonuncertaintyinemissionsmodels,carbonstockestimatesintheprojectaccountingareaandcarbonstockestimatesintheproxyarea.𝐸𝐸𝑈𝑈[𝑚𝑚]mustbegreaterthanzero;otherwise𝐸𝐸𝑈𝑈[𝑚𝑚]=0.Constant1.64istheZvalueatthe90%confidencelevel.Page255VM0009,Version3.0SectoralScope14APPENDIXG:VALIDATIONVARIABLESData/ParameterUnitDescriptionSourceofDataUsedinEquationsJustificationComment𝜶𝜶unitlessCombinedeffectsof𝛽𝛽and𝜃𝜃atthestartofthehistoricreferenceperiodReferenceareaandhistoricreferenceperiod[F.3],[F.5],[F.6],[F.8]Timeandplaceinwhichthelogisticmodelisfit𝜷𝜷unitlessEffectoftimeonthecumulativeproportionofconversionovertimeReferenceareaandhistoricreferenceperiod[F.2],[F.3],[F.4],[F.5],[F.6],[F.7],[F.8],Timeandplaceinwhichthelogisticmodelisfit𝜸𝜸daysTimeshiftfrombeginningofhistoricreferenceperiodtoprojectstartdateHistoricreferenceperiod[F.3],[F.6]Timeinwhichthelogisticmodelisfit𝜽𝜽unitlessEffectofcertaincovariatesonthecumulativeproportionofconversionovertimeReferenceareaandhistoricreferenceperiod[F.2],[F.3],[F.4],[F.5],[F.6],[F.7],[F.8]Timeandplaceinwhichthelogisticmodelisfit𝝀𝝀𝑺𝑺𝑺𝑺𝑺𝑺proportion(unitless)ExponentialsoilcarbondecayparameterDefaultvalues,literatureestimatesorempiricalestimationbasedonreferenceareasampling[F.9],[F.33]Aconservativedefaultorvaluesderivedfromdirectmeasurementbytheprojectproponentorfromtheliteratureareacceptable𝝈𝝈�𝑬𝑬𝑬𝑬standarddeviation(unitless)TheestimatedstandarddeviationofthestateobservationsusedtofitthelogisticfunctionRemotesensingimageinterpretation[F.12],[F.14],[B.31]-𝓑𝓑setThesetofallselectedcarbonpoolsinbiomass.Isasubsetof𝒞𝒞PDD[F.17],[F.18],[F.23],[F.50]-Page257VM0009,Version3.0SectoralScope14Data/ParameterUnitDescriptionSourceofDataUsedinEquationsJustificationComment𝓒𝓒setThesetofallselectedcarbonpoolsMonitoringrecords-𝓘𝓘setThesetofallobservationsofconversion.Whensuperscriptedwithamonitoringperiod,theconversionobservationsaretakenforleakageanalysis.Remotesensingimageinterpretationorfieldobservationsintheleakagearea.[F.13]-𝓜𝓜setThesetofallmonitoringperiodsMonitoringrecords[F.32],[F.33],[F.36],[F.54],[F.56]-𝓣𝓣setThesetofallspecies/categoriesoflivestockMonitoringrecords[F.43]-𝑨𝑨𝑷𝑷𝑷𝑷𝑷𝑷haAreaofprojectaccountingareaGISanalysispriortosampling[F.2],[F.3],[F.4],[F.5],[F.6],[F.7],[F.8],[F.41],[F.52],[F.57],-𝑨𝑨𝑷𝑷𝑷𝑷haAreaofproxyareaGISanalysispriortosampling[F.57]-𝒄𝒄𝑳𝑳𝒑𝒑tCO2e/haCarbonstocksinprojectleakageareaLeakageareasampling[F.50]Directmeasurement𝒇𝒇𝑳𝑳𝑳𝑳𝒊𝒊kgCH4head-1yr-1Emissionfactorforthedefinedlivestockpopulation,𝑖𝑖IPCCdefaultvalues[F.43]ObtaineddirectlyfromIPCCdefaultvaluesPage258VM0009,Version3.0SectoralScope14Data/ParameterUnitDescriptionSourceofDataUsedinEquationsJustificationComment𝒎𝒎tCO2e/yrAveragecarboninmerchantabletreescuteachyearasaresultoflegally-sanctionedcommercialloggingTimberharvestplansormeasurementofcarbonstocksinmerchantabletreesintheprojectaccountingarea[F.2]Shouldusethemostaccurateofthetwodatasourcesifbothareavailable𝒏𝒏𝒅𝒅NumberofspatialpointsinthereferenceareaRemotesensingimageinterpretation[F.14]-𝒐𝒐𝒊𝒊binaryStateobservationforthe𝑖𝑖𝑡𝑡ℎsamplepointinthereferenceareaRemotesensingimageinterpretation[F.13]-𝒑𝒑𝑳𝑳𝑴𝑴𝑴𝑴unitlessPortionofleakagerelatedtomarket8.3.3[F.51]-𝒒𝒒daysLagbetweenstartofdegradationandconversionExpertknowledge,resultsfromthePRAorreportsfrompeer-reviewedliterature[F.3],[F.4],[F.5],Commonlyacceptedmethodsinthesocialsciences,choicedeterminedandjustifiedbyprojectproponent𝒓𝒓𝑪𝑪𝑪𝑪𝒃𝒃unitlessCarbonfractionofbiomassforburnedwoodorherbaceousmaterial𝑏𝑏Literatureestimatesordirectmeasurement[F.42]-𝒓𝒓𝑹𝑹𝑹𝑹unitlessExpansionfactorforabove-groundbiomasstobelow-groundbiomass(root/shootratio)Reviewedliterature,allometry,orIPCCdefaultvalues[F.30]-𝒓𝒓𝑼𝑼unitlessOnsetproportionofconversionimmediatelyadjacenttoprojectareaGISanalysisandimageinterpretation[F.4]PositionsthebaselineemissionsmodelsrelativetotheinstantaneousrateofconversionPage259VM0009,Version3.0SectoralScope14Data/ParameterUnitDescriptionSourceofDataUsedinEquationsJustificationComment𝒕𝒕daysTimesinceprojectstartdateMonitoringrecords[F.2],[F.3],[F.4],[F.5],[F.6],[F.7],[F.8],[F.10],-𝒕𝒕𝒊𝒊daysThepointintimeoftheobservationmadeatpoint𝑖𝑖Remotesensingimageinterpretation[F.11],[A.6]-𝒕𝒕𝑷𝑷𝑷𝑷daysTimepriortotheprojectstartdatewhentheprimaryagentbegancommercialloggingintheprojectaccountingareaHarvestplanspreparedfortheprojectaccountingarea,orbypublicrecord[F.1],[F.2],[F.3],[F.6]Shouldusethemostaccurateofthetwodatasourcesifbothareavailable𝒕𝒕𝒎𝒎daysLengthofprojectorlogginginbaselinescenarioPD[F.1]𝒕𝒕𝑷𝑷𝑷𝑷daysLengthofprojectcreditingperiodPD[F.5]𝒕𝒕𝑷𝑷𝑷𝑷𝑷𝑷daysNumberofdaysaftertheprojectstartdateforthestartofaprojectactivityinstanceinagroupedprojectPD[F.2],[F.3],[F.4],[F.5],[F.6],[F.7],[F.8]𝒕𝒕𝑺𝑺𝑺𝑺daysArrivaltimeofsecondaryagentsafterstartofcommercialloggingParticipatoryruralappraisal,orexpertknowledge[F.2]Shouldusethemostaccurateofthetwodatasourcesifbothareavailable𝒘𝒘𝒊𝒊unitlessweightappliedtothe𝑖𝑖𝑡𝑡ℎsamplepointinthereferenceareaRemotesensingimageinterpretation[A.6],[F.13]Page260VM0009,Version3.0SectoralScope14Data/ParameterUnitDescriptionSourceofDataUsedinEquationsJustificationComment𝒙𝒙unitlessCovariatevaluesParticipatoryRuralAppraisal,analysisofpublicrecords,and/orexpertinterpretationofinventorydataorremotelysensedimagery[F.2],[F.3],[F.4],[F.5],[F.6],[F.7],[F.8],Shouldusethemostaccurateofthedatasourcesifbothareavailable𝒙𝒙𝒊𝒊geographiccoordinatesLatitudeofthe𝑖𝑖𝑡𝑡ℎsamplepointRemotesensingimageinterpretation[F.11],[A.6]-𝒙𝒙𝒐𝒐unitlessCovariatevaluesasoftheprojectstartdateParticipatoryRuralAppraisal,analysisofpublicrecords,and/orexpertinterpretationofinventorydataorremotelysensedimagery[F.4],[F.5],[F.6],[F.7],[F.8],Shouldusethemostaccurateofthedatasourcesifbothareavailable𝒙𝒙𝑺𝑺𝑺𝑺unitlessCovariatevaluesasofthearrivalofthesecondaryagentsParticipatoryRuralAppraisal,analysisofpublicrecords,and/orexpertinterpretationofinventorydataorremotelysensedimagery[F.2]Shouldusethemostaccurateofthedatasourcesifbothareavailable𝒚𝒚𝒊𝒊geographiccoordinatesLongitudeofthe𝑖𝑖𝑡𝑡ℎsamplepointRemotesensingimageinterpretation[F.11],[A.6]-Page261VM0009,Version3.0SectoralScope14APPENDIXH:MONITORINGVARIABLESData/ParameterUnitDescriptionSourceofDataMeasurementMethodUsedinEquationsFrequencyofMonitoring/RecordingQA/QCComment𝓦𝓦[𝒎𝒎]setThesetofallburnedwoodorherbaceousmaterialMonitoringrecordsN/A[F.42]EverymonitoringperiodReviewofmonitoringrecords𝑨𝑨𝑩𝑩𝚫𝚫𝑷𝑷𝑷𝑷𝑷𝑷[𝒎𝒎]haAreaofavoidedconversionGeneratedfromequation8.3.3.4[F.52]EverymonitoringperiodReviewofmonitoringrecords𝑨𝑨𝑷𝑷𝟏𝟏[𝒎𝒎=𝟎𝟎]haAreaofprojectaccountingareastratum1priortofirstverificationeventGISanalysispriortosamplingGISanalysisofbestavailabledataB.1.1[F.24]FirstmonitoringperiodCross-checkofGISanalysis𝑨𝑨𝑷𝑷𝟐𝟐[𝒎𝒎=𝟎𝟎]haAreaofprojectaccountingareastratum2priortofirstverificationeventGISanalysispriortosamplingGISanalysisofbestavailabledataB.1.1[F.24]FirstmonitoringperiodCross-checkofGISanalysis𝑨𝑨𝑷𝑷𝒏𝒏[𝒎𝒎=𝟎𝟎]haAreaofprojectaccountingareastratum𝑛𝑛priortofirstverificationeventGISanalysispriortosamplingGISanalysisofbestavailabledataB.1.1[F.24]FirstmonitoringperiodCross-checkofGISanalysis𝑩𝑩𝒃𝒃[𝒎𝒎]tonnesBiomassinburnedwoodorherbaceousmaterial𝑏𝑏MeasurementsofbiomassScale[F.42]EverymonitoringperiodReviewofmonitoringrecords𝒄𝒄𝑩𝑩[𝒎𝒎]tCO2e/haBaselinecarbonstocksattheendofthecurrentmonitoringperiodProxyareasamplingAppendixB.2,6.4[F.2],[F.3],[F.4],[F.5],[F.6],[F.7],[F.57]Everytimemeasured(≤5yrs)ReviewofmonitoringrecordsPage263VM0009,Version3.0SectoralScope14Data/ParameterUnitDescriptionSourceofDataMeasurementMethodUsedinEquationsFrequencyofMonitoring/RecordingQA/QCComment𝑪𝑪𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩[𝒎𝒎]tCO2eCarbonnotdecayedinBGBattheendofthecurrentmonitoringperiodProxyareasampling8.1.4[F.16]EverymonitoringperiodReviewofmonitoringrecords𝑪𝑪𝑩𝑩𝑫𝑫𝑫𝑫[𝒎𝒎]tCO2eCarbonnotdecayedinDWattheendofthecurrentmonitoringperiodProxyareasampling8.1.3[F.16]EverymonitoringperiodReviewofmonitoringrecords𝑪𝑪𝑩𝑩𝑺𝑺𝑺𝑺𝑺𝑺[𝒎𝒎]tCO2eCarbonnotdecayedinSOCattheendofthecurrentmonitoringperiodProxyareasampling8.1.5[F.16]EverymonitoringperiodReviewofmonitoringrecords𝑪𝑪𝑩𝑩𝑾𝑾𝑾𝑾[𝒎𝒎]tCO2eCarbonnotdecayedinWPattheendofthecurrentmonitoringperiodProxyareasamplingAppendixC[F.16]EverymonitoringperiodReviewofmonitoringrecords𝒄𝒄𝑩𝑩𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨[𝒎𝒎]tCO2e/haBaselinecarbonstocksinabove-groundmerchantabletreesattheendofthecurrentmonitoringperiodProxyareasamplingAppendixB.2.1[F.37],[F.38],[F.39],[F.40]Everytimemeasured(≤5yrs)Reviewofmonitoringrecords𝑪𝑪𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩[𝒎𝒎]tCO2e/haBaselinecarbonstocksinbelow-groundmerchantabletreesattheendofthecurrentmonitoringperiodProxyareasamplingAppendixB.2.1[F.37],[F.38],[F.39],[F.40]Everytimemeasured(≤5yrs)ReviewofmonitoringrecordsPage264VM0009,Version3.0SectoralScope14Data/ParameterUnitDescriptionSourceofDataMeasurementMethodUsedinEquationsFrequencyofMonitoring/RecordingQA/QCComment𝑪𝑪𝑷𝑷𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨[𝒎𝒎=𝟎𝟎]tCO2eProjectcarbonstocksinabove-groundmerchantabletreesatprojectstartProjectaccountingareasamplingAppendixB.2.1[F.1]FirstmonitoringperiodReviewofmonitoringrecords𝑪𝑪𝑷𝑷𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩[𝒎𝒎=𝟎𝟎]tCO2eProjectcarbonstocksinbelow-groundmerchantabletreesatprojectstartProjectaccountingareasamplingAppendixB.2.3[F.1]FirstmonitoringperiodReviewofmonitoringrecords𝒄𝒄𝑩𝑩𝒃𝒃[𝒎𝒎]tCO2e/haBaselinescenarioaveragecarbonstockinselectedcarbonpoolsProxyareasamplingAppendixB.1.5[F.18][F.24]Everytimemeasured(≤5yrs)Reviewofmonitoringrecords𝒄𝒄𝑩𝑩𝑩𝑩𝑩𝑩[𝒎𝒎]tCO2e/haBaselinecarbonstocksinbiomassattheendofthecurrentmonitoringperiodProxyareasamplingAppendixB.2[F.19],[F.20],[F.21],[F.24],[F.52]Everytimemeasured(≤5yrs)Reviewofmonitoringrecords𝒄𝒄𝑩𝑩𝑺𝑺𝑺𝑺𝑺𝑺[𝒎𝒎]tCO2e/haBaselinesoilcarbonstocksattheendofthecurrentmonitoringperiodProxyareasamplingAppendixB.2.6[F.25],[F.27],[F.28]Everytimemeasured(≤5yrs)Reviewofmonitoringrecords𝒄𝒄𝑷𝑷[𝒎𝒎]tCO2e/haProjectcarbonstocksattheendofthecurrentmonitoringperiodProjectaccountingareasamplingAppendixB.2[F.41],[F.57]Everytimemeasured(≤5yrs)Reviewofmonitoringrecords𝒄𝒄𝑷𝑷[𝒎𝒎−𝟏𝟏]tCO2e/haProjectcarbonstocksatthebeginningofthecurrentmonitoringperiodProjectaccountingareasamplingAppendixB.2[F.41]PriormonitoringperiodAlreadyreviewedPage265VM0009,Version3.0SectoralScope14Data/ParameterUnitDescriptionSourceofDataMeasurementMethodUsedinEquationsFrequencyofMonitoring/RecordingQA/QCComment𝒄𝒄𝑷𝑷[𝒎𝒎=𝟎𝟎]tCO2e/haProjectcarbonstockspriortofirstverificationeventProjectaccountingareasamplingAppendixB.2[F.7]FirstmonitoringperiodReviewofmonitoringrecords𝒄𝒄𝑷𝑷𝟏𝟏𝑩𝑩𝑩𝑩[𝒎𝒎=𝟎𝟎]tCO2e/haProjectcarbonstocksinbiomassinstratum1priortofirstverificationeventProjectaccountingareasamplingAppendixB.2[F.24]FirstmonitoringperiodReviewofmonitoringrecords𝒄𝒄𝑷𝑷𝟐𝟐𝑩𝑩𝑩𝑩[𝒎𝒎=𝟎𝟎]tCO2e/haProjectcarbonstocksinbiomassinstratum2priortofirstverificationeventProjectaccountingareasamplingAppendixB.2[F.24]FirstmonitoringperiodReviewofmonitoringrecords𝒄𝒄𝑷𝑷𝟑𝟑𝑩𝑩𝑩𝑩[𝒎𝒎=𝟎𝟎]tCO2e/haProjectcarbonstocksinbiomassinstratum3priortofirstverificationeventProjectaccountingareasamplingAppendixB.2[F.24]FirstmonitoringperiodReviewofmonitoringrecords𝒄𝒄𝑷𝑷𝒏𝒏𝑩𝑩𝑩𝑩[𝒎𝒎=𝟎𝟎]tCO2e/haProjectcarbonstocksinbiomassinstratum𝑛𝑛priortofirstverificationeventProjectaccountingareasamplingAppendixB.2[F.24]FirstmonitoringperiodReviewofmonitoringrecords𝒄𝒄𝑷𝑷𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨[𝒎𝒎=𝟎𝟎]tCO2e/haProjectcarbonstocksinabove-groundmerchantabletreespriortofirstverificationeventProjectaccountingareasamplingAppendixB.2.1[F.37],[F.38],[F.39],[F.40]FirstmonitoringperiodReviewofmonitoringrecords𝒄𝒄𝑷𝑷𝑩𝑩𝑩𝑩[𝒎𝒎=𝟎𝟎]tCO2eProjectcarbonstocksinbiomasspriortofirstverificationeventProjectaccountingareasamplingAppendixB.2[F.19],[F.20],[F.21],[F.52]FirstmonitoringperiodReviewofmonitoringrecordsPage266VM0009,Version3.0SectoralScope14Data/ParameterUnitDescriptionSourceofDataMeasurementMethodUsedinEquationsFrequencyofMonitoring/RecordingQA/QCComment𝒄𝒄𝑷𝑷𝒃𝒃[𝒎𝒎]tCO2e/haAveragecarboninbiomassintheprojectaccountingareaProjectaccountingareasamplingAppendixB.2[F.17]Everytimemeasured(≤5yrs)Reviewofmonitoringrecords𝒄𝒄𝑷𝑷𝒔𝒔𝒃𝒃[𝒎𝒎]tCO2e/haAveragecarboninbiomassforeachprojectaccountingareastratum𝑠𝑠ProjectaccountingareasamplingAppendixB.2[F.23]Everytimemeasured(≤5yrs)Reviewofmonitoringrecords𝒄𝒄𝑷𝑷𝑺𝑺𝑺𝑺𝑺𝑺[𝒎𝒎=𝟎𝟎]tCO2e/haProjectsoilcarbonstockspriortofirstverificationeventProjectaccountingareasamplingAppendixB.2.6[F.25],[F.27],[F.28]FirstmonitoringperiodReviewofmonitoringrecords𝑪𝑪𝑷𝑷𝜟𝜟𝑾𝑾𝑾𝑾[𝒎𝒎]tCO2eProjectcarbonstocksinwoodproductsattheendofthecurrentmonitoringperiodProjectaccountingareasamplingAppendixC[F.41]EverymonitoringperiodReviewofmonitoringrecords𝑬𝑬𝜟𝜟𝑮𝑮𝑮𝑮𝑮𝑮[𝒎𝒎]tCO2eGERsforthecurrentmonitoringperiodAreameasurements8.4.1[F.55],[F.57]EverymonitoringperiodReviewofGERcalculations𝑬𝑬𝚫𝚫𝑮𝑮𝑮𝑮𝑮𝑮[𝒊𝒊]tCO2eGERsformonitoringperiod𝑖𝑖Areameasurements8.4.1[F.54]PriormonitoringperiodReviewofGERcalculations𝑬𝑬𝚫𝚫𝑵𝑵𝑵𝑵𝑵𝑵[𝒊𝒊]tCO2eNERsformonitoringperiod𝑖𝑖Areameasurements8.4.3[F.56]PriormonitoringperiodReviewofNERcalculations𝑬𝑬𝑩𝑩[𝒎𝒎]tCO2eCumulativebaselineemissionsattheendofthecurrentmonitoringperiodProxyareameasurements8.1[F.15]EverymonitoringperiodReviewofmonitoringrecordsPage267VM0009,Version3.0SectoralScope14Data/ParameterUnitDescriptionSourceofDataMeasurementMethodUsedinEquationsFrequencyofMonitoring/RecordingQA/QCComment𝑬𝑬𝑩𝑩[𝒎𝒎−𝟏𝟏]tCO2eCumulativebaselineemissionsatthebeginningofthecurrentmonitoringperiodProxyareameasurements8.1[F.15]PriormonitoringperiodReviewofmonitoringrecords𝑬𝑬𝑩𝑩𝜟𝜟[𝒎𝒎]tCO2eChangeinbaselineemissionsProxyareameasurements8.1[F.9],[F.10],[F.14],[F.53],[F.57]EverymonitoringperiodReviewofmonitoringrecords𝑬𝑬𝑩𝑩𝚫𝚫𝑩𝑩𝑩𝑩𝑩𝑩[𝒊𝒊]tCO2eChangeinbaselineemissionsfrombelow-groundbiomassduringmonitoringperiod𝑖𝑖MonitoringtheproxyareaAppendixB.2.3[F.32]PriormonitoringperiodReviewofmonitoringrecords𝑬𝑬𝑩𝑩𝚫𝚫𝑫𝑫𝑫𝑫[𝒊𝒊]tCO2eBaselineemissionsfromdeadwoodinmonitoringperiod𝑖𝑖MeasurementsintheproxyareaAppendixB.2.4andB.2.5[F.36]PriormonitoringperiodReviewofmonitoringrecords𝑬𝑬𝑩𝑩𝜟𝜟𝑺𝑺𝑺𝑺𝑺𝑺[𝒎𝒎]tCO2eBaselinechangeinemissionsfromsoilcarbonMeasurementsintheproxyarea8.1.2.1,8.1.2.2,8.1.2.3,AppendixB.2.6[F.15],[F.33]EverymonitoringperiodReviewofmonitoringrecords𝑬𝑬𝑩𝑩𝚫𝚫𝑺𝑺𝑺𝑺𝑺𝑺[𝒊𝒊]tCO2eBaselineemissionsfromsoilcarboninmonitoringperiod𝑖𝑖Measurementsintheproxyarea8.1.2.1,8.1.2.2,8.1.2.3,AppendixB.2.6[F.33]PriormonitoringperiodReviewofmonitoringrecordsPage268VM0009,Version3.0SectoralScope14Data/ParameterUnitDescriptionSourceofDataMeasurementMethodUsedinEquationsFrequencyofMonitoring/RecordingQA/QCComment𝑬𝑬𝑩𝑩𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨[𝒎𝒎]tCO2eCumulativebaselineemissionsfromabove-groundcommercialtreesattheendofthecurrentmonitoringperiodMeasurementsintheproxyarea8.1.6.1,8.1.6.2,8.1.6.3[F.34],[F.51]EverymonitoringperiodReviewofmonitoringrecords𝑬𝑬𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩[𝒎𝒎]tCO2eCumulativebaselineemissionsfrombelow-groundbiomassattheendofthecurrentmonitoringperiodMeasurementsintheproxyarea8.1.4[F.31]EverymonitoringperiodReviewofmonitoringrecords𝑬𝑬𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩[𝒎𝒎−𝟏𝟏]tCO2eCumulativebaselineemissionsfrombelow-groundbiomassatthebeginningofthecurrentmonitoringperiodMeasurementsintheproxyarea8.1.4[F.31]PriormonitoringperiodN/A