VM0006-Mosaic和景观规模降排项目碳核算方法学VIP专享VIP免费

VCS Methodology
VM0006
Methodology for Carbon Accounting for Mosaic
and Landscape-scale REDD Projects
Version 2.2
17 March 2017
Sectoral Scope 14
VM0006, Version 2.2
Sectoral Scope 14
Page 2
Carbon Accounting for Mosaic and
Landscape-Scale REDD Projects
VM0006, Version 2.2
Sectoral Scope 14
Page 3
Table of Contents
SOURCES ............................................................................................................................................. 5
SUMMARY DESCRIPTION OF THE METHODOLOGY ....................................................................... 6
DEFINITIONS AND ACRONYMS .......................................................................................................... 7
3.1 Definitions Regarding Project Boundary ............................................................................................ 7
3.2 Definitions Regarding Classification, Stratification and Transition of Land Use and Land Cover ..... 8
3.3 Other Definitions ................................................................................................................................. 9
3.4 Acronyms ......................................................................................................................................... 10
APPLICABILITY CONDITIONS ........................................................................................................... 11
4.1 General Applicability Conditions ...................................................................................................... 11
4.2 Applicability Conditions for Optional Activities ................................................................................. 12
PROJECT BOUNDARY ....................................................................................................................... 15
5.1 Gases ............................................................................................................................................... 15
5.2 Carbon Pools .................................................................................................................................... 17
5.3 Spatial Boundaries ........................................................................................................................... 18
PROCEDURE FOR DETERMINING THE BASELINE SCENARIO .................................................... 18
PROCEDURE FOR DEMONSTRATING ADDITIONALITY ................................................................ 18
QUANTIFICATION OF GHG EMISSION REDUCTIONS AND REMOVALS ...................................... 19
8.1 Baseline Emissions for Projects ....................................................................................................... 19
8.2 Project Emissions ............................................................................................................................. 59
8.3 Leakage ............................................................................................................................................ 83
8.4 Summary of GHG Emission Reduction and/or Removals ............................................................... 99
MONITORING .................................................................................................................................... 108
9.1 Data and Parameters Available at Validation ................................................................................ 108
9.2 Data and Parameters Monitored .................................................................................................... 112
VCSMethodologyVM0006MethodologyforCarbonAccountingforMosaicandLandscape-scaleREDDProjectsVersion2.217March2017SectoralScope14VM0006,Version2.2SectoralScope14Page2CarbonAccountingforMosaicandLandscape-ScaleREDDProjectsVM0006,Version2.2SectoralScope14Page3TableofContentsSOURCES.............................................................................................................................................5SUMMARYDESCRIPTIONOFTHEMETHODOLOGY.......................................................................6DEFINITIONSANDACRONYMS..........................................................................................................73.1DefinitionsRegardingProjectBoundary............................................................................................73.2DefinitionsRegardingClassification,StratificationandTransitionofLandUseandLandCover.....83.3OtherDefinitions.................................................................................................................................93.4Acronyms.........................................................................................................................................10APPLICABILITYCONDITIONS...........................................................................................................114.1GeneralApplicabilityConditions......................................................................................................114.2ApplicabilityConditionsforOptionalActivities.................................................................................12PROJECTBOUNDARY.......................................................................................................................155.1Gases...............................................................................................................................................155.2CarbonPools....................................................................................................................................175.3SpatialBoundaries...........................................................................................................................18PROCEDUREFORDETERMININGTHEBASELINESCENARIO....................................................18PROCEDUREFORDEMONSTRATINGADDITIONALITY................................................................18QUANTIFICATIONOFGHGEMISSIONREDUCTIONSANDREMOVALS......................................198.1BaselineEmissionsforProjects.......................................................................................................198.2ProjectEmissions.............................................................................................................................598.3Leakage............................................................................................................................................838.4SummaryofGHGEmissionReductionand/orRemovals...............................................................99MONITORING....................................................................................................................................1089.1DataandParametersAvailableatValidation................................................................................1089.2DataandParametersMonitored....................................................................................................112VM0006,Version2.2SectoralScope14Page49.3DescriptionoftheMonitoringProcedures......................................................................................133APPENDIX1:ADDITIONALGUIDANCE...............................................................................................1431.1GuidanceforSocialAssessments................................................................................................1431.2GuidanceforQualityAssuranceandQualityControl....................................................................144APPENDIX2:REFERENCES.................................................................................................................146APPENDIX3:DOCUMENTHISTORY....................................................................................................149VM0006,Version2.2SectoralScope14Page5SOURCESThismethodologyusesdifferentelementsfromseveralapprovedmethodologies,toolsandmodules.Morespecifically,thismethodologyisbasedonelementsfromthefollowingapprovedmethodologies:•CDMMethodology-ARACM0001Afforestationandreforestationofdegradedland.(Version01).•CDMMethodology-ARAM0002Restorationofdegradedlandsthroughafforestation/reforestation.(Version03).•CDMMethodology-ARAM0006Afforestation/Reforestationwithtreessupportedbyshrubsondegradedland.(Version02).•CDMMethodology–AMS.II.G.Energyefficiencymeasuresinthermalapplicationsofnon-renewablebiomass.(Version5).Thismethodologyalsoreferstothefollowingapprovedtoolsandmodules,andthelatestversionsofthesemustbeused:•CDMA/RMethodologicalToolEstimationofcarbonstocksandchangeincarbonstocksindeadwoodandlitterinA/RCDMprojectactivities.•CDMA/RMethodologicalTool03CalculationofthenumberofsampleplotsformeasurementswithinA/RCDMprojectactivities.•CDMA/RMethodologicalTool06Proceduretodeterminewhenaccountingofthesoilorganiccarbonpoolmaybeconservativelyneglected.•CDMA/RMethodologicalTool09EstimationofGHGemissionsrelatedtodisplacementofgrazingactivitiesinA/RCDMprojectactivity.•CDMToolToolfortestingsignificanceofGHGemissionsinA/RCDMprojectactivities.•VCSToolVT0001ToolforthedemonstrationandassessmentofadditionalityinVCSAgriculture,ForestryandOtherLandUse(AFOLU)projectactivities.•VCSToolToolforcalculatingdeforestationratesusingincompleteremotesensingimages1.Thismethodologyalsoreferstothefollowingapprovedguidelinesandrequirements,ofwhichthelatestversionshallbeused:•CDMAnnex23GuidelinesonconservativechoiceandapplicationofdefaultdatainestimationofthenetanthropogenicGHGremovalsbysinks.•VCSJurisdictionalandNestedREDD+(JNR)Requirements.1Atissuanceofthethismethodology,theVCSTool,Toolforcalculatingdeforestationratesusingincompleteremotesensingimages,iscurrentlyindevelopmentandisunavailableforuseinthismethodologyuntilitisapproved.VM0006,Version2.2SectoralScope14Page6•VCSProgramDefinitions.•VCSStandard.SUMMARYDESCRIPTIONOFTHEMETHODOLOGYThismethodologyprovidesproceduresforquantifyingemissionreductionsand/orremovalsfromactivitiesaimedatreducingunplanneddeforestationandforestdegradationofthemosaicconfiguration.ThemethodologymaybecombinedwithImprovedForestManagement(IFM)andAfforestation,ReforestationandRevegetation(ARR)methodologiestoimplementalandscape-scaleReducedEmissionsfromDeforestationandForestDegradation(REDD+)projectthataddresseslandandresourceneedsofcommunitiesinaholisticway.Emissionreductions/removalsfromREDD+activitiesarecalculatedbytakingthedifferencebetween,ontheonehand,ex-postmonitoredchangesincarbonstocksintheprojectareas,andontheotherhandex-antechangesinbaselinecarbonstocks,ex-postmonitoredemissionsfromleakage,andex-postmonitoredemissionsources.Baselineemissionsfromunplanneddeforestationanddegradationintheprojectareaarecalculatedbasedonhistoricaldeforestationorforestdegradationratesinareferenceregionthatissimilartotheprojectarea.Underthismethodology,newprojectactivityinstancesreferredtoasdiscreteprojectparcelscanbeaddedafterthestartoftheprojectasperVCSrulesforgroupedprojects.Themainelementsofthemethodologyare:•Netemissionreductionsandremovals(NERs)fromavoideddeforestationandavoidedforestdegradationaretreatedseparately.Whenchangesinforestbiomasscannotbemeasuredwithsufficientaccuracy,emissionsreduction/removalsfromavoidedforestdegradationareexcluded.•Thequantificationofbaselinedeforestationanddegradationratesisbasedonfield-calibratedremotesensinganalysesoverahistoricalreferenceperiod.Morespecifically,thebaselineratesofdeforestationanddegradationarequantifiedbyclassifyingthediscretelandcoverclasses,orforeststrata,andanalyzingtransitionsfromoneclassorstratumtoadifferentclassorstratumovertime.•Leakageismonitoredandquantifiedusingaleakagebeltapproachforgeographicallyconstraineddrivers,andafactorapproachforgeographicallyunconstraineddrivers.Market-effectleakageisaccountedforeachprojectaccordingtothediscountfactorsprovidedintheVCSAFOLURequirements.•Increasesinforestcoverthroughnaturalregenerationareincludedinboththebaselineandprojectscenarios.Thisisachievedbyapplyingtheempiricallyobservedbaselineregenerationratesinthereferenceregiontotheprojectandbaselinescenarios.Thatis,thebaselinescenarioincludesbothprojecteddegradationanddeforestation,butalsoprojectedregenerationandreforestationinareasthatweredeforested.Similarly,theprojectscenariomustincludeallforestclasstransitions,whethertheyarepositiveornegative.VM0006,Version2.2SectoralScope14Page7•Thismethodologyallowssilviculturalactivitiesandenrichmentplantingactivitieswithindegradedpartsoftheforeststoacceleratethenaturalregeneration,promoteforestregeneration,andprovideopportunitiesforlocalemployment.Theaccountingoftheseactivitiesisbasedonameasuredincreaseinbiomassintheareainwhichsuchactivitieswereexecuted.•Projectswithmoreaccuratemonitoringandverificationarerewardedthroughadeductionmechanismbasedontheempiricallyobservedaccuracy.Theaccuracyisquantifiedbasedon(1)accuracyofremotesensingclassification,and(2)thevarianceofbiomassstockdensity.•Ex-ante,therelativereductionindeforestationratesinsidetheprojectareaiscalculatedbyestimatingtheexpectedeffectofaprojectactivityoneachdriver.Thesimplespatialmodelcalibratedpreviouslyisthenusedtodividethetotaldeforestationandforestdegradationratesintheprojectscenariointoforest-strataspecificrates.Subsequently,emissionsourcesfromprojectactivitiesarecalculated.•Procedurestomonitorandaccountforsecondaryemissionsfromincreasedriceproductionandintensificationoflivestockmanagementareincludedinthemethodology.NotethatwhereprojectsapplyingthismethodologyseekregistrationunderajurisdictionalREDD+program,theprojectmustfollowtherequirementsspecifiedinthelatestversionoftheVCSJurisdictionalandNestedREDD+(JNR)Requirements.AdditionalityandCreditingMethodAdditionalityProjectMethodCreditingBaselineProjectMethodDEFINITIONSANDACRONYMSThefollowingdefinitionsandacronymsapplyinthemethodology.3.1DefinitionsRegardingProjectBoundaryBaselineValidationPeriodTheperiodduringwhichtheex-antecalculationofnetGHGemissionsunderthebaselinescenarioisvalid.AsperVCSAFOLURequirements,baselinesarefixedfor10yearsinallprojectsafterwhichanewex-antebaselineneedstobecalculatedandvalidatedasperVCSrules.DiscreteProjectAreaParcelsAprojectareathatiscontiguousorconsistsofmultiplesmalleradjacentandnon-adjacentprojectareasthatareequivalenttoprojectactivityinstanceswhengroupingproceduresareapplied.VM0006,Version2.2SectoralScope14Page8HistoricalReferencePeriodAfixedtimeperiodduringwhichhistoricaldeforestationandforestdegradationisanalyzedinthereferenceregiontosettheforward-lookingbaseline.Atvalidation,thehistoricalreferenceperiodendsatthestartofthecreditingperiod.Oncetheprojecthasstarted,andabaselineupdateiscalculated,thehistoricalreferenceperiodendsatthetimeatwhichthebaselineisupdated.JNRAreaThegeographicarearegisteredunderthejurisdictionalREDD+program.LeakageAreaThesumofindividualleakagebeltswhichdonothavetobecontiguous.LeakageBeltThegeographicalareawhereleakageisexpectedaroundindividualdiscreteprojectareaparcels.Sinceleakagecanoccuronbothforestlandandnon-forestland,suchaswoodlandorgrassland,theleakagebeltmayincludeanyoftheselandtypes.ProjectAreaThegeographicalareawheretheprojectparticipantswillimplementactivitiestoreducedeforestationandforestdegradation.ReferenceRegionTheregionfromwhichhistoricalandcurrentdeforestationandforestdegradationquantitiesandtrendsareobtainedtopredictfuturedeforestationanddegradationquantitiesintheabsenceofprojectactivities(i.e.,baselinescenario).3.2DefinitionsRegardingClassification,StratificationandTransitionofLandUseandLandCoverForestRegenerationThepersistentincreaseofcanopycoverand/orcarbonstocksinanexistingforestduetonaturalsuccessionorhumanintervention,andfallsundertheIPCCGPG-LULCF2003landcategoryofforestremainingforest.ForestStrataAdivisionofforestlanduseandlandcover(LULC)classdeterminedbycarbonstockdensity,nativeforesttype,pastandfuturemanagement,landscapeposition,biophysicalproperties,andthedegreeofpastdisturbance.ForestStratificationThesub-divisionoftheLULCclassintonarrowerforeststrata.22TheminimummappingunitestablishedforLULCclassisalsoappliedtoforeststrata.VM0006,Version2.2SectoralScope14Page9IncreasedForestCoverThetransitionofnon-forestlandintoforestland,andencompassesbothreforestationandnaturalsuccession.LandTransitionAchangefromoneLULCclassorforeststratumintoanotherwithinonegeographicalarea.Thismethodologyconsiderssixmaincategoriesoftransitionsdefinedasdeforestation,forestdegradation,forestregeneration,increasedforestcover,naturalsuccessionandreforestation.LandUseandLandCover(LULC)ClassesAlandclassificationsystemthatishierarchicalinnature.Specificdefinitionsforcropland,grassland,settlement,wetland,andotherlandareprovidedintheIPCCChange’sGoodPracticeGuidanceforLandUse,Land-UseChangeandForestry2003report(IPCCGPG-LULCF2003).MinimumMappingUnitTheminimumunitusedforremotesensingandclassificationprocedures.Inthismethodology,aminimummappingunitof1hectare(ha)applies.NaturalSuccessionThenaturalincreaseinforestcoverswithoutanyhumanintervention.3.3OtherDefinitionsAgentsofDeforestationorForestDegradation(Agent,AgentofDeforestation,orAgentofDegradation)Thesocialgroup,communityorotherentityinvolvedindeforestationorforestdegradation.AssistedNaturalRegeneration(ANR).Human-inducedforestregenerationthroughsilviculturalactivitiesthatinduceoraccelerateincreaseinforestbiomass,ascomparedtonaturalregeneration.ANRsilviculturalactivitiesincludethinningtostimulatetreegrowth,removalofinvasivespecies,coppicing,andenrichmentplanting.CommercialTimberHarvesting.Theextractionoftimberwoodforfurthersaleonregionalorglobaltimbermarketsoutsideoftheprojectarea.CookStoveandFuelEfficiency(CFE)Activities.Activitiesthatresultinefficiencyimprovementsinthethermalapplicationofnon-renewablebiomass.Exampleofsuchactivitiesincludetheintroductionofhighefficiencybiomassfiredcook-stoves,ovens,dryersand/orimprovementofenergyefficiencyofexistingbiomassfiredcookstoves,ovens,ordryers.DriverofDeforestationandForestDegradation(Driver,DriverofDeforestation,DriverofForestDegradation)TheimmediateactivityexecutedbyagentsofdeforestationordegradationthatleadstoVM0006,Version2.2SectoralScope14Page10deforestation/degradation.SubsistenceFarmingAsystemoffarmingwherealloralmostalloftheproduceisusedtomeettheconsumptionneedsofthefarmfamilywithoutanysignificantsurplusforcommercialsale.3.4AcronymsAFOLUAgriculture,Forestry,andOtherLandUseARRAfforestation,Reforestation,andRevegetationCDMCleanDevelopmentMechanismCPConferenceofthePartiesCVCoefficientofVariationDBHDiameteratBreastHeight(1.3m)DFDeforestationDGForestDegradationDMDryMatterDNADesignatedNationalAuthorityEFEmissionFactorGHGGreenhouseGasGISGeographicInformationSystemGPG-LULUCFGoodPracticeGuideforLandUse,LandUseChangeandForestryGPSGlobalPositioningSystemGWPGlobalWarmingPotentialhaHectareIPCCIntergovernmentalPanelonClimateChangeLCLLowerConfidenceLimitMgMegagram=1metrictonsMMUMinimumMappingUnittCO2eMetricTonsofCarbonDioxideEquivalentsNERNetGreenhouseGasEmissionReductionPDProjectDocumentQA/QCQualityAssurance/QualityControlREDReducedEmissionsfromDeforestationREDDReducedEmissionsfromDeforestationandForestDegradationSOCSoilOrganicCarbonVCSVerifiedCarbonStandardVCUVerifiedCarbonUnitVM0006,Version2.2SectoralScope14Page11APPLICABILITYCONDITIONS4.1GeneralApplicabilityConditionsThefollowingapplicabilityconditionsapply.Notethatincasetheprojectareaconsistsofmultiplediscreteprojectareaparcels,eachdiscreteprojectareaparcelmustalsomeetallapplicabilityconditionsbelow.4.1.1ConditionsRelatedtoEligibleLandConditionsThismethodologyisapplicabletoareaswherelandpriortoprojectimplementationmeetsthefollowingconditions:•Landintheprojectareaconsistsofeitheronecontiguousareaormultiplediscreteprojectareaparcels,andmustmeetaninternationallyaccepteddefinitionofforest,suchasthosebasedonUNFCCChost-countrythresholdsorFAOdefinitions,andmustqualifyasforestforaminimumof10yearsbeforetheprojectstartdate.•TheprojectareamustbedeforestedordegradedinabsenceoftheREDDprojectactivityandthedeforestationanddegradationmustbemosaicinnatureasdescribedintheVCSAFOLURequirements.•Driversofdeforestationandforestdegradationmustfallintooneormoreofthefollowingcategories):Conversionofforestlandtocroplandforsubsistencefarming.Conversionofforestlandtosettlements.Conversionofforestlandtoinfrastructure,includingnewroads.Loggingoftimberforcommercialsale(eg,woodplanksorpolesforcommercialsale).Loggingoftimberforlocalenterprisesanddomesticuses.Woodcollectionforcommercialsaleoffuelwoodandcharcoal.Fuelwoodcollectionfordomesticandlocalindustrialenergyneeds(eg,cooking,homeheating,tobaccocuring,brickmaking).Cattlegrazinginforests.Extractionofunderstoryvegetation(eg,thatchgrasscollectionforroofandlivestockbeddingmaterials,shrubsandsmalltreesforstrawfences).Forestfirestotheextentthattheyarenotpartofnaturalecosystemdynamics(eg,forestfiresrelatedtohunting,honeycollection,intentionallandclearingonlandwithahighfuel-load).Noneofthedriverslistedabovemustbeplannedinnature.Ifdeforestationfromaspecificdriverisoccurringasaresultofplannedforestconversionactivities,thensuchadrivermustbeexcludedfromanalysis.VM0006,Version2.2SectoralScope14Page12•Thismethodologyisnotapplicabletoorganicsoilsorpeatland.4.1.2ConditionsRelatedtoEligibleProjectActivitiesThismethodologyisapplicabletoprojectsthatimplementoneormoreofthefollowingactivities:•Strengtheningofland-tenurestatusandforestgovernance.•Supportingthedevelopmentandimplementationofsustainableforestandlandusemanagementplans.•Demarcatingforest,tenureandownershipboundaries;promotingforestprotectionthroughpatrollingofforestsandforestboundaries;promotingsocialinclusionandstewardshipinlocalcommunities;facilitatingsocialfencingthroughcapacitybuilding;andcreatingmechanismstoalertlawenforcementauthoritiesofforesttrespassing.•Firepreventionandsuppressionactivitiesincludingtheconstructionoffirebreaks,reductionoffuelloads,prescribedburning,educationtominimizeintentionallystartedfires,supportforfirebrigades,watercisterns,firelookouts,andcommunicationsystems.•Reducingfuelwoodconsumptionand/orincreasingenergyefficiencybyintroducingfuel-efficientwoodstovesorbrickkilnsandcuringequipment.•Creationofalternativesourcesoffuelwoodthroughagroforestry,farmwoodlotsmanagementandintroduction/intensificationofotherrenewableandnon-fossilfuelbasedenergysources(suchassolar).•Sustainableintensificationofagricultureonexistingagriculturalland.•Developmentoflocalenterprisesbasedonsustainablyharvestednon-timberforestproducts(NTFPs)suchashoney,medicinalplants,etc.4.2ApplicabilityConditionsforOptionalActivities4.2.1ConditionsRelatedtoOptionalAssistedNaturalRegenerationActivitiesImplementingAssistedNaturalRegenerationActivities(ANR)activitiesasdescribedinSection8.2.5isoptional,butisonlyeligibleunderthismethodologyifallofthefollowingapplicabilityconditionsaremet:•ANRactivitiesmusttakeplaceondegradedlandonwhichnopriorANRactivitieshavetakenplace.However,areasthatwereforestatthestartoftheproject,butbecamedeforestedduringtheprojectcreditingperiodareeligibleaspertheprovisionsunderSection9.3.7.•ANRactivitiesconsistofthinning,removalofinvasivespecies,enrichmentplanting,andcoppicing.•IfharvestingtakesplaceorisplannedonareasonwhichANRactivitiestakeplace,thisareamustbeconsideredareaunderharvestasspecifiedinSection8.2.7.VM0006,Version2.2SectoralScope14Page13•Theareaonwhichemissionreductions/removalsfromANRactivitiesaregeneratedmustneverexceedthetotalareathatwouldhavebeendeforestedunderthebaselinescenario.Forexample,ifthebaselinescenarioincludes500haofdeforestationperyearofwhich100habecomesforestagainduetonaturalreforestationeveryyear,ANRactivitiesmayonlybeplannedfor400hainthefirstyear,800ha,inthesecondand1200hainthethird..NotethatthetotalsizeoftheareasonwhichANRactivitiesareplannedmustbespecifiedeitherintheprojectdescription(PD)orthemonitoringreportdependingonwhentheANRactivitiesareimplemented.Forexample,ifANRisimplementedinagivenareabetweenthefirstandsecondverification,thetotalsizeoftheareawhereANRistobeimplementedmustbereportedinthesecondmonitoringreportandtheexactlocationoftheANRactivitiesmustbeidentifiedatverification.4.2.2ConditionsRelatedtoOptionalCookstoveandFuelEfficiencyActivitiesImplementingcookstoveandfuelefficiency(CFE)activitiesasdescribedinSection8.2.6areoptional,butareonlyeligibleunderthismethodologyifallofthefollowingapplicabilityconditionsaremet:•CFEactivitiesmustbeimplementedbytheprojectproponentmanagingtheprojectareathatisbeingdegradedordeforested,andmustbetargetedtowardshouseholdsand/orlocalinstitutionsintheimmediatevicinityoftheprojectarea,•Fuelwoodusesuchascollectionoffuelwood,andcharcoalproductionmustbeidentifiedasoneofthedriversofdeforestationanddegradationintheprojectaccordingtotheprocedureunderthismethodology.•Theprojectforestsandleakagebeltsmustbethesourcefornon-renewablebiomassinthebaselinescenario.•Inthebaselinescenario,atleast50%ofthehouseholdsinthereferenceregionmustbeusingtraditionalcookstoveswhichcanbedemonstratedthroughappropriatelocalorregionalstatisticsonfuelwooduse.4.2.3ConditionsRelatedtoOptionalHarvestActivitiesintheProjectAreaImplementingharvestingintheprojectareaasdescribedinSection8.2.7isoptionalbutisonlyiseligibleunderthismethodologyonlyifthefollowingapplicabilityconditionsaremet:•TheharvestplanandharvestactivitiesmustfollowBestManagementPractice(BMP)guidanceofthecountryorjurisdiction,ifsuchBMPguidanceexists.•Theharvestplanmustdescribeprocedurestoprotectsoil,waterandresidualtreesintheharvestareaandprovidedocumentationonthepresence/absenceofanythreatenedorendangeredspeciesonthesite,potentialimpactsonspeciesandmitigationmeasuresthatwillbeemployed.VM0006,Version2.2SectoralScope14Page14•Theharvestplanmustdescribethebiophysicalsustainabilityoftheharvestingpractices.Atminimum,thebiophysicalsustainabilitymustbedemonstratedbyensuringthatthenetremovalofbiomassfromharvestingislessthanthenetincrementofthebiomassintheforest.Wherepossible,theprojectproponentshouldusecriteriaandindicatorssuchasfromInternationalTropicalTimberOrganization(ITTO)toassessthesustainabilityofharvestingpractices.Inaddition,itisrecommendedtoobtainsustainabilitycertificationfromthirdparties,suchastheForestStewardshipCouncilortheSustainableForestryInitiative.4.2.4ConditionsRelatedtoOptionalIntensificationofAnnualCropProductionSystemsasaLeakagePreventionActivityIntensificationofannualcropproductionsystemsasaleakagepreventionactivity(seeSection8.3.4.1)isoptional,butisonlyeligibleunderthismethodologyifallofthefollowingapplicabilityconditionsaremet:•Theagriculturalintensificationmeasuresmustbeimplementedonlyonlandthatislocatedwithintheleakagebelt.•Theagriculturalintensificationmeasuresmustbeimplementedonlandonalreadyunderannualcropproductionsystemsatthetimeofvalidation.•Theagriculturalintensificationmeasuresmustnotbeimplementedonorganicsoils.4.2.5ConditionsRelatedtoanOptionalIncreaseinFloodedRiceProductionSystemsasaLeakagePreventionActivityTheintroductionoffloodedriceproductionsystemsasaleakagepreventionactivity(see8.3.4.2)isoptional,butisonlyeligibleunderthismethodologyonlyifallofthefollowingapplicabilityconditionsaremet:•Floodedriceproductionsystemsmustbeimplementedonlandthatislocatedwithintheleakagebelt.•Floodedriceproductionsystemsmustbeimplementedonlandthatisalreadyunderannualcropproductionsystemsatthetimeofvalidation.•Thefloodedriceproductionsystemscannotbeimplementedonorganicsoils.•TheN2Oemissionsfromfloodedriceproductionsystemsmustbeinsignificant.4.2.6ConditionsRelatedtoanOptionalIncreaseinLivestockStockingRatesasaLeakagePreventionActivityIncreasinglivestockstockingratesasaleakagepreventionactivity(see8.3.4.3)isoptional,butisonlyeligibleunderthismethodologyifallofthefollowingapplicabilityconditionsaremet:•Increasedstockingmustonlyoccurwithintheleakagebeltsoftheprojectarea,notwithintheprojectboundary.VM0006,Version2.2SectoralScope14Page15•Iftheproposedactivityproducesforagetofeedlivestock,allforagemusthaveasimilarnutritionalvalueanddigestibility,andsupportonlyasinglelivestockgroupwithasinglemanuremanagementsystem.•Ifthestockingrateisincreasedforanimalsthatarealreadyinazero-grazingsystemoraremovedtoazero-grazingsystemthenthegrazingactivitythatismonitoredmustbetheproductionoffodder.•Increasedstockingratesmustonlyoccuronidentifiedforestland,identifiedcropland,identifiedgrassland,andunidentifiedland).•Increasedstockingratesmustnotoccuronsettlements,wetlands,orotherlandsasdefinedbytheGPGLULUCF(i.e.,baresoil,rock,ice,andallunmanagedlandareasthatdonotfallintocategoryofforestland,cropland,grassland,settlementsorwetlands).PROJECTBOUNDARY5.1GasesThismethodologyrequiresaccountingofallpotentialemissionsofCO2,N2OandCH4fromsourcesnotrelatedtochangesincarbonpools,henceforwardreferredtoasemissionsources(Table1).InsignificantemissionsourcesmaybeexcludedaccordingtotheVCSrulesifinsignificancecanbedemonstratedafterusingthelatestversionofCDMToolfortestingsignificanceofGHGemissionsinEB31Appendix16.Table1:GHGemissionsfromsourcesnotrelatedtochangesincarbonpools(emissionsources)tobeincludedintheGHGassessment.SourceGasInclude?Justification/ExplanationBaselineBaselineDeforestationandForestDegradationCO2OptionalEmissionsarerelatedtochangesincarbonpools.IncludeonlywhenthedegradationhasnotbeenincludedintheestimationofchangesincarbonpoolsandifCFEactivitiesareimplemented.CH4OptionalConservativelyomittedexceptwhenCFEactivitiesareimplemented.N2OOptionalN2OemissionsfromburningwoodybiomassareassumednegligibleandconservativelyexcludedexceptwhenCFEactivitiesareimplemented.ProjectCookstoveandFuelEfficiency(CFE)activitiesCO2OptionalEmissionsarealreadyincludedinthechangesofcarbonpools.Includeonlywhenthedegradationhasnotbeenincludedintheestimationofchangesincarbonpools.CH4YesCH4emissionsofburningwoodybiomassinCFEactivitiesaresignificant.VM0006,Version2.2SectoralScope14Page16N2OYesN2OemissionsofburningwoodybiomassinCFEactivitiesaresignificant.BiomassburningfromunplannedlargeandsmallscalefiresCO2NoEmissionsarealreadyincludedinthechangesofcarbonpoolsCH4NoCH4emissionsofburningwoodybiomassfromunplannedfiresareinsignificant.Ifthefiresarecatastrophic,CH4emissionsmustbeestimatedanddemonstratednegligibleorotherwiseaccountedfor.N2ONoN2Oemissionsofburningwoodybiomassfromunplannedfiresareinsignificant,unlessfiresarecatastrophic,N2Oemissionsmustbeestimatedanddemonstratednegligible,orotherwiseaccountedfor.FossilfuelusedduringharvestingCO2NoEmissionsfromfossilfuelcombustionisconsideredde-minimisforREDD.CH4NoInsignificantN2ONoInsignificantRemovalofwoodybiomassforfirepreventionandsuppressionactivitiesCO2YesEmissionsrelatedtochangesincarbonpoolsaretakenintoaccountCH4YesCH4emissionsfromremovalofwoodybiomassaresignificantwhenprescribedburningisusedtocleartheland.N2ONoN2Oemissionsfromburningwoodybiomassareassumednegligibleandconservativelyexcluded.Removalofwoodybiomassduringassistednaturalregeneration(ANR)activitiesCO2YesEmissionsrelatedtochangesincarbonpoolsaretakenintoaccountCH4YesCH4emissionsfromremovalofwoodybiomassaresignificantwhenfireisusedinpreparingthelandforANRactivitiesN2ONoN2OemissionsfromburningwoodybiomassduringANRactivitiesareassumednegligibleandconservativelyexcluded.FertilizerusedduringenrichmentplantingforassistingnaturalregenerationCO2NoAssumednegligibleCH4NoAssumednegligibleN2ONoAssumednegligibleperVCSguidanceIncreasedareaofCO2NoAssumednegligibleVM0006,Version2.2SectoralScope14Page17riceproductionsystemsCH4YesCH4emissionsfromricecroppingsystemsaresignificantN2ONoAssumednegligibleperVCSguidanceIncreasedfertilizeruseCO2NoNotapplicableCH4NoNotapplicableN2ONoN2OemissionsrelatedtoincreasedfertilizerusearedeminimisIncreasedlivestockstockingratesCO2NoNotapplicableCH4YesCH4emissionsrelatedtoincreasesinlivestockstockingratesaresignificantN2OYesN2Oemissionsrelatedtoincreasesinlivestockstockingratesaresignificant5.2CarbonPoolsTable2summarizesthecarbonpoolsthatmustbeincludedinprojectsfollowingthismethodology.Table2:SelectedCarbonPoolsCarbonPoolIncluded?Justification/ExplanationofChoiceAbovegroundtreebiomassYesMajorcarbonpoolaffectedbyprojectactivitiesAbovegroundnon-treebiomassYes/OptionalExpectedtoincreasefromprojectactivities.Mustbeincludedwhenthelandcoverunderthebaselinescenarioisperennialtreecrop.Maybeexcludedwhenbaselinelandcoverisannualcroporpasturegrass.BelowgroundbiomassOptionalMajorcarbonpoolaffectedbyprojectactivities.Maybeconservativelyexcluded.DeadwoodOptionalMajorcarbonpoolaffectedbyprojectactivities.Maybeconservativelyexcluded.Ifincludedeitherorbothofstandingorlyingdeadwoodmaybeincluded.LitterNoExcludedasperVCSAFOLURequirements.SoilorganiccarbonOptionalConservativetoexcludesincethispoolisexpectedtodecreaseunderthebaselinescenario.However,maybeonlyincludedperVCSAFOLURequirementsontheconditionthatthelandcoverunderthebaselinescenarioiscomprisedofannualcroppingsystems.WoodproductsYesMajorcarbonpoolaffectedbyprojectactivitiesVM0006,Version2.2SectoralScope14Page185.3SpatialBoundariesThespatialboundariesof(1)theprojectarea,(2)theleakageareaand(3)thereferenceregionortheJNRAreaifaprojectisnestedwithinajurisdictionalREDD+program.ThespatialboundarymustbeunambiguouslydefinedinthePD.Projectproponentmustprovidedigital(vector-based)filesofthediscreteprojectareaparcelsinKeyholeMarkupLanguage(KML)fileformatoranyotherformatrequiredbyVCSStandard.Theprojectareamaybecontiguousorconsistofmultipleadjacentornon-adjacentparcelsi.e.,discreteprojectareaparcel.Aleakagebeltforeachdiscreteprojectareaparcelmustbedefined,ifapplicable.Theleakageareaisthesumoftheindividualleakagebelts.Thereferenceregionexcludestheprojectandleakageareas.Therefore,asnewprojectandleakageareasaredefinedoverthecourseoftheprojectcreditingperiodasnewprojectactivityinstances(i.e.,discreteprojectareaparcels)areadded,projectandleakageareasmustbeexcludedfromthereferenceregionpolygon.PROCEDUREFORDETERMININGTHEBASELINESCENARIOUnderthismethodology,themostplausiblebaselinescenarioforaprojectistheexistingorhistoricalchangesincarbonstocksinthecarbonpoolswithintheprojectboundary.ThisbaselinescenarioisconsistentwithscenarioidentifiedintheCDMModalitiesandProceduresforafforestationandreforestation,projectactivities(Decision5/CMP.1),paragraph22,option(a):Existingorhistorical,asapplicable,changesincarbonstocksinthecarbonpoolswithintheprojectboundary.Thisoptionwasselectedbecauseunderthemosaictypologyofdeforestation,thehistoricalchangesinland-usearerepresentativeforthemostlikelyfuturechangesinland-use.Themostappropriatefuturescenarioisthathistoricalrates,changeinrate,anddynamicsofdeforestationandforestdegradationwillcontinueinthefuture.ThenetGHGsourcesandsinksunderthebaselinescenariomustbeestimatedex-anteforeachyearofthecreditingperiod.Oncevalidated,thebaselineistobeusedforthecalculationofactualNERs.BaselinecalculationsremainvalidonlyforalimitedperiodoftimeandmustbeupdatedinaccordancewiththeVCSrulesonrenewalofbaselines.TheprocedureforupdatingthebaselineisspecifiedinSection9.3.9.PROCEDUREFORDEMONSTRATINGADDITIONALITYProjectsmustapplythelatestversionoftheVCSToolfortheDemonstrationandAssessmentofAdditionalityinVCSAgriculture,ForestryandOtherLandUse(AFOLU)ProjectActivitiestodemonstrateadditionality.VM0006,Version2.2SectoralScope14Page19QUANTIFICATIONOFGHGEMISSIONREDUCTIONSANDREMOVALS8.1BaselineEmissionsforProjects8.1.1SelectSpatialBoundariesThisstepincludesthedemarcationoftheprojectareaandthereferenceregion.NotethatthedemarcationoftheleakageareaisincludedinSection8.3.2.2.8.1.1.1DescribeSpatialBoundariesoftheDiscreteProjectAreaParcelsTheprojectproponentmustprovidedigital(vector-based)filesofthediscreteprojectareaparcelsinKeyholeMarkupLanguage(KML)fileformatasrequiredbyVCSStandard.Acleardescriptionmustaccompanyeachfile,andthemetadatamustcontainallnecessaryprojectionreferencedata.Inaddition,thePDmustincludeatablecontainingthenameofeachdiscreteprojectareaparcel,thecentroidcoordinate(latitudeandlongitudeusingaWGS1984datum),thetotallandareainhectares(ha),detailsoftenure/ownershipandtherelevantadministrativeunititbelongsto(county,province,municipality,prefecture,etc.).Newdiscreteprojectareaparcels(referredtoasnewprojectinstances)maybeintegratedintoanexistingprojectaftertheprojectstartsandmustbeverifiedforcrediting.8.1.1.2SelectaValidReferenceRegionAreferenceregionmustberepresentativeofthefuturetrajectoryoftheprojectareainabsenceoftheprojectactivities.Forareferenceregiontobefullyrepresentative,andselectedwithoutanybias,thefollowingnecessaryconditionsmustbemet:•Theminimumsizeofthereferenceregionexcludingtheprojectareaandleakageareamustbe250,000haorthesizeoftheprojectareaatthestartofthecreditingperiod,whicheverisgreater.Iftheentirecountryorautonomousterritoryislessthanthissize,thenthereferenceregionmustbeequaltotheentirecountryorthatterritory.Whenaprojectareaislocatedonanislandwhichissmallerthantherequiredreferenceregion,thenitissufficienttohavetheentireislandasthereferenceregion.•Theboundariesofthereferenceregionmustbeunbiasedandcoincidewithacombinationofnatural,geopolitical,satellitefootprint,and/orwatershedboundaries,orboundariesthatwerecreatedbyapplyingadistancebufferaroundthediscreteprojectparcels.Anaturalboundaryisaboundaryofanaturallyoccurringphenomenonsuchasariver,mountainrange,lake,ocean,orwatershed.Wherepossible,naturalboundariesthatcoincidewithadministrativeorjurisdictionalboundariessothatland-useandlandcoverrelatedpoliciesareconsistentacrossthereferenceareamustbeselected.•Theprojectproponentmustdemonstratethatthereferenceregiondoesnotcontainareaswhereagentsofdeforestationhaverestrictedaccess.Includemapswherethereferenceregionandtheprojectareahavebeenoverlaidwithmapsofprotectedareas,including:•Nationalparksthatareeffectivelyprotected.VM0006,Version2.2SectoralScope14Page20•Militarybasesorinstallations.•Areasunderconservationthatareeffectivelyprotected.•Areasunderaloggingoreconomiclandconcessionwhereaccessiseffectivelybeingrestricted.•Largeplantationsthatareeffectivelyprotected.•Thereferenceregionmustexcludeareaswhereplanneddeforestationactivitiestookplace.Itmustbedemonstratedthatplanneddeforestationareashavebeenexcludedfromthereferenceregionorproofofnon-existenceofsuchareaswithinthereferenceregionmustbeprovided.•Thereferenceregionmustexcludedeforestedareascausedbynatural(non-anthropogenic)large-scale,extraordinaryevents(e.g.geologicalandweatherimpactswhichareinfrequentbutsignificantintheirimpactonthelandscape).Suchareasareexcludedfromthereferenceregionsincethesearenotlikelytooccurwithintheprojectareaduringthecreditingperiod.•Theprojectproponentmustdemonstratethatthereferenceregioncontains,atminimum,15%forestcoveratthebeginningofthecreditingperiod,unlessthereferenceregionencompassesawholecountryorisland3.ThisconditionmustbeexplicitlycheckedusingtheclassificationthatisdevelopedunderSection8.1.2ofthismethodology.