VM0004-避免泥炭沼泽计划土地使用转换保护项目法学VIP专享VIP免费

Copyright © Infinite Earth, Ltd. 2010
Approved VCS Methodology VM0004
Version 1.0
Methodology for Conservation Projects that Avoid Planned Land Use Conversion in Peat Swamp
Forests
Sectoral Scope 14
Table of Contents
1. Sources ............................................................................................................................................... 3
2. Summary Description of the Methodology ....................................................................................... 3
3. Applicability Conditions .................................................................................................................... 5
4. Project Boundary ............................................................................................................................... 6
5. Stratification ...................................................................................................................................... 8
6. Procedure for Determining the Baseline Scenario ........................................................................... 11
7. Procedure for Demonstrating Additionality..................................................................................... 11
8. Baseline Emissions .......................................................................................................................... 11
9. Ex Ante Actual Net Avoided GHG Emissions ................................................................................. 39
10. Leakage ............................................................................................................................................ 40
11. Ex Ante Net Anthropogenic GHG Emissions Avoided ................................................................... 51
12. Uncertainties and Conservative Approach....................................................................................... 52
13. Data Needed for Ex Ante Estimations ............................................................................................. 56
14. Monitoring ....................................................................................................................................... 67
15. Monitoring of Project Implementation ............................................................................................ 67
16. Sampling Design and Stratification ................................................................................................. 68
17. Calculation of Ex Post Net Baseline GHG Emissions ..................................................................... 69
18. Data to be Collected and Archived for the Estimation of Net Baseline GHG Emissions ............... 70
19. Calculation of Ex Post Net Actual GHG Emissions Avoided ......................................................... 70
20. Data to be Collected and Archived for Ex Post Net Actual GHG Emissions Avoided ................... 87
21. Calculation of Leakage .................................................................................................................... 94
22. Data to be Collected and Archived for Leakage .............................................................................. 94
23. Ex Post Net Anthropogenic GHG Emissions Avoided .................................................................... 96
24. Accounting for Uncertainties ........................................................................................................... 96
25. Other Information ............................................................................................................................ 98
VM0004, Version 1.0
Sectoral Scope 14
2
26. List of Variables Used in Equations .............................................................................................. 102
27. List of Acronyms Used in the Methodology.................................................................................. 102
28. References ...................................................................................................................................... 103
VM0004, Version 1.0
Sectoral Scope 14
3
1. Sources
This methodology is based on elements from the following methodologies:
AR-AM0004 (version 1.0)
NMBL_NKCAP_A
AR-AM0007 (version 1.0)
AR-AM0005 (version 1.0)
AD Partners REDD Methodology Module (version 1.0, June 2010)
This methodology refers to the latest approved versions of the following tools:
VCS ―Tool for the Demonstration and Assessment of Additionality in VCS Agriculture, Forestry and
Other Land Use (AFOLU) Project Activities‖
CDM Tool ―Calculation of the number of sample plots for measurements within A/R CDM project
activities.
VCS Tool for Non-Permanence Risk Analysis and Buffer Determination
No approved methodology was available at the time this methodology was created because these
activities were not eligible under the CDM. Although avoided land use conversion was eligible as a
REDD activity under the VCS, peat was not currently an eligible carbon pool under the VCS at the time
of this methodology validation. The CDM A/R methodology template as used here was the only
methodology template available at the time that this methodology was first developed. As such, the
methods outlined in this methodology are comprehensive.
The leakage approach outlined in this methodology was adapted from the most current versions of the
leakage modules for ―estimation of emissions from activity shifting for avoided planned deforestation
and ―estimation of emissions from market effects‖ as summarized in the Avoided Deforestation Partners
REDD Methodological Modules (v. 1.0, June 2010).
2. Summary Description of the Methodology
This methodology outlines transparent and conservative methods to estimate the avoided net greenhouse
gas emissions resulting from project activities implemented to stop planned land use conversion in
tropical peat forest. It allows for the estimation of changes in carbon stocks in selected aboveground
carbon pools and also accounts for peat emissions. It conservatively draws the baseline scenario from
amongst the plausible scenarios, and presents methods to transparently estimate the GHG emissions
expected from the most likely land use(s) prior to the start of the project activity.
This methodology adopts a baseline approach which accounts for ―changes in carbon stocks in the pools
within the project boundary from the most likely land use at the time the project starts‖, taking into
account national, sectoral, and local policies influencing the land use prior to the start of the project
activity; the scope of project alternatives relative to the baseline; and barriers to implement the avoided
deforestation project activity.
This methodology anticipates several possible baseline scenarios and uses the latest version of the VCS
―Tool for the Demonstration and Assessment of Additionality in VCS Agriculture, Forestry and Other
Land Use (AFOLU) Project Activities
1
‖.
1
Available at http://www.v-c-s.org/docs/VCS-Tool-VT0001_Tool-for-Demonstration-and-Assessment-of-
Additionality-in-AFOLU-Project-Acitivities.pdf
Copyright©InfiniteEarth,Ltd.2010ApprovedVCSMethodologyVM0004Version1.0“MethodologyforConservationProjectsthatAvoidPlannedLandUseConversioninPeatSwampForests”SectoralScope14TableofContents1.Sources...............................................................................................................................................32.SummaryDescriptionoftheMethodology.......................................................................................33.ApplicabilityConditions....................................................................................................................54.ProjectBoundary...............................................................................................................................65.Stratification......................................................................................................................................86.ProcedureforDeterminingtheBaselineScenario...........................................................................117.ProcedureforDemonstratingAdditionality.....................................................................................118.BaselineEmissions..........................................................................................................................119.ExAnteActualNetAvoidedGHGEmissions.................................................................................3910.Leakage............................................................................................................................................4011.ExAnteNetAnthropogenicGHGEmissionsAvoided...................................................................5112.UncertaintiesandConservativeApproach.......................................................................................5213.DataNeededforExAnteEstimations.............................................................................................5614.Monitoring.......................................................................................................................................6715.MonitoringofProjectImplementation............................................................................................6716.SamplingDesignandStratification.................................................................................................6817.CalculationofExPostNetBaselineGHGEmissions.....................................................................6918.DatatobeCollectedandArchivedfortheEstimationofNetBaselineGHGEmissions...............7019.CalculationofExPostNetActualGHGEmissionsAvoided.........................................................7020.DatatobeCollectedandArchivedforExPostNetActualGHGEmissionsAvoided...................8721.CalculationofLeakage....................................................................................................................9422.DatatobeCollectedandArchivedforLeakage..............................................................................9423.ExPostNetAnthropogenicGHGEmissionsAvoided....................................................................9624.AccountingforUncertainties...........................................................................................................9625.OtherInformation............................................................................................................................98VM0004,Version1.0SectoralScope14226.ListofVariablesUsedinEquations..............................................................................................10227.ListofAcronymsUsedintheMethodology..................................................................................10228.References......................................................................................................................................103VM0004,Version1.0SectoralScope1431.SourcesThismethodologyisbasedonelementsfromthefollowingmethodologies:AR-AM0004(version1.0)NMBL_NKCAP_AAR-AM0007(version1.0)AR-AM0005(version1.0)ADPartnersREDDMethodologyModule(version1.0,June2010)Thismethodologyreferstothelatestapprovedversionsofthefollowingtools:VCS―ToolfortheDemonstrationandAssessmentofAdditionalityinVCSAgriculture,ForestryandOtherLandUse(AFOLU)ProjectActivities‖CDMTool―CalculationofthenumberofsampleplotsformeasurementswithinA/RCDMprojectactivities.‖VCSToolforNon-PermanenceRiskAnalysisandBufferDeterminationNoapprovedmethodologywasavailableatthetimethismethodologywascreatedbecausetheseactivitieswerenoteligibleundertheCDM.AlthoughavoidedlanduseconversionwaseligibleasaREDDactivityundertheVCS,peatwasnotcurrentlyaneligiblecarbonpoolundertheVCSatthetimeofthismethodologyvalidation.TheCDMA/Rmethodologytemplateasusedherewastheonlymethodologytemplateavailableatthetimethatthismethodologywasfirstdeveloped.Assuch,themethodsoutlinedinthismethodologyarecomprehensive.Theleakageapproachoutlinedinthismethodologywasadaptedfromthemostcurrentversionsoftheleakagemodulesfor―estimationofemissionsfromactivityshiftingforavoidedplanneddeforestation‖and―estimationofemissionsfrommarketeffects‖assummarizedintheAvoidedDeforestationPartnersREDDMethodologicalModules(v.1.0,June2010).2.SummaryDescriptionoftheMethodologyThismethodologyoutlinestransparentandconservativemethodstoestimatetheavoidednetgreenhousegasemissionsresultingfromprojectactivitiesimplementedtostopplannedlanduseconversionintropicalpeatforest.Itallowsfortheestimationofchangesincarbonstocksinselectedabovegroundcarbonpoolsandalsoaccountsforpeatemissions.Itconservativelydrawsthebaselinescenariofromamongsttheplausiblescenarios,andpresentsmethodstotransparentlyestimatetheGHGemissionsexpectedfromthemostlikelylanduse(s)priortothestartoftheprojectactivity.Thismethodologyadoptsabaselineapproachwhichaccountsfor―changesincarbonstocksinthepoolswithintheprojectboundaryfromthemostlikelylanduseatthetimetheprojectstarts‖,takingintoaccountnational,sectoral,andlocalpoliciesinfluencingthelandusepriortothestartoftheprojectactivity;thescopeofprojectalternativesrelativetothebaseline;andbarrierstoimplementtheavoideddeforestationprojectactivity.ThismethodologyanticipatesseveralpossiblebaselinescenariosandusesthelatestversionoftheVCS―ToolfortheDemonstrationandAssessmentofAdditionalityinVCSAgriculture,ForestryandOtherLandUse(AFOLU)ProjectActivities1‖.1Availableathttp://www.v-c-s.org/docs/VCS-Tool-VT0001_Tool-for-Demonstration-and-Assessment-of-Additionality-in-AFOLU-Project-Acitivities.pdfVM0004,Version1.0SectoralScope144Baselinemethodologysteps1.Theprojectboundaryisdefinedforalleligiblediscreteparcelsoflandtobeprotectedfromlandusechangethatareunderthecontroloftheprojectparticipantsatthestartingdateoftheprojectactivity.2.Stratificationoftheprojectareaisbasedonlocalsiteclassificationmaps/tables,themostupdatedland-use/land-covermaps,satelliteimages,vegetationmaps,landformmapsaswellassupplementarysurveys,andthebaselineland-use/land-coverisdeterminedseparatelyforeachstratum.3.Thebaselinescenarioisdeterminedbyapplyingthe―ToolfortheDemonstrationandAssessmentofAdditionalityinVCSAgriculture,ForestryandOtherLandUse(AFOLU)ProjectActivities‖.4.TheexantecalculationofbaselinenetGHGemissionsisperformedbystrata.ThebaselinecarbonstockchangeinabovegroundbiomassisestimatedbasedonmethodsdevelopedinIPCC2003GoodPracticeGuidance(GPG)forLandUse,Land-UseChangeandForestry(LULUCF)aswellasonmethodsthatutilizehighresolutionaerialdigitalimagery.ThebaselineGHGemissionsfrompeatareestimatedbasedonregionaldataonCO2emissionsandemissionfactors.5.Additionalityisdemonstratedusingthelatestversionofthe―ToolfortheDemonstrationandAssessmentofAdditionalityinVCSAgriculture,ForestryandOtherLandUse(AFOLU)ProjectActivities‖approvedbytheVCSBoard.6.TheexanteactualnetGHGemissionsavoidedareestimatedforeachstratumintheprojectactivity.7.Leakageemissions,includingcarbonstockdecreasesandpeatemissionsoutsidetheprojectboundary,areaccountedforactivitydisplacementandmarketeffects.ThemethodologyalsooutlinesmethodstomonitorbothcarbonstockchangesinthelivingbiomassandpeatemissionsofprojectactivitiesandincreasesintheGHGemissionsthatresultfromtheimplementationoftheprojectactivity.Itoutlinesmethodsandproceduresthatcomplementtheprovisionsofthebaselinemethodology.Asperthismethodology,thebaselinescenarioisidentifiedandquantifiedexanteatthebeginningoftheprojectactivityandshallbere-assessed/revisedevery10yearsinaccordancewithVCSguidelinestotakeintoaccountthelatestscientificandtechnicalunderstanding.Themethodologyoutlinesmethodsforassessingandaccountingfordisplacementofeconomicactivitiesattributabletotheprojectactivityandforemissionsthatoccurduetomarketeffects.Themethodologyrecommendstheuseofremotelysenseddatatomonitortheprojectcarbonstocksaswellasdisturbanceswithintheprojectboundary.Themethodologyspecifiesannualmonitoringandsupportstherecordingofdisturbances,ifany.Itrecommendstheadoptionofstandardoperatingproceduresformonitoring,datacollectionandarchivalinordertomaintaintheintegrityofthedatacollectedinthemonitoringprocess.Monitoringmethodologysteps1.Theprojectimplementationismonitored,includingtheprojectboundary,theareapreventedfromlandusechangeandanyactivitiesthatreducecarbonstocksorresultinpeatemissionsintheprojectareaoverthecreditingperiod.Iftheprojectboundaryisnotafunctionallydiscretehydrologicalunit,abufferzonearoundtheprojectboundaryisalsomonitoredtoensureagainstdrainageactivitiesoccurringoutsidetheprojectboundarythatcouldpotentiallyimpactpeatemissionsintheprojectarea,perApplicabilityConditionKofthismethodology.2.Stratificationoftheprojectareaismonitoredperiodicallybecausetwodifferentstratamaybecomesimilarenoughintermsofcarbontojustifytheirmerging.Theex-poststratificationconsidersmonitoringoftheprojectstratatoverifytheapplicabilityoftheex-antestratification,andvariablesVM0004,Version1.0SectoralScope145thatinfluencethestrata.Theexpoststratificationproceduresfacilitatecost-effective,consistentandaccuratemonitoringofcarbonstockchangesoftheprojectduringthecreditingperiod.3.BaselinenetGHGemissionsarenotmonitoredinthismethodology.Themethodologyprescribesvalidityofthebaselineidentifiedexanteatthestartoftheprojectactivityforthecreditingperiod,therebyavoidingtheneedformonitoringofthebaselineoverthecreditingperiod,andachievessavingsinthecostsassociatedwithbaselinemonitoring.However,thebaselineisre-assessed/revisedevery10years.4.Thecalculationofex-postactualnetGHGemissionsavoidedisbasedondataobtainedfromsampleplots,regionalliteraturevaluesandmethodsdevelopedinIPCCGPG-LULUCFtoestimatecarbonstockchangesinthecarbonpoolsandpeatemissions.5.LeakageduetoactivitydisplacementandmarketeffectsismonitoredandaccountedinordertocalculatethenetGHGemissionsavoided.6.TheQA/QCguidelinesproposedaspartofthemonitoringplanverifytheaccuracyandconsistencyoffieldmeasurementsandensuretheintegrityofdatacollection,managementofprojectdatabasesandthedatabasearchivalduringthecreditingperiod.Whenaprojectisundergoingvalidationandverification,non-permanenceriskanalysisshallbeconductedbyboththeprojectdeveloperandtheverifieratthetimeofverificationinaccordancewiththeVCSToolforAFOLUNon-PermanenceRiskAnalysisandBufferDetermination.3.ApplicabilityConditionsProjectactivitiesmustsatisfythefollowingconditionsinorderforthemethodologytobeapplicable:A.Themethodologywasdevelopedfor(andisapplicableto)preventinglandusechangeonundrainedtropicalpeatswampforestsinsoutheastAsiaonly;itisnotapplicabletopeatlandsinotherregionsorclimaticzones(borealpeatbogs,etc.)ortopreviouslydrainedpeatlands.Forestshallbedefinedaccordingtothehostcountry‘sforestdefinitionasagreeduponunderUNFCCCparticipationthatincludesminimumthresholdsforarea,heightandcrowncover.Peatshallbedefinedasorganicsoilswithatleast65%organicmatterandaminimumthicknessof50cm2.B.TheapplicationoftheprocedurefordeterminingthebaselinescenarioinSection6leadstotheconclusionthatbaselineapproach(c)isthemostappropriatechoicefordeterminationofthebaselinescenario(seeKyotoProtocolDecision5/CMP.1paragraph22).C.Themethodologyisapplicableonlyforavoidingcompleteconversionofpeatswampforeststoanotherknownlanduse;itisnotapplicableforavoidingforestdegradation.Itisassumedthatlandpreparationduringtheconversionofpeatforestwouldhaveremovedallexistingabovegroundbiomassstocksthroughloggingand/orburning.D.Themethodologyisapplicableonlyforpreventingplannedlanduseconversioninknown,discreteparcel(s)ofpeatland,notfordeforestationtrendsthatfollowa―frontier‖approach.Thelanduseconversionavoidedmustbeinareasofficiallyandlegallydesignatedforandunderdirectthreatofsuchconversion,andtheareaandspecificgeographiclocationofallplannedlanduseconversionsinthebaselinemustbeknownandcomefromwrittendocumentationincludinglanduseconversionpermits,governmentrecords,concessionmaps,etc.Planneddeforestationmustbeprojectedtooccurwithintenyearsoftheprojectstartdate.E.Themethodologyisapplicableonlyforavoidinglandusechangethatwouldbecausedbycorporateorgovernmentalentities(plantationcompanies,nationalorprovincialforestrydepartments,etc.)andnotbycommunitygroups,community-basedorganizations,individualsorhouseholds.2Rieley,J.O.andS.EPage.2005.WiseUseofTropicalPeatland:FocusonSoutheastAsia.Alterra,Wageningen,TheNetherlands.237p.ISBN90327-0347-1.VM0004,Version1.0SectoralScope146F.Peatdrainageemissionsinthebaselinescenarioshallbecalculatedusinganetpeatdrainagedepthofnomorethanonemeter.G.Carbonstocksindeadwoodandlittercanbeexpectedtofurtherdecrease(orincreaseless)intheabsenceoftheprojectactivityduringthetimeframethatcoincideswiththecreditingperiodoftheprojectactivity.H.Theparcel(s)ofpeatswampforesttobeconvertedtoanotherlandusemustnotcontainhumansettlements(towns,villages,etc.)orhumanactivitiesthatleaddirectlytodeforestation,suchasclearingforagricultureorgrazingland.Activitiesthatinvolvetheutilizationofnaturalresourceswithintheprojectboundarythatdonotleadtodeforestationarepermitted(e.g.,selectivelogging,collectionofNTFPs,fuelwoodcollection,etc.)asthisdegradationisaccountedforinthemonitoringmethodology.I.Thebiomassofvegetationwithintheprojectboundaryatthestartoftheprojectisatsteady-state,orisincreasingduetorecoveryfrompastdisturbance,andsomonitoringprojectGHGremovalsbyvegetationcanbeconservativelyneglectedifdesired.J.Thevolumeoftreesextractedastimberperhectarepriortolandconversioninthebaselineisconservativelyassumedtobeequivalenttothetotalvolume(orbiomass)ofalltreesofcommercialvalueabovetheminimumsizeclasssoldinthelocaltimbermarket.K.Theprojectboundaryshallbehydrologicallyintactsuchthattheprojectareaisnotaffectedbydrainageactivitiesthatareoccurringoutsidetheprojectareainadefinedbufferzone(ifapplicable)atthestartoftheproject(asdetectedfromsatelliteorotherremotesensingimagery).Boththeprojectboundaryandthebufferzone(ifapplicable)shallbemonitoredfornewdrainageactivitiesoverthelifeoftheproject.Thewidthofthebufferzonetobemonitoredshallbesettoadefaultvalueof3kmfromtheedgeoftheprojectboundaryorthedistancetotheedgeofthepeatdome,whicheverissmaller.Themonitoringmethodologyaccountsfortheimpactsoffuturedrainageactivitiesthatoccurwithintheprojectboundary,butiffuturemonitoringdetectssignificantnewdrainagewithinthebufferzone(suchasthatassociatedwithnewcanalsdesignedfortransportationbyboatorfordevelopingplantations),thenthismethodologyisnolongerapplicableinitscurrentformanditshallberevisedtotakeintoconsiderationtheextentoftheoutsidedrainageactivity’simpactonGHGemissionsoccurringwithintheprojectboundary.Thisdrainageimpactshallbedeterminedusingacombinationofhydrologicalmodellingandfieldmeasurementsandshallbedoneincollaborationwithatleasttwopeatexperts.Ifnewscientificfindingssuggestinfluencesforwhichtheprescribedbufferzonewouldnotoffereffectiveseparationbetweentheprojectboundaryandexternaldrainageactivities,themethodologyshouldberevisedtoreflectarevisedbufferwidth.L.ThetotallandareaallocatedtothedeforestationagentforplanneddeforestationmustbeshownnottohaveincreasedsolelyforthepurposeofelicitingREDDcredits.4.ProjectBoundaryTableA:SelectedcarbonpoolsCarbonpoolsSelected(answerwithYesorNo)Justification/ExplanationofchoiceAbovegroundtreebiomassYesMajorcarbonpoolsubjecttotheprojectactivityAbovegroundnon-treebiomassYesMajorcarbonpoolsubjecttotheprojectactivityBelowgroundbiomassNoItisassumedthatbelowgroundbiomassisincludedinthepeatcomponent.Additionally,roottoshootratiosforpeatswampforestsareVM0004,Version1.0SectoralScope147highlyuncertain;rootbiomasscanbeestimatedusingamodelbasedonabovegroundbiomassestimates,butthemodelisintendedforuplandforestsonlyandmaynotapplytopeatswampforests3DeadwoodNoConservativeapproachunderapplicabilityconditionLitterNoConservativeapproachunderapplicabilitycondition4.PeatYesMajorcarbonpoolsubjecttotheprojectactivitySoilorganiccarbonNoThesoilcomponentisincludedinthepeatcomponent.WoodProductsYesRemovaloftimberisassociatedwithdeforestationinthebaseline,andsignificantquantitiesofcarboncanbestoredinlong-termwoodproductsratherthanbeingemittedintotheatmosphere.Thusthequantityoflivebiomassgoingintolong-termtimberproductsinthebaselinescenarioisincluded.a)Projectparticipantsshalldefinethe―projectboundary‖atthebeginningofaproposedprojectactivityandshallprovidethegeographicalcoordinatesoflandstobeincluded,soastoallowclearidentificationforthepurposeofverification.Theremotelysenseddata5withadequatespatialresolution,officiallycertifiedtopographicmaps,landadministrationandtenurerecords,and/orotherofficialdocumentationthatfacilitatesthecleardelineationoftheprojectboundarycanbeused.Thedatashallbegeo-referenced,andprovidedindigitalKMLshapefiledataformatinaccordancewithVCSguidelines.TheprojectboundaryincludesemissionssourcesandgasesaslistedinTableB.b)Theoriginalprojectboundaryisfixedovertheprojectlife.Evenifunforeseencircumstancesarisewithintheprojectboundarysuchasdeforestation,degradation,fire,orotherlandusechange,theprojectboundarycannotbeshifted.Theprojectboundaryaswellasareasofchangemustbemonitoredaspartoftheproject‘smonitoringactivitiesandGHGemissionsassociatedwiththesechangesmustbecalculated.Anyemissionsthatoccurwithintheprojectboundaryinagivenyearafterthestartoftheprojectmustbesubtractedfromthecarbonbenefitsestimatedforthatyear.TableB:Gaseousemissionsfromsourcesotherthanthoseresultingfromchangesincarbonpools6SourcesGasIncluded/excludedJustification/ExplanationofchoiceBurningofabovegroundbiomassCO2ExcludedHowever,carbonstockdecreasesduetoburningareaccountedasacarbonstockchangeCH4IncludedNon-CO2gasemittedfrombiomassburningN2OIncludedNon-CO2gasemittedfrombiomassburning3Cairns,M.A.,S.Brown,E.H.Helmer,G.A.Baumgardner.1997.Rootbiomassallocationsintheworld‘suplandforests.Oecologia111:1-11.4Accordingtofieldmeasurementsconductedbytheprojectproponentin57plotsusingstandardoperatingproceduresasoutlinedinAR-AM0007,thelitterpoolrepresentsapproximately0.01%ofthetotalabovegroundcarbonstocksinpeatswampforests(0.009±0.0017tCha-1);thereforeadecreaseinthiscarbonpooldoesnotresultinasignificantGHGemission.Sulistiyanto(2004)alsoshowedthatlittermakesup2.4%oftheaboveandbelowgroundtreebiomassinbothmixedswampandlowpolepeatforestsinCentralKalimantan.IftheREDDprojectwereanA/Rproject,thelitterpoolwouldbedeemedaninsignificantemission(<5%oftotalemissions)usingtheCDMapprovedtooltitled―ToolfortestingsignificanceofGHGemissionsinA/RCDMprojectactivities‖.5Remotelysenseddataincludesdataacquiredfromearthobservationsatellitesoraerialphotographs.6FertilizerandfossilfuelusebyvehicleshavebeenomittedfromTableBasperrecommendationsofEB42and44.VM0004,Version1.0SectoralScope148PeatoxidationfromdrainageCO2IncludedMaingasofthissourceCH4ExcludedDrainagehasbeenshowntohaveasmalleffectonCH4emissionbudgets7;thehighestproportionalCH4fluxformsonly<0.2%