从污染到解决方案:海洋垃圾与海洋污染的全球评估(英)-联合国环境规划署VIP专享VIP免费

FROM POLLUTION
TO SOLUTION
A GLOBAL ASSESSMENT OF MARINE LITTER
AND PLASTIC POLLUTION
© 2021 United Nations Environment Programme
ISBN: 978-92-807-3881-0
Job number: DEP/2379/NA
This publication may be reproduced in whole or in part and in any form
for educational or non-prot services without special permission from the
copyright holder, provided acknowledgement of the source is made. The
United Nations Environment Programme would appreciate receiving a
copy of any publication that uses this publication as a source.
No use of this publication may be made for resale or any other commercial
purpose whatsoever without prior permission in writing from the United
Nations Environment Programme. Applications for such permission,
with a statement of the purpose and extent of the reproduction, should
be addressed to the Director, Communication Division, United Nations
Environment Programme, P.O. Box 30552, Nairobi 00100, Kenya.
Disclaimers
Mention of a commercial company or product in this document does
not imply endorsement by the United Nations Environment Programme
or the authors. The use of information from this document for publicity
or advertising is not permitted. Trademark names and symbols are used
in an editorial fashion with no intention of infringement of trademark or
copyright laws.
The views expressed in this publication are those of the authors and do
not necessarily reect the views of the United Nations Environment
Programme. We regret any errors or omissions that may have been
unwittingly made.
© Maps, photos and illustrations as specied
Suggested citation
United Nations Environment Programme (2021). From Pollution to
Solution. A global assessment of marine litter and plastic pollution Nairobi.
Production
United Nations Environment Programme (UNEP)
Layout and gures: GRID-Arendal and Strategic Agenda
https://www.unep.org/
Supported by
UNEP promotes environmentally sound practices globally and in its own
activities. Our distribution policy aims to reduce UNEP’s carbon footprint.
FROM POLLUTION
TO SOLUTION
A GLOBAL ASSESSMENT OF MARINE
LITTER AND PLASTIC POLLUTION
FROMPOLLUTIONTOSOLUTIONAGLOBALASSESSMENTOFMARINELITTERANDPLASTICPOLLUTION©2021UnitedNationsEnvironmentProgrammeISBN:978-92-807-3881-0Jobnumber:DEP/2379/NAThispublicationmaybereproducedinwholeorinpartandinanyformforeducationalornon-profitserviceswithoutspecialpermissionfromthecopyrightholder,providedacknowledgementofthesourceismade.TheUnitedNationsEnvironmentProgrammewouldappreciatereceivingacopyofanypublicationthatusesthispublicationasasource.NouseofthispublicationmaybemadeforresaleoranyothercommercialpurposewhatsoeverwithoutpriorpermissioninwritingfromtheUnitedNationsEnvironmentProgramme.Applicationsforsuchpermission,withastatementofthepurposeandextentofthereproduction,shouldbeaddressedtotheDirector,CommunicationDivision,UnitedNationsEnvironmentProgramme,P.O.Box30552,Nairobi00100,Kenya.DisclaimersMentionofacommercialcompanyorproductinthisdocumentdoesnotimplyendorsementbytheUnitedNationsEnvironmentProgrammeortheauthors.Theuseofinformationfromthisdocumentforpublicityoradvertisingisnotpermitted.Trademarknamesandsymbolsareusedinaneditorialfashionwithnointentionofinfringementoftrademarkorcopyrightlaws.TheviewsexpressedinthispublicationarethoseoftheauthorsanddonotnecessarilyreflecttheviewsoftheUnitedNationsEnvironmentProgramme.Weregretanyerrorsoromissionsthatmayhavebeenunwittinglymade.©Maps,photosandillustrationsasspecifiedSuggestedcitationUnitedNationsEnvironmentProgramme(2021).FromPollutiontoSolution.AglobalassessmentofmarinelitterandplasticpollutionNairobi.ProductionUnitedNationsEnvironmentProgramme(UNEP)Layoutandfigures:GRID-ArendalandStrategicAgendahttps://www.unep.org/SupportedbyUNEPpromotesenvironmentallysoundpracticesgloballyandinitsownactivities.OurdistributionpolicyaimstoreduceUNEP’scarbonfootprint.FROMPOLLUTIONTOSOLUTIONAGLOBALASSESSMENTOFMARINELITTERANDPLASTICPOLLUTION4MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTTableofContentsTableofContents...................................................................................................................................4Listoffigures,tables,boxes.................................................................................................................6Background............................................................................................................................................7Acknowledgements...............................................................................................................................8Abbreviationsandacronyms................................................................................................................9Glossaryoftermsanddefinitions......................................................................................................10Foreword..............................................................................................................................................13Keyfindings.........................................................................................................................................14Introduction.........................................................................................................................................17Environmental,health,economicandsocialimpactsandrisks......................................................221.1Evidenceofbiologicalandecologicalimpacts...................................................................................................................................231.2Potentialriskstohumanhealth.................................................................................................................................................................331.3Impactsofmarinelitterandplasticpollutiononmaritimeindustries........................................................................................391.4Economiccostsofmarinelitterandplasticpollution........................................................................................................................411.5Socialimpactsofmarinelitterandplasticpollution..........................................................................................................................431.6Riskframeworkformarinelitterandplasticpollution......................................................................................................................44SourcesandpathwaysofmarinelitterandplasticPollution..........................................................462.1Majorsourcesofmarinelitterandplastic...............................................................................................................................................47pollution.........................................................................................................................................................................................................................472.2Majorpathwaysoflitterandplasticpollution......................................................................................................................................54Monitoringmethods,indicators,standardsandprogrammes.......................................................653.1Developmentsinmonitoringmethods..................................................................................................................................................663.2Monitoringprogrammes,indicators,datanetworksandplatforms............................................................................................743.3Networks,citizenscienceandcommunityinitiatives........................................................................................................................783.4Technicalstandardsandtraceabilityofplasticpollution..................................................................................................................805MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTChallenges,responses,innovations,solutionsandopportunities.................................................834.1Thecurrentindustrial,socialandgovernancelandscaperelatingtomarinelitterandplasticpollution......................844.2Governance,legislation,coordinationandcooperation...................................................................................................................874.3Businesssolutionsandenvironmentallysoundtechnologiesandinnovations......................................................................994.4Researchanddevelopment......................................................................................................................................................................1054.5Conclusion.......................................................................................................................................................................................................107ANNEXI:REGIONALACTIONPLANSONMARINELITTER5..............................................................110ENDNOTES...........................................................................................................................................111REFERENCES........................................................................................................................................1166MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTListoffigures,tables,boxesFigurei:Globalplasticproduction,accumulationandfuturetrends...........................................................................................................18Figureii:Directrisksandimpactsofmarinelitterandplastics.......................................................................................................................18Figureiii:Majorsourcesandsinksofmicroplasticsandmarinelitter...........................................................................................................19Figure1:Directrisksandimpactsofmarinelitterandplastics.......................................................................................................................23Figure2:Bio-basedplasticsandtheirbiodegradation......................................................................................................................................30Figure3a:Humanexposuretomicroplasticandnanoplasticparticles.......................................................................................................36Figure3b:Humanexposuretoplasticparticlesandassociatedchemicals................................................................................................37Figure3c:Humanhealthimpactsofexposuretoplastic-associatedchemicals.......................................................................................38Figure4:Majorsourcesandpathwaysofhuman-generatedplasticlitter.................................................................................................48Figure5:Agriculturalpracticescontributingtomarinelitterandplasticpollution................................................................................51Figure6a:Fisheriesandaquaculturepracticescontributingtomarinelitterandplasticpollution..................................................52Figure6b:Fisheriesandaquaculturepracticescontributingtomarinelitterandplasticpollution.................................................53Figure7:Naturalprocessesaffectingthedistributionandfateofmicroplastics.....................................................................................58Figure8:Aselectionofdatacoordination,collection,repositoryandportalinitiatives.......................................................................74Figure9:Timelineforglobalmarinelitterandplasticinitiatives,lawandpolicies.................................................................................87Table1:Estimatesofglobalannualemissionsofplasticwaste(millionmetrictonnes)fromland-basedsources......................50Table2:Researchneedsandgapsidentifiedinthisassessment.................................................................................................................108Box1:Fibresandmicrofibres.......................................................................................................................................................................................25Box2:Nanoplastics..........................................................................................................................................................................................................26Box3:Chemicalsassociatedwithmarinelitterandplastics............................................................................................................................28Box4:Biologicalandecologicalimpactsofplasticslabelledasbiodegradable.....................................................................................31Box5:Propertiesandprocessesaffectingthetransportanddegradationofplasticsinthemarineenvironment....................56Box6:TheGlobalPartnershiponMarineLitter....................................................................................................................................................76Box7:TheBaselConventionPartnershiponPlasticWaste.............................................................................................................................887MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTBackgroundTheUnitedNationsEnvironmentAssemblycontinuestoaddressthegrowingproblemofmarinelitter,includingplastics,andmicroplastics,throughkeyresolutionsadoptedasfollows:UNEP/EA.1/Res.6:Marineplasticdebrisandmicroplastics(2014);UNEP/EA.2/Res.11:Marineplasticlitterandmicroplastics(2016);UNEP/EA.3/Res.7:Marinelitterandmicroplastics(2017);UNEP/EA.4/Res.6:Marineplasticlitterandmicroplastics(2019);andUNEP/EA.4/Res.9:Addressingsingle-useplasticproductspollution(2019).In2016theUnitedNationsEnvironmentProgramme(UNEP)publishedareport,MarinePlasticDebrisandMicroplastics–GlobalLessonsandResearchtoInspireActionandGuidePolicyChange,1inresponsetoUNEP/EA.1/Res1.6.Thereportfocusedon:•identificationofthekeysourcesofmarineplasticdebrisandmicroplastics;•possiblemeasuresandbestavailabletechniquesandenvironmentalpracticestopreventtheaccumulationandminimizethelevelofmicroplasticsinthemarineenvironment;•recommendationsforthemosturgentactions;•areasespeciallyinneedofmoreresearch,andotherrelevantpriorityareas.AtthefourthmeetingoftheUnitedNationsEnvironmentAssemblytheExecutiveDirectorofUNEP,inresolutionUNEP/EA.4/Res.6paragraph2,wasrequestedto:“…immediatelystrengthenscientificandtechnologicalknowledgewithregardtomarinelitterincludingmarineplasticlitterandmicroplastics,throughthefollowingactivities:…(b)Compilingavailablescientificandotherrelevantdataandinformationtoprepareanassessmentonsources,pathwaysandhazardsoflitter,includingplasticlitterandmicroplasticspollution,anditspresenceinriversandoceans;scientificknowledgeaboutadverseeffectsonecosystemsandpotentialadverseeffectsonhumanhealth;andenvironmentallysoundtechnologicalinnovations;”Giventhatsubstantialnewresearchhasbeenconductedsincethe2016UNEPreport,thisassessmentprovidesanupdatebyhighlightingnewdevelopmentsandbuildingontheearlierreport.ThisassessmentisintendedtoinformdiscussionsatthefifthsessionoftheUnitedNationsEnvironmentAssembly(UNEA-5.2).InearlierdraftsprovidedinputtotheAdhocopen-endedexpertgrouponmarinelitterandmicroplasticsonthedesignofpossibleactionsandthedevelopmentofpolicy-relevantrecommendations.In2019theExecutiveDirectorofUNEPestablishedaScientificAdvisoryCommitteeonMarineLitterandMicroplastics(SAC).ThemainobjectiveoftheSACwastoprovideinputandguidanceduringthepreparationofthisassessment.UnitedNationsMemberStates,membersofspecializedagencies,andaccreditedmajorgroupsandstakeholderswereinvitedtonominateexpertstoserveasmembersoftheSAC.OncetheSACwasestablished,theexpertswereinvitedtosupportthedevelopmentoftheassessmentbyprovidingscientificinformation,data,experiences,expertopinions,reviewsandadvicetoensurethehighestscientificqualityofitscontent.Anin-personmeetingofSACmembersinFebruary2019,aswellasanumberofonlineworkinggroupsandothermeetings,wereorganizedbyUNEPtoguideandinformtheimplementationofparagraph2ofUNEP/EA.4/Res.6,inparticularthedevelopmentoftheassessmentasrequestedinsubparagraph2(b).TheSACmembersrecommendedthatUNEPdeveloptheassessmentbasedonpublishedevidenceonthesourcesanddriversofmarinelitter,especiallyplasticsandmicroplastics;thetypesandvolumesofplasticsfoundinwastestreamsenteringtheoceansandtheirpathwaysincludingtransportbetweenandwithindifferentcompartmentsorzonesinfreshwater,soil,airandmarineecosystems,ingestionbyanimalsandhumansanduptakebyplantsandmicroorganisms;thehazardsandimpactsonoceans,marineecosystemsandhumanhealth;existingandnewmonitoringandobservationprogrammes,includingthoseinvolvingcitizenscience;andexamplesofsolutions,environmentallysoundtechnologiesandriskreductionmeasures.Theassessmentwastoprovideevidencetoenablepolicymakersandthewiderpublictocomprehendthemagnitudeandseverityoftheeffectsandrisksassociatedwithmarinelitter,especiallyplasticsandmicroplastics;identifygapsinknowledge;raiseawarenessofsolutions;andhelpstimulateglobalinterventionstocontrolandpreventmarineplasticpollutionandtosafeguardhumanandecologicalhealth.Inlinewithbestpracticeinglobalassessmentprocesses,theassessmentisbasedonopenaccesspublicationsfromthepeerreviewedliterature,intergovernmentalandnationalreports,and,whererelevant,stakeholderpublications.TheauthorsandSACmembersalsoprovidedregionalandnationalinformationoninterdisciplinaryandcontextuallyrelevantcasestudies.8MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTAcknowledgementsMembersoftheScientificAdvisoryCommittee(GovernmentandMajorGroupsandStakeholdernominatedexperts):AbidAbdeslam(NationalLaboratoryforPollutionMonitoring,Morocco),ZahraAlavian(DepartmentofEnvironment,Coasts,andWetlands,Iran),AndresHugoArias(ArgentineanInstituteofOceanography,Argentina),ThomasBackhaus(UniversityofGothenburg,Sweden),BushraHamidAhmedBashier(HigherCouncilofEnvironment-Khartoum,Sudan),BhaguthsingBeerachee(MinistryofEnvironment,Mauritius),LeeBell(InternationalPOPsEliminationNetwork,Sweden),ChristianSekomoBirame(UniversityofRwanda,Rwanda),StephanieB.Borrelle(UniversityofToronto,Canada),KalpanaChaudhari(InstituteforSustainableDevelopmentandResearch,India),BenqlilouChouaib(TheNationalSchoolofEngineeringENIMinRabat,Morocco),RoxanaDiaz(GrupoGEA,Peru),ThinleyDorji(NationalEnvironmentCommissionSecretariat,Bhutan),MariatouDumbuya(NationalEnvironmentAgency,TheGambia),SarahDunlop(TheMinderooFoundation,Australia),MarcusEriksen(5GyresInstitute,LeapLab,UnitedStates),JohannaEriksson(TheSwedishAgencyforMarineandWaterManagement,Sweden),TrisiaAngelaFarrelly(MasseyUniversity,NewZealand),AndrewForrest(TheMinderooFoundation,Australia),FrançoisGalgani(InstitutFrançaisdeRecherchepourl’ExploitationdelaMer(IFREMER),France),AzizaGeleta(EthiopianEmbassyinNairobi,Kenya),SamiaGharbi(AssociationAbelGranier,Tunisia),OlfatHamdan(MinistryofEnvironmentofLebanon,Lebanon),GeorgHanke(EuropeanCommission-JointResearchCentre,Belgium),MihailOtiliaHariclia(MinistryofEnvironment,WatersandForests,Romania),PatriciaHolm(UniversityofBasel,Switzerland),ShahriarHossain(EnvironmentandSocialDevelopmentOrganization-ESDO,Bangladesh),AtsuhikoIsobe(ResearchInstituteforAppliedMechanics,KyushuUniversity,Japan),AndreaA.Jacobs(MinistryofAgriculture,FisheriesandBarbudaAffairs,AntiguaandBarbuda),JennaJambeck(UniversityofGeorgia,UnitedStates),SarojiniJayasekara(CentralEnvironmentAuthority,SriLanka),LaDaanaKanhai(UniversityoftheWestIndies,TrinidadandTobago),CherylRitaKaur(MaritimeInstituteofMalaysia,Malaysia),AhmetErkanKideys(MiddleEastTechnicalUniversityInstituteofMarineSciences,Turkey),WinnieWingYeeLau(ThePewCharitableTrusts,UnitedStates),DaojiLi(EastChinaNormalUniversity,China),JuanPabloLozoya(RegionalCentrefortheEastZone,UniversityoftheRepublic,Uruguay),JeromeSebaddukaLugumira(NationalEnvironmentManagementAuthority,Uganda),YounaLyons(NationalUniversityofSingapore,Singapore),ThomasMaes,MilicaMandic(UniversityofMontenegro,Montenegro),MwitaMarwaMangora(InstituteofMarineSciences,Tanzania),CristianEnriqueBritoMartinez(MinistryofEnvironment,Chile),CollinsBrunoMboufack(MinistryofEnvironmentofCameroon,Cameroon),MiriamMekki(NorwegianEnvironmentAgency,Norway),VianaMartinezRoxanaMelitza(MinisteriodelPoderPopularparaelEcosocialismo,Venezuela),MaxineMonsanto(MinistryofAgriculture,Fisheries,Forestry,Environment,SustainableDevelopmentandImmigration,Belize),AlethiaVazquezMorillas(UniversidadAutonomaMetropolitana,Mexico),EvaS.Ocfemia(ManilaBayEnvironment,Philippines),OlgaPantos(InstituteofEnvironmentalScienceandResearch,NewZealand),GaliaPasternak(IndependentResearcher,Israel),ChelseaM.Rochman(UniversityofToronto,Canada),AlexJoseSaerSaker(MinistryofEnvironmentandSustainableDevelopment,Colombia),SalieuKabbaSankoh(UniversityofSierraLeoneandWestAfricaRegionalFisheriesProgramme,SierraLeone),SureeSatapoomin(DepartmentofMarineandCoastalResources,Thailand),OutiSetala(FinnishEnvironmentInstitute(SYKE),Finland),MohamedLamineSidibe(MinistryofEnvironment,Guinea),FaustineSinzogan(MinistryoftheEnvironmentandSustainableDevelopment,Benin),RuthSpencer(MarineEcosystemsProtectedAreas(MEPA)Trust,TrinidadandTobago),JakobStrand(AarhusUniversity,Denmark),HideshigeTakada(TokyoUniversityofAgricultureandTechnology,Japan),NeilTangri(GlobalAllianceforIncineratorAlternatives,Philippines),LeonardoTrasande(NewYorkUniversitySchoolofMedicine,UnitedStates),PeroTutman(InstituteforOceanographyandFisheries,Croatia),GodsonCudjoeVoado(EnvironmentalProtectionAgencyofGhana,Ghana),MengjiaoWang(GreenpeaceInternational,TheNetherlands),KarenWatson(EnvironmentalProtectionAgency,Guyana),MohsinaZubair(EnvironmentalProtectionAgencyPakistan,Pakistan).Overallleadauthor:JacquelineMcGlade(UniversityCollegeLondon;andStrathmoreUniversityBusinessSchool,UnitedKingdom).Leadauthors:IreneSamyFahim(NileUniversity,Egypt),DannielleGreen(AngliaRuskinUniversity,UnitedKingdom),PhilipLandrigan(HarvardSchoolofPublicHealthandMountSinaiSchoolofMedicine,UnitedStates).Contributingauthors:AnthonyAndrady(NorthCarolinaStateUniversity,UnitedStates),MonicaCosta(UniversidadeFederaldePernambuco,Brazil),RolandGeyer(UniversityofCaliforniaSantaBarbara,UnitedStates),RachelGomes(UniversityofNottingham,UnitedKingdom),AileenTanShauHwai(UniversitiSainsMalaysia),JennaJambeck(UniversityofGeorgia,UnitedStates),DaojiLi(EastChinaNormalUniversity,China),ChelseaRochman(UniversityofToronto,Canada),PeterRyan(UniversityofCapeTown,SouthAfrica),MartinThiel(UniversidadCatólicadelNorte,Chile),RichardThompson(UniversityofPlymouth,UnitedKingdom),KathyTownsend(UniversityoftheSunshineCoast,Australia),AlexanderTurra(UniversityofSãoPaulo,Brazil).Reviewers:TatsuyaAbe,StefanoAliani,SandraAverous-Monnery,MichaelBank,EvaBildberg,AnneBowser,BethanieCarneyAlmroth,JenniferdeFrance,JostDittkrist,MariaDeudero,ClaudiaGiacovelli,KirstenGilardi,JulieGoodhew,NatalieHarms,NilsHeuer,AndreaHinwood,KitakangIyaJoyce,YasuhikoKamakura,PeterKershaw,BartKoelmans,ArvindKumar,StephanieLaruelle,CaroleManceau,NikolaiMaximenko,AllanMeso,LlorençMilaICanals,TapiwaNxele,KeiOhno,SabinePahl,CatalinaPizarro,JordiPon,AmelieRitscher,AmparoRoda,MartaRuiz,AphroditeSmagadi,EmilySmail,KarstenSteinfatt,AnthonyTalouli,FrancoTeixeiradeMello,ElisaTonda,NoamvanderHal,ErikvanSebille,YegorVolovik,JanAndriesvanFraneker,KarlVrancken,FengWang,RanXie,RiccardoZennaro,WeiweiZhang,ShuangZhuandDrorZurel.ProductionTeam:LeticiaCarvalho,CarlaFriedrich,TessaGoverse,HeidiSavelliandTabeaZwimpfer(UNEP).Editor:JohnSmith.9MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTAbbreviationsandacronymsABNJAreasbeyondnationaljurisdictionALDFGAbandoned,lostorotherwisediscardedfishinggearAMRAntimicrobialresistanceASTMInternationalstandardsorganization,formerlytheAmericanSocietyforTestingandMaterialsDFGDerelictfishinggearEFSAEuropeanFoodSafetyAuthorityFADFishaggregationdeviceFAOFoodandAgricultureOrganizationoftheUnitedNationsGESAMPJointGroupofExpertsontheScientificAspectsofMarineEnvironmentalProtectionGHGGreenhousegas(es)GPMLGlobalPartnershiponMarineLitterIMOInternationalMaritimeOrganizationISOInternationalOrganizationforStandardizationPOPsPersistentorganicpollutantsUNCLOSUnitedNationsConventionontheLawoftheSeaUNEAUnitedNationsEnvironmentAssemblyUNEPUnitedNationsEnvironmentProgrammeWHOWorldHealthOrganizationWTOWorldTradeOrganizationCommonpolymers:ABSacrylonitrilebutadienestyreneACacrylicEPepoxyresin(thermoset)EPSexpandedpolystyreneHDPEpolyethylenehighdensityLDPEpolyethylenelowdensityLLDPEpolyethylenelinearlowdensityPApolyamide(nylon)4,6,11,66PCpolycarbonatePCLpolycaprolactonePEpolyethylenePETpolyethyleneterephthalatePGApoly(glycolicacid)PLApoly(lactide)PMMApoly(methylmethacrylate)PPpolypropylenePSpolystyrenePUpolyurethane(alsoabbreviatedasPUR)PVApolyvinylalcoholPVCpolyvinylchlorideSBRstyrene-butadienerubberTPUthermoplasticspolyurethaneCommonchemicaladditivesinplastics:BFRsbrominatedflameretardantsBPAbisphenolABPFbisphenolFBPSbisphenolSDBPdibutylphthalateDEPdiethylphthalateDEHPdi-(2-ethylhexyl)phthalateFRsflameretardantsHBCDhexabromocyclododecaneNPnonylphenolNPEnonylphenolethoxylatePBDEspolybrominateddiphenylethers(penta,octaanddecaforms)PhthalatesphthalateestersTBBPAtetrabromobisphenolCommonorganiccontaminantssorbedbyplastics:DDTdichlorodiphenyltrichloroethaneHCHshexcyclohexanePAHspolycyclicaromatichydrocarbonsPCBspolychlorinatedbiphenyls10MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTGlossaryoftermsanddefinitionsThisglossaryhasbeencompiledbytheleadauthorsofthereport,drawingonglossariesandotherresourcesavailableonthewebsitesofvariousorganizations,networksandprojects.Additives:Additivesusedinamanufacturingprocessincludefillers,plasticizers,flameretardants,UVandthermalstabilizers,antimicrobialagents,colorants,residualmonomersandcatalyststrappedinplasticresins.Theycontainanumberofhazardouschemicals,suchasphthalatesandpolybrominateddiphenylethers,andpotentiallytoxicsubstances,i.e.hazardoussubstancesthathavetobeleached-released-emittedbeforeanytoxicityisexpressed(Andrady2017;Hahladakisetal.2018;AndradyandRajapakse2019;GESAMP2020a).ManyofthechemicalsassociatedwithplasticsarelistedashazardousundertheStockholmConventiononPersistentOrganicPollutantsandinnationallegislationorregulations,suchastheUnitedStatesEnvironmentalProtectionAgency(2014)prioritypollutantslist,97becausetheyarepersistent,bioaccumulativeand/ortoxic(Galloetal.2018).Atmosphericdistillation:Plasticadditivessuchaspolychlorinatedbiphenyls(PCBs)andfluorinatedcompoundsvolatilizeatequatorialandtemperatelatitudes,movepolewardintheatmosphere,andprecipitatetolandandinwaterfromthecoldairofthefarnorth,aphenomenontermed“atmosphericdistillation”(AtlasandGiam1981;Houdeetal.2011;Tekmanetal.2020).Highconcentrationsofpersistentpollutantsarethusingestedbymarinemicroorganismsinthecircumpolarregionsandaccumulateintoppredatorfishspeciesandmarinemammals(Pengetal.2020;Rubioetal.2020),includingfishandmarinemammalstraditionallyconsumedbycoastalcommunitiesandindigenouspeoplesintheArctic.Bacterialbiofilms:Surface-associatedbacterialcommunitieswhichareembeddedwithinanexopolymericsubstancematrix.Baseline/reference:Thestateagainstwhichchangeismeasured.Inthecontextofpathways,theterm“baselinescenarios”referstocurrentconditions.Baselinescenariosarenotintendedtobepredictionsofthefuture,butrathercounterfactualconstructionsthatcanservetohighlightthelevelofemissionsthatwouldoccurwithoutfurtherpolicyeffort.Typically,baselinescenariosarethencomparedtomitigationscenariosthatareconstructedtomeetdifferentgoalsforgreenhousegasemissions,atmosphericconcentrationsortemperaturechange.Theterm“baselinescenario”isusedinterchangeablywith“referencescenario”and“nopolicyscenario”.Inmuchoftheliteraturethetermisalsosynonymouswiththeterm“business-as-usual(BAU)scenario”,althoughthistermhasfallenoutoffavourbecausetheideaofbusiness-as-usualincentury-longsocioeconomicprojectionsishardtofathom.Bathymetriclidar:Atechniquetocapturenear-shorewaterdepth(bathymetry)asgeospatialdatarelatingtothecoastlineand(shallow)waters.Itcanbecarriedoutfromairborneplatformsandsatellites.Itisamethodpotentiallyfacilitatingefficientandfastcreationofhydrographicdata.Thesemeasurementshavebeenproblematichistoricallysinceshipscannotoperateclosetotheshorewhilecollectingacousticbathymetricsoundings.Becausehighlydynamiccoastalshorelinescanbeaffectedbyerosion,wetlandloss,hurricaneimpacts,sealevelrise,urbandevelopmentandpopulationgrowth,consistentbathymetricdataareimportantandareneededtobetterunderstandsensitivecoastalland/waterinterfaces.Bio-basedplasticsarepolymersthatareeitherbiosourced,biodegradableorboth.Itisforthisreasonthattheterm“bioplastic“shouldneverstandaloneandwhyitisnecessarytospecify,eachtimethiswordisused,theplastic’sorigin(biosourcedornot)andendoflife(biodegradableornot).Biodegradable:Meansamaterialcanbedecomposedundertheactionofmicroorganismssuchasbacteria,fungi,algaeorearthworms.Tobetrulymeaningful,thetermmustbelinkedtotheendproducts,toatimescalethatiscompatiblewithahumanscale,andtotheconditionsofbiodegradation.Biodegradableplastics:Polymersthatundergobiodegradationunderspecifiedenvironmentalconditions(aprocessinwhichthedegradationresultsfromtheactionofnaturallyoccurringmicroorganismssuchasbacteria,fungi,andalgae)andaboveaspecifieddegradationtimeasperacceptedindustrystandards.Acceptedindustrystandardspecificationsincluded,butwerenotlimitedto:ASTMD6400,ASTMD6868,ISO17088andEN13432.Biodegradation:Thebiologicalprocessthatresultsintheformationofwater,carbondioxide(CO2)and/ormethane,energyandby-products(residues,newbiomass).Itisinfluencedbythephysicochemical(temperature,humidity,pH)andmicrobiologicalvariables(quantityandnatureofmicroorganisms)oftheenvironmentinwhichitoccurs.Biogenichabitat:Ahabitatcreatedbyplantsandanimals.Itmaybetheorganismitself,suchasaseagrassmeadoworabedofhorsemussels,orarisefromanorganism’sactivities,suchastheburrowscreatedbycrabs.Biogenichabitat-formingspeciesalsoperformotherimportantroleswithintheecosystemandsomeareharvestedintheirownright.Examplesofbiogenichabitatsincludemangroveforests,seagrassmeadows,musselandoysterreefs,andkelpforests.Biologicalendpoint:Adirectmarkerofdiseaseprogression(e.g.diseasesymptomsordeath)usedtodescribeahealtheffect(oraprobabilityofthathealtheffect)resultingfromexposuretoachemical.Biopolymers:Naturalpolymersderivedfromrenewableresourcesofplantsoranimals.Theycanbedirectlysynthesizedbyplantsoranimalssuchaspolysaccharides(starch,cellulose,chitosan,etc.),proteins(collagen,gelatin,casein,etc.)andlignins,orsynthesizedfrombiologicalresourcessuchasvegetableoils(rape,soybean,sunflower,etc.).Otherbiopolymers,suchasPHA,areproducedbymicroorganisms(bacteria)throughfermentationfromsugarsandstarch.Biosourced:Biosourcedpolymersaremanufactured,inpartorinwhole,fromrenewablebiologicalresources,mostoftenvegetable.Thesourcesofrawmaterialsareveryvaried.Wefindeverythingrelatedtobiomass,organicmatter,inparticularstarches,sugarsandvegetableoils.Carbonintensity:TheamountofemissionsofCO2releasedperunitofanothervariablesuchasgrossdomesticproduct,outputenergyuse,transportoragricultural/forestryproducts.Carbonprice:ThepriceofavoidedorreleasedCO2orCO2-eq(CO2equivalent)emissions.Thismayrefertotherateofacarbontaxorthepriceofemissionpermits.Inmanymodelsthatareusedtoassesstheeconomiccostsofmitigation,carbonpricesareusedasaproxytorepresentthelevelofeffortinmitigationpolicies.Carbontax:Alevyonthecarboncontentoffossilfuels.BecausevirtuallyallofthecarboninfossilfuelsisultimatelyemittedasCO2,acarbontaxisequivalenttoanemissiontaxonCO2emissions.Co-benefits:Thepositiveeffectsthatapolicyormeasureaimedatoneobjectivemighthaveonotherobjectives,withoutyetevaluatingtheneteffectonoverallsocialwelfare.Co-benefitsareoftensubjecttouncertaintyanddependon,amongothers,localcircumstancesandimplementationpractices.Co-benefitsareoftenreferredtoasancillarybenefits.Compostable:Intermsofpolymers,thosethatarecompostablearecapableofbeingbiodegradedatelevatedtemperaturesinsoilunderspecifiedconditionsandtimescales,usuallyonlyencounteredinanindustrialcomposter.Forindustrialcomposting,standardsapply:ISO17088,EN13432,ASTM6400.Thisisincontrasttodomesticcomposting(seeComposting).Composting:Anaerobictransformationprocess(i.e.inthepresenceofoxygen,unlikemethanizationwhichisananaerobicreaction,i.e.withoutoxygen)offermentablematerialsundercontrolledconditions.Ithelpsobtainastabilizedfertilizingmaterial,richinhumiccompounds,calledcompost.Itisaccompaniedbythereleaseofheatandcarbondioxide.Itisaprocesswidelyused,especiallyinagriculturalenvironments,becausecomposthelpsamendsoilbyimprovingitsstructureandfertility.11MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTCoreindicators:Generallyconsideredtobegenericindicatorswhichcanbemeasuredinallcontextsbyparticipatingorganizations,countries,andlegalpartiescommittedtocollectingdataonandreportingonspecificissues.Theyareoftencombinedwithregionalorsite-specificindicators.Coreindicatorsareoftendesignedtoanswerkeypolicyquestionsandsupportallphasesofenvironmentalpolicymaking,fromdesigningpolicyframeworkstosettingtargets,andfrompolicymonitoringandevaluationtocommunicatingtopolicymakersandthepublic.Theycanbeestablishedformonitoringtrends,measuringperformance(e.g.reachingatarget),measuringefficiency(e.g.whetherthesituationimproving)andmeasuringpolicyeffectiveness(i.e.whetherthemeasuresworking).ExamplesofcoreindicatorsetsincludethosemaintainedbytheEuropeanEnvironmentAgency(2014)(forits32membercountries),HELCOM(RuizandStankiewicz2019),andtheRegionalSeasProgramme(UNEP2014).Degradation:Thepartialorcompletebreakdownofapolymerasaresultof,forexample,UVradiation,oxygenattackorbiologicalattack.Thisimpliesalterationofproperties,suchasdiscolouration,surfacecracking,andfragmentation.Forbiodegradation,seeBiodegradable.Inthecontextofpolymerdegradation,mineralization(seeMineralization)isthecompletebreakdownofapolymerasaresultofcombinedabioticandmicrobialactivityintoCO2,water,methane,hydrogen,ammoniaandothersimpleinorganiccompounds.Thisisdifferentfromcompostable(seeCompostable)oroxo-degradable(seeOxo-degradable).Downcycling:Aformofrecyclingthatinvolvesreusingmaterialinlessdemandingapplicationsandacceptingreducedperformanceofthematerialintermsofspecificationssuchashardness,tensilestrength,orductility.Initsnewapplicationthedowncycledmaterialreplacesamaterialoflowereconomicvaluethantheoriginalapplication.Labelling(plasticsrecycling):Varioussystemsoflabellingthedifferenttypesofplasticsareinuse.Anexampleisthenumberingsystemforrecycling:1.PET(orPETE)–polyethyleneterephthalate,usedinhouseholdcontainerssuchascarbonatedbeveragebottles,microwavablefoodtrays,medicinebottles,haircombsandrope.Ifrecycled,itiscommonlyfoundincarpet,fibrefillforcoatsandsleepingbags,cassettetapesandsailsforboats.2.HDPE–high-densitypolyethylene.Manypackagingapplicationsusethismaterialasamoisturebarrierandforitschemicalresistance.SaferthanPET,productsmadeofHDPEwillnottransmitchemicalsintofoodordrinks,sotheyaretypicallyusedinsnackfoodpackagesandmilkandmargarinecontainers.HPDEisalsousedforshampoo,detergentandbleachbottles,motoroilcontainersandchildren’stoys.Whenrecycled,HDPEisusedforplasticlumber,fencingorstoragecrates.LikePET,itiscommonlyfoundinlabbottlesandlargerchemicalstoragecontainers.3.PVC–polyvinylchloride,commonlyusedinplumbingpipes,floorcoveringsandbuildings,butalsofoundinsyntheticleatherproducts,showercurtains,cardashboardsandcableandwiresheathing.Duetoitsabilitytoresistmostchemicalsandbacteria,itisfoundinbloodbagsandmedicaltubing.4.LDPE–low-densitypolyethylene.Adurable,flexibleplasticknownforitstransparencyandtoughness,itisoftenusedforsandwichbags,clingwrap,squeezebottles,grocerybagsanddry-cleaningbags.Itisalsopopularinwireandcableapplicationsbecauseithasstableelectricalqualities.Itisnotcommonlyrecycled,butcanbeusedinlumber,garbagecansandfurniture.LikeotherPEproducts,LDPEisoftenusedinlabbottles,particularlythosewithnarrowneckssuchaswashanddropperbottles.5.PP–polypropylene.Astrongfilmwithexcellentchemicalresistance,thisisapopularsyntheticforbothsolidandflexiblepackaging.Itcanhandlehighertemperatures,soisespeciallygoodforfillingwithhotliquids.Itisusedforfoodstoragecontainers,ketchupbottles,diapers,prescriptionbottlesandyoghurtcontainers,aswellasplasticbottlecaps.Itisalsofoundinautomotivebatterycasings.Ifrecycled,itisusedinrakes,batterycablesoricescrapers.Duetoitswideservicetemperaturerange,itisoneofthemostpopularplasticsusedinlaboratorytesttubes,vials,bottles,jars,racksandmicroplates.6.PS–(expanded)polystyreneusedineitherrigidorfoamform.Becauseofitsclarity,itisusedformedicalandlaboratoryspecimencontainerssuchasculturetubes,Petridishes,pipettes,wellsandmicroplates.Itispopularinfoodpackagingandplasticcutlery;asexpandablefoam,itcanbeeasilyshapedintodisposablecoffeecups,meat,fishandcheesetraysandrestauranttake-outboxes.Itisalsopopularforpackagingfoamand“peanuts”.Whenrecycled,itisusedforinsulation,rulersandlicenseplateframes.7.OTHER–Coversallotherplasticswhicharehardesttorecycle.AnexampleisAcrylonitrileButadieneStyrene(ABS),knownforitsstrengthandrigidityandusedinmusicalinstruments,golfclubheads,automotivetrimandbumpers,luggageandsmallkitchenappliances.Leaching:Thewashingoutofsolubleionsandcompoundsbywaterdrainingthroughsoil.Macroplastic:Anythingplasticthatcanbeeasilyseen.Someexamplesareplasticbags,waterbottlesandnets.Whiletheystillhaveanegativeimpactontheenvironment,theyarelesslikelytoenterthefoodchainbecausetheyarehardtoingestduetotheirsize.Marinedebris:ConsideredassynonymouswithmarinelitterintheHonoluluStrategy,whereitisdefinedtoincludeanyanthropogenic,manufactured,orprocessedsolidmaterial(regardlessofsize)discarded,disposedof,orabandonedthatendsupinthemarineenvironment.Itincludes,butisnotlimitedto,plastics,metals,glass,concreteandotherconstructionmaterials,paperandcardboard,polystyrene,rubber,rope,textiles,timberandhazardousmaterials,suchasmunitions,asbestosandmedicalwaste.Insomeinstances,marinedebrismayalsobeavesselfordangerouspollutantsthatareeventuallyreleasedintothemarineenvironment.Marinedebrismayresultfromactivitiesonlandoratsea.Marinedebrisisacomplexculturalandmulti-sectoralproblemthatexactstremendousecological,economic,andsocialcostsaroundtheglobe.Adistinctionmaybemadebetweennaturalandartificialmarinedebris(Maximenkoetal.2019).Naturaldisasterscanalsogreatlyincreaseinputsofallkindsofnaturalandartificialdebris.Forexample,the2011tsunamiinJapanwashedabout5millionmetrictonsofdebrisintotheoceanwithinhours(JapanMinistryoftheEnvironment2012).Ofthisamount,3.5millionmetrictonssankontheshelf,severelydamagingthebenthicecosystemand,togetherwiththeradioactivespillfromtheFukushimanuclearplant,badlyaffectingthelocalfishingindustry.Theremaining1.5milliontons(anamountclosetoafull-yearinputofland-basedplasticdebrisfortheentireNorthPacificbecameflotsamandafractionofthisdriftedtoNorthAmericaandHawai‘i.Thecompositionoftsunamidebriswasverycomplex:accordingtoMurrayetal.(2018),countsofallcategoriesofdebris,monitoredonbeachesintheStateofWashington(UnitedStates),increasedin2012byafactorof10comparedtopre-tsunamilevels.Seealso:Marinelitter.Marinelitter:AsdefinedbyUNEP(1995),marinelitterisanypersistent,manufacturedorprocessedsolidmaterialdiscarded,disposedoforabandonedinthemarineandcoastalenvironment.Marinelitterconsistsofitemsthathavebeenmadeorusedbypeopleanddeliberatelydiscardedintotheseaorriversoronbeaches;broughtindirectlytotheseawithrivers,sewage,stormwaterorwinds;accidentallylost,includingmateriallostatseainbadweather(fishinggear,cargo);ordeliberatelyleftbypeopleonbeachesandshores.SeealsoMarinedebris.Methanization:Methanization(oranaerobicdigestion)isthenaturalbiologicalprocessofdegradingorganicmatterintheabsenceofoxygen(anaerobic).Itoccursnaturallyinsomesediments,marshes,ricepaddiesandlandfills,aswellasinthedigestivetractofsomeanimalssuchastermitesorruminants.Someoftheorganicmatterisdegradedtomethane,whilesomeisusedbymethanogenicmicroorganismsfortheirgrowth.Thedecompositionisnotcompleteandleavesthe“digestate“(partlycomparabletocompost),whichrequirescompostinginordertobestabilized.Methanizationisalsoatechniqueusedin“methanizers“,wheretheprocessisacceleratedandmaintainedtoproduceusablemethane(biogas).Organicwastecanthusprovideenergy.Microplastics:Microplasticshavebeenthefocusofongoingdebateastotheirsizelimit(Thompson2015).Someauthorstakeabroadview,includingitemslessthan5mmdiameter(Arthuretal.2009),whereasothersrestrictthetermtoitemslessthan2mm,lessthan1mmorevenlessthan500μm(Coleetal.2011).Dependingontheuppersizelimit,industrialpelletsmayormaynotbeincludedintheterm.Microplasticsarecategorizedasprimaryandsecondary(seebelow).Theproportionofprimarymicroplasticsintheenvironmentisprobablysmallcomparedwithsecondarymicroplastics,exceptinsomeareasoftheGreatLakesintheUnitedStates(Eriksenetal.2013),butitisalargelyavoidablesourceofpollution.Inthisassessment,thedefinitionofmicroplasticsasparticleslessthan5mmindiameterisused(Arthuretal.2009).Primarymicroplasticsarepurposefullymanufacturedtocarryoutaspecificfunction(Coleetal.2011).Theyincludecertaincosmetics,handcleaners,airblastcleaningmedia,andplasticbeadsmanufacturedspecificallyforthispurpose(e.g.abrasiveparticles,powdersforinjectionmoulding).Nurdlesorpre-productionpelletsandresinbeadsarebulktransportedbetweenmanufacturingsites.Theyareproducedseparatelyandmelted12MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTdownforusebyplasticsproducers(plasticspellets),bymanufacturersofhouseholdproducts(personalcareproductsandcosmetics),forshipandbuildingcleaning(abrasivepowders),andinmanufacturing(powdersforinjectionmouldsand3Dprinting).Secondarymicroplasticsrepresenttheresultsofwearandtearorfragmentationoflargerobjects,bothduringuseandfollowinglosstotheenvironment(e.g.textileandropefibres,weatheringandfragmentationoflargerlitteritems,vehicletyrewear,paintflakes).Mineralization:Mineralizationinthecontextofpolymerdegradationisthecompletebreakdownofapolymerasaresultofthecombinedabioticandmicrobialactivity,intoCO2,water,methane,hydrogen,ammonia,andothersimpleinorganiccompounds.Monitoring:Theintenttomeasurethecurrentstatusofanenvironmentortodetecttrendsinspaceortimeofenvironmentalparameters.Monitoringshouldbeperformedsystematicallybyharmonizedsamplingmethodsandaconsistentdataandmetadatamanagementprocedure.Nanoplastics:Asubcategoryofmicroplasticscreatedbydegradation.Duetotheextremelysmallsizeofnanoplastics,theyenterthefoodchainwheningestedbyunicellularandmulticellularmarineorganisms.Nanoplasticsalsohaveahighsurfaceareatovolumeratio,makingthemmorelikelytoabsorborganicpollutantsandotherhazardouscontaminants.Theprecisedefinitionofnanoplasticsisstillunderdebate(Gigaultetal.2018);someauthorsusesize,withsomefavouringlessthan1μm(e.g.Pintoetal.(2016),whileothersusemorethan1μm(RiosandBalcer2019).Gigaultetal.(2018)definenanoplasticsas“particlesunintentionallyproduced(i.e.fromthedegradationandthemanufacturingoftheplasticobjects)andpresentingacolloidalbehaviour,withinthesizerangefrom1to1,000nm”.Noanalogiesorextrapolationscanbemadebetweennanoplasticsandother“nanomaterials”duetothedifferentproductionpathwaysandphysicalandchemicalproperties.Nanoplasticsarehighlypolydisperseinphysicalpropertiesandheterogeneousincomposition(Gigaultetal.2016;LambertandWagner2016;terHalleetal.2016).Indeed,becausenanoplasticsareproducedunintentionallyfromthedegradationofmicroscaleplasticlitter,itishighlyprobablethatnanoplasticswillformhetero-aggregateswithothernaturaland/oranthropogenicmaterials(Hüfferetal.2017);inthissensethecolloidalbehaviourofnanoplasticsisrelevant.Littleisknownabouttheadversehealtheffectsofnanoplasticsinorganisms,includinghumans(Barriaetal.2020).Natural(bio-)polymers:Polyamideswhichoccurinproteinsandformmaterialssuchaswoolandsilk.Bio-polymersareverylargemoleculeswithalongchain-likestructureandahighmolecularweight,producedbylivingorganisms.Theyareverycommoninnatureandformthebuildingblocksofplantandanimaltissue.Cellulose(C6H10O5)nisapolysaccharide(carbohydratechains),andisconsideredthemostabundantnaturalpolymeronEarth,formingakeyconstituentofthecellwallsofterrestrialplants.Chitin(C8H13O5N)nisapolymerofaderivativeofglucose(N-acetylglucosamine)andisfoundintheexoskeletonofinsectsandcrustaceans.Lignin(C31H34O11)nisacomplexpolymerofaromaticalcoholsandformsanotherimportantcomponentofcellwallsinplants,providingstrengthandrestrictingtheentryofwater.Cutinisformedofawaxypolymerthatcoversthesurfaceofplants.Oxo-biodegradation:Theoxo-biodegradationofplasticsisdegradationidentifiedasresultingfromoxidativeandcell-mediatedphenomena,eithersimultaneouslyorsuccessively(CENTC249/WG9).Oxo-degradable:Oxo-degradableplastics(or“fragmentable“,“oxo-fragmentable“,oreven“biofragmentable“or“oxo-biodegradable”plastics)arepolymersofpetrochemicalorigincontainingpre-oxidants,suchasmineraloxidizingadditives,thatpromotetheirdegradationintosmallpieces(untiltheybecomeinvisibletothenakedeye).Theseplasticscanfragment,undercertainconditions(light,heat,etc.),butarenotbiodegradableaccordingtocurrentstandards.Inaddition,theseadditivesseemtocontainheavymetalswhoseenvironmentaleffectsarecurrentlyunknown.ThenewEuropeanSingle-UsePlasticProductsDirective,approvedbytheEuropeanParliamenton27March2019,providesfortheprohibitionoftheseoxo-degradableplasticswhatevertheiruse.Plastics:Definedassyntheticorganicpolymerswiththermo-plasticsorthermo-setproperties(synthesizedfromhydrocarbonorbiomassrawmaterials),elastomers(e.g.butylrubber),materialfibres,monofilamentlines,coatingsandropes(GESAMP2019).Manyplasticsareproducedasamixtureofdifferentpolymersandvariousplasticizers,colorants,stabilizersandotheradditives.Mostplasticscanbedividedintotwomaincategories:thermoplastics(capableofbeingdeformedbyheating),whichincludepolyethylene,polypropyleneandpolystyrene;andthermoset(non-deformable),whichincludepolyurethane,paintsandepoxyresins.About15percentoftotalsyntheticpolymerproductionconsistsoffibres,suchaspolyesterandacrylic.Anothersignificantcomponentofmarinelitterissemi-syntheticmaterial,suchascellulosenitrateandrayon,madefrombiomass(UNEP2018b).Plasticsdebrisandlitter:Thesetermsareoftenusedinterchangeably.Thereisnoagreedorofficialtextonthecategorizationofplasticsdebrisorlitter;theterminologyusedinthisreportthusfollowsthatofGESAMP(2019).Size:Therehasbeenanongoingdiscussionaboutthedefinitionofdifferentsizedplastics(Galganietal.2015).Forexample,Andrady(2011)arguedtheneedforthreesizeterms:mesoplastics(500μm-5mm),microplastics(50-500μm)andnanoplastics(<50μm),eachwiththeirownsetofphysicalcharacteristicsandbiologicalimpacts.InthisassessmentthesizeclassesproposedbyLusheretal.(2017)areused:Mega>1m;Macro25mm-1m;Meso5mm-25mmandMicro<5mm(seeMicroplastics).Plasticparticleswithasizeof1μmorlessaretermednanoplastics(seeNanoplastics).Shape:Thereiscurrentlynostandardizedschemeforthedifferentshapesofplasticsdebris.Thefiveshapecategoriesusedformarinelitterare:1)fragmentsorirregularshapedparticles,crystals,fluff,powder,granules,shavings;2)fibres/filaments,microfibres,strands,andthreads;3)beadsgrains,sphericalmicrobeads,microspheres;4)films/sheets,andpolystyrene,expandedpolystyrenefoams;5)pelletsresinpellets,nurdles,pre-productionpellets,nibs(Lusheretal.2017).Colour:Colourisnotregardedasacrucialparameterforcategorizationofplasticsdebris(GESAMP2019:Hartmannetal.2019).Plastisphere:Atermusedtodescribethehabitatsonmicroplasticswhichfosterdifferentmicrobialcommunities.Polymer:Referstoamoleculeofhighmolecularweightconsistingofarepetitivesequenceofalargenumberofsimplemoleculescalledmonomers,whichmayormaynotbethesame.Thenumberofmonomerunitsconstitutingthemacromoleculeiscalledthe“degreeofpolymerization”.Polymersaregenerallypolymolecular,i.e.theyarecomposedofblendsofmoleculesofdifferentsizes.Sugars,starchandproteinsarenaturalpolymerssynthesizedbyprokaryotes,plants,animalsorbacteria;thesearecalled“biopolymers”.Productlightweighting:Aprocessofcreatinglighterproductsthroughdesignsthatrequirelessmaterialorsubstituteheaviermaterialwithlighterand/orlessenergyintensivematerials.Lightermaterialalternatives,bothinweightorvolume,cangeneratesubstantialenergysavingsinthetransportandbuildingsectors.Source:Anyprocess,activityormechanismthatcanleadtoreleasesoflitterandplasticsintotheenvironment.Sustainabledevelopment:Developmentthatmeetstheneedsofthepresentwithoutcompromisingtheabilityoffuturegenerationstomeettheirownneeds.Uncertainty:Acognitivestateofincompleteknowledgethatcanresultfromalackofinformationorfromdisagreementaboutwhatisknownorevenknowable.Itmayhavemanytypesofsources,fromimprecisioninthedatatoambiguouslydefinedconceptsorterminology,oruncertainprojectionsofhumanbehaviour.Uncertaintycanthereforeberepresentedbyquantitativemeasures(forexample,aprobabilitydensityfunction)orbyqualitativestatements(forexample,reflectingthejudgementofateamofexperts)13MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTDecadesofrelentlessuseofplasticsacrossoureconomieshasledtoaseeminglyunstoppableflowofplasticsintotheenvironmentincludingoutintothedeepoceans.Largelyaresultofunsustainableproductionandconsumptionpatternsandinadequatewastemanagement,thechallengeofplasticsisnowbeingcompoundedbytheCOVID-19pandemic.Largeamountsofplasticwastefrompersonalprotectiveequipmentandadditionalpackagingarebeingdiscardeddirectlyintotheenvironment.Thisassessmentprovidesthestrongestscientificargumenttodatefortheurgencyofacting,andforcollectiveactiontoprotectandrestoreouroceans.Theassessmentdetailstheimpactsofmarinelitterandplasticpollution–fromthepopulationleveltothesub-cellular–revealingpreviouslyunknownaspectsoftheeffectsofmicroplasticsonphysiologyaswellastheirecotoxicologicaleffectsonecosystems,wildlifeandhumans.Drawingonacomprehensivesynthesisofthelatestfindingsaboutthesources,pathwaysandfateofmarinelitterandplasticpollution,theassessmenthighlightsthepervasivenessofplasticsandmicroplastics,fromthedeepestabyssalenvironmentstothemostremoteoceanicislands,andtheextremepressurebeingexertedontheplanet.Theevidencepresentedintheassessmentpaintsacomprehensivepictureofhoweverystageinthelifecycleofplasticsisaffectingtheoceans,themainrisks,andwheregapsinourknowledgeexist.Amajorconcernisthefateofbreakdownproducts,suchaschemicaladditivesandmicroplastics,manyofwhichareknowntobehazardoustobothhumanandwildlifehealthaswellastoecosystems.Thereisevidencethatmicroplasticsappearinarangeofseafoodsafterbeingingestedbymanydifferentmarineorganisms.Whileourunderstandingofthedirecthumanhealtheffectsisstilllimited,theimpactsofhazardouschemicalsandmicroplasticsonthephysiologyofmarineorganismsisabundantlyclear.Theassessmentalsodrawsattentiontoplasticssupplyanddemand,examiningtheabsolutevolumesofplasticsproduced,theslowgrowthofalternatives,thelowlevelsofrecycling,andpoorwastemanagement.Itlooksatcriticalmarketfailuressuchasthelowpriceofvirginfossilfuelfeedstockscomparedtothatofrecycledmaterials,disjointedeffortsinregardtoinformalandformalplasticwastemanagement,andlackofconsensusonsolutions.Importantly,theassessmentoffersguidanceonwhatitwilltaketoaddressmarinelitterandplasticpollutionandprovidesexamplesoftransformativeactionsandsolutionsthatarefairandjust.Thespeedatwhichoceanplasticpollutioniscapturingpublicattentionisencouraging.Itisvitalthatweusethismomentumtofocusonopportunitiesacrossthelifecycleofplasticsandfromsource-to-seaforclean,healthyandresilientoceans,whileatthesametimecontributingtovitalEarthsystemprocesses,suchasclimateregulation,andtocleanwater,healthyecosystemsandbiodiversityintegrity.IngerAndersen,ExecutiveDirector,UNEPForeword14MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTKeyfindingsandrespirationrates.Theycanalterthereproductivesuccessandsurvivalofmarineorganismsandcompromisetheabilityofkeystonespeciesandecological“engineers”tobuildreefsorbioturbatedsediments.Humanhealthandwell-beingareatrisk.Riskstohumanhealthandwell-beingarisefromtheopenburningofplasticwaste,ingestionofseafoodcontaminatedwithplastics,exposuretopathogenicbacteriatransportedonplastics,andleachingoutofsubstancesofconcerntocoastalwaters.Thereleaseofchemicalsassociatedwithplasticsthroughleachingintothemarineenvironmentisreceivingincreasingattention,assomeofthesechemicalsaresubstancesofconcernorhaveendocrinedisruptingproperties.Microplasticscanenterthehumanbodythroughinhalationandabsorptionviatheskinandaccumulateinorgansincludingtheplacenta.Humanuptakeofmicroplasticsviaseafoodislikelytoposeseriousthreatstocoastalandindigenouscommunitieswheremarinespeciesarethemainsourceoffood.Thelinksbetweenexposuretochemicalsassociatedwithplasticsinthemarineenvironmentandhumanhealthareunclear.However,someofthesechemicalsareassociatedwithserioushealthimpacts,especiallyinwomen.Marineplasticshaveawidespreadeffectonsocietyandhumanwell-being.Theymaydeterpeoplefromvisitingbeachesandshorelinesandenjoyingthebenefitsofphysicalactivity,socialinteraction,andgeneralimprovementofbothphysicalandmentalhealth.Mentalhealthmaybeaffectedbytheknowledgethatcharismaticmarineanimalssuchasseaturtles,whales,dolphinsandmanyseabirdsareatrisk.Theseanimalshaveculturalimportanceforsomecommunities.Imagesanddescriptionsofwhalesandseabirdswiththeirstomachsfullofplasticfragments,whichareprevalentinmainstreammedia,canprovokestrongemotionalimpacts.Therearehiddencostsfortheglobaleconomy.Marinelitterandplasticpollutionpresentseriousthreatstothelivelihoodsofcoastalcommunitiesaswellastoshippingandportoperations.Theeconomiccostsofmarineplasticpollutionwithrespecttoitsimpactsontourism,fisheriesandaquaculture,togetherwithothercostssuchasthoseofclean-ups,areestimatedtohavebeenatleastUnitedStatesdollars(US$)6-19billiongloballyin2018.Itisprojectedthatby2040plasticleakageintotheoceanscouldrepresentaUS$100billionannualfinancialriskforbusinessesifgovernmentsrequirethemtocoverwastemanagementcostsatexpectedvolumesandrecyclability.Bycomparison,theglobalplasticmarketin2020hasbeenestimatedataroundUS$580billionwhilethemonetaryvalueoflossesofmarinenaturalcapitalisestimatedtobeashighasUS$2,500billionperyear.Theamountofmarinelitterandplasticpollutionhasbeengrowingrapidly.Emissionsofplasticwasteintoaquaticecosystemsareprojectedtonearlytripleby2040withoutmeaningfulaction.Thescaleandrapidlyincreasingvolumeofmarinelitterandplasticpollutionareputtingthehealthofalltheworld’soceansandseasatrisk.Plastics,includingmicroplastics,arenowubiquitous.TheyareamarkeroftheAnthropocene,thecurrentgeologicalera,andarebecomingpartoftheEarth’sfossilrecord.Plasticshavegiventheirnametoanewmarinemicrobialhabitat,the“plastisphere”.Despitecurrentinitiativesandefforts,theamountofplasticsintheoceanshasbeenestimatedtobearound75-199milliontons.Estimatesofannualglobalemissionsfromland-basedsourcesvaryaccordingtotheapproachesused.Underabusiness-as-usualscenarioandintheabsenceofnecessaryinterventions,theamountofplasticwasteenteringaquaticecosystemscouldnearlytriplefromsome9-14milliontonsperyearin2016toaprojected23-37milliontonsperyearby2040.Usinganotherapproach,theamountisprojectedtoapproximatelydoublefromanestimated19-23milliontonsperyearin2016toaround53milliontonsperyearby2030.Marinelitterandplasticspresentaseriousthreattoallmarinelife,whilealsoinfluencingtheclimate.Plasticsarethelargest,mostharmfulandmostpersistentfractionofmarinelitter,accountingforatleast85percentoftotalmarinewaste.Theycauselethalandsub-lethaleffectsinwhales,seals,turtles,birdsandfishaswellasinvertebratessuchasbivalves,plankton,wormsandcorals.Theireffectsincludeentanglement,starvation,drowning,lacerationofinternaltissues,smotheringanddeprivationofoxygenandlight,physiologicalstress,andtoxicologicalharm.Plasticscanalsoalterglobalcarboncyclingthroughtheireffectonplanktonandprimaryproductioninmarine,freshwaterandterrestrialsystems.Marineecosystems,especiallymangroves,seagrasses,coralsandsaltmarshes,playamajorroleinsequesteringcarbon.Themoredamagewedotooceansandcoastalareas,theharderitisfortheseecosystemstobothoffsetandremainresilienttoclimatechange.Whenplasticsbreakdowninthemarineenvironment,theytransfermicroplastics,syntheticandcellulosicmicrofibres,toxicchemicals,metalsandmicropollutantsintowatersandsedimentsandeventuallyintomarinefoodchains.Microplasticsactasvectorsforpathogenicorganismsharmfultohumans,fishandaquaculturestocks.Whenmicroplasticsareingested,theycancausechangesingeneandproteinexpression,inflammation,disruptionoffeedingbehaviour,decreasesingrowth,changesinbraindevelopment,andreducedfiltration123415MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTMarinelitterandplasticsarethreatmultipliers.Themultipleandcascadingrisksposedbymarinelitterandplasticsmakethemthreatmultipliers.Theycanacttogetherwithotherstressors,suchasclimatechangeandoverexploitationofmarineresources,tocausefargreaterdamagethaniftheyoccurredinisolation.Habitatalterationsinkeycoastalecosystemscausedbythedirectimpactsofmarinelitterandplasticsaffectlocalfoodproductionanddamagecoastalstructures,leadingtowide-reachingandunpredictableconsequencesincludinglossofresiliencetoextremeeventsandclimatechangeincoastalcommunities.Therisksofmarinelitterandplasticsthereforeneedtobeassessedacrossthewidercumulativerisks.Themainsourcesofmarinelitterandplasticpollutionareland-based.Approximately7,000millionoftheestimated9,200milliontonsofcumulativeplasticproductionbetween1950and2017becameplasticwaste,three-quartersofwhichwasdiscardedandplacedinlandfills,becamepartofuncontrolledandmismanagedwastestreams,orwasdumpedorabandonedintheenvironment,includingatsea.Microplasticscanentertheoceansviathebreakdownoflargerplasticitems,leachatesfromlandfillsites,sludgefromwastewatertreatmentsystems,airborneparticles(e.g.fromwearandtearontyresandotheritemscontainingplastic),run-offfromagriculture,shipbreaking,andaccidentalcargolossesatsea.Extremeeventssuchasfloods,stormsandtsunamiscandeliversignificantvolumesofdebrisintotheoceansfromcoastalareasandaccumulationsoflitteronriverbanks,alongshorelinesandinestuaries.Withglobalcumulativeplasticproductionbetween1950and2050predictedtoreach34,000milliontons,itisurgenttoreduceglobalplasticproductionandflowsofplasticwasteintotheenvironment.Themovementandaccumulationofmarinelitterandplasticsoccuroverdecades.Themovementofmarinelitterandplasticson-andoffshoreiscontrolledbyoceantides,currents,wavesandwinds,withfloatingplasticsaccumulatingintheoceangyresandsinkingitemsconcentratinginthedeepsea,riverdeltas,mudbeltsandmangroves.Therecanbesignificanttimeintervalsbetweenlossesonlandandaccumulationinoffshorewatersanddeep-seasediments.Morethanhalftheplasticsfoundfloatinginsomegyreswereproducedinthe1990sandearlier.Therearenowagrowingnumberofhotspotsinwhichthereispotentialforlong-term,large-scaleriskstoecosystemfunctioningandhumanhealth.MajorsourcesincludetheMediterraneanSea,wherelargevolumesofmarinelitterandplasticaccumulatedueitsenclosednature,presentingriskstomillionsofpeople;theArcticOceanbecauseofpotentialdamagetoitspristinenatureandharmtoindigenouspeoplesandiconicspeciesthroughingestionofplasticsinmarinefoodchains;andtheEastandSoutheastAsianregion,wheretherearesignificantvolumesofuncontrolledwasteinproximitytoverylargehumanpopulationswithahighdependencyontheoceans.Technologicaladvancesandthegrowthofcitizenscienceactivitiesareimprovingdetectionofmarinelitterandplasticpollution,butconsistencyofmeasurementsremainsachallenge.Therehavebeensignificantimprovementsinregardtoeffectiveandaffordableglobalobservationalandsurveyingsystems,aswellastheprotocolsfordetectingandquantifyinglitterandmicroplasticsinphysicalandbioticsamples.However,concernsremainamongscientistsaboutsamplingbiasesinthedeterminationoftheabsolutevolumesofmicroplasticsfoundindifferenthabitatsowingtohighvariabilityinphysicalandchemicalcharacteristicsandtheneedforgreaterconsistencyamongdifferentsamplingandobservationplatformsandinstruments.Therearecurrently15majoroperationalmonitoringprogrammeslinkedtomarinelitteractionco-ordination,datacollectionframeworks,andlarge-scaledatarepositoryandportalinitiatives,butthedataandinformationfromthemarelargelyunconnected.Alongsidetheseprogrammesareindicatorprocessesandbaselinedatacollectionactivities,supportedbyagrowingnumberofnetworks,citizenscienceprojectsandparticipatoryprocessesworldwide.Plasticrecyclingratesarelessthan10percentandplastics-relatedgreenhousegasemissionsaresignificant,butsomesolutionsareemerging.Duringthepastfourdecadesglobalplasticproductionhasmorethanquadrupled,withtheglobalplasticmarketvaluedataroundUS$580billionin2020.Atthesametime,theestimatedglobalcostofmunicipalsolidwastemanagementissettoincreasefromUS$38billionin2019toUS$61billionin2040underabusiness-as-usualscenario.Thelevelofgreenhousegasemissionsassociatedwiththeproduction,useanddisposalofconventionalfossilfuel-basedplasticsisforecasttogrowtoapproximately2.1gigatonsofcarbondioxideequivalent(GtCO2e)by2040,or19percentoftheglobalcarbonbudget.Usinganotherapproach,GHGemissionsfromplasticsin2015wereestimatedtobe1.7GtCO2eandprojectedtoincreasetoapproximately6.5GtCO2eby2050,or15percentoftheglobalcarbonbudget.Amajorproblemisthelowrecyclingrateofplastics,whichiscurrentlylessthan10percent.Millionsoftonsofplasticwastearelosttotheenvironment,orsometimesshippedthousandsofkilometrestodestinationswhereitisgenerallyburnedordumped.TheestimatedannuallossinthevalueofplasticpackagingwasteduringsortingandprocessingaloneisUS$80-120billion.Plasticslabelledasbiodegradablepresentanotherproblem,astheymaytakeanumberofyearstodegradeintheoceansand,aslitter,canpresentthesamerisksasconventionalplasticstoindividuals,biodiversityandecosystemfunctioning.Asingle-solutionstrategywillbeinadequatetoreducetheamountofplasticsenteringtheoceans.Multiplesynergisticsysteminterventionsareneededupstreamanddownstream5867916MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTofplasticproductionanduse.Suchinterventionsarealreadyemerging.Theyincludecircularitypolicies,phasingoutofunnecessary,avoidableandproblematicproductsandpolymers,fiscalinstrumentssuchastaxes,feesandcharges,deposit-refundschemes,extendedproducerresponsibilityschemes,tradeablepermits,removalofharmfulsubsidies,greenchemistryinnovationsforsaferalternativepolymersandadditives,initiativestochangeconsumerattitudes,and“closingthetap”inregardtovirginplasticproductionthroughnewservicemodelsandecodesignforproductreuse.Progressisbeingmadeatalllevels,withapotentialglobalinstrumentinsight.Agrowingnumberofglobal,regionalandnationalactivitiesarehelpingtomobilizetheglobalcommunityinordertobringanendtomarinelitterandplasticpollution.Cities,municipalitiesandlargefirmshavebeenreducingwasteflowstolandfills;regulatoryprocessesareexpanding,drivenbygrowingpublicpressure;andtherehasbeenanupsurgeinlocalactivismandlocalgovernmentactionsincludingkerbsidecollections,plasticsrecyclingandcommunityclean-ups.However,thecurrentsituationisamixtureofwidelyvaryingbusinesspracticesandnationalregulatoryandvoluntaryarrangements.Therearealreadysomeinternationalcommitmentstoreducemarinelitterandplasticpollution,especiallyfromland-basedsources,aswellasseveralapplicableinternationalagreementsandsoftlawinstrumentsrelatingtotradeinplasticsortoreducingimpactsonmarinelife.However,noneoftheinternationalpoliciesagreedsince2000includesaglobal,binding,specificandmeasurabletargetlimitingplasticpollution.Thishasledmanygovernments,aswellasbusinessandcivilsociety,tocallforaglobalinstrumentonmarinelitterandplasticpollution.1017MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTIntroductionandplasticpollution?•Whatisthelatestunderstandingofthesources,pathways,behaviourandfateofmarinelitter,especiallyplastics?•Whatarethemosteffectivefield,laboratoryandmodellingapproachesformonitoringandmeasurementofthesources,pathways,behaviourandfateofmarinelitterandplasticpollution?•Whatongoingresponsesandactions,environmentaltechnologiesandbusinesssolutionsexisttotacklethisurgentglobalproblem?Section1looksatthelatestevidenceconcerningtheimpactsofexposuretomarinelitterandplasticpollution,includingtheeffectsofchemicalleachatesonmarinelifeandhumans.Ingestion,physicalentanglement,smothering,andthetransportofpathogensinbiofilmsarecauseingarangeoflethalandnon-lethaleffectsinmarineorganisms,includingphysiologicaldisturbances,disease,changesingeneexpression,alterationsofbehaviour,andshiftsinspeciesassemblagesandbiodiversity.Theseinturn,haveimpactsonecosystems,leadingtoawiderangeofsocialandeconomicconsequencessuchaslossofrevenuefromnaturalresourcesanddamagetomaritimeindustriesandcoastalinfrastructure(Figureii).Atthesametime,therearemanysignificantknowledgegapswithrespecttopotentiallong-termclimateeffects,healthimpactsonmarineorganismsandhumans(e.g.viaconsumptionofseafood)andthefulleconomicandsocialcostsofthelossofecosystemservices.Section2providesarecentestimateofthevolumeofplasticsbeingproduced.Italsodescribesthemajorsourcesofmarinelitterandplasticpollutionandthepathwaysalongwhichlitter,especiallyplasticsandmicroplastics,flowsintothemarineenvironmentandaccumulatesindifferenthabitats.Nearly85percentofplasticpackagingwastegoestolandfillorendsupasunregulatedoruncollectedwaste,withahighlikelihoodofenteringtheoceans(Andradesetal.2016).Thevolumeofplasticwastefrombothland-basedsourcesandsea-basedactivitiescontinuestogrow,whilepersonalprotectiveequipmentandotherplasticitemssuchasthosewidelyusedandquicklydisposedofduringtheCOVID-19pandemicareofincreasingconcern.Thepathwaysbywhichmarinelitterandplasticpollutionenterandflowthroughthemarineenvironment,andtheirdistributionandfate,havebeenstudiedinmuchgreaterdetailoverthepastfiveyearsthanpreviously(Figureiii).However,theabsolutevolumesofplasticsindifferentmarinezonesandhabitatsremainpoorlyknown.Thisismainlyduetopoorsamplingcoverageandthelackofstandardizedsamplingprotocols.Currentglobalestimateshavethereforebeendeterminedprimarilythroughmodellingbasedonproxies,suchaspopulationdensities,ratherthanondirectmeasurements(Harrisetal.2021).Inthissectionthreeregionalhotspotsareexaminedindetail:theSincethe2016UNEPreportMarinePlasticDebrisandMicroplastics–GlobalLessonsandResearchtoInspireActionandGuidePolicyChange,substantialnewresearchhasbeencarriedoutandfindingshavebeenpresentedonmarinelitter,especiallyplastics.Researchhasfocusedmainlyonestimatingthevolumesofplasticsflowingintotheoceans;themajorsourcesofmarinelitterandplasticpollution;thepathwaysandfateofplasticswithintheoceans;theimpactsofmarinelitterandplasticpollution,includingmicroplasticsandchemicalleachates,onmarinelife,ecosystemfunctioningandplanetaryprocesses;therisksthatmicroplasticsposetohumanhealth;andthetypesofpolicies,technologiesandbusinesssolutionsthatmayhelptotackletheproblemsthatmarinelitterandplasticpollutionpresenttosocietyandtheeconomy.2Thisassessmentdescribesthefar-reachingimpactsofplasticsinouroceansandacrosstheplanet.Plasticsareamarkerofthecurrentgeologicalera,theAnthropocene(Zalasiewiczetal.2016).Theyhavegiventheirnametoanewmicrobialhabitatknownastheplastisphere(Amaral-Zettleretal.2020;seeGlossary).Increasedawarenessofthenegativeimpactsofmicroplasticsonmarineecosystemsandhumanhealthhasledthemtobereferredtoasatypeof“OceanPM2.5”akintoairpollution(i.e.particulatematterlessthan2.5micrometres[μm]indiameter)(Shu2018).Withcumulativeglobalproductionofprimaryplasticbetween1950and2017estimatedat9,200millionmetrictonsandforecasttoreach34billionmetrictonsby2050(Geyer2020)(Figurei),themosturgentissuesnowtobeaddressedarehowtoreducethevolumeofuncontrolledormismanagedwastestreamsgoingintotheoceans(Andradesetal.2018)andhowtoincreasethelevelofrecycling.Ofthe7billiontonsofplasticwastegeneratedgloballysofar,lessthan10percenthasbeenrecycled(Geyer2020).Todaycumulativeannualeconomiclossesasaresultofdamagetomaritimeindustries,includingthecostsofclean-ups,areestimatedtototalsomeUS$6-19billion(Deloitte2019).Sincethisestimatedoesnotincludethecostsofdegradationofecosystemgoodsandservicesduetomarinelitter(Beaumontetal.2019),itislikelytosignificantlyunderestimatethetotaleconomiclosses.Thecombinationofcheapfossilfuelfeedstocksandpoorwasteinfrastructureandrecyclinghasledtoprojectionsthatby2040theexpectedmassofplasticleakageintotheoceanscouldrepresentaUS$100billionannualfinancialriskforbusinessesifgovernmentsrequirethemtocoverwastemanagementcosts(ThePewCharitableTrustsandSYSTEMIQ2020).Thesefigurespointtosignificantmarketfailuresandunderlinetheneedforurgentaction.Theassessmentsetsouttoaddressfourkeyquestionstohelpguidefutureactions:•Whatcannewresearchandevidencetellusabouttheenvironmentalandhumanhealthimpactsofmarinelitter18MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTResinandbresMilliontonsStillinuse9200milliontons1950-2017YearAccumulationYearlyproductionDiscardedRecycledIncinerated2004006008001000120020502040203020202010200019901980197019601950Sources:UNEP2021,adaptedfromJambecketal.2018;PlasticsEurope2019;Geyer2020.700milliontons1000milliontons5300milliontons2900milliontonsGlobalplasticproductionandaccumulation....andfuturetrendsIllustratedbyGRID-ArendalMARINELITTERANDMACROPLASTICSMICROPLASTICSNANOPLASTICSIngestionRaftingoforganismsRaftingofpathogensPhysicalcontactwithecosystemsIngestionChemicalsassociatedwithplasticsPathogenicagentsBenthichabitatsLimitedresearchDamageGenderinequalityPhysicalhealthBlockageLiabilityMentalhealthEntanglementIllustratedbyGRID-ArendalBIOLOGICALIMPACTSECONOMICIMPACTSSOCIETALIMPACTSDirectrisksfromlostandleakedlitterandplasticsTurtlesMarinemammalsSeabirdsSource:UNEP2021.Figurei:Globalplasticproduction,accumulationandfuturetrendsFigureii:Directrisksandimpactsofmarinelitterandplastics19MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTMediterraneanSeabecauseofitsenclosednatureandproximitytomillionsofpeople;theArcticOceanbecauseofitspristinenatureandimpactsonindigenouspeoples;andtheEastAsiaandAssociationofSoutheastAsianNations(ASEAN)regionbecauseofitsextensivecoastlineinproximitytoverylargepopulationswhicharehighlydependentonthemarineenvironmentforsurvivalbutoftenhaveinsufficientwastemanagementsystems.Section3coversthelatestimprovementsinandmodificationstomonitoringmethodsandsurveysoflitterandmacroplasticsinriverine,shoreline,coastalandoffshoreenvironments.Inthepastfiveyearstherehavebeensignificanteffortstodevelopeffectiveglobalmonitoringprogrammes.Currentlythereare15majoroperationalmonitoringprogrammesindifferentgeographicalranges,linkedtothreetypesofactivity:marinelitteractioncoordination,datacollectionframeworks,andlarge-scaledatarepositoryandportalinitiatives.Todate,thedataandinformationbeingcollectedremainlargelyunconnectedandfragmented.Digitaltechnologies,satellites,aircraftanddrones,combinedwithshipbornesensors,samplersandautonomousplatforms(e.g.floats,gliders,benthiclandersandcrawlers),areopeningupthepossibilityforaffordableglobalmonitoringprogrammestotrackanddeterminethedensitiesofmarinelitterandmacroplasticsfromcoastalareasoutintotheopenoceanandintothehadaldepths.Datafromsuchplatformsareespeciallyimportantfordeterminingvolumesinsedimentsandriverinedischargeoverlargeareas,particularlywhenusedwithgroundcalibration.Themainchallengenowistheirintercalibration,sothatthedatacanbeusedformodellingandpredictionofthedistributionandquantitiesofmarinelitterandplasticpollutionindifferenthabitats.Therearestillwidespreadconcernsamongscientistsaboutthesamplingbiasesofdifferentfieldandlaboratorytechniquesforidentifyinganddeterminingthevolumeofmicroplasticsintheenvironment.Intrinsicdifficultiesexistduetothehighvariabilityinthesize,shape,colour,anddegreeofdegradationofplastics.Withoutsignificantimprovementsinqualityassuranceandcontrolprotocolsforsamplingandanalyticaltechniques,itwillremaindifficulttodemonstratethereliabilityandrepeatabilityofpublishedresults.Alongsidelarge-scalemonitoringprogrammes,thereareindicatorprocessesandbaselinedatacollectionactivitiesatspecificlocations.Thegrowingnumberofnetworks,citizenscienceprojectsandparticipatoryprocessesinvolvedinmeasuringandtacklingmarinelitterandplasticpollutionareyieldingresultsthatcansupportlocaldecision-making.However,inmostcountriesthereisnoconsistentdatacollectionapproachsuitablefornationalreporting.Streamliningmethodologies,dataflowsandindicatorsetstoestablishbaselinesisnowveryimportant,especiallyinthecaseoftransboundarywaters.Thereisalsoaneedtofacilitatejointanalyses,unifieddefinitions,standardsandformats,andwell-developedinfrastructuresfordataflow,storageandsharing.DeepsedimentsCITYANDINDUSTRYAGRICULTURESHIPPINGFISHINGACTIVITYSinkforplastics:ItaliclettersAQUACULTURERECREATIONALFISHINGRECREATIONALBOATINGShelfmudbeltFansystemdepositFjordDriftdepositWave-dominatedestuaryTide-dominatedestuaryCanyonBeachsedimentsShallowcoastalenvironmentMajorsourcesandsinksofmicroplasticsandmarinelitterSourceofplastics:CAPITALLETTERSSource:UNEP2021.IllustratedbyGRID-ArendalFigureiii:Majorsourcesandsinksofmicroplasticsandmarinelitter20MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTInaddition,Section3reviewscurrentstandardsforbiodegradabilityandtraceabilityinplasticsthroughlabellingschemes.Thereareveryfewverificationschemesforthemanufacturingandprocessingofplasticsorrecyclates,andnonethatrequirelistingconstituentpolymersorchemicaladditivesinconsumerproductsorprovidetraceability.Thoseschemesthatdoexistrefermainlytotherecyclingandbiodegradabilityofplasticsundercontrolledconditions.However,thespecificconditionssetoutbystandards-settingbodies,suchasindustrialcompostingrequirementsforbiodegradation,maynotbemetoutsidehighlyregulatedwastemarkets.Lackofinformationaboutrecyclatesisalsoabarriertoincreasingrecyclingratesandthedevelopmentofmarkets.Section4looksatongoingresponses,actionsandpotentialsolutionstotacklingmarinelitter,especiallyplastics.Thegrowingnumberofglobal,regional,nationalandlocalresponsesandactionsareraisingawarenessand,insomecases,helpingtoreduceflowsofmarinelitterandplasticpollutionintothemarineenvironment.However,theyareunevenlydeployedandarefragmented.Connectingallthedifferentresponsesandactionsofgovernments,businessandcitizensisnowcriticallyimportant.Ontheglobalscaletherearenumerousinternationalagreements,conventionsandorganizationsrelatedtomarinelitterandpollution.TheyincludetheBasel,RotterdamandStockholmConventions,theInternationalMaritimeOrganizationandtheConferenceofthePartiesoftheLondonConventiononthePreventionofMarinePollutionbyDumpingofWastesandOtherMatteranditsProtocol,andtheCommitteeonFisheriesoftheFoodandAgricultureOrganizationoftheUnitedNations.PartiestotheBaselConventionarenowrequiredtocontroltransboundarymovementsoftheplasticwastecoveredundertheproceduresestablishedbytheConvention.TheamendmentstotheBaselConventionconcerningplasticsdonotimplyabanontheimport,transitorexportofplasticwaste,butratheraclarificationofwhenandhowtheConventionappliestosuchwaste.WorldTradeOrganizationmemberscanalsotakeactiontosupportinternationaleffortstoreduceandphaseoutplasticpollution,aligntradepolicies,andadvancedialogueandactionsatministerialleveltostrengthenthemultilateraltradingsysteminordertoreduceplasticpollution.Moreover,arangeoflegislativeresponsesareshowingsuccess,withbans,taxes,improvedwasteoperations,economicincentives,extendedproducerresponsibility,regionalconventions,marinelitteractionplans,educationinitiativesandpublicawarenesscampaignsbeingwidelyimplemented.Shiftsinpublicattitudesandgreaterlevelsofpublicconcern,awarenessandactivismregardingtheuse,reuseorreplacementofplasticswithalternativesarealsoprovidinganimpetusforaction.Manyenvironmentallysoundtechnologiesandinnovationsareappearingintheplasticsandwastesector(EllenMacArthurFoundation2020).Anumberofthemareaimedatimprovingthelabellingandtraceabilityofplasticproductsthroughouttheirlifecycle,forexampleusingblockchaintechnologiestohelpreducethelossofmaterialsalongsupplychains.Recentlytherehasbeenaproliferationofbusiness-ledjoint-industryinitiativesandpartnershipsfocusingonpackaging,thewastehierarchyandcircularity;thedevelopmentofbiodegradableplasticsandalternativematerials;andtheapplicationofecodesign(UNEP2019;EllenMacArthurFoundation2020;WWF,theEllenMacArthurFoundationandBC[BostonConsulting]2020;EllenMacArthurFoundation2021;IRP[InternationalResearchPanel]2021).Someglobalbrandcompanieshavealsoputinplaceplanstoretoolandreconfiguretheirsupplychainstoalignthemwithnational-levelschemes,shiftingproductionawayfromfossilfuel-basedplasticstowardsrecycledmaterials.Theattentiongiventoplasticshasgeneratedlargeamountsofresearch.Howevertheexpertsinvolvedinthisassessmenthaveidentifiedanumberofcriticalresearchareasthatstillneedurgentattention.Theyincludequantificationofthevolumesofdifferentplasticfractionsfromkeysourcesandtheirfateindifferentmarinehabitats;quantificationofthedamageandeconomiccostsofmarinelitterandplasticstomaritimeindustriesandintermsofecosystemandhumanhealth;improvementstorecyclingtechnologiesandstandardsforplasticrecyclates;thedevelopmentofcircularityandecodesignforplasticproducts,includingtheuseofalternativematerialsandbiodegradabilityoutsideindustrialconditions;improvedriskassessmentframeworks;andadeeperunderstandingoftheimpactsofmarinelitterandplasticsonsocietalnorms,attitudesandbehaviour.©iStock/JosephineJullian21MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENT22MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTENVIRONMENTAL,HEALTH,ECONOMICANDSOCIALIMPACTSANDRISKSSECTION1©iStock/KNeville23MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENT1.1EvidenceofbiologicalandecologicalimpactsAquaticorganismsarecontinuouslyexposedtolitterandplasticpollution.Thelargest,mostpersistentfractionsofmarinelitteraresyntheticpolymersandthermosets,knowncollectivelyasplastics;theseaccountforatleast85percentoftotalmarinewaste(Law2017;Agamuthuetal.2019).Infreshwatersystemsthethreatofphysicalharmfromlitterandmacroplasticdebrisremainsrelativelyunder-researched(Blettleretal.2019).Bycontrast,therehavebeenmorethan100,000marinestudiesonthelethalandnon-lethaleffectsoflitterandplasticsateverylevelofthefoodweb,includingalgae,zooplankton,crustaceaandinvertebrates,fish,birds,turtlesandmammals(e.g.Boergeretal.2010;Fossietal.2012;Fossietal.2014;Avioetal.2015;Sbranaetal.2017;Fossietal.2018;Laversetal.2018;Waiteetal.2018;Akhbarizadehetal.2019;Lietal.2019;Zhu,C.etal.2019;Zhu,L.etal.2019).Themaineffectsobservedcomefromentanglement,smothering,raftingofpathogenicorganisms(AlianiandMolcard2003;Woodsetal.2019),ingestionofplasticfragments(AnbumaniandKakkar2018)andexposuretoplastic-associatedchemicals(AlimbaandFaggio2019).Theimpactsdependonthetype,sizeandhabitat(Rochmanetal.2016b;Lusheretal.2017a;Buccietal.2019;Windsoretal.2019)(Figure1).Inthefollowingsubsectionsthedirectrisks,impactsandeffectsofdifferentsizedplasticsonmarinelife,humanhealth,societyandtheeconomyarelookedatinmoredetail.1.1.1ImpactsofmarinedebrisandmacroplasticsonmarinelifeOngoingmonitoringresultscontinuetoshowthatphysicalcollisionswithmacro-sizedplasticsbymarinemammals,fish,birds,reptilesandplantsareadirectsourceoffatalities(AlomarandDeudero2017;Alomaretal.2017;Franco-Trecuetal.2017;Reinertetal.2017;Fossietal.2018;Thieletal.2018;Buccietal.2019;Woodsetal.2019).Itisdifficulttodetermineandquantifythecausallinksbetweenmortalityandingestionoflargeplasticfragments,buttherearegrowingnumbersofinvestigationstobetterunderstandtheoriginoftheplasticsandthecausesofdeath(Ungeretal.2016).WhatiswidelyreportedistheFigure1:DirectrisksandimpactsofmarinelitterandplasticsMARINELITTERANDMACROPLASTICSMICROPLASTICSNANOPLASTICSIngestionRaftingRaftingPhysicalcontactIngestionChemicals/additivesPathogenicagentsBenthichabitatsLimitedresearchDamageGenderinequalityPhysicalhealthBlockageLiabilityMentalhealthDeathPhysicaldamageBiodiversityreductionAlterationofspeciesassemblageCreationofmicrobialhabitats(theplastisphere)InvasivespeciesReductionofshpopulationBiologicalactivityreductionDisturbanceofecosystemprocessesIncreasingspreadofbacteriaProductivityreductionHumanhealthReducedcondenceinproductsWastemanagementissuesExperimentalrecreationreductionHeritagelossHumanwell-beingreductionEntanglementTransportofpathogensintocoastalareasPropellersandshaftsentangledbymarinedebris.Over2300reportedcasesfrom2010to2015e.g.collisionwithoatingcontainerse.g.drinkingwatere.g.Aeromonassp.canpopulateoatingplasticsFunctional,llers,colourants,reinforcementinplasticproductsApplyprecautionaryapproachDirectrisksfromlostandleakedlitterandplasticsLeadingtophysicaldamage,smotheringordeathPlasticsarefoundin380taxarecordedonoatingdebris,potentiallyleadingtoinvasionofdistanthabitats,e.g.damagetocoralreefsandadverseimpactsonhumanhealthMaritimeworkersinjuredonsharplitter,entangled,andexposedtounsanitaryitemsWorkingconditionsConsiderablylargerconcentrationsinsedimentscomparedtothewatercolumnThediseaserateincoralsincreasesfrom5%to89%whenincontactwithplasticsBIOLOGICALIMPACTSECONOMICIMPACTSSOCIETALIMPACTSDirectrisksandimpactsofmarinelitterandplasticsPresentationofselectedinformationandnumbersTurtlesMarinemammalsSeabirdsSpendingtimeatlitteredcoastsandocean.ExperienceofanimalsaectedbymarinelitterIllustratedbyGRID-ArendalSources:UNEP2021,adaptedfromAlianiandMolcard2003;Boergeretal.2010;Fossietal.2012;Fossietal.2014;Goldsteinetal.2014;Avioetal.2015;Kiesslingetal.2015;Santosetal.2015;Rechetal.2016;Rochmanetal.2016b;Hongetal.2017b;Lusheretal.2017a;Sbranaetal.2017;Steeretal.2017;AnbumaniandKakkar2018;GodoyandStockin2018;Duncanetal.2018a;Duncanetal.2018bFossietal.2018;Lambetal.2018;Laversetal.2018;Schymanskietal.2018;Waiteetal.2018;Akhbarizadehetal.2019;AlimbaandFaggio2019;Battistietal.2019;Besselingetal.2019;Buccietal.2019;Koelmansetal.2019;Lietal.2019;Windsoretal.2019;Woodsetal.2019;Zhu,C.etal.2019;Zhu,L.etal.2019;Amaral-Zettleretal.2020;Harris2020;Landriganetal.2020;Prataetal.2020a.24MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTpresenceofplasticfragmentsinthegutsandtissuesofawiderangeofmarinespeciesatallstagesoftheirlifecycle(Lusheretal.2017a;Steeretal.2017),includingthosedirectlyvitaltofoodprovisionsuchasfishandshellfish(Rochmanetal.2016a;Law2017;Qiaoetal.2019;Rochmanetal.2019),eitherdirectlyfromtheenvironmentorviaplastic-contaminatedprey(Setäläetal.2014;Prataetal.2020a).Macroplasticdebrishasbeenfoundinthedigestivesystemofaquaticorganisms,includingallmarineturtlespeciessampledandnearlyhalfofallsurveyedseabirdandmarinemammalspecies(Poppietal.2012;Kühnetal.2015;Provencheretal.2015;Duncanetal.2018a;Duncanetal.2018b;GodoyandStockin2018;Verlisetal.2018;Battistietal.2019).Floatingmacroplasticsremainamajorconcernintheconservationofseaturtles,astheirvisualfeedingstrategiesmeanthattheyselectstructuresanalogoustothoseofjellyfish,suchassoftfloatingplastics.Theirbackwardfacingoesophagealpapillaealsoinhibitregurgitationandfacilitateparticleaccumulationinthegut(Schuyleretal.2014;Vegteretal.2014).Plasticbottlefragments,fishinglinesandpaintchipsarecommonlyencounteredinthegutsofseaturtles(Wedemeyer-Strombeletal.2015;Phametal.2017;Clukeyetal.2018).InBrazil70percentofjuvenileturtlesanalysedshowedplasticingestion(Santosetal.2015).IntheNorthPacificOceanandtheMediterraneanSeamorethan80percentofturtleswereshowntohaveingestedsomeformofdebris(Wedemeyer-Strombeletal.2015;Matiddietal.2017;Duncanetal.2018a;Duncanetal.2018b).InNewZealand63percentofendangeredgreenturtles,Cheloniamydas,hadingestedsyntheticdebris(GodoyandStockin2018).Non-lethaleffectsincludelacerationsfromtheparticlesastheytranslocateacrossthecellmembraneintothecirculatory,lymphatic,respiratoryand/orotherbiologicalsystems(Browneetal.2008;Hämeretal.2014;Brenneckeetal.2015;Landriganetal.2020;VethaakandLegler2021),suffocationandstarvation(Wrightetal.2013a;Wrightetal.2013b;Adimeyetal.2014;AnbumaniandKakkar2018;Sunetal.2019),physiologicaldisturbances(Auetal.2015;AnbumaniandKakkar2018),changesingeneexpression(Rochmanetal.2014b)andalterationsinbehaviour(Greenetal.2017).Evidenceoftheseeffectshasbeendocumentedforalgae(e.g.Carsonetal.2013),zooplankton(e.g.Desforgesetal.2015),andconsumerssuchasfish(e.g.Lusheretal.2017a;McNeishetal.2018;Ariasetal.2019),turtles(e.g.Duncanetal.2018a;Duncanetal.2018b),birds(e.g.Wilcoxetal.2015;Hollandetal.2016;ReynoldsandRyan2018;Battistietal.2019),whales(e.g.Nelmsetal.2019a)andseals(e.g.HallangerandGabrielsen2018;Donohueetal.2019),althoughanabsenceofplasticsinsealstomachsintheArcticandAntarcticwasreportedbyBourdagesetal.(2020)andGarcia-Garinetal.(2020),respectively.1.1.2EffectsofmicroplasticsinmarinelifeIthasbeenrecognizedformorethanadecadethatmicroplasticscantransferarangeoftoxicchemicals,metalsandmicropollutantsintoopensurfacewaters,wheretheycanbeingestedbyawiderangeoffauna(Arthuretal,2009;Ashtonetal.2010;Mattssonetal.2015;Haward2018;Karlssonetal.2018;UNEP2018a).Overthepastdecadeabroadrangeoflaboratoryandexperimentalstudieshavecomplementedfieldobservationsinthehopeofachievingabetterunderstandingoftheeffectsofmicro-and/ornanoplasticsondifferentorganisms(e.g.corals,birds,fishandmammals).However,monitoringmicroplasticsremainschallengingbothintheenvironmentandunderlaboratoryconditions.Plasticparticlesareoftennaturallyorexperimentallyco-contaminatedwithdiversechemicalpollutants(Setäläetal.2019;Jacobetal.2020).Ithasthereforebeenconcludedthatmoreinnovative,robustandscientificallysoundexperimentsinthefieldareneeded.Forexample,thenetscommonlyusedtocollectmicroplastics,andwhichhavemeshsizesrangingfrom>500μmto>200μm,undersamplemicroplasticsandleadtolowerestimatescomparedtostudiesusingfinermeshnetsof0.45µm.Previousreportsonthequantitiesofmicroplasticsinthemarineenvironmentarelikelytohavebeenunderestimated(UNEP2016a;Barrowsetal.2017;Barrowsetal.2018a;Greenetal.2018;Whitakeretal.2019;Lindequeetal.2020)andopentomisinterpretation.Samplelocationisalsoimportant;forexample,Ryanetal.(2019)collectedmicrofibres(Box1)inthreeoceanbasinsandfoundthatfibredensitieswere2.5timesgreaterattheseasurfacethan5metressubsurface.Properlyestimatingquantitiesofnanoplastics(Box2)presentsanevengreaterchallenge.Despitethesedifficulties,thebodyofliteraturelookingattheeffectsofmicroplasticscontinuestoincrease(Lusheretal.2017a;Anbumanietal.2018;Arthuretal.2019;Bradneyetal.2019;Maesetal.2020;Peng,L.etal.2020;Xuetal.2020).However,theeffectsofmicroplasticsandthecausalmechanismsofharminmarinebiotaareunevenlystudiedandtherearemanydiscrepanciesamongreports(EuropeanUnion2019a;SAPEA[ScienceAdviceforPolicyfromEuropeanAcademies]2019;deRuijteretal.2020;Lindequeetal.2020;Peng,L.etal.2020;Xuetal.2020).Basedonanassessmentofmorethan100studies,deRuijteretal.(2020)performedaweightofevidenceanalysisforcausalmechanismsofharminfieldandlaboratorysettings.Theyfoundthatonlythreemechanismscouldbeconsideredtohavebeen“demonstrated”:inhibitionoffoodassimilationand/ordecreasednutritionalvalueoffood,internalphysicaldamage,andexternalphysicaldamage.Theresthadtobediscardedbecauseofpoorqualityassurance/qualitycontrolofstudies,orauthorsspeculatingratherthandemonstratingmechanisms.Theirrecommendationisthatriskassessmentshouldaddressthesemechanismswithhigherpriority.Physically,justaswithmacroplastics,microplasticsmaylaceratethegutorcauseananimaltofeelfull,andthereisevidence(albeitusingveryhighdoses)thatverysmallingestedmicroplasticsmaycrossthegutliningandaccumulateintissues(Browneetal.2008;Rosenkranzetal.2009;Dengetal.2017;Schüretal.2019)wheretheycanpotentiallyhavedeleteriouseffectssuchasinflammation(Dengetal.2017).Severaleffectsappeartobeexacerbatedwhenorganismsareexposedtoplasticswithsorbedcontaminants(Lithneretal.2012;Browneetal.2013;Rochmanetal.2014a;Martínez-Gómezetal.2017;Rochmanetal.2019).Variationsinstudyfindingsarelikelyto25MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTThevolumeofcellulosic(naturalandregenerated)andsyntheticfibresenteringtheoceanseveryyearhasbeenestimatedtorangebetween8,000and520,000metrictons(BoucherandFriot2017;Belzaguietal.2019).Aglobalcompilationofdatasetsfrom916seawatersamplescollectedinsixoceanbasinsshowedthatalthoughsyntheticpolymerscurrentlyaccountfortwo-thirdsofglobalfibreproduction,oceanicfibresaremainlycomposedofnaturalpolymers.Infraredcharacterizationof~2,000fibresrevealedthatonly8.2percentofoceanicfibresaresynthetic,withmostbeingcellulosic(79.5percent)orofanimalorigin(12.3percent)(Suariaetal.2020).Thisagreeswithstudiesthatreportcellulosicfibresaccountingfor60-80percentofallfibresinseafloorsediments(Woodalletal.2015;Sanchez-Vidaletal.2018),marineorganisms(Remyetal.2015;Tayloretal.2016),wastewater(Primpkeetal.2019),freshwater(Drisetal.2017;Milleretal.2017),icecores(Obbardetal.2014)andairbornefibrepopulations(Drisetal.2017;Stantonetal.2019b).Microfibres,thebreakdownproductoffibres,areubiquitousinwater,soilandair(Avioetal.2017;Windsoretal.2018;Zambranoetal.2019).Inthemarineenvironmenttheyarefoundsuspendedinthewatercolumn(Bagaevetal.2017;Songetal.2018),ontheseafloor(Woodalletal.2014;Sanchez-Vidaletal.2018)andthroughoutmarineecosystems,wheretheyareingestedbyawiderangeofbiota(Tayloretal.2016;WeldenandCowie2016;Henryetal.2019;Rondaetal.2019;Suariaetal.2020).Syntheticmicrofibresareadistinctsub-categoryofthemicroplasticsfamily,spanningawiderangeofsizes(roughly3to30micrometres[µm]inwidth)andoriginatingmainlyfromclothingandtextilesaswellasfromusesintransportationsuchaswearandtearontyres.Theycomprisevariouspolymermaterials,includingsynthetics,semi-syntheticsandnaturalproducts(e.g.polyester,nylon,spandex,PLA-polylacticacid,cotton,hempandsilk).Gaviganetal.(2020)estimatethat5.6metrictonsofsyntheticmicrofibreswereemittedintotheenvironmentfromclotheswashingbetween1950and2016,witha12.9percentgrowthrateduringthepastdecade.Thisfigureissmallcomparedtothetotalvolumeofplasticsintheocean,butislikelytobeanunderestimategiventhepoorunderstandingofthequantitiesinvolvedintheemissionpathwaysfromclothingproduction,useandwashing,alongwithemissionandretentionratesduringwashing,wastewatertreatmentandsludgemanagement.Microfibreswerepreviouslyconsideredthemostcommontypeofmicroplasticsfoundinsamples(Browneetal.2011;Rochmanetal.2015;Obbard2018;Maximenkoetal.2019).However,inhundredsofstudiescellulosicfibres(naturalandregenerated)wereincludedinthesyntheticrealm,inflating“microplastic”countsinbothenvironmentalmatricesandorganisms(Weschetal.2016;Cesaetal.2017).Thiserrorresultedeitherfromtheassumptionthatallcolouredfibresweresynthetic(Remyetal.2015)ortheassumptionthatman-madecellulosicfibrescouldbeconsideredsyntheticandincludedinmicroplasticcountsbecausetheyareextrudedandprocessedindustrially(Obbardetal.2014;Woodalletal.2014).Theseerrorswerecompoundedbyapreviouslarge-scaleinvestigationwhichreportedthat69percentofmarinefibresweresynthetic(Barrowsetal.2018a);however,thisstudywasbasedonthecharacterizationofasmallnumberoffibresusinginfraredtechniques(Comnea-Stancuetal.2017;Käppleretal.2018).Visualandchemometricmethodsarebeingdeveloped(Caietal.2019),butthepresenceofdyes,oxidationandmicrobialdegradationcanaltercelluloseabsorptionbands,makingitverydifficulttodistinguishnaturalandman-madecellulose,especiallywhendealingwithenvironmentallydegradedpolymers(Stark2019).Differentmicrofibreshavedifferentsurfaceproperties,makingthemvariablycapableofadsorbingmaterialsfromthesurroundingenvironmentandbeingmodifiedbytheadditionofchemicalsthatconveyspecificpropertiessuchasUVprotection,waterrepellenceandcolours.Becausemicrofibresaredenserthanseawater,theyarelikelytoaccumulateontheoceanfloorandslowlydegradeovertensifnothundredsofyears(Bejgarnetal.2015;Andrady2017)whilebeingingestedbydeepseaorganisms(Tayloretal.2016;Barrowsetal.2018a).Allthesefactorscomplicatetheassessmentoftheirtoxicityandhealthhazards(Botterelletal.2019;RoyerandDeheyn2019).Box1:Fibresandmicrofibres©iStock/ИгорьСалов26MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTbetheconsequenceofdifferentpolymertypes,associatedchemicals,thestudyspecies,thedosesusedduringtesting,andthedurationoftheexposure(Brandonetal.2016;LenzandLabrenz2018;Buccietal.2019).Underlaboratoryconditions,microplasticshavebeenshowntocauseavarietyofbiologicaleffectsincrustaceans,molluscsandpolychaetes(AnbumaniandKakkar2018;Silvaetal.2020),includingchangesingeneandproteinexpression(Paul-Pontetal.2016;Greenetal.2019),inflammation(vonMoos2012),disruptionoffeedingbehaviour(Coleetal.2015),decreasesingrowth(Auetal.2015),decreaseinreproductivesuccess(Auetal.2015;Sussarelluetal.2016;Silvaetal.2020),changesinlarvaldevelopment(Nobreetal.2015),reducedfiltrationandrespirationrates(Paul-Pontetal.2016),anddecreasedsurvival(Auetal.2015;Cuietal.2017).However,therearealsostudiesinwhichnoeffectsweredetected(Hämeretal.2014;Bateletal.2016;Espinosaetal.2018;Romanetal.2019).Jacobetal.(2020)reviewedatotalof782directmarkersofdiseaseprogression,knownasbiologicalendpoints(seeGlossary),in46studies;nearlyone-thirdofthemarkersweresignificantlyaffectedbyexposuretovirginmicroplastics.Moreeffectswereobservedforsmallplasticparticles≤20μminsize;forfishtheseeffectsincludedchangesinbehaviour,sensoryandneuromuscularfunctions,activityandmotion,shoaling,Nanoplasticsareasub-categoryofmicroplasticsintentionallyusedinmanyproducts,forexampletextiles(PatraandGouda2013;Radetić2013)andcosmetics.Theyarefoundthroughouttheoceans,includinginlargeoceangyres(terHalleetal.2016).Thedefinitionofnanoplasticsisstillunderdiscussion(Gigaultetal.2018);someauthorsuse≤1μmasthedefinitionofsize(daCostaetal.2016)whileothersuse1μmto500μm(RiosMendozaandBalcer2019)(seeGlossary).Gigaultetal.(2018)definenanoplasticsas“particlesunintentionallyproduced(i.e.fromthedegradationandmanufacturingofplasticobjects)andpresentingacolloidalbehaviour,withinthesizerangefrom1to1,000nm[nanometres]”.Analogiesorextrapolationsbetweennanoplasticsandothernanomaterialsshouldbetreatedwithcautionduetodifferentproductionpathwaysandphysicalandchemicalproperties.AccordingtotheInternationalOrganizationforStandardization(ISO),amanufacturednanomaterialis“intentionallyproducedforcommercialpurposestohavespecificpropertiesorspecificcomposition”(ISO/TS80004e1:2015).Nanoplasticsarehighlypolydisperseinphysicalpropertiesandheterogeneousincomposition(Gigaultetal.2016;LambertandWagner2016;terHalleetal.2016).Becausetheyareproducedunintentionallyfromthedegradationofmicroscaleplasticlitter(e.g.secondarynanoplasticsfrombiodegradablemicroplastics,González-Pleiteretal.2019),itishighlyprobablethatnanoplasticswillformheteromorphicaggregateswithothernaturalandanthropogenicmaterials(Hüfferetal.2017).Inthissensethecolloidalbehaviourofnanoplasticsisrelevant.Theadversehealtheffectsofnanoplasticsinorganisms,includinghumans,arelargelyunknown(Barríaetal.2020;Landriganetal.2020;UNEP2020e).Thereisasignificantmismatchbetweenlaboratorystudiesandenvironmentalconcentrations.Forexample,laboratorystudiesdemonstratetheabilityofmicroplasticstodegradeintonanoplastics,butinthefieldscientistsremainunabletoquantifyandcharacterizethem.Somestudiessuggestthatnanoplasticsmaybemorehazardousthanmicroplastics(AnbumaniandKakkar2018;Bellingerietal.2019;Peng,L.etal.2020;Rubioetal.2020).Thisisbecauseitislikelytheirsmallsizewillmakethemmorelikelytotranslocatebeyondthegutandtheirhighsurface-to-volumeratioenablesthemtobeefficientvectorsforchemicalcontaminants.Theavailabledatashowsomeevidencethatnanoparticles,onceingested,canpassfromtheintestinesintoananimal’scirculatorysystemandgenerateanimmuneresponse.Inonelaboratoryexperimentnanoparticleswereabletopassintothefoodweb,fromalgaetozooplanktonandthentofish,wheretheyenteredthebrainandincitedbehaviouraldisorder(Peng,L.etal.2020).Therearelongstandingdatashowingahighpotentialforbioaccumulationandbiomagnificationalongpartsofthemarinefoodchain(Suedeletal.1994;Akhbarizadehetal.2019;Saley2019).However,thelackofstandardizedmethodologyfornanoplasticsdetectionmakesdemonstratingthattheseprocessesoccurachallenge.Studieshaveshownthatdifferentphylareactdifferently,sothatitisdifficultatthisstagetopredicttheecologicalrisksofnanoplasticstothemarineenvironment(Besselingetal.2019).Morerecently,thepotentialriskofnanoplasticsinseafoodhasbeenraised.Comparedtomicroplastics,nanoplasticshaveincreasedmobilityinthetissuesoflivingorganismsandtheirlargersurfacetovolumeratioincreasesthepotentialconcentrationofharmfulchemicalstheycanadsorb.Nevertheless,asindicatedintherecentreviewbyFerreiraetal.(2019),themarinedistributionandimpactofplasticnanoparticlesarerelativelyunknown.Thispresentsanunknownrisktomarineorganisms,aswellastohumanswhoconsumeseafood.Asthemostrecentreviewsstress,thereisanurgentneedforfurtherresearchandexperimentaldatatobetterunderstandthedifferentprocessesandmechanismsthatmayaffectmarinelifeandhumanhealth(Rubioetal.2020).Box2:Nanoplastics27MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTfeeding,boldnessandexploration,andvision.Incontrast,aggressivitymarkerswerenotaffected.Nervoussystemmarkerswerespecificallyaffectedbysmallparticles(24-45μminsize),buttheunderlyingmechanismsremainunclear.Thereviewalsohighlightedtheimpactsofvirginmicroplasticsonbraindevelopmentandstructure,andneurotoxicologicalindicatorssuchasacetylcholinesteraseactivity,indicatingthattranslocationofsmallplasticparticlesintothebraincoulddirectlyinitiatebraindisorders.However,theaccuracyofthemethodsused(e.g.fluorescenceandbraindissection)wasdebated.Inaddition,thereviewfoundthatparticles>500nanometres[nm]insizewereveryunlikelytopasstheblood-brainbarrierandthatinsteadtheunderlyingmechanismsresponsiblefortheirneurotoxicitycamefromalteredimmuneresponsesandmetabolism,culminatinginimpairedbrainfunctionsandbehaviour.Jacobetal.(2020)concludedthatthetoxicityofvirginmicroplasticstofishshouldbemoresystematicallyevaluated,usingrigorouslaboratory-basedmethods,inordertoobtainabetterunderstandingoftheunderlyingmechanismsofmicroplastictoxicityinmarineorganisms.Microplasticshavebeendemonstratedtosorbpersistentorganicpollutants(POPs)suchaspolycyclicaromatichydrocarbons(PAHs),polychlorinatedbiphenyls(PCBs)anddichloro-diphenyl-trichloroethane(DDT),aswellastracemetals(e.g.copperorlead)(AnbumaniandKakkar2018;Bradneyetal.2019;Camachoetal.2019;GuoandWang2019;Fred-Ahmaduetal.2020;Pozoetal.2020).Thishasbeenshownexperimentallywithvirginplasticpelletsinseawater(Bakiretal.2016;Galloetal.2018;GuoandWang2019a).Naturalsedimentsandorganicmatteralsohavethecapacitytoadsorbhydrophobicorganicchemicals(Koelmansetal.2016;Prataetal.2020a).Althoughthemechanismsofaccumulationandconcentrationofchemicals,andhowchemicalsadsorbanddesorbtoandfromplastics,arewellresearched,theseconceptsarenottypicallyincludedintestsofmicroplasticbiologicaleffects,wheremanyfactorsotherthaningestion(Bakiretal.2016;Herzkeetal.2016;Hermsenetal.2018),suchasthehydrophobicityofthepollutant,typeofpolymer,ageoftheplastic,water,temperature,pressure,presenceofbiofoulingontheplasticsurface,andsalinity,allmatter(Rochman2015;Bakiretal.2016;AnbumaniandKakker2018;Peng,L.etal.2020).Inthecaseofnanoplastics,Koelmansetal.(2014,2016)andYuetal.(2019)concludedthattheirlargesurfaceareacouldleadtohigherconcentrationsoforganictoxicchemicalsorheavymetalsbeingretainedcomparedtomicroplastics,whichcouldleadtotheriskofgradientsbuildingupwithinanorganism’stissues(Boxes2and3).Primaryorvirginmicroplasticsmaybeconsideredharmfulbecauseoftheirpotentialtoreleasechemicalsintotheenvironment(Ashtonetal.2010;Mattssonetal.2015;Haward2018;UNEP2018a;Santanaetal.2020).Jacobetal.(2020)pointoutthatitistheirpotentialtoactasvectorsofcontaminantsthathasbeenstudied,ratherthanthetoxicityofthemicroplasticsthemselves.UNEP(2019)notesthatcurrentevidencesuggestsingestionofmicroplasticsdoesnotsignificantlyenhanceexposure/bioaccumulationoforganicpollutants(includingPOPs)comparedtoothertypesofparticlespresentintheenvironmentorotherexposurepathways(e.g.water,diet)ingeneral.Jacobetal.(2020)recommendmorein-depthresearchontheeffectsofsize,concentrationandcharge,usingenvironmentallyrelevantexposures,todeterminetoxicologicaltippingpointsanddoseorthresholdresponses.However,theyalsoconcludethateveninworstcasescenariosofplasticpollution,microplasticswilllikelyremainaminorfractionoftheothermicroparticlesnaturallypresentinwaterandsediment.Thus,researchersshouldconsiderusingthesameconcentrationsofnaturalparticlesascontrolstoaddresstheinducedeffectsofmicroplastics.Theyalsorecommendpublishingpositive,negativeandneutraleffectsofvirginmicroplasticstogethertohelppreventpotentialbiasduringmeta-analysisandtoenhancegeneralunderstandingoftheimpactsandnon-impactsofvirginmicroplasticsonfishandothermarineorganisms.1.1.3Impactsonhabitats,assemblagesandecosystemfunctionPlasticdebris,whetherflexibleorrigid,canalterthestructureandcompositionofmacrofaunal,microfaunalandbacterialassemblages(e.g.Katsanevakisetal.2007;Goldsteinetal.2012;Greenetal.2015;Carvalho-Souzaetal.2018;GESAMP2019;Peng,G.etal.2020).Flexibleplasticitemssuchasplasticbagsalsoaffectkeyecosystemprocessesbyblockinggasexchangeanddecreasingthefluxofinorganicnutrientsfromsediment,therebydecreasingprimaryproductivity(Greenetal.2015).Furthermore,abandoned,lostorotherwisediscardedfishinggear(ALDFG)likenets,ropes,cagesandnylonlinescandamagekeyhabitat-formingmarineorganismssuchascoralsandseagrassesthroughtissueabrasionandsmothering(Ballesterosetal.2018),sometimessignificantlyreducingtheirextent(RichardsandBeger2011;Carvalho-Souzaetal.2018).Onceonshore,debrisandmacroplasticscaninteractwithmarinebiota.Theycanbeingestedbyawidevarietyoforganisms(e.g.vanCauwenbergheetal.2015;Waiteetal.2018;Lietal.2019,Peng,L.etal.2019),provideadditionalsubstratesfororganismstodisperse(e.g.Majeretal.2012;Kirsteinetal.2016)andhavewiderecologicalimpacts.Forexample,thereducedabilityofcarbonatereefsandprimaryproducerstoabsorbcarbonduetouptakeofmicroplasticscanaffecttheirfunctioning(Carvalho-Souzaetal.2018;GESAMP2019)andpotentiallyhaveaknock-oneffectwithrespecttoglobalwarming(CenterforInternationalEnvironmentalLaw2019).Lambetal.(2018)demonstratedalinkbetweenmacroplasticpollutionandanincreasedlikelihoodofcoraldisease.Thelikelihoodofdiseaseincoralsrosefrom4percentto89percentwhentheyhadbeenincontactwithplastics,butthemechanismisunknown.Macroplasticdebriscancausedirectdamagetothetissueofcorals,openingthemuptopathogenicagentssuchasciliates(SweetandBythell2015;SweetandBrown2016;SweetandSéré2016;Carvalho-Souzaetal.2018).Speciesassemblagescanalsobealteredthroughtheintroductionofalienspeciesthathavebeentransportedbyplastics,andasaresultofthelossoffoundationalspeciessuch28MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTThechemicalsfoundinplasticsareeitheraddedduringtheproductionprocess(includingadditivessuchasflameretardants,plasticizers,antioxidants,UVstabilizersandpigments,anumberofwhichmaybesubstancesofconcern)oraddedunintentionally(e.g.whenthecompositionoftheinputmaterialisnotknownexactlyorchemicalsareaccumulatedfromtheenvironment)(Hongetal.2017a;Grohetal.2019;GuoandWang2019).Certainchemicalsfoundinplasticsmayhavebeenintentionallyaddedtoachievedesirableproperties,butplasticscanalsoincludesolventsorsubstancesnotintentionallyaddedsuchasimpuritiesfromthepackagingofpesticidesorcleaningagents.Forseveraldecadesithasbeenunderstoodthatplasticstransferchemicalstowildlife;theymaybedirectlyreleasedfromplasticswhentheyreachtheintestinaltissuesofmarinespecies,orleachintothemarineenvironmentastheplasticsweather(Pettitetal.1981).Therateofthesetransferswilldependuponfactorssuchasthenatureandstrengthofthebondbetweenadditiveandpolymer,porediameter,themolecularweightoftheadditive,temperature,pressureandbiofouling(DeFrondetal.2019).Intentionaladditivesinplastics,suchasplasticizersandflameretardants,arerelevantinelevatedexposurecases.However,therehavebeenmanystudiesspecificallyfocusingonthosechemicaladditivesusedinplasticsthatexhibitendocrinedisruptingpropertiesandwhichmayleadtoavarietyofhealtheffectsinwildlifeandhumans(UNEP/IPCP[InternationalPanelonChemicalPollution]2016;Hermabessiereetal.2017;M’Rabatetal.2018;Flawsetal.2020;UNEP2020e).Awiderangeofchemicalsinmarineplasticscollectedfromurbanandremotebeachesandopenoceanswereanalysedandfoundtocontain“non-persistent”additivessuchasalkylphenols(i.e.nonylphenol,octylphenolandBPA)inconcentrationsrangingfromnanogramspergramtomicrogramspergram(Teutenetal.2009;Hiraietal.2011).Chemicaladditiveswithendocrinedisruptingpropertieshavealsobeenrecordedasprominentcontaminantsinmarinespeciesfromareaswherethesetypesofchemicalsarebeingused,forexampleinaquacultureoperations(Hongetal.2013)andwherethereislocalproductionoftextiles,polyurethanefoamsandtoys(Chenetal.2009;Darbraetal.2011;Wangetal.2017).Bainietal.(2017)reportedthepresenceofsevendifferentphthalateestersinsamplesofmicroplastics,planktonandblubberfromdifferentcetaceanspeciestakeninthesamearea;othersarefoundinfishinsomeEuropeanwaters(Rüdeletal.2012).Controlledlaboratoryexperimentshavedemonstratedthatingestedplasticscantransfersorbedandadditivechemicals,includingpolycyclicaromatichydrocarbons(PAHs),antimicrobialsandhalogenatedflameretardants(HFRs),tomarineworms(vanCauwenbergheetal.2015),fish(Karlssonetal.2017),amphipods(Chuaetal.2014)andplankton(Katijaetal.2017).Severalstudieshavealsotestedforthetransferofchemicalsfromplasticsintowildlifethroughlaboratoryexperiments,modelling,andobservationalstudiesinnaturalsettings.Infieldstudiescomparisonsweremadebetweenabdominalfattissuesamplesandplasticsfoundinthegutofseveralseabirdspecies(Tanakaetal.2013;Hardestyetal.2015;Tanakaetal.2020);however,becausethepreyorganisms,inwhichthechemicalswereabsent,hadbeencollectedseveralyearsaftertheseabirdstheresultscouldnotbeconsideredreliable(Tanakaetal.2020).Morerecentstudies(Thaysenetal.2020)showthatthetransferofchemicalsiscontextdependent,i.e.thelikelihoodofchemicaltransferdependsonseveralfactorsincludingthegutresidencetime,conditions(e.g.thepresenceofsurfactants,pH,temperature)andthepolymertypeoftheplastic(Gouinetal.2011;Koelmansetal.2014;Bakiretal.2016;Rummeletal.2016;Koelmansetal.2019).Laboratorystudiesconfirmthatthecontributionofchemicalburdensbyingestedplasticsdependsontheconcentrationsintheingestedplasticsandthegut(Bakiretal.2016;Herzkeetal.2016;Koelmansetal.2016;Rummeletal.2016;AnbumaniandKakkar2018).UNEP(2020e)notedthatingestionisunlikelytoincreasetheexposuretohydrophobicorganicchemicalsfromadsorptionbecause,overall,thefluxofthesechemicalsfromnaturalpreyoverwhelmsthefluxfromingestedmicroplasticsfororganismsinmosthabitats.Inthecaseofhighlycontaminant-exposedanimalsingestingallsizesofplasticswithlowconcentrationsofcontaminantssorbedfromtheambientenvironment,theconcentrationgradientisexpectedtobefromtheguttoplastics.Thisisreferredtoasdepurating,wherebytheingestedplasticsinthegutsorbchemicalspresentintheorganism,essentially“cleaningout”theanimal(Rosenkranzetal.2009;Koelmansetal.2014;Herzkeetal.2016;Rummeletal.2016;Thaysenetal.2020).Theoppositetrend(i.e.transferfromplasticstothegut)ispossibleforchemicalswithahigherconcentrationintheplastic,asoccurswithpolymericadditivesorinthecaseoflesscontaminant-exposedanimalsingestinghighlycontaminatedplastics(MohamedNorandKoelmans2019;Thaysenetal.2020).Finally,thechemicalthreatpresentedbycertainalternativebio-basedplastics(seeBox4)issimilartothethreatpresentedbyconventionalplastics(Zimmermannetal.2020).Box3:Chemicalsassociatedwithmarinelitterandplastics29MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTascorals,cordgrass,seagrassesandmangrovesarisingfromcontaminantsofemergingconcern,deprivationofoxygenandlight,changesinreproductiveoutput,andphysicallosses(GallowayandLewis2016;Rochmanetal.2016a;Sussarelluetal.2016;Campbelletal.2017;AnbumaniandKakkar2018;Carvalho-Souzaetal.2018;Lambetal.2018;Paul-Pontetal.2018;Buccietal.2019UNEP2019a;Kroonetal.2020;Tanakaetal.2020;Yuetal.2020).Becauseplasticdebrisislightweightandcanfloatlonger,itcandisperseorganismsfurtherthanothertypesofnaturalflotsam(ThielandGutow2005;Bryantetal.2016;Kirsteinetal.2016;Rechetal.2016;Viršeketal.2017;Lambetal.2018).Over380taxa,includingmicroorganisms,seaweedsandinvertebrates,havebeenfoundraftingonfloatinganthropogeniclitterintheoceans(Kiesslingetal.2015),includingpathogenicagents(Rechetal.2016;Besselingetal.2019).Goldsteinetal.(2014)recordedtheciliatepathogenHalofolliculina,knowntocauseskeletalerodingbanddiseaseincorals,onfloatingplasticdebrisinthewesternPacificandsuggestedthatthespreadofthediseasetoCaribbeanandHawaiiancoralswasduetoraftingontheenormousquantitiesoflitterreportedinthatarea.Otherstudieshavehighlightedthepossibilitythatplasticscanactasplatformsfor“chemicalcocktails”ofresidualmonomers,chemicaladditivesandcontaminants,suchasheavymetalsandpersistentorganicpollutants(POPs),sorbedfromthesurroundingenvironment(Rochman2015etal.;Turner2016;GuoandWang2019;Yuetal.2019).Whenplasticsfragmentintomicroplasticsandsmallersizedparticles(Corcoran2021),theysinkduetobuoyancylossandaredepositedindifferentreservoirs(YeandAndrady1991),includingonshorelines(McDermidandMcMullen2004)andtheseafloor(e.g.Zhu,L.etal.2019andpapersincluded),wheretheycanimpactdifferentbenthiccommunities.Microplasticspossiblyaccumulatemoreindeepsedimentaryhabitats(Zhangetal.2020)andwithinsubsurfacesedimentlayers(Näkkietal.2017;Wangetal.2019a).Onceinthesediment,theycanbeingestedandreducedfurtherinsize(e.g.duetodigestivegrinding)and/orbetransportedtotheseaflooruponegestion.Thereisalsoevidenceoforganismsformingmicroplasticsthroughbioerosion(e.g.polychaetesinpolystyrenedebris[Jangetal.2018]andseaurchins[Porteretal.2019]).Theuptakeandaccumulationofmicroplasticsthroughoutmarinefoodchainsisenhancedbythefactthatorganismsatlowertrophiclevelsmay“preyon”microplasticsofasimilarsizeastheirnaturalpreybymistake(IvarDoSulandCosta2014;Santanaetal.2017;Clukeyetal.2018;Choyetal.2019;Peng,L.etal.2020;Prataetal.2020a;Rubioetal.2020).Theyarealsoingestedindiscriminatelybyfish(DavisonandAsch2011;Chanetal.2019)andfilterfeeders,accumulatedandabsorbedviatheintestinaltract,andthentranslocatedacrosstrophiclevels(e.g.Avery-Gommetal.2018;Renzietal.2018).Largefilterfeeders,includingsomewhales,maydevourmicroplasticsdirectlyorindirectlyviacontaminatedorganismsinseawater(e.g.humpbackwhales[Megapteranovaeangliae])(Xiongetal.2018;Besselingetal.2019;Burkhardt-HolmandN’Guyen2019).Studiesofingestedmicroplasticsshowthattheygenerallystaywithinthedigestivesystem,insideorganssuchasgills,intestines,stomachsandtubules(e.g.mussels[Mytilusedulis]andlugworms[Arenicolamarina],Cauwenbergheetal.2015;fishandprawns,Güvenetal.2017,Abbasietal.2018,Azevedo-Santosetal.2019),wheretheyaretakenupbylargerpredators.Inaddition,microplasticscantranslocateandaccumulateinothertissues,suchasthehaemolymphandcirculatorysystem,afterjustafewdays(Browneetal.2008;Peng,L.etal.2020).Withseawatersbecomingenrichedbyplastics,thelikelihoodofmicroplasticsenteringmarinetrophicwebswhereawidevarietyofmarineanimalsandhumanswillbeexposedtothemisincreasing(Prataetal.2020a).Microplasticshavebeenobservedtocompromisetheabilityofkeystonespeciesandecological“engineers”inaquaticsystems,suchascoralsandworms,tobuildreefsortobioturbatesediments(Bradneyetal.2019;Renzietal.2019).Forexample,theattachmentstrengthofbluemusselswashalvedafterexposuretohigh-densitypolyethylene(HDPE)microplastics,potentiallyimpactingtheirabilitytoformreefs(Greenetal.2019),andtherewasareducedvolumeofsandoverturnedbylugwormsexposedtomicroplastics(Greenetal.2016).Inlaboratory-basedmarinemesocosmstudiestheingestionofmicroplasticsreducesthehealthoflugwormsinmarinesedimentbydeliveringharmfulchemicalstothem,includinghydrocarbons,antimicrobialsandflameretardants(Wrightetal.2013a;Wrightetal.2013b).Furthermore,theenergyreservesoflugwormslivinginsedimentcontaminatedwithmicroplasticparticleswerereducedbyupto50percentduetoreducedfeedingactivity,withadverseeffectsontheirhealth.Lugwormsperformvitalecosystemfunctions.Theyareasourceoffoodforwaderbirds,fishandbaitforfisheries.Lugwormsprovideanotherimportantecosystemservicebyturningoverhugevolumesofsand,replenishingorganicmaterialandoxygenatingtheupperlayerstokeepthesedimenthealthyforotheranimalsandmicroorganisms(includingmicroscopicprimaryproducers)tothrivein.Afollow-upexperimentbyGreenetal.(2016)foundthatlugwormsexposedtoeitherHDPE,PVCorpolylacticacid(PLA)microplasticsbioturbatedlessandthattherewasacorrespondingdecreaseinthebiomassofimportantprimaryproducersinthesediment.Mesocosmexperimentsinmarinesedimentaryhabitatsfoundthatmicroplasticsalteredecosystemfunctioningbydecreasingthefluxofinorganicnutrients(includingammoniumandsilicate)fromthesedimentandreducedthebiomassofmicroscopicprimaryproducersinthesediment(Greenetal.2017).Thereisalsoevidencethatplasticscanaltercarboncyclingthroughtheireffectonprimaryproductioninmarine,freshwaterandterrestrialsystems(Coleetal.2016;Yokotaetal.2017;Porteretal.2018;Bootsetal.2019;Prataetal.2019a).Marineecosystemssuchasmangroves,seagrasses,coralsandsaltmarshesplayamajorroleincarbonsequestration(McLeodetal.2011;HerrandLandis2016;Bindoffetal.2019).Microplastics,throughtheirimpactsonmetabolicrates,reproductivesuccessandsurvivalofzooplankton,affectthecarboncycleintheoceanbyalteringthetransferofcarbonto30MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTthedeepsea(Coleetal.2016;Wieczoreketal.2019).Moreover,abiotic-bioticrelationshipscanbeaffectedbymicroplastics,forexamplethroughthemicroplasticscausingtemperaturefluctuationsonbeacheswhereorganismssuchasseaturtleeggsoccurandwheresexisinfluencedbytemperature(Carsonetal.2011;BeckwithandGuentes2018).Reef-buildingcoralsinaremotecoralreefatollintheMaldivianarchipelagowerecontaminatedwithphthalicacidesters,aclassofmicroplastics-associatedcontaminants,possiblythroughingestionofmicroplastics(Saliuetal.2019).Alaboratoryexperimentfoundthatpolyethylenemicroplastics(at200particlesperlitreforsixmonths)canleadtoareductioningrowthofsomespeciesofreefbuildingcorals(Reichertetal.2019).Contaminationofcoralreefscouldleadtodeteriorationofthesevitalbiogenichabitats,butfurtherresearchisneeded.Outdoormesocosmexperimentsusingnaturallyflowingseawaterandintactsedimentcores,simulatingsemi-fieldconditions,havealsobeenusedtoassesstheimpactsofmicroplasticsoninvertebrateassemblagesfromthreedifferentsedimentaryhabitats(Green2016;Greenetal.2017).Insandyhabitatsdominatedbyflatoysterstheadditionofeitherconventional(HDPE)orbiodegradable(PLA)microplasticsathighconcentrations(80µgperlitre)causedareductioninthenumberofspeciesandintheoverallabundanceoforganisms(Green2016)(Box4;Figure2).Similarly,inafollow-upexperiment,inmuddysedimentdominatedbyflatoysterstheadditionoftheFigure2:Bio-basedplasticsandtheirbiodegradationsametypesofmicroplastics(25μgperlitre)resultedinashiftincommunitycompositionwherebyopportunisticoligochaetesbecamedominantandpredatorypolychaetesdeclined(Greenetal.2017).Communityleveleffectshavealsobeenfoundinaninsituexperimentinfreshwatersediments,wherethediversityandabundanceofmacrofaunadecreasedinmesocosmswithnano-ormicroplastics(Redondo-Hasselerharmetal.2020).Inaddition,microplasticscanhaveeffectsonthedevelopmentoffungalcommunitieswithuniquecommunitycompositionandstructure(Kettneretal.2017).Microplasticscanactashabitatsandmayalterassemblagesbyfosteringuniquemicrobialcommunities.Factorsdrivingthecompositionoftheplastispherearecomplex,mainlyspatialandseasonal,butarealsoinfluencedbythepolymertype,surfacepropertiesandsize(Amaral-Zettleretal.2015;Jacquinetal.2019;Amaral-Zettleretal.2020).PlastispherecommunitiesstudiedindifferentpolymertypesfloatingintheNorthPacificandNorthAtlanticreflectedtheirbiogeographicoriginsand,toalesserextent,theplastictype(Amaral-Zettleretal.2015,2020).Similarconclusionswerefoundforbacterialcommunitiescolonizingplasticsalonganenvironmentalgradient.Thesecommunitiesareshapedfirstlybyfreshwaterandwastewatersystemsthroughtomarineenvironmentalconditions,andsecondarilybythetypeofplastic(PSandPE)(Oberbeckmannetal.2018).Inversely,anotherstudybasedonalargenumberofmicroplasticssampledinthewesternMediterraneanSeaRenewablerawmaterialsFossilfuel-basedrawmaterialsManagedfacilitiesNaturalenvironmentPLAPolylacticacidPHA-PHBPolyhydroxybutyrateBio-basedplasticsandtheirbiodegradationSoil25°CFreshwater21°CMarine30°CAnaerobicaquaticdigestion35°CHomecomposting3-6months28°CAnaerobicdigestionSingle-stage14daysTwo-stage15-40daysIndustrialcomposting6-12weeks50-70°CPBSPolybutylenesuccinateTPSThermoplasticstarchPBATPolybutyrateadipateterephthalatePCLPolycaprolactoneBiodegradationaccordingtoISOandASTMstandardsBiodegradesDoesnotbiodegradeUnknownSource:UNEP2021,adaptedfromNarancicetal.2018.IllustratedbyGRID-Arendal31MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTBiodegradableandbio-basedplasticshavebeenpresentedaspotentialalternativestofossilfuel-basedplastics,forexampleasfoodpackaging(Peelmanetal.2013).Althoughthesetwotypescurrentlyaccountforonlyasmallshareofthemarket,theirglobalproductionispredictedtogrowrapidlyasproductioncostsdecrease(EuropeanBioplastics2020)(seeFigure2).Thepersistenceofbio-basedandbiodegradableplasticsinaquatichabitatsisuncertain,butforsometimeexperimentshavefoundthatevenafterthreeyearsthemajorityofbiodegradableplasticsandblendsfailedtoshowanydegradationinthemarineenvironmentortomeetInternationalOrganizationforStandardization(ISO)andASTMbiodegradationstandards(O’BrineandThompson2010;Alvarez-Zeferinoetal.2015;Narancicetal.2018;UNEP2018a;NapperandThompson2019).Unlessspecificandproperconditionsforbiodegradationaremet(e.g.whenindustrialcompostingtakesplace),biodegradableplasticsriskfragmentingintomicroplasticparticlesinmuchthesamewayasconventionalplastics(Alvarez-Zeferinoetal.2015;NapperandThompson2019).Inthissensebiodegradableplasticsdonotadvancesustainabilityconsiderations.Instead,thedemandformoresustainablealternativesandnon-petroleum-basedmaterialsshouldbeencouraged(UNEP2021a).Themajorityofbio-basedandplant-basedplasticsalsocontaintoxicchemicalsandposeriskssimilartothoseofconventionalplastics,i.e.intermsofbeingcarriersforpollutantsandvectorsforpathogenicorganisms,withcelluloseandstarch-basedproductscontainingthegreatestnumberofchemicalfeaturesandinducingthestrongesttoxicity(Zimmermannetal.2020).Thereisevidencethat,aslitter,biodegradableplasticsposethesamerisksasconventionalplasticstoindividuals,biodiversityandecosystemfunctioning.Forexample,afieldexperimentcomparingtheimpactsofconventional(HDPE)andbiodegradableplasticbagsfoundthatthetwotypeshadexactlythesameeffect,reducingoxygenandlightanddecreasingtheoverallabundanceofinvertebratesandthebiomassofprimaryproducersbeneaththebagsaswellasdecreasingthefluxofinorganicnutrientsfromthesediment(Greenetal.2015).Inaddition,severalmarinemesocosmexperimentsfoundthatbiodegradablemicroplastics(PLA)inducedsimilarproteinchangesinmussels(Greenetal.2019),alteredthefeedingandmetabolicratesofbivalvesandlugworms(Green2016;Greenetal.2016;Greenetal.2017),alteredthediversityandabundanceofinfaunaandthebiomassofprimaryproducers(Green2016;Greenetal.2017),anddecreasedthereleaseofinorganicnutrientsfromthesediment(Greenetal.2017).Similarly,interrestrialexperimentsmicroplasticscomposedofHDPE,PLAorsyntheticclothingfibreshadaneffectonsoilstabilityanddecreasedthegerminationandgrowthofplants,ledtoalackofgrowthinannelids,andaffectedsoilstructurebyreducingtheformationofmacroaggregates(Bootsetal.2019).Infreshwaterexperiments,biodegradablepolyhydroxybutyrate(PHB)andnon-biodegradablepolymethylmethacrylatemicroplasticsbothledtoadecreaseinbiomassofthefreshwateramphipodGammarusfossarum(Straubetal.2017).Althoughverylittleisknownaboutthebehaviourandbreakdownofbiodegradablemicroplasticsinaquatichabitats,arecentstudyfoundthatsecondarynanoplasticsreleasedfrompolyhydroxybutyratemicroplasticspersistandhavenegativeeffectsonfreshwaterorganismsincludingwaterfleas,cyanobacteriaandmicroalgae(González-Pleiteretal.2019).Biodegradationtestsarepredominantlycarriedoutinartificialenvironmentsthatlacktransferabilitytorealconditions(Haideretal.2018)andareunabletopredictenvironmentalimpacts.Verylittleisknownabouttheeffectsofbiodegradableplasticbagleaching(i.e.thetransferofchemicalsfromplasticintonaturalenvironments)onvegetation.Someplantspeciesarehighlysensitivetoavarietyofchemicals,andseedlinggrowthisgenerallythemostaffectedlifehistorystage.Inrecentfieldstudies(Balestrietal.2017;Balestrietal.2019;Balestrietal.2020)theeffectsofconventional(HDPE)andcompostablebagsweretestedwhentheywereleftinnaturalenvironments.Thefindingsindicatethatplasticbagslabelledasmeetingbiodegradabilityandcompostabilitystandardsdonotmeetthosestandardsoncetheyarediscardedinnaturalenvironments.Forthesereasonsthegeneralpublicshouldbeadequatelyinformedaboutthepotentialenvironmentalimpactofincorrectbagdisposalthroughclearerlabellingandinformationabouttheconditionsunderwhichbiodegradabilitycanoccur(seeSection4).Simple,rapidstandardphytotoxicitytestsneedtobeappliedtobagleachates.Box4:Biologicalandecologicalimpactsofplasticslabelledasbiodegradableshowednoeffectofgeographicallocation(includingcoastalandopenoceansamples)orplastictype(mainlyPE,PPandPS)onthebacterialcommunitycomposition.Studiesontheplastispherearestartingtogiveabetterviewofthemicrobialbiofilmcommunityonplasticsintheoceans,butthecomplexnetworkofinfluencesisstillthesubjectofongoingdebate(Soginetal.2006;Pedrós-Alió2012;Zettleretal.2013;Sauretetal.2014;Amaral-Zettleretal.2015;Dussudetal.2018a;Dussudetal.2018b;Wangetal.2018).Forexample,someauthorshavereportedthatcertainbacterialcommunitieslivingonplastic,althoughtheyarerareinseawater,aremade32MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTupofopportunisticspeciesabletogrowandbecomethe“corespecies”livingonplastics(McCormicketal.2014;Dussudetal.2018a).However,inacriticalreviewof66studieswhichaccountedforstudyquality(i.e.whethercontrolswereincludedandinterpretedproperly)Wrightetal.