•TheprojectproponentmustcompareanumberofkeyvariablesbetweenthereferenceregionandprojectareaaccordingtotheproceduresoutlinedinTable3below.Areasinthepotentialreferenceregionwhereoneormoreofthesevariablesdifferfromtheprojectareaarenoteligibleandmustbeexcludedfromthereferenceregion.Theseconditionsaredesignedassafeguardsagainstbiasescausedbyarbitraryboundarydemarcation.However,itisimpossibletoprovideasufficientsetofrulestoavoidbiasunderallprojectcircumstances.Therefore,atvalidation,thevalidation/verificationbodymustdeterminethattheselectionofthereferenceregionistrulyunbiased.Thereferenceregionmayincludeprojectareaandleakagebeltsinitially,buttheprojectareaandleakagebeltsareexcludedfromthereferenceregionafterthestartofthecreditingperiod.Additionally,whenevernewinstancesofprojectareasandleakageareasthatwerepreviouslyincludedinthereferenceregionareaddedintotheexistingprojectarea,thenewaddedinstancesmustberemovedfromthereferenceregion.3Givenhistoricaldeforestation,thereferenceregionislikelytohaveasignificantlyhigherpercentageofforestcoveratthebeginningofthehistoricalreferenceperiod.VM0006,Version2.2SectoralScope14Page21Table3:Comparisonvariablestodemonstratesimilaritybetweenprojectareaandreferenceregion.CategoryVariableComparisonprocedureExplanationDriversofdeforestationDriversofdeforestationAlldriversthatwereidentifiedintheprojectareamustalsobepresentinthereferenceregion.Acomparisonoftheexistenceofeverydriverbetweentheprojectareaandthereferenceregionmustbecarriedout.Thesimilaritybetweentheprojectareaandthereferenceregiondriversmustbedocumentedandjustifiedwithrelevantevidence.Sincethereferenceregionwillbeusedtodeterminebaselinedeforestationanddegradationratesintheprojectarea,thedriversofdeforestationmustbesimilarinthereferenceareaandtheprojectarea.LandscapeconfigurationDistributionofnativeforesttypesTheproportionofeachforesttypewithinthereferenceregion(seeSection8.1.2.2)atthebeginningofthehistoricalreferenceperiodmustbewithin10%offoresttypeproportionswithintheprojectarea.Percentagesmustbecalculatedrelativetothetotalareaofforests,notthetotallandarea.Deforestationandland-usechangedynamicsarehighlydependentongeographicalconditions.Forexample,iftheprojectistoprotectmontaneforestatthetopofawatershedthenlowlandandvalleyforestsshouldnotbeusedasareferenceregion.ElevationTheproportionofareacontainedwithin500-melevationclassesofthereferenceregionmustbewithin10%oftheseelevationclassproportionsintheprojectarea.SlopeTheproportionofareacontainedwithin5%slopeclassesofthereferenceregionmustbewithin10%oftheseslopeclassproportionsintheprojectarea.Socio-economicandLand-tenurestatusTheland-tenuresystemprevalentinthereferenceThespecificlandtenuresystemimpactstherateofVM0006,Version2.2SectoralScope14Page22culturalconditionsregionmustbedemonstratedtobesimilartotheland-tenuresystemintheprojectareawithreferencetopeer-reviewedliterature,reports,orexpertopinion.Anydifferencesinlandtenuresystemsbetweentheprojectareaandreferenceregionmustnotaffectthedriversofdeforestationanddegradationortheoperationoftheagentsofdeforestationanddegradationlandusechanges,andmustthereforebesimilarbetweentheprojectareaandreferenceregion,especiallyintermsofhowthelandtenuresystemmayimpactaccessandmobilityoftheagentsorinfluencethedriversofdeforestationanddegradation.PoliciesandregulationsThereferenceregionmustbegovernedbyanadministrativeunitthathascomparableenforcedpolicies,regulationsandcapacitiesastheadministrativeunitoftheprojectarea.Differentgoverningbodiesmayhaveadifferentlegislativeframeworkorcapacityforenforcement.Ithastobedemonstratedthattheforestissimilarinthereferenceregionandprojectarea.DegreeofurbanizationProportionofurbanizedandagriculture-basedpopulationwithinthereferenceregionmustbewithin10%ofthisproportionintheprojectarea.Peoplelivinginurbanareashaveasignificantlydifferentrelationtoforestlandcomparedtopeoplethatareagriculture-based.VM0006,Version2.2SectoralScope14Page238.1.2AnalyzeHistoricalDeforestationandForestDegradationintheReferenceRegion8.1.2.1DescribeDataSourcesThequantificationofdeforestationandforestdegradationratesunderthismethodologyisbasedinpartonremotesensingandotherspatialdata.TheselectionofdatasourcesmustfollowChapter3A.2.4oftheIPCC2006GLAFOLU.Table4belowliststhedatathatarerequired.ThistablealsooutlinestheinformationaboutthesedatathatmustbedocumentedinthePD.Atleastthreeimagesofforestcoverarerequiredduringthehistoricalreferenceperiod,(1)atminimumoneimagefrom0-3yearbeforeprojectstartdate,(2)atminimumoneimagefrom4-9yearsbeforeprojectstartdate,and(3)atminimumoneimagefrom10-15yearsbeforeprojectstartdate.Noimagesolderthan15yearsmaybeusedforthehistoricalreferenceperiod.Table4:Informationtobereportedwithrespecttoremotesensingandotherspatialdataemployedforassessingdeforestationandforestdegradation.DataSourceMainUseforDataInformationNeededabouttheDataCollectedHightomediumresolution(≤30m)remotesensingdataarerequiredforatleastthreetimepoints:(1)atleastoneimagefrom0-3yearsbeforeprojectstartdate,(2)atleastoneimagefrom4-9yearsbeforeprojectstartdate,and(3)atleastoneimagefrom10-15yearsbeforeprojectstartdate.Noimagesolderthan15yearsmaybeusedforthehistoricalreferenceperiod.HistoricalanalysisofdeforestationandforestdegradationSourceTypeResolution(spatialandspectral)AcquisitiondateCoordinatesystemandpre-processingIfdifferentsourcesofremotesensingdataareused,aformalcomparisonofthesensorsshouldbeaddedtothemonitoringreporttoensureconsistency.ReadilyavailableLULCmapswhicharealreadyprocessedarecomplementaryTrainingofclassificationproceduresIndependentverificationoftheanalysisofhistoricalimagesMinimumMappingUnit(ha)DescriptionofmethodusedtoproducethesedataDescriptionsoftheLULCclassesand/orLULC-changecategoriesInformationonhowtheseclassesmaymatchwithIPCCclassesandcategoriesRecent(<5yr)highresolution(<5m)remotesensingdataisrequiredforatleastpartofthereferenceregionatatimepointcoincidingwithoneoftheTrainingofclassificationprocedures.Ground-truthingandcheckofaccuracySourceTypeResolution(spatial,spectral)AcquisitiondateCoordinatesystemandpre-VM0006,Version2.2SectoralScope14Page24medium-resolutionremotesensingimages.processingDirectfieldobservationsorvisuallyinterpretedlocationsfromremotesensingimagesarerequiredforcalibrationoftheclassificationandstratificationproceduresandvalidationofthecalibrationandclassificationaccuracy.Trainingofclassificationprocedures.Ground-truthingandcheckofaccuracyAcquisitiondateTypeofdatacoordinatesystemLocationofcoordinates8.1.2.2DefineLULCClassesandForestStrataTheultimategoalofaclassificationandstratificationsystemistopartitionananalysisarea,intoLULCclassesorforeststratathatarehomogeneousincarbonstockdensity,inacost-effectiveandpractically-feasibleway.TheexactnumberandtypeofLULCclassesandforeststratausedisproject-specificanddependentonlocalconditions.AnumberofiterationsbetweentheremotesensingimageanalysisandLULCclassandforeststratadefinitionsmaybenecessarybeforeanoptimalclassificationisattained.ThesameLULCclassificationandforeststratificationmustbedevelopedforandappliedtoallanalysisareas(i.e.referenceregion,projectareaandleakagearea)andcreditingperiodsinordertoavoidanyspatialortemporalbiasincarbonaccounting.Theresultofforeststratificationreflectsthecurrentconditionorstate,andnottheprocessofchangeorfutureevolutionofaspecificforeststratum.Adegradedforeststratumwillregenerateifdriversofdeforestationarerestricted.Incontrast,alow-density,openforestmaystayinalow-carbonstateduetopersistentbiophysicalconditionsandconstraints.Althoughtheirfutureevolutionwillbedifferent,thesetwoforestsystemsmaysharesimilarcarbonstockdensitiesforatime.AsounddefinitionofLULCclassesandforeststrataiscrucialforaccurateandconservativecarbonaccounting.TheprojectproponentmustdemonstratethattheLULCclassesandforeststrataidentifiedwillnotleadtosystematicoverestimationofcarbonlossesinthebaselineandthereforeoverallemissionreductions/removalsattributedtotheproject.ThisassessmentmustbedoneafterbiomassdensityvaluesareavailableforeachLULCclassorforeststratum,asdescribedinSection8.1.4.4.LULCclassificationandforeststratificationmustbeconductedforthewholeanalysisarea,whichistheunionofthereferenceregion,leakageareaandprojectarea,asfollows:•Include,atminimum,thesixIPCCLULCclasses(ForestLand,CropLand,Grassland,Wetlands,Settlements,andOtherLand)intheLULCclassdefinitions.ThedefinitionoftheseclassesmustbeconsistentwithChapter2oftheIPCCGPG-LULUCF2003.IncaseswherethecountryhasdefinedmorespecificLULCclassesthantheIPCCclasses,thesedefinitionsmustbeusediftheyareaccurateenoughforproject-specificclassification.•TheminimummappingunitforLULCclassesmustbelessthan1ha.VM0006,Version2.2SectoralScope14Page25•Toachievethegoalofdefiningclassesthatarehomogeneousincarbonstockdensity,theforestLULCclassmustbesub-dividedintoforeststrata.Forestlandisusuallyheterogeneousintermsoflocalclimate,soilcondition,forestcanopycover,andforesttype.Foreststratificationcanhelpdefinehomogeneousunitswithreducedvarianceintermsofcarbonstockdensity,andtherebyincreasethemeasurementprecisionwithoutincreasingcost,orreducethemeasurementcostwithoutreducingprecision.•Ifemissionsfromavoideddegradationareincluded,appropriateforeststratarepresentingregenerationstagesmustbeincludedaswell.Becauseemissionreductionsarediscountedbasedontheuncertaintyofthebiomassinventory,stratifyingforestmayleadtoincreasedemissionreductions.•Itisrecommendedthatforeststratificationbebasedonanassessmentofthekeyfactorsthatinfluencecarbonstocksintheincludedcarbonpoolssuchassoilfeatures,localclimate,landform(e.g.,elevation,slope,andaspect),foresttype,dominanttreespecies,soilerosionintensity,forestmanagement,regenerationstageandhumandegradationintensityusingaGISanalysisaugmentedwithforestsurveys.•Managedforestsmustbedividedintodifferentforeststrataaccordingtotheforestmanagementregimes,unlessthedifferencesinmanagementamongregimesdonotleadtosignificantdifferencesincarbondensityduringthebaselinevalidationperiod.•TheaccuracyofstratificationmapsmustbedeterminedusingtheproceduresdescribedinSection8.1.2.7•AllareasthatwillbesubjecttoANRactivitieswithintheprojectarea4mustbefurtherdividedintoforeststrataaccordingtothespecificsilviculturalmanagementactivitiesthatwillbeemployedontheseareas.TheprojectproponentmustpresentmapsofthestratifiedprojectareasinthePD.•Allareasthatwillbesubjecttoharvestactivitieswithintheprojectareamustbefurtherdividedintoforeststrataaccordingtotheharvestplan.TheprojectproponentmustpresentmapsofthestratifiedprojectareasinthePD.8.1.2.3DefineLandTransitionsbetweenLULCClasses/ForestStrataAlistoftheexpectedlandtransitionsmustbeincludedinthePDintheformofaLULCandforeststratatransitionmatrix.Landthatonlytemporarilytransitionsfromforesttonon-forestandtransitionsbacktoforestafterashortwhileisconsideredtemporarilyunstockedforestandmaynotbecountedtowardsthetotaldeforestationandincreasedforestcoverrates.Foreverydeforestationtransition,selectthemaximalperiodthatthe“from”foreststratumcanbeoutofforestcoverandistemporarilyunstocked.Useadefaultvalueoftwoyears,unlessproject-specific4ANRactivitiesarecarriedoutonlyinareasthatwouldotherwisebedeforestedinthebaselinescenariowhichisdifferentfromAfforestationandReforestationactivities.VM0006,Version2.2SectoralScope14Page26conditionsdemandadifferentperiod.Bydefinition,degradationisaprocessthatmusthavepersistedforatleast3years.Inotherwords,forestlandthattransitionsfromastratumwithalargercarbondensitystocktoastratumwithsmallercarbondensitystockcanonlybeconsidereddegradationifithaspersistedfor3years.8.1.2.4AnalyzeHistoricalLULCClassandForestStrataTransitionsThehistoricalratesofallLULCclassesandforeststratatransitionsmustbecalculatedontheunionofthereferenceregion,leakagearea,andprojectarea,basedonaremotesensinganalysisexecutedbytheprojectproponent.However,existingclassificationorstratificationmapscanbeusedif(1)theclassesorstratainthesemapscanbematchedtotheLULCclassandforeststratadefinitionsdevelopedaccordingtothismethodologyand(2)theaccuracyofthesemapsisquantifiedusingtheproceduresinSection8.1.2.7.AwiderangeofremotesensingproductsexistforLULCclassificationandforeststratificationbasedonoptical,multispectral,RADARorLiDARsources,andacquiredfromairborneorsatelliteplatforms.Themostappropriatedataproductisdependentonprojectconditionsandrequirements.Theanalysisoflandcoverchangemustbeperformedbyprocessingandanalyzingremotesensingdatainthreestepsdescribedinthefollowingsections:•Pre-processingofremotesensingdata.•LULCclassificationandforeststratification.•Accuracyassessmentanddiscountingfactordetermination.8.1.2.5Pre-processingofRemoteSensingDataPre-processingincludesgeometriccorrectionandhandlingimagedatalossduetocloudcover.•GeometriccorrectionensuresthatimagesinatimeseriesoverlayproperlytoeachotherandtootherGISmapsusedintheanalysis(i.e.forpost-classificationstratification).Theaveragelocationerrorbetweentwoimages(RMSE)mustbelessthanorequaltoonepixel.•Cloudsorcloudshadowsmustbemaskedoutandexcludedfromthecalculationofdeforestationrates.Themaximumallowablecloudcoveris≤20%forasingleimageor≤20%onaverageacrossimagepairsusedinthetransitionrateanalysis.•Aforestbenchmarkmapmustbegeneratedtoshowforestcoverstatusintheprojectandleakageareas.ThefinalLULCmapinthehistoricseriescanbeusedastheforestbenchmarkmap,howevermissingvalueswithintheprojectandleakageareasduetocloudandcloudshadowmustbefilledwithRSdataacquiredwithinthreeyearsbeforethestartofthecreditingperiodtobeeligible.Geographicareasforwhichnocloud-freeorcloud-shadow-freeimageryisavailablewithinthreeyearsoftheprojectstartmustbeexcludedfromtheprojectarea.ThesemayonlybeaddedbacktotheprojectareaatverificationfollowingtherulesofVM0006,Version2.2SectoralScope14Page27“AdditionsofNewProjectArea”setoutinSection9.3.•CalculationofGHGbenefitsintheprojectandleakageareasaftertheprojectstartmustincludeonlycloud-freeimagery.Whencloudsandcloudshadowsarepresent,calculationoftheGHGbenefitsfromtheseareasmustbepostponeduntilcloud-freeremotesensingdataisavailableinasubsequentmonitoringperiod.ThesetemporarilyhaltedNERsmaybeaddedtotheNERsgeneratedinthesubsequentmonitoringperiod.Thisisonlyallowedonareasforwhichtheforeststatuswasunambiguouslydemonstratedatthebeginningofthecreditingperiod(seepreviouspoint).Consultexpertsandliteratureforfurtheradviceonpre-processingtechniques.Dulyrecordallpre-processingstepsforlaterreporting.8.1.2.6LULCClassificationandForestStratificationLULCclassificationandforeststratificationmaybe(sub-)pixelbasedorsegment-based.Attributionofclassestopixelsorsegmentsmustbedoneusingwidelyacceptedmethodssuchasmaximumlikelihood,decisiontrees,orsupportvectormachines.Ancillarydatamaybeincludedtoimproveclassificationaccuracy.Typicalancillarydataincludesclimate,soil,elevation,slope,proximitytocertainbuiltornaturalfeatures(e.g.roads,settlements,orwaterbodies),andlandtenurestatus(e.g.protectedforest,loggingconcession,indigenousreserve,etc.).TheminimummappingunitforLULCclassificationandforeststratificationmustbesetaccordingtotheforestdefinitionemployedfortheproject,butmustbelessthan1ha(seeSection3.2).Ifemissionreductionsfromavoideddegradationareincluded,aforeststratificationmodelmustbeunambiguouslydefinedatvalidation.Theforeststratificationmodelmayuseinputdatathatincludesacombinationofopticalremotesensing,radarandLiDARmeasurements,aswellasancillarydatasuchastopographyorLULCclasses.Themodelitselfmayberule-based,regression-based,ormachine-learningbased.However,theparametersofthemodelmaynotbechangedaftervalidation(ie,theforeststratificationmodelitselfisfixeduntilthenextbaselineupdate).Inaddition,ifbiomassplotorbiomasscarbonstockdensityisusedduringthedevelopmentofaforeststratificationmodel,eithertodeveloparegressionmodelortoverifythestratificationmodel,thesedatamaynotbeusedforcalculatingthebiomassstockdensitiesandemissionfactorsofthestrata.8.1.2.7MapAccuracyAssessmentandDiscountingFactorDeterminationDifferentprocedurestodeterminediscountingfactorsforthebroadclassificationintoforesttypesorforest/non-forestlandandthestratificationofforestlandintodifferentcarbondensityclassesareimposed.DiscountingfactorforLULCclassification,𝒖𝒖𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄:TheaccuracybywhichbroadLULCclassescanbediscernedisusedtodiscountemissionreductionsand/orremovalsfromavoidingdeforestation.ThediscountingfactorsforLULCclassificationarefixeduntilthenextbaselineupdate.TheaccuracyassessmentofLULCclassificationmustbeconductedforallLULCmapsVM0006,Version2.2SectoralScope14Page28acrossthewholeanalysisarea,i.e.,theunionoftheprojectandleakageareasandthereferenceregion.TheaccuracymustbeassessedbycomparingpredictedLULCclassesforanumberofreferencelocationswithindependentlydeterminedLULCclasses.Referencelocationsmustbelocatedthroughoutthereferenceregion,leakagearea,andprojectarea.TheLULCclassesforthesereferencelocationsmustbeidentifiedusingfieldobservations,in-situmaps,remotesensingdata,and/orotherground-truthingdata.Atminimum50referencelocationsperLULCclassmustbeused.Iftheareaoftheclassexceeds500km2orthenumberofclassesismorethan12,then,atminimum,75-referencelocationsperclassmustbeused.5ThereferencelocationswithineachLULCclassmustbesystematicallydistributedtorepresentvaryingtopography,parcelsandothergeographicfeatures.Theaccuracyofhistoricimagesmaybeassessedusinghistoricmediumtohigh-resolutionimages,aerialphotographsorlocaltopographicmapsexistingatthetimewhenthehistoricimagewasacquired.Atvalidation,thehistoricperiodisrelativetothestartofthecreditingperiod.However,whenabaselineupdateoccurs,thehistoricperiodisrelativetothecurrentprojectyear,andmorehistoricaldatamaybecomeavailabletoconductanaccuracyassessmentatthattime.SeemonitoringSection9.3.2forprocedurestoapplyaftertheprojectstart.ThediscountingfactorfortheLULCclassificationisdeterminedinthreesteps:•Step1:DeterminetheaccuracyofLULCclassificationforeachmapbycreatingaconfusionmatrix.Reporttheoverallaccuracy,andthecommissionandomissionerrors(seeCongalton1991andPontius2002foranin-depthexplanationoftheseconcepts).•Step2:MultiplytheaccuracyofLULCclassificationfromstep1withafactorbasedonthesmallestaccuracyofallmaps(seeTable5below).IftheaccuracyofbroadLULCclassificationislessthan70%,theprojectisnoteligibleunderthismethodology.Table5.UncertaintydeductionfactorsforLULCclassificationasafunctionofaccuracyattained.AccuracyattainedSTEP2factor≥85%1.00≥80to<85%0.80≥75to<80%0.75≥70to<75%0.70<70%Projectisnoteligible5ThespecificationofthenumberofreferencelocationsisbasedonrecommendationsbyCongalton(1991),Hay(1979)andFenstermaker(1991).VM0006,Version2.2SectoralScope14Page29•Step3:MultiplythefactorfromStep2withafactorbasedonthenumberofimagesinthehistoricalreferenceperiodtoget𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,thetotaldiscountingfactorforavoidingdeforestationasindicatedinTable6,Anabsoluteminimumofthreeimagesisrequiredtoquantifythehistoricaldeforestationrate.6Table6.UncertaintydeductionfactorsforLULCclassificationasafunctionofnumberofimagesinhistoricalreferenceperiod.NumberofimagesinhistoricalreferenceperiodSTEP3factor1-2Projectisnoteligible30.90>31.00Theclassificationaccuracyofeverymapusedforverificationmustbegreaterthanthesmallestaccuracyobtainedduringthehistoricalreferenceperiod.The𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐factormustbefixedatvalidationuntilthenextbaselineupdate,evenwhentheclassificationaccuracyimprovesafterthestartoftheproject.Discountingfactorforforeststratification,𝒖𝒖𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔:Asforeststrataaredeterminedbytheircarboncontent,thefulluncertaintyofstratificationcanbeassessedinanunbiasedwaythroughthediscountingfactorforthecarbonstockdensityofthestratum,asexplainedinSection8.1.4.4.However,therearetwoimportantconditionsforthisstatementtobetrue:•Theplotsusedincalculatingtheuncertaintyofthecarbonstockdensitywerenotusedtodeveloptheforeststratificationmodel;and•Theplotsusedincalculatingtheuncertaintyarerandomlyselectedandrepresentalltimepointsthatarecovered.Whilethefirstiscoveredbytherequirementthatdifferentplotsmustbeusedforcreatingtheforeststratificationmodelanddeterminingthecarbonstockdensityanditsuncertainty,thesecondcanonlybefulfilledifbiomassplotdensitiesmeasuredandassessedatmultipletimesareusedinthecalculationofthecarbonstockdensityandtheassociateduncertaintyfollowingSection8.1.4.4.Sinceitisunlikelythataprojectwillhavehistoricalbiomassinventoriesavailable,themethodologyallowsusingbiomassinventoriescollectedatdifferenttimepointsaftertheprojectstartdatetoestimate𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,thediscountingfactorforforeststratification.Further,toincentivizeasoundmonitoringeffortbytheprojectproponent,thediscountingfactorforforeststratificationisdependentonthenumberoftimepointsavailableinbiomassinventories.Notethattheremustbeatleastoneyearinbetweentimepointsforbiomassinventories.Finally,itisallowedtoonlyusebiomassinventoriesthatarelocatedwithintheprojectareaonconditionsthattheseplotsdonotcauseanybiasandthattheseplotsarerepresentativeofthestratumand/orLULCofthereferenceregion.6Notethatwhenbaselinesareupdatedduringthecreditingperiod,asimilarproceduremustbeusedtoupdatebaselinedeforestationrates.Thehistoricalreferenceperiodalwaysendsatthetimeofthebaselineupdate.Therefore,graduallymoredatapointswillbecomeavailableduringthecreditingperiod,andeventuallyeliminatethisdiscounting.VM0006,Version2.2SectoralScope14Page30Table7.Thediscountingfactorforforeststratificationasafunctionofthenumberoftimepointsavailableinbiomassinventories.Numberoftimepointsavailableinbiomassinventories𝒖𝒖𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔10.75forex-ante;noteligibleforex-post20.7530.90>31.00Forexample,ifvalidationisdoneseparatefromverification,only1setofbiomassinventoriesisavailableatvalidation,therefore𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠mustbesetto0.75forex-antecalculations.Atfirstverification,theprojectproponentisrequiredtomeasureanadditionalsetofbiomassplotssothatatleast2timepointsofbiomassinventoriesareavailable.Section8.1.4.4explainshowtoupdatetheaveragecarbonstockdensityvaluesandtheuncertaintyassociatedwiththemwhenplotmeasurementsfrommultipletimesareavailable.Therefore,atfirstverification,𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠remains0.75accordingtothetableabove.Atsecondverification,theprojectproponenthasachoicetoeithernotmeasureadditionalplotsandkeep𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠at0.75,ormeasureathirdsetofbiomassinventoriesanduse0.9as𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.Incontrastto𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠isnotfixedatvalidationandmaybeupdatedatverification8.1.2.8SummarizeallHistoricalLandTransitionsForeverypairofsubsequentimagesinthehistoricalreferenceperiod,calculatetheareaofeachlandtransitionandreportinaLULCandforeststratatransitionmatrix.Notethatfordeforestation,landsshouldhavebeenwithoutforestcoverforlongerthantheperioddefinedastemporarilyun-stocked.Likewise,fordegradation,landsmusthavebeeninthesmallercarbonstockdensitystratumforatleast3years.Applyanappropriatetemporalfiltertoensurethatonlylandthatmeetsthethree-yearconditionisdesignatedasdegradation.Inaddition,thePDmustcontainatablewhichcontainstheoverallareas(ha)ofdeforestation,increasedforestcover,forestdegradation,andregenerationforeachsub-period.Thesedatawillbeusedtoprojectfuturelandusechange(Section8.1.5.1).8.1.3AnalyzetheAgentsandDriversofDeforestationandDegradationDeforestationcanbetheresultofashort-termprocess(e.g.,forestclear-cutting)oragradualprogressiveprocessreferredtoasforestdegradation(seedefinitions).Therefore,itisoftenchallengingtodistinguishagents/driversofdeforestationfromagents/driversofforestdegradation.Asaconsequence,throughoutthisdocument,thetermagents/driversofdeforestationisusedforagents/driversofdeforestationandforestdegradation.Thedriversofdeforestationand/orforestdegradationmustbethosesetoutundertheapplicabilityconditions.ThePDmustcontainananalysisoftheagentsofdeforestationanddriverssimilartotheanalysisinAngelsenandKaimowitz(1999)andChomitzetal.(2006)byperformingfourVM0006,Version2.2SectoralScope14Page31steps,asdescribedbelow.8.1.3.1IdentifyAgentsandDriversofDeforestationandForestDegradationForeachofthetenincludedcategoriesofdriverscoveredbythismethodologythatarepresentinthereferenceregion,themainagentsmustbeidentified.Agentsofdeforestationmayincludesmall-scalefarmers,encroachers,hunters,ranchersandloggers.Insomecases,oneormoreofthelistedcategoriesofdriversneedtobesub-dividedintoseparateindividualdriversbasedonmainagentsactingonparticulardrivers.Aqualitativeanalysisofthebroaderunderlyingforcesdeterminingtheagents’motivationsfordeforestationandforestdegradationmustbeincluded.Whererelevanttoadriver,thefollowingaspectsmustbeconsideredinthisanalysis:•Populationpressure.•Poverty.•Warandothertypesofconflictsandtheireffects.•Changesinpoliciesrelatedtosubsidiesorpaymentsforenvironmentalservices•Propertyandlandtenureregime.•Marketforcesinfluencinglandandcommodityprices.8.1.3.2AssesstheRelativeImportanceoftheDriversofdeforestationTherelativecontributionofeachofthedriversofdeforestationtothetotalhistoricaldeforestationandforestdegradationisestimatedintwosteps:(1)estimatingtheabsoluteannualcarbonlossperdriver,and(2)estimatetherelativecontributionofeachdrivertothetotalcarbonlossfromdeforestationanddegradation.Sub-Step1:EstimatingtheabsoluteannualcarbonlossperdriverusingtheformulasinTable8,whicharebasedonGPG-LULUCF.VM0006,Version2.2SectoralScope14Page32Table8.FormulastocalculatetheabsoluteannualcarbonlossperdeforestationorforestdegradationdrivercategoryNo.DrivercategoryAnnualcarbonloss1Conversionofforestlandtocroplandforsubsistencefarming𝐿𝐿(1)=𝐶𝐶𝐶𝐶⋅��∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑖𝑖)𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖=1⋅�𝑂𝑂𝑂𝑂(𝑖𝑖)−𝑂𝑂𝑂𝑂(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)��[EQ1](Equation3.3.8fromGPGLULUCF)2Conversionofforestlandtosettlements𝐿𝐿(2)=𝐶𝐶𝐶𝐶⋅��∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑖𝑖)𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖=1⋅�𝑂𝑂𝑂𝑂(𝑖𝑖)−𝑂𝑂𝑂𝑂(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)��(Equation3.3.8fromGPGLULUCF)[EQ2]3Conversionofforestlandtoinfrastructuresuchasroads,cellphonetower,powerlines𝐿𝐿(3)=𝐶𝐶𝐶𝐶⋅��∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑖𝑖)𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖=1⋅�𝑂𝑂𝑂𝑂(𝑖𝑖)−𝑂𝑂𝑂𝑂(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)��[EQ3](AnalogoustoEquation[EQ2])4Loggingoftimberforcommercialsale𝐿𝐿(4)=𝐶𝐶𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏⋅𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤⋅𝐵𝐵𝐵𝐵𝐵𝐵2⋅𝐶𝐶𝐶𝐶[EQ4](Equation3.2.7fromGPG-LULUCF)5Loggingoftimberforlocalenterprises,anddomesticuses𝐿𝐿(5)=𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏⋅𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤⋅𝐵𝐵𝐵𝐵𝐵𝐵2⋅𝐶𝐶𝐶𝐶[EQ5](Equation3.2.7fromGPG-LULUCF)6Woodcollectionforcommercialon-saleoffuelwoodandcharcoal𝐿𝐿(6)=𝐶𝐶𝐶𝐶𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏⋅𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤⋅𝐵𝐵𝐵𝐵𝐵𝐵2⋅𝐶𝐶𝐶𝐶[EQ6](Equation3.2.8fromGPG-LULUCF)7Fuelwoodcollectionfordomesticandlocalindustrialenergyneeds𝐿𝐿(7)=𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏⋅𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤⋅𝐵𝐵𝐵𝐵𝐵𝐵2⋅𝐶𝐶𝐶𝐶[EQ7](Equation3.2.8fromGPG-LULUCF)8Grazing𝐿𝐿(8)=𝐶𝐶𝐶𝐶.𝐺𝐺𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏[EQ8](AdaptionofEquation1ofCDMA/RMethodologicalToolEstimationofGHGemissionsrelatedtodisplacementofgrazingactivitiesinA/RCDMprojectactivity)9Understoryvegetationcollection𝐿𝐿(9)=𝐶𝐶𝐶𝐶∙𝑉𝑉𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏[EQ9]VM0006,Version2.2SectoralScope14Page33(AnalogoustoEquation[EQ9])10Forestfires𝐿𝐿(10)=𝐶𝐶𝐶𝐶.∑∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑖𝑖)⋅𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖=1𝐸𝐸⋅𝑃𝑃⋅𝑂𝑂𝑂𝑂(𝑖𝑖)[EQ10](Equation3.2.9fromGPG-LULUCF)where:𝐿𝐿(𝑑𝑑)Annualcarbonlossassociatedwithdriver𝑑𝑑.[MgCyr-1]𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤Basicwooddensity,estimatedusingTableGPG-LULUCF3A.1.9.[MgDMm-3]𝐵𝐵𝐵𝐵𝐵𝐵2Biomassexpansionfactorforconvertingvolumesofextractedroundwoodtototalabovegroundbiomass(includingbark),estimatedusingGPG-LULUCFTable3A.1.10.[-]𝐶𝐶𝐶𝐶Carbonfractionofdrymatter(default=0.5).[MgC(MgDM)-1]𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛Numberofdeforestationandforestdegradationstrata.[-]∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑖𝑖)Annualforestareasintheprojectareaaffectedbydisturbancesfromforestfires.[hayr-1]𝐸𝐸Averagecombustionefficiencyoftheabovegroundtreebiomass.[-]𝑃𝑃Averageproportionofmassburntfromtheabovegroundtreebiomass;estimatefromGPG-LULUCFTable3A.1.13relativeto𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1.[-]𝑂𝑂𝑂𝑂(𝑖𝑖)Averageorganicmatterforforeststratum𝑖𝑖.[MgDMha-1]∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑖𝑖)Forestareaconvertedfromforeststratum𝑖𝑖tocroplandatthebeginningofthecreditingperiod.[hayr-1]𝑂𝑂𝑂𝑂(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)𝑂𝑂𝑂𝑂(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)and𝑂𝑂𝑂𝑂(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)Averageorganicmatterofcropland,settlement,developedinfrastructurerespectively;[MgDMha-1]∆𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑖𝑖)Averageforestareaconvertedfromforeststratum𝑖𝑖tosettlementland.[hayr-1]∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑖𝑖)=Averageforestareaconvertedfromforeststratum𝑖𝑖todevelopedinfrastructuressuchas,butnotlimitedto,roads,powertransmissionlines,phonelines,towersetc.[hayr-1]𝐶𝐶𝐶𝐶𝑏𝑏𝑏𝑏s𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒Annuallyextractedvolumeofharvestedtimber,roundwoodforcommercialon-sale.[m3yr-1]𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏Annuallyextractedvolumeoftimberfordomesticandlocaluse,roundwood.[m3yr-1]𝐶𝐶𝐶𝐶𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏Annualvolumeoffuelwoodgatheredforcommercialsaleandcharcoalproductioninthebaselinescenario.[m3yr-1]𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏Annualvolumeoffuelwoodgatheredfordomesticaswellaslocalenergyneedsinthebaselinescenario.[m3yr-1]VM0006,Version2.2SectoralScope14Page34𝐺𝐺𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏Totaldrymatterintakebygrazinganimalsunderthebaselinescenario.Calculatebymultiplyingthenumberofanimalstakingintoaccountdifferenttypesofgrazinganimals[MgDMyr-1]𝑉𝑉𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏Biomass(drymatter)ofunderstoryvegetationextractionbyprojectparticipantsunderthebaselinescenario.Calculatebymultiplyingthenumberofhouseholdsinvolvedinextractionofvegetationwiththeaverageannualextractionratebyhouseholdfordifferentvegetationtypes[MgDMyr-1]Sub-Step2:Estimatingtherelativecontributionofeachdrivertothetotalcarbonlossfromdegradationanddeforestation.Carbonlossesmustbeseparatedintolossesfromdeforestationandlossesfromdegradation.Incaseofconversionofforestlandtocroplandandsettlements,allofthecarbonlossisrelatedtodeforestation.However,driversthathaveamoregradualcarbondecrease(fuelwoodcollection,wildfires,andlogging)willfirstleadtoforestdegradation,andeventuallydeforestationwhenbiomassdensitybecomessmallerthanthearbitrarythresholdimpliedundertheforestdefinition.Forexample,alossof25Mgbiomassperhectareonawell-stockedforestof200Mgbiomassperhectaremay,accordingtotheforestdefinition,becategorizedasforestdegradation,whilethesamelossonapoorly-stockedforestof50Mgstandingbiomassperhectarecouldbedeforestation,becausethefinaltreecoverhasbecomesmallerthantheforestcoverthresholdintheforestdefinition.Thedefaultproportionofthecarbonlossfromfuelwoodcollection,wildfires,andloggingthatleadstodeforestationversusforestdegradationisestimateddependingonspecificconditionsoutlinedinTable9.Thedefaultproportioncanbemodifiedwhenjustificationforsuchchangescanbeprovided.Suchjustificationsmustbebasedonlocallyobservedscientificpublications.VM0006,Version2.2SectoralScope14Page35Table9.Proportionofcarbonlossleadingtodeforestationvs.forestdegradationfordifferentdrivers.Driver𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐷𝐷𝐷𝐷(𝑖𝑖)𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐷𝐷𝐷𝐷(𝑖𝑖)1.Conversionofforestlandtocropland100%0%2.Conversionofforestlandtosettlements100%0%3.Conversionofforestlandtoinfrastructure100%0%4a.Loggingforcommercialsalebyclearcutting7.100%0%4b.Loggingforcommercialsalebyselectioncutting(i.e.byemployingeitherindividualtreeselectionmethodand/orgroupselection).0%100%5a.Loggingfordomesticuseasclearcutting.100%0%5b.Loggingfordomesticusebyselectioncutting(i.e.byemployingeitherindividualtreeselectionmethodand/orgroupselection).0%100%6.Woodcollectionforcommercialon-saleoffuelwoodandcharcoal.5%95%7.Fuelwoodcollectionfordomesticandlocalindustrialenergyneeds5%95%8.Cattlegrazing(i.e.,in-forestgrazing)5%95%9.Understoryvegetationextraction(i.e.,thatchgrasscollectionforroofandlivestockbeddingmaterials,shrubsandsmalltreesforstrawfences)50%50%10a.Smallforestfirestotheextentthattheyarenotpartofnaturalecosystemdynamics0%100%10b.Largecrownfirestotheextentthattheyarenotpartofnaturalecosystemdynamics.100%0%Thetotalcarbonlossduetodeforestationversusforestdegradationcanbecalculatedasfollowing:∆𝐶𝐶𝐷𝐷𝐷𝐷=�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐷𝐷𝐷𝐷(𝑑𝑑)⋅𝐿𝐿(𝑑𝑑)𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑑𝑑=17Clear-cuttingisdefinedasremovingmorethan75%ofthetreesonanareathatisconsideredasforestintheforestdefinitionused.VM0006,Version2.2SectoralScope14Page36∆𝐶𝐶𝐷𝐷𝐷𝐷=�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐷𝐷𝐷𝐷(𝑑𝑑)⋅𝐿𝐿(𝑑𝑑)𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑑𝑑=1where:∆𝐶𝐶𝐷𝐷𝐷𝐷=Totalcarbonlossduetodeforestation.[MgCyr-1]∆𝐶𝐶𝐷𝐷𝐷𝐷=Totalcarbonlossduetodegradation.[MgCyr-1]𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛=Numberofdriversofdeforestationorforestdegradation.[-]𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐷𝐷𝐷𝐷(𝑑𝑑)and𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐷𝐷𝐷𝐷(𝑑𝑑)=Proportionofthegradualcarbonlossthatleadstodeforestationorforestdegradation,respectively,duetodriver𝑑𝑑.EstimateusingtheproceduredetailedinTable9.𝐿𝐿(𝑑𝑑)=Annualcarbonlossassociatedwithdriver𝑑𝑑.[MgCyr-1]TherelativeimportanceofthedeforestationandforestdegradationdriverscanbecalculatedbycombiningtheabsolutecarbonlossesfromTable8withthecontributionsfromTable9usingthefollowingformula(asanexampleforthefirstdriver):𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷(𝑖𝑖)=𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐷𝐷𝐷𝐷(𝑑𝑑)⋅𝐿𝐿(𝑑𝑑)∆𝐶𝐶𝐷𝐷𝐷𝐷𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷(𝑖𝑖)=𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐷𝐷𝐷𝐷(𝑖𝑖)⋅𝐿𝐿(𝑑𝑑)∆𝐶𝐶𝐷𝐷𝐷𝐷where:𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷(𝑑𝑑)=Relativecontributionofdriver𝑖𝑖tothetotaldeforestation.[-]𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷(𝑑𝑑)=Relativecontributionofdriver𝑖𝑖tothetotalforestdegradation.[-]𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐷𝐷𝐷𝐷(𝑑𝑑)=Proportionofthegradualcarbonlossthatleadstodeforestation.[-]𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐷𝐷𝐷𝐷(𝑑𝑑)=Proportionofthegradualcarbonlossthatleadstodegradation.[-]∆𝐶𝐶𝐷𝐷𝐷𝐷=Totalcarbonlossduetodeforestation.[MgCyr-1]∆𝐶𝐶𝐷𝐷𝐷𝐷=Totalcarbonlossduetodegradation.[MgCyr-1]𝐿𝐿(𝑑𝑑)=Annualcarbonlossassociatedwithdriver𝑑𝑑.[MgCyr-1]VM0006,Version2.2SectoralScope14Page378.1.3.3AnalyzeoftheMobilityofEachDeforestationandForestDegradationDriverThegeographicalextentofleakageis,inpart,dependentonthemobilityofeachagentofdeforestation.Itmustbedeterminedhowfareachagentofdeforestationiswillingtogotoacquiretheforestresourceorclearthelandforcropland,grasslandorsettlement.•Foreverydriverofdeforestation,reportthemainmodeoftransportationusedbythemainagentofdeforestationofthatdriver:onfoot,bike,scooter,motorcycle,car,ortruck.Substantiatethechoicewithdatafrom(lower-rankedoptionsmayonlybeusedifhigher-rankedoptionsarenotavailable)(1)socialappraisals,(2)recent(preferablylessthan10yearsold)peer-reviewedscientificliteratureconductedamonggroupssimilartotheagentsofdeforestationoftheproject,(3)consultationswithlocalsocio-culturalandanthropologicalexperts.•PresentatableoftheaveragespeedbywhicheachidentifiedmodeoftransportationcancrosseachoftheLULCclassesandforeststrataandroadcategories,suchastracks,seasonallyaccessiblesmallroads,andyear-roundaccessibletwo-laneroads.Notetheaveragespeedonlandwithrestrictedaccess,suchasnationalparks,as0.Substantiatethechoicewithdatafrom(lower-rankedoptionsmayonlybeusedifhigher-rankedoptionsarenotavailable)(1)socialappraisals,(2)recent(preferablylessthan10-yearold)peer-reviewedscientificliteratureconductedamonggroupssimilartotheagentsofdeforestationoftheproject,(3)consultationswithlocalsocio-culturalandanthropologicalexperts.•Driversthatarelessgeographicallyconstrainedwillstillbeconfinedtoa“sphereofinfluence”.Forexample,illegaltimberloggingactivitiesmayshiftoutsideofprojectboundary,possiblytooutsideofprovincialboundary,uponinceptionofREDDprojectactivity.Inthiscase,thesphereofinfluenceofthedriverisnational.However,forthepurposeofthismethodology,plannedtimberconcessions,mustnotbeconsideredwithin“sphereofinfluence”.8.1.3.4IdentifytheQuantitativeDrivingVariablesofDeforestationandForestDegradationForeachidentifieddriver,providepotentialspatialdrivingvariablesthatexplainthelocationoflandcoverchangearealsocalled“predisposingfactors”(DeJong,2007)(tobeusedinSection8.1.5.2).Theprojectproponentmustselectoneormoreofthefollowingvariablesthatpotentiallyexplainthelocationofdeforestationandforestdegradation.•Accesstoforests(suchasvicinitytoexistingroads,railroads,navigableriversandcoastallines).•Slope.•Aspect.•Proximitytomarkets.•Proximitytoindustrialfacilities(e.g.,sawmills,agriculturalproductsprocessingfacilities,etc.).•Proximitytoforestedges.•Proximitytosettlements.VM0006,Version2.2SectoralScope14Page38•Soilfertilityandrainfall.•Managementcategoryoftheland(e.g.,nationalpark,loggingconcession.indigenousreserve,etc.).Oncetheagentsanddriversofdeforestationhavebeenidentified,theprojectproponentmustre-assessthesimilaritybetweentheprojectareaandthereferenceregion,accordingtotheprocedureinSection8.1.1.2.Ifnecessary,adjusttheareaandlocationofthereferenceregiontoensurethatthesamedriversofdeforestationarepresentinboththereferenceregionandtheprojectarea.8.1.4DetermineEmissionFactorsforAllIncludedTransitionsTheprojectproponentmustdeveloptheemissionfactorsfollowingtherequirementsbelow.ForeachLULCclassorforeststratumthatcouldbesubjecttoatransitionasidentifiedinSection8.1.2.3,itisnecessarytodeterminetheaveragecarbonstockdensity,basedonsamplingplots.Plotsmaybeeitherpermanentortemporary,butthelocationoftheplotsmustbeknownandavailableatthetimeofverification.Alternatively,onnon-forestland,conservativedefaultsgatheredfromscientificliteraturemaybeusedtoquantifythecarbonstockdensity.Theapplicabilityofthesedefaultvaluesmustbeconfirmedbythevalidator.Thenumberofplotsandtheirlocationmustbedeterminedinastratifiedsamplingdesign.Thefollowingstepsaretobefollowed:•IdentifytheLULCclassesandforeststrataforwhichcarbonstocksaretobequantified.•Reviewexistingbiomassstockdensityandbiomassincrementdataforcomparisonwithfieldmeasurements.•DeterminethesamplesizeperLULCclassorforeststratum.•MeasurecarbondensitystocksofeachLULCclassorforeststratum.•Calculateemissionfactorsforeachlandtransitioncategory.8.1.4.1IdentifytheLULCClassesandForestStrataforwhichCarbonStocksaretobeQuantified.PresentatableoftheLULCclassesandforeststratathatarelikelytobesubjecttotransitionswithintheprojectareaoranticipatedleakageareabasedonthelandtransitionmatrix.8.1.4.2ReviewExistingDataofBiomassStockDensitiesandBiomassNetAnnualIncrementsReviewexistingdataonbiomassstockdensities:Forthepurposeofsamplingdesignandqualityassuranceofthemeasuredvalues,allexistingdataonbiomassstockdensitiesmustbereviewed.Sourcesthatmustbeconsultedinclude(lower-rankedoptionsmayonlybeusedifhigher-rankedoptionsarenotavailable):(1)peer-reviewedscientificliteratureconductedwithinthereferenceregion,(2)peer-reviewedscientificliteraturefromanareaecologicallysimilartothereferenceregion,(3)nonpeer-reviewedreportsorstudiesfromthereferenceregionorsimilarareas.SourcesthatcontainameasureofthevariationoftheVM0006,Version2.2SectoralScope14Page39values(range,standarddeviations,standarderrors,orcoefficientsofvariation)arespecificallyuseful,sincethesecanbeusedforpreliminarydeterminationofthenumberofsamplingplotsrequiredduringfieldsampling.Foreverydatasourceused,notethefollowingitems:•Methodology(fieldinventory,extrapolationfromsatelliteimagery,ecosystemmodel,orGISanalysis).•Numberofmeasurementplotsused.•Whetherallspeciesareincludedinthesampling.•TheminimumDBHofmeasuredtreesinthebiomassinventoryoranyotherrelevantthreshold.