𝑬𝑬𝑩𝑩𝑩𝑩𝑩𝑩[𝒎𝒎]tCO2eCumulativebaselineemissionsfrombiomassattheendofthecurrentmonitoringperiodMeasurementsintheproxyarea8.1.1,8.1.1.5.1[F.16],[F.30],[F.52]EverymonitoringperiodReviewofmonitoringrecords𝑬𝑬𝑩𝑩𝑫𝑫𝑫𝑫[𝒎𝒎]tCO2eCumulativebaselineemissionsfromdeadwoodattheendofthecurrentmonitoringperiodMeasurementsintheproxyarea8.1.3[F.35]EverymonitoringperiodReviewofmonitoringrecordsPage269VM0009,Version3.0SectoralScope14Data/ParameterUnitDescriptionSourceofDataMeasurementMethodUsedinEquationsFrequencyofMonitoring/RecordingQA/QCComment𝑬𝑬𝑩𝑩𝑫𝑫𝑫𝑫[𝒎𝒎−𝟏𝟏]tCO2eCumulativebaselineemissionsfromdeadwoodatthebeginningofthecurrentmonitoringperiodMeasurementsintheproxyarea8.1.3[F.35]PriormonitoringperiodN/A𝑬𝑬𝑩𝑩𝑺𝑺𝑺𝑺𝑺𝑺[𝒎𝒎]tCO2eCumulativebaselineemissionsfromsoilcarbonattheendofthecurrentmonitoringperiodMeasurementsintheproxyarea8.1.2.1,8.1.2.2,8.1.2.3[F.16],[F.26]EverymonitoringperiodReviewofmonitoringrecords𝑬𝑬𝑩𝑩𝑺𝑺𝑺𝑺𝑺𝑺[𝒎𝒎−𝟏𝟏]tCO2eCumulativebaselineemissionsfromsoilcarbonatthebeginningofthecurrentmonitoringperiodMeasurementsintheproxyarea8.1.2.1,8.1.2.2,8.1.2.3[F.26]PriormonitoringperiodN/A𝑬𝑬𝑩𝑩𝑩𝑩[𝒎𝒎]tCO2eCumulativeemissionsallocatedtothebufferaccountattheendofthecurrentmonitoringperiodN/A8.4.4[F.55]EverymonitoringperiodReviewofmonitoringrecords𝑬𝑬𝑳𝑳[𝒎𝒎]tCO2eCumulativeemissionsfromleakageattheendofthecurrentmonitoringperiodMeasurementsintheleakagearea(s)8.3[F.44]EverymonitoringperiodReviewofmonitoringrecordsPage270VM0009,Version3.0SectoralScope14Data/ParameterUnitDescriptionSourceofDataMeasurementMethodUsedinEquationsFrequencyofMonitoring/RecordingQA/QCComment𝑬𝑬𝑳𝑳[𝒎𝒎−𝟏𝟏]tCO2eCumulativeemissionsfromleakageatthebeginningofthecurrentmonitoringperiodMeasurementsintheleakagearea(s)8.3[F.44]PriormonitoringperiodN/A𝑬𝑬𝑳𝑳𝜟𝜟[𝒎𝒎]tCO2eChangeinemissionsduetoleakageN/A8.3[F.53]EverymonitoringperiodReviewofmonitoringrecords𝑬𝑬𝑳𝑳𝑨𝑨𝑨𝑨𝑨𝑨[𝒎𝒎]tCO2eCumulativeemissionsfromactivity-shiftingleakageinforestedstrataattheendofthecurrentmonitoringperiodMeasurementsintheactivity-shiftingleakagearea8.3[F.45]EverymonitoringperiodReviewofmonitoringrecords𝑬𝑬𝑳𝑳𝑨𝑨𝑨𝑨𝑨𝑨[𝒎𝒎]tCO2eCumulativeemissionsfromactivity-shiftingleakageinnativegrasslandstrataattheendofthecurrentmonitoringperiodMeasurementsintheactivity-shiftingleakagearea8.3.3.4[F.44],[F.45]EverymonitoringperiodReviewofmonitoringrecords𝑬𝑬𝑳𝑳𝑴𝑴𝑴𝑴[𝒎𝒎]tCO2eCumulativeemissionsfrommarketleakageattheendofthecurrentmonitoringperiodMeasurementsinthemarketleakagearea8.3[F.45],EverymonitoringperiodReviewofmonitoringrecordsPage271VM0009,Version3.0SectoralScope14Data/ParameterUnitDescriptionSourceofDataMeasurementMethodUsedinEquationsFrequencyofMonitoring/RecordingQA/QCComment𝑬𝑬𝑷𝑷𝜟𝜟[𝒎𝒎]tCO2eChangeinprojectemissionsMonitoringrecordsforForestFire,Burning,logging,woodproducts,andnaturaldisturbanceevents8.2[F.53]EverymonitoringperiodReviewofmonitoringrecords𝑬𝑬𝑷𝑷𝜟𝜟𝜟𝜟𝜟𝜟𝜟𝜟[𝒎𝒎]tCO2eCumulativeprojectemissionsduetoburningattheendofthecurrentmonitoringperiodMonitoringplotsintheproject8.2.2[F.41]EverymonitoringperiodReviewofmonitoringrecords𝑬𝑬𝑷𝑷𝜟𝜟𝑳𝑳𝑳𝑳[𝒎𝒎]tCO2eCumulativeprojectemissionsduetolivestockgrazingwithintheprojectarea.Monitoringintheprojectarea8.2.4[F.43]Everytimemeasured(≤5yrs)Reviewofmonitoringrecords𝑬𝑬𝑷𝑷𝜟𝜟𝑺𝑺𝑺𝑺[𝒎𝒎]tCO2eCumulativeprojectemissionsduetotheuseofsyntheticfertilizerswithintheprojectarea.Monitoringintheprojectarea8.2.5[F.53]Everytimemeasured(≤5yrs)ReviewofmonitoringrecordsEstimationofdirectandindirect(eg,leachingandrunoff)nitrousoxideemissionfromnitrogenfertilizationPage272VM0009,Version3.0SectoralScope14Data/ParameterUnitDescriptionSourceofDataMeasurementMethodUsedinEquationsFrequencyofMonitoring/RecordingQA/QCComment𝑬𝑬𝑼𝑼[𝒎𝒎]tCO2eCumulativeconfidencedeductionattheendofthecurrentmonitoringperiodN/A8.4.1.1[F.55]EverymonitoringperiodReviewofmonitoringrecords𝒏𝒏𝑳𝑳𝑳𝑳𝒊𝒊countThenumberofheadoflivestockspecies/category𝑖𝑖intheprojectareaMonitoringintheprojectarea8.2.4[F.43]Everytimemeasured(≤5yrs)Reviewofmonitoringrecords𝒑𝒑𝑳𝑳𝑫𝑫𝑫𝑫𝑫𝑫[𝒎𝒎]proportion(unitless)PortionofleakageduetodegradationinforestattheendofthecurrentmonitoringperiodMonitoringintheleakagearea8.3.2.3[F.46][F.47][F.48][F.49]Everytimemeasured(≤5yrs)Reviewofmonitoringrecords𝒑𝒑𝑳𝑳𝑫𝑫𝑫𝑫𝑫𝑫[𝒎𝒎=𝟎𝟎]proportion(unitless)PortionofleakageduetodegradationpriortofirstverificationeventMonitoringintheleakagearea8.3.2.3[F.48]FirstmonitoringperiodProjectverification𝒑𝒑𝑳𝑳𝑪𝑪𝑪𝑪𝑪𝑪𝑮𝑮[𝒎𝒎=𝟎𝟎]proportion(unitless)PortionofleakageduetonativegrasslandspriortothefirstverificationeventMonitoringintheleakagearea8.3.2.4[F.47][F.49]FirstmonitoringperiodReviewofmonitoringrecords𝒑𝒑𝑳𝑳𝑪𝑪𝑪𝑪𝑪𝑪𝑮𝑮[𝒎𝒎]proportion(unitless)PortionofleakageduetonativegrasslandsconversionatthebeginningofthecurrentmonitoringperiodMonitoringintheleakagearea8.3.2.4[F.47][F.49]Everytimemeasured(≤5yrs)ReviewofmonitoringrecordsPage273VM0009,Version3.0SectoralScope14Data/ParameterUnitDescriptionSourceofDataMeasurementMethodUsedinEquationsFrequencyofMonitoring/RecordingQA/QCComment𝒑𝒑𝑳𝑳𝑪𝑪𝑪𝑪𝑪𝑪𝑮𝑮[𝒎𝒎−𝟏𝟏]proportion(unitless)PortionofleakageduetonativegrasslandsconversionattheendofthecurrentmonitoringperiodMonitoringintheleakagearea8.3.2.4[F.47][F.49]Everytimemeasured(≤5yrs)Reviewofmonitoringrecords𝒑𝒑𝑺𝑺𝑺𝑺[𝒎𝒎]proportion(unitless)ProportionofAGMTthatisnotmerchantableandgoesintoslashestimatedfrominventoryEstimatedfrominventory8.1.6.3[F.34]Everytimemeasured(≤5yrs)Reviewofmonitoringrecords𝒕𝒕[𝒊𝒊−𝟏𝟏]daysTimefromprojectstartdatetobeginningofmonitoringperiod𝑖𝑖MonitoringrecordsN/A[F.32],[F.33]PriormonitoringperiodN/A𝒕𝒕[𝒎𝒎]daysTimefromprojectstartdatetoendofcurrentmonitoringperiodMonitoringrecordsN/A[F.19],[F.20],[F.24],[F.21],[F.25],[F.27],[F.28],[F.32],[F.33],[F.36],[F.37],[F.38],[F.39],[F.40],EverymonitoringperiodReviewofmonitoringrecords𝒕𝒕[𝒎𝒎−𝟏𝟏]daysTimefromprojectstartdatetobeginningofcurrentmonitoringperiodMonitoringrecordsN/A[F.10],[F.36]PriormonitoringperiodN/A𝑼𝑼𝑩𝑩[𝒎𝒎]tCO2eTotaluncertaintyinproxyareacarbonstockestimateN/AN/A[F.57]EverymonitoringperiodReviewofmonitoringrecordsPage274VM0009,Version3.0SectoralScope14Data/ParameterUnitDescriptionSourceofDataMeasurementMethodUsedinEquationsFrequencyofMonitoring/RecordingQA/QCComment𝑼𝑼𝑬𝑬𝑬𝑬[𝑴𝑴]tCO2eTotaluncertaintyinBaselineEmissionsModelsN/AN/A[F.57]EverymonitoringperiodReviewofmonitoringrecords𝑼𝑼𝑷𝑷[𝒎𝒎]tCO2eTotaluncertaintyinprojectaccountingareacarbonstockestimateN/AN/A[F.57]EverymonitoringperiodReviewofmonitoringrecords𝒘𝒘𝒄𝒄𝑷𝑷𝑷𝑷[𝒎𝒎=𝒐𝒐]tCO2eWeightedaveragecarbonstocksforbiomassorSOCintheprojectforthesetofselectedstrataInventoryInventory,GIS[F.29][F.24]EverymonitoringperiodReviewofmonitoringrecords𝒙𝒙[𝒎𝒎]variesCovariatevaluesParticipatoryRuralAppraisal,analysisofpublicrecords,and/orexpertinterpretationofinventorydataorremotelysensedimageryN/A[F.19],[F.20],[F.21],[F.24],[F.25],[F.27],[F.28],[F.37],[F.38],[F.39],[F.40],Everytimemeasured(≤5yrs)ReviewofmonitoringrecordsPage275VM0009,Version3.0SectoralScope14APPENDIXI:PROJECTDOCUMENTREQUIREMENTSBYBASELINETYPEPDR#CategoryRequirementF-P1.aF-P1.bF-P2F-U1F-U2F-U3G-P2G-U1G-U2PDR.1ApplicabilityConditionsForeachapplicabilitycondition,astatementofwhetheritappliestotheproject.Iftheapplicabilityconditiondoesnotapplytotheproject,justificationforthisconclusion.xxxxxxxxxPDR.2ApplicabilityConditionsWhereapplicabilityconditionsapply,credibleevidenceintheformsofanalysis,documentationorthird-partyreportstosatisfythecondition.xxxxxxxxxPDR.3ApplicabilityConditionsDefinitionofforestusedbytheprojectproponentanditssource.xxxxxxxxxPDR.4SpatialProjectBoundariesAdigital(GIS-based)mapoftheprojectareawithatleasttheaboveminimumrequirementsfordelineationofthegeographicboundaries.xxxxxxxxxPDR.5SpatialProjectBoundariesCredibledocumentationdemonstratingcontroloftheprojectarea,ordocumentationthattheprovisoslistedinthecaseoflessthan80%projectcontrolatthetimeofvalidationdelineatedinsection5.1ofthemethodologyaremet.xxxxxxxxxPDR.6TemporalProjectBoundariesTheprojectstartdate.xxxxxxxxxPDR.7TemporalProjectBoundariesTheprojectcreditingperiodstartdateandlength.xxxxxxxxxPDR.8TemporalProjectBoundariesThedatesformandatorybaselinereevaluationaftertheprojectstartdate.xxxxxxxxxPDR.9TemporalProjectBoundariesAtimelineincludingthefirstanticipatedmonitoringperiodshowingwhenprojectactivitieswillbeimplemented.xxxxxxxxxPDR.10TemporalProjectBoundariesAtimelineforanticipatedsubsequentmonitoringperiods.xxxxxxxxxPage277VM0009,Version3.0SectoralScope14PDR#CategoryRequirementF-P1.aF-P1.bF-P2F-U1F-U2F-U3G-P2G-U1G-U2PDR.11CarbonPoolsAlistofthegreenhousegasesconsidered.xxxxxxxxxPDR.12CarbonPoolsAlistoftheselectedcarbonpoolsandevidencefortheconservativeexclusionofanyoptionalpools.xxxxxxxxxPDR.13CarbonPoolsThedefinitionandevidencetosupportthedefinitionofamerchantabletreeifthebaselinescenarioorprojectactivitiesincludelogging.xxxxxxxxxPDR.14GroupedProjectsAlistanddescriptionsofallenrolledprojectactivityinstancesinthegroupatthetimeofvalidation.xxxxxxxxxPDR.15GroupedProjectsAmapofthedesignatedgeographicareawithinwhichallprojectactivityinstancesinthegroupwillbelocated,indicatingthatallinstancesareinthesameregion.xxxxxxxxxPDR.16GroupedProjectsAmapofthecommonreferencearea,proxyarea,activity-shiftingleakagearea,andmarketleakagearea.xxxxxxxxxPDR.17DeterminingtheBaselineScenarioShowthattheidentifiedbaselinetypeisthemostplausiblebaselinescenarioidentifiedinsection7xxxxxxxxxPDR.18AgentsandDriversofConversionAlistoftheagentsanddriversofconversion,includingquantitativedescriptionsofagentmobilities.xxxxxxxxxPDR.19AgentsandDriversofConversionAnarrativedescribingtheagentsanddriversofconversion.xxxxxxxxxPDR.20AgentsandDriversofConversionDescriptionsofagentsanddriversincludinganyusefulstatisticsandtheirsources.xxxxxxxxxPDR.21AgentsandDriversofConversionAlistofexternaldrivers(covariates)ofconversionusedinthemodel,ifany,thatmaybeidentifiedaspartofaPRA,expertknowledgeorliterature(eg,medianhouseholdincome,roaddensity,rainfall).xxxxxxxxxPage278VM0009,Version3.0SectoralScope14PDR#CategoryRequirementF-P1.aF-P1.bF-P2F-U1F-U2F-U3G-P2G-U1G-U2PDR.22ProjectAccountingAreasAdigital(GIS-based)mapoftheprojectaccountingareas,includingaerialorsatelliteimageryshowingthattheyareforestedasoftheprojectstartdateand10yearspriortotheprojectstartdate.xxxxxxxxxPDR.23ProjectAccountingAreasJustifytheprojectaccountingareasusingtheidentifiedagentsanddriversofconversion,constraintstoconversion,andattributeslistedaboveinsection6.2.xxxxxxxxxPDR.24ProjectAccountingAreasSelectionofpatchsizeatwhichlandconversiontypicallyoccurs.xxPDR.25ProjectAccountingAreasJustificationofselectionofpatchsizefordelineationofprojectaccountingarea.xxPDR.26IdentifyingtheBaselineType-ForestIfTypesF-P1.a,F-P1.borF-P2areselected,justificationformeetingthedefinitionofAPDinthecurrentVCS-approvedAFOLURequirements.xxxPDR.27IdentifyingtheBaselineType-ForestIfTypeF-P1.aorF-P1.bisselected,evidenceoflegally-sanctionedcommercialharvestinthebaselinescenario.xxPDR.28IdentifyingtheBaselineType-ForestIfTypeF-P1.aisselected,evidenceoflegally-sanctioneddeforestationinthebaselinescenarioxPage279VM0009,Version3.0SectoralScope14PDR#CategoryRequirementF-P1.aF-P1.bF-P2F-U1F-U2F-U3G-P2G-U1G-U2PDR.29IdentifyingtheBaselineType-ForestIfTypeF-P1.bisselected,evidenceoffrontierconfiguration:a.ProjectsmustdemonstratethattheagentofdegradationhadaccesstotheprojectareaANDthatcomparableagentscreateroadsforextractionoftimberAND/ORb.Projectsmayproducepermits,constructionplans,contractsortenders,budgets,orotherevidenceoftheintenttoconstructroads.xPDR.30IdentifyingtheBaselineType-ForestIfTypeF-U1isselected,aspatialanalysisoftheprojectareashowingthatatleast25%oftheperimeteriswithin120metersofdeforestationthatoccurredwithin10yearspriortotheprojectstartdateandshowingthatthereferenceareaisadjacenttoatleast25%oftheprojectarea.xPDR.31IdentifyingtheBaselineType-ForestIfTypeF-U2isselected,aspatialanalysisoftheprojectareashowingthatatleast25%oftheperimeteriswithin120metersofdeforestationthatoccurredwithin10yearspriortotheprojectstartdate.xPDR.32IdentifyingtheBaselineType-ForestIfTypesF-U1,F-U2orF-U3isselected,aspatialanalysisoftheprojectareashowingthatitiswithin120metersofdeforestationthatoccurredwithin10yearspriortotheprojectstartdate.xxxPage280VM0009,Version3.0SectoralScope14PDR#CategoryRequirementF-P1.aF-P1.bF-P2F-U1F-U2F-U3G-P2G-U1G-U2PDR.33IdentifyingtheBaselineType-GrasslandIfTypeG-P2isselected,justificationformeetingthedefinitionofAPCinthecurrentVCS-approvedAFOLURequirements.Justificationmustincludeevidenceofintenttoconverttheprojectareaandthattheconvertedland-usecategorywouldmeetthedefinitionofnativegrassland/shrublandconversion.xPDR.34IdentifyingtheBaselineType-GrasslandIfTypeG-U1isselected,aspatialanalysisoftheprojectareashowingthatthereferenceareaisadjacenttoatleast25%oftheprojectarea.xPDR.35DelineationoftheProxyAreasAmapofthedelineatedboundaries.xxxxxxxPDR.36DelineationoftheProxyAreasMapsorotherevidencethattheproxyarea’ssitecharacteristicsandlandscapeconfigurationissimilartoitsrespectiveprojectaccountingarea,including:Vegetation;Climaticconditions(eg,meantemperature,rainfall,etc.);Topographicconstraintstoconversion(slope,aspect,elevation);Landuseand/orlandcover;Soilmap(ifavailable)orothersoilinformation;Applicableinfrastructure(eg,waterways,roads,railroad,airports,provisionofelectricity,andotheraccesspoints);andOwnership/tenureboundariesthatinfluenceconversion(eg,governmentholdings,privateholdingsandreserves).xxxxxxxPage281VM0009,Version3.0SectoralScope14PDR#CategoryRequirementF-P1.aF-P1.bF-P2F-U1F-U2F-U3G-P2G-U1G-U2PDR.37DelineationoftheProxyAreasAnarrativedescribingtherationaleforselectionofproxyareaboundaries,includingtheproxyarea’ssimilaritytothecorrespondingprojectaccountingareawithrespecttovegetation,soilandclimaticconditions.xxxxxxxxxPDR.38DelineationoftheProxyAreasResultsofaspatialanalysistodemonstratetheproxyareaisconverted,onaverage,asoftheprojectstartdate.xxxxxxxxxPDR.39DescribingtheBaselineScenariosforSelectedCarbonPoolsAqualitativedescriptionofthebaselinescenarioforeachselectedcarbonpool.xxxxxxxxxPDR.40DelineationoftheReferenceAreaforPlannedandUnplannedTypesAmapofthedelineatedboundaries,demonstratingthatthereferenceareawasheldbytheidentifiedbaselineagentoragentsanddoesnotincludetheprojectarea.xxxxxxxxxPDR.41DelineationoftheReferenceAreaforPlannedandUnplannedTypesResultsofaspatialanalysistodemonstratethereferenceareahadasmuchforestornativegrasslandastheprojectaccountingareaatsomepointintimeduringthehistoricreferenceperiod.xxxxxxxxxPDR.42DelineationoftheReferenceAreaforPlannedandUnplannedTypesEvidencethatthemanagementpracticesofthebaselineagentinthereferenceareaaresimilartothosethatwouldhavebeenappliedtotheprojectaccountingareaorareasinthebaseline.xxxxxxxxxPDR.43DelineationoftheReferenceAreaforPlannedandUnplannedTypesAdescriptionoftherationaleforselectionofreferenceareaboundaries.xxxxxxxxxPDR.44DelineationoftheReferenceAreaforPlannedandUnplannedTypesThedocumentationrequiredinthereferenceareaselectionrequirementsthattheselectedreferenceareameetstheReferenceAreaSelectionRequirements.xxxxxxxxxPage282VM0009,Version3.0SectoralScope14PDR#CategoryRequirementF-P1.aF-P1.bF-P2F-U1F-U2F-U3G-P2G-U1G-U2PDR.45DefiningtheReferenceAreaforPlannedBaselineTypesEvidencethatsecondaryagentshavebeenconsideredinthedelineationofthereferenceareaforbaselinetypesF-P1.aandF-P1.b.xxPDR