oftheCO2emissionsindrainedpeatsoils.8,9N2OExcludedPotentialemissionisnegligiblysmall10,11BurningofpeatCO2IncludedEmissionsareaccountedusinganemissionfactorCH4IncludedNon-CO2gasemittedfrompeatburning;emissionsareaccountedusinganemissionfactorN2OExcludedN2Oisnottypicallyameasuredtracegasemissionfrompeatburning12;potentialemissiondifferentialbetweennaturalandburnedpeatisnegligible13c)Theprojectboundarycanbeestablishedinsuchawaythatitconstitutesafunctionallydiscretehydrologicalunit,asdeterminedinconsultationwithexpertsinpeathydrology.Iftheprojectboundaryrepresentssuchadiscreteunit,abufferzonearoundtheprojectboundarydoesnotneedtobeestablishedandmonitoredtoaccountfortheinfluenceofoutsidedrainageactivities.Whereaprojectboundarydoesnotrepresentadiscretehydrologicalboundary,theprojectdevelopershallestablishandmonitorabufferzonearoundtheprojectboundaryappropriatefortheexpectedrisks,determinedbythepotentialareaofinfluencefromexternaldrainageactivities.Thewidthofthisbufferareaaroundtheprojectboundaryshallbedeterminedastheedgeofthepeatdomeor3kmfromtheprojectboundary,whicheverissmaller.Ifabufferzonelessthan3kmaroundtheprojectboundaryistobeapplied,thisvalueshallbedefendedinthePDDandmethodsformonitoringimpactsofdrainageactivitiesinthereducedbufferzoneshallbedesignedinconsultationswithexpertsinpeathydrology.5.StratificationInthismethodology,stratificationisachievedinfoursteps:Step1stratifiestheprojectareaaccordingtopre-existingnaturalconditionsandbaselineprojectionsintomBLstrata;7Couwenberg,J.,R.DommainandH.Joosten.2009.GreenhousegasfluxesfromtropicalpeatlandsinSoutheastAsia.GlobalChangeBiology,inpress.8Jauhiainen,J.,S.Limin,H.Silvennoinen,H.Vasander.2008.Carbondioxideandmethanefluxesindrainedtropicalpeatbeforeandafterhydrologicalrestoration.Ecology89(12):3503-3514.9CH4fluxeswerecalculatedasinsignificantfollowingtheCDM―ToolfortestingsignificanceofGHGemissionsinA/RCDMprojectactivities‖10Furukawa,Y.,K.Inubushi,M.Ali,A.M.Itang,H.Tsuruta.2005.Effectofchanginggroundwaterlevelscausedbyland-usechangesongreenhousegasfluxesfromtropicalpeatlands.NutrientCyclinginAgroecosystems71:81-91.11Hadi,A.,K.Inubushi,Y.Furukawa,E.Purnomo,M.Rasmadi,H.Tsuruta.2005.GreenhousegasemissionsfromtropicalpeatlandsofKalimantan,Indonesia.NutrientCyclinginAgroecosystems71:73-80.12Christian,T.J.,B.Kleiss,R.J.Yokelson,R.Holzinger,P.J.Crutzen,W.M.Hao,B.H.Saharjo,D.E.Ward.2003.Comprehensivelaboratorymeasurementsofbiomass-burningemissions:1.EmissionsfromIndonesian,Africanandotherfuels.JournalofGeophysicalResearch108,No.D23,4719.13Takakai,F.,T.Morishita,Y.Hashidoko,U.Darung,K.Kuramochi,S.Dohong,S.Limin,R.Hatano.2006.Effectsofagriculturalland-usechangeandforestfireonN2Oemissionfromtropicalpeatlands,CentralKalimantan,Indonesia.SoilScienceandPlantNutrition52:662-674.VM0004,Version1.0SectoralScope149Step2stratifiestheprojectareaaccordingtoprojectedprojectactivitiesintomPSstrata;Step3achievesthefinalexantestratificationbycombiningtheresultsofstep2withongoingtreatmentandstratumboundarymonitoring;andStep4stratifiestheareaofleakageduetoactivitydisplacementintomLKstrataStep1:Stratificationaccordingtopre-existingconditionsandbaselineprojections:a)Definethefactorsinfluencingcarbonstockchangesincarbonpools.b)Collectlocalsiteclassificationmaps/tables,themostupdatedlanduse/covermaps,landplanningmaps,aerialimagery,satelliteimages,soilmaps,vegetationmaps,landformmaps,peatdepthmaps,andliteraturereviewsofsiteinformationconcerningkeyfactorsidentifiedabove.c)Doapreliminarystratificationbasedonthecollectedinformation.d)Carryoutsupplementarysamplingforsitespecificationsforeachstratum,includingasappropriate:ExistingabovegroundcarbonstocksorvegetationtypesPresentandpastlandtenureandlanduse;Baselinelanduseintheabsenceofprojectactivity:Peatdepthdifferences:Stratificationoftheprojectareabypeatdepthisimportantwhendepthinpartsoralloftheprojectareaislessthanthedepththatisprojectedtobelostinthebaselinescenarioovertime.Forexample,peatsubsidenceresultingfromdrainagecanoccurinthebaselinescenarioonlyuntiltheavailablesupplyofpeathasbeenoxidized,afterwhichbaselineemissionsfromdrainagewouldbezero.CurrentliteratureonpeatsubsidencesuggeststhatdrainedtropicalpeatinSEAsiasubsidesataninitialrateof4.5cmyr-1,translatingintoalossofapproximately1.35movera30-yearprojectlife14,15.Ifpeatdepthacrosstheprojectareaisgreaterthanthedepthofpeatlostviasubsidenceandburninginthebaselinescenarioovertheprojectlife,thenitisassumedthatthereisanadequatesupplyofcarboninpeatintheprojectareatosustaintheassumedbaselinescenarioandstratificationbypeatdepthisunnecessary.EvidenceforexceedingthispeatdepththresholdwithintheprojectboundaryshallbepresentedinthePDD.Ifpeatdepthinpartsoralloftheprojectareaisshallowerthanthedepththatwouldbelosttodrainageandburninginthebaselinescenarioovertheprojectlife,apeatdepthmapshallbecreatedfromsamplepointsacrosstheprojectarea.ThesamplingdesignandmethodsfordevelopingthepeatdepthmapshallbeoutlinedinthePDD.e)Dothefinalstratificationofthebaselinescenariobasedonsupplementaryinformationcollectedfromd)above.Distinctstratashoulddiffersignificantlyintermsoftheirbaselinenetgreenhousegasemissions.f)Forhighlyvariablelandscapestheoptionexiststocarryoutasystematicunbiasedsamplingtodeterminethepercentageoftheprojectareaoccupiedbyeachstratum.Ateachplot,basedonthesitespecificationsfound,theplotshallbeassignedtooneofthestrataidentifiedinparagraphe.Samplingintensityinthisstepshallbethegreaterof100plots,or1plotper5hectaresofprojectarea.Theproportionsdefinedwillbeappliedacrosstheprojectareatodefinebaselinecondition.Subsequentsamplingfordeterminationofbaselinecarbonshalltakeplaceineachofthedefinedstrata.Step2:Stratificationaccordingtotheprojectactivity:a)Definetheprojectactivities14Wosten,J.H.M.,A.B.Ismail,A.L.M.vanWijk.1997.Peatsubsidenceanditspracticalimplications:acasestudyinMalaysia.Geoderma78:25-36.15TheWostenetal.(1997)studydidnotstatethedepthtowhichthepeatwasdrained,onlythatthepeatwasdrainedinthe1960sandthattotalpeatdepthintheregionvariesbetween1and10m.VM0004,Version1.0SectoralScope1410b)Distinctstratashoulddiffersignificantlyfromeachotherintermsoftheiractualnetgreenhousegasavoidedemissions.Step3:Finalexantestratification:a)Verifiablydelineatetheboundaryofeachstratumasdefinedinstep2usingGPS,analysisofgeo-referencedspatialdata,orotherappropriatetechniques.Checktheconsistencywiththeoverallprojectboundary.CoordinatesmaybeobtainedfromGPSfieldsurveysoranalysisofgeo-referencedspatialdata,includingremotelysensedimages,usingaGeographicalInformationSystem(GIS).b)Projectparticipantsshallbuildgeo-referencedspatialdatabasesinaGISplatformforeachparameterusedforstratificationoftheprojectareaunderthebaselineandtheprojectscenario.Thiswillfacilitateconsistencywiththeprojectboundary,preciseoverlayofbaselineandprojectscenariostrata,transparentmonitoringandexpoststratification.Step4:Leakagestratification:similartoStep1above,exceptareasanalyzedarethosetowhichactivitiesareexpectedtobedisplaced(exante)orhavebeendisplaced(expost)ratherthantheprojectboundary.a)Definethefactorsinfluencingcarbonstockchangesincarbonpools.b)Collectlocalsiteclassificationmaps/tables,themostupdatedlanduse/covermaps,landplanningmaps,aerialimagery,satelliteimages,soilmaps,vegetationmaps,landformmaps,peatdepthmaps,andliteraturereviewsofsiteinformationconcerningkeyfactorsidentifiedabove.c)Stratifybasedontheinformationcollectedin(b)above.Note:Intheequationsusedinthismethodology,theletteriisusedtorepresentastratumandthelettermforthetotalnumberofstrata.mBListhenumberofexantedefinedbaselinestrataasdeterminedwithstep1.mBLremainsfixedfortheentirecreditingperiod.mPSisthenumberofstrataintheprojectscenarioasdeterminedexantewithstep2.mLKisthenumberofstrataintheleakagescenarioasdeterminedwithstep4.Themethodologycanincludeoneormorecategoriesofproposedlanduseconversions,landcovertypesand/orpeatdepths,alldesignatedasdifferentstrata(i)inthebaselinescenario.Ifmorethanonelanduseconversionisanticipatedinthebaselinescenario(e.g.,partofthelandwithinthebaselinescenarioisexpectedtoundergoonetypeofconversionwhereasotherpartsofthelandareexpectedtoconverttoanothertype),theprojectparticipantsshallstratifythelandsunderthebaselineaccordingtothelikelylanduse/landcoverorcombinationsoflanduse/landcovertypesinthebaseline,asperSection5above.Wherebaselineactivitiesareexpectedtoaffectpeatreservestoadepththatexceedstheavailablepeatsupplyinsomeareasoftheprojectboundary,projectparticipantsshallalsoconsiderpeatdepthintheirstratificationscheme.Thesamplingframework,includingsamplesize,plotsize,plotshapeandplotlocationshouldbespecifiedinthePDD.Whenestimatingexistingcarbonstockswithinbaselinestrataforanavoidedemissionsproject,permanentsamplingplotsarenotnecessarybecausethesecarbonstocksdonotneedtobetrackedovertime.Therefore,temporarysamplingplotscanbeused.However,ifprojectproponentschoosetomonitorincreasesincarbonstocksinthevegetationoverthelifeoftheproject,permanentsamplingplotsmustbeinstalled.Thenumberofsampleplotsisestimatedbasedonaccuracyandcosts.Thenumber,sizeandlocationofsamplingplotsshallbedeterminedusingthemostcurrentversionoftheCDMTool―CalculationofthenumberofsampleplotsformeasurementswithinA/RCDMprojectVM0004,Version1.0SectoralScope1411activities.‖16Ifbaselinecarbonstocksaretobeestimatedremotelyusinghighresolutionaerialimagery,plotsshouldbeestablishedontheimageryusingthesamemethodsasforestablishingplotsontheground.Thenumber,sizeandlocationofsampleplotstobeestablishedandmeasuredcanbecalculatedasforgroundplotsaboveusingimagery-derivedinformationsuchastheareaofeachstratum(Ai),thetotalprojectarea(A),sampleplotsize(AP),standarddeviationforeachstratum(sti),desiredprecision(DLP)andaveragevalueoftheestimatedquantity(Q).6.ProcedureforDeterminingtheBaselineScenarioThemostcurrentversionoftheVCS―ToolfortheDemonstrationandAssessmentofAdditionalityinVCSAgriculture,ForestryandOtherLandUse(AFOLU)ProjectActivities‖,approvedbytheVCSBoardshouldbeusedtodeterminethemostplausiblebaselinescenario.AsofJuly2010,themostcurrentversionofthetoolcanbeaccessedontheVCSwebsiteathttp://www.v-c-s.org/docs/VCS-Tool-VT0001_Tool-for-Demonstration-and-Assessment-of-Additionality-in-AFOLU-Project-Acitivities.pdf.7.ProcedureforDemonstratingAdditionalityThemostcurrentversionoftheVCS―ToolfortheDemonstrationandAssessmentofAdditionalityinVCSAgriculture,ForestryandOtherLandUse(AFOLU)ProjectActivities‖,approvedbytheVCSBoardasshowninSection6above,shouldbeusedtodetermineadditionality.AsofAugust2010,themostcurrentversionofthetoolcanbeaccessedontheVCSwebsiteathttp://www.v-c-s.org/docs/VCS-Tool-VT0001_Tool-for-Demonstration-and-Assessment-of-Additionality-in-AFOLU-Project-Acitivities.pdf.8.BaselineEmissionsThismethodologyoutlinesmethodstoestimatetheGHGemissionsfrompeatandthechangesincarbonstocksinabovegroundbiomassofpeatswampforeststhatwouldoccurintheabsenceofprojectactivities.BaselinenetGHGemissionsarerepresentedasfollows:11,ttmiitBBSLBLCC(1)and:itpBitAGBitBECC,,,,,(2)where:BSLC=sumofpeatemissionsandcarbonstockchangesinabovegroundbiomassunderthebaselinescenario;tCO2-eitBC,=sumofpeatemissionsandcarbonstockchangesinabovegroundbiomassunderthebaselinescenarioforstratumiattimet;tCO2-e.16http://cdm.unfccc.int/methodologies/ARmethodologies/tools/ar-am-tool-03-v2.pdfVM0004,Version1.0SectoralScope1412itAGBC,,=sumofcarbonstockchangesinabovegroundbiomassunderthebaselinescenarioforstratumiattimet;tCO2-e.itpBE,,=PeatGHGemissionsunderthebaselinescenarioforstratumi,timet;tCO2-ei=1,2,3,…mBLbaselinestratat=1,2,3,…tyearselapsedsincethestartoftheprojectactivityNote:InthismethodologyEq.1isusedtoestimatebaselinenetgreenhousegasemissionsfortheperiodoftimeelapsedbetweenprojectstart(t=1)andtheyeart=t,tbeingtheyearforwhichbaselinenetgreenhousegasemissionsareestimated.8.1EstimationofitAGBC,,(carbonstockchangesinabovegroundbiomass)Forallstrata,carbonstockchangesinabovegroundbiomasscanbeestimatedasthesumofcarbonstockchangesresultingfrominitiallandclearingandfromfutureland-useactivities:itharvestitgrowthBitnBiomassBurBittimberitAGBEREEC,,,,,,,,(3)where:itAGBC,,=sumofcarbonstockchangesinabovegroundbiomassunderthebaselinescenarioinstratumiattimet;tCO2-eittimberE,=sumofcarbonstockchangesinabovegroundbiomassduetotimberextractionpriortolandclearinginstratumiattimet;tCO2-eitnBiomassBurBE,,=sumofcarbonstockchangesinabovegroundbiomassduetobiomassburningforstratumiattimetunderthebaselinescenario;tCO2-eitgrowthBR,,=sumofcarbonstockchangesinabovegroundbiomassduetobiomassgrowthoflivingvegetationonthefutureland-useforstratumiattimet;tCO2-eitharvestE,=sumofcarbonstockchangesinabovegroundbiomassduetoharvestactivitiesatrotationonbaselinefutureland-useforstratumiattimet;tCO2-e8.1.1EstimationofittimberE,(GHGemissionsfromtimberextractionbeforelandclearing)PerapplicabilityconditionJofthismethodology,inthebaselinescenariotheprojectlandisassumedtobeloggedfortimberpriortolandclearing.Emissionsfromtimberextractionarecalculatedas:1244)(,,,tswoodproducitBextracteditBittimberCCE(4)extracteditBC,canbeestimatedbycalculatingthebiomassofthelogsthatwouldbeextractedinthebaselinecaseusingeitherallometricequationsorabiomassexpansionfactortoconvertfromvolumetobiomass.Whenestimatingthebiomassoftimberremoved(basedonaminimumdiameterthreshold),itisconservativetoassumethatthebiomassoftheentireabovegroundcomponent(leaves,branches,etc.)ofeachharvestedtreeisremovedwiththelogsextracted,leavingnoslashbehindtoburn.VM0004,Version1.0SectoralScope1413geditBgeditBextracteditBACFBClog,log,,(5)pCCextracteditBtswoodproducitB,,(6)where:extracteditBC,=carbonstocksfromtreesextractedunderthebaselinescenarioinstratumiattimet;tCtswoodproducitBC,=carbonstocksmovingintolong-termwoodproductsunderthebaselinescenarioforstratumiattimet;tCgeditBBlog,=timberbiomassloggedunderthebaselinescenarioforstratumiattimet;td.m.ha-1CF=carbonfractionofdrymatter(0.5tC/tbiomass);dimensionlessgeditBAlog,=Areaoflandloggedunderthebaselinescenarioforstratumi,intimet;hap=percentofharvestindustrialroundwoodgoingintolongtermwoodproductsEstimationoftheareaclearedandloggedAsperApplicabilityConditionDinSection3,theareaandspecificgeographiclocationofallplannedlanduseconversionsinthebaselinemustbeknownandcomefromwrittendocumentationincludinglanduseconversionpermits,governmentrecords,concessionmaps,etc.Thisthreatmustbedemonstratedbydocumentaryproof.TheannualareaofforestconversiontotheproposedlandusetypecleareditBA,(andgeditBAlog,ifapplicable)mustbeestimated.Avalidverifiableplanbytheagentofdeforestationmustexistforestimatingtherateatwhichdeforestationand/orloggingisprojectedtooccur,andthisrateshallbeused.Ifitisunknownwhetherthelandwouldbeloggedpriortoconversion,thenloggingshouldbeassumedbecausesomeofthecarbonextractedastimberwillbestoredaslong-termwoodproducts;thisisaconservativescenario.Thearealoggedshouldbeassumedtobeequaltotheareaclearedunlessevidenceexistsofadifferentrate.EstimationofbiomassloggedThebiomassoftimberextractedunderthebaselinescenariogeditBBlog,mustbeestimatedinEquation5.AsperApplicabilityConditionJoutlinedinsection3,itisassumedthatthesizeclassandspeciesoftreessoldinthelocaltimbermarketwouldhavebeenextractedintheprojectareapriortoclearing.Speciesandminimumdiameterclassessoldinthelocaltimbermarketcanbeobtainedfromgovernmentrecords,timberrecordsofexistingloggingoperations,surveysofillegalloggingactivities,sawmillsurveys,orrecordsofpreviouslanduseconversionalsomeetingtheapplicabilityconditionsofthismethodology.Alternatively,marketsurveyscanbeconductedtodeterminewhichspeciesandsizeclassesaresold.Itisconservativetoassumethatallspeciesofasmalldiameterclassthresholdwouldbesoldfortimber,leavingfewerremainingtreestoburnwhenthelandiscleared.UsingplotdatacollectedinSec.8.1.2.1EstimationofittreeAGBMC,_,andlocally-derivedvolumeorbiomassequations,estimatethebiomassperunitarea(tdrymatterha-1)thatwouldbeVM0004,Version1.0SectoralScope1414expectedtobeloggedineachstratumiattimetbyfollowingthestepsbelow.Iflocalequationsarenotavailable,moregenericequationsbasedonforesttypecanbeused,withdemonstrationoftheapplicabilityoftheequationoutlinedinthePDD(e.g.,throughlimiteddestructiveharvestmeasurementscollectedintheprojectarea).Step1:ForeachplotmeasuredtocalculateittreeAGBMC,_,,calculatethebiomassofeachtreethatwouldhavebeenextracted,definedasalltreeswithineachplotthatexceedtheminimumdiameterthreshold.Addthebiomassofalltreestogetherandmultiplybyaplotexpansionfactorwhichisproportionaltotheareaofthemeasurementplot.Thisisdividedby1,000toconvertfromkgtot.BEFMethod:10001,_,,TRtrtrtreeAGBitBXFTVPV(7)BEFPVPBiitBitB,,(8)AllometricorAerialImageryMethod:10001,,TRtrtrBitBXFTBPB(9)APXF000,10(10)where:PVB,it=Plotlevelvolumetobeextractedunderthebaselinescenarioinstratumiattimet;m3ha-1PBB,it=Plotlevelbiomasstobeextractedunderthebaselinescenarioinstratumiattimet;td.m.ha-1TVB,tr=Volumepertreetrintreestobeextractedunderthebaselinescenario;m3tree-1TBB,tr=Biomasspertreetrintreestobeextractedunderthebaselinescenario;td.m.tree-1XF=Plotexpansionfactorfromperplotvaluestoperhectarevaluesi=volume-weightedaveragewooddensity;td.m.m-3merchantablevolumeBEF=biomassexpansionfactorforconversionofbiomassofmerchantablevolumetoabove-groundbiomass;dimensionless.AP=Plotarea;m2tr=1,2,3,…,TRtrees(TR=totalnumberoftreesintheplotexpectedtobeextracted)VM0004,Version1.0SectoralScope1415Step2:Calculatetheaveragebiomassexpectedtobeextractedwithineachstratumbyaveragingacrossplotswithinastratum:itPLplitBgeditBPLPBBit1,log,(11)where:geditBBlog,=timberbiomassloggedunderthebaselinescenarioforstratumiattimet;td.m.ha-1PBB,it=Plotlevelbiomasstobeextractedunderthebaselinescenarioinstratumi,timet;td.m.ha-1pl=Plotnumberinstratumi;dimensionlessPLit=Totalnumberofplotsinstratumi,timet;dimensionless8.1.2EstimationofitnBiomassBurBE,,(GHGemissionsfrombiomassburningforlandclearing)AsperApplicabilityConditionCinsection3,itisassumedinthebaselinescenariothatallremainingbiomassthatisnotharvestedastimberwouldbeclearedbyfiretopreparethesiteforanewlanduseactivity.Therefore,itisassumedthattreevegetationispartiallyortotallyharvestedbeforeburningandthat:ThecarbonstockdecreaseintheharvestedtreebiomassisestimatedusingthemethodsoutlinedinSection8.1.1above;Theabovegroundbiomassoftheharvestedtreesissubtractedfromthetotalabovegroundbiomassestimateusedforthecalculationofnon-CO2emissionsfromburning;BasedonrevisedIPCC1996GuidelinesforLULUCF,thistypeofemissionscanbeestimated(wheneverdoublecountingofcarbonstocklossesisavoided)asfollows:itCHnBiomassBurBitONnBiomassBurBitCOnBiomassBurBitnBiomassBurBEEEE,4,,,2,,,2,,,,(12)where:itnBiomassBurBE,,=totalincreaseinCO2-eemissionsunderthebaselinescenarioasaresultofabovegroundbiomassburningforlandclearinginstratumiattimet;tCO2-eitCOnBiomassBurBE,2,,=CO2emissionfrombiomassburningunderthebaselinescenarioinstratumiattimet;tCO2-eitONnBiomassBurBE,2,,=N2Oemissionfrombiomassburningunderthebaselinescenarioinstratumiattimet;tCO2-eitCHnBiomassBurBE,4,,=CH4emissionfrombiomassburningunderthebaselinescenarioinstratumiattimet;tCO2-eand:VM0004,Version1.0SectoralScope14161244,,,,2,,CEPBBCEitBitACBitCOnBiomassBurB(13)where:EBiomassBurn,CO2,it=CO2emissionfrombiomassburningunderthebaselinescenarioinstratumiattimet;tCO2-eCB,AC,it=estimatedabove-groundbiomasscarbonstockbeforeburninginthebaselinescenarioforstratumi,timet;tC(Eq.14)PBBB,it=averageproportionofCB,AC,itburntunderthebaselinescenarioinstratumi,timet;dimensionlessCE=averagebiomasscombustionefficiency(IPCCdefault=0.5);dimensionlessBecausethelandisbeingclearedforanotherlanduseinthebaselinescenario,allofthebiomassthatisnotextractedastimberisassumedtobeburnedandthereforeforthismethodologytheproportionburnedinthebaseline(PBBB,it)isassumedtobeequalto1.ThecombustionefficienciesCEmaybechosenfromTable2.6ofthe2006IPCCAFOLUGuidelines,whichincludevaluesforawiderrangeofvegetationtypesthanvaluesinTable3.A.14ofIPCCGPG-LULUCFandalsogivevaluesforbothmeanandstandarddeviation.Ifnoappropriatecombustionefficiencycanbeused,theIPCCdefaultof0.5shouldbeused.Theabovegroundcarbonstockbeforeburning(CB,AC,it)isassumedtobeequaltothedifferencebetweenthecarbonstockinthetreeandnon-treepoolspriortologgingandthecarbonextractedastimberduringloggingoperations:extracteditBcleareditBitAGBitACBCAMCC,,,,,,(14)where:CB,AC,it=estimatedabove-groundcarbonstockbeforeburningunderthebaselinescenarioforstratumi,timet;tCMCB,AG,it=meancarbonstockinabove-groundlivingbiomassunderthebaselinescenarioforstratumi,timet;tCha-1(Eq.19)cleareditBA,=Areaclearedunderthebaselinescenarioforstratumi,intimet;ha(Eq.8)extracteditBC,=carbonstocksfromtreesextractedunderthebaselinescenarioinstratumiattimet;tC(Eq.6)Emissionsofnon-CO2gasesaregivenby:17ONONitCOnBiomassBurBitONnBiomassBurBGWPERCratioNEE222844/4412,2,,,2,,(15)17ReferstoTable5.7in1996RevisedIPCCGuidelineforLULUCFandEquation3.2.19inIPCCGPG-LULUCFVM0004,Version1.0SectoralScope14174412164412,2,,,4,,CHCHitCOnBiomassBurBitCHnBiomassBurBGWPEREE(16)where:itCOnBiomassBurBE,2,,=CO2emissionfromabovegroundbiomassburningunderthebaselinescenarioinstratumi,timet;tCO2-e.itONnBiomassBurBE,2,,=N2Oemissionfromabovegroundbiomassburningunderthebaselinescenarioinstratumi,timet;tCO2-eitCHnBiomassBurBE,4,,=CH4emissionfromabovegroundbiomassburningunderthebaselinescenarioinstratumi,timet;tCO2-eCratioN/=nitrogen-carbonratio(IPCCdefault=0.01);dimensionlessONER2=emissionratioforN2O(IPCCdefaultvalue=0.007);tCO2-e(tC)-14CHER=emissionratioforCH4(IPCCdefaultvalue=0.012);tCO2-e(tC)-1ONGWP2=GlobalWarmingPotentialforN2O(=310forthefirstcommitmentperiod);tCO2-e(tN2O)-14CHGWP=GlobalWarmingPotentialforCH4(=21forthefirstcommitmentperiod);tCO2-e(tCH4)-1Thenitrogen-carbonratio(N/Cratio)isapproximatedtobeabout0.01.Thisisageneraldefaultvaluethatappliestoleaflitter,butlowervalueswouldbeappropriateforfuelswithgreaterwoodycontent,ifdataareavailable.EmissionfactorsforusewithaboveequationsareprovidedinTables3.A.15and3.A.16ofIPCCGPG-LULUCF.8.1.2.1Meancarbonstocksinabovegroundbiomass(MCB,AG,it)Meancarbonstocksinabovegroundbiomassareexpressedasthesumofbiomassinthetreeandnon-treecomponents:itnontreeAGBittreeAGBitAGBMCMCMC,_,,_,,,(17)where:MCB,AG,it=Meancarbonstockinabove-groundbiomassunderthebaselinescenarioinstratumi,timet;tCha-1.ittreeAGBMC,_,=Meanabovegroundbiomasscarbonstockintreebiomassinstratumiattimet;tCha-1(Eq.33,34,or39)itnontreeAGBMC,_,=Meanabovegroundbiomasscarbonstockinnon-treebiomassinstratumiattimet;tCha-1(Eq.18)Estimationofmeancarbonstocksinabovegroundnon-treebiomass(itnontreeAGBMC,_,)VM0004,Version1.0SectoralScope1418Thenon-treewoodyabovegroundbiomasspoolincludestreessmallerthantheminimumtreesizemeasuredinthetreebiomasspool,allshrubs,andallothernon-herbaceouslivevegetation18.Non-treevegetationcanbesampledusingdestructivesamplingframesand/or,wheresuitable,insamplingplotsincombinationwithanappropriateallometricequationforshrubs.Themeancarbonstockinabovegroundnon-treebiomassiscalculatedforeachstratumbyaddingtogetherresultscalculatedusingthesamplingframemethodandtheallometricequationmethod:itallometricnontreeAGitsamplenontreeAGitnontreeAGBMCMCMC,__,__,_,(18)where:itnontreeAGBMC,_,=Meanabovegroundnon-treebiomasscarbonstockinstratumiattimet;tCha-1itsamplenontreeAGBMC,__,=Meanabovegroundnon-treebiomasscarbonstockinstratumiattimetcalculatedfromsamplingframemethod;tCha-1itallometricnontreeAGBMC,__,=Meanabovegroundnon-treebiomasscarbonstockinstratumiattimetcalculatedfromallometricequationmethod;tCha-1SamplingFrameMethod:Instratawherenon-treevegetationisspatiallyvariable,largeframesshouldbeused(e.g.,1-2mradiuscircle).Wherenon-treevegetationishomogeneous,smallerframescanbeused(e.g.,30cmradius).Generally,theframeisplacedatfourrandomlocationsperrandomlyselectedGPSpoint(orperplot,wheremeancarbonstocksintreesarealsomeasured).Ateachlocation,allvegetationoriginatingfrominsidetheframeiscutatthebaseandweighed.Thewetweightofthefoursampleframesisaddedtogether.Thesefoursamplingframescreateonenon-treesampleplot.Onerepresentativesubsamplefromallfoursub-sampleframesisweighedandtakenfromfield.Thecollectedsubsampleisovendriedandweighedtodeterminethedryweight.Thewettodryratioofthesubsampleisthenusedtoestimatethedryweightoftheoriginalsample.Themeancarbonstockperunitareaintheabovegroundnon-treebiomass(samplingmethod)iscalculatedforeachstratumas:treenonSFPsfitsfsamplenontreeAGiSFPitsamplenontreeAGCFMCAMCi1,,__,,__110(19)iSFPsfpSFesampleframiSFPAA141,(20)where:18PursuanttoAR-WG21thattheGHGemissionsfromremovalofherbaceousvegetationareinsignificantinA/RCDMprojectactivities,theseemissionscanbeneglectedinA/Rbaselineandmonitoringmethodologies.VM0004,Version1.0SectoralScope1419itsamplenontreeAGMC,__=Meanabovegroundnon-treebiomasscarbonstockinstratumiattimetcalculatedusingsamplingframemethod;tCha-1MCAG,nontree_sample,sf,,itCarbonstockinabovegroundnon-treevegetationinsampleplotsfinstratumiattimetfromsamplingframemethod;kgd.m.CFnon-treeCarbonfractionofdominantnon-treevegetationspecies;dimensionlessASFP,iTotalareaofallnon-treesamplingplotsinstratumi;m-2AsampleframeAreaofonesamplingframe;m2sfp1,2,3…SFPisampleplotsinstratumii1,2,3…Mstratat1,2,3…tyearselapsedsincethestartoftheprojectactivitysf1,2,3upto4samplingframespersampleplot10conversionfactorbetweenkgd.m.m-2andtd.m.ha-1AllometricEquationMethod:Theallometricequationmethodforestimatingabovegroundnon-treebiomasscarbonstocksmaybeusedforshrubs,bamboo,orothervegetationtypeswhereindividualscanbedelineatedclearly.Step1:Selectordevelopanappropriateallometricequation(species-specificifpossible,otherwiseforasimilarspecies).Step2:Estimatecarbonstockinabove-groundbiomassforeachindividuallinthesampleplotrlocatedinstratumiusingtheselectedordevelopedallometricequation:tirNlqqtriallometricnontreeAGCFparametersvegetationfMC,,1,,,___(21)where:MCAG_nontree_allometric,i,r,tCarbonstockinabove-groundbiomassofnon-treesampleplotrinstratumiattimetfromallometricequationmethod;tCCFqCarbonfractionofbiomassforspeciesq;tCt-1d.m.fq(vegetationparameters)Allometricequationforspeciesqlinkingparameterssuchasstemcount,diameterofcrown,height,orotherstoabove-groundbiomassofanindividual;t.d.m.individual-1i1,2,3,…mstratar1,2,3,…Rnon-treeallometricmethodsampleplotsinstratumiq1,2,3…Qnon-treespeciesl1,2,3,…Nl,i,sp,tsequencenumberofindividualtreesinsampleplotrinstratumiattimett0,1,2,3…tyearselapsedsincestartoftheprojectactivityStep3:Calculatethemeancarbonstockinabovegroundbiomassforeachstratum,convertedtocarbondioxideequivalents:iRrtriallometricnontreeAGiitallometricnontreeAGMCArMC1,,,__,__1(22)where:VM0004,Version1.0SectoralScope1420MCAG_nontree_allometric,itMeanabovegroundbiomasscarbonstockinstratumiattimetfromallometricequationmethod;tCha-1MCAG_nontree_allometric,i,r,tAbovegroundbiomasscarbonstockinnontreevegetationinsampleplotrofstratumiattimetfromnon-treeallometricsampleplots,tCAriTotalareaofallnon-treeallometricmethodsampleplotsinstratumi;har1,2,3,…Rnon-treeallometricmethodsampleplotsinstratumii1,2,3…Mstratat0,1,2,3,…tyearselapsedsincethestartoftheprojectactivityEstimationofmeancarbonstocksinabovegroundtreebiomass(ittreeAGBMC,_,)Threemethodsareavailabletomeasureabovegroundtreebiomasscarbonineachstratumi:(1)theAerialImagerymethod;(2)theBiomassExpansionFactor(BEF)method;and(3)theAllometricEquationsmethod.RefertoSec5aboveforinformationregardingthenumberofplotsrequiredwhensettingupfieldand/orvirtualplots.AerialImageryMethodTheaerialimagerymethodispreferablewhencarbonstocksmustbeestimatedoverlargeand/orinaccessibleareasofforest.MethodsinthissectionarebasedonBrownetal.