(2020)concludedthat“researchsofarhasnotshownplastispherecommunitiestostarklydifferfrommicrobialcommunitiesonotherinertsurfaces”.Atsea,plasticsarealmostimmediatelycoatedbyaninorganicandorganicconditioningfilm.Thefilmisthenrapidlycolonizedbymicroorganismsformingabiofilmonthesurface,whichisembeddedwithinanexopolymericsubstancematrix.Thesenaturalmicroorganismalassemblagesactasaformofprotectionandoffermetaboliccooperativitythatcanincreasethepossibilityofgenetransferamongcells.Thecompositionofthebiofilmdependsonthepolymeranditssurfaceproperties;somematerialsareveryrecalcitrantandinhibittheformationofbiofilms,forexamplethestablealiphaticchainsofpolyethylene(PE),whichdominatesthecompositionofplasticwasteontheseasurface(Autaetal.2017;Morohoshietal.2018;Okshevskyetal.2020).Weatheredplasticsmayincreasebiofilmgrowthduetotheirincreasedsurfaceareacomparedtonon-weatheredplastics(Rummeletal.2017).Underdifferentconditionsvariousbacteriacandegradeoxo-biodegradableandhydro-biodegradableplastics(Vázquez-Morillasetal.2016;Dussudetal.2018b;Eyheraguibeletal.2018).PathogenicbacteriasuchasAeromonassalmonicidaandVibrioparahaemolyticushavebeenfoundtocolonizemicroplasticparticlescollectedfromthemarineenvironment(Kirsteinetal.2016;Viršeketal.2017).Inlaboratorystudiesplasmidtransferinbacterialassemblageshasbeenfoundtobehigherincommunitiesthatcolonizemicroplasticparticlescomparedtofree-livingcommunities(Arias-Andresetal.2018).Horizontaltransferofgenesencodingantimicrobialresistance(AMR)inmicrobesoccursfasterwithinbiofilmssuchasthosedevelopedonmicroplastics(StewartandCosterson2001;Goeletal.2021);microbesinbiofilmsarealsolesssusceptibletoantibioticsthanfree-livingcellsinplanktonicculture(Hall-Stoodleyetal.2004;Goeletal.2021).Experimentalworkfoundthatagreaterrateofgenetransferoccurredinbacteriaonmicroplasticsthaninfree-livingbacteria,bothinthewatercolumn(Arias-Andresetal.2018)andinsediment(Huangetal.2019).DatafromthefieldsupportthehypothesizedlinkbetweenmicroplasticsandAMR,withsamplingintheNorthPacificGyreindicatingthatplasticdebris(includingbothmacroplasticsandmicroplastics)isareservoirofantimicrobialresistantmicrobes(Yangetal.2019).©iStock/pcess60933MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENT1.2Potentialriskstohumanhealth1.2.1PhysicalharmThepresenceoflittercanhavedirectconsequencesforphysicalandmentalhealth.Visitorstobeacheswheretherearelargeamountsoflitter,aswellasmaritimeworkers,aresusceptibletoarangeofinjuriesincludingcuttingthemselvesonsharpdebris,becomingentangledinnets,andexposuretounsanitaryitems(Santosetal.2005;Campbelletal.2019).Litteredcoastalareashavealsobeenshowntobelessbeneficialtomoodandmentalwell-beingthanunlitteredones,especiallywhenthelitterispost-consumerwastesuchaspackaging(Wylesetal.2015;Wylesetal.2016).1.2.2ChemicalsinmarineplasticsthatposeriskstohumanhealthAlthoughthepolymericmaterialsthatcomprisethecorestructureofmarineplasticsarebiochemicallyinert,plasticscontainchemicaladditivesofsmallmolecularsizethatarenotboundtothepolymericmaterialsandthatmaybeharmfultohumanhealth(Landriganetal.2017;TakadaandKarapanagioti2019;Campanaleetal.2020;Landriganetal.2020;Prataetal.2020a;Rubioetal.2020;UNEP2020e;VethaakandLegler2021).Onceintheocean,theseadditivescanleachoutoftheplasticintothesurroundingenvironmentandenterthemarinefoodchain(Andrady2017;Peng,L.etal.2020).Someofthechemicalsassociatedwithplasticsarerecognizedasmutagensandcarcinogens(Landriganetal.2020;UNEP2020e).Phthalatesareproducedinhighvolumestobeusedasplasticizers,lubricantsandsolventsinawiderangeofapplications(e.g.inbuildingandconstructionmaterials,medicalandfragrancedconsumerproducts,andmotorvehicles).Over90percentofbisphenolA(BPA)isestimatedtohavebeenusedasamonomerintheproductionofdifferentpolymers.Recentestimatesshowthatin2018nearly64percentofglobalBPAdemandwasforpolycarbonates,nearly30percentwasforepoxyresins,andtherestwasforotherpolymerssuchasphenoplastresins,phenolicresins,unsaturatedpolyestersandformaldehyderesins(Fischeretal.2014;IHSMarkit2018).Thesepolymersarecommonlyusedinmanyeverydayproductsacrosstheglobe.Forexample,polycarbonatesareusedinplasticbottles,foodpackagingmaterials,buildingandconstructionmaterials,opticalmediaandelectronics,andepoxyresinsareusedinmarineandprotectivecoatings,powdercoatings,electronics,canandcoilcoatingsandautomotivematerials,andasrecyclatesinroadsandfloorings(EuropeanChemicalsAgency2017a,b).Thereisalsoagrowingdemandforblackplasticsinconsumerproducts,whichisbeingmetbysourcingmaterialsfromtheplastichousingsofend-of-lifewasteelectronicandelectricalequipment(UNEP2019e),thuspotentiallyintroducingrestrictedandhazardoussubstancesintotherecyclate(e.g.includingbrominatedflameretardants,antimony,andtheheavymetalscadmium,chromium,mercuryandlead)(EuropeanChemicalsAgency2018;Turner2018;EuropeanChemicalsAgency2019).OtherchemicalssuchasbisphenolAandphthalates,whicharewidelyusedinconsumerproductssuchasplasticbottles,areendocrinedisruptorsthatcanmimic,blockoraltertheactionsofnormalhormones,reducehumanfertilityanddamagethenervoussystem(UNEP2019e;Flawsetal.2020;UNEP2020e).Perfluorinatedadditives(PFAScompounds),widelyusedtocreatematerialsthatrepelwater,areconsideredtobeofconcern,asareresidualunreactedmonomersandchemicalcatalyststhatmaybetrappedinplasticresinduringpolymerization(UNEP2020e).Allthesechemicals,aswellasthosethatareadsorbedtoplasticwasteasitmovesthroughtheenvironment,canleachoutofplasticssothatpeoplewillpotentiallybeexposedtothem(Hahladakisetal.2018;UNEP2020e).Humanbiomonitoringstudiesandinitiativesshowthatchemicalsusedinthemanufactureofplastics,inwaterandwastewatertreatmentandinthefoodsector,orreleasedfromplasticsduringdegradation,arewidelypresentinhumanpopulations(WHO[WorldHealthOrganization]2015;Manietal.2019;Wangetal.2019b).Additionally,thereisgrowingevidencefromstudiesindevelopedcountriesthathumanexposuretochemicalsassociatedwiththeproduction,useanddisposalofplasticsishighlygendered(Lynnetal.2017),althoughdatafromdevelopingcountriesarelimited.Onaglobalscalethereisascarcityofgenderdisaggregatedliterature,forexampleonthenumberofworkersintheplasticindustry,theirexposuretohazardouschemicals,andresultinghealtheffectsduringspecificplasticproductionprocessesandplasticwastemanagement(i.e.recycling,incineration,openpitburningandcombustion)(Lynnetal.2017).Thepotentialhealthhazardsofthepolymersthatarethestructuralbackboneofmarineplasticshavebeenlesswellstudied.Ofparticularconcernarethemicroplasticandnanoplasticparticlesandmicrofibresformedwhenplasticwasteenterstheoceansandbreaksdownundertheinfluenceofweathering,mechanicalabrasionandphotodegradation.Manufacturedmicroplasticsarealsoofincreasingconcern.Forexample,syntheticmicrobeads(polystyrenespheresbetween0.5µmand500µmindiameter)areused,forexample,in3Dprinting,inhumanandveterinarymedicalproducts,andincosmeticsandpersonalcareproductssuchastoothpastes,abrasivescrubbersandsunscreens(Landriganetal.2020).Plasticmicroparticlesandmicrofibresinthemarineenvironmentcanbeabsorbedbysmallorganismsatthebaseofthefoodchain.Theycanthenbioconcentrateandreachveryhighconcentrationsintoppredatorspecies.Microplasticandnanoplasticparticlessuspendedinseawaterarealsoingestedbyfilteringorganismssuchasoystersandmusselsandcanreachhighconcentrationsinthetissuesofthesespecies,fromwhencetheycanpotentiallyexposehumanswhoeatseafood(Peng,L.etal.2019;Kögeletal.2020).Theseparticlescanaffectassimilationefficiency(BlarerandBurkhardt-Holm2016).Inaddition,marinemicroplasticsandmicroscopicfibrousparticlescanbecomeairbornethroughaerosolizationandinhaled(Drisetal.2016).34MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENT1.2.3PotentialhumanhealtheffectsWhenconsideringanypotentialharmtohumansfromexposuretomarinesourcesofmicroplasticsandplasticassociatedchemicals,itisveryimportanttorecognizethathumansareexposedtothesamecontaminantsintheireverydaylives(Figure3a,b,c).Theannualintakeofmicroplasticsbysomehumanshasbeenestimatedtorangefrom39,000to52,000particles,dependingonageandsex,risingto74,000to121,000particleswheninhalationisconsidered;individualswhomeettheirrecommendedwaterintakeonlythroughbottledsourcesmaybeingestinganadditional90,000microplasticsannually,comparedto4,000inthecaseofthosewhoconsumeonlytapwater(Coxetal.2019).Anyexposurefrommarinesourcesisthusmostlikelytobeviaingestionofseafoodratherthaninhalationofmicroplasticssuspendedintheairorpenetrationofplasticnanoparticlesthroughtheskin,althoughsuchexposuremayoccurinthecaseofpeoplehandlingbeachwaste(Dehautetal.2016;Adyel2020;Kögeletal.2020;Prataetal.2020a).However,theoverallexposurelevelsandhealthimpactsremainuncertain(WrightandKelly2017;Koelmansetal.2019;WHO2019,Landriganetal.2020).Humanexposuretomarinemicroplasticsisprimarilyviaingestionofcontaminatedfishandshellfishwhentheyareeatenwhole,especiallyincludingthegutandliver(Landriganetal.2020).Generallyonlythefleshoflargefishiseaten,butinsomeculturesthevisceralorgansofcertainfishspeciesareasought-afterdelicacy(e.g.rabbitfishintestines,knownasdayokinthePhilippines,Bucoletal.2020).Outsideareaswherefishandshellfisharethemainsourcesofprotein,exposureviathisroutemaybelimitedcomparedtotheinhalationandingestionofmicroplasticsviahouseholddust(Bouwmeesteretal.2015;Catarinoetal.2018).Evenremotecoastalcommunitiesandindigenouspeoplesthatrelyheavilyonmarinemammalsandfishspeciesforfoodarelikelytobeexposedtomicroplasticparticlesandanytoxicchemicalsleachingfromthemviaaphenomenonknownas“atmosphericdistillation”(seeGlossary)(AtlasandGiam1981;Houdeetal.2011;Tekmanetal.2020),creatingapotentialthreattotheirfoodsecurity(EuropeanEnvironmentAgency2013;Hantoroetal.2018;Danopoulosetal.2020;Peng,L.etal.2020;Rubioetal.2020).Exposuretomicroplasticsinfoodstuffsgoesbeyondseafood(Bouwmeesteretal.2015;Lusheretal.2017a;Coxetal.2019;InternationalPollutantsEliminationNetwork2019;Alexyetal.2020;Contietal.2020).Othertypesoffoodcontainingmicroplasticsincludehoney(40-660items/kghoney),sugar(32±7items/kgsugar)(LiebezeitandLiebezeit2013)andtablesalt(7-681items/kgsalt)(Yangetal.2015;Karamietal.2017;Leeetal.2019).Peoplecanalsobeexposedtomicroplasticparticlesindrinkingwater(118±88particles/litrewater)(Schymanskietal.2018;Koelmansetal.2019)andinfoodssuchasbread,processedmeat,dairyproducts(Kutralam-Muniasamyetal.2020)andvegetables.Individualswhodrinkwateronlyfrombottledsourcesingestmorethan90,000microplasticparticlesannually,comparedtoanannualintakeof4,000particlesingestedbythosewhodrinktapwater(Landriganetal.2020;VethaakandLegler2021).Muchofthemicroplasticsinfoodsmayoriginatefromplasticpackagingmaterials,includingplasticbottles.©iStock/dottedhippo35MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTMicroplastics,particularlymicrofibres,arepresentinair(Drisetal.2015a;Drisetal.2016),especiallyindoors(Alzonaetal.1979).Indoorenvironmentshavebeenfoundtohavemicrofibreconcentrationsrangingfrom3-15particlespercubicmetreofair(Gasperietal.2015)toashighas0.4-59.5particlespercubicmetre,whileconcentrationsof0.3-1.5particlespercubicmetrehavebeenrecordedinoutdoorenvironments(Drisetal.2017).Beyondthesefewstudies,thereislittleinformationonlevelsofairborneplasticmicroparticlesinhouseholds,workplacesorrecreationalparks.Preliminaryinvestigationshavefoundthatairborneplasticmicrofibresinurbanenvironmentsrangebetween200μmand600μmindiameter(Drisetal.2015a;Drisetal.2016).Theyarerespirableandsmallenoughtopenetratedeeplyintothehumanlung,whereplasticmicrofibresupto250μminlengthhavebeendetected(Paulyetal.1998;Landriganetal.2020;VethaakandLegler2021).AsLandriganetal.(2020)haveshown,particlesizeimpactsarecriticalinassessingpotentialhumanhealthimpacts.Thequalityofstudiesisalsovitalwhenconsideringreliability.Asystematicreviewofthequalityofdrinkingwaterstudies,andstudiesonsourcewatersandmicroplastics,commissionedbyWHO(Koelmansetal.2019)showsthatthevastmajorityofstudiesdonotreportonconcentrationsofsmallerparticles(includingnanoparticles),whicharemostlikelythesizesofconcernforhumanexposureandhealtheffects(Box2).Koelmansetal.(2020)recentlyprovidedanapproachforaligningdifferentstudies,anddisseminatingtheresultsincommonlanguage,inordertoassesstherisksofmicroplasticsasanenvironmentalmaterial(seeSection3.1.4).©iStock/eclipse_images36MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTBiologicalgenderdifferencessuchasbodysize,amountoffattissue,reproductiveorgans,hormones,andotherbiologicalandphysiologicaldifferencesalsohaveanimpactontheeffectsandeliminationoftoxicsubstancesinthebody(Landriganetal.2020).Microplasticshavenowbeendetectedintheplacenta(Ragusaetal.2021).Women’shigherproportionofbodyfatprovidesagreaterreservoirforbioaccumulatingandlipophilicchemicals;forexample,theUnitedStatesCentersforDiseaseControlandPreventionreportedthatwomen,incomparisontomen,hadsignificantlyhigherlevelsof10ofthe116toxicchemicalstested,threeofwhichwerephthalatescommonlyfoundinhealthandbeautyproducts(Lynnetal.2017).Gradually,asmoreisknownaboutmicroplasticparticlesandfibres(BarbozaandGimenez2015;WrightandKelly2017;EuropeanUnion2019a;Changetal.2020)itmaybehypothesizedthatingestedorinhaledmicroplasticscouldharmhumanhealththroughavarietyofmechanisms,someofwhichwillberelevantformarineplastics(Landriganetal.2020;VethaakandLegler2021).Thesemechanismsincludephysicalpresence(e.g.causingabrasion,blockagesorcellulardamage),chemicalcomposition(chemicaladditivesusedintheirproductionorambientchemicalsadsorbedfromthesurroundingenvironment),andactingasvectorsforpathogenicbacteriasuchasVibriospp.(Kirsteinetal.2016)andantimicrobialresistantbacteria(Eckertetal.2018).Molecularmechanismsthroughinteractionswithmicroplasticparticlescouldalsoinjurehealthasaresultofoxidativestress,inflammatoryreactionsandmetabolicdisorders(Landriganetal.2020).InformationaboutthetoxicityofmicroplasticparticlesIndividualinhalationhasbeenestimatedtobe26-130airbornemicroplasticsperdayPeoplewhobreathemorethroughtheirmoutharelikelytohavemoreparticlesreachthelungsInhaledparticlesmayactivateT-cells,bephagocytizedbymacrophages,andbetransportedtothelymphnodesLargeparticlesmaybedepositiesinthetracheobronchialregionand,ifsoluble,enterthebodySomecoarseparticlesmayreachthealveolarregionMicroplasticsfoundinthehumanplacentaMicroplasticsmayaccumulateintheliverandkidneyMicroplasticshavebeenfoundinhumanstools,suggestingparticlesmaybewidespreadinthehumanfoodchainUlraneparticles(UFPs),e.g.inairpollutionhotspotsduetoroadvehicles,maypenetratebiologicalmembranesandtransfertosystemiccirculationSkinNanoparticlesmaypenetratetheskin~163000particlesMicroplasticsinanadultperyear~121000particles~52000particlesIngestionperyearInhalationperyearLargeparticlesthatarenotcaughtinthenosemaybedepositedandlatereliminatedbycoughing,blowingthenose,orsneezingAIllustratedbyGRID-Arendal/StudioAtlantisHumanexposuretomicroplasticandnanoplasticparticlesSources:UNEP2021;Prata2018;Coxetal.2019;Landriganetal.2020.Figure3a:Humanexposuretomicroplasticandnanoplasticparticles37MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTandfibresisalsobeginningtoemergefromtwosources:toxicologicalstudiesoflaboratoryanimalsexposedtothesematerials,andoccupationalclinicalandepidemiologicalstudies.3Studiesofoccupationallyexposedpopulationscanbeextremelyinformativebecausethesegroupsareoftenexposedearlierthanthegeneralpopulationandsustainrelativelyhighlevelsofexposure.Sincetheyconsistofwell-definedgroups,occupationalpopulationscanalsobereadilyfollowedandstudiedandgenderaspectsassessed(Lynnetal.2017).Toxicologicalstudieshavereportedthatmicroplastics(5-20µmindiameter)fedtorodentsaccumulateintheliverandkidney,causinginflammationandchangesinmetabolicprofiles(Dengetal.2017).Inhaledmicro-andnanoplasticparticles(1-20nmindiameter)werereportedtoactivateT-cells,leadingtoparticlesbeingtransportedtolymphnodesandcreatingahigherriskofcancers(Blanketal.2013).Occupationalexposurestoairbornemicroplasticfibresamongworkersinthetextileandflockingindustrieshavebeenassociatedwithinterstitiallungdisease(Boagetal.1999;Kernetal.2000),cardiacandautoimmunedisease,andlungcancer(Kernetal.2011;Prata2018).Someexpertsareconcernedthatthehumanhealtheffectsofmicroplasticfibrescouldbesimilartothosecausedbyexposuretoasbestos(Kaneetal.2018).Otherhealthhazardsassociatedwithmarineplasticscanariseupstreamdependingonwastedisposalmethods,forexamplewherethereareinformalwastemanagementschemes(e.g.beachcollection)anduncontrolledorincompletecombustionofthecollectedwaste.MarinelittercollectedonbeachesFigure3b:Humanexposuretoplasticparticlesandassociatedchemicals38MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTReproductivehealth-adultsPolycysticovariansyndromeEndometriosisMalesub-fertilityReducedspermqualityDelayedtimetopregnancyAbnormalPAPsmearsPregnancy-inducedhypertensionand/orpre-eclampsiaCardiovasculardiseaseHormonalThyroiddiseaseThyroidcancerRespiratorydiseaseAsthmaNeurodevelopmentaldisordersAttentiondeficithyperactivitydisorder(ADHD)AutismNeurobehaviouralIQCognitionPregnancyoutcomes-offspringGestationallengthBirthweightDelayedpubertaltimingGenitalstructure(ano-genitaldistance)PubertalonsetMetabolicdiseaseMetabolicdiseaseDecreasedantibodyresponsetovaccinesType2diabetesChildhoodobesityIncreasedwaistcircumferenceSerumlipidlevels,e.g.totalcholesterolandLDLcholesterolHealthconditionslinkedtochemicalsassociatedwithplasticsPlasticizers(phthalates)andbisphenol(monomer)FlameretardantsHumanhealthimpactsofexposuretoplastic-associatedchemicalsIllustratedbyGRID-Arendal/StudioAtlantisCSources:UNEP2021;Landriganetal.2020.canendangerhumanhealth.Whenitisburnedinopenpits,peopleareexposedtothefumes,whichcancontainavarietyofhazardousandcarcinogenicmaterialsincludingpolycyclicaromatichydrocarbons(PAHs),hydrochloricacid(fromcombustionofPVCplastics),dioxinsandfurans(fromcombustionofPVCplastics),lead(usedasaplasticstabilizer),brominatedflameretardants,andshort-chainchlorinatedparaffins(Zhangetal.2017;Babayemietal.2019;UNEP2019e).ThesignificantincreaseinvolumesofplasticwastearisingfromthedisposalofpersonalprotectiveequipmentandotherplasticitemsusedduringtheCOVID-19pandemicarecreatinganadditionalhazardforlocalcommunities(Prataetal.2020b).However,theneedtosolvethisproblemcouldtriggerwidespreadshiftsinthetreatmentofmarinelitterandplasticpollution(Adyel2020;Canning-Clodeetal.2020).Overall,thereisstillapoorunderstandingofthebackgroundlevelsofmicroplasticandmicrofibrecontaminationinanaveragehouseholdandwhethertheseconcentrationshavethepotentialtocauseharmtohumanhealth.Thechronictoxiceffectconcentrationsandunderlyingtoxicologicalmechanismsbywhichmicroplasticseliciteffectsarestillnotwellenoughunderstood,althoughtheyhavebeenlookedatinsixassessmentswithdifferentscopesbynationalgovernmentsandintergovernmentalinstitutions(UNEP2020e).Aprecautionaryapproachinthemanagementofplasticsisthusstillwarranted(EuropeanEnvironmentAgency2013;EuropeanFoodSafetyAuthority(EFSA)SafetyAuthorityPanelonContaminantsintheFoodChain2016;WHO2019).Figure3c:Humanhealthimpactsofexposuretoplastic-associatedchemicals39MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENT1.3Impactsofmarinelitterandplasticpollutiononmaritimeindustries1.3.1ImpactsonfisheriesandaquacultureMarineplasticshavethepotentialtoreducetheefficiencyandproductivityofcommercialfisheriesandaquacultureoperationsthroughphysicalentanglementanddamage(Mouatetal.2010)andposingadirectrisktofishstocksandaquaculture(Lusheretal.2017a).Themostimportantimpactofmacroplasticdebrisonfisheriesoccursthroughghostfishingbyabandoned,lostorotherwisediscardedfishinggear(ALDFG)(Richardsonetal.2019).Themagnitudeoflossestofisheriesandothermaritimeindustriesremainsuncertain,butintheirinterimreportGESAMPWorkingGroup43(GESAMP2020b)findsthatthecontributionofsea-basedactivitiesandindustriestotheglobalburdenofmarinelitterwarrantsconcernlargelybecausesyntheticmaterialsmakeupsignificantportionsandcomponentsofthelitterenteringtheworld’soceansfromfishing,aquaculture,shipping,oceandumping,andothermaritimeactivitiesandsources.Furthermore,certaintypesofsea-basedmarinelitter,suchasALDFG,areknowntoimpactmarineresources,wildlifeandhabitats.ArecentstudysuggeststhatcommercialfishingoffNorwayalonecontributesnearly400metrictonsofplasticsfromlostfishinggearandpartsperyeartomarineplasticwaste(Deshpandeetal.2020).Ghostfishing,so-calledbecauseabandonednetsandtrapsmaycontinuetocatchfishandshellfish,cancausesignificantlevelsofmortalitytocommercialstockswhich,inmanycases,arealreadyunderpressure.Gillnetsandtrammelnetsareusedworldwide,mostlybycoastalandartisanalfisheries.Theyarethemostproblematictypeofequipmentintermsofquantitieslost,astheyarerelativelynon-selectivewithhigherlevelsofby-catchofnon-commercialspecies(e.g.Sullivanetal.2019).Potsandcertaintypesoflong-linefisheriesalsopresentathreattomarinebiodiversitywhengearislostorabandonedincoastalareas(Jeffreyetal.2016;Sullivanetal.2019).FewestimatesoftonnagelossesfromghostfishinghavebeenpublishedsincetheworkofWebberandParker(2012)andScheldetal.(2016),butactionstoremovethistypeofdebrisareimportant.Forexample,along-termstudybySullivanetal.(2019)demonstratesthatremovingdisusedfishinggearinalargecoastalestuaryintheUnitedStatesledtosignificantecologicalandeconomicbenefits,withfuturebenefitsanticipatedfromincreasedharvests.Actionstoremovethistypeofdebrisfromaquaculturearealsoimportant,butseemtobebroadlymissingintherecentglobalstock-takingexerciseconductedaspartoftheworkoftheAdhocopen-endedexpertgroup(AHEG)onmarinelitterandmicroplastics(UNEP/AHEG/4/INF/6).©iStock/Fahroni40MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTMarinelitteralsohasimpactsonfisheriesandaquaculturethroughtheintroductionofinvasivealienspecieswhichcanresultinseriouseconomiclosses(e.g.Barnes2002;Kiesslingetal.2015;Kirsteinetal.2016).Becketal.(2018)showedthatthelossofcoastalfloodprotectionservicesprovidedbyreefscouldleadtodamagesofuptoUS$272billionglobally.Regardingfishstocksandaquaculture,theconsumptionofplasticandassociatedcontaminantsputsfishandshellfishstocksatriskoflethalandsublethalharm(e.g.throughdiminishedreproductivesuccessandgrowth),withthecapacityforpopulation-levelimpactsandeconomiclosses(Sussarelluetal.2016;Gallowayetal.2017;Peng,L.etal.2020).Overall,thepublishedevidencesuggeststhattheproductivity,viability,profitabilityandsafetyofthefishingandaquacultureindustriesarehighlyvulnerabletotheimpactsofmarineplastics,particularlywhencoupledwithotherfactorsincludingclimatechangeandoverfishing.AcasestudyinCanadashowedthatfarmedmusselshadhigherconcentrationsofmicroplasticscomparedwithwildforms(MathalonandHill2014).Globallymarineaquacultureoffishandmolluscsrepresents17percentofthetotalvolumesproducedbyaquaculture(FAO2020);however,seafoodfrombothmaricultureandcapturefisheriesmakesup20percentoffoodintakebyweightfor1.4billionpeople(Goldenetal.2016).Suchahighdependencyonseafoodfornutritionmeansthewell-beingofasignificantproportionoftheworld’spopulationishighlyvulnerabletoanychangesinthequantity,qualityandsafetyofthisfoodsourcebecauseofplasticpollution.1.3.2ImpactsontourismandheritageMarinelitteronbeachespresentsseriousvisualandaestheticproblemsfortouristsandotherswhovisitbeaches,especiallyinpristineareas,althoughthisaspecthasnotbeendeeplyresearched.Litterhasasubstantialnegativeimpactonrecreationalexperiencesandoverallbeachenjoyment,causingdeclinesincoastaltourismandacorrespondinglossofrevenue(Munarietal.2015;Pasternaketal.2017;UNEP2017a;Petroliaetal.2019;WilliamsandRangel-Buitrago2019).Peoplehavereportedtheirconcernsaboutlitterwhenvisitingcoastalareas(Pennetal.2015;Krellingetal.2017;Hartleyetal.2018a).Visitorsspendlesstimeatoravoidcertainsitesiftheyanticipatethatthosesiteswillbelittered(e.g.Wylesetal.2015;Kaminskietal.2017;Krellingetal.2017;Pasternaketal.2017;Leggettetal.2018;Qiangetal.2020).Leggettetal.(2014)demonstratedthatinOrangeCounty,California(UnitedStates)marinedebrishadasignificantimpactonresidents’beachchoices;a75percentreductioninmarinedebrisatsixpopularbeachesledtoUS$53.4millioninbenefitstocountyresidentsduringathree-monthperiod.1.3.3ImpactsonmaritimeshippingandportoperationsDespitethepotentiallyhighriskstoshippingposedbymarinedebris(Macfadyenetal.2009),thereareveryfewestimatesofthetotalcostswithrespecttonavigationalsystemsandassociatedsafetyissues.Marinedebriscanpresentnavigationalhazardstoshipsatsea,forexampleduetoentangledpropellersandrudders,blockedwaterintakes,andcollisionswithfloatingobjects.Entanglementofpropellerscansignificantlyreducestabilityandmaneuverability,withthepotentialtoputcrewandpassengersindanger,particularlywhenweatherconditionsarebad.Injuriesordeathsassociatedwithmarinedebriscouldbeaccompaniedbyfinancialcosts(Cho2005;McIlgormetal.2011;Newmanetal.2015;UNEP2016a).Derelictfishinggear(DFG)canbeanavigationalhazardtocommercialorrecreationalvessels(Jeffreyetal.2016;Hongetal.2017b).Economiccostsresultfromnecessarychangesinnavigationtoavoidderelictgear,aswellasdamagetovesselsandequipment.Costsmaybesignificantinareaswithheavycommercialorrecreationaltraffic.Jeffreyetal.(2016)proposedusingrouteplanningmodelstoquantifythecostsofincreasedhazardsinregardtonavigationaldecision-makingand/orvesselandequipmentdamageassessments.Fuel,labourandmaterial/equipmentcostsrelatedtovesseltrafficpatternswithandwithouttheneedtotakeDFGintoaccountcouldthenbeevaluated.Hongetal.(2017b)studiedshipsbelongingtotheRepublicofKoreaNavyandfoundthatpropellersorshaftswereentangledbyDFG2,386timesinsixyears(2010–2015),witheachshipsufferingatleastoneentanglementperyearandrequiring135hoursofdivertime.Thecostsforallvesselsoperatingaroundthecountry’scoastswereUS$96.7millionperyear.Collisionswithshippingcontainersarearecognizedcauseofdamage,buttheyarenotconsistentlyreportedunlesstheyresultfromacatastrophiceventsuchaslossofavessel.TheWorldShippingCouncil(2020)estimatedthatintheperiod2008­–2019anaverageof1,382containerswerelostatseaeachyear,notcountingthoselostduringcatastrophicevents,whileanaverageof1,582containerswerelostiftheseeventswereincluded.Muchship-basedwasteishandledbyportreceptionfacilities(e.g.EuropeanCommission2018c).Thecostsrepresentavoidedcostsofclean-upandofdamagetoshipsbymarineplasticsincoastalareas.Mostwastemanagementplansdrawnupbyvesseloperatorsentaildischargingplasticwithotherwasteproductsatportreceptionfacilitiesforresponsibleland-baseddisposal.Ifplasticistoberecycled,itmustbesegregatedbeforeavessel’sarrivalandproperlyhandledoncelanded.Althoughthisisregularpracticeinmanycommercialoperations,othermaritimesectorsneedtoalignwithittoensurethatsegregationisanintegralpartoftheroutineworkflow.Forexample,atthePortofRotterdamintheNetherlandsplasticsarespecificallyaddressedinthewastemanagementplan.Theportcollectsplasticseparatelyfromotherwasteproducts,advocateswasteprevention,andencouragesvesselstolimittheamountofplasticstakenonboardwhenreplenishing(IMarEST[InstituteofMarineEngineering,ScienceandTechnology]2019).Overall,theoperationalcostsofportreceptionfacilitiesarebornebytheshipsusingaport.41MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENT1.4EconomiccostsofmarinelitterandplasticpollutionTheannualglobaleconomiccostsofmarineplasticpollutionwithrespecttotourism,fisheriesandaquaculture,togetherwithothercostsincludingclean-upactivities,areestimatedtobeatleastUS$6-19billionglobally(Deloitte2019).Thisestimaterepresentsonlyasmallpercentageofthevalueoftheglobalmarketforplasticproducts,estimatedataroundUS$580billionin2020,(comparedwithanestimatedUS$502billionin2016)(Statista2021a).However,theDeloitte(2019)estimatedoesnotdirectlyincludeimpactsonhumanhealthormarineecosystems.Thereisinsufficientavailableresearchontheseimpacts.Lackofcomprehensivefiguresforallcostsappearstobeacommonproblem(Newmanetal.2015;UNEP2017a;Gattringer2018).Fourtypesofeconomiccostsneedtobeaddressed:actualexpendituresrequiredtopreventorrecoverfromdamagecausedbymarinedebris(e.g.forbeachclean-ups,repairofvesselsandfishinggear,andmedicalcarefollowingmarinedebrisrelatedaccidents);lossesofoutputorrevenueowingtointeractionswithmarineplasticpollution;lossesofplasticmaterial(asvaluablematerialwithdrawnfromproduction);andwelfarecostsincludinghumanhealthimpactsandlossofecosystemservices,amongwhicharethoseecosystemservicesrelatedtoaestheticpleasureandrecreation.Themajorityofpublishedstudieshavefocusedoneconomicdamageordirectlossesatregional,nationalandlocallevels(e.g.Hall2000;MacFadyen2009;Mouatetal.2010;©iStock/IanDyball42MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTMcIlgormetal.2011;Jangetal.2014;Newmanetal.2015;Krellingetal.2017;Gattringer2018;Leggettetal.2018;DalbergAdvisors,WWFMediterraneanMarineInitiative2019;Qiangetal.2020;andsectionsbelow)andthepriceadjustmentsneededtointernalizethesocialcostsofplastics(e.g.Ferreiraetal.2007;Oosterhuisetal.2014).Somestudieshaveexaminedthenon-marketandintangiblesocialandecologicalcostsofmarinelitterandplasticpollution;forexample,inastudyofacoastalfishingcommunityonThailand’sAndamanSea“increasedgarbageintheocean”wasrankedasthehighestenvironmentalstressor(Lynnetal.2017).Howevertherearetoofewstudiestoprovidearobustestimateglobally.Ontheregionalscaletherearemorestudieslookingatthisissue.IntheMediterraneanSea,acknowledgedtobeoneoftheworld’smostaffectedseas(Eriksenetal.2014;Cózaretal.2015;UNEP/MAP2015;Suariaetal.2016;UNEP/MAP2017;Campanaleetal.2019;Constantinoetal.2019;DalbergAdvisors,WWFMediterraneanMarineInitiative2019;Fossietal.2020),therewereannuallossesofUS$696millioninthethreemajorsectors(fisheriesandaquaculture,shippingandtourism),includingUS$150millioninthefisheriessectoralone(DalbergAdvisors,WWFMediterraneanMarineInitiative2019).Thesefiguresdonotincludelossesduetoreducedincomeordamagetoecosystemservicescausedbyplastics.IntheAsia-PacificEconomicCooperation(APEC)countriestheestimatedannualeconomiccostsofmarinelitterin2008wereUS$1.26billion(McIlgormetal.2008;McIlgormetal.2011),risingtoUS$10.8billionin2015(Asia-PacificEconomicCooperation2017;McIlgormetal.2020).ThesefiguresfortheAsia-Pacificregionreflectincreasingglobalplasticproduction.Statista(2021b)estimatesthatcumulativeglobalproductionwas8.3millionmetrictonsin2017andwillgrowto34millionmetrictonsin2030.Theworld’smaritimeindustriesarealsogrowing:asof2019thetotalvalueofannualseagoingshippingtradeisreportedtohavebeenmorethanUS$14trillion(InternationalChamberofShipping2019).Formanycountrieseconomicdataonthecostsofdamagecausedbymarineplasticsdonotexist(Janssenetal.2014;Jambecketal.2018).However,avoidedcostscreatedbytheinformalwastepickingsectoraresometimesausefulindicator;in2016wastepickerswereestimatedtoberesponsibleforcollecting55-64percentofplasticsforrecyclingglobally(Lauetal.2020).Thissectorgenerallycomprisessmallbusinessesandself-employedindividualswhooperatewithlowcapitalinvestmentandlittleornostateregulation.Informalwastepickersgeneratehugesavingsforcitiesbyreducingthevolumeoflow-valuewastethatneedstobecollectedandtakentolandfills(UNESCAP[UnitedNationsEconomicandSocialCommissionforAsiaandthePacific]2019).Forexample,inIndiainformalwastecollectionsavesthePunemunicipalityanestimatedUS$10millionperyearinlabourcosts,atstatutorywagerates,andaboutUS$2millioninreducedwastetransportationandprocessingcosts.InLima(Peru),Cairo(Egypt),andQuezonCity(thePhilippines)informalwastepickersareestimatedtocontributearoundUS$15.9million,US$13.7millionandUS$3.9million,respectively,toannualavoidedwastecollectionanddisposalcosts.Estimatingthecostsofdamagetoecosystemfunctioningisalsochallenging,withlimitationsintheaccuracyofpreviousanalyses(e.g.Costanzaetal.1997;Börgeretal.2014;Costanzaetal.2014)havingbeenpointedout(e.g.byPendletonetal.2016).Beaumontetal.(2019),whousedDeGrootetal.(2012)andCostanzaetal.(2014)tocombineeconomicvaluesfordifferentcomponentsofmarineecosystemswithestimatesoftheimpactsofmarineplasticonecosystemservicesbasedonthevolumeofplasticsinthemarineenvironmentin2011,estimatedtobebetween75and150millionmetrictons(Jangetal.2015;OceanConservancyandMcKinseyBusinessCentre2015).TheoutcomefromBeaumontetal.(2019)wasthateachtonofplasticintheoceansleadstoanannualcost,intermsofreducedmarinenaturalcapital,ofbetweenUS$3,300andUS$33,000oranoverallyearlylossofUS$500-2,500billion.Analysingthelossofbenefitsthatmarineecosystemservicesprovideisanappropriatemethodforestimatingthenon-market,intangiblecostsofmarineplastics,butbeforethesecostscanbeappliedgloballyitisclearthatamoreprofoundinterdisciplinaryapproachisneededwhichbetteraddressestheinterdependenciesbetweeneconomicandecologicalsystems(Gattringer2018).Comparedtothesizeoftheglobalplasticmarketin2020,estimatedataroundUS$580billion(Statista2021a),theWorldTradeOrganizationreportsthatthevalueofglobalmerchandiseexportsalonein2020wasaroundUS$17.65trillion(comparedtoUS$19.014trillionin2019and19.55trillionin2018,beforetheCOVID-19pandemicbegan)(WorldTradeOrganization[WTO]2021).ThevalueoftradeflowsofplasticsfromrawmaterialstofinishedgoodshaverecentlybeencalculatedtoamounttoaboutUS$1trillion(UNCTAD2020).However,thepriceofvirginplasticsdoesnotreflectthefullenvironmental,economicandsocialcostsofdisposingofthem.Instead,thesecostsarepassedon,forexampletocoastalcommunitiesandthemaritimesectors.ThePewCharitableTrustsandSYSTEMIQ(2020),usingabusiness-as-usualscenariofor2040,projectedthat4billionpeoplearelikelytobewithoutorganizedwastecollectionservicesbythatyearandthatbusinessescouldfaceaUS$100billionannualfinancialriskifgovernmentsrequiredthemtocoverwastemanagementcostsatexpectedvolumesandrecyclability.Figuressuchastheseareindicativeofwidespreadmarketfailuresandunderlinetheneedforasystems-wide,solutions-basedapproachthatfocusesonthechallenges–technological(e.g.thescalabilityofdifferentrecyclingtechnologiesandsubstitutematerials),economic(e.g.therelativecostofdifferentsolutions),environmental(e.g.greenhousegas[GHG]emissionsassociatedwithdifferentsolutions)andsocial(e.g.equityandsocialjusticeforwastepickers)–thatneedtobemettopreventmismanagedplasticwasteandthesubsequentcostsofenvironmentalpollutionenteringthemarineenvironment(Lauetal.2020).43MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENT1.5SocialimpactsofmarinelitterandplasticpollutionThereisgrowingawarenessworldwidethatthemarineenvironmentisunderthreatfromplasticpollutionandoverfishing(Wylesetal.2016;Hartleyetal.2018b;Lotzeetal.2018).Awarenessofotherthreatssuchashabitatalteration,climatechangeandbiodiversityloss,althoughfelttobeimportant,isnotasgreat,perhapsduetotheirlowerdirectvisibility,greatercomplexityor,asinthecaseofclimatechange,becausetheyhavenotpreviouslybeenperceivedasadirectthreattotheoceans(Reidetal.2009;Lotzeetal.2018).Changesinperceptionandawarenessareimportant.Thereisextensiveevidencethatpeopleexperiencewell-beingbyknowingthatmarineanimalsexistandwillcontinuetodoso,eveniftheyneverexperiencethempersonally(Borgeretal.2014;Jobstvogtetal.2014;Aanesenetal.2015;Eagleetal.2016).Charismaticmarineanimals,includingturtles,whales,dolphinsandmanyseabirds,haveculturalandemotionalimportance.Imagesanddescriptionsofwhalesandseabirdswhosestomachsarefullofplasticfragments,whichareprevalentinmainstreammedia,4canhaveastrongdetrimentalimpactonpeople’semotionsandsenseofwell-being(Lotzeetal.2018).Litteriscitedasakeyreasonvisitorsspendlesstimeonbeachesoravoidsomesitesaltogetheriftheyanticipatetheywillfindlitterthere(Ballanceetal.2000;TudorandWilliams2003;Kiesslingetal.2017;Hartleyetal.2018a).Notvisitingbeachesandshorelinescanhavehealthimplicationsifitmeansthereisalackofopportunitytoenjoybenefitssuchasphysicalactivity,socialinteraction(e.g.strengtheningoffamilybonds),andgeneralimprovementofphysicalandmentalhealth(Ashbullbyetal.2013;Papathanasopoulouetal.2016;Kiesslingetal.2017;Whiteetal.2020).Ontheotherhand,thepresenceoflitterisknowntostimulatecitizenprogrammesandbeachclean-upactivities(Brouweretal.2017;Hartleyetal.2018b).Handlingmarinelitterandplasticscanhavedifferentimpactsonparticulargroups(e.g.women,children,coastalcommunities,wasteworkers);moreover,whenindividualscollectingwastefrombeachesandcoastalareasproblemsmayariseiftheyareperceivedtobecompetingwithestablishedmunicipalwastemanagementsystems(ILO[InternationalLabourOrganization]2017;UNEP2017a;ILO2019).Inhazardousworkingenvironments,wherealltypesofwasteworkersmaybeexposedtofumesfromwasteburningandadequateoccupationalsafetyandhealthmeasuresmaybelacking,theseworkersareexposedtonumeroushealthrisksincludingexposuretohazardouschemicalsassociatedwithplastics(ILO2017;ILO2019;UNESCAP2019;VelisandCook2021).IthasbeenproposedbyvandenBerghandBotzen(2015)andothersthatthesocialcostsofmarineplasticshouldbeincludedinsolutionstothewaysplasticsareproduced,used,reusedandreprocessed,employinganapproachsimilartothe“SocialCostofCarbon”.Marinelitterandplasticpollutioncaninfringeonanumberofhumanrights.Theyaffectpeopleinvulnerableconditionsdisproportionally,includingthoselivinginpoverty,indigenousandcoastalcommunities,andchildren,potentiallyaggravatingexistingenvironmentalinjustices(UnitedNationsGeneralAssembly2021).©iStock/apomares44MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENT1.6RiskframeworkformarinelitterandplasticpollutionBecauseofthemultipleandcascadingrisksthatmarinelitterandplasticpollutionposetotheoceansandsociety(Figure1),theycanactasthreatmultipliers(UNDRR[UnitedNationsOfficeforDisasterRiskReduction]2019).Plastics,inparticular,arestressorsthatmaycombinewithotherstressors(e.g.climatechange,overexploitationofmarineresources),resultinginfargreaterdamagethanwhentheyareconsideredinisolation(BackhausandWagner2019).Forexample,GHGemissionsfromtheproduction,recyclingandincinerationoffossilfuel-basedplasticsaccountfor19percentofthetotalemissionsbudgetallowablein2040iftheworldistoavoidsignificantclimatechange(ThePewCharitableTrustsandSYSTEMIQ2020).Habitatalterationsinkeycoastalecosystemscausedbythedirectimpactsofmarinelitterandplasticpollutionnotonlyaffectlocalfoodproductionandcoastalprotection,butmayleadtowide-reachingandunpredictablesecondarysocietalconsequencesthroughimpairmentofecosystemresilienceandthepotentialofcoastalcommunitiestowithstandextremeweathereventsandclimatechange(Gallowayetal.2017;Carvalho-Souzaetal.2018;Woodsetal.2019;GESAMP2020a).Suchconsiderationsunderscoretheurgentneedforacoherentapproachtomanagingtherisksofmarinelitterandplasticpollution(Colbornetal.2011;UNGeneralAssembly2016;HardestyandWilcox2017;Royeretal.2018;Adametal.2019;BackhausandWagner2019;UNDRR2019;GESAMP2020a;Peng,L.etal.2020;Shenetal.2020).TheJointGroupofExpertsontheScientificAspectsofMarineEnvironmentalProtection(GESAMP)(2020a)suggestedthatnosingleapproachtoriskwouldbesuitableforassessingthewiderangeofpotentialhazardsandexposureroutesassociatedwithmarinelitterandmicroplasticswhichwouldtakeintoaccountallthepossiblesocial,economicandenvironmentalconsequences.Instead,settingouta“riskassessmentlandscape”andadoptingatieredapproachforaddressingmarinelitterandplasticpollutionhasbeenproposed(Koelmansetal.2017a;GESAMP2020a).Thisapproachreflectsincreasingexperiencewiththedevelopmentoftoolstoassesshazardandriskinawiderangeofapplications,forwhichrelevantfactorstobeconsidered(includingexistingknowledgeandurgency)vary,takingsocialconsiderationsandpotentialpublicorenvironmentalhealthrisksintoconsideration.Theobjectiveofsuchariskframeworkwouldbetodeliver“fitforpurpose”riskframeworktoensurethatnon-prioritiesaresetasideandtoinformriskmanagement(Koelmansetal.2017a).Riskmatricescanalsoprovideawaytohighlightwhereknowledgegapsexistandcanaidproblemformulation.Thedevelopmentofariskappraisalprocedureandcommonriskframeworkisthusacriticalstepgoingforward.©iStock/MarinMtk45MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENT©iStock/pidjoe46MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTSOURCESANDPATHWAYSOFMARINELITTERANDPLASTICPOLLUTIONSECTION2©iStock/pidjoe47MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENT2.1Majorsourcesofmarinelitterandplasticpollution2.1.1Land-basedsourcesThemaindriversofmarinelitterandplasticpollutionarethegrowingvolumesofplasticsbeingsuppliedtotheglobaleconomy(IRP[InternationalResourcePanel]2019;Geyer2020)andthewasteandemissionsarisingfromtheiruseanddisposal(Veigaetal.2016;Lusheretal.2017a;Piehletal.2018;Rochmanetal.2019).Onthesupplyside,totalproductionofplasticsin2019was368millionmetrictons.DuetotheimpactsoftheCOVID-19pandemic,itisestimatedthatproductionin2020decreasedbyapproximately0.3percent(Maliketal.2020;ICIS[IndependentCommodityIntelligenceServices]2020;Statista2021b).Thechemicalindustryislikelytobecomemorecomplexinthefuture,withGHGemissions,climatechange,demographicsandtechnology,forexample,allhavingimpacts(McKinseyandCompany2020).However,itwasrecentlyestimatedthatglobalproductionofprimaryplasticwouldincreaseto1,100millionmetrictonsperyearby2050ifhistoricgrowthtrendscontinue(Geyer2020).Oftheglobalcumulativeproductionofprimaryplasticbetween1950and2017,estimatedat9,200millionmetrictons,roughly7,000millionmetrictonsbecameplasticwaste;ofthisamount,1,000millionmetrictonswereincinerated(14percent)and5,300millionmetrictons(76percent)werediscarded,endingupinlandfillsordumpsorasacomponentofuncontrolledwastestreams,and2,900millionmetrictonsarestillinuse,including700millionmetrictons(8percent)thatwererecycled(IRP2019;Geyer2020).Acrosstheplasticslifecyclethelargestlossestotheenvironmentoccurduringuseandend-of-life,whichaccountforapproximately36percentand55percent,respectively(IRP2019).Lossesduringplasticproductionaccountforonlyabout0.25percentofthetotal(Rybergetal.2019).Althoughsomemismanagedplasticwastemaybecollectedforreuse,orcollectedbystreetsweepers,citizens’groupsandothers,andreintroducedintolandfillsordumps(Schneideretal.2018)theamountofthiswasteislikelytobeverysmall.Marinelitterandplasticpollutioncomemainlyfromland-basedsources(UNEP2018e;IRP2019;vanTruongetal.2019)(Figure4).Thesesourcesincludeagriculture(e.g.irrigationpipes,protectivemeshes,greenhousecovers,containers,fencing,pelletsforthedeliveryofchemicalsandfertilizers,seedcoatingsandmulching);buildingandconstruction(e.g.pipes,paints,flooring,roofing,insulantsandsealants);transportation(e.g.abrasionoftyres,roadsurfacesandroadmarkings);andawidevarietyofpersonalcare,pharmaceuticalandhealthcareproducts,includingthepersonalprotectiveequipmentusedduringtheCOVID-19pandemic(Adyel2020).Approximately36percentofallplasticsproducedareusedinpackaging,includingsingle-useplasticproductsforfoodandbeveragecontainers,approximately85percentofwhichendsupinlandfillsorasunregulatedwasteandmuchofwhich48MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTRivers-directpathwayAgriculturesoil-sourceandsinkSediments-sourceandsinkLakes-closetoriversandoceanSewageandwastewater-sourceandpathwayReservoirs-sourceandsinkSnowandice-pathwayCities-sourceinfarmingpractises.Sewagesludgewithplasticresidueusedasfertilizer.Irrigationfertilizerandseedscoatedwithapolymer.Wastewatertreatmentplantsareamajorsourceofmicroplasticsandnanoplasticsinwaterbodies.Plasticsfromatmosphericfallout,streamsandrivers.Temporaryandlong-termstorageandpossibleMicroplasticsarefoundinsnow,iceandsea-ice,fromthepolestoremotemountaintops.Temporaryandlong-termstorage.patternsandhydrodynamicregimes.Transportofplasticdebristotheocean.Estimated4.8to12.7milliontonsperyearofmacroplastic.Plasticscomingfromboththelandandseacontributetoaccumulationinsediments.Particlesfromthewearontyres,roadsurfacesandpaint.Clothes,syntheticproductssuchascarpets,buildingmaterials,take-awayfoodcontainersetc.aresourcesofplasticExposedplasticscanbetransportedbythewindandplasticparticlesandchemicalsassociatedwithplasticscanleachintosurroundinggroundwater.Sources:UNEP2021;Borelleetal.2020;Lauetal.2020;ThePewCharitableTrustsandSYSTEMIQ2020;Meijeretal.2021.MajorsourcesandpathwaysofhumangeneratedplasticwasteinthemarineenvironmentPathways,sources,sinksandtemporaryaccumulationIllustratedbyGRID-ArendalFigure4:Majorsourcesandpathwaysofhuman-generatedplasticlitterwilleventuallyenterthemarineenvironment(Andradesetal.2016).Despitechangesinsomecountries’policies,theexportofwaste,includingelectronicwaste,tocountrieswithpoorwastemanagementinfrastructureplaysamajorroleinthegenerationofmismanagedwasteandflowsoflitterandtoxicchemicalsintotheoceans(Brooksetal.2018;EuropeanEnvironmentAgency2019a;Awereetal.2020)(seeSection4).Thevolumeofplasticsintheoceans,whichhasbeencalculatedbyanumberofresearchersduringthepastfiveyearsorso,isestimatedtobebetween75and199millionmetrictons(Jangetal.2015;OceanConservancyandMcKinseyCentreforBusinessandEnvironment2015;Law2017;IRP2019;Lebretonetal.2019;Borrelleetal.2020;Lauetal.2020;ThePewCharitableTrustsandSYSTEMIQ2020).Giventhepredictedincreasesintheproductionofplasticsandintheirfutureuse,plasticlitterandflowsofplasticstomarineenvironmentsfromland-basedsourcesareprojectedtocontinuetogrowunlessnewgovernanceandmanagementstructuresareputinplace.Thetypesofstructuresandframeworksneededcouldincludeeffectivelifecycleandend-of-lifemanagementstrategiesandcorporatesocialresponsibility(Borrelleetal.2017;Haward2018;Landon-Lane2018;Borrelleetal.2020;MaelandandStaupe-Delgado2020;ThePewCharitableTrustsandSYSTEMIQ2020)(Section4).Thereisasyetnoconsistentapproachforestimatingthevolumeofplasticwasteflowingintotheoceans.However,modellinganalysissuggeststhattherearefourmainroutesthroughwhichland-basedprimarymacroplasticwasteenterstheoceans:uncollectedwastedirectlydumpedintowater;uncollectedwastedumpedonlandthatmakesitswaytowater;collectedwastedepositedindumpsitesthatmovesvialandandairintowater;andcollectedwastedumpeddirectlyintowaterbycollectiontrucks(ThePewCharitableTrustsandSYSTEMIQ2020).Basedontheseassumptions,ThePewCharitableTrustsandSYSTEMIQ(2020)estimatethat61percentofmacroplasticleakageoriginatesfromuncollectedwaste,asharewhichcouldgrowto70percentby2040underabusiness-as-usualscenarioascollectionservicesfailtokeeppacewithmacroplasticwastegeneration.Severalcalculationsofannualflowsofplasticsintodifferentaquaticecosystemshavebeenproduced(Table1).Evenwithimmediateandconcertedaction,Lauetal.(2020)estimatethat710millionmetrictonsofplasticwastewouldcumulativelyenteraquaticandterrestrialecosystemsbetween2016and2040.ThescenariosofLebretonandAndrady(2019)forthesecondhalfofthe21stcenturysuggestthatwithoutashiftinwastegenerationandmanagement,themismanagementofwastefromAfrican(UNEP2018c;UNEPBamako2020)andAsianwatershedswouldresultinthereleaseofmillionsoftonsoflitterandplasticwasteintoalltheworld’smajorterrestrialandaquaticecosystemsandeventuallyintotheoceans.Historicalestimatesofthevolumeandweightofplasticsenteringtheoceanfromland-basedsourceshavegenerallyreliedontwoindicators:wastegenerationpercapitaandtheproportionofwastethatisplastics.Basedonpercapitauseofplasticsandpopulationdensityatagivenlocation5anddataon49MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTAirbornepathwayDirectlitteringfromactivitiesintheoceansGyres-accumulationOceanplastic(1950-2017)Aquaculture-sourceFishingactivities-sourceRecreationalboats-sourceShipping-sourceFromanthropogenicactivitiessuchasparticlesfromvehicletyresandbrakesandroadpaint,citydust,synthetictextiles,driedsewagesludge.Currentstandingstockofplasticisestimatedtobebetween75and199milliontons.Fish,shellshandmacroalgaefarming.Galleywasteandlitterthrownoverboard,marinecoatings.Galleywastethrownoverboard,lossofshippinggoodsandplasticpellets,marinecoatings.Galleywastethrownoverboard,abandoned,lost,orotherwisediscardedshinggear,marinecoatings.Estimatesofthetimetakenforplasticstobetransportedfromcoastalareastomid-oceanislandsandgyresrangefrommonthstoyears.19975country-specificwastegenerationandmanagement(HoornwegandBhada-Tata2012),Jambecketal.(2015,2018)andLebretonandAndrady(2019)estimatedthatmismanagedplasticwastegeneratedgloballyin2010amountedto32millionmetrictonsandthatthefractionofthiswasteconsistingofplasticswhichreachedtheoceansfrompopulationslivingwithin50kmofthecoastlineamountedtobetween4.8millionand12.7millionmetrictons.Thus,evenincountrieswherethereislowpercapitauseofplastics,wastevolumeswillbuildupifinfrastructureisinadequate.FortheAfricancontinent,Jambecketal.(2018)usedthebestavailablecountry-leveldata6toestimatethatthetotalamountofmismanagedplasticwastewas4.4millionmetrictonsin2010.Theyprojectedthatthisamountwouldincreaseto10.5millionmetrictonsin2025.LebretonandAndrady(2019)updatedfiguresformismanagedanduncontrolledwasteusingcountry-leveldataonwastemanagement,highresolutiondistribution,andlong-termprojectionsofpopulationsandGDPgrowth.Theyestimatedthat47percentoftotalannualmunicipalplasticwastegeneratedglobally(i.e.60-90millionmetrictons)wasinadequatelydisposedofandlikelytoendupintheocean.Withrespecttomicroplastics(seeGlossary),primarymicroplasticscanbetheresultofleakagefromproductionfacilitiesandaccidentallossesofplasticpelletsduringtransport(Karlssonetal.2018)whilesecondarymicroplastics,producedwhenlargerpiecesofplasticbreakuporfragment,arefound,forexample,inleachatesfromlandfillsites,biosludgefromwastewatertreatmentplants,andagriculturalrun-off(Masonetal.2016;Mahonetal.2017;Lietal.2018;Cowgeretal.2019;Heetal.2019;Sunetal.2019)(Figure5).Agriculturalsoilsarenowknowntobesinksformicroplasticsasaresultofintentionalapplicationofmicroplastic-coatedseeds,chemicalsandfertilizers(usingnewdeliverytechnologies)intentionalapplicationofsewagesludgeandeffluents,plastic-coatedseeds,chemicalsandfertilizers(Nizzettoetal.2016a;Nizzettoetal.2016b;Piehletal.2018;Accinnellietal.2019;Corradinietal.2019;Wangetal.2019a;Wangetal.2019b).TheseauthorsestimatethatmicroplasticloadingstoagriculturalsoilsinEuropeandNorthAmericarepresentareservoirpotentiallylargerthanthemarineenvironment.Thereisalsoevidenceofmicroplasticsuptakebyedibleplants(Contietal.2020;Lietal.2020).©iStock/-----50MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENT2.1.2Sea-basedsourcesMarinelitterfromsea-basedactivitiesarisesfrommultiplesources(GESAMP2015;GESAMP2020b)(Figure6).Forexample,allaffordable,lightweightanddurablemaritimeequipmentismadeofplastics.Majorsea-basedsourcesofplasticsandmicroplasticsincludefisheriesandaquaculture(e.g.sealants,storageboxes,packaging,buoys,ropesandlines,nets,varioustypesofstructures,andfishinggearsuchasfishaggregatingdevicesorFADs)(FAO2020);shippingandoffshoreoperations(e.g.packaging,cargo,paints,end-of-lifedismantling,ballastwater);andship-basedtourism(e.g.packaging,personalgoods).Ryanetal.(2019)observedthatdiscardedplasticdrinksbottlesshowthehighestgrowthrate,increasingat15percentperyearcomparedwith7percentforothertypesofdebris.Basedonananalysisofbottletypesanddateofmanufacture,theyconcludedthatshipsareresponsibleformostofthebottlesfloatinginthecentralSouthAtlanticOcean,incontraventionoftheInternationalConventionforthePreventionofPollutionfromShips.Thisisconsistentwiththeresultsofaninternalinvestigationcarriedoutbyafleetoperator,whichrevealedthatinoneyearcrewsonits75shipsthrewawaymorethan500,000plasticdrinksbottles(IMarEST2019).7Fisheries-relateddebrisisthelargestsinglecategorybyvolumefoundinbeachlitter.InEurope,basedonnumeroussurveys,fisheriesandaquacultureisestimatedtocontribute39percentand14percentofthisdebris,respectively;itconsistsof,forexample,buoys,pots,feedsacks,glovesandboxes(Veigaetal.2016;EuropeanCommission2018a).Theproportionofitemsonbeachesfromsea-basedactivitiesincreaseswithstrongerEstimatedemissionsofplasticwaste(millionmetrictonsperyear)Source-to-seaaspectProjectedemissionsofplasticwaste(millionmetrictonsperyear)undercertainconditionsApproachused19-23Enteredaquaticecosystemsin201653by2030Integratingexpectedpopulationgrowth,annualwastegenerationpercapita,theproportionofplasticinwaste;incorporatinganincreaseinplasticmaterialsassociatedwithpredictedproductionincreases,andtheproportionofinadequatelymanagedwastebycountry(Borelleetal.2020)9-14Enteredaquaticecosystemsin201623-37by2040(equivalentto50kgofplasticpermetreofcoastlineworldwide)Modelledstocksandflowsofmunicipalsolidwasteandfoursourcesofmicroplasticsthroughtheglobalplasticsystem,usingfivescenarios(2016–2040)andassumingnoeffectiveactionistaken(Lauetal.20200.8-2.7Enteredtheoceansfromglobalriverinesystemsin2015--Basedon>1,000rivers,calibratedusingfieldobservations(Meijeretal.2021)Table1:Estimatesofglobalannualemissionsofplasticwaste(millionmetrictonnes)fromland-basedsourcestides,suggestingthattheshareoflitterinthewatermaybeevenhigher(UngerandHarrison2016).Atsea10percentofallfloatingdebrisisabandoned,lostorotherwisediscardedfishinggear(ALDFG)(Stelfoxetal.2016);intheNorthPacificSubtropicalGyre46percentofthisdebrisconsistsoffishingnets(Lebreton2018).ThecontentsoffishingnetsinthewesternAtlanticandtheBalticSeaindicatethatthereareanequalnumberofitemsmadeofunnecessary,avoidableandproblematicplasticpolymersandALDFG,whereasthemajorityofplasticsfoundinArcticwaterscomeprimarilyfromfishing(Veigaetal.2016;©iStock/-----51MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTVlachogiannietal.2017;Fleetetal.2021).IntheareaaroundSvalbard,Norwaymostofthemarinelitteranalysedisassociatedwithfishing-relatedactivities(Nashoug2017).Thedominanceoffishing-relatedobjectsisrelativelyuniquetothenorthernpartsofNorway,theBarentsSearegionandtheArctic.Inmoresouthernareashousehold-relatedobjectsarethedominanttypeofplasticsinmarinelitter(Nashoug2017).Surveysinareasclosetoshorewithhighconcentrationsoffisheriesandaquacultureshowsignificantconcentrationsofplasticsintheformofcages,longlines,poles,andotherfloatingandfixedstructuresusedforthecultureofmarineanimalsandplants.Therearenoreliableestimatesofthecontributionofaquaculturetomarinelitter;however,aquacultureoperatorsarelikelytotakeconsiderablecaretoavoidlosses.Themateriallostdependsonculturesystems,constructionquality,vulnerabilitytodamage,andmanagementpractices.Itcouldincludenetsandcagestructures(formarinefishcages),linesandfloatingraftstructures(forseaweedsystems),andpoles,bags,linesandplasticsheeting(formolluscfarming).Degradationofpolymerropesalsoleadstoplasticsbeingreleasedinsublittoralenvironments(WeldenandCowie2017).OnbeachesalongthecoastlineoftheAdriaticandIonianSeasmusselnetsweretheseventhmostfrequentitemsfound(Vlachogiannietal.2017;Fleetetal.2021),whileinseafloorsurveyslitterfromaquacultureaccountedfor15percentoftheitemsrecorded(Spedicatoetal.2019).StatisticsfromthePRODCOMdatabase8indicatethatthecontributionoffishinggearandaquaculturetowasteandmarinelitter(nettingandnon-netting)inEuropeanwatersis11,000metrictonsperyear(UngerandHarrison2016;EuropeanCommission2018a;IngeborgandGabrielson2018)comparedto15,604metrictonsperyearfromsingle-useplastics.Othersea-basedsourcesofmarinelitterincludeabandonedandend-of-lifevesselsandrecreationalboats,especiallythosemadeoffibreglass(IMO2019).Amajorsourceofplasticcontaminationinsomecoastalareasisshipbreaking(ScienceforEnvironmentPlantgrowthisaectedbyresidualplasticinthesoil.YieldreductionUseofplasticinagricultureperyear8-10milliontonsPlasticlmandmulchtocoversoilandcropsDiscardedafteruseWindtunnels,green-housesandsilagelmMicroplasticsinsoilrun-oe.g.burnedorlefttobreakdownPlasticmulchEnd-of-useIntentionalandunintentionalapprox.4milliontonsINTENTIONALTheagriculturalsectorintentionallyreleasesmicroplasticsfromtheuseofcontrolledreleasefertilizer,fertilizeradditives,plastic-coveredseedsandencapsulatedpesticides.WastewaterBiosolidsUNINTENTIONALBiosolidscontainingmicroplasticsandbresareusedasfertilizersonagricultureelds.Mostmicroplas-ticsarelikelyexportedtotheaquaticenvironment,whilebresareretainedinthesoil.Wastewatertreatmentplantsareamajorsourceofmicroplastics,nanoplasticsandsyntheticmicrobres.Biosolidsfromwastewatertreatmentcontainlargeamountsofthese.AgriculturalpracticescontributingtomarinelitterandplasticpollutionSource:Cassou2018.IllustratedbyGRID-Arendal/StudioAtlantisFigure5:Agriculturalpracticescontributingtomarinelitterandplasticpollution©iStock/Tunatura52MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTFigure6a:FisheriesandaquaculturepracticescontributingtomarinelitterandplasticpollutionPolicy2016).InastudyoftheabundanceofsmallpiecesofplasticinashipyardinIndia,theauthorsfoundonaverage81mgofsmallplasticfragmentsperkgofsediment,whichtheyreportedwasthedirectresultofshipbreaking(Reddyetal.2006).Ayacht’saveragelifespanhasbeenestimatedtobe30years,althoughinsomeinstancesitmaystretchto40-45years.Thislifespanhasbeenincreasingovertimewiththeuseofstrongermaterialssuchasfibre-reinforcedpolymers.Itisthoughtthat1to2percentofthe6millionboatsmaintainedinEurope(i.e.atleast80,000)reachtheirend-of-lifeeachyear.However,onlyaround2,000aredismantled(EuropeanCommission2017).Asignificantshareoftheremainderareabandoned,potentiallyendingupintheoceansandbecomingmarinelitter.Primarymicroplasticsfromsea-basedsourcescanentertheoceansdirectlyfromaccidentallossofcargoatseaandfromillegaldumpingofwaste,aswellasviapaintsandothermaterialssuchassealantsusedinvariousindustries.Secondarymicroplasticsmayarisefromwearandtearonfishinggear,suchaspolypropyleneropes,andfromaquacultureoperations.Coastalandsea-basedtourismisanothersourceofplasticwastethroughintentionaloraccidentallitteringofshorelines(EuropeanCommissionARCADIS2014).Oncelargerpiecesofplasticarepresentinthemarineenvironment,theymaybebrokendownintosecondarymicroplasticsthroughmechanical,chemicalorbiologicalprocesses.Inadditiontomicroorganisms,biologicalbreakdownincludestheactivityofmarineorganismsfragmentingitemssuchasplasticbags(Hodgsonetal.2018),hardplastictrays,andpolystyrenefoampackaging(Jangetal.2016)intomicroplastics.Thereisemergingevidencethatsomemarineorganisms,suchaskrill,canalsoreducemicroplasticparticlestonanoplasticsthroughingestion(Dawsonetal.2018).Theinteractionsbetweenfaunaandmicroplasticproductionrequirefurtherinvestigation,astheyneedtobeconsideredwhenthemovementofmicroplasticsthroughecosystemsismodelled.53MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTFigure6b:FisheriesandaquaculturepracticescontributingtomarinelitterandplasticpollutionInaworldwidesurveyofseafloorlitter,Canalsetal.(2021)concludethatanimportantfactorinfluencingthecompositionofbenthiclitteristhetypeofactivitiescarriedoutinthevicinity.Forexample,analysesofsourcesinrelationtobenthiclitterinthesouthernNorthSeaindicatedtheimportanceofship-basedlittercomparedtoland-basedlitter,asisthecaseintheMediterranean(Galimanyetal.2019).Deep-sealitterintheIndianOceanisdominatedbyabandoned,lostorotherwisediscardedfishinggear(ALDFG),whereasthatintheAtlanticOceanhasbeenfoundtobeageneralmixofrefuse(Woodalletal.2015).ThelargestcomponentofmarinelitterassociatedwithfisheriesandaquacultureisALDFGandwearandtearonaquacultureinstallations.Examplesofthereasonsfordischarginglitteratseaincludeaccidentalandsometimesirretrievablelossofdiscardedfishinggear;thelimitedlifespanofsomeitemsusedatsea;wastemismanagement(e.g.dumpingatseabecauseofthehighcostofwastehandlinginports);inadequatefacilitiesforwastehandlingatsea;inadequatereceptionandstoragefacilitiesforwasteandconsignment;lackofoperatorstohandlewasteorgear;andlackofincentivestorecycleorreusegear.IntherevisionoftheEUDirectiveonportreceptionfacilities(Ecorys2017;EuropeanCommission2018c;EuropeanUnion2019c)itwasnotedthatupto30percentofwaste,includingthatfromfishingvesselsandrecreationalcraft,whichshouldbedeliveredtoportsisnotsodelivered;instead,itpotentiallyendsupbeingdischargedatsea.Thereisnoevidencethatdumpingoflitterfromshipsatseahasdecreased.54MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENT2.2MajorpathwaysoflitterandplasticpollutionMarinelitterandplasticpollutionenterthemarineenvironmentalongmultiplepathways,includingrun-offoverland,riverineflows,wastewaterandgreywaterflows,airbornetransport,anddirectentryfromoceansourcessuchasfisheriesandmaritimeshipping(e.g.Alomaretal.2016;Nizzettoetal.2016a;Nizzettoetal.2016b;Autaetal.2017;Lebretonetal.2017;Alimietal.2018;HortonandDixon2018;Best2019;Akarsuetal.2020;Chenetal.2020;Birchetal.2020;Peng,L.etal.2020).Majoreventssuchasstormsandtsunamiscanalsodeliversignificantvolumesofplasticdebrisandmicroplasticsviaurbanstormwaters(Werbowskietal.2021)andfromdamagetocoastalinfrastructure(NOAA2015;Murrayetal.2018;GESAMP2019).Someplastics,suchassingle-useitems,whichhavebeenlitteredorwasheddowndrainscanalsobetransportedviamultiplepathwaysincludingwind,riversandseweragesystemsorentertheoceansdirectly.Thesepathwaysarecloselyconnected.Forexample,similaritieshavebeenobservedbetweenthecompositionofriverineandbeachlitter,whileananalysisoffloatingmacrolitterfrom52riversandonmarinebeachesfoundasignificantoverlapamong8,599items(Gonzalezetal.2016).Themovementofmicroplasticsalongdifferentfreshwaterpathwaysintothemarineenvironmentismoredifficulttomonitor(e.g.Lebretonetal.2017;Alimietal.2018;Redondo-Hasselerharmetal.2020).Althoughtheoverwhelmingmajorityofflowsofmicroplasticscomefromland-basedactivities,sea-basedactivitiessuchasfisheries,aquacultureandcruiseshipsalsogeneratemicroplasticsfromdiscardedwaste(BoucherandFriot2017;Lebretonetal.2017).Thelargestshareoftheseparticlesisestimatedtoderivefromthelaunderinganduseofsynthetictextilesandabrasionoftyreswhiledriving(BoucherandFriot2017).Usingtheseresults,recentmodellingoffourmajorsourcesofmicroplastics(tyres,plasticpellets,fibresandmicroplasticsinpersonalcareproducts)indicatesthattyredustfromroadwaysandrunwayscontributes78percentofleakagebymass,plasticpellets17percent,andtextilesandpersonalcareproducts4percentcombined(Lauetal.2020).Themicroplasticsourcesanalysedrepresentabout60percentoftotalleakagefromlandinhigh-incomecountries,wherethepercapitareleaserateisestimatedtobethreetimeshigherthaninmiddle-andlow-incomecountries(ThePewCharitableTrustsandSYSTEMIQ2020).Model-basedanalysisoftheglobalreleaseofmicroplasticsintothemarineenvironmentshowedthat44percentwerefromtheroadrun-offpathwayand37percentfromthewastewaterpathway,15percentweretransportedbywind,and4percentweredirectreleasesintotheoceans.