•Regioninwhichthesamplesweretaken.Thecarbonstockdensityonnon-forestlandmaybequantifiedusingconservativedefaultsgatheredfromscientificliterature.Theapplicabilityofthesedefaultvaluesmustbeconfirmedbythevalidator.ForprojectareasregisteredwithinaJNRareaandwherebiomassstockdatahasbeenregisteredunderthejurisdictionalREDD+programforthesameLULCclassandforeststrataasintheprojectarea,themostaccurateestimateswillbeused,subjecttoanyrequirementsspecifiedwithinthejurisdictionalREDD+program.Reviewexistingdataonnetannualincrementsofbiomass:WhereastheGHGbenefitsfromavoideddeforestationandavoidedforestdegradationarebasedonobservedtransitionsbetweenLULCclassesandforeststrata,theGHGbenefitsfromANRactivitiesarebaseddirectlyontheempiricallyobservedincreasesinbiomassstockdensities.Therefore,foraccurateex-anteestimates,allexistingdataonnetannualincrementsofbiomasscarbonstocksmustbereviewed.Sourcesthatmustbeconsultedinclude(lower-rankedoptionsmayonlybeusedifhigher-rankedoptionsarenotavailable):(1)valuesmeasuredbytheprojectproponentintheprojectareausingthemethodsusedforforestinventoriesdiscussedinthismethodology,(2)nationalorlocalgrowthcurvesandtablesthatareusuallyusedinnationalorlocalforestinventories,(3)valuesfrompeer-reviewedliterature,and(4)valuesfromIPCCGPG-LULUCF(2003)Table3A.1.5.8.1.4.3DeterminetheSamplingDesign,i.e.,Number,Location,andLayoutofPlotsThedeterminationofthesamplesize(numberofsamplingplots)requiredperLULCclassandforeststratathatareidentifiedin8.1.4.1isdependenton(1)therequiredprecisionofatleast15%ataconfidencelevelof95%and(2)theanticipatedvarianceinthespecificLULCclassandforeststrata.ExtrameasurementplotsmustbeinstalledwithintheANRandharvestareastoreliablyestimatetheincreaseincarbondensity.TheCDMtoolAR-AMTool03CalculationofthenumberofsampleplotsformeasurementswithinA/RCDMprojectactivitiesmaybeusedtodeterminethenumberofbiomasssampleplotsrequired.Furtherexplanationonhowtoselectthelayoutofsamplingplots(form,nesting,etc.)canbefoundintextbookssuchasHoover(2008).FormeasuringandmonitoringcarbondensityVM0006,Version2.2SectoralScope14Page40intheforeststrata,anetworkofpermanentortemporaryforestsamplingplotsmustbeestablished.Duetothesignificantanthropogenicinfluenceonnon-forestland,itisnotdeemedfeasibletoinstallpermanentsamplingplots.Therefore,theaveragecarbonstockdensityonnon-forestLULCclassesmustbeassessedusingnon-permanentsamplingplots.Alternatively,conservativedefaultsgatheredfromscientificliteraturemaybeusedtoquantifythecarbonstockdensityonnon-forestland.Theapplicabilityofthesedefaultvaluesmustbeconfirmedbythevalidator.WithinaLULCclassorforeststratum,thelocationofsampleplotsshouldbeselectedasrandomaspracticallyfeasible.However,incaseswhereaccesstotheforestlandischallenging,biomassplotslocatedalongaforesttransectsmaybeusedinsteadofastratifiedrandomsamplingdesignontheconditionthatallforestclassesandstrataarerepresentedinanunbiasedwayalongthetransect..Therandomizationmustbedoneex-antebyacomputerprogram.Thisisrequiredtoavoidsubjectivechoiceofplotlocations.Foreachsampleplot,recordtheobservedLULCclass,foresttype,andestimatedforestcanopyclosure.Notethatstratificationisusuallyaniterativeprocessinwhichthestratificationmodel–asdefinedinSection8.1.2.6-isadjustedbasedonbiomassinventoriesandthestratumofabiomassinventoryisguidedbythestratificationmodel.Toavoidbiasinthecalculationoftheuncertaintyofstratification,theplotsusedtodeveloptheforeststratificationmodelmustnotbeusedtocalculatetheuncertaintyofthecarbonstockdensityofaspecificstratum,asstipulatedinSection8.1.2.7.ThismethodologyallowsimplementingANRandharvestingactivitiesundercertainconditions(seeSection8.2.5).ThesampleplotsusedtocalculatetheplantemissionfactorsmustnotbelocatedwithinareasinwhichANRorharvestactivitiesareplanned.Thisrequirementisnecessarytopreventbiasinthecalculationofincreasesinforestbiomassfromnaturalregenerationanddecreasesinforestbiomassduetoharvesting.SummarizethesamplingframeworkfollowingtheguidanceofSection4.3.3.4ofGPGLULUCFinthePDandprovideamapandthecoordinatesofallsamplinglocations.8.1.4.4MeasureandCalculateCarbonStockDensityPlot-basedmeasurementsmustbeaggregatedwithintheLULCclassorforeststratumtheybelongto.•Ifdegradationisnotincluded,theLULCclassofaspecificbiomassplotmustbedeterminedbasedontheLULCmapthatisclosestintimetothetimeofmeasurementofthebiomassplot.Incasemultiplemeasurementsareavailableforonepermanentbiomassinventoryplot,onlythemostrecentvalueofthecarbonstockdensitymustbeused.•Ifdegradationisincluded,theaggregationsofnon-forestLULCclassesfollowtheproceduresoutlinedabove“ifdegradationisnotincluded”.However,biomassinventoryplotslocatedinforestareamustbeassignedtheappropriateforeststratumusingtheforeststratificationmodeldevelopedinSection8.1.2.6.Incasemultiplemeasurementsareavailableforonepermanentbiomassinventoryplot,allvaluesintimeofthecarbonstockdensitymustbeusedintheaggregationandusedtocalculatetheaverageanduncertaintymetrics.VM0006,Version2.2SectoralScope14Page41Thecarbonstockdensityfromsamplingplotsmustbekeptseparateforabovegroundlivebiomass,abovegrounddeadbiomass,belowgroundbiomass,andsoilorganiccarbon.Theabovegrounddeadplantcarbonstockdensitycanbecalculatedbysummingthebiomasscarbonstockdensityinthelyingdeadwoodandstandingdeadwoodcomponents.Likewise,theabovegroundliveplantcarbonstockdensitycanbecalculatedbysummingthebiomasscarbonstockdensityintheabovegroundtreeandabovegroundnon-treecomponents.𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝐷𝐷,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝-𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝑖𝑖,𝑝𝑝)=𝑂𝑂𝑂𝑂𝐿𝐿𝐿𝐿𝐿𝐿,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝-𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝑖𝑖,𝑝𝑝)+𝑂𝑂𝑂𝑂𝑆𝑆𝑆𝑆𝑆𝑆,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝-𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝑖𝑖,𝑝𝑝)[EQ15]𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝐴𝐴,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝-𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝑖𝑖,𝑝𝑝)=𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝐴𝐴,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝-𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝑖𝑖,𝑝𝑝)+𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝-𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝑖𝑖,𝑝𝑝)[EQ16]where:𝑂𝑂𝑂𝑂𝐿𝐿𝐿𝐿𝐿𝐿,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝-𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝑖𝑖,𝑝𝑝)=Lyingdeadwoodorganicmatterofplot𝑝𝑝withinLULCclassorforeststratum𝑖𝑖.[MgDMha-1]𝑂𝑂𝑂𝑂𝑆𝑆𝑆𝑆𝑆𝑆,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝-𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝑖𝑖,𝑝𝑝)=Standingdeadwoodorganicmatterofplot𝑝𝑝withinLULCclassorforeststratum𝑖𝑖.[MgDMha-1]𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝐴𝐴,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝-𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝑖𝑖,𝑝𝑝)=Abovegrounddeadtreeorganicmatterofplot𝑝𝑝withinLULCclassorforeststratum𝑖𝑖.[MgDMha-1]𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝐴𝐴,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝-𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝑖𝑖,𝑝𝑝)=Abovegroundliveorganicmatterofplot𝑝𝑝withinLULCclassorforeststratum𝑖𝑖.[MgDMha-1]𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝐴𝐴,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝-𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝑖𝑖,𝑝𝑝)=Abovegroundlivetreeorganicmatterofplot𝑝𝑝withinLULCclassorforeststratum𝑖𝑖.[MgDMha-1]𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝-𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝑖𝑖,𝑝𝑝)=Abovegroundlivenon-treeorganicmatterofplot𝑝𝑝withinLULCclassorforeststratum𝑖𝑖.[MgDMha-1]Inaddition,thefollowingsymbolsareusedinsubsequentequations,calculationsaswellasmonitoringtables:𝑂𝑂𝑂𝑂𝐵𝐵𝐵𝐵,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝-𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝑖𝑖,𝑝𝑝)=Belowgroundtreeorganicmatterofplot𝑝𝑝withinLULCclassorforeststratum𝑖𝑖.[MgDMha-1]𝑂𝑂𝑂𝑂𝑆𝑆𝑆𝑆𝑆𝑆,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝-𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝑖𝑖,𝑝𝑝)=Soilorganicmatterofplot𝑝𝑝withinLULCclassorforeststratum𝑖𝑖.[MgDMha-1]Fortheabovegroundlive(AGL),abovegrounddead(AGD),belowground(BG),andsoilorganicmatter(SOM)pools,theaveragestockdensitiesofstratum𝒊𝒊andassociatedstatisticsarecalculatedusingtheequationsbelow.The“o”subscriptindicatesapooloutofthepossiblepools(AGL,AGD,BG,orSOMcarbon).𝑂𝑂𝑂𝑂𝑜𝑜(𝑖𝑖)=𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�𝑂𝑂𝑂𝑂𝑜𝑜,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝-𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝑖𝑖,𝑝𝑝)�[EQ17]𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑂𝑂𝑂𝑂𝑜𝑜(𝑖𝑖)�=𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑂𝑂𝑂𝑂𝑜𝑜,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝-𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝑖𝑖,𝑝𝑝)�[EQ18]𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑂𝑂𝑂𝑂𝑜𝑜(𝑖𝑖)�=𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑂𝑂𝑂𝑂𝑜𝑜(𝑖𝑖)��𝑛𝑛𝑖𝑖[EQ19]VM0006,Version2.2SectoralScope14Page42𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻�𝑂𝑂𝑂𝑂𝑜𝑜(𝑖𝑖)�=𝑡𝑡0.95,𝑛𝑛−1⋅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑂𝑂𝑂𝑂𝑜𝑜(𝑖𝑖)�[EQ20]𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖)=�∑𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻�𝑂𝑂𝑂𝑂𝑜𝑜(𝑖𝑖)�2𝑜𝑜∑𝑂𝑂𝑂𝑂𝑜𝑜(𝑖𝑖)o[EQ21]𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖)=�1if𝐶𝐶𝐶𝐶(𝑖𝑖)≤0.15,1−𝐶𝐶𝐶𝐶(𝑖𝑖)if0.15<𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖)<1,0if𝐶𝐶𝐶𝐶(𝑖𝑖)≥1[EQ22]where:𝑂𝑂𝑂𝑂𝑜𝑜(𝑖𝑖)=AverageplantorganicmatterdensityofLULCclassorforeststratum𝑖𝑖inpool𝑜𝑜.[MgDMha-1]𝑂𝑂𝑂𝑂𝑜𝑜,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝-𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝑖𝑖,𝑝𝑝)=Totalbiomassstockdensityofplot𝑝𝑝withinLULCclassorforeststratum𝑖𝑖inpool𝑜𝑜.[MgDMha-1]𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑂𝑂𝑂𝑂𝑜𝑜(𝑖𝑖)�=Standarddeviationofthetotalplant-derivedorganicmatterdensityofLULCclassorforeststratum𝑖𝑖inpool𝑜𝑜.[MgDMha-1]𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑂𝑂𝑂𝑂𝑜𝑜(𝑖𝑖)�=Standarderroroftheaverageofthetotalplant-derivedorganicmatterdensityofLULCclassorforeststratum𝑖𝑖inpool𝑜𝑜.[MgDMha-1]𝑛𝑛𝑖𝑖=NumberofsamplingplotsofLULCclassorforeststratum𝑖𝑖inpool𝑜𝑜.[-]𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻�𝑂𝑂𝑂𝑂𝑜𝑜(𝑖𝑖)�=Half-widthoftheconfidenceintervalaroundtheaverageofthetotalplant-derivedorganicmatterdensityofLULCclassorforeststratum𝑖𝑖inpool𝑜𝑜.[MgDMha-1]𝑡𝑡0.95,𝑛𝑛−1=Valueoft-statistics(i.e.,fromt-table)at95%confidenceintervalandn-1degreeoffreedom[-]𝑜𝑜=Carbonpool,eitherabovegroundlive(AGL),abovegrounddead(AGD),belowground(BG)orsoilorganicmatter(SOM).𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖)=CombinederrorinestimateofaveragebiomassstockdensityofLULCclassorforeststratum𝑖𝑖.[−]𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖)=Uncertaintyofbiomassstockdensityinstratum𝑖𝑖.[−][EQ21]and[EQ22]areusedinestimatingthecombinederror,𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖),andtheuncertainty,ofthebiomassstockdensity,𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖),respectively.NotethatprocedurestocalculatetheuncertaintyofthedifferenceoftwobiomassstockdensitiesduetoalandtransitionareexplainedintheSection8.1.4.5.Estimationofcombinederroroftheinventory,𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖)isprerequisitetoestimationofuncertainty,𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖).Thesetwoequationsmustbetreatedasgenericandcanbeappliedinestimatinguncertaintyforsomespecificprojectareawhenneeded.Forexample,whenuncertaintyinestimatedcarbonstockdensityinharvestareasareneeded,theninventorydatafromareasunderharvestalonemustbeusedinthesetwoequationstoestimateinventoryuncertaintyinharvestareasi.e.,𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑖𝑖).VM0006,Version2.2SectoralScope14Page43Stratumspecificaverageorganicmattercanbeestimatedbysummingorganicmatterindifferentcarbonpools.Subsequently,theaveragetotalcarbonstockiscalculatedbymultiplicationwiththecarbonfraction:𝑂𝑂𝑂𝑂(𝑖𝑖)=�𝑂𝑂𝑂𝑂𝑜𝑜(𝑖𝑖)o[EQ23]𝐶𝐶𝑜𝑜(𝑖𝑖)=𝐶𝐶𝐶𝐶⋅𝑂𝑂𝑂𝑂𝑜𝑜(𝑖𝑖)[EQ24]𝐶𝐶(𝑖𝑖)=�𝐶𝐶𝑜𝑜(𝑖𝑖)𝑜𝑜[EQ25]where:𝑂𝑂𝑂𝑂(𝑖𝑖)=Averageplant-derivedorganicmatterofLULCclassorforeststratum𝑖𝑖.[MGDMha-1]𝑂𝑂𝑂𝑂𝑜𝑜(𝑖𝑖)=Plant-derivedorganicmatterofLULCclassorforeststratum𝑖𝑖inpool𝑜𝑜.[MgDMha-1]𝐶𝐶𝑜𝑜(𝑖𝑖)=AveragecarbonstockdensityofLULCclassorforeststratum𝑖𝑖inpool𝑜𝑜.[MTCha-1]𝐶𝐶𝐶𝐶=Carbonfractionofdrymatterinwood(default=0.5).[MgC(MgDM)-1]𝐶𝐶(𝑖𝑖)=AveragecarbonstockdensityofLULCclassorforeststratum𝑖𝑖.[MTCha-1]TheexactmeasurementofabovegroundandbelowtreecarbonmustfollowinternationalstandardsandfollowIPCCGPGLULUCF2003.ThesemeasurementsareexplainedindetailinCDMapprovedmethodologyAR-AM0002Restorationofdegradedlandsthroughafforestation/reforestation.Astep-by-stepStandardOperationsProcedureforfieldmeasurementsshouldbepreparedex-anteandcontainadetailed,step-by-stepexplanationofalloftherequiredfield-workforbothex-anteandex-postmeasurements.Thisdocumentwillensureconsistencyduringthecreditingperiodbystandardizingsamplingproceduresfromyeartoyear.Abovegroundorganicmatter,𝑶𝑶𝑶𝑶𝑨𝑨𝑨𝑨𝑨𝑨(𝒊𝒊,𝒑𝒑).Theabovegroundorganicmattermustbedeterminedbymeasuringtheappropriatetreemetric(e.g.DBH)ofalltreesusingtheappropriatecutoffDBHspecifiedintheallometricequation(e.g.,DBH≥5cm)withinthesamplingplot.Theapplicabilityoftheallometricequation𝒇𝒇𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂usedmustbespecificallyverifiedusingtheproceduresSection.Theallometricequation(s)mustremainfixedduringabaselinevalidationperiod.Duringabaselineupdate,theprojectproponentmayreplacepreviouslyusedallometricequations,andBEFvaluesbymoreaccurateones,ifthesewouldbecomeavailable.Abovegroundnontreeorganicmatter,𝑶𝑶𝑶𝑶𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨(𝒊𝒊,𝒑𝒑).Theabovegroundnon-treevegetationmustbemeasuredbydestructiveharvestingtechniques.Alternatively,theVM0006,Version2.2SectoralScope14Page44abovegroundorganicmattercanalsobeestimatedusingdefaultvaluesIPCCdefaultvaluesbyfollowingappropriatetoolasthelatestversionofCDMToolEstimationofcarbonstocksandchangeincarbonstocksoftreesandshrubsinARCDMprojectactivities.Belowgroundorganicmatter,𝑶𝑶𝑶𝑶𝑩𝑩𝑩𝑩(𝒊𝒊,𝒑𝒑).Thebeloworganicmatterpoolisestimatedfromtheabovegroundorganicmatterusingarelationship𝒇𝒇𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃betweenabovegroundandbelowgroundorganicmatter,suchasaroot-to-shootratio.Similartotheconstantsusedfortheabovegroundorganicmatter,𝒇𝒇𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃mustbefixedduringabaselinevalidationperiod.Duringbaselinevalidation,theprojectproponentmayreplaceapreviouslyused𝒇𝒇𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃byamoreaccurateone,ifthiswouldbecomeavailable.Lyingdeadwoodorganicmatter,𝑶𝑶𝑶𝑶𝑳𝑳𝑳𝑳𝑳𝑳(𝒊𝒊,𝒑𝒑).Lyingdeadwoodmustbesampledwiththelineintersectmethod(HarmonandSexton,1996)usingtheequationbyWarrenandOlsen(1964)asmodifiedbyVanWagener(1968).Eachpieceofdeadwoodisassignedtooneofthreedecayclassesas(a)Sound,(b)Intermediate,or(c)Rotten,onthebasisofamachetetest.Theestimatedbiomassforeachdeadwoodpieceissubjecttodensityreductionfactor.Whiletheprojectproponentmayusemostapplicabledensityreductionfactor,thedefaultdensityreductionfactorsare1,0.80,and0.45respectivelyfordecayclasses-sound,intermediateandrotten.Standingdeadwoodorganicmatter,𝑶𝑶𝑶𝑶𝑺𝑺𝑺𝑺𝑺𝑺(𝒊𝒊,𝒑𝒑).Standingdeadtreesmustbemeasuredusingthesameproceduresusedformeasuringlivetreeswiththeadditionofadecompositionclassandtheadditionofanappropriatebiomassreductionfactor.Specifically,allthestandingdeadtreesmustbeassignedwithoneofthetwoconditions(a)Deadtreeswhichhavelostonlyleavesandtwigs,and(b)Deadtreeswhichhavelostleaves,twigs,andsmallbranches(diameter<10cm)anduseanappropriatebiomassreductionfactorforeachofthetwoconditions.Theprojectproponentmayusebiomassreductionfactorsbasedonlocalornationaldata/studyoruseadefaultfactorof0.975fortreesincondition(a)and0.80fortreesincondition(b).Ifthetreehaslostallthebranches,suchatreemustbeconsideredaDeadTreeStump.Deadtreestumporganicmatter,𝑶𝑶𝑶𝑶𝑫𝑫𝑻𝑻𝑻𝑻(𝒊𝒊,𝒑𝒑).Ifthestumpheightisgreaterthanthemid-pointdiameterofastumpordeadtreewithoutbranches,thenthebiomassmustbeestimatedusingthemethodfoundinOrmerod(1973).First,thevolumeofthedeadtreestumpmustbeestimatedusingHuber’sformulainwhichthecross-sectionalareaisestimatedusingthemid-pointdiameteroftreeortreestumpmultipliedwithheightofthestump.Theestimatedvolumeissubsequentlymultipliedbywooddensity.Adensityreductionfactorisassignedtoeachofthedecayclasses,whichistobemultipliedbythebasicwooddensityofthespeciesofthestumptoobtainitsestimatedwooddensity.Thefollowingdefaultvaluesofthedensityreductionfactorsforthethreedecayclassesmustbeused,unlessprojectspecificdataisavailableforthedecayclass:(i)1.0forsoundorganicmatter,(ii)0.8fororganicmatterinanintermediatedecayclassand(iii)0.45forrottenorganicmatter.Soilorganicmatter,𝑶𝑶𝑶𝑶𝑺𝑺𝑺𝑺𝑺𝑺(𝒊𝒊,𝒑𝒑).Soilorganiccarbonpoolmustbeestimatedusingsoilsamplestakenatdifferentsoilhorizons.Thedepthtowhichthesoilsamplesaretakenandanalyzedmustbeatleast30cmaspertherecommendationoftheIPCCGPG-LULUCF(2003).Inthesesamples,depth,bulkdensityandconcentrationoforganicdrymattermustVM0006,Version2.2SectoralScope14Page45berecorded.Stratum-specificaverageorganicmatterdensity,𝑶𝑶𝑶𝑶(𝒊𝒊)anditsassociateduncertainty,𝒖𝒖𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊(𝒊𝒊)mayalsobe(partially)estimatedusingothersamplingapproachessuchasdoublesampling,regressionestimatorse.g.LiDARontheconditionthat(1)itcanbedemonstratedthattheuseofsuchapproachisconservative,and(2)validandunbiaseduncertaintyestimatorsareprovidedforthebiomassstockdensitythatareequivalenttotheuncertaintyestimatorsusedforplot-basedmeasurementsdescribedinthismethodology.8.1.4.5CalculateEmissionFactorsEmissionfactorsonlyincludethecarbonpool-relatedsourcesduetochangesincarbonstockdensitiesbetweentheLULCclassesandforeststrata.SinceN2OandCH4emissionsfromforestfiresincreaseemissions,theycanbeconservativelyomittedforbaselinecalculations8.Oncethecarbonstockdensitiesarecalculated,biomasscarbonemissionfactorsandtheiruncertaintiesforeachLULCclassorforeststratumtransitionarecalculated.Apositiveemissionfactor(i.e.𝐸𝐸𝐸𝐸𝑜𝑜)indicatesanetsequestrationofcarbon,oranincreaseinthecarbonstock,whileanegativeemissionfactorsignindicationsemission.Theemissionfactorforabovegroundlivebiomassiscalculatedas:𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴(𝐶𝐶𝐶𝐶1→𝐶𝐶𝐶𝐶2)=4412⋅�𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴(𝐶𝐶𝐶𝐶2)−𝐶𝐶𝐴𝐴𝐺𝐺𝐺𝐺(𝐶𝐶𝐶𝐶1)�[EQ26]where:𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴(𝐶𝐶𝐶𝐶1→𝐶𝐶𝐶𝐶2)=EmissionfactorforchangeinabovegroundliveplantorganicmatterfromanLULCClassorforestStratum(CS)1to2.[tCO2eha-1]𝐶𝐶𝐶𝐶1→𝐶𝐶𝐶𝐶2=LandtransitionfromLULCclassorforeststratum1to2.𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖)=Carbondensityofabovegroundplantorganicmatterofclassesorforeststratum𝑖𝑖.[MTCha-1]Theemissionfactorforabovegrounddeadwoodmustbegraduallyspreadovertime.Theprojectproponentmayproposetheirowntemporalcomponent(e.g.,anexponentialequation)iftheconservativenatureofthetemporalcomponentcanbedemonstratedusingpeer-reviewedliteratureorfieldmeasurements.Ifnotemporalcomponentisproposedbytheprojectproponent,thedefaulttemporalcomponentfromtheVCSmustbeusedusingthefollowingformula:For𝑡𝑡≤10:𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴(𝐶𝐶𝐶𝐶1→𝐶𝐶𝐶𝐶2,𝑡𝑡)=4412∙�𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴(𝐶𝐶𝐶𝐶2)−𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴(𝐶𝐶𝐶𝐶1)�10[EQ27]For𝑡𝑡>10:𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴(𝐶𝐶𝐶𝐶1→𝐶𝐶𝐶𝐶2,𝑡𝑡)=0[EQ28]8Notethatundertheprojectscenario,N2Oemissionsfromprescribedburningmustbeincludedinthecarbonaccounting.VM0006,Version2.2SectoralScope14Page46where:𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴(𝐶𝐶𝐶𝐶1→𝐶𝐶𝐶𝐶2,𝑡𝑡)=EmissionfactorfromchangeinabovegrounddeadwoodfromanLULCClassorforestStratum(CS)1to2at𝑡𝑡yearsaftertransition.[tCO2eha-1]𝐶𝐶𝐶𝐶1→𝐶𝐶𝐶𝐶2=LandtransitionfromLULCclassorforeststratum1to2.𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖)=Carbondensityofabovegrounddeadplantorganicmatterofclassesorforeststratum𝑖𝑖.[MTCha-1]Thetotalbelowgroundbiomassemissionfactormustalsobemustbegraduallyspreadovertime.Theprojectproponentmayproposetheirowntemporalcomponent(e.g.,anexponentialequation)iftheconservativenatureofthetemporalcomponentcanbedemonstratedusingpeer-reviewedliteratureormeasurementsconductedbytheprojectproponent.Ifnotemporalcomponentisproposedbytheprojectproponent,thedefaulttemporalcomponentfromtheVCSmustbeusedusingthefollowingformula:For𝑡𝑡≤10:𝐸𝐸𝐸𝐸𝐵𝐵𝐵𝐵(𝐶𝐶𝐶𝐶1→𝐶𝐶𝐶𝐶2,𝑡𝑡)=4412∙�𝐶𝐶𝐵𝐵𝐵𝐵(𝐶𝐶𝐶𝐶2)−𝐶𝐶𝐵𝐵𝐵𝐵(𝐶𝐶𝐶𝐶1)�10[EQ29]For𝑡𝑡>10:𝐸𝐸𝐸𝐸𝐵𝐵𝐵𝐵(𝐶𝐶𝐶𝐶1→𝐶𝐶𝐶𝐶2,𝑡𝑡)=0[EQ30]where:𝐸𝐸𝐸𝐸𝐵𝐵𝐵𝐵(𝐶𝐶𝐶𝐶1→𝐶𝐶𝐶𝐶2,𝑡𝑡)=EmissionfactorforchangeinbelowgroundplantorganicmatterfromanLULCClassorforestStratum(CS)1to2at𝑡𝑡yearsaftertransition.[tCO2eha-1]𝐶𝐶𝐶𝐶1→𝐶𝐶𝐶𝐶2=LandtransitionfromLULCclassorforeststratum1to2.𝐶𝐶𝐵𝐵𝐵𝐵(𝑖𝑖)=Carbondensityofbelowgroundplantorganicmatterofclassesorforeststratum𝑖𝑖.[MTCha-1]Thetotalsoilemissionfactormustbegraduallyspreadovertime.Theprojectproponentmayproposetheirowntemporalcomponent(e.g.,anexponentialequation)iftheconservativenatureofthetemporalcomponentcanbedemonstratedusingpeer-reviewedliteratureormeasurementsconductedbytheprojectproponent.Ifnotemporalcomponentisproposedbytheprojectproponent,thetemporalcomponentfromtheIPCCGPG-LULUCF2003andusedinfollowingformulaforthesoilemissionfactormustbeused:For𝑡𝑡≤20:𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆(𝐶𝐶𝐶𝐶1→𝐶𝐶𝐶𝐶2,𝑡𝑡)=4412∙�𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆(𝐶𝐶𝐶𝐶2)−𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆(𝐶𝐶𝐶𝐶1)�20[EQ31]For𝑡𝑡>20:𝐸𝐸𝐸𝐸𝐵𝐵𝐵𝐵(𝐶𝐶𝐶𝐶1→𝐶𝐶𝐶𝐶2,𝑡𝑡)=0[EQ32]VM0006,Version2.2SectoralScope14Page47where:𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆(𝐶𝐶𝐶𝐶1→𝐶𝐶𝐶𝐶2,𝑡𝑡)=EmissionfactorforchangeinsoilorganicmatterfromLULCClassorforestStratum(CS)1to2at𝑡𝑡yearsaftertransition.[tCO2eha-1]𝑐𝑐𝑐𝑐1→𝑐𝑐𝑐𝑐2=LandtransitionfromLULCclassorforeststratum1to2.𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖)=CarbondensityofsoilorganicmatterplantofLULCclassorforeststratum𝑖𝑖.[MTCha-1]Forabovegroundlive,abovegrounddead,belowground,orsoilorganicmatteremissionfactor,thecombinederrorinestimatedbiomassstockdensitiesforatransitionfromonestratumtoanotherismeasuredas:𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝐶𝐶𝐶𝐶1→𝐶𝐶𝐶𝐶2)=�∑�𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻�𝑂𝑂𝑂𝑂𝑜𝑜(𝐶𝐶𝐶𝐶1)�2+𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻�𝑂𝑂𝑂𝑂𝑜𝑜(𝐶𝐶𝐶𝐶2)�2�𝑜𝑜∑𝑂𝑂𝑂𝑂𝑜𝑜(𝐶𝐶𝐶𝐶2)o−∑𝑂𝑂𝑂𝑂𝑜𝑜(𝐶𝐶𝐶𝐶1)o[EQ33]Theuncertaintydiscountingforestimatedemissionsfactorsforatransitionfromonestratumtoanotherisestimatedusing𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝐶𝐶𝐶𝐶1→𝐶𝐶𝐶𝐶2)=�1if𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝐶𝐶𝐶𝐶1→𝐶𝐶𝐶𝐶2)≤0.15,1−𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝐶𝐶𝐶𝐶1→𝐶𝐶𝐶𝐶2)if0.15<𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝐶𝐶𝐶𝐶1→𝐶𝐶𝐶𝐶2)<1,0if𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝐶𝐶𝐶𝐶1→𝐶𝐶𝐶𝐶2)≥1[EQ34]where:𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝐶𝐶𝐶𝐶1→𝐶𝐶𝐶𝐶2)=DiscountingfactorfortheemissionfactorforthetransitionfromLULCclassorforeststratum1toclass2accordingtotheuncertaintyofthebiomassinventory.[-]𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻�𝑂𝑂𝑂𝑂𝑜𝑜(𝑖𝑖)�=Half-widthofthe95%confidenceintervalaroundthemeanplantorganicmatterdensityofLULCclassorforeststratum𝑖𝑖inpool𝑜𝑜.[tCO2eha-1]𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝐶𝐶𝐶𝐶1→𝐶𝐶𝐶𝐶2)=Combinederrorinestimatedbiomassstockdensitychangeforatransitionfromonestratumtoanother.[-]Listtheestimatedemissionfactors,theassociateduncertainties,andthelowerconfidencelimitperLULCclassandforeststratacategoryinatableinthePD.Theinventorymustbeiterativelyexpandeduntilforeverytransition,𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝐶𝐶𝐶𝐶1→𝐶𝐶𝐶𝐶2)isgreaterthan0.75.Thisthresholdservestoensureaminimalaccuracyofbiomassinventories.Finally,itmustVM0006,Version2.2SectoralScope14Page48becheckedthatallforeststratumtransitionsarecompatiblewiththedefinitionofdegradation.Morespecifically,itmustbecheckedthatthecarbonstockdensitiesintwodifferentstratadifferatleastby10%ofthecarbonstockofstratawithlowerlevelofcarbonstock.Forexample,ifstratum“A”has50MgCha-1,thenstratum“B”musthaveatleast55.1MgCha-1.8.1.5EstimateEx-anteLandTransitionRatesundertheBaselineScenarioThegoalofthisstepistocalculatealllandtransitions,includingdeforestationandincreasedforestcover,andforestdegradationandregenerationunderthebaselinescenario.Theprocedurebelowcalculatesfirstthetotaldeforestationandforestdegradationrates,andalsotherelativeregenerationandincreasedforestcoverchangeratesperforeststratumandLULCclass.Subsequently,thetotalratesofdeforestationandforestdegradationaresplitintoLULCclassandforeststratumspecificratesusingageographicalmodelingapproach,similartotheGEOMODmodel9.Notethattheexactlocationoffuturedeforestationpredictedbythemodelisnotusedassuchforcarbonaccounting.Location-specificdataondeforestation,forestdegradation,andotherLULCtransitionsareaggregatedagainintoaland-usechangetransitionmatrix,whichistheactivitydataonwhichthecarbonaccountingisbased.8.1.5.1CalculateTotalRatesofDeforestationandForestDegradationintheProjectAreaThetotalfuturedeforestationanddegradationratesareinterpolatedfrompasttrends.However,scarcityoflandmaydecreaseratestovaluesbelowthemaximalratesinterpolatedonpasttrends.ThisisaccountedforinSection8.1.5.4.Createagraphofthehistoricaldeforestationratesinthereferenceregion(hectaresperyear)versustime(years)foreachconsecutivepairofimagesinthehistoricalreferenceperiod.Createasimilargraphofthehistoricaldegradationratesversustime.Fromthesegraphs,calculatethefuturedeforestationanddegradationratesusingtwobetaregression10equations,onefordeforestationandoneforforestdegradation:𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝐷𝐷𝐷𝐷(𝑡𝑡)=𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐷𝐷𝐷𝐷(𝑡𝑡)[EQ35]𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝐷𝐷𝐷𝐷(𝑡𝑡)=𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐷𝐷𝐷𝐷(𝑡𝑡)[EQ36]where:9Thisapproachisconservativesinceuponexhaustionofoneforeststratum,thedeforestationwillbedisplacedtothestratumwiththegreatestlikelihoodofbeingdeforested.Incasestratum-specificdeforestationrateswerecalculatedupfront,thedisplacementofdeforestationtootherforeststratawouldhavebeenmorechallenging.10Betaregressioniscommonlyusedtomodelvariablesthatassumevaluesinthestandardunitinterval(0;1).Betaregressionassumesthatthedependentvariableisbeta-distributedandthatitsmeanisrelatedtoasetofregressorsthroughalinearpredictorwithunknowncoefficientsandalinkfunction.Parameterestimationisperformedbymaximumlikelihood.VM0006,Version2.2SectoralScope14Page49𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝐷𝐷𝐷𝐷(𝑡𝑡),𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝐷𝐷𝐷𝐷(𝑡𝑡)=Rateofdeforestation/degradationwithinthereferenceregionforduringyear𝑡𝑡.[hayr-1]𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐷𝐷𝐷𝐷(𝑡𝑡)and𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐷𝐷𝐷𝐷(𝑡𝑡)=Betaregressionmodeldescribingtherelationshipbetweentimeanddeforestation/degradationrateinthereferenceregionduringthehistoricalreferenceperiod.[hayr-1]𝑡𝑡=Timesinceprojectstart(negativebeforeprojectstart).[yr]However,ifonlythreeimageswereincludedinthehistoricalanalysis,and,therefore,onlytwodeforestation/degradationratesareavailable,theaverageofthetworatesmustbeusedinsteadoftheextrapolationusingtheBetaregression.Thefuturedeforestationandforestdegradationmustbecalculatedasfollows:Iftheareaofdeforestation/degradationisconstant(i.e.iftheslopeoftherelationbetweendeforestation/degradationquantitiesandtimeisnotsignificantlydifferentfrom0atthe95%confidencelevel),aconstantfuturedeforestation/degradationquantityissetasthemeanoftheobserveddeforestation/degradationamountsinthereferenceregion.Ifthedeforestation/degradationquantityincreases(i.e.iftheslopeoftherelationbetweendeforestation/degradationquantitiesandtimeissignificantlylargerthan0atthe95%confidencelevel),thelower95%confidenceintervalofthebetaregressionmodelmustbeused.03000600090001200015000-20-15-10-505101520-1)Timesinceprojectstartorlastbaselineupdate(yr)observedbetaregressionprojectedbaselinevalidationperiodprojectedobservedVM0006,Version2.2SectoralScope14Page50Ifthedeforestation/degradationquantitydecreases(i.e.iftheslopeoftherelationbetweendeforestation/degradationquantitiesandtimeissignificantlysmallerfrom0atthe95%confidencelevel),theoriginalbetaregressionmodelmustbeused.03000600090001200015000-20-15-10-505101520-1)Timesinceprojectstartorlastbaselineupdate(yr)observedbetaregressionprojectedbaselinevalidationperiodprojectedobservedTotalAreaDeforested(ha)TotalAreaDeforested(ha)VM0006,Version2.2SectoralScope14Page51Whenthereisaclearbreakinthehistoricaltrend,itisrequiredtoexaminewhentheanomalyoccurred,whyitoccurred,andwhetherthechangeislikelytobestabletodeterminewhethertoadjustthedatapointsusedinthebetaregression.Abreakinthehistoricaltrendmustonlybeconsideredwhenatleastsixpointsintimeareavailable11.Abreakinthehistoricaltrendusuallyindicatesatechnologicalbreakthrough,apolicyreform,orchangeinlandusepractice.Ifitisdemonstratedthatthereasonsforabreakinthetrendcontinuedintothefuture,omittheobservationsoccurringbeforethebreaktoprojectthefuturedeforestationquantity.Theprojecteddeforestationratemustbedeterminedfromtheperiodthatgoesbacknofartherthantheappearanceofthebreakpoint(SatayeandAndrasko,2007).Useoneoftheapproachesabovedependingonthetrendobservedafterthebreak.11Eventhough,often,only3or4datapointswillbeavailableuponvalidation,increasinglymoredatapointswillbecomeavailableduringthecreditingperiod.Therefore,whenthebaselineisupdated,sufficientpointsmaybeavailabletodetectabreak.03000600090001200015000-20-15-10-505101520Timesinceprojectstartorlastbaselineupdate(yr)observedbetaregressionprojectedbaselinevalidationperiodprojectedobservedTotalAreaDeforested(ha)VM0006,Version2.2SectoralScope14Page52Singleoutliersaremostlikelyduetoonce-onlyanomalies(e.g.,lossofforestlandduetofire,hurricaneorothernaturaldisturbance).Itisrequiredthatthecauseofthissingleoutlierbeexaminedtodetermineifitmayberemoved.Theymayonlyberemovedfromtheotherpointsinthehistoricalreferenceperiodifitisdemonstratedthattheoccurrenceoftheoutlierisduetospecificconditionsthatarenotpresentanymore(aswouldbethecaseforanaturaldisturbance).Useoneoftheapproachesabovedependingonthetrendobservedafterremovingtheoutlier.03000600090001200015000-20-15-10-505101520-1)Timesinceprojectstartorlastbaselineupdate(yr)observedbetaregressionprojectedbreakinhistoricaltrendbaselinevalidationperiodprojectedobservedTotalAreaDeforested(ha)VM0006,Version2.2SectoralScope14Page53Oncethecoefficientsfromthebetaregressionsaredetermined,calculatethebaselinetotaldeforestationanddegradationratesintheprojectareaas:𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝐷𝐷𝐷𝐷(𝑡𝑡)=𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐷𝐷𝐷𝐷(𝑡𝑡)⋅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟[EQ37]𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝e𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝐷𝐷𝐷𝐷(𝑡𝑡)=𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐷𝐷𝐷𝐷(𝑡𝑡)⋅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒[EQ38]where:𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝐷𝐷𝐷𝐷(𝑡𝑡),and𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝐷𝐷𝐷𝐷(𝑡𝑡)=Baselinerateofdeforestation/degradationwithintheprojectareaduringyear𝑡𝑡.[hayr-1]𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐷𝐷𝐷𝐷(𝑡𝑡)and𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐷𝐷𝐷𝐷(𝑡𝑡)=Betaregressionmodeldescribingtherelationshipbetweentimeanddeforestation/degradationrateinthereferenceregionduringthehistoricalreferenceperiod.[hayr-1]𝑡𝑡=Timesinceprojectstart(negativebeforeprojectstart).[yr]𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝=Totalsizeoftheprojectarea.[ha]𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟=Totalsizeoftheforestareainthereferenceregion.[ha]03000600090001200015000-20-15-10-505101520-1)Timesinceprojectstartorlastbaselineupdate(yr)observedbetaregressionprojectedbaselinevalidationperiodprojectedobservedoutlierTotalAreaDeforested(ha)VM0006,Version2.2SectoralScope14Page54Thedeforestationrateordegradationratecalculatedfromthisprocedurerepresentsthegrossdeforestationrate,butnotnetdeforestationordegradationrate.Therefore,allnon-foresttoforesttransitionsneedtobeexplicitlyincludedinthebaselinetoachieveacorrectrepresentationoftheforestcoverdynamics.8.1.5.2CalculateLULCClassorForestStratum-SpecificRelativeforestcoverincreaseandRegenerationRatesAlthoughreforestationisnotallowedasaprojectactivity,thebaselinescenariomustincludepotentialincreasesinforestcoverorforestbiomassthatwouldhavehappenedwithoutprojectactivities.Theremustbeafullsymmetryincarbonaccounting:degradationinthebaselinescenariomayonlybeincludedifregenerationunderthebaselineisincludedaswell.Likewise,bothtransitionsfromforesttonon-forestandnon-foresttoforest(andthatwereforestatthestartofthecreditingperiod,perapplicabilitycondition1)mustbeincludedinthebaseline.Notethatthequantificationoftransitionsofnon-foresttoforestareasmustnotbebasedonareasonwhichlarge-scalereforestationhasoccurredassuchareasshouldhavebeenexcludedfromthereferenceregion.Theextentofincreaseinforestcoverorforestregenerationthatwouldhavehappenedunderthebaselinescenarioisquantifiedbasedonhistoricalobservationsinthereferenceregionduringthehistoricalreferencescenario.Foreverylandclassorforeststratumthattransitionsintoadifferentclasswithhigherbiomass,calculatetherelativeregenerationorforestcoverincreaseratebydividingtheareaofthetransitionbytheareaofthe“from”class:foreverytransitionforwhich𝐶𝐶(𝐶𝐶𝐶𝐶2)>𝐶𝐶(𝐶𝐶𝐶𝐶1):𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐶𝐶𝐶𝐶1→𝐶𝐶𝐶𝐶2)=∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶𝐶𝐶1→𝐶𝐶𝐶𝐶2,𝑡𝑡1→𝑡𝑡2)𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶𝐶𝐶1,𝑡𝑡1)⋅(𝑡𝑡2−𝑡𝑡1)[EQ39]where:𝐶𝐶𝐶𝐶1and𝐶𝐶𝐶𝐶2=ClassorStratum1and2,respectively𝐶𝐶(𝐶𝐶𝐶𝐶1)and𝐶𝐶(𝐶𝐶𝐶𝐶2)=AveragecarbonstockdensityofLULCclassorforeststratum1and2,respectively.[MgCha-1]𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅t𝑒𝑒(𝐶𝐶𝐶𝐶1→𝐶𝐶𝐶𝐶2)=Relativeannualforestcoverincreaseandregenerationfactorforthetransitionfromclassorstratum1to2.[yr-1].Multiplywith100toobtainaforestcoverincreaseandregenerationrateinpercentageperyear.∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎi𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐶𝐶𝐶𝐶1→𝐶𝐶𝐶𝐶2,𝑡𝑡1→𝑡𝑡2)=Areaoftransitionfromclassorstratum1to2fromtime1to2duringthehistoricalreferenceperiod.[ha]𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶𝐶𝐶1,𝑡𝑡1)=Totalareaofclassorstratum1attime1.[ha]𝑡𝑡1and𝑡𝑡2=Time1andtime2,respectively.[years]VM0006,Version2.2SectoralScope14Page55CalculatetheLULCclassorforeststratum-specificregenerationorforestcoverincreaseratesforeverypairofsubsequentimagesinthehistoricalreferenceperiod,andreporttheaveragesinatableinthePD.8.1.5.3CalibrateandValidateaSpatialModeltoPredicttheSuitabilityforDeforestationandDegradationDeforestationanddegradationdonotoccurrandomlywithintheforestarea,butoccurpreferentiallyatspecificlocationswherepredisposingfactorsarepresent(DeJong2007).ThesefactorsarereferredtoasspatialdrivervariablesandwereidentifiedinSection8.1.3.4.Byexaminingtheimpactofspatialdrivervariablesonhistoricallandusechange,thelikelihoodofland-usechangecanbequantified;thislikelihoodrelationcanbeextrapolatedintothefuturetopredictthelocationoffuturelandusechange.ThisSectionfocusesonexaminingtherelationbetweenspatialdriversandhistoricallandusechange,whileSection8.1.5.4focusesonextrapolatingthisrelationintothefuture.Spatialdrivervariablesmaybeconstant,meaningthattheywillneverchangeduringmodelexecution,suchasslopeorelevation,ordynamic,meaningthattheymaychangeduringprojectruns,suchasdistancetothenearestroad,orforestdensity.Inaddition,theymaybecontinuous,suchasdistancetotheclosestmarket,orcategorical,suchassoiltype.Logisticregressionmodelsareoneclassofmodelsthathavebeenusedsuccessfullytoquantifythesuitabilityofdeforestationanddegradation(Lambin1997,Verburgetal.2004andBoeretal.2006).However,thismethodologydoesnotprescribeanexactformofastatisticalmodel.Thefollowingstepsaretobefollowedoncetocalibratethedeforestationmodelandoncetocalibratethedegradationmodel.Forbrevity,thestepsbelowassumeadeforestationmodel.ForeachpairoftwosubsequentLULCclassificationmapsdevelopedasperSection,randomlyselectalargenumber(>10,000)offorestedgrid-cells/pixelsfromthefirstimage.Usethesecondimageofthepairtodeterminewhetherthesegrid-cells/pixelsweredeforested,degraded,orshowednochangeduringtheperiodinbetweenthetwoimages.Sincegrid-cellsareselectedrandomlyfromthebaselineLULCmaps,pixelswillbeselectedfromdegrading,deforested,andno-changeareasinanunbiasedway.CalculatethevalueofeachspatialdrivervariablebasedonthefirstLULCmapoftheimagepairforeachofthepointsselectedinthepreviousstep.Createalistcontainingthelocation,landtransitioncategory,andallvaluesofeachofthespatialdrivervariableidentifiedinSection8.1.3.4.Incaseofdynamicspatialdrivervariables,useaspatialdriveratthetimethefirstimagewasrecorded.Deforestationanddegradationusuallyoccurinaclusteredfashion.Therefore,includethedistancetotheforestedge,orforestfragmentationasspatialdrivervariables(Lambinetal.,1997).Splitthislistrandomlyintoacalibrationdatasetanda(statistical)validationdataset.Thecalibrationdatawillbeusedtofitthedeforestationanddegradationstatisticalmodelsandthevalidationdatawillbeusedtoindependentlyassessthequalityofthemodel.2/3ofthepointsshouldbeusedforcalibrationand1/3forvalidation.VM0006,Version2.2SectoralScope14Page56Calibrateastatisticalmodelfordeforestationbasedonthevaluesofspatialdrivervariablesatthecalibrationpointdataset.Thestatisticalmodelmustpredictthesuitabilityfordeforestationforeverylocationintheprojectarea,andmustthereforebeboundbytheinterval[0,1].Alogisticregressionmodelisanexampleofanappropriatestatisticalmodel.Ifnecessary,applymathematicaltransformationstomaketheeffectofthespatialdrivervariableslinear.Forinstance,theinfluenceofaroadondeforestationwilldecreaseexponentiallywithdistancetotheroad,andalog-transformationshouldbeapplied.Calibrateastatisticalmodelfordegradationbasedonthevaluesofspatialdrivervariablesatthecalibrationpointdataset.CalibrateastatisticalmodeltopredicttheLULCclassofthenewlanduseoncellsselectedfordeforestation.IncasethattherearemorethantwopotentialnewLULCclasses,usemultinomiallogitmodel,whichpredictsamultilevelcategoricalvariablebasesonthespatialdrivervariables.Qualityassurance:significanceandgoodness-of-fit.Asaqualityassurancestep,reportthesignificanceofthestatisticalmodel.Incaseofaregression,reporttheresultsofalikelihoodratiotest,andthesignificanceofindividualdriversofdeforestation(t-tests).Boththefullmodelandallindividualdriversmustbesignificantatthe95%confidencelevel.Inaddition,performagoodness-of-fittestbypredictingthenewLULCclassesandforeststratafortheindependentstatisticalvalidationdata,andcomparingtheresultswiththemeasureddata.Presentatableoftheempiricallyobservedland-usechangeratesvs.theland-usechangeratepredictedusingthestatisticalmodel.ThedifferenceinaggregateddeforestationandforestdegradationratesaswellasforeststratumandLULC-classtransitionratesaveragedoverallthetimeperiods(inbetweenimagesofthereferenceperiod)betweenempiricallyobservedandmodeledratesmaynotbemorethan15%.Thecapabilityofthemodeltoadequatelyestimatelikelihoodsofdeforestationandforestdegradationmustbeconfirmedbythevalidation/verificationbody.8.1.5.4CalculateAllClassorStratum-SpecificTransitionRates.Oncethestatisticalmodelsfordeforestationandforestdegradation,andthecarbondensitymapareprepared,asimplecellularautomatatypemodelcanbeusedtopredictthefuturelanduseandlandcoverineachgrid-cellandforeachyearofthecreditingperiod.Eventhoughthespatialmodelproducesmapsoftheexactlocationoffuturedeforestation,thesemapsarenotusedoutsideofthemodelingstep.Themainoutputofthemodelingstepisaland-usechangetransitionmatrix.ThismatrixiscalculatedbyaggregatingtheLULCclassandforeststratummapsthatareproducedbythespatialmodel.Inadditiontotheprinciplesofneighborhoodconstraintandlandsuitability,asexplainedinPontius(2002),theland-usechangemodelincorporatestheforestscarcityprinciple,thenotionthatdeforestationratesdecreaseuponthegradualdepletionofthenativeforestresources.Withoutforestscarcity,itisassumedthatdeforestationoccurslinearlyuntilallforestisgone,whichwillbeincorrectinmostcircumstancesandleadtoanoverestimateofnetemissionreductions.Itiswelldocumentedthatdeforestationratesdecreasewhenforestareasaregraduallydisappearing.The“foresttransition”theory(MatherandNeedle,1998)explainshowareaswithvastforestareaswhichareinitiallycharacterizedbyrapiddeforestationrates,stabilizetheirforestareaaftersometime.Toincorporateadecreaseindeforestationrateuponagradualdepletionofforestresources,initialdeforestationratesaremultipliedwitha“forestscarcity”factor,whichisinitially1,butgraduallydecreasesastheproportionofremainingVM0006,Version2.2SectoralScope14Page57forestdecreases(Figure1).This“scarcityfactor”mustbecalibratedusingscientificliteratureinanareaclosetotheprojectareathathasfollowedamoreadvanceddeforestationroute.Examplesareneighboringcountries,statesorprovincesthathaveundergoneamorerapiddeforestationcoursethantheareawheretheprojectislocated.Typically,deforestationratesstarttodecreasewhenaround50%oftheoriginalforestcoverhasdisappeared.Inaddition,deforestationusuallyhaltswhenaround80%oftheforestareahasdisappeared.ThispatternhasbeenobservedbyMeyfroidtandLambin(2008)inVietnam.Deforestationratesstarteddecreasingwhen50%offorestcoverremained,andhaltedin1991-1993ataround25%forestcover.However,thespecificvaluesoftheforestcoverwhendeforestationwilldecreasearedependentonprojectconditionsandshouldbeanalyzedandsubstantiatedwithintheprojectdocumentatvalidation.Figure1.Exampleof“forestscarcityfactor”:therelativeDeforestationRateasaFunctionofProportionofInitialForestAreathatisDeforested.Thefollowingequationmustbeusedtomodelthescarcityfactor:𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡)=11+𝑒𝑒𝑠𝑠𝑠𝑠1�𝑠𝑠𝑠𝑠2−𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�[EQ40]Where:𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡)=Forestscarcityfactorusedtoreducethehistoricaldeforestationrateattime𝑡𝑡.