(2005)19andSlaymaker(2003)20.AIMStep1:Ontheground,measurediameteratbreastheight(DBH),totaltreeheightandcrownareaofindividualtreesofvaryingdiametersandspeciesfoundwithintheprojectregion.SamplesizeshouldbelargeenoughtocapturethevariabilityinDBHandcrownareasoftreesintheprojectboundary.EstimatebiomassofeachtreeusingtheallometricequationsmethodthatrelatesDBHorDBHandheighttobiomass(seeAllometricEquationsmethodbelow).Crownareaisestimatedastheaverageareaoftwoellipses,whereeachellipseisestimatedbasedoncanopymeasurementsinperpendicularcompassdirections:221ellipseellipsecrownAAA(23)and:2100)cos()cos(2100)cos()cos(1dbhdistangledistangledbhdistangledistangleAWWEESSNNellipse(24)2100))(cos())(cos(2100))(cos())(cos(2dbhdistangledistangledbhdistangledistangleASESENWNWSWSWNENEellipse(25)where:crownA=areaoftreecrown,m21ellipseA=areaoftreecrowncalculatedusingnorth,south,eastandwest-facingmeasurements;19Brown,S.,T.Pearson,D.Slaymaker,S.Ambagis,N.Moore,D.Novelo,andW.Sabido.2005.Creatingavirtualtropicalforestfromthree-dimensionalaerialimagery:Applicationforestimatingcarbonstocks.EcologicalApplications15:1083-1095.20Slaymaker,D.2003.Usinggeoreferencedlarge-scaleaerialvideographyasasurrogateforgroundvalidationdata.In:Wulder,M.A.andS.E.Franklin(eds.),2003.RemoteSensingofForestEnvironments:ConceptsandCaseStudies.Kluwer,ISBN1-4020-7405-0,pps.469-488.http://www.wkap.nl/prod/b/1-4020-7405-0.VM0004,Version1.0SectoralScope1421m22ellipseA=areaoftreecrowncalculatedusingnortheast,southeast,northwestandsouthwest-facingmeasurements;m2Nangle=angleformedbetweenobserver‘seyeandendoffarthestobservablecanopybranchfacingnorth;degreesSangle=angleformedbetweenobserver‘seyeandendoffarthestobservablecanopybranchfacingsouth;degreesEangle=angleformedbetweenobserver‘seyeandendoffarthestobservablecanopybranchfacingeast;degreesWangle=angleformedbetweenobserver‘seyeandendoffarthestobservablecanopybranchfacingwest;degreesNEangle=angleformedbetweenobserver‘seyeandendoffarthestobservablecanopybranchfacingnortheast;degreesSEangle=angleformedbetweenobserver‘seyeandendoffarthestobservablecanopybranchfacingsoutheast;degreesNWangle=angleformedbetweenobserver‘seyeandendoffarthestobservablecanopybranchfacingnorthwest;degreesSWangle=angleformedbetweenobserver‘seyeandendoffarthestobservablecanopybranchfacingsouthwest;degreesdistN=distancefromobservertoendoffirstcanopybranchfacingnorth;metersdistS=distancefromobservertoendoffirstcanopybranchfacingsouth;metersdistE=distancefromobservertoendoffirstcanopybranchfacingeast;metersdistW=distancefromobservertoendoffirstcanopybranchfacingwest;metersdistNE=distancefromobservertoendoffirstcanopybranchfacingnortheast;metersdistSE=distancefromobservertoendoffirstcanopybranchfacingsoutheast;metersdistNW=distancefromobservertoendoffirstcanopybranchfacingnorthwest;metersdistSW=distancefromobservertoendoffirstcanopybranchfacingsouthwest;metersdbh=diameteratbreastheightoftree;cmTotakemeasurements,observerstandsagainstthetrunkofthetreeandmovesaroundthetrunktoeachcompassdirection.Treeheightisestimatedbasedonfieldmeasurementsofangleanddistancetotopoftreefromtwovantagepoints:2)tan()tan(2211eyeeyetreeHangledistHangledistH(26)where:treeH=totalheightoftree,m1dist=horizontaldistancefromobservertotrunkoftreefromfirstvantagepoint;m2dist=horizontaldistancefromobservertotrunkoftreefromsecondvantagepoint;m1angle=anglefromgroundtotopoftreemeasuredfromfirstvantagepoint;degrees2angle=anglefromgroundtotopoftreemeasuredfromsecondvantagepoint;degreeseyeH=heightfromgroundtoobserver‘seye;mVM0004,Version1.0SectoralScope1422AIMStep2:Createarelationshipbetweenacombinationoftheheightand/orcrownareaandthebiomassofeachtreeobserved.Optionsinclude:)(,_,treetrtreeAGBHfTB(27))(,_,crowntrtreeAGBAfTB(28))(,_,treecrowntrtreeAGBHAfTB(29)where:trtreeAGBTB,_,=above-groundbiomassofatreetrunderthebaselinescenario;kgtree-1treeH=heightoftree,mcrownA=areaoftreecrown,m2)(treeHf=anallometricequationlinkingabove-groundtreebiomass(kgtree-1)totreeheight)(crownAf=anallometricequationlinkingabove-groundtreebiomass(kgtree-1)tocrownarea)(treecrownHAf=anallometricequationlinkingabove-groundtreebiomass(kgtree-1)tocrownareamultipliedbytreeheightUsingcollecteddata,allequationtypesshouldbetested.Ithasbeenfoundthataregressionequationbasedoncrownareaastheonlyindependentvariableworkswellfortrees,otherwisearegressionbasedonbothcrownareaandheightshouldbeusedifaddingheightimprovestheequation.Aminimumcoefficientofdetermination(R2)of0.70shouldbeattained,andanindependentsampleof5-15treesshouldbedestructivelyharvestedandusedtoverifytheequation.Atleast75%ofactualbiomassvaluesshallfallwithinthe95%predictionintervalsofthepredictedbiomassvalues,withnosystematicbias.AIMStep3:Inastandardaircraft,collecthighresolution(10-15cmperpixel)imageryinsystematicallyspaced,overlappingparalleltransectsevenlydistributedovertheprojectboundarywherelandcoverchangeisexpectedtooccur.Imagerycollectioncomponentsshouldincludeahighdefinitionvideocamera,areal-timedifferentialcorrectiongeographicpositioningsystem,alaptopcomputer,drivescapableofstoringlargeamountsofdata,andsoftwarethatenablesimageryandGPSinformationtobeassociatedwitheachother.AIMStep4:UsesoftwaresuchastheERDAS-IMAGINELeicaPhotogrametrySuitetocreateoverlappinghighresolutionimagesineachtransectandusesthefile‘saccuracyinformation,levelandscaleofoverlappingimagestocreatea3-dimensionalstereoview.Theresultingdigitalstereomodelcanbeviewedclearlyonacomputermonitorwhentheuserwearsglassesthatenable3-dimensional(3D)viewing.AIMStep5:Randomlyselecthighresolutionimagestoanalyzeandestablishavirtualplotoneachimageselected.Theselectionofimagesshouldfollowthesamesamplingschemeasintheselectionofgroundplots.Wherestratificationisneeded,theimagesshouldbedividedintothesamestrataasgroundmeasurementsandrandomimagesshouldbeselectedfromeachstratum.Aswithgroundmeasurements,selectapreliminarysetofvirtualplotsforanalysisforeachstratumandconverttocarboninvegetationbyfollowingthestepsbelow.Usingthepreliminaryestimatesofthevariation,theactualnumberofvirtualplotsneededperstratumtosamplewithatargetedprecisionvaluecanbecalculatedusingmethodsoutlinedinSec.8.2.1.Plotscanthenbeequallyspacedalongtransectsinasystematicmanner(e.g.,selectVM0004,Version1.0SectoralScope1423onestereo-pairofimagesoutofevery10imagescollected).Thecenterpointofeachimageselectedshouldbedesignatedastheplotcenter.AIMStep6:Foreachoftheselectedplots,createafeatureprojectwithinStereoAnalystthatcontainsemptyfeatureclassesforplanttypes(typicallybroadleaftreesandpalmtreesforclosedcanopytropicalforest),andimportashapefileofthevirtualplot.StereoAnalystautomaticallyperforms3Dcalculationssuchasthe3Dcoordinates(X,YandZcoordinates)ofapoint,areaandperimeterofapolygon.Createpolygonsaroundthecrownsofeachvegetationtype.Afterdigitization,thecrownarea(m2)foreachtreeiscalculatedautomaticallybythesoftware.Treeheight(m)ofeachdigitizedtreeontheimageiscalculatedasthedifferencebetweentheZcoordinateatthetopofthetreeandtheZcoordinateatapointonthegroundclosetothetreetrunk.ThesoftwarepopulatestheZcoordinateofthetopofthetreeautomaticallyforeachdigitizedcrownpolygon,andtheinterpreterindicatestheZcoordinateforapointontheground.Sincetheimagestypicallyrepresentclosedcanopyforest,designatingtheZcoordinateforapointonthegroundclosetothebaseofthetreeisnotalwayspossible.Incaseswherethegroundisnotvisible,theZcoordinateoftheaverageofthreeclosestpossiblegroundsitesisrecorded.AIMStep7:Estimatethebiomassofeachtreeinthevirtualplotbyrelatingcrownareasand/orheightstobiomassusingEquations27,28or29choseninAIMStep2.Estimatecarbonstockinabove-groundbiomassusingthefollowingequation:(takendirectlyfromAR-AM0004)CFTBTCtrtreeAGBtrtreeAGB,_,,_,(30)where:TCB,AG_tree,tr=Carbonstockinabove-groundbiomassofatreetrunderthebaselinescenario;kgtree-1TBB,AG_tree,,tr=Above-groundbiomassofatreetrunderthebaselinescenario;kgtree-1CF=Carbonfraction,tC(tonned.m.)-1,IPCCdefaultvalue=0.5AIMStep8:Calculatetheabove-groundbiomasscarbonperplotonaperareabasisbysummingthebiomasscarbonpertreewithineachvirtualplotandmultiplyingbyaplotexpansionfactorwhichisproportionaltotheareaofthemeasurementplot.Thisisdividedby1,000toconvertfromkgtot.10001,_,,_,TRtrtrtreeAGBittreeAGBXFTCPC(31)APXF000,10(32)where:PCB,AG_tree,jt=Plotlevelcarbonstockinabovegroundbiomassunderthebaselinescenarioinstratumi,timet;tCha-1VM0004,Version1.0SectoralScope1424TCB,AG_tree,tr=Carbonstockinabove-groundbiomasspertreetrunderthebaselinescenario;kgCtree-1XF=PlotexpansionfactorfromperplotvaluestoperhectarevaluesAP=Plotarea;m2tr=1,2,3,…,TRtrees(TR=totalnumberoftreesintheplot)AIMStep9:Calculatemeancarbonstockwithineachstratumbyaveragingacrossplotsinastratumorstand:itPLplittreeAGBittreeAGBPLPCMCit1,_,,_,(33)where:MCB,AG_tree,it=Meancarbonstockinabove-groundbiomassunderthebaselinescenarioinstratumi,timet;tCha-1.PCB,AG,it=Plotlevelmeancarbonstockinabove-groundbiomassunderthebaselinescenarioinstratumi,timet;tCha-1.pl=Plotnumberinstratumi;dimensionlessPLit=Totalnumberofplotsinstratumi,timet;dimensionlessBEFMethodBEFStep1:Measurethediameteratbreastheight(DBH,at1.3mabove-ground)andpreferablyheightofallthetreesinthesampleplotsaboveaminimumDBH.TheminimumDBHvariesdependingontreespeciesandclimate,forinstance,theminimumDBHmaybeassmallas2.5cminaridenvironmentswheretreesgrowslowly,whereasitcouldbeupto10cmforhumidenvironmentswheretreesgrowrapidly(IPCCGPG-LULUCF).BEFStep2:Estimatethevolumeofthecommercialcomponentoftreesbasedonlocallyderivedequations,thensumforalltreeswithinaplotandexpressasvolumeperunitarea(e.g.,m3/ha).Itisalsopossibletocombinestep1andstep2iftherearefieldinstruments(e.g.relascope)thatmeasurevolumeofeachtreedirectly.BEFStep3:ChooseBEF:TheBEFvarieswithlocalenvironmentalconditions,speciesandageoftrees,thevolumeofthecommercialcomponentoftrees.Theseparameterscanbedeterminedbyeitherdevelopingalocalregressionequationorselectingfromnationalinventory,Annex3A.1Table3A.1.10ofIPCCGPGLULUCF,orfrompublishedsources.IfasignificantamountofeffortisrequiredtodeveloplocalBEFs,involving,forinstance,harvestoftrees,thenitisrecommendednottousethismethodbutrathertousetheresourcestodeveloplocalallometricequationsasdescribedintheallometricmethodbelow(referstoChapter4.3inIPCCGPGLULUCF).Ifthatisnotpossibleeither,nationalspeciesspecificdefaultsareforBEFcanbeused.SinceBEFisagedependent,itisdesirabletouseage-dependentequations.Stem-woodvolumecanbeverysmallinyoungstandsandBEFcanbeverylarge,whileforoldstandsBEFisusuallysignificantlysmaller.ThereforeusingaverageBEFvaluemayresultinsignificanterrorsforbothyoungstandsandoldstands.Itispreferabletouseallometricequations,iftheequationsareavailable,andasasecondbestsolution,touseage-dependentBEFs(butforveryyoungtrees,multiplyingasmallnumberforstemwoodwithalargenumberfortheBEFcanVM0004,Version1.0SectoralScope1425resultinsignificanterror).Belowgroundrootbiomassisanexcludedpoolandsoisnotestimated.Itisassumedrootbiomassiscapturedinpeatestimates.BEFStep4:Convertingthevolumeofthecommercialcomponentoftreesintocarbonstockinabove-groundbiomassandbelow-groundbiomassviabasicwooddensity,BEFandcarbonfraction,givenby21:CFBEFMVMCiittreeAGBittreeAGB,_,,_,(34)where:MCB,,AG_tree,it=meancarbonstockinabove-groundbiomassperunitareaunderthebaselinescenarioforstratumi,timet;tCha-1MVB,AG_tree,it=Meanmerchantablevolumeunderthebaselinescenarioinstratumiattimet;m3ha-1i=specificwooddensityofharvestedwood,forstratumi,;td.m.m-3BEF=biomassexpansionfactorforconversionofbiomassofmerchantablevolumetoabove-groundbiomass;dimensionless.CF=carbonfraction;tC(tonned.m.)-1;IPCCdefaultvalue=0.5.AllometricMethodAlloStep1:Measurethediameteratbreastheight(DBH,at1.3maboveground)andpossibly,dependingontheformoftheequation,heightofallthetreesinsampleplotsaboveaminimumDBH.TheminimumDBHvariesdependingontreespeciesandclimate,forinstance,theminimumDBHmaybeassmallas2.5cminaridenvironmentswheretreesgrowslowly,whereasitcouldbeupto10cmforhumidenvironmentswheretreesgrowrapidly(IPCCGPG-LULUCF).AlloStep2:Chooseorestablishappropriateallometricequations.),(,_,treetrtreeAGBHDBHfTB(35)where:TBB,AG_tree,tr=above-groundbiomassofatreetrunderthebaselinescenario;kgtree-1f(DBH,Htree)=anallometricequationlinkingabove-groundtreebiomass(kgtree-1)todiameteratbreastheight(DBH)andpossiblytreeheight(Htree)measuredinplotsforstratumi,timet,.Theallometricequationsarepreferablylocal-derivedandspecies-specific.Whenallometricequationsdevelopedfromabiome-widedatabase,suchasthoseinAnnex4A.2,Tables4.A.1and4.A.2ofIPCCGPGLULUCF,areused,itisnecessarytoverifybydestructivelyharvesting,withintheprojectareabutoutsidethesampleplots,afewtreesofdifferentsizesandestimatetheirbiomassandthencompareagainstaselectedequation.Ifthebiomassestimatedfromtheharvestedtreesiswithinabout10%ofthatpredictedbytheequation,thenitcanbeassumedthattheselectedequationissuitablefortheproject.Ifthisisnotthecase,itisrecommendedtodeveloplocalallometricequationsfortheprojectuse.Forthis,asampleoftrees,representingdifferentsizeclasses,isdestructivelyharvested,anditstotalbiomassisdetermined.Thenumberoftreestobedestructivelyharvestedandmeasureddependsontherangeofsizeclassesandnumberofspecies—thegreatertheheterogeneitythemoretreesarerequired.Ifresourcespermit,thecarboncontentcanbedeterminedinthelaboratory.Finally,allometricequationsare21IPCCGPG-LULUCFEquation4.3.1VM0004,Version1.0SectoralScope1426constructedrelatingthebiomasswithvaluesfromeasilymeasuredvariables,suchastheDBHandtotalheight(seeChapter4.3inIPCCGPGLULUCF).Alsogenericallometricequationscanbeused,aslongasitcanbeproventhattheyarewrongontheconservativeside,i.e.,theyunderestimatecarbonsequestration.AlloStep3:Estimatecarbonstockinabove-groundbiomasspertreeusingselectedallometricequationsappliedtothetreemeasurementsinStep1CFTBTCtrtreeAGBtrtreeAGB,_,,_,(36)where:TCB,AG_tree,tr=Carbonstockinabove-groundbiomasspertreeunderthebaselinescenario;kgCtree-1TBB,AG_tree,tr=Above-groundbiomassofatreetrunderthebaselinescenario;kgtree-1CF=Carbonfraction,tC(tonned.m.)-1,IPCCdefaultvalue=0.5.AlloStep4:Calculatetheabove-groundbiomasscarbonperplotonaperareabasis.Calculatebysummingthebiomasscarbonpertreewithineachplotandmultiplyingbyaplotexpansionfactorwhichisproportionaltotheareaofthemeasurementplot.Thisisdividedby1,000toconvertfromkgtot.10001,_,,_,TRtrtrtreeAGBittreeAGBXFTCPC(37)APXF000,10(38)where:PCB,AG_tree,it=Plotlevelcarbonstockinabovegroundbiomassunderthebaselinescenarioinstratumi,timet;tCha-1TCB,AG_tree,tr=Carbonstockinabove-groundbiomasspertreeunderthebaselinescenario;kgCtree-1XF=PlotexpansionfactorfromperplotvaluestoperhectarevaluesAP=Plotarea;m2tr=Tree(TR=totalnumberoftreesintheplot)AlloStep5:Calculatemeancarbonstockwithineachstratum.Calculatebyaveragingacrossplotsinastratumorstand:itPLplittreeAGBittreeAGBPLPCMCik1,_,,_,(39)VM0004,Version1.0SectoralScope1427where:MCAG,it=Meancarbonstockinabove-groundbiomassunderthebaselinescenarioinstratumi,timet;tCha-1.PCAG,it=Plotlevelmeancarbonstockinabove-groundbiomassunderthebaselinescenarioinstratumi,timet;tCha-1.pl=Plotnumberinstratumi,timet;dimensionlessPLit=Totalnumberofplotsinstratumi,timet;dimensionless8.1.3EstimationofitgrowthBR,,(increaseincarbonstocksduetoabovegroundbiomassgrowthofvegetationinbaselineland-use)Inthebaselinescenario,anewlanduseisestablishedaftermerchantabletreesareharvestedandtheremainingbiomassisclearedwithfire.Toremainconservative,thebaselinecalculationsmustaccountfortheremovalofCO2thatoccursduetobiomassgrowthoflivingtreesonthefuturelanduse.Thisbiomassgrowthisestimatedas:1244,,,plantedititARBitgrowthBARR(40)where:itgrowthBR,,=totalannualincreaseincarbonstockduetogrowthoflivingtreesonthefutureland-useinthebaselinescenarioforstratumiattimet;tCO2-eitARBR,=averageannualincreaseincarbonstockduetogrowthoflivingtreesonthefuturelanduseinthebaselinescenarioforstratumiattimet;tCha-1yr-1(Eq.42or43)planteditA=areaofbiomassgrowthonfuturelanduseinthebaselinescenarioinstratumiattimet;ha1244=ratioofmolecularweightsofCO2andcarbon;dimensionlessitARBR,isestimatedbasedonfieldmeasurementsorliteraturevalues.Theareaplantedinstratumiattimetshallbeestimatedbasedoncommonpracticeasderivedfromfieldsurveysatlocalcompaniesorsetequaltotheareaclearedperyear.Ifthebaselinelanduseclassisrepresentedwithintheprojectboundary,meancarbonstockswillbemeasuredaspartofthestratificationprocedureinStepII.2above.However,carbonstocksmustbeestimatedforarangeofvegetationagestoestimatetheannualincreaseincarbonstocksonthebaselinefuturelanduse.Forexample,carbonstocksmustbemeasuredonyoung,intermediateandoldsitesataminimum.Tofulfilthisrequirement,carbonstockscanbemeasuredatproxysitesoutsidetheprojectboundaryprovidedthatsiteconditionsaresimilartothosewithintheprojectarea.Tobeconservative,allpoolsincludedintheestimationofcurrentmeancarbonstocksinabovegroundbiomassmustalsobeincludedintheestimationofbaselinefuturecarbonstocks.Whenmeasuringcarbonstocksatproxysites,refertoSec.8.1.2.1formeasurementoftrees.RefertoSection5forinformationregardingthenumberofplotsrequiredwhensettingupfieldandvirtualplots.VM0004,Version1.0SectoralScope1428Ifthefuturelanduseisnotpresentwithintheprojectboundaryandifproxysitesarenotavailabletomeasurecarbonstocks,thenconservativeestimatesofbiomassand/orcarbonstockfordifferentageclassesshallbeobtainedfromrelevantliterature.Usingthecollecteddata,estimatetheaverageincreaseincarbonstockduetovegetationgrowthonthefuturelanduse(itARBR,)byestablishinganappropriateequationthatlinksaverageabovegroundcarbonstock(MCFLU,AC,it)tostandageusingwhicheverfunction(linearornon-linear)fitstheavailabledata:Linearfunction:Thisisthesimplestmethodtoestimateannualincreaseincarbonstockovertime;theaverageannualincreaseincarbonstockisestimatedastheslopeoftheregressionlinewhentheinterceptisforcedthroughtheorigin:bageslpMCitACFLU,,(41)and:slpRitARB,(42)where:MCFLU,AC,it=meancarbonstockinabove-groundbiomassonthefuturelanduseunderthebaselinescenarioinstratumi,timet;tCha-1.age=ageofstand;yearsslp=slopeofregressionlineofbiomassaccumulationfunction;tCha-1yr-1b=interceptofregressionline(=zero,whenforcedthroughtheorigin);tCha-1itARBR,=averageannualincreaseincarbonstockduetobiomassgrowthoflivingtreesonthefuturelanduseunderthebaselinescenarioforstratumiattimet;tCha-1yr-1Non-linearfunction:Alogistic(e.g.,Chapman-Richards)functionisoftenabetterfittodetailedcarbonstockmeasurementsbecausebiomasscarbontypicallyaccumulatesquicklyduringearlyphasesofstandestablishmentandlevelsoffinlaterphases.Ifthisisthecaseaccordingtofielddataorliteraturevalues,theaverageannualincreaseincarbonstockduetobiomassgrowthoflivingtreesonthefuturelandusecanbeestimatedas:1,,,,,itACFLUitACFLUitARBMCMCR(43)and:2,,))1exp(1(prmitACFLUageprmMaxYldMC(44)peakprmageprm])8.0(1ln[121(45)3112prmprm(46)where:VM0004,Version1.0SectoralScope1429MCFLU,AC,it=meancarbonstockinabove-groundbiomassonthefuturelanduseunderthebaselinescenario,stratumi,timet;tCha-1.MCFLU,AC,it-1=meancarbonstockinabove-groundbiomassonthefuturelanduseunderthebaselinescenario,stratumi,timet-1;tCha-1itARBR,=averageannualincreaseincarbonstockduetobiomassgrowthoflivingtreesonthefuturelanduseunderthebaselinescenarioforstratumiattimet;tCha-1yr-1age=ageofstand;yearsMaxYld=Maximumpeakcarbonyield;tCha-1prm1=intermediatecalculationusingfittedparameterPrm2whenestimatingbiomassaccumulationusingnon-linearfunction;dimensionlessprm2=fittedparameterwhereprm3variesbetween0and1whenfittingbiomassaccumulationvaluestoanon-linearfunction;dimensionlessagepeak=ageofstandatpeakproduction;years8.1.4EstimationofEharvest,it(GHGemissionsfromharvestingabovegroundbiomassonbaselinefuturelanduse)Ifshort-rotationcropsareenvisagedtobeplantedaspartofthenewlanduseactivity,thentherewouldhavebeenharveststakingplaceinthebaselinescenario.Therefore,emissionsthatresultfromharvestingoperationsattheendofeachrotationperiodshouldbeaccountedfor.Itisassumedthatanybiomassinthetreepoolthatisnotharvestedastimberattheendoftherotationperiodisburnedtoclearthelandforthenextrotationcycle.Emissionsfromharvestingoperationsareestimatedas:itBiomasBurnBHtswoodproducitBHextracteditBHitharvestECCE,,,,,1244(47)where:itharvestE,=emissionsfromharvestingoperationsinstratumiattimet;tCO2-eextracteditBHC,=CarbonstocksoftimberextractedatharvestHunderthebaselinescenarioinstratumiattimet;tC(Eq.50)tswoodproducitBHC,=carbonstocksfromharvestHmovingintolongtermwoodproductsunderthebaselinescenarioforstratumiattimet;tC(Eq.51)itnBiomassBurBHE,,=totalincreaseinCO2-eemissionsasaresultofabovegroundbiomassburningatharvestHunderthebaselinescenarioinstratumiattimet;tCO2-e(Eq.54)1244=ratioofmolecularweightsofCO2andcarbon;dimensionlessAnd:cleareditBHitACFLUextracteditBHAPBHMCC,,,,(48)pCCextracteditBHtswoodproducitBH,,(49)VM0004,Version1.0SectoralScope1430Where:extracteditBHC,=CarbonstocksfromtreesextractedatharvestHunderthebaselinescenarioinstratumiattimet;tCtswoodproducitBHC,=carbonstocksfromharvestHmovingintolongtermwoodproductsunderthebaselinescenarioforstratumiattimet;tCitACFLUMC,,=meancarbonstockinabove-groundbiomassonthefuturelanduseunderthebaselinescenarioinstratumi,timet;tCha-1(Eq.44)PBH=averageproportionofabovegroundcarbonstockremovedduringharvestHunderthebaselinescenarioforstratumi,timet;dimensionless(Eq.50)cleareditBHA,=AreaclearedatharvestHunderthebaselinescenarioforstratumi,intimet;hap=percentofharvestindustrialroundwoodgoingintolongtermwoodproducts;dimensionlessTheaverageproportionofabovegroundcarbonstockremovedduringharvestH(PBH)canbeestimatedbydividingthecarbonremovedduringharvestoperationsbymeanbiomasscarbonstocksintheyearofharvest(estimatedinEq.45above):itACFLUittimberBHMCMCPBH,,,,(50)where:MCBH,timber,it=meancarbonstockremovedduringharvestHunderthebaselinescenarioforstratumi,timet;tCha-1(Eq.51)MCFLU,AC,it=meancarbonstockinabove-groundbiomassonthefuturelanduseunderthebaselinescenario,stratumi,timet;tCha-1(Eq.44)ThecarbonremovedduringharvestH(MCBH,timber,it)canbeestimatedfromvolumedata(thesedataaretypicallycollectedbytimbermanagementcompanies)asfollows:CFMVMCiittimberBHittimberBH,,,,(51)where:MCBH,timber,it=meancarbonstockintimberremovedduringharvestHunderthebaselinescenarioforstratumi,timet;tCha-1MVBH,timber,it=Meanmerchantablevolumeunderthebaselinescenarioinstratumiattimet;m3ha-1i=specificwooddensityofharvestedwood,forstratumi,;td.m.m-3CF=carbonfraction;tC(tonned.m.)-1;IPCCdefaultvalue=0.5VM0004,Version1.0SectoralScope1431Emissionsfromabovegroundbiomassburningduringharvestingoperations(itnBiomassBurBHE,,)areestimatedbasedonrevisedIPCC1996GuidelinesforLULUCF:itCHnBiomassBurBHitONnBiomassBurBHitCOnBiomassBurBHitnBiomassBurBHEEEE,4,,,2,,,2,,,,(52)where:itnBiomassBurBHE,,=totalincreaseinCO2-eemissionsasaresultofabovegroundbiomassburningatharvestHunderthebaselinescenarioinstratumiattimet;tCO2-e.itCOnBiomassBurBHE,2,,=CO2emissionfrombiomassburningatharvestHunderthebaselinescenarioinstratumiattimet;tCO2-e.itONnBiomassBurBHE,2,,=N2OemissionfrombiomassburningatharvestHunderthebaselinescenarioinstratumiattimet;tCO2-e.itCHnBiomassBurBHE,4,,=CH4emissionfrombiomassburningatharvestHunderthebaselinescenarioinstratumiattimet;tCO2-e.and:1244)1(,,,,,2,,CEPBBAPBHMCEitBHcleareditBHitACFLUitCOnBiomassBurBH(53)where:EBH,BiomassBurn,CO2,it=CO2emissionfrombiomassburningatharvestHunderthebaselinescenarioinstratumiattimet;tCO2-eMCFLU,AC,,it=meancarbonstockinabove-groundbiomassonthefuturelanduseunderthebaselinescenarioinstratumi,timet;tCha-1(Eq.44)PBH=averageproportionofabovegroundcarbonstockremovedduringharvestHunderthebaselinescenarioforstratumi,timet;(Eq.50)cleareditBhA,=AreaclearedatharvestHunderthebaselinescenarioforstratumi,intimet;haPBBBH,it=averageproportionofremainingabovegroundcarbonstocksburntatharvestHunderthebaselinescenarioinstratumi,timet;dimensionlessCE=averagebiomasscombustionefficiency(IPCCdefault=0.5);dimensionless1244=ratioofmolecularweightsofCO2andcarbon;dimensionlessAllofthetreebiomassthatisnotextractedatharvestisassumedtobeburnedandthereforeforthismethodologytheproportionofremainingabovegroundcarbonstocks(1-PBH)burnedatharvestHinthebaseline(PBBBH,it)isassumedtobeequalto1.ThecombustionefficienciesCEmaybechosenfromTable2.6ofthe2006IPCCAFOLUGuidelines,whichincludevaluesforawiderrangeofvegetationtypesthanvaluesinTable3.A.14ofIPCCGPG-LULUCFandalsogivevaluesforbothmeanandstandarddeviation.Ifnoappropriatecombustionefficiencycanbeused,theIPCCdefaultof0.5shouldbeused.VM0004,Version1.0SectoralScope1432Emissionsofnon-CO2gasesaregivenby:22ONONitCOnBiomassBurBHitONnBiomassBurBHGWPERCratioNEE222844/4412,2,,,2,,(54)4412164412,2,,,4,,CHCHitCOnBiomassBurBHitCHnBiomassBurBHGWPEREE(55)where:itCOnBiomassBurBHE,2,,=CO2emissionfromabovegroundbiomassburningatharvestHunderthebaselinescenarioinstratumi,timet;tCO2-e.itONnBiomassBurBHE,2,,=N2OemissionfromabovegroundbiomassburningatharvestHunderthebaselinescenarioinstratumi,timet;tCO2-eitCHnBiomassBurBHE,4,,=CH4emissionfromabovegroundbiomassburningatharvestHunderthebaselinescenarioinstratumi,timet;tCO2-eCratioN/=nitrogen-carbonratio(IPCCdefault=0.01);dimensionlessONER2=emissionratioforN2O(IPCCdefaultvalue=0.007);tCO2-e./tC4CHER=emissionratioforCH4(IPCCdefaultvalue=0.012);tCO2-e./tCONGWP2=GlobalWarmingPotentialforN2O(=310forthefirstcommitmentperiod);tCO2-e./tN2O4CHGWP=GlobalWarmingPotentialforCH4(=21forthefirstcommitmentperiod);tCO2-e./tCH48.2EstimationofitpBE,,(GHGemissionsfrompeat)Inadditiontoabovegroundchangesincarbonstocks,baselineemissionsinstratumiattimetascalculatedinEq.2abovealsoincludeincreasesinGHGemissionsfrompeat.BaselineGHGemissionsfrompeatimpactedbylanduseconversioncanbeestimatedas:itPeatBurnBitDrainageBitpBEEE,,,,,,(56)where:itpBE,,=totalbaselineGHGemissionsfrompeatunderthebaselinescenarioinstratumiattimet;tCO2-eitDrainageBE,,=GHGemissionsfrompeatdrainageunderthebaselinescenarioinstratumiattimet;tCO2-e(Eq.57)itPeatBurnBE,,=GHGemissionsfrompeatburningunderthebaselinescenarioinstratumi,timet;tCO2-e(Eq.60)8.2.1EstimationofEB,Drainage,it(GHGemissionsfrompeatdrainage)22ReferstoTable5.7in1996RevisedIPCCGuidelineforLULUCFandEquation3.2.19inIPCCGPG-LULUCFVM0004,Version1.0SectoralScope1433GHGemissionsfrompeatdrainageresultingfromlandclearingactivitiesforabaselineland-useactivityareestimatedas:itddBitdrainBitdrainageBMEAE,,,,,,(57)and:)(,,,,itdrainBitddBDfME(58)where:EB,drainage,it=CO2emissionsfrompeatdrainageunderthebaselinescenarioinstratumiattimet,tCO2-eAB,drain,it=areaofdrainageimpactunderthebaselinescenarioinstratumi,timet;haMEB,dd,it=meanCO2emissionsfromdrainedpeatinstratumi,timet;tCO2ha-1DB,,drain,it=averagedepthofpeatdrainageoraveragedepthtowatertableunderthebaselinescenarioinstratumi,timet;cm8.2.1.1Depthofpeatdrainage(DB,,drain,it)Surveysshouldbeconductedinproxyareasoflandusechangeinthevicinityoftheprojectareatodeterminecommondrainagepracticesincludingcommondrainagedepthusedforwatermanagement.ResultsfromthesurveyshouldbereportedinthePDDandusedincalculations.However,thesedatamaynotbeavailabletoprojectdevelopersduetopotentialunwillingnessoflandmanagersofproxyareastosharespecificpracticesand/ordata.Hooijeretal.