©iStock/vovashevchuk55MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTAbsolutereleasesperregionrangedfrom134,000to281,000metrictonsperyear,translatingintoapercapitareleaseofmicroplasticsgloballyof110to750gramsperpersonperyear.Theratesatwhichlitterandplasticpollutionmovealongthevarioustransportpathways,orresideindifferentcompartmentsofthemarineenvironment,dependupontheirchemicalandphysicalpropertiessuchasbuoyancy,surfacepropertiesandsize(Box5),aswellasonoceanographicprocessesandmeteorologicalconditionsincludingstorms(seethesectionsbelow).Lebretonetal.(2019)concludedthatthereisasignificanttimeinterval,intheorderofseveralyearstodecades,betweenterrestrialemissionsandaccumulationinoffshorewaters,suggestingthatthecurrentgenerationofmicroplasticsintheoceanistheresultofaginganddegradationofobjectsproducedinthe1990sandearlier(Kedzierskietal.2018).2.2.1RiversandsedimentarypathwaysRiverinewatersandsedimentsareamajorpathwayformarinelitter(vanderWaletal.2013;Jambecketal.2015;Jambecketal.2018;Best2019;vanCalcarandvanEmmerik2019;vanEmmeriketal.2019;Borrelleetal.2020;González-Fernándezetal.2021;Meijeretal.2021).Earlierestimatesofriverineinputsfrommismanagedsolidwastesetthelevelat4.8and12.7millionmetrictonsperyear(Jambecketal.2015),whileSchmidtetal.(2017)estimatedthat95percentofmarineplasticcomesfromjust10riversoutof57riversystems.Lebretonetal.(2018)intheirmodelestimatedthat67percentofallmarineplasticcomesfrom20rivers,mostlyinAsia.Otherpublishedestimateshavebeenlinkedtopopulationcentres(Eerkes-Medranoetal.2015;Jambecketal.2015;PetersandBratton2016;Hortonetal.2017;Tibbettsetal.2018).AEuropeandatabaseofriverinefloatingmacrolitterindicatesthatbetween307and925millionlitteritemsarereleasedannuallyfromEuropeintotheocean,andthatamajorportionisroutedthroughsmall-sizeddrainagebasins(<100km2)(González-Fernándezetal.2021).Arecentestimate,basedonmodelsandfieldobservations,isthat80percentofplasticemissionstotheoceansfromriverinesystems(i.e.0.8-2.7millionmetrictons)comefromover1,000oftheworld’srivers(Meijeretal.2021).Riverineinputsarisefromplasticsmishandledduringmanufactureanduse,whicharefoundinwastewatertreatmentplanteffluents(Hortenetal.2017a;Hortenetal.2017b;Alimietal.2018;Gaviganetal.2020).Estimatesofconcentrationsofplasticsinfreshwaterandriversedimentsaresimilartothoseofconcentrationsonmarineshorelines,althoughvariationsoccurinrelationtoproximitytourbanorindustrialsitesorthepresenceofwastewatertreatmentplants(e.g.Browneetal.2011;Kleinetal.2015;Alimietal.2018).Predictingtotalemissionsoflitter,includingplasticwaste,fromriversischallenging,giventheunder-representationoflitterandplasticpollutionstudiesinfreshwaterenvironmentsandvariabilityinmonitoringtechniques(Eerkes-Medranoetal.2015;Blettleretal.2018;vanEmmeriketal.2018;Blettleretal.2019;Redondo-Hasselerharmetal.2020).Manyfactorsassociatedwithrivermorphology,suchasbottomtypeandcurvature,cancreateinternalriverturbulencesatdifferentscales,waveactionandmixinginthewatercolumn,whilethepresenceofdamswillalsodeterminethebehaviouroflitterandmicroplasticsintheriveranditscatchmentarea(Hoelleinetal.2014;Zhangetal.2015).Mostimportantistorecognizethatsedimentscanactassources,sinksandpathways(ManiandBurkhardt-Holm2019).Pulsedoraccidentalreleaseshavebeenidentifiedasaprimarysourceofpeakloadingevents(Lechneretal.2014).Periodsofhighflowcanre-suspendparticleswithinsedimentsanddepositthemdownstream.Stretcheswithsettledflowarelikelytoshowapronouncedstratificationofplasticparticlesthroughoutthewatercolumn,whereasatlowerflowratesmoreplasticislikelytobefoundeitherfloatingontheriversurfaceorclosetoariverbank.Floodingofcatchmentareascanalsodispersemicroplasticcontaminationofriverbeds.Hurleyetal.(2018)showedthatfloodingacrosscatchmentsintheUnitedKingdomdecreasedplasticconcentrationsalongriverbanksby70percent.Studiesontheflowsoflitterinsomelargerrivers,suchastheChicago,Rhine-Main,DanubeandThames,underscoretheextentandvolumesofplasticlitterthateventuallyaccumulatesinestuariesandalongshorelines(Lechneretal.2014;McCormicketal.2014;Morrittetal.2014;Kleinetal.2015;Alimietal.2018).However,riverineinputsofmicroplasticsaremoredifficulttoquantifyasthemajorityoffreshwatermicroplasticstudieshavebeenconductedonlyatasmallnumberofsitesandrarelyoverentirerivercatchments,anditisoftenthesmallerdrainsthatcouldbecontributingmoreoverall(Stantonetal.2019a).SeveralstudiesarecurrentlyunderwayfocusingonmonitoringplasticsinriversinSoutheastAsiaandIndiathroughtheCounterMEASUREProject.9UNEPhasdevelopedguidelinesfortheharmonizationofmethodologiesformonitoringplasticsinriversandlakes(UNEP2020b,c,d)tocomplementtheGESAMPGuidelinesfortheMonitoringandAssessmentofPlasticLitterintheOcean(GESAMP2019).Wastewatertreatmentplanteffluentsareanimportantsourceofmicroplasticsinriverineinputstotheocean(Murphyetal.2016;Mintenigetal.2017;Talvitieetal.2017;Ziajahromietal.2017;vanEmmeriketal.2019;Birchetal.2020).Themostabundantmicroplasticparticlesaresyntheticfibreswhichcomefromthewashingofsynthetictextilesandarethenconcentratedinsewagesludgeordischargedinwastewatertreatmenteffluents(Browneetal.2011;Gaviganetal.2020).McCormicketal.(2014)founda10-foldincreaseinplasticfibresdownstreamofawastewatertreatmentplantintheChicagoRiverdespitethefactthat95-99percentofplasticshadbeenseparatedoutintobiosolids(Murphyetal.2016;Talvitieetal.2017).Personalcareproductsarealsoasignificantsourceofmicroplastics.Globally,about1,500metrictonsofmicroplasticsperyearfrompersonalcareproductsareestimatedtoescapefromwastewatertreatmentplantsintoaquaticenvironments(Sunetal.2020).Overallefficiencyinremovingmicrofibresandmicroplasticsdependsontheindividualwastewatertreatmentplantandhenceverymuchonthelocalcontext.Forexample,inwastewatertreatmentplantswithtertiarytreatmentaslittle56MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTas0.1percentofincomingmicroplasticsandmicrofibrescanbereleasedintheeffluentwater(Carretal.2016).However,alargefractionofmicroplasticscanbetrappedinbiosolids.Itisestimatedthat520,000metrictonsperyearofplasticwasteisreleasedinwastewaterandgreywatereffluentsinEuropealone(Hortonetal.2017a;Hortenetal.2017b).Onekeyconcernispollutionofsoilsbymicroplastics,forexamplethroughtheapplicationofbiosolidsandsludgetoagriculturalland,asthiswillclearlybeasourceofmicroplasticsandassociatedchemicalsincropsandrun-offintorivers(Carretal.2016;Mahonetal.2017;HurleyandHo2018;Lietal.2018;Liuetal.2018;SAPEA2019).Soil-borneplasticlitter,includingagriculturalandpackagingfilmsandmicroplasticsinfertilizers,entersthemarineenvironmentthroughprecipitationrun-offandtidalwashing(Hortonetal.2017a;Hortonetal.2017b;Ngetal.2018).Dependingontheirpolymerstructure,thesefilmsstarttodegradeaftereightto12months(Niaounakisetal.2019).2.2.2Freshwaterlakes,reservoirs,groundwateranddrinkingwatersuppliesLargelakesandreservoirscanactastemporaryandlong-termsinksofmicroplasticsandashotspotsforplasticpollution(Eriksenetal.2013;Hoelleinetal.2014;Driedgeretal.2015;Zhangetal.2015;Zhangetal.2016),ascansmallerlakesandpondsandThedifferenttypesofpolymersusedinplasticshaveawiderangeofpropertieswhichaffecttheirbehaviourindifferentenvironments.Thesepropertiesincludedensityandbuoyancyhydrophobic/hydrophilicproperties,andpropensitytowardsbiofilmformationandbiodegradability.Inthemarineenvironmentoneofthemostimportantfactorsisthedensityoftheplasticrelativetothatofseawater.Thedensitiesofcommonplasticsrangefrom0.90to1.39kgm-3,comparedtofreshwater,whichhasadensityof1.0forpurewater,andseawater,whichhasadensityrangingfrom1.020to1.029kgm-3.Polyethylene,mainlyLDPE,canhaveadensitybelow1kgm-3,sothatitcanfloatinfreshandmarinewater.Thisisonereasonitisoneofthetypesofplasticmostcommonlyfoundwhensamplingsurfacewaters.Polyethyleneoxide(polyethyleneglycol)(PEO)andpolypropylene(PP)wouldbeexpectedtofloatinfreshwater,andexpandedpolystyrene(EPS)inseawater.Buoyancyisalsoaffectedbytrappedair,watercurrentsandturbulence,whichexplainswhydrinksbottlesmadeofpolyethyleneterephthalate(PET)(1.34-1.39kgm-3)arecommonlyfoundbothfloatingincoastalwatersanddepositedontheseabed.Thebuoyancyofplasticpolymerscanalsobeaffectedbythepresenceofbiofilmonthesurface(NapperandThompson2019).Alloftheseconsiderationsdeterminethedepthprofileofplasticsintheocean(Kooietal.2016).Plasticstendtodegradeandstarttolosetheiroriginalpropertiesataratedependingonthephysical,chemicalandbiologicalconditionstowhichtheyareexposed.Thedegradationofplasticscanbedividedintosixprocesses:thermaldegradation,hydrolysis,mechanical/physicaldegradation,thermo-oxidativedegradation,photodegradationandbiodegradation(Mattssonetal.2015).Themaindegradationprocessesatseaarehydrolysis,abond-breakingreactionbroughtaboutbytheadditionofwaterthathasbeenshowntocontributetothedegradationofplasticmarinedebris;mechanicalorphysicaldegradationcausedbywavesandfriction;thermo-oxidativedegradation,aslowoxidativebreakdownatmoderatetemperatures;photodegradation,broughtaboutbysunlightbutseverelyretardedinseawater;andbiodegradation,wherebylivingorganisms,usuallymicrobes(suchasbacteria),breakdownorganicsubstancesandalterthesurfacechemistry,whichcanthenchangeduetooxidationandphotodegradation.PlasticdegradationbyexposuretoUVlight(photodegradation)resultsfromtheweakeningandeventualbreakingofcovalentbondswithinthestructureoftheplasticpolymers,knownaschainscission(Gewertetal.2015).Thechainscissioncanoccuratanypointwithinapolymer’sstructure,withthepotentialtocleavemonomersfromtheinertpolymer;someofthesepolymersmaybehazardous,suchaspersistentorganicandbioaccumulativepollutantswhichcanthemselvescauseenvironmentalharm(Lithneretal.2011).Overall,degradationisgenerallyslowerinaquaticenvironmentscomparedtolandandmaynotevenoccurinenvironmentswithlimitedexposuresuchasinpelagic(surfacewatersandthewatercolumn)andbenthic(sedimentary)environments(Webbetal.2013).Biodegradableplasticsthatdonotdegradefragmentintomicroplasticparticlesinmuchthesamewayasconventionalplastics(NapperandThompson2019).Particlesizeisanotherimportantfactorinregardtotransportaswellasdetection(Barnesetal.2009).Particlesgenerallyhaveaslowrateofdegradationinseawater(Dussudetal.2018a;Dussudetal.2018b).Levelsofmicroplasticsinseawaterandinfreshwaterwerelikelyunderestimatedinthe2016UNEPreport,MarinePlasticDebrisandMicroplastics–GlobalLessonsandResearchtoInspireActionandGuidePolicyChange(UNEP2016).Significantuncertaintyremainsastotheconcentrationsofnanoplasticsinseawater.Box5:Propertiesandprocessesaffectingthetransportanddegradationofplasticsinthemarineenvironment57MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTurbanretentionareas(Faureetal.2015;Vaughanetal.2017;Gilbreathetal.2019).Makingpreciseestimatesofplasticloadinginlakesisdifficultbecausesamplingisgenerallyundertakenatthesurface,whilelargeconcentrationsofmicroplasticscanalsoexistbelowthesurfaceandinsediments(McCormicketal.2014;Zhaoetal.2014;Imhofetal.2018).Driedgeretal.(2015)observedthatsurfacewaterdensitiesofplasticsincertainareasoftheLaurentianGreatLakeswereashighasthosereportedforareasoflitteraccumulationwithinoceangyres.Transportinlakesisdrivennotonlybycurrents,similarlytoriversandstreams,butalsobywindpatternsthatcanproduceareasofseasonallyhighlocalizedconcentrations(Drisetal.2015b).HoffmanandHittinger(2017)estimatedthat10,000tonsofplasticsperyearwereintroducedintotheGreatLakes.Farlessisknownabouttheprocessesandlevelsoftheinfiltrationofmicroplasticsintogroundwater.Pannoetal.(2019)reportedonmicroplasticsinkarstgroundwatersystems(karstsystemsconstituteone-quarteroftheworld’sdrinkingwatersources),whichpresentedamedianof6.4microfibresperlitre.Studiesofdrinkingwaterfromanumberofgroundwatersources(Koelmansetal.2019;WHO2019)showthepresenceofmicroplasticparticles,rangingfrom0.0to6,292particlesperlitre(Oßmannetal.2018;Strandetal.2018).However,questionshavebeenraisedregardingthemethodsusedtoquantifymicroplasticparticlesinthesedrinkingwatersamplesastherearenostandardsamplingextractionoridentificationmethodsformicroplasticquantification(Koelmansetal.2019;Stantonetal.2019a;Stantonetal.2019b).Anumberofstudieshaveidentifiedmicroplasticparticlesinbottledwater(Masonetal.2018;Welle2018),showinglowconcentrations(e.g.14±14particlesperlitre,Schymanskietal.2018)andleadingWelle(2018)toconcludethatthereportedamountsdonotraisesafetyconcerns.However,therearetoofewstudiestoobtainacomprehensiveunderstandingofthefluxesofmicroplasticsintotheoceanfromlargereservoirsanddrinkingwatersupplies(Oßmannetal.2018;Schymanskietal.2018)ortoproperlyinformhumanhealthriskassessments(Koelmansetal.2019).2.2.3Atmospherictransport,includingsnowandiceLong-rangeatmospherictransportofheavymetalsandorganicpollutants,suchaspolychlorobiphenyls,DDT,dieldrinandphthalateesterplasticizers,eventomarineareasremotefromindustrialandhumanactivity,hasbeenrecordedforseveraldecades(e.g.AtlasandGiam1981).Atmospherictransportofmicroplasticsandairborneimpactsarealsocriticalforthemarineenvironment(Evangeliouetal.2020;Prataetal.2021).MicroplasticshaveevenbeenobservedinArcticsnowandseaice(Bergmannetal.2019).MicroplasticsinsnowfromicefloesintheArctic(Obbardetal.2014;Kanhaietal.2018;Peekenetal.2018;Bergmannetal.2019;Kanhaietal.2020),whilelowerinconcentrationthansnowsamplesfromtheEuropeanAlpsandurbanareas,isstillsufficientforatmospherictransportanddepositiontoberecognizedasnotablepathwaysformicroplastics.TogetherthestudiesofObbardetal.(2014),Peekenetal.(2018)andKanhaietal.(2020)indicatethatseaicefunctionsasatemporarysink,secondarysourceandtransportmediumformicroplasticsintheArcticOcean.ThepolymercompositioninArcticsnowwasdominatedbyvarnish,rubber,polyethyleneandpolyamide.Seaicecanalsoactasatemporarysinkforparticles(Peekenetal.2018),aswellasapotentialsourceofhistoricmicroplasticpollutionreleasedasseaicemelts(e.g.Obbardetal.2014;Suariaetal.2020).Microplasticshavebeenfoundinremotemountaincatchments(Allenetal.2019),insettledsnowfromdifferentlocations(Bergmannetal.2019),andasatmosphericdepositioninurbanareas(Drisetal.2016;WHO2016;Caietal.2017;Bergmannetal.2019;KleinandFischer2019;Stantonetal.2019b).Microplasticsarereleasedtotheairfromnumeroussources,includingwashingandwearingofsynthetictextiles,abrasionofmaterials(e.g.tyres,buildingmaterials)andresuspensionofmicroplasticsonsurfaces.Understandingtheentrainmentofmicroplasticsintoandtheirtransportthroughtheatmosphereischallenginggiventhevarietyofshapes,sizesanddensitiesofmicroplasticparticles.Differentestimationsaredependentonsamplingmethodologies,aswellasonspaceusefactors;particleproperties,suchassizeanddensity,willinfluencetheirdepositionontherespiratorysystem,withlessdenseandsmallerparticlesreachingdeeperinthelungs(Wrightetal.2019).Oneofthefirstdeterminationsofmicroplasticsintheairreferstooutdoorconcentrationsof0.3-1.5particlesm3andindoorconcentrationsof0.4-56.5particlesm3(33percentpolymers),includinginhalablesizes(Drisetal.2017).Individualinhalationhasbeenestimatedtobe26-130airbornemicroplasticsperday(Prata2018).Basedonairsamplingusingamannequin,itisexpectedthatamalepersonwithlightactivityinhales272microplasticsperday(Vianelloetal.2019).However,earlierfindingsshowedthatparticleswithaerodynamicdiameters<10µmdonotremainairborneforlong,whiletheairborneresidencetimesofparticleswithanaerodynamicdiameterof1-10µmcanbeaslowas10-100hours(EsmenandCorn1971;Whelpdale1974)andthoseofseasaltparticles>50µmcanbeevenshorter(Athanasopoulouetal.2008;Evangeliouetal.2020).Apartfromissuesrelatingtosamplelocationandcollectionmethods,thepresenceandresidencetimesofairbornemicroplasticsmeanthatatmospherictransportpathwaystothemarineenvironmentneedtobeconsidered(Prata2018;Prataetal.2020).2.2.4MarinepathwaysAllthemajorfactorsaffectingthetransportofmarinelitterandplasticpollution(Figure7)havebeenstudiedextensively(YeandAndrady1991;Kukulkaetal.2012;Chubarenkoetal.2016;FazeyandRyan2016;Pedrottietal.2016;Zhang2017;Alimietal.2018;Chubarenkoetal.2018;Lebretonetal.2018;Castro-Jiménezetal.2019;Lebretonetal.2019;Peng,G.etal.2020;vanSebilleetal.2020).Thetransportoflitterandplasticsinthemarineenvironmentiscontrolledbyoceancurrents,wavesandwinds.Intheopen58MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENToceanlarge-scalecurrentsworktogetherwitheddies,aswellasmulti-scaleconvergentfronts,tomovedebrisandlitteraround(Oninketal.2019).Incoastalareastidesareimportant;theyinteractwithshorelinecharacteristicssuchasshape,morphology,coastalvegetation,bioturbation,andsurfaceice,terrainandslopetomovedebrisandlitteronandoffbeaches.Movementinthewaterdependsonitschemicalcomposition,surfacecharge,hydrophobicity,density,sizeandshape,whichmaybemodifiedbybiologicalinteractions(e.g.biofoulingandingestionbymarineanimals).Thereis,however,adebateconcerningwhetherobservationsofmarineplasticsatsea,alongpathwaysandintosinks(Lebretonetal.2019;Ostleetal.2019;Marimenkoetal.2019)arekeepingpacewiththerateofglobalplasticproduction(Goldsteinetal.2012;Geyeretal.2017).Afarbetterunderstandingofhowthesefactorsinteractisneededinordertoquantifyandclosethegapintheglobalinventoryofmarineplastics(vanSebilleetal.2020),whichisoverwhelminglymodel-based(Galganietal.2021).Inareviewofplasticfluxes,pathwaysandfate,vanSebilleetal.(2020)concludethatdiscrepanciescanarisebecauseofthetimedelaybetweenfluxesintotheoceanandarrivalintheregionswheremostmeasurementsaretaken(Lebretonetal.2019).Thedifferencesinsinkingandfloatingprocessescauselow-densityparticlestostayonthewatersurfaceandtravellongdistances;forexample,foamedpolystyreneparticlescrosstheBalticSea(approximately250km)intwotothreedayswithquitemoderatewindsof10ms-1,whereasheavierparticlessettlethrough250metresofwatercolumninlessthan18hours(Chubarenkoetal.2016).However,therearemanyotherphysicalprocessesthatmayaccountforthedifferencebetweenestimatesofplasticinputsandthepooloffloatingplasticsatsea,includingbeaching,sedimentationandfragmentationtosizesthathavenotbeenmeasured(vanSebilleetal.2020).Thereisevidencethatthesizeandcompositionoflargedebrischangeswithdistancefrommajorland-basedsources(Ryan2015),possiblyasaresultofthesemechanisms.Biologicalprocesses(e.g.ingestionorsettlement)mayalsoaidthe(horizontalandvertical)transportofplasticswithintheoceans.Todate,marinelitterandplasticpollutionhavebeenstudiedandreportedinallthemajoroceans,includingthePacific(e.g.Goldsteinetal.2013;Desforgesetal.2015;Lebretonetal.2018;Choyetal.2019),theArcticandtheseasaroundAntarctica(Obbardetal.2014;Lusheretal.2015;Amélineauetal.2016;Isobeetal.2017;HallangerandGabrielsen2018;Kanhaietal.2018;Kühnetal.2018;Obbard2018;Peekenetal.2018;Kanhaietal.2019;Muetal.2019;Kanhaietal.2020;Tirellietal.2020),theAtlantic(e.g.Kanhaietal.2017;Fossattietal.2020;PabortsavaandLampitt2020)andtheIndianOcean(e.g.Imhofetal.2017;vanderMheenetal.2019).Despitethenumberofstudies,therearenostandardizedsamplingprotocols(e.g.unitsorabundanceincludenumbersperunitarea,perunitvolume,perunitmassorpersamplingsite)(e.g.Ostleetal.2019;Peng,G.etal.2020).Generally,datacoverageinmostopenoceanareasissparseandthegapsaretoolargetoallowdirectderivationofthespatialpatterns.Inarecentreviewofseabedlitter,Canalsetal.(2021)concludedFigure7:Naturalprocessesaffectingthedistributionandfateofmicroplastics59MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTthatalthoughplasticitemsontheseafloorcanbeassumedtobeincreasingcontinuously,theyaretheleastinvestigatedfractionofmarinelitter,whichisnotsurprisingsincemostofthemlieintheleastexploredecosystem.Consequently,therearesignificantknowledgegapsthatneedtobetackledanddataneedsformodelling,comparabilityandharmonization.Betterunderstandingofseafloormacrolittercaninforminternationalprotectionandconservationframeworksthatprioritizeeffortsandmeasurestocombatmarinelitteranditsdeleteriousimpacts(Canalsetal.2021).Stormsandotherextremeeventscanresultincoastalflooding,increasedrun-off,andthereleaseoflargevolumesofdebrisintotheocean.Theymayalsogeneratelargevolumesofmarinelitter.Forexample,thefloatingdebrisproducedbythe2011tsunamiinJapanwascomparabletotheannualamountintheentireNorthPacificand,ayearlater,showedupinthefluxofdebrisonshorelinesinthewesternUnitedStateswithanorderofmagnitudeincreaseinallcategories(Murrayetal.2018).Climatechangeaffectsthedistributionofmicroplasticsduetochangesinoceancirculationandsurfacewinds(WeldenandLusher2017).However,thereareveryfewmeasurementsoftheratesoftransferofplasticsbetweencompartmentsortheiraccumulationindifferentmedia,makingitextremelydifficulttoestimatetheabsoluteimpactofmarinedebrisandplastics.BeachesandcoastalecosystemsShoredepositionofplasticsispartofanimportanttransportpathwaythathasbeenstudiedsincethe1970s,whensurveysbegantoconfirmthatsignificantplasticloadswereaccumulatingontheshoresofeventheremotestbeaches(LaversandBond2017).Marinedebrisandmicroplasticsdriftonsurfacecurrentsandarerepeatedlypushedashorebytidesandwaves(Theocharisetal.1999;InternationalPacificResearchCenter2008).Thestabilityoftheshoreline,includingthepresenceofsanddunes(McCormickandHoellein2016;Leeetal.2017),therelativesizeofthesubstratecomparedtotheplasticdebris,andtheupwardvelocitiesofwater(Hinataetal.2017)affectthismovement.Asaresultofabrasionandfragmentationonbeaches,plasticscontinuetoreleasetoxicchemicalsandheavymetals(e.g.Nakashimaetal.2016).Lebretonetal.(2017)andLéonetal.(2018)havedescribedhowstranding,settlingandresurfacingofplasticitemsincoastalenvironmentsplayamajorroleinthetransportofbuoyantplasticsincoastalwatersandthetransferoforganicpollutantsfromlittoralplasticdebrisintothemarineenvironment.Usingasimpleboxmodel,theyestimatedthat46.7to126.4millionmetrictons(approximately66.8percentofthebuoyantfractionreleasedintosurfacewaterssincethe1950s)arestoredalongtheworld’sshorelines.Approximately32.3percentdegradesintomicroplastics,22.3to60.4millionmetrictonsofwhichremainontheshorelinewhile0.29to0.80millionmetrictonsaretransportedoutintotheocean.Plasticdebrisgenerallybecomestrappedonbeachesandincoastalecosystemssuchasmangroveforestsandmudflats(IvardoSuletal.2014;Garcés-Ordóñezetal.2019;Martinetal.2019;Riascosetal.2019).Sometypesofplastic,suchasacrylics,©iStock/Mlenny60MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTsinkwhereasothersthataremorebuoyantmayremaininthesurfacelayersforyears(Lebretonetal.2019).Microplasticconcentrationsinbeachsurface,body,andsandsonunderwaterslopeshavebeenobservedtobeofthesameorderofmagnitude,suggestingthatmicroplasticsarerepeatedlyredistributedbetweentheunderwaterandbeachparts(Chubarenkoetal.2018).Observationsthatpeakconcentrationsarerelatedtostormyeventsandtoplaceswithstrongerwaterdynamicsandcoarsersandsareconsistentwithfieldstudiesfromvariouslocations(e.g.Turraetal.2014).Stormeventscanalsoreleaseburiedmicroplastics,generatingalternatestatesofsourceandsinksalongthesamebeachacrossseasons(Rodríguezetal.2020).Theseobservationssuggestthatwave-drivenmarinewaterswhichfilteroutmicroplasticsandmicrofibresfromuprusharethemainsourceofmicroplasticsonbeaches,ratherthanbeachsandsoranthropogenicactivities.Thecoherencyoffragmentationacrossdifferentmarineenvironmentsalsoshiftsthefocusofthefragmentationprocesstowardsthematerialpropertiesofsyntheticparticlesthemselves(Gigaultetal.2016;Chubarenkoetal.2018).Whilebeachesarecharacterizedbyacontinuousturnoverofdepositionalmaterialandbeachlitter(Bowmanetal.1998;Browneetal.2011),somecoastalecosystems,suchasmangroveforestsandmudflats,canaccumulatelargequantitiesofplasticdebrisandmicroplastics,especiallyduringseasonalpeakflowsfromrivers(Thieletal.2013;Limaetal.2014;Lingetal.2017;Lourençoetal.2017;Najietal.2017;Garcés-Ordóñezetal.2019;Martinetal.2019;Riascosetal.2019).Mangroveforestscoverabout132,000km2alongsubtropicalandtropicalshores(HamiltonandCasey2016).Theyoccupytheintertidalfringeanddevelopapartiallyemergedrootsystem,aerialandproproots,forminganeffectivefilterthatdampensdownwaveenergyandturbulence(Horstmanetal.2014;Norrisetal.2017)butalsotrapsdebrisandplasticsfromlandandriverinesourcesaswellasfromcoastalwaters.Plasticstrappedbymangrovepneumatophoresandproprootsmayconstituteaphysicalimpediment,affectingboththetreeitselfandassociatedfauna,bypreventinggasexchangeandreleasingharmfulchemicalswiththepotentialtoalterimportantecosystemservicessuchascoastalprotection,habitatsandcarbonsequestration(McLeodetal.2011;Almahasheeretal.2017;Martinetal.2019).Residencetimeswithinmangroveforestsareunknown.Studiesshowthatretentioncapacitiesonbeachesandshorelinesdependuponthehydrodynamicsofmacroplasticobjectsandthedepthofsediments(IvardoSuletal.2014;Lourençoetal.2017;Najietal.2017;Martinetal.2019).Itemscommonlyfoundinbeachdebrisincludeabandoned,lostorotherwisediscardedfishinggear(ALDFG)andurbanandindustrialoutflows(Duhecetal.2015;Danieletal.2020).Plasticpelletsandothermicroplasticsareconsistentlyfoundonbeaches,indicatingtheirhighmobility(McCormickandHoellein2016;FaniniandBozzeda2018).In2017theInternationalCoastalCleanup(Bergevin2018)reportedthe10mostcommonitemsofplasticlitterfoundonbeachesaroundtheworld:cigarettebutts(22percent),foodwrappers(16percent),plasticbottles(14.5percent),plasticbottlecaps(10percent),plasticgrocerybags(7percent),otherplasticbags(6.9percent),plasticstrawsandstirrers(5.9percent),plastictake-outfoodcontainers(5.8percent),plasticbeveragelids(5.7percent)andfoamtakeoutfoodcontainers(5.3percent).SimilarpercentageshavebeenreportedinEurope,wherethemainitemswereplasticdrinksbottles,capsandlids(24percent)andcigarettebutts(21.8percent)withtheadditionofcottonbuds(13.5percent)andballoonsandballoonsticks(2.7percent)(EuropeanCommission2018a).Knowledgeofthemake-upofbeach-collectedmarinelitterisimportantinordertoidentifyappropriateactionsforclean-upandthereductionofsources(Schneideretal.2018).Oceansurfacelayer,gyresandremoteislandsSincethe1970smarineplasticshavebeenobservedandincreasinglymonitoredintheopenoceans(Lawetal.2010;Kukulkaetal.2012;Cózaretal.2014;Kukulkaetal.2015).Oftheabout400millionmetrictonsofplasticproducedannually,nearlytwo-thirdsofthesyntheticpolymerscreatedhaveadensitylowerthanthatofseawaterandshouldthusbefoundintheoceansurfacelayer.Multidecadalobservationsofplasticsinsurfacewatersindicatethepresenceofplasticsinalloceanbasinsandonmanyremoteislands(e.g.Cózaretal.2014;Lawetal.2014;Duhecetal.2015;Díaz-Torresetal.2017;Imhofetal.2017;LaversandBond2017;CollinsandHermes2019;vanderMheenetal.2019;Dunlopetal.2020),butalsothegrowthoflarge,concentratedaccumulationareaswithinlarge-scalesubtropicalconvergencezones,createdbythewind-drivencurrentsandcirculationpatterns(Maximenkoetal.2012;Ryan2014;Lebretonetal.2019;Wichmannetal.2019).10IntheIndianOceanthegarbagepatch,locatedtothewestofthebasin,isverysensitivetodifferenttransportmechanismsandhighlydispersive(vanderMheenetal.2019).McAdam(2017)andLebretonetal.(2019)estimatedthatthemassofplasticfloatingintheoceansurfacerangedbetween93,000and236,000metrictons,twoordersofmagnitudelowerthanestimatesofriverineinputs(e.g.Jambecketal.2015;vanSebilleetal.2015;Lebretonetal.2017).Thequestionofwherethemissingtonsarelocatedisaddressedinanumberofstudies(e.g.vanSebilleetal.2020;PabortsavaandLampitt2020).Nearlyhalfthetotalmassofplasticsinsub-tropicaloffshorewatersconsistsofmacroplastics.Theyareusuallythickpolyethyleneandpolypropyleneplasticfragmentsolderthan15years,meaningthatmostofthemicroplasticsinthemassoftheoceanscomefromobjectsproducedinthe1990sandearlier(Lebretonetal.2019).Onlycertaintypesofplasticsappeartohavethecapacitytoendurelongenoughtoeventuallyreachoceangyres(Lebretonetal.2019.)Estimatesofthetimeittakesforplasticstobetransportedfromcoastalareastomid-oceanislandsandgyresrangefrommonthstoyears.Usingrecognizablelitteritems,vanSebilleetal.(2019)estimatedthatittookjustafewmonthsforfloatingplasticstotravelfromthecoastsofPeru,EcuadorandColombiatotheGalápagosregion.AnalysisofbeachdebrisontheDucieandOenoAtollsand,25yearslater,onHendersonIsland(allremote,uninhabitedislandsintheSouthPacific)showeda200-to2,000-foldincreasein61MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTthedensityofdebris(LaversandBond2017)andthehighestdensityofplasticsonthesurfaceofabeachreportedanywhereintheworld.AsianandSouthAmericansourcesofplasticmayreflectfishingactivityinthesurroundingwaters.ThehighfrequencyofitemswhichcouldbeidentifiedashavingcomefromSouthAmericaisprobablytheresultofHendersonIsland’spositionintheSouthPacificGyre.ThiscurrentflowsinananticlockwisedirectionaftertravellingnorthalongthecoastofSouthAmerica,transportingcoastalwastetotheisland.AsimilarpatternisobservedonremoteislandsoffChileandtheiradjacentwaters(LaversandBond2017).OnEasterIsland,forexample,between60and80percentofrecognizablepiecesofplasticcomefromindustrialopenoceanfisheries(Kiesslingetal.2017;Luna-Jorqueraetal.2019).ThewatercolumnandoffshoremarinesedimentsRecentfieldsurveyresultsfromMontereyBay(California)showthatmicroplasticparticlesreadilyflowbetweentheepipelagicandmesopelagicwatercolumnandseafloorfoodwebs,suggestingthatthewatercolumnandseafloorsedimentsandfoodwebsmaybeamongthelargestreservoirsofmicroplastics(Choyetal.2019;PabortsavaandLampitt2020),forexampleintheBalticSea(Bagaevetal.2017),intheArcticOcean(Kanhaietal.2018)andoffthewestcoastofIreland(Courtene-Jonesetal.2018).SimulationsfromamassbalancemodelbyKoelmansetal.(2017)suggestthatoftheplasticswhichhaveenteredtheoceanssince1950,99.8percenthadsettledbelowtheoceansurfacelayerby2016withanadditional9.4millionmetrictonsperyearsettlingthereafter.However,Lebretonetal.(2019)arguethattherapiddegradationandsinkingofmorethan90percentoftheplasticsthatentertheoceanseachyeardoesnotreflecttheagedistributionofplasticsatsea.Theysuggestthatstranding,settlingandresurfacingincoastalenvironmentsplayamajorroleintheremovalofbuoyantplasticsfromtheoceansurfaceincoastalwaters.Thisconclusioncoincideswithagedistributionsfromfieldsurveys,whichshowthatmostofthemacroplasticmassfloatingincoastalwatersoriginatesfromobjectslessthanfiveyearsoldwhileolderobjects,suchasthickpolyethylene(PE)andpolypropylene(PP)plasticfragments,arethemostcommontypeofplasticlitterfoundinsub-tropicaloffshorewaters(Lebretonetal.2018).Lebretonetal.(2019),whomodelledtheageofmacroplasticsinoceangyresusingwholeoceandegradationrates,estimatedthatnearlyhalfthetotalmass(47percent)wasmadeupofmacroplasticsolderthan15years,suggestingthatmostofthemicroplasticsinthemassoftheoceanscomefromobjectsproducedinthe1990sandearlierandthatonlycertaintypesofplasticshavethecapacitytoendurelongenoughtoreachoceangyresandaccumulationzones(Lebretonetal.2018).Plasticconcentrationsintheopenoceandropexponentiallywithdepth(Reisseretal.2015).Buoyantmicroplasticsintheoceanseventuallybecomesubmergedintodeeperlayersthroughlossofbuoyancyorwind-inducedturbulentmixingattheoceansurface.Wichmannetal.(2019)modelledtheeffectsofdifferentsurfaceandnear-surfacecurrentsontheglobaldispersaloffloatingplasticsandshowedthatthegyreaccumulationsbecomemore“leaky”indeeperlayers,suchthat©iStock/Placebo36562MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTplasticsdisappearedinsamplestakenatabouta60metredepth.Atthesametime,sub-surfacecurrentstransportedsignificantamountsofmicroplasticsfromsubtropicalandsubpolarregionstopolarregions,providingapossiblemechanismtoexplainwhyplasticsarefoundintheseremoteareas(Cózaretal.2017;Obbard2018;Maximenkoetal.2019;Statista2019).Theseresultssupportobservationsofthefragmentationandtypologyofplasticsindicatingthatageddebrisistransferredfromdistantsources,forexampleviathepolewardbranchofthethermohalinecirculationintheNorthAtlantictotheendoftheconveyorbeltintheArcticOcean,whichthenactsasasinkforplasticdebris.Microplasticsfragmentintoundetectablesizes,sinkduetobuoyancyloss,andaccumulateindifferentreservoirs(YeandAndrady1991).Benthichabitatscancontain103to104microplasticspercubicmetreversus0.1to1microplasticspercubicmetreinwatercolumns(Erni-Cassolaetal.2019).Arecentreviewofthefateofmicroplasticsindifferentsediments(Harris2020)concludedthatthemedianconcentrationofmicroplasticparticleswashighestinfjordsat7,000particlesperkilogramofdrysediment,followedby300inestuarineenvironments,200inbeaches,200inshallowcoastalenvironments,50oncontinentalshelves,and80particlesperkilogramindrysedimentfromdeepseaenvironments.Microplasticspossiblyaccumulatemoreindeepsedimentaryhabitats(Zhangetal.2020)andwithinsubsurfacesedimentlayers(Näkkietal.2017;Wangetal.2019a).Oncedepositedonshorelines(McDermidandMcMullen2004)andontheseafloor(e.g.Zhu,L.etal.2019andpapersincluded),theycanbeingestedandreducedfurtherinsize(e.g.duetodigestivegrinding),and/orbetransportedtotheseaflooruponegestion.Thereisalsoevidenceoforganismsformingmicroplasticsthroughbioerosion(e.g.polychaetesinpolystyrenedebris[Jangetal.2018]andseaurchins[Porteretal.2019]).Microplasticparticlesaccumulateinbeachsandsandsedimentsinallpartsoftheworld’soceans,includinginAntarctica(e.g.Munarietal.2017;Kanhaietal.2019;Wangetal.2019).Positivecorrelationshavebeenestablishedbetweenmicroplasticsinthewatercolumnandthesedimentsbelow,usuallywithahigherabundance(e.g.Zhengetal.2019).Microplasticsarenowknowntobepresentinthedeepestpartsofmanyoceanbasins,includingtheHadaltrenches;thissuggeststhatdeep-seasedimentsshouldberegardedasapotentialsinkformicroplasticsintheoceans(e.g.vanCauwenbergetal.2013;Woodalletal.2014;Fisheretal.2015;Bergmannetal.2017;Kanhaietal.2019;Muetal.2019;Peng,G.etal.2020).Aseriesof5,010deep-seasurveysbyremotelyoperatedvehiclesandsubmersiblesoftheJapanAgencyforMarine-EarthScienceandTechnology(JAMSTEC)inthesixoceanicregionsin1982–2015located3,425man-madedebrisitems.Morethanone-thirdofthedebrisconsistedofmacroplastics,ofwhichnearly90percentwassingle-useproducts(Chibaetal.2018).Inareasdeeperthan6,000metrestheseratiosincreasedtojustoverhalfand92percent,respectively;thedeepestitemrecordedwasaplasticbagat10,898metresintheMarianaTrench.Deep-seaorganismswereobservedin17percentofplasticdebrisimages,andentanglementofplasticbagsonchemosyntheticcoldseepcommunitieswasshown(Chibaetal.2018).©iStock/Tunatura63MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENT2.2.5RegionalvariationsandhotspotsMarinedebrisandplasticsareaccumulatinginlargevolumesinmanypartsoftheworld.Threeregionalhotspotsareofparticularconcern:theMediterraneanSeabecauseofitsenclosednatureandproximitytomillionsofpeople;theArcticOceanbecauseofitspristinenatureandimpactsonindigenouspeoples;andtheEastAsiaandASEANregionbecauseofitsextensivecoastlineinproximitytoverylargepopulationswithahighdependencyonthemarineenvironmentforsurvivaland,often,insufficientwastemanagementsystems.TheMediterraneanSeaTheMediterraneanregionistheworld’sfourthlargestproducerofplasticgoods.Residentsandvisitorsgenerate24millionmetrictonsofplasticwasteperyear.Tourismincreasestheamountofwastebyuptoone-thirdduringthesummerinsomecountries,andlocalwastemanagementfacilitiesareoftenoverwhelmed.ThroughthetransportpathwaysintheMediterraneanSea,marinelitterandplasticpollutionaffecttheentireblueeconomy,withregionaleconomiclosses(especiallythoselinkedtotourism)estimatedatUS$700millionperyear.Everyyear0.57millionmetrictonsofplasticsenterMediterraneanwaters,equivalenttodumping33,800plasticbottlesintotheseaeveryminute(DalbergAdvisors,WWFMediterraneanMarineInitiative2019;BoucherandBilard2020).Marinelitter,particularlyfloatingplastics,hasbeenfoundintheMediterraneaninquantitiescomparabletothoseinthefiveoceangyres(theNorthAtlantic,SouthAtlantic,NorthPacific,SouthPacificandIndianOceanGyres).StudiesbasedonglobalmodelshaveproposedthattheMediterraneanistheworld’ssixthgreatestaccumulationzoneformarinelitter(Pantietal.2015;vanSebilleetal.2015;Sauriaetal.2016;Guerrantietal.2017;Bainietal.2018;Consolietal.2018;Fossietal.2018).Marinelitterandplasticpollutionareagrowingprobleminthesub-basinsoftheAdriaticandIonianSeas(Anastasopoulouetal.2013;Munarietal.2015;Arcangelietal.2017;Pellinietal.2018;Zerietal.2018;Vlachogiannietal.2018;Fortibuonietal.2019).ThestructureofthecirculationoftheMediterraneanSeameanstheheavyanthropogenicwasteloadsenteringfromitscoastlinearenaturallyretainedinsideitsbasinandeventuallyinthedeepsea(Danovaroetal.2020).ItscirculationischaracterizedbyaninwardsurfaceflowofwatersfromtheAtlanticOcean,butwithnosignificantoutwardflowanywherealongitscoastline.ThereturnflowintotheAtlantic,whichoccursinthesubsurfacelayer,hamperssurface-floatingitemsandpreventsthembeingexpelled,causingthemtoaccumulatewithinit(Zambianchietal.2017).Attheglobaloceanlevel,theMediterranean’spossiblesinkroleforfloatingparticlesofglobaloriginwasoriginallyshownbyLebretonetal.(2012).Todate,thereisnoevidenceofpermanentlitteraccumulationareasbeingformed(Cózaretal.2015;vanSebilleetal.2015;vanSebilleetal.2020),themainreasonbeingthepredominantlycycloniccirculationandhightemporalvariabilityofcurrents.Usingarangeofmodelsandhistoricaldata,Zambianchietal.(2017)observedthatlitterincludingplasticwasteaccumulatedinthesoutheasternportionoftheLevantinebasinandonthesouthernMediterraneancoasts.ThisisconsistentwithobservationsbyCózaretal.(2015),whoshowedthataclearzonationofdebrisintheMediterraneanisvisiblewithamaximainthesouthernportionofthebasin,bothinthewesternandeasternMediterranean,andbyMansuietal.(2015),whoidentifiedthesoutherncoastalstripoftheeasternMediterraneanasanaccumulationareaorpreferentialbeachingdestination.FloatingdebrisalsoappearsintheAlgeroProvencalbasin,theSardiniaChannelandsouthoftheBalearicIslands,withfurtherhighconcentrationareasinthenorthassociatedwiththeNorthernCurrentorwiththenorthwardpropagationofAlgerianeddies(Cózaretal.2015).ObservationsintheTyrrhenianSeasuggestgreaterabundanceinthesouthernportionofthebasin,characterizedbyveryslow,basicallystagnatingdynamics(Guerramtietal.2017),andintheCorsicaChannel,thechokepointforwaterspassingfromtheTyrrheniantotheLigurianSea.ObservationsofthebottomdistributionofdebrisindicatethatitislargelyinfluencedbytheverticaldetailoftheMediterraneancirculation,withalong-termpresenceoflitterinthesouthernAlgerianbasinandsoutheastoffCrete,andincanyonsandotherareasinfluencedbystrongsinkingpatternssuchastheGulfofLyons.ALangrangianmodellinganalysisofthefluxesofplasticontosixselectedcoastlinesofMediterraneanMarineProtectedAreasshowedthattheywererelativelylow(0.4-3.6kg[kmday]incomparisonwithanaveragefluxof6.2±0.8kg[kmday])andcalculatedovertheMediterraneanintheperiod2013–2017(Liubartsevaetal.2019).TheArcticOceanThestateofknowledgeonmarinelitter,includingmicroplastics,intheArcticmarineregionprimarilyreflectsthefactthatinformationismoreprevalentforareaswherehumanactivitiesareconcentrated,includingtheBarents,NorwegianandBeringSeas,orforspecificresearchtopics(e.g.seabirds).FewdataareavailablefortheCentralArcticOceanandthecoastalareasarounditinSiberia,ArcticAlaska,mainlandCanadaandtheCanadianArcticArchipelago(PAME[ProtectionoftheArcticMarineEnvironmentWorkingGroupoftheArcticCouncil]2019).Fromthelimitedanalysisofmacrolitter(e.g.nets,floatsandotherdebris)washedashoreonArcticbeachesoraccumulatingontheseafloor,most(50-100percent)canbeattributedtofishingactivities.Microplasticshavebeenincreasinglyreportedthroughoutthepristinewaters,beachesandsedimentsoftheArcticOcean(Sundetetal.2016;HallangerandGabrielsen2018;Kanhaietal.2018;Kanhaietal.2019).EvenafewyearsagotheabundanceofmicroplasticsinsurfacewaterswasofthesameorderofmagnitudeasthatfoundintheNorthPacificandNorthAtlantic(e.g.Lusheretal.2014;WeldenandLusher2017);vanSebilleetal.(2012)identifiedapotentialaccumulationareaintheBarentsSeabymodellingglobaldrifterdataandconcludedthatthisonewaslinkedtotheNorthAtlanticGyreviaadvection.Amedianof64MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENT6,300itemsperkm2(plasticparticles>0.5mm,excludingfibres)wasmeasuredintheGreenlandandBarentsSeas.Inaddition,plasticparticleswerefoundinmost(73percent)ofthesurfaceice-freewaterssampledinthecircumpolararea(Cózaretal.2017).Microplasticsinsurfaceandsubsurfacewaterswerenearlyallmicrofibres,thebreakdownproductsoflargerplasticitemssuchasfibresfromshippingfishinggear,recreationalandoffshoreindustries,andwashingoftextiles(Sundetetal.2016;Kanhaietal.2018).Thequantitiesofmicroplasticsinthewatercolumn,althoughslightlylowerthaninsurfacewatersinsouthwesternSvalbard(Obbardetal.2014;Amelineauetal.2016),doubledbetween2005and2014,possiblyasaresultofchangesinseaicecover.ThedistributionandaccumulationofmarinedebrisontheseaflooroftheBarentsSea,theNorwegianSea,andtheSvalbard,Norwayareaareveryunevenandaredeterminedbyhydrography,geomorphology,prevailingwindsandhumanactivity(Buhl-MortensenandBuhl-Mortensen2017).Whilenomicroplasticswerefoundinsedimentsamplesatadepthof40-60metres(Sundetetal.2017),litterintrenchesandcanyonswasmorethan10timesasabundantasinsedimentsontheshelf(Buhl-MortensenandBuhl-Mortensen2017).WestofSvalbardtheHausgartendeep-seaobservatorystationhasoperatedregularvideotransectssince2002.Theseshowthatdensitiesofdebrisalmostdoubledbetween2002and2014(Bergmannetal.2015;Tekmanetal.2020)andare20to40timesgreaterthanoffshoreshelfsealevelsintheBarentsSea(Buhl-MortensenandBuhl-Mortensen2017).Substantialquantitiesofmicroplasticparticlessmallerthan25μm,asizemostotherstudiesdonotsample,havealsobeenfoundinthedeepsea,withdensitiesexceedingthoseobservedatthesurfaceandsubsurface(Ballentetal.2013;Bergmannetal.2015;Kanhaietal.2019).HighermicroplasticdensitiesthaninanyotherbenthicregionsinvestigatedwerealsofoundattheHausgartendeep-seastation(2,340-5,570metresdeep);theseamountswerepositivelyassociatedwithchlorophyllα,suggestingthatalgaemightplayaroleindownwardtransporttothedeepseainthisareaeitherasbiofoulingorasmicroplasticsadsorbedtoaggregatingalgae(Bergmannetal.2015;Tekmanetal.2020).Althoughtherearenopublisheddataonentanglement,severalsealspecies,suchasharbourseals(Phocavitulina)andbeardedseals(Erignathusbarbatus),havebeenobservedwithplasticswrappedaroundthemand,inSvalbard,oldfishingnetsandabandoned,lostorotherwisediscardedfishinggear(ALDFG)havebeenfoundentanglingseabirdsandSvalbardreindeers(Rangifertarandusplatyrhynchus)bothdeadandalive.In2016,ingatheredlitteranalysedfortypeandorigin,plasticswerefoundtobethemostabundantmaterialfromfisheries-relatedandhouseholditems(Nashoug2017).IngestionofplasticshasbeenstudiedinseveralArcticbirdspeciesthatforageatsea,suchasfulmars(Trevailetal.2014),andinmarinemammals(e.g.Donohueetal.2019).Thehighestfrequencywasdetectedinlittleauks(Allealle);microplasticsweredetectedinallgularpouches(Amelineauetal.2016),amatterofconcernasthisimpliesthechicksoflittleauksareexposedtomicroplastics.PlasticshavealsobeenfoundinstomachanalysesoftheGreenlandshark(Somniosusmicrocephalus)fromsouthGreenland(Nielsenetal.2014;Morganaetal.2018)andfromSvalbard(Leclercetal.2012).However,noplasticswereobservedinAtlanticcod(Gadusmorhua)fromnorthernNorway,VarangerandtheLofotenarea(Brateetal.2016).Plastics,butnomicroplastics,havebeenreportedinnearlyallbluemussels(Mytilusedulis)andtheIcelandcockle(Clinocardiumciliatum)(Sundetetal.2016).Inadditiontohavingsomeoftheworld’shighestmicroplasticburdens,theArctic,withitsharshlivingconditions,limitedfoodwebandmonumentalclimatechangenowunderway,isespeciallyvulnerabletotheeffectsofmarinelitterandplastics.EastAsiaandAssociationofSoutheastAsianNationsseasAcrosstheEastAsiaandASEANregions,includingtheEastChinaSea,theSeaofJapanandtheSouthChinaSearegion,concernsaboutmarineplasticpollutionaregrowing(Isobeetal.2015;Lyonsetal.2019;WWF2020).Ina2010estimate,sixASEANmemberstateswerelistedamongthetop20countriesthatmismanagedtheirwaste,resultinginplasticleakageintotheoceans(Jambecketal.2015).MorerecentfiguresindicatethatIndonesia,thePhilippines,ThailandandVietNam,togetherwithChina,areresponsibleformorethanhalftheplasticsenteringtheoceans(OceanConservancy2015;Lebretonetal.2017;UNEP2017b).Knowledgeoftheabundance,sourceandfateofmarinedebrisintheregionisincreasing(SouthChina,Cheungetal.2016,LinandNakamura2018;RepublicofKorea,Leeetal.2017,Lyonsetal.2019).Mostofthe145researchpaperspublishedintheASEANregiononmarineplasticpollutionappearedfrom2017onwards(Lyonsetal.2019).Thesepapersidentifydeficienciesinwastemanagementinfrastructureasamajorconcernintheregionandrecordthewidespreadpresenceofmacro-andmicroplasticdebrisinhighconcentrationsinallthewaterbasins,aswellasinmarinelifesampledortrappedinmangroverootsystemsandoncoralreefs(Caietal.2017;Purbaetal.2019;OndaandSharief2021).Peng,G.etal.(2019)usedautonomoussubmarinestocollectphotofootageofdebrisinthetributarycanyonsoftheXishaTroughinthenorthernSouthChinaSea.Theyfoundthattheaccumulationofdebrisat1,800metreswasgreaterthaninanyothersubmarinecanyonintheworld.Mostofthedebriscamefromfisheriesandnavigationalactivities.Itwasbroughtbyseasonalsurfaceoceancurrents,influencedbythegeomorphologyofsubmarinecanyons.ThewatersofthenorthernSouthChinaSeaarehometoadiversearrayofbenthicfauna,fishandcoralswhicharelikelytobeharmedbyplasticpollution.65MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTMONITORINGMETHODS,INDICATORS,STANDARDSANDPROGRAMMESSECTION3©iStock/Placebo36566MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENT3.1Developmentsinmonitoringmethods3.1.1RiverinesamplingoflitterandmacroplasticsGiventhatriversareamajorpathwayforlitterincludingplasticwasteenteringthemarineenvironment,therehasbeenagrowingemphasisonthemonitoringofupstreamanddownstreamsourcesandflows(UNEP2020b,c,d;Borrelleetal.2021;Meijeretal.2021).Fieldandlaboratorytechniquesforsamplingmicroplasticsinfreshwaterenvironmentscloselyfollowprotocolsformarinesystems,althoughcertainplasticpolymerssinkinfreshwaterbecauseofitslowerdensitycomparedtosaltwater(Gonzalezetal.2016;González-FernándezandHanke2017;GESAMP2019;Karlssonetal.2019;Forrestetal.2020).Inrecentyearsstudieshavebeencarriedouttoimprovethereliabilityofdataontheflowsofmacrolitterandplasticsinriversandalongriverbanks.Thesestudiescovertheuseofvisualobservationsandthecollectionofitems,automatedacquisitionsystems,inflowstructuressuchasdamsandweirs,inflowwater,riverbedsandbottomnets,booms,floats,mantatrawls,andnetsandpumps(PicóandBarceló2019).Systematicsurveysbasedonverysimplevisualprotocols,suchasobservingriversfrombridges(González-FernándezandHanke2017)anddebrissampling,havebeenshowntoprovidereliableestimatesofthemagnitudeandseasonaldynamicsofplasticstransport(massandnumberofitemsbysize),spatialdistributionacrossriverwidth,andtheplasticpolymercompositionofthemostcommonitemsinrivers(vanCalcarandvanEmmerik2019).Datafromvisualcountingsurveyscanbeusedtocomparethecompositionofplasticsrecoveredfromthesamplingofrivers,sedimentlayersandoceansurfacelayersandtotesthypothesesaboutthetypesofplasticsthatcanbehorizontallytransportedfromriverstooceansthroughcurrents,aswellastheroleofriversindeliveringbuoyantplasticsintotheoceans.ScalingupvisualobservationscanalsobedoneusingEarthobservations(satellitesandcameras)andunmannedaerialvehicles(Martinetal.2018;Geraedsetal.2019)andcameras(Kylilietal.2019).However,becauseriverflowscanfluctuatesignificantlyonanhourly,weekly,seasonalormulti-yearbasis,insitumonitoringindifferentpartsofariverisrequired.Automatedmonitoringcansupportamulti-temporalsamplingandmonitoringapproach.Riparianareasandriverbanksareoftentransientsourcesofplasticsduetowaterlevelvariationsandtides,whichcanleadtoregulardepositionsaswellastodepositionsduringextremeevents.Samplingalongdynamicbanksdoesnotyieldconsistenttimeseriesdata.However,earlierstudieshaveshownthatitispossibletoquantifytimesignalsinplasticsfoundinestuarieseventhoughitremainsdifficulttomodeltheeffectsofallthedifferentprocessesandestimatethevolumestransportedintotheocean(SadriandThomson2014;Drisetal.2020).3.1.2ShorelinesamplingoflitterandmacroplasticsFieldmethodsforassessingthevolumesofmacrolitteralongshorelinesandbeachesvaryaccordingtotheindicatoritemsbeingtargeted.Indicatoritemsdonotprovideinformationontherelativeimportanceofdifferentsourcesoflitterforagivenregion,butcangiveanindicationofthesourcesandamethodologytocalculatetrendsintheinputs(Schulzetal.2017;Schulzetal.2019).OthercategorizationsincludethoseoftheRegionalSeasConventionsandActionPlansandnationalprogrammessuchastheNationalOceanographicandAtmosphericAdministrationMarineDebrisMonitoringandAssessmentProject(NOAA-MDMAP)intheUnitedStates(GESAMP2019).Atsomelocationswherevisualsurveysareusedtocountitems,Angelinietal.(2019)foundthatcolourisanimportantdeterminant,withhigheraccuracyinblueplasticcountsandundercountingofwhiteandclearplastic.Comparingdifferentcategorizationsisthusessentialtoreduceuncertaintiesamongdifferentestimates(vanCalcarandvanEmmerik2019).3.1.3MethodsofmeasuringinteractionsbetweenlitterandmarineanimalsMonitoringentanglementneedstobeundertakenseparatelyfordifferentgroups(marinemammals,birds,reptiles,fishandinvertebrates).Observationscanberecordedandanalysedbyecosystemcompartments(e.g.viastrandingnetworksoncoastlines,atthesurfaceduringoceanographiccampaignsorthroughobserverprogrammes,andontheseabedthroughscubadivingforshallowareasoruseofsubmersibles,remotelyoperatedvehiclesandautomatedunderwatervehiclesfordeeperwaters(Galganietal.2018).Claroetal.(2019)reviewedtherangeofcurrententanglementmethodologiesandproposedseveralcandidatesasstandardprotocols.Theyidentifylong-termstrandingandphoto-identificationnetworks(e.g.theUnitedStatesNationalMarineMammalDatabase)asthemostappropriatemonitoringtools.Generally,recordingtheimpactsofentanglementandingestionofmarinelitterisinhibitedduetoinconsistentrecord-keepingbydifferentnetworks.Therearealsodifficultiesindeterminingwhatisabandoned,lostorotherwisediscardedfishinggear(truedebris)andwhatisactivefishinggear.Animalscanbecaughtincidentallybypiecesofequipmentthatarenotconsidereddebris.Anumberofadhocmethodsareusedtoassesssessileorganismsandmarineecosystemssuchas“animalforests”(Galganietal.2018).Thesemethodsincludemonitoringofbiodiversityincoralreefassemblagesandkelpforestsbydiversusingtransectsurveys,useofsubmersiblesandremotelyoperatedvehiclesindeeperareas,invitationstothepublictosubmitimagesofentanglement(Ryan2018),andtheadditionofmarinelitterto67MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTroutinesurveysinlong-termreefmonitoringprogrammes(e.g.ReefCheck)(Carvalho-Souzaetal.2018).Inthecaseofthedeepsea,organizingdatabasesthatcompilephotographicrecordsoflitterontheseafloor(Chibaetal.2018)wouldalsobeveryuseful.3.1.4SamplinganddetectionofmicroplasticsThereareintrinsicdifficultiesindeterminingandidentifyingmicroplasticsandplasticmicrofibresinenvironmentalsamplesduetotheirsizeandvariedshape,colouranddegreeofdegradation.Effortstodetectthepresenceoftheseparticleshaveresultedindifferentmethodologies(Löder2015;CostaandDuarte2017;Lusheretal.2017b;Ryanetal.2020)andhaveledtocommentariesthattherehavebeentoomanypaperswithtoomanyvariations(BorjaandElliott2019).Variousunitsofmeasurementandquantificationhavebeenusedbyresearchers;forexample,dataaresometimesgivenperweightofsample,pervolumeofmatrixorpersamplingarea,withoutinformationthatwouldenablecomparisonstobemade(Besleyetal.2017;daCosta2018).Inthemeantime,Koelmansetal.(2020)haveprovidedanapproachusingrescalingmethodsandprobabilitydensityfunctionstoimprovethealignmentofdifferentmicroplasticstudiesbycorrectingfordifferencesinsizerangesusedtoreportmicroplasticconcentrations.Theyhavealsoaddressedtheincompatibilityofdatausedincurrentspeciessensitivitydistributions(SSDs)causedbydifferencesinthemicroplastictypesineffectstudiesandnature.Acombinationofmethodsenabledthemtocorrectforthediversityofmicroplastics,addressresultsinacommonlanguage,andassesstherisksofmicroplasticsasanenvironmentalmaterial.AquaticsamplingprotocolsMicroplasticpollutioninfreshwaterecosystemsisbeingstudiedmorewidely(Blettleretal.2018;vanEmmerikandSchwartz2019)andharmonizedproceduresarenowbeingagreed(GESAMP2019;UNEP2020b,c,d).SeveralriversystemsinEurope,NorthAmericaandChinahavebeensampledextensivelyformicroplasticsatthesurfaceandinthewatercolumn(Lechneretal.2014;Manietal.2015;Zhangetal.2015;Liedermannetal.2018),insediments(Suetal.2016;Zhangetal.2016;Wangetal.2017;Manietal.2019)andalongriverbanks(Imhofetal.2013;Kleinetal.2015).However,thecomplexityofmicroplasticsandthelackofharmonizationinsamplingmethodologymakesitdifficulttocompareresultsfromearlierstudies(Drisetal.2015a;Drisetal.2016;Drisetal.2017;Drisetal.2018;Koelmansetal.2019;KooiandKoelmans2019).AtmosphericsamplingTherearecurrentlynostandardoperatingprotocolsfortheanalysisofairbornemicroplastics(Enyohetal.2019).Intheatmospheretheremaybethousandsofmicroplasticsthatcouldbeinhaledbyhumansandanimals.Thesemicroplasticscan©iStock/Adri68MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTcomefromthedecompositionofsyntheticmaterialssuchasthoseinelectronicdevices,packagingmaterials,tyres,clothingandfurnitureandaredistributedbothindoorsandoutdoors.Anumberofmethodologieshavebeendevelopedtocollectairborneanddepositedmicroplasticparticles(Drisetal.2016;Caietal.2017;Drisetal.2017;Allenetal.2019;Barbosaetal.2019;KleinandFischer2019;Stantonetal.2019a).Thecollectionofairborneparticulatematterismainlycarriedoutusinginstrumentsthatcaptureambientaerosols(bulksamplers:glassorstainless-steelbottlescontainingfunnels,depositiongauges,andotherdevicesforsourcecharacterization,andotherdevicesforsourcecharacterization,e.g.thepassivesamplerdevice)(KleinandFischer2019).Ingeneral,thesesamplecollectionsystemsareleftwheresamplecollectionwillnotbeaffectedbyradiationorrainfall,andwhereheightaboveground,geographiccoordinatesandthesampledairvolumearetakenintoconsideration.Althoughaircollectionproceduresarerelativelysimple,theyaresusceptibletocontaminationandtheentrainmentofotherparticles(Stantonetal.2019b).Evaluationofthepresenceofmicroplasticsinairisstilllimited.ThefindingsofsomestudiesperformedinEurope(Drisetal.2016;Drisetal.2017;Allenetal.2019;Enyohetal.2019;KleinandFischer2019)andChina(Caietal.2017)reportedvariationsinthevaluesofmicroplasticairdepositionrates.TheanalysisofmicroplasticsinairbyDrisetal.(2017)showedthatinthecityofParis,Francetherateofdepositionofmicroplasticsandnanoplasticswasmuchhigherindoorsthanoutdoors.FurtherworkinmountainousandsparselypopulatedregionsinFranceshowedthatthedepositionrateoutdoorswasverysimilartothatinthecity(Allenetal.2019).BioticmaterialsamplingDifferentmethodsareusedtolookatplasticingestion:thenakedeye,microscopicanalysis,enzymaticmethodsandchemicaldigestion(e.g.OSPAR2015).Markicetal.(2020)reviewedtheliteratureforfishandfoundthatchemicaldigestionisthemostrobustandhasthehighestdetectionrate,butcanalsocausedamagetosomepolymers,andthatenzymaticmethodsareknowntobegentleralthoughtheyareoftenlaborious,expensiveandtime-consuming.VonFriesenetal.(2019)havedevelopedanoveltissuedigestionmethodforbivalves,usingpancreaticenzymesandapHbuffer(Tris,ortris(hydroxymethyl)aminomethane)ratherthanpotassiumhydroxide.Itisacandidateforastandardizeddigestionprotocol,asitcanprovidehighthroughputwithminimalhandling,islow-cost,anddoesnotimpaircorrectidentificationofplasticpolymersandtextilefibrepolymers.Nelmsetal.(2019b)havedevelopedanovelandeffectivemethodologypipelinetoinvestigatedietaryexposureofwildtoppredators(e.g.greyseals,Halichoerusgrypus)tomicroplasticsbycombiningscat‐basedmoleculartechniqueswithamicroplasticisolationmethod.TheyuseDNAmeta-barcoding(arapidmethodofgeneticbiodiversityassessment)togatherdetailedinformationonpreycompositionfromscatsandinvestigatethepotentialrelationshipbetweendietandmicroplasticsburden.Theresultsshowthatsuchanon‐invasive,data‐richapproachcanhelpreducethecostsandsamplevolumesrequiredforanalysisandcouldbeusedtounderpinstudiesoftherelationshipbetweendietarycompositionandratesofmicroplasticsingestioninhightrophiclevelspecies.Maesetal.(2020)havealsodevelopedamethodforquantifyingmicroplasticsinmarinemammalsbylookingatthespiralvalvesofporbeaglesharks(Lamnanasus).Inthecaseofbirds,Provencheretal.(2017,2018,2019)observedthatwhiletheyarethemoststudiedmegafaunagroupwithregardtoplasticingestion,alackofconsistencyinsamplecollectionandprocessingimpedesmetaanalysisaswellaslarge-scalecomparisonsofvolumesofplasticsconsumedandimpactsonotherspecies.Theyhaveprovidedasetofrecommendationsonbestpracticesinsamplecollection,processingandreporting,togetherwithguidanceonhowcarcasses,regurgitationsandpelletsshouldbehandledandtreatedtopreventcross-contaminationandmethodstoassessdifferentsizeclassesofmicroplastics.Theyproposethatstandardizedtechniquesforremovingsedimentandbiologicalmaterialscanbeusedforotheranimalgroups.Inareviewofthequalitycriteriaforsamplingandanalysisofmicroplasticsinbiotasamples,Hermsenetal.(2018)setout10stagesofthesamplingandanalysisprocessandprotocols.Theyevaluatedthereliabilityofeachstagein35studies,assigningascoretoeachstagewhere:2=reliablewithoutrestrictions;1=somewhatreliable,butwithrestrictions;and0=unreliable.Allthestudiesreviewedhadatleastoneprocessingstagewithascoreof0.Theaverageoverallscorewas8.0outof20.Thisevaluationdoesnotinvalidatethedifferentstudies,butitsuggeststheneedforsignificantimprovementinhowsamplingandanalysisisundertaken,withmuchgreateremphasisplacedonminimizingandaccountingforsamplecontamination.SedimentsamplingprotocolsRecentreviewsofmethodsforsamplingsedimentsconcludethatthedistributionofmicroplasticsinsedimentsishighlyvaried(Hanveyetal.2017;Prataetal.2019b)andinfluencedbytheirproperties,aswellasbywindsandcurrents.Theresultswilldependuponthesamplingarea(e.g.hightideline,intertidalareas,transects)anddepth.Collectionofsedimentsonthetideline(thehighaccumulationareaformicroplastics)mayresultinoverestimation.Thecollectionofmicroplasticsonbeachesincludesdirectsamplingwithforceps,sieving,andcollectionofsedimentsamples.Collectingsamplesfromtheseabedrequiresavesselanduseofspecializedequipmentloweredtotheseabedtocollectthesamples(e.g.grabsampler,boxcorer).Microplasticsneedtobeseparatedfromsedimentsamplesintwoseparationsteps:areductionstepusingnets,followedbysieving;andaseparationstep,usuallythroughfiltrationand/ordensityseparationusingsodiumchloride.TheprotocolsproposedbyHanveyetal.(2017)andPrataetal.(2019b)donotrecommendusingflowcytometryorelectrostaticseparation.69MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTEsiukovaetal.(2019)usedmodifiedUnitedStatesNationalOceanicandAtmosphericAdministration(NOAA)methodsandμ-RamanspectroscopytoobtaindatasuitableforacomparativeanalysisofsedimentsacrosstheBalticSea.QualityassuranceandqualitycontrolprotocolsBraunetal.(2018)haveproposedaseriesofguidelinestoensureconsistencyandavoidaliasingresultsduetobackgroundlevelsofmicroplastics.Theseinclude:“plastic-free”orlow-plasticworkingconditionsduringallanalyticalsteps(sampling,preparation,detection);avoidanceofstandardplasticproductsinfavourofalternativesmadeofmetal,glassorsilicone;frequentwipingdownoflaboratoryworkspaces;handlingofsamplesinlaminarflowboxes,especiallyduringthepreparationprocessforwetsamplesandduringthedeterminationofparticlenumbers;allglasswaretobewashedthoroughly,oven-driedandcoveredwhennotinuse;microscopictracesofplastictobereducedbyheatingtheglasswareinaburnoutfurnace(<600°C);filtersandsievestobeinspectedunderamicroscopepriortouse;andpersonneltowearnatural(i.e.cotton)clothingandlaboratorycoats,aswellaspowder-freeexaminationglovesthroughouttheexperimentalprocedure.Itisalsorecommendedtoundertakesterilization(viasteam,radiationorchemicals)ofdrysamplesfromwastewater,greywater,sewagesludgeandorganicwastes.Documentationandmeasurementofzerosamplesorblankvaluedeterminationfortheapplieddetectionmethodsisessential,ascontaminationcanoccurduringsampling,preparationanddetection(contaminationbyairborneparticles).Basedoncurrentknowledge,triplerepetitionishighlyrecommendedforblankvaluedeterminationintheparticlecountingprocess(includingsamplepreparation)ofeachcampaign.Definedreferencematerialsandcontrolsarealsorequiredforthecomparisonofallanalyticalprocedures.Toimprovethereliabilityandrepeatabilityofresults,publishedstudiesofvariouspolymersunderdifferentconditionsshoulddocumentthesamplingprocess,samplepreparationanddetectionmethods.Dependingonthetypeofpolymer,particlesizeandstateofaging,theremaybedegradationandorfragmentationoflargerparticles.Thestudiesrecommendthatinthepresentationofresultsthefollowinginformationisneeded:numberofmicroplasticspervolumeforsampledwaterbodies,orpertotaldrymatter(kg)forsampledsolids;microplasticmasspervolumeforsampledwaterbodies(µgperlitre)orpertotaldrymatterforsampledsolids(mgperkg);plusaprecisedescriptionandcomprehensibledocumentationoftheamountofthesampledenvironmentalaliquot,thepreparedlaboratorysampleandtheanalysedsample.Microplasticsanalysisshouldbepresentedinsizeclasses;smallparticlesthatoccurinhigherquantitiesaregroupedintonarrowerclassificationclustersthanthelargerparticles,whicharemorerelevantintermsofmassandclassifiedintowiderclusters.Thiscanhelpensurehighermethodologicalfeasibility(includingfiltrationanddetectionlimits)andbetterintegrationofparticlequantities/massesineffectsandimpactanalyses(i.e.forenvironmentalassessments).IdentificationofphysicalandchemicalcharacteristicsofmicroplasticsTherearefourbasicdetectionapproaches:microscopic,spectroscopic,thermalandchemical(Masuraetal.2015;Braunetal.2018;GESAMP2019).Microscopicmethodsarewidelyusedinthecaseofmicroplasticsthatfallintothemicronrange(i.e.neustonnetsamples)tocapturesurfacetextureandstructuralinformation;however,theresultsareprimarilyavisualcharacterizationonly(Shimetal.2017).Ramanspectroscopyusesalaserbeam,resultingindifferentfrequenciesofback-scatteredlightdependingonthemolecularstructureandatomspresent.Thisproducesauniquespectrumforeachpolymer.Thereisahighriskofmisinterpretationwhenrealsamplesaremeasuredusingonlyimagingmethods(e.g.lightandelectronmicroscope)andparticlecountingmethods(e.g.lightscattering,laserscattering).Therefore,measurementsmustbecarriedoutwithcomparativeandblanksamplesandonlyincombinationwithotherchemicalorchemical-physicalanalysistechniques.Inthecaseofthermoanalyticalmethods,thesampleispyrolyzedunderinertconditionsandspecificdecompositionproductsoftheindividualpolymersaredetected.Chemicalmethodsareusedtodecomposethesamplesanddetectspecificfragmentsofpolymersorelementssuchasmolecularweightdetermination,chemicaldegradationandsubsequentLC,stainingwithNileRedandsubsequentfluorescencedetection,theapplicationofTGA-FTIR/MSorTGA-GC-MS,andhyperspectralimagingmethods(Braunetal.2018).StainingwithNileRedresultsindiscriminationofplasticsfromotherparticles,usingfluorescenceexcitationandemissioninthevisiblerange,andcanbeimplementedinsitu(Maesetal.2017b).Forthepurificationofmicroplasticsfromorganicmatterfourmajormethodshavenowbecomeroutine,eachofwhichhasbothprosandcons.Oxidativedigestionisinexpensive,butthetemperatureneedstobecontrolledandseveralapplicationsmaybeneeded(Masuraetal.2015).Aciddigestionisrapid,althoughitcanattacksomeofthepolymers(Claessensetal.2013).Alkalinedigestioniseffectiveandcausesminimaldamagetomostpolymers,butitcanattackcelluloseacetate(Dehautetal.2016).Enzymaticdigestioniseffectiveandcausesminimaldamagetomostpolymers,althoughitisverytime-consuming(Löderetal.2017).Toimprovetheaccuracyoftheprotocol,Prataetal.(2019b)recommendremovingorganicmatter,usingsimplemethodswithoutaffectingthestructuralorchemicalintegrityofpolymers.Theynotethatmanystudiesdonotincludethisstep,thusincreasingthelikelihoodofoverestimatingthedensityofmicroplasticsinsamples.Inconvertingtheresultsofmicroplasticparticleanalysesintomasscontent,considerableerrorsarepossibleastheparticlesareoftennotuniformlysphericalandthematerialdensitycannotbespecifiedaccuratelyenoughduetoundefinedstructures.Inaddition,thesphericaldiametercannotbedetermined70MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTexactly,butentersthevolumeformulaofaspherewiththethirdpower(highfaultlevelspossible).Inthepresentationanddocumentationofresultsitisthereforevitalthatthequantityofenvironmentalaliquotsanalysed,andtheprocessdurationandhoursofworkpersample,arespecified.AutomationManylaboratorytechniquesarebeingsemi-automatedandcanbeappliedinsituafterthenecessaryengineeringinstrumentationisdeveloped.Forexample,stainingwithNileReddyemakesitpossibletodiscriminateplasticsfromotherparticlesusingfluorescenceexcitationandemissioninthevisiblerange,whichcanbeimplementedinsitu(Maesetal.2017b).Whilechitinandsomeotherorganicmatterarealsostained,theseparticlesmaybediscriminatedusingothermeans,e.g.bydensityordigestion.Thistechniquehasbeensemi-automatedusingimageanalysissoftware(Erni-Cassolaetal.2017).Fullautomationwillrequireinsitufiltrationandimagecapture,andlikelyseparationordigestionsteps,which,althoughonerous,arenotbeyondthecapabilitiesofinsituinstrumentation(e.g.Scholinetal.2017).Ramanspectroscopy,previouslyappliedinsituforotherapplications(Guoetal.2017;Lietal.2018)andformicroplastics,canbeoperatedinaspectralrangewithlowabsorptioninwater(e.g.785nmlaser,Frèreetal.2016).Imagingandflowcytometry(e.g.Sgieretal.2016)canalsobeused,aswellasinsituflowandimagingcytometers(Lambertetal.2017;Olsonetal.2017).However,afocusedandsignificanteffortisstillrequiredtoturntheseintomaturesensortechnologiesthatcanbecomepartofoperationalmetrologyofmarinedebrisacrossawidesizerangeinthemarineenvironment(Maximenkoetal.2019).3.1.5Toxicologicalassessmentofmicro-andnanoplasticsAreviewofcurrentpracticesintoxicologicalstudiesofmicroplastics(Barbosaetal.2019)underlinestheenormouseffortsmadeduringthepastfiveyearstodetect,characterizeandquantifythefateandeffectofmicroplasticsandnanoplastics.Studiesreviewedincludedcellviability,oxidativestress,cytotoxicity,uptake,changesinproteinconfiguration,DNAdamage,genotoxiceffects,phagocytosisandgenefolding.Despitethelackofaqualityanalysis,theresultsunderlineanumberofproblemswithtoxicologicalexperimentalmethods,suchasuseoffluorescentmicrospheresinlaboratorytoxicityexperimentscomparedtothemanydifferentformsintheenvironment.Overall,moreresearchisneededontheuptakekinetics,accumulationandbiodistributionofmicroplasticsinbiologicalsystems(e.g.Saleyetal.2019;Wangetal.2019a;Wangetal.2019b).3.1.6Observingplatforms,dataandmodellingtechnologiesSatellites,aircraftanddronesThelatestgenerationofoperationalspacemissionsisfillinggapsinobservationsandproxydatastreamsfortheregularmonitoringofmarinedebrisandmacroplasticsonriverbanks,insurfacewatersandalongshorelines,althoughsignificanttechnologicalchallengesremain(e.g.Garabaetal.2018;Martínez-Vicenteetal.2019;Maximenkoetal.2019;vanSebilleetal.2020).Whileremotesensingisbeginningtoprovideinformationaboutsurfacedistributionsofmarinelitterintheoceans,noneofthecurrentlyorbitinginstrumentshasbeen©iStock/xavierarnau71MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTspecificallydesignedtodetectplasticmarinelitter.Atthesametime,thescopeandcapabilitiesofsomeexistingandfuturemissionsoverlapwiththepropertiesanddynamicsofmarinedebris.Someofthesamesensorscanbeusedtomonitormarinedebris.TheEuropeanUnionCopernicusSentinel-2providesfreedatawithsufficientspatialandspectralresolutiontodetectthemarinelitterwindrows(elongatedaccumulationscommonlyfoundontheseasurface,varyinginlengthfromtensofmetrestooverakilometre),aswellasindividualobjectsassmallas5m2onland.TheSentineldatacanbeintegratedwiththoseoftheUnitedStatesLandsat-8satellite,whichofferssimilarimagery,toprovideanaveragerevisittimeofthreedays.Asecond,operationalsystem,CopernicusSentinel-3,includesinstrumentationforocean-colourtrackingandcanbeusedtomeasuresubtlespectralchangesfromoceansurfaceimaging.AspartoftheEuropeanSpaceAgencyOpticalMethodforMarineLitterDetection(OptiMAL)programme,satellitedataarecombinedwithglobalobservationsandaerialoceansurveysusinghighspatialresolutioncamerasonaircraft,plussatellitebathymetriclidar,hyperspectralshortwaveinfraredimaging.TheOptiMALconfigurationiscapableofdetectingarangeoflitterfromlargerpiecestomicroplasticswithdiametersoflessthan5mmsuspendedintheupperlayersoftheocean,aswellasplasticdebrisfoundonshorelines.Similarly,othermissionswillprovidedataonsub-mesoscalecurrentsthatwilladvancemodelssimulatingmarinedebrisdrift.Forexample,thePRISMAsatellite,carryingahyperspectralinstrumentoperatinginthe400-2,500nmrange,withspectralandspatialresolutionof12nmand30metres,respectively,waslaunchedinMarch2019bytheItalianSpaceAgency.ThePlankton,Aerosol,Cloud,oceanEcosystemmission(PACE,UnitedStatesNationalAeronauticsandSpaceAgency[NASA])isexpectedtobelaunchedinlate2022.ItwillincludeahyperspectralOceanColorInstrument(OCI),andtheEnvironmentalMappingandAnalysisProgram(EnMAP,GermanyDLR)willcarryahyperspectral“pushbroom”imagerwithhighspectral(6.5-10nm)andspatial(30metre)resolutions.Anotherimportantareainwhichremotesensingislikelytomakeasignificantcontributionisthemeasurementofriverinedischargeusingnewremotesensingtechniques(GleasonandDurand2020).TheSurface-WaterOceanTopography(SWOT)mission(Biancamariaetal.2016),tobelaunchedinSeptember2021,willrevolutionizequantificationofwaterlevelsinglobalriversover100metresinwidthandenablemonitoringofwaterdischargesglobally,offeringnewpossibilitiestoquantifythefluxofsuspendedsedimentandnutrientfluxesinlargeriverswheregroundcalibrationexistsandprovidebathymetricmeasurements.Futureplannedandpotentialmissionsexpectedtogiveinsightsintosub-mesoscaledynamicsincludeSKIM(SeaSurfaceKInematicsMultiscalemonitoringsatellitemission,althoughnotapprovedasanESAmission;Ardhuinetal.2019),SEASTAR,andWACM(WindAndCurrentsMission).11SyntheticApertureRadar(SAR)observations,embeddedinthesemissionsorusedascomplementingprojects,willsignificantlyenrichourknowledgeofmarinedebrissources,sinks,patternsandpathways.Passivemicrowaveradiometersmayalsobehelpfulintrackingmarinelitter;however,theircapabilityisyettobedemonstrated.Remotesensingwillalwaysrequireadequatecalibrationandvalidation,basedonacombinationofobservationsfrominsituinstrumentsandsampling.Ground-truthingofearthobservationisbestservedwhenthepresenceofsignificantdebrissignalsisdetectedfromsensordata,ground-truthed,andtheresultsfedbackintothesignaldatafordataextractionandcalibration-validation(GarabaandDierssen2018).Thecalibrationandvalidationofopenoceansurfacemeasurementsalsorequirestheinfluenceofsubsurfaceoceanprocessessuchastheverticalshearofcurrentsondebrisdrifttobeincluded,usingdata,forexample,fromthevariousdrifterandprofilerarrayswithintheGlobalOceanObservingSystem(GOOS)12(Moltmannetal.2019).Satellitesareimportantinordertocoverthelargestscales,butremotesensingtechnologiescanalsobeusedfromsuborbitalplatforms,aircraft,dronesandshipsandasportabledevicestoprovidedataonmarinedebrisattheappropriatescales;inthissensetheyareanimportantelementforthedevelopmentofGOOSRegionalAlliances(Moltmannetal.2019).Theuseoflow-flyingdronesandsmallaircraftisalsoanimportantcomponentofobservingsystemsandcanenhancemonitoringwithhighspatialandtemporalresolutiondata.Acombinationofdronesandsatelliteimagerywasrecentlyexperimentedwithtodetecttypicalhouseholditemsasfloatingplastictargets.Topouzelisetal.(2019)confirmedthatfloatingplasticsareseenfromspaceasbrightobjectsanddemonstratedthebenefitsofusingveryhigh(around0.02metre)geo-spatialresolutionimageryfromdronestoimprovegeo-referencingofSentinel-2data,resampledto10mresolution.IntheMALINOR(MappingmarinelitterintheNorwegianandRussianArcticSeas)project13differentmethodsforvisualmappingofplasticlitterinbeachareas(i.e.satelliteimages,multicopter,andwing-drones)arebeingcomparedandautomaticimagemanagementandmachinelearningusedtoquantifyamountsofmarinelitter.TheOPTIMALprojectprovidedanevaluationofexistingandplannedsensorcapabilitiesfordetecting/quantifyingmarinelitterandisfeedingintotheScientificCommitteeonOceanResearch(SCOR)WorkingGroup153:FloatingLitteranditsOceanicTranSportAnalysisandModelling(FLOTSAM).14ShipsShipshaveplayedanimportantroleinthenetworkofplatformsusedtocollectdataonmarinedebris.However,observationsfromshipsarerelativelysparse,vulnerabletoweatherconditions,andoftensensitivetothetypeofshipandtheexpertiseoftheoperator.Studiesusingtheship’slogtocalculateparticleabundancereportvaluesperkm2whilestudiesusingflowmeterreadingsusuallyreportconcentrationvaluesperm3,makingcomparisonsgenerallyimpossible(Riversetal.2019).72MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTForexample,Maesetal.(2017a)havesuggestedthatthebowwaveeffectmaycauselesswatertobefilteredthroughthenetthanwouldbecalculatedusingtheship’slog,leadingtoanunderestimationofplasticabundance.Othershaveshownthatplasticabundanceswerelowerwhenusingflowmeters,mostprobablybecauseoftheshorterdistancescomparedtoon-boardinstruments(Riversetal.2019).Thegeneralconclusionisthatwhenflowmetersareusedtheresultsofplasticabundanceshouldbereportedperkm2andperm3(Riversetal.2019).Shipsalsoprovideaplatformfromwhichabroadvarietyofsensorsandsamplerscanbeusedforcomprehensivestudyoftheentirewatercolumnfromtheseabedtothesurface.Inviewofthesmallnumberofresearchvessels,shipsofopportunity15havegreatpotentialtoconsiderablyimprovecoveragebyincreasingthenumberofvisualobservationsandusingship-borneautonomoussystems(e.g.Ferrybox16).AutonomousplatformsFloats,gliders(bothseaglidersandwavegliders),andautonomoussurfaceandunderwatervehicles,equippedwithsensorsandcameras,arebeingdeployedtosurveymarinelitterandplasticsthroughoutthewatercolumn,alongtheseabedandinremoteareas,suchasthehadaldepthsandunderseaice.Forexample,photographicsurveysfrom2013to2018wereusedinanovelexperimenttobackdateseafloormacrolitterintheMediterraneanbyusingproductcodesandbrandingtoidentifyitemssuchasaluminiumcansthatdateasfarbackasthe1980s(Cau2019).Ithasbeenproposedthatthistechniquecouldbeusedonfishingvesselstomonitorseabedlittermoreconsistently.Therearenowmultipleprogrammes,usingavarietyofLagrangianplatforms,17whichformthebackboneoftheGlobalOceanObservingSystem(Moltmannetal.2019)andplayanimportantroleintrackingmarinedebrisandunderstandingitspathways.Thereiscurrentlyanarchiveofmorethan30,000drifteryearsofhistoricaltrajectoriesobtainedfromthesenetworksofthousandsofactivesatellite-trackeddriftingbuoysreportinghourly(Maximenkoetal.2019).Satellitetrackers,attachedtolargedebrissuchasfishingnetsorcontainers,facilitateretrievalofthisdebrisfromtheocean.TherearealsospecializedLagrangiantoolsdevelopedtostudythedriftofdebrisandotherpollutioninfocusedregionalprojects.Forexample,Meyerjürgensetal.(2019)builtcompactsurfacedriftersandusedthemonthesouthernNorthSeashelftostudytransportpatternsinthenearshorezonesandthebeaching-refloatingdynamicsofmarinedebris.TheexpandingAnimalTelemetryNetworkisalsousefulformarinedebrisdatacollection,aswellasformonitoringtheinteractionofdebriswithmarinelife.©iStock/NeagoneFo73MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTFixedpointobservatoriesFixedpointobservatoriesareimportantandefficientplatformstomonitortemporalvariabilityand,inparticular,long-termtrendsinenvironmentalconditionssuchasdepositionofmarinedebrisandplasticsandclimatevariability(Centurionietal.2019).Mooredplatformshavethegreatadvantageofbeingabletocarrysensorsandsamplers.Atpresentthereareabout120openoceanobservatories(OceanSITES18)andevengreaternumbersofcoastalandshelfobservatoriesthatcanbeusedformarinedebrisobservations.Someoftheobservatoriesarecabledandcanproducelargevolumesofreal-timedata.Theirlocationsrequireclosecoordinationwithsatelliteobservationsandnumericalmodels.BenthiclandersandcrawlersArangeofdeviceshavebeendevelopedwhichremainontheseabedforprotractedperiodsoftime.Someofthemphotographtheseabedrepeatedlyorcantaketimeseriessedimentsampleswhilecrawlingovertheseabed.Theyareusuallyleftontheseabedforlongperiodsbeforetheyarerecovered(e.g.Wally19).Thecrawlerscanprovideuniqueinformationaboutthearrivalofdebrisontheseabed.SensorsTodaythedeploymentofadvancedsensorssuchasthosedescribedmakesthedivisionbetweendirectandremoteobservationslessdistinct.Aerialsurveysandremotetechnologiesproviderichinformationondebrisonoceanorshorelinesurfaces.However,asthelargestfractionofmarinedebrisendsupintheoceanwatercolumnorburiedinmarinesediments(e.g.vanSebilleetal.2015;Koelmansetal.2017b;Chubarenkoetal.2018;vanSebilleetal.2020)directvisualmeasurementsremaincriticalforcomprehensivemonitoringandneedtobeintegratedintofutureoperationalremotesensingoperations(GarabaandDierssen2018;Goddijn-Murphyetal.2018).Sensorscurrentlybeingusedfordetectionandpolymeridentificationofplasticdebrisaredeployedonthreetypesofplatform.Thesearesatellites:Sentinel-2/MSIHRMultispectral450to1,400nmwave,TanDEM-XHRSARinstrument,andWorldView3VHRMultispectral400to2,365nm,andPlanetScopeVHRMultispectral455to860nm(Cubesat);airborne:SASIVHRHyper950to2,450nm,APEXVHRHyper372to2,540nm,AVIRIS-NGVHRHyper380to2,510nm;andhandheld:ASDFieldSpecProVHRHyper350to2,500nm,SpectravistacorporationVHRHyper350to2,500nmhandheld,SpectralevolutionVHRHyper350to2,500nm.Underwaterdeepcablesystemsareabletocarrysensorswhichcanbecombinedwithsamplingandpost-retrievalanalysis(WangandWang2018).Otherimagingsystemsdevelopedformacrofaunaormicroorganismstudiescanalsobeusedtostudyplasticdebris.Forexample,atowedcameraandhuman-assistedsemi-automatedimageanalysis(BIIGLE–Bio-ImageIndexingandGraphicalLabellingEnvironment-database)wereusedtotrackincreasesindebrisbetween2004and2014intheeasternFramStraitbetweenGreenlandandSvalbard,Norway(Tekmanetal.2017).ModellingSimulationmodelsofsurfacecurrents,focusedonLagrangianmethodsandusingsatellitedata,arebeingdeployedroutinelytoidentifyareaswherefloatingplasticsarelikelytoconcentrateintheopenocean(Zambianchietal.2017;Palatinusetal.2019;Wichmannetal.201920).Advancesincoupledglobaldispersalmodelswithfieldobservationsofsurfaceconcentrationsofplasticpollutionandinputsfromriverinesourceshaveenabledresearcherstogofromestimatesoftherelativesizeofdifferentaccumulationzones(e.g.Lebretonetal.2012)toestimatesofglobalmassbudgetforpositivelybuoyantmacroplasticdebrisandtodevelopfutureprojections(e.g.Koelmansetal.2019;Lebretonetal.2019;Lebretonetal.2020;vanSebilleetal.2020).However,predictivemodellingofmarinelitterdistributionismorechallengingatthenearshoresincelocalgeomorphologicalandhydrologicalfeaturescanaffectspatialdistribution(Galganietal.2015).Attemptstomodellitterdepositionandaccumulationonsubstrateshavebeenlimitedtocoastalareasandbeaches(e.g.CritchellandLambrechts2016)andtheresultsfrompredictivemodelsformarinelitterdensityontheseabedareoftennotinagreementwithobserveddata.Inresponse,machinelearningmodelsarenowsuccessfullybeingusedtopredictdistributionandquantitiesofmarinelitterontheseafloor.Franceschinietal.(2019)trainedasetofArtificialNeuralNetworkmodelstodeterminewhichenvironmentalvariablesaffectlitterdistributionandtopredictquantitiesontheseafloorinthecentralMediterranean.Theresultscoincidedwithearlierfieldstudiesthatshowedseafloordebrisoccurringinlargequantitiesincoastalcanyons(Buhl-MortensenandBuhl-Mortensen2017)andpointtothesetechniques,potentialtoidentifypotentialhotspots.ImaginganddataanalysisHighresolutioncamerasfixedonallthedifferenttypesofplatformshavebeenusedtomonitormarinedebrisnearshore.Analysisofhigh-resolutionimagesrequiresadvancedinterpretationtechniquestoeliminateenvironmentalperturbationsfromoceanbrighttargets(breakingwaves,whitecaps,seafoam,surface-reflectedglint),cloudsandcloudshadow(e.g.GarabaandDierssen2018).Inmonitoringmarinedebris,TrueColorRGBimagesprovidecrucialcomplementaryinformationabouttheapparentcolourandshapeoflitterbutdonotprovideinformationonthelitter’sphysicalandchemicalcomposition.Machinelearning,combinedwithhyperspectralinformationasdemonstratedbyAcuña-Ruzetal.(2018),willhelpincreasethevalueofhigh-resolutionvisibleimagingasanessentialcomponentofanyfutureintegratedmarinelitterobservingprogrammetoidentifyhotspots.74MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENT3.2Monitoringprogrammes,indicators,datanetworksandplatforms3.2.1MonitoringprogrammesOneoftheclearconclusionsfromthereviewofallthedifferenttypesofmeasurementandmonitoring,goingontodayandhistorically,isthattheyremainfragmentedandhardtocompareandnoteasilysubsumedwithinindicatorprocesses.Itisclearthatthereisanurgentneedforfurtherimprovementsinstandardization,harmonization,andtheinteroperabilityofdatasetsandplatformsifeffectiveglobalmonitoringprogrammesaretobeimplemented.Variouseffortsarenowbeingdesignedtoaddressthisissue.Forexample,inanevaluationof174studiesSerraGonçalvesetal.(2019)foundthat27percentreportedmarinedebrisdensitiesinmetricsthatwerenotcomparable;nearly10percentfailedtoreportbasicparameters,suchasthedateofthesampling;andnearly20percentfailedtoreportthesizeofthecollecteddebris.Maximenkoetal.(2019)haveproposedadesignforanIntegratedMarineDebrisObservingSystem(IMDOS)tomonitorandassesstheriskposedbymarinedebris.ThegoalofIMDOSistolookatexposureandconcentrations,andvulnerabilityorharmtothesystem,withtheaimofaccuratelyestimatingtheamountofdebrisinaregion,andthefluxesinandout,andcomputingtherisksofenvironmentalimpacts.Theresultscanbecombinedwithdatafromotherobservationsystemstoenablediagnosesandresponsestobedeveloped.Largegapsinknowledgestillexistinregardtobothfreshwatersourcesandmarineenvironments(Schmidtetal.2017;Best2019).Ideally,monitoringapproachesshouldbeharmonized,coverthewholesizespectrumofplastics,andDataacqusitionAnalysisCollection/compilationCoordinationBeachShorelineWatercolumnSeaoorBiological-ingestedplasticInlandwaterbodiesMARINELITTERACTIONCOORDINATIONDATACOLLECTIONFRAMEWORKSLARGESCALEDATAREPOSITORY/PORTALINITIATIVESGEOGRAPHICALRANGEACTIVITIESINCLUDESCITIZENSCIENCEACTIVITIESAPPLICATIONAREAAPPLICATIONAREAIncludingbutnotlimitedtoBalticSea,Skagerrak,Kattegat,NorthSea,EnglishChannel,CelticSea,IrishSea,BayofBiscayandtheeasternAtlanticfromtheShetlandstoGibraltarJapanAgencyforMarine-EarthScienceandTechnologyODISIOCOceandataandinformationsystemODP---MDMAPMSFDCOASSTAMDIGGGI-yesyesyes-yes-yesyesyesOceanDataPlatformLivingAtlasoftheWorldResourceWatchLITTERBASENOAAMarineDebrisMonitoringandAssessmentProjectMarineStrategyFrameworkDirective-EMODnetGlobalGhostGearinitiative-databaseandappGlobalPartnershiponMarineLitterPacic&IndianOceansUSEuropeanwatersEuropeanwatersPacic,OceaniaEuropeanwatersEuropeanwatersEuropeanwatersTrashInformationandDataforEducationandSolutionGlobalEarthObservationSystemofSystems’PlatformDOMEDOME(MarineEnvironment)dataportal-anICESdataportalDATRASTheDatabaseofTrawlSurveys-anICESdataportal-MarineLitterWatchTIDEGPML-GEOSSWorldwideInternationalbottomtrawlsurveyintheMediterraneanMEDITSMediterraneanWorldwideWorldwideWorldwideEuropeanMarineObservationandDataNetworkEMODnet--yesyesyesyes---WorldwideWorldwideWorldwideWorldwideEuropeanwatersWorldwideUSwestcoast,WorldwideDeep-seaDebrisDatabase-JAMSTECCoastalObservationandSeabirdSurveyTeam-MarineDebrisAustralianMarineDebrisinitiativedatabaseSeaDataNet-Pan-Europeaninfrastructureforocean&marinedatamanagementAselectionofdatacoordination,collection,repositoryandportalinitiatesTheirgeographicalrange,activitiesandapplicationareasSource:UNEP2021.IllustratedbyGRID-ArendalFigure8:Aselectionofdatacoordination,collection,repositoryandportalinitiatives75MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTbedesignedtocapturethespatialandtemporaldynamicsofthedifferentfractions(Schmidtetal.2017;GESAMP2019;Maximenkoetal.2019).Formarinesystemstherearecurrently15majoroperationalmonitoringprogrammes(Maesetal.2019).Theycoverbothmacroplasticsandmicroplasticsacrossallthemarinecompartments.Forfreshwatersystems,newguidelineshavebeendeveloped(UNEP2020b,c,d)whichbuildonthemarineprogrammes(GESAMP2019)andcoverreservoirsandwastewatertreatmentplants.Therearealsoagrowingnumberofglobalplatformsanddatabasessupportedthroughlargenon-governmentalorganizations(e.g.theInternationalCoastalCleanup,ledbytheOceanConservancy;ProjectAWARE,originatinginthedivingcommunity;andthe5GyresInstituteonMicroplastics).21Effortsarealsounderwaytostandardizeandharmonizesamplecollection,analysisandreportingmethodsacrossbothfreshwaterandmarinesystems(Isobeetal.2019;Maximenkoetal.2019;Michidaetal.2019).Thefollowingsectionsreviewthedifferentcomponentsofmonitoringandobservingsystemsandnetworks,includingbaselinedata,indicatorsandinformationflowscomingfromdirectobservationsusingplatforms,sensorsandsamplers,andremotesensingofmarinedebrisusinghighspatialresolutionimaging,opticalspectro-radiometertechniques,andradarsensors(Figure8).3.2.2BaselinedataandindicatorsOneofthemajorneedsformonitoringprogrammes,beyondthetechnicalandoperationalrequirementsofgovernmentagencies,concernsthedevelopmentofindicatorsfordifferentpolicymeasures.Inanumberofinstancesindicatorshavebeendevelopedwithaviewtofuturemonitoringcapabilities.Forexample,themeasurementoffloatingplasticsintheopenoceanforSustainableDevelopmentGoal(SDG)14.1.1b22forfloatingplasticdebrisisbeingapproachedattwolevels:-Level1:Globallyavailabledatafromearthobservationsandmodelling;-Level2:Nationaldatawhichwillbecollectedfromcountries(throughtherelevantRegionalSeasProgramme,whereapplicable(i.e.forcountriesthatareamemberofaRegionalSeasProgramme).ThemetadataforthesetwosourcesarebeingdevelopedthroughtheGuidelinesfortheMonitoringandAssessmentofPlasticLitterintheOcean(GESAMP2019)withtheaimofbeginningdatacollectionin2021.Indicators(i.e.specific,observableandmeasurablecharacteristicsthatcanbeusedtoshowthechangesorprogressaprogrammeismakinginregardtoachievingaspecificoutcome)andbaselinedata(i.e.informationusedtocomparesubsequentdatacollected)arealsoavailableforimplementingavarietyofregionalandnationalpolicies(e.g.theRegionalSeasConventionsandActionPlans,EuropeanEnvironmentAgency2019b).Themainaimistoprovidereliableinformationinordertosettargetsandbaselinesforpolicydecisions,suchasbaselineconcentrationsofbeachlitter(Hankeetal.2019).Streamliningallthevariousindicatorsetsisalsoimportant,especiallyinthecaseoftransboundaryorcross-borderissuessuchasmarinelitter,asitestablishesacommonunderstandingofprioritiesandmonitoring.Todate,themajorityofindicatorsarefocusedondownstreamprocessesandimpacts,ratherthanonpreventionmeasuresortheireffectiveness.Theestablishmentofbaselinesfordifferentindicatorsandmeasuresreliesuponagreementondefinitionsandmethodsandtheintercalibration,wherenecessary,ofdifferentmethods(e.g.Maesetal.2017a;Maesetal.2018;GESAMP2019).AnexampleisBASEMAN23(Gerdts2017),aninterdisciplinaryandinternationalcollaborativeprojectthatisbringingtogetherexperiencedscientistsfromdifferentdisciplinesandcountriestoundertakedetailedcomparisonsandevaluationsofalltheanalyticalmethodsusedforsampling,identificationandquantificationofmicroplasticsinordertoenablebaselinemeasurementsoftheabundanceanddistributionofmicroplasticsintheenvironment.SDGindicator14.1.1isanindexofcoastaleutrophicationandfloatingplasticdebrisintensity.Itsgoalistopreventandsignificantlyreducemarinepollutionofallkindsby2025,particularlyfromland-basedactivities,includingplasticdebrisandnutrientpollution.Examplesoftheimportantroleofregionalactivitiesindevelopingcommonagreementondefinitionsinclude:•TheOSPARCommissionhasthreeindicators(beachlitter,plasticparticlesinfulmars’stomachs,andseabedlitter),withindicatorsforotherbiotaandmicroplasticsunderdevelopment(OSPAR2020);•HELCOM,theBalticMarineEnvironmentProtectionCommissionorHelsinkiCommission,isworkingonthedevelopmentofthreeindicatorsformarinelitter:beachlitter,litterontheseafloor,andmicrolitterinthewatercolumn(HELCOM2017,2018);•TheMediterraneanActionPlan(BarcelonaConventionfortheMediterranean)hasindicatorsformarinelitter,trendsintheamountoflitterwashedashoreand/ordepositedoncoastlines,trendsintheamountoflitterinthewatercolumn(includingmicroplasticsontheseafloor),andtrendsintheamountoflitteringestedbyorentanglingmarineorganisms,focusingonselectedmammals,marinebirdsandmarineturtles(UNEP/MAP2015);•TheNorthwestPacificActionPlanhasanecologicalqualityobjectivethatmarinelitterdoesnotadverselyaffectcoastalandmarineenvironments,aswellasanindicatorformarineplasticlitter(NorthwestPacificActionPlan2017).Candidateparametersforspecializedglobalmonitoringprogrammesarealsobeingproposed.Forexample,BrownandTakada(2017)havesuggestedanumberofbiomarkersincludingstableisotopesassociatedwithbirdpopulationsaswaystomonitormarinedebrisandpollutionintheNorthPacific.Tavaresetal.(2016)haveproposedmonitoringdebrisinthenestsofthe76MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTbrownbooby(Sulaleucogaster)asapotentialindicatoroftheabundanceofspecificitemsinsurroundingmarinewaters.Thenorthernfulmar(Fulmarusglacialis)hasbeenusedtomonitorplasticpollutionintheNorthAtlanticseas(OSPAR)forseveraldecades(Avery-Gommetal.2018).Therearecallsforseabirdspeciesinotheroceanbasinstobeaddedasindicatorspecies,suchasthewedgetailedshearwater(Ardennapacifica)inthepantropicalregions.3.2.3DatanetworksandplatformsEffortstocreateaglobalplatformformarinedebrisdataacquisition,streaming,qualitycontrol,anddistributiontousersarecurrentlyunderway.TheGlobalPartnershiponMarineLitter(UNEP2020a)(Box6)issupportingthedevelopmentofadigitalplatform24astheprincipalmechanismforlinkingexistingmarinelitterinformationsystems.Someofthechallengesarethatthesystemsvaryaccordingtotheirmaturity,policypriorities,andtheextenttowhichthereisharmonizationofformatsandprotocolsfordifferentcompartments(beachandseafloor),particlesize(macro-andmicrolitter)andgeographicscales(e.g.regional,national).Anumberofmarinelitterdataplatformsassemblelocalobservationsforuseinlarge-scalemonitoring.Theseplatformsaregenerallyoperatedbynationalagencies(e.g.governmentalagenciessuchasNOAA,CSIROandSOA),regionalbodies(e.g.OSPARintheNortheastAtlantic),UNEP(e.g.UNEP/MAPintheMediterraneanandUNEP/NOWPAPintheNorthwestPacific),coordinatedthroughjointefforts(suchastheEUMarineStrategyFrameworkDirective,MSFD)ormanagedbynon-governmentalorganizations(NGOs)whichrelyoncoordinatedcrowdsourcing(e.g.theTrawlshareProgramandtheInternationalCoastalCleanup25)(GESAMP2019).Someobservationsarecollectedonaregularbasis,whileothersareopportunisticoracquiredinthecourseofshort-timeprojects,experimentsorinitiatives.AnexampleofanestablishedEuropeanUnionleveldatapartnershipandplatformistheEuropeanMarineObservationandDataNetwork(EMODnet).EMODnetcontributestothelarge-scalecollectionandharmonizationofenvironmentaldatainEuropeanseas,includingtheNorthAtlanticOcean(OSPAR)andtheBaltic(HELCOM),26theMediterranean(UNEP/MAP)andtheBlackSea(theBlackSeaCommission),whichareatdifferentstagesofdevelopment.27Currentlytheplatformcontainsinformationfrom518beachesand4,772surveysin29countries(Maximenkoetal.2019).Theaimistoprovidereliableinformationinordertosettargetsandbaselinesforpolicydecisions.EMODnetChemistry,oneofseventhematicdataportals,coversdataoncontaminants(hydrocarbons,metals,pesticides,radionuclides)andhasrecentlybeenextendedtocovermarinedebriswithafocusonbeachlitter,seafloorlitter(collectedbyfishtrawlsurveys)andmicrolitter(microplastics).ReportingofbeachlitterdatainEMODnetusesOSPAR,MSFD,UNEP/MAPorUNEP-Marlinprotocols.FordataonbottomtrawllittertheICESDATRASdatabaseiscombinedwithreportsfromsomeoftheinternationalbottomtrawlsurveysintheMediterranean(MEDITS)(Cauetal.2019).TheGlobalPartnershiponMarineLitter(GPML)(UNEP2020a)waslaunchedattheUnitedNationsConferenceonSustainableDevelopment(Rio+20)inJune2012.Themulti-stakeholderpartnershipprovidesaplatformforcooperationandcoordination;sharingideas,knowledgeandexperiences;identifyinggapsandemergingissues;andharnessingtheexpertise,resourcesandenthusiasmofallstakeholders(includingtheprivatesector,civilsociety,NGOsandregionalbodies)workingtoreduceandpreventmarinelitterandplasticpollutionfromland-andsea-basedsources.Specificobjectivesincludereducingtheleakageofplasticsintotheocean,throughimproveddesign,theapplicationofthe3Rsprinciple(reduce,reuse,recycle),encouragingclosed-loopsystemsandmorecircularproductioncycles,maximizationofresourceefficiency,andminimizationofwastegeneration.OneofthePartnership’sflagshipprojectsisaMassiveOpenOnlineCourse(MOOC)onMarineLitter,whichisnowavailablein10languages.KeytotheGPML’sevolutionisthedevelopmentofitsDigitalPlatform.Thisone-stop-shop,mostlyopen-sourceplatformcompilesdifferentresourcesincludingfrominnovativesourcesandintegratesdatafromsource-to-seaandthroughouttheplasticlifecyclerelevantto,forexample,SDGs6(CleanWaterandSanitation),11(SustainableCitiesandCommunities),12(ResponsibleConsumptionandProduction)and14(LifeBelowWater).Theplatformfeaturesaccuratedataandinformationonmarinelitter,plasticpollutionandrelatedtopics,stakeholders,actionplans,initiatives,technologies,eventsandtraining,policies,andtechnicalandfinancingresources.Inaddition,theplatformconnectsstakeholdersthrougha“match-making”componentinordertoguideandcoordinateaction.Contact:unep-gpmarinelitter@un.orgBox6:TheGlobalPartnershiponMarineLitter77MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTForfloatingmarinemicroplasticstheSeaDataNetmetadataanddataformatshavebeenadaptedtodealwiththediversityofinformationfromotherEuropeansources.Dataonbeachlitter,floatingmicrolitterandseafloorlitterwillbeaccessiblethroughthededicateddiscoveryandaccessserviceintheEMODnetChemistryportal.DOMEisanotherdataportalusedbyexpertgroupstomanagechemicalandbiologicaldataforregionalmarineevaluations.Itincludesqualityassurancemethodssuchasreportingofuncertaintyinevaluatingdata.Aboveall,itwillincludedataonmicroplastics.EMODnetalsoallowstheinclusionofdatafromautonomousinstrumentsandsensors.Inaddition,theobservingnetworksystemwillbenefitfromtheuseofplatformsofopportunitysuchasships,airplanesandcoastalstructures.Withinthethematicportalsthereareplanstoadoptconsolidateddataformatstoaddressthisheterogeneity(GESAMP2019).Tomakegreateruseofthegrowingnumbersofinitiativesanddatasets,andtofacilitatejointanalyses,unifieddefinitions,standardsandformatsandwell-developedinfrastructuresfordataflowandstoragearenowneeded.Forexample,theuseofcategoriessuchasmega-,meso-,macro-,micro-andnanoplasticsneedstobebasedonclearsizeranges(e.g.FriasandNash2019;GESAMP2019)andacceptedbyallcontributorsandusersofthecombinedmonitoringandobservingsystem.Examplesofopendata-sharingsystemsandplatformswhicharealreadyavailableandcouldbelinkedtotheproposedGlobalPartnershiponMarineLitter(GPML)(UNEP2020a)platformincludetheEuropeanMarineObservationandDataNetwork(EMODnet),theCopernicusDataServicefortheSentinelmissions,DigitalEarthAfrica,andtheHELCOMMapandDataService.28TheGlobalPartnershipforSustainableDevelopmentData,establishedin2015tofacilitatedeliveryoftheSustainableDevelopmentGoals,isalsosupportedbyaplatformfortheglobalnetworkofdataprovidersandusers,whichbringstogetherdataandinformationusingthelatestopportunitiesandtechnologiesaffordedbythedatarevolution.©iStock/redtea78MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENT3.3Networks,citizenscienceandcommunityinitiativesArecentanalysisofglobal,regionalandnationalmarinedebrisnetworks29underlinedtheirimportanceoftacklingtheissueofmarinedebrisandplasticsfromdifferentperspectives.Adoptionofagenderedapproachinnetworks,citizenscienceprojectsandparticipatoryprocessesiscritical.Itcanencouragewomen’sempowermentandparticipationandhelpensuregreatersustainability.AnexampleofthepositiveimpactthisapproachcanhaveistheactionintheSouthPacificinvolvingtheSamoanMinistryofNaturalResourcesandEnvironmentandthatcountry’sMinistryofHealthanditsTourismAuthority,inpartnershipwiththeSecretariatoftheSouthPacificRegionalEnvironmentProgramme(SPREP)(2017)andUNEPthroughtheGPML.InSamoaarangeofcommunity-ledactivitiesincludedparticipationbywomen’sorganizationsinworkshopsonwaste-craft,i.e.turningwasteintosaleableconsumeritems30Asarietal.(2019)emphasizetheplasticwastemanagementchallengesinPacificIslandcountries,wherelifestylesarechangingandpeopleareincreasinglyconcentratedinurbanareas.Althoughmarineplasticisacriticalissueinthisregion,theauthorspointoutthatfewdataareavailableonitsvolumesandimpacts.TogatherinformationonplasticuseanddisposaltheycarriedoutasurveyofSamoanhouseholds.Thegrowthofmarinelitternetworkshashelpedtocatalysebeach-cleaningactivitiesworldwide.Despitetheirsometimespatchygeographicaldistributionandsparsetimetables,beachclean-upshaveshowngreatpotentialforthecrowdsourcingofqualitativeandquantitativemarinedebrisdatathroughcoordinatedsurveysusingapprovedprotocols.ExamplesofcoordinatedsurveysincludetheNOAAMarineDebrisTracker;theEuropeanEnvironmentAgencyMarineLitterWatch;theOceanConservancyTIDES;theJRCFloatingLitterapp;andtheMarineConservationSocietysurveysintheUnitedKingdom31(González-FernándezandHanke2017;Turrell2019).Theseprojectsareimportantbecause,comparedwithmoreopportunisticplatforms,theycollectdatathatcaneasilybetranslatedintonumberofpiecesofplasticpersquarekilometre,whichisrequiredforreportingonindicator14..1.bforSustainableDevelopmentGoal(SDG)14(Conserveandsustainablyusetheoceans,seasandmarineresourcesforsustainabledevelopment).32Duringthepastdecadetherehasalsobeenanupsurgeinmarinelitter-relatedcitizenscienceinitiatives(e.g.Nelmsetal.2017).TheUNEPstock-takingresponses(UNEP/AHEG/4/INF/6)suggestthatcitizenscienceprogrammeseffectivelyconnectinterestedparties,aswellasenableveryspecificdatacollection.Socialandbehaviouralscientistsnotethatbehaviouralchangecampaigns,whichmayincludecitizenscienceprojects,changepublicmotivationandawarenessfasterandmorecost-effectivelythan,forexample,policytools(SAPEA2019).Therehavebeensuccessfulcitizenscienceinitiativesonarangeofaspectsofmarinelitter,includingmonitoringlitteronbeachesandinrivers;trackingandanalysingmicrobeadsandplasticpelletsintheenvironment;measuringthetransportanddepositionofmarinelitter;determiningitscompositionand,specifically,thepresenceofdifferentformsofmicroplastics;examiningsocialaspectssuchaspeople’sbehaviourinreducinglitteringoncoasts;analysinginteractionswithbiota;andobservingtoxiceffects(Hidalgo-RuizandThiel2015;Wylesetal.2016;Zettleretal.2017).Forexample,InternationalPelletWatchinvolvedcitizensfrom17countriesincollectingplasticpelletsfrombeaches,whichweresenttoTokyo,Japanforlaboratoryanalysesasinputstomathematicalmodelsofdispersion(Heskettetal.2012).Thecharacteristicsofpellets(smallsize,easytorecognize),aswellastheirworldwidedistribution,makethemappropriateforbothcitizenscienceandawareness-raisingactions33(Yeoetal.2015).Permanentobservatoriesareactiveinternationally,andtherearecampaignssuchastheGreatNurdleHunt.34Aswellasrecordingtheoccurrenceandamountsofstrandedpellets,citizensmonitorastandardsetofenvironmentalvariablesincludingthoserelevanttotheweatheringofpelletssuchastheircolour,whichisindicativeof“new”and“old”pellets.Uptonow,datahavebeencompiledonthecomposition,originandloadsofpollutantsadsorbedbypellets.Citizenscienceactionshavebeenfoundtobeofgreathelpintacklingthetemporaldimensionandprovidingkeyinformationrelatedtoprocessesanddynamics,forexampleonthebeachesoftheGreatLakesregion(Vincentetal.2017).Barrowsetal.(2018b)haveshownthatcitizenscience-basedresearchonmicroplasticconcentrationscanbevaluableinquantifyingmicroplasticandmicrofibreabundanceinalarge,mixedland-usewatershed.Manycitizenscienceinitiativesandprojectsusemobilephoneapplicationstogather,storeandsharedata.Examplesinclude35the2minutebeachcleancampaign,inwhichcitizensmonitorbeachlitter,cleanitupandrecordthestatusonamobileapp;BeattheMicrobead,inwhichtheparticipantsuseamobileapplicationtoscanbarcodesofcosmeticproductsandcheckforthepresenceofmicrobeads;CoastWatchMicrolitter,inwhichvolunteersmonitorvisiblemicrolitterandfilloutaformviaamobileapporanonlineformtoproduceamicrolittermap;CommunityBeachClean(UnitedKingdom),inwhichparticipantsmonitorbeachmacrolitterandcommunitiesarebroughttogethertocleanupbeaches;theInternationalCoastalCleanup,inwhichparticipantsprovidelong-termglobaldataonplasticthroughCleanSwell,amobileapp;RIMMEL(Europe),inwhichvolunteersmonitorvisiblemacrolitterfloatingonriverswhilestandingonabridge,orwhereriversentertheocean,andrecordthemacrolitterseenduringaspecifiedamountoftimeusingamobileapptoprovideinputsforstatisticalmodelsofriverineflowsintomarineenvironments;andThePlasticTide,inwhichvolunteersmonitorplasticlitterindronephotosbyspottingandtaggingthelitterinonlinephotographs79MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTandhelptotrainalgorithmstorecognizeplasticsautomatically.Otherparticipatoryprocesseshavealsobeenusedtogeneratedataonmarinelitter.ColebyandGrist(2019)describeaprocessofprioritizedareamappingformultiplestakeholdersusinggeospatialmodellingtoaddressmarineplasticpollutioninHongKong.Theybuiltmaplayersofthestatusofplasticwaste,portsandshippingintensity,andecologicalinsecuritywithstakeholders.TheywerethenabletoidentifytheregionsofmostconcernandgenerateaPrioritizedAreaMaptocharacterizemarineplasticwastelinkagestoland-andsea-basedsources.Publicparticipationinbuildingdatasetsconcerningthesourcesandimpactsofmarinedebrishasalsobeenshowntobeeffectiveinquantifyingthesocialfactorsthatcreateandinhibitmitigationandtheresolutionofconflicts.IntheBayofFundyinNewBrunswick,Canadamarinedebrisoriginatesfromtheinteractionofmultipleindustrieswithinasmallarea,includingaquacultureandinshorefisheries.Conflictbetweenthesetwostakeholderscontributestobothdebrisproductionandfailuretomitigate.Gearentanglementcreatesdebristhatthreatenstransportationsafety,wildlifeandthelocaleconomy.Rehnetal.(2018)showedhowPublicParticipationGeographicInformationSystemsmappingwasusedtoassemblediversedatasetscollectedbydifferentstakeholdersandtostabilizeacommonviewofwhatconstituteddebris,debrislocationsandthreatsduringathree-yearperiod.Aconcernofpolicymakersinusingdatacollectedthroughcitizenscienceinitiativeshasbeentheconsistencyandveracityoftheinformation.However,ithasbeenshownthataslongasadequatebackgroundinformationisprovided,mostissuesrelatedtothereliabilityofdatafromcitizenscienceactivitiescanbesolved(Garcia-Sotoetal.2017).Insomeinstancesprotocolshavebeenestablishedthatenablecitizenstocontributedirectlytomonitoringsystems.Forexample,theEuropeanEnvironmentAgency’sMarineLitterWatchinitiativeengageswithcitizenscientistsviaamobilephoneapptobuildcommunitiesthatgatherandanalyselitterfrombeachesinlinewiththeMarineStrategyFrameworkDirective’sTechnicalGrouponMarineLitter.36Anothersuccessfulinitiative,throughapartnershipbetweenUNEP,theWilsonCenter‘sEarthChallenge2020andothers,bringsexistingcitizensciencedatatogethertobetterunderstandmarinelitterwiththegoalofsupportingSDGreporting.37Itisimportanttonotethatinadditiontogatheringdata,coastalclean-upscanremovesignificantquantitiesofwasteandlitterfromlocalareas.In2017theInternationalCoastalCleanup,involvingmorethan0.5millionpeopleworldwide,removedmorethan8,000metrictonsofartificialdebris.AsSchneideretal.(2018)report,however,thiscanposeaseriousthreatiftherearenofacilitiestotreatthewastepost-collectionandthewastecollectedisburnedinopenpitsonthebeach.However,asBorelleatal.(2020)pointout,evenifallcountriesmettheircurrentcommitmentstoreduceplasticwasteby2030,itisestimatedthatitwouldstillrequireover1billionpeopletocleanupjust40percentofannualplasticemissions.©iStock/JohnGollop80MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENT3.4Technicalstandardsandtraceabilityofplasticpollution3.4.1EcolabellingschemesforbeachesSeveraleco-labellingschemessetstandardsforwaterquality,environmentalmanagement,healthandsafety,andpublicaccesstoinformation(UNEP2017a).ThebestknownaretheBlueFlagProgramme,avoluntaryschemewhichhasmotivatedclean-upeffortsincountriesacrosstheworld;theQualityCoastAwardsandSeasideAwards,whicharerelevantforsmallercoastalresorts;andtheGreenCoastAward,whichisgiventobeacheswhichhaveabeachmanagementplanandcommunityengagementtomeetstandardsintheEUBathingWaterDirectivealthoughtheydonothavethebuiltinfrastructuretoachieveBlueFlagstatus.InCostaRica,theBanderaAzulEcológicaawardisgiventocommunitiesengagedinprotection,clean-upandmaintenanceefforts.3.4.2TechnicalstandardsandlabellingofplasticproductsThereareonlyafewinternationallyestablishedandacknowledgedstandardsandcertificationandverificationschemesforthemanufacturingandprocessingofplastics.Theycoveraspectsofbiodegradability,recyclinganddegradationduringtheindustrialcompostingprocessandinthemarineenvironment(Harrisonetal.2018;UNEP2018a;UNEPandConsumersInternational2020).ExamplesareISO15279Recoveryandrecyclingofplasticswaste;ISO22526Carbonandenvironmentalfootprint;ISO/CD22722Disintegrationofplasticsmaterialsinmarinehabitats;andISO18830Biodegradationtest.Harrisonetal.(2018)concludedinareviewofthebiodegradabilityofplasticbagsthatcurrentinternationalstandardsandregionaltestmethodswereinsufficienttorealisticallypredictthebiodegradabilityofcarrierbagsinwastewater,inlandwaters(rivers,streamsandlakes)andmarineenvironmentsduetoshortcomingsinexistingtestprocedures,theabsenceofrelevantstandardsforthemajorityofunmanagedaquatichabitats,andapaucityofwiderresearchonthebiodegradationofplasticmaterialsunderreal-worldconditions.Lackofinformationandevidenceaboutthecontentandbreakdownofdifferentpolymers,includingbiodegradableplastics,isofseriousconcerntomanyplastics,compostingandwastemanagementexperts,astheseproductsdonotmeetexpectationsandcanleadtolesseffectivewastedisposalsincetheycannotbeproperlymanagedorcontained(PlasticIndustryAssociation2018).Industrialguidanceisprovidedtosupportrecycling.Forexample,theAssociationofPlasticRecyclers(2019)hasissuedacomprehensivelaboratory-scaleevaluationthatcanbeusedtoassessthecompatibilityofpolyethyleneterephthalate(PET)packagingdesignfeaturessuchaslabels,closures,dispensersandattachmentswithcommoncommercial-scalerecyclingprocesses.Productdevelopers,aswellasthosewhospecifyproducts,canusethisprotocoltomaintainandimprovethequalityandproductivityofPETrecycling.However,itisonlyapplicableto“seethroughorclear”PETarticles.Inthecaseofbiodegradability,thepublishedstandardshavebeencertifiedbyorganizationssuchasDINCERTCOinGermany,theJapaneseBioPlasticsAssociation,VinçotteinBelgium,theBureaudenormalisationduQuébec(BNQ)inCanada,theAustralasianBioplasticsAssociationinAustralia/NewZealand,andtheBiodegradableProductsInstitute(BPI)intheUnitedStates.Theseorganizationsusetestspecificationstoestablishthird-party,peer-reviewedprogrammestoconfirmtheend-of-lifeperformanceofbioplasticmaterialsfollowingtherequirementsofthestandardspecifications.Inthedevelopmentofnewmaterials,newstandardsandcertificationsforend-of-lifescenariosneedtobeestablished.Oneproblemisthatlittleofthetestinginformationismadepublic.Unfortunately,unsubstantiatedclaimsthatgobeyondstandardspecificationsandcertificationbythirdpartiesconcerningtherate,timeandamountofbiodegradationremainlargelyunchallenged.Labellingofplasticproductsgenerallyincludesarecyclinglogowithanumberinsideit.ThislabelwasintroducedbytheSocietyofthePlasticsIndustrytoprovideauniformsystemforidentifyingdifferentpolymertypes(seeGlossary:Labelling).However,publicperceptionofthislabellingsystemisthatitisjustaboutrecycling;inlightofthelowlevelsofrecyclingandrecoveryofplasticfoodanddrinkpackaging,theUnitedKingdomSelectCommittee(2019)recommendedachangeinlabellingtoabinarysystemofrecyclableornotrecyclable.38Anotheraspectoflabellingistheclaimonsomelabelsthatplasticsarerecycledfromtheocean.39Thepopulardesignation“madefromoceanplastic”ispopularwithsomeconsumersbecauseofitsemotionalappeal,butitisnottheidealsolutionsincetheaimistopreventplasticfromenteringtheoceaninthefirstcase.Anestablishedsetofconsistenttermstodescriberecycledplasticsfromocean-relatedsourcesdoesnotexist,whichmaybecontributingtotheconfusion.Forexample,plasticrecoveredfromthemarineenvironmentisoftenreferredtoas“oceanplastic”or“marineplastic”,whileplasticrecoveredfromwaterwaysorlandwithinacertaindistanceoftheocean(manyuse50km,or31miles)iscalled“ocean-boundplastic”(Jambeck2015).Theterm“beachplastic”isusedtodesignateplasticspecificallyrecoveredfrombeaches.Misconceptionsaboutplastics’biodegradabilityarealsocommon(UNEP2015;Dilkes-Hoffmanetal.2019a).Labelling81MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTas“biodegradable”isunderstoodbythepublictomeantheproductwilldegradenomatterwhattheenvironmentalconditions.MisleadinglabelssuchasthesecauseconsumerstounderestimatetheimpactsofplasticproductionintermsofGHGemissionsandtheimpactsofdisposal(Hartleyetal.2018a),aswellasunderminingsolutionsbyencouragingreboundeffects,theover-consumptionofcertaingoods(knownastheJevonsParadox),andincreasedlitteringof“biodegradable”products(GiampetroandMayumi2018;Haideretal.2018;Heidbrederetal.2019).ThesekeymessagesresonatewitharecentreportbyUNEPandConsumersInternational(2020),whichsetsoutfiverecommendationsforhowtoimprovelabellingofplasticpackagingandprovidesamappingandassessmentofexistinglabels,standardsandclaimsforplasticpackaging.Akeyconclusionisthatthedevelopmentofclearlabellingstandardsisvitaltohelpreducetherisksofplasticpollutionandassociatedhazardsinthemarineenvironment.3.4.3TraceabilityandpublicaccesstoinformationThetraceabilityofplasticproductsacrosstheirlifecycleisessentialtoidentifyareaswhereinterventionsmaybeneededandbringabouttheadoptionofcircularapproaches.Inrecentyearscitizenscienceandcommunity-ledactivitiesandorganizationshavecometogethertoaddresstheseproblems;examplesincludethebrandauditofBreakFreefromPlastic,whichlooksattacklingplasticpollutionacrossthewholevaluechainfromextractiontodisposal,40andthePlasticPollutersBrandAuditsofshorelinestoidentifymajorcorporationswhoseproductscontributetoaccumulationsofplasticwastethatarepollutinginlandwatersandoceans.AnexampleofinformationthatcanbederivedfromsuchsurveysistheauditundertakenonSableIsland,Canada,inapartnershipbetweentheSableIslandInstituteandParksCanada.41Beachlittersurveyshavebeencarriedoutontheislandsince1984.Thedatacollectedareusedtoidentifytrendsinsourcesofmarinelitterandtoassistthegovernment,corporationsandcitizensinfindingsolutionsTraceabilityisalsoimportantforkeepingtrackofthetoxicchemicalsaddedtoplasticsduringproductioninordertohelpreducethelossofmaterialsandvalueandpotentiallyachievebetterenvironmentalmanagementofpost-consumptionwaste.Deliveringtraceabilityhasalonghistoryinthefoodsupplychainandthefinancialsector.Ithasbecomesynonymouswiththeuseofblockchaintechnologies.Theplasticindustryhasrecentlybeguntoexploretheuseofthesetechnologiestoestablishsystemsthatwillenabledataexchangesamongsuppliersandproducersandprovidetraceabilityandtransparencyacrosswhatistodayafragmentedsupplychain.42Theuseofblockchaintechnologieswillalsohelpmakeiteasierforsuppliers,processors,manufacturers,mouldersandbrandownerstochoosetraceable,sustainableandcircularmaterials.Inaddition,itcanincentivizesuppliersandmanufacturerstoproducetraceable,sustainableandcircularmaterialsandproductsandprovidecriticallifecycleinformationforreverselogistics,includingtake-backofproducts,materialsandcomponents(Roosetal.2019).SuchapproachesareinlinewiththeNewPlasticsEconomy(EllenMacArthurFoundation2016),whosegoalisasysteminwhichplasticpackagingneverbecomeswastebutcanre-entertheeconomyasavaluablebiologicalortechnicalmaterial.Therearealreadyexamplesinothersupplychains,suchasthosefortextiles,whereblockchainanduniquetraceabilitytagsareprovidinginformationtotheconsumeronthebiobaseofafeedstockanditsecologicalperformance.43Theconstituentsofplasticproducts,suchasadditives,arenotgenerallydisclosed,whichmakesitdifficultforconsumerstodeterminethesustainabilityofproducts.UNEPandtheInternationalTradeCentre(ITC)haveproducedguidelinesbasedontenprinciplestoprovideproductsustainabilityinformationmoreclearlyandreliablytotheconsumer(UNEPandITC2017).Itiswidelyrecognizedthattraceabilityandpublicinformationsystemsareneeded,supported,forexample,byQRcodesthatallowconsumerstofindoutaboutthepropertiesofatracedobjectincludinganypositiveornegativeeffectswithwhichitisassociatedandanycertificationstandards.Consumersofplasticproductsalsoneedtobeawareoftheinstitutionalrelationsthatactivateandconstrainsuchtraceabilitysystems,whichcouldhelpthemunderstandwhethertheycantrusttheinformationtheyreceive.Certificationandlabellingschemesshouldprovideclearguidanceonwhichaspectsofaproducttheyareresponsibleforverifyingorassuring.Todate,themainsuchschemesforplasticshavefocusedonrecyclability.Asmoreknowledgeandresearchrevealpost-consumptionimpacts,plastictraceabilityschemeswillneedtomakeconsumersmoreawareofthefullhazardsandrisksofproducts.©iStock/MagnusLarsson82MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENT83MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTCHALLENGES,RESPONSES,INNOVATIONS,SOLUTIONSANDOPPORTUNITIESSECTION4©iStock/Sablin84MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENT4.1Thecurrentindustrial,socialandgovernancelandscaperelatingtomarinelitterandplasticpollutionOverthepastfourdecadestherehasbeenaquadruplingofglobalplasticsproduction(Geyer2020).Demandcontinuestogrow,withthesizeoftheglobalplasticmarketin2020estimatedtobearoundUS$580billioncomparedtoanestimatedUS$502billionin2016(Statista2021a).Atthesametime,itisestimatedthatlessthan10percentoftheplasticseverproducedhavebeenrecycled(Dauvergne2018;ZhengandSuh2019;Geyer2020).Oneofthemainreasonsforcurrentlowrecyclingratesislackofinformationabouttheconstituentsofplasticproducts,whichcanleadtolossofqualitythroughthemixingofwastestreams(Leslieetal.2016).Ultimately,thiscausesmillionsoftonsofplasticwastetobelosttotheenvironmentorshippedthousandsofkilometrestodestinationswhereitisgenerallyburnedordumpedinwaterways(UNEP2019b).Brooksetal.(2018)usedcommoditytradedataformassandvaluebyregionandincomeleveltodemonstratetheextenttowhichhigher-incomecountrieshaveexportedplasticwastetolower-incomecountriesinEastAsiaandthePacificfordecades.OtherchallengesincludethelevelofGHGemissionsassociatedwiththegloballifecycleofconventionalfossilfuel-basedplasticsandthegrowingcostsofmanagingplasticwaste.ThelevelofGHGemissionsassociatedwiththeproduction,useanddisposalofconventionalfossilfuel-basedplasticshavebeenforecasttogrowtoapproximately2.1gigatonsofcarbondioxideequivalent(GtCO2e)by2040,or19percentoftheglobalcarbonbudget(thetotalannualemissionsbudgetallowableifglobalwarmingistobelimitedto1.5oCelcius)comparedwithsome3percenttoday.(ThePewCharitableTrustsandSYSTEMICS2020).Usinganotherapproach,GHGemissionsfromplasticsin2015havebeenestimatedtobe1.7GtCO2eandprojectedtoincreasetoapproximately6.5GtCO2eby2050,or15percentoftheglobalcarbonbudget(ZhengandSuh2019).TheestimatedglobalcostofmunicipalsolidwastemanagementisalsosettogrowfromUS$38billionin2019toUS$61billionin2040underabusiness-as-usualscenario(Kazaetal.2018).Evenwithincreasedtaxesandgovernmentregulations,constraintsonresourcesandreduceddemandduetostockpiling(BusinessResearchCompany2020),annualoceanplasticpollutionisprojectedtotripleby2040(ThePewCharitableTrustsandSYSTEMIC2020).Asresearchonandknowledgeaboutthediverseimpactsofplasticsincrease(Lyonsetal.2019;Maesetal.2019;Dauvergne2020),concernonthepartofthegeneralpublicandgovernmentsisescalating(Avioetal.2017;Borrelleetal.2017;MaelandandStaupe-Delgado2020).Manyglobal,regionalandnationalactivitiesarehelpingmobilizetheglobalcommunitytobringanendtomarineplasticpollution(UNEP2018d).Forexample,municipalitiesandlargefirmshavebeenreducingwasteflowstolandfill(Dauvergne2018);regulatoryprocessesareexpanding,drivenbygrowingevidenceofthe©iStock/andresr85MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTrisksposedbyplasticsaswellasbypublicpressure(Koelmansetal.2017a;GESAMP2020a);andtherehasbeenanupsurgeinlocalactivism,localgovernmentactionstoincreasecurbsidecollectionsandrecycling,communityclean-ups,andpublicawarenesscampaigns(Schneideretal.2018).Successesatthelocalandnationallevelsarebeingsupportedbypoliciesandlegaldevelopmentsattheregionalandinternationallevels,forexamplethroughmarinelitteractionplansdevelopedwithintheframeworkoftheUNEPRegionalSeasProgramme.Thirteenofthe18entitiesintheRegionalSeasProgrammehaveadoptedmarinelitteractionplans,withanotherthreeregionscurrentlydraftingsuchplans(Section4.2.3).Anumberofregionalandnationallegislativeeffortsalsoaimtoreducemarinelitterdirectly(Blacketal.2019).44Inaddition,thereareinternationalcommitmentsbyUnitedNationsMemberStatestoreducemarinepollutionandlitter,especiallyfromland-basedsources,aspartofthe2030AgendaforSustainableDevelopmentGoal(SDG)14(LifeBelowWater)(UNGeneralAssembly2015;UNEA2018).NumerousorganizationswithinandoutsidetheUnitedNationssupporttheseglobaleffortsandareworkingonthedevelopmentoflegalmechanismstothisend.TheinternationalinstrumentsandbodiesinvolvedincludetheBaselConventionontheControlofTransboundaryMovementsofHazardousWastesandtheirDisposal,theRotterdamConventiononthePriorInformedConsentProcedureforCertainHazardousChemicalsandPesticidesinInternationalTrade,andtheStockholmConventiononPersistentOrganicPollutants(POPs)(Chen2015;UNEP/StockholmConvention2017;RaubenheimerandMcIlgorm2018),theInternationalMaritimeOrganization(IMO),theCommitteeonFisheriesoftheFoodandAgricultureOrganizationoftheUnitedNations(FAO),andtheConferenceofthePartiesoftheLondonConventiononthePreventionofMarinePollutionbyDumpingofWastesandOtherMatteranditsProtocol(Lyons2019).TradearrangementssuchasthosecoveredbytheBaselConventionandtheWorldTradeOrganization(WTO)alsoplayacentralroleintheglobalplasticseconomy,whichiswhymanygovernmentsarealreadytakingtrade-relatedmeasurestotackleplasticpollution(Birkbeck2020;Borrelleetal.2020;ThePewCharitableTrustsandSYSTEMIQ2020).Themostimportantsteprequiredistoreducetheoverallamountofplasticwasteproducedanditsimpacts(EuropeanUnion2019b).Thismeansphasingoutspecificplasticproducts,introducingextendedproducerresponsibility,andreshapingtheestablishedlineartake-make-disposeeconomytooneinwhichmaterialflowsarepartofclosed-loopandresource-efficientcircularity(LiederandRashid2015;OECD2016;Forrestetal.2019;UNEP2019b;Karasiketal.2020;RaubenheimerandUhro2020).Manycountries,includingtheEuropeanUnionMemberStatesandJapan,havesetinmotionactionplansforcircularityand,insomecases,zeropollutionbyimplementingawastehierarchyinwhichprevention,reuseandrecyclingarefavouredoverlandfill(EuropeanCommission2018b).TheEllenMacArthurFoundationhaspartneredwithUNEPtolaunchtheNewPlasticsEconomyGlobalCommitmenttoinspireactionbyhundredsofkeyactorsacrosstheplasticsvaluechainaimedatkeepingplasticsintheeconomyandoutoftheenvironment.Concertedeffortsatmanylevelswillbeneededtomovetowardscircularity,linkingbusinessprocessesandsocialawarenesswithpoliciesandconsumeractionstosignificantlyreducethevolumeoffossilfuel-basedplasticsbeingproduced,improvingthedesignofproductstoreducelevelsofwasteandenhancedecentralizedrecyclingofmaterials(Joshietal.2019),eliminatingunregulatedplasticwastestreams,andimprovingstandardsfortheregulationofmaterialssuchasbiodegradableplastics45(Dauvergne2018;CarneyAlmrothandEggert2019;Forrestetal.2019;ZhengandSuh2019;Borrelleetal.2020;Lauetal.2020;ThePewCharitableTrustsandSYSTEMIQ2020;UNEPandConsumersInternational2020;WWF,theEllenMacArthurFoundationandBCG2020).TheEllenMacArthurFoundation(2020)advocatesthatrecyclingneedstobeproventowork“inpracticeandatscale”,whichisgenerallynotthecaseduetolackofinfrastructureandlocalfacilitiesaswellasthechemicalcomplexityoftheplasticsusedinmanyconsumerproducts.Therearealsosomewhoarguethatanintegratedeconomicandtechnicalsolution,catalysedthroughavoluntaryindustry-ledcontribution,iscentraltoarrestplasticwasteflowsbymakingusedplasticsavaluablecommodity,incentivizingtheirrecovery,andacceleratingtheindustrializationofpolymer-to-polymertechnologies(Forrestetal.2019).However,asBorrelleetal.