[-]𝑠𝑠𝑠𝑠1=Firstshapefactorfortheforestscarcityequation;steepnessofthedecreaseindeforestationrate(greaterissteeper).[-]𝑠𝑠𝑠𝑠2=Secondshapefactorfortheforestscarcityequation;relativedeforestedareaatwhichthedeforestationratewillbe50%oftheinitialdeforestationrate.[-]0%20%40%60%80%100%0%20%40%60%80%100%RelativedeforestationrateProportionofinitialforestareathatisdeforestedVM0006,Version2.2SectoralScope14Page58𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)=Totalareathatisnotforestwithintheprojectareaattime𝑡𝑡afterprojectstart.[ha]𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝=Totalsizeoftheprojectarea.[ha]Thetwoshapefactors𝑠𝑠𝑠𝑠1and𝑠𝑠𝑠𝑠2withinthisequationmustbefittedusinghistoricalinformationinareassimilartotheprojectareaordatafrompeer-reviewedliterature.Datasourcesthatmustbeusedareremotelysensedforestcoverdatainheavilydeforestedareasclosetotheprojectareasuchasneighboringprovinces,statesorcountries.Valuesof𝑠𝑠𝑠𝑠1and𝑠𝑠𝑠𝑠2shouldbeselectedsothatthecarbonaccountingisconservative.Lowervaluesof𝑠𝑠𝑠𝑠1andhighervaluesof𝑠𝑠𝑠𝑠2willresultinlowerdeforestation,andarethereforemoreconservative.Theprojectproponentmustdemonstratethatthesourcedatausedtofitthisequationisappropriate.Thefollowingstepsmustbefollowed:•Calculatethedeforestationsuitabilityforallforestcellsusingthelogisticregressionmodel.•Sorttheforestcellsaccordingtotheirdeforestationsuitabilityfromhighestsuitabilitytolowestsuitability.•Duringagivenyear,theareathatiseffectivelydeforestedisdependenton(1)thetotalrateofdeforestation𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝐷𝐷𝐷𝐷(𝑡𝑡),and(2)theremainingtotalforestcover.Morespecifically,theareathatiseffectivelydeforestedequalsthetotalrateofdeforestation𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝐷𝐷𝐷𝐷(𝑡𝑡)multipliedwiththeforestscarcityfactor,whichisafunctionoftheremainingforestcover.Sincedeforestationisdependentontheremainingforestcoverandtheremainingforestcoverchangesasdeforestationoccurs,aniterativeloopisnecessaryinwhichtheremainingforestcoverisupdatedasmoreandmoreforestisdeforested.Tobegintheiterativeloop,set𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝐷𝐷𝐷𝐷,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡)to𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒𝑒𝑒,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝐷𝐷𝐷𝐷(𝑡𝑡)multipliedwiththeforestscarcityfactorbasedontheremainingforestcoverattheendofthepreviousyear.Startdeforestingcells(inorderofhighesttolowestdeforestationprobability).Everytimeacellisdeforested,updatetheremainingforestcoverandthescarcityfactorandre-calculate𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝐷𝐷𝐷𝐷,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡)as𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝐷𝐷𝐷𝐷(𝑡𝑡)minusthetotalamountofdeforestedcellsandmultipliedwiththeupdatedforestscarcityfactorasafunctionoftheremainingforestcover.Continuetheloopuntil𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝐷𝐷𝐷𝐷,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡)=0.•Calculatethesuitabilityforanewnon-forestLULCclassonthecellsthatwereselectedfordeforestation.AssigntheLULCclasswiththehighestsuitability,accordingtothecalibratedmodelsinpreviousstep.•Repeatsteps1-4forforestdegradationontheforestcellsthatwerenotassignedfordeforestation,andthatarenotintheforeststrataorLULCclasswiththelowestcarbondensity.Degradethecellsselectedfordegradationbyassigningthemtothenext-lowerforeststrata.Thescarcityfactorcalculatedbasedonremainingforestcovermustbeusedforforestdegradation.Notethatdegradationmustbeappliedontheresultofthedeforestation,sothatcellsthatweredeforestedthatyearcannotbesubjecttoforestdegradationaswell.•Usingthemapsdevelopedintheprevioussteps,sumtheareasforeachtransitionVM0006,Version2.2SectoralScope14Page59separatelyfor(1)theprojectareaexcludingANRandharvest(∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡,𝑖𝑖)),(2)theareaswithANR(∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗ℎ𝐴𝐴𝐴𝐴𝐴𝐴,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡,𝑖𝑖))and(3)theareaswithharvesting(∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡,𝑖𝑖)).Thisstepwillyieldthreetransitionmatrices.•Foreachofthethreeareasandthreetransitionmatrixes,calculatetheregenerationtransitionsfromoneclassorstratum(“CS1”intheequationbelow)toanotherclassorstratum(“CS2”intheequationbelow)bymultiplyingthetotalareaofthefirstclassorstratumwiththerelativeregenerationratefortransitionsfromoneclassorstratumtoanother,inthefollowingformulanotedasclassorstratum1to2.Asexplainedinthesummary,thebaselinescenarioincludesnotonlyprojecteddegradationanddeforestation,butalsoprojectedregenerationandreforestationinareasthatweredeforested.Theequationbelowdescribesthecarbonaccountingforprojectedregenerationandreforestationunderthebaselinescenario.∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡,𝐶𝐶𝐶𝐶1→𝐶𝐶𝐶𝐶2)=𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐶𝐶𝐶𝐶1→𝐶𝐶𝐶𝐶2)⋅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡,𝐶𝐶𝐶𝐶1)[EQ41]where:∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡,𝐶𝐶𝐶𝐶1→𝐶𝐶𝐶𝐶2)=Areaoftransitionfromclassorstratum1to2fromtime𝑡𝑡to𝑡𝑡+1.[ha]𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐶𝐶𝐶𝐶1→𝐶𝐶𝐶𝐶2)=Relativeannualregenerationrateforthetransitionfromaclassorstratum1toanother,2,fromtime𝑡𝑡to𝑡𝑡+1.[yr-1]𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡,𝐶𝐶𝐶𝐶1)=Totalareaofclassorstratum1fortime𝑡𝑡ofthecreditingperiod.[ha]Applytheregenerationarea∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡,𝐶𝐶𝐶𝐶1→𝐶𝐶𝐶𝐶2)totheappropriateLULCclassesandforeststrataobtainedafterstep5(degradation)sothattheareasofallLULCclassesareupdated.TheresultingareasofLULCclassesandforeststratarepresentalllandusedynamicsforyear𝑡𝑡foroneofthethreeareasconsidered.ReportthefinalareasofallLULCclassesandforeststrataforyear𝑡𝑡separatelyforeachofthethreeareasintroducedinstep7.8.2ProjectEmissionsOneormoreofthedriversofdeforestationdescribedinSection8.1.3mustbemitigatedthroughspecificprojectactivities.Someactivitiesmayfocusonincreasingthelivelihoodoptionsoflocalcommunitiesorpreventingleakagethrough,forexample,increasingthelanduseintensityofalreadydeforestedland.Successoftheimplementationandon-goingmaintenanceoftheseactivitiesiscriticallydependentontheactiveinvolvementofallstakeholdersintheplanningandexecutionoftheseprojectactivities.Inparticular,thelocalcommunitiesmustbeactivelyinvolved.Therefore,projectmanagement,advisory,oversight,andconsultativestructuresmustbedevelopedtoensuretheactiveinvolvementofallstakeholders.Aholisticapproachshouldbetakentomeetthevariousresourceneedsoflocalcommunities.Forexample,ratherthanexcludinglocalcommunitiesfromusinganyforestVM0006,Version2.2SectoralScope14Page60resourcesatall(andthereforenecessarilyforcingthemtoacquiretheseresourcesoutsideoftheprojectareaorpurchasetheseinlocalorprovincialmarkets,leadingtoleakage),asustainablelandmanagementplanincludingkeycomponentsofagricultureandforestrypracticesshouldbeputinplacetomeetlocalwoodandagriculturalneeds.Theex-anteestimationofthedeforestationandforestdegradationratesisbasedonabreakdownoftheeffectivenessofeveryprojectactivity(𝑎𝑎)indecreasinganydriverofdeforestation(𝑑𝑑)relativetothatdriver’scontributiontodeforestationandforestdegradation,i.e.𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑎𝑎,𝑑𝑑).Forexample,assumethatthecollectionoffuelwoodleadstoadegradationof200MgCperyear,andtheintroductionoffuel-efficientwoodstovesdecreasesemissionsequivalentto50MgCperyear.Furthermore,assumethatthedevelopmentofbiogasplantsreduceemissionsequivalentto100MgCperyear.Theeffectivenessoffuel-efficientwoodstovestodecreasedegradationfromfuelwoodcollection,i.e.𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓-𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓-𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�,is25%,whereastheeffectivenessofbiogasplantstodecreasedegradationfromfuelwoodcollection,i.e.𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓-𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓-𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�,is50%.Valuesofeffectivenessfactorsmustbeestimatedforeverycombinationofprojectactivityanddriverofdeforestationandforestdegradation.Notethateffectivenessvaluesareonlymeantforex-anteestimatesofemissionreductions/removals.Ex-postemissionreduction/removalsarenotquantifiedbasedonthesevalues.Theeffectivenessvaluesareoftenchallengingtoquantify,anddependonlocalconditionsandtheexperienceoftheprojectproponent.However,estimationofthevolumeofemissionreductions/removalsthataprojectwillgeneratedependsontheabilityoftheprojectproponenttoestimatetheeffectivenessvaluesandrefinetheseestimationsthroughoutprojectmonitoring.The𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑎𝑎,𝑑𝑑)factorrepresentsthemaximaleffectivenessduringthecreditingperiod.Thismaximaleffectivenessisadjustedovertimeusingaratefactor,i.e.,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑎𝑎,𝑡𝑡),toreflectchangesintheeffectivenessduetogainedexperience,changesinfundinglevels,oron-goingcapacitybuilding.8.2.1IdentifyProjectActivitiesandEstimatetheEffectivenessinReducingDeforestationandDegradationRatesundertheProjectScenarioAdescriptionoftheREDDprojectactivitiesthatareincludedinthismethodology,togetherwithprocedurestoquantifytheeffectivenessforeachprojectactivityandeachtargeteddriverfollows.8.2.1.1StrengtheningofLand-TenureStatusandForestGovernanceLegalagreementsbetweentheparticipatingcommunities,landowners,projectdevelopers,andrelevantgovernmentadministrativelevelsareanecessaryfirststeptosecurelandtenureandcarbonrights.Theseagreementsareparticularlyimportantwhenparticipatingcommunitiesdonotlegallyowntheforestland,andtheland-tenurestatusisunclearorobscuredbyacomplexadministrativehierarchy.Theprojectproponentcanassistlocalcommunitiesinsecuringtheirlandtenurestatus.Thiscanincludedevelopinglegallybindingcommunityforestryagreements,purchasingorsecuringlong-termconservationeasements,ortherevisionofspatialplansandzoninglaws.TheexpensesrelatedtotheestablishmentoftheseagreementscanbecoveredbytherevenuefromREDDcreditsales.VM0006,Version2.2SectoralScope14Page61Strengtheningtheland-tenurestatusisessentialforprotectinglandfromencroachmentbypeopleotherthanparticipatingcommunitiesandprovideclarityontheallowedlandusebytheparticipatingcommunities.However,legaltenureisinsufficientforaneffectiveprotectionoftheforestresources.Itmustbecomplementedwithon-the-groundprotectionmeasuressuchassocialfencingorapatrollingsystem.Table10.Procedurestoquantifythemaximaleffectivenessofstrengtheningland-tenurefortargetdrivers.TargetdriverMaximaleffectivenessquantificationLoggingoftimberforcommercialon-sale𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒<5%[EQ42]Legalrecognitionoftheland-tenurestatuswilleliminateoverlappingauthorityfromdifferentadministrationsandreducethepotentialthatloggingconcessionsaregrantedwithoutexplicitpermissionofparticipatingcommunities.Inaddition,itisanecessary(butinsufficient)steptoreduceillegalloggingoftimberforcommercialon-sale.Notethatstrengtheningland-tenurealoneusuallydoesnotdirectlyleadtoareductionindeforestation.Conversionofforestlandtocropland(bypeopleotherthanparticipatingcommunities)𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒<5%[EQ43]Legalrecognitionofthelandtenurestatuswillreducethepotentialofconversionofforestlandtocroplandwithintheprojectareabecauseitwillprovideclarityonthelegallanduses.However,on-the-groundpatrollingisnecessarytoeffectivelyavoidconversiontocropland.Conversionofforestlandtosettlements(bypeopleotherthanparticipatingcommunities)𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒<5%[EQ44]SeepreviousdriverConversionofforestlandtoinfrastructure𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒<5%[EQ45]Seepreviousdriver8.2.1.2SupportwiththeDevelopmentandImplementationofSustainableForestandLandUseManagementPlansForestandlandusemanagementplansshouldbeestablishedinaparticipatoryanddemocraticway.Theseplanscanincludethevolumesoftimber,fuelwoodorNTFPeachcommunitycansustainablyharvest,theareasforlivestockgrazing,ortheareaofforestlandthatcanbeconvertedintosettlementsorcroplandandwheretheconversionmusttakeplace.Themanagementplansmustbebasedonthecurrentandfutureneedforforestproductsandland.Suchplanswillincreasetheefficiencyofthecurrentlanduseandavoidunplannedconversionofforestpatchesthatcanaccelerateforestdegradation.PlansmustVM0006,Version2.2SectoralScope14Page62beintegratedandcompatiblewiththelandtenureandusagerightsandbelong-termorpermanent(wherepossible)innature.Themanagementplanisonlybindingforparticipatingcommunitiesandwillnotaffectthedriversofdeforestationforwhichtheagentsarenotparticipatingintheproject.Thefollowingtableoutlinestheproceduretoquantifythemaximaleffectivenessforthisdriver.Table11.Proceduretoquantifythemaximaleffectivenessofforestandlanduseplansfortargetdrivers.TargetdriverMaximaleffectivenessquantificationConversionofforestlandtocroplandbyparticipatingcommunities𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒=�1−∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏�%[EQ46]Forestandland-useplansusuallyexplicitlyindicatehowmuchlandcanbeconvertedfromforesttocropland.Thebaselineconversionratesmustbeestimatedbasedonremotesensinganalysisorsocialassessmentswhennoremotesensinganalysisisfeasible.Conversionofforestlandtosettlementsbyparticipatingcommunities𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒=�1−∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏�%[EQ47]SeepreviousdriverLoggingoftimberforcommercialon-sale(commercialtimber=CT)𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒=�1−𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏�%[EQ48]Thebaselineharvestingratecomesfrom(1)recentreportsandstudieswithintheprojectarea,(2)peer-reviewedliteratureinregionssimilartothereferenceregion,(3)expertopinion.Loggingoftimberforlocalanddomesticusebyparticipatingcommunities(domestictimber=DT)𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒=�1−𝐷𝐷𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏�%[EQ49]SeepreviousdriverFuelwoodcollectionfordomesticandlocalenergyneeds(domesticfuelwood=DFW)𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒=�1−𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏�%[EQ50]SeepreviousdriverCattlegrazinginforests(grazing=GR)𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒e𝑠𝑠𝑠𝑠=�1−𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐺𝐺𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏�%[EQ51]SeepreviousdriverVM0006,Version2.2SectoralScope14Page63Extractionofunderstoryvegetation(vegetation=VG)𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒=�1−𝑉𝑉𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑉𝑉𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏�%[EQ52]SeepreviousdriverAnyvariablewiththesubscript“allowed”representstheallowedquantityoramountundertheprojectscenariowithintheprojectboundary.Analogously,variableswiththesubscript“baseline”refertothequantityinthebaselinescenario.Atthestartoftheproject,informationonparametersforthebaselinemustcomefromtheprojectareaitself.Duringabaselineupdate,thesevaluesmustcomefromthereferenceregionand/orleakagebelts.8.2.1.3DemarcatingForest,TenureandOwnershipBoundaries,andAreasofForestProtectionTheinstallationoffences,gates,boundarypoles,andsignageprovideslocalcommunitiesatransparent,recognizableandfixedboundaryoftheprojectarea.Becauselegalprotectionalone(projectaction1,“Strengtheningtheland-tenurestatus”)maybeinsufficienttopreventdeforestation,oftenaphysicalboundaryorsignageisrequiredtoavoiddeforestationandtosupportsocialfencingandpatrolling.Oncetheboundariesaredemarcated,theymustbeprotectedandpatrolled.Often,thecapacityofthelawenforcingauthoritiesistoolimitedtodothistask,socommunitiescommittodefendtheirownland-tenureandlanduserightsbyengaginginregularpatrollingoftheforestarea.Itmustbeclarifiedwiththelocaladministrationwhichtypesofactionscanbeundertakeninthecaseofillegaltrespassing(e.g.,confiscatingchainsaws,alertinglocallawenforcers,etc.).Thisoftenresultsinimprovedsynergiesamongstlocalcommunities,lawenforcementandotherrelevantagenciestosupportboundaryprotection.Otherprojectactionscanincludethecreationoflogisticalplanstoprotectboundaries,socialfencing,andtheacquisitionofequipment(e.g.,smallmotorizedvehicles)forpatrollingandenforcement.Thefollowingtableoutlinestheproceduretoquantifythemaximaleffectivenessforthisdriver.Table12.Procedurestoquantifythemaximaleffectivenessofdemarcatingboundariesfortargetdrivers.TargetdriverMaximaleffectivenessquantificationLoggingoftimberforcommercialon-sale50%<𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒<100%[EQ53]Sincelegallysanctionedloggingisalreadyregulatedunderforestmanagementplans,themaindriveraffectedhereisillegalloggingforcommercialon-sale.Withasoundforestpatrollingplaninplace,itisassumedthatillegalloggingforcommercialon-salecanbeatleasthalved.Conversionofforestlandtocroplandbypeopleotherthanparticipatingcommunities𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛=100%[EQ54]Boundarydemarcationandforestprotectioncaneliminateconversionofforestlandtocroplandinmostinstances.Conversionofforestlandtosettlementsbypeopleotherthan𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒=100%[EQ55]SeepreviousdriverVM0006,Version2.2SectoralScope14Page64participatingcommunities8.2.1.4FirePreventionIfforestfiresthreatentheproject’sforestresources,specificfirepreventionmeasurescouldbetaken.Theseinclude(1)installationoffirebreaks,(2)clearingtheforestofdeadwoodthatcanactasfuelforfires,especiallyaroundregeneratingandyoungsecondaryforests,(3)discouragingoreliminating(ifpossible)fire-basedhuntingtechniques,and(4)socialinclusionactivitiestowardoffrevengerelatedfires.Saplingsandsmalltreesareparticularlyvulnerabletoforestfires.Iffirepreventionactivitiesrequirecuttingdowntrees,orremovingdeadwood,thislossofcarbonshouldbeaccountedfor.Thefollowingtableoutlinestheproceduretoquantifythemaximaleffectivenessforthisdriver.Table13.Procedurestoquantifythemaximaleffectivenessoffirepreventionfortargetdrivers.TargetdriverMaximaleffectivenessquantificationForestfires40%<𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒<60%[EQ56]Firepreventionmeasuressuchasfirebreaks,togetherwitheducation,caneffectivelyreducefire-relateddeforestationandforestdegradationby50%.Setthevalueofeffectivenessbetweenthethresholdsabovebasedon(1)pilotexperimentsintheprojectarea,(2)peer-reviewedstudiesinanareasimilartotheprojectareaor(3)advicefromexperts.8.2.1.5ReducetheFuelwoodConsumptionbyIncreasingEnergyEfficiencyThecollectionoffuelwoodonlyleadstoforestdegradationifitiscollectedfromlivetrees.Alow-intensitycollectionoffuelwoodfromdowneddeadwoodmay,infact,haveapositiveeffectonforestregenerationbydecreasingthepotentialforforestfires.Incaseswherethecollectionoffuelwoodleadstoforestdegradation,theintroductionoffuel-efficientwoodstoveswilldecreasetheneedforlocalconsumptionoffuelwood(Topetal.2004).Adoptionratesofthesealternativesneedtobemonitored,togetherwiththepotentialon-saleoffuelwoodonlocalmarkets,whichcanpotentiallyannultheGHGbenefitsgeneratedbythealternativestoves.Onlyfuelwoodgatheringfordomesticuseisallowedinprojectareas.Nofuelwoodgatheringisallowedforcommercialpurposes.Thecarbonaccountingrelatedtoadecreaseinconsumptionoffuelwoodisdonebymonitoringthechangesincarbonstocks;thefollowingtableoutlinestheproceduretoquantifythemaximaleffectivenessforthisdriver.VM0006,Version2.2SectoralScope14Page65Table14.Procedurestoquantifythemaximaleffectivenessofenergyefficiencyforthetargetdriver.TargetdriverMaximaleffectivenessquantificationFuelwoodcollectionfordomesticandlocalindustrialenergyneeds𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒=�(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)∙(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)[EQ57]Estimatethemaximaladoptionratebasedonthewillingnessofprojectparticipantstochangetheirpracticesasquantified(1)insocialassessments,or(2)byexpertopinion.Estimatetherelativeincreaseinefficiencyofstovesfrom(1)fieldstudies,(2)peer-reviewedliterature,or(3)localexperts.8.2.1.6CreationofAlternativeSourcesofFuelwoodWhilethepreviousprojectactionfocusesonthedemandsideofenergy,thesetofprojectactionsdiscussedinthissectionaffectsthesupplysideofenergy.Activitiescanfocusoncreatingalternativesourcesoffuelwoodthroughagroforestryinterventions,suchasinterplantingagriculturalfieldswithtreesthatbenefitagriculturalyields,(asdoesWinterthorn,Faidherbiaalbida),butalsoprovidesomefuelwoodtolocalfarmers.Otherexamplesincludethecreationoffarmorvillagewoodlotsandwoodlandsondegradedland.Obviously,noforestmaybecuttoestablishawoodlotorwoodland.However,emissionsrelatedtotheremovalofbiomassaspartofasetofsilviculturalinterventionstomaximizebiomassgrowth,suchasclearingofshrubsandweeds,areconsidereddeminimis.Finally,renewableandnon-fossilfuelbasedenergysources,suchassolarormicro-hydro,canreducetheneedforfuelwoodbyprovidinganalternativesourceofenergyforcooking,heatingorlight.Table15.Procedurestoquantifythemaximaleffectivenessofalternativefuelwoodsourcesfortargetdrivers.TargetdriverMaximaleffectivenessquantificationFuelwoodcollectionfordomesticandlocalindustrialenergyneeds𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒=𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏[EQ58]Estimatetheproductionofalternativefuelwoodsourcesthatwouldgotodomesticuses.Calculatethefuelwoodequivalentofsolarandmicro-hydrotechnologies,ifapplicable.Woodcollectionforcommercialon-sale𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒=𝐶𝐶𝐶𝐶𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏[EQ59]Estimatetheproductionofalternativewoodsourcesthatwouldgotofurtheron-sale.Calculatethefuelwoodequivalentofsolarandmicro-hydrotechnologies,ifapplicable.VM0006,Version2.2SectoralScope14Page668.2.1.7SustainableIntensificationofAgricultureonExistingAgriculturalLandForestlandisoftendeforestedtomakeaplaceforsubsistencefarmingorextensivegrazing.Projectactivitiesthatwillincreaseproductivityandagriculturalyieldsonexistingcroplandandincreaseanimalstockingratesongrazinglandsminimizetheneedforfurtherforestclearing.Suchactivitiesincludeincreasesinmechanization,installationofirrigationsystems,theintroductionofhigh-yieldingcropvarieties,increasesinlivestockstockingrates,conservationagricultureandagroforestryactivities,andfarm-woodlotmanagement.Intensificationofagriculturealsoprovidesalternativeforest-basedbiomassresources.OnlysustainablefarmingtechniquesshouldbepromotedandanyincreasesinGHGemissionsduetotheseactivitiesmustbemonitored,reportedandaccountedfor.Agriculturecanbeintensifiedthrough(1)sponsoringpilotanddemonstrationstudiesonsustainableagricultureandagroforestry,(2)strengtheningtherelationswithlocalagriculturalextensionservices,collegesanduniversitiesand(3)establishingasystemofsmallgrantsormicro-financingforlocalfarmerstoinvestintoagriculturalequipment,infrastructure,seeds,orfertilizer.Intensificationmeasuresmustbedoneonlandthatwasalreadyunderagriculturalproduction,oronlandthatissanctionedtobecomeagriculturallandgiventheland-useplans.Thefollowingtableoutlinestheproceduretoquantifythemaximaleffectivenessforthisdriver.Table16.Procedurestoquantifythemaximaleffectivenessofagriculturalintensificationfortargetdrivers.TargetdriverMaximaleffectivenessquantificationConversionofforestlandtocroplandbytheprojectproponent𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒=(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)∙(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)[EQ60]Estimatethemaximaladoptionratebasedonthewillingnessofprojectparticipantstochangetheirpracticesbasedon(1)quantifiedinsocialassessments,or(2)expertopinion.Estimatetherelativeincreaseinyieldfrom(1)fieldstudies,(2)peer-reviewedliteratureor(3)localagriculturalextensionexperts.Latteroptionsmayonlybeusedifformeroptionsarenotavailable.Cattlegrazing0%≤𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠≤100%[EQ61]SeepreviousdriverUnderstoryvegetationextraction0%≤𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒≤100%[EQ62]SeepreviousdriverVM0006,Version2.2SectoralScope14Page678.2.1.8ProvidingAlternativeLivelihoodstotheAgentsofDeforestationIfagentsofdeforestationcanengageinalternativelivelihoodsthatarenotbasedondeforestation,theycansecureincomewithouttheneedtofurtherclearforests.•Asmuchaspossible,plannedprojectactivitiesshouldbecarriedoutbythelocalcommunities.Engagingcommunitiesinforestpatrolling,biomassinventory,firepreventionactivities,installationoffencesandboundarypoles,andassistednaturalregenerationactivitieswillprovideemploymentandagreaterfinancialreturntothecommunities.Inaddition,theactiveinvolvementofthelocalcommunitieswillstrengthentheprojectgoalsanddecreasetherisksofprojectfailure.•Partoftheforestcanbemadeaccessibleforsustainableeco-tourism,whichwillcreatejobsandincreaserevenue.•Thesustainableextractionofnon-timberforestproductscanbefurtherdevelopedandcommercialized.Thisincludestheharvestingofhoney,medicinalplants,fungi,andtheextractionofresins.Clearharvestingplansneedtobedevelopedtoensurethesustainableextractionofthesecommodities.Itisassumedthatpeoplewillshiftautomaticallytowardsalivelihoodalternativethathasasufficientlygreaterreturnthantheircurrentlivelihood.Therefore,thetotaleffectivenessiscalculatedbydividingtheincomefromalternativelivelihoodsbythetotalvalueofforestproductsthatareharvestedfromtheforestandsoldonlocalmarkets.Itisfurtherassumedthatalternativelivelihoodoptionsmustbe25%moreeconomicallyattractivebeforepeoplewillswitchtothesealternativelivelihoods.Thetotaleffectivenessthusbecomes0.75∙∑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑜𝑜𝑜𝑜𝑜𝑜∑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑜𝑜𝑜𝑜𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.Thistotaleffectivenessisthendividedintoindividualvaluesfortheeffectivenessforeachtargetdriverbymultiplyingtherespectiverelativefinancialcontributionofthetargetdriverwiththetotalvalueofforestproducts.Thefollowingtableoutlinestheproceduretoquantifythemaximaleffectivenessforthisdriver.Table17.Procedurestoquantifythemaximaleffectivenessofalternativelivelihoodsfortargetdrivers.TargetdriverMaximaleffectivenessquantification•Conversionofforestlandtocropland•Loggingoftimberforcommercialon-sale•Loggingoftimberforlocalenterprisesanddomesticuse•Collectionoffuelwoodandcharcoalproductionforsaleonmarkets•Cattlegrazing𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒=0.75∙∑𝑖𝑖𝑖𝑖𝑖𝑖o𝑚𝑚𝑚𝑚𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑜𝑜𝑜𝑜𝑜𝑜∑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑜𝑜𝑜𝑜𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[EQ63]VM0006,Version2.2SectoralScope14Page688.2.2CalculateEffectivenessofProjectActivitiesinReducingGHGEmissionsTheeffectivenessofprojectactionsmaychangeduringthecreditingperiod,duetotheincreasedexperienceofprojectimplementersoranincreasedallocationoffundsduringthecreditingperiod.Thistime-dependentprojectactivityrateisaccountedforbyintegratingafactor𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑎𝑎,𝑡𝑡)forprojectactivity𝑎𝑎duringyear𝑡𝑡.Aswasmentionedbefore,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑎𝑎,𝑑𝑑)representsthemaximallyattainableeffectivenessgivenprojectconditionsandcapacityareoptimal.Asaconsequence,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑎𝑎,𝑡𝑡)mustbe100%atleastonceduringthecreditingperiod.Therelativereductionindeforestationcanbeestimatedex-antebyintegratingtherelativeproportionofeachdriverofdeforestationwiththeeffectivenesscoefficientsandtheestimatedadoptionratesforeachprojectactivity.𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝐷𝐷(𝑡𝑡,𝑑𝑑)=��𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑎𝑎,𝑡𝑡)∙𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑎𝑎,𝑑𝑑)∙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷(𝑑𝑑)�𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑎𝑎=1[EQ64]𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝐷𝐷(𝑡𝑡,𝑑𝑑)=��𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑎𝑎,𝑡𝑡)𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛i𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎=1∙𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑎𝑎,𝑑𝑑)∙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷(𝑑𝑑)�[EQ65]𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝐷𝐷(𝑡𝑡)=�𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝐷𝐷(𝑡𝑡,𝑑𝑑)𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑑𝑑=1[EQ66]𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝐷𝐷(𝑡𝑡)=�𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝐷𝐷(𝑡𝑡,𝑑𝑑)𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑑𝑑=1[EQ67]where:𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝐷𝐷(𝑡𝑡,𝑑𝑑)and𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝐷𝐷(𝑡𝑡,𝑑𝑑)=Relativeimpactofadriver𝑑𝑑ondeforestationandforestdegradation,respectivelyforyear𝑡𝑡ofthecreditingperiod.[-]𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝐷𝐷(𝑡𝑡)and𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝐷𝐷(𝑡𝑡)=Impactofallprojectactivitiesondeforestationandforestdegradationrespectively,relativetothebaselinedeforestationandforestdegradationratesduringyear𝑡𝑡.[-]𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛=Totalnumberofprojectactivities.[-]𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛=Totalnumberofdriversofdeforestation.[-]VM0006,Version2.2SectoralScope14Page69𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑎𝑎,𝑡𝑡)=Adoptionrateorrelativedegreeofactivityforactivity𝑎𝑎duringyear𝑡𝑡.Avalueof100%indicatesthattheactivitycannotbemoreefficientinreducingdeforestationorforestdegradation.[-]𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑎𝑎,𝑑𝑑)=Theeffectivenessofprojectaction𝑎𝑎toreducedriverofdeforestation𝑑𝑑.[-]𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷(𝑑𝑑)and𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷G(𝑑𝑑)=Therelativeimportanceofdriver𝑑𝑑indeforestationanddegradationtothetotaldeforestationanddegradation,respectively.[-]Theabsoluterateofdeforestationinhectaresperyearintheprojectregionundertheprojectscenariocanbecalculatedbymultiplyingtherelativeprojectimpactwiththetotaldeforestationandforestdegradationratesintheprojectregionunderthebaselinescenario.𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝐷𝐷𝐷𝐷(𝑡𝑡)=𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝐷𝐷(𝑡𝑡)∙𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝐷𝐷𝐷𝐷(𝑡𝑡)[EQ68]𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝐷𝐷𝐷𝐷(𝑡𝑡)=𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝐷𝐷(𝑡𝑡)∙𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝐷𝐷𝐷𝐷(𝑡𝑡)[EQ69]Where:𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝐷𝐷𝐷𝐷(𝑡𝑡)and𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝐷𝐷𝐷𝐷(𝑡𝑡)=Rateofdeforestation/degradationwithintheprojectareaduringyeartundertheprojectscenario.[hayr-1]𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝐷𝐷(𝑡𝑡)and𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝐷𝐷(𝑡𝑡)=Relativeimpactofallprojectactivitiesondeforestationandforestdegradationrespectivelyduringyear𝑡𝑡.[-]𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝐷𝐷𝐷𝐷(𝑡𝑡)and𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝐷𝐷𝐷𝐷(𝑡𝑡)=Baselinerateofdeforestation/degradationwithintheprojectareaduringyeart.[hayr-1]VM0006,Version2.2SectoralScope14Page708.2.3CalculateForestStrata-SpecificDeforestationandDegradationRatesUsetheLULCmodelcalibratedandvalidatedinSectionin8.1.5todividethetotalex-antedeforestationandforestdegradationratesundertheprojectscenariointoindividualratesforeveryforeststratumtransition.Thesamestatisticalmodelsmaybeusedforcalculatingthestratum-specificratesundertheprojectscenario.Foreveryyearofthecreditingperiod,presentalandtransitiontablefortheprojectareasundertheprojectscenario.8.2.4EstimateGHGEmissionsSourcesfromFirebreaksTheonlyprojectactivitythatmayleadtoanincreaseinemissionsintheprojectistheclearingoftreestoestablishfirebreaksorotherfirepreventionmeasures.12IncreasesinemissionsfromthisactivitymustbedulyaccountedforandsubtractedfromtheGHGemissionreductionsgeneratedbytheprojectactivities.Incaseprescribedburningisusedtoremovewoodybiomass,allCH4emissionsrelatedtotheburningmustbeincluded.TheGHGemissionsfromfirebreakscanbecalculatedby:𝐺𝐺𝐺𝐺𝐺𝐺𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑘𝑘𝑠𝑠=4412⋅�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏s(𝑖𝑖)𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖=1⋅�𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖)+𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖)+𝐶𝐶𝐵𝐵𝐵𝐵(𝑖𝑖)�+�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑖𝑖)⋅𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖=1�𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖)+𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖)+𝐶𝐶𝐵𝐵𝐵𝐵(𝑖𝑖)�⋅1612⋅𝐺𝐺𝐺𝐺𝐺𝐺𝐶𝐶𝐶𝐶4⋅𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶4[EQ70]where:𝐸𝐸𝑓𝑓i𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟=AnnualGHGemissionsfromimplementationoffire-preventingactionsasREDDprojectactivities.[tCO2eyr-1]𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛=Numberofforeststratainwhichfirebreakswereinstalled.[-]𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑖𝑖)=Totalannualareaofforeststratum𝑖𝑖thatwasclearedforcreatingfirebreaks.[hayr-1]𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖),𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖),𝐶𝐶𝐵𝐵𝐵𝐵(𝑖𝑖)=Carboncontentintheabovegroundlive,abovegrounddead,andbelowgroundpoolsinforeststratum𝑖𝑖.Itisconservativelyassumedthatallbiomassisremoved.[MgCha-1yr-1].𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑖𝑖)=Annualareaofforeststratum𝑖𝑖thatwasclearedbyprescribedburning.[hayr-1]𝐺𝐺𝐺𝐺𝐺𝐺𝐶𝐶𝐶𝐶4=GlobalWarmingPotentialforCH4[-]𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶4=EmissionratioforCH4(IPCCdefaultvalue=0.012).SeeTable3A.1.15inIPCCGPG-LULUCF(2003).[-]𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛=Numberofforeststrata.[-]12Emissionsfromclearingherbaceousvegetationareinsignificant.VM0006,Version2.2SectoralScope14Page71Addannualvaluesof𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓tothesummarytableofallGHGemissionsduetoprojectactivities.8.2.5EstimatetheNetGHGSequestrationfromAssistedNaturalRegeneration(ANR)Activities8.2.5.1ScopeandApplicabilityThismethodologyincludesprocedurestoquantifytheGHGremovalsgeneratedfromsilviculturalactivitiesaimedatrestoringdegradedforest.TheseANRactivitiesserveatriplegoal:(1)increasetheprojectarea’soverallGHGsinkstrength,(2)reduceactivity-shifting,and(3)providealternativelivelihoodstolocalcommunitiesbyemployinglocalcommunitiesforexecutingthework.SeeSection4.2.1foralistofapplicabilityconditionsrelatedtoANRactivities.FurtherspecificrequirementsrelatedtoANRactivitiesareprovidedbelow.Assistednaturalregenerationmustonlybedonebyimplementingoneormoreofthefollowingmeasures:•Removalofinvasiveunderstoryspeciessuchasfernsorherbstopromotethegrowthoftreeseedlings.•Thinningofover-stockedandstagnatedforeststandstopromoteradialgrowth.•Removalofexoticand/orinvasivetreespeciestopromotethegrowthofnativespecies.•Stemremovalontreeswithmultipleshootstopromotethegrowthofasinglestem.•Enrichmentplantingwithtreesofbiodiversityorsocialvalue.AdetailedANRmanagementplanwithadetaileddescriptionofallactivitiesincludingtheirlocationmustbeincludedinthePD.Anupdatetothemanagementplanmaybesubmittedatverification.8.2.5.2GeneralQuantificationSincethegeneralapproachtoquantifyincreasesinbiomassundertheprojectscenariousingremotesensingisnotverysensitivetogradualchangesinforestbiomass,regenerationintheareaswithANRarebetteraccountedforusingforestbiomassinventoriesonly.Asaconsequence,thechangesincarbonstocksintheANRareasintheprojectscenariomustbeaccountedforbydirectlymeasuringincreasesinforestbiomassusingforestbiomassinventories.Theseforestbiomassinventoryplotsmustbeestablished,whicharere-measuredperiodically.ThecalculationoftheGHGremovalsbysinksduetoassistednaturalregenerationactivitiesfollowsthelatestversionofCDMmethodologyAR-ACM0001bycombiningandannualizingequations(11)and(12)(equationnumbersfromAR-ACM0001).Theactivity-shiftingleakagefromANRactivitiesisalreadyincludedinthetotalproject’sleakage,asexplainedinSection8.3.ThefollowingequationmustbeusedtocalculatesequestrationfromANRactivities.VM0006,Version2.2SectoralScope14Page72𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡)=∆𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡)−∆𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵𝐵𝐵(𝑡𝑡)[EQ71]where:𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡)=Netanthropogenicgreenhousegasremovalsduetobiomassincreaseinassistednaturalregenerationduringyear𝑡𝑡.[tCO2e]∆𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡)=AnnualchangeincarbonstocksinallselectedcarbonpoolsduetoANRduringyear𝑡𝑡.