(2006)23reportsestimatesofminimumandmaximumvaluesofdrainagedepthsfortheestablishmentofbothlarge-scaleplantationsandmixedcropland/small-scaleagriculture(Table1).Theseestimatesareconsideredconservative:e.g.,averagedrainagedepthswellover1meter(upto3metersinsomecases)arereportedformanyoilpalmandpulpwood(Acacia)plantations.Therefore,inareaswherepeatdepthexceeds1.5meters,projectswithnodatashouldapplyaconservativedrainagedepthof0.8m(80cm)whenthebaselinescenarioisconversiontolarge-scaleplantationsand0.4mwhenthebaselinescenarioisconversiontosmall-scaleagriculture.Incaseswheretotalpeatdepthisbetween0.5and1.0meters,drainagedepthshallbeconservativelyassumedtobemaintainedat50%ofthetotalpeatdepthforconversiontolarge-scaleplantationsand25%whenthebaselinescenarioistosmall-scaleagriculture.Table1.Minimum,likelyandmaximumdrainagedepthswithinlanduseclasses.Valuesareinmeters.ReportedinHooijeretal.(2006).LandUseMinimumLikelyMaximumLargecroplands,includingplantations0.800.951.10Small-scaleagriculture0.400.600.80Afterpeatdrainageoccurs,landmaybeclearedwithfiretopreparethesiteforthenewlanduse,inwhichcasetheupperlayerofpeatwillburnalongwithabovegroundbiomass.Asaunitofpeatcanloseitscarbonstockonlyonce(fromeitheroxidationduetodrainageorcombustionduetofire),potentialdoublecountingofemissionsfromdrainageandburningmustbeavoided.Becausefireisassumedinthe23Hooijer,A.,M.Silvius,H.WostenandS.Page,2006.PEAT-CO2,AssessmentofCO2emissionsfromdrainedpeatlandsinSEAsia.DelftHydraulicsreportQ3943(2006).VM0004,Version1.0SectoralScope1434baselineasamethodforclearingvegetation,thedepthofpeatburned(estimatedin5.3.2.1below)shallbesubtractedfromtheinitialdepthofpeatdrainedwhenestimatingdrainageemissions.Forexample,ifpeatisdrainedto80cmandthetop34cmisburnedtoclearvegetation,thendrainageemissionsshallbecalculatedbasedonanetdrainagedepthof46cm.8.2.1.2TimedimensionofpeatdrainageEquation58thatrelatesCO2emissionstodrainagedepthisassumedtobeapplicablethroughoutthelifeoftheproject.However,emissionsfrompeatcanoccuronlyaslongasthereisapeatsupplyavailabletoundergooxidation.Overtime,thepeatsurfacesubsidesandtheaerobicpeatlayerbecomesthinner.Publishedinformationonpeatsubsidenceratesfromsouth-eastAsianpeatlandsisscarce,butsubsidencevaluesofuptoseveraldozencentimetresperyearhavebeenreported24.Theobservedsubsidenceoftropicalpeatsoilsshowslineardependencyonwaterlevel;thelimitednumberofobservationsfromdeeperdrainedtropicalpeatlands(i.e.,>50cm)suggestthatsubsidencelevelsoffandremainsat~4.5cmyr-1atdrainagedepthsbelow50cm.Drainageofpeatinthebaselinecaseisassumedtooccurfromtheyearofinitialdrainagetot^,wheret^isequaltothenumberofyearsafterdrainagethatpeatcontinuestobepresentassumingasubsidencerateof4.5cmyr-1,calculatedas:5.4100^peatDt(59)where:t^=numberofyearsofpeatemissionsduetocontinueddrainage;yearsDpeat=averagedepthofpeatinprojectarea;metersAsanexample,assumingaprojectlifetimeof30years,ifpeatintheprojectareaexceeds1.5metersindepth,thetimedimensionofpeatdrainagecanbedisregardedbecausetheresultofEquation61indicatesthatemissionsfromdrainagewouldcontinueformorethan30years.Ontheotherhand,ifpeatdepthintheprojectareawasonly1meterandbaselinedrainageemissionsbegininYear1oftheproject,thendrainageemissionswouldcontinueuntilYear22oftheproject,afterwhichtheavailablepeatsupplywouldbeexhaustedandnoadditionalCO2emissionswouldoccur.Thusift^isgreaterthanthenumberofyearsintheproject,thendrainageshallbeincludedinbaselinecalculationsforeveryyearaftertheoriginaldrainageevent.However,ift^islessthanthenumberofyearsintheproject,thendrainageemissionsshallbecalculatedonlyforthenumberofyearsinwhichtherewouldbeanavailablesupplyofpeattoundergooxidation.8.2.1.3AreaofpeatdrainageItisassumedthattheareaofpeatdrainedeachyearinthebaselinescenariowillbeequaltotheareaclearedandplantedforthenewlanduse,i.e.,theannualrateofclearingcleareditBA,.Oncedrained,emissionscontinueinsubsequentyearsuntilt^isreached,suchthatdrainageemissionsarecumulativeasnewareasareclearedovertime.Areasoutsidetheprojectboundarymaybeimpactedbydrainageactivitiesinsidetheprojectboundaryinthebaselinecase,buttheseareasareconservativelyignored.24Wosten,JHM,ABIsmail,andALMvanWijk.1997.Peatsubsidenceanditspracticalimplications:acasestudyinMalaysia.Geoderma78:25-36.VM0004,Version1.0SectoralScope1435Forexample,iftheannualrateofclearingcleareditBA,fora2,500haplannedplantationinthebaselineis500haforthefirstfiveyears,thentheareaimpactedbydrainage(AB,drain,it)inEq.59wouldbe500hainYear1,1,000hainYear2,1,500hainYear3,2,000hainYear4and2,500hainYear5.Afterinitialclearing,theareaofpeatimpactedbydrainagewouldbeequaltothetotalareaofplannedlanduseconversion(2,500ha)insubsequentyearsuntilt^isreached.8.2.1.4RelationshipbetweenCO2emissionsanddrainagedepth(Eq.58)ItisknownthatthefunctionthatrelatesannualGHGemissionstopeatdrainagedepthshouldbenon-linear.Givenalackofextensivefielddataavailablefortropicalpeatforests,projectswithnodatashouldapplyalinearrelationshipderivedfromacompilationoffieldmeasurementscollectedthroughoutpeatlandsofSoutheastAsia25,26whereMEB,dd,it=0.91DB,,drain,it(orMEB,dd,it=9tCO2ha-1yr-1foreach10cmofdrainagedepth)untiladditionaldatabecomeavailable.Itshouldbenotedthatthisfunctionwasparameterizedwitharangeofdrainagedepthdataupto100cm(1meter)only,andshouldnotbeextrapolatedtopredictCO2emissionsinareasthatareexpectedtobedrained>1meterasperApplicabilityConditionFinSection3.Improvementstothisregressionmodelshouldbemadeasnewdataemerge.TherelationshipbetweendrainagedepthandCO2emissionsdependsonthewatermanagementregime,andsubsidencerateshavebeenshowntochangeovertime.Whendrainageditchesarenotmaintainedandperiodicallydeepenedtosustaindesiredwaterlevels,progressivesubsidenceleadstoincreasinglythinneraerobiclayers,resultinginreducedratesofpeatsubsidenceandthereforereducedCO2emissions.However,tillage,fertilizationandrootexudatescounteractthiseffect,resultingincontinuedhighoxidativelossesinmanagedagriculturalpeatlands27suchasthoseassumedinthebaselinescenario.Therefore,therelationshipbetweendrainagedepthandbaselineCO2emissionsfromdrainageasoutlinedaboveisassumedtoholdthroughouttheprojectlifeoruntiladditionaldatabecomeavailable.8.2.2EstimationofEB,PeatBurn,it(GHGemissionsfrompeatburning)Afterpeatdrainageoccurs,theupperlayerofpeatisassumedtobeintentionallyburnedalongwithabovegroundbiomasswhenthelandisclearedwithfiretopreparethesiteforthenewlanduse.GHGemissionsfrompeatburningasaresultoflandclearingareestimated(wheneverdoublecountingofcarbonstocklossesisavoided)asfollow:itCHPeatBurnBitCOPeatBurnBitPeatBurnBEEE,4,,,2,,,,(60)and:6,,,2,,102COitpBitCOPeatBurnBEFME(61)25Hooijer,A.,M.Silvius,H.Wösten,S.Page.2006.PEAT-CO2,AssessmentofCO2emissionsfromdrainedpeatlandsinSEAsia.DelftHydraulicsreportQ3943(2006).26Couwenberg,J.,R.DommainandH.Joosten(2009).GreenhousegasfluxesfromtropicalpeatlandsinSoutheastAsia.GlobalChangeBiologyDOI=10.1111/j.1365-2486.2009.02016.x27Couwenberg,J.,R.DommainandH.Joosten.2009.Greenhousegasfluxesfromtropicalpeatlandsinsouth-eastAsia.GlobalChangeBiology,inpress.DOI:10.1111/j.1365-2486.2009.02016.xVM0004,Version1.0SectoralScope1436446,,,4,,10CHCHitpBitCHPeatBurnBGWPEFME(62)iitburnBitburnBitpBBDADM10000,,,,,,(63)where:EB,PeatBurn,it=TotalincreaseinCO2-eemissionsasaresultofpeatburningunderthebaselinescenarioinstratumi,timet;tCO2eEB,PeatBurn,CO2,it=totalCO2emissionsfrompeatburningunderthebaselinescenarioinstratumi,timet;tCO2eEB,PeatBurn,CH4,it=totalCH4emissionsfrompeatburningunderthebaselinescenarioinstratumi,timet;tCO2eMB,p,it=massofpeatburnedunderthebaselinescenarioinstratumi,timet;tonsEFCO2=CO2emissionsfromthecombustionofpeat,gCO2(tpeat)-1EFCH4=CH4emissionsfromthecombustionofpeat,gCH4(tpeat)-1GWPCH4=GlobalWarmingPotentialforCH4(IPCCdefault=21forthefirstcommitmentperiod);tCO2-e.(tCH4)-1DB,burn,it=depthofpeatburnedunderthebaselinescenarioinstratumiattimet;metersAB,,burn,it=areaofpeatburnedunderthebaselinescenarioinstratumiattimet;haBDi=bulkdensityofpeatinstratumi(gcm-3=tm-3)10000=scalingfactorfromhatosquaremeters;dimensionless8.2.2.1Estimationofpeatdepthburned(DB,burn,it)Singlefireeventsinhuman-inducedfiresinsoutheastAsianpeatlandshaveresultedinlossesuptowelloveronemeterofpeat28,29,30.Inthebaseline,itisassumedthatpeatwouldbeburnedalongwithremainingvegetationafterdrainageinordertoclearthelandforthenewlanduse.ThedepthtowhichpeatisdrainedbeforeburningisdefinedinSection8.2.1.1aboveandwilldeterminethedepthofpeatthatwouldbesusceptibletoburning.Basedonavailablemeasurementdata,themeanrateoffire-relatedpeatlossduringlandclearingshouldbeestimatedexanteforallstratausingthemostup-to-dateinformationasreportedintheliterature.Atpresent,Couwenbergetal.(2009)31summarizeburndepthmeasurementsfromsixstudiesinSEAsiaandreportameanburndepthof34cm.Thedepthofpeatburnedshallbeassumedtobeequaltothedrainagedepth(incm)minusacriticalthresholdvalueof40cmabovethedrainagedepth.Therationaletothis28Page,SE,JORieley,H-DVBoehm,F.Siegert,N.Muhamad.2000.Impactofthe1997firesonthepeatlandsofCentralKalimantan,Indonesia.In:SustainingourPeatlands.Proceedingsofthe11thInternationalPeatCongress,06-12.08.2000,Quebec(edsRochefortL,DaigleJ-Y),pp.962-970.CanadianSocietyforPeatandPeatlands,Edmonton.29Page,SE,FSiegert,JORieley,H-DVBoehm,AJaya,SLimin.2002.TheamountofcarbonreleasedfrompeatandforestfiresinIndonesiaduring1997.Nature420:61-65.30Limin,S,AJaya,FSiegert,JORieley,SEPage,H-DVBoehm.2004.Tropicalpeatandforestfirein2002inCentralKalimantan,itscharacteristicsandtheamountofcarbonreleased.In:WiseUseofPeatlands–Proceedingsofthe12thInternationalPeatCongress,6-11June2004,Tampere,Volume1OralPresentations(edPäivänenJ),pp.679-686.InternationalPeatSociety,Jyväskylä.31Couwenberg,J.,R.DommainandH.Joosten.2009.Greenhousegasfluxesfromtropicalpeatlandsinsouth-eastAsia.GlobalChangeBiology,inpress.DOI:10.1111/j.1365-2486.2009.02016.xVM0004,Version1.0SectoralScope1437assumptionisthatthelayerofpeat40cmdirectlyabovetheloweredwatertableistoowettoburnduetocapillaryriseofwaterintheporespacesofthepeat.Themaximumdepthofpeatburntshallnotexceed34cm.Ifthedifferencebetweendrainagedepthandthecriticalthresholdexceeds34cm,thenthemaximumburndepthof34cmshallbeapplied.Forexample,ifdrainagedepthis80cm,thenthecalculationwouldbe80cm–40cm=40cm,whichisgreaterthan34cm,thereforetheburndepthisassumedtobe34cm.Ifdrainagedepthislessthanorequalto40cm,thenburndepth=0andtherearenoemissionsfromfireassociatedwithlandclearingactivities.Thesedefaultvaluesshallbeapplieduntiladditionaldatabecomeavailableoruntilmeasurementscanbemadebytheprojectdeveloperinproxyareasoflandusechange.(MethodsformeasuringburndepthinproxyareasareoutlinedinSection19.3.2ofthemonitoringmethodologybelow.)8.2.2.2Estimationofareaofpeatburnedunderthebaselinescenario(AB,,burn,it)Itisassumedthattheareaofpeatburnedinthebaselinescenariowillbeequaltothetotalareaclearedforthenewlanduse.Areasoutsidetheplantationboundarymayhaveburnedinthebaselinecase,buttheseareasareconservativelyignored.ThereforetheareaburnedperyearAB,burn,itshallbeequaltotheannualrateofclearingcleareditBA,8.2.2.3Estimationofpeatbulkdensity(BDi)Measurementsofpeatbulkdensityshouldbetakenacrosseachstratumwithintheprojectboundary.DeterminingthelocationsanddistributionofsamplesshouldbedeterminedpriortofieldworkandcanfollowthesamplingstrategyoutlinedinSection5aboveforconstructingapeatdepthmap.Peatbulkdensitycanbemeasuredusingeitherspecializedpeatsamplersorstandardsoilbulkdensitycylinders.Allvegetationandlittershouldberemovedbeforesamplingoccurs.Thesoilcorer/probeisinsertedsteadilytoastandarddepth(e.g.,30cm).Iftheprobewillnotpenetratetothefulldepth,itislikelythatwoodymaterialisblockingitsrouteandthereforethecoreshouldbeinsertedinanewlocation.Ifthedepthofpeatatthesamplingpointislessthanthestandarddepthmeasured,thenthedepthofthepeatsampledshallberecorded.Samplingto30-50cmdepthisappropriatebecauseitisthetoplayerofpeatthatwouldbedisturbedunderthebaselinescenario.Thevolumeofthecorershouldbecalculatedbasedonthedimensionsofthecorer.Peatshouldbeextractedfromtheprobeandplacedintoaclothbagwithauniqueidentificationnumber.Toreducevariability,samplingisrepeatedforatotaloffivelocationspersamplingpoint.Drybulkdensitysamplesinanovenat105ºCforaminimumof48hoursthenweigh.Peatbulkdensityshouldbemeasuredandcalculatedseparatelyforeachstratum.Onevaluecanbeusedifmeanvaluesdonotdiffersignificantlyacrossstrata.Ifpeatbulkdensitymeasurementsaremadeexpostratherthanexante,literaturevaluescanbeusedtoestimatepeatbulkdensityvaluesexante.Couwenbergetal.(2009)summarizedbulkdensityvaluesmeasuredintropicalpeatlandsandreportedameanvalueof0.14gcm-3(Table2).Anotherreviewofbulkdensityvaluesforsurfacepeat(i.e.,thetop≤34cmthatisburnedinthebaselinescenario)yieldsasimilarvalueof0.14gcm-3asthelowerboundoftherange(Table3).Therefore,thisvalueof0.14canbeusedinexantebaselinecalculationsbutshouldbereplacedwithexpostmeasurementstakenfromwithintheprojectareaoncethesedatabecomeavailable.Table2.Bulkdensityvaluesfortropicalpeat.FromCouwenbergetal.(2009)ReferenceBulkDensity(gcm-3)Pageetal.2002320.10032Page,SE,F.Siegert,JORieley,H-DVBoehm,A.Jaya,S.Limin(2002).TheamountofcarbonreleasedfrompeatandforestfiresinIndonesiaduring1997.Nature420:61-65.BulkdensitydatafromNeuzil,SG.1997.OnsetVM0004,Version1.0SectoralScope1438Liminetal.2004330.160(0.100-0.220)SaharjoandMunoz2005340.155(0.060-0.220)Mean0.144Table3.Bulkdensityvaluesfortropicalpeat(surfacevalues)inIndonesia.modifiedfromPage,S.E.,Banks,C.J.&Rieley,J.O.Extentandglobalsignificanceoftropicalpeatcarbonpools.GlobalChangeBiology(submitted–inreview)StudyLocationLowHighMidpointAndriesse1974Sarawak0.090.120.11Driessen&Rochima1976Durian-Rasau,WestKalimantan0.080.230.16Driessen&Rochima1976Sebangau,CentralKalimantan0.110.140.13Brady1997Sarawak0.100.190.15Kurnain2002CentralKalimantan0.150.170.16Sajarwan2002CentralKalimantan,0-50cm0.200.240.22Drajadetal.2003SouthKalimantan,0-25cm0.390.620.51AdiJaya2005CentralKalimantan,surface0.100.120.11Shimamura&Momose2007Sumatra0.010.120.07Melling2005Sarawak,surfacedrained0.150.150.15Sumawinataetal.2008CentralKalimantan,surface0.170.170.17Average0.140.210.178.2.2.4EstimationofCO2andCH4emissionfactors(EFCO2,EFCH4)Muraleedharanetal.(2000)35measureddirectemissionsfromthecombustionoftropicalpeatattwotemperatures(smoulderingstage:480ºCandflamingstage:600ºC).ThemostabundantC-containingcombustionproductwasCO2,followedbyCOandCH4.EmissionfactorsforCO2andCH4aresummarizedinTable4.Theemissionfactorsforpeatcombustionatthelowertemperatureshouldbeassumedintheexantebaselineestimates,asthisresultsinloweroverallGHGemissions(CO2+CH4reportedasCO2equivalents)andthusaconservativebaselinescenario.Table4.Greenhousegasemissionsfromthecombustionofpeat.FromMuraleedharanetal.(2000).ComponentTemperature(˚C)480600g(tonpeat)-1CO2185,000149,591andrateofpeatandcarbonaccumulationinfourdomedombrogenouspeatdeposits,Indonesia.In:Biodiversityandsustainabilityoftropicalpeatlands(edsRieleyJOandSEPage),pp.55-72.SamaraPublishing,Cardigan.33Limin,S.,AJaya,FSiegert,JORieley,SEPage,H-DVBoehm(2004).Tropicalpeatandforestfirein2002inCentralKalimantan,itscharacteristicsandtheamountofcarbonreleased.In:WiseUseofPeatlands–Proceedingsofthe12thInternationalPeatCongress,6-11June2004,Tampere,Volume1OralPresentations(edPaivanenJ),pp.679-686.InternationalPeatSociety,Jyväskylä.34Saharjo,BHandCPMunoz.2005.Controlledburninginpeatlandsownedbysmallfarmers:acasestudyinlandpreparation.WetlandsEcologyandManagement13:105-110.35Muraleedharan,T.R.,M.Radojevic,A.Waugh,andA.Caruana.2000.Emissionsfromthecombustionofpeat:anexperimentalstudy.AtmosphericEnvironment34:3033-3035.VM0004,Version1.0SectoralScope1439CH45,78511,338Explanation/justification(ifmethodologyprocedureisnotself-explanatory):Figure2belowshowshowbaselineequationsarerelatedandindicatesinyellowtheequationsthatincludeatleastoneparameterforwhichuncertaintyestimationisrequired.Figure2.Conceptualdiagramofbaselineequations.Equationnumbersareshowninparentheses.Yellowboxesindicateequationsthatincludeoneormoreparametersforwhichuncertaintyshallbeestimated.Inthebottomrightofthefigure,allparametersforwhichuncertaintymustbeestimated(orconservativevaluesused)areorganizedbysource.9.ExAnteActualNetAvoidedGHGEmissionsVM0004,Version1.0SectoralScope1440TheexanteactualnetavoidedGHGemissionsrepresentthesumofthebaselineGHGemissionswithintheprojectboundary,minustheincreaseingreenhousegasemissionsbysourcesmeasuredinCO2equivalentswithintheprojectboundarythatarearesultoftheimplementationofaprojectactivity.Theonlyemissionsbysourceswithintheprojectboundaryresultingfromtheimplementationofforestprotectionactivitieswouldbeemissionsfromfossilfuelburningfortransportofprojectstaffandforestguards.TheseemissionsarenolongerrequiredtobeaccountedforperCDMEB22and24,thustheyareexcludedinthismethodology.TheactualnetGHGemissionsavoidedrepresentthesumofthebaselineGHGemissionswithintheprojectboundary.BSLACTUALCC(64)where:ACTUALC=actualnetgreenhousegasemissionsavoided;tCO2-eBSLC=sumofthebaselineGHGemissions(abovegroundandpeat);tCO2-eNote:InthismethodologyEq.64isusedtoestimateactualnetGHGemissionsavoidedfortheperiodoftimeelapsedbetweenprojectstart(t=1)andtheyeart=tbeingtheyearforwhichactualnetgreenhousegasemissionsavoidedareestimated.10.LeakageLeakage(LK)representstheincreaseinGHGemissionsbysourceswhichoccuroutsidetheprojectboundarythataremeasurableandattributabletotheprojectactivity.Leakageisassumedtooccurasaresultofthedisplacementofeconomicactivities(i.e.,plannedlanduseconversion)toareasoutsidetheprojectthatleadtodeforestationandlandusechange,estimatedinunitsoftCO2-e.Thus,asaresultoftheprojectactivity,thebaselineactivityofplannedlandusechangemaybetemporarilyorpermanentlydisplacedfromwithintheprojectboundarytoareasoutsidetheprojectboundary.WhenREDDprojectactivitiesresultinreductionsinwoodharvest,itislikelythatproductioncouldshifttootherareasofthecountrytocompensateforthereduction,andthusleakageasaresultofmarketeffectsmustalsobeconsideredinthisscenario.DeterminationofthepresenceorabsenceofactivitydisplacementthatlikelyleadstoincreasedGHGemissionsshallbedonepriortoadoptingthemethodsandproceduresproposedtomeasuretheactivitydisplacementunderthismethodology.Emissionsthatresultfrommarketeffectsanddisplacementofpre-projectactivitiestoareasoutsidetheprojectboundaryareestimatedas:splacementActivityDictsMarketEffeLKLKLK(65)where:LK=Leakageemissionsresultingfromdisplacementofeconomicactivitiesandmarketeffects;tCO2-eLKMarketEffects=TotalGHGemissionsduetomarketeffectsleakagethroughdecreasedtimberharvest;tCO2-e(Eq.66)LKActivityDisplacement=TotalGHGemissionsduetoactivityshiftingleakageforprojectspreventingplanneddeforestation;tCO2-e(Eq.68)VM0004,Version1.0SectoralScope144110.1MarketLeakageWhenREDDprojectactivitiesresultinreductionsinwoodharvest,itislikelythatproductioncouldshifttootherareasofthecountrytocompensateforthereduction.Therefore,incaseswheretheprojectareawouldbeharvestedforcommercialtimberbeforeclearingthesiteforanewlanduse,marketeffectsleakagemustbeestimatedasthebaselineemissionsfromloggingmultipliedbyaleakagefactor:11,ttmiitMEctsMarketEffeLKLKLK(66)itXBTBiMEitMECLFLK,,,,(67)Where:LKMarketEffects=TotalGHGemissionsduetomarketeffectsleakagethroughdecreasedharvest;tCO2eLKME,it=TotalGHGemissionsduetomarketeffectsleakagethroughdecreasedharvestinstratumiattimet;tCO2-eLFME,i=Leakagefactorformarketeffectscalculations;dimensionlessCB,XBT,it=Carbonemissionduetodisplacedtimberharvestsinthebaselinescenarioinstratumiattimet;tCO2-eTheamountofleakageisdeterminedbywhereharvestingwouldlikelybedisplacedto.Ifintheforeststowhichdisplacementwouldoccuralowerproportionofbiomassincommercialspeciesisinmerchantablematerialthanintheprojectarea,thenmoretreeswillneedtobecuttosupplythesamevolumeandthushigheremissionsshouldbeexpected.Incontrast,ifahigherproportionofbiomassofcommercialspeciesismerchantableinthedisplacementforestthanintheprojectforest,thenasmallerareawouldneedtobeharvestedandloweremissionswouldresult.Eachprojectthusshallcalculatewithineachstratumtheproportionoftotalbiomassincommercialspeciesthatismerchantable(PMPi).Merchantablebiomassperstratumisconservativelydefinedasthetotalvolume(convertedtobiomass)ofallcommerciallyvaluabletreeswithinastratumthatareabovetheminimumsizeclasssoldinthelocaltimbermarket(seeApplicabilityConditionJ).PMPiisthereforeequaltothemerchantablebiomassasaproportionoftotalabovegroundtreebiomassforstratumiwithintheprojectboundaries.PMPishallthenbecomparedtothemeanproportionoftotalbiomassthatismerchantableforeachforesttype(PMLFT)towhichdisplacementislikelytooccur.Thefollowingdeductionfactors(LFME,i)shallbeused:PMLFTisequal(±0.15)toPMPiLFME,i=0.4PMLFTis>0.15lessthanPMPiLFME,i=0.7PMLFTis>0.15greaterthanPMPiLFME,i=0.2Where:PMLFT=Meanmerchantablebiomassasaproportionoftotalabovegroundtreebiomassforeachforesttype;dimensionlessPMPi=Merchantablebiomassasaproportionoftotalabovegroundtreebiomassforstratumiwithintheprojectboundaries;dimensionlessLFME,i=Leakagefactorforstratumimarket-effectscalculations;dimensionlessVM0004,Version1.0SectoralScope1442Insteadofapplyingthedefaultmarketleakagediscounts,projectproponentsmayopttoestimatetheproject‘smarketleakageeffectsacrosstheentirecountryand/oruseanalysis(es)fromothersimilarprojectstojustifyadifferentmarketleakagevalue.Adescriptionofthemarketleakageassessment,includingstepsfordeterminingwhereleakageislikelytooccur(i.e.,towhichforesttypesleakageislikelytooccur)andwhatthecarbonstocksofthoselandsare,shallbeoutlinedinthePDD.TheoutcomeofthisassessmentconductedatfirstVCUissuance(whetherusingdefaultdiscountsorprojectspecificanalysis(es))shallbesubjecttotheVCSdoubleapprovalprocess.MarketleakageassessmentsconductedatvalidationstageandatverificationotherthanthefirstVCUissuancearenotrequiredtoundergothedoubleapprovalprocess.Thenextstepistoestimatetheemissionsassociatedwiththedisplacedloggingactivity–thisisbasedonthetotalvolumethatwouldhavebeenloggedintheprojectareainthebaselinescenario.Theemissionduetothedisplacedlogginghastwocomponents:thebiomasscarbonoftheextractedtimberandthebiomasscarbonintheforestdamagedintheprocessoftimberextraction:1244,,,,LDFVCFVCitBiitBitXBTB(68)Where:CB,XBT,it=Carbonemissionduetodisplacedtimberharvestsinthebaselinescenarioinstratumiattimet;tCO2-eVB,it=Volumetobeextractedunderthebaselinescenarioinstratumiattimet;m3i=volume-weightedaveragewooddensity;td.m.m-3merchantablevolumeCF=carbonfractionofdrymatter(0.5tC/tbiomass);dimensionlessLDF=Loggingdamagefactor;tCm-3(default0.37tCm-3)i=1,2,3,...,mBLbaselinestratat=1,2,3,...,tyearselapsedsincetheprojectedstartoftheREDDprojectactivityThetotalvolumetobeextractedunderthebaselinescenarioinstratumiattimet(VB,it)canbeestimatedbymultiplyingtheplot-levelvolumeperstratum(MVB,it,seeEq.34)bytheareaclearedorloggedinstratumiattimet(cleareditBA,,orgeditBAlog,ifdifferentfromcleareditBA,).Theloggingdamagefactor(LDF)isarepresentationofthequantityofemissionsthatwillultimatelyariseperunitofextractedtimber(m3).Theseemissionsarisefromthenon-commercialportionofthefelledtree(thebranchesandstump)andtreesincidentallykilledduringtreefelling.Thedefaultvaluegivenherecomesfromtheslopeoftheregressionequationbetweencarbondamagedandvolumeextractedbasedon534logginggapsmeasuredbyWinrockInternationalinBolivia,Belize,Mexico,theRepublicofCongo,Brazil,andIndonesia:VM0004,Version1.0SectoralScope1443y=0.3663xR²=0.700510152025303501020304050607080DeadWoodCreated(tC)Volume(m3)MethodsusedbyWinrockaredescribedinPearsonetal.