(2020)conclude,withoutsignificantreductionsinplasticwastegenerationthereislittleprospectthatthevolumesofmarineplasticswilldecline.Somebottom-upactionsarebeginningtodemonstratethattheycanhelpreduceparticularformsofmarineplasticpollution©iStock/Dony86MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENT(e.g.plasticgrocerybags,productscontainingmicrobeads,plasticbottles)(XanthosandWalker2017;Dauvergne2018;Schuyleretal.2018).However,nosingle-solutionstrategycanreduceannualleakageofplasticstotheocean,evenbelow2016levels,by2040(Borrelleetal.2020;Lauetal.2020).Forexample,anambitiousrecyclingstrategywithasignificantscale-upofcollection,sortingandrecyclinginfrastructureanddesignforrecyclingcouldreduceleakagein2040,butonlyby38percentrelativetobusiness-as-usual(i.e.65percentabove2016levels).Throughtheimplementationofmultiplesynergisticsysteminterventionsbothupstreamanddownstream,plasticpollutionflowstotheoceancouldbereducedtoanestimated5millionmetrictonsperyearby2040,areductionof80percentrelativetobusiness-as-usual(ThePewCharitableTrustsandSYSTEMIQ2020).However,thelargevolumesofwastefromdenselypopulatedcoastalareas,agriculturalrun-off,transport,wastewatertreatment,greywater,wasteexportandfisheriesaredeflectingthefullenvironmentalandsocialcostsintotheglobalcommonsandcontributingtostrikinglyhighlevelsofmarinepollution,especiallyinAsiaandinmanydevelopingcountries.TheimpactsofthelargevolumesofpersonalprotectiveequipmentandotherplasticitemsgeneratedduringtheCOVID19pandemicarestilltobedetermined(Adyel2020),butevenbeforethepandemicthevolumeofplasticsflowingintotheoceanswasestimatedtobeontracktodoublebetween2010and2025(Dauvergne2018).Manyindustryandcivilsocietyinitiativesareaimingto“turnoffthetap”ofplasticproduction(Birkbeck2020;Borrelleetal.2020;ThePewCharitableTrustsandSYSTEMIQ2020).Reducingplasticproductionthroughelimination,expansionofconsumerreuseoptionsornewdeliverymodels,implementedinconjunctionwithotherstrategiessuchassubstitution,increasedcollectionandrecycling,andsecuredisposalofresidualwasteforamaximumreductionofplasticpollutionflowsoffersthelargestreductionofplasticpollutionandcanoftenrepresentanetsavingsincoststoconsumersandproducerswhileprovidingthebestopportunitytoreduceGHGemissions(ThePewCharitableTrustsandSYSTEMIQ2020).Thecurrentsituation,ratherthanbeingspecificallydesignedtomeetthechallengesofmarineplasticpollution,isamixtureofwidelyvaryingbusinesspractices,increasinglevelsofplasticproduction,andverydifferentnationalregulatoryandvoluntaryarrangements.Thereislittlepolicycoordinationamongstates,andnationalandsubnationalpoliciesareuneven,withloopholes,erraticimplementationandinconsistentstandards(Dauvergne2018;Forrestetal.2019;Birkbeck2020).Asthepressuresandcomplexitiesoftacklingtheplasticscrisismountup,includingtheneedtoaddressmarinelitterandplasticpollutioninareasbeyondnationaljurisdiction(ABNJ),discussionsonglobalgovernanceprocesseshaveintensified(Borrelleetal.2017;Dauvergne2018;Schneideretal.2018;UNEA2018;Forrestetal.2019;UNEP2019d;MaelandandStaupe-Delgado2020).Analyseshaveshownthatnoneoftheinternationalpoliciesagreedsince2000includesaglobal,binding,specific,measurabletargetlimitingtheextentofplasticpollution,leadinggovernments,businesses,46andmanyincivilsocietytonowcallforabindingglobaltreatyonplasticpollution(MuirheadandPorter2019;Karasiketal.2020;WWF,theEllenMacArthurFoundationandBCG2020).Suchaglobalagreementwouldneedtobeconsistentwithongoinglegislativeprocessescoveringregulation,incentivesandfiscalinstruments,inordertoreducemarinelitterandplasticpollutionandimprovesocial,economicandenvironmentalimpactsalongtheplasticvaluechain;improvereportinganddatasharingbyindustriesandproducers;enhanceandharmonizestandardsandlabelling;andensuregreatertransparencyintradeandsubsidies(RaubenheimerandUrho2020).©iStock/LamiadLamai87MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTFigure9:Timelineforglobalmarinelitterandplasticinitiatives,lawandpolicies4.2Governance,legislation,coordinationandcooperationAnumberofinternationalbindingagreements/conventions,protocols,initiativesandcooperationprocesses,suchastheGlobalPartnershiponMarineLitter(GPML)(Box6),47provideafoundationforafutureglobalgovernancearrangement(UNEP2016a;RaubenheimerandMcIlgorm2018;UNEP2018e;UNEP2020a).Thetimelineformarinelitterandglobalinitiatives,lawsandpoliciessince1960isshowninFigure9.4.2.1InternationalagreementsandinitiativesonmarinepollutionTheUnitedNationsConventionontheLawoftheSea(UNCLOS)isthemostfullyencompassinginternationalinstrumentonpollutionfrommarineplastics.Itisthelegalframeworkgoverningallmarineactivities,andactivitiesthatmaycausemarinepollution,andestablishesgeneralprinciplesandrulesforglobalseagovernance(e.g.seeFarrellyetal.2020).ThisConventionistheonlybindingframeworkthatrequirescountriestoadoptregulationstoprevent,reduceandcontrolpollutionfrombothmarine-andland-basedsourceswhichmayenterthemarineenvironment(UNEP2018e).ItencompassesStates’requirementstoprevent,reduceandcontrolmarinelitterfromshippingandfishingactivities,amongothers.TheInternationalConventionforthePreventionofPollutionfromShips(MARPOL)isthemajorInternationalMaritimeOrganization(IMO)conventionregulatingaccidentaldischargesofpollutantsfromships(IMO2016,2019).Itprohibitsthedisposalofanyformofplasticfromshipsandrequiresallvessels,includingfishingboats,todotheirutmosttopreventthelossofplasticitemsoverboardduringoperations.48Largervesselsarealsorequiredtodevelopgarbagemanagementplansand/orgarbagerecordplanstoensurethatship-basedpollutionisminimized.Inaddition,thereisanIMOActionPlantoaddressmarineplastic88MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTlitterfromships.49TheLondonConventiononthePreventionofMarinePollutionbyDumpingofWastesandOtherMatter(LC)anditsLondonProtocol(LP)preventPartiesfromdumpingwastestreamsthatcontainplasticorsimilarsyntheticmaterialsintothemarineenvironment(UNEP2018e).WorkinggroupsestablishedundertheauspicesoftheIMOandthegoverningbodiesoftheLondonConventionanditsProtocol,forwhichIMOdischargessecretariatfunctions,areexploringwaystotightenmechanismsandfurtherlimitthedischargeofmacro-andmicroplasticsfromvesselsandfromwastestreamsauthorizedundertheLC/LP.TheBaselConventionontheControlofTransboundaryMovementsofHazardousWastesandtheirDisposal50istheagreementwiththegreatestrelevancetocontroloftransboundarymovements,environmentallysoundmanagement,andpreventionandminimizationofthegenerationofplasticwaste(OECD[OrganisationforEconomicCo-operationandDevelopment]2009;SecretariatoftheBaselConvention2015;RaubenheimerandMcIlgorm2018)(Box7).Asstatedinitspreamble,thePartiestotheBaselConventionare“mindfulthatthemosteffectivewayofprotectinghumanhealthandtheenvironmentfromthedangersposedby[hazardousandother]wastesisthereductionoftheirgenerationtoaminimumintermsofquantityand/orhazardpotential.”(SecretariatoftheBaselConvention2015).51In2019,inDecisionBC-14/12,theConferenceofthePartiestotheBaselConventionunanimouslyadoptedthePlasticWasteAmendments,introducingnewcategoriesforplasticwasteinAnnexesII,VIIIandIXtochangethescopeofplasticwastecoveredbytheConvention.Since1January2021,186Statesandoneregionaleconomicintegrationorganizationareboundbytheamendments.ThismakestheBaselConventiontheonlygloballegallybindinginstrumentthatcurrentlyandspecificallyaddressesplasticwaste.PartiesarenowrequiredtocontroltransboundarymovementsoftheplasticwastecoveredundertheproceduresestablishedbytheConvention.AllplasticwasteandmixturesofplasticwastegeneratedbyPartiestotheConventionwhicharetobemovedtoanotherPartyaresubjecttothepriorinformedconsent(PIC)procedure,unlesstheyarenon-hazardousanddestinedforrecyclinginanenvironmentallysoundmannerandalmostfreefromcontaminationandothertypesofwaste.TheConvention’sprovisionspertainingtoenvironmentallysoundmanagement,aswellaswastepreventionandminimization,alsoapplytothelistedtypesofplasticwaste.Non-hazardousplasticwasteslistedinAnnexIXcanbemovedacrossPartieswithoutanyspecificcontrolundertheConvention.Theamendmentsassuchdonotimplyabanontheimport,transitorexportofplasticwaste,butratheraclarificationofwhenandhowtheConventionappliestosuchwaste.In2002,inrelationtoplastics,theConferenceoftheParties(COP-6)adoptedtechnicalguidelinesfortheidentificationandenvironmentallysoundmanagementofplasticwastesandfortheirdisposal.Atits14thmeeting,inDecisionBC-14/13,theCOPdecidedtoupdatethetechnicalguidelinesonplasticwastes.Asmallintersessionalworkinggrouphasbeenestablishedforthispurposeandworkiscurrentlyongoing.Thedraftupdatedtechnicalguidelinesontheidentificationandenvironmentallysoundmanagementofplasticwastesandfortheirdisposalwerepresentedatthe12thmeetingoftheOpen-endedWorkingGroupoftheBaselConvention.TheStockholmConventiononPersistentOrganicPollutants(POPs),whichisbindingon184PartiesasofMay2021,haslongcontrolledvariousPOPsusedasplasticadditiveswithaviewtotheireliminationorreduction.TheStockholmConventionrequiresPartiestoprohibit,eliminateorrestricttheproduction,use,importandexportoflistedintentionallyproducedPOPs.ItalsorequiresPartiestoreduceoreliminatereleasesofunintentionallyproducedPOPsandhasprovisionsonthemanagementofstockpilesandwastesconsistingof,containingorcontaminatedwithPOPs.ThisrequirementisparticularlyrelevantinthecaseofopenburningofplasticswhichresultsinunintentionallyproducedPOPs.PartiesmustensurethatstockpilesconsistingoforcontainingchemicalslistedineitherAnnexAorAnnexBandwastes,includingproductsandarticlesuponbecomingwastes,consistingof,containingorcontaminatedwithachemicallistedinAnnexA,BorC,aremanagedinawaythatisprotectiveofhumanhealthandtheenvironment.52TheStockholmConventioncontrolsvariousPOPsusedasadditives,flameretardants,waterandoilrepellentsandInSectionVIofDecisionBC-14/13,theBaselConvention’sConferenceofthePartieswelcomedtheproposaltoestablishaBaselConventionPartnershiponPlasticWasteanddecidedtoestablishaworkinggroupofthePartnership.50ThegoalofthePartnershipistoimproveandpromotetheenvironmentallysoundmanagementofplasticwastesattheglobal,regionalandnationallevelsandpreventandminimizetheirgenerationsoastoreducesignificantlyand,inthelongterm,eliminatethedischargeofplasticwasteandmicroplasticsintotheenvironment,inparticularthemarineenvironment.Fourprojectgroupswereestablishedtosupporttheimplementationofitsworkplan:plasticwastepreventionandminimization;plasticwastecollection,recyclingandotherrecovery,includingfinancingandrelatedmarkets;transboundarymovementsofplasticwaste;andoutreach,educationandawareness-raising.PilotprojectsaretobeimplementedundertheBaselConventionPartnershiponPlasticWastetoimproveandpromotetheenvironmentallysoundmanagementofplasticwasteandtopreventandminimizeitsgeneration.Box7:TheBaselConventionPartnershiponPlasticWaste89MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTplasticizersinplasticsorinthemanufactureoffluoropolymers.ThisrequiresPartiestoeliminatetheirproductionanduse,aswellastheirimportandexport(SecretariatoftheStockholmConvention2020).InternationaltradeofAnnexAPOPsisonlypermittedforthepurposeof“environmentallysound”disposal;however,thisdoesnotincluderecovery,recycling,reclamation,directreuseoralternativeusesofPOPs.WastesinthiscategorymaynotbetransportedacrossinternationalborderswithouttakingintoaccounttheBaselConvention.Thesemeasurescanbeappliedtolitteredplasticwastethatsorbstoxinsalreadypresentinthesurroundingenvironment,inordertopreventthere-entryofbannedPOPsintothemarket(RaubenheimerandMcIlgorm2018).Inearly2021thePOPsReviewCommittee(POPRC),asubsidiarybodyresponsibleforreviewingPOPsforlistingintheStockholmConvention,foundthatUV-328,anadditiveinplasticproducts,satisfiesthescreeningcriteriasetoutinAnnexD,namelypersistence,bioaccumulation,potentialforlong-rangeenvironmentaltransport,andadverseeffectstohumanhealthand/ortheenvironment.AdecisionbyafuturemeetingoftheCOPcouldtriggeritslistingintheAnnextotheConventionrequiringPartiestotakeactiontowardsitsreductionorelimination.Anumberofotherinternationalagreementsareapplicabletomarinelitter,includingplastics.In2016theConventiononBiologicalDiversityadoptedadecision53onthepreventionofmarinelitter(SecretariatoftheConventiononBiologicalDiversity2016a),drawingonanearlierreport(SecretariatoftheConventionBiologicalDiversity2016b)ontheimpactsofmarinelitteronmarineandcoastalbiodiversity.ThisdecisionalsoprovidesalinktotheworkoftheRamsarConventiononWetlandstoprotectmigratorybirdsthatdependonthesecriticalhabitats.54OtherbodiesorlegalagreementsrelatingtothemanagementandreductionofmarinedebrisincludetheConferenceofthePartiestotheConventiononMigratorySpeciesofWildAnimals,whichadoptedaresolutiononthemanagementofmarinedebrisin2014,andtheFAOCodeofConductforResponsibleFisheries,whichsetsoutstandardsforfishingvesselstoensurethatgarbageisstoredon-boardanddischargedeffectivelyatport,andthatthelossoffishinggearisminimized.TheprovisionsoftheCodeofConductcandefactobecomebindingthroughtheapplicationofotherinstrumentssuchasUNCLOSortheUnitedNationsFishStocksAgreement(UNFSA),animplementingagreementwhichbuildsonUNCLOS.Inaddition,thedisposaloffishinggearatseaistreatedasdisposalofgarbageunderMARPOLAnnexVandisthereforeforbidden.AswellastheamendmentstotheBaselConvention,tradepoliciesareimportantinhelpingtoreduceplasticpollution,forexamplebyhaltingtheexportofplasticwastetocountrieswithoutadequatewasteinfrastructureorputtinginplaceimportrestrictionsandbansonplasticwaste(Birkbeck2020).Atthesametime,however,governmentssupporttheirplasticindustriesthroughimporttariffsandsubsidies(Birkbeck2020).55TheWorldTradeOrganization(WTO)hasauniqueroletoplayinregardtotrade-relatedaspects.Thereareanumberofconcreteoptions,onwhichWTOmemberscantakeaction,whichwouldsupportinternationaleffortstoreduceandphaseoutplasticpollutionandaligntradepolicieswiththeseobjectives.Theyincludeincreasingthetransparency,dataonandmonitoringofplastictradeflows,supplychainsandtrade-relatedmeasuresrelevanttoreducingplasticpollutionandtransformingtheplasticseconomy;developingasharedunderstandingoftheroleoftradeandtradepolicyintheglobalplasticseconomy,bothupstreamanddownstream,andthedevelopmentdimensions;promotinginformation-sharinganddialogueontrade-relatedpolicies,measures,innovationsandbestpracticesrelevanttoreducingplasticpollutionandtransformingtheplasticseconomy;encouragingcoherencebetweendomesticandtradepolicies;reducingtradebarriersandpromotingtechnologytransferforgoodsandservicesthatreduceplasticpollution,andpromotingtransformationoftheplasticseconomy;encouragingvoluntarytrade-relatedtargetsandpledgestoreducetheproduction,tradeanduseofunnecessaryproblematicplastics,includingthroughthereductionofenvironmentallyharmfulsubsidies;andusingcapacitybuildingtosupporttrade-relatedeffortsbydevelopingcountriesthathelpreduceplasticpollution,includingthroughproduction/exportofnon-plasticsubstitutes/alternatives.TheWTOandothersettings,suchastheBaselConvention,couldalsoadvancedialogueandactionontheseoptionsatministerialconferencesandcooperatewithotherinternationalorganizations,intergovernmentalprocessesandmulti-stakeholderpartnershipstostrengthentheabilityofthemultilateraltradingsystemtodeliveronitscoreobjectiveofsustainabledevelopment(Birkbeck2020).4.2.2SoftlawinstrumentsVariousglobalstrategiesandsoftlawinstrumentssupportthereductionofmarinelitterandplasticpollution:the2030AgendaforSustainableDevelopment,theFAOCodeofConductforResponsibleFisheries,theGlobalProgrammeofActionfortheProtectionoftheMarineEnvironmentfromLand-basedActivities(GPA)(UNEP/GPA2020),theStrategicApproachtoInternationalChemicalsManagement(SAICM)(whichhasadoptedaGlobalPlanofAction),andtheHonoluluStrategy(whichprovidesaglobalframeworkforthepreventionandmanagementofmarinedebris)(UNEP2018e).Thesenon-bindingagreementsenableandencouragetheputtinginplaceofstandardsandactivitiesacrossthelifecycleofplasticsandinsomecases(e.g.the2030AgendaandtheHonoluluStrategy)includetargetsandtimelines.TheStrategicApproachtoInternationalChemicalManagement(SAICM)andtheSustainableDevelopmentGoalsalsoprovidethebasisforintegratedandsustainablemanagementofchemicalsinrelationtotheoceans.AdoptedbytheFirstInternationalConferenceonChemicalsManagement(ICCM1)on6February2006inDubai,SAICMisapolicyframeworkforthepromotionofchemicalsafetyaroundtheworld.SoundmanagementofchemicalsandwasteisaspecifictargetunderSustainable90MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTDevelopmentGoal(SDG)12onSustainableConsumptionandProductionand,withrespecttooceans,chemicalsandwasteisalsoreferredtounderSDG3onGoodHealthandWell-being,SDG6onCleanWaterandSanitation,andSDG14onLifeBelowWater,whichhasaspecifictargettopreventandsignificantlyreducemarinepollutionofallkinds,particularlyfromland-basedactivities,includingmarinedebrisandnutrientpollution,by2025.TheSustainableDevelopmentGoalsReport2019(UnitedNations2019)reiteratedthatcoastalareasworldwideremainaffectedbyland-basedpollutants,includingsewageandnutrientrun-off,leadingtocoastaleutrophication,degradedwaterquality,andimpairmentofcoastalmarineecosystems.Analysisofthecleanwaterindicator,ameasurementofthedegreeofoceanpollution,showsthatwaterqualitychallengesarewidespreadbutaremostacuteinsomeequatorialzones,especiallypartsofAsia,AfricaandCentralAmerica.ThereportconcludesthatwhiletheSDG14targetsaremostlyaspirationalratherthanfullyquantifiable(CormierandElliott2017),analysesoftrendsfrom2012to2019showpositivechangesinnearlyhalftheworld’scoastalregions.Furthergainsareconsideredpossible,buttheywillrequirepolicycommitmentsatthecountryleveltoexpandaccesstowastewatertreatment,andreducechemicalandnutrientrun-offfromagriculturalsources,aswellasglobalcommitmentstoreduceplasticdebris.TheG20adoptedtwodeclarationsatits2017summitinGermany,oneofwhichwastheG20MarineLitterActionPlan.AG20OperationalFrameworkwasputforwardwhichpromotesseveralactionstoreducemarinelitter,includingsustainablewastemanagement,wastewatertreatment,awareness-raisingandincreasedstakeholderengagement.TheMarineLitterActionPlanalsoestablishesavoluntaryGlobalNetworkoftheCommitted(GNC)toshareknowledgeandexperienceregardingtheactionplan.ThesemeasureswerereaffirmedattheG20summitinJapanin2019(G202019),includingappropriatenationalactionsforthepreventionandsignificantreductionofdischargesofplasticlitterandmicroplasticstotheoceans.Therewasalsoacallforothermembersoftheinternationalcommunitytoshare,asacommonglobalvision,theOsakaBlueOceanVision,whichaimstoreduceadditionalpollutionfrommarineplasticlittertozeroby2050throughacomprehensivelifecycleapproachthatincludesreducingthedischargeofmismanagedplasticlitterthroughimprovedwastemanagementandinnovativesolutionswhilerecognizingtheimportantroleofplasticsforsociety(IRP2021).Inaddition,thismeetingendorsedtheG20ImplementationFrameworkforActionsonMarinePlasticLitter.OtherglobalinitiativesincludetheCommunityofOceanActiononMarinePollution(UNDepartmentofEconomicandSocialAffairs),whichsupportsmembers’implementationofmarinepollution-relatedvoluntarycommitmentsthroughexchangeofknowledgeandbestpractice,andtheOECD’sRE_CIRCLEproject,whichprovidespolicyguidelinesonresourceefficiencyandthetransitiontocircularity.564.2.3RegionalinstrumentsandkeyactionstoimprovewastemanagementWhilebindinginternationalinstrumentssuchasagreements,conventions,protocolsandotherinitiativesprovideabasisforaction(Rochmanetal.2016b),theyareconstrainedbytheirmandates.Fargreatercoordinationandinvestmentsareneededtotackletheincreasingvolumesofplasticbeingproducedwhichendupintheoceans.LaversandBond(2017),Löhretal.(2017)andRaubenheimerandMcIlgorm(2018)suggestthatexistingguidelines,suchastheBaselConventionguidelinesfor“upstreamalterationsinproductdesign”,canbeusedtohelpreducethequantityandthehazardsofplasticwaste.ThisisinlinewiththeOECD(2016)guidelinesonextendedproducerresponsibilityandsupportsthedevelopmentofglobalindustryguidelinesthataimspecificallytoreducebothhazardandquantityofplasticwaste.Regionalgovernancearrangementscanpotentiallyacceleratetheuptakeoflegislativeandindustryinitiatives.SomeofthemostimportantregionalinstrumentsaretheRegionalSeasConventionsandActionPlans57(refertoAnnexI),anumberofwhichincludevariousmeasurestoreducemarinelitter,aswellasmonitoringandpublicawarenesscampaigns58(UNEP2018d).Althoughoceandumpingisprohibited,notallcountriesaresignatoriestotheinternationalagreements,sothattheyarelesseffectivethantheycouldbeincontrollingmarinelitterandplastics.However,mostRegionalSeasinstrumentsaddressindustrypollutionandemissionsintowaterbodiesthroughthedutytopreventpollutionfrompointsources,andthreeRegionalSeasConventionshaveadoptedprotocolsspecifictothedumpingofplasticsfromvessels.InAfricasomestateshaveagreedundertheBamakoConvention,59theregionalinstrumentrelatedtotheBasel,RotterdamandStockholmConventions,tostrengthenthemanagementofhazardouswaste,includingplasticsandelectronicwaste(e-waste).TheyhavealsoagreedtoreinforcecollaborationandcreatemoresynergiesbetweentheBamakoConventionandtheglobalchemicalsconventions(UNEP2020b).TheEastAfricanCommunity(EAC)DevelopmentStrategyoutlinesbroadstrategicgoalsforthatregion.Itrecognizesalackofeffectivelegislation,inadequatefundsandservicesformunicipalwastemanagement,andthelowprioritygiventosolidwastemanagementasmajorchallengesfacingmembercountries.Althoughthisstrategydoesnothavearecommendedstrategicinterventiononwastemanagementingeneral,itdoesincludeharmonizationofpolicyinterventionsonthemanagementofplasticsandplasticwasteandtheestablishmentofanelectronicwastemanagementframework.SpecificwastetargetsoutlinedundertheEACDevelopmentStrategyincludearegionalpolicyonthemanagementofplasticandplasticwasteinplaceandanEACe-wastemanagementframework.Whilethisregionalpolicyhasyettobefullydeveloped,manycountrieshaveintroducedtotalandpartialbansonplasticproductssuchasbags(UNEP2018c).91MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTIntheSouthPacificregiontheWaiganiConvention,adoptedin2001,istheregionalimplementationoftheinternationalhazardouswastecontrolregimeandannexesofwastecategories(theBasel,RotterdamandStockholmConventions).Theobjectiveofthisconventionistoreduceandeliminatetransboundarymovementsofhazardousandradioactivewastes,minimizetheproductionofhazardousandtoxicwastesinthePacificregion,andensurethatdisposalofwastesintheConventionareaiscompletedinanenvironmentallysoundmanner.TheWaiganiConventionincludeseachParty’sExclusiveEconomicZone(200nauticalmiles)ratherthanextendingonlytotheouterboundaryofeachParty’sterritorialsea(12nauticalmiles)asundertheBaselConvention.Itisalsostronglyrelatedtothe1972ConventiononthePreventionofMarinePollutionbyDumpingofWastesandOtherMatter(theLondonConvention).TherehasbeeninvestmentinimprovingwastemanagementundertheWaiganiConventionthroughGlobalEnvironmentFacility(GEF)fundedworkonreducingtheunintentionalreleaseofpersistentorganicpollutants(UPOPs)andtheEuropeanUnionfundedPacWasteprojects(SecretariatoftheSouthPacificRegionalEnvironmentProgramme2017).WithintheAssociationofSoutheastAsianNations(ASEAN)thereisapatchworkofgovernancearrangements,includinggenerallegislativeframeworksformunicipalsolidwaste(MSW);marinelitterandanti-litterlegislation;sourcereductionthroughmaterialrestriction;landfillregulations;wastetoenergylaws;someextendedproducerresponsibilitylegislation;tradepolicies;greenprocurement;andrecycledcontentpolicies.TheAsia-PacificEconomicCooperation(APEC)VirtualWorkingGrouponmarinedebris,partoftheAPECChemicalDialogueandOceansandFisheriesWorkingGroup,ispromotinginnovativesolutionstomarinedebris,especiallythroughsustainablewastemanagement.However,thereisnointegratinggovernanceprocesstobringallthesetogether.GovernmentsinEastAsia,recognizingthattheseasaroundtheircoastlinesareamongtheworld’smostpolluted,haveputinplacevariousmitigationinitiativestodecreaseplasticpollution,includinggovernmentpoliciesandwastemanagement;education,media,monitoringandoutreachcampaignsbyNGOs;andthedevelopmentofalternativeproductsandmethodsofproductionandrecyclingbyinventorsandbusinesses(Waltheretal.2020).Japanhasestablishedalegalsystemtopromotethereductionandrecyclingofpackagingandpackagingwaste,andhasestablishednationaltargetsandahierarchyofexistingandpotentialinterventions(JapanMinistryofEnvironment2014).Similarly,withintheEuropeanUnionthereisawastegovernancelandscapecomprisingpolicystructures,regulationsandstandardsatmultipleadministrativelevelsaimedatreducingandrecoveringmaterialsovertheresourcelifecycle.TheoverallapproachoftheEuropeanUnionisdemonstratedinitsplasticsstrategy,circulareconomyactionplan,andtheSingle-UsePlasticsDirective(EuropeanUnion2019b;EuropeanCommission2020).EuropeanUnionMemberStateshavealsoestablishedtargetstoachievea90percentcollectiontargetforplasticbottlesby2029;plasticbottlesmusthaveatleast25percentrecycledcontentby2025and30percentby2030.60Applicationofthe“polluterpaysprinciple”hasalsobeenstrengthenedbyintroducingextendedproducerresponsibility(Arroyoetal.2017).TheoutcomesoftheXXIIMeetingoftheForumofMinistersofEnvironmentforLatinAmericaandtheCaribbeaninFebruary2021includedapollutionandwasteagenda.MinistershighlightedtheneedtourgentlyaddresstheissueofmarinelitterandmicroplasticsandadoptedanewActionPlanonregionalcooperationforthemanagementofchemicalsandwaste2021–2024.614.2.4NationalstrategiesandlegislationNational-levelarrangementsaddressingwasteareveryuneven(e.g.vanTruongandPing2019;Ca2020)andhaveledtosituationsinwhichwasteisbeingdistanced(bothphysicallyandpsychologically)frommillionsofconsumersbybeingsenttolocationswithpoorlydevelopedwasteinfrastructure(WasteAtlas2014)orallowedtoflowintotheglobalcommons(Dauvergne2018;Birkbeck2020).Analysisofaglobalpolicyinventoryfoundthatofthetop20coastalcountriesproducingmismanagedplasticwastefromcoastalland-basedsources(basedonestimatesfrom2010inJambecketal.2015),anumberdidnothaveanationalpolicydocumentnorwasthereareferencetooneintheliteraturereviewed(Karasiketal.2020).However,increasingconcernsaboutimportshaveledsomereceivingcountriestoputinplacemorerigorousinspectionprocesses(O’Neill2018),whicharecausingwastetobedivertedtocountrieswithlessrigorouswastemanagementstandards(Dauvergne2018).Thereareagrowingnumberoflegalinitiatives,includingbansoncertainsingle-useplasticproducts,plasticbagsandmicrobeadproducts(XanthosandWalker2017;Dauvergne2018;Karasiketal.2020).Analysisoftheglobalpolicyinventory(Jambecketal.2015)indicatesthattheupwardtrendintheoverallnumberofpoliciesadoptedatthenationalleveltoaddressplasticpollutioninthelast20yearsislargelyduetonewpoliciesdirectedtowardsaddressingpollutionfromplasticbags(Karasiketal.2020).Morethan60countriesnowsupportbansondifferenttypesofplasticitems(UNEP2018d),andcountriesincludingCanada,theNetherlands,theUnitedKingdomandtheUnitedStateshaveputinplacelegislationtobantheuseofmicrobeadsincosmeticsandpersonalcareproducts(XanthosandWalker2017).In2019EUministersagreedtobanby2021alonglistofsingle-useplasticproductsbasedonsurveysandmonitoringofbeachesandwaterways(EuropeanUnion2019b).62Bansonspecificitemscanbeasteptowardsmorecomprehensivepoliciestoreduceplasticproductionandreplaceplasticproductswithmoresustainablealternatives.CostaRica,forexample,intendstobecomethefirstcountryintheworldtobanallsingle-useplasticproductsby2021.InAntiguaandBarbudatheintroductionofabanonplasticbagshasledtofurthermeasuresforbiddingtheimportoffoodplastic92MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTcontainersandutensils.IntheUnitedStatesabanonStyrofoam(expandedpolystyrene)containersinNewYorkCity,whichhadbeenchallenged,wasreinstatedin2017andsubsequentlyimplementedinothercitiesandstates,63basedonevidencethatitwasnoteconomicallyviableorenvironmentallyeffectivetorecyclethesecontainers.Atthenationallevel,levieshaveprogressivelybeenplacedonplasticbagconsumption.InIrelandplasticbagshavebeenbanned;inGermany,India,Thailand(2020)and34countriesinAfricabansarealsoinplace,althoughinsomecasesregulationshaveyettobeimplemented(Babayemietal.2019).64In2013MauritaniabecamethefirstcountryinAfricatoadoptaplasticbagban,followingthelossofupto70percentoflivestockduetoplasticingestion.65Muchofwhathasbeenreportedaboutthebans,andotherleviesandtaxesaimedatreducingplasticcarrierbagpollution,hasfocusedonshort-termeffects;however,significantreductionsintheconsumptionofplasticbagshaveconsistentlybeenmeasuredwithin24monthsoftheintroductionofsuchinstrumentsandtypicallywithin12months(Karasiketal.2020).Unfortunately,for50percentofregulationsatnationalandlocallevelstherearenomonitoringsystemsordatatoassesstheireffectivenessorimpact;nearlyone-thirdoftheremainderregistereddramaticdropsinplasticbagconsumptionandpollutionandone-fifthreportedlittletonoimpact,mostprobablyduetolackofenforcementoraffordablealternatives.Therearealsovariousloopholesandexceptionsinmanyofthesebans(e.g.concerningthickness),whichreducestheireffectiveness(UNEP2018d).Agrowingandimportantcomponentofmanynationalwastemanagementpoliciesisbeachandcoastalclean-up.Inananalysisofthepotentialmitigationgainsofremovingplasticsfromthemarineenvironment,DeFrondetal.(2019)concludedthatremovingplasticsnotonlyreducedtheiroverallvolume,butalsocutdownontheamountofplasticsenteringimportantroutesofexposuretotheadditivesandotherhazardouschemicalsassociatedwiththemviawildlifeingestion.Theyalsoshowedthatinmostjurisdictionsplasticpollutionpreventionandclean-upareconsideredtobechemicalpollutionpreventionandclean-up,andthatshorelineclean-upscanremovelegacypollutantssuchaspolychlorinatedbiphenyls(PCBs)fromtheenvironment.ThesefindingsareconsistentwithShermanandvanSebille(2016),whoconsideredcoastalareastobeoptimallocationsformicroplasticsremoval.Inareaswheregreateramountsofplasticdebrisconcentrate,DeFrondetal.(2019)calculatedthatplasticcollectiontechnologiescouldremove31percentoftotalmodelledmicroplasticsmassby2025comparedto17percentintheNorthPacificGyre,wheretheplasticsarealsomucholder(Lebretonetal.2019).Coastalareascontainrelatively“young”particleswithhigherleachablecontent;thus,byremovingplasticdebrisfrombeachesnewplasticitemsarepreventedfromenteringtheoceansandexposingmarinelifetotheirleachablechemicalcontent.ForPCBs,DeFrondetal.(2019)concludedthattheclean-upofplasticsandtheirassociatedchemicalsismoreefficientintermsofremovinghazardouschemicalsandpollutantsonshorelinescomparedtooceangyresbecauseofthehigherdensityofmaterialsalongbeaches.Forexample,theyestimatedthatbeachcollectionsremovedapproximately85,000timesmorePCBsthanthesegyres.However,Schneideretal.(2018)reportedthatoutof103scientificstudiesonclean-upefforts,nonementionedtheuseofpost-collectionwastetreatmentpathwaysoroptions,ortheimpactsofthesebeachlittercollectionactivities.Aparticularchallengeforbeachclean-©iStock/PornchaiSoda93MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTupsismarinewastecontainingblackplastic.Analysesshowthatblackplasticispotentiallynon-compliantwithregardtolimitsdefinedbytheEU’sRestrictionofHazardousSubstancesDirective(ShawandTurner2019).Thisalsoraisestheissuethatrecyclingelectronicwasteformaritimeindustrialuses,suchasintransport,fisheriesandaquaculture,ispotentiallyanimportantpathwayfortheintroductionofhazardouschemicalsintothemarineenvironment.RecentdataonglobalflowsofelectronicwastechallengeconventionalunderstandingofthetradeintheassociatedplasticwasteasaNorthtoSouthflow(Lepawskyetal.2017);databasesofe-wasteflowscompiledbytheauthorsrevealedacomplexweboftrans-frontiermovements,66withsmallgroupsofimmigrantscollectingorbuyingdiscardedelectronicsandshippingthemtotheircountriesoforigin.Thisanalysisshowsthat,undercertaincircumstances,whendiscardedelectronicsarerefurbishedandsoldoninformalworkersmayearnalivingwageevenwhereinformale-wasterecyclingoperationsarelegallyprohibited(O’Neill2018).Giventhemultiplelivesofelectronicitemswhichcanberepurposed,andtheplasticsassociatedwiththem,Lepawskyetal.(2017)proposedanethicalframeworkand“workerscripts”,basedonvariousUNinitiatives,thatincludeworkersafety,sufficientwages,andshareddecision-makingandprofits(ILO2017).Inadditiontoregulatoryandlegislativeprocesses,anumberofvoluntaryactionshavebeenundertakenaspartofnationalstrategies(UNEP2018d).Manyhavefocusedonsingle-useplasticproducts.Theyincludepublic-privatepartnershipsandvoluntaryagreementsinsteadofbans(e.g.Austria),andvoluntaryreductionstrategieswhichallowthepopulationtochangetheirconsumptionpatternsandmakeitpossibleforaffordable,eco-friendlyalternativestobecomeavailableonthemarket.ExamplesincludeFishingforLitter(KIMO,theinternationalenvironmentalorganizationforlocalauthorities),whichinvolvesthefishingindustryincollectingthewastecaughtintheirnets;ZeroWasteCities,67whichpromotesacontinuousefforttophaseoutwaste(ratherthanburningorlandfillingit)andtocreatesystemsthatdonotgeneratewasteinthefirstplace;andWRAP(2018),whichworkswithgovernment,localauthoritiesandindustryintheUnitedKingdomtosupportbetterrecyclingandinnovation.684.2.5OthertypesoffinancialandregulatoryinstrumentsIntheabsenceofanypricingpoliciesforwaste,industriesandconsumersbehaveasifthedisposalofwasteisfree(Matheson2019)althoughthecollectionanddisposalofdiscardedgoodsconsumesvaluableresourcessuchaslabour,fuelandland.Someofthesecostsmaybepriced,butenvironmentalcostssuchasthoserelatedtocarbonandmethaneemissionsareusuallynotpricedatallwhilechargesforimproperdisposalareoftennotenforced.Cheapandobscurepricesforwastedisposalhaveencouragedwaste-intensiveproductionandconsumptionpatternsratherthanrecycling(IRP2019).Therearearangeoffiscalinstruments,requiringlegislation,toenhancewastemanagementandsupportcircularity(OECD2019).Theyincludetaxes,feesandcharges,deposit-refundschemes,tradablepermitschemesandsubsidies.Taxesincreasethecostofpollutingproductsoractivities,therebydiscouragingtheirconsumptionorproduction.Inwastepolicytheyareusedtointernalizetheenvironmentalcostsofwastemanagementanddisposal,makingmoreenvironmentally©iStock/sutiporn94MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTharmfultreatmentmethodscostlierandcreatingincentivestousealternativeapproachessuchasrecovery,reuseandrecyclingandotheractionshigherupthewastehierarchy.Landfillandincinerationtaxesaregoodexamples,butinsomecasestheyhaveledtoanincreaseinillegaldumpingandopenburning.Inpoliciesthatsupportcircularity,taxesmaybeusedtodiscourageconsumptionofnaturalresourcesincludingbiologicalresources,mineralsandrawmaterials.Somecountrieshaveintroducedageneralretailtaxforwastemanagementpurposes(e.g.theJamaicaEnvironmentalProtectionLevy).Specificexcisefeescanalsobeappliedwhichinternalizeenvironmentalandsocialcosts.Sometimesreferredtoasadvancedisposal,recyclingfeescanbeleviedattheretailorproductionlevel;examplesincludefeesontyresandplasticbags(XanthosandWalker2017).Retail-ledfees,althoughexpensivetoadminister,arehighlyvisibletoconsumersandcanthushaveanimpactonbehaviour(InternationalMonetaryFund2019).Taxesinindividualjurisdictionscanleadtoregulatoryarbitrage(acorporatepracticeofutilizingmorefavorableregulationsinonejurisdictiontocircumventlessfavorableoneselsewhere)andtheneedforbordertaxesonplasticsimports(Forrestetal.2019).Nevertheless,thereisseriousinterestinplasticproductiontaxesaroundtheworld,especiallywhenthefundscanbehypothecatedtoimprovewasteinfrastructure(Parts2019;Walkeretal.2020).Fees,leviesandchargescanbeusedtorecoverthecostsofprovidinggoodsorservices.Unliketaxes,useoffeesandchargesmeansthepersonpayinggetssomethinginreturninproportiontothepayment.Inwastemanagementthismayincludeitemssuchasmunicipalwasteservicechargesorlandfillgatefees.Wastemanagementchargesaregenerallyappliedlocallytocoverthecostsofwastecollection,andinsomeinstances(e.g.landfillcharges)thefeesarehypotheticallyforimprovementstowastemanagementorthemitigationofimpactssuchasGHGemissions.Leviesonwastedisposalhavethepotentialtocomplementproductstewardshipschemes.Leviesincreasethecostofwastedisposalandmakealternativesmoreattractive.Insomecountriesfundsfromlevieshavebeenusedtosupportproductstewardshipschemes(e.g.assistingwithstart-upcosts).Fundingsupportfromwasteleviescancreatedisincentivesforproductstewardshipbydiscouragingindustryself-fundinginitiatives,aswellasbydiscouragingindustryownershipoftheproblem.Carefuldesignofwasteleviesandtheallocationoftheirrevenueiscriticaltoensuringtheysupportratherthanworkagainstproductstewardshipschemes(e.g.NewZealandMinistryofEnvironment2019).Forexample,thereareconcernsthathighwasteleviesincentivizeillegalorimproperwastedisposal,includingacrossborders(Interpol2020).Depositrefund/returnsystemsplaceasurchargeonthepriceofaproductlikelytopollutetheenvironment.Inwastemanagementthismayincludemeasuresusedtointernalizetheenvironmentalcostsofend-of-lifeproductssuchasproductlevies,advancedrecyclingfeesandextendedproducerresponsibilitymeasures.Thesesystemsaresuccessfullyusedinmanycountries,e.g.intheBalticcountries,Denmark,GermanyandKenya(Balcersetal.2019).Systemsmandatedbylaw,withclearstakeholdersandroledescriptionsthatguaranteeequaltreatmentforallsystemparticipants(includingproducers,importersandretailers),arelikelytobethemosteffective.Itisalsorecommendedthatthedeposit-returnsystemcoverawiderangeofone-wayandrefillablebeveragecontainers:returntotheretailerhastheclearadvantageofbeingmoreconvenientforconsumers.Subsidiescanbeusedtoencouragebetterwastemanagement,wastereduction,andinvestmentsinimprovedwastemanagement.Theymaytaketheformofdirectsubsidiesortaxexemptions.However,amajorbarriertorealizingcircularityistheextremelylowdirectcostoffossilfuel-basedplasticscausedbywidespreadsubsidies(UNEP2019d)andsignificantinvestmentinfossilfuel-basedchemicalproduction(AmericanChemistryCouncil2020;EuropeanChemicalIndustryCouncil2020).Thelowcostoffossilfuel-basedplasticsgivesrisetoperversemarketpricesignalswhichputmanytechnologies,suchasthoseforrecyclingpost-consumerplasticsandresins(e.g.Ragaertetal.2017;RahimiandGarcia2017),atadisadvantage(Forrestetal.2019)andwillconsiderablyaltertradeflowsincomingyears.However,subsidiescanbeusedinenvironmentalpolicytodirectlyorindirectlyreducetheuseofsomethingthathasaprovennegativeeffectontheenvironment,asinthecaseofGHGemissionsarisingfromplasticproduction(Posenetal.2017).Takingalifecycleapproachtofeedstockandenergysubstitutionintheplasticindustryopensupavenuestoincludeclimatemitigation(ZhengandSuh2019),aswellassubstitutability,inthewaysubsidiesareapplied(UNEP2019d).Linkedtothisaretradablepermitschemes,whichcanbeusedtoallocateemissionorresourceexploitationrights;suchmeasuresareusedinwastepolicy,forexample,intheUnitedKingdom’sLandfillAllowanceTradingScheme.4.2.6ExtendedproducerresponsibilityExtendedproducerresponsibility(EPR)isconsideredacornerstoneofwastepolicy,particularlyintheOrganisationforEconomicCo-operationandDevelopment(OECD)countries(Filhoetal.2019).AccordingtotheOECD’sdescription,EPRaimstomakeproducersresponsiblefortheenvironmentalimpactsoftheirproductsallalongtheproductchainfromdesigntothepost-consumerphase(OECD2016;OECD2019).Ifproperlydesigned,EPRalsoalleviatestheburdenonpublicadministrationsofmanagingend-of-lifeproducts;inaddition,itisimportantbecauseithasbeenestimatedthatifnoactionistakentoreduceplasticproductionandconsumption,businessescouldfaceaUS$100billionannualfinancialriskby2040ifgovernmentsrequirethemtocoverwastemanagementcostsatexpectedvolumesandrecyclability(ThePewCharitableTrustsandSYSTEMIQ2020).EPRcanincentivizewasteprevention,reuseandrecycling,forexamplebyintroducingclearlabellingtohelpinformalsortingprocesses(UNEPandConsumersInternational2020;Walkeretal.2020).Itcantakemanydifferentformsandneedstobeadjustedtolocalcontextstoavoidinadequatetransferoftechnology(e.g.throughtakingintoaccountinformalworkforce-basedinfrastructureandidentifyingsustainableandinclusivepathwaystofuture-proofthelivelihoodsofwastepickers).95MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTEPRhasbeenamainpolicyinstrumentintheEU,contributingfinanciallytotheongoingcollectionandrecyclingofwastestreamsthatcontainplasticaswellasencouragingtheadoptionofpracticesbycompanies,theeducationofconsumers,andmovingtowardsthemoreambitioustargetsundertheEUGreenDeal(EuropeanCommission2018b,2019).69TheEUhasalsoadoptedEPRforcertainsingle-useitemsaswellasfishinggearthroughdirectivesthatwillbeimplementedincomingyears(EuropeanUnion2019,2020).ImplementingEPRasameasuretowardsdownstreamwastemanagementisbeingexaminedbytheEuropeanCommissionasameansofreducingmarinelitterthroughactiononsingle-useplasticproductsandplasticfishinggear(EuropeanCommission2018).ThisapproachisalsobeingdevelopedinSoutheastAsiaandEastAsia(ASEANFrameworkofAction2019andCOBSEARAPMALI2019).70UndertheGermanEPRschemeforpackaging,companiespayafeeofaroundEuro450perton;theEPRfeespredominantlyaimtocoverthesystem’sannualoperatingcosts.FrancehasalsomadeeffortstouseEPRforend-of-lifeboatsundertheLondonConvention.Byapplyingthisapproachtotheestimated27.12millionmetrictonsofplasticpackaginginChina,Indonesia,Malaysia,thePhilippines,ThailandandVietNam,useofEPRcouldraiseatotalofEuro12.2billion(WWF2020).Althoughthisisaveryroughestimate,itgivesanindicationoftherevenue-raisingpotentialofEPRsystemsandtheirpotentialtohelpsetupeffectivewastemanagementinfrastructureinSoutheastAsia.AmajorchallengeinusingEPRformarinelitteristhatithasbecomeclearafteranumberofyearsthatproducerresponsibilityorganizationsmanagingtheprocessdonotassumetheentirecostofmanagingthecorrespondingwasteflows(Forrestetal.2019),andthereforepublicadministrationscontinuetosustainpartofthecoststhatshouldbebornebyproducersandpotentiallyincludedinthepricespaidbyconsumers.Secondly,producerresponsibilityorganizationsdonotsufficientlyincentivizerecyclabilityandecodesignbyindividualproducers;andthirdly,insufficienttransparencymakesitdifficultforpublicadministrationstoassesscompliance,amongothers(OECD2016).TodayEPRislimitedtoasmallnumberofproducts(e.g.electricandelectronicequipment,batteriesandend-of-lifevehicles).ForalegislativeEPRframeworktoworkeffectively,itneedstoensureharmonizationandtransparencyofimplementation;comparabilityofproceduresandfeelevels;widerproductcoverage;improvementstoseparatecollectionandtreatmentofwastes;extensionofdeposit-refundschemes;andproperproductdesign,especiallycirculardesign(e.g.designforreuseandrecyclability)toimprovethereuseandrecyclinglevelsofend-of-lifeproductsandtheoverallreductionofplasticwastetoensurethetransitiontosustainablecircularity(Filhoetal.2019).FinancialresourcescollectedthroughEPRschemescanalsodomuchtoamplifytheseefforts.Itisclearthatthefocusonlow-costcollectionsolutions,forexamplecollectionofmixedpackagingorcollectionofonlythelowest-costwastestreams,isnotsufficienttoincreaserecyclingofplastics.Instead,EPRshouldbeseenaspartofawiderpolicymixofregulatoryandeconomicinstrumentssuchasrecyclingtargets,bans,product,materialandwastetaxes,pay-as-you-throwschemes,labelling,voluntaryagreements,procurementpolicies,andinformationandawarenesscampaigns,bearinginmindthatproducersshouldnotbedoubletaxedthroughanycombinationoftaxesandEPR.Overall,EPRschemesworkwellifthereisecomodulation71ratherthanflatfeesandwheregovernmentssetnationaltargetsforwastecollection,segregationandrecycling,investinnational/©iStock/ItsananSampuntarat96MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTregionalwastemanagementinfrastructure,andcreateacoherentandtransparentEPRframeworkwithinnationallegislation.Thisframeworkneedstotakeaccountoflocalcharacteristicssuchastheroleoftheinformalsector,monitorcompanies’plasticsuseandenforceEPRlegislation.Companiescouldreducetheunnecessaryuseofplasticsandtransparentlydisclosetheamountofplasticpackagingtheyareputtingonthemarket;takeresponsibilityforproducts’end-of-lifeimpacts,fromthedesignandchoiceofmaterialstocollection,sorting,recyclinganddisposal;andsupportthecreationofEPRschemesandworkwithgovernmentsandotherpartnerstoimprovewastemanagementsystemsandraiseconsumerawareness.ThekeytothesuccessofanEPRapproachisinvestmentandtheincentivizationofindustry(Forrestetal.2019).4.2.7CoastalzonemanagementpoliciesCoastalzonemanagementpoliciesareimportantinstrumentsfordeliveringwasteabatementpoliciesoncelitterhasenteredtheenvironment,especiallyiftheyareimplementedonacatchment-to-coastbasis(Windsoretal.2019).Litteringonlandandatseaisillegalbehaviourwhichdamagesbothterrestrialandmarinelifeandhasanenormouscostforsocietyandtheenvironment.Manygovernmentsinvestsignificantresourcesinwasteabatementinfrastructure,policies,strategiesandoutreachprogrammestointerveneatdifferentstagesalongtheplasticwastepathway;however,theseprogrammesaregenerallylesstargetedtowardsplasticsoncetheyhaveenteredtheenvironment.Anti-littercampaignseducatethepublicandencouragepeopletoimprovetheirwastedisposalbehaviour,whilecommunityprogrammessuchastheInternationalCoastalCleanupandothercitizenscienceandcommunityprojectsencouragemembersoflocalcommunitiestobecustodiansoftheenvironmentbyinvolvingtheminbeachclean-upactivities(Schneideretal.2018;Willisetal.2018).IntheiranalysisofwasteinfrastructurebylocalcouncilsinAustralia,wherelitterclean-upcostswereinexcessofUS$1billionannually,Willisetal.(2018)showedthatifthewastemanagementproportionofthetotalcouncilbudgetwaslessthan8percent,debrisalongacouncil’scoastcontinuedtoincrease.Themosteffectivewasteabatementpolicieswerethosethatintegratedrecycling,litterpreventionandprogrammescombattingillegaldumping.Developingcoastalzonemanagementpoliciesandstrategiesthataddressmarinelitterisavitalpartofthelegislativelandscape,whichisneededtohelpmitigatetheproblemsofplasticpollutionandtheleachingofchemicals(ShermanandvanSebille2016).Resourcemanagerscanoptimizetheireffortsbyfocusingonwasteabatementandundertakingwasterecoveryonbeachesandclosetoshore,wheregreaterquantitiesofchemicalsandmicroplasticscanberemovedcomparedtothesamesizedareaofopenocean.Coastallitterremovalisalsomorecost-effective,aslesstimeandresourcesarerequiredtocleanupbeachesandshorelinesthantocleanupsurfacewatersthousandsofkilometresfromland(DeFrondetal.2018).©iStock/Itsananhelovi97MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTMarineProtectedAreas(MPAs)areanotherimportantpolicyinstrumenttohelpreducemarinelitterandplasticsandtheirimpactsonmarinesystems,andinrecentyearsmanylargeMPAshavebeenestablishedaroundtheworld(Luna-Jorqueraetal.2019).TheactivitiesexcludedorrestrictedinMPAsaremostlytourismandfisheries,butalsominingandconstructionofharboursoroffshorewindfarmsanddumpingofsolidmaterials(Lewisetal.2017).However,thereisgrowingevidencethatfloatingmarinedebrisfromelsewhereisencroachingonMPAs,evenintheopenoceans,sometimesgivingrisetohighconcentrationsofmicroplasticsbeingrecorded(Barnesetal.2018;Luna-Jorqueraetal.2019).IntheMediterraneanananalysisofMPAsshowedthattheywereshelteredfromplasticpollution,butthatthissituationcouldchangedramaticallyduetomismanagementofplasticlitterwithintheMPAsthemselves(Liubartsevaetal.2019).4.2.8EducationandbroadersocialpoliciesandactionsChangingbehaviour,perceptionsandattitudesandraisingawarenessofmarinelitterandplasticpollutionwillrequiregreaterlevelsofoceanliteracy,educationandactioninordertobetterunderstandthevalueofcoastalenvironmentsandthedamagecausedbylittering(Hartleyetal.2018a).AstudybyHartleyetal.(2018b)usingaschoolpackdesignedforEuropeaneducatorsandstudentsaged10-15years72concludedthatforeducators,smarttoolsareneededtosupportwhatisalreadybeingtaughtwithinthenationalcurriculaandenablethemtoworktogetherandsharebestpracticesandexperience.Basedonquestionnairesandobservationsfromover6,000pupilsaged11-13yearsduring2012–2018,Kideysetal.(2018)reportedthatthemarineenvironmentalawarenesstrainingprovidedbythe“IKnowandProtectMySeas”(DTK)programmetoTurkishschoolchildrenprovedtobeveryeffectiveinchanginglitteringbehaviouraswellascreatingawarenessandappreciationofbiodiversity.Thieletal.(2018)usedacitizenscienceprojecttointereststudentsinChile,agedeightto16,inthetopicofmicroplasticsinthemarineenvironment.Thestudentssampled,sortedandcountedsmallplasticpiecesonlocalbeachesandenteredthedataonaninteractivewebsite.Afterwards,theyreportedthattheyhadfoundtheprojectinterestingandfunandwouldbelikelytoparticipateinotherenvironmentalactivitiesinthefuture.Hartleyetal.(2015)implementedanenvironmentaleducationactivitywithschoolchildrenintheUnitedKingdombetweensevenand18,andassessedtheirlevelofconcern,understandingandself-reportedbehaviourregardingmarinelitterbeforeandafterengaginginthisactivity.Afterit,theyweresignificantlymoreconcernedaboutmarinelitter,hadabetterunderstandingofcausesandnegativeimpacts,andreportedimprovedbehaviour.Thesestudiessupportotherresearchshowingthatknowledgeacquisitionisnotsufficienttoelicitbehaviouralchange(Damerelletal.2013;Geigeretal.2019).Moreworkisneededonengagingteachers,andonteachingmethodsthatallowchildrenopportunitiestoexploremarinelitterandplasticpollutionthroughfieldwork,useofeffectivebooks(e.g.Stachowitsch2020),andcreatingtheirownmaterialsandresponsesratherthanfollowingapredeterminedprogrammeofeducation,inlinewithtransformativepedagogy.4.2.9SocialpoliciesandcommunicationsactionsNudges,norms,longevityofbehaviouralchangesandbehaviouraleconomicsareallimportantininfluencingpro-environmental,behaviouralchangeinpopulations(McGuire2015;Krijnenetal.2017;Geigeretal.2019).Toincreasesocialawarenessofmarinelitterandplasticpollution,andshiftbehaviourfromuseandthrowawaytoreduce,reuse,repurposeandrecycle,thereneedstobegreaterunderstandingbyandengagementofthepublicaswellasclearcommunicationsstrategiestoensurethesuccessofgovernmentandindustryinitiatives(Dilkes-Hoffmanetal.2019b).Todatetherehasbeenlittlefocusondocumentingthegeneralpublic’sattitudestomarinelitterandplasticpollution.Dilkes-Hoffmanetal.(2019b)examinedpublicbeliefsandattitudestowardsplasticsinAustralia,whichprovidesinsightsonaglobalscale.Theirsurveyresultsindicatethatthepublicviewplasticsasaseriousenvironmentalissue.Plasticsintheoceanshadthehighestmeanratingforseriousnessoutofnineenvironmentalissues,followedbytwootherissuesrelatingtoplasticwasteproductionanddisposal.Therewasanassociationofplasticswithfoodpackagingandconvenience,buttherewasamorenegativeassociationwiththeuseofplasticsoverall;80percentofrespondentsindicatedadesiretoreduceplasticsuse,andthemajorityofrespondentsbelievedthatpaperandglassaremoreenvironmentallyfriendlypackagingmaterialsthanplasticseventhoughthisisnotalwaysthecase(Stantonetal.2020;UNEP2021b).Theseandotherstudiessuggestthatthepublicisoverlysensitivetoplasticsandpotentiallyseesthemasabiggerenvironmentalissuethanotherssuchasclimatechange(Khanetal.2019).However,analysesofoutcomesshowthatmanyrespondentsdidnottranslatetheiraspirationstoreduceplasticuseintoactionforavarietyofreasons,forexampleduetohabits,normsandsituationalconstraintssuchaspersonalfinance(wherebyindividualscanonlyaffordtopurchaseitemsinsmallquantitiesinplasticintensivepackagedamounts)orbecauseresponsibilityforreducingtheuseofdisposableplasticitemswasplacedonindustryandgovernment.Socialscienceresearchonriskawareness,consumerpreferences,predictorsofusagebehaviour,andpoliticalandpsychologicalinterventionstrategies(e.g.Heidbrederetal.2019)showsthatpeopleappreciateandroutinelyuseplasticdespiteaclearawarenessoftheassociatedproblems.Unfortunately,whatismissingfromthisresearchisagenderedperspectiveonnormsandbehavioursthatwouldleadtoagreaterunderstandingofsocialactionsthatcouldbetakentoreduceplasticpollution.98MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTWithrespecttobio-basedplastics,researchindicatesthatthereisanoverallpositiveperceptionamongthepublic(Dilkes-Hoffmanetal.2019a).Biodegradableplasticsaregenerallyseenasbetterfortheenvironmentthan“normalplastics’’andeven“easilyrecyclable”plastics.However,themajorityofrespondentssaidtheywereunsurewhetherbiodegradableplasticshadnegativeenvironmentalimpacts,wouldlikemoreplasticitemstobebiodegradable,andwoulddisposeofbioplasticitemsinrecyclingbins.However,ashighlightedbyUNEPandConsumersInternational(2020),consumersoftendonotknowhowtodisposeofbiodegradableplasticscorrectlyorfacilitiesforhandlingbiodegradableplasticsdonotyetexist.Thatreportunderlinesthecriticalrolegovernmentsandlocalcouncilsplayindrivingthedevelopmentofstandards,labellingandwastemanagementoptionsforbioplasticsandalternativematerials.Forexample,Francehaspassedanewlawunderwhichplasticsarenotallowedtobereferredtoasbiodegradableunlesstheyarehomecompostable;theEuropeanUnionhasindicatedthatitisalsointerestedintakingactioninthisregard.Buildingonpeople’sperceptionsof“bio-based”products(i.e.positiveandnegativeassociations,mixedfeelings),Sijtsemaetal.(2016)showedthatthistermismostoftenassociatedwithpositiveenvironmentalqualitiessuchas“naturalness”and“environmentallyfriendly”buttherearealsonegativeenvironmentalassociations,linkedespeciallytotechnologicalandhealthissues.Thiscancauseuncertaintyandmixedfeelingsandhighlightsboththecomplexityof,andalackoffamiliaritywith,theconceptofbio-basedplastics.Consumershaveaholisticperceptionofbio-basedproducts.Theycombinetheirperceptionsofdifferentaspectsoftheproductinanevaluationofthewholeproductconcept,includingtheproduct’sorigin,itsusability,theproductionmethod,theproportionofbio-basedmaterialsused,price,packagingmaterialsandappearance.Theresultsillustratethegreatvarietyofconsumerperceptions,bothcognitiveandaffective,ofbio-basedproductsandthecarewithwhichtermsthatarepoorlyunderstoodbythegeneralpublicshouldbeintroducedintopolicies.Forexample,somebio-basedplasticsmayalsocontainproblematicadditivesandsubstancesthatarenotbio-based,whichcanmaketheseproductsasproblematicasproductsthatarenotbio-basedforrecycling/composting.Thishighlightstheproblemsthatcanarisewhenpoorlyunderstoodtermsareincreasinglybeingcommunicatedtoconsumersonpackagingandunderlinestheneedforbettereducationandmoreaccessibleinformationtotacklethatproblem.©iStock/Halfpoint99MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENT4.3Businesssolutionsandenvironmentallysoundtechnologiesandinnovations4.3.1IdentifyingmarketfailuresandsolutionsintheglobalizedplasticsindustryThegrowingquantitiesofdiscardedplasticwastearetheoutcomeofmultiplemarketfailureslinkedtothelowpriceofvirginfeedstocks,thepresenceofsubsidies,poorwastemanagement,widespreaduseofplasticitems,andthrow-awaybehaviour(Borrelleetal.2017;Law2017;Dauvergne2018;Borrelleetal.2020;ThePewCharitableTrustsandSYSTEMIQ2020).Forexample,losseswhichoccurduringsortingandreprocessingmeanonly5percentofthevalueofmaterialsisretainedforsubsequentuse;thisrepresentsalossofvaluewithrespecttopackagingwasteofbetweenUS$80-120billionperyear(EllenMacArthurFoundation2016).DuringthepasttwodecadesplasticproductionhasbeenshiftingfromNorthAmericaandEuropetowardsAsiaand,morerecently,Africa;China,forexample,accountsfornearly30percentofglobalproductionofpolyurethanesandthermoplastics(Geyer2020).Plasticshavesubstantiallyoutpacedanyothermanufacturedmaterialintermsofproductionbecauseoftheirlowcost,durability,versatility,andresistancetodegradation(Dauvergne2018).Consumptionofplasticsisincreasing,especiallyinemergingeconomies,whereathree-foldincreasehasbeenforecastforthemiddleofthecentury73(LebretonandAndrady2019;AmericanChemistryCouncil2020;Bond2020;Borrelleetal.2020;EuropeanChemicalIndustryCouncil2020;Geyer2020;Lauetal.2020;ThePewCharitableTrustsandSYSTEMIQ2020).Globally,individualsdiscardonaveragemorethan50kgofplasticayear,althoughthisamountissignificantlylowerinsomedevelopingcountriessuchasIndia(Dauvergne2018;Statista2019).WhiletheplasticsupplysidewasnegativelyaffectedbyCOVID-19,withproductionin2020decreasingbyapproximately0.3percent(Maliketal.2020;Statista2021a),largevolumesofpersonalprotectiveequipment(PPE)andotherplasticitemswereconsumeddaily,addingsignificantlytothevolumesofplasticwasteonbeachesandelsewhere(Adyel2020).TheWorldHealthOrganizationrequesteda40percentincreaseindisposablePPEproductioninviewofmonthlyglobalconsumptionandwasteof129billionfacemasksand65billiongloves;inthecaseofPPEuseintheUnitedStatesthiswouldmeanthatanentireyear’sworthofmedicalwastewouldbegeneratedinjusttwomonths(Adyel2020).Single-useplasticproductsaccountforoverone-thirdoftheplasticsproducedeveryyear,with98percentmanufacturedfromfossilfuels(Charlesetal.2021).Regionaldifferencesinproductionvolumes(PlasticsEurope2019;Statista2021b)reflectbothuserdemandandthepriceoffossilfuelfeedstocks(Geyer2020).Forexample,intheUnitedStatessince2010therehavebeensignificantinvestmentsofmorethanUS$200billioninnewplasticandchemicalplants,stimulatedbythelowcostofrawmaterials,especiallynaturalgasderivedfromfracking(AmericanChemistryCouncil2020).Arecentforecastofglobalplasticproductionis1,100millionmetrictonsin2050,notincludingfibres,asignificantincreasefromcurrentlevels(Geyer2020;Statista2021b).Yetonly20polymerproducersproducemorethanhalfofallsingle-usewastegenerated(Charlesetal.2021),while20institutionalassetmanagersholdoverUS$300billionworthofsharesintheparentcompaniesofthesepolymerproducersand20oftheworld’slargestbanksareestimatedtohavelentalmostUS$30billionfortheproductionofthesepolymerssince2011.74Thelargestvolumesofplasticwastearegeneratedbythepackaging,consumerandinstitutionalproducts,andtextilesectors.In2017thepackagingsectoraccountedfor36percentofglobalplasticproductionandwasresponsiblefor46percentoftotalplasticwastegenerated(Geyer2020).Thebuildingandconstructionsector,whichin2017accountedfor19.7percentofallglobalplasticproduction(resin,fibresandadditives),generatedonly4percent(14millionmetrictons)ofglobalplasticwaste.Geyer(2020)calculatedthat438millionmetrictonswereaddedtothein-usestockofplasticsin2017while328millionmetrictonsleftitaswaste;inotherwords,110millionmetrictonsofplasticswereaddedtothein-usestock.However,verifyingthesevolumesisstillverydifficultduetolackoftransparencyandaccesstoindustryinformation(ZinkandGeyer2018;Zinketal.2018).Geyeretal.