[tCO2e]∆𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵𝐵𝐵(𝑡𝑡)=BaselineGHGgasemissionsorsourcesduringyear𝑡𝑡.[tCO2e]Theprocedureforcalculating∆𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡)isexplainedinSection8.2.5.3.Theprocedureforcalculating∆𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵𝐵𝐵(𝑡𝑡)isexplainedinSection8.2.5.4.Section8.2.5.5explainshowtocalculate𝐺𝐺𝐺𝐺𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡),theincreaseinCO2emissionsfromlossofexistingwoodybiomassduetosite-preparation(includingburning),and/ortocompetitionfromforest(orothervegetation)plantedaspartoftheANRactivitiesduringyear𝑡𝑡.8.2.5.3EstimateCarbonStockIncreaseTheproceduretocalculatethecarbonuptakebybiomassintheareaswhereassistednaturalregenerationactivitiesareimplementedfollowstheproceduredescribedinthelatestversionofCDM-approvedmethodologyAR-ACM0001.∆𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡)=4412∙�∆𝐶𝐶(𝑡𝑡,𝑖𝑖)∙𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖)𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖=1[EQ72]∆𝐶𝐶(𝑡𝑡,𝑖𝑖)=𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝐴𝐴𝐴𝐴𝐴𝐴,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡,𝑖𝑖)⋅𝐶𝐶(𝑡𝑡2,𝑖𝑖)−𝐶𝐶(𝑡𝑡1,𝑖𝑖)𝑡𝑡2−𝑡𝑡1[EQ73]where:∆𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡)=AnnualchangeincarbonstocksinallselectedcarbonpoolsduetoANRduringyear𝑡𝑡ofthecreditingperiod.CorrespondstoEquation(12)ofAR-ACM0001excluding𝐺𝐺𝐺𝐺𝐺𝐺𝐸𝐸,butconvertedtoCO2equivalents.[tCO2e]𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛=Numberofforeststrata.[-]∆𝐶𝐶(𝑡𝑡,𝑖𝑖)=CarbonstockchangeforANRstratum𝑖𝑖duringyear𝑡𝑡ofthecreditingperiod.[MgCyr-1]𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝐴𝐴𝐴𝐴𝐴𝐴,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡,𝑖𝑖)=AmountoflandonwhichANRactivitiesareplannedundertheprojectscenarioduringyear𝑡𝑡andinstratum𝑖𝑖.[ha]VM0006,Version2.2SectoralScope14Page73𝐶𝐶(𝑡𝑡2,𝑖𝑖)and𝐶𝐶(𝑡𝑡1,𝑖𝑖)=Carbonstockdensityattime𝑡𝑡2and𝑡𝑡1respectivelyandinstratum𝑖𝑖.[MgCha-1]𝑡𝑡2−𝑡𝑡1=Durationbetweentimes1and2.[year]Thelargerofthetwocombinederrorsofthecarbonstockdensityattime𝑡𝑡1and𝑡𝑡2mustbeusedforuncertaintyassessmentinANRareasusing[EQ74].𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖)=𝑚𝑚𝑚𝑚𝑥𝑥�𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡2,𝑖𝑖),𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡1,𝑖𝑖)�[EQ74]ThediscountingfactorforuncertaintyaroundbiomassstockdensitiesintheANRareaisestimatedas:Where:𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡,𝑖𝑖)=Combinederrorinestimatedbiomassstockdensityattimeperiod𝑡𝑡(i.e.,time𝑡𝑡1ortime𝑡𝑡2)withinstratum𝑖𝑖usingequationEQ21.[-]𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖)=Combinederrorinestimatedbiomassstockdensitywithinstratum𝑖𝑖.[-]𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻�𝐶𝐶(𝑡𝑡1,𝑖𝑖)�and𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻�𝐶𝐶(𝑡𝑡2,𝑖𝑖)�=Half-widthofthe95%confidenceintervalaroundthemeancarbonstockdensityofLULCclassesofforeststratum𝑖𝑖respectivelyattime𝑡𝑡1and𝑡𝑡2.[tCO2eha-1]𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖)=Uncertaintydiscountingfactoraroundbiomassstockdensitiesintransitionstratum𝑖𝑖withinANRareasduringtime𝑡𝑡.[−]𝑚𝑚𝑚𝑚𝑥𝑥�𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡2,𝑖𝑖),𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡1,𝑖𝑖)�=Maximumofcombinederrorininventoriesthatwerecarriedoutattime𝑡𝑡2and𝑡𝑡1inLULCclassorforeststratum𝑖𝑖.[-]𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖)=�1if𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖)≤0.15,1−𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡,𝑖𝑖)if0.15<𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖)<1,0if𝐶𝐶𝐶𝐶𝑖𝑖n𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣,𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖)≥1[EQ75]VM0006,Version2.2SectoralScope14Page74ToensurethatanylossofbiomassthatoccursaspartofANRactivitiessuchasfromsitepreparationisdulyaccountedfor,inthefirstverification𝐶𝐶(𝑡𝑡1,𝑖𝑖)arethecarbonstocksatthestartingdateofthecreditingperiodorthestartingdateofthecreditingperiodofaddedinstanceand𝐶𝐶(𝑡𝑡2,𝑖𝑖)arethecarbonstocksatthetimeofverificationinstratum𝑖𝑖.Inthesuccessiveverifications,𝐶𝐶(𝑡𝑡1,𝑖𝑖)arethecarbonstocksattheprecedingverificaitonand𝐶𝐶(𝑡𝑡2,𝑖𝑖)arethecarbonstocksatthetimeofverificationinstratum𝑖𝑖.Ex-ante,valuesforbiomassdensitiesinANRareasmustbebasedonpilotprojectsordataonbiomassincreasesinregeneratingforestsfromtheliterature.Ex-post,thisquantitymustbemonitoredforactualbiomassaccordingtoanetworkofsamplingplotsaccordingtotheprocedureswithinthisdocument.Selectasamplingdesignwithaconfidencelevelof95%.8.2.5.4CalculateBaselineEmissionsorSinksonLandonwhichAssistedNaturalRegenerationActivitiesarePlannedThebaselineemissionsorsinksonlandwithANRarecalculatedsimilarlyastothelandwithoutANRusing[EQ76].∆𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵𝐵𝐵(𝑡𝑡)=−���𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐⋅𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑖𝑖)⋅∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝐴𝐴𝐴𝐴𝐴𝐴,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡,𝑖𝑖)⋅�𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖)+𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖,𝑡𝑡−𝑡𝑡𝑡𝑡)+𝐸𝐸𝐸𝐸𝐵𝐵𝐵𝐵(𝑖𝑖,𝑡𝑡−𝑡𝑡𝑡𝑡)+𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖,𝑡𝑡−𝑡𝑡𝑡𝑡)��𝑡𝑡𝑡𝑡𝑡𝑡=1𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖=1−���𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠⋅𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑖𝑖)∙∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏i𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑡𝑡,𝑖𝑖)∙�𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖)+𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖,𝑡𝑡−𝑡𝑡𝑡𝑡)+𝐸𝐸𝐸𝐸𝐵𝐵𝐵𝐵(𝑖𝑖,𝑡𝑡−𝑡𝑡𝑡𝑡)+𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖,𝑡𝑡−𝑡𝑡𝑡𝑡)��𝑡𝑡𝑡𝑡𝑡𝑡=1𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖=1[EQ76]where:∆𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵𝐵𝐵(𝑡𝑡)=BaselineGHGgasemissionsorsourcesduringyear𝑡𝑡.[tCO2e]𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐=DiscountingfactorforNERsfromavoideddeforestation,basedontheaccuracyofclassification,i.e.dividinglandintobroadlandusetypes.Section8.1.2.7.𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑖𝑖)=Discountingfactorforallemissionreductions,basedontheuncertaintyofbiomassinventoryrelatedtotransition𝑖𝑖.∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝐴𝐴𝐴𝐴𝐴𝐴,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡,𝑖𝑖)=Hectaresundergoingtransition𝑖𝑖withintheANRareaunderthebaselinescenarioduringyear𝑡𝑡.[hayr-1].Section8.2.5.3𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖),𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖,𝑡𝑡−𝑡𝑡𝑡𝑡),𝐸𝐸𝐸𝐸𝐵𝐵𝐵𝐵(𝑖𝑖,𝑡𝑡−𝑡𝑡𝑡𝑡),𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖,𝑡𝑡−𝑡𝑡𝑡𝑡)=Abovegroundlive,abovegrounddead,belowground,andsoilemissionfactorfortransition𝑖𝑖,andtimeaftertransitionVM0006,Version2.2SectoralScope14Page75𝑡𝑡−𝑡𝑡𝑡𝑡.Section8.1.4.5𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠=DiscountingfactorforNERsfromavoideddegradation,basedontheaccuracyofstratification,i.e.dividingforestintoindividualforestbiomassclasses.Section8.1.2.7𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛=Numberofforest/non-foresttransitionsamonglandclassesorforeststrata,meaningtransitionsinwhicheitherthe“from”orthe“to”classarenon-forests.Section8.1.2.3𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛=Numberoftransitionsamongforeststrata.Section8.1.2.38.1.2.38.2.5.5CalculateEmissionSourcesfromAssistedNaturalRegenerationTheincreaseinGHGemissionsasaresultoftheprescribedburningduringtheimplementationoftheproposedANRactivity,𝐺𝐺𝐺𝐺𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡)consistsofCH4emissionsfromprescribedburningofwoodybiomassandiscalculatedasfollowing:𝐺𝐺𝐺𝐺𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡)=�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡,𝑖𝑖)𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖=1⋅�𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖)+𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖)+𝐶𝐶𝐵𝐵𝐵𝐵(𝑖𝑖)�⋅1612⋅𝐺𝐺𝐺𝐺𝐺𝐺𝐶𝐶𝐶𝐶4⋅𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶4[EQ77]where:𝐺𝐺𝐺𝐺𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡)=IncreaseinGHGemissionsasaresultANRactivitywithintheprojectboundaryduringyear𝑡𝑡.[tCO2e]𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛=NumberofstratawithintheprojectareaonwhichANRactivitiesareproposed.[-]𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡,𝑖𝑖)=AreaofbiomassremovedwithinANRstratum𝑖𝑖usingprescribedburningduringyear𝑡𝑡.[ha]𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖),𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖),𝐶𝐶𝐵𝐵𝐵𝐵(𝑖𝑖)=Carboncontentinabovegroundlive,abovegrounddeadandbelowgroundpoolinANRstratum𝑖𝑖.[MgCha-1]𝐺𝐺𝐺𝐺𝐺𝐺𝐶𝐶𝐻𝐻4=GlobalWarmingPotentialforCH4[-]𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶4=EmissionratioforCH4(IPCCdefaultvalue=0.012).SeeTable3A.1.15inIPCCGPG-LULUCF(2003).[-]VM0006,Version2.2SectoralScope14Page768.2.6EstimatetheNetGHGEmissionsReductionsfromCookstoveandFuelEfficiencyActivities8.2.6.1ScopeandApplicabilityCookstoveandFuelEfficiency(CFE)activitiescompriseimprovementsinthethermalapplicationofnon-renewablebiomass.Examplesofsuchactivitiesincludetheintroductionofhighefficiencybiomass-firedcookstoves,ovensanddryers,andimprovementofenergyefficiencyofexistingbiomass-firedcookstoves,ovensanddryers.ThismethodologyanticipatesassistingtheprojectproponentinreducingGHGemissionsfromdegradationthatcanoccurduetocollectionoffuelwoodevenifforestdegradationisnotincludedinthegeneralquantificationofGHGemissionsreductionsbenefits.ThismethodologycanbeusedtoquantifyGHGemissionsreductiongeneratedfromreducingconsumptionofnon-renewablebiomassbasedontheproceduresbelow.SeeSection4.2.2foralistofapplicabilityconditionsrelatedtoCFEactivities.FurtherspecificrequirementsrelatedtoCFEactivitiesareprovidedbelow.8.2.6.2GeneralQuantificationThequantificationapproachassumesthat,underthebaselinescenario,thecommunitiesarecollectingandconsumingbiomassfuelfromtheprojectarea,directlycausingdeforestationandforestdegradation.Withtheuseofapplianceswithhigherefficiency,theconsumptionofbiomassisexpectedtodecreaseundertheprojectscenario.TheintroductionofCFEactivitiesreducesnon-CO2fromburningoffuelwoodaswellasCO2emissionsfromthelossofcarbonstocksintheforest.WhenthedegradationisincludedinthegeneralquantificationofGHGemissionsreductions,emissionsreductionsfromCFEactivitiesarisingfromreducingCO2relatedemissionsmayhavepotentialtobecountedtwice.InordertoavoiddoublecountingofemissionsreductionsgeneratedfromCFEactivitiesarelimitedtothosearisingfromnon-CO2emissionsreductionsifdegradationisincludedintheREDDproject.Ontheotherhand,whenthedegradationisexcluded,GHGemissionsemissionreductions/removalsfromCFEactivitiesincludethenon-CO2emissionsandCO2relatedemissions.TheCO2relatedemissions,however,excludethoserelatedtodeforestationactivities.Leakagerelatedtothenon-renewablebiomasssavedbytheprojectactivitymustbeassessedfromsurveys.FollowingmethodAMS.II.G.aleakagediscountfactor(DFLeakageCFE)of0.95canbeappliedtoestimatedemissionsreductionbenefitsfromCFE,inwhicharesurveysarenotrequired.Ifthedegradationisexcluded:𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡)=𝐷𝐷𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿�𝐻𝐻𝐻𝐻𝑛𝑛𝑛𝑛𝑛𝑛−𝐶𝐶𝐶𝐶𝐶𝐶(𝑖𝑖,𝑡𝑡)∙𝑈𝑈𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡)∙𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡)∙�1−𝜂𝜂𝑜𝑜𝑜𝑜𝑜𝑜𝜂𝜂𝑛𝑛𝑛𝑛𝑛𝑛�𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖=1∙𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁∙(𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛−𝐶𝐶𝐶𝐶2,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓+𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐷𝐷𝐷𝐷,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓∙𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶2,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)Ifthedegradationisincluded:[EQ78]VM0006,Version2.2SectoralScope14Page77𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡)=𝐷𝐷𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿�𝐻𝐻𝐻𝐻𝑛𝑛𝑛𝑛𝑛𝑛−𝐶𝐶𝐶𝐶𝐶𝐶(𝑖𝑖,𝑡𝑡)∙𝑈𝑈𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡)∙𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡)∙�1−𝜂𝜂𝑜𝑜𝑜𝑜𝑜𝑜𝜂𝜂𝑛𝑛𝑛𝑛𝑛𝑛�𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖=1∙𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁∙𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛−𝐶𝐶𝐶𝐶2,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓where:𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡)=EmissionreductionfromCFEactivitiesduringyear𝑡𝑡fromcookstovesintheprojectarea.[tCO2e]𝐷𝐷𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑡𝑡)=Leakagediscountfactor[-].AdefaultfactorfromAMS.II.Gof0.95canbeused.𝑈𝑈𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡)=Fractionofcumulativeusageratefortechnologiesinprojectscenarioinyear𝑡𝑡basedoncumulativeadoptionrateanddropoffraterevealedbyusagesurveys[-].𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡)=Averageannualvolumeofbiomassfuelconsumedbyhouseholdsintheabsenceoftheprojectactivityattime𝑡𝑡forcookingpurpose.[MgDMyr-1HH-1]𝐻𝐻𝐻𝐻𝑛𝑛𝑛𝑛𝑛𝑛−𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡,𝑖𝑖)=Totalnumberofhouseholdsintheprojectareathatcollectbiomassfuelfromtheprojectareaanduse𝑖𝑖numberofefficientoralternativeappliancesundertheprojectscenarioanddonotuseCFEunderthebaselineattime𝑡𝑡.[-]𝑖𝑖=Numberofimprovedcookstovesand/orfuelefficientappliancesfrom1to𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛[-]𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛=Totalnumberofnumberofimprovedcookstovesand/orfuelefficientappliances[-]𝜂𝜂𝑜𝑜𝑜𝑜𝑜𝑜=Efficiencyofthebaselinecookstovesorappliancesbeingreplaced.[-]𝜂𝜂𝑛𝑛𝑛𝑛𝑛𝑛=EfficiencyoftheprojectCFEappliancesdeployed.[-]𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐷𝐷𝐷𝐷(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)=Thedefaultproportionofdegradationrelatedcarbonlossfromfuelwoodcollectionactivities[-],(SeeTable7)𝑁𝑁𝑁𝑁𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓=Netcalorificvalueofnon-renewablebiomassthatissubstituted.[TJ(MgDM)-1]𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛−𝐶𝐶𝐶𝐶2,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓=Non-­‐CO2emissionfactorofthefuelthatisreduced.[MgCO2TJ-1]𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶2,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓=Emissionfactorforthesubstitutionofnon-renewablebiomassbysimilarconsumers.[MgCO2TJ-1]VM0006,Version2.2SectoralScope14Page788.2.7EstimateGHGEmissionsfromHarvestingThismethodologyallows(limited)harvestingoftimberfromtheprojectarea.Allowingharvestingactivities(1)increasestheattractivenessofaREDDprojecttoparticipatingcommunitiesbyprovidingemploymentand/orcontrolledaccesstoforestresources,(2)reducesactivity-shiftingandmarketleakage,and(3)ensuresthatharvestingoccurslegally,controlledandinasustainablefashion.Anintegratedforestmanagementplanoraharvestplanmustbedevelopedandallharvestingactivitiesmustbecarriedoutaccordingtothisplan.TheplanmustincludeboundaryofareaswithinaREDDprojectwhereharvestactivitiestakeplace,aswellasdetailsoftheforestinventory,projectedforestgrowth,projectedremovalandharvestschedules,harvestmethods,andlocationofharvestactivities.Inaddition,forestmanagementaswellassilviculturalactivitiesthataimatenhancingthegrowthandvigoroftheforestsinsidetheharvestedareasmustbedescribedintheplan.Theintegratedforestmanagementplanmustbesubmittedatvalidationorduringaverificationeventandmaybeupdatedataverificationevent.IfaspecificareaonwhichANRactivitiesaredoneorweredoneinthepastbutonwhichharvestingactivitiesareplannedatanypointinthefuture,thisareamustbeconsideredunderthissectionandnotinthesectiononANRsotoavoidoverlapinareas.Thequantificationofthecarbonstockdensityinharvestareas(𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡,𝑖𝑖))mustbemadefromsampleplotsestablishedintheharvestareas.SeeSection4.2.3foralistofapplicabilityconditionsregardingharvesting.Furtherspecificrequirementsrelatedtoharvestingareprovidedbelow.TheharvestplandescriptioninPDmustincludethefollowinginformation:•Descriptionofharvestareasintermsoflocation,size,forestinventoryandtopography.•Adescriptionofallsilviculturalactivitiesthatwillbeappliedintheareaswhereharvestingwillbecarriedout.Thisdescriptionmustincludenumberoftreesremovedandnumberoftreesretained,incaseofindividualtreeselectioncutmethods.Forclear-cutmethodsorgroupselectioncutmethods,maximumopeningsizemustalsobedescribed.•Theharvestingmethods,i.e.mechanizedvs.manual,aswellasallprocessessuchasfelling,bunching,skidding/forwarding,loading,andunloading.Allmachineryandequipmentmustbedescribed.•Theharvestfrequency(yearsbetweenharvests)andvolumeofharvestateachtimeperiod.•Regenerationassumptionsanddescriptionofsiteindexesfordominantspeciesinthestrata.Theharvestplanmustincludetheexpectedtreedensitythatwillbemaintainedintheprojectarea.Additionally,growthestimatesforharvestareasintermsoftotalbiomassaswellasbiomassstockdensityperunitareamustbedescribedandallassumptionsandvalidityofanygrowthestimatesmustbejustified.Ifanysoftwarebasedmodelshavebeenused,properjustificationofthesuitabilityofsuchmodelsusedmustalsobedescribedintheharvestplan.•Activitiesthatarepracticedtoprotectsoil,water,siteandresidualtreesintheVM0006,Version2.2SectoralScope14Page79harvestarea.•Documentationonpresence/absenceofanythreatenedorendangeredspeciesand/orhabitatonsite,potentialimpactsonspeciesandmitigationmeasures,presence/absenceofnaturalheritageareas,andpotentialimpactsonnaturalheritageareasandmitigationmeasures.•Amapoftheharvestsiteincludingthefollowing:•Plotlocations.•Harvestareaboundarywithintheprojectareaboundary.•Slopeclasses.•Streams/rivers/roads(ifpresent).•Wetlands(ifpresent).•Streamsidemanagementzonesorriverbuffer(ifapplicable).•Plannedskidtrails(ifapplicable).•Landingsites/areas(ifapplicable).8.2.7.1DeterminingLong-termAverageCarbonStockThelong-termaveragecarbonstockrepresentsthemaximumcarbonstockthatcanbeattainedinharvestareas.GHGbenefitsmustbecalculatedusingacarbonstockthatneverexceedsthelong-termaveragecarbonstockintheareaswhereharvestactivitiestakeplace.Thelong-termaveragemustbequantifiedbasedonanappropriateminimaltimeperiodwhichmustincludeatleastonefullharvest/cuttingcycle.Theminimaltimeperiodmustbeestablishedasfollowing:•Iftheharvestplanconcentratesharvestactivitiesinsmallerblocksandcontinuouslymovesharvestingactivitiesfromoneblocktothenextthroughouttheforestuntilalltheareasareharvestedwithinoneharvestingcycle(aspracticedinclear-cutorgroup-selectioncutmethods),theminimaltimeperiodmustendatthefirstyearaftertheendofthecreditingperiodduringwhichallforestblockshaveundergoneasimilarnumberofharvestingcycles.Forexample,ifthecreditingperiodis30yearsandthedurationforallblockstobeharvestedonceis12years,theminimaltimeperiodmustbe36yearseventhoughprojectcreditingperiodisonly30years.•Iftheharvestplanintendstotargetindividualtreesforharvestthroughoutthecreditingperiodandtheharvestcantakeplaceanywhereinaspecifiedarewithintheforest(aspracticedinindividualtreeselectioncutmethods),thentheestablishedtimeperiodoverwhichthelong-termaverageiscalculatedmustbethelengthoftheprojectcreditingperiod.Forexample,ifthecreditingperiodis30yearsandharvestingofindividualtreesarecarriedoutthroughouttheforestduringtheprojectcreditingperiod,thenthelong-termaveragemustbeestimatedbasedontheprojectcreditingperiod.VM0006,Version2.2SectoralScope14Page80•Afterdeterminingthetimeperiodforestimatingthelong-termaverage,thelong-termaveragecarbonstockdensitymustbecalculatedusing[EQ79].𝐿𝐿𝐿𝐿𝐿𝐿𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎=∑∑𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡,𝑖𝑖)∙𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑖𝑖)𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖=1𝑇𝑇𝑡𝑡=0𝑇𝑇[EQ79]where:𝐿𝐿𝐿𝐿𝐿𝐿𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎=Long-termaverageCarbonstockdensitycontainedinharvestedareas.[tCO2eha-1]𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛=Numberofforeststrata.[-]𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡,𝑖𝑖)=Biomasscarbonstockdensityattimetinstratumiinharvestedareas.[tCO2ha-1]𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑖𝑖)=Discountingfactorfortheuncertaintyinbiomassestimationinharvestedareasinstratumiinharvestareas.Themostrecent𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡,𝑖𝑖)valuemustforusedfordiscountingtheestimateforfutureyears.[-]𝑇𝑇=Minimaltimeperiodforestimatinglongtermaverage.[yr].Theex-anteestimationofthe𝐿𝐿𝐿𝐿𝐿𝐿𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎mustusebiomasscarbonstockdensity𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡,𝑖𝑖)valuesthatareestimatedusingaprojectionmodelsuchasacomputersimulationmodeloragrowthtable.Allprojectionmodelsmustbeproperlycalibratedusingfieldmeasurementsandmustestimatetheremovalofbiomassfromtheharvestareasusingtheharvestmanagementplan.Afterthestartoftheproject,theprojectionmodelmustbere-calibratedusingactualharvestingandbiomassgrowthdataandthe𝐿𝐿𝐿𝐿𝐿𝐿𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎mustbere-calculatedateveryverification.Anyprojectionmodelusedmusthavethefollowingcharacteristics:•Theusedmodelshavebeenprescribedorrecommendedbydesignationforestdepartmentorrelatedagenciesinthecountry/jurisdiction.Forexample,growthmodelsoryieldprojecttableslistedinforestact/regulationscanbeused.Alternatively,modelsthathavebeenfoundinpeerreviewedliteratureandarefromthesameregionasoftheprojectareacanbeused.However,suchmodelsmustbeparameterizedforthespecificconditionsoftheprojectarea.•Theusedmodelsmustbeclearlydocumentedwithrespecttothescopeofthemodel,assumptions,knownlimitations,embeddedhypotheses,assessmentofuncertainties,andsourcesforequations,datasets,factorsorparameters.•Simulationsoftwaremustbebasedonlocaldataorcalibratedforuseintheprojectarea.CO2FIXisanexampleofasimpleready-to-usemodelthatcanbeeasilyappliedglobally.FVS,adifferentsimulationmodel,hasmorefunctionalitybutrequirescalibrationforuseoutsideoftheUS(andCanada).VM0006,Version2.2SectoralScope14Page81•Whennoindividualsimulationmodelisavailable,asimplespreadsheetmodelusingIPCCbiomassgrowthestimatesorgrowthestimatesbasedonexpertopinioncorroboratedbylocalstudiesandhistoricalpracticefortheprojectareacanbeused.TheIPCCbiomasstablesprovideestimateofannualgrowthandtotalbiomassasafunctionofdifferentforesttypes,age-group,andtime.Whenbiomassremovalistrackedalongwiththeannualgrowth,biomassremaininginforestcanbeestimated.Notethatthisapproachgivesonlylineargrowth.8.2.7.2CalculateEmissionsorSinksonLandonwhichHarvestingActivitiesareImplementedTheemissionsreductionsorremovalsonthelandwithharvestactivitiesarecalculatedusing[EQ80].∆𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑡𝑡)=[EQ80]�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡,𝑖𝑖)∙�𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡2,𝑖𝑖)−𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡1,𝑖𝑖)𝑡𝑡2−𝑡𝑡1�𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖=1∙𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑖𝑖)−���𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐⋅𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑖𝑖)⋅∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡,𝑖𝑖)⋅�𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖)+𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖,𝑡𝑡−𝑡𝑡𝑡𝑡)+𝐸𝐸𝐸𝐸𝐵𝐵𝐵𝐵(𝑖𝑖,𝑡𝑡−𝑡𝑡𝑡𝑡)+𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖,𝑡𝑡−𝑡𝑡𝑡𝑡)��𝑡𝑡𝑡𝑡𝑡𝑡=1𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖=1−���𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠⋅𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑖𝑖)∙∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡,𝑖𝑖)∙�𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖)+𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖,𝑡𝑡−𝑡𝑡𝑡𝑡)+𝐸𝐸𝐸𝐸𝐵𝐵𝐵𝐵(𝑖𝑖,𝑡𝑡−t𝑡𝑡)+𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖,𝑡𝑡−𝑡𝑡𝑡𝑡)��𝑡𝑡𝑡𝑡𝑡𝑡=1𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖=1Inthefirstverification,𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡1,𝑖𝑖)arethecarbonstocksatthestartingdateofthecreditingperiodand𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡2,𝑖𝑖)arethecarbonstocksatthetimeofverificationinstratum𝑖𝑖.Inthesuccessiveverifications,𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡1,𝑖𝑖)arethecarbonstocksattheprecedingverificationeventand𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡2,𝑖𝑖)arethecarbonstocksatthetimeofverificationinstratum𝑖𝑖.Furthermore,whenanewinstanceisincludedintheprojectarea,inthefirstverificationoftheaddedinstance,𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡1,𝑖𝑖)arethecarbonstockatthetimeofthatinstanceaddition.𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑖𝑖)mustbeestimatedusingproceduredescribedin8.2.5.where:∆𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑡𝑡)=Netgreenhousegasemissionsorremovalsinprojectareawithharvestactivitiesduringyear𝑡𝑡.[tCO2e]𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡,𝑖𝑖)=Sizeofstrata𝑖𝑖withintheprojectareawithharvestactivitiesduringyear𝑡𝑡undertheprojectscenario.[-]𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡,𝑖𝑖)=Biomasscarbonstockdensityattimetinstratumiinharvestedareas.[tCO2ha-1]VM0006,Version2.2SectoralScope14Page82𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑖𝑖)=Discountingfactorfortheuncertaintyinbiomassestimationinharvestedareasinstratumiinharvestareas.Themostrecent𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡,𝑖𝑖)valuemustforusedfordiscountingtheestimateforfutureyears.[-]∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡,𝑖𝑖)=Hectaresundergoingtransition𝑖𝑖withintheprojectareaintheharvestarea,underthebaselinescenarioduringyear𝑡𝑡.[hayr-1].𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛=Numberoftransitionsamongforeststrata.Section8.1.2.3𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛=Numberofforest/non-foresttransitionsamonglandclassesorforeststrata,meaningtransitionsinwhicheitherthe“from”orthe“to”classarenon-forests.Section8.1.2.3𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖),𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖,𝑡𝑡−𝑡𝑡𝑡𝑡),𝐸𝐸𝐸𝐸𝐵𝐵𝐵𝐵(𝑖𝑖,𝑡𝑡−𝑡𝑡𝑡𝑡),and𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖,𝑡𝑡−𝑡𝑡𝑡𝑡)=Abovegroundlive,abovegrounddead,belowground,andsoilemissionfactorfortransition𝑖𝑖,andtimeaftertransition𝑡𝑡−𝑡𝑡𝑡𝑡.Section8.1.4.5𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐i𝑜𝑜𝑜𝑜=DiscountingfactorforNERsfromavoideddegradation,basedontheaccuracyofstratification,i.e.dividingforestintoindividualforestbiomassclasses.Section8.1.2.7𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐i𝑜𝑜𝑜𝑜=DiscountingfactorforNERsfromavoideddeforestation,basedontheaccuracyofclassification,i.e.dividinglandintobroadlandusetypes.Section8.1.2.7𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑖𝑖)=Discountingfactorforallemissionreductions,basedontheuncertaintyofbiomassinventoryrelatedtotransition𝑖𝑖.8.2.7.3QuantificationofEmissionsfromHarvestingThefossilfuelemissionsfromforestharvestingactivitiesarelikelytobelessthan5%ofthetotalGHGemissionsreductionsbenefitsgeneratedbytheproject.Consideringthatemissionsfromdeforestationandforestdegradationwillbemuchhigherthanthoseassociatetotimberharvesting,theemissionsfromfossilfuelduringtransportandmachinerycanbeconsideredde-minimis.Inaddition,accordingtoVCSAFOLURequirementsSection4.3.3.fossilfuelemissionsfromtransportandmachineryuseintheREDDprojectactivitiescanbeconsidereddeminimis.Therefore,emissionsfromharvesting,𝐺𝐺𝐺𝐺𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡),areconsidered“0”.VM0006,Version2.2SectoralScope14Page838.3Leakage8.3.1LeakageCategoriesIncludedinthisMethodology.Underthismethodology,leakageisestimatedex-ante,butactualNERsarebasedonactualleakagecalculatedwithprojectmonitoringdata.Leakagedoesnotonlyoccuronforestlandoutsideoftheprojectarea,butalsoonnon-forestland,suchaswoodlandsorgrassland.Themarketleakageassessmentonlyhastobeincludedwhenillegalloggingactivitiesthatsupplytimbertonationalorinternationalmarketsasanidentifieddriver.Stoppingillegalloggingtosupplytimberproductstolocalcommunitiesisgoingtoshiftpressurestoforestedareasclosetotheprojectarea.Asaconsequence,emissionsduetomarket-effectleakagewillbedetectedbythemonitoringforactivityshiftingleakage.However,iftheillegalloggingactivitiessupplytimberproductstoregional,nationalorglobalmarkets,thereishighlikelihoodofmarketleakagebeyondthedetectionboundariesoftheactivity-shiftingleakage.Therefore,marketleakage𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡)fromreducingloggingactivitiesthatsupplytimberproductstoregional,nationalorglobalmarketsmustbequantifiedbyapplyingappropriatemarketleakagediscountfactortothetotalGHGemissionsreductions/removalsbenefitsderivedfromavoidingthedeforestationand/ordegradationactivitiesthatsupplytimberwouldotherwisesupplytimberproductstoregional,nationalorglobalmarketsinthebaseline.ThemarketleakagediscountfactormustbederivedbyusingproceduresforthemarketleakagediscountfactorsforIFMprojectssetoutinVCSAFOLURequirement.Theproceduretoquantifyleakagediffersbetweendriversthataregeographicallyconstrainedandgeographicallyunconstraineddrivers(seeTable18).•Ex-anteactivity-shiftingleakagefromthegeographicallyconstraineddriversusesafactor-approachbasedonruralappraisalsandexpertknowledge;ex-postleakagefromthesedriversisbasedontheremotelysenseddeforestation/degradationratesintheleakagearea.•Ex-anteactivity-shiftingleakagefromthegeographicallyunconstraineddriversisbasedonafactor-approachbasedonruralappraisalsandexpertknowledge.Ex-postactivityshiftingleakageisbasedonafactor-approachusingconservativeassumptions.Table18.Distinctionbetweengeographicallyconstrainedandgeographicallyunconstraineddrivers.GeographicallyconstraineddrivercategoriesGeographicallyunconstraineddrivercategories•Conversionofforestlandtocroplandforsubsistencefarmingbylocalcommunities•Conversionofforestlandtosettlements•Conversionofforestlandtocroplandforsubsistencefarmingbymigrants•ConversionofforestlandtoVM0006,Version2.2SectoralScope14Page84bylocalcommunities•Loggingoftimberforlocalenterprisesanddomesticuse•Fuelwoodcollectionordomesticandlocalindustrialenergyneeds•Cattlegrazinginforests•Extractionofunderstoryvegetation•Forestfiresnotpartofnaturalecosystemdynamics13settlementsbymigrants•Loggingoftimberforcommercialon-sale•Woodcollectionforcommercialon-saleoffuelwoodandcharcoalproduction8.3.2EstimateLeakagefromGeographicallyConstrainedDriversLeakagefromgeographicallyconstraineddriversisestimatedex-antebycalculatingdeforestationandforestdegradationratesintheareaadjacenttotheprojectareasubjecttoleakage,i.e.theleakagebelts.•First,calculatetheleakageinducedincreaseindeforestation/degradationduetoprojectactivities.•Subsequently,demarcatethelocationandthesizeoftheleakagebeltsusingaGISanalysis.•Next,estimateforeststrata-specificdeforestationandforestdegradationratesintheleakagebelts.Calculatefirstthetotaldeforestationanddegradationratesintheleakagebeltsbyaddingtheleakage-inducedincreasesindeforestation/degradationtothebaselinedeforestation/degradationratesintheleakagebelts.Estimatethenforeststrata-specificdeforestationandforestdegradationratesusingthelandusemodelpreviouslycalibrated(Section8.1.5)foreverytime𝑡𝑡ofthecreditingperiod.8.3.2.1CalculatetheLeakage-InducedIncreaseinDeforestationandForestDegradationRates∆𝐷𝐷𝐿𝐿𝐿𝐿,𝐷𝐷𝐷𝐷(𝑡𝑡)=𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝐹𝐹(𝑡𝑡)∙𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝐷𝐷𝐷𝐷(𝑡𝑡)[EQ81]∆𝐷𝐷𝐿𝐿𝐿𝐿,𝐷𝐷𝐷𝐷(𝑡𝑡)=𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝐷𝐷(𝑡𝑡)∙𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝐷𝐷𝐷𝐷(𝑡𝑡)[EQ82]13Notallforestfiresareasourceofleakage,onlytheforestfirescausedbydisplacedagentssuchashuntersorbeekeepers.Thecauseofthefireisnotspecifiedinthenameoftheleakagesource,however,since,inpractice,itisimpossibletodeterminethesourceoffire.Anystatisticallysignificantincreaseinfireoccurrencerelativetoa10-yrbaselineperiodmustbeconsideredasleakage.VM0006,Version2.2SectoralScope14Page85where:∆𝐷𝐷𝐿𝐿𝐿𝐿,𝐷𝐷𝐷𝐷(𝑡𝑡)and∆𝐷𝐷𝐿𝐿𝐿𝐿,𝐷𝐷𝐷𝐷(𝑡𝑡)=Leakageinducedincreaseindeforestationandforestdegradationratesduringyear𝑡𝑡ofthecreditingperiod.[hayr-1]𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝐷𝐷(𝑡𝑡)and𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝐷𝐷(𝑡𝑡)=TotalrelativeimpactofleakageonthedecreaseinGHGemissionsduetoprojectactivitiesfordeforestationandforestdegradationrespectivelyforyear𝑡𝑡ofthecreditingperiod.[-]𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝐷𝐷𝐷𝐷(𝑡𝑡),and𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝐷𝐷𝐷𝐷(𝑡𝑡)=Baselinerateofdeforestation/degradationwithintheprojectareaduringyear𝑡𝑡ofthecreditingperiod.[hayr-1]Therelativeimpactofleakageisquantifiedbyex-anteleakagecancellationfactors,whichexpressthedriver-specificrelativeamountofleakagefortheamountofdeforestationordegradationthatisavoided.Thisquantitydescribestheproportionofthe(expected)grossemissionreductionsinsidetheprojectareathatarelostagainduetoleakageoutsideoftheprojectarea.Onlychangesthataredirectlyattributedtoprojectactivitiesmustbeincludedinthecancellationrate.Forexample,ifpreventingillegalencroachmentwithintheprojectareabypatrollingsaves500haofforestperyear,butdirectlyleadstoanincreaseddeforestationoutsideoftheprojectareaof300ha,theachievedGHGemissionsreductionsbenefitsarecancelledduetoleakage.ThecancellationofGHGemissionsreductionsbenefitis60%.Oncetheleakagecancellationrates𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑑𝑑)arefixedforeverydriverd,the𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅canbecalculatedasfollowing:𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝐷𝐷(𝑡𝑡)=�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑑𝑑)𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑑𝑑=1∙R𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐷𝐷𝐷𝐷(𝑡𝑡,𝑑𝑑)[EQ83]𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝐷𝐷(𝑡𝑡)=�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑑𝑑)𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑑𝑑=1∙𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝐷𝐷(𝑡𝑡,𝑑𝑑)[EQ84]where:𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝐷𝐷(𝑡𝑡)and𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝐷𝐷(𝑡𝑡)=TotalrelativeimpactofleakageonthedecreaseinGHGemissionsduetoprojectactivitiesfordeforestationandforestdegradationrespectivelyattime𝑡𝑡.[-]𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛=Numberofgeographicallyconstraineddrivers.[-]VM0006,Version2.2SectoralScope14Page86𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑑𝑑)=Leakagecancellationrateforavoidingdeforestation/degradationofgeographicallyconstraineddriver𝑑𝑑.[-]𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝐷𝐷(𝑡𝑡,𝑑𝑑)and𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝐷𝐷(𝑡𝑡,𝑑𝑑)=Relativeimpactofadriver𝑑𝑑ondeforestationandforestdegradation,respectivelyattime𝑡𝑡ofthecreditingperiod.[-]Everydriverisassignedaleakagecancellationratebasedexpertknowledge,socialassessmentsandpastprojectexperience.Summarizeallcancellationratesforeachdriverinaseparatetableforavoideddeforestationoravoidedforestdegradation.Anyvariablewithsubscript“allowed”indicatesthattheamountcontainedinthatvariableisallowedundertheproject.Similarly,variableswithsubscript“project”and“baseline”respectivelyindicateamountdemandedunderprojectandbaseline.Forexample,aspartoftheREDDprojectstrategy,measurescanbeputinplacetoreducetheallowedextractionofcertainforestproductsandreducethedemandfortheseforestproducts.Anydemandforforestproductswhichcannotbeeliminatedandcannotbemetbytheallowedproductioncancauseleakage.Leakagemustbecalculatedasafunctionofbaselinedemand,projectdemandandprojectsupply.Iftheprojectinterventiondoesnotexpectanyreductionindemandundertheprojectscenario,anyparameterwithsubscript“project”mustbeequaltocorrespondingparameterswithsubscript“baseline”.Similarly,ifnodeforestationand/ordegradationparameterisallowed/expectedunderprojectscenariothenparameterwithsubscript“allowed’mustbesetto“0”inthesecalculations.8.3.2.1.1LeakageCancellationRateforConversionofForestLandtoCroplandforSubsistenceFarmingbyParticipatingCommunities𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)=∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑏𝑏𝑏𝑏s𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒−∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎[EQ85]Where:𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)=Leakagecancellationrateforavoidingdeforestation/degradationduetoconversionofforestlandtosettlements.[-]∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏=Areathatwouldbeconvertedtocroplandbyparticipatingcommunitiesunderthebaselinescenario.[hayr-1]∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝=Areathatwillbeconvertedtocroplandbyparticipatingcommunitiesundertheprojectscenarioafterreductionindemandforcroplandconversion.[hayr-1]VM0006,Version2.2SectoralScope14Page87∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎=Areathatwillbeconvertedtocroplandwithintheprojectareaundertheprojectscenarioasdefinedinthemanagementplanorprojectdocument.[hayr-1]Ifthedataaremissingtocalculate𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐),useaconservativerateof100%.Thisisallowedbecausenoex-postNERsaredependentonthisrateestimated.Iftheprojectdoesnotanticipateorallowanyconversionaftertheprojectstartdatethen,∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎mustbe“0”.8.3.2.1.2LeakageCancellationRateforConversionofForestLandtoSettlementsbyLocalCommunities𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑐𝑐𝑐𝑐n𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)=∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎[EQ86]where:𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)=Leakagecancellationrateforavoidingdeforestation/degradationduetoconversionofforestlandtosettlements.[-]∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠t𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏=Areathatwouldbeconvertedtosettlementsbyparticipatingcommunitiesunderthebaselinescenario.[hayr-1]∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝=Areathatwillbeconvertedtosettlementsbyparticipatingcommunitiesundertheprojectscenarioafterreductionindemandforsettlementtoconversion.Ifreductionindemandisnotapplicable,thenthismustbeequalto𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎.Thisareaisrequiredbycommunities.[hayr-1]∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎=Areathatwillbeconvertedtosettlementswithintheprojectareaundertheprojectscenarioasdefinedinmanagementplan/projectdocument.[hayr-1]Ifthedataaremissingtocalculate𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐),useaconservativerateof0.9.Thisisallowedbecausenoex-postNERsaredependentonthisrateestimated.VM0006,Version2.2SectoralScope14Page888.3.2.1.3LeakageCancellationRateforConversionofForestLandtoInfrastructure𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑐𝑐𝑐𝑐n𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)=∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎[EQ87]where:𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)=Leakagecancellationrateforavoidingdeforestation/degradationduetoconversionofforestlandtoinfrastructure.[-]∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏=Areathatwouldbeconvertedtoinfrastructureunderthebaselinescenario.