(2010)36andinreportstoUSAgencyforInternationalDevelopment37.10.2ActivityDisplacementLeakageLeakageduetoactivitydisplacementrepresentstheincreaseinGHGemissionsbysourceswhichoccuroutsidetheprojectboundarythataremeasurableandattributabletotheprojectactivity.Thus,asaresultoftheprojectactivity,thebaselineactivityofplannedlandusechangemaybetemporarilyorpermanentlydisplacedfromwithintheprojectboundarytoareasoutsidetheprojectboundary.UnderApplicabilityConditionHinSection3,theparcel(s)ofpeatswampforesttobeconvertedtoanotherlandusemustnotcontainhumansettlements(towns,villages,etc.)oranyhumanactivitiesthatleadtodeforestationsuchasagricultureorgrazing.Thustheonlyactivitydisplacementconsideredinthismethodologyistheshiftofpre-projectplannedactivitiestooutsidetheprojectboundary.NoincreasesinGHGemissionscausedbydisplacementofactivitiesassociatedwiththeprojectareexpectedandLK=0ifitcanbedemonstratedthatallpre-projectactivitiesaredisplacedtodegraded,non-forestlandonmineralsoilsoutsidetheprojectboundarythathavenegligibleabovegroundcarbonstocksandthathavebeennon-forestforatleasttenyears.EvidenceofthisdisplacementshallbepresentedinthePDDatthetimeofprojectverification.Insituationsotherthanthatdescribedabove,theassessmentandquantificationofactivitydisplacementandlandusechangeshallbeundertakenusingthemethodsoutlinedbelow.Baselineagentsofdeforestation(includingprivatecompaniesorlocal/nationalgovernments)maycontrolmultipleparcelsofforestlandwithinthecountrythatcouldbeusedtomakeupforthegenerationofgoodsand/orserviceslostthroughimplementationofthecarbonproject.Insuchcases,theprojectshalldemonstratethatthemanagementplansand/orland-usedesignationsofotherlandscontrolledbythebaselineagentofdeforestationhavenotmateriallychangedasaresultoftheplannedproject(e.g.,designatingnewlandsasplantationconcessions,increasingharvestratesinlandsalreadymanagedforplantationproducts,clearingintactforestsforplantationestablishment);iftheyhavechanged,theprojectshallquantifytheimpactof36Pearson,TRHandBrown,S.2010.Impactofselectiveloggingonthecarbonstocksoftropicalforests:casestudiesfromBelize,Bolivia,Brazil,Indonesia,MexicoandtheRepublicofCongo.37Deliverables9,10,13a,17,21,and24underCarbonandCo-BenefitsfromSustainableLand-UseManagementproject:CooperativeAgreementNo.EEM-A-00-03-00006-00.VM0004,Version1.0SectoralScope1444thesemanagementchangesanddeducttheassociatedreductionsincarbonstocksorincreasesinGHGemissionsfromCBSL.DeterminationofthepresenceorabsenceofactivitydisplacementthatlikelyleadstoincreasedGHGemissionsshallbedonepriortoadoptingthemethodsandproceduresproposedtomeasuretheactivitydisplacementunderthismethodology.Theareaofactivityshiftingleakageshallbeassessedforfivefullyearsbeyondthedateatwhichdeforestationwasprojectedtooccurinthebaseline.However,emissionsresultingfromactivityshiftingleakageshallbetrackedbeyondtheinitialyearofclearingwhereapplicabletoaccountforemissionsfrompeatandmineralsoilsthatcontinueaftertheinitialyearofclearing.AdditionalguidanceforcalculationofemissionsisgiveninSection10.2.2below.Ateachverification,documentationshallbeprovidedcoveringtheotherlandscontrolledbythebaselineagentwhereleakagecouldoccur,including,ataminimum,theirlocation(s),areaandtypeofexistinglanduse(s),andmanagementplans.Itmustalsobedemonstratedthatthetotalareaofgovernmentpermits(fordeforestationactivities)thathavebeengrantedtothebaselineagentofdeforestationhasnotincreasedduetotheimplementationofprojectactivities.Emissionsthatresultfromdisplacementofpre-projectactivitiestoareasoutsidetheprojectboundaryareestimatedas:11,ttmiitADsplacementActivityDiLKLKLK(69)where:LKActivityDisplacement=TotalGHGemissionsduetoactivityshiftingleakageforprojectspreventingplanneddeforestation;tCO2-e(Eq.71)LKAD,it=TotalGHGemissionsduetoactivityshiftingleakageinstratumiattimetforprojectspreventingplanneddeforestation;tCO2-ei=1,2,3,…mLKleakagestratat=1,2,3,…tyearselapsedsincethestartoftheprojectactivityIneachstratum,GHGemissionsduetoactivityshiftingleakageattimetconsistoftwocomponents:(1)theinitialchangesincarbonstocksandGHGemissionsthatareaccountedforintheyearofclearing;and(2)continuedchangesincarbonstocksandGHGemissionsthatoccurinsubsequentyearsasaresultofpeatdrainageorclearinglandonmineralsoilsforannualcropland:)()(_11,_,,continueditttitplannedinitititplanneditADCLKACLKALK(70)Where:LKAD,it=TotalGHGemissionsduetoactivityshiftingleakageinstratumiattimetforprojectspreventingplanneddeforestation;tCO2-eitplannedLKA,=Theareaofactivityshiftingleakageinstratumiattimet;hainititC_=averageinitialcarbonstockchangesandgreenhousegasemissionsinstratumiattimet(excludingtimberemissionswhereapplicable);tCO2-eha-1.continueditC_=averagecarbonstockchangesandgreenhousegasemissionsinstratumiatVM0004,Version1.0SectoralScope1445timetasaresultofcontinuedemissions;tCO2-eha-1Thesecondtermoftheequation(continuedemissions)shallbeincludedonlyinyearsaftertheintialyearofclearing.10.2.1Areaofactivityshiftingleakage(LKAplanned,it)Consideringthatpre-projectactivitiesmayormaynotbedisplacedtoareasthataresimilartothosefoundintheprojectarea(i.e.,activitiesmayormaynotbedisplacedtoabaselinestratum),itmaynecessarytostratifytheareaofactivitydisplacementforleakageanalysis.Ifthebaselineagentofdeforestationmanagesonlylandsofsimilartypeasfallwithintheprojectarea,thenmBL=mLK(baselinestrata=leakagestrata).However,ifthebaselineagentofdeforestationmanagesstratanotfoundwithintheprojectboundary,thenmBL<mLK(therewillbeadditionalstratatoincludeintheleakageanalysis).MoreguidanceonstratificationisprovidedinSection5above.Theoverallapproachforcalculatingtheareaofactivityshiftingleakageistofirstcalculatethetotalareaoverwhichdeforestationisforecasttooccuracrossallofthelandmanagedbythebaselineagentofdeforestationinyeart,includingthebaselineprojecteddeforestationwithintheprojectboundaries.Second,theareaofdeforestationpredictedtooccurwithintheprojectboundaryinyeartissubtractedfromthetotalareadeforestedinyeartacrossallofthelandmanagedbythebaselineagentofdeforestation,whichyieldstheexpectedareaofdeforestationinyeartbythefocalagentifnoleakagehadoccurred.Third,thedifferencebetweentheexpectedareaofdeforestationinyeartunderthenoleakagescenarioandtheobservedareaofdeforestationovereachofthefirstfiveyearsafterprojectimplementationresultsintheareaofleakeddeforestation.STEP1:DeterminethebaselineareaofforestclearanceinyeartforthedeforestationagentTwooptionsexistforestimatingthebaselinerateofforestclearancebythedeforestationagent.Onlyifahistorictrendanalysis(Option1.1)isnotfeasibleshallOption1.2beused.Option1.1BaselinedeforestationratebasedonhistoricdeforestationtrendWiththisapproach,thebaselineannualdeforestationratebythebaselinedeforestationagentcanbeestimatedbyextrapolatingthehistoricalannualtrendusingalinearregression.Surveythedeforestationagentandexamineofficialrecords(whichmayincludepermitsforconcessionsorpermitstodeforestforagricultural/commercialpurposes)todeterminethetotalareadeforestedbythedeforestationagentwithineachleakagestratumeachyearoverthelast5-10yearswithinthecountry.Tousethisoption,annualdataforaminimumoffiveyearsandamaximumoftenyearsmustbeusedtocreatethelinearregression.Theresultsoftheanalysismustproduceastatisticallysignificantregressionwithap<0.05andanadjustedR2of>0.75,otherwiseOption1.2(―historicalaverage‖)mustbeused.Thelinearregressionisasfollows:)(tWoPRaWoPAitit(71)Where:WoPAit=Total(cumulative)areaofforestclearedbythebaselineagentofplanneddeforestationinstratumiattimet;haa=Estimatedinterceptoftheregressionline;haWoPRit=Slopeofthelinearregression,i.e.,rateofdeforestationbythebaselineagentintheabsenceoftheprojectinstratumi;haclearedattimetVM0004,Version1.0SectoralScope1446i=1,2,3,...,mLKstratat=1,2,3,...tyearselapsedsincethestartoftheplanneddeforestationreferenceperiodTheannualareaofdeforestationbythebaselineagentintheabsenceoftheprojectinstratumiattimetisthereforeequaltotheslopeoftheregressionline,orWoPRit.Option1.2:BaselinedeforestationratebasedonhistoricdeforestationaverageUnderthisapproach,thebaselineannualdeforestationratebythedeforestationagentisassumedtobeequaltotheaverageclearedareaduringthepast5-10years.Toimplementthisoption,surveythedeforestationagentand,ifavailable,examineofficialrecords38todeterminethetotalareadeforestedbythedeforestationagentwithineachleakagestratumoverthepreviousfivetotenyearswithinthecountry.yrsiitnHistHaWoPR(72)Where:itWoPR=Rateofdeforestationbythebaselineagentintheabsenceoftheprojectinstratumi;haclearedattimetiHistHa=Totalnumberofhectaresofforestclearedbythebaselineagentoftheplanneddeforestationinthenyearspriortoprojectimplementationinstratumi;hai=1,2,3,...,mLKstratanyrs=numberofyearsincludedintheanalysisofdeforestation;dimensionlessWherethereisnohistoryofdeforestationwithinagivenstratumandnoverifiableplansforcontrolledlandsandfuture-controlledlandsbythedeforestationagent,thenWoPRitshouldbesettotheplannedbaselineratefortheproject.STEP2:EstimatethenewrateofforestclearancebythefocalagentofdeforestationwithprojectimplementationifnoleakageisoccurringForeachstratumiateachtimet,subtracttheareaofplanneddeforestationforwithintheprojectareafromthehistoricareaofdeforestationbytheagentofdeforestationtocalculatethenew―zeroleakage‖areaofforestclearedattimet.cleareditBititAWoPRNewR,(73)Where:itNewR=Newcalculatedareaofforestclearanceinstratumiandtimetbythebaselineagentofplanneddeforestationwherenoleakageisoccurring;haWoPRit=Areaofdeforestationbythebaselineagentoftheplanneddeforestationinstratumiat38Officialrecordsmayincludepermitsforconcessionsorpermitstodeforestforagricultural/commercialpurposesVM0004,Version1.0SectoralScope1447timetintheabsenceoftheproject;hacleareditBA,=Areaclearedunderthebaselinescenarioforstratumi,intimet;hai=1,2,3,…mLKleakagestratat=1,2,3,…tyearselapsedsincethestartoftheprojectactivitySTEP3:MonitorallareasdeforestedbybaselineagentofdeforestationthroughtheyearsinwhichplanneddeforestationwasforecasttooccurAllareasdeforestedbythebaselineagentshouldbemonitoredthroughthefirstfiveyearsinwhichplanneddeforestationwasforecasttooccur.Areasofdeforestationmaybeintheprojectregionoranywhereinthehostcountry,butwillincludeonlythoselandscontrolledbythedeforestationagent.Thereisnorequirementtotrackinternationalleakage.ititdefLKitplannedNewRALKA,,(74)Where:itplannedLKA,=Theareaofactivityshiftingleakageattimet;haitNewR=Newcalculatedareaofforestclearancebythebaselineagentoftheplanneddeforestationinstratumiattimetwhennoleakageisoccurring;haitdefLKA,=Thetotalobservedareaofdeforestationbythebaselineagentinstratumiattimet;hai=1,2,3,…mLKleakagestratat=1,2,3,…tyearselapsedsincethestartoftheprojectactivityIfNewRitexceedsitdefLKA,(i.e.,theareaofdeforestationunderthenoleakagescenarioexceedstheactualobservedrate),thenitplannedLKA,shouldbesetaszero,aspositiveleakageisnotconsideredundertheVCS.10.2.2NetcarbonstockchangesandGHGemissions(inititC_andcontinueditC_)InitialemissionsresultingfromlanduseconversioninititC_representstheaverageinitialcarbonstockchangesandgreenhousegasemissionscausedbydeforestationactivitiesinaleakagestratumiattimet.TheequationforestimatinginititC_dependsontheareaofactivitydisplacementleakage,itplannedLKA,(Eq.74),relativetotheareadeforestedinthebaselinescenario,cleareditBA,.IfitplannedLKA,islessthan40%ofcleareditBA,,thenleakedemissionsfromtimberharvestingareexcludedfromthecalculationbecausetheyareaccountedforinmarketeffectsleakagecalculations(Section10.1).Therationaleforusingthis40%thresholdisthattheVCSmarketleakagetableassumesamarketleakagefactorof0.4(40%)incaseswherethelikelysourceoftimberissimilartotheprojectconditions.IfVM0004,Version1.0SectoralScope1448activityshiftingleakageleadstotimberproductionlessthanorequaltothis40%threshold,thenemissionshavealreadybeencoveredbymarketleakage.IncaseswhereitplannedLKA,isgreaterthan40%ofcleareditBA,,thennotalltimberemissionswillhavebeencoveredundermarketleakageandtheadditionalemissionsneedtobeaccountedforinactivitydisplacementleakage.Bothcalculationsincludeotheremissionsources(non-timberbiomassclearedforsitepreparation,emissionsfromtheburninganddrainageofpeat).Forleakagestratathatarealsoincludedasbaselinestrata,inititC_iscalculatedasfollows:IfitplannedLKA,≤40%ofcleareditBA,:cleareditBitpBitMLitAGBinititAECMCC,,,,,,_1244(75)LDFMVCFBCittreeAGBgeditBitML,_,log,,)((76)Where:inititC_=averageinitialcarbonstockchangesandGHGemissionsforstratumiattimet;tCO2eha-1CML,it=averagecarbonstocksaccountedforastimberemissionsundermarketleakage;tCha-1MCB,AG,it=meancarbonstockinabove-groundlivingbiomassunderthebaselinescenarioforstratumi,timet;tCha-1(Eq.17)geditBBlog,=timberbiomassloggedunderthebaselinescenarioforstratumiattimet;td.m.ha-1(Eq.11)CF=carbonfractionofdrymatter(0.5tC/tbiomass);dimensionlesscleareditBA,=Areaclearedunderthebaselinescenarioforstratumi,intimet;haitpBE,,=totalbaselineGHGemissionsfrompeatunderthebaselinescenarioinstratumiattimet;tCO2-e(Eq.56)MVB,AG_tree,it=meanmerchantablevolumeunderthebaselinescenarioinstratumiattimet;m3ha-1LDF=Loggingdamagefactor;tCm-3(default0.37tCm-3)IfitplannedLKA,>40%ofcleareditBA,:cleareditBitpBitMLitAGBitMLitdunaccounteinititAECMCCLKPC,,,,,,,,_)()(1244(77)VM0004,Version1.0SectoralScope14494.0,,,cleareditBitplanneditdunaccounteALKALKP(78)Where:inititC_=averageinitialcarbonstockchangesandGHGemissionsforstratumiattimet;tCO2eha-1CML,it=averagecarbonstocksaccountedforastimberemissionsundermarketleakage;tCha-1LKPunaccounted,it=unaccountedproportionoftimberemissionsnotaccountedforundermarketleakage,dimensionlessitplannedLKA,=Theareaofactivityshiftingleakageattimet;hacleareditBA,=Areaclearedunderthebaselinescenarioforstratumi,intimet;haMCB,AG,it=meancarbonstockinabove-groundlivingbiomassunderthebaselinescenarioforstratumi,timet;tCha-1(Eq.17)cleareditBA,=Areaclearedunderthebaselinescenarioforstratumi,intimet;haitpBE,,=totalbaselineGHGemissionsfrompeatunderthebaselinescenarioinstratumiattimet;tCO2-e(Eq.56)Insomecases,activitiesmaybedisplacedtoleakagestratathatdonotexistasbaselinestrata(e.g.,activitiesaredisplacedfrompeatforeststoforestsonmineralsoils),andnewestimatesofaveragecarbonstockchangesandGHGemissionswillneedtobedeveloped(exceptinthecasewhereactivitiesaredisplacedtoareaswithnegligibleabovegroundcarbonstocksonmineralsoils,inwhichcaseLK=0).Inleakagestratathatarenotincludedasbaselinestrata,notimberwastobeextractedunderthebaselinescenarioandsoVB,it=0,CB,XBT,it=0,andLKME,it=0.Therefore,LKAD,itforleakagestratanotincludedasbaselinestrataiscalculatedusingtheaveragecarbonstockvaluewithoutadeductionforthecarbonstocksinmerchantablebiomass:ititAGLKinititSOCMCC)1244,,_(79)Where:inititC_=averageinitialcarbonstockchangesandGHGemissionsforstratumiattimet;tCO2eha-1MCLK,AG,it=meancarbonstocksinabovegroundbiomassinleakagestratumiattimet;tCha-1itSOC=meanchangeinsoilcarbonstocksinstratumiattimetafterconversiontoannualcropland;tCO2-eha-1itSOCcanbedefinedaszeroifactivitiesdisplacedtoleakagestratumiinvolveclearinglandforperennialcropland(e.g.,oilpalm,rubber,etc.).Wheredisplacedactivitiesinvolveclearinglandforannualcropland,thechangeinsoilcarbonstocksinstratumiattimetshallbeestimatedas:VM0004,Version1.0SectoralScope145020)(1244,,LUitsoilitsoilitFCCSOC(80)Where:itSOC=meanchangeinsoilcarbonstocksinstratumiattimetafterconversiontoannualcropland;tCO2-eha-1Csoil,it=averagesoilcarbonstocksto30cmdepthinstratumiattimetbeforeconversiontoannualcropland;tCha-1FLU=land-usefactorforcalculatingrelativesoilcarbonstockchanges;dimensionlessEquation80forcalculatingthechangeinsoilcarbonstocksisbasedonthemethodologyoutlinedinSection5.3.3.4ofthe2006IPCCAFOLUGuidelines.OnlythelandusefactorisincludedinEquation79,anddefaultvaluesforFLUarelistedbyclimatetypeinTable5.5oftheIPCCAFOLUGuidelines.Managementandinputfactorsareconservativelyignoredinthismethodology.Averagesoilcarbonstocksinleakagestratumibeforeconversiontoannualcroplandshallbeestimatedusingfieldmeasurementsmadeinproxyareasorconservativedefaultvaluesfromtheliterature.Continuedemissionsresultingfrompeatdrainageand/orsoilcarbonlossFordisplacedactivitiesinvolvingconversiontoannualcroplandonmineralsoilsorpeatdrainage,greenhousegasemissionsshallbeaccountedforbeyondtheinitialyearofclearing,becausetheseemissionswillcontinueinyearsaftertheinitiallanduseconversion.Averagecontinuedleakageemissionsforallstrataonpeatshallbecalculatedas:itddBcontinueditMEC,,_(81)Averagecontinuedleakageemissionsforallstrataonmineralsoilsthatareconvertedtoannualcroplandshallbecalculatedas:itcontinueditSOCC_(82)Where:continueditC_=averagegreenhousegasemissionsresultingfromcontinuedpeatdrainageorsoilemissionsinstratumi;tCO2-eha-1.MEB,dd,it=meanCO2emissionsfromdrainedpeatinstratumi,timet;tCO2ha-1itSOC=meanchangeinsoilcarbonstocksinstratumiattimetafterconversiontoannualcropland;tCO2-eha-1itSOCshallbeaccountedforintheyearofinitialclearingaswellasthefollowing19years.Asinthecalculationofbaselineemissionsfrompeatdrainage,emissionsfrompeatdrainageinleakagestratacanoccuronlyaslongasthereisapeatsupplyavailabletoundergooxidation.Drainageofpeatinleakagestrataisassumedtooccurfromtheyearofinitialdrainagetot^,wheret^isequaltothenumberofyearsafterdrainagethatpeatcontinuestobepresentassumingasubsidencerateof4.5cmyr-1.Ift^isgreaterthanthenumberofyearsintheproject,thendrainageshallbeincludedinleakagecalculationsforeveryyearaftertheoriginaldrainageevent.However,ift^islessthanthenumberofyearsintheproject,thendrainageemissionsshallbecalculatedasleakageonlyforthenumberofyearsinwhichthereisanavailablesupplyofpeattoundergooxidation.VM0004,Version1.0SectoralScope1451Explanation/justification(ifmethodologyprocedureisnotself-explanatory):Figure3belowshowshowleakageequationsarerelatedandindicatesinyellowtheequationsthatincludeatleastoneparameterforwhichuncertaintyestimationisrequired.Figure3.Conceptualdiagramofleakageequations.Equationnumbersareshowninparentheses.Yellowboxesindicateequationsthatincludeoneormoreparametersforwhichuncertaintyshallbeestimated.Inthebottomofthefigure,allparametersforwhichuncertaintymustbeestimated(orconservativevaluesused)areorganizedbysource.11.ExAnteNetAnthropogenicGHGEmissionsAvoidedTheexantenetanthropogenicGHGemissionsavoidedasaresultofstoppingbaselineactivitiesistheestimatedbaselinenetemissionsminusleakage,intCO2-e:LKCCBSLREDD(83)where:REDDC=netreductioninemissionsfromdeforestation;tCO2-eVM0004,Version1.0SectoralScope1452CBSL=baselinegreenhousegasemissions(Eq.1);tCO2-eLK=leakage(Eq.65);tCO2-eNote:InthismethodologyEq.83isusedtoestimatenetemissionsavoidedfortheperiodoftimeelapsedbetweenprojectstart(t=1)andtheyeart=tbeingtheyearforwhichactualnetemissionsavoidedareestimated.Thisisdonebecauseprojectemissionsandleakagearepermanent,whichrequirescalculationoftheircumulativevaluessincethestartingdateoftheprojectactivity.12.UncertaintiesandConservativeApproachAssessmentofuncertaintiesshouldfollowguidanceofferedbyIPCC2000,IPCCGPG-LULUCFandIPCCAFOLU.Particularexamplesofassessmentofuncertaintyrelatedtoexpertjudgement,useofdefaultvalues,allometricequationsusedandmethodstocombineuncertaintiesareprovidedbelow.12.1UncertaintyestimationforindividualbaselineparametersThismethodologyallowsfortheestimationofuncertaintyinemissionsandremovalsassociatedwithREDDprojectactivities.Useofthemethodologywhileplanningtheprojectcanassurethatmeasurementsareofsufficientintensitytominimizeuncertaintydeductions.Proceduresincludingstratificationandtheallocationofsufficientmeasurementplotscanhelptheprojecttoensurethatlowuncertaintyincarbonstocksresultsandultimatelyfullcreditingcanresult.Itisgoodpracticetoapplythismethodologyatanearlystagetoidentifythedatasourceswiththehighestuncertaintytoallowtheopportunitytoconductfurtherworktodiminishuncertainty.BaselineparametersforwhichuncertaintyshallbeassessedaresummarizedinFigure2onpage49.Uncertaintyisdefinedasthe90%confidenceintervalasapercentageofthemean:100)%90((%)dthIntervalWiConfidenceUs(84)Where:Us=percentageuncertaintyontheestimateofthemeanparametervalue;%μ=samplemeanvalueoftheparameterAprecisiontargetofa90%confidenceintervalequaltoorlessthan10%ofthemeanrecordedvalueshallbetargeted.Thisisespeciallyimportantintermsofprojectplanningformeasurementofcarbonstockswheresufficientmeasurementplotsshouldbeincludedtoachievethisprecisionlevelacrossthemeasuredstocks.Alternatively,(indisputably)conservativeestimatescanalsobeusedinsteadofuncertainties,providedthattheyarebasedonverifiableliteraturesourcesorexpertjudgement.Inthiscasetheuncertaintyisassumedtobezero.EstimatedcarbonemissionsandremovalsarisingfromREDDactivitieshaveuncertaintiesassociatedwithmeasures/estimatesof:areaorotheractivitydata,carbonstocks,biomassgrowthrates,expansionfactors,andothercoefficients.Itisassumedthattheuncertaintiesassociatedwiththeestimatesofthevariousinputdataareavailable,eitherasestimatesbasedonsoundstatisticalsampling,defaultvaluesfromwell-referencedpeerreviewedliteratureorotherwell-establishedpublishedsources,orexpertjudgement.12.1.1UncertaintyinparametersinvolvingexpertjudgementVM0004,Version1.0SectoralScope1453Expertjudgementusuallywillconsistofarange,perhapsquotedtogetherwithamostlikelyvalue.Underthesecircumstancesthefollowingrulesapply:Whereexpertsonlyprovideanupperandalowerlimitingvalue,assumetheprobabilitydensityfunctionisuniformandthattherangecorrespondstothe90%confidenceinterval.Whereexpertsalsoprovideamostlikelyvalue,assumeatriangularprobabilitydensityfunctionusingthemostlikelyvaluesasthemodeandassumingthattheupperandlowerlimitingvalueseachexclude5%ofthepopulation.Thedistributionneednotbesymmetrical.12.1.2UncertaintyinallometricequationsUncertaintyinallometricequationsusedtoestimatetreebiomassshallbeassessedbytestingactualvaluesobtainedfromsite-specificfielddataagainstpredictedvalues.Iffielddatawereusedtodeveloptheallometricequation,thenanindependentdatasetmustbeusedtoverifyit.Verificationisdemonstratedincaseswhereatleast75%ofmeasuredvaluesfallwithinthe90%predictionintervalsofthemeanpredictedresponseandshownosystematicbias.Providedthisisdemonstrated,nofurtherquantificationofuncertaintyinallometricequationsisrequired.Iflessthan75%ofmeasuredvaluesfallwithinthe90%predictionintervalsthenanew,site-specificallometricequationmustbederived.DatashowingtheverificationoftheallometricequationshallbeoutlinedinthePDD.12.1.3UncertaintyinliteraturevaluesAllparametervaluesderivedfromdatareportedintheliteratureshouldreportboththemeanandstandarddeviation.A90%confidenceintervalshallbecalculatedandreportedastheuncertaintyaroundthemeanvalueapplied.Whereanuncertaintyvalueisnotknownorcannotbesimplycalculated,thenaprojectmustjustifythatitisusinganindisputablyconservativenumberandanuncertaintyof0%maybeusedforthiscomponent.12.1.4UncertaintyintheRateofDeforestationInthismethodology,deforestationratesarebasedonactualdeforestationplansbythebaselineagentofdeforestation,thereforeassumetheuncertaintyofthisbaselinerateofclearingiszero.12.1.5ConservativechoiceandapplicationofdefaultdataTheguidelinesprovidedbelowshouldbeusedtoensurethatapplicationofdefaultdatainestimationofparametersresultsinconservative,butnotoverlyconservative,estimates39.Whenusingdefaultdata,thefollowingguidanceshouldbeappliedwhenselectingsourcesofdata:IfanapprovedA/RCDMorVCSmethodologyrequiresapplicationofadefaultvalueandprovidesitsnumericalvaluethenthevalueshallbeconsideredastheconservativeone;Valuesshouldifpossiblebespecies-orlocation-specific,withselectionfromthefollowingdatasources(giveninorderofpriority;highestfirst):oLocalpeer-reviewedstudiesundersimilarclimate/soilconditions–providedthesmallerdatasetstypicaloflocalstudiesareconsideredsufficientlyreliable;oroRegionalornationalvaluesforthesameecologicalzone(thatis,thesamebroadclimatezone,andsimilarsoilfertilityandtype(i.e.,peat);or39AdaptedfromCDMEB50Report,Annex23:―GuidelinesonconservativechoiceandapplicationofdefaultdatainestimationofthenetanthropogenicGHGremovalsbysinks‖,Version02.VM0004,Version1.0SectoralScope1454oInternationalorglobalvalues,includingIPCCliterature,forthesameecologicalzone.Ifspecies-specificdefaultdataarenotavailable,datamaybeselectedfromstudiesinthesameecologicalzoneforthesamegenusandregardedasconservative.Defaultdatamayalsobeselectedfromstudiesinthesameecologicalzoneforthesamefamily,providedtheapplicabilityofthedataischecked.Thepriorityforselectionofdefaultdatasourcesshouldbethatgiveninthebulletpointabove.Theguidelinesbelowshouldbefollowedtoensurethatconservativechoiceofdefaultdataoccurs:a)Ifdefaultdataareavailableforconditionsthataresimilartotheproject,thenmeanvaluesofthedataareconsideredasconservative;b)Inallothercircumstances:i.Themeanvaluesofdefaultdatamaybeconsideredasconservativeiftheyhavebeencheckedagainstfieldmeasurementsandthemeanmeasureddatafallwithin±10%ofthemeandefaultvalue;ii.Iftheapplicabilityofmeanvaluesofdefaultdataisnottobeverifiedbyfieldmeasurement,conservativevaluesofdefaultdatashouldbeassessedusingtheapproachprovidedbelow:Ifstandarddeviationisquoted,thentheconservativevalueisdefinedasbeingonestandarddeviationabove(orbelow,asappropriate)meanvalues;Ifastandarderrorandthenumberofsamplesarequoted,thencalculatethestandarddeviationbymultiplyingthestandarderrorbythesquarerootofthenumberofsamples.Theconservativevalueisdefinedasbeingonestandarddeviationabove(orbelow,asappropriate)meanvalues;Ifarangeofdataisquoted,butwithoutastandarddeviation,thenassumetherangerepresentstheupperandlower90%confidencelimitsofanormallydistributeddataset.Inthiscasetheconservativevalueisthatwhichfallshalfwaybetweenthemeanandthelimitsoftherange;Ifnoneoftheaboveareaprovided,projectparticipantsshalluseestimatesofstandarddeviationsprovidedinparagraphiiibelowandassesstheconservativevalueasbeingonestandarddeviationabove(orbelow,asappropriate)meanvalues.iii.Ifonlymeandataarequotedinreportsorstudiesconsideredtootherwisecontaincredibledata,orifthedatasetsaresmallandsoitisconsideredtherangeofvaluesmaynotbeanadequateestimateofthestandarddeviationoftheparticularparameter,thefollowingnominalvaluesshouldbeassumedforstandarddeviations,expressedhereaspercentagesofthemean(asestimatedfromtherangeinIPCCdatafortheseparameters):Abovegroundbiomassofexistingwoodyvegetation:50%BEFsofexistingwoodyvegetationbasedonbiomassstocks:-40%belowthemeanto+100%above12.2MethodsforCombiningUncertainties12.2.4UncertaintyofthesumordifferenceofseveraltermsThepercentageuncertaintyonquantitiesthatarethesumordifferenceofseveralterms(suchasthesumofcarbonstocksandgreenhousegassourcesinthebaselinecase)canbeestimatedusingthefollowingsimpleerrorpropagationequation40:40Referstoequation5.2.2inGPGLULUCFVM0004,Version1.0SectoralScope1455itSSnBitSSBitSSBiSSnBiSSnBitBitSSBitBitSSBEEEEUEUEU,,,2,,1,2,,,,2,,2,2,,1,B,it............yUncertaint(85)Where:UncertaintyB,itPercentageuncertaintyinthecombinedcarbonstocksandgreenhousegassourcesinthebaselinecaseinstratumiattimet;%UB,SS,itPercentageuncertainty(expressedas90%confidenceintervalasapercentageofthemeanwhereappropriate)forcarbonstocksandgreenhousegassourcesinthebaselinecaseinstratumiattimet(1,2…nrepresentdifferentcarbonpoolsand/orGHGsources);%EB,SS,itMeanvalueofcarbonstockorGHGsources(e.g.trees,downdeadwood,soilorganiccarbon,emissionfrombiomassburningetc.)instratumiattimet(1,2…nrepresentdifferentcarbonpoolsand/orGHGsources)inthebaselinecase;tCO2-ei1,2,3…mBLstratainthebaselinescenario12.2.5UncertaintyoftheproductofseveraltermsThepercentageuncertaintiesonquantitiesthataretheproductofseveraltermsarethenestimatedusingthefollowingequation41:22221,,...nitSSBUUUU(86)Where:UB,SS,it=percentageuncertainty(expressedas90%confidenceintervalasapercentageofthemeanwhereappropriate)forcarbonstocksandgreenhousegassourcesinthebaselinecaseinstratumi(1,2,…nrepresentdifferencecarbonpoolsand/orGHGsources);%Ui=percentageuncertaintiesassociatedwitheachtermoftheproduct(parametersandactivitydata),i=1,2,…,nTheequationsassumethatthereisnosignificantcorrelationamongemissionandremovalestimatesandthatuncertaintiesarerelativelysmall.However,itstillcanbeusedtogiveapproximateresultswhereuncertaintiesarerelativelylarge.12.2.6EstimateoftotaluncertaintyinbaselinescenarioBecausetheuncertaintyassociatedwithratesofdeforestationareassumedtobezerointhecaseofplanneddeforestation,thetotaluncertaintyestimateforeachstratumisequaltoUncertaintyB,it(Eq.84above).Toassessuncertaintyacrosscombinedstrata:41Equation5.2.1inGPGLULUCFVM0004,Version1.0SectoralScope1456BLBLmiitBmiitBitBCCyUncerta1,12,,tBSL,intyUncertaint(87)where:UncertaintyBSL,tTotaluncertaintyinbaselinescenarioattimet;%UncertaintyB,itUncertaintyinbaselinescenarioinstratumiattimet;%itBC,sumofpeatemissionsandcarbonstockchangesinabovegroundbiomassunderthebaselinescenarioforstratumiattimet;tCO2-e.i1,2,3…mBLstratainthebaselinescenario13.DataNeededforExAnteEstimationsData/parameter:CFDataunit:DimensionlessUsedinequations:5,30,34,36,67Description:CarbonfractionofdrymatterSourceofdata:IPCCdefaultMeasurementprocedures:(ifany)Anycomment:Data/parameter:geditBAlog,Dataunit:HaUsedinequations:5Description:Areaoflandloggedunderthebaselinescenarioforstratumi,intimetSourceofdata:Analysisofremotesensingdataand/orlegalrecordsand/orsurveyinformationforlandsownedorcontrolledorpreviouslyownedorcontrolledbythebaselineagentofdeforestationMeasurementprocedures:(ifany)Anycomment:Data/parameter:PDataunit:DimensionlessUsedinequations:6,49Description:percentofharvestindustrialroundwoodgoingintolongtermwoodproductsSourceofdata:Governmentstatistics,FAO,etc.Measurementprocedures:(ifany)Anycomment:Data/parameter:APDataunit:m2Usedinequations:10,32,38VM0004,Version1.0SectoralScope1457Description:PlotareaSourceofdata:FieldmeasurementsMeasurementprocedures:(ifany)Anycomment:Data/parameter:BEFDataunit:DimensionlessUsedinequations:8,34Description:biomassexpansionfactorforconversionofbiomassofmerchantablevolumetoabove-groundbiomassSourceofdata:LiteraturevaluesMeasurementprocedures:(ifany)Anycomment