(2017)estimatedthat168millionmetrictonsofrecyclableplasticwastewereproducedbetween1988and2016andthatby2050,ifproductioncontinuesalongthesamecurve,9,000millionmetrictonsofplasticwastewillhavebeenrecycled,12,000millionmetrictonsincinerated,and12,000millionmetrictonsdiscardedtolandfillsorthenaturalenvironment,comparedto5,000millionmetrictonstoday(Figurei).Thisrepresentsanenormousreservoirofplasticwaste(Geyer2020).Changingattitudesabouttheproblemscreatedbyplasticwastearecausingpoliticiansandindustriestoexploitanti-plasticsentimentsthroughenvironmentalconsumerism(UNEPandConsumersInternational2020)andtoconsiderwaysofkeepingthevalueofplasticsinthemarketthroughfeedstocksubstitution,expansionofconsumerreuseoptions,andnewdeliverymodelstohelpavoidwaste(EllenMacarthurFoundation2016;UNEPandInternationalTradeCenter2017;tenBrinketal.2018;Borrelleetal.2020;Lauetal.2020;ThePewCharitableTrustsandSYSTEMIC2020;EllenMacArthurFoundation2021).Manyglobalbrandcompanieshavealreadyputinplaceplanstochangetheirapproachestopackaginguseconsistentwithnational-levelrecyclingschemes,collectionandrecycling,andtomakeallpackagingreusable,renewableorrecyclable.75Therearenowmanyinitiativesinvolvingtheplasticindustry,businesses,governments,internationalorganizationsandcivilsociety(UNEP2018d).ExamplesincludetheNewPlastics100MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTEconomyGlobalCommitmentledbytheEllenMacArthurFoundation(2018)incollaborationwithUNEP,whichunitesmorethan500businesses,governmentsandotherorganizationsthroughacommonvisionofcircularityinregardtoplastics;MarineLitterSolutions,theframeworkoftheGlobalPlasticsAlliance(anallianceof74plasticassociationsaroundtheworld),whichsupportsover355projectsaimingtopreventleakageofplasticsintotheenvironment;theAlliancetoEndPlastics,throughwhichmorethan80membercompaniesandpartnersaimtoendplasticwasteintheenvironmentandaddresstheplasticwastedatagapthroughPRISM(PlasticRecoveryInsightandSteeringModel);theInternationalSolidWasteAssociationMarineTaskForce,whichishelpingtoquantifyleakagerateswiththePlasticPocketCalculator;OperationCleanSweep,avoluntaryprogrammethatpromotesproperpelletcontainmentalongtheentireplasticsvaluechain;PlasticBank,whichprovideslarge-scalesustainablepremiumsineveryrecyclingcommunityaroundtheworldusingblockchaintechnologytoauthenticaterewards;Plasticforchange,whichmakesitprofitableforcompaniestotransitionawayfromvirginplasticsandstartsourcingrecycledmaterials;NextWave,whosememberscommittodecreasingthevolumeofplasticandnylonwastebeforeitenterstheoceansanddemonstratingthecommercialviabilityandadvantagesofintegratingocean-boundplasticsintotheirsupplychains;theOceanRecoveryAlliance,whichbringstogethernewwaysofthinking,technologies,creativityandcollaborations(includingthePlasticsDisclosureProjectandtheGlobalAlertPlatform)toimprovetheoceanenvironment;andCirculateCapitalOcean,aninvestmentmanagementfundwhichprovidesfinancingforsmallandmedium-sizedenterprisesindevelopingcountriesincludingIndia,IndonesiaandThailandtosetuprecyclingfacilitiesforawiderangeofplastics.76Actionstocurbthegrowthinplasticproductionwillbecrucialtoachievingreductionsinplasticpollutionflows;underanambitiousscenariopeakvirginplasticcouldbereachedby2027andlevelsofvirginplasticproductionreducedby11percent(±1percent)by2040relativeto2016levels(Borrelleetal.2020;Lauetal.2020).Someinitiativesarenowfocusedonshiftingproductionawayfromfossilfuel-basedplastics.SeatotheFuture,anindustryproducerresponsibilityorganization-ledcontribution,existsattheresinproductionlevel.Itaimstogeneratefundsthroughinvestmentintransformativetechnologiesandtosupportenvironmentalremediation,thusaddressingtheperversemarketpricesignalthathaspreventedemergingtechnologieswhichcanrecycleusedplasticsintohigh-puritypolymersfromachievingglobalcommercialization(Forrestetal.2019).ThinkBeyondPlasticsdevelopsandcommercializesbio-basedmaterialsthatcanreplacefossilfuel-basedplasticsandassistsinthedevelopmentofmanufacturingandthedesignofpackingusingthesematerials.774.3.2ReuseandrecyclingCurrentlevelsofplasticrecycling,whichhavebeenestimatedtobelessthan10percent,fallwellbelowglobalrecyclingratesforothercommoditiesandresourcessuchaspaper(58percent),iron(70percent)andsteel(98percent)(Dauvergne2018;Geyer2020).In2017industryfiguresforpackagingindicatedthat93percentofglobalplasticusedwasvirgin,7percentrecycled(ofwhich98percentwasdowncycled),andonly2percentendedupinaclosedloop(EuropeanUnionNetworkfortheImplementationandEnforcementofEnvironmentalLaw2019).Problemswithrecyclingplasticsarisewhenwastestreamsaremixedorwhenthereuseofplasticsisrestricted,forexampleinthecaseoffoodpackagingintheEUunderRegulationECNo282/2008.Inthiscasetherecyclingprocessmustbeauthorizedandmanagedbyanappropriatequalityassurancesystem,guaranteeingthequalityoftherecycledmaterials(Schweitzeretal.2018).However,plasticrecyclingandreuseisgainingtractionwiththehelpofnewtechnologiesandlegislativerequirements.Mostcurrentcommitmentsbygovernmentsandbusinessesaretargetedtowardsspecificplasticitemsorfocuseddownstreamtowardsincreasingrecyclinganddisposal.Forexample,theEUhasputinplacearequirementthatmanufacturersincludeaminimumof30percentrecycledplasticinPETbottlesby2030,andtheIndonesiangovernmenthassetatargettoreducemarineplasticdebrisby70percentby2025.Jointindustryinitiativestocollectmarinelitteronshoreandoffshorealsocontributetomeetingtheneedtodisposeofwastethroughrecyclingandreuse.Examplesofprivate-publicpartnershipsaroundtheworldincludetheFlipFlopicompany,whichconstructedadhowoutofflipflopsfoundontheKenyancoast;WasteFreeOceans,inpartnershipwithFapil,whichusesplasticscollectedatseatomanufacturearangeofhouseholdandcleaningproductsincludingbrushes,mops,broomsandbucketsforbothdomesticandprofessionalpurposes;Bureo,whichmanufacturesskateboards,clothingandsunglassesfromfishnetssourcedfromover50fisheriesinSouthAmericaandpartnerswithnumerouscompanies,suchasPatagonia,toincorporatematerialmadefromrecycledfishnetsintotheirproducts;NortonPoint,whichmakessustainablesunglassesoutofoceanplasticsfromthecanalsandcoastlinesofHaiti;AdidasandParley,whichteameduptomakehigh-performancesportswearthatturns“thethreatintoathread”usingwastecollectedoncoastlines,remoteislandsandcoastalcommunities;Swaggr,whichmakescomfortablehigh-performancesocksfromrecycledplasticbottlescollectedalongcoastlines;AmericanExpress,whosecreditcardsaremanufacturedprimarilyfromoceanplastic;Tesco,asupermarketchainintheUnitedKingdomwhichhasputreversevendingmachinesinitsstorestocollectplasticbottlesandgivecustomersmoneyinexchange;FairHarbor,whichmakesmen’sandwomen’sswimwearfrompost-consumerrecycledplasticbottles;andBedfordTechnology,whichtakesbothpost-consumerandpost-industrialHDPErecyclablesandengineersthemintostructuralanddurablebuildingmaterialsthatareaheavy-dutywoodalternative.Plasticrecyclingiscurrentlyundertakenusingmechanicalandchemicalprocesses.Mechanicalrecyclingisusedfornon-fibreplastic,andincreasinglyforrecycledpolyesteryarns.This101MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTprocessinvolvesgrindingupbottlesintoflakes,washingthem,andthenmeltingthembackintonewpolyesterchips.Chemicalrecycling,whichcombinesvariousplastic-to-fuelandplastic-to-plastictechnologies,turnsplasticintoliquidsorgases,whichcanbeusedtomakenewplastic.Mostrecyclednyloncomesfrommanufacturingwaste(i.e.pre-consumer)andpost-consumerwastesuchasfishingnetsandcarpets.However,inpracticelargevolumesofthesewastesareburned.Evenifplastic-to-plasticchemicalconversionisrapidlyscaledup,itwouldaddressonly6percentofplasticwastein2040andcurrentlyhashighenergyrequirements,withGHGemissions110percenthigherthanmechanicalrecyclingand9percenthigherthanlandfilling(ThePewCharitableTrustsandSYSTEMIQ2020).Moreover,thereareconcernsaboutplastic-to-fuelprocessesbecausetheyperpetuatetheburningoffossilfuels.Ontheotherhand,plastic-to-plasticor“repolymerization”istechnicallychallengingtoscaleupsufficientlytomakeitfinanciallyviable,althoughindustrialexamplesareemerging.78Theproductionofhundredsofdifferentplasticpolymersandproductsalsocomplicatestherecyclingpotentialofplastics(Geyeretal.2016;Zinketal.2018).Forexample,thermoplasticscanbemeltedwhenheated,hardenedwhencooled,andreheated,reshapedandfrozenrepeatedly;thermosetssuchaspolyurethane,vinylesterandarangeofresinsundergoachemicalchangewhenheated,meaningtheycannotbere-meltedandreformed.ThemanyhundredsofadditivescanalsoaltertherecyclingpotentialofplasticsandmayrestricttheirreuseundertheStockholmConventionduetothelikelyreleaseofhazardouschemicalsintotheenvironment(Hansenetal.2013;Hahladakisetal.2018;SecretariatoftheStockholmConvention2020).Productiondataforadditivesaretypicallyomittedfromplasticproductionstatistics,butthereissomeevidencetosuggestthatnon-fibreplasticscontain,onaverage,around7percentadditivesbymass.Inthecaseofadditivessuchasphthalates,usedassofteningandanti-crackingagents,orflameretardants,thereisadangerthatrecyclingwillreleasethesehazardouschemicals(Hahladakisetal.2018).Therearealsoissuesconcerningnon-intentionallyaddedsubstances(NIAS),forexampleinrecycledplastics,andwhereguidancefortheriskassessmentofthesesubstancesinfoodcontactmaterialsandarticlesistobedeveloped(Horodytskaetal.2020).Plasticscaneventuallybedestroyedthermallywithorwithoutenergyrecovery.Arangeofenvironmentalandsocialconcernsareassociatedwiththeconditionsunderwhichincinerationisundertaken,especiallywhenitispoorlymanaged.TheseconcernsincludeGHGemissions,particulatematter,emissionsofpollutantscontainingPOPs,contaminationbyheavymetals(Lietal.2017),socialissuesassociatedwiththelocationofplants,aswellastheneedtocontinuetogeneratewastetokeepincineratorsworking.Theenvironmentalandhealthimpactsofwasteincineratorsstronglydependonthedesign,managementanduseofBestAvailableTechniquesandBestEnvironmentalPractices,alongwithcountries’capacitiestocarryouteffectivesupervisionandmonitoring.Therearesituationsinwhichby-productsaremanaged,butthisrequiresintensivemaintenanceandmanagementofinfrastructure(Quinaetal.2018).Forexample,Steheletal.(2019)analysedtheuseofseparatedwastestreams,undertheEUWasteFrameworkDirective,toreplacefossilfuelsinwaste-to-energyoperationsforurbanheatingsystems;theconclusionwasthatwasteincinerationneedstobedoneinacontrolledmanner,sothatemissionsandimpactscanbecontrolled.4.3.3DevelopmentofalternativematerialsGreenandsustainablechemistryinnovationcanplayanimportantroleinadvancingcircularity,andprovidesignificant©iStock/CarryOnDroning102MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTimprovementstoplasticsderivedfromfossil-fuelfeedstocks,bydesigningmolecules,materialsandproductsthatcanbemoreeasilyrecycledandup-cycledthanthosecurrentlyonthemarket(UNEP2021a).Thiscanbeachieved,forexamplebyeliminatingchemicalsofconcerninproductsthatcurrentlypreventsoundrecoveryandrecycling(UNEP2019b).Forproductsthatareintentionallyreleasedtotheenvironmentandhaveopen-environmentalapplications(e.g.pesticides,cosmetics,biocides,orpharmaceuticals)greenandsustainablechemistryinnovationcouldhelpdesignmoleculesandmaterialsthatrapidlymineralizeintheenvironmentwhileretainingdesiredfunctions.Thecontributionofgreenchemistrytomanyendmarketswhereplasticsarecurrentlyusedissignificant,andinnovationsintransportationindustry,theconstructionindustry,foodandpackaging,andwastemanagementneedtotakethisintoaccount.EvenamidtheCovid-19crisis,theglobalgreenchemicalmarkethasbeenestimatedatUS$93.7billionin2020andisprojectedtoreacharevisedsizeofUS$167.1billionby2027,growingatacompoundannualgrowthratecloseto10percenttoreachUS$77.4billionby2027.79,80Asyetonlyverysmallvolumesofbiosourcedandbio-basedplasticsarebeingproduced81(EuropeanBioplastics2020).In2018,2.11millionmetrictonswereproduced,lessthan1percentofthetotalvolumeofplasticsproduced.Ofthisamount,43percentwasbiodegradableand30percentwasbothbiosourcedandbiodegradable(EuropeanBioplastics2020).82However,themarketsizeforrenewableenergyfrombio-basedfeedstocksismuchlargerthanthatforbio-basedplastics(Posenetal.2017).Thus,foradvancedbio-basedplasticpathwaystotakeoff,theymustnotonlyprovethemselvestechnicallyandeconomicallyfeasible.Anumberoffactorsneedtobeconsideredinshiftingtowardsmorebio-basedfeedstocks(Posenetal.2017).Forexample,thereisheavyrelianceonagriculture,withbio-basedcropstendingtoscorepoorlyonotherenvironmentalmetricssuchasozonedepletion,acidification,eutrophication,wateruseandfoodsecurity(Spierlingetal.2018).Intermsofenergysubstitution,thereisnochangeinthefinalresinproducedandbio-basedpolymerscansubstituteacrossthemarketwithoutanychangestodownstreamproductionmethodsorproductfunctionality.Thisisalsothecaseforbioethylene-basedplastics,butforrenewableproductssuchaspolylacticacid(PLA)thepotentialforsubstitutionismorelimited.Whilebiodegradabilitymaybeanadvantageforpolylacticacidandsomeotherbio-basedplasticsintermsofreducingthevolumesofwastegoingtolandfills,fewcitiesandcommunitieshavetheinfrastructurerequiredforcompostingunderthecorrectconditionssomanyorganizationsusingcompostablebiopolymersarelikelytocontinuetosendtheirwastetolandfills(UNEP2021b).Thismaypresentamajorproblemforbio-basedaswellasbiodegradableplasticsmoregenerally(NapperandThompson2019)(Box4).Thereisalsosignificantconfusionamongconsumersaboutrecyclabilityandbiodegradability,especiallyasdescriptionssuchas“degradable”,“oxo-degradable”,“oxo-biodegradable”and“landfilldegradable”havebeenusedtopromoteproductsmadewithtraditionalfossil-fuelbasedplastics,supplementedwithspecificadditivespromotingdegradability(UNEPandConsumersInternational2020).Overall,replacingonedisposableproduct(e.g.madeofplastic)withanotherdisposableproductmadeofadifferentmaterial(e.g.paper,biodegradableplastic)isonlylikelytotransfertheenvironmentalburdenandcreateotherproblems.Further,toavoidburdenshiftingbetweentheenvironmentalandthesocialdimension,itisimportanttoshiftthefocusofmanufacturerstowardstheproductionofmorecircularandsustainablecommodities(UNEP2021b).©iStock/aydinmutlu103MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENT4.3.4BuildingcircularityforplasticsBuildingcircularityinsupportofsustainableconsumptionandproductionobjectivesacrossthelifecycleofplasticsmeansgoingbeyondthe3Rs(Reduce,ReuseandRecycle),to5RswithRecoverandRedesign(Thompsonetal.2009),andfurtherto7RswithRefuseandRethink(IvardoSulandCosta2014;Ivlevaetal.2018).OtherpatternsofRshavealsobeendesignedforcircularity,suchasReceive,Recycle,Repair,Refill,RentandResell.83Thesearenowbeingusedtodelivernewkindsofservices,forexampleshort-termloansofbrandedproductscanthatbereusedbydifferentconsumersincludeluxuryfashiontofurniture(e.g.fromIKEA)andtoys(e.g.LegohasaservicecalledNetbricksforrentalofitslittleplasticbuildingblocks).Insomepartsoftheworldmovementtowardscircularityisalreadyunderway;forexample,theEuropeanUnion’sStrategyforPlasticsintheCircularEconomy(EuropeanCommission2018b)hassetinmotionacomprehensivesetofinitiatives,withbusinessandgovernmentsrespondingtoachallengeofseriouspublicconcern.Theseinitiativesincludeincreasingtheuptakeofrecycledplasticsandcontributingtomoresustainableuseofplasticsbyimplementingmandatoryrequirementsforrecycledcontentandwastereductionmeasures.Anewframeworkforusinggreenchemistrytosupportthedevelopmentofalternativesaimedatachievinggreatercircularityhasbeendeveloped(UNEP2021b),whichfostersavisionofgreenandsustainablechemistryandemphasizesthepotentialfortheglobalchemicalindustrytobecomefullyalignedwiththeenvironmental,socialandeconomicdimensionsofsustainabledevelopmentbycreatinggreenerandmoresustainablechemistryinnovations,whilealsoaddressingtoxicandpersistentlegaciesassociatedwithpastchemistriesinordertominimizeadverseimpactsacrosstheentirelifecycleofchemicalsandproducts.Akeypartoftheframeworkistokeepprocessesassimpleaspossible,withaminimalnumberofsteps,auxiliaries,energy,andunitoperations,toimprovetheenvironmentalperformanceofmanufacturingmaterials.Finally,animportantpartofbuildingcircularityforplasticsisimprovingthetraceabilityofproductsandtheirconstituentparts.Greenchemistrycanprovideinnovativemoleculesthatensuretraceabilityandcanbeusedtocreateproductdigitalpassports(e.g.compositionofproducts,components,andprocesses).These,coupledwithblockchaintechnologies,canenableend-to-endtraceabilityofsupplychains(Cuietal.2019).Whenaproductfailureoccurs,orwhentheproductistoberecycled,themoleculesanddigitalpassportcanprovidetheinformationneededtoidentifythesuppliersandortheconstituentchemicals(UNEP2021b).Blockchaintechnologiesarerevolutionizingsupplychainoperationsandthetracingofplastics,84whichwillhelpimprovesupplychainqualitycontrolandprotecttheenvironmentandhumanhealthaswellasbuildingconsumerconfidence.4.3.5BusinessengagementFindingsolutionstothemarinelitterandplasticlittercrisiswillrequiregreaterengagementofgovernments,andcivilsocietywithbusinessandindustrytobringaboutthenecessarychangesinpoliciesandbusinesspractices(UyarraandBorja2016;Hartleyetal.2018b;Ashleyetal.2019).Multipletypesofindustrieswillneedtochangetheirbusinesspractices,includingoilandgasextractors,producersofplasticresins,extrudersandproductmanufacturers,automotivemanufacturers,textilemanufacturers,consumerproductcompanies,consumerpackagedgoodscompanies,retailers,wastehauliers,landfillers,materialsrecoveryoperators,wastebrokersandrecyclers.Eachoftheseindustrieshasdifferentandsometimescompetinginterestsinthemarket,andeachfacesuniquechallengeswithregardtoaddressingthiscrisis.Thesizeofabusiness(small,national,regional,international)isalsoasignificantfactorinbothidentifyingchallengesanddesigningsolutions.Somekeychallengestoimprovingbusinessengagementincludedatasharingandtransparency,financing,theregulatoryenvironment,andaccesstoresearchanddevelopment(OceanConservancyandMcKinseyCenterforBusinessandEnvironment2015).TheseissueswerediscussedbythemembersoftheScientificAdvisoryCommitteeonMarineLitterandMicroplastics(SAC),andnominatedstakeholdersrepresentingbusinessandcivilsociety,duringthepreparationofthisassessment.Theirconclusionsaredescribedinthesetofrecommendationsbelow:1)DatasharingandaccesstosolutionsProducersandconvertersneedtodisclosemoreinformationabouttheirproducts:forexample,theamountofplasticsproducedannually,bytype/resincode;resintypeandadditivesusedinplasticproductsorpackaging;percentageofvirginfeedstockinproducts;percentageofrecycledplasticsinproducts;specificsrelatedtobio-basedplastics,includingsource(e.g.ifethicallysourced);andsustainabilityoffeedstock,degradabilityandcompostability.Preferablythereshouldbebuy-intoecolabelling/certificationschemes;internationalstandardsforallchemicals;fulldisclosurebytheplasticindustry,includinganyvoluntary/mandatoryEPSschemestheyrespondto;andreductiontargets.Thepackagingindustryandretailersneedtobetterinformthepublicabouttheuseofplasticsintheirproducts.85Forexample,thevolumesofplasticsused,howmuchgoesintodifferentusesandthegeographicdistribution;whetherproductsandpolymersaregoingintomarketsthatcannotmanagetheirdisposal;theamountsofsingle-useplastic(productsandpackaging)distributedintoeachlocalmarket(globally),bytypeandresincode;alladditivesusedinanyplasticproductsorpackagingproducedandused;resintypeandadditivesusedinplasticproductsorpackaging;thepercentageofvirginfeedstockandrecycledplasticsinproducts;thespecificsofanybio-basedplasticsused,includingsource(ethicallysourced)and104MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTsustainabilityoffeedstock,degradabilityandcompostability;useofeco-labelling/certificationschemes;participationinvoluntary/mandatoryextendedproducerresponsibilityschemes;plasticproductandpackagingreductiontargets;refillandreuserates,durabilityandlifespanandtherighttorepair.Retailersandthepackagingindustrydriveproductionofplastics,astheysetthecriteriaforthetypeofpolymerstheyuseintermsofmarketingandbranding.Onesolutionistodevelopindustryguidelinesonthedifferentfatesofplasticsandalternatives.Governmentandthewastebrokers,recyclingandlandfillindustriesneedtoinformthepublicaboutthequantitiesofpost-consumerplasticmaterialspurchasedannuallybytypesandresincode,theamountofmaterialssoldontorecyclersbytypeandresincode,thebreakdownofquantitiessoldtorecyclersoffshore,includingdetailsrelatedtomarketdestination,andthequantitiesdisposedofduetocontaminationofwastestreams,poorqualityandmarketconditions.86Importantinformationonrecyclability,reusability,anddisposalinstructionswhereaproductisbeingusedneedstobedisplayedonproducts,aswellastheresponsibilitiesofproducersandconsumers.Thisrequiresaconsistentapproachtolabelling,especiallyaboutdisposal,similartotheinternationalstandardsforchemicals.Furtherinformationontheconditionsunderwhichaproductisexpectedto(bio)degradealsoneedtobeprovidedthroughaconsistentlabellingscheme.2)FinancingFinancing(e.g.thoughtheUNEPFinanceInitiative,BlueBonds,plasticfootprintandplasticoffsetting,impactinvestmentandplastic-specificEPRschemes),87couldhelptheprocessofchangebysharinginformationabouttheirusewithindifferentindustries,includinginsurancecompaniesandretailers.Financialincentivesfromgovernmenttoestablishneweconomicentitiesandemploymentopportunities,basedoninnovativedesignofnon-toxicmaterialsusinggreenchemistrysolutionstoreplacetheuseofadditives,suchasinfinishingtextiles,wereseenasvital(Holmquistetal.2016;Gulzaretal.2019)Therealsoneedstobemoreinformationaboutthefullriskstodifferentsectorsoftheuseofplasticstobetteralignwiththedifferentriskprofilesoflenders,investorsandinsurancebrokers,forexamplebycommunicatingaboutthescienceofthecarbonfootprintofplastics.88Trainingcoursesforsmallandmedium-sizedenterprisesonwastehandlingarealsoimportanttoensurethatknowledgeisspreadthroughoutthesupplychainuponwhichtenderingandprocurementdecisionscanbebased.89Someofthekeychallengesvoicedbybusinessrepresentativesincludedmakingclearthefinancialrisksofinvestingintheplastics/petrochemicalindustries;potentialcostsofinaction(i.e.notrespondingappropriatelytopublicdemandforenvironmentallyfriendlyproductsandalternativestoplastics);beingabletoarticulatethefinancialopportunitiesforinvestinginrefillandreusesystemstoreplacesingle-use,alternativenon-toxicmaterialsfordurablereuseapplications;thewaysofcommunicatingthehazardsthatplasticspresenttotheirownconsumersandworkers;andtheanimalhealthandenvironmentalhazardsandpotentialdamagetoreputationandmarketshare.Therewerealsoconcernsabouthowtoachievefulltransparencyanddisclosuretoend-users(consumersandgovernments)regardingthequantitiesofdifferentmaterialsbeingused,whichadditivesareintroducedintoproducts.andhowtheyarefinallydisposedof.3)ChallengesandenablingconditionsAkeychallengefromabusinessperspectiveischangeinregulationsandpoliciestoprohibittheuseofplasticmaterialsthatcancauseharmtoecosystemsandhumanhealth,andtheneedforthechangetobemandatory(forexample,allbusinesseswouldbeobligatedtomeetsingle-useplasticproductreductiontargets).Thereismountingevidencefromvariouscountriesthatvoluntary-onlyapproachesareneitherenvironmentallyeffectivenoreconomicallyefficient90andmayleadtolegislationthatisincoherentandineffectiveatenforcingreductions(Maetal.2020).Animportantenablingfactorwouldbetohaveindustry,localgovernment,centralgovernmentandcivilsocietyworkingtogetheronthesameevidencesoastoavoidmistakenassumptions,andtoenablethebestpossiblesolutionstobedevelopedwithaholisticunderstandingofthechallenges,risks,opportunities,drivers,andvaluesofallstakeholders.AclearexampleoftheeffectivenessofthisapproachonaglobalscalehasbeenthedevelopmentoftheCOVID-19vaccines.Anotherexample,atanationallevel,isthemulti-stakeholderworkinggroupwhichisco-designingtheNewZealandNationalContainerDepositScheme.91Collaborativeeffortsareconsideredanimportantstepinrecognizingongoingeffortsandencouragingexchangeofbestpractice,andsharingofsolutions,includinglegislativeinstruments.Forexample,mandatoryproductstewardshiphasproventobemoreeffectivethanvoluntaryapproachesasitprevents“freeriders”.However,somestandardscouldbeginasvoluntaryeffortsandgraduallyinformaglobalstandard;businessesthatadoptedvoluntarystandardsearlyonwouldbecomefrontrunnersUNEP2019b).©iStock/OlgaMiltsova105MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENT4.4Researchanddevelopment4.4.1ProgressonkeytopicsandinitiativesandprioritiesInthe2016UNEPreportMarinePlasticDebrisandMicroplastics–GlobalLessonsandResearchtoInspireActionandGuidePolicyChange(UNEP2016)arangeofkeyresearchneedswereidentified,covering:thepropertiesofplastics;sourcesandpathwaysofmarinelitter;distributionandfate,specificallythefactorscontrollingdegradation,includingdefinitionsandspecificationsofbiodegradableproducts;monitoring,specificallythedevelopmentanduseofharmonizedmonitoringtechniques,thedevelopmentofautomatedtechnologies,andmodellingtolookatpatternsofmovementanddeposition;quantificationoftheimpactsofmacroplasticsonbiotaandpotentialrisksofmicroplasticsforfoodwebsandhumanconsumption;socialimpactsanddrivers,includingconsumerperceptionsandbehaviouraldrivers;economicimpactsandnewformsofgovernanceanddecision-making;quantificationofreleasesofdebrisandlitterfromfisheriesandaquaculture;improvedriskassessment;andimprovedassessmentsofthevalueofplastic,ofreducingtheuse,andofrecycling,elasticityofdemandanddifferentincentives.Asthepresentassessmentshows,therehasbeenasignificantamountofresearchduringthepastyearsinmanyofthepriorityareasidentifiedinUNEP(2016).Theseareasincludeimpactsandriskstomarinelife,ecosystemsandhumanhealth;themajorland-basedandsea-basedsourcesofmarinelitterandplasticpollution;pathwaysintothemarineenvironmentandsinks;theenormouspotentialthatmanynewtechnologiesareprovidingforenhancedglobalmonitoringofmarinelitterandplasticpollution;andthebroadrangeoflegislative,businessandcommunityinitiativesthatarenowusingresearchfindingsandnewinnovationstodrivechangeandreducetheimpactsofmarinelitterandplasticpollution.4.4.2OverviewofresearchactivitiesandgapsInareviewofassessmentresearchspanning13yearsandundertakenin52projectsacrossEurope,Maesetal.(2019)concludedthatmarinelitterresearchwas“initsadolescence”.Theyfoundthatthemostrepresentedtopicswerepolicy,governanceandmanagement,andmonitoring,andthatriskassessment,theissueofplasticfragmentationandassessmenttoolswereunder-represented.Othertopicsincludedmodelling,impactandeffect,reductionandremovaltechnologiesandapproaches,socioeconomics,bioaccumulation,educationandoutreach.Theyreportedageographicconcentrationofscientificcapacityandthematichotspots,withWesternEuropeancountrieshavingcontributedmosttomarinelitterresearch.Overall,theauthorsstressedtheimportanceofEuropeanUnionfinancialinstruments(e.g.INTERREG,LIFE,Horizon2020)insupportinglarge-scaleenvironmentalandnatureconservationprojects,astheyhelpedtoimprovecooperationandharmonizationoverwideregionsandtoexpandcapacitybuilding.ThenewHorizonEuroperesearchprogrammeaimstodeliversolutionsinfiveareasofresearchandinnovation,includingcancer,healthyoceans,climate-neutralcities,climatechange,andhealthysoilandfood.Thesealltouchupontheissueofplasticsandcircularity.Marineplasticresearchisalsogrowingwithinthe10countriesintheAssociationofSoutheastAsianNations(ASEAN).Mostoftheresearchisfocusedonmonitoringandsurveyingofplasticinthemarineenvironmentandtheimpactofplasticonmarineecosystems(Lyonsetal.2019).However,theimpactofmarineplasticonhumanhealthandlifehasnotattractedmuchattention.Countrieshaveorganizedaseriesofregionalforumsandworkshopstoincreaseunderstandingofmarineplasticpollutionandtoshareandfindsolutions;however,mostofthecurrentactivitiesremainfocusedonincreasingunderstandingofwhereplasticsoccurandtheirdirectimpacts.Severalotherintergovernmentalorganizationsarealsopromotingactions,plansandresearchprojectsintheSoutheastAsiaregion.Amongthem,theRegionalSeasProgramme,COBSEA,isplayingaleadingrole.Overall,countriesintheregionhaverecognizedtheimportanceofmarineplasticpollutionandthatfurtherresearchisneeded.Fromtheliteratureusedinthepreparationofthisassessmentanumberofspecificresearchtopicsandgapshavebeenidentified(Table2).CarneyAlmrothandEggert(2019),deSá©iStock/CasarsaGuru106MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTetal.(2018)andMaesetal.(2019)concludedthatthecurrentstateofknowledgecanprovideareasonablebasisuponwhichtoidentifyresearchprioritiesingeneral,andalsotoidentifyareaswheretherehasbeenlimitedresearchanddevelopmentfundingdespitepolicyandsocietalneeds.Lookingmorebroadly,theyidentifiedseveralareaswhichcontinuetorequirefurtherresearchandinvestment:toenhancethesolutionspacetoaddresstheissueofmarinelitter,including:thedevelopmentofpolymers,includingbio-based,thataresaferandmoreeasilydisposedoforrecycled.Researchshouldfocusonpolymerchemistryandrecyclingtechniques,aswellasonpoliciesthatrestricttheuseofcompoundsknowntobetoxic;researchonandevaluationofenvironmentalandhealthimpactsofmarinemicroplasticsandnanoplastics,includingthepotentialimplicationsofnewmaterialsandnewapplications,becausenewusesintroducenewrisks,aswellasgenderedimpactsofplasticsandassociatedchemicalsinfoodproduction,aquaculture,agricultureandfoodsafety;policyresearchoneffectivemeasurestoreducemicroplastics,establishextendedproducerresponsibilityschemesandimplementreinforcingfiscalinstruments,andencourageecodesignthatstimulatestheuseofnewmaterialsandbothrecyclingandreuse;andbehaviouraleconomicsandeducationresearchongender,nudges,normsandeducationalprocessesbeyondknowledgeacquisitiontoinfluencebehaviouralchanges.4.4.3FutureresearchprioritiesAddressingtheissuesofmarinelitterandplasticpollutionrequiresmultidisciplinary,integratedresearchcoupledwithwidecooperationamongacademicresearchersandprofessionalsfromdifferentspecialistareasandindustry.Thisisparticularlyimportantinareaswhereuncertaintiesexist,suchasthepotentialrisksfromplasticassociatedchemicalsandmicroplastics(BurnsandBoxall2018),wherethereisaneedforintercalibrationofresultsusingdifferentmethodologiesandtechnicalstandards,andwheremoreintegrativeapproaches,suchasnature-basedsolutions,lifecycleapproachesandcircularityarerequired(Temmermanetal.20013).Overall,thereisaneedforresearchtoprovideanswersandinputstopolicyanalysesandriskassessmentsthatarefit-for-purpose(HurleyandNizzetto2018;Bessellingetal.2019;KarnandJenkinson2019;MaelandandStaupe-Delgado2020).BasedoninputsfromtheSACmembersandthefindingsinthisassessment,anumberofsystemicareashavebeenidentifiedthatwouldgreatlybenefitfromdeeperinvestigationoverthenexttwotofiveyears.Theseincludecross-cuttingissuessuchasgenderandintersectionality(age,marginalizedandvulnerablegroups),especiallyinrelationtoexposure,healtheffects,attitudestonewinnovativetechnologiesandoceanliteracy,wheretherehasbeenvirtuallynoresearchpublishedinthepeerreviewedliterature,92plusthefollowing:•Evaluationofthefulllifecycleforkeyplasticproducts,93includingenvironmentalandhealthimpactsofmarineplastics,microplasticsandnanoplastics,socialandeconomiccosts,lossofecosystemservices,thepotentialimplicationsofnewmaterials,genderedimpactsofplasticsandalternatives,andtherisksandimpactsofchemicalsassociatedwithplasticsonfoodproduction,aquaculture,agricultureandfoodsafety;•Developmentofariskframework,basedonafulllifecycleformarinelitterandplasticpollutionfromsourcetosea,coveringecological,social,economicandhealtheffects;•Definitionofhealthandtoxicologicalcriteriaandtestingneededtoestablishexposureofhumansandwildlifetomicroplasticsinaquaticenvironments;•Implementationofopenaccessplatformstoenableglobalmassbalancemodellingofmarinelitterandplasticpollutionandthefluxesandflowsofplasticsenteringthemarineenvironmentfromrivers,wastewatertreatmentplants,wastemanagement,stormsewersthroughcatastrophicevents,andmaritimesectors;•Establishmentofinformaticsandharmonizedmonitoringframeworks,includingstandardmethodologiesforsampling,laboratorytestinganddatacollectiontoquantifythefluxesandflowsofplasticsintothemarineenvironment,thedistributionofplasticsandmicroplasticsandthetoxicologyofmicroplasticsandadditivesintheenvironmentemanatingfromplasticwaste,tobeabletomeasuretheeffectivenessandimpactsofdifferentinterventionsandmitigationefforts;•Definitionofcoresetsofindicators,fromsourcetosea,acrosstheDriversPressuresStateImpactsResponseframeworktomonitorprogressonthereductionofmarinelitterandmicroplastics;•Greenchemistryinnovationtominimizetheuseofadditivesanddevelopalternativepolymersandmaterials,includingbio-based,basedonafull-life-cycleapproachandthataresaferandmoreeasilydisposedoforrecycledanddeveloppathwaystoswitchtoalternatives;•Developmentofecodesignprinciplesacrossallmajorusesectorswhereplasticsareusedextensivelyanddevelopcostroadmaps;•Developmentofwasteandrecyclingtechnologiesthatenablemechanicalandchemicalrecyclingtobeplacedclosetothesourcesofplasticsproductionandconsumptionandtechnologiesandwhichcanhelptoavoidorreducemicro(nano)plasticsleakageintotheenvironmentacrossthelifecycleofplastic;•Developmentofstandardsforplasticcertification,traceabilityandlabellingschemesforallplasticslinkedtoconsumeruse,includingbiodegradability;•Policyresearchoneffectivemeasurestoreduceplasticsincludingmicroplasticx,suchasExtendedProducerResponsibilityschemes,reinforcingfiscalinstruments,standardsforplasticcertification,traceabilityandlabellingschemesforallplasticslinkedtoconsumeruse,encouragingecodesignandgreenchemistrytodevelopnewmaterials;•Assessmentofsocialissuesrelatedtomarinelitterandplastics,includinggender,consumerperceptionsandsocialdrivers,integratingahumanrights-basedapproachthatincludesmeaningfulpublicparticipationandaccesstoremedies;•Developmentofliteracyandeducationalprogrammestoraiseawarenessoftheissueofmarinelitterandplasticpollution107MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENT4.5ConclusionThefindingspresentedinthisassessmentunderlinethestepchangethathastakenplacesincethepublicationofthepreviousUNEPreportassessment(UNEP2016)ontheissueofmarinelitterandplasticpollutions,MarinePlasticDebrisandMicroplastics–GlobalLessonsandResearchtoInspireActionandGuidePolicyChange(UNEP2016).Virtuallyeverymajorinternationalorganizationandnationalgovernmenthaspublishedatleastonereportorbriefingpaperonthesubjectofplasticsandtheirimpactsontheenvironment,particularythemarineenvironment,andonsociety.AstheUnitedNationsSecretary-Generalhassaid,94“Wemustremember:...Everythingisinterlinked–theglobalcommonsandglobalwell-being.Thatmeanswemustactmorebroadly,moreholistically,acrossmanyfronts,tosecurethehealthofourplanetonwhichalllifedepends.…weneedmuchmoreambitionandgreatercommitmenttodeliveronmeasurabletargetsandmeansofimplementation,particularlyfinanceandmonitoringmechanisms.In2022,countrieswillholdtheOceanConferencetoprotectandadvancethehealthoftheworld’smarineenvironments…chemicalandsolidwastepollution–plasticsinparticular–mustbereduceddrastically;marinereservesmustincreasesignificantly;andcoastalareasneedgreaterprotection…Theblueeconomyoffersremarkablepotential.Already,goodsandservicesfromtheoceangenerate$2.5trillioneachyearandcontributeover31milliondirectfull-timejobs–atleastuntilthepandemicstruck.Weneedurgentactiononaglobalscaletoreapthesebenefitsbutprotecttheworld’sseasandoceansfromthemanypressurestheyface.Thisisamomentoftruthforpeopleandplanetalike.COVIDandclimatehavebroughtustoathreshold.Thedoorisopen;thesolutionsarethere.Nowisthetimetotransformhumankind’srelationshipwiththenaturalworld–andwitheachother.Andwemustdosotogether.”andtohelpchangehumanbehaviourstowardsthosethatreducemismanagementofplasticwaste;and•Behaviouraleconomicsandeducationresearchonnudges,normsandeducationalprocessesbeyondknowledgeacquisitiontoinfluencebehaviouralchanges.108MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTTable2:ResearchneedsandgapsidentifiedinthisassessmentResearchareaExamplesMonitoringandmeasurementsVolumesandcharacteristicsoflitterandmicroplasticsinfreshwaterenvironments,includingrivers,lakesandreservoirsAtmosphericconcentrationsofmicroplasticsModellingandinformaticsGlobalmassbalancemodelestimatesandscenariosLifecycleanalysisofplasticsproduction,reuse,recyclinganddisposalBlockchaintechnologiesapplicationsMethodsandindicatorsLaboratoryandfieldassaysofmicro(nano)plasticsinallmediaMethodologiesforsampling,laboratorytestinganddatacollectiontomeasurefluxesandflowsoflitterandplasticsintothemarineenvironmentSpecificapplicationsofearthobservationsandremotesensingincludingsatellites,drones,autonomousmeasurementsDefinitionofcoresetofindicatorsfrom-source-to-seaacrosstheDPSIR(Drivers,Pressures,State,ImpactandResponse)frameworktomonitorprogressonthereductionofmarinelitterandmicroplasticsIndicatorsandtargetsonretentionanddischargesfromwatertreatmentplantsIndicatorsofimpactsoflitterandplasticsonwildlife,includingtoxicologyofmicroplasticsandadditivesIndicatorsofsocialandeconomicimpactsofexposuretomarinelitterandplasticsIntercalibrationofindicatorsacrossland-marinedomainsandintegrationofdataflowsInformaticsandmonitoringframeworkoffluxesandflowsoflitterandplasticsenteringthemarineenvironmentDistributionandabundanceInsitusamplingandestimationofdepositionratesSourceandtypesIntegratedframeworkfrom-source-to-seaofcategoriesofplasticsandlittertoenablelifecycleanalysisandassessmentPathwaysMeasurementsoftimetrajectoriesanddegradationratesfordifferenttypesoflitterandplasticalongdifferentpathways,especiallyinsedimentsandcoastalecosystemsSpatialandtemporaltrendsMovement,concentrationandsequestrationestimatesindifferentenvironmentsHotspotsandaccumulationsIdentificationofhotspots,determinationofphysicalandchemicalleachingprocessesandaccumulationratesEcological,environmentalandsocioeconomicimpactsandeffectsDefinitionofgoodstatus/healthrelatingtolitterandplasticsinfreshwaterandmarineenvironmentsEcosystemeffectsofmarinelitterandplasticsImpactsofingestionofplasticsandlitteronmarineorganismsImpactsofchemicaladditivesandmicroplasticsonphysiologyandepidemiologyinmarineorganismsandinhumans,throughthefoodchainChemicaladditivesandleachatesChemicaltoxicityduringmanufacture;leachingratesfromplastics,e.g.POPsindifferentenvironments;toxicologicaleffectsonmarineorganismsSorptionratesofchemicalsbyplasticsinthefieldBioaccumulationandtransferEvidenceofbioaccumulationofmicro(nano)plasticsinmarineorganismsandmechanismsoftransferFragmentationratesandmechanismsEnvironmentalconditionsandmechanismsaffectingfragmentationRiskandimpactassessmentsIntegratedriskframeworkandimpactcriteriaHumanhealthandfoodrelatedissuesExposureanduptakepathways;impactsfrommicro(nano)plasticsincludingcriticalthresholdsMeasuresandsolutionsCriteriaandanalysisofeffectivenessofregulatory,fiscalandvoluntarymeasuresandinstruments109MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTTable2:Researchneedsandgapsidentifiedinthisassessment(continued)ResearchareaExamplesMaterialscience,ecodesign,recyclingandlifecyclesTechnologiestoavoidorreducemicroplasticsenteringthemarineenvironmentNewchemistriesandmaterialsthatprovide“plastic”characteristics,e.g.flexibility,butwithreducedpost-consumerhazardsandgreaterrecyclabilityAlternativestothemostprevalentsingle-useplasticitemsandfishinggearfoundinlitter,andcostedroadmapsfortheswitchEcodesignprinciplesforplasticsubstitutesandcostedroadmapsacrosssectors,withaparticularfocusonmaritimeindustriessuchasfisheries,aquaculture,offshoreoperations,shippingandtourismOpenaccesscertificationandtraceabilityschemesforallplasticsImprovedlabellingofpolymersandresinsforrecyclabilityanddegradationTechnologiesandcostedroadmapsforsustainablebio-basedplasticWastemanagementtechnologyandpracticesImprovementtorecyclingincludingsortingandcollection,e.g.artificialintelligence(AI),roboticsandadvancedsensorsTechnologiestodetect,measureandremovesubstancesofconcernfromplasticsTechnologiesforrecyclingcomplexplasticwaste,e.g.chemicalrecyclingSocialandbehaviouralchangeDesignofmarketmechanismstoencouragefossilfuelfreeplasticsEducationalschemestoencourageturningknowledgeintoactionCommunicationprocessesformovingtozeroplasticsemissionsComprehensivebehaviouralandcommunitychangeprogrammesOutreachandawarenessEffectivecommunicationwiththegeneralpublictobringaboutbehaviouralchange110MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENT29SYNTHESISANNEXII:REGIONALACTIONPLANSONMARINELITTER5NameOrganization/entityYearLinkRegionalActionPlanonMarineLitterintheArcticRegionalActionPlanforMarineLitterintheBalticSeaBlackSeaMarineLitterRegionalActionPlanRegionalActionPlanonMarineLitterRegionalPlanonMarineLitterManagementintheMediterraneanRegionalActionPlanforPreventionandManagementofMarineLitterintheNorth-EastAtlanticNOWPAPRegionalActionPlanonMarineLitterPacificRegionalActionPlan–MarineLitter(2018-2025)RegionalActionPlanfortheSustainableManagementofMarineLitterintheRedSeaandGulfofAdenRegionalMarineLitterActionPlanforSouthAsiaSeasRegionBasuraMarinaenlaRegiondelPacificoSudesteWesternIndianOceanRegionalActionPlanonMarineLitterRegionalActionPlanonMarineLitterManagementfortheWiderCaribbeanRegionASEANRegionalActionPlanforCombatingMarineDebrisintheASEANMemberStatesG7ActionPlantoCombatMarineLitterG20ActionPlanonMarineLitterActionPlantoAddressMarinePlasticLitterfromShipsAPECRoadmaponMarineDebris2021201520182019201320142008(updateexpected2021)20182018201920072018201420212015201720182019ProtectionoftheArcticMarineEnvironment(PAME)HelsinkiConvention/BalticMarineEnvironmentProtectionCommission(HELCOM)BucharestConvention/CommissiontheProtectionoftheBlackSeaAgainstPollutionCoordinatingBodyfortheSeasofEastAsia(COBSEA)ConventionfortheProtectionoftheMediterraneanSeaAgainstPollution(BarcelonaConvention)/MediterraneanActionPlanOSPARCommission/ConventionfortheProtectionoftheMarineEnvironmentoftheNorth-EastAtlanticNorthwestPacificActionPlan(NOWPAP)NoumeaConvention/SecretariatofthePacificRegionalEnvironmentProgramme(SPREP)RegionalOrganizationfortheConservationoftheEnvironmentoftheRedSeaandGulfofAden(PERSGA)SouthAsiaCo-operativeEnvironmentProgramme(SACEP)PermanentCommissionfortheSouthPacific(CPPS)NairobiConventionCartagenaConvention–UNEPCaribbeanEnvironmentProgramme(CEP)AssociationofSoutheastAsiaNations(ASEAN)Groupof7Groupof20InternationalMaritimeOrganization(IMO)Asia-PacificEconomicCooperation(APEC)https://digital.gpmarinelitter.org/action_plan/10017https://digital.gpmarinelitter.org/action_plan/197https://digital.gpmarinelitter.org/action_plan/194https://digital.gpmarinelitter.org/action_plan/196https://digital.gpmarinelitter.org/action_plan/198https://digital.gpmarinelitter.org/action_plan/201https://digital.gpmarinelitter.org/action_plan/200https://digital.gpmarinelitter.org/action_plan/205https://digital.gpmarinelitter.org/action_plan/203https://digital.gpmarinelitter.org/action_plan/204https://digital.gpmarinelitter.org/action_plan/238https://digital.gpmarinelitter.org/action_plan/199https://digital.gpmarinelitter.org/action_plan/195https://digital.gpmarinelitter.org/action_plan/10008https://digital.gpmarinelitter.org/action_plan/190https://digital.gpmarinelitter.org/action_plan/191https://digital.gpmarinelitter.org/action_plan/237https://digital.gpmarinelitter.org/project/1775.ThereisongoingdevelopmentofDraftRegionalActionPlansonMarineLitterisunderwayintheCaspian,NortheastPacific,andWestern,CentralandSouthAfricaregions.5AnnexI:ThedevelopmentofDraftRegionalActionPlansonMarineLitterisunderwayintheCaspian,NortheastPacific,andWestern,CentralandSouthernAfricaregions.ANNEXI:REGIONALACTIONPLANSONMARINELITTER5111MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTENDNOTESREFERENCES©iStock/Sablin112MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENT1https://wedocs.unep.org/handle/20.500.11822/77202The2016UNEPreportisavailableathttps://wedocs.unep.org/handle/20.500.11822/7720.Usingwebofknowledge.comtosearchthescientificliteratureonmarinelitter,debrisandplasticspublishedinalllanguagesshowsthattherehasbeenadoublingintheannualpublicationrateduringthepastthreeyears.Basedonapproximately90,000peerreviewedjournalpapers,ithasbeenpossibletoidentifyareaswherethereishighresearchintensity,aswellaswhereimportantknowledgegapsremain.3InternationalAgencyforResearchonCancer(IARC)monographsontheevaluationofcancerrisksofchemicals:http://monographs.iarc.fr/;UnitedStatesCentersforDiseaseControlandPrevention(CDC)NationalBiomonitoringProgram:https://www.cdc.gov/biomonitoring/index.html4https://www.reuters.com/article/us-norway-whale-idUSKBN15I2EI5WorldBankdataoncountry-specificwastegenerationandmanagementfromWhataWaste:AGlobalReviewofSolidWasteManagement(HoornwegandBhada-Tata2012).6Theaveragecompositionofmunicipalsolidwaste(MSW)inSub-SaharanAfricaisabout57percentorganic,9percentpaper/cardboard,13percentplastic,4percentglass,4percentmetaland13percentothermaterials(UNEP2018c)7Thesustainabilityoftheuseofplasticsinagriculture,andoptionstoimprovetheircircularity,areaddressedindepthinaforthcomingglobalassessmentbytheFAO.8EurostatPRODuctionCOMmunautaireprovidesstatisticsonproduction,exportsandimportsofmanufacturedgoodsintheEU:https://ec.europa.eu/eurostat/statistics-explained/index.php/Industrial_production_statistics_introduced_-_PRODCOM9https://countermeasure.asia/10ThereisavisualizationofthesurfacecurrentdistributionofplasticonthePlasticAdriftopenplatform:vanSebille(2019):http://www.plasticadrift.org/11https://www.esr.org/research/oscar/oscar-surface-currents/;http://marine.copernicus.eu/services-portfolio/access-to-products/;https://www.umr-lops.fr/en/Projects/Active-projects/SKIM;https://swot.jpl.nasa.gov/;https://www.frontiersin.org/articles/10.3389/fmars.2019.00457/full;https://mdc.coaps.fsu.edu/scatterometry/meeting/docs/2016/Tue_PM/B_winds_update.pdf12GOOSisthemajorinternationalprogrammeexecutedbytheIntergovernmentalOceanographicCommission(IOC)oftheUNEducational,ScientificandCulturalOrganization(UNESCO),whichcombinesthecoordinatedcontributionsoforganizationsandresearchersworldwide.GOOSobservationsarecoordinatedbytheJointIOC-WorldMeteorologicalOrganization(WMO)TechnicalCommissionforOceanographyandMarineMeteorology.ThiscommissionwasestablishedbytheIOCandtheWMOtocoordinateworldwidemarinemeteorologicalandoceanographicservicesandtheirsupportingobservationalanddatamanagementservicesandcapacitybuildingprogrammes.See:https://www.goosocean.org13https://www.akvaplan.niva.no/mynewsdesk-articles/multicopter-drones-map-marine-litter-in-the-arctic/14https://www.pml.ac.uk/Research/Projects/OPTIMAL;http://scor-flotsam.it/index.html15https://imos.org.au/facilities/shipsofopportunity16https://www.ferrybox.comEndnotes17ExamplesincludeinternationalandglobalprogrammessuchastheArgoProgramme:http://www.argo.net;theNOAA/AOMLXBTNetwork:https://www.aoml.noaa.gov/phod/goos/xbt_network/;theGlobalDrifterProgram:NOAAhurricaneglidershttps://www.aoml.noaa.gov/phod/goos/gliders/index.php;PIRATA;SouthAtlanticMeridionalCirculation(SAMOC)18http://www.oceansites.org19https://www.youtube.com/watch?v=DVKV5DagZic20www.plasticadrift.org21https://oceanconservancy.org/about/partnership/international-coastal-cleanup/;https://www.projectaware.org/;https://www.5gyres.org/22SDGtarget14.1containsacommitmentbycountriesto“preventandsignificantlyreducemarinepollutionofallkindsinparticularfromland-basedactivities,includingmarinedebris(…)by2025”(UNGeneralAssembly2015;UNEA2018).TheproposedmetadataisgiveninUnderstandingtheStateoftheOcean:AGlobalManualonMeasuringSDG14.1.1,SDG14.2.1,SDG14.5.1(UNEP2021c).23http://jpi-oceans.eu/baseman/workpackages24TheGlobalPartnershiponMarineLitter(GPML)waslaunchedinJune2012atRio+20inBrazil,undertheGlobalProgrammeofActionfortheProtectionoftheMarineEnvironmentfromLand-basedActivities(GPA)(UNEP2013),toprotecthumanhealthandtheglobalenvironmentbythereductionandmanagementofmarinelitterthroughawiderangeofactivities.Thepartnershipcomprisesinternationalagencies,governments,NGOs,academia,theprivatesectorandcivilsociety,whichcontributeintheformoffinancialsupport,in-kindcontributionsand/ortechnicalexpertise.TheGPMLissupportingthedevelopmentofadigitalmulti-stakeholderplatformthataimstointegratedataandinformationsources;connectstakeholders;enhancecooperationandcoordination;helptopromoteawarenessofsourcesandpathwaysofmarinelitterandtheirfateandimpacts;andsupportknowledgemanagement,informationsharing,policydevelopmentandmonitoringofprogressonimplementationofSDGrelatedindicators,actionplansandvoluntarycommitments.25https://ospar.org/;http://web.unep.org/unepmap;https://www.5gyres.org/trawlshare-application26https://helcom.fi/baltic-sea-trends/data-maps/databases/27https://mcc.jrc.ec.europa.eu/main/dev.py?N=41andO=434andtitre_chap=TG%2520Marine%2520Litter;http://www.helcom.fi/;http://www.blacksea-commission.org/;http://www.emodnet-chemistry.eu/welcome;https://www.ices.dk/data/data-portals/Pages/DATRAS.aspx;https://www.ices.dk/data/data-portals/Pages/DOME.aspx28www.opendatacube.org/copy-of-aodn;www.data4sdgs.org/ARDC;http://maps.helcom.fi/website/mapservice/29Thestudylookedatsixnetworksindetail:theAustralianMarineDebrisInitiativehttps://www.tangaroablue.org;theGermanRoundTableMarineLitterwww.muell-im-meer.de;theIndonesianWastePlatformhttp://www.indonesianwaste.org/en/home;thePortugueseMarineLitterAssociationhttps://www.aplixomarinho.org;theAfricanMarineWasteNetworkhttps://africanwastenetwork.org.za;andtheGlobalPartnershiponMarineLitter:https://www.gpmarinelitter.org/30https://sustainabledevelopment.un.org/partnership/?p=747131https://marinedebris.noaa.gov/partnerships/marine-debris-tracker;https://oceanconservancy.org/trash-free-seas/113MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTinternational-coastal-cleanup/;https://www.eea.europa.eu/themes/water/europes-seas-and-coasts/assessments/marine-litterwatch/briefing;https://www.mcsuk.org/beachwatch/;https://mcc.jrc.ec.europa.eu/main/dev.py?N=simpleandO=380andtitre_chap=%25C2%25A0andtitre_page=RIMMEL.32Indicator14.1.1isIndexofcoastaleutrophicationandfloatingplasticdebrisdensity.33http://pelletwatch.org/34https://www.nurdlehunt.org.uk/35http://www.beatthemicrobead.org/;http://coastwatch.org/europe/microlitter/;https://www.sas.org.uk/our-work/beach-cleans/;https://www.ospar.org/work-areas/eiha/marine-litter;https://mcc.jrc.ec.europa.eu/main/dev.py?N=simple&O=394&titre_page=RIMMEL%2520observation%2520Network;https://www.zooniverse.org/projects/theplastictide/the-plastic-tide/classify36https://www.eea.europa.eu/themes/water/europes-seas-and-coasts/assessments/marine-litterwatch37https://www.wilsoncenter.org/article/citizen-science-and-data-integration-for-understanding-marine-litter38https://publications.parliament.uk/pa/cm201719/cmselect/cmenvfru/2080/208009.htm39https://www.oneplanetnetwork.org/sites/default/files/unep_ci_2020_can_i_recycle_this.pdf40GreenpeacePhilippines:https://www.breakfreefromplastic.org/;https://drive.google.com/file/d/1dyAJfVEF0iNl5N0vlvkiF0Nj7FpQpuZf/view41https://sableislandinstitute.org/marine-litter-brand-audit-sable-island-september-2018/42https://www.bloomberg.com/news/articles/2021-03-18/even-garbage-is-using-blockchain-now43https://www.goodearthcotton.com/44https://maritim.go.id/portfolio/indonesias-plan-action-marine-plastic-debris-2017-2025/;http://asemconnectvietnam.gov.vn/default.aspx?ZID1=3&ID1=2&ID8=9313845Todaynearly98percentofplasticsaremadealmostentirelyfromfossilfuels.Alternativebio-basedplasticsaremadefromorganicwastematerialandcropssuchasmaize(corn)andvegetableoilcrops,potentiallydivertinglandthatcouldbeusedforfoodproductionandhabitatprotection.Biomass-basedpolymersalsotendtobemoreexpensivethanthosebasedonfossilfuels,reflectingwidespreadsubsidiestotheoilandgasindustry(UNEP2014).46https://www.plasticpollutiontreaty.org/47www.gpmarinelitter.org48MARPOLAnnexV:seehttps://www.imo.org/en/OurWork/Environment/Pages/Garbage-Default.aspx49https://wwwcdn.imo.org/localresources/en/MediaCentre/HotTopics/Documents/IMO%20marine%20litter%20action%20plan%20MEPC%2073-19-Add-1.pdf50http://www.basel.int/tabid/6069/Default.aspx51http://www.basel.int/?tabid=834752http://www.basel.int/?tabid=834753https://www.cbd.int/doc/decisions/cop-13/cop-13-dec-10-en.pdf54https://www.ramsar.org/about-the-convention-on-wetlands-055https://www.weforum.org/agenda/2020/01/wto-address-plastic-pollution/56http://mddb.apec.org/Documents/2015/OFWG/OFWG2/15_ofwg2_025.pdf;http://www.oecd.org/environment/waste/recircle.htm57SomeoftheRegionalSeasConventionsandActionPlanshavespecificplansonmarinelitter.Moredetailscanbefoundat:AbidjanConventionhttp://abidjanconvention.org/;CommissionfortheConservationofAntarcticMarineLivingResources(CCAMLR),AntarcticTreatyhttps://www.ccamlr.org/en/data/data;ArcticCouncil,OttawaDeclarationhttps://arctic-council.org/en/resources/;HelsinkiCommission(HELCOM),HelsinkiConventionhttps://helcom.fi/action-areas/;BlackSeaCommission,BucharestConventionhttp://www.blacksea-commission.org/Inf.%20and%20Resources/Data%20Links/;CaspianEnvironmentProgramme,TehranConventionhttps://www.unep.org/explore-topics/oceans-seas/what-we-do/working-regional-seas/regional-seas-programmes/caspian-sea;Oslo-ParisConvention(OSPAR)fortheProtectionoftheMarineEnvironmentoftheNorth-EastAtlantichttps://www.ospar.org/;AntiguaConventionhttps://www.unep.org/explore-topics/oceans-seas/what-we-do/working-regional-seas/regional-seas-programmes/north-east-0?_ga=2.256901323.1346881430.1623578768-437061112.1613130463;CoordinatingBodyontheSeasofEastAsia(COBSEA)https://www.unep.org/cobsea/what-we-do,UNEnvironmentMediterraneanActionPlan(UNEP-MAP),BarcelonaConventionhttps://www.unep.org/unepmap/;NorthwestPacificActionPlan(NOWPAP)https://www.unep.org/nowpap/;PacificRegionalEnvironmentProgramme,SecretariatofthePacificRegionalEnvironmentProgramme(SPREP),NoumeaConventionhttps://www.sprep.org/;RegionalOrganizationfortheConservationoftheEnvironmentoftheRedSeaandGulfofAden(PERSGA),JeddahConventionhttp://www.persga.org/index.php;RegionalorganizationfortheProtectionoftheMarineEnvironment(ROMPE),KuwaitConventionhttp://ropme.org/home.clx;HamiltonDeclarationhttp://www.sargassoseacommission.org/meet-the-commission/hamilton-declaration;SouthAsiaCooperativeEnvironmentProgramme,SouthAsianSeasActionPlanhttp://www.sacep.org/;PermanentCommissionfortheSouthPacific(CPPS),LimaConventionhttp://cpps-int.org/58AnexampleofamarinelitterplanisthatoftheProtectionoftheArcticMarineEnvironmentWorkingGroupoftheArcticCouncil:https://www.pame.is/document-library/pame-reports-new/pame-ministerial-deliverables/2021-12th-arctic-council-ministerial-meeting-reykjavik-iceland/801-regional-action-plan-on-marine-litter-in-the-arctic/file59Establishedin1991,theBamakoConventionontheBanoftheImportintoAfricaandtheControlofTransboundaryMovementandManagementofHazardousWasteswithinAfricacameintoforcein1998,inrelationtoArticle11oftheBaselConvention.Twenty-nineof54AfricancountrieshaveratifiedtheConvention.60https://www.europarl.europa.eu/news/en/press-room/20190321IPR32111/parliament-seals-ban-on-throwaway-plastics-by-202161https://www.unenvironment.org/events/unep-event/xxii-forum-ministers-environment-latin-america-and-caribbean;https://wedocs.unep.org/bitstream/handle/20.500.11822/34801/APWMEN.pdf?sequence=4&isAllowed=y62Productsincludedplatesandcutlery(forks,knives,spoonsandchopsticks),plasticstraws,cottonbudsmadeofplastic,plasticballoonsticks,oxo-degradableplasticsandfoodcontainers,andexpandedpolystyrenecups.63”MaineFirstU.S.StatetoBanStyrofoamContainers”(2019):https://www.ecowatch.com/maine-bans-styrofoam-2636014775.html64BasedoninputsfromUNEP(2018d),DeutscheWelleandthe114MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTorg;http://www.oceanrecov.org;http://www.circulatecapital.com77https://www.thinkbeyondplastic.com/innovationcenter78Forexample,theSekisuiChemicalandSumitomoChemicalcompaniesplantodeployanewtechnologyin2022tomanufacturepolyolefinsusingwasteasarawmaterialtosupporttheircirculareconomyinitiatives(Bailey2020).Thetechnologyenablesgasificationofcombustiblewasteaccumulatedatwastedisposalfacilitiesintocarbonmonoxideandhydrogen,withouttheneedforwasteseparation,andconvertsthesegasesintoethanolusingamicrobialcatalyst,whichobviatestheneedforheatorpressure.79https://member.reportlinker.com/#/search?query=green%20chemicals&type=report80https://www.businesswire.com/news/home/20200319005600/en/Green-Chemicals-Market-Demand-from-Emerging-Economies-to-Boost-Market-Growth-Technavio81Biosourcedmaterialsincludeagro-polymerssuchaspolysaccharides(starches,ligno-cellulose,pectins,gumsandchitosans)andanimalandplantproteinsandlipids(casein,whey,collagen,gelatin;soya,gluten);microorganisms;andbiotechnologysynthesisofpolylactides.Biomass-basedplasticscomefromsugarcane,starch,vegetableoil,etc.andmineralssuchassalt.82Thebio-basedplasticsmarketisstilldrivenbydemandforbio-basedpolyethyleneterephthalate(PET)(non-biodegradable)andbiodegradablestarch-basedblends,followedbybiosourcedpolyamide(PA)(non-biodegradable),polylacticacid(PLA)(compostable)andbiosourcedPE(non-biodegradable),withpackagingaccountingfor65percentofdemandaheadoftextiles,consumergoods,automobilesandtransportation,orconstruction.83Fawkes,P.(2019).”Comingfullcircle:Sustainableretailinapost-recyclingage”:https://www.psfk.com/2019/12/sustainable-retail-circular-economy.html84www.circularise.com;www.eiravato.com85Exampleonplasticwrapping–Tesco:https://www.theguardian.com/business/2020/jan/24/tesco-to-stop-sale-of-plastic-wrapped-multipacks-in-stores86WRAP(2018)estimatesthatonlyoneiteminevery10intheUKcanberecycled.87TheUNEPFIPrinciplesforResponsibleBankingprovidetheframeworkforasustainablebankingsystemandtohelpindustryshowhowtomakeapositivecontributiontosociety:https://www.unepfi.org/banking/bankingprinciples/;https://www.worldbank.org/en/news/press-release/2018/10/29/seychelles-launches-worlds-first-sovereign-blue-bond88Unwrappingtherisksofplasticpollutiontotheinsuranceindustry:https://wedocs.unep.org/handle/20.500.11822/30915Thisstudyidentifieshowrisksrelatedtoplasticpollutionplayoutacrossinsurancelinesandassetclassesinwhichinsurersinvest.Itarguesthatinsurersshouldtakeanactiveroleinaddressingtherisksrelatedtoplasticpollutionandincontributingtoglobaleffortstoreduceit.Theplasticslandscapeseries:Aseriesaimedatequippinginvestorswiththeinformationtheyneedtounderstandplasticasasystemicissue,providingatechnicaloverviewofplasticandtheplasticmarket,andexploringcommonconcepts.Italsohelpsinvestorstoidentifywhereandhowtheirportfoliosmightbeexposedtoplastic,enablingthemtoanalyserelevantsectorsandengageatthecorporateandpolicylevelsaccordingly.https://www.unpri.org/esg-issues/environmental-issues/plastics89AnexampleistheABSAapproachtoencouraginglearninginpartnershipwithStrathmoreUniversityBusinessSchoolinKenya:EarthPolicyInstitute:https://www.greenpeace.org/africa/en/blogs/11156/34-plastic-bans-in-africa/65https://www.bbc.com/news/world-africa-2089153966www.reassemblingrubbish.xyz67https://zerowasteworld.org/68http://www.kimointernational.org/fishing-for-litter;https://zerowasteeurope.eu;http://www.wrap.org.uk.69IrelandhasestablishedEPRschemesforelectronicwaste,end-of-lifevehicles,batteries,packaging,agriculturalplasticsandtyresandhasplanstoimplementsuchaschemefortextilewaste.FrancehasEPRschemesfortextilewaste,establishingobligationsforproducerstotakeback50percentofthevolumesputonthemarket.SwedenconsideredamandatoryEPRsystemfortextileproducts,butthefinaldecisionhasbeenlefttoproducerorganizations.SeveralEUMemberStateshaveadoptedEPRschemesforagriculturalplasticwaste,includingplasticmulchfilms,rowcoverings,highandlowtunnelsandgreenhouses.EPRisalsobeingimplementedforspecifictypesofwastescontainingplasticssuchasdisposableplastickitchenware(Belgium);pesticides,fertilizers,seedandplantpackaging,furniture,officeequipmentandinkcartridges(France);medicalandpharmaceuticalpackaging(Portugal);plasticfoilsandbulkyplastics(Austria)(EuropeanCommission2018b);packaging,electronics,PVCandmicrobeads(Australia);packagingandelectronics(Brazil);packaging,electronicsandvehicles(China);multilayerplasticsandfilms(India);packagingandelectronics(Japan);andplasticbags,crockery,bottles,homeware,stationary,carpets,textileelectronics(RussianFederation)(UNEP2018d).70https://www.gpmarinelitter.org/what-we-do/action-plans71Ecomodulationmeansprovidingclearerincentivesfortheadequatedesignofproductsratherthanflatfeesperton,whichresultinlight-weightingonly,oftenleadingtonon-recyclableproductssuchasmostflexibleplasticpackaging.AnexamplecanbeseeninFrance:https://www.sciencedirect.com/science/article/abs/pii/S095965262035760772DevelopedwithintheMARLISCOprojectbytheMediterraneanInformationOfficeforEnvironment,CultureandSustainableDevelopment(MIO-ECSDE),theresourcepack“Know,Feel,Act!toStopMarineLitter:Lessonplansandactivitiesformiddlelevelstudents”isdesignedforeducatorsworkingwithyoungpeopleaged10-15informalornon-formaleducationalsettings.Itcontains17learningactivitiesthatexaminecharacteristics,sources,effects,andpossiblewaystotacklemarinelitter,addressingitfromanenvironmental,societal,culturalandeconomicpointofview.Theonlinecoursetrainededucatorstousetheresourcepackintheirteachingandaimedatincreasingtheirskillsandconfidenceindoingso,withastrongfocusonpedagogyratherthanonmarinelitterfacts.Thepackisavailablein15languages(http://www.marlisco.eu/education.en.html)73https://phys.org/news/2020-09-oil-industry-risky-plastics.html74Kimman,C.D.andSaran,N.ThePlasticWasteMakersIndex,MinderooFoundation:https://www.npr.org/2021/05/18/997937090/half-of-the-worlds-single-use-plastic-waste-is-from-just-20-companies-says-a-stu75West-Rosenthal,L.B.(2019).”22bigcompaniesthataregettingridofplasticforgood”:https://www.rd.com/culture/companies-getting-rid-plastic/76http://www.marinelittersolutions.com;http://www.endplasticwaste.org;https://plasticpollution.leeds.ac.uk/;http://www.opcleansweep.eu;http://www.plasticbank.org;http://www.plasticsforchange.org;http://www.nextwaveplastics.115MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENThttps://www.absa.africa/absaafrica/our-stories/our-voices/2020/three-ways-to-develop-your-supply-chain/90“The[NewZealand]government’sapparentpreference,reinforcedbyvocalsectorsofsociety,forusingvoluntarymeasurestomanagecontentiousresourcemanagementandenvironmentalissues.Yetweuseamorediversepolicymix,includingeconomicinstrumentsandregulation,tomodifybehaviourrangingfromdrinkingandsmokingtodrivinganddogcontrol.Theweightofevidencesuggeststhat,whereasignificantshiftinpublicbehaviourisneeded,voluntarymeasuresarenotenough”(NewZealandParliamentaryCommissionerfortheEnvironment,2006p.6).Additionalmountingevidencethatvoluntary-onlyapproachesareinsufficientcanbefound(AucklandCouncilandWasteMINZ,2017;CCME,2014;EPRCanada,2014;ZeroWasteEuropeandFPRCR,2015):https://www.nzpsc.nz/wp-content/uploads/2018/09/NZPSC-open-submission-to-PCE-v-final-sept-2018.pdf91https://www.marlborough.govt.nz/services/recycling-and-resource-recovery/rubbish-and-recycling-projects/container-return-scheme/design-progress-to-date92http://www.oecd.org/dac/gender-development/1849277.pdf93TheLifeCycleInitiative(hostedbyUNEP)hasdevelopedaseriesofstudiesonthistopic:https://www.lifecycleinitiative.org/activities/key-programme-areas/technical-policy-advice/single-use-plastic-products-studies/94https://www.un.org/sg/en/content/sg/speeches/2020-12-02/address-columbia-university-the-state-of-the-planet116MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTReferencesAanesen,M.,Armstrong,C.,Czajkowski,M.,Falk-Petersen,J.,Hanley,N.andNavrud,S.(2015).Willingnesstopayforunfamiliarpublicgoods:Preservingcold-watercoralinNorway.EcologicalEconomics112,53-67.https://doi.org/10.1016/j.ecolecon.2015.02.007.Accessed11January2021.Abbasi,S.,Soltani,N.,Keshavarzi,B.,Moore,F.,Turner,A.andHassanaghae,M.(2018).MicroplasticsindifferenttissuesoffishandprawnfromtheMusaEstuary,PersianGulf.Chemosphere20580-87.https://doi.org/10.1016/j.chemosphere.2018.04.076.Accessed11January2021.Accinnelli,C.Abbas,H.W.,Shier,W.T.,Vicari,A.,Little,N.S.etal.(2019).Degradationofmicroplasticseedfilm-coatingfragmentsinsoil.Chemospehere226645-650.https://doi.org/10.1016/j.chemosphere.2019.03.161.Accessed11January2021.Acuña-Ruz,T.,Uribe,D.,Taylor,R.,Amézquita,L.,Guzmán,M.C.,Merrill,J.etal.(2018).Anthropogenicmarinedebrisoverbeaches:Spectralcharacterizationforremotesensingapplications.RemoteSensingofEnvironment217,309-322.https://doi.org/10.1016/j.rse.2018.08.008.Accessed11January2021.Adam,V.,Yang,T.andNowack,B.(2019).Towardanecotoxicologicalriskassessmentofmicroplastics:Comparisonofavailablehazardandexposuredatainfreshwaters.EnvironmentalToxicologyandChemistry38(2),436-447.https://doi.org/10.1002/etc.4323.Accessed11January2021.Adimey,N.,Hudak,C.,Powell,J.R.,Bassos-Hull,K.,Foley,A.,Farmer,N.A.etal.(2014).Fisherygearinteractionsfromstrandedbottlenosedolphins,FloridamanateesandseaturtlesinFlorida,U.S.A.MarinePollutionBulletin81(1),103-115.https://doi.org/10.1016/j.marpolbul.2014.02.008.Accessed11January2021.Adyel,T.M.(2020).AccumulationofplasticwasteduringCOVID-19.Science369(6509),1314-1315.http://doi.org/10.1126/science.abd9925.Accessed11January2021.Agamuthu,P.,Mehran,S.B.,Norkhairah,A.andNorkhairiyah,A.