[hayr-1]∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝=Areathatwillbeconvertedtoinfrastructureundertheprojectscenarioafterreductionindemandforinfrastructuredevelopment.Ifreductionindemandisnotapplicable,thenthismustbeequalto∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏.[hayr-1]∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎=Areathatwillbeconvertedtoinfrastructurewithintheprojectareaundertheprojectscenarioasdefinedinmanagementplan/projectdocument.[hayr-1]Ifthedatatocalculate𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)isnotavailable,useaconservativerateof100%.Ifthesimilarprojectactivitieshaveproventoachieve100%reductionindemandforinfrastructuredevelopmentelsewhereinthereferenceregionorinareassimilartoreferenceregioninthesamejurisdictionasthelocationofprojectarea,then𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)canbesetto0%.Iftheprojectdoesnotanticipateorallowanyconversionforinfrastructureaftertheprojectstartdatethen,∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎mustbe“0”.VM0006,Version2.2SectoralScope14Page898.3.2.1.4LeakageCancellationRateforLoggingofTimberforLocalEnterprisesandDomesticUse.Thetimberneededforlocalanddomesticuseisnon-elastic.Iftheprojectactivitiesallowsextractionoftimberfromforest,thentheleakageis“0”andiftheprojectactivitiesdoesnotallowextractionoftimberforsuchuses,thentheleakagecancellationrateis100%.Foranyvaluelessthan100%,sufficientproofmustbeprovidedtojustifylowerleakagerateandmustbeassessedbythevalidation/verificationbody.Inordertojustifyalowerleakage,theprojectproponentmustbeabletodemonstratealowerdemandfortimberproductsorsupplyfromthesourcesthatarenotcausingdeforestationwithinthecountryboundarysuchasmanagedforestlots.𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑎𝑎𝑔𝑔𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)=0−100%[EQ88]8.3.2.1.5LeakageCancellationRateforFuelwoodCollectionforDomesticandLocalIndustrialEnergyNeedsEstimatetheleakagecancellationrateas:𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓-𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤)=𝐷𝐷𝐷𝐷𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎[EQ89]where:𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓-𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤)=Leakagecancellationrateforavoidingdeforestation/degradationoffuelwoodcollectionfordomesticandlocalenergyneeds.[%]𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏=Biomass(drymatter)offuelwoodcollectedbyprojectparticipantsunderthebaselinescenario.[m3yr-1]𝐷𝐷𝐷𝐷𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝=Biomass(drymatter)offuelwoodcollectedbyprojectparticipantsundertheprojectscenarioafteranyadjustmentstodemand.[m3yr-1]𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎=Biomass(drymatter)ofallowedfuelwoodcollectionintheprojectareaundertheprojectscenarioasdefinedinamanagementplan/projectdocument.[m3yr-1]Anexampleofapplyingthisequationisgivenhereforillustration.Assumingthatcollectionoffuel-woodfordomesticusesisoneofthedriversofdeforestationandunderthebaseline,thedemandforfuel-woodwithinparticipatingcommunitiesisequivalentto100arbitraryunits(𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏=100).Aspartofprojectactivities,aforestmanagementplanandlanduseplanningwillbeinplace.Theseplansstreamlinetheextractionandlimittheamountofwoodthatcanbeharvestedfromtheforest.Whenitisallowedtoharvestonly80unitsoffuel-wood(aspartofprojectactivity)intheREDDprojectarea(𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎=80)withoutimplementinganyenergyefficiencymeasures,thedemandwillremainconstantundertheprojectscenario(𝐷𝐷𝐷𝐷𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝=100),causingaleakageof20unitsor100%,because:𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐d(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓-𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤)=100−80100−80=100%VM0006,Version2.2SectoralScope14Page90However,whentheprojectimplementationreducesthedemandforforestproductsitself,suchasbyincreasingtheefficiencyandreducingthedemandfrom100toonly90units,𝐷𝐷𝐷𝐷𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝=90),thenthereisleakageof10unitsor50%,since:𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓-𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤)=90−80100−80=50%Anumberofprojectactivitiesmaybeimplementedtodecreasetheneedfortheresourceeitherdirectly(e.g.,theintroductionoffuel-efficientwoodstoves)orindirectlybyprovidingalternativesourcesfortheresource(e.g.,solarstovesinsteadofwoodstoves)mustbeused.Estimate𝐵𝐵𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝as:𝐷𝐷𝐷𝐷𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝=�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑖𝑖)𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛t𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖=1⋅�1−𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖)�⋅𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏[EQ90]where:𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛=Thenumberofprojectactivitiesthatreducetheneedforfuelwood.E.g.,introductionoffuel-efficientwoodstoves,biogasplants.[-]𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑖𝑖)=Adoptionrateofprojectactivity𝑖𝑖whichreducesfuelwoodconsumption.[-]𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖)=Rateatwhichprojectactivity𝑖𝑖reducesfuelwoodconsumption.[-]𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏=Biomass(drymatter)offuelwoodcollectedintheprojectareainthebaselinescenario.[MgDMyr-1]8.3.2.1.6LeakageCancellationRateforCattleGrazinginForests.Cattlegrazingwillbereducedoravoidedaspartofprojectactivitiesbyreplacingin-forestgrazingactivitieswithstallfeeding.Livestockfeedswillbesuppliedbyintensificationofagriculturalactivitiesandfarmwoodlotmanagement.Whenstallfeedingisusedandthereisnodisplacementofgrazingactivities,thereisnoleakagefromgrazing.TheleakagefromdisplacementofgrazingactivitiesmustbeestimatedusingthelatestversionoftheCDMA/RMethodologicalToolEstimationofGHGemissionsrelatedtodisplacementofgrazingactivitiesinA/RCDMprojectactivity.𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔)=0−100%[EQ91]8.3.2.1.7LeakageCancellationRateforExtractionofUnderstoryVegetation.Understoryvegetationextractionthatisrequiredbycommunitiesforpurposessuchasroofing,livestockbeddingandpolesneedstobequantifiedandalternativesshouldbeprovided.Non-biomassalternativesforroofscouldhelpdefraythedisplacementofbiomassVM0006,Version2.2SectoralScope14Page91extractioninleakagebelts.Similarly,intensificationofagricultureandfarmwoodmanagementcanprovidealternativestounderstoryvegetationextraction.𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑉𝑉𝑉𝑉)=𝑉𝑉𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑉𝑉𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑉𝑉𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−𝑉𝑉𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑤𝑤𝑒𝑒𝑒𝑒[EQ92]where:𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑉𝑉𝑉𝑉)=Leakagecancellationrateforavoidingdeforestation/degradationofunderstoryvegetationextraction.[-]𝑉𝑉𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏=Biomass(drymatter)ofunderstoryvegetationextractionbyprojectparticipantsunderthebaselinescenario.[MgDMyr-1]𝑉𝑉𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝=Biomass(drymatter)ofunderstoryvegetationextractionbyprojectparticipantsundertheprojectscenario.[MgDMyr-1]𝑉𝑉𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎=Biomass(drymatter)allowedasunderstoryvegetationextractionundertheprojectscenario.Thisamountistypicallyfixedinamanagementplan.[MgDMyr-1]Anumberofprojectactivitiesmaybeimplementedtodecreasethedemandofunderstoryvegetation(e.g.,theintroductionofalternativeroofingmaterial,biomassfromintensificationofagriculture).Estimate𝑉𝑉𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝as:𝑉𝑉𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝=�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑖𝑖)⋅�1−𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖)�⋅𝑉𝑉𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖=1[EQ93]where:𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛=Thenumberofprojectactivitiesthatreducetheneedforunderstoryvegetationextraction.[-]𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑖𝑖)=Adoptionrateofprojectactivity𝑖𝑖whichreducesunderstoryvegetationextraction.[-]𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖)=Rateatwhichprojectactivity𝑖𝑖reducesfuelwoodconsumption.[-]𝑉𝑉𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏=Biomass(drymatter)ofunderstoryvegetationextraction.[MgDMyr-1]8.3.2.1.8LeakageCancellationRateforForestFiresNotPartofNaturalEcosystemDynamics.Mostforestfiresthatareavoidedthroughfirepreventionactivitiesandeducationwillnotleadtoincreasedoccurrenceofforestfiresoutsideoftheprojectarea.Selectaconservativeleakagecancellationratebetween0-100%.Forexample,firesinducedbyhuntersorbeekeepersmaybepartiallyorfullydisplacedbypatrollingtheprojectareas.Substantiatetheselectedratebasedonrationalarguments,fieldobservationsandscientificVM0006,Version2.2SectoralScope14Page92literature.𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)=0−100%[EQ94]8.3.2.2DemarcatetheLeakageBeltsLeakagefromdriversthataregeographicallyconstrainedwillremainclosetotheprojectareas.Leakagefromthesedriversismonitoredinanex-antefixedgeographicalregionaroundeachdiscreteprojectareaparcel(aleakagebelt).Notethattheleakageareasmustcontainbothforestandnon-forestland.Theleakagebeltsareidenticalforallgeographicallyconstraineddrivers(seeTable18).Acorrectex-antedemarcationofeachleakagebeltiscrucialtoaccuratelyaccountfortheGHGbenefitsoftheREDDprojectsincetheleakagebeltistheareawhereleakagefromgeographicallyconstraineddriverswillbemonitoredanddeductedfromtheactualNERs.Thesizeandlocation14oftheleakagebeltsisdeterminedusingacost-of-transportation-basedGISapproachandsocialassessments.Usethefollowingsteps:•Determinetheaverage“cost”tomoveacrossanLULCclass,foreststratum,orroad/track.Therelativecostsmustbecalculatedbyreciprocatingthemaximalspeedforeveryclassorroadcategoryandrelevantmodeoftransportation,andthereforerepresentthefastesttimeittakestocrossasetdistance.ThespeedswereanalyzedinSection8.1.3.3.•UsingaGIS,generatearastermapofthereferenceregioninwhicheverypixelcontainsthecosttocrossthispixel,basedontheclassorroads/tracksonthispixel.Thecosttocrossareasthatarenotaccessibletoagentsofdeforestationmustbesettoanarbitrarylargevalue.Examplesofinaccessibleareasincludeprotectedareas,nationalparks,economiclandconcessions,andlargeplantations.Thesemusthavebeenexcludedalreadyfromthereferenceregion.•Thismapmusthaveanidenticalresolutionastheremotesensingimagesofthehistoricalreferenceperiod.•Usingthecostmap,generateacost-distancemapofthereferenceregioninwhicheverypixelcontainsthecost(time)toreachthenearestpointoftheprojectarea.•Foreveryagentofdeforestation/degradation,estimatetheextratimethisagentiswillingtotaketomoveitsdeforestationactivitiesfromtheprojectareatothenearestaccessibleforest.Determinethisvalueusingsocialassessmentsbyaskingwhattheextratimeisthatasinglehouseholdwouldhavetospendiftheprojectareaisnotaccessibleanymore.•Selecttheareainthecost-distancemapthatisaccessiblefromtheboundaryoftheprojectareawithinthemaximaltimedeterminedinthepreviousstepmultipliedbya14Notethattheleakagebeltencompassesbothforestlandandnon-forestland.VM0006,Version2.2SectoralScope14Page93factor1.5.15Thisareamustcontainbothforestandnon-forestland.Therefore,whendifferentagentsanddriversofdeforestationareactive,themostmobileagentofdeforestationmustdeterminethesizeofaleakagebelt.Notethattheleakageareashouldbefullyencompassedwithinthereferenceregion.Increasethesizeofthereferenceregion,ifnecessary,toaccommodatethedefinedleakagebelts.8.3.2.3CalculatetheForestStrata-specificDeforestationandDegradationRatesintheLeakageBeltsOncetheleakageareaisdemarcated,thetotaldeforestation/degradationratesintheleakagebeltsarecalculatedusing:𝐷𝐷𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝐷𝐷𝐷𝐷(𝑡𝑡)=𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝐷𝐷𝐷𝐷(𝑡𝑡)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[EQ95]𝐷𝐷𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝐷𝐷𝐷𝐷(𝑡𝑡)=𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝐷𝐷𝐷𝐷(𝑡𝑡)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[EQ96]𝐷𝐷𝑙𝑙𝑙𝑙a𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝐷𝐷𝐷𝐷(𝑡𝑡)=∆𝐷𝐷𝐿𝐿𝐿𝐿,𝐷𝐷𝐷𝐷(𝑡𝑡)+𝐷𝐷𝑙𝑙𝑙𝑙𝑙𝑙𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝐷𝐷𝐷𝐷(𝑡𝑡)[EQ97]𝐷𝐷𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝐷𝐷𝐷𝐷(𝑡𝑡)=∆𝐷𝐷𝐿𝐿𝐿𝐿,𝐷𝐷𝐷𝐷(𝑡𝑡)+𝐷𝐷𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝐷𝐷𝐷𝐷(𝑡𝑡)[EQ98]where:𝐷𝐷𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝐷𝐷𝐷𝐷(𝑡𝑡)and𝐷𝐷𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝐷𝐷𝐷𝐷(𝑡𝑡)=Baselinerateofdeforestation/degradationwithintheleakageareaattime𝑡𝑡ofthecreditingperiod.[hayr-1]𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝐷𝐷𝐷𝐷(𝑡𝑡)and𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝐷𝐷𝐷𝐷(𝑡𝑡)=Baselinerateofdeforestation/degradationwithintheprojectareaattime𝑡𝑡ofthecreditingperiod.[hayr-1]𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙=Sizeoftheleakagearea.[ha]𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝=Sizeoftheprojectarea.[ha]𝐷𝐷𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝐷𝐷𝐷𝐷(𝑡𝑡)and𝐷𝐷𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝑒𝑒,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝐷𝐷𝐷𝐷(𝑡𝑡)=Rateofdeforestation/degradationwithintheleakageareaundertheprojectscenarioattime𝑡𝑡ofthecreditingperiod.[hayr-1]∆𝐷𝐷𝐿𝐿𝐿𝐿,𝐷𝐷𝐷𝐷(𝑡𝑡)and∆𝐷𝐷𝐿𝐿𝐿𝐿,𝐷𝐷𝐷𝐷(𝑡𝑡)=Leakageinducedincreaseindeforestationandforestdegradationratesduringyear𝑡𝑡ofthecreditingperiod.[hayr-1]15Thefactorof1.5takesintoaccountthatanagentofdeforestationthatislivingclosetotheprojectareaandwhousedtorelyontheprojectareaforcertainactivitiesmayshifttheactivitiestoaforestintheoppositedirectionoftheprojectarea.However,thiseffectwillgraduallydecrease.Withafactorof1.5,95%ofallpotentialleakageiscaptured.VM0006,Version2.2SectoralScope14Page94•Thetotaldeforestationandforestdegradationratesintheleakageareaarecalculatedbyaddingtheleakage-inducedincreaseindeforestation/degradationratestothebaselinedeforestation/degradationrates.Thebaselinedeforestationandforestdegradationratesarecalculatedbytakingthesize-wiseproportionofthedeforestation/degradationratesintheprojectareaunderthebaselinescenario.AddthetotaldeforestationandforestdegradationratesintheleakageareaintwoseparatetablessuchasTable15.•Subsequently,estimatetheforeststrata-specificdeforestationandforestdegradationratesforeveryyearofthecreditingperiodusingthelandusemodelpreviouslycalibrated(Section8.1.5).8.3.3EstimateLeakagefromGeographicallyUnconstrainedDriversActivity-shiftingleakagefromgeographicallyunconstraineddriversisquantifiedusingafactorapproachinboththeex-anteandex-postcases.Allleakagefromreducingloggingoftimberforcommercialon-saleorwoodcollectionforcommercialon-saleoffuelwoodandcharcoalproductionisconsideredthroughthe‘marketleakageevaluations’mechanismfromtheVCSAFOLURequirementsdocument.Theonlyothergeographicallyunconstraineddriversareconversionofforestsbymigrantstoeithercroplandorsettlementsoutsideoftheleakagebelts.Conversionofforestlandtocroplandorsettlementsbymigrantsorotherpeopleoutsideoftheparticipatingcommunitiesmustbeminimizedwithleakagepreventionactivities16suchasthecreationofalternativelivelihoodsandtheintensificationofland-use.Theemissionsfromleakagearecalculatedbyfirstquantifyingtheareaoftheleakagebymultiplyingtheareaofdeforestationanddegradationthatisavoidedwithaleakagefactor.Next,thisareaofleakageismultipliedwithanaverageemissionfactor(𝐸𝐸𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓),arepresentativeemissionfactorfortheentireforeststratawithintheprojectarea(i.e.averageemissionfactorexcludingnon-foreststrata)tocalculateemissionsfromleakagebyunconstraineddrivers.Thisapproachisfullyconservative:incontrasttothedeforestationbygeographicallyconstrainedagents,itisnotpossibletopredictinwhichforeststhedeforestationthroughleakagefromunconstraineddriverswilltakeplace.Thefollowingequationistobeused:𝐺𝐺𝐺𝐺𝐺𝐺𝑜𝑜tℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡)=+𝐸𝐸𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓⋅𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝐷𝐷𝐷𝐷⋅�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑑𝑑)∙𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝐷𝐷(𝑡𝑡,𝑑𝑑)𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑑𝑑=1+𝐸𝐸𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓⋅𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝐷𝐷𝐷𝐷⋅�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑑𝑑)∙𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝐷𝐷(𝑡𝑡,𝑑𝑑)𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑑𝑑=1[EQ99]16AlistoftheallowedleakagepreventionactivitiesandtheassociatedapplicabilitycriteriacanbefoundinStep12,section8.3.4.VM0006,Version2.2SectoralScope14Page95where:𝐺𝐺𝐺𝐺𝐺𝐺𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡)=GHGemissionsfromleakageduetounconstrainedgeographicdriversduringyear𝑡𝑡ofthecreditingperiod.[tCO2e]𝐸𝐸𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓=Emissionfactorrelatedtoleakage.Ifcomprehensivenational-levelstatisticsonbiomassdensitiesareavailable,𝐸𝐸𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓mustbecalculatedbasedontheaveragebiomassofthecountry,iflocaldataisnotavailable.Sourcesofthedataallowedare(1)academicresearchpapersand(2)studiesandreportspublishedbytheforestryadministrationorotherorganizations,includingtheFAO’sForestResourceAssessmentreports,(3)theupperrangeofbiomassintheGPG-LULUCF(2003)Table3A.1.2.[tCO2e]𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝐷𝐷𝐷𝐷and𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝐷𝐷𝐷𝐷=Baselinerateofdeforestationandforestdegradationrespectivelywithintheprojectareaduringyear𝑡𝑡ofthecreditingperiod.[hayr-1]𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛=Numberofgeographicallyunconstraineddriversthatarenotcoveredbymarketleakage,i.e.,“Conversionofforestlandtocroplandforsubsistencefarmingbymigrants”and“Conversionofforestlandtosettlementsbymigrants”𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑑𝑑)=Leakagecancellationrateforavoidingdeforestation/degradationfromgeographicallyunconstraineddriverssuchasareaofcroplandconversiondisplacedbeyondtheleakagebeltsrelativetotheareaofcroplandconversionavoidedwithintheprojectarea.Unlessalowerratecanbejustified,adefaultrateof100%mustbeused.Theburdenofprooflieswiththeprojectdeveloper17.Validsourcestosubstantiateasmallerleakagerateincludesocialassessments,scientificliterature,andreportsfromcivilsocietyorgovernments.Sourceshavetobereliableandbasedonscientificmethodsandagoodstatisticaldesign.17Forexample,REDDProjectparticipantscandemonstratethatdifferentmeasurestoreduceleakageinthecountryareeffective.Evidencefromotherareascouldbeusedtosubstantiateasmallerleakagerateafteritisdemonstratedthatthecircumstancesaresimilar.VM0006,Version2.2SectoralScope14Page96𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝐷𝐷(𝑡𝑡,𝑑𝑑)and𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐷𝐷𝐷𝐷(𝑡𝑡,𝑐𝑐𝑐𝑐)=Relativeimpactofthegeographicallyunconstraineddriver𝑑𝑑attime𝑡𝑡ofthecreditingperiod.[-]Calculatevaluesfor𝐺𝐺𝐺𝐺𝐺𝐺𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡)foreveryyearoftheprojectcreditingperiodandreportintheoverviewtable.8.3.4EstimateApplicabilityofandEmissionsourcesfromLeakagePreventionActivitiesLeakagecanbeminimizedbyimplementinganumberofleakagepreventionactivities.Underthismethodology,anumberofpotentialleakagepreventionactivitiesareallowed.Notethattheimplementationofpotentialleakagepreventionactivitiesisoptional.However,ifleakagepreventionactivitiesareimplemented,theymustfollowtherelevantapplicabilitycriteriadetailedinSection4.2aswellastherequirementsspecifiedbelow.AnysignificantincreaseinGHGemissionsduetotheimplementationofleakagepreventionactivities(𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡))mustbesubtractedfromtheproject’soverallGHGemissionsaccordingtotheproceduresincludedwithinthisSection.Inaddition,aspartofthevalidation,thevalidation/verificationbodymustanalyzethatnoothersignificantemissionsexistoriginatingfromanymeasureassociatedwiththeprojectandintendedtopreventleakage.ThefollowingsourcesofGHGemissionsfromleakagepreventionactivitiesareincludedinthismethodology:𝐺𝐺𝐺𝐺𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡)=∆𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡)+∆𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡)[EQ100]where:𝐺𝐺𝐺𝐺𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡)=Emissionsourcesfromleakagepreventionactivitiesduringtime𝑡𝑡ofthecreditingperiod.[tCO2e]∆𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡)=AnnualdifferenceinGHGemissionsduetoincreaseduseoffloodedriceproductionsystemsasagriculturalintensificationmeasuresduringyear𝑡𝑡ofthecreditingperiod.[tCO2e]∆𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡)=AnnualdifferenceinGHGemissionsbyentericfermentationandmanuremanagementfromincreasedanimalstockingratesasanagriculturalintensificationmeasureduringyear𝑡𝑡ofthecreditingperiod.[tCO2e]ThesignificanceoftheseandotheremissionsistestedaccordingtotheproceduresprovidedinCDMEB31,Appendix16todeterminewhetheritmustbeincluded.Ifanemissionsourceisfoundinsignificant,itmustbeomitted.VM0006,Version2.2SectoralScope14Page978.3.4.1CheckConditionsandQuantifyEmissionsfromIntensificationofAnnualCroppingSystemsSeeSection4.2.4foralistofapplicabilityconditionsrelatedtointensificationofannualcropproductionsystems.Inaddition,intensificationofannualcropproductionsystemsmustonlybedonebyimplementingoneormoreofthefollowingmeasures:•IncreasingsyntheticororganicNinputs.•Theuseoffallowcropsorshrubs.•Replacingsubsistencecropsbycashcrops.•Replacinglow-yieldingcropvarietiesbyhigher-yielding,orlesspest-sensitivecropvarieties.•Introductionofirrigationsystems,exceptforfloodedriceproductionsystems.Theemissionsfromintensificationofannualcroppingsystemsareconsiderednegligibleandconsidered‘0’.8.3.4.2CheckConditionsandQuantifyEmissionsfromIntroductionofFloodedRiceProduction8.3.4.2.1ScopeandApplicabilitySeeSection4.2.5foralistofapplicabilityconditionswhenintroducingfloodedriceproduction8.3.4.2.2EmissionsAsimpleyetconservativeestimateoftheCH4emissionsfromfloodedricefieldsisusedtodiscountemissionreductions.EmissionsarecalculatedbasedonamaximaldailyemissionratemultipliedwiththemaximallengthofthegrowingseasondeterminedbyPRAs.Equation5.1ofChapter5,Volume4ofIPCCsetsoutthecalculationforestimatingtotalCH4emissionsfromfloodedricefieldsforagivenyear.ThechangeinCH4emissionsduetoagriculturalintensificationinfloodedriceproductionsystemsisestimatedbyquantifyingtheannualexpansionoffloodedriceharvestarea.ThereforeannualdifferenceinGHGemissionsduetoincreaseduseoffloodedriceproductionsystemsmustbeestimatedas:∆𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡)=𝐺𝐺𝐺𝐺𝐺𝐺𝐶𝐶𝐶𝐶4∙∆𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡)∙𝑡𝑡𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑚𝑚𝑚𝑚𝑚𝑚∙𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚∙10−6[EQ101]VM0006,Version2.2SectoralScope14Page98where:𝑡𝑡=Timeafterprojectstart.[yr]∆𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡)=AnnualdifferenceinGHGemissionsduetoincreaseduseoffloodedriceproductionsystemsasagriculturalintensificationmeasuresduringyear𝑡𝑡ofthecreditingperiod.[tCO2e]𝐺𝐺𝐺𝐺𝐺𝐺𝐶𝐶𝐶𝐶4=GlobalWarmingPotentialforCH4[-]∆𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡)=Totalandcumulativeincreaseinharvestedareaofriceduetoleakagepreventionmeasuressincethestartoftheprojectanduntilyear𝑡𝑡.Theincreaseinareaofricecultivationmustbequantifiedusingsocialassessments[hayr-1].t𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑚𝑚𝑚𝑚𝑚𝑚=Maximalperiodoftimeafieldisflooded[daysyr-1]𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚=Maximalemissionrateformethane.Bydefault,anemissionrateof36kgCH4ha-1day-1mustbeused,whichis25%greaterthanthemaximalvaluefoundinareviewstudycomparing25studiesofCH4fluxesinricefields(LeMerandRoger,2001).Theprojectproponentmayuseasmalleremissionrateifitcanbedemonstratethattherateremainsconservativefortheprojectconditions.[kgCH4ha-1day-1]Addannualvaluesof∆𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡)tothesummarytableofallGHGemissionsduetoprojectactivities.8.3.4.3EstimateGHGEmissionsfromIncreasedLivestockStockingRates,∆𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙8.3.4.3.1ScopeandApplicabilitySeeSection4.2.6foralistofapplicabilityconditionswhenincreasinglivestockstockingrates.Livestockstockingratesmustbeincreasedthrougheitherorbothofthefollowingmeasures:•Increasingthestockingdensityoflivestockonexistinggrazingland.•Movingofcattletoazero-grazingsystem,definedasasystemoffeedingcattleorotherlivestockinwhichforageisbroughttoanimalsthatarepermanentlyhousedinsteadofbeingallowedtograze.VM0006,Version2.2SectoralScope14Page998.3.4.3.2QuantificationandMonitoringofEmissionsfromIncreasedStockingratesUsetheleakageproceduresprovidedinthelatestversionofapprovedCDMmethodologyAR-AM0006andaswellasthelatestversionofCDMA/RToolEstimationofGHGemissionsrelatedtodisplacementofgrazingactivitiesinA/RCDMprojectactivitytodeterminetheCH4andN2Oemissionsfromlivestock,18.Thesumofvariable𝐿𝐿𝐿𝐿𝐹𝐹𝐹𝐹𝐹𝐹,𝑡𝑡withinthelatestversionofCDMmethodologyAR-AM0006andthevariable𝐿𝐿𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑒𝑒𝑛𝑛𝑛𝑛,𝑡𝑡(minus𝐿𝐿𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝑡𝑡and𝐿𝐿𝐿𝐿𝑁𝑁2𝑂𝑂−𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝑡𝑡whicharealreadyaccountedinthecarbonstockchangeassessment)withintheCDMA/Rtoolisequivalentto∆𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡)withinthismethodology.Addannualvaluesof∆𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡)tothesummarytableofallGHGemissionsduetoprojectactivities.UsethevariableslistofdefaultparametersandparameterstobemonitoredfromthelatestversionsofAR-AM0006andtheCDMtoolfordisplacementofgrazingactivities.Livestockpopulationincreasesmustbequantifiedusingsocialassessmentsorpeer-reviewedliterature,andre-evaluatedaftereverybaselineupdate.Livestockpopulationincreasesmustbemonitoredusingsocialassessmentsorpeer-reviewedliterature.8.4SummaryofGHGEmissionReductionand/orRemovals8.4.1EstimateChangeinCarbonStocksintheLong-LivedWoodProductPoolThismethodologyconsidersthecarboninlong-livedwoodproductssequesteredforover100yearaspermanentlysequesteredcarbon.First,thecarboninharvestedwoodproductsmustbecalculatedfortheprojectandbaselinescenarios.Then,thecarboninlong-livedwoodproductsmustbecalculatedfortheprojectandbaselinescenarios.Thenetchangeincarboninlong-livedwoodproductsisthencalculatedbysubtractingthecarboninlong-livedwoodproductsunderthebaselinescenarioandtheprojectscenario.8.4.1.1CalculateCarboninHarvestedWoodProducts.Thecarboninharvestedwoodproductsiscalculatingbasedonthevolumeoftimberextractedwithintheprojectareainboththebaselinescenarioandtheprojectscenario.𝐶𝐶𝐻𝐻𝐻𝐻𝐻𝐻,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡𝑡𝑡,𝑡𝑡)=����𝐷𝐷𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(ℎ,𝑗𝑗,𝑡𝑡𝑡𝑡,𝑡𝑡)+𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(ℎ,𝑗𝑗,𝑡𝑡𝑡𝑡,𝑡𝑡)�𝑆𝑆𝑃𝑃𝑃𝑃𝑗𝑗=1𝐻𝐻𝑃𝑃𝑃𝑃ℎ=1⋅𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤,𝐽𝐽⋅𝐶𝐶𝐶𝐶�[EQ102]18ThistoolhasbeenapprovedforA/RCDMprojects,butisapplicabletoREDDprojects.Allreferencesto“A/RCDM”withinthistoolshouldbeinterpretedas“REDD”.VM0006,Version2.2SectoralScope14Page100𝐶𝐶𝐻𝐻𝐻𝐻𝐻𝐻,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡𝑡𝑡,𝑡𝑡)=����𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(ℎ,𝑗𝑗,𝑡𝑡𝑡𝑡,𝑡𝑡)+𝐶𝐶𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(ℎ,𝑗𝑗,𝑡𝑡𝑡𝑡,𝑡𝑡)�𝑆𝑆𝑃𝑃𝑃𝑃𝑗𝑗=1𝐻𝐻𝑃𝑃𝑃𝑃ℎ=1⋅𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤,𝐽𝐽⋅𝐶𝐶𝐶𝐶�where:𝐶𝐶𝐻𝐻𝐻𝐻𝐻𝐻,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡𝑡𝑡,𝑡𝑡)and𝐶𝐶𝐻𝐻𝐻𝐻𝐻𝐻,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡𝑡𝑡,𝑡𝑡)=Totalcarbonstockinlong-livedwoodproductswithintheprojectboundaryforclass𝑡𝑡𝑡𝑡duringtime𝑡𝑡ofwoodproduct𝑡𝑡𝑡𝑡intheprojectandbaselinescenario,respectively[MgC]𝐷𝐷𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(ℎ,𝑗𝑗,𝑡𝑡𝑡𝑡,𝑡𝑡),𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(ℎ,𝑗𝑗,𝑡𝑡𝑡𝑡,𝑡𝑡),𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(ℎ,𝑗𝑗,𝑡𝑡𝑡𝑡,𝑡𝑡)𝐶𝐶𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(ℎ,𝑗𝑗,𝑡𝑡𝑡𝑡,𝑡𝑡)=Thevolumeoftimberextractedfromwithintheprojectboundaryduringharvestbyspecies𝑗𝑗andwoodproductclass𝑡𝑡𝑡𝑡duringyear𝑡𝑡intheprojectandbaselinescenario,respectively.DT=domestictimber;CT=commercialtimber[m3].𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤,𝑗𝑗=Wooddensityofharvestedspeciesorspeciesgroup𝑗𝑗[MgDMm-3]ℎ=1,2,3,…,𝐻𝐻𝑃𝑃𝑃𝑃numberofharvests[-]𝑗𝑗=1,2,3,…,𝑆𝑆𝑃𝑃𝑆𝑆harvestedtreespecies[-]𝑡𝑡𝑡𝑡=Woodproductclass–definedhereassawnwood(sw),wood-basedpanels(wp),otherindustrialroundwood(oir),andpaperandpaperboard(ppb).𝐶𝐶𝐶𝐶=Carbonfractionofwood[MgC(MgDM)-1](defaultvalue=0.5)•Underthebaselinescenario𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏and𝐶𝐶𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏mustbecalculatedusingSection8.1.3.2andTable8.Theuncertaintyaroundtheestimatesof𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏and𝐶𝐶𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏mustbeestimatedand/orjustifiedwithappropriatemethods,suchasreporteduncertaintiesfromscientificliterature,orcalculateduncertaintieswhensocialassessmentsareused.Insituationswhenuncertaintycannotbeestimated,themostconservativeestimatemustbeused.•Fortheex-anteprojectcase,𝐷𝐷𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝and𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝mustbecalculatedusingtheproceduresinSection8.2.1.•Ex-post,𝐷𝐷𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝and𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝mustbemonitoredandquantifiedusingforestoperationrecords(i.e.,logbookskeptaspartofforestmanagementplan).Theuncertaintyaroundthemonitoredvolumeoftimbermustbeexplicitlyreported.Incasetheuncertainty,asquantifiedbythehalf-widthoftheconfidenceinterval,islessthan15%ofthevolumeoftimberextracted,noadjustmentforuncertaintymustbeapplied.If,however,theuncertaintyisgreaterthan15%ofthevolumeoftimberextracted,𝐶𝐶𝐻𝐻𝐻𝐻𝐻𝐻,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡𝑡𝑡,𝑡𝑡)mustbeadjustedupwardswithitsassociateduncertaintyand𝐶𝐶𝐻𝐻𝐻𝐻𝐻𝐻,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡𝑡𝑡,𝑡𝑡)mustbeadjusteddownwardswithitsassociateduncertainty.VM0006,Version2.2SectoralScope14Page1018.4.1.2CalculatetheCarboninLong-LivedWoodProductsCarboninlong-livedwoodproductsisdefinedasbeingsequesteredforatleast100years.Insteadoftrackingannualemissionsthroughretirement,burninganddecomposition,themethodologycalculatestheproportionofwoodproductsthathavenotbeenemittedtotheatmosphere100yearsafterharvestandassumesthatthisproportionispermanentlysequestered.AllfactorsarederivedfromWinjumetal.(1998).𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡)=�𝐶𝐶𝐻𝐻𝐻𝐻𝐻𝐻,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡𝑡𝑡,𝑡𝑡)𝑡𝑡𝑡𝑡𝑠𝑠,𝑤𝑤𝑝𝑝,𝑝𝑝𝑝𝑝𝑝𝑝,𝑜𝑜𝑜𝑜𝑜𝑜⋅�1−𝑤𝑤𝑤𝑤𝑤𝑤(𝑡𝑡𝑡𝑡)��1−𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡𝑡𝑡)��1−𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)�𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡)=�𝐶𝐶𝐻𝐻𝐻𝐻𝐻𝐻,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡𝑡𝑡,𝑡𝑡)𝑡𝑡𝑡𝑡𝑠𝑠,𝑤𝑤𝑤𝑤,𝑝𝑝𝑝𝑝𝑝𝑝,𝑜𝑜𝑜𝑜𝑜𝑜⋅�1−𝑤𝑤𝑤𝑤𝑤𝑤(𝑡𝑡y)��1−𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡𝑡𝑡)��1−𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)�[EQ103]where:𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡)and𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡)=Carbonstockoflong-livedwoodproductsattimetintheprojectandbaselinescenario,respectively.[MgC]C𝐻𝐻𝐻𝐻𝐻𝐻,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡𝑡𝑡,𝑡𝑡)and𝐶𝐶𝐻𝐻𝐻𝐻𝐻𝐻,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡𝑡𝑡,𝑡𝑡)=Totalbiomasscarbonharvestedwithintheprojectboundarybywoodclass𝑡𝑡𝑡𝑡duringyear𝑡𝑡intheprojectandbaselinescenario,respectively[MgC]𝑤𝑤𝑤𝑤𝑤𝑤(𝑡𝑡𝑡𝑡)Fractionofcarboninharvestedwoodproductsthatisemittedimmediatelybecauseofmillinefficiencyforwoodclass𝑡𝑡𝑡𝑡.Thiscanbeestimatedbymultiplyingtheapplicablefractiontothetotalamountofcarbonindifferentharvestedwoodproductcategory.Thedefaultapplicablefractionis24%and19%respectivelyfordevelopinganddevelopedcountries(Winjumetal.1998).𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡𝑡𝑡)=Proportionofshortlivedproducts.Thesefractionsare0.2,0.1,0.4and0.3respectivelyforwoodclass𝑡𝑡𝑡𝑡,i.e.,sawnwood,wood-basedpanel,paperandpaperboardsandotherindustrialroundwoodsasdescribedinWinjumetal.(1998).Themethodologyassumesthatallotherclassesofwoodproductsareemittedwithin5years.𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)=Fractionofcarbonthatwillbeemittedtotheatmospherebetween5and100yearsofharvestforwoodclass𝑡𝑡𝑡𝑡.SeeTable19.[-]𝑡𝑡=1,2,3…..tyearselapsedsincethestartoftheproject.[yr]𝑡𝑡𝑡𝑡=Woodproductclass–definedhereassawnwood(sw),wood-basedpanels(wp),otherindustrialroundwood(oir),VM0006,Version2.2SectoralScope14Page102andpaperandpaperboard(ppb)Table19.Proportionofremainingwoodproductsoxidizedbetween5and100yearsafterinitialharvestbywoodproductclassandforestregionWoodproductcategoryForestregionBorealTemperateTropicalSawnwood0.3780.6130.850Woodbasepanel0.6130.8500.977Otherindustrialroundwood0.8500.9770.999Paperandpaperboard0.3780.6130.999Source:Winjumetal.19988.4.1.3CalculateNetChangeinCarboninLong-LivedWoodProductsThenetchangeincarboninlong-livedwoodproductsisthencalculatedbysubtractingthecarboninlong-livedwoodproductsunderthebaselinescenarioandtheprojectscenario.∆𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿(𝑡𝑡)=𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡)−𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡)[EQ104]where:∆𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿,𝑡𝑡=Netcarbonstockchangeinlong-livedwoodproductsduringyeart[MgC]𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡)=Carbonstockinlong-livedwoodproductsunderthebaselinescenarioduringyeart[MgC]𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡)=Carbonstockinlong-livedwoodproductsundertheprojectscenarioduringyeart[MgC]8.4.2SummarizetheProjectedLandUseChange•Presentatablewiththetotaldeforestationanddegradationratesunderthebaselineandprojectscenariosfortheprojectareaandleakageareaforeveryyearoftheprojectduration.•PresenttableswiththeLULCclassandforest-strataspecificlandtransitionsfortheprojectandleakageareaunderthebaselineandprojectscenarios.•Subtractthelandtransitionchangesunderthebaselinescenariofromthechangesundertheprojectscenario,andmultiplywiththedifferenceoftheappropriateemissionfactorandbaselinenetannualincrement.Applyallapplicableuncertaintydiscountingfactors.•Calculatevaluesfor𝐺𝐺𝐺𝐺𝐺𝐺𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡)fromtheprocedurein8.3.3.•CalculatethenetGHGbenefitsfromANRwithouttakingemissionsourcesintoaccountforeveryyear𝑡𝑡ofthecreditingperiod.VM0006,Version2.2SectoralScope14Page103•CalculatethenetGHGbenefitsfromharvestedwoodproductspool.•CalculatethenetGHGbenefitsfromfuel-efficiencyactivitiesonlyifthedegradationisnotincludedintheREDDproject.•CalculatethenetGHGbenefitsfromareassubjectofharvestactivities.8.4.3TesttheSignificanceofGHGEmissionsInthisstep,thesignificanceofemissionsourcesisdetermined.Thistesthastobecarriedoutatvalidationforforeachofthefirsttenyearsoftheprojectcreditingperiod,andtheprocedurehastoberepeatedateverybaselineupdate.Allinsignificantemissionscanbeomittedfromtheex-antecalculationoftheNERs.TheCDMToolfortestingsignificanceofGHGemissionsinA/RCDMprojectactivitiesfromEB31appendix16shouldbeusedtotestthesignificanceofGHGemissions.Thesumofincreasesinemissionsthatmaybeexcludedmustbelessthan5%oftheemissionreductions.IfitisdeterminedthataspecificGHGemissionsourcewillneverreachthisthresholdandwillneverbecomesignificant,itmaybeomittedfromthemonitoringplan.8.4.4EstimateEx-anteNERsUseEquation[EQ105]toestimatetheex-anteNERs;onlyusethesignificantGHGsourcesasdeterminedinthestepabove.PrepareatablewithalltheindividualtermsofEquation[EQ105].Calculatetheex-anteNERsforeveryyearofthecreditingperiod.AfterNERsarecalculated,useEquation[EQ106]tocalculatetheVCUs.Cumulativeemissionsreductions/removalsfromANRactivitiesmustaccountforlessthan50%ofthecumulativeemissionsreductions/removalsgeneratedbytheproject.Foreveryyearofthecreditingperiod,dividethetotalemissionsreductionfromANRbythetotalNERsintheoverviewtable,andconfirmthattheresultislessthan50%.Notethatex-anteNERsarearecalculatedandreportedfortheentireprojectcreditingperiodbuttheestimatesmustbere-validatedateverybaselineupdate.(i.e.,everytenyears.NetEmissionReductions(NERs)=ΔGHGfromavoideddeforestationexcludingANRandharvestareas+ΔGHGfromdeforestationduetoleakage+ΔGHGfromavoideddegradation+ΔGHGfromdegradationduetoleakage+ΔGHGfromleakagebyunconstrainedgeographicdrivers+ΔGHGfromassistednaturalregeneration+ΔGHGfromchangesinlong-livedwoodproducts+ΔGHGfromimprovedcookstoves+ΔGHGfromotherandsecondarysourcesVM0006,Version2.2SectoralScope14Page104+ΔGHGfromavoideddeforestationfromareasunderharvest[EQ105]VerifiedCarbonUnits=NERs−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏∙(++++)[EQ106]where:Notethat𝑖𝑖and𝑡𝑡𝑡𝑡aresimpleindicestothesummationsanddonothaveanyfurthermeaning;𝑡𝑡istheyearforwhichtheemissionsandremovalsarecalculated.ΔGHGfromavoideddeforestation:=��𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠⋅𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑖𝑖)𝑡𝑡𝑡𝑡𝑡𝑡=1𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖=1[EQ107]⋅�+∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡,𝑖𝑖)−∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡,𝑖𝑖)�⋅�𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖)+𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖,𝑡𝑡−𝑡𝑡𝑡𝑡)+𝐸𝐸𝐸𝐸𝐵𝐵𝐵𝐵(𝑖𝑖,𝑡𝑡−𝑡𝑡𝑡𝑡)+𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖,𝑡𝑡−𝑡𝑡𝑡𝑡)�ΔGHGfromdeforestationduetoleakage:=��𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐⋅𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑖𝑖)𝑡𝑡𝑡𝑡𝑡𝑡=1𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖=1[EQ108]⋅�+∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡,𝑖𝑖)−∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙e𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡,𝑖𝑖)�⋅�𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖)+𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖,𝑡𝑡−𝑡𝑡𝑡𝑡)+𝐸𝐸𝐸𝐸𝐵𝐵𝐵𝐵(𝑖𝑖,𝑡𝑡−𝑡𝑡𝑡𝑡)+𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖,𝑡𝑡−𝑡𝑡𝑡𝑡)�ΔGHGfromavoideddegradation:=��𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠⋅𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑖𝑖)𝑡𝑡𝑡𝑡𝑡𝑡=1𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖=1[EQ109]⋅�+∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡,𝑖𝑖)−∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡,𝑖𝑖)�⋅�𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖)+𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖,𝑡𝑡−𝑡𝑡𝑡𝑡)+𝐸𝐸𝐸𝐸𝐵𝐵𝐵𝐵(𝑖𝑖,𝑡𝑡−𝑡𝑡𝑡𝑡)+𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖,𝑡𝑡−𝑡𝑡𝑡𝑡)�ΔGHGfromdegradationduetoleakage:[EQ110]=��𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠⋅𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑖𝑖)𝑡𝑡𝑡𝑡𝑡𝑡=1𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖=1⋅�+∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡,𝑖𝑖)−∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡,𝑖𝑖)�⋅�𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖)+𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖,𝑡𝑡−𝑡𝑡𝑡𝑡)+𝐸𝐸𝐸𝐸𝐵𝐵G(𝑖𝑖,𝑡𝑡−𝑡𝑡𝑡𝑡)+𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖,𝑡𝑡−𝑡𝑡𝑡𝑡)�ΔGHGfromleakagebyunconstrainedgeographicdrivers:VM0006,Version2.2SectoralScope14Page105=−𝐺𝐺𝐺𝐺𝐺𝐺𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡)−𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡)[EQ111]ΔGHGfromassistednaturalregeneration:=𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡)[EQ112]ΔGHGfromchangesinlong-livedwoodproducts:=4412⋅�𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡)−𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡)�[EQ113]ΔGHGfromGHGEmissionsReductionfromCookstoveandFuelEfficiency(CFE):=𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡)[EQ114]ΔGHGfromotherandsecondarysources:=−𝐺𝐺𝐺𝐺𝐺𝐺𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑡𝑡)−𝐺𝐺𝐺𝐺𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡)−𝐺𝐺𝐺𝐺𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡)[EQ115]ΔGHGfromavoideddeforestationanddegradationfromareasunderharvestIncase:[EQ116]�∆𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑖𝑖)𝑡𝑡𝑖𝑖≥�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡,𝑖𝑖)∙𝐿𝐿𝐿𝐿𝐿𝐿𝐶𝐶𝐻𝐻𝐻𝐻𝐻𝐻𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖=1=0Incasetheinequalityabovedoesnothold,(10)mustbe:=∆𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑡𝑡)[EQ117]Positiveleakageisnotallowed.Therefore,valuesforequations[EQ108]and[EQ110]mustbesetto“0”iftheyarefoundtobegreaterthan0.Inordertoavoidovercompensationforleakage,theleakagefromavoideddeforestationandforestdegradationi.e.,[EQ108],[EQ110],and[EQ111]mustbesetto‘0’ifGHGemissionsfromleakageexceedthetotalGHGemissionsreductionsfromavoideddeforestationand/orforestdegradationforeachcreditingperiod.VariableExplanation𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑡𝑡)Netemissionreductionsduringtime𝑡𝑡.Section8.4.4.