.46DefiningtheReferencePeriodforPlannedTypesEstablishedreferenceperiodboundaries.xxxxPDR.47DefiningtheReferencePeriodforPlannedTypesThedatewhentheagentacquiredcontrolofthereferenceareaorwhenthelandmanagementpracticesemployedinthereferenceareachanged.xxxxPDR.48DefiningtheReferencePeriodforUnplannedTypesEstablishedreferenceperiodboundaries.xxxxxPDR.49DefiningtheReferencePeriodforUnplannedTypesAlistofavailablehistoricimageryforthereferencearea.xxxxxPDR.50DefiningtheReferencePeriodforUnplannedTypesAtimelineofimportanteventsastheyrelatetotheagentsanddriversofconversion.xxxxxPDR.51DefiningtheReferencePeriodforUnplannedTypesNarrativerationalefortheselectionofthereferenceperiod.xxxxxPDR.52HistoricImagerytoParameterizeα,βandθAmapofthereferenceareashowingtheareaof"double-coverage".xxxxxxxxxPDR.53HistoricImagerytoParameterizeα,βandθQuantificationof"doublecoverage"(greaterthan90%).xxxxxxxxxPDR.54HistoricImagerytoParameterizeα,βandθAlineplotofthehistoricimagedatestoconfirmstationarity.xxxxxxxxxPDR.55HistoricImagerytoParameterizeα,βandθEvidencethatallimagepixelsarenotmorethan30mx30m.xxxxxxxxxPage283VM0009,Version3.0SectoralScope14PDR#CategoryRequirementF-P1.aF-P1.bF-P2F-U1F-U2F-U3G-P2G-U1G-U2PDR.56HistoricImagerytoParameterizeα,βandθEmpiricalevidencethatimageryisregisteredtowithin10%RMSE,onaverage.xxxxxxxxxPDR.57SamplingConversiontoParameterizeα,βandθThesamplesize.xxxxxxxxxPDR.58SamplingConversiontoParameterizeα,βandθAmapofthereferenceareashowingthesamplepointlocations.xxxxxxxxxPDR.59Parameterizingα,βandθThecovariatesthatwereconsideredandtheirdatasources.xxxxxxxxxPDR.60Parameterizingα,βandθTheparametersinθthatwereevaluatedduringmodelselection.xxxxxxxxxPDR.61Parameterizingα,βandθTheparametersinθoftheselectedmodel.xxxxxxxxxPDR.62Parameterizingα,βandθTherationaleusedforselectingθincludingcomparisonsofAIC.xxxxxxxxxPDR.63MinimizingUncertaintyinParameters𝛼𝛼�,𝛽𝛽̂and𝜃𝜃�Aprotocolforinterpretinglandcoverstatefromimagery,whichmustincludeguidanceforinterpretingthefollowing:Discerningconversionfeaturesusingshape,textureandcontextinthereferencearealandscapeAddressingseasonalvariationofvegetation(phenology)withinimageryIdentifyingandaddressingthecharacteristicsofspecificlandscapeconfigurations(ie,mosaicforest,grassland,etc.)xxxxxxxxxPDR.64MinimizingUncertaintyinParameters𝛼𝛼�,𝛽𝛽̂and𝜃𝜃�Theresultsofanindependentcheckoftheinterpretation.xxxxxxxxxPDR.65MinimizingUncertaintyinParameters𝛼𝛼�,𝛽𝛽̂and𝜃𝜃�Evidencethatsystematicerrors,ifany,fromtheindependentcheckoftheinterpretationwerecorrected.xxxxxxxxxPage284VM0009,Version3.0SectoralScope14PDR#CategoryRequirementF-P1.aF-P1.bF-P2F-U1F-U2F-U3G-P2G-U1G-U2PDR.66EstimatingUncertaintyinParameters𝛼𝛼�,𝛽𝛽̂and𝜃𝜃�TheestimateduncertaintyσEMfrom[F.13]andstatisticalsummariesfrommodelfittingsoftware,ifavailable.xxxxxxxxxPDR.67EstimatingUncertaintyinParameters𝛼𝛼�,𝛽𝛽̂and𝜃𝜃�Referencetouncertaintycalculations.xxxxxxxxxPDR.68Parameterizing𝑡𝑡𝑆𝑆𝑆𝑆TheparametertSAasthenumberofdaysaftertheprimaryagentbeginscommerciallogginguntilwhenthesecondaryagentofdeforestationislikelytobegindegradingtheprojectaccountingarea.xxPDR.69Parameterizing𝑡𝑡𝑆𝑆𝑆𝑆AdescriptionofhowtSAwasobtained.xxPDR.70Parameterizing𝑡𝑡𝑆𝑆𝑆𝑆Harvestplansfortheprojectaccountingareaunderthebaselinescenario,resultsfromthePRAoranalysisofthereferenceareatodeterminetheparameter.xxPDR.71Parameterizing𝑡𝑡𝑆𝑆𝑆𝑆TheparametertPAasthenumberofdaysrelativetotheprojectstartdatewhentheprimaryagentbeganorwouldhavebegunlegally-sanctionedcommercialloggingintheprojectaccountingarea.xxPDR.72Parameterizing𝑡𝑡𝑆𝑆𝑆𝑆AdescriptionofhowtPAwasobtained.xxPDR.73Parameterizing𝑡𝑡𝑆𝑆𝑆𝑆Harvestplansfortheprojectaccountingareaunderthebaselinescenarioorpublicrecordstosupportthedeterminationoftheparameter.xxPDR.74Determining𝑥𝑥0Atableofcovariatevaluesasoftheprojectstartdateandadescriptionofhowthevaluesweredeterminedincludinganyinterpolationorextrapolationmethods.xxxxxxxxxPage285VM0009,Version3.0SectoralScope14PDR#CategoryRequirementF-P1.aF-P1.bF-P2F-U1F-U2F-U3G-P2G-U1G-U2PDR.75Determining𝑥𝑥0Justificationforwhytherateofconversionpredictedbycovariatesexceedstherateindicatedfromhistoricalconversionpatterns.xxxxxxxxxPDR.76ParameterizingmTheparametermastheaveragecarboninmerchantabletreescuteachyearasaresultoflegally-sanctionedcommerciallogging.xxPDR.77ParameterizingmDocumentationofhowmwasdetermined.Thismayincludeananalysisofcarbonstocksinmerchantabletreesintheprojectaccountingarea,timberharvestplansfortheprojectaccountingareaorreferencetoapublicationcontainingthemaximumallowablecutapplicabletotheprojectarea.Theparametermustbegreaterthanzero.xxPDR.78Determining𝛾𝛾Theprojectshiftparameterγasthenumberofdaysbetweenthebeginningofthehistoricalreferenceperiodandtheprojectstartdate.xxxxPDR.79ParameterizingqTheparameterqasthenumberofdaysbetweentheonsetofdegradationandthebeginningofconversion.xxxxxxxxxPDR.80ParameterizingqIfthedefaultofzeroisnotselectedforq,thenajustificationforthedeterminationofq.xxxxxxxxxPDR.81Parameterizing𝑟𝑟𝑈𝑈TheparameterrUastheratioofconvertedperimetertototalthreatenedperimeter,ortheratioofconvertedareatototalprojectaccountingarea(s),asoftheprojectstartdate.xxxPDR.82Parameterizing𝑟𝑟𝑈𝑈DescriptionofhowrUwasobtained.xxxPage286VM0009,Version3.0SectoralScope14PDR#CategoryRequirementF-P1.aF-P1.bF-P2F-U1F-U2F-U3G-P2G-U1G-U2PDR.83Parameterizing𝑟𝑟𝑈𝑈ResultsofGISanalysistodetermineormeasurerUintheprojectareaincludingthedatesofimagesusedtoidentifyconversion.xxxPDR.84EmpiricallyEstimating𝜆𝜆𝑆𝑆𝑆𝑆𝑆𝑆Descriptionofhowsamplesfromthereferenceareawereselectedincludingstratification,ifany.xxxxxxxxxPDR.85EmpiricallyEstimating𝜆𝜆𝑆𝑆𝑆𝑆𝑆𝑆Amapofsamplelocationsinthereferencearea.xxxxxxxxxPDR.86EmpiricallyEstimating𝜆𝜆𝑆𝑆𝑆𝑆𝑆𝑆Atableshowingtheconversiontimeforeacharea(farmorotherwise)fromwhichsamplesweretaken.xxxxxxxxxPDR.87EmpiricallyEstimating𝜆𝜆𝑆𝑆𝑆𝑆𝑆𝑆DescriptionofandstatisticsforthemethodappliedtoestimateλSOC.xxxxxxxxxPDR.88EmpiricallyEstimating𝜆𝜆𝑆𝑆𝑆𝑆𝑆𝑆Graphofprojecteddecaymodeloverprojectlifetime.xxxxxxxxxPDR.89LiteratureEstimatesfor𝜆𝜆𝑆𝑆𝑆𝑆𝑆𝑆Inclusionofdecaymodelonwhichparameterisbased.xxxxxxxxxPDR.90LiteratureEstimatesfor𝜆𝜆𝑆𝑆𝑆𝑆𝑆𝑆Explicitdescriptionofreferencedliterature,includingprojectlocation,samplingmethodology,includedspecies,samplesize,durationoffieldexperiments,anddecayparameteruponwhichdecayisbased.xxxxxxxxxPDR.91LiteratureEstimatesfor𝜆𝜆𝑆𝑆𝑆𝑆𝑆𝑆Graphofprojecteddecaymodeloverprojectlifetime.xxxxxxxxxPDR.92LiteratureEstimatesfor𝜆𝜆𝑆𝑆𝑆𝑆𝑆𝑆Ifdecaymodelisbasedonanyotherelementbesidescarbon,defenseofabilitytopredictcarbondecaymustbeprovided.xxxxxxxxxPDR.93BaselineReevaluationAllrequireddocumentationasspecifiedinsection6fortheprojectpriortothebaselinereevaluation.xxxxxxxxxPage287VM0009,Version3.0SectoralScope14PDR#CategoryRequirementF-P1.aF-P1.bF-P2F-U1F-U2F-U3G-P2G-U1G-U2PDR.94BaselineReevaluationAllrequireddocumentationasspecifiedinsection6fortheprojectafterthebaselinereevaluationincludingthereevaluationperiod.xxxxxxxxxPDR.95BaselineReevaluationAnarrativeofthereevaluationincludinganyobstaclesandhowtheywereovercome.xxxxxxxxxPDR.96ReevaluationoftheReferenceAreaandPeriodAmapofthenewreferencearea.xxxxxxxxxPDR.97Re-parameterizationofα,βandθSummaryofnewdataobservedinthenewreferencearea.xxxxxxxxxPDR.98Re-parameterizationofα,βandθThere-parameterizedvaluesα̂,β̂andθ̂.xxxxxxxxxPDR.99DemonstrationofProjectAdditionalityAlistofalternativelandusescenariostotheproject.xxxxxxxxxPDR.100DemonstrationofProjectAdditionalityJustificationfortheselectedbaselinescenario.Thisjustificationcanincludeexpertknowledge,resultsfromtheparticipatoryruralappraisalandex-anteestimatesofavoidedemissions(seesections6.1and8.4.7).xxxxxxxxxPDR.101DemonstrationofProjectAdditionalityAninvestmentorbarriersanalysisprovingthattheprojectisnotthemosteconomicaloption.xxxxxxxxxPDR.102DemonstrationofProjectAdditionalityAcommonpracticeanalysisincludingalistofprojectactivitiesandthedriversofconversionthattheyaddress.xxxxxxxxxPDR.103DemonstrationofProjectAdditionalityEvidentcompliancewiththeminimumrequirementsoftheaforementionedVCStool.Thisevidencemaybethesameastheevidenceprovidedtomeetreportingrequirementslistedinsection4.xxxxxxxxxPage288VM0009,Version3.0SectoralScope14PDR#CategoryRequirementF-P1.aF-P1.bF-P2F-U1F-U2F-U3G-P2G-U1G-U2PDR.104LeakageMitigationStrategiesAlistofprojectactivitiesdesignedtomitigateleakage.xxxxxxxxxPDR.105DelineationoftheActivity-ShiftingLeakageAreaAmapofthedelineatedboundaries.xxxxxxxxxPDR.106DelineationoftheActivity-ShiftingLeakageAreaMapsofthelandscapeconfiguration,including:a.Topography(elevation,slope,aspect);b.Recentlanduseandlandcover(eitherathematicmapcreatedbytheprojectproponentorpubliclyavailablemap);c.Accesspoints;d.Soilclassmaps(ifavailable);e.Locationsofimportantmarkets;f.Locationsofimportantresourceslikewaterwaysorroads;andg.Landownership/tenureboundaries.xxxxxxxxxPDR.107DelineationoftheActivity-ShiftingLeakageAreaAnarrativedescribingtherationaleforselectionofactivity-shiftingleakageareaboundaries.Iftheactivity-shiftingleakageareaissmallerthantheprojectaccountingareaorcannotbedefined,justificationforthesizeofthearea.Ifforeignagentshavebeenidentifiedasanagentofconversion,justificationthattheyareunlikelytoshifttheiractivitiesoutsidetheactivity-shiftingleakagearea.xxxxxxxxxPDR.108DelineationoftheActivity-ShiftingLeakageAreaResultsofaspatialanalysistodemonstratetheactivity-shiftingleakageareaisentirelyforestedasoftheprojectstartdate.xxxxxxxxxPage289VM0009,Version3.0SectoralScope14PDR#CategoryRequirementF-P1.aF-P1.bF-P2F-U1F-U2F-U3G-P2G-U1G-U2PDR.109DelineationoftheActivity-ShiftingLeakageAreaResultsofaspatialanalysistodemonstratetheactivity-shiftingleakageareaisnolargerthantheprojectaccountingarea.xxxxxxxxxPDR.110DeterminingtheMarketDiscountFactorTheselecteddiscountfactorpLME.xxxxxxxxxPDR.111DeterminingtheMarketDiscountFactorCalculationsofcLAGMTinthemarketleakagearea,includingreferencestoliteratureifcited.xxxxxxxxxPDR.112DeterminingtheMarketDiscountFactorJustificationfortheselectionofthediscountfactor.xxxxxxxxxPDR.113DelineationoftheMarketLeakageAreaAmapofthedelineatedboundaries.xxxxxxxxxPDR.114DelineationoftheMarketLeakageAreaMapsofthelandscapeconfiguration,including:a.Topography(elevation,slope,aspect);b.Recentlanduseandlandcover(eitherathematicmapcreatedbytheprojectproponentorpubliclyavailablemap);c.Accesspoints;d.Soilclassmaps(ifavailable);e.Locationsofimportantmarkets;f.Locationsofimportantresourceslikewaterwaysorroads;andg.Landownership/tenureboundaries.xxxxxxxxxPDR.115DelineationoftheMarketLeakageAreaAnarrativedescribingtherationaleforselectionofmarketleakageareaboundaries.xxxxxxxxxPage290VM0009,Version3.0SectoralScope14PDR#CategoryRequirementF-P1.aF-P1.bF-P2F-U1F-U2F-U3G-P2G-U1G-U2PDR.116DelineationoftheMarketLeakageAreaResultsofaspatialanalysistodemonstratethemarketleakageareaisentirelyforestedasoftheprojectstartdate.xxxxxxxxxPDR.117DelineationoftheMarketLeakageAreaResultsofaspatialanalysistodemonstratethemarketleakageareaisaslargeorlargerthantheprojectaccountingarea.xxxxxxxxxPDR.118Ex-AnteEstimationofNERsTheprojectedavoidedbaselineemissions,projectemissionsandleakageforeachmonitoringperiodandvintageyearoverthelifetimeoftheproject.xxxxxxxxxPDR.119Ex-AnteEstimationofNERsAnarrativedescriptionofsourcesusedtoestimatetheleakagerateanddemonstrationthattheestimatedrateisconservative.xxxxxxxxxPDR.120Ex-AnteEstimationofNERsIfincludedinprojectactivities,adescriptionofproceduresusedtoestimatetherateofbiomassburning,charcoalproductionorlogginganddemonstrationthattheseestimatesareconservative.xxxxxxxxxPDR.121DataandParametersAvailableatValidationThevalueforeachvariableinAppendixG.xxxxxxxxxPDR.122DescriptionoftheMonitoringPlanSummaryofsamplingproceduresfortheprojectaccountingareas,withacopyofasamplingprotocolusedtocarryoutmeasurements.xxxxxxxxxPDR.123DescriptionoftheMonitoringPlanSummaryofsamplingproceduresfortheproxyareas,withacopyofasamplingprotocolusedtocarryoutmeasurements.xxxxxxxxxPDR.124DescriptionoftheMonitoringPlanSummaryofsamplingproceduresfortheactivity-shiftingleakageareas,withacopyofasamplingprotocolusedtocarryoutmeasurements.xxxxxxxxxPage291VM0009,Version3.0SectoralScope14APPENDIXJ:MONITORINGREPORTREQUIREMENTSBYBASELINETYPEMR#CategoryRequirementF-P1.aF-P1.bF-P2F-U1F-U2F-U3G-P2G-U1G-U2MR.1SpatialProjectBoundariesAdigital(GIS-based)mapoftheprojectareawithatleasttheaboveminimumrequirementsfordelineationofthegeographicboundaries.xxxxxxxxxMR.2TemporalProjectBoundariesTheprojectstartdate.xxxxxxxxxMR.3TemporalProjectBoundariesTheprojectcreditingperiodstartdate,enddateandlength.xxxxxxxxxMR.4GroupedProjectsAlistanddescriptionsofallinstancesinthegroup.xxxxxxxxxMR.5GroupedProjectsAmapofthelocationsorboundariesofallinstancesinthegroupindicatingthatallinstancesareinthesameregion.xxxxxxxxxMR.6ProjectAccountingAreasAdigital(GIS-based)mapoftheprojectaccountingareaswithatleasttheaboveminimumrequirementsfordelineationofthegeographicboundaries.xxxxxxxxxMR.7Determining𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃Foreachprojectactivityinstanceinthegroup,itsprojectactivityinstancestartdate.xxxxxxxxxMR.8Determining𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃Foreachprojectaccountingarea,thevalueoftPAI.xxxxxxxxxMR.9Determining𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃Atableofcovariatevaluesasoftheprojectactivityinstancestartdatesandadescriptionofhowthevaluesweredeterminedincludinganyinterpolationorextrapolationmethods.xxxxxxxxxMR.10BaselineEmissionsCalculationsofcurrentbaselineemissionsEBΔmasofthecurrentmonitoringperiod.xxxxxxxxxMR.11BaselineEmissionsCalculationsofbaselineemissionsEBΔm-1frompriormonitoringperiods.xxxxxxxxxMR.12BaselineEmissionsCalculationsofcumulativebaselineemissionsforeachselectedpool(EBBMmandEBSOCm)andundecayedcarbon(CBBGBm,CBDWm,CBSOCmandCBWPm),asofthecurrentmonitoringperiod.xxxxxxxxxPage292VM0009,Version3.0SectoralScope14MR#CategoryRequirementF-P1.aF-P1.bF-P2F-U1F-U2F-U3G-P2G-U1G-U2MR.13BaselineEmissionsfromBiomassCalculationsofcumulativebaselineemissionsfrombiomassEBBMmforthecurrentmonitoringperiod.xxxxxxxxMR.14BaselineEmissionsfromBiomassCalculationsofcumulativebaselineemissionsfrombiomassEBBMmforallpriormonitoringperiods.xxxxxxxxMR.15ApplyingtheSpatialAlgorithmTheorderofstratafromlowestcarbonstockstohighestcarbonstocksbasedontheaverageacrossallpools.xxMR.16ApplyingtheSpatialAlgorithmCalculationsforeachstepwhicharecarriedthroughfrommonitoringperiodtomonitoringperiod.xxMR.17ApplyingtheSpatialAlgorithmCalculationsofcumulativebaselineemissionsfrombiomassEBBMmforpriormonitoringperiods.xxMR.18BaselineEmissionsfromSOCforTypesF-P1.a,F-P1.b,F-P2andG-P2AnestimateofcurrentbaselineemissionsfromSOCEBΔSOCmasofthecurrentmonitoringperiod.xxxxMR.19BaselineEmissionsfromSOCforTypesF-P1.a,F-P1.b,F-P2andG-P2AnestimateofcumulativebaselineemissionsfromSOCEBSOCmforthecurrentmonitoringperiod.xxxxMR.20BaselineEmissionsfromSOCforTypesF-P1.a,F-P1.b,F-P2andG-P2CalculationsofcumulativebaselineemissionsfromSOCEBSOCmforallpriormonitoringperiods.xxxxMR.21CarbonNotDecayedinDWAnestimateofcarbonstoredinnon-decayedDWCBDWmforthecurrentmonitoringperiod.xxxxxxxxxPage293VM0009,Version3.0SectoralScope14MR#CategoryRequirementF-P1.aF-P1.bF-P2F-U1F-U2F-U3G-P2G-U1G-U2MR.22CarbonNotDecayedinDWAnestimateofcumulativebaselineemissionsfromDWEBDWmforthecurrentmonitoringperiod.xxxxxxxxxMR.23CarbonNotDecayedinDWAnestimateofcumulativebaselineemissionsfromAGMTEBAGMTmforthecurrentmonitoringperiod.xxxxxxxxxMR.24CarbonNotDecayedinDWCalculationsofcumulativebaselineemissionsfromDWEBDWmforallpriormonitoringperiods.xxxxxxxxxMR.25CarbonNotDecayedinDWCalculationsofcumulativebaselineemissionsfromAGMTEBAGMTmforallpriormonitoringperiods.xxxxxxxxxMR.26CarbonNotDecayedinBGBAnestimateofcarbonstoredinnon-decayedBGBCBBGBmforthecurrentmonitoringperiod.xxxxxxxxxMR.27CarbonNotDecayedinBGBAnestimateofcumulativebaselineemissionsfromBGBEBBGBmforthecurrentmonitoringperiod.xxxxxxxxxMR.28CarbonNotDecayedinBGBCalculationsofcumulativebaselineemissionsfromBGBEBBGBmforallpriormonitoringperiods.xxxxxxxxxMR.29CarbonNotDecayedinSOCAnestimateofcarbonstoredinnon-decayedSOCCBSOCmforthecurrentmonitoringperiod.xxxxxxxxxMR.30CarbonStoredinWoodProductsCarbonstoredinlong-livedwoodproductsCBWPmafter100years.xxxxxxxxxMR.31CarbonStoredinWoodProductsCalculationstodetermineCBWPm.xxxxxxxxxMR.32EmissionsEventsinProjectAreaAmapoftheboundariesofanysignificantdisturbanceintheprojectaccountingareasduringthemonitoringperiod.xxxxxxxxxMR.33EmissionsEventsinProjectAreaEvidencethatplotswereinstalledintothesedisturbedareasandweremeasuredpersection9.xxxxxxxxxPage294VM0009,Version3.0SectoralScope14MR#CategoryRequirementF-P1.aF-P1.bF-P2F-U1F-U2F-U3G-P2G-U1G-U2MR.34EmissionsfromBurningfromProjectActivitiesAtableofeventswhenwoodyorherbaceousbiomasswasburnedduringthemonitoringperiod,showingtheweightofwoodyorherbaceousbiomassintonnesandthedateconsumed.xxxxxxxxxMR.35CarbonStoredinWoodProductsfromProjectActivitiesCarbonstoredinlong-livedwoodproductsCPΔWPmafter100years.xxxxxxxxxMR.36CarbonStoredinWoodProductsfromProjectActivitiesScalereportsorrecordsofcarboninlogproductionbywoodproductstypeCPtym.xxxxxxxxxMR.37CarbonStoredinWoodProductsfromProjectActivitiesCalculationstodetermineCPΔWPm.xxxxxxxxxMR.38LivestockGrazedintheProjectAreaAreportorrecordofthenumberoflivestockperspeciesoflivestock𝑛𝑛𝐿𝐿𝐿𝐿𝑖𝑖beinggrazedwithintheprojectareanLSi.xxxxxxxxxMR.39LivestockGrazedintheProjectAreaEmissionsreleasedduetolivestockgrazingEPΔLS[m].xxxxxxxxxMR.40LivestockGrazedintheProjectAreaCalculationstodetermineEPΔLS[m].xxxxxxxxxMR.41SyntheticFertilizerintheProjectAreaAreportorrecordofthequantityofsyntheticfertilizerappliedintheprojectarea.xxxxxxxxxMR.42SyntheticFertilizerintheProjectAreaEmissionsreleasedduetouseofsyntheticfertilizerEPΔLS[m].xxxxxxxxxPage295VM0009,Version3.0SectoralScope14MR#CategoryRequirementF-P1.aF-P1.bF-P2F-U1F-U2F-U3G-P2G-U1G-U2MR.43SyntheticFertilizerintheProjectAreaCalculationstodetermineEPΔLS[m].xxxxxxxxxMR.44LeakageMitigationStrategiesAdescriptionofprojectactivitiesthathavebeenimplementedsincetheprojectstartdateandtheestimatedeffectsoftheseactivitiesonleakagemitigation.xxxxxxxxxMR.45CommodityProductionforLeakageMitigationAlistofmitigationactivitiesreducedemandforforgonegoodsandservices.xxxxxxxxxMR.46CommodityProductionforLeakageMitigationQuantitiesforthereductionorreplacementofgoodsandservicesiftheyareusedinsection8.3.3.4.xxxxxxxxxMR.47CommodityProductionforLeakageMitigationMethodsformeasuringthereductionorreplacementofgoodsandservices.xxxxxxxxxMR.48EstimatingEmissionsfromActivity-ShiftingLeakageCalculatedcumulativeemissionsfromactivity-shiftingleakageforthecurrentmonitoringperiod𝑬𝑬𝑳𝑳𝑨𝑨𝑨𝑨[𝒎𝒎]andsupportingcalculations.xxxxxxxxxMR.49EstimatingEmissionsfromActivity-ShiftingLeakageCalculatedcumulativeemissionsfromactivity-shiftingleakageforthepriormonitoringperiods𝑬𝑬𝑳𝑳𝑨𝑨𝑨𝑨[𝒎𝒎].Ifanactivity-shiftingleakageareaisnotinstalled,thenincluderesultsfromtheparticipatoryruralappraisaland/orexpertknowledge,withananalysisofthenearestsuitableforestcoverforactivityshiftingleakage.xxxxxxxxxPage296VM0009,Version3.0SectoralScope14MR#CategoryRequirementF-P1.aF-P1.bF-P2F-U1F-U2F-U3G-P2G-U1G-U2MR.50ChangetotheActivity-ShiftingLeakageAreaAdescriptionandjustificationofthechangetotheactivity-shiftingleakagearea.xxxxxxxxxMR.51ChangetotheActivity-ShiftingLeakageAreaAmapofthedelineatedboundaries.xxxxxxxxxMR.52ChangetotheActivity-ShiftingLeakageAreaMapsofthelandscapeconfiguration,including:a.Topography(elevation,slope,aspect);b.Recentlanduseandlandcover(eitherathematicmapcreatedbytheprojectproponentorpubliclyavailablemap);c.Accesspoints;d.Soilclassmaps(ifavailable);e.Locationsofimportantmarkets;f.Locationsofimportantresourceslikewaterwaysorroads;andg.Landownership/tenureboundaries.xxxxxxxxxMR.53ChangetotheActivity-ShiftingLeakageAreaAnarrativedescribingtherationaleforselectionofactivity-shiftingleakageareaboundaries.Iftheactivity-shiftingleakageareaissmallerthantheprojectaccountingareaorcannotbedefined,justificationforthesizeofthearea.xxxxxxxxxMR.54ChangetotheActivity-ShiftingLeakageAreaResultsofaspatialanalysistodemonstratetheactivity-shiftingleakageareaisentirelyforestedasoftheprojectstartdate.xxxxxxxxxMR.55ChangetotheActivity-ShiftingLeakageAreaResultsofaspatialanalysistodemonstratetheactivity-shiftingleakageareaisnolargerthantheprojectaccountingarea.xxxxxxxxxPage297VM0009,Version3.0SectoralScope14MR#CategoryRequirementF-P1.aF-P1.bF-P2F-U1F-U2F-U3G-P2G-U1G-U2MR.56Estimating𝑝𝑝𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷TheestimatedvaluepLDEGmforthecurrentmonitoringperiodandsupportingcalculations.xxxxxxxxxMR.57Estimating𝑝𝑝𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷ThecalculatedvaluepLDEGm=0calculatedforthefirstmonitoringperiod.xxxxxxxxxMR.58Estimating𝑝𝑝𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝐺𝐺TheestimatedvaluepLCONGmforthecurrentmonitoringperiodandsupportingcalculations.xxxxxxxxxMR.59Estimating𝑝𝑝𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝐺𝐺ThecalculatedvaluepLCONGm=0calculatedforthefirstmonitoringperiod.xxxxxxxxxMR.60DeterminingEmissionsfromMarketLeakageTheselectedapproachtodeterminingemissionsfrommarketleakage.xxxxxxxxxMR.61DeterminingEmissionsfromMarketLeakageEstimatedcumulativeemissionsfrommarketleakageforthecurrentmonitoringperiodELMEmandsupportingcalculations.xxxxxxxxxMR.62ConfidenceDeductionDeterminingEmissionsfromMarketLeakageCalculatedcumulativeemissionsfrommarketleakageforthepriormonitoringperiodsELMEm.xxxxxxxxxMR.63EnsuringNoLeakageWithinProjectProponent’sOwnershipProvidelocation-by-locationevidencethatmanagementplansandland-usedesignationsofallareasundertheprojectproponent’scontrolwithinthecountryhavenotchangedasaresultoftheproject.Forentitieswithaconservationmission,provideevidenceoftheorganization’spolicynottochangethelanduseofotherownedandmanagedlands,andevidenceofcompliancewithsuchapolicy.xxxxxxxxxPage298VM0009,Version3.0SectoralScope14MR#CategoryRequirementF-P1.aF-P1.bF-P2F-U1F-U2F-U3G-P2G-U1G-U2MR.64EnsuringConstancyofBaselineOperatorManagementProvideevidenceintheformofGISimagery,PRAevidence,orthebaselineoperator’smanagementplanthatmanagementplansorland-usedesignationshavenotchangedinthebaselineoperator’sotherlands.xxxMR.65QuantificationofGERsQuantifiedGERsforthecurrentmonitoringperiodincludingreferencestocalculations.xxxxxxxxxMR.66QuantificationofGERsQuantifiedGERsforthepriormonitoringperiod.xxxxxxxxxMR.67QuantificationofGERsAgraphofGERsbymonitoringperiodforallmonitoringperiodstodate.xxxxxxxxxMR.68ConfidenceDeductionTheconfidencedeductionEUmandestimatedstandarderrorsusedtodeterminetheconfidencededuction.xxxxxxxxxMR.69ConfidenceDeductionReferencetocalculationsusedtodeterminetheconfidencededuction.xxxxxxxxxMR.70QuantificationofNERsUsingaLinearModelThelinearmodelusedtogenerateGERsforthecurrentmonitoringperiod.xxxxxxxxxMR.71QuantificationofNERsUsingaLinearModelAgraphofGERsfromthelinearmodelbymonitoringperiodforallmonitoringperiodstodatethatusedalinearmodel.xxxxxxxxxMR.72ReversalEventAdescriptionofthereversalincludingwhichpoolscontributedtothereversalandreasonsforitsoccurrence.xxxxxxxxxMR.73ReversalEventasaResultofBaselineReevaluationAdescriptionofthereversalincludingasummaryofnewdataobtainedinthereferencearea.xxxxxxxxxPage299VM0009,Version3.0SectoralScope14MR#CategoryRequirementF-P1.aF-P1.bF-P2F-U1F-U2F-U3G-P2G-U1G-U2MR.74QuantificationofNERsforaPAAQuantifiedNERsforthecurrentmonitoringperiodincludingreferencestocalculations.xxxxxxxxxMR.75QuantificationofNERsforaPAAQuantifiedNERsforthepriormonitoringperiod.xxxxxxxxxMR.76QuantificationofNERsforaPAAAgraphofNERsbymonitoringperiodforallmonitoringperiodstodate.xxxxxxxxxMR.77BufferAccountReferencetotheVCSrequirementsusedtodeterminethebufferaccountallocation.xxxxxxxxxMR.78BufferAccountReferencetocalculationsusedtodeterminethebufferaccountallocation.xxxxxxxxxMR.79QuantificationofNERsacrossPAAsQuantifiedNERsforthecurrentmonitoringperiodincludingreferencestocalculations.xxxxxxxxxMR.80QuantificationofNERsacrossPAAsQuantifiedNERsforthepriormonitoringperiod.xxxxxxxxxMR.81QuantificationofNERsacrossPAAsAgraphofNERsbymonitoringperiodforallmonitoringperiodstodate.xxxxxxxxxMR.82VintagesQuantifiedNERsbyvintageyearforthecurrentmonitoringperiodincludingreferencestocalculations.xxxxxxxxxMR.83EvaluatingProjectPerformanceComparisonofNERspresentedforverificationrelativetoNERsfromex-anteestimates.xxxxxxxxxMR.84EvaluatingProjectPerformanceDescriptionofthecauseandeffectofdeviationsfromex-anteestimates.xxxxxxxxxMR.85DataandParametersMonitoredListofparametersfromAppendixH,theirvaluesandthetimelastmeasured.xxxxxxxxxPage300VM0009,Version3.0SectoralScope14MR#CategoryRequirementF-P1.aF-P1.bF-P2F-U1F-U2F-U3G-P2G-U1G-U2MR.86DataandParametersMonitoredQualityassuranceandqualitycontrolmeasuresemployedforeach.xxxxxxxxxMR.87DataandParametersMonitoredDescriptionoftheaccuracyofeach.xxxxxxxxxMR.88DescriptionoftheMonitoringPlanDocumentationoftrainingforfieldcrews.xxxxxxxxxMR.89DescriptionoftheMonitoringPlanIfincludedinprojectactivities,adescriptionofproceduresusedtoestimatetherateofbiomassburningandcharcoalproductionanddemonstrationthattheseestimatesareconservative.xxxxxxxxxMR.90DescriptionoftheMonitoringPlanDocumentationofdataqualityassessmentsuchasacheckcruiseandplotsofthedatasuchasdiameterdistributionsbystrataorplot.xxxxxxxxxMR.91DescriptionoftheMonitoringPlanMapsofastratification(ifany)andreferencestoplotallocation.xxxxxxxxxMR.92DescriptionoftheMonitoringPlanListofplotGPScoordinates.xxxxxxxxxMR.93DescriptionoftheMonitoringPlanDescriptionofplotsizesandlayout(suchastheuseofnestsandtheirsizes)foreachcarbonpool.xxxxxxxxxMR.94DescriptionoftheMonitoringPlanIfapplicable,adetaileddescriptionoftheprocessusedtodevelopallometricequations,toinclude:a.Samplesizeb.Distribution(eg,diameter)ofthesamplec.Modelfittingprocedured.ModelselectionxxxxxxxxxPage301VM0009,Version3.0SectoralScope14MR#CategoryRequirementF-P1.aF-P1.bF-P2F-U1F-U2F-U3G-P2G-U1G-U2MR.95DescriptionoftheMonitoringPlanTheestimatedcarbonstock,standarderrorofthetotalforeachstock,andthesamplesizeforeachstratumintheareaselected.xxxxxxxxxMR.96DescriptionoftheMonitoringPlanLogexportmonitoringrecordsandstandardoperatingprocedureintheprojectarea,ifthereiscommercialharvestintheprojectscenario.xxxxxxxxxMR.97DescriptionoftheMonitoringPlanDeviationsfromthemeasurementmethodssetoutinAppendixBorthemonitoringplan,percurrentVCSrequirement.xxxxxxxxxMR.98DescriptionoftheMonitoringPlanThefrequencyofmonitoringforeachplotforallplots–allplotsshouldbemeasuredforthefirstverification.Allleakageplotsshouldbemeasuredeveryverification,andallproxyandprojectaccountingareaplotsatleasteveryfiveyears,orafterasignificanteventthatchangesstocks.xxxxxxxxxMR.99SourcesofAllometryAlistofallselectedallometricequationsusedtoestimatebiomassfortreesandnon-trees.xxxxxxxxxMR.100SourcesofAllometryForeachselectedallometricequation,alistofspeciestowhichitisbeingappliedandtheproportionofthetotalcarbonstockspredictedbytheequation.xxxxxxxxxMR.101SourcesofAllometryForeachselectedallometricequation,indicationofwhenitwasfirstemployedtoestimatecarbonstocksintheprojectarea(monitoringperiodnumberandyearofmonitoringevent).xxxxxxxxxMR.102SourcesofAllometryForeachselectedallometricequation,indicationofwhetherwasvalidatedpersections9.3.1.1or9.3.1.2.xxxxxxxxxMR.103SourcesofAllometryDocumentationofthesourceofeachselectedallometricequationandjustificationfortheirapplicabilitytotheprojectareaconsideringclimatic,edaphic,geographicalandtaxonomicsimilaritiesbetweentheprojectlocationandthelocationinwhichtheequationwasderived.xxxxxxxxxPage302VM0009,Version3.0SectoralScope14MR#CategoryRequirementF-P1.aF-P1.bF-P2F-U1F-U2F-U3G-P2G-U1G-U2MR.104ValidatingPreviouslyDevelopedAllometryAlistofallometricequationsvalidatedbydestructivesampling.xxxxxxxxxMR.105ValidatingPreviouslyDevelopedAllometryForeach,thenumberoftrees(ornon-trees)destructivelysampledandthelocationwherethemeasurementweremaderelativetotheprojectarea.xxxxxxxxxMR.106ValidatingPreviouslyDevelopedAllometryAfieldprotocolusedtomeasuredestructivelysampledtrees(ornon-trees).xxxxxxxxxMR.107ValidatingPreviouslyDevelopedAllometryJustificationthatthefieldprotocolforthedestructivemeasurementmethodconservativelyestimatesbiomass.xxxxxxxxxMR.108ValidatingPreviouslyDevelopedAllometryForeachallometricequationinthelist,afigureshowingallthedescriptivemeasurementsofbiomasscomparedtopredictedvaluesfromitsselectedallometricequation.xxxxxxxxxMR.109ValidatingNewlyDevelopedAllometryAlistofallometricequationscrossvalidated.xxxxxxxxxMR.110ValidatingNewlyDevelopedAllometryForeach,thenumberoftrees(ornon-trees)destructivelysampledtobuildtheequationandthelocationwherethemeasurementsweremaderelativetotheprojectarea.xxxxxxxxxPage303VM0009,Version3.0SectoralScope14MR#CategoryRequirementF-P1.aF-P1.bF-P2F-U1F-U2F-U3G-P2G-U1G-U2MR.111ValidatingNewlyDevelopedAllometryAfieldprotocolusedtomeasuretrees(ornon-trees)whendevelopingtheequation.xxxxxxxxxMR.112ValidatingNewlyDevelopedAllometryJustificationthatthefieldprotocolforthemeasurementmethodtobuildtheequationconservativelyestimatesbiomass.xxxxxxxxxMR.113ValidatingNewlyDevelopedAllometryForeachallometricequationinthelist,thevalueofE.xxxxxxxxxPage304VM0009,Version3.0SectoralScope14DOCUMENTHISTORYVersionDateCommentv1.011Feb2011Initialversionreleasedv1.110Nov2011Clarificationsweremadetothesoilcarbonlossmodelinsection6.5.Specifically,updates(alleffectiveonissuedate)weremadeto:1.Clarifythelambdavalueinsection6.5.2.2.Clarifytheproceduresforsoilsamplinginsection6.5.3.v2.026Oct2012Revisionsweremadetothemethodologytoaccommodateavarietyofbaselinedeforestationscenarios.ThemethodologynowquantifiesGHGremovalsfromavoidingplanneddeforestationandunplanneddeforestationinboththemosaicandfrontierconfigurations.Endlandusecarbonstocksarebasedonaproxyarea.Thedecayofcarbonfromthebelowgroundbiomass,deadwood,andharvestedwoodproductspoolshavebeenupdatedtodecayovertimeandmaynotbeassumedtobeimmediatelyreleased.v2.113Dec2012AcorrectionwasmadetothemethodologytoinsertEquation[F.9]toAppendixFwhichwasalsoreferencedinsection6.18,becausetheequationwasinadvertentlyomitted.v3.06Jun20141.AvoidedConversionofGrasslandsandShrublands(ACoGS)wasaddedasaneligibleprojecttypeunderthemethodology.2.ClarificationwasprovidedforbaselinetypeF-P1bydividingitintobaselinetypesF-P1.aandF-P1.b.Page305

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