:Data/parameter:iDataunit:td.m.m-3merchantablevolumeUsedinequations:8,34,67Description:volume-weightedaveragewooddensitySourceofdata:LiteraturevaluesorfieldmeasurementsMeasurementprocedures:(ifany)Anycomment:Data/parameter:PBBB,itDataunit:DimensionlessUsedinequations:13Description:averageproportionofCB,AC,itburntunderthebaselinescenarioinstratumi,timetSourceofdata:FieldmeasurementsMeasurementprocedures:(ifany)Anycomment:Data/parameter:CEDataunit:DimensionlessUsedinequations:13,53Description:averagebiomasscombustionefficiencySourceofdata:IPCCdefault=0.5Measurementprocedures:(ifany)Anycomment:Data/parameter:cleareditBA,Dataunit:HaUsedinequations:14,72,74,76Description:Areaclearedunderthebaselinescenarioforstratumi,intimetSourceofdata:Analysisofremotesensingdataand/orlegalrecordsand/orsurveyinformationforlandsownedorcontrolledorpreviouslyownedorcontrolledbythebaselineagentofdeforestationMeasurementprocedures:(ifany)Anycomment:VM0004,Version1.0SectoralScope1458Data/parameter:CratioN/Dataunit:dimensionlessUsedinequations:15,54Description:nitrogen-carbonratioSourceofdata:IPCCdefault=0.01Measurementprocedures:(ifany)Anycomment:Data/parameter:ONER2Dataunit:tCO2-e(tC)-1Usedinequations:15,54Description:emissionratioforN2OSourceofdata:IPCCdefaultvalue=0.007Measurementprocedures:(ifany)Anycomment:Data/parameter:4CHERDataunit:tCO2-e(tC)-1Usedinequations:16,55Description:emissionratioforCH4Sourceofdata:IPCCdefaultvalue=0.012Measurementprocedures:(ifany)Anycomment:Data/parameter:ONGWP2Dataunit:tCO2-e(tN2O)-1Usedinequations:15,54Description:GlobalWarmingPotentialforN2OSourceofdata:(=310forthefirstcommitmentperiodMeasurementprocedures:(ifany)Anycomment:Data/parameter:4CHGWPDataunit:tCO2-e(tCH4)-1Usedinequations:16,55Description:GlobalWarmingPotentialforCH4Sourceofdata:(=21forthefirstcommitmentperiod)Measurementprocedures:(ifany)Anycomment:Data/parameter:AsampleframeDataunit:m2Usedinequations:20Description:AreaofonesamplingframeSourceofdata:FieldmeasurementMeasurementprocedures:(ifany)Anycomment:VM0004,Version1.0SectoralScope1459Data/parameter:CFnon-treeDataunit:DimensionlessUsedinequations:19Description:Carbonfractionofdominantnon-treevegetationspeciesSourceofdata:FieldmeasurementorliteraturevaluesMeasurementprocedures:(ifany)Anycomment:Data/parameter:MCAG,nontree_sample,sf,,itDataunit:kgd.m.Usedinequations:19Description:Carbonstockinabovegroundnon-treevegetationinsampleplotsfinstratumiattimetfromsamplingframemethodSourceofdata:FieldmeasurementMeasurementprocedures:(ifany)Anycomment:Data/parameter:CFqDataunit:tCt-1d.m.Usedinequations:21Description:CarbonfractionofbiomassforspeciesqSourceofdata:FieldmeasurementorliteraturevalueMeasurementprocedures:(ifany)Anycomment:Data/parameter:fq(vegetationparameters)Dataunit:t.d.m.individual-1Usedinequations:21Description:Allometricequationforspeciesqlinkingparameterssuchasstemcount,diameterofcrown,height,orotherstoabove-groundbiomassofanindividualSourceofdata:FieldmeasurementorliteraturevalueMeasurementprocedures:(ifany)Anycomment:Data/parameter:AriDataunit:HaUsedinequations:22Description:Totalareaofallnon-treeallometricmethodsampleplotsinstratumiSourceofdata:FieldmeasurementMeasurementprocedures:(ifany)Anycomment:Data/parameter:MCAG_nontree_allometric,i,r,tDataunit:tCVM0004,Version1.0SectoralScope1460Usedinequations:22Description:Abovegroundbiomasscarbonstockinnontreevegetationinsampleplotrofstratumiattimetfromnon-treeallometricsampleplotsSourceofdata:FieldmeasurementMeasurementprocedures:(ifany)Anycomment:Data/parameter:angleDataunit:DegreesUsedinequations:24,25,26Description:angleformedbetweenobserver‘seyeandendoffarthestobservablecanopybranchfacingeachofeightcomopassdirectionsoroneoftwovantagepointsSourceofdata:FieldmeasurementMeasurementprocedures:(ifany)Anycomment:Data/parameter:DistDataunit:MetersUsedinequations:24,25,26Description:distancefromobservertoendoffirstcanopybranchfacingeachofeightcompassdirectionsorfromoneoftwovantagepointsSourceofdata:FieldmeasurementMeasurementprocedures:(ifany)Anycomment:Data/parameter:DbhDataunit:CmUsedinequations:24,25Description:diameteratbreastheightoftreeSourceofdata:FieldmeasurementMeasurementprocedures:(ifany)Anycomment:Data/parameter:eyeHDataunit:MetersUsedinequations:26Description:heightfromgroundtoobserver‘seyeSourceofdata:FieldmeasurementMeasurementprocedures:(ifany)Anycomment:Data/parameter:treeHDataunit:MetersUsedinequations:26,27,29Description:heightoftreeVM0004,Version1.0SectoralScope1461Sourceofdata:FieldmeasurementMeasurementprocedures:(ifany)Anycomment:Data/parameter:MVB,AG_tree,itDataunit:m3ha-1Usedinequations:34,76Description:MeanmerchantablevolumeunderthebaselinescenarioinstratumiattimetSourceofdata:FieldmeasurementMeasurementprocedures:(ifany)Anycomment:Data/parameter:planteditADataunit:HaUsedinequations:40Description:areaofbiomassgrowthonfuturelanduseinthebaselinescenarioinstratumiattimetSourceofdata:Analysisofremotesensingdataand/orlegalrecordsand/orsurveyinformationforlandsownedorcontrolledorpreviouslyownedorcontrolledbythebaselineagentofdeforestationMeasurementprocedures:(ifany)Anycomment:Data/parameter:SlpDataunit:tCha-1yr-1Usedinequations:42Description:slopeofregressionlineofbiomassaccumulationfunctionSourceofdata:CalculatedbasedonfieldmeasurementsMeasurementprocedures:(ifany)Anycomment:Data/parameter:BDataunit:tCha-1Usedinequations:41Description:interceptofregressionlineSourceofdata:CalculatedbasedonfieldmeasurementsMeasurementprocedures:(ifany)Anycomment:Data/parameter:agepeakDataunit:YearsUsedinequations:45Description:ageofstandatpeakproductionSourceofdata:CalculatedbasedonfieldmeasurementsorliteraturevaluesMeasurementprocedures:(ifany)Anycomment:Data/parameter:cleareditBhA,VM0004,Version1.0SectoralScope1462Dataunit:HaUsedinequations:48Description:AreaclearedatharvestHunderthebaselinescenarioforstratumi,intimetSourceofdata:Analysisofremotesensingdataand/orlegalrecordsand/orsurveyinformationforlandsownedorcontrolledorpreviouslyownedorcontrolledbythebaselineagentofdeforestationMeasurementprocedures:(ifany)Anycomment:Data/parameter:PBHDataunit:DimensionlessUsedinequations:48Description:averageproportionofabovegroundcarbonstockremovedduringharvestHunderthebaselinescenarioforstratumi,timetSourceofdata:FieldmeasurementsorliteraturedataMeasurementprocedures:(ifany)Anycomment:Data/parameter:PBBBH,itDataunit:DimensionlessUsedinequations:53Description:averageproportionofremainingabovegroundcarbonstocksburntatharvestHunderthebaselinescenarioinstratumi,timetSourceofdata:Measurementprocedures:(ifany)Anycomment:Data/parameter:DB,,drain,itDataunit:CmUsedinequations:58Description:averagedepthofpeatdrainageoraveragedepthtowatertableunderthebaselinescenarioinstratumi,timetSourceofdata:Measurementprocedures:(ifany)Anycomment:Data/parameter:AB,drain,itDataunit:HaUsedinequations:57Description:areaofdrainageimpactunderthebaselinescenarioinstratumi,timetSourceofdata:Analysisofremotesensingdataand/orlegalrecordsand/orsurveyinformationforlandsownedorcontrolledorpreviouslyownedorcontrolledbythebaselineagentofdeforestationMeasurementprocedures:(ifany)Anycomment:Data/parameter:DpeatDataunit:MetersVM0004,Version1.0SectoralScope1463Usedinequations:59Description:averagedepthofpeatinprojectareaSourceofdata:FieldmeasurementsMeasurementprocedures:(ifany)Anycomment:Data/parameter:DB,burn,itDataunit:MetersUsedinequations:63Description:depthofpeatburnedunderthebaselinescenarioinstratumiattimet;Sourceofdata:LiteraturevaluesorfieldmeasurementsMeasurementprocedures:(ifany)Anycomment:Data/parameter:AB,,burn,itDataunit:HaUsedinequations:63Description:areaofpeatburnedunderthebaselinescenarioinstratumiattimetSourceofdata:Analysisofremotesensingdataand/orlegalrecordsand/orsurveyinformationforlandsownedorcontrolledorpreviouslyownedorcontrolledbythebaselineagentofdeforestationMeasurementprocedures:(ifany)Anycomment:Data/parameter:BDiDataunit:gcm-3=tm-3Usedinequations:63Description:bulkdensityofpeatSourceofdata:FieldmeasurementsorliteraturevaluesMeasurementprocedures:(ifany)Anycomment:Data/parameter:EFCO2Dataunit:gCO2(tpeat)-1Usedinequations:61Description:CO2emissionsfromthecombustionofpeatSourceofdata:LiteraturevalueMeasurementprocedures:(ifany)Anycomment:Data/parameter:EFCH4Dataunit:gCH4(tpeat)-1Usedinequations:62Description:CH4emissionsfromthecombustionofpeatSourceofdata:LiteraturevalueMeasurementprocedures:(ifany)Anycomment:VM0004,Version1.0SectoralScope1464Data/parameter:LDFDataunit:tCm-3Usedinequations:67Description:FactorforcalculatingthebiomassofdeadwoodcreatedduringloggingoperationspercubicmeterextractedSourceofdata:Defaultvalueof0.37tCm-3from534logginggapsmeasuredbyWinrockInternationalinBolivia,Belize,Mexico,theRepublicofCongo,BrazilandIndonesiamaybeusedfortropicalbroadleafforests.Measurementprocedures:(ifany)Anycomment:Data/parameter:PMLFTDataunit:%Usedinequations:Description:MeanmerchantablebiomassasaproportionoftotalabovegroundtreebiomassforeachforesttypesSourceofdata:Thesourceofdatashallbechosenwithpriorityfromlowertohigherpreferenceasfollows:1.Peer-reviewedpublishedsources(includingcarbon/biomassmapsorgrowingstockvolumemapswithascaleofatleast1km)2.Officialgovernmentdataandstatistics3.OriginalfieldmeasurementsTheforesttypesconsideredshallbeonlythoserelevantforthespecificmarketeffectsleakagei.e.onlyforesttypeswithactivetimberproduction.AnappropriatesourceofdatawillbeGovernmentrecordsonannualallowablecutsfortheareasofcommercialforests.Wherevolumesareusedthesourceofdatawooddensityisrequiredtoconverttomerchantablebiomass.Thesourceofdataonwooddensitiesshallbechosenwithpriorityfromhighertolowerpreferenceasfollows:1.Knowledgeoncommercialspeciesandthusanappropriatelyweightedwooddensityderivedfromthedensityofthesespecies2.Aregion-specificmeanwooddensityasgivenine.g.Brown1997Measurementprocedures:(ifany)Anycomment:Data/parameter:VB,itDataunit:m3Usedinequations:67Description:VolumeoftimberprojectedtobeextractedfromwithintheprojectboundaryduringthebaselineinstratumiattimetSourceofdata:Thesourceofdatashallbechosenwithpriorityfromhighertolowerpreferenceasfollows:VM0004,Version1.0SectoralScope14651.Timberharvestrecordsand/or2.Estimatesderivedfromfieldmeasurementsand/or3.AssessmentswithaerialphotographyorsatelliteimageryMeasurementprocedures:(ifany)Anycomment:Notethatthisvolumedoesnotincludeloggingslashleftonsite.Datacompilersshouldalsomakesurethatextractedvolumesreportedaregrossvolumesremoved(i.e.reportedvolumedoesnotalreadydiscountforestimatedwoodwaste,asisoftenthepracticeofharvestrecords)Data/parameter:PMPiDataunit:%Usedinequations:Description:MerchantablebiomassasaproportionoftotalabovegroundtreebiomassforstratumiwithintheprojectboundariesSourceofdata:Withineachstratumdividethesummedmerchantablebiomass(definedastotalgrossbiomass(includingbark)ofatree30cmdbhorlargerfroma30cmstumptoaminimum10cmtopofthecentralstem)bythesummedtotalabovegroundtreebiomass.Merchantablebiomassisequaltomerchantablevolumemultipliedbywooddensity.Measurementprocedures:(ifany)Anycomment:ExanteatimezeromeasurementshouldbemadeofthisfactorData/parameter:HistHaiDataunit:HaUsedinequations:71Description:Averageannualareaofdeforestationbythebaselineagentoftheplanneddeforestationinstratumiforthe5-10yearspriortoprojectimplementationSourceofdata:Analysisofremotesensingdataand/orlegalrecordsand/orsurveyinformationforlandsownedorcontrolledorpreviouslyownedorcontrolledbythebaselineagentofdeforestationMeasurementprocedures:(ifany)Anycomment:Data/parameter:AdefLK,itDataunit:HaUsedinequations:73Description:ThetotalareaofdeforestationbythebaselineagentoftheplanneddeforestationinstratumiattimetSourceofdata:Analysisofremotesensingdataand/orlegalrecordsand/orsurveyinformationforlandsownedorcontrolledorpreviouslyownedorcontrolledbythebaselineagentofdeforestationMeasurementprocedures:(ifany)Anycomment:Legalrecordswillincludegovernmentpermitstodeforestincludingconcessionlicenses.Ex-ante,projectproponentsshalldetermineandjustifythelikelihoodofleakagebasedoncharacteristicsofthebaselineVM0004,Version1.0SectoralScope1466agent.VM0004,Version1.0SectoralScope146714.MonitoringThemethodologyoutlinesthemethodsformonitoringlandusechange,forestdegradationandcarbonpoolsandformsthebasisforimplementingthemonitoringplan.Itfacilitatesthemonitoringofprojectactivities,andservesasreferenceformonitoring,reporting,andverificationrequiredforevaluatingprojectperformance,andtosupporttheaccuratedeterminationofcarbonoffsetsbyprojectactivities.Themethodologywasdesignedsothatallnecessaryfieldmeasurements(includingmeasurementsofbaselinecarbonstocks)canbeperformedupfront-priortoprojectimplementation–ifdesired,thuslimitingmonitoringactivitiesoverthecreditingperiodtomonitoringactivitydataonly(areachanges).15.MonitoringofProjectImplementationThemethodologyincludesmethodsformonitoringthefollowingelements:Theproposedprojectactivityincludingtheprojectboundary,abufferregionsurroundingtheprojectboundarytoensureagainstimpactsofoutsidedrainageactivities,andallactivitiesthatresultinincreasedGHGemissionsinsidetheprojectboundary;ActualnetGHGemissionsincludingchangesincarbonstocksinabove-groundbiomass,peatemissionsLeakageduetodisplacementofeconomicactivitiesAQualityAssurance/QualityControlplan,includingfieldmeasurements,datacollectionverification,dataentryandarchiving,asanintegralpartofthemonitoringplanoftheproposedprojectactivity,toensuretheintegrityofdatacollected.a.MonitoringoftheboundaryoftheproposedprojectactivityTheprojectboundarydelineatestheprojectactivityasadistinctlanduseinrelationtothelandusesintheadjoiningarea.Becausethismethodologyisapplicabletoavoidedemissionsprojects,theprojectboundaryisfixedthroughouttheentirecreditingperiod.Afterinitialverificationoftheprojectboundaryusingfield-basedmethods,GPSsystemsand/orremotesensingmethods,theprojectboundarymustbemonitoredoverthecreditingperiodtoaccountforemissionsassociatedwithanydeforestation,illegallogging,peatdrainage,orothereventsthathaveoccurredwithintheprojectboundary.Monitoringoftheprojectboundaryismeanttodemonstratethattheactualareawherebaselineactivitieswerepreventedconformstotheareaoutlinedintheprojectplan.Thefollowingmonitoringactivitiesareforseen:Field(oraerial)surveysconcerningtheactualprojectboundarywithinwhichbaselineactivitieshavebeenprevented;Measuringgeographicalpositions(latitudeandlongitudeofeachcornerpolygonsites)usingGPSorremotesensingmethods;CheckingwhethertheactualboundaryisconsistentwiththedescriptioninthePDD;IftheactualboundaryfallsoutsideoftheprojectboundaryasdefinedinthePDD,theselandsshallnotbeaccountedasapartoftheprojectactivity.InputthemeasuredgeographicalpositionsintotheGISsystemandcalculatetheareaofeachstratumwithintheprojectarea.Inadditiontomonitoringtheprojectboundary,iftheprojectboundarydoesnotrepresentadiscretehydrologicunit(suchasapeatdome),thenprojectproponentsshallmonitorabufferregiondirectlysurroundingtheprojectboundarytoensurethatnodrainageactivitieshaveoccurredthatcouldpotentiallyVM0004,Version1.0SectoralScope1468impactpeatemissionsinsidetheprojectboundary.Thewidthofthisbufferzoneshallbethedistancetotheedgeofthepeatdomeor3km,whicheveristhesmallervalue.Ifthebufferzoneislessthan3kmaroundtheprojectboundaryistobeapplied,thisvalueshallbedefendedinthePDDandmethodsformonitoringthedrainageimpactswithinthereducedbufferzoneshallbedesignedinconsultationswithexpertsinpeathydrology.b.MonitoringofforestprotectionactivitiesAspartofmonitoringforestprotectionactivities,anyincreasesinGHGemissionsthatoccurwithintheprojectboundaryafterthestartoftheprojectmustberecordedanddeductedfromtheexanteestimateofbaselineemissions.Thefollowingcategoriesshallberecordedintheprojectdatabaseandreportedatthetimeofverification:Areawherenaturaloranthropogenicdisturbances(includingfire,illegalloggingandotherlandusechange)occurredwithintheprojectboundarybydate,location,biomasslostoraffected,andthepreventativeorcurativemeasures,ifanyimplementedNumberandlocationoflogginggapsbydate,location,biomasslostoraffected,andthepreventativeorcurativemeasures,ifanyimplementedAreaanddepthofpeatburnedwithintheprojectareabydate,location,estimatedpeatemissions,andthepreventativeorcurativemeasures,ifanyimplementedAreaofpeat,ifany,thatwasdrainedwithintheprojectboundarybydate,location,estimatedpeatemissions,andthepreventativeorcurativemeasures,ifanyimplementedInformationonforestprotectionpractices16.SamplingDesignandStratificationThenumberandboundariesofthestratadefinedexanteusingthemethodologyprocedureoutlinedinSection5maychangeduringthecreditingperiod(expost).Forthisreason,stratashouldbemonitoredperiodically.Ifachangeinthenumberandareaoftheprojectstrataoccurs,thesamplingframeworkshouldbeadjustedaccordingly.Themethodologyproceduresformonitoringstrataanddefiningthesamplingframeworkareoutlinedbelow.16.1Monitoringofstrata:Stratificationoftheprojectareaintorelativelyhomogeneousunitscaneitherincreasethemeasuringprecisionwithoutincreasingthecostunduly,orreducethecostwithoutreducingmeasuringprecisionbecauseofthelowervariancewithineachhomogeneousunit.ProjectparticipantsshouldpresentinthePDDanexantestratificationoftheprojectareausingthemethodsoutlinedinSection5andbuildageo-referencedspatialdatabaseinaGISplatformforeachparameterusedforstratificationoftheprojectareaunderthebaselineandprojectscenario.Thisgeo-referencedspatialdatabaseshouldbecompletedattheearlieststagesoftheimplementationoftheprojectactivity.Theverifiershallverifytheachievementofthisstratificationandgeo-referencedspatialdatabaseatthefirstverification.TheconsistencyoftheactualboundaryofthestrataasmonitoredinthefieldwiththedescriptioninthePDDshallbeperiodicallymonitored,astheboundariesmaychangeduringthecreditingperiodduetothefollowing:Disturbances(e.g.duetofireordeforestation)mayoccurthataredistributedpatchilyoveralandscape,resultingindifferenteffectsondifferentpartsofanoriginallyhomogeneousstratum;Forestmanagementactivities(illegallogging,loggingconcessions)mayoccur,resultingindifferenteffectsondifferentpartsofanoriginallyhomogeneousstratum;VM0004,Version1.0SectoralScope1469Twodifferentstratamaybecomesimilarenoughtoallowtheirmergingintoonestratum.Ifoneormoreoftheaboveconditionsoccur,expoststratificationmayberequired.Thepossibleneedforexpoststratificationshallbeevaluatedateachmonitoringeventandchangesinthestratashouldbereportedtotheverifier.MonitoringofstratashallbedoneusingaGeographicalInformationSystem(GIS),whichallowsfortheintegrationofdatafromdifferentsources(includingGPScoordinatesandremotesensingdata).ThemonitoringofstrataiscriticalfortransparentandverifiablemonitoringofthevariableAit(areaofstratumiattimet),whichisofutmostimportanceforanaccurateandprecisecalculationofnetanthropogenicGHGemissionsavoided.16.2SamplingframeworkThesamplingframework,includingsamplesize,plotsize,plotshapeandplotlocationshouldbespecifiedinthePDD.Themonitoringmethodologywasdesignedsothatallsamplingcaninvolvetemporaryplotsandcanoccuratthebeginningoftheproject.Thustheonlymonitoringactivitynecessaryoverthecreditingperiodisannualmonitoringoflandcoverchangewithintheprojectboundary.Thenumberofsampleplotsisestimatedbasedonaccuracyandcosts.Thenumber,sizeandlocationofsamplingplotsshallbedeterminedusingthemostcurrentversionoftheCDMTool―CalculationofthenumberofsampleplotsformeasurementswithinA/RCDMprojectactivities.‖4216.3MonitoringfrequencyMonitoringshalloccurannually.16.4MeasuringandestimatingcarbonstockchangesandpeatemissionsovertimeIfaprojectchoosestotracktreegrowthovertimewithintheprojectboundary,thenthegrowthofindividualtreesonpermanentplotsshallbemeasuredeveryfiveyearsorateachmonitoringeventdependingontheexpectedGHGstocksandthefinancialneedsoftheprojectactivity.ThecarbonstockchangesinthetreepooloneachplotarethenestimatedusingtheAerialImageryMethod,theBiomassExpansionFactormethodortheAllometricEquationsmethod(asoutlinedinSection8.2.2.1above).Althoughmonitoringcarbonstockincreasesovertimewithintheprojectboundaryisoptionalforavoidedemissionsprojects,monitoringunforeseencarbonstockdecreasesovertimewithintheprojectboundaryisrequired.TheseGHGemissionsmaybetheresultofdeforestation,degradation,fire,logging,etc.withintheprojectboundary.Monitoringcarbonstockchangesoverthecreditingperiodwillallowadeductiontobemadetoprojectbenefits,ifnecessary,toaccountfortheactualGHGemissionsthatoccurwithintheprojectboundaryoverthelifeoftheprojectaswellasoutsidetheprojectboundaryintheformofleakage.17.CalculationofExPostNetBaselineGHGEmissionsBaselinecarbonstockchangesdonotneedtobemonitoredaftertheprojectisestablished,becausetheacceptedbaselineapproachassumescontinuationofexistingchangesincarbonpoolswithintheproject42http://cdm.unfccc.int/methodologies/ARmethodologies/tools/ar-am-tool-03-v2.pdfVM0004,Version1.0SectoralScope1470boundaryfromthetimeofprojectvalidation.However,technicalprogressandanincreaseindataavailabilitymayoccur,allowingforalteredbaselineestimates.18.DatatobeCollectedandArchivedfortheEstimationofNetBaselineGHGEmissionsUnderthismethodologythedataneededforestimatingbaselineGHGemissionsarelistedinthesection13aboveforcalculatingexantebaselinenetGHGemissions.19.CalculationofExPostNetActualGHGEmissionsAvoidedTheactualnetgreenhousegasemissionsavoidedrepresentthesumoftheavoidednetdecreasesincarbonstocksandavoidedpeatemissionswithintheprojectboundary(CBSL),minusanyGHGemissionsfromthebaselinescenariothatarenotpreventedwithintheprojectboundaryintheprojectcase(CPRJ),suchaslogging,fire,orotherlandusechangesthatleadtoanincreaseinemissions.Thecalculationsshallbeperformedannuallyaccordingtothemonitoringplan.Therefore:PRJBSLACTUALCCC(88)where:ACTUALC=actualnetgreenhousegasemissionsavoided;tCO2-e.BSLC=sumofpeatemissionsandcarbonstockchangesinabovegroundbiomassunderthebaselinescenario;tCO2-ePRJC=sumofemissionsthatoccurwithintheprojectboundary;tCO2-eNote:InthismethodologyEq.87isusedtoestimateactualnetgreenhousegasemissionsavoidedfortheperiodoftimeelapsedbetweenprojectstart(t=1)andtheyeart=tbeingtheyearforwhichactualnetgreenhousegasavoidedemissionsareestimated.19.1Estimationofbaselineemissions(CBSL)Methodsfortheestimationofbaselineemissions(changesinbiomasscarbonstocksandpeatemissions)thatwouldhaveoccurredintheabsenceofprojectactivitiesareoutlinedinSection8andarenotrepeatedhere.19.2Estimationofemissionsoccurringduringprojectactivities(CPRJ)MonitoringlandusechangewithintheprojectboundarymustoccurtoensurethatanyGHGbenefitsachievedbyprojectactivitiesduringthecreditingperiodarereal,permanentandsecure.Therefore,anydecreasesincarbonstocksorincreasesinpeatemissionsthatoccurinsidetheprojectboundaryafterthestartoftheprojectmustbeaccountedfor,includingtheGHGemissionsfromanylandcoverchangethatmayoccurwithintheprojectareaoverthecreditingperiod.Intheory,projectactivitiesthatpreventlandusechangewithintheprojectboundaryshouldbe100%successfulandLUCitEinEq.82belowshouldbezero.However,emissionsfromfiresanddegradationmaycontinuetooccur.Theseemissionsshallalsobeaccountedforoverthecreditingperiod,alongwithanyunanticipatedlandusechange.Withintheprojectboundary,threesourcesofemissionswillleadtosignificantreductionsinprojectbenefits:(1)GHGemissionsduetoselectivelogging(degradation);(2)GHGemissionsduetofire;and(3)GHGemissionsduetodeforestation:VM0004,Version1.0SectoralScope147111,ttmiitPPRJPSCC(89)LCCitPfireitPgingitPitPEEEC,,log,,(90)where:PRJC=sumofemissionsthatoccurwithintheprojectboundaryasaresultofemissionsthatwereunanticipatedand/orunabletobeavoidedbyprojectactivities;tCO2-e.itPC,=sumofemissionsthatoccurwithintheprojectboundaryinstratumiattimetasaresultofemissionsthatwereunanticipatedand/orunabletobeavoidedbyprojectactivities;tCO2-e.gingitPElog,=GHGemissionsduetologginginstratumi,timet;tCO2-efireitPE,=GHGemissionsduetofireinstratumi,timet;tCO2-eLCCitPE,=GHGemissionsduetolanduse/coverchangeinstratumi,timet;tCO2-ei=1,2,3,...,mPSstratat=1,2,3,...,tyears19.2.1EstimationofGHGemissionsduetologging(gingitPElog,)Thecarbonimpactofloggingiscalculatedasthedifferenceincarbonstocksbetweenaforestthathasbeenharvestedandonethathasnot.GHGemissionsthatoccurduetologgingarearesultofchangesinliveanddeadbiomasscausedbytheextractionoftimberanddamagetoresidualtreesfromtheloggingactivities.Themonitoringmethodologywasdesignedtoenableprojectparticipantstoestimateanaverageemissionfactorperlogginggappriortothestartoftheprojectifdesired;thustheonlymonitoringthatisnecessaryoverthecreditingperiodistodetectthenumberoflogginggapsandareaofnewpeatdrainagepresentwithintheprojectboundaryinagivenyeart.MethodsforestimatingthecarbonimpactsofloggingactivitieshavebeendocumentedpreviouslyinPearsonetal.(2006)43andBrownetal.