[tCO2e]𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝑡𝑡)VerifiedCarbonUnitsgeneratedduringyear𝑡𝑡.[tCO2e]VM0006,Version2.2SectoralScope14Page106𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏BufferwithholdingpercentageaccordingtothelatestversionoftheVCSAFOLUNon-PermanenceRiskToolanalysisandbufferdetermination.[-]𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛F𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡Numberofforest/non-foresttransitionsamonglandclassesorforeststrata,meaningtransitionsinwhicheitherthe“from”orthe“to”classarenon-forests.Section8.1.2.3𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛Numberoftransitionsamongforeststrata.Section8.1.2.3𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛NumberofstratawithintheANRarea.Section8.1.2.3∆a𝑟𝑟𝑟𝑟𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡,𝑖𝑖)Hectaresundergoingtransition𝑖𝑖withintheprojectarea,excludingANRandharvestareas,undertheprojectscenarioduringyear𝑡𝑡.[hayr-1].Section8.2.3∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡,𝑖𝑖)Hectaresundergoingtransition𝑖𝑖withintheprojectarea,excludingtheANRareaandharvestareas,underthebaselinescenarioduringyear𝑡𝑡.[hayr-1].Section8.1.5.4𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡)Netanthropogenicgreenhousegasremovalsduetobiomassincreaseinassistednaturalregenerationduringyear𝑡𝑡.[tCO2e].Section8.2.5.2.∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡,𝑖𝑖)Hectaresundergoingtransition𝑖𝑖withintheleakageareaundertheprojectscenarioduringyear𝑡𝑡.[hayr-1].Section8.3.2.3∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡,𝑖𝑖)Hectaresundergoingtransition𝑖𝑖withintheleakageareaunderthebaselinescenarioduringyear𝑡𝑡.[hayr-1].Section8.1.5.4𝐺𝐺𝐺𝐺𝐺𝐺𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡)GHGemissionsfromleakagebyunconstrainedgeographicdriversduringyeart.[tCO2eyr-1]𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡)GHGemissionsfrommarketleakageduringtime𝑡𝑡.[tCO2e].Section8.3.1.𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖),𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖,𝑡𝑡−𝑡𝑡𝑡𝑡),𝐸𝐸𝐸𝐸𝐵𝐵𝐵𝐵(𝑖𝑖,𝑡𝑡−𝑡𝑡𝑡𝑡),and𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖,𝑡𝑡−𝑡𝑡𝑡𝑡)Abovegroundlive,abovegrounddead,belowground,andsoilemissionfactorfortransition𝑖𝑖,andtimeaftertransition𝑡𝑡−𝑡𝑡𝑡𝑡.Section8.1.4.5𝐶𝐶𝐶𝐶Carbonfractionofwood(use0.5bydefault).𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,𝑝𝑝𝑝𝑝𝑜𝑜𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗(𝑡𝑡Sizeofstrata𝑖𝑖withintheprojectareawithharvestactivitiesduringyear𝑡𝑡undertheprojectscenario.VM0006,Version2.2SectoralScope14Page107𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠DiscountingfactorforNERsfromavoideddegradation,basedontheaccuracyofstratification,i.e.dividingforestintoindividualforestbiomassclasses.Section8.1.2.7𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐DiscountingfactorforNERsfromavoideddeforestation,basedontheaccuracyofclassification,i.e.dividinglandintobroadlandusetypes.Section8.1.2.7𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑖𝑖)Discountingfactorforallemissionreductions,basedontheuncertaintyofbiomassinventoryrelatedtotransition𝑖𝑖.∆𝐶𝐶ANR(𝑡𝑡)Annualchangeincarbonstockinallselectedcarbonpoolsforforeststratumduringyear𝑡𝑡.Section8.2.5.3[EQ72].[tCO2eyr-1]𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖)Uncertaintydiscountingfactoraroundbiomassstockdensitiesintransitionstratum𝑖𝑖withinANRareas.[−]𝐺𝐺𝐺𝐺𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡)AnnualGHGemissionsfromimplementationoffire-preventingactionsasREDDprojectactivities.Section8.2.4.[tCO2eyr-1]𝐺𝐺𝐺𝐺𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡)Emissionsfromsourcesofmethane,nitrousoxideorfuel-CO2fromleakagepreventionactivitiesduringyear𝑡𝑡.EmissionsourceswithintheleakageareaareincludedinTable1.Section8.3.4.[tCO2eyr-1]𝐺𝐺𝐺𝐺𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡)Emissionsofsourcesofmethane,nitrousoxideorfuel-CO2fromassistednaturalregenerationactivitiesduringyear𝑡𝑡.Section8.2.5.5.[tCO2eyr-1]𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡)Emissionreductionsfromreducingbiomassusethroughhighefficiencycookstovesandfuelefficiencyactivitiesduringyear𝑡𝑡whendegradationisnotincludedingeneralquantificationi.e.[EQ78].[tCO2eyr-1]𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑡𝑡)GHGsinkinlong-livedwoodproductinbaselinescenarioatyeart[MgC]𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑡𝑡)GHGsinkinlong-livedwoodproductinprojectscenarioatyeart[MgC]𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶Projectcreditingperiod.[year]𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡,𝑖𝑖)Carbonstockdensityinharvestedareasinstratum𝑖𝑖atyear𝑡𝑡.[tCO2ha-1]𝐿𝐿𝐿𝐿A𝐶𝐶𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻Longtermaveragecarbonstockdensityinharvestareas.[tCO2eha-1]VM0006,Version2.2SectoralScope14Page108MONITORING9.1DataandParametersAvailableatValidationThefollowingdataandparametersaredefinedforstandaloneprojects.ForprojectsthatarenestedwithinajurisdictionalREDD+program,atthetimeofvalidationtheprojectwillidentifyanydataorparametersintheprojectdocument,ifany,thatwillbeadoptedfromthejurisdictionalREDD+program.Data/parameter[EA1]:𝐶𝐶FDataunit:[MgC(MgDM)-1]Description:CarbonfractionofdrymatterinwoodSourcesofdata:Defaultvalueof0.5(IPCCGPG-LULUCF2003)Measurementprocedures:Anycomment:Data/parameter[EA2]:𝐸𝐸Dataunit:[-]Description:AveragecombustionefficiencyoftheabovegroundtreebiomassSourcesofdata():Theprojectproponentmustuseproject-specificmeasurementswhereavailable.Wheresuchmeasurementsarenotavailable,thefollowingdatasourcesmaybeusedintheorderdescribedbelow.•Regionallyvalidestimatesfromrecognized,peerreviewedsources•EstimatesfromTable3.A.14ofIPCCGPGLULUCF•Ifnoappropriatecombustionefficiencycanbeused,usetheIPCCdefaultof0.5Measurementprocedures:Anycomment:Data/parameter[EA3]:𝑃𝑃Dataunit:[-]𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑖𝑖)Uncertaintyinestimatedcarbonstockdensityinharvestareasinstratum𝑖𝑖.[-]∆𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑖𝑖)Netgreenhousegasemissionsorremovalsinprojectareawithharvestactivitiesduringyear𝑡𝑡.[tCO2e]VM0006,Version2.2SectoralScope14Page109Description:Averageproportionofmassburnedfromtheabovegroundtreebiomass.Sourcesofdata:GPG-LULUCFTable3A.1.13Measurementprocedures:Anycomment:Data/parameter[EA4]:𝐺𝐺𝐺𝐺𝐺𝐺𝐶𝐶𝐶𝐶4Dataunit:[-]Description:GlobalWarmingPotentialforCH4Sourcesofdata:GWPvaluesshallbederivedfromsourcesspecifiedbytheVCSrulesMeasurementprocedures:Anycomment:Data/parameter[EA5]:𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶4Dataunit:ProportionDescription:EmissionratiosforCH4Sourcesofdata:Table3A.1.15inIPCCGPG-LULUCF2003Measurementprocedures:IPCCdefaultvalueof0.012Anycomment:Data/parameter[EA6]:𝑠𝑠𝑠𝑠1Dataunit:[-]Description:Firstshapefactorfortheforestscarcityequation;steepnessofthedecreaseindeforestationrate(greaterissteeper).Sourcesofdata:Statisticalfittingprocedure.Usingremotelysensedforestcoverdatainheavilydeforestedareasclosetotheprojectareasuchasneighboringprovinces,statesorcountriesMeasurementprocedures:UseprocedurefromSection8.1.5.4Anycomment:Data/parameter[EA7]:𝑠𝑠𝑠𝑠2Dataunit:[-]Description:Secondshapefactorfortheforestscarcityequation;relativedeforestedareaatwhichthedeforestationratewillbe50%oftheinitialdeforestationrate.VM0006,Version2.2SectoralScope14Page110Sourcesofdata:Statisticalfittingprocedure.Usingremotelysensedforestcoverdatainheavilydeforestedareasclosetotheprojectareasuchasneighboringprovinces,statesorcountriesMeasurementprocedures:UseprocedurefromSection8.1.5.4Anycomment:Data/parameter[EA8]:𝑤𝑤𝑤𝑤𝑤𝑤(𝑡𝑡𝑡𝑡)Dataunit:[-]Description:Fractionofcarboninharvestedwoodproductsthatareemittedimmediatelybecauseofmillinefficiencyforwoodclass𝑡𝑡𝑡𝑡.Thiscanbeestimatedbymultiplyingtheapplicablefractiontothetotalamountofcarbonindifferentharvestedwoodproductcategory.Sourcesofdata:Thedefaultapplicablefractionis24%and19%respectivelyfordevelopinganddevelopedcountries(Winjumetal.1998).Measurementprocedures:Anycomment:Anynewupdatesfromlocallygeneratedresultscanbeusedinsteadofthedefaultvalues.Data/parameter[EA9]:𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡𝑡𝑡)Dataunit:[-]Description:ProportionofshortlivedproductsSourcesofdata:Defaultvaluesare0.2,0.1,0.4and0.3respectivelyforwoodclass𝑡𝑡𝑡𝑡,i.e.,sawnwood,wood-basedpanel,paperandpaperboardsandotherindustrialroundwoodsasdescribedinWinjumetal.(1998).Measurementprocedures:Anycomment:Anynewupdatesfromlocallygeneratedresultscanbeusedinsteadofthedefaultvalues.Themethodologyassumesthatallotherclassesofwoodproductsareemittedwithin5years.Data/parameter[EA10]:𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)Dataunit:[-]Description:Fractionofcarbonthatwillbeemittedtotheatmospherebetween5and100yearsofharvestforwoodclass𝑡𝑡𝑡𝑡.Sourcesofdata:SeeTable19Winjumetal.1998)Measurementprocedures:Anycomment:AnynewupdatesfromlocallygeneratedresultscanbeusedinsteadVM0006,Version2.2SectoralScope14Page111ofthedefaultvalues.Data/parameter[EA11]:𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤,𝑗𝑗Dataunit:[MgDMm-3]Description:Averagebasicwooddensityofspeciesorspeciesgroup𝑗𝑗Sourcesofdata:GPG-LULUCFTable3A.1.9.orpublisheddata/literature.Measurementprocedures:Anycomment:Whennospecies-specificorspecies-groupspecificdensitiesareavailable,anaveragerepresentativedensitymaybeusedforallspeciesorspeciesgroups.Data/parameter[EA12]:𝐵𝐵𝐵𝐵𝐵𝐵2Dataunit:[-]Description:Biomassexpansionfactorforconvertingvolumesofextractedroundwoodtototalabovegroundbiomass(includingbark).Sourcesofdata:IPCCGPGLULUCFTable3A.1.10orpublisheddatafromscientificpeerreviewedliteratureMeasurementprocedures:Anycomment:Data/parameter[EA13]:𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚Dataunit:[kgCH4ha-1day-1]Description:MaximalemissionfactorformethaneSourcesofdata:Bydefault,anemissionrateof36kgCH4ha-1day-1mustbeused,whichis25%greaterthanthemaximalvaluefoundinareviewstudycomparing23studiesofCH4fluxesinricefields(LeMerandRoger,2001).Theprojectproponentmayuseasmalleremissionrateifitcanbedemonstratedfromempiricaldataorothersupportinginformationsuchaspublisheddatathattherateremainsconservativefortheprojectconditions.Measurementprocedures:Anycomment:Onlytobeincludedifriceproductionisincreasedasaleakagepreventionmeasure.Data/parameter[EA14]:𝑁𝑁𝑁𝑁𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏Dataunit:[TJ(MgDM)-1]Description:Netcalorificvalueofnon-renewablebiomassthatissubstituted.VM0006,Version2.2SectoralScope14Page112Sourcesofdata:0.015TJ(MgDM)-1IPCCdefaultvalue.Measurementprocedures:Anycomment:9.2DataandParametersMonitoredWheremultiplesourcesofdataareprovided,theprojectproponentmustusethehigher-rankeddatasourceswhereavailable.9.2.1Sizes,areas,andtransitionsData/parameter[MN1]:𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙.𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟Dataunit:[ha]Description:Sizeofprojectarea,leakagearea,referenceregion,andforestareainthereferenceregionSourcesofdata:ProjectdesignMeasurementprocedures:Frequencyofmonitoring:𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝and𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙maybeadjustedduringcreditingperiodpertherulesforgroupedprojectsandupdatedatverification,butonlyfortheadditionalinstancesthatwereaddedaftertheprojectstartdate..QA/QCprocedurestobeapplied:Anycomment:Data/parameter[MN2]:∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡,𝑖𝑖)Dataunit:[hayr-1]Description:Hectaresundergoingtransition𝑖𝑖withintheprojectarea,excludingANRandharvestareas,undertheprojectscenarioduringyear𝑡𝑡.[hayr-1].Section8.2.3Sourcesofdata:RemotesensinganalysisMeasurementprocedures:FollowtheproceduresdescribedinSection8.2.3Frequencyofmonitoring:AtleastoncebeforeverificationQA/QCprocedurestobeapplied:Anycomment:VM0006,Version2.2SectoralScope14Page113Data/parameter[MN3]:∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡,𝑖𝑖)Dataunit:[hayr-1]Description:Hectaresundergoingtransition𝑖𝑖withintheprojectarea,excludingtheANRarea,andharvestareas,underthebaselinescenarioforyear𝑡𝑡.Sourcesofdata:Land-usechangemodelingMeasurementprocedures:FollowtheproceduresdescribedinSection8.1.5.4Frequencyofmonitoring:Atleastoncebeforeeverybaseline.Foraddedinstances,mayberecalculatedatverification.QA/QCprocedurestobeapplied:Anycomment:Data/parameter[MN4]:∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝐴𝐴𝐴𝐴𝐴𝐴,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡,𝑖𝑖)Dataunit:[hayr-1]Description:Hectaresundergoingtransition𝑖𝑖withintheleakageareaundertheprojectscenarioforyear𝑡𝑡.Sourcesofdata:Land-usechangemodelingMeasurementprocedures:FollowtheproceduresdescribedinSection8.1.5.4Frequencyofmonitoring:Atleastoncebeforeeverybaselineupdate.Foraddedinstances,mayberecalculatedatverification.QA/QCprocedurestobeapplied:Anycomment:Data/parameter[MN5]:∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡,𝑖𝑖)Dataunit:[hayr-1]Description:Hectaresundergoingtransition𝑖𝑖withintheleakageareaundertheprojectscenarioforyear𝑡𝑡Sourcesofdata:RemotesensinganalysisMeasurementprocedures:FollowtheproceduresdescribedinSection8.1.2.4.Incaseemissionsreductions/removalsfromavoideddegradationareincluded,thisparameterwillprovidethedatarequiredtocalculatetheactivitydatatoestimatetheemissionsfrombothdeforestationandforestdegradation.Frequencyofmonitoring:AtleastoncebeforeverificationQA/QCprocedurestobeVM0006,Version2.2SectoralScope14Page114applied:Anycomment:Data/parameter[MN6]:∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡,𝑖𝑖)Dataunit:[hayr-1]Description:Hectaresundergoingtransition𝑖𝑖withintheleakageareaunderthebaselinescenarioduringyear𝑡𝑡Sourcesofdata:Land-usechangemodelingMeasurementprocedures:FollowtheproceduresdescribedinSection8.1.5.4Frequencyofmonitoring:Onceeverybaselineupdate.Mayalsobeupdatedatthetimeofinstanceinclusionthatrequiresnewleakagearea.QA/QCprocedurestobeapplied:Anycomment:Data/parameter[MN7]:∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶𝐶𝐶1→𝐶𝐶𝐶𝐶2,𝑡𝑡1→𝑡𝑡2)Dataunit:[hayr-1]Description:AreaoftransitionfromLULCclassorforeststratum1to2fromtime1to2duringthehistoricalreferenceperiodSourcesofdata:RemotesensinganalysisMeasurementprocedures:Calculatebasedontheremotesensing-basedclassificationandstratificationproceduresdetailedinSection8.1.2Frequencyofmonitoring:AtleastoncebeforeeverybaselineupdateQA/QCprocedurestobeapplied:Anycomment:Data/parameter[MN8]:𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐶𝐶𝐶𝐶1→𝐶𝐶𝐶𝐶2)Dataunit:[yr-1]Description:Relativeannualforestcoverincreaseandregenerationfactorforthetransitionfromclassorstratum1to2.Sourcesofdata:RemotesensinganalysisMeasurementprocedures:Calculatebasedontheremotesensing-basedclassificationandstratificationproceduresdetailedinSection8.1.2.Multiplywith100toobtainaforestcoverincreaseandregenerationrateinpercentageperyear.Frequencyofmonitoring:AtleastoncebeforeeverybaselineupdateQA/QCprocedurestobeapplied:VM0006,Version2.2SectoralScope14Page115Anycomment:Itcanbeusedforproducingbaselinetransitionmatrixfornewinstancestobeaddedintotheprojectarea.Data/parameter[MN9]:𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝐶𝐶𝐶𝐶1,𝑡𝑡1)Dataunit:[ha]Description:TotalareaofLULCclassorforeststratum1attime1Sourcesofdata:RemotesensinganalysisMeasurementprocedures:Calculatebasedontheremotesensing-basedclassificationandstratificationproceduresdetailedinSection8.1.2Frequencyofmonitoring:AtleastoncebeforeeverybaselineupdateQA/QCprocedurestobeapplied:Anycomment:Data/parameter[MN10]:𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑖𝑖)Dataunit:[hayr-1]Description:TotalannualareaofLULCclassthatwasclearedforcreatingfirebreaksSourcesofdata:RecordsofimplementedactivitiesormanagementplanMeasurementprocedures:Frequencyofmonitoring:AtleastoncebeforeverificationQA/QCprocedurestobeapplied:Anycomment:Data/parameter[MN11]:𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑖𝑖)Dataunit:[hayr-1]Description:AnnualareaofforeststratumthatwasclearedbyusingprescribedburningSourcesofdata:RecordsofimplementedactivitiesormanagementplanMeasurementprocedures:Frequencyofmonitoring:AtleastoncebeforeverificationQA/QCprocedurestobeapplied:Anycomment:Data/parameter[MN12]:𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡,𝑖𝑖)VM0006,Version2.2SectoralScope14Page116Dataunit:[ha]Description:AreaofbiomassremovedbyprescribedburningwithinANRstratum𝑖𝑖duringyear𝑡𝑡Sourcesofdata:RecordsofimplementedactivitiesMeasurementprocedures:OnlytobeincludedifANRactivitiesareimplemented.Frequencyofmonitoring:AtleastoncebeforeverificationQA/QCprocedurestobeapplied:Anycomment:Data/parameter[MN13]:𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝐴𝐴𝐴𝐴𝐴𝐴,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝e𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑡𝑡,𝑖𝑖)Dataunit:[ha]Description:AmountoflandonwhichANRactivitiesareplannedundertheprojectscenarioforyear𝑡𝑡andinstratum𝑖𝑖Sourcesofdata:RecordsofimplementedactivitiesMeasurementprocedures:OnlytobeincludedifANRactivitiesareimplemented.Frequencyofmonitoring:AtleastoncebeforeverificationQA/QCprocedurestobeapplied:Anycomment:Data/parameter[MN14]:𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡,𝑖𝑖)Dataunit:[ha]Description:Areaofforestinharveststratum𝑖𝑖thatisharvestedattime𝑡𝑡.Sourcesofdata:ProjectDescriptionorForest/HarvestManagementPlanMeasurementprocedures:Frequencyofmonitoring:AtleastoncebeforeverificationQA/QCprocedurestobeapplied:Anycomment:Data/parameter[MN15]:𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡,𝑖𝑖)Dataunit:[hayr-1]Description:Sizeofstrata𝑖𝑖withintheprojectareawithharvestactivitiesduringyear𝑡𝑡undertheprojectscenario.Sourcesofdata:RemotesensinganalysisVM0006,Version2.2SectoralScope14Page117Measurementprocedures:FollowtheproceduresdescribedinSection8.1.5.4Frequencyofmonitoring:AtleastoncebeforeverificationQA/QCprocedurestobeapplied:Anycomment:Data/parameter[MN16]:∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡,𝑖𝑖)Dataunit:[hayr-1]Description:Hectaresundergoingtransition𝑖𝑖withintheharvestareasunderunderthebaselinescenarioduringyear𝑡𝑡.Sourcesofdata:Land-usechangemodelingMeasurementprocedures:FollowtheproceduresdescribedinSection8.1.5.4Frequencyofmonitoring:AtleastoncebeforeeverybaselineupdateQA/QCprocedurestobeapplied:Anycomment:Data/parameter[MN17]:𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐷𝐷𝐷𝐷(𝑡𝑡)and𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐷𝐷𝐷𝐷(𝑡𝑡)Dataunit:[hayr-1]Description:Betaregressionmodeldescribingtherelationshipbetweentimeanddeforestation/degradationrateinthereferenceregionduringthehistoricalreferenceperiod.Sourcesofdata:HistoricforestdegradationanddeforestationmodelingMeasurementprocedures:ProceduredescribedinSection8.1.5.1orsimilarapproachfrompeer-reviewedscientificliterature.Frequencyofmonitoring:AtleastonceeverybaselineupdateQA/QCprocedurestobeapplied:Anycomment:9.2.2Locations,Descriptions,Qualitative,andSocialDataData/parameter[MN18]:AreaunderagriculturalintensificationDataunit:[ha]Description:SizeoftheareaofagriculturalintensificationseparatedforeachagriculturalintensificationmeasureSourcesofdata:ParticipatoryruralappraisalsMeasurementprocedures:CalculatebasedonareasofcroplandintheleakageandprojectareasVM0006,Version2.2SectoralScope14Page118Onlytobeincludedifagriculturalintensificationactivitiesareimplemented.Frequencyofmonitoring:AtleastoncebeforeverificationQA/QCprocedurestobeapplied:Anycomment:Data/parameter[MN19]:YieldsunderagriculturalintensificationDataunit:[Mgha-1]Description:HarvestedyieldforagriculturalintensificationpracticesSourcesofdata:ParticipatoryruralappraisalsMeasurementprocedures:Onlytobeincludedifagriculturalintensificationactivitiesareimplemented.Frequencyofmonitoring:AtleastoncebeforeverificationQA/QCprocedurestobeapplied:Anycomment:9.2.3DataonDriversandActionsData/parameter[MN20]:𝐶𝐶𝐶𝐶𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏Dataunit:[m3yr-1]Description:AnnualvolumeoffuelwoodgatheringforcommercialsaleandcharcoalproductioninthebaselinescenarioSourcesofdata():1.Participatoryruralappraisals2.Recent(<10yr)literatureinthereferenceregion3.Recent(<10yr)literatureinanareasimilartothereferenceregionMeasurementprocedures:Ifemissionreductionsfromavoideddegradationwereexcludedduetoinsufficientaccuracy,inwhichcase𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐=0,andemissionreductionsfromfuel-efficientwoodstovesareincluded,𝐶𝐶𝐶𝐶𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏mayonlybemeasuredusingthefirstoption,socialassessments.Frequencyofmonitoring:AtleastoncebeforeeverybaselineupdateQA/QCprocedurestobeapplied:Anycomment:Data/parameter[MN21]:𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏VM0006,Version2.2SectoralScope14Page119Dataunit:[m3yr-1]Description:AnnualvolumeoffuelwoodgatheredfordomesticandlocalenergyinthebaselinescenarioSourcesofdata():•Participatoryruralappraisals•Recent(<10yr)literatureinthereferenceregion•Recent(<10yr)literatureinanareasimilartothereferenceregionMeasurementprocedures:Ifemissionreductionsfromavoideddegradationwereexcludedduetoinsufficientaccuracy,inwhichcase𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐=0,andemissionreductionsfromfuel-efficientwoodstovesareincluded,𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏mayonlybemeasuredusingthefirstoption,socialassessments.Frequencyofmonitoring:AtleastoncebeforeeverybaselineupdateQA/QCprocedurestobeapplied:Anycomment:Data/parameter[MN22]:𝐷𝐷𝐷𝐷𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝Dataunit:[m3yr-1]Description:Biomass(drymatter)offuelwoodcollectedbyprojectparticipantsundertheprojectscenario.Sourcesofdata():1.Participatoryruralappraisals2.Recent(<10yr)literatureinthereferenceregion3.Recent(<10yr)literatureinanareasimilartothereferenceregionMeasurementprocedures:Ifemissionreductionsfromavoideddegradationwereexcludedduetoinsufficientaccuracy,inwhichcase𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐=0,andemissionreductionsfromfuel-efficientwoodstovesareincluded,𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏mayonlybemeasuredusingthefirstoption,socialassessments.Frequencyofmonitoring:AtleastoncebeforeverificationQA/QCprocedurestobeapplied:Anycomment:Data/parameter[MN23]:𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎Dataunit:[m3yr-1]Description:Biomass(drymatter)ofallowedfuelwoodcollectionintheprojectareaundertheprojectscenario.Thisamountistypicallyfixedinamanagementplan.[m3yr-1]Sourcesofdata():ForestmanagementplanVM0006,Version2.2SectoralScope14Page120Measurementprocedures:Frequencyofmonitoring:AtleastoncebeforeeverybaselineupdateQA/QCprocedurestobeapplied:Anycomment:Data/parameter[MN24]:𝑉𝑉𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏Dataunit:[m3yr-1]Description:Biomass(drymatter)ofunderstoryvegetationextractionbyprojectparticipantsunderthebaselinescenario.[MgDMyr-1]Sourcesofdata():1.Participatoryruralappraisals2.Recent(<10yr)literatureinthereferenceregion3.Recent(<10yr)literatureinanareasimilartothereferenceregionMeasurementprocedures:CalculatebymultiplyingthenumberofhouseholdsinvolvedinextractionofvegetationwiththeaverageannualextractionratebyhouseholdfordifferentvegetationtypesFrequencyofmonitoring:AtleastoncebeforeeverybaselineupdateQA/QCprocedurestobeapplied:Anycomment:Data/parameter[MN25]:𝑉𝑉𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝Dataunit:[MgDMyr-1]Description:Biomass(drymatter)ofunderstoryvegetationextractionbyprojectparticipantsundertheprojectscenario.Sourcesofdata():1.Participatoryruralappraisals2.Recent(<10yr)literatureinthereferenceregion3.Recent(<10yr)literatureinanareasimilartothereferenceregionMeasurementprocedures:CalculatebymultiplyingthenumberofhouseholdsinvolvedinextractionofvegetationwiththeaverageannualextractionratebyhouseholdfordifferentvegetationtypesFrequencyofmonitoring:AtleastoncebeforeverificationQA/QCprocedurestobeapplied:Anycomment:VM0006,Version2.2SectoralScope14Page121Data/parameter[MN26]:𝑉𝑉𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎Dataunit:[MgDMyr-1]Description:Biomass(drymatter)ofallowedasunderstoryvegetationextractionundertheprojectscenario.ThisamountistypicallyfixedinamanagementplanSourcesofdata():ForestmanagementplanMeasurementprocedures:Frequencyofmonitoring:AtleastoncebeforeeverybaselineupdateQA/QCprocedurestobeapplied:Anycomment:Data/parameter[MN27]:𝐶𝐶𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(ℎ,𝑗𝑗,𝑡𝑡𝑡𝑡,𝑡𝑡)Dataunit:[m3yr-1]Description:Annuallyextractedvolumeofharvestedtimberround-woodforcommercialon-saleunderthebaselinescenarioduringharvestbyspecies𝑗𝑗andwoodproductclass𝑡𝑡𝑡𝑡duringyear𝑡𝑡Sourcesofdata():1.Participatoryruralappraisalsconductedbytheprojectproponent.2.Recent(<10yr)literatureinthereferenceregion3.Recent(<10yr)literatureinanareasimilartothereferenceregion4.Recent(<10yr)nonpeer-reviewedreportsbylocalorganizationsMeasurementprocedures:Frequencyofmonitoring:AtleastoncebeforeeverybaselineupdateQA/QCprocedurestobeapplied:Anycomment:Data/parameter[MN28]:𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎Dataunit:[m3yr-1]Description:Annuallyallowedvolumeofharvestedtimberround-woodforcommercialon-saleundertheprojectscenarioSourcesofdata():Projectdocumentand/ormanagementplanMeasurementprocedures:Frequencyofmonitoring:AtleastoncebeforeeverybaselineupdateQA/QCprocedurestobeVM0006,Version2.2SectoralScope14Page122applied:Anycomment:EstimatevolumeformixtureofspeciesData/parameter[MN29]:𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(ℎ,𝑗𝑗,𝑡𝑡𝑡𝑡,𝑡𝑡)Dataunit:[m3yr-1]Description:Annuallyextractedvolumeofharvestedtimberround-woodforcommercialon-saleinsidetheprojectareaundertheprojectscenarioduringharvestℎbyspecies𝑗𝑗andwoodproductclass𝑡𝑡𝑡𝑡duringyear𝑡𝑡.Sourcesofdata():Projectdesign,surveys,statisticalrecords.Measurementprocedures:Frequencyofmonitoring:AtleastoncebeforeverificationQA/QCprocedurestobeapplied:Anycomment:Data/parameter[MN30]:𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(ℎ,𝑗𝑗,𝑡𝑡𝑡𝑡,𝑡𝑡)Dataunit:[m3yr-1]Description:Annuallyextractedvolumeoftimberfordomesticandlocaluse,roundwoodunderthebaselinescenarioduringharvestℎbyspecies𝑗𝑗andwoodproductclass𝑡𝑡𝑡𝑡duringyear𝑡𝑡.Sourcesofdata():1.Participatoryruralappraisalsconductedbytheprojectproponent2.Recent(<10yr)literatureinthereferenceregion3.Recent(<10yr)literatureinanareasimilartothereferenceregion4.Recent(<10yr)nonpeer-reviewedreportsbylocalorganizationsMeasurementprocedures:Frequencyofmonitoring:AtleastoncebeforeeverybaselineupdateQA/QCprocedurestobeapplied:Anycomment:Data/parameter[MN31]:𝐷𝐷𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎Dataunit:[m3yr-1]Description:Annuallyallowedvolumeofharvestedtimberround-woodfordomesticandlocaluseundertheprojectscenarioSourcesofdata():Projectdocumentand/ormanagementplanVM0006,Version2.2SectoralScope14Page123Measurementprocedures:Frequencyofmonitoring:AtleastoncebeforeeverybaselineupdateQA/QCprocedurestobeapplied:Anycomment:EstimatevolumeformixtureofspeciesData/parameter[MN32]:𝐷𝐷𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(ℎ,𝑗𝑗,𝑡𝑡𝑡𝑡,𝑡𝑡)Dataunit:[m3yr-1]Description:Annuallyextractedvolumeoftimberfordomesticandlocaluse,roundwoodinsidetheprojectareaundertheprojectscenarioduringharvestℎbyspecies𝑗𝑗andwoodproductclass𝑡𝑡𝑡𝑡duringyear𝑡𝑡.Sourcesofdata():Projectdesign,surveys,statisticalrecords.Measurementprocedures:Frequencyofmonitoring:AtleastoncebeforeverificationQA/QCprocedurestobeapplied:Data/parameter[MN33]:𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷(𝑑𝑑)and𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷(𝑑𝑑)Dataunit:[-]Description:Relativecontributionofdriverirespectivelytototaldeforestationandforestdegradation.Sourcesofdata:Calculatedusingproceduredescribedin8.1.3.Measurementprocedures:Frequencyofmonitoring:Atleastoncebeforebaselineupdate.QA/QCprocedurestobeapplied:Anycomment:Data/parameter[MN34]:𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝐷𝐷(𝑡𝑡,𝑑𝑑)and𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐷𝐷𝐷𝐷(𝑡𝑡,𝑑𝑑)Dataunit:[-]Description:Relativeimpactofthegeographicallyunconstraineddriver𝑑𝑑attime𝑡𝑡ofthecreditingperiodrespectivelyondeforestationandforestdegradation.Sourcesofdata:Calculatedusingproceduredescribedin8.2.2.Measurementprocedures:Frequencyofmonitoring:Atleastoncebeforebaselineupdate.VM0006,Version2.2SectoralScope14Page124QA/QCprocedurestobeapplied:Anycomment:Data/parameter[MN35]:𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑑𝑑)Dataunit:[-]Description:Leakagecancellationrateforavoidingdeforestation/degradationfromgeographicallyunconstraineddrivers.Sourcesofdata:Validsourcestosubstantiateasmallerleakagerateincludesocialassessments,scientificliterature,andreportsfromcivilsocietyorgovernments.Sourceshavetobereliableandbasedonscientificmethodsandagoodstatisticaldesign.Measurementprocedures:Frequencyofmonitoring:Atleastoncebeforebaselineupdate.QA/QCprocedurestobeapplied:Anycomment:Unlessalowerratecanbejustified,adefaultrateof100%mustbeused.Data/parameter[MN36]:𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑎𝑎,𝑑𝑑)Dataunit:[-]Description:Effectivenessofeveryprojectactivity𝑎𝑎indecreasinganydriverofdeforestation𝑑𝑑relativetothatdriver’scontributiontodeforestationandforestdegradation,Sourcesofdata:Relevantacademicliteratureordocumentedexpertopinion.Measurementprocedures:Frequencyofmonitoring:Atleastoncebeforebaselineupdate.QA/QCprocedurestobeapplied:Anycomment:The𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑎𝑎,𝑑𝑑)factorrepresentsthemaximaleffectivenessduringthecreditingperiod.Data/parameter[MN37]:∆𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡)Dataunit:[ha]Description:Annualincreaseinharvestedareaofriceduetoleakagepreventionmeasures.Sourcesofdata:ProjectdesigndecisionMeasurementprocedures:Onlytobeincludedifriceproductionisincreasedasaleakagepreventionmeasure.VM0006,Version2.2SectoralScope14Page125Frequencyofmonitoring:AtleastoncebeforeverificationQA/QCprocedurestobeapplied:Anycomment:Data/parameter[MN38]:𝑡𝑡𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑚𝑚𝑚𝑚𝑚𝑚Dataunit:[daysyr-1]Description:MaximalperiodoftimeafieldisfloodedSourcesofdata:ParticipatoryruralappraisalsorexpertopinionMeasurementprocedures:Onlytobeincludedifriceproductionisincreasedasaleakagepreventionmeasure.Frequencyofmonitoring:AtleastoncebeforebaselineupdateQA/QCprocedurestobeapplied:Anycomment:Data/parameter[MN39]:𝐺𝐺𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏Dataunit:[-]Description:Numberofgrazinganimalsoftype𝑔𝑔withintheprojectboundarybaselineSourcesofdata:1.Localagriculturalrecords2.SocialassessmentsconductedbytheprojectproponentMeasurementprocedures:Calculatebymultiplyingthenumberofanimalstakingintoaccountdifferenttypesofgrazinganimals.Frequencyofmonitoring:AtleastoncebeforebaselineupdateQA/QCprocedurestobeapplied:Anycomment:Data/parameter[MN40]:𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝑎𝑎o𝑤𝑤𝑤𝑤𝑤𝑤Dataunit:[-]Description:Numberofgrazinganimalsoftype𝑔𝑔allowedforgrazingwithintheprojectboundaryintheprojectscenarioSourcesofdata:ProjectmanagementplanMeasurementprocedures:Calculatebymultiplyingthenumberofanimalstakingintoaccountdifferenttypesofgrazinganimals.Frequencyofmonitoring:AtleastoncebeforeverificationQA/QCprocedurestobeapplied:Anycomment:VM0006,Version2.2SectoralScope14Page126Data/parameter[MN41]:𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡),𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡)Dataunit:[m3yr-1HH-1]Description:Averageannualvolumeofbiomassfuelconsumedbyhouseholdsintheabsenceoftheprojectactivityinyear𝑡𝑡forcookingpurpose.Sourcesofdata:SocialassessmentsresultsorwoodenergystatisticsapplicabletotheprojectMeasurementprocedures:Frequencyofmonitoring:AtleastonceeverybaselineupdateQA/QCprocedurestobeapplied:Anycomment:Data/parameter[MN42]:𝐻𝐻𝐻𝐻𝑛𝑛𝑛𝑛𝑛𝑛−𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡)Dataunit:[-]Description:TotalnumberofhouseholdintheprojectareathatcollectbiomassfuelfromtheprojectareaanddonotuseCFEinyear𝑡𝑡.Sourcesofdata:SocialassessmentsresultsorwoodenergystatisticsapplicabletotheprojectMeasurementprocedures:Ex-post,thisvaluemustbeobtainedfromsocio-economicsurvey.Frequencyofmonitoring:AtleastoncebeforeverificationQA/QCprocedurestobeapplied:Anycomment:Data/parameter[MN43]:𝜂𝜂𝑜𝑜𝑜𝑜𝑜𝑜Dataunit:[-]Description:Efficiencyoftheprojectcookstovesorappliances.Sourcesofdata:Defaultvalueof0.10forthreestonestoveorconventionalstovethatlacksimprovedcombustionairsupplymechanismandfluegasventilationsystemsi.e.,withoutagrateaswellasachimney;forrestofthesystems0.2defaultvaluemaybeused.Measurementprocedures:Measuredusingrepresentativesamplingmethodorbasedonreferencedliteraturevalues.Useweightedaveragevaluesifmorethanonetypeofsystemsareused.Ifmeasured,theproceduremustcomplywiththeWaterBoilingTest(WBT)basedonVITA1985-the'InternationalStandards'.Frequencyofmonitoring:AtleastonceeverybaselineupdateQA/QCprocedurestobeVM0006,Version2.2SectoralScope14Page127applied:Anycomment:Data/parameter[MN44]:𝜂𝜂𝑛𝑛𝑛𝑛𝑛𝑛Dataunit:[-]Description:Efficiencyofthebaselinecookstovesorappliances.Sourcesofdata:1.Valuesobtainedfromthemanufacturerofthestove.2.CalculatedfromfieldtestingusingISOstandards.Measurementprocedures:Measuredusingrepresentativesamplingmethodorbasedonreferencedliteraturevalues.Useweightedaveragevaluesifmorethanonetypeofsystemsisused.Frequencyofmonitoring:•Ifthestovesusedaremanufacturedbyarecognizedcompanythatisstillinbusinessandprovidesawarrantyforthestovesstatedlife,thenthemonitoringmustbedoneduringeverybaselineupdate.•Ifthemanufacturerdoesnotprovideanywarrantyorthemanufacturerofthestoveisnolongerinthebusiness,thentheefficiencymustbemonitoredannuallyusingthewaterboilingtest(WBT)protocolcarriedoutinaccordancewithnationalstandards(ifavailable)orinternationalstandardsorguidelinesasspecifiedinthelatestversionofApprovedCDMMethodology–AMS.II.G.Energyefficiencymeasuresinthermalapplicantsofnon-renewablebiomass.Biennialmonitoring(i.e.monitoringonceeverytwoyears)maybechosen,iftheprojectproponentareabletodemonstratethattheefficiencyofthecookstovedoesnotdropsignificantlyascomparedtotheinitialefficiencyofthenewdevice,overatimeperiodoftwoyearsoftypicalusage.•Finally,iftheconservativenessoftheusedefficiencycanbedemonstrated,themonitoringfrequencycanbeonceeverybaselineupdate.Demonstrationoftheconservativenessmustbebasedonhistoricalefficiencydataforthetypeofstovesshowinghowefficiencydeclinesfromtheinitialefficiencylevelthroughthelifeofthestovesandthelowestefficiencyvaluemustbeusedforthattypeofstove.QA/QCprocedurestobeapplied:Anycomment:Data/parameter[MN45]:𝑈𝑈𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡)Dataunit:[-]Description:Fractionofcumulativeusageratefortechnologiesinprojectscenarioinyeart.VM0006,Version2.2SectoralScope14Page128[-]Sourcesofdata:SocialassessmentsorwoodenergystatisticsapplicabletotheprojectMeasurementprocedures:Cumulativeadoptionrateanddropoffraterevealedbyusagesurveys[-].Frequencyofmonitoring:AnnualQA/QCprocedurestobeapplied:Anycomment:Data/parameter[MN46]:𝐷𝐷𝐷𝐷𝐿𝐿𝐿𝐿a𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘(𝑡𝑡)Dataunit:[-]Description:LeakagediscountfactorapplicabletoGHGemissionsreductionbenefitsfromCFEactivities[-]Sourcesofdata:1.Socialassessmentsorwoodenergystatisticsapplicabletotheproject.2.Defaultvalueof0.95followingAMS.II.GCDMmethodology.Measurementprocedures:Leakagerelatedtothenon-renewablebiomasssavedbytheprojectactivitymustbeassessedbasedonsurveysofusersandtheareasfromwhichwoodybiomasssavedundertheprojectbynon-projecthouseholdsthatpreviouslyusedrenewableenergyorefficientappliancesmustbeconsidered.Ifthisleakageassessmentquantifiesanincreaseintheuseofnon-renewablebiomass,thatisattributabletotheprojectactivity,thenbiomassusedinthebaselinemustbeadjustedbyafactor(DFLeakageCFE)toaccountfortheleakage.Frequencyofmonitoring:AnnualQA/QCprocedurestobeapplied:Anycomment:Ifthedefaultvalueof0.95isused,nosurveyisrequired.Data/parameter[MN47]:𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛−𝐶𝐶𝐶𝐶2,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶2,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓Dataunit:[tCO2TJ-1]Description:Respectively,non-­CO2emissionfactorofthefuelthatisreducedandCO2emissionfactorforthesubstitutionofnon-renewablebiomassbysimilarconsumers.Sourcesofdata:SocialassessmentsorwoodenergystatisticsapplicabletotheprojectMeasurementprocedures:Emissionfactorcanincludeacombinationofemissionfactorsfromfuelproduction,transport,anduse.BothCO2andNon-CO2ofthefuelsuchasemissionsfactorsforcharcoalcanbeestimatedfromprojectspecificmonitoringoralternativelybyresearchingaconservativewoodtocharcoalproductionratio(fromIPCC,credibleVM0006,Version2.2SectoralScope14Page129publishedliterature,project-relevantmeasurementreports,orproject-specificmonitoring)andmultiplyingthisvaluebythepertinentemissionfactorofwood.Frequencyofmonitoring:AtleastoncebeforeverificationQA/QCprocedurestobeapplied:Anycomment:Data/parameter[MN48]:𝐸𝐸𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓Dataunit:[tCO2e]Description:Emissionfactorrelatedtoleakage.Sourcesofdata:1.Ifcomprehensivenational-levelstatisticsonbiomassdensitiesareavailable,𝐸𝐸𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓mustbecalculatedbasedontheaveragebiomassofthecountry.2.Iflocaldataisnotavailable.Sourcesofthedataallowedare(1)academicresearchpapersand(2)studiesandreportspublishedbytheforestryadministrationorotherorganizations,includingtheFAO’sForestResourceAssessmentreports,(3)theupperrangeofbiomassintheGPG-LULUCF(2003)Table3A.1.2.Measurementprocedures:Frequencyofmonitoring:AtleastoncebeforeverificationQA/QCprocedurestobeapplied:Anycomment:9.2.4DataonOrganicMatterandCarbonDensitiesData/parameter[MN49]:𝑂𝑂𝑂𝑂𝑜𝑜(𝑖𝑖)Dataunit:[MgDMha-1]Description:Plant-derivedorganicmatterofLULCclassorforeststratum𝑖𝑖inpool𝑜𝑜.[MgDMha-1]Sourcesofdata:FieldmeasurementsusingsamplingplotsinforeststrataorLULCclasses.Measurementprocedures:Theaveragebiomassstockdensityinapplicableorganicmatterpools:abovegroundtree-𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖),abovegroundnon-tree-𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖),lyingdeadwood-𝑂𝑂𝑂𝑂𝐿𝐿𝐿𝐿𝐿𝐿(𝑖𝑖),standingdeadwood𝑂𝑂𝑂𝑂𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖),belowground𝑂𝑂𝑂𝑂𝐵𝐵𝐵𝐵(𝑖𝑖),andsoilorganicmatter𝑂𝑂𝑂𝑂𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖)Frequencyofmonitoring:AtleastoncebeforeeverybaselineupdateQA/QCprocedurestobeFollowuncertaintydeductionproceduresdescribedinmethodology.VM0006,Version2.2SectoralScope14Page130applied:Re-measureplotsbyindependentteams.Anycomment:Summedacrossmultiplepoolsanddividedinto𝑂𝑂𝑂𝑂𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑖𝑖)and𝑂𝑂𝑂𝑂𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖)Data/parameter[MN50]:𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐷𝐷𝐷𝐷(𝑑𝑑)and𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐷𝐷𝐷𝐷(d)Dataunit:[-]Description:Proportionofthegradualcarbonlossthatleadstodeforestationorforestdegradation,respectively,duetodriverdSourcesofdata:EstimateusingtheproceduredetailedinTable9.Measurementprocedures:Frequencyofmonitoring:AtleastoncebeforeeverybaselineupdateQA/QCprocedurestobeapplied:Anycomment:Data/parameter[MN51]:𝐶𝐶(𝑡𝑡,𝑖𝑖)Dataunit:[MgCha-1yr-1]Description:Carbonstockdensityattime�instratum�.Sourcesofdata:EstimatewithinthebiomassinventoryplotsMeasurementprocedures:Frequencyofmonitoring:AtleastoncebeforeverificationQA/QCprocedurestobeapplied:Anycomment:UsedinestimatingchangeincarbonstockdensitysuchasinANRareas.Data/parameter[MN52]:𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑦𝑦)Dataunit:EquationDescription:AllometricrelationshiptoconvertatreemetricsuchasDBHortreeheightintobiomassSourcesofdata():1.Allometricequationsdevelopedbytheprojectproponent2.Allometricequationsdevelopedlocallybygroupsotherthantheprojectproponent3.AllometricequationsdevelopedforforesttypesthataresimilartotheonesintheprojectasfoundinfoundinTables4.A.1.and4.A.2.oftheGPGLULUCFMeasurementprocedures:VM0006,Version2.2SectoralScope14Page131Frequencyofmonitoring:MaybeupdatedatbaselineupdateQA/QCprocedurestobeapplied:Anycomment:Data/parameter[MN53]:𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑦𝑦)Dataunit:EquationDescription:Relationshipbetweenabovegroundandbelowgroundbiomass,suchasaroot-to-shootratioSourcesofdata():1.Arelationshipcalculatedfromdestructivesamplingdataobtainedwithintheprojectarea2.Arelationshipobtainedfromthelocal/nationalstudiesthatcloselyreflecttheconditionsoftheprojectactivity3.Standardroot-to-shootratiosasfoundinTable4.4oftheIPCCGPG-LULUCF2003Measurementprocedures:Frequencyofmonitoring:MaybeupdatedatbaselineupdateQA/QCprocedurestobeapplied:Anycomment:Data/parameter[MN54]:𝐶𝐶𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑡𝑡,𝑖𝑖)Dataunit:MgCha-1Description:Biomasscarbonstockdensityattimeinstratuminharvestedareas.Sourcesofdata:FieldinventoryMeasurementprocedures:GenericprocedureisdescribedinSection8.1.4.4.Estimatemustbemadefromplotslocatedareaswhereharvestingtakesplace.Frequencyofmonitoring:AtleastoncebeforeverificationQA/QCprocedurestobeapplied:Anycomment:Carbonstocksinharvestedstratamustcomefromsampling.Itmaybenecessarytoincludeadditionalplotsinharvestedstrataforapreciseestimationofcarbonstocks.TheexactmeasurementofabovegroundandbelowtreecarbonmustfollowinternationalstandardsandfollowIPCCGPGLULUCF2003.ThesemeasurementsareexplainedindetailinCDMapprovedmethodologyAR-AM0002Restorationofdegradedlandsthroughafforestation/reforestation.VM0006,Version2.2SectoralScope14Page132Data/parameter[MN55]:𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡,𝑖𝑖)Dataunit:[-]Description:Combinederrorinestimateofaveragebiomassstockdensityinharvestareasinstratumiattimet.Sourcesofdata():FieldinventoryMeasurementprocedures:GenericprocedureisdescribedinSection8.1.4.4.Estimatemustbemadefromplotlocatedinareaswhereharvestingtakesplace.Frequencyofmonitoring:AtleastoncebeforeverificationQA/QCprocedurestobeapplied:Anycomment:Uncertaintyestimateincarbonstocksinharvestedstratamustcomefromsamplingofplotsinharvestedareas.Data/parameter[MN56]:𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡,𝑖𝑖)Dataunit:[-]Description:CombinederrorinestimateofaveragebiomassstockdensityinANRareasinstratum𝑖𝑖attime𝑡𝑡.Sourcesofdata():FieldinventoryMeasurementprocedures:ProcedureisdescribedinSection8.2.5.3.Frequencyofmonitoring:AtleastoncebeforeverificationQA/QCprocedurestobeapplied:Anycomment:UncertaintyestimateincarbonstocksinharvestedstratamustcomefromsamplingofplotsinANRareas.Data/parameter[MN57]:𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐Dataunit:[-]Description:DiscountingfactorforNERsfromavoideddeforestation,basedontheaccuracyofclassification,i.e.dividinglandintobroadlandusetypes.Sourcesofdata:Measurementprocedures:Section8.1.2.7Frequencyofmonitoring:AtleastoncebeforeverificationQA/QCprocedurestobeapplied:Anycomment:Data/parameter[MN58]:𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠Dataunit:[-]VM0006,Version2.2SectoralScope14Page133Description:DiscountingfactorforNERsfromavoideddegradation,basedontheaccuracyofstratification,i.e.dividingforestintoindividualforestbiomassclasses.Section8.1.2.7Sourcesofdata:Measurementprocedures:Section8.1.2.7Frequencyofmonitoring:AtleastoncebeforeverificationQA/QCprocedurestobeapplied:Anycomment:Data/parameter[MN59]:𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑖𝑖)Dataunit:[-]Description:DiscountingfactorfortheemissionfactorforthetransitionfromLULCclassorforeststratum1toclass2accordingtotheuncertaintyofthebiomassinventory.Sourcesofdata:Measurementprocedures:Section8.1.2.4.3Frequencyofmonitoring:AtleastoncebeforeverificationQA/QCprocedurestobeapplied:Anycomment:9.3DescriptionoftheMonitoringProceduresThismethodologyrequiresthefollowingmonitoringcomponentsforcalculatingactualNERs:•Monitoringofdriversofdeforestation,projectactivitiesandemissionsourcesrelatedtoREDDprojectactivitiesinsideandoutsideoftheprojectarea.•MonitoringLULCclassandforeststratatransitionsintheprojectarea,leakagearea,andreferenceregionusingremote-sensingtechnologies,andvalidatedwithground-truthingdata.•MonitoringcarbonstockdensitiesinLULCclassesandforeststrata.•MonitoringcarbonstockincreasesintheareaonwhichANRareperformed.•Monitoringofcarbonstockinlong-livedwoodproducts.•Monitoringofnaturaldisturbances.•Monitoringofcookstovesandfuelefficiencyactivities.•Monitoringofharvestingactivities.VM0006,Version2.2SectoralScope14Page134Amonitoringreportisproducedwhichcontainsalloftheinformationabove,andwhichoutlinesthecalculationsforactualNERsgenerated.Ateachmonitoringevent,theprojectproponentmustconfirmthatthereareGHGprojectsintheprojectareaandaformalstatementtothateffectmustbeincludedinthemonitoringreport.Giventhatanynaturaldisturbanceisfullyaccountedaspartoftheon-goingmonitoringduringthecreditingperiod,anylossofbiomassduringthecreditedperiodmustalsoaccountedforandreportedinthemonitoringreportregardlessofthecauseoftheloss.However,whereaneventthatqualifiesasalosseventoccursandVCUshavepreviouslybeenissued,projectproponentmustfollowtheapplicableVCSrules.Theprojectproponentmustfollowtherequirementsbelowformonitoringprojectactivities.9.3.1CalculationofEx-postActualNetGHGEmissionReductionsAmonitoringreportmustcontaintheex-postvaluesoftheactualnetGHGemissionreductions.ActualnetNERsmustbebasedonEquation[EQ105];actualVCUsmustbebasedonEquation[EQ106].9.3.2CalculationofEx-postGHGEmissionsandChangesinSinksUndertheProjectScenarioInsidetheProjectAreaThechangesincarbonsinksundertheprojectscenariointheprojectareamustbecalculatedbasedonremotesensingchangeanalysisandfieldmeasurements.Carbonstockdensitiesmustbere-measuredatleastoncebeforeeverybaselineupdateusingground-basedbiomassinventories,asdescribedinSection8.1.4.4.However,carbonstockdensitiesmaybemeasuredmorefrequently.ForthecalculationoftheNERs,themostrecentvaluesofthecarbonstockdensitiesmustbeused.Therefore,ifnewcarbonstockdensitiesareavailable,valuesfortheemissionfactorsmustbeupdatedandthenewvaluesmustbereportedinthemonitoringreportbasedontheprocedureinSection8.1.4.•Acquire(a)remotesensingimage(s)betweenvalidationorthelastverificationandthecurrentdate,andusethesameprocedureasusedforthebaselinetoproduce(a)landuse,landcover,andforestcovermap(s).AsexplainedinSection8.1.2.5,ifanypartoftheprojectareaiscoveredincloudsorcloudshadows,itsGHGaccountingshouldbepostponedonthatportionoftheprojectareainthismonitoringperioduntilcloud-freeimageryinthisportionoftheprojectareaisavailable.ThepostponedNERsmaybeaddedtotheNERsgeneratedinthesubsequentmonitoringperiod.Notethatifadifferentremotesensingdatasourceisusedthanforthehistoricalbaselineanalysis,theprovisionsinSection9.3.9mustbefollowed.VM0006,Version2.2SectoralScope14Page135•ExecuteanimageclassificationontheacquiredimageaccordingtotheproceduresinSection8.1.2.4.Ifemissionsreductions/removalsfromavoideddegradationareincluded,applyexactlythesamestratificationmodelastheoneusedforvalidation.PerformanaccuracyassessmentoftheLULCclassificationasdescribedinSection8.1.2.4usingdatafromfieldsamplingandindependentremotesensingdata.EnsurethattheaccuracyoftheLULCclassificationisequalorgreatertotheaverageaccuracyachievedforthehistoricalremotesensing.Thesame𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐usedforex-antecalculationsmustbeusedex-postuntilthenextbaselineupdate.Whenadditionalbiomassplotsweremeasured,update𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖),allrelevantemissionfactorsaswellas𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝐶𝐶𝐶𝐶1→𝐶𝐶𝐶𝐶2).•Comparethechangesinbetweenconsecutivemap(s)sincethelasttimetheprojectwasverifiedanduntilthecurrentmapoflanduse,landcover,andforestcover.FortheprojectareawherenoANRorharvestingactivitieswereperformed,produce(a)landtransitionmatrix/matricesbetweentheconsecutivemap(s)sincethelastverification.•Annualizethelandtransitionmatrix/matricesbydividingthelandtransitionratesbythedurationinbetweenthetwostatesrepresentedbythemaps.TheannualratesoflandtransitionchangesfortheprojectareaonwhichnoANRactivitiesareplannedis∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝𝑜𝑜𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗(𝑡𝑡,𝑖𝑖).•FortheANRandharvestingareas,inwhichincreasesinforestbiomassarequantifiedusingbiomassinventories,followtheproceduresinSections8.2.5and8.2.7,respectively.•Theprojectproponentmaychoosetoincreasethenumberofsamplingplotsduringthecreditingperiodorreplacepreviousplotswhenthebiomassplotsarelocatedonlandthathasbeendeforestedorlostthroughsomeothercause.9.3.3CalculationofEx-postGHGEmissionsandChangesinSinksUndertheProjectScenarioOutsidetheProjectArea(Leakage)SimilartoSection8.3.1,adistinctionismadebetweenthecalculationofleakagefromgeographicallyconstraineddriversandleakagefromgeographicallyunconstraineddrivers.SeeSection8.3.1foradistinctionbetweenthesetwocategories.9.3.3.1CalculationofEx-postLeakagefromGeographicallyConstrainedDriversTheland-useandlandcoverchanges19intheleakagebeltsandleakageareamustbecalculatedusingexactlythesameremotesensingchangeanalysisasfortheprojectarea:•Acquire(a)remotesensingimage(s)betweenvalidationorthelastverificationandthecurrentdate,anduseasimilarprocedureasusedforthebaselinetoproduce(a)landuse,landcover,andforestcovermap(s)intheleakagebelts.19Theseland-useandlandcover(LULC)changesdonotonlyincludedeforestationandforestdegradation,butalsoLULCchangesonnon-forestlandsuchastheconversionofwoodlandstograsslandsduetofuelwoodcollection.VM0006,Version2.2SectoralScope14Page136•Comparethechangesinbetweenconsecutivemap(s)sincethelasttimetheprojectwasverifiedanduntilthecurrentmapoflanduse,landcover,andforestcover.Produce(a)landtransitionmatrix/matricesbetweentheconsecutivemap(s)sincethelastverificationfortheleakagearea.•Annualizethelandtransitionmatrix/matricesbydividingthelandtransitionratesbythedurationinbetweenthetwostatesrepresentedbythemaps.Theannualratesoflandtransitionchangesfortheleakageareais∆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡,𝑖𝑖).However,incasetheprojectproponentcanjustifyinthemonitoringreportthatobservedchangeindeforestationand/orforestdegradationintheleakageareacomparedtodeforestationand/forestdegradationinbaselineintheleakageareaisnotcausedbyprojectactivities,butratherthroughsomeexternalfactor,theprojectproponentareallowedtoadjustthebaselinerateofdeforestationandforestdegradationwithintheleakageareaasexplainedinthisparagraph.Thisjustificationmayincludethecasewheninthemonitoringperiodthedeforestationand/orforestdegradationrateinthereferenceregionishigherthanthemonitoredrateofdeforestationandforestdegradationwithintheleakagearea.Underthiscase,theprojectproponentmayadjustthebaselinerateofdeforestationand/forestdegradationrateintheleakageareabeforecalculatingthegeographicallyconstrainedleakage.Therateofdeforestationand/orforestdegradationwithintheleakageareaunderthebaselineisadjustedbyfirstestimatingtherateofdeforestationand/orforestdegradationinthereferenceregionthroughremotesensing,andthenusingthisrateasthetotalrateofdeforestation(and/orforestdegradation)inestimatingtheadjustedbaselinerateofdeforestationandforestdegradationforthemonitoringperiodwithintheleakageareasfollowingtheproceduresdescribedinSection8.1.5.4.AllothervariablesandinputstotheprocedureinSection8.1.5.4mustremainthesameasthevaluesusedatvalidationorlastbaselineupdate.Oncetheprojectproponentelectstoadjustthebaselinerateofdeforestationand/orforestdegradationintheleakagearea,theprojectproponentmustcontinuetodemonstratethattheadjustedrateisvalidforthenextmonitoringperiod,orreadjustthebaselinerateofdeforestationand/orforestdegradationinleakageareasrelevanttothatmonitoringperioduntilthenextbaselineupdate.9.3.3.2CalculationofEx-postLeakagefromGeographicallyUnconstrainedDriversActivity-shiftingleakagefromgeographicallyunconstraineddriversmustbequantifiedex-postusingafactorapproachinwhichtheleakagecancellationfactors,setatvalidationfollowingtheprocedureinSection8.3.3,areused.9.3.3.3CalculationofEx-postEmissionSourcesfromLeakagePreventionActivitiesActualemissionsfromsourcesfromleakagepreventionactivities,𝐺𝐺𝐺𝐺𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡),mustbecalculatedusingtheequationsinSection8.3.4,butwithmonitoreddata.VM0006,Version2.2SectoralScope14Page1379.3.4MonitoringofCFEActivitiesAnyCFEappliancesthathavebeenbroughtfromoutsidetheprojectboundarydoesnotqualifyforemissionremovals/reductionsasthiscancausepotentialleakage.Similarly,non-operationalappliancesmustbeexcluded.Ifthebaselineappliancesstillcontinuetooperateonthetopofprojectcookstoves(i.e.CFEappliancesaresecondary),theprojectproponentmustensurethatthefuelwoodconsumptionofthosestovesisexcludedfromtheestimationofbaselineemissions.TheGHGemissionsreductionsbenefitsfromCFEactivitiesmustalsobeexcludedoncetheprojectsiteisnolongerthreatenedbythefuel-woodcollectionactivities.ThiscanhappeneitherasaresultofeffectiveimplementationoftheREDDprojectsorasaresultofreducedhouseholdenergyneeds.Thefollowingareindicatorsofsuchshiftsandmustbemonitoredperiodically.•Trendshowingdecreaseinthetimespentordistancetravelledbyusers(ordriversofdeforestationanddegradationorfuel-woodsuppliers)forgatheringfuelwood.•Surveyresults,nationalorlocalstatistics,studies,mapsorothersourcesofinformationsuchasremotesensingdatathatshowthatcarbonstockarenotdepletingintheprojectareaandleakagebelti.e.whenfractionofnon-renewablebiomass(𝑓𝑓𝑁𝑁𝑁𝑁𝑁𝑁)is0.•Decreasingtrendinfuel-woodpriceindicatingabundanceoffuelwood.9.3.5MonitoringofLong-TermAverageCarbonStockinHarvestAreas•Thelongtermaveragecarbonsstockdensity,i.e.,𝐿𝐿𝐿𝐿𝐿𝐿𝐶𝐶𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,intheharvestareasmustbeupdatedatleastonceeveryverificationperiodandateverybaselineupdateusingthemostrecentforestinventorycarriedoutintheharvestareas.Theproceduretoestimate𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑖𝑖)and𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑖𝑖)isasdescribedinSection8.1.4.4buttheestimatesarebasedononlytheplotslocatedinharvestareas.•Theprojectproponentmustusethelog-bookfortimberproductharvestintheprojectarea.Whentheactualharvestdiffersfromtheestimatedharvestbymorethan15%then𝐿𝐿𝐿𝐿𝐿𝐿𝐶𝐶𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻mustbeupdatedandNERsadjustedaccordinglyi.e.,tosafeguardfromoverissuanceofemissionsreductions/removalshaveoccurredduetothechangein𝐿𝐿𝐿𝐿𝐿𝐿𝐶𝐶𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻.•Theharvestplan/descriptioninPDmustbeupdatedwithanychangesintheharvestplan.9.3.6MonitoringGroupingofProjectAreaParcelsWherenewprojectareaparcelsareaddedsubsequenttoprojectvalidation,informationonthenewprojectareaparcelsmustbeincludedinthemonitoringreportasperVCSrulesongrouping.Inaddition,thefollowingconditionsmustbemetanddocumentedinthemonitoringreport.VM0006,Version2.2SectoralScope14Page138Thefollowingconditionsmustbemetbeforeanewprojectareaparcelcanbeaddedtoanexistingproject:•Ifthenewprojectareaandleakageareaarelocatedentirelywithintheexistingreferenceregionboundaryandthesizeofthetotalnewprojectarea(ie,cumulativesincethebeginningoftheproject)islessthanhalfofthesizeofthereferenceregion,thatareacanbeaddedtotheexistingprojectareawithouttheneedtoupdatethereferenceregionandthebaseline.However,ifanewprojectareaisnotinsidetheexistingreferenceregionboundary,orthesizeofthetotalnewprojectareaisgreaterthanhalfthesizeofthereferenceregion,anewreferenceregionmustbecreated.Thismustonlybedonewhenthebaselineisupdated.•ThenewprojectareamustpassthesimilaritytothereferenceregiontestoutlinedinTable3.Thesimilaritymustbedemonstratedforthenewprojectareaasawholeandnotforeachindividualparcel.•Leakagemustbere-assessedforallnewprojectinstances,includingactivity-shifting,marketleakageandecologicalleakageassessments.Theboundariesofexistingleakagebeltscanbeexpandedornewleakagebeltscanbedemarcatedaroundthenewprojectareaparcels.Thenewleakagebeltsmustremainlocatedwithintheboundaryofthereferenceregion.Ifnewprojectparcelsareaddedwithintheleakagebelts,theboundariesofexistingleakagebeltmustbereassessed.9.3.7MonitoringAdditionofNewProjectActivitiesDespitetheimplementationofREDDactivities,itispossiblethatsomedeforestationmaystilloccurintheprojectareaduringtheprojectcreditingperiod.Thisdeforestationcanbeeitheracatastrophicornon-catastrophicreversalasdefinedbytheVCS.Incaseareversaleventoccurswithintheprojectareaafterthestartofthecreditingperiod,theprojectproponentmustfollowtheVCSAFOLURequirementsfortreatmentofareasthatsufferlossesofforestcover.However,thismethodologyallowsadditionofnewANRactivities(see8.2.5)ondeforestedordegradedforestareastoincentivizegoodforestmanagement,accelerateforestre-growth,andenabletheprojectproponenttorecuperatepartofthesufferedlossesunderthefollowingconditions.WhereANRactivitiesareaddedinexistingprojectareasaftertheprojectisvalidated,thenewANRactivitiesmustbedescribedinthemonitoringreportandthefollowingrequirementsmustbemetanddemonstratedinthemonitoringreport.•Onlyareasthatwereforestatthestartoftheprojectbutbecomedeforestedordegradedafterthestartoftheprojectareeligibleregardlessofwhetherthereversaloccurredduetoanthropogenicornon-anthropogenicreasonssuchasanaturaldisaster.VM0006,Version2.2SectoralScope14Page1399.3.8UpdateoftheSamplingDesignofBiomassInventoryPlotsIftheprojectproponenthaveset-uppermanentsamplingplotsintheprojectarea,itislikelythatduringthecreditingperiod,permanentforestsamplingplotswillhavetobeabandonedduetounforeseendeforestationornaturaldisasters.Similarly,withcontinuousincreasesinforestcarbonstocks,additionalsampleplotsmustberequiredtoaccuratelyaccountforforestcarbonstocks.Insuchcases,newpermanentsamplingplotsmustbeestablished,orthesamplingproceduremustbeswitchedtotemporarysamplingplotsandmeasuredfollowingtheprocedureinthismethodology.Ex-postemissionreductions/removalsmustbecalculatedusingthemostrecentemissionfactorsthatarecalculatedusingthemostup-to-datesetofbiomassinventories.9.3.9UpdatestoBaselineNetGHGRemovalsbySinksOncethebaseline(calculatedex-ante)isvalidated,itisfixedfortenyearsandmustbere-assessedandupdatedeverytenyears.TheupdatedbaselinemustbevalidatedatthesubsequentverificationasperVCSAFOLURequirements.BaselineupdatesmustfollowtheproceduresinSection8,usingupdatedvaluesforallvariablesindicatedassuchinthemonitoringtable.ThefollowingexceptionstotheproceduresofSection8mustbefollowed:•Thebaselinemustbere-calculatedfortheentiretyofthecreditingperiod,meaningfromthestartofthecreditingperioduntiltheendofthecreditingperiod.However,onlytheex-anteNERsandbaselinecalculationsuntilthenextbaselineupdatewillbevalidated.Notethatthere-calculationofpreviousyearsisnecessarytounderstandthebaselinestateintheprojectareaatthetimeofthebaselineupdate.•Thenewhistoricalreferenceperiodusedforthebaselineupdateextendsfromtheoriginalstartdateofthehistoricalreferenceperiodtothetimeatwhichthebaselineupdateeventisscheduled.Inotherwords,allintermediatevaluesfordeforestationandforestdegradationratesfromthebeginningofthehistoricalreferenceperioduntilthecurrenttimemustbeincluded.Duringthecreditingperiod,thegraphsofdeforestationandforestdegradationratesversustimewillcontainanincreasingnumberofpoints.•Inaddition,afterthestartofthecreditingperiod,thereferenceregionmustexcludeprojectareasandleakagebelts.Ifafterprojectstart,newareaswithinthereferenceregionbecomeprotected,thesemustbeexcludedfromtheupdatedreferenceregion.Protectedareasinclude:Nationalparksthatareeffectivelyprotected.Areasunderconservationthatareeffectivelyprotected.Areasunderaloggingoreconomiclandconcessionwhereaccessiseffectivelybeingrestricted.Largeplantationsthatareeffectivelyprotected.•Allometricequationsusedforbiomassstockdensitycalculationsmayberevisedduringabaselineupdate.VM0006,Version2.2SectoralScope14Page140•Theprojectproponentmustusethesameremotesensingdatasourcesandanalysisproceduresaswereusedforprojectdesignorinthepreviousbaselineupdate.However,ifimproved(i.e.,spectralresolutionofminimally20%higher)datasourcesandremotesensingdataanalysisproceduresbecomeavailabletotheprojectparticipantsduringthecreditingperiod,orifthesensorsusedforthepreviousex-antebaselinecalculationsbecomeunavailable,changingtheprocedurespreviouslyusedisallowedunderthefollowingconditions:•Anychangeindatasourcesandanalysisproceduresmustbedulyexplainedandrecorded.TheStandardOperationsProcedureforremotesensinganalysesmustbeupdatedwhenanewsensorisusedandthebaselineisupdated.•Similarspectralbands(e.g.,Red,Green,Blue,NIR,SWIR,MIR,etc.)usedforclassificationfromtheoriginalsensormustbepresentinthealternativesensor.AformalcomparisonofthesensorsmustbeaddedtothebaselineupdateSectionwithinthemonitoringreport.•Ifanewsensorisusedandthebaselineisnotupdated,thespectralresolutionmustbedown-sampledtothespectralresolutionoftheoriginalsensor,sothatthesameremotesensingprocedureusedduringthebaselinecalculationcanbeused.Demonstratethattheclassificationresultsoftheimagesfromtheprevioussensorandthenewsensorarecomparable.•Fullresolutionmayonlybeusedforward-lookingafterabaselineupdateandifsufficienthistoricalimagesofthehigherresolutionareavailabletocalculatethebaseline,accordingtotheproceduresinTable5.Asaconsequence,theinclusionofforestdegradationbasedonhigher-resolutiondatamayonlyoccurduringabaselineupdate.•Thediscountingfactors𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠and𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐mustbeupdatedduringthebaselineupdateperiodbasedontheclassificationandstratificationaccuraciesfortheperioduntilthebaselineupdate.•Therelativeforestcoverincreaseandregenerationratesmayonlybeupdatedusingdatathatislessthan10yearsold.•Summarizeallupdatedbaselinelandtransitions.Updatetheex-anteNERsusingtheupdatedbaselineestimates,andpresentanupdatedversionoftheoverviewtableinthemonitoringreport.Similarly,allrequirementsforbiomassinventories,socialsurveys,etc.thatwereincludedinSection8mustbefollowed.9.3.10ProceduresforVerificationofAllometricEquationsEverytimeoneormorenew𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎equationsareproposed,theproposedequation(s)mustbeverifiedaccordingtothefollowingcriteria:•Theproposedequation(s)musthaveanr2valueofgreaterthan0.5(50%)andap-valuethatissignificantat95%confidencelevelasreportedinthesourcepublications.VM0006,Version2.2SectoralScope14Page141•Theproposedequation(s)wasdevelopedfromtreeswherethelargestandsmallestDBH(oranyothertreemetricusedintheequation)ofthetreesfallwithintherangeofthemetricofthetreeswithintheprojectareas.•Iftheproposedequation(s)was/werederivedfromdatasolelyfromwithinthereferenceregionthensuchequationscanbeused.Iftheproposedequation(s)was/werederivedoutsideofthereferenceregion,theprojectproponentmustjustifythesimilarityinclimatic,edaphic,geographicalandspeciescompositionbetweentheprojectareaandthelocationfromwheretheequationswerederived.Thesourcepublicationmustincludeanestimateoftheuncertaintyorsufficientdatatoestimatetheuncertainty.Ifthisuncertaintyiswithin±15%ofthemeanvaluesandisnotbiasedinanon-conservativemanner(i.e.,theequation(s)do(es)notsystematicallyoverestimatetheprojectnetanthropogenicremovalsbysinks),theequation(s)maybeused.•Foranyotherequationsthatdonotsatisfycriteria(d)orifnewequationsorequationswhichdonothaveestimateofuncertaintyaretobeused,thenoneofthefollowingtwostepsmustbecarriedout:•Step1:DestructiveSamplingSelectingatleast5treescoveringtherangeofDBH(oranyothertreemetricusedintheallometricequation)existingintheprojectarea,andfellingandweighingtheabovegroundbiomasstodeterminethetotal(green)weightofthestemanbranchcomponentsExtractingandimmediatelyweighingsubsamplesfromeachofthegreenstemsandbranchcomponent,followedbyovendryingat105°Ctodeterminedrybiomass.Determinethetotaldryweightofeachtreefromthegreenweightsandtheaveragedratiosofwetanddryweightsofthestemandbranchcomponents.•Step2:LimitedMeasurements.Selectatleast10treesperspeciesorspeciesgroupdistributedacrosstheprojectarea.Calculatevolumeoftreefrombasalandtopdiametersandtreeheight.Multiplybyspecies-specificdensitytogainbiomassofbole.Addanadditional20percentageofweighttoapproximatelycoverthebiomassofbranches.Ifthebiomassofthemeasuredtreesiswithin±15%ofthemeanvaluespredictedbytheselecteddefaultallometricequation,andisnotbiased–orifbiasedtowardstheconservativeside(i.e.,equationunderestimatesoftheprojectnetanthropogenicremovalsbysinks),thenmeanvaluesfromtheequationmaybeused.However,ifthebiomassofthemeasuredtreesisnotwithin±15%ofthemeanvaluespredictedbytheselecteddefaultallometricequation,estimatedbiomassmustbefurtherdiscountedwiththerelativeaveragehalf-widthoftheconfidenceintervalofthemodel.Note–TheprojectproponentmustfollowtheremotesensingproceduresprovidedinVM0006,Version2.2SectoralScope14Page142Section8.1.4.1andshouldrefertoguidanceprovidedinAppendix1forprocedureswithregardtoconductingsocialassessments,,QA/QCproceduresandonverificationofallometricequations.VM0006,Version2.2SectoralScope14Page143APPENDIX1:ADDITIONALGUIDANCE1.1GuidanceforSocialAssessmentsSocialassessmentsmustbeconductedtocollectsocialinformationregardingprojectconditions.Formostdataitemsthataretobecollectedwithinthemethodology,personalinterviewswithindividualhouseholdsarepreferred;thesearereferredtoas“householdsurveys”.However,fordataitemsthataremorechallengingtoquantifysuchasforestfiresandforestencroachment,semi-structuredfocusgroupdiscussionswithrepresentativecommunitymembersaremoreappropriate;thesearereferredtoas“participatoryruralappraisals”.Thesamplesizeforhouseholdsurveyscanbebasedonacomparativelysmallproportionofthetargetpopulation(UN2008).Therequirednumberofhouseholdsurveysmustbeselectedsothataminimalconfidencelevelof95%.TheexactnumberofsurveyscanbedeterminedusingtheformulainKrejcieandMorgan(1970).Incaseofsemi-structuredinterviewsinparticipatoryruralappraisals;atleast10focusgroupdiscussionsmustbeconducted.FurtherguidelinesforcarryingouttheseappraisalscanbefoundinCochran(1977),Freudenberger(1994),Topetal.(2004)andUN(2008).Thefollowingstepsshouldbefollowedfordesigningandconductingsurveys.•Assembleallinformationthatmustbecollectedanddeterminethegoalsofthequestionnaire.Identifyallinformationthatisrequiredbythemethodology.•Determinethetargetgroupofthequestionnaire,andsub-dividethegroupintodifferentstrata.Stratashouldbedefinedaccordingtogeography,householdsize,age,gender,etc.Takepropercaretoavoidtheselectionofabiasedtargetgroup.•Determinethetotalsamplesizeandthenumberofsamplesrequiredineachstratum.Identifythepopulationineachofthestratacategoriesdefinedinthepreviousstep.Setquotas,aminimalnumberofsurveysfromeachofthesamplestrata.Surveysmustbecollecteduntilthequotashavebeenreached.•Createyourquestionnaire.Transformtherequireddataintoneutral,simpleandsystematicquestions.Ifpossibleandrelevant,generateasetofexpectedanswers.Includepartiallyredundantquestionstoensureconsistencyofdata.Includespaceforsomesketchmapping,ifrelevant.Expectedanswerscouldbecomplementedwithgraphs,figures,mapsandpictures.Allowa“notapplicable”or“uncertain”category.Groupquestionslogicallyaccordingtotheircontentsandleavedifficultorsensitivequestionsuntilneartheendofasurvey.•Chooseinterviewingmethodologyanddevelopastandardoperationsprocedureforinterviewing.IncludeQA/QCproceduressuchasre-samplingarandomlyselectedsub-groupbydifferentexperts,andtherequirementtotakegeo-taggedpictures.Allsurveysmustcontaindate,time,location,andnameoftheexpertwhoconductedthesurvey.Inaddition,includeaSectiononhowtointroducethepurposeofthequestionnairestotheinterviewees.•Pre-testthequestionnaireandmethodology,andadjustthequestionnaireanditsmethodology,ifnecessary.Morespecifically,ifquestionsaremultiplechoices(discrete),ensurethatallpotentialanswersareincluded.VM0006,Version2.2SectoralScope14Page144•Trainexpertsforconductinginterviews.Throughinstruction,roleplayingexercises,andtestsessionsfollowedbyimmediatefeedback,trainexpertstoconductinterviews.Expertsshouldbeproperlytrainedinexplainingthebroaderscopeofthesocialassessments.•Conductinterviewsandenterdata.Makesureacopyismadeofallsurveysandputinasecurearchive.Furthermore,allsurveysshouldbescannedandstoredelectronicallytoavoidlossofdata.Surveysshouldbeimmediatelyevaluatedandifsystematicproblemsarise,thesurveymustbeadjustedorexpertsconductingtheinterviewsshouldbere-trained.Makesurethatexpertsareaccompaniedbyanexperiencedsupervisorforatleast10%oftheinterviewsthroughoutthesurveyingcampaign,andnotonlyinthebeginningofthecampaign.•Analyzethedata.•Producereports.1.2GuidanceforQualityAssuranceandQualityControlToensuretheprecise,verifiableandtransparentcalculationofnetNERs,aqualityassuranceandqualitycontrol(QA/QC)proceduremustbeimplemented.ThestipulationsintheIPCC2003GoodPracticeGuidanceforLandUse,Land-UseChangeandForestryonqualityassurance/qualitycontrol(QA/QC)werefollowedwithinthismethodology,andshouldbefollowedbytheprojectproponentwhendesigningaQA/QCplan.1.2.1QA/QCforFieldMeasurementsQA/QCshouldbeconductedasfollows:•Personsinvolvinginthefieldmeasurementworkshouldbefullytrainedinthefielddatacollectionanddataanalyses.•Listallnamesofthefieldteamsandtheprojectleaderandthedatesofthetrainingsessions.•Recordwhichteamshavemeasuredeachsamplingplot.Recordthatwasresponsibleforeachtask.•DevelopStandardOperatingProcedures(SOPs)foreachstepofthefieldmeasurementsandadheretotheseatalltimes,bothex-anteandex-post.•PutamechanisminplacetocorrectpotentialerrorsorinadequaciesintheSOPsbyaqualifiedperson.•Verifythatplotshavebeeninstalledandmeasuredcorrectly,byhavingapproximately10%ofallplotsre-measuredbyanindependentteam.Ifthedeviationbetweenmeasurementandre-measurementislargerthan5%,investigatethesourceoftheerror,recordandcorrect.VM0006,Version2.2SectoralScope14Page1451.2.2QA/QCforDataEntry,DocumentationandAnalysesQA/QCshouldbeconductedasfollows:•Reviewtheentryofdataintothedataanalysesspreadsheetsbyanindependentsource.•Archivedalloriginaldatasheetssafely.Electronicdatamustbebackedupadequatelyondurablemedia.•Ensurethatallfilesarenamedappropriately.Ensurethatalldatabasefields,spreadsheetheadingsorcellsareadequatelydocumentedinsuchawaythatitcanbeverifiedindependently.•Verifycalculationsfortrivialerrorssuchasunitconversionerrors.•Ifparametersarecommonbetweenanalyses(e.g.,emissionfactors),ensurethatconsistentvaluesareused.•Checkforconsistencyamongtimeseriesdata.Identifyoutliersassoonaftertheactualmeasurementaspossible.Investigatethecauseoftheoutlyingobservation,andcorrectifneeded.•Compareestimatesfromfieldmeasurementsorsocialappraisalswithliteraturevalues.•AnSOPfornon-biomassmonitoringmustbedevelopedandadheredtoatalltimes.1.2.3QA/QCforRemoteSensingAnalysesQA/QCshouldbeconductedasfollows:•DevelopStandardOperatingProcedures(SOPs)foreachstepoftheremotesensinganalysesandadheretotheseatalltimes,bothex-anteandex-post.•Useground-truthingdatatovalidatetheLULCclassificationandforeststratification.Useconfusionmatricesandaccuracyindicestoanalyzeandquantifytheaccuracyoftheclassification.•Usevisualinterpretationofhigh-resolutionsatelliteimagerytocomplementthemediumresolutionimagery.•Checkforconsistencyamongtimeseriesdata.Ifoutliersarepresent(e.g.,indeforestationquantities),analyzethecauseandcorrectiferrorsweremade.•Compareestimatesofdeforestationandforestdegradationrateswithrelevantestimatesfromtheliterature.1.2.4QA/QCforLandUseChangeModelingQA/QCshouldbeconductedasfollows:•Splittheavailabledatain2/3forcalibrationpurposes,and1/3forvalidationpurposes.Neverusethesamedataforcalibrationandvalidation.•Reportameasurefortheaccuracyofthelandusechangemodel.VM0006,Version2.2SectoralScope14Page146APPENDIX2:REFERENCESAngelsen,A.,andD.Kaimowitz.1999.Rethinkingthecausesofdeforestation:Lessonsfromeconomicmodels.WorldBankResearchObserver14:73-98.Aukland,L.,P.M.Costa,andS.Brown.2003.Aconceptualframeworkanditsapplicationforaddressingleakage;thecaseofavoideddeforestation.ClimatePolicy3:123–136.Boer,R.,U.R.Wasrin,Perdinan,Hendri,B.D.Dasanto,W.Makundi,J.Hero,M.Ridwan,andN.Masripatin.2006.AssessmentOfCarbonLeakageInMultipleCarbon-SinkProjects:ACaseStudyInJambiProvince,Indonesia.Chambers,J,Higuchi,N,Schimel,J.P.,Ferreira,L.V.,Melack,J.M.2000.DecompositionandcarboncyclingofdeadtreesintropicalforestsofthecentralAmazon.Oecologia,122:380-388.Cochran,W.G.1977.SamplingTechniques.Wiley.NewYork.Chomitz,K.M.,P.Buys,G.DeLuca,T.S.Thomas,andS.Wertz-Kanounnikoff.2006.Atloggerheads.AgriculturalExpansion,PovertyReduction,andEnvironmentintheTropicalForestsWorldBank,Washington,DC.Congalton,R.G.1991.AReviewofAssessingtheAccuracyofClassificationsofRemotelySensedData.RemoteSensingofEnvironment37:35-46.DeJong,B.H.J.,E.EsquivelBazan,andS.QuechulpaMontalvo.2007.Applicationofthe“Climafor”baselinetodetermineleakage;thecaseofScolelTe.MitigationandAdaptationStrategiesforGlobalChange.Fenstermaker,L.1991.Aproposedapproachfornationaltoglobalscaleerrorassessments.In:ProceedingsGIS/LIS'91,ASPRS,ACSM,AAG,AM/FMInternationalandURISA,Vol.1:293-300.Freudenberger,K.S.1994.Treeandlandtenurerapidappraisaltools.FoodandAgriculturalOrganizationoftheUnitedNations.Rome.Harmon,M.E.andJ.Sexton.1996.GuidelinesforMeasurementsofWoodyDetritusinForestEcosystems.USLTERPublicationNo.20.USLTERNetworkOffice,UniversityofWashington,,Seattle,WA,USA.Hay,A.1979.Samplingdesignstotestland-usemapaccuracy.PhotogrammetricEngineeringandRemoteSensing,45(4):529-533.Hoover,C.M.(ed).2008.FieldMeasurementsforForestCarbonMonitoring:ALandscape-ScaleApproach.Springer,NewYork.Hardcover.ISBN978-1-4020-8505-5.Kish,L.1995.SurveySampling.WileyInterscience.IPCC.2003a.GoodPracticeGuidanceforLandUse,LandUseChangeandForestryProjects(GPG-LULUCF)IntergovernmentalPanelonClimateChange,Geneva,Switzerland.VM0006,Version2.2SectoralScope14Page147IPCC.2003b.DefinitionsandMethodologicalOptionstoInventoryEmissionsfromDirectHuman-InducedDegradationofForestsandDevegetationofOtherVegetationTypesIntergovernmentalPanelonClimateChange,Geneva,Switzerland.IPCC.2006.GoodPracticeGuidanceforNationalGreenhouseGasInventories.Chapter4:Agriculture,Forestry,AndOtherLandUses(AFOLU).IntergovernmentalPanelOnClimateChange,Geneva,Switzerland.ISO.2006.ISO14064-2:2006-Greenhousegases—Part2:Specificationwithguidanceattheprojectlevelforquantification,monitoringandreportingofgreenhousegasemissionreductionsorremovalenhancements.ISO,Geneva,Switzerland.Krejcie,R.V.andMorgan,D.W.1970.Determiningsamplesizeforresearchactivities.Educationalandpsychologicalmeasurement30:607-610.Lambin,E.F.1997.Modellingandmonitoringland-coverchangeprocessesintropicalregions.ProgressinPhysicalGeography21:375-393.LeMer,J.andP.Roger.2001.Production,oxidation,emissionandconsumptionofmethanebysoils:Areview.Eur.J.SoilBiol.37:25-50.MatherAS,NeedleCL(1998)Theforesttransition:atheoreticalbasis.Area,30,117–124.MeyfroidtP,LambinEF(2008)ForesttransitioninVietnamanditsenvironmentalimpacts.GlobalChangeBiology,14(6),1319-1336Miles,L.,andV.Kapos.2008.Reducinggreenhousegasemissionsfromdeforestationandforestdegradation:Globalland-useimplications.Science320:1454-1455.Ormerod,DW,1973.Asimplebolemodel.ForestryChronicle.49:136-138Pontius,R.G.2002.Statisticalmethodstopartitioneffectsofquantityandlocationduringcomparisonofcategoricalmapsatmultipleresolutions.PhotogrammetricEngineeringandRemoteSensing68:1041-1049.Sathaye,J.A.,andK.Andrasko.2007.Landusechangeandforestryclimateprojectregionalbaselines:areview.MitigationandAdaptationStrategiesinGlobalChange12:971–1000.Schlamadinger,B.,L.Ciccarese,M.Dutschke,P.M.Fearnside,S.Brown,andD.Murdiyarso.2005.Shouldweincludeavoidanceofdeforestationintheinternationalresponsetoclimatechange?,InD.MurdiyarsoandH.Herawati,eds.Carbonforestry:whowillbenefit?ProceedingsoftheWorkshoponCarbonSequestrationandSustainableLivelihoods,Bogor,Indonesia.Thompson,S.K.2000.Sampling.JohnWileyandSons,Hoboken,NJ.TopN,MizoueN,ItoS,KaiS.2004.SpatialanalysisofwoodfuelsupplyanddemandinKampongThomProvince,Cambodia.ForestEcologyandManagement.194:369-378.VanWagner,C.E.1968.ThelineintersectMethodinforestFuelSampling.ForestScience14:20-26.VM0006,Version2.2SectoralScope14Page148Verburg,P.H.,K.P.Overmars,andN.Witte.2004.Accessibilityandland-usepatternsattheforestfringeinthenortheasternpartofthePhilippines.TheGeographicalJournal170:238–255.Warren,W.G.andOlsen,P.F.(1964)Alinetransecttechniqueforassessingloggingwaste,ForestScience10:267-276.Winjum,J.K.,Brown,S.,Schlamadinger,B.1998.Forestharvestsandwoodproducts:sourcesandsinksofatmosphericcarbondioxide.ForestScience44:272-284UN[UnitedNations].2008.DesigningHouseholdSurveySamples:PracticalGuidelines.DepartmentofEconomicsandSocialAffairs,StatisticsDivision.ST/ESA/STAT/SER.F/98.UnitedNations.NewYork.VM0006,Version2.2SectoralScope14Page149APPENDIX3:DOCUMENTHISTORYVersionDateCommentv1.03Dec2010Initialversionreleasedv2.021Oct2013•Revisionsweremadetoaccommodateawiderrangeofdriversofdeforestationanddegradationaswellasawiderrangeofprojectactivities.•SimplificationsweremadeintheprocedurestodeterminehistoricalLULCtransitionratesandtheareaofthereferenceregion.•Quantificationofcarboninabovegroundnon-treepoolsandsoilcarbonpoolshavebeenincorporated.•Thedecayofcarboninbelowgroundbiomassandsoilcarbonpoolshavebeenquantifiedsuchthatimmediatereleaseofcarbonisnotassumed.v2.124Jan2014•Aproceduretodeterminealeakagecancellationratefortheconversionofforestlandtoinfrastructurehasbeenincorporated.•RevisionsweremadetoalignallmarketleakageprocedureswiththediscountfactorapproachsetoutinAFOLURequirementsv3.4.v2.217Mar2017•Incorporated10December2014erratawhichremovedunnecessaryapplicabilityconditionsrelatedtodatarequirementsfordeterminingthebaselinescenario(Section4.1.1)•ClarifiedthatGWPvaluesshallbederivedfromsourcesspecifiedbytheVCSrules(Sections8.2.4,8.2.5.5,8.3.4.2.2,9.1)

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