(2006)44.Theloggingemissionfactorisestimatedtolinkareadilymonitoredcomponent(numberoflogginggapsdetectedinthemonitoringyear)withthetotalabovegroundcarbonimpact.Aninitialsetofgroundmeasurementsinlogginggapsshallbecompletedatthebeginningoftheprojectoroverthelifeoftheproject.Thesizeofeachgapk,thedimensionsofthefelledtreeandcommerciallogandtreesthatareseverelydamagedorkilledasaresultofthetreefallaremeasured.Stepsareoutlinedbelowtotranslatefieldmeasurementsofloggingimpactsintoanaverageemissionfactorperstratum.Theareaofnewcanalconstructionisalsomonitoredtoestimateemissionsfrompeatdrainageoverthemonitoringinterval.43Pearson,T.,S.Walker,S.Grimland,andS.Brown.2006.Carbonandco-benefitsfromsustainablelandusemanagement.Deliverable17:Impactofloggingoncarbonstocksofforests:TheBrazilianAmazonasacasestudy.DevelopedfortheUSAgencyforInternationalDevelopment:WinrockInternational,Arlington,VA.Availableatwww.winrock.org/Ecosystems/publications.asp?BU=908644Brown,S.,T.Pearson,N.Moore,etal.2006.UseofaerialdigitalimagerytomeasuretheimpactofselectiveloggingoncarbonstocksoftropicalforestsintheRepublicofCongo:Deliverable9:Aerialimageryanalysisofloggingdamage.WinrockInternational,ReportsubmittedtoUSAID.CooperativeAgreementNo.EEM-A-00-03-00006-00.Availableatwww.winrock.org/Ecosystems/publications.asp?BU=9086VM0004,Version1.0SectoralScope1472TheGHGemissionsattributabletologgingwithintheprojectboundaryoverthemonitoringperiodarethereforeestimatedas:gingitdrainageiginggapsitPgingitPEEFNElog,,log,log,)((91)where:gingitPElog,=GHGemissionsduetologgingintheprojectarea;tCO2-egapsitPN,=numberoflogginggapsdetectedinstratumi,timetintheprojectarea;dimensionlessEFlogging,i=averageloggingemissionfactorforstratumi;tCO2-e(logginggap)-1gingitdrainageElog,=CO2emissionsfrompeatdrainageinstratumiattimet,tCO2-e19.2.1.1EstimationofEFlogging,iAnaverageemissionfactor(EFlogging,i)foreachstratumcanbederivedpriortothestartofprojectactivitiesorbeforethefirstmonitoringeventbycollectingfieldmeasurementsinrecentlogginggapsintheprojectregion.Emissionfactorsfordifferentstratamaybesimilarenoughtoallowtheirmergingsothatonegeneralemissionfactorvalueisused.Theemissionfactorforselectiveloggingdetectedineachstratumicanbeestimatedas:KCCEFKkdamagedikPextractedikPiging1,,,log(92)where:igingEF,log=loggingemissionfactorinstratumi;tCO2-e(logginggap)-1extractedikPC,=averagecarbonextractedastimberperlogginggapkinstratumi;tCdamagedikPC,=averagecarbondamagedasaresultofloggingperlogginggapkinstratumi;tC(gap)-1k=1,2,3,…,Klogginggaps;dimensionlessTobeconservative,allemissionsfrombiomassdamagedduringtimberextractiondamagedikPC,isassumedtobeemittedimmediatelyalongwithextractedikPC,.Carbonstorageinwoodproductsisconservativelyignored.ToapplyEq.92above,fieldmeasurementsshallbecollectedtoestimateaveragevaluesofcarbonextracted(extractedikPC,)andcarbondamaged(damagedikPC,)perlogginggapk.Thenumberofgapstobemeasuredwilldependonthenumberofgapsavailableformeasurement,accuracyandcosts.TheVM0004,Version1.0SectoralScope1473numberofgapsmeasuredandasummaryoflogginggapfieldmeasurementsshallbepresentedinthePDD.Stepstoestimatetheaveragevaluesofcarbonextractedanddamagedperlogginggapareoutlinedbelow.Step1.Measuredimensionsofthetimbertree(s)withineachlogginggapkandestimateaveragecarbonextractedperlogginggap(extractedikC)Step1a.Oneachtimbertreetrineachmeasuredlogginggapkineachstratumi,thefollowingmeasurementsshallberecorded:1.thediameteratthestumpendofeachcommerciallog(iktrbottomD,,)2.thediameteratthecrownendofeachcommerciallog(iktrtopD,,)3.thedistancebetweenthestumpandcrown(lengthoftimberlogextracted)(iktrL,log,)4.theheightofthestump(Hs,tr,ik)5.thediameterofthestump(Ds,tr,ik)6.thelength,topdiameterandbottomdiameterofanypiecesofbolefromthetimbertreeleftbehindontheforestfloor(Lpiece,tr,ik,Dpiece-b,tr,ik,Dpiece-t,tr,ik).iktrL,log,shallbeadjustedbysubtractingthelengthofanypiecesofboleleftonsitefromtheinitialdistancemeasuredbetweenthestumpandcrown.Step1b.Estimatethevolumeofeachextractedlogbymultiplyingloglengthbytheaverageofthecross-sectionalareasatthefootandcrownendsofeachlog:20020020020031,,,,2,,2,,,log,,log,iktrtopiktrbottomiktrtopiktrbottomiktriktrDDDDLV(93)where:iktrV,log,=volumeoflogextractedfromtimbertreetrinstratumi,gapk;m3iktrL,log,=lengthoflogextractedfromtimbertreetrinstratumi,gapk,measuredasthedistancefromstumptobaseofcrown,lessthelengthofanypiecesofboleleftonsite;miktrbottomD,,=diameteratthestumpendoflogextractedfromtimbertreetrinstratumi,gapk,cmiktrtopD,,=diameteratthecrownendoflogextractedfromtimbertreetrinstratumi,gapk,cmStep1c.Estimatethebiomasscarbonofeachcommerciallogbymultiplyingtheestimatedvolumebythewooddensityandcarbonfraction:CFVCiiktriktr,log,,log,(94)where:iktrV,log,=volumeoflogextractedfromtreetrinstratumi,gapk;m3tktrC,log,=biomasscarbonoflogextractedinstratumi,gapk;tCi=wooddensity45ofextractedloginstratumi,tm-345Aspecies-specificdensityisusedwhenthespeciesisidentifiedorameantreedensitycanbeusedifthespecieswasnotknown.VM0004,Version1.0SectoralScope1474CF=carbonfractionofextractedlog,IPCCdefault=0.5;tC(td.m.)-1Step1d.Estimatethetotalbiomasscarbonandvolumeofallcommerciallogsingapk:TRtriktrextractedikCC1,log,(95)where:iktrC,log,=biomasscarboninextractedlogoftreetrinstratumi,gapk;tCextractedikC=biomasscarbonextractedfromalltreesinstratumi,ingapk;tCtr=1,2,3,…,TRtimbertreesingapk;dimensionlessStep2.Estimatecarbondamagetovegetationasaresultoflogging(damagedikC)Thetotalcarbondamagecausedbyloggingineachgapkisestimatedasthesumofthebiomasscarboninthecrown,stump,anyremainingpiecesofboleleftbehindfromthefelledtrees,andthebiomassofsnappedanduprootedtrees:ikincdamikpiecesikscdamagedikPCCCC,,,,(96)where:damagedikPC,=totalcarbondamagecausedbylogginginstratumi,gapk;tCikincdamC,=incidentalcarbondamageinstratumi,gapkduetologgedtree;tCikscC,=biomasscarbonincrownandstumpofloggedtreeinstratumi,gapk;tCCpieces,ik=biomasscarboninremainingpiecesofbolefromthetimbertreeinstratumi,gapk;tCStep2a.UsestumpmeasurementstoestimateDBHoftheloggedtreeandcalculatetotalabovegroundbiomassofthefelledtimbertree:)130(100,,,log,,,,,,,,iktrsiktriktrtopiktrsiktrsiktrHLDDDDBH(97)),(,,,,iktriktriktrAGHDBHfB(98)1000,,,,CFBCiktrAGiktrAG(99)where:iktrAGB,,=totalabovegroundbiomassoffelledtreetrinstratumi,gapk;kg),(,,iktriktrHDBHf=anallometricequationlinkingabove-groundtreebiomass(kgtree-1)toVM0004,Version1.0SectoralScope1475diameteratbreastheight(DBH)andpossiblytreeheight(H)iktrAGC,,=abovegroundbiomasscarbonoftreetrinstratumi,gapk;tCiktrAGB,,=abovegroundtreebiomassoftreetrinstratumi,gapk;kgCF=carbonfraction,tC(td.m.)-1iktrsD,,=diameterofthestumpoftheloggedtimbertreetrinstratumi,gapk;cmiktrtopD,,=diameteratthecrownendoflogextractedfromtimbertreetrinstratumi,gapk,cmiktrH,=treeheightoftreetrinstratumi,gapk;mHs,tr,ik=stumpheightoftreetrinstratumi,gapk;cmiktrL,log,=lengthoflogextractedfromtimbertreetrinstratumi,gapk,measuredasthedistancefromstumptobaseofcrown,lessthelengthofanypiecesofboleleftonsite;mStep2b.Estimatethetotalcarbonofallremaininglogpiecesleftatthesite:CFLDDCiiktrpcePCEpceiktrtpceiktrbpceiktrpieces,,21,,,,,,2)01.0()01.0((100)where:iktrpiecesC,,=carbonofremaininglogpiecesleftinthelogginggapfromtimbertreetrinstratumi,gapk;tCiktrbpceD,,=diameterofbottomendofpiecepceleftfromtimbertreetrinstratumi,gapk;cmiktrtpceD,,=diameteroftopendofpiecepceleftfromtimbertreetrinstratumi,gapk;cmiktrpceL,,=lengthofpiecepceleftfromtimbertreetrinstratumi,gapk,mi=wooddensityofpiecepceleftfromtimbertreetrinstratumi,gapk,td.m.m-3CF=carbonfraction,tC(td.m.)-1pce=1,2,3,…,PCEpiecesThebiomasscarbonoftheremainingpiecesforallloggedtreesingapkiscalculatedas:TRtriktrpiecesikpiecesCC1,,,(101)Step2c.EstimatecarbonintheremainingtreecrownandstumpbysubtractingthebiomassoftheextractedlogandanyremainingpiecesfromthetotalbiomassofthefelledtreeascalculatedinEq.91:iktrpiecesiktriktrAGiktrscCCCC,,,log,,,,,(102)where:VM0004,Version1.0SectoralScope1476ktrscC,,=biomasscarbonincrownandstumpofloggedtreetrinstratumi,gapk;tCiktrAGC,,=abovegroundbiomasscarbonintreetrinstratumi,gapk;tCiktrC,log,=biomasscarbonoflogextractedfromtreetrinstratumi,gapk,tCiktrpiecesC,,=biomasscarbonofremaininglogpiecesoftreetrinstratumi,gapk;tCThebiomasscarbonoftheremainingtreecrownandstumpsforallloggedtreesingapkiscalculatedas:TRtriktrscikscCC1,,,(103)where:iktrscC,,=biomasscarbonincrownandstumpofloggedtreetrinstratumi,gapk;tCikscC,=biomasscarbonincrownandstumpofallloggedtreesinstratumi,gapk;tCtr=1,2,3,…,TRtimbertreesinstratumi,gapk;dimensionlessStep2d.Estimatetheincidentaldamagetosurroundingvegetationduetologging:Damagedtreesarethosetreesinalogginggapkthatwereseverelyimpactedbytreefall.Damagetreesareclassifiedaseither1)snappedstemor2)uprooted.Toestimatetheamountofdamagedvegetationineachgap,thegeneralbiomassequation(Eq.90above)isappliedtomeasurementsofdbhofthedamagedtrees.Totalincidentaldamageiscalculatedas:dTRdtrikdtrAGikincdamCC_1_,_,,(104)and:1000,_,,_,CFBCikdtrAGikdtrAG(105)),(,_,HDBHfBikdtrAG(106)where:ikincdamC,=incidentalcarbondamageinstratumi,gapkduetologgedtree;tCikdtrAGC,_,=abovegroundtreebiomasscarbonofdamagedtreetr_dinstratumi,gapk;tCikdtrAGB,_,=abovegroundtreebiomassofdamagedtreetr_dinstratumi,gapk;kgCF=carbonfraction,tC(td.m.)-1),(HDBHf=anallometricequationlinkingabove-groundtreebiomass(kgtree-1)todiameteratbreastheight(DBH)andpossiblytreeheight(H)tr_d=1,2,3,…,TR_ddamagedtreesinstratumi,gapk,timet19.2.1.2EstimationofgapsitPN,VM0004,Version1.0SectoralScope1477Ateachmonitoringevent,useaerialphotographsorotheraerialimageryorhighresolutionremotesensingdatatomonitorthenumberoftreegapspresentintheprojectarea.Imageryshouldbecollectedannually.Atthetimetheimageryiscollected,itisconservativetooverestimatethenumberofgapsbyassumingthatallgapsarecausedbycommercialloggingandnotbynaturaltreefall.Thecanopygapsdetectedduringeachmonitoringeventwillmostlikelybefromthepastyear‘sloggingactivities;ifthereisuncertaintyaboutwhetheragapwasformedduringtheyearthemonitoringistakingplaceorfromapreviousyear,thisgapshouldbeincludedinthecountbecauseitisconservativetooverestimatethenumberoftreeslogged.Aminimumgapsizethresholdshallbedeterminedanddocumentedinthefirstmonitoringyeartoensureastandardizedcountoflogginggapsthroughoutthecreditingperiod.19.2.1.3EstimationofgingitdrainageElog,(GHGemissionsfrompeatcausedbycanalconstruction)Ifloggingtakesplacewithintheprojectarea,smallcanalsmaybecreatedinthepeattoextractlogstomajorriversfortransportduringthewetseason.Therearedifficultiesofknowingthedistanceeffectofcanaldrainage,asthiswillvarybetweenextremesofdryandwetseasons.Smallcanalsinforestarevirtuallyimpossibletodetectfromspaceanddifficultandtime-consumingtofindontheground;mostarenotlinear.Therearefewdataonthedistancefromthesecanalsthatisaffectedbydrainage;moreresearchisneeded.Thestepsoutlinedbelowprovideamethodologythatconservativelyestimatestheimpactofsmallcanalsonpeatbasedoncurrentdataandscientificunderstanding,butthemethodologyshouldbeupdatedoncenewandimproveddatabecomeavailable.Step1.Duringthefirstmonitoringevent,geo-referencealllogginggapsasdetectedinthehighresolutionimagerycollectedduringthemonitoringevent.Step2.Geo-locate(asGPSpoints)knownexitpointsforlogsthatenduponriversandlargecanalstobetransportedoff-site.Step3.Onthegroundduringthewetseason,maptheexistingnetworkofloggingcanalsbytravelingupthecanalsfromtheexitpointstoeachgeoreferencedlogginggap,collectingpoint-specificlocationinformation(e.g.,GPSpoints)alongtheroutestakenandfollowingthecanalnetwork‘snon-linearitieswheretheyoccurtoensurecompletecoverage.Step4.EnterthecoordinatesofthecanalsintoaGISandestimatethetotallengthofcanalsandcanalsegments.Step5.Independentlyconsultwithatleasttwopeatexpertstoestimateconservativelythedistanceofimpactofsmall,hand-dugcanalsconstructedforloggingactivities.Theseestimatesshallbeestimatedfromfieldmeasurements46oroutputfromvalidatedhydrologicalmodels.Foranydataprovidedbyexperts,thePDDand/ormonitoringreportsshallrecordtheexpert‘sname,affiliation,andprincipalqualificationasanexpert–plusinclusionofa1-pagesummaryCVforeachexpertconsulted,includedinanannex.Step6.InaGIS,constructabufferwidthoneachsideofthecanalnetworkmappedinStep3thatisequaltotheconservatively-defineddistanceofimpactdeterminedinStep5.Calculatethetotalareaofthe46Preliminaryfieldmeasurementsconductedonfourtransectsspanning150moneachsideofsmallcanalsintheMawasConservationProjectofCentralKalimantan,Indonesiarevealednocleartrendsbetweenthemeasureddistancefromthecanalandtheaveragewatertabledepth.VM0004,Version1.0SectoralScope1478resultingpolygoncreatedintheGIS.Thisareashallbedefinedastheareaofpeatimpact(gingitpeatimpactAlog,)ofloggingcanalsineachstratumiattimet.Step7.Ateachmonitoringevent,repeatSteps1-6,estimatingthenewtotalareaofimpactofcanalsconstructedforloggingactivities.Monitoringcanalsisconductedatregular(annual)intervalstoaccountforchangesinthetotallengthofthecanalnetworkduetopotentialexpansionofcanalsintonewareasovertime.Onceacanalhasbeencreated,itisconservativetoincludethisinthenetworkduringeachmonitoringeventevenifitisnolongeractive.Step8:Inthefield,measuretheaveragedrainagedepthalongtransectsperpendiculartothecanals.ThemeasurementwherethewatertableislowestshouldbeassumedtobethedepthtowhichpeatisdrainedacrosstheentireareaofimpactgingitpeatimpactAlog,.Thesamplingplanforestimatingaveragedrainagedepthshallbeoutlinedinthemonitoringreport.Improveddatashallbeappliedifandwhenthesedatabecomeavailable.Afteradrainagedepthisdefined,estimateaverageCO2emissionsperareaofdrainedpeat:gingitddgingitpeatimpactgingitdrainageMEAElog,log,log,(107)and:)(log,log,gingitdraingingitddDfME(108)where:gingitdrainageElog,=CO2emissionsfrompeatinstratumiattimet,tCO2-egingitpeatimpactAlog,=areaofdrainageimpactinstratumi,timet;hagingitddMElog,=meanCO2emissionsfromdrainedpeatinstratumi,timet;tCO2ha-1gingitdrainDlog,=averagedepthofpeatdrainageoraveragedepthtowatertableindrainedareaofstratumi,timetduringthedryseason;cmItisknownthatthefunctioninEq.100shouldbenon-linear.Givenalackofextensivefielddataavailablefortropicalpeatforests,projectswithnodatashouldapplyalinearrelationshipderivedfromacompilationoffieldmeasurementscollectedthroughoutpeatlandsofSoutheastAsia47,48whereMEdd,it=0.91∙gingselectiveitdrainDlog,(orMEB,dd,it=9tCO2ha-1foreach10cmofdrainagedepth)untiladditionaldatabecomeavailable.Itshouldbenotedthatthisfunctionwasparameterizedwitharangeofdrainagedepthdataupto100cm(1meter)only,andshouldnotbeextrapolatedtopredictCO2emissionsinareasthataredrained>1meter.19.2.2EstimationofGHGemissionsduetofire(fireitE)Allfiresthatoccurinsidetheprojectboundarymustbeaccountedforoverthelifeoftheproject,alongwiththeassociatedGHGemissionsresultingfromthesefires.47Hooijer,A.,M.Silvius,H.Wösten,S.Page.2006.PEAT-CO2,AssessmentofCO2emissionsfromdrainedpeatlandsinSEAsia.DelftHydraulicsreportQ3943(2006).48Couwenberg,J.,R.DommainandH.Joosten(2009).GreenhousegasfluxesfromtropicalpeatlandsinSoutheastAsia.GlobalChangeBiologyDOI=10.1111/j.1365-2486.2009.02016.xVM0004,Version1.0SectoralScope1479TheGHGemissionsattributabletofiresthatoccurwithintheprojectboundaryoverthemonitoringperiodarethereforeestimatedas:itfireitburnPfireitPEFAE,,,,(109)where:fireitPE,=GHGemissionsduetofireintheprojectarea;tCO2-eitburnpA,,=areaburnedinstratumi,timetintheprojectarea;haEFfire,it=averagefireemissionfactorforstratumi,monitoringyeart;tCO2-eha-1burntDeterminationofthepresenceorabsenceofburningshallbedonepriortoadoptingthemethodsandproceduresproposedtomeasureareaburntintheprojectareaunderthismethodology.Stepsareoutlinedbelowtoestimatetheareaburntineachmonitoringyearandanemissionfactorperareaburnt.Step1:Determinepresence/absenceofburningandmonitorareaburntwithinprojectboundaryMonitoringforfireshouldoccurannually.Attheendofthefireseason,determinethepresenceorabsenceofburningwithintheprojectboundaryinagivenmonitoringyearbyanalyzingmediumtohigh-resolutionremotesensingdatasuchasLandsat,SPOT,orotherhigh-resolutionremotesensingproducts(e.g.,highresolutionaerialdigitalimagerycollectedovertheprojectarea).Ifnofiresaredetectedwithintheprojectboundaryorwithina1kmbufferzonearoundtheprojectboundaryinthemonitoringyear,thenitisassumedthattherewerenoGHGemissionsassociatedwithburningwithintheprojectboundaryandfireitE=0.Ifburnedareasaredetectedwithintheprojectboundaryorwithina1kmbufferoftheprojectboundaryinthemonitoringyear,thengeoreferenced,highresolutionaerialimageryorgeoreferencedgroundmeasurementsshallbecollectedovertheseareasandthelocationandareaofallfirescarsshallbecalculatedandrecorded.Theareaofburningshouldbetrackeddirectlyusinganaccuracyassessmentcriterionof80%ormore.Step2:Estimateanaveragefireemissionfactor(EFfire,it)Anaverageemissionfactor(EFfire,it)foreachstratumcanbederivedpriortothestartofprojectactivitiesorbeforethefirstmonitoringevent.Emissionfactorsfordifferentstrataordifferentyearsmaybesimilarenoughtoallowtheirmergingsothatonegeneralemissionfactorvalueisused.Thisemissionfactorcanbeestimatedas:itPeatBurnPitnBiomassBurPitfireEFEFEF,,,,,(110)where:itfireEF,=GHGemissionsduetofireintheprojectareawithinstratumi,monitoringyeart;tCO2-eha-1burntVM0004,Version1.0SectoralScope1480inBiomassBurPEF,,=totalincreaseinCO2-eemissionsasaresultofabovegroundbiomassburninginstratumi,monitoringyeart;tCO2-eha-1burntiPeatBurnPEF,,=totalincreaseinCO2-eemissionsasaresultofpeatburninginstratumi,monitoringyeart;tCO2eha-1burntStep2a.Estimateemissionfactorforabovegroundbiomassburning(itnBiomassBurPEF,,)Theemissionfactorforabovegroundbiomassburningcanbeestimatedasfollows:itCHnBiomassBurPitONnBiomassBurPitCOnBiomassBurPitnBiomassBurPEFEFEFEF,4,,,2,,,2,,,,(111)where:itnBiomassBurPEF,,=totalincreaseinCO2-eemissionsasaresultofabovegroundbiomassburningintheprojectcaseinstratumi,monitoringyeart;tCO2-eha-1burntitCOnBiomassBurPEF,2,,=CO2emissionfrombiomassburningundertheprojectcaseinstratumi,monitoringyeart;tCO2-eha-1burntitONnBiomassBurPEF,2,,=N2Oemissionfrombiomassburningundertheprojectcaseinstratumi,monitoringyeart;tCO2-eha-1burntiCHnBiomassBurPEF,4,,=CH4emissionfrombiomassburningundertheprojectcaseinstratumi,monitoringyeart;tCO2-eha-1burntand:1244,,,,,2,,CEPBBMCEFitPitAGBBBitCOnBiomassBurP(112)where:EP,BiomassBurn,CO2,it=CO2emissionfrombiomassburningundertheprojectcaseforstratumi,monitoringyeart;tCO2-eitAGBBBMC,,,=averageabove-groundbiomasscarbonstockinthebaselinescenarioforstratumi,monitoringyeart;tCha-1PBBP,it=averageproportionofMCB,BB,AG,itburntundertheprojectcaseforstratumi,timet;dimensionlessCE=averagebiomasscombustionefficiency(IPCCdefault=0.5);dimensionlessTheCO2eemissionsresultingfromafirearedependentontheproportionofcarbonstocksburned(PBBP,it)andthecombustionefficiency(CE).Theaverageabovegroundcarbonstocksofthelandcoverstratumafterafirecanbemonitored,otherwiseconservativedefaultvaluescanbeapplied.ThecombustionefficienciesCEmaybechosenfromTable2.6ofthe2006IPCCAFOLUGuidelines,whichincludevaluesforawiderrangeofvegetationtypesthanvaluesinTable3.A.14ofIPCCGPG-LULUCFandalsogivevaluesforbothmeanandstandarddeviation.Ifnoappropriatecombustionefficiencycanbeused,theIPCCdefaultof0.5shouldbeused.VM0004,Version1.0SectoralScope1481Baselinemeasurementsofcarbonstocksinunburnedareaswithinstratumicanbepairedwithfieldmeasurementswithinthesamestratuminareaswherefireoccurredduringthemonitoringeventtoestimatetheproportionofcarbonstocksburned:)/(1PBB,,,,,itP,itAGBBBburneditAGPMCMC(113)where:PBBP,it=averageproportionofMCB,BB,AG,itburntundertheprojectcaseforstratumi,timet;dimensionlessitAGBBBMC,,,=estimatedabovegroundcarbonstockinthebaselinescenariobeforeburningforstratumi,timet;tCha-1burneditAGPMC,,=estimatedabovegroundcarbonstockafterburningundertheprojectcaseforstratumi,timet;tCha-1Ifnofieldmeasurementsareavailableofcarbonstocksinstratumiafterburning,thentheCO2emissionfactorforbiomassburninginstratumishouldbeconservativelyestimatedastheCO2equivalentofthemeanbaselineabovegroundcarbonstockofthestratuminwhichfirewasdetected:1244,,,2,,itAGBitCOnBiomassBurPMCEF(114)where:EP,BiomassBurn,CO2,it=CO2emissionfrombiomassburningundertheprojectcaseforstratumi,monitoringyeart;tCO2-eitAGBMC,,=averageabove-groundbiomasscarbonstockinthebaselinescenarioforstratumi,monitoringyeart;tCha-11244=ratioofmolecularweightsofCO2andcarbon;dimensionlessNon-CO2emissionfactorsarecalculcatedas:ONONitCOnBiomassBurPitONnBiomassBurPGWPERCratioNEFEF222844/4412,2,,,2,,(115)4412164412,2,,,4,,CHCHitCOnBiomassBurPitCHnBiomassBurPGWPEREFEF(116)where:itCOnBiomassBurPE,2,,=CO2emissionfromabovegroundbiomassburningundertheprojectcaseinstratumi,monitoringyeart;tCO2-e.itONnBiomassBurPE,2,,=N2Oemissionfromabovegroundbiomassburningundertheprojectcaseinstratumi,monitoringyeart;tCO2-eVM0004,Version1.0SectoralScope1482itCHnBiomassBurPE,4,,=CH4emissionfromabovegroundbiomassburningundertheprojectcaseinstratumi,monitoringyeart;tCO2-eCratioN/=nitrogen-carbonratio(IPCCdefault=0.01);dimensionlessONER2=emissionratioforN2O(IPCCdefaultvalue=0.007);tCO2-e(tC)-14CHER=emissionratioforCH4(IPCCdefaultvalue=0.012);tCO2-e(tC)-1ONGWP2=GlobalWarmingPotentialforN2O(=310forthefirstcommitmentperiod);tCO2-e(tN2O)-14CHGWP=GlobalWarmingPotentialforCH4(21forthefirstcommitmentperiod);tCO2-e(tCH4)-1Thenitrogen-carbonratio(N/Cratio)isapproximatedtobeabout0.01.Thisisageneraldefaultvaluethatappliestoleaflitter,butlowervalueswouldbeappropriateforfuelswithgreaterwoodycontent,ifdataareavailable.EmissionfactorsforusewithaboveequationsareprovidedinTables3.A.15and3.A.16ofIPCCGPG-LULUCF.Step2b.Estimateemissionfactorforpeatburning(itPeatBurnPEF,,)Anemissionfactorforpeatburningcanbeestimatedasfollows:itCHPeatBurnPitCOPeatBurnPitPeatBurnPEFEFEF,4,,,2,,,,(117)and:6,,,2,,102COitpeatPitCOPeatBurnPEFMEF(118)446,,,4,,10CHCHitpeatPitCHPeatBurnPGWPEFMEF(119)iitburnPitpeatPBDDM10000,,,,(120)where:EFP,PeatBurn,it=TotalincreaseinCO2-eemissionsasaresultofpeatburningundertheprojectscenarioinstratumi,timet;tCO2eEFP,PeatBurn,CO2,it=totalCO2emissionsfrompeatburningundertheprojectscenarioinstratumi,timet;tCO2eEFP,PeatBurn,CH4,it=totalCH4emissionsfrompeatburningundertheprojectscenarioinstratumi,timet;tCO2eMP,peat,it=massofpeatburnedundertheprojectscenarioinstratumi,timet;tonsEFCO2=CO2emissionsfromthecombustionofpeat,gCO2/tonpeatEFCH4=CH4emissionsfromthecombustionofpeat,gCO2/tonpeatGWPCH4=GlobalWarmingPotentialforCH4(IPCCdefault=21forthefirstcommitmentperiod);tCO2-e.(tCH4)-1MP,peat,it=totalmassofpeatburnedundertheprojectscenarioinstratumI,timet;tonsDP,burn,it=depthofpeatburnedundertheprojectscenarioinstratumiattimet;metersBDi=bulkdensityofpeatinstratumi(gcm-3=tm-3)VM0004,Version1.0SectoralScope1483Thedepthofpeatburned(DP,burn,it)perfireshallbemeasuredinthefieldorconservativelyestimatedbasedonliteraturevalues49.Ifliteraturevaluesareused,verificationshallbeconductedusinglimitedgroundsamplingtoensuretheactualburndepthsmeasuredfallwithintheuncertaintyrangeoftheliteraturevalueapplied.Burndepthcanbemeasuredbymonitoringactivefirefrontswithinorinthevicinityoftheprojectareaandinstallingsamplepoststomeasuretotalpeatdepthbeforeandafterburning.Alternativemethodologiesformeasuringthedepthofpeatburnedmayalsobeconsidered,suchasinterferometricanalysisoflandsubsidenceusingradardata,userofairbornelidar,etc.AlltechnologiesusedshallbedescribedindetailinthePDDand/ormonitoringreports.EFCO2andEFCH4shallbeestimatedusingthebaselinemethodologyoutlinedinSection8.2.2.4,EstimationofCO2andCH4emissionfactors(EFCO2,EFCH4).Muraleedharanetal.(2000)50measureddirectemissionsfromthecombustionoftropicalpeatattwotemperatures(smoulderingstage:480ºCandflamingstage:600ºC).ThemostabundantC-containingcombustionproductwasCO2,followedbyCOandCH4.EmissionfactorsforCO2andCH4aresummarizedinTable1.Theemissionfactorsforpeatcombustionatthehighertemperatureshouldbeassumedintheestimatesofprojectemissions,asthisresultsinhigheroverallGHGemissions(CO2+CH4reportedasCO2equivalents)andthusaconservativeprojectscenario.Table1.Greenhousegasemissionsfromthecombustionofpeat.FromMuraleedharanetal.(2000).ComponentTemperature(˚C)480600g(tonpeat)-1CO2185,000149,591CH45,78511,33819.2.3EstimationofGHGemissionsduetolandclearing(deforestation)Theareaoflandcoverchangethatoccurswithintheprojectareathatisnotduetofireorlogging,alongwiththeassociatedGHGemissions,alsomustbeaccountedforateachmonitoringevent.MonitoringcanoccurusingavarietyofremotesensingimageryincludinggeoreferencedaerialimageryorotherremotesensingimagerysuchasLandsatorradarimageryverifiedwithfieldmeasurements.Anaccuratelandcovermapmustexistatthestartoftheproject.Medium-resolutionremotesensingdataorhighresolutionaerialimagesshallbecollectedandprocessedineachmonitoringyeartoestimatetheareaoflandcoverchange.Thisimagerycanbethesameaswasusedtodetecttheareaoffireand/orselectiveloggingwithintheprojectboundary.Theareaofdeforestationshouldbetrackeddirectlyusinganaccuracyassessmentcriterionof80%ormore.AdescriptionofthemethodsusedtodetectlandcoverchangeshallbeincludedinthePDD.Monitoringforlandcoverchangeshouldoccurannually.49BasedonaliteraturereviewinCouwenbergetal.(2009),thepeatdepthburntinpeatfiresaverages34cmacrosssixstudiesfrom1988to2002.Aconservativevalueforburndepthwouldbetheupperendoftherangereported,whichis55cm.50Muraleedharan,T.R.,M.Radojevic,A.Waugh,andA.Caruana.2000.Emissionsfromthecombustionofpeat:anexperimentalstudy.AtmosphericEnvironment34:3033-3035.VM0004,Version1.0SectoralScope1484TheGHGemissionsattributabletodeforestationthatoccurwithintheprojectboundaryoverthemonitoringperiodarethereforeestimatedas:11,,,,,,,,,ttmiitdrainagepeatLCCitpeatimpactitAGLCCPitLCCPLCCitPPSEFAEFAE(121)where:LCCitPE,=GHGemissionsduetolandcoverchangeintheprojectarea;tCO2-eitLCCPA,,=areathatunderwentlandcoverchangeinstratumi,monitoringyeart;haLCCitpeatimpactA,=areaofdrainageimpactduetolandcoverchangeinstratumi,monitoringyeart;haEFP,LCC,AG,it=averagedeforestationemissionfactorforstratumi,monitoringyeart;tCO2-eha-1EFpeat,drainage,it=averagepeatdrainageemissionfactorforstratumi,monitoringyeart;tCO2-eha-1Determinationofthepresenceorabsenceofdeforestationshallbedonepriortoadoptingthemethodsandproceduresproposedtomeasureareadeforestedintheprojectareaunderthismethodology.Stepsareoutlinedbelowtoestimatetheareadeforestedineachmonitoringyearandanemissionfactorperareadeforested.Step1:MonitorareadeforestedandareaofimpactofpeatdrainagewithinprojectboundaryThelocationandareaofalllandcoverchangeshallbecalculatedandrecordedinmonitoringyeartbasedongeoreferencedaerialimageryorotherremotesensingdata.Theareaoflandcoverchangeshouldbetrackeddirectlyusinganaccuracyassessmentcriterionof80%ormore.Itisconservativetoassumethattheareaofpeataffectedbylandcoverchangeisequalto100%oftheconvertedarea(AP,LCC,,it).Ifcanalsaredetectedintheimagery(e.g.builtfromamainrivertotheareaoflandcoverchange),thentheareaofpeataffectedincreasesbeyondtheareaofconvertedlandbecausecanalsdrainadditionalpeat.Thisincreasemustbeaccountedfor.Step2.Consultwithpeatexpertstoestimateconservativelythedistanceofimpactoflargecanalsconstructedforactivitiesrelatedtothenewlanduse/landcover.Theseestimatesshallbeestimatedfromfieldmeasurements51,expertopinionoroutputfromvalidatedhydrologicalmodels.Foranydataprovidedbyexperts,thePDDshallrecordtheexpert‘sname,affiliation,andprincipalqualificationasanexpert–plusinclusionofa1-pagesummaryCVforeachexpertconsulted,includedinanannex.Step3.InaGIS,constructabufferwidtharoundthedeforestedareaandalllargecanalsassociatedwiththelandusechangethatisequaltotheconservatively-defineddistanceofimpactdeterminedinStep2.CalculatethetotalareaoftheresultingpolygoncreatedintheGIS.Thisareaisdefinedastheareaofpeatimpact(LCCitpeatimpactA,)fromlandcoverchangeineachstratumiattimet.Step4.Ateachmonitoringevent,repeatSteps1-3,estimatingthenewareaofimpactofcanalsconstructedforthenewlanduse/landcover.Monitoringcanalsisconductedatregular(annual)intervals51Preliminaryfieldmeasurementsconductedonfourtransectsspanning150moneachsideofsmallcanalsintheMawasConservationProjectofCentralKalimantan,Indonesiarevealednocleartrendsbetweenthemeasureddistancefromthecanalandtheaveragewatertabledepth.VM0004,Version1.0SectoralScope1485toaccountforchangesinthetotallengthofthecanalnetworkduetopotentialexpansionofcanalsintonewareasovertime.Onceacanalhasbeencreated,itisconservativetoincludethisinthenetworkduringeachmonitoringeventevenifitisnolongeractive.Step5:Inthefield,samplethedepthofdrainageimmediatelyadjacenttothecanalsandassumethatpeatisdrainedtothisdepthacrosstheentireareaofimpact.Iffieldmeasurementsarenotavailable,consultwithpeatexpertstoconservativelyestimatetheaveragedepthofpeatdrainageduetothenewlanduseactivities.Improveddataofthedepthtowhichpeatisdrainedshallbeappliedifandwhenthesedatabecomeavailable.Step6.Estimateaveragelandcoverchangeemissionfactors(abovegroundandpeat)foreachstratum.Emissionfactorsassociatedwithdecreasesinabovegroundcarbonstocksandpeatemissionsintheprojectboundaryperhectareoflandusechangearecalculatedas:1244,,,,,itAGBitAGLCCPMCEF(122)LCCitdditdrainagepeatMEEF,,,(123)and:)(,,LCCitdrainLCCitddDfME(124)where:itAGLCCPEF,,,=averagedeforestationemissionfactorforabovegroundemissionsinstratumi,monitoringyeart;tCO2-eha-1itdrainagepeatEF,,=averagedeforestationemissionfactorforpeatdrainageinstratumi;,monitoringyeart;tCO2-eha-1itAGBMC,,=meancarbonstockinabove-groundlivingbiomassunderthebaselinescenarioforstratumi,timet;tCha-1LCCitddME,=averagepeatCO2emissionsundertheprojectscenarioinstratumiattimetduetolandcoverchangeintheprojectarea,tCO2-eha-11244=ratioofmolecularweightsofCO2andcarbon;dimensionlessLCCitdrainD,=averagedepthofpeatdrainageoraveragedepthtowatertableinthedeforestedareaundertheprojectscenarioinstratumi,timet;cmCarbonstocksofthelandcovertypeafterthedeforestationoccurredcanbeestimatedifdesired,butitisconservativeintheprojectcasetoignoretheaccumulation.Ifincreasesaretobeestimated,permanentsampleplotsmustbeinstalledtomeasureincreasesincarbonstocks.SeeSec.8.2.2.1‗Estimationofmeancarbonstocksinabovegroundtreebiomass‘formethodsoncalculatingtreebiomass.ItisknownthatthefunctioninEq.116shouldbenon-linear.Givenalackofextensivefielddataavailablefortropicalpeatforests,projectswithnodatashouldapplyalinearrelationshipderivedfromacompilationoffieldmeasurementscollectedthroughoutpeatlandsofSoutheastAsiawhereMEdd,it=0.91∙Ddrain,ituntiladditionaldatabecomeavailable.Itshouldbenotedthatthisfunctionwasparameterizedwitharangeofdrainagedepthdataupto100cm(1meter)only,andshouldnotbeextrapolatedtopredictVM0004,Version1.0SectoralScope1486CO2emissionsinareasthatareexpectedtobedrained>1meteraspertheapplicabilityconditioninSection3.19.3Monitoringbiomassaccumulationintheprojectarea(CO2eP,LB)Thecarbonemissionsthatwerepreventedduetoprojectactivitieswerecalculatedinthebaselinecase.Theexistingcarbonstocksintheprojectareawerecountedascarbonoffsetsbecauseinthebaseline,treeswouldhavebeencutdown.However,duetoprojectactivities,thesetreeswillcontinuetogrowandaccumulatebiomass.Itisconservativetoignorethisbiomassaccumulation.Pertheapplicabilityconditionofthismethodology,thebiomassofvegetationwithintheprojectboundaryatthestartoftheprojectmustbeatsteady-state,orisincreasingduetorecoveryfrompastdisturbance,andsomonitoringprojectGHGremovalsbyherbaceousvegetationcanbeconservativelyneglectedifdesired.Monitoringbiomassaccumulationisrecommendedonlywherelargeaccumulationsareexpectedtooccur.Iftheadditionalcarbonthataccumulatesinthisvegetationoverthelifeoftheproject(thatwouldhavebeenremovedinthebaselinecase)aretobemeasured,treesmustbemonitoredusingpermanentsampleplots(fieldplotsoraerialimageryplots)installedatthebeginningoftheprojectandbiomassaccumulationineachstratummustbemonitoredovertime.Methodstoestimatechangesinthelitteranddeadwoodpoolarenotincludedinthismethodologyandareignored.SeeSec.5orSec5.2.2SamplingFrameworkformethodsondeterminingplotnumber,size,andlocation.SeeSec.8.1.2.1EstimationofmeancarbonstocksinAGtreebiomassformethodsoncollectionofmeantreecarbonstocks.Explanation/justification(ifmethodologyprocedureisnotself-explanatory):Figure4belowshowshowmonitoringequationsarerelatedandindicatesinyellowtheequationsthatincludeatleastoneparameterforwhichuncertaintyestimationisrequired.VM0004,Version1.0SectoralScope1487Figure4.Conceptualdiagramofmonitoringequations.Equationnumbersareshowninparentheses.Yellowboxesindicateequationsthatincludeoneormoreparametersforwhichuncertaintyshallbeestimated.Inthebottomofthefigure,allparametersforwhichuncertaintymustbeestimated(orconservativevaluesused)areorganizedbysource.20.DatatobeCollectedandArchivedforExPostNetActualGHGEmissionsAvoidedData/parameter:gapsitPN,Dataunit:dimensionlessUsedinequations:91Description:numberoflogginggapsdetectedinstratumi,timetintheprojectareaSourceofdata:High-resolutionaerialimageryMeasurementprocedures:(ifany)Anycomment:Data/parameter:iktrL,log,VM0004,Version1.0SectoralScope1488Dataunit:MUsedinequations:93,97Description:lengthoflogextractedfromtimbertreetrinstratumi,gapk,measuredasthedistancefromstumptobaseofcrown,lessthelengthofanypiecesofboleleftonsiteSourceofdata:FieldmeasurementsMeasurementprocedures:(ifany)Anycomment:Data/parameter:iktrbottomD,,Dataunit:CmUsedinequations:93Description:diameteratthestumpendoflogextractedfromtimbertreetrinstratumi,gapkSourceofdata:FieldmeasurementsMeasurementprocedures:(ifany)Anycomment:Data/parameter:iktrtopD,,Dataunit:CmUsedinequations:93,97Description:diameteratthecrownendoflogextractedfromtimbertreetrinstratumi,gapkSourceofdata:FieldmeasurementsMeasurementprocedures:(ifany)Anycomment:Data/parameter:iDataunit:tm-3Usedinequations:94,100Description:wooddensity52ofextractedloginstratumiSourceofdata:LiteraturevaluesMeasurementprocedures:(ifany)Anycomment:Data/parameter:CFDataunit:tC(td.m.)-1Usedinequations:100Description:carbonfractionofextractedlogSourceofdata:IPCCdefault=0.5Measurementprocedures:(ifany)Anycomment:52Aspecies-specificdensityisusedwhenthespeciesisidentifiedorameantreedensitycanbeusedifthespecieswasnotknown.VM0004,Version1.0SectoralScope1489Data/parameter:iktrsD,,Dataunit:CmUsedinequations:97Description:diameterofthestumpoftheloggedtimbertreetrinstratumi,gapkSourceofdata:FieldmeasurementsMeasurementprocedures:(ifany)Anycomment:Data/parameter:iktrH,Dataunit:MUsedinequations:98Description:treeheightoftreetrinstratumi,gapkSourceofdata:FieldmeasurementsMeasurementprocedures:(ifany)Anycomment:Data/parameter:iktrbpceD,,Dataunit:CmUsedinequations:100Description:diameterofbottomendofpiecepceleftfromtimbertreetrinstratumi,gapkSourceofdata:FieldmeasurementsMeasurementprocedures:(ifany)Anycomment:Data/parameter:iktrpceL,,Dataunit:MUsedinequations:100Description:lengthofpiecepceleftfromtimbertreetrinstratumi,gapkSourceofdata:FieldmeasurementsMeasurementprocedures:(ifany)Anycomment:Data/parameter:iktrtpceD,,Dataunit:CmUsedinequations:100Description:diameteroftopendofpiecepceleftfromtimbertreetrinstratumi,gapk;cmSourceofdata:FieldmeasurementsMeasurementprocedures:(ifany)Anycomment:Data/parameter:gingitdrainDlog,Dataunit:CmVM0004,Version1.0SectoralScope1490Usedinequations:108Description:averagedepthofpeatdrainageoraveragedepthtowatertableindrainedareaofstratumi,timetduringthedryseasonSourceofdata:FieldmeasurementsMeasurementprocedures:(ifany)Anycomment:Data/parameter:gingitpeatimpactAlog,Dataunit:HaUsedinequations:107Description:areaofdrainageimpactinstratumi,timetSourceofdata:CalculatedinGISMeasurementprocedures:(ifany)Anycomment:Data/parameter:CEDataunit:dimensionlessUsedinequations:112Description:averagebiomasscombustionefficiencySourceofdata:IPCCdefault=0.5Measurementprocedures:(ifany)Anycomment:Data/parameter:burneditAGPMC,,Dataunit:tCha-1Usedinequations:113Description:estimatedabovegroundcarbonstockafterburningundertheprojectcaseforstratumi,timetSourceofdata:FieldmeasurementsMeasurementprocedures:(ifany)Anycomment:Data/parameter:CratioN/Dataunit:dimensionlessUsedinequations:115Description:nitrogen-carbonratioSourceofdata:IPCCdefault=0.01Measurementprocedures:(ifany)Anycomment:Data/parameter:ONER2Dataunit:tCO2-e(tC)-1Usedinequations:115Description:emissionratioforN2OSourceofdata:IPCCdefaultvalue=0.007Measurementprocedures:(ifany)VM0004,Version1.0SectoralScope1491Anycomment:Data/parameter:4CHERDataunit:tCO2-e(tC)-1Usedinequations:116Description:emissionratioforCH4Sourceofdata:IPCCdefaultvalue=0.012Measurementprocedures:(ifany)Anycomment:Data/parameter:ONGWP2Dataunit:tCO2-e(tN2O)-1Usedinequations:115Description:GlobalWarmingPotentialforN2OSourceofdata:(=310forthefirstcommitmentperiodMeasurementprocedures:(ifany)Anycomment:Data/parameter:4CHGWPDataunit:tCO2-e(tCH4)-1Usedinequations:116,119Description:GlobalWarmingPotentialforCH4Sourceofdata:(=21forthefirstcommitmentperiod)Measurementprocedures:(ifany)Anycomment:Data/parameter:itburnpA,,Dataunit:HaUsedinequations:109Description:areaburnedinstratumi,timetintheprojectareaSourceofdata:FieldmeasurementsorusinghighresolutiondigitalaerialimageryMeasurementprocedures:(ifany)Anycomment:Data/parameter:DP,burn,itDataunit:MetersUsedinequations:120Description:depthofpeatburnedundertheprojectscenarioinstratumiattimet;Sourceofdata:FieldmeasurementsorconservativeliteraturevaluesMeasurementprocedures:(ifany)Anycomment:Data/parameter:BDiDataunit:gcm-3=tm-3Usedinequations:120Description:bulkdensityofpeatinstratumiVM0004,Version1.0SectoralScope1492Sourceofdata:FieldmeasurementsorliteraturevaluesMeasurementprocedures:(ifany)Anycomment:Data/parameter:EFCO2Dataunit:gCO2(tpeat)-1Usedinequations:118Description:CO2emissionsfromthecombustionofpeatSourceofdata:LiteraturevaluesMeasurementprocedures:(ifany)Anycomment:Data/parameter:EFCH4Dataunit:gCH4(tpeat)-1Usedinequations:119Description:CH4emissionsfromthecombustionofpeatSourceofdata:LiteraturevaluesMeasurementprocedures:(ifany)Anycomment:Data/parameter:itLCCPA,,Dataunit:HaUsedinequations:121Description:areathatunderwentlandcoverchangeinstratumi,monitoringyeart;Sourceofdata:HighresolutiondigitalaerialimageryorfieldmeasurementsMeasurementprocedures:(ifany)Anycomment:Data/parameter:LCCnitpeatimpactA,Dataunit:HaUsedinequations:121Description:areaofdrainageimpactduetolandcoverchangeinstratumi,monitoringyeartSourceofdata:CalculatedinaGISMeasurementprocedures:(ifany)Anycomment:Data/parameter:LCCitdrainD,Dataunit:CmUsedinequations:124Description:averagedepthofpeatdrainageoraveragedepthtowatertableinthedeforestedareaundertheprojectscenarioinstratumi,timetSourceofdata:FieldmeasurementsorestimatedfromliteraturevaluesifmeasurementsnotavailableMeasurementprocedures:(ifany)Anycomment:VM0004,Version1.0SectoralScope1493VM0004,Version1.0SectoralScope149421.CalculationofLeakageForleakagecalculationsandmethodology,refertoSection10above.22.DatatobeCollectedandArchivedforLeakageData/parameter:cleareditBA,Dataunit:HaUsedinequations:73Description:Averageannualareaofdeforestationbythebaselineagentofdeforestationforthe5yearspriortoprojectimplementationSourceofdata:GPScoordinatesand/orremotesensingdataand/orlegalparcelrecordsMeasurementprocedures:(ifany)Anycomment:Data/parameter:tdefLKA,Dataunit:haUsedinequations:74Description:ThetotalareaofdeforestationbythebaselineagentoftheplanneddeforestationattimetSourceofdata:Analysisofremotesensingdataand/orlegalrecordsand/orsurveyinformationforlandsownedorcontrolledorpreviouslyownedorcontrolledbythebaselineagentofdeforestationMeasurementprocedures:(ifany)Anycomment:LegalrecordswillincludegovernmentpermitstodeforestincludingconcessionlicensesData/parameter:WoPADataunit:haUsedinequations:71Description:Total(cumulative)areaofforestclearedbythebaselineagentofplanneddeforestationinstratumiattimetSourceofdata:Analysisofremotesensingdataand/orlegalrecordsand/orsurveyinformationforlandsownedorcontrolledorpreviouslyownedorcontrolledbythebaselineagentofdeforestationMeasurementprocedures:(ifany)Anycomment:Data/parameter:HistHaDataunit:haUsedinequations:72Description:Averageannualareaofdeforestationbythebaselineagentofdeforestationforthe5yearspriortoprojectimplementationSourceofdata:Analysisofremotesensingdataand/orlegalrecordsand/orsurveyinformationforlandsownedorcontrolledorpreviouslyownedorVM0004,Version1.0SectoralScope1495controlledbythebaselineagentofdeforestationMeasurementprocedures:(ifany)Anycomment:Data/parameter:PMPiDataunit:%Usedinequations:Description:MerchantablebiomassasaproportionoftotalabovegroundtreebiomassforstratumiwithintheprojectboundariesSourceofdata:Withineachstratumdividethesummedmerchantablebiomass(definedastotalgrossbiomass(includingbark)ofatree30cmdbhorlargerfroma30cmstumptoaminimum10cmtopofthecentralstem)bythesummedtotalabovegroundtreebiomass.Measurementprocedures:(ifany)Anycomment:VM0004,Version1.0SectoralScope149623.ExPostNetAnthropogenicGHGEmissionsAvoidedTheexpostnetanthropogenicGHGemissionsavoidediscalculatedasthedifferencebetweentheactualGHGemissionsavoidedminusleakage,thereforethefollowinggeneralformulacanbeusedtocalculatethenetanthropogenicGHGemissionsavoidedbyaprojectactivity(CREDD),intCO2-e:LKCCACTUALREDD(125)Where:REDDC=netreducedemissionsfromdeforestation;tCO2-eACTUALC=actualnetgreenhousegasemissionsavoided;tCO2-eLK=leakage;tCO2-eNote:InthismethodologyEq.125isusedtoestimatenetanthropogenicGHGemissionsavoidedfortheperiodoftimeelapsedbetweenprojectstart(t=1)andtheyeart=t,tbeingtheyearforwhichactualnetgreenhousegasemissionsavoidedareestimated.Thisisdonebecauseprojectemissionsandleakagearepermanent,whichrequiresthecalculationoftheircumulativevaluessincethestartingdateoftheprojectactivity.CalculationofVCUsToestimatetheamountofVCUsthatcanbeissuedattimet=t2(thedateofverification)forthemonitoringperiodT=t2-t1,thismethodologyusesthefollowingequation:BRRCAdjustedCAdjustedVCUstREDDtREDD)__(1,2,(126)Where:VCUsNumberofVoluntaryCarbonUnits2,_tREDDCAdjustedNetanthropogenicgreenhousegasemissionsavoided(adjustedforuncertainty),asestimatedfort=t2;tCO2-e(Eq.131)1,_tREDDCAdjustedNetanthropogenicgreenhousegasemissionsavoided(adjustedforuncertainty),asestimatedfort=t1;tCO2-e(Eq.131)BRRPortionofcarboncreditstobewithheldasabufferreserveBufferreserveshouldbecalculatedusingVCSToolforAFOLUNon-PermanenceRiskAnalysisandBufferDetermination53.24.AccountingforUncertainties53Availableat:http://www.v-c-s.org/docs/Tool%20for%20AFOLU%20Non-Permanence%20Risk%20Analysis%20and%20Buffer%20Determination.pdfVM0004,Version1.0SectoralScope1497SeeChapter11.2.‗Qualitycontrol(QC)andqualityassurance(QA)procedurestobeappliedtothemonitoringprocess.24.1UncertaintyEx-PostintheWith-ProjectScenarioitSSnPitSSPitSSPitSSnPitSSnPitSSPitSSPitSSPitSSPEEEEUEUEU,,,2,,1,2,,,,2,2,,2,2,1,,1,P,it............yUncertaint(127)Where:UncertaintyP,itUncertaintyinthewith-projectscenarioinstratumi;%UP,SS,itPercentageuncertainty(expressedas90%confidenceintervalasapercentageofthemeanwhereappropriate)forcarbonstocks,greenhousegassourcesandleakageemissionsinthewith-projectcaseinstratumiattimet(1,2…nrepresentdifferentcarbonpoolsand/orGHGsources);%EP,SS,itCarbonstock,GHGsourcesorleakageemissiontype(e.g.trees,downdeadwood,soilorganiccarbon,emissionfromfertilizeraddition,emissionfrombiomassburning,emissionfromleakageduetoactivityshiftingetc.)instratumiattimet(1,2…nrepresentdifferentcarbonpoolsand/orGHGsources)inthewith-projectcase;tCO2-ei1,2,3…mPSstrataintheprojectscenariot1,2,3,…tyearselapsedsincethestartoftheprojectactivityToassessuncertaintyacrosscombinedstrata:MiitPMiitPEE1,12,itP,tP,yUncertaintyUncertaint(128)itMEitADitPitPLKLKCE,,,,(129)Where:UncertaintyP,tTotaluncertaintyinprojectscenarioattimet;%UncertaintyP,itUncertaintyinprojectinstratumiattimet;%EP,itsumofcarbonstock,GHGsourcesandleakageemissiontypesinstratumiattimet;tCO2-e.i1,2,3…mPSstrataintheprojectscenariot1,2,3,…tyearselapsedsincethestartoftheprojectactivityVM0004,Version1.0SectoralScope149824.2TotalErrorinREDDProjectActivityttPRJtBSLttPRJtPtBSLtBSLtERRORREDDLKCCLKCyUncertaCyUncertaC,,,2,,2,,,_)(int()int((130)Where:CREDD_ERROR,tTotaluncertaintyforREDDprojectactivity;%UncertaintyBSL,tTotaluncertaintyinbaselinescenario;%UncertaintyP,tTotaluncertaintyinthewith-projectscenario;%24.3ImplicationsforProjectAccountingTheallowableuncertaintyunderthismethodologyis+/-10%ofCREDD,tatthe90%confidencelevel.Wherethisprecisionlevelismet,thennodeductionshouldresultforuncertainty.Whereuncertaintyexceeds10%ofCREDD,tatthe90%confidencelevelthenthedeductionshallbeequaltotheamountthattheuncertaintyexceedstheallowablelevel.TheadjustedvalueforCREDD,ttoaccountforuncertaintyshallbecalculatedas:100)10100(_,_,,tERRORREDDtREDDtREDDCCCAdjusted(131)Where:CREDD,tNetanthropogenicgreenhouseemissionreductionsattimet;tCO2-eCREDD_ERROR,tTotaluncertaintyforREDDprojectactivity;%Adjusted_CREDD,tAdjustedvalueforCREDD,ttoaccountforuncertainty;tCO2-e25.OtherInformation25.1DefaultvaluesusedinelaboratingthenewmethodologyCF=carbonfractionofdrymatter(IPCCdefault=0.5);tC(td.m.)-1ONGWP2=GlobalWarmingPotentialforN2O(IPCCdefaultforthefirstcommitmentperiod=310kg);CO2-e.(kgN2O)-14CHGWP=GlobalWarmingPotentialforCH4(IPCCdefaultforthefirstcommitmentperiod=21kg);CO2-e.(kgCH4)-1ONER2=emissionratioforN2Oinbiomassburning(IPCCdefault=0.007);tCO2-e.(tC)-14CHER=emissionratioforCH4inbiomassburning(IPCCdefault=0.012);tCO2-e.(tC)-1CE=averagecombustionefficiencyofbiomass(IPCCdefault=0.5);dimensionlessN/C=N/Cratioofbiomass(IPCCdefault=0.01);dimensionlessVM0004,Version1.0SectoralScope1499Sourcesofvalues:IPCC,1996Guidelines,IPCCGPG-LULUCF,IPCC2006AFOLUOtherdefaultsarelistedinrelevantsectionsabove,withsourceslistedasfootnotes.25.2Qualitycontrol(QC)andqualityassurance(QA)procedurestobeappliedtothemonitoringprocessQualityControl(QC)isasystemofroutinetechnicalactivities,tomeasureandcontrolthequalityoftheinventoryasitisbeingdeveloped.TheQCsystemisdesignedto:Provideroutineandconsistentcheckstoensuredataintegrity,correctness,andcompleteness;Identifyandaddresserrorsandomissions;DocumentandarchiveinventorymaterialandrecordallQCactivities.QCactivitiesincludegeneralmethodssuchasaccuracychecksondataacquisitionandcalculationsandtheuseofapprovedstandardizedproceduresforemissioncalculations,measurements,estimatinguncertainties,archivinginformationandreporting.HighertierQCactivitiesincludetechnicalreviewsofsourceorsinkcategories,activityandemissionfactordata,andmethods.QualityAssurance(QA)activitiesincludeaplannedsystemofreviewproceduresconductedbypersonnelnotdirectlyinvolvedintheinventorycompilation/developmentprocess.Reviews,preferablybyindependentthirdparties,shouldbeperformeduponafinalizedinventoryfollowingtheimplementationofQCprocedures.Reviewsverifythatdataqualityobjectivesweremet,ensurethattheinventoryrepresentsthebestpossibleestimatesofemissionsandsinksgiventhecurrentstateofscientificknowledgeanddataavailable,andsupporttheeffectivenessoftheQCprogram.Toensurethenetavoidedemissionsaremeasuredandmonitoredprecisely,credibly,verifiablyandtransparently,aqualityassuranceandqualitycontrol(QA/QC)procedureshallbeimplemented,including(1)collectionofreliablefieldmeasurement;(2)reliablecollectionandanalysisofaerialimagery(ifapplicable);(3)verificationofmethodsusedtocollectfielddata;(4)verificationofdataentryandanalysistechniques;and(5)datamaintenanceandarchiving.IfafterimplementingtheQA/QCplanitisfoundthatthetargetedprecisionlevelisnotmet,thenadditionalfieldmeasurementsneedtobeconducteduntilthetargetedprecisionlevelisachieved.25.2.1ReliablefieldmeasurementsCollectingreliablefieldmeasurementdataisanimportantstepinthequalityassuranceplan.Personsinvolvinginthefieldmeasurementworkshouldbefullytrainedinthefielddatacollectionanddataanalyses.StandardOperatingProcedures(SOPs)foreachstepofthefieldmeasurementsshallbedevelopedandadheredtoatalltimes.TheseSOPsshoulddetailallphasesofthefieldmeasurementsandcontainprovisionsfordocumentationforverificationpurposes,sothatmeasurementsarecomparableovertimeandcanbecheckedandrepeatedinaconsistentfashion.Toensurethecollectionofreliablefielddata,Field-teammembersshallbefullyawareofallproceduresandtheimportanceofcollectingdataasaccuratelyaspossible;FieldteamsshallinstalltestplotsifneededinthefieldandmeasureallpertinentcomponentsusingtheSOPs;Fieldmeasurementsshallbecheckedbyaqualifiedpersontocorrectanyerrorsintechniques;Adocumentthatshowsthatthesestepshavebeenfollowedshallbepresentedasapartoftheprojectdocuments.Thedocumentwilllistallnamesofthefieldteamandtheprojectleaderwillcertifythattheteamistrained;VM0004,Version1.0SectoralScope14100Anynewstaffisadequatelytrained.25.2.2ReliableaerialimagerycollectionandanalysisIfcollectedproperly,aerialimageryisapowerfulandcost-effectivewaytoestimatecarbonstocksremotely.Asystematicsamplingdesignshouldbeusedtoselectplotsforanalysis.Asubsetofimageplotsshouldbeselectedrandomlyandinterpretedindependentlybyatleastonedifferentanalyst.Personsinvolvedinthefieldmeasurementworkshouldbefullytrainedinthefielddatacollectionanddataanalyses.StandardOperatingProcedures(SOPs)foreachstepoftheimagerycollectionandanalysisshallbedevelopedandadheredtoatalltimes.TheseSOPsshoulddetailallphasesofthefieldmeasurementsandcontainprovisionsfordocumentationforverificationpurposes,sothatmeasurementsarecomparableovertimeandcanbecheckedandrepeatedinaconsistentfashion.Field-teammembersshallbefullyawareofallproceduresandtheimportanceofcollectingdataasaccuratelyaspossible;FieldteamsshallinstalltestplotsifneededinthefieldandmeasureallpertinentcomponentsusingtheSOPs;Virtualmeasurementsshallbecheckedbyaqualifiedpersontocorrectanyerrorsintechniques;Adocumentthatshowsthatthesestepshavebeenfollowedshallbepresentedasapartoftheprojectdocuments.Thedocumentwilllistallnamesofthefieldteamandtheprojectleaderwillcertifythattheteamistrained;Anynewstaffisadequatelytrained.25.2.3VerificationoffielddatacollectionToverifythatplotshavebeeninstalledandthemeasurementstakencorrectly,10-20%ofplotsshallberandomlyselectedandre-measuredindependently.Keyre-measurementelementsincludethelocationofplots,DBHandtreeheight.There-measurementdatashallbecomparedwiththeoriginalmeasurementdata.Anydeviationbetweenmeasurementandre-measurementbelow5%willbeconsideredtolerableanderrorabove5%.Anyerrorsfoundshallbecorrectedandrecorded.Anyerrorsdiscoveredshouldbeexpressedasapercentageofallplotsthathavebeenrecheckedtoprovideanestimateofthemeasurementerror.25.2.4VerificationofdataentryandanalysisReliableestimationofcarbonstockinpoolsrequiresproperentryofdataintothedataanalysesspreadsheets.Tominimizethepossibleerrorsinthisprocess,theentryofbothfielddataandlaboratorydatashallbereviewedusingexpertjudgmentand,wherenecessary,comparisonwithindependentdatatoensurethatthedataarerealistic.Communicationbetweenallpersonnelinvolvedinmeasuringandanalyzingdatashouldbeusedtoresolveanyapparentanomaliesbeforethefinalanalysisofthemonitoringdataiscompleted.Ifthereareanyproblemswiththemonitoringplotdatathatcannotberesolved,theplotshouldnotbeusedintheanalysis.25.2.5DatamaintenanceandarchivingBecauseofthelong-termnatureoftheCDM-ARprojectactivity,datashallbearchivedandmaintainedsafely.Dataarchivingshalltakebothelectronicandpaperforms,andcopiesofalldatashallbeprovidedtoeachprojectparticipant.AllelectronicdataandreportsshallalsobecopiedondurablemediasuchasCDsandcopiesoftheCDsarestoredinmultiplelocations.Thearchivesshallinclude:Copiesofalloriginalfieldmeasurementdata,laboratorydata,dataanalysisspreadsheet;VM0004,Version1.0SectoralScope14101Estimatesofthecarbonstockchangesinallpoolsandnon-CO2GHGandcorrespondingcalculationspreadsheets;GISproducts(includingallaerialimageryifapplicable);Copiesofthemeasuringandmonitoringreports.Table4:QualitycontrolactivitiesandproceduresQCactivityProceduresCheckthatassumptionsandcriteriafortheselectionofactivitydata,emissionfactorsandotherestimationparametersaredocumented.Cross-checkdescriptionsofactivitydata,emissionfactorsandotherestimationparameterswithinformationonsourceandsinkcategoriesandensurethattheseareproperlyrecordedandarchived.Checkfortranscriptionerrorsindatainputandreference.ConfirmthatbibliographicaldatareferencesareproperlycitedintheinternaldocumentationCross-checkasampleofinputdatafromeachsourcecategory(eithermeasurementsorparametersusedincalculations)fortranscriptionerrors.Checkthatemissionsandremovalsarecalculatedcorrectly.Reproducearepresentativesampleofemissionorremovalcalculations.Selectivelymimiccomplexmodelcalculationswithabbreviatedcalculationstojudgerelativeaccuracy.Checkthatparameterandunitsarecorrectlyrecordedandthatappropriateconversionfactorsareused.Checkthatunitsareproperlylabeledincalculationsheets.Checkthatunitsarecorrectlycarriedthroughfrombeginningtoendofcalculations.Checkthatconversionfactorsarecorrect.Checkthattemporalandspatialadjustmentfactorsareusedcorrectly.Checktheintegrityofdatabasefiles.Confirmthattheappropriatedataprocessingstepsarecorrectlyrepresentedinthedatabase.Confirmthatdatarelationshipsarecorrectlyrepresentedinthedatabase.Ensurethatdatafieldsareproperlylabeledandhavethecorrectdesignspecifications.Ensurethatadequatedocumentationofdatabaseandmodelstructureandoperationarearchived..Checkforconsistencyindatabetweencategories.Identifyparameters(e.g.,activitydata,andconstants)thatarecommontomultiplecategoriesofsourcesandsinks,andconfirmthatthereisconsistencyinthevaluesusedfortheseparametersintheemissionscalculations.CheckthatthemovementofinventorydataamongprocessingstepsiscorrectCheckthatemissionandremovaldataarecorrectlyaggregatedfromlowerreportinglevelstohigherreportinglevelswhenpreparingsummaries.Checkthatemissionandremovaldataarecorrectlytranscribedbetweendifferentintermediateproducts.Checkthatuncertaintiesinemissionsandremovalsareestimatedorcalculatedcorrectly.Checkthatqualificationsofindividualsprovidingexpertjudgmentforuncertaintyestimatesareappropriate.Checkthatqualifications,assumptionsandexpertjudgmentsarerecorded.Checkthatcalculateduncertaintiesarecompleteandcalculatedcorrectly.VM0004,Version1.0SectoralScope14102Ifnecessary,duplicateerrorcalculationsonasmallsampleoftheprobabilitydistributionsusedbyMonteCarloanalyses.UndertakereviewofinternaldocumentationCheckthatthereisdetailedinternaldocumentationtosupporttheestimatesandenablereproductionoftheemissionandremovalanduncertaintyestimates.Checkthatinventorydata,supportingdata,andinventoryrecordsarearchivedandstoredtofacilitatedetailedreview.Checkintegrityofanydataarchivingarrangementsofoutsideorganizationsinvolvedininventorypreparation.Checktimeseriesconsistency.Checkfortemporalconsistencyintimeseriesinputdataforeachcategoryofsourcesandsinks.Checkforconsistencyinthealgorithm/methodusedforcalculationsthroughoutthetimeseries.Undertakecompletenesschecks.Confirmthatestimatesarereportedforallcategoriesofsourcesandsinksandforallyears.Checkthatknowndatagapsthatmayresultinincompleteemissionsestimatesaredocumentedandtreatedinaconservativeway.Compareestimatestopreviousestimates.Foreachcategory,currentinventoryestimatesshouldbecomparedtopreviousestimates,ifavailable.Iftherearesignificantchangesordeparturesfromexpectedtrends,re-checkestimatesandexplainthedifference.26.ListofVariablesUsedinEquationsSeesubsectionsaboveforlistsofvariables.27.ListofAcronymsUsedintheMethodologyAcronymDescriptionARAfforestationandReforestationCCarbonCO2CarbondioxideCO2-eCarbondioxideequivalentCDMCleanDevelopmentMechanismCFCarbonfractionCH4Methaned.m.DryMatterDBHDiameteratBreastHeightEBExecutiveBoardGHGGreenhouseGasGPGforLULUCFGoodPracticeGuidanceforLandUse,Land-useChangeandForestryGISGeographicalInformationSystemGPG2000GoodPracticeGuidanceandUncertaintyManagementinNationalGreenhouseGasInventoriesGPSGlobalPositioningSystemGWPGlobalWarmingPotentialHTreeHeightVM0004,Version1.0SectoralScope14103IPCCIntergovernmentalPanelonClimateChangeLULUCFLandUseLand-UseChangeandForestryN2ONitrousOxidePDDProjectDesignDocumentQAQualityAssuranceQCQualityControlREDDReducingEmissionsfromDeforestationandDegradation28.ReferencesAllreferencesarecitedinfootnotes.-----VM0004,Version1.0SectoralScope14104DocumentHistoryVersionDateofIssueComment1.023August2010Initialversion,developedbyInfiniteEarth,Ltd.,wasassignedversion6.3fordevelopmentpurposesandassessedasversion6.3forreferenceinthefirstandsecondassessmentreports.Ithasbeenredesignatedversion1forthepurposesoffinalizationandapprovalbytheVCSA.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