(2019).Marinedebris:Areviewofimpactsandglobalinitiatives.WasteManagementandResearch37,987-1002.https://doi.org/10.1177/0734242X19845041.Accessed11January2021.Akarsu,C.,Kumbura,H.,Gökdağb,K.,Kıdeyş,A.E.andSanchez-Vidal,A.(2020).MicroplasticscompositionandloadfromthreewastewatertreatmentplantsdischargingintoMersinBay,northeasternMediterraneanSea.MarinePollutionBulletin150,110776.https://doi.org/10.1016/j.marpolbul.2019.110776.Accessed11January2021.Akhbarizadeh,R.,Moore,F.andKeshavarzi,B.(2019).InvestigatingmicroplasticsbioaccumulationandbiomagnificationinseafoodfromthePersianGulf:Athreattohumanhealth?FoodAdditivesandContaminants:PartA36(11),1696-1708.http://doi.org/10.1080/19440049.2019.1649473.AccessedJanuary2021.Alexy,P.,Anklam,E.,Emans,T.,Furfari,A.,Galgani,F.,Hanke,G.etal.(2020).Managingtheanalyticalchallengesrelatedtomicro-andnanoplasticsintheenvironmentandfood:Fillingtheknowledgegaps.FoodAdditivesandContaminants:PartA37(1),1-10.http://doi.org/10.1080/19440049.2019.1673905.Accessed11January2021.Aliani,S.,andMolcard,A.(2003).Hitch-hikingonfloatingmarinedebris:MacrobenthicspeciesinthewesternMediterraneanSea.Hydrobiologia503,59-67.https://doi.org/10.1023/B:HYDR.0000008480.95045.26.Accessed11January2021.Alimba,C.G.andFaggio.C.(2019).Microplasticsinthemarineenvironment:Currenttrendsinenvironmentalpollutionandmechanismsoftoxicologicalprofile.EnvironmentalToxicologyandPharmacology68,61-74.https://doi.org/10.1016/j.etap.2019.03.001.Accessed11January2021.Alimi,O.S.,Budarz,J.F.,Hernandez,M.L.andTufenkji,N.(2018).Microplasticsandnanoplasticsinaquaticenvironments:Aggregation,deposition,andenhancedcontaminanttransport.EnvironmentalScienceandTechnology52,1704-1724.https://pubs.acs.org/doi/abs/10.1021/acs.est.7b05559.Accessed11January2021.Allen,S.,Allen,D.,Phoenix,V.R.,LeRoux,G.,Jiménez,P.D.,Simonneau,A.etal.(2019).Atmospherictransportanddepositionofmicroplasticsinaremotemountaincatchment.NatureGeoscience12(5),339-344.https://doi.org/10.1038/s41561-019-0335-5.Accessed11January2021.Almahasheer,H.,Serrano,O.,Duarte,C.M.,Arias-Ortiz,A.,Masque,P.andIrigoien,X.(2017).LowCarbonsinkcapacityofRedSeamangroves.ScientificReports7,9700.https://doi.org/10.1038/s41598-017-10424-9.Accessed11January2021.Alomar,C.andDeudero.S.(2017).EvidenceofmicroplasticingestioninthesharkGaleusmelastomusRafinesque,1810inthecontinentalshelfoffthewesternMediterraneanSea.EnvironmentalPollution223,223-229.https://doi.org/10.1016/j.envpol.2017.01.015.Accessed11January2021.Alomar,C.,Estarellas,F.andDeudero,S.(2016).MicroplasticsintheMediterraneanSea:Depositionincoastalshallowsediments,spatialvariationandpreferentialgrainsize.MarineEnvironmentalResearch115,1-10.https://www.researchgate.net/publication/291185927_Microplastics_in_the_Mediterranean_Sea_Deposition_in_coastal_shallow_sediments_spatial_variation_and_preferential_grain_size.Accessed11January2021.Alomar,C.,Sureda,A.,Capó,X.,Guijarro,B.,Tejada,S.andDeudero,S.(2017).MicroplasticingestionbyMullussurmuletusLinnaeus,1758fishanditspotentialforcausingoxidativestress.EnvironmentalResearch159,135-142.https://doi.org/10.1016/j.envres.2017.07.043.Accessed11January2021.Alvarez-Zeferino,J.C.,Beltrán-Villavicencio,M.andVázquez-Morillas,A.(2015).Degradationofplasticsinseawaterinlaboratory.OpenJournalofPolymerChemistry5(4),55-62.http://dx.doi.org/10.4236/ojpchem.2015.54007.Accessed11January2021.Alzona,J.,Cohen,B.L.,Rudolph,H.,Jow,H.N.andFrohliger,J.O.(1979).Indoor-outdoorrelationshipsforairborneparticulatematterofoutdoororigin.AtmosphericEnvironment13(1),5-60.https://doi.org/10.1016/0004-6981(79)90244-0.Accessed11January2021.Amaral-Zettler,L.A.,Zettler,E.R.,Slikas,B.,Boyd,G.D.,Melvin,D.W.,Morrall,C.E.etal.(2015).Thebiogeographyoftheplastisphere:Implicationsforpolicy.FrontiersinEcologyandtheEnvironment13(10),541-546.https://doi.org/10.1890/150017.Accessed11January2021.Amaral-Zettler,L.A.,Zettler,E.R.,andMincer,T.J.(2020).Ecologyoftheplastisphere.NatureReviewsinMicrobiology18,139-151.https://doi.org/10.1038/s41579-019-0308-0.Accessed11January2021.Amélineau,F.,Bonnet,D.,Heitz,O.,Mortreux,V.,Harding,A.M.A.,Karnovsky,N.etal.(2016).MicroplasticpollutionintheGreenlandSea:Backgroundlevelsandselectivecontaminationofplanktivorousdivingseabirds.EnvironmentalPollution219,1131-1139.https://doi.org/10.1016/j.envpol.2016.09.017.Accessed11January2021.AmericanChemistryCouncil(2020).2020GuidetotheBusinessofChemistry.AmericanChemistryCouncil.WashingtonD.C.https://www.americanchemistry.com/2020-Guide-to-the-Business-of-Chemistry.pdf.Accessed11January2021.Anastasopoulou,A.,Mytilineou,C.,Smith,C.J.andPapadopoulou,K.N.(2013).Plasticdebrisingestedbydeep-waterfishoftheIonianSea(EasternMediterranean).DeepSeaResearchPartI:OceanographicResearchPapers74,11-13.https://doi.org/10.1016/j.dsr.2012.12.008.Accessed11January2021.Anbumani,S.andKakkar,P.(2018).Ecotoxicologicaleffectsofmicroplasticsonbiota:Areview.EnvironmentalScienceandPollutionResearch25,14373-14396.https://doi.org/10.1007/s11356-018-1999-x.Accessed11January2021.117MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTAndrades,R.,Martins,A.S.,Fardim,L.M.,Ferreira,J.S.andSantos,R.G.(2016).Originofmarinedebrisisrelatedtodisposablepacksofultra-processedfood.MarinePollutionBulletin109(1),192-195.https://doi.org/10.1016/j.marpolbul.2016.05.083.Accessed11January2021.Andrady,A.L.(2011).Microplasticsinthemarineenvironment.MarinePollutionBulletin62,1596-1605.https://doi.org/10.1016/j.marpolbul.2011.05.030.Accessed11January2021.Andrady,A.(2017).Theplasticinmicroplastics:Areview.MarinePollutionBulletin119(1),12-22.https://doi.org/10.1016/j.marpolbul.2017.01.082.Accessed11January2021.Andrady,A.andRajapakse,N.(2019).Additivesandchemicalsinplastics.InHazardousChemicalsAssociatedwithPlasticsintheMarineEnvironment.HandbookinEnvironmentalChemistry78.Takada,H.andKarapangioti,H.K.(eds.).SpringerInternationalPublishing.1-17.https://www.springer.com/gp/book/9783319955667.Accessed11January2021.Angelini,Z.,Kinner,N.,Thibault,J.,Ramsey,P.andFuld,K.(2019).Marinedebrisvisualidentificationassessment.MarinePollutionBulletin142,69-75.https://doi.org/10.1016/j.marpolbul.2019.02.044.Accessed11January2021.Arcangeli,A.,Campana,I.,Angeletti,D.,Atzori,F.,Azzolin,M.,Carosso,L.etal.(2017).Amount,composition,andspatialdistributionoffloatingmacrolitteralongfixedtrans-bordertransectsintheMediterraneanbasin.MarinePollutionBulletin129(2),545-554.https://doi.org/10.1016/j.marpolbul.2017.10.028.Accessed11January2021.Ardhuin,F.,Aksenov,Y.,Benetazzo,A.,Bertino,L.,Brandt,P.,Caubet,E.,Chapron,B.,Collard,F.,Cravatte,S.etal.(2018).Measuringcurrents,icedrift,andwavesfromspace:TheSeaSurfaceKInematicsMultiscalemonitoring(SKIM)concept.OceanScience14,337-354.https://doi.org/10.5194/os-14-337-2018.Accessed30November2020.Arias,A.H.,Ronda,A.C.,Oliva,A.L.andMarcovecchio,J.E.(2019).EvidenceofmicroplasticingestionbyfishfromtheBahíaBlancaestuaryinArgentina,SouthAmerica.BulletinofEnvironmentalContaminationandToxicology102(6),750-756.https://doi.org/10.1007/s00128-019-02604-2.Accessed11January2021.Arias-Andres,M.,Klümper,U.,Rojas-Jimenez,K.andGrossart,H.P.(2018).Microplasticspollutionincreasesgeneexchangeinaquaticecosystems.EnvironmentalPollution237,253-261.https://doi.org/10.1016/j.envpol.2018.02.058.Accessed11January2021.ArroyoSchnell,A.,Klein,N.,GómezGirón,E.andSousa,J.(2017).NationalMarinePlasticLitterPoliciesinEUMemberStates:AnOverview.Brussels:InternationalUnionforConservationofNatureandNatureResources(IUCN).https://portals.iucn.org/library/sites/library/files/documents/2017-052.pdf.Accessed11January2021.Arthur,C.,Baker,J.,Bamford,H.,Barnea,N.,Lohmann,R.,McElwee,K.etal.(2009).Summaryoftheinternationalresearchworkshopontheoccurrence,effects,andfateofmicroplasticsmarinedebris.InProceedingsoftheInternationalResearchWorkshopoftheOccurrence,Effects,andFateofMicroplasticsMarineDebris,9-11September2009.Arthur,C.,Baker,J.andBamford,H.(eds.).SilverSpring,MD:UnitedStatesNationalOceanicandAtmosphericAdministration.7-17.https://marinedebris.noaa.gov/proceedings-international-research-workshop-microplastic-marine-debris.Accessed11January2021.Asari,M.,Tsuchimura,M.,Sakai,S.,Tsukiji,M.andSagapolutele,F.(2019).AnalysisofmismanagedplasticwasteinSamoatosuggestproperwastemanagementinPacificislandcountries.WasteManagementandResearch,37,1207-1216.https://journals.sagepub.com/doi/10.1177/0734242X19867391.Accessed20June2021.Ashbullby,K.J.,Pahl,S.,Webley,P.andWhite,M.P.(2013).Thebeachasasettingforfamilies’healthpromotion:AqualitativestudywithparentsandchildrenlivingincoastalregionsinSouthwestEngland.HealthandPlace23,138-147.https://doi.org/10.1016/j.healthplace.2013.06.005.Accessed11January2021.Ashley,M.,Pahl,S.,Glegg,G.andFletcher,S.(2019).Achangeofmind:Applyingsocialandbehaviouralresearchmethodstotheassessmentoftheeffectivenessofoceanliteracyinitiatives.FrontiersinMarineScience6,228.https://doi.org/10.3389/fmars.2019.00288.Accessed11January2021.Ashton,K.,Holmes,L.andTurner,A.(2010).Associationofmetalswithplasticproductionpelletsinthemarineenvironment.MarinePollutionBulletin60(11),2050-2055.https://doi.org/10.1016/j.marpolbul.2010.07.014.Accessed11January2021.Asia-PacificEconomicCooperation(APEC)(2017).CapacityBuildingforMarineDebrisPreventionandManagementintheAPECRegion.Singapore:Asia-PacificEconomicCooperationSecretariat.https://www.apec.org/Publications/2017/12/Capacity-Building-for-Marine-Debris-Prevention-and-Management-in-the-APEC-Region.Accessed11January2021.AssociationofPlasticRecyclers(2019).APRenhancesPETCriticalGuidanceandTestDocuments.https://plasticsrecycling.org/images/Press_Releases/APR-PET-Protocol-Updates-Release-April_2019-Final.pdf.Accessed11January2021.Athanasopoulou,E.,Tombrou,M.,Pandis,S.N.andRussell,A.G.(2008).Theroleofsea-saltemissionsandheterogeneouschemistryintheairqualityofpollutedcoastalareas.AtmosphericChemistryandPhysics8,3807-3841.https://doi.org/10.5194/acp-8-5755-2008.Accessed11January2021.Atlas,E.andGiam,C.S.(1981).Globaltransportoforganicpollutants:Ambientconcentrationsintheremotemarineatmosphere.Science211(4478),1653-165.http://doi.org/10.1126/science.211.4478.163.Accessed11January2021.Au,S.Y.,Bruce,T.F.,Bridges,W.C.andKlaine,S.J.(2015).ResponsesofHyalellaaztecatoacuteandchronicmicroplasticexposures.EnvironmentalToxicologyandChemistry34(11),2564-2572.https://doi.org/10.1002/etc.3093.Accessed11January2021.Auta,H.S.,Emenike,C.U.andFauziah,S.H.(2017).Distributionandimportanceofmicroplasticsinthemarineenvironment:Areviewofthesources,fate,effects,andpotentialsolutions.EnvironmentInternational102,165-176.http://doi.org/10.1016/j.envint.2017.02.013.Accessed11January2021.Avery-Gomm,S.,Provencher,J.F.,Liboiron,M.,Poon,F.E.andSmith,P.A.(2018).PlasticpollutionintheLabradorSea:AnassessmentusingtheseabirdnorthernfulmarFulmarusglacialisasabiologicalmonitoringspecies.MarinePollutionBulletin127,817-822.https://doi.org/10.1016/j.marpolbul.2017.10.001.Accessed11January2021.Avio,C.G.,Gorbi,S.,Milan,M.,Benedetti,M.,Fattorini,D.,d’Errico,G.etal.(2015).Pollutantsbioavailabilityandtoxicologicalriskfrommicroplasticstomarinemussels.EnvironmentalPollution198,211-222.https://doi.org/10.1016/j.envpol.2014.12.021.Accessed11January2021.Avio,C.G.,Gorbi,S.andRegoli,F.(2017).Plasticsandmicroplasticsintheoceans:Fromemergingpollutantstoemergedthreat.MarineEnvironmentalResearch126,2-11.https://doi.org/10.1016/j.marenvres.2016.05.012.Accessed11January2021.Awere,E.,Obeng,P.A.,Bonoli,A.andObeng,P.A.(2020).E-wasterecyclingandpublicexposuretoorganiccompoundsindevelopingcountries:AreviewofrecyclingpracticesandtoxicitylevelsinGhana.EnvironmentalTechnologyReviews9(1),1-19.http://doi.org/10.1080/21622515.2020.1714749.Accessed11January2021.Azevedo-Santos,V.M.,Gonçalves,G.R.L.,Manoel,P.S.,Andrade,M.C.,Lima,F.P.andPelicice,F.M.(2019).Plasticingestionbyfish:Aglobalassessment.EnvironmentalPollution255(1),112994.https://doi.org/10.1016/j.envpol.2019.112994.Accessed11January2021.Babayemi,J.O.,Nnorom,I.C.,Osibanjo,O.andWeber,R.(2019).EnsuringsustainabilityinplasticsuseinAfrica:Consumption,wastegenerationandprojections.EnvironmentalSciencesEurope31,60.https://doi.org/10.1186/s12302-019-0254-5.Accessed11January2021.118MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTBackhaus,T.andWagner,M.(2019).Microplasticsintheenvironment:Muchadoaboutnothing?Adebate.GlobalChallenges4(6),1900022.https://doi.org/10.1002/gch2.201900022.Accessed11January2021.Bagaev,A.,Mizyuk,A.,Khatmullina,L.,Isachenko,I.,andChubarenko,I.(2017).AnthropogenicfibresintheBalticSeawatercolumn:Fielddata,laboratoryandnumericaltestingoftheirmotion.ScienceoftheTotalEnvironment,599,560-571.https://doi.org/10.1016/j.scitotenv.2017.04.185.Accessed11January2021.Bailey,M.P.(2020).SekisuiChemicalformsJVtocommercializewaste-to-ethanoltechnology.ChemicalEngineering,22April2020.https://www.chemengonline.com/sekisui-chemical-forms-jv-to-commercialize-waste-to-ethanol-technology/.Accessed25May2021.Baini,M.,Martellini,T.,Cincinelli,A.,Campani,T.,Minutoli,R.,Panti,C.etal.(2017).Firstdetectionofsevenphthalateesters(PAEs)asplastictracersinsuperficialneustonic/planktonicsamplesandcetaceanblubber.AnalyticMethods9,1512-1520.http://doi.org/10.1039/c6ay02674e.Accessed11January2021.Baini,M.,Fossi,M.C.,Galli,M.,Caliani,I.,Campani,T.,Finoia,M.G.etal.(2018).AbundanceandcharacterizationofmicroplasticsinthecoastalwatersofTuscany(Italy):TheapplicationoftheMSFDmonitoringprotocolintheMediterraneanSea.MarinePollutionBulletin133,543-552.https://doi.org/10.1016/j.marpolbul.2018.06.016.Accessed11January2021.Bakir,A.,O’Connor,I.A.,Rowland,S.J.,Hendriks,A.J.andThompson,R.C.(2016).Relativeimportanceofmicroplasticsasapathwayforthetransferofhydrophobicorganicchemicalstomarinelife.EnvironmentalPollution219,56-65.https://doi.org/10.1016/j.envpol.2016.09.046.Accessed11January2021.Balcers,O.,Brizga,J.,Moora,H.,andRaal,R.(2019).DepositReturnSystemsforBeverageContainersintheBalticStates,Riga.GreenLiberty.https://www.researchgate.net/publication/332242306_Deposit_Return_Systems_for_Beverage_Containers_in_the_Baltic_States_Riga_Green_Liberty.Accessed25May2021.Balestri,E.,Menicagli,V.,Vallerini,F.andLardicci,C.(2017).Biodegradableplasticbagsontheseafloor:Afuturethreatforseagrassmeadows?ScienceofTheTotalEnvironment605-606,755-763.https://doi.org/10.1016/j.scitotenv.2017.06.249.Accessed11January2021.Balestri,E.,Mienicagli,V.,Ligorni,V.,Fulignati,S.,Galletti,A.M.R.andLardicci,C.(2019).Phytotoxicityassessmentofconventionalandbiodegradableplasticbagsusingseedgerminationtest.EcologicalIndicators102,569-580.https://doi.org/10.1016/j.ecolind.2019.03.005.Accessed11January2021.Balestri,E.,Menicagli,V.,Ligorini,V.,Fulignati,S.,Galletti,A.M.R.andLardicci,C.(2020).Replyto“LettertoEditorregardingthearticle“Evaluationofthephytotoxicityofconventionalandbiodegradableplasticbagsusingseedgerminationtests”byBalestrietal.(2019)publishedonEcologicalIndicators102(2019):569-580”.EcologicalIndicators110,105876.https://doi.org/10.1016/j.ecolind.2019.105876.Accessed11January2021.Ballance,A.,Ryan,P.andTurpie,J.(2000).Howmuchisacleanbeachworth?TheimpactoflitteronbeachusersintheCapePeninsula,SouthAfrica.SouthAfricanJournalofScience96(5),210.https://www.researchgate.net/publication/279579359_How_much_is_a_clean_beach_worth_The_impact_of_litter_on_beach_users_in_the_Cape_Peninsula_South_Africa.Accessed11January2021.Ballent,A.,Pando,S.,Purser,A.,Juliano,M.F.andThomas,L.(2013).ModelledtransportofbenthicmarinemicroplasticpollutionintheNazaréCanyon.Biogeosciences10,7957-7970.https://doi.org/10.5194/bg-10-7957-2013.Accessed11January2021.Ballesteros,L.V.,Matthews,J.L.andHoeksema,B.W.(2018).PollutionandcoraldamagecausedbyderelictfishinggearoncoralreefsaroundKohTao,GulfofThailand.MarinePollutionBulletin135,1107-1116.https://doi.org/10.1016/j.marpolbul.2018.08.033.Accessed11January2021.BarbosaJr.,F.,Adeyemi,J.A.,Bocato,M.Z.,Comas,A.andCampiglia,A.(2020).Acriticalviewpointoncurrentissues,limitations,andfutureresearchneedsonmicro-andnanoplasticstudies:Fromthedetectiontothetoxicologicalassessment.EnvironmentalResearch182,109089.https://doi.org/10.1016/j.envres.2019.109089.Accessed11January2021.Barboza,L.G.A.andGimenez,B.C.G.(2015).Microplasticinthemarineenvironment:Currenttrendsandfutureperspectives.MarinePollutionBulletin97(1-2),5-12.https://doi.org/10.1016/j.marpolbul.2015.06.008.Accessed11January2021.Barnes,D.K.(2002).Biodiversity:Invasionsbymarinelifeonplasticdebris.Nature416,808-809.https://doi.org/10.1038/416808a.Accessed11January2021.Barnes,D.K.,Galgani,F.,Thompson,R.C.andBarlaz,M.(2009).Accumulationandfragmentationofplasticdebrisinglobalenvironments.PhilosophicalTransactionsoftheRoyalSocietyB:BiologicalSciences364(1526),1985-1998.http://doi.org/10.1098/rstb.2008.0205.Accessed11January2021.Barnes,D.K.A.,Morley,S.A.,Bell,J.,Brewin,P.,Brigden,K.,Collins,M.etal.(2018).MarineplasticsthreatengiantAtlanticMarineProtectedAreas.CurrentBiology28(19),R1137-R1138.https://doi.org/10.1016/j.cub.2018.08.064.Accessed11January2021.Barría,C.,Brandts,I.,Torta,L.,Oliveira,M.andTelesa,M.(2020).Effectofnanoplasticsonfishhealthandperformance:Areview.MarinePollutionBulletin151,110791.https://doi.org/10.1016/j.marpolbul.2019.110791.Accessed11January2021.Barrows,A.P.W.,Neumann,C.A.,Berger,M.L.andShawS.D.(2017).Grabvs.neustontownet:Amicroplasticsamplingperformancecomparisonandpossibleadvancesinthefield.AnalyticalMethods9,1446-1453.http://doi.org/10.1039/C6AY02387H.Accessed11January2021.Barrows,A.P.W.,Cathey,S.E.andPetersen,C.W.(2018a).Marineenvironmentmicrofibrecontamination:Globalpatternsandthediversityofmicroparticleorigins.EnvironmentalPollution237,275-284.https://doi.org/10.1016/j.envpol.2018.02.062.Accessed11January2021.Barrows,A.P.W.,Christiansen,K.S.,Bode,E.T.andHoellein,T.J.(2018b).Awatershed-scale,citizenscienceapproachtoquantifyingmicroplasticsconcentrationinamixedlanduseriver.WaterResearch147,382-392.https://doi.org/10.1016/j.watres.2018.10.013.Accessed11January2021.Batel,A.,Linti,F.,Scherer,M.,Erdinger,L.andBraunbeck,T.(2016).Transferofbenzo[a]pyrenefrommicroplasticstoArtemianaupliiandfurthertozebrafishviaatrophicfoodwebexperiment:CYP1Ainductionandvisualtrackingofpersistentorganicpollutants.EnvironmentalToxicologyandChemistry35(7),1656-1666.http://doi.org/10.1002/etc.3361.Accessed11January2021.Battisti,C.,Staffieri,E.,Poeta,G.,Sorace,A.,Luiselli,L.andAmori,G.(2019).Interactionsbetweenanthropogeniclitterandbirds:Aglobalreviewwitha‘black-list’ofspecies.MarinePollutionBulletin138,93-114.https://doi.org/10.1016/j.marpolbul.2018.11.017.Accessed11January2021.Beaumont,N.J.,Aanesen,M.,Austen,M.C.,Börger,T.,Clark,J.R.,Cole,M.etal.(2019).Globalecological,socialandeconomicimpactsofmarineplastic.MarinePollutionBulletin142,189-195.https://doi.org/10.1016/j.marpolbul.2019.03.022.Accessed11January2021.Beck,M.W.,Losada,I.J.,Menéndez,P.,Reguero,B.G.,Díaz-Simal,P.andFernández,F.(2018).Theglobalfloodprotectionsavingsprovidedbycoralreefs.NatureCommunications9,2186.https://doi.org/10.1038/s41467-018-04568-z.Accessed11January2021.Beckwith,V.K.,andFuentes,M.M.(2018).MicroplasticatnestinggroundsusedbythenorthernGulfofMexicologgerheadrecoveryunit.MarinePollutionBulletin,131,32–37.https://doi.org/10.1016/j.marpolbul.2018.04.001AccessedJune92021Bejgarn,S.,MacLeod,M.,Bogdal,C.andBreitholz,M.(2015).Toxicityofleachatefromweatheringplastics:AnexploratoryscreeningstudywithNitocraspinipes.Chemosphere132,114-119.https://doi.org/10.1016/j.chemosphere.2015.03.010.Accessed11January2021.119MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTBellingeri,A.,BergamiE.,Grassi,G,.Faleri,C.,Redondo-Hasselerham,P.,Koelmans,A.A.etal.(2019).CombinedeffectsofnanoplasticsandcopperonthefreshwateralgaRaphidocelissubcapitata.AquaticToxicology210,179-187.https://doi.org/10.1016/j.aquatox.2019.02.022.Accessed11January2021.Belzagui,F.,Crespi,M.,Álvarez,A.,Gutiérrez-Bouzán,C.andVilaseca,M.(2019).Microplastics’emissions:Microfibres’detachmentfromtextilegarments.EnvironmentalPollution248,1028-1035.https://doi.org/10.1016/j.envpol.2019.02.059.Accessed11January2021.Bergevin,K.(2018).The10typesoflittermostcommonlyfoundonbeachesaroundtheworld.WorldAtlas,19September.https://www.worldatlas.com/articles/the-10-types-of-litter-most-commonly-found-on-beaches-around-the-world.html.Accessed11January2021.Bergmann,M.,Gutow,L.andKlages,E.(eds.)(2015).MarineAnthropogenicLitter.Cham:SpringerOpenAccess.https://link.springer.com/book/10.1007/978-3-319-16510-3.Accessed11January2021.Bergmann,M.,Mützel,S.,Primpke,S.,Tekman,M.B.,Trachsel,J.andGerdts,G.(2019).Whiteandwonderful?MicroplasticsprevailinsnowfromtheAlpstotheArctic.ScienceAdvances5(8),eaax1157.https://doi.org/10.1126/sciadv.aax1157.Accessed11January2021.Besley,A.,Vijver,M.G.,Behrens,P.andBosker,T.(2017).Astandardizedmethodforsamplingandextractionmethodsforquantifyingmicroplasticsinbeachsand.MarinePollutionBulletin114(1),77-83.https://doi.org/10.1016/j.marpolbul.2016.08.055.Accessed11January2021.Besseling,E.,Redondo-Hasselerharm,P.,Foekema,E.M.andKoelmans,A.A.(2019).Quantifyingecologicalrisksofaquaticmicro-andnanoplastic.CriticalReviewsinEnvironmentalScienceandTechnology49(1),32-80.https://doi.org/10.1080/10643389.2018.1531688.Accessed11January2021.Best,J.(2019).Anthropogenicstressesontheworld’sbigrivers.NatureGeoscience12(1),7-21.https://doi.org/10.1038/s41561-018-0262-x.Accessed11January2021.Biancamaria,S.,Lettenmaier,D.P.andPavelsky,T.M.(2016).TheSWOTMissionanditscapabilitiesforlandhydrology.SurveysinGeophysics37,307-337.https://doi.org/10.1007/s10712-015-9346-y.Accessed11January2021.Bindoff,N.L.,Cheung,W.W.L.,Kairo,J.G.,Arístegui,J.,Guinder,V.A.etal.(2019).Changingocean,marineecosystems,anddependentcommunities.InIPCCSpecialReportontheOceanandCryosphereinaChangingClimate.Pörtner,H.-O.,Roberts,D.C.,Masson-Delmotte,V.,Zhai,P.,Tignor,M.etal.(eds.).Geneva:IntergovernmentalPanelonClimateChange.https://www.ipcc.ch/site/assets/uploads/sites/3/2019/11/09_SROCC_Ch05_FINAL-1.pdf.Accessed12October2021.Birch,Q.T.,Potter,P.M.,Pinto,P.X.,Dionysiou,D.D.andAl-Abed,S.R.(2020).Sources,transport,measurementandimpactofnanoandmicroplasticsinurbanwatersheds.ReviewsinEnvironmentalScienceandBio/Technology19,275-336.https://doi.org/10.1007/s11157-020-09529-x.Accessed11January2021.Birkbeck,C.D.(2020).StrengtheningInternationalCooperationtoTacklePlasticPollution:OptionsfortheWTO.GlobalGovernanceBriefNo.01.GraduateInstituteGeneva,GlobalGovernanceCentre.https://static1.squarespace.com/static/5b0520e5d274cbfd845e8c55/t/5e25683a556e15498ad1e73f/1579509842688/Plastic_Trade_WTO_Final.pdf.Accessed11January2021.Black,J.E.,Kopke,K.andO’Mahony,C.(2019).Atripupstreamtomitigatemarineplasticpollution–aperspectivefocusedontheMSFDandWFD.FrontiersinMarineScience6,1-6.https://doi.org/10.3389/fmars.2019.00689.Accessed11January2021.Blank,F.,Stumbles,P.A.,Seydoux,E.,Holt,P.G.,Fink,A.,Rothen-Rutishauser,B.etal.(2013).Size-dependentuptakeofparticlesbypulmonaryantigen-presentingcellpopulationsandtraffickingtoregionallymphnodes.AmericanJournalofRespiratoryCellMolecularBiology49,67-77.https://doi.org/10.1165/rcmb.2012-0387OC.Accessed11January2021.Blarer,P.andBurkhardt-Holm,P.(2016).MicroplasticsaffectassimilationefficiencyinfreshwateramphipodGammarusfossarum.EnvironmentalScienceandPollutionResearch23,23522-23532.https://doi.org/10.1007/s11356-016-7584-2.Accessed11January2021.Blettler,M.C.,Abrial,E.,Khan,F.R.,Sivri,N.andEspinola,L.A.(2018).Freshwaterplasticspollution:Recognizingresearchbiasesandidentifyingknowledgegaps.WaterResearch143,416-424.https://doi.org/10.1016/j.watres.2018.06.015.Accessed11January2021.Blettler,M.C.andWantzen,K.M.(2019).Threatsunderestimatedinfreshwaterplasticpollution:Mini-review.Water,AirandSoilPollution230,174.https://doi.org/10.1007/s11270-019-4220-z.Accessed11January2021.Boag,A.H.,Colby,T.V.,Fraire,A.E.,Kuhn,C.,Roggli,V.L.,Travis,W.D.etal.(1999).Thepathologyofinterstitiallungdiseaseinnylonflockworkers.AmericanJournalofSurgicalPathology23(12),1539.http://doi.org/10.1097/00000478-199912000-00012.Accessed11January2021.Börger,C.M.,Lattin,G.L.,Moore,S.L.andMoore,C.J.(2010).PlasticingestionbyplanktivorousfishesintheNorthPacificCentralgyre.MarinePollutionBulletin60(12),2275-2278.https://doi.org/10.1016/j.marpolbul.2010.08.007.Accessed11January2021.Bond,K.,Benham,H.,Vaughan,E.andChou,L.(2020).TheFuture’sNotinPlastics.Whyplasticsdemandwon’trescuetheoilsector.CarbonTrackerInitiative.AnalystReport.https://carbontracker.org/reports/the-futures-not-in-plastics/.Accessed11January2021.Boots,B.,Russell,C.W.andGreen,D.S.(2019).Effectsofmicroplasticsinsoilecosystems:Aboveandbelowground.EnvironmentalScienceandTechnology53,11496-11506.https://doi.org/10.1021/acs.est.9b03304.Accessed11January2021.Börger,T.,Hattam,C.,Burdon,D.,Atkins,J.P.andAusten,M.C.(2014).Valuingconservationbenefitsofanoffshoremarineprotectedarea.EcologicalEconomics108,229-241.https://doi.org/10.1016/j.ecolecon.2014.10.006.Accessed11January2021.Borja,A.M.andElliott,J.(2019).Sowhenwillwehaveenoughpapersonmicroplasticsandoceanlitter?MarinePollutionBulletin146,312-316.https://doi.org/10.1016/j.marpolbul.2019.05.069.Accessed11January2021.Borrelle,S.B.,Rochman,C.,Liboironc,M.,Bond,A.L.,Lusher,A.,Bradshaw,H.etal.(2017).Whyweneedaninternationalagreementonmarineplasticpollution.ProceedingsoftheNationalAcademyofSciences114(38),9994-9997.https://doi.org/10.1073/pnas.1714450114.Accessed11January2021.Borrelle,S.B.,Ringma,J.,Law,K.L.,Monnahan,C.C.,Lebreton,L.,McGiverb,A.etal.(2020).Predictedgrowthinplasticwasteexceedseffortstomitigateplasticpollution.Science369(6510),1515-1518.https://doi.org/10.1126/science.aba3656.Accessed11January2021.Botterell,Z.L.R.,Beaumont,N.,Dorrington,T.,Steinke,M.,Thompson,R.C.andLindeque,P.K.(2019).Bioavailabilityandeffectsofmicroplasticsonmarinezooplankton:Areview.EnvironmentalPollution245,98-110.https://doi.org/10.1016/j.envpol.2018.10.065.Accessed11January2021.Boucher,J.andBilard,G.(2020).TheMediterranean:Mareplasticum.Gland,Switzerland:IUCN.https://portals.iucn.org/library/sites/library/files/documents/2020-030-En.pdf.Accessed30June2021Boucher,J.andFriot,D.(2017).PrimaryMicroplasticsintheOceans:AGlobalEvaluationofSources.Gland,Switzerland:InternationalUnionforConservationofNatureandNaturalResources(IUCN).https://portals.iucn.org/library/sites/library/files/documents/2017-002-En.pdf.Accessed11January2021.Bourdages,M.P.T.,Provencher,J.F.,Sudlovenick,E.,Ferguson,S.H.,Young,B.G.,Murphy,M.J.J.etal.(2020).Noplasticsdetectedinseal(Phocidae)stomachsharvestedintheeasternCanadianArctic.MarinePollutionBulletin150,110772.https://doi.org/10.1016/j.marpolbul.2019.110772.Accessed11January2021.120MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTBouwmeester,H.,Hollman,P.C.H.andPeters,R.J.B(2015).Potentialhealthimpactofenvironmentallyreleasedmicro-andnanoplasticsinthehumanfoodproductionchain:Experiencesfromnanotoxicology.EnvironmentalScienceandTechnology49(15),8932-8947.http://doi.org/10.1021/acs.est.5b01090.Accessed11January2021.Bowman,D.,Manor-Samsonov,N.andGolik,A.(1998).DynamicsoflitterpollutiononIsraeliMediterraneanbeaches:Abudgetary,litterfluxapproach.JournalofCoastalResearch14(2),418-432.https://www.jstor.org/stable/4298796.Accessed11January2021.Bradney,L.,Wijesekara,H.,Palansooriya,K.N.,Obadamudalige,N.,Bolan,N.S.,Ok,Y.S.etal.(2019).Particulateplasticsasavectorfortoxictrace-elementuptakebyaquaticandterrestrialorganismsandhumanhealthrisk.EnvironmentInternational131,104937.https://doi.org/10.1016/j.envint.2019.104937.Accessed11January2021.Brandon,J.,Goldstein,M.andOhman,M.D.(2016).Long-termaginganddegradationofmicroplasticparticles:Comparinginsituoceanicandexperimentalweatheringpatterns.MarinePollutionBulletin110(1),299-308.https://doi.org/10.1016/j.marpolbul.2016.06.048.Accessed11January2021.Brate,I.L.N.,Eidsvoll,D.P.,Steindal,C.C.andThomas,K.V.(2016).PlasticingestionbyAtlanticcod(Gadusmorhua)fromtheNorwegiancoast.MarinePollutionBulletin112(102),105-110.https://doi.org/10.1016/j.marpolbul.2016.08.034.Accessed11January2021.Braun,U.,Jekel,M.,Gerdts,G.,Ivleva,N.P.andReiber,J.(2018).MicroplasticsAnalytics.Sampling,PreparationandDetectionMethods.DiscussionPaperwithinthescopeoftheresearchoftheBundesministeriumfürBildungundForschung.PlasticsintheEnvironment:Sources,Sinks,Solutions.Berlin.https://www.ecologic.eu/sites/files/publication/2018/discussion_paper_mp_analytics_en.pdf.Accessed11January2021.Brennecke,D.,Ferreira,E.C.,Costa,T.M.,Appel,D.,daGama,B.A.andLenz,M.(2015).Ingestedmicroplastics(>100μm)aretranslocatedtoorgansofthetropicalfiddlercrabUcarapax.MarinePollutionBulletin96(1-2),491-495.https://doi.org/10.1016/j.marpolbul.2015.05.001.Accessed11January2021.Brooks,A.L.,Wang,S.andJambeck,J.R.(2018).TheChineseimportbananditsimpactonglobalplasticwastetrade.ScienceAdvances4(6),eaat0131.http://doi.org/10.1126/sciadv.aat0131.Accessed11January2021.Brouwer,R.,Hadzhiyska,D.,Ioakeimidis,C.andOuderdorp,H.(2017).ThesocialcostsofmarinelitteralongEuropeancoasts.OceanandCoastalManagement138,38-49.https://doi.org/10.1016/j.ocecoaman.2017.01.011.Accessed11January2021.Brown,T.M.andTakada,H.(2017).IndicatorsofmarinepollutionintheNorthPacific.ArchivesofEnvironmentalContaminationandToxicology73,171-175.https://doi.org/10.1007/s00244-017-0424-7.Accessed11January2021.Browne,M.A.,Dissanayake,A.,Galloway,T.S.,Lowe,D.M.andThompson,R.C.(2008).Ingestedmicroscopicplastictranslocatestothecirculatorysystemofthemussel,Mytilusedulis(L.).EnvironmentalScienceandTechnology42(13),5026-5031.https://doi.org/10.1021/es800249a.Accessed11January2021.Browne,M.A.,Crump,P.,Niven,S.J.,Teuten,E.,Tonkin,A.,Galloway,T.etal.(2011).Accumulationofmicroplasticsonshorelinesworldwide:Sourcesandsinks.EnvironmentalScienceandTechnology45(21),9175-9179.https://doi.org/10.1021/es201811s.Accessed11January2021.Browne,M.A.,Niven,S.J.,Galloway,T.S.,Rowland,S.J.andThompson,R.C.(2013).Microplasticmovespollutantsandadditivestoworms,reducingfunctionslinkedtohealthandbiodiversity.CurrentBiology23(23),2388-2392.https://doi.org/10.1016/j.cub.2013.10.012.Accessed11January2021.Bryant,J.A.,Clemente,T.M.,Viviani,D.A.,Fong,A.A.,Thomas,K.A.,Kemp,P.etal.(2016).DiversityandactivityofcommunitiesinhabitingplasticsdebrisintheNorthPacificGyre.mSystems1,00024-16.http://doi.org/10.1128/mSystems.00024-16.Accessed11January2021.Bucci,K.,Tulio,M.andRochman,C.M.(2019).Whatisknownandunknownabouttheeffectsofplasticpollution:Ameta‐analysisandsystematicreview.EcologicalApplications30(2),e02044.https://doi.org/10.1002/eap.2044.Accessed11January2021.Bucol,L.,Romanos,E.,Cabcaban,S.,Siplon,L.M.,Madrid,G.C.,Bucol,A.andPolidoro,B.(2020).Microplasticsinmarinesedimentsandrabbitfish(Siganusfuscescens)fromselectedcoastalareasofNegrosOriental,Philippines.MarinePollutionBulletin150,110685.https://doi.org/10.1016/j.marpolbul.2019.110685.Accessed11January2021.Buhl-Mortensen,L.andBuhl-Mortensen,P.(2017).MarinelitterintheNordicSeas:Distributioncompositionandabundance.MarinePollutionBulletin125,260-270.https://doi.org/10.1016/j.marpolbul.2017.08.048.Accessed11January2021.Burkhardt-Holm,P.andN’Guyen,A.(2019).Ingestionofmicroplasticsbyfishandotherpreyorganismsofcetaceans,exemplifiedfortwolargebaleenwhalespecies.MarinePollutionBulletin144,224-234.https://doi.org/10.1016/j.marpolbul.2019.04.068.Accessed11January2021.Burns,E.E.andBoxall,A.B.A.(2018).Microplasticsintheaquaticenvironment:Evidencefororagainstadverseimpactsandmajorknowledgegaps.EnvironmentalToxicologyandChemistry37,2776-2796.https://doi.org/10.1002/etc.4268.Accessed11January2021.BusinessResearchCompany(2020).PlasticsandRubberProductsManufacturingGlobalMarketReport2020.https://www.thebusinessresearchcompany.com/report/plastics-and-rubber-products-manufacturing-global-market-report.Accessed11January2021.Ca,V.T.(2020).AregionaloceangovernanceframeworkfortheintegratedmanagementoftheenvironmentandbiologicalresourcesintheSouthChinaSea.InBuildingaNormativeOrderintheSouthChinaSea.EvolvingDisputes,ExpandingOptions.Tran,T.T.,Welfiled,J.B.andLeT.T.(eds.).Cheltenham,U.K.:EdwardElgar.196-210.https://ideas.repec.org/h/elg/eechap/17679_10.html.https://ideas.repec.org/h/elg/eechap/17679_10.html.Accessed11January2021.Cai,H.,Du,F.,Li,L.,Li,B.,Li,J.andShi,H.(2019).ApracticalapproachbasedonFT-IRspectroscopyforidentificationofsemi-syntheticandnaturalcellulosesinmicroplasticinvestigation.ScienceofTheTotalEnvironment669,692-701.https://doi.org/10.1016/j.scitotenv.2019.03.124.Accessed12January2021.Cai,L.,Wang,J.,Peng,J.,Tan,Z.,Zhan,Z.,Tan,X.etal.(2017).CharacteristicsofmicroplasticsintheatmosphericfalloutfromDongguancity,China:Preliminaryresearchandfirstevidence.EnvironmentalScienceandPollutionResearch24(32),24928-24935.https://doi.org/10.1007/s11356-019-06979-x.Accessed12January2021.Camacho,M.,Herrera,A.,Gómez,M.,Acosta-Dacal,A.,Martínez,I.,Henríquez-Hernández,L.A.etal.(2019).OrganicpollutantsinmarineplasticdebrisfromCanaryIslandsbeaches.ScienceofTheTotalEnvironment662,22-31.https://doi.org/10.1016/j.scitotenv.2018.12.422.Accessed12January2021.Campanale,C.,Suaria,G.,Bagnuolo,G.,Baini,M.,Galli,M.,deRysky,E.etal.(2019).VisualobservationsoffloatingmacrolitteraroundItaly(MediterraneanSea).MediterraneanMarineScience20,271-281.https://doi.org/10.12681/mms.19054.Accessed12January2021.Campanale,C.,Massarelli,C.,Savino,I.,Locaputo,V.andUricchio,V.F.(2020).Adetailedreviewstudyonpotentialeffectsofmicroplasticsandadditivesofconcernonhumanhealth.InternationalJournalofEnvironmentalResearchandPublicHealth17,1212.http://doi.org/10.3390/ijerph17041212.Accessed12January2021.Campbell,M.,King,S.,Heppenstall,L.D.,Gool,E.,Martin,R.,andHewitt,C.L.(2017).Aquacultureandurbanmarinestructuresfacilitatenativeandnon-indigenousspeciestransferthroughgenerationandaccumulationofmarinedebris.MarinePollutionBulletin123(1),304-312.https://doi.org/10.1016/j.marpolbul.2017.08.040.Accessed12January2021.121MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTCampbell,M.L,Peters,L.,McMains,C.,RodriguesdeCampos,M.C.,Sargisson,R.J.etal.(2019).Areourbeachessafe?QuantifyingthehumanhealthimpactofanthropogenicbeachlitteronpeopleinNewZealand.ScienceofTheTotalEnvironment651,2400-2409.https://doi.org/10.1016/j.scitotenv.2018.10.137.Accessed12January2021.Canals,M.,Pham,C.K.,Bergmann,M.,Gutow,L.,Hank,G.etal.(2021).Thequestforseafloormacrolitter:Acriticalreviewofbackgroundknowledge,currentmethodsandfutureprospects.EnvironmentalResearchLetters,16,023001.https://iopscience.iop.org/article/10.1088/1748-9326/abc6d4.Accessed16February2021.Canning-Clode,J.,Sepúlveda,P.,Almeida,S.andMonteiro,J.(2020).WillCOVID-19containmentandtreatmentmeasuresdriveshiftsinmarinelitterpollution?FrontiersinMarineScience,25August.https://doi.org/10.3389/fmars.2020.00691.Accessed12January2021.CarneyAlmroth,B.andEggert,H.(2019).Marineplasticspollution:Sources,impactsandpolicyissues.ReviewofEnvironmentalEconomicsandPolicy13,317-26.https://doi.org/10.1093/reep/rez012.Accessed12January2021.Carr,S.A.,Liu,J.andTesoro,A.G.(2016).Transportandfateofmicroplasticsparticlesinwastewatertreatmentplants.WaterResearch91,174182.https://doi.org/10.1016/j.watres.2016.01.002.Accessed12January2021.Carson,H.S.,Colbert,S.L.,Kaylor,M.J.andMcDermid,K.J.(2011).Smallplasticsdebrischangeswatermovementandheattransferthroughbeachsediments.MarinePollutionBulletin62(8),1708-1713.https://doi.org/10.1016/j.marpolbul.2011.05.032.Accessed12January2021.Carson,H.S.,Nerheim,M.S.,Carroll,K.A.andEriksen,M.(2013).Theplastic-associatedmicroorganismsoftheNorthPacificgyre.MarinePollutionBulletin75(1-2),126-132.https://doi.org/10.1016/j.marpolbul.2013.07.054.Accessed12January2021.Carvalho-Souzaa,G.F.,Llope,M.,Tinôco,M.S.,Medeiros,D.V.,Maia-Nogueira,R.andSampaio,C.L.S.(2018).Marinelitterdisruptsecologicalprocessesinreefsystems.MarinePollutionBulletin133,464-471.https://doi.org/10.1016/j.marpolbul.2018.05.049.Accessed12January2021.Cassou,E.(2018).AgriculturalPollution:Plastics.Washington,D.C.:WorldBank,https://openknowledge.worldbank.org/handle/10986/29505.Accesssed12January2021.Castro-Jiménez,J.,González-Fernández,D.,Fornier,M.,Schmidt,N.andSempere,R.(2019).Macro-litterinsurfacewatersfromtheRhoneRiver:PlasticspollutionandloadingtotheNWMediterraneanSea.MarinePollutionBulletin146,60-66.https://doi.org/10.1016/j.marpolbul.2019.05.067.Accessed12January2021.Catarino,A.I.,Macchia,V.,Sanderson,W.G.,Thompson,R.C.andHenry,T.B.(2018).Lowlevelsofmicroplastics(MP)inwildmusselsindicatethatMPingestionbyhumansisminimalcomparedtoexposureviahouseholdfibresfalloutduringameal.EnvironmentalPollution237,675e684.https://doi.org/10.1016/j.envpol.2018.02.069.Accessed12January2021.Cau,A.,Bellodi,A.,Moccia,D.,Mulas,A.,Porcu,C.,Pusceddu,A.etal.(2019).Shelf-lifeandlabels:Acheapdatingtoolforseafloormacrolitter?InsightsfromMEDITSsurveysinSardiniansea.MarinePollutionBulletin14,430-433.https://doi.org/10.1016/j.marpolbul.2019.03.004.Accessed12January2021.CenterforInternationalEnvironmentalLaw(2019).PlasticsandClimate.TheHiddenCostsofaPlasticPlanet.https://www.ciel.org/wp-content/uploads/2019/05/Plastic-and-Climate-FINAL-2019.pdf.Accessed12January2021.Centurioni,L.,Chen,Z.,Lumpkin,R.,Braasch,L.,Brassington,G.,Chao,Y.etal.(2019).Multidisciplinaryglobalinsituobservationsofessentialclimateandoceanvariablesattheair-seainterfaceinsupportofclimatevariabilityandchangestudiesandtoimproveweatherforecasting,pollution,hazardandmaritimesafetyassessments.FrontiersinMarineScience,30August.https://doi.org/10.3389/fmars.2019.00419.Accessed12January2021.Cesa,F.S.,Turra,A.andBaruque-Ramos,J.(2017).Syntheticfibresasmicroplasticsinthemarineenvironment:Areviewfromtextileperspectivewithafocusondomesticwashings.ScienceofTheTotalEnvironment598,1116-1129.https://doi.org/10.1016/j.scitotenv.2017.04.172.Accessed12January2021.Chan,H.S.H.,Dingle,C.andNot,C.(2019).Evidencefornon-selectiveingestionofmicroplasticindemersalfish.MarinePollutionBulletin149,110523.https://doi.org/10.1016/j.marpolbul.2019.110523.Accessed12January2021.Chang,X.R.,Xue,Y.Y.,Li,J.Y.,Zou,L.Y.andTang,M.(2020).Potentialhealthimpactofenvironmentalmicro-andnanoplasticspollution.JournalofAppliedToxicology40,4-15.https://doi.org/10.1002/jat.3915.Accessed12January2021.Charles,D.,Kimman,L.andSaran,N.(2021).ThePlasticWasteMakersIndex.MinderooFoundation.https://www.minderoo.org/plastic-waste-makers-index/.Accessed25May2021.Chen,C.-L.(2015).Regulationandmanagementofmarinelitter.InMarineAnthropogenicLitter.Bergmann,M.,Gutow,L.andKlages,E.(eds.).SpringerOpen.395-428.https://link.springer.com/content/pdf/bfm%3A978-3-319-16510-3%2F1.pdf.Accessed12January2021.Chen,G.,Feng,Q.andWang,J.(2020).Mini-reviewofmicroplasticsintheatmosphereandtheirriskstohumans.ScienceofTheTotalEnvironment703,135504.https://doi.org/10.1016/j.scitotenv.2019.135504.Accessed12January2021.Cheung,P.K.,Cheung,L.T.O.andFok,L.(2016).Seasonalvariationintheabundanceofmarineplasticdebrisintheestuaryofasubtropicalmacro-scaledrainagebasininSouthChina.ScienceofTheTotalEnvironment562,658-665.https://doi.org/10.1016/j.scitotenv.2016.04.048.Accessed12January2021.Chiba,S.,Saito,H.,Fletcher,R.,Yogi,T.,Kayo,M.,Miyagi,S.etal.(2018).Humanfootprintintheabyss:30yearrecordsofdeep-seaplasticdebris.MarinePolicy96,204-212.https://doi.org/10.1016/j.marpol.2018.03.022.Accessed12January2021.Cho,D.O.(2005).ChallengestomarinedebrismanagementinKorea.CoastalManagement33(4),389-409.https://doi.org/10.1080/08920750500217559.Accessed12January2021.Choy,C.A.,Robison,B.H.,Gagne,T.O.,Erwin,B.andFiri,E.(2019).Theverticaldistributionandbiologicaltransportofmarinemicroplasticsacrosstheepipelagicandmesopelagicwatercolumn.ScientificReports9(1),7843.https://doi.org/10.1038/s41598-019-44117-2.Accessed12January2021.Chua,E.,Shimeta,J.,Nugegoda,D.,Morrison,P.D.andClarke,B.O.(2014).Assimilationofpolybrominateddiphenylethersfrommicroplasticsbythemarineamphipod,Allorchestescompressa.EnvironmentalScienceandTechnology48(14),8127-8134.https://doi.org/10.1021/es405717z.Accessed12January2021.Chubarenko,I.,Bagaev,A.,Zobkov,M.andEsiukova,E.(2016).Onsomephysicalanddynamicalpropertiesofmicroplasticparticlesinmarineenvironments.MarinePollutionBulletin108(1-2),105-112.https://doi.org/10.1016/j.marpolbul.2016.04.048.Accessed12January2021.Chubarenko,I.P.,Esiukova,E.E.,Bagaev,A.V.,Bagaeva,M.A.andGrave,A.N.(2018).Three-dimensionaldistributionofanthropogenicmicroparticlesinthebodyofsandybeaches.ScienceofTheTotalEnvironment628-629,1340-1351.https://doi.org/10.1016/j.scitotenv.2018.02.167.Accessed12January2021.Claessens,M.,vanCauwenberghe,L.,Vandegehuchte,M.B.andJanssen,C.R.(2013).Newtechniquesforthedetectionofmicroplasticsinsedimentsandfieldcollectedorganisms.MarinePollutionBulletin70,227-233.https://doi.org/10.1016/j.marpolbul.2013.03.009.Accessed12January2021.Claro,F.,Fossi,M.C.,Ioakeimidis,C.,Baini,M.,Lusher,A.L.McFee,W.etal.(2019).Toolsandconstraintsinmonitoringinteractionsbetween122MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTmarinelitterandmegafauna:Insightsfromcasestudiesaroundtheworld.MarinePollutionBulletin141,147-160.https://doi.org/10.1016/j.marpolbul.2019.01.018.Accessed12January2021.Clukey,K.E.,Lepczyk,C.A.,Balazs,G.H.,Work,T.M.,Li,Q.X.,Bachman.M.J.etal.(2018).PersistentorganicpollutantsinfatofthreespeciesofPacificpelagiclonglinecaughtseaturtles:Accumulationinrelationtoingestedplasticmarinedebris.ScienceofTheTotalEnvironment610-611,402-411.https://doi.org/10.1016/j.scitotenv.2017.07.242.Accessed12January2021.Colborn,T.,Kwiatkowski,C.,Schultz,K.andBachran,M.(2011).Naturalgasoperationsfromapublichealthperspective.HumanandEcologicalRiskAssessment:AnInternationalJournal17(5),1039-1056.https://doi.org/10.1080/10807039.2011.605662.Accessed12January2021.Cole,M.,Lindeque,P.,Halsband,C.andGalloway,T.S.(2011).Microplasticsascontaminantsinthemarineenvironment:Areview.MarinePollutionBulletin,62,2588−2597.https://doi.org/10.1016/j.marpolbul.2011.09.025.Accessed7June2021.Cole,M.,Lindeque,P.,Fileman,E.,Halsband,C.andGalloway,T.S.(2015).Theimpactofpolystyrenemicroplasticsonfeeding,functionandfecundityinthemarinecopepodCalanushelgolandicus.EnvironmentalScienceandTechnology49(2),1130-1137.https://doi.org/10.1021/es504525u.Accessed12January2021.Cole,M.,Lindeque,P.K.,Fileman,E.,Clark,J.,Lewis,C.,Halsband,C.etal.(2016).Microplasticsalterthepropertiesandsinkingratesofzooplanktonfaecalpellets.EnvironmentalScienceandTechnology50(6),3239-3246.https://doi.org/10.1021/acs.est.5b05905.Accessed12January2021.Coleby,A.M.andGrist,E.P.M.(2019).Prioritizedareamappingformultiplestakeholdersthroughgeospatialmodelling:AfocusonmarineplasticspollutioninHongKong.OceanandCoastalManagement171,131-141.https://doi.org/10.1016/j.ocecoaman.2018.12.021.Accessed12January2021.Collins,C.andHermes,J.C.(2019).ModellingtheaccumulationandtransportoffloatingmarinemicroplasticsaroundSouthAfrica.MarinePollutionBulletin139,46-58.https://doi.org/10.1016/j.marpolbul.2018.12.028.Accessed12January2021.Comnea-Stancu,I.R.,Wieland,K.,Ramer,G.,Schwaighofer,A.andLendl,B.(2017).Ontheidentificationofrayon/viscoseasamajorfractionofmicroplasticsinthemarineenvironment:DiscriminationbetweennaturalandmanmadecellulosicfibresusingFouriertransforminfraredspectroscopy.AppliedSpectroscopy71,939-950.https://doi.org/10.1177/0003702816660725.Accessed12January2021.Consoli,P.,Andaloro,F.,Altobelli,C.,Battaglia,P.,Campagnuolo,S.,Canese,S.etal.(2018).MarinelitterinanEBSA(EcologicallyofBiologicallySignificantArea)ofthecentralMediterraneanSea:Abundance,composition,impactonbenthicspeciesandbasisformonitoringentanglement.EnvironmentalPollution236,405-415.https://doi.org/10.1016/j.envpol.2018.01.097.Accessed12January2021.Constantino,E.,Martins,I.,Sierra,J.M.S.andBessa,F.(2019).AbundanceandcompositionoffloatingmarinemacrolitterontheeasternsectoroftheMediterraneanSea.MarinePollutionBulletin138,260-265.https://doi.org/10.1016/j.marpolbul.2018.11.008.Accessed12January2021.Conti,G.O.,Ferrante,M.,Banni,M.,Favara,C.,Nicolosi,I.,Cristaldi,A.,Fiore,M.andZuccarello,P.(2020).Micro-andnano-plasticsinediblefruitandvegetables.Thefirstdietrisksassessmentforthegeneralpopulation.EnvironmentalResearch187,109677.https://doi.org/10.1016/j.envres.2020.109677.Accessed12January2021.ConventionontheConservationofMigratorySpeciesofWildAnimals(2014).AdoptedatCOP11:Res.11.30:ManagementofMarineDebris.https://www.cms.int/en/document/management-marine-debris-3.Accessed12January2021.Corcoran,P.L.(2021).Degradationofmicroplasticsintheenvironment.InHandbookofMicroplasticsintheEnvironment.Rocha-Santos,T.,Costa,M.andMouneyrac,C.(eds.).Cham:Springer.1-12.https://doi.org/10.1007/978-3-030-10618-8_10-1.Accessed12January2021.Cormier,R.andElliott,M.(2017).SMARTmarinegoals,targetsandmanagement–isSDG14operationaloraspirational,is‘LifeBelowWater’sinkingorswimming?MarinePollutionBulletin123,28-33.https://doi.org/10.1016/j.marpolbul.2017.07.060.Accessed12January2021.Corradini,F.,PabloMeza,P.,Eguiluz,R.,Casado,F.,Huerta-Lwanga,E.andGeissen,V.(2019).Evidenceofmicroplasticaccumulationinagriculturalsoilsfromsewagesludgedisposal.ScienceofTheTotalEnvironment671,411-420.https://doi.org/10.1016/j.scitotenv.2019.03.368.Accessed12January2021.Costa,M.F.andDuarte,A.C.(2017).Microplasticssamplingandsamplehandling.InComparativeAnalyticalChemistry75.Rocha-Santos,T.A.P.andDuarte,A.C.(eds.).Elsevier.25-47.https://doi.org/10.1016/bs.coac.2016.11.002.Accessed12January2021.Costanza,R.,d’Arge,R.,deGrooy,R.,Farber,S.,Grasso,M.,Hannon,B.etal.(1997).Thevalueoftheworld’secosystemservicesandnaturalcapital.Nature387,253-260.https://doi.org/10.1038/387253a0.Accessed12January2021.Costanza,R.,deGroot,R.,vanderPloeg,S.,Anderson,S.J.,Kubiszewski,I.,Farber,S.etal.(2014).Changesintheglobalvalueofecosystemservices.GlobalEnvironmentalChange26,152-158.https://doi.org/10.1016/j.gloenvcha.2014.04.002.Accessed12January2021.Courtene-Jones,W.,Quinn,B.,Ewins,C.,Gary,S.F.andNarayanaswamy,B.E.(2018).Consistentmicroplasticingestionbydeep-seainvertebratesoverthelastfourdecades(1976-2015),astudyfromtheNorthEastAtlantic.EnvironmentalPollution244,503-512.https://doi.org/10.1016/j.envpol.2018.10.090.Accessed12January2021.Cowger,W.,Gray,A.B.andSchult,R.C.(2019).AnthropogeniclittercleanupsinIowariparianareasrevealtheimportanceofnear-streamandwatershedscalelanduse.EnvironmentalPollution250,981-989.http://doi.org/10.1016/j.envpol.2019.04.052.Accessed12January2021.Cox,K.,Covernton,A.,Davies,H.,Dower,J.,Juanes,F.andDudas,S.(2019).Humanconsumptionofmicroplastics.EnvironmentalScienceandTechnology53(12),7068-7074.https://doi.org/10.1021/acs.est.9b01517.Accessed12January2021.Cózar,A.,Echevarría,F.,González-Gordillo,J.I.,Irigoien,X.,Úbeda,B.,Hernández-León,S.etal.(2014).Plasticdebrisintheopenocean.ProceedingsoftheNationalAcademyofSciences111(28),10239-10244.https://doi.org/10.1073/pnas.1314705111.Accessed12January2021.Cózar,A.,Sanz-Martin,M.,Marti,E.,González-Gordillo,J.I.,Ubeda,B.,Gálvez,J.A.,Irigoen,X.andDuarte,C.M.(2015).PlasticaccumulationintheMediterraneanSea.PLoSONE10(4),e0121762.https://doi.org/10.1371/journal.pone.0121762.Accessed12January2021.Cózar,A.,Marti,E.,Duarte,C.M.,Garcia-de-Lomas,J.,vanSebille,E.,Ballatore,T.J.etal.(2017).TheArcticOceanasadeadendforfloatingplasticsintheNorthAtlanticbranchofthethermohalinecirculation.ScientificAdvances3(4),e1600582.http://doi.org/10.1126/sciadv.1600582.Accessed12January2021.Critchell,K.andLambrechts,J.(2016).Modellingaccumulationofmarineplasticsinthecoastalzone;whatarethedominantphysicalprocesses?Estuarine,CoastalandShelfScience171,111-122.https://doi.org/10.1016/j.ecss.2016.01.036.Accessed12January2021.Cui,R.,Kim,S.W.andAn,Y.J.(2017).PolystyrenenanoplasticsinhibitreproductionandinduceabnormalembryonicdevelopmentinthefreshwatercrustaceanDaphniagaleata.ScientificReports7(1),1-10.https://doi.org/10.1038/s41598-017-12299-2.Accessed12January2021.Cui,Y.,Hu,M.andLiu,J.(2019).Valuesoftraceabilityinsupplychains.SSRNElectronicJournal.http://doi.org/10.2139/ssrn.3291661.Accessed12January2021.123MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTdaCosta,J.(2018).Micro-andnanoplasticsintheenvironment:Researchandpolicymaking.CurrentOpinionsinEnvironmentalScienceandHealth1,12-16.https://doi.org/10.1016/j.coesh.2017.11.002.Accessed12January2021.daCosta,J.,Santos,P.S.M.,Duarte,A.C.andRocha-Santos,T.(2016).(Nano)plasticsintheenvironment–sources,fatesandeffects.ScienceofTheTotalEnvironment566-567,15-26.https://doi.org/10.1016/j.scitotenv.2016.05.041.Accessed12January2021.Damerell,P.,Howe,C.andGulland,E.J.(2013).Child-orientedenvironmentaleducationinfluencesadultknowledgeandhouseholdbehaviour.EnvironmentalResearchLetters8,15016-15022.http://dx.doi.org/10.1088/1748-9326/8/1/015016.Accessed12January2021.Daniel,D.B.,Thomas,S.N.andThomson,K.T.(2020).Assessmentoffishing-relatedplasticdebrisalongthebeachesinKeralaCoast,India.MarinePollutionBulletin150,110696.https://doi.org/10.1016/j.marpolbul.2019.110696.Accessed12January2021.Danovaro,R.,Fanelli,E.,Canals,M.,Ciuffardi,T.,Fabri,M.-C.,Taviani,M.etal.andIDEMConsortium(2020).TowardsamarinestrategyforthedeepMediterraneanSea:Analysisofcurrentecologicalstatus.MarinePolicy112,103781.https://doi.org/10.1016/j.marpol.2019.103781.Accessed12January2021.DalbergAdvisors,WWFMediterraneanMarineInitiative(2019).StoptheFloodofPlastic:HowMediterraneanCountriesCanSaveTheirSea.WWF-WorldWideFundforNature.http://awsassets.panda.org/downloads/a4_plastics_reg_low.pdf.Accessed11January2021.Danopoulos,E.,Jenner,L.C.,Twiddy,M.,andRotchell,J.M.(2020).Microplasticcontaminationofseafoodintendedforhumanconsumption:asystematicreviewandmeta-analysis.EnvironmentalHealthPerspective,128,126002.https://doi.org/10.1289/EHP7171.Accessed9June2021.Darbra,R.,Dan,J.G.,Casal,J.,Àgueda,A.,Capri,E.,Fait,G.etal.(2011).Additivesinthetextileindustry.InGlobalRisk-BasedManagementofChemicalAdditivesI:Production,UsageandEnvironmentalOccurrence.Bilitewski,B.,Darbra,R.M.andBarcelo,D.(eds.).TheHandbookofEnvironmentalChemistryvol.18.Berlin,Heidelberg:Springer83-107.https://doi.org/10.1007/698_2011_101.Accessed11January2021.Dauvergne,P.(2018).Whyistheglobalgovernanceofplasticfailingtheoceans?GlobalEnvironmentalChange51,22-31.https://doi.org/10.1016/j.gloenvcha.2018.05.002.Accessed11January2021.Davison,P.andAsch,R.G.(2011).PlasticIngestionbyMesopelagicFishesintheNorthPacificSubtropicalGyre.MarineEcologyProgressSeries432,173-180.https://doi.org/10.3354/meps09142.Accessed11January2021.Dawson,A.L.,Kawaguchi,S.,King,C.K.,Townsend,K.A.,King,R.Huston,W.M.etal.(2018).TurningmicroplasticsintonanoplasticsthroughdigestivefragmentationbyAntarctickrill.NatureCommunications9,1001.https://www.nature.com/articles/s41467-018-03465-9.pdf.Accessed11January2021.DeFrond,H.L.,vanSebille,E.,Parnis,J.M.,Diamond,M.L.,Mallos,N.,Kingsbury,T.etal.(2018).Estimatingthemassofchemicalsassociatedwithoceanplasticpollutiontoinformmitigationefforts.IntegratedEnvironmentalAssessmentManagement15,596-606.https://doi.org/10.1002/ieam.4147.Accessed11January2021.DeGroot,R.,Brander,L.,vanderPloeg,S.,Costanza,R.,Bernard,F.,Braat,L.,Christie,M.etal.(2012).Globalestimatesofthevalueofecosystemsandtheirservicesinmonetaryunits.EcosystemServices1,50-61.https://doi.org/10.1016/j.ecoser.2012.07.005.Accessed30November2020.Dehaut,A.,Cassone,A.L.,Frere,L.,Hermabessiere,L.,Himber,C.,Rinnertetal.(2016).Microplasticsinseafood:Benchmarkprotocolfortheirextractionandcharacterization.EnvironmentalPollution215,223-233.https://doi.org/10.1016/j.envpol.2016.05.018.Accessed11January2021.Deloitte(2019).ThePriceTagofPlasticPollution:AnEconomicAssessmentofRiverPlastic.https://www2.deloitte.com/content/dam/Deloitte/nl/Documents/strategy-analytics-and-ma/deloitte-nl-strategy-analytics-and-ma-the-price-tag-of-plastic-pollution.pdf.Accessed12February2021.Deng,Y.,Zhang,Y.,Lemos,B.andRen,H.(2017).Tissueaccumulationofmicroplasticsinmiceandbiomarkerresponsessuggestwidespreadhealthrisksofexposure.ScientificReports7,46687.https://doi.org/10.1038/srep46687.Accessed11January2021.deRuijter,V.N.,Redondo-Hasselerharm,P.E.,Gouin,T.,andKoelmans,A.A.(2020).Qualitycriteriaformicroplasticeffectstudiesinthecontextofriskassessment:Acriticalreview.EnvironmentalSciencandTechnology54(19),11692-11705.https://pubs.acs.org/doi/10.1021/acs.est.0c03057.Accessed11January2021.deSá,L.C.,Oliveira,M.,Ribeiro,F.,Rocha,T.L.andFutter,M.N.(2018).Studiesoftheeffectsofmicroplasticsonaquaticorganisms:Whatdoweknowandwhereshouldwefocusoureffortsinthefuture?ScienceofTheTotalEnvironment645,1029-1039.https://doi.org/10.1016/j.scitotenv.2018.07.207.Accessed11January2021.Desforges,JP.,Galbraith,M.andRoss,P.S.(2015).IngestionofmicroplasticsbyzooplanktonintheNortheastPacificOcean.ArchivesofEnvironmentalContaminationandToxicology69,320-330.https://doi.org/10.1007/s00244-015-0172-5.Accessed11January2021.Deshpande,P.C.,Philis,G.,BrattebøandFet,A.M.(2020).Usingmaterialflowanalysis(MFA)togeneratetheevidenceonplasticwastemanagementfromcommercialfishinggearsinNorway.Resources,ConservationandRecycling:X5,100024.https://doi.org/10.1016/j.rcrx.2019.100024.Accessed11January2021.Díaz-Torres,E.R.,Ortega-Ortiz,C.D.,Silva-Iñiguez,L.,Nene-Preciado,A.andTorresOrozco,E.(2017).FloatingmarinedebrisinwatersoftheMexicanCentralPacific.MarinePollutionBulletin115(1-2),225-232.https://doi.org/10.1016/j.marpolbul.2016.11.065.Accessed11January2021.Diez,S.M.,Patil,P.G.,Morton,J.,Rodriguez,D.J.,Vanzella,A.,Robin,D.V.etal.(2019).MarinePollutionintheCaribbean:NotaMinutetoWaste.Washington,D.C.:WorldBankGroup.https://documents.worldbank.org/en/publication/documents-reports/documentdetail/482391554225185720/marine-pollution-in-the-caribbean-not-a-minute-to-waste.Accessed12January2021.Dilkes-Hoffman,L.S.,Ashworth,P,Laycock,B.,Pratt,S.andLant,P.(2019a).Publicattitudestowardsbioplastics–knowledge,perceptionandend-of-lifemanagement.ResourcesConservationandRecycling151,104479.https://doi.org/10.1016/j.resconrec.2019.104479.Accessed12January2021.Dilkes-Hoffman,L.S.,Pratt,S.,Laycock,B.,Ashworth,P.andLant,P.A.(2019b).Publicattitudestowardsplastics.Resources,ConservationandRecycling147,227-235.https://doi.org/10.1016/j.resconrec.2019.05.005.Accessed12January2021.Donohue,M.J.,Masura,J.,Gelatt,T.,Ream,R.,Baker,J.D.,Faulhaber,K.etal.(2019).Evaluatingexposureofnorthernfurseals,Callorhinusursinus,tomicroplasticpollutionthroughfaecalanalysis.MarinePollutionBulletin138,213-221.https://doi.org/10.1016/j.marpolbul.2018.11.036.Accessed12January2021.Driedger,A.G.J.,Dürr,H.H.,Mitchell,K.andVanCappellen,P.(2015).PlasticdebrisintheLaurentianGreatLakes:Areview.JournalofGreatLakesResearch41(1),9-19.https://doi.org/10.1016/j.jglr.2014.12.020.Accessed12January2021.Dris,R.,Gasperi,J.,Rocher,V.,Saad,M.,Renault,N.andTassin,B.(2015a).Microplasticcontaminationinanurbanarea:AcasestudyinGreaterParis.EnvironmentalChemistry12(5),592-599.https://doi.org/10.1071/EN14167.Accessed12January2021.Dris,R.,Imhof,H.,Sanchez,W.,Gasperi,J.,Galgani,F.,Tassin,B.etal.(2015b).Beyondtheocean:Contaminationoffreshwaterecosystemswith(micro-)plasticsparticles.EnvironmentalChemistry12(5),539-550.https://doi.org/10.1071/EN14172.Accessed12January2021.124MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTDris,R.,Gasperi,J.,Saad,M.,Mirande-Bret,C.andTassin,B.(2016).Syntheticfibresinatmosphericfallout:Asourceofmicroplasticsintheenvironment?MarinePollutionBulletin104(1-2),290-293.https://doi.org/10.1016/j.marpolbul.2016.01.006.Accessed12January2021.Dris,R.,Gasperi,J.,Mirande,C.,Mandin,C.,Guerrouache,M.,Langlois,V.etal.(2017).Afirstoverviewoftextilefibres,includingMPs,inindoorandoutdoorenvironments.EnvironmentalPollution221,453-458.https://doi.org/10.1016/j.envpol.2016.12.013.Accessed12January2021.Dris,R.,Gasperi,J.,Rocher,V.andTassin,B.(2018).Syntheticandnon-syntheticanthropogenicfibresinariverundertheimpactofParisMegacity:Samplingmethodologicalaspectsandfluxestimations.ScienceofTheTotalEnvironment618,157-164.https://doi.org/10.1016/j.scitotenv.2017.11.009.Accessed12January2021.Dris,R.,Tramoy,R.,Alligant,S.,Gasperi,J.andTassin,B.(2020)Plasticdebrisflowingfromriverstooceans:theroleoftheestuariesasacompleandpoorlyunderstoodkeyinterface.InHandbookonMicroplasticsintheEnvrionment.Rocha-Santos,T.,Coasts,M.,andMouneyrac,C.(eds).Cham:Springer.1-28https://doi.org/10.1007/978-3-030-10618-8_3-1.Access16January2021.Duhec,A.V.,Jeanne,R.F.,Maximenko,N.andHafner,J.(2015).CompositionandpotentialoriginofmarinedebrisstrandedintheWesternIndianOceanonremoteAlphonseIsland,Seychelles.MarinePollutionBulletin96(1-2),76-86.https://doi.org/10.1016/j.marpolbul.2015.05.042.Accessed12January2021.Duncan,E.M,Broderick,A.C.,Fuller,W.J.,Galloway,T.S.,Godfrey,M.H.,Hamann,M.etal.(2018a).Microplasticingestionubiquitousinmarineturtles.GlobalChangeBiology25,744-752.https://doi.org/10.1111/gcb.14519.Accessed12January2021.Duncan,E.M.,Arrowsmith,J.,Bain,C.,Broderick,A.C.,Lee,J.,Metcalfe,K.etal.(2018b).ThetruedepthoftheMediterraneanplasticproblem:ExtrememicroplasticpollutiononmarineturtlenestingbeachesinCyprus.MarinePollutionBulletin136,334-340.https://doi.org/10.1016/j.marpolbul.2018.09.019.Accessed12January2021.Dunlop,S.W.,Dunlop,B.J.andBrown,M.(2020).Plasticpollutioninparadise:DailyaccumulationratesofmarinelitteronCousineIsland,Seychelles.MarinePollutionBulletin151,110803.https://doi.org/10.1016/j.marpolbul.2019.110803.Accessed12January2021.Dussud,C.,Meistertzheim,A.L.,Conan,P.,Pujo-Pay,M.,George,M.,Fabre,P.etal.(2018a).Evidenceofnichepartitioningamongbacterialivingonplastics,organicparticlesandsurroundingseawaters.EnvironmentalPollution236,807-816.https://doi.org/10.1016/j.envpol.2017.12.027.Accessed12January2021.Dussud,C.,Hudec,C.,George,M.,Fabre,P.,Higgs,O.,Bruzuad,S.etal.(2018b).Colonizationofnon-biodegradableandbiodegradableplasticsbymarinemicroorganisms.FrontiersinMicrobiology9,1571.https://doi.org/10.3389/fmicb.2018.01571.Accessed12January2021.Eagle,L.,Hamann,M.andLow,D.R.(2016).Theroleofsocialmarketing,marineturtlesandsustainabletourisminreducingplasticpollution.MarinePollutionBulletin107(1),324-332.https://doi.org/10.1016/j.marpolbul.2016.03.040.Accessed12January2021.Eckert,E.M.,DiCesare,A.,Kettner,M.T.,Arias-Andres,M.,Fontaneto,D.,Grossart,H.-P.etal.(2018).Microplasticsincreaseimpactoftreatedwastewateronfreshwatermicrobialcommunity.EnvironmentalPollution234,495-502.https://doi.org/10.1016/J.ENVPOL.2017.11.070.Accessed12January2021.Ecorys(2017).SupportingstudyforanimpactassessmentfortherevisionofDirective2000/59/EConPortReceptionFacilities.https://ec.europa.eu/transport/sites/default/files/2017-06-support-study-ia-prf-dir.pdf.Accessed12January2021.Eerkes-Medrano,D.,Thompson,R.C.andAldridge,D.C.(2015).Microplasticsinfreshwatersystems:Areviewoftheemergingthreats,identificationofknowledgegapsandprioritisationofresearchneeds.WaterResearch75,63-82.https://doi.org/10.1016/j.watres.2015.02.012.Accessed12January2021.EllenMacArthurFoundation(2016).TheNewPlasticsEconomy:RethinkingtheFutureofPlasticsandCatalysingAction.https://ellenmacarthurfoundation.org/the-new-plastics-economy-rethinking-the-future-of-plastics-and-catalysing.Accessed12January2021.EllenMacArthurFoundation(2020).TheGlobalCommitmentProgressReport2020.https://www.newplasticseconomy.org/assets/doc/Global-Commitment-2020-Progress-Report.pdf.Accessed12January2021.EllenMacArthurFoundation(2021).UpstreamInnovation.AGuidetoPackagingSolutions.https://www.ellenmacarthurfoundation.org/publications/upstream-innovation.Accessed13July2021.Enyoh,C.E.,Verla,A.W.,Verla,E.N.,Ibe,F.C.andAmaobi,C.E.(2019).Airbornemicroplastics:Areviewstudyonmethodforanalysis,occurrence,movementandrisks.EnvironmentalMonitoringandAssessment191,668.https://doi.org/10.1007/s10661-019-7842-0.Accessed12January2021.Eriksen,M.,Mason,S.,Wilson,S.,Box,C.,Zellers,A.,Edwards,W.etal.(2013).MicroplasticspollutioninthesurfacewatersoftheLaurentianGreatLakes.MarinePollutionBulletin77(1-2),177-182.https://doi.org/10.1016/j.marpolbul.2013.10.007.Accessed12January2021.Eriksen,M.,Lebreton,L.C.,Carson,H.S.,Thiel,M.,Moore,C.J.,Borerro,J.C.etal.(2014).Plasticpollutionintheworld’soceans:Morethan5trillionplasticpiecesweighingover250,000tonsafloatatsea.PLoSONE9(12),e111913.https://doi.org/10.1371/journal.pone.0111913.Accessed12January2021.Erni-Cassola,G.,Zadjelovic,V.,Gibson,M.I.andChristie-Oleza,J.A.(2019).Distributionofplasticpolymertypesinthemarineenvironment;Ameta-analysis.JournalofHazardousMaterials369,691-698.https://doi.org/10.1016/j.jhazmat.2019.02.067.Accessed12January2021.Esiukova,E.,Zobkov,M.andChubarenko,I.(2019).DataonmicroplasticcontaminationoftheBalticSeabottomsedimentsamplesin2015-2016.DatainBrief28,104887.https://doi.org/10.1016/j.dib.2019.104887.Accessed12January2021.Esmen,N.A.andCorn,M.(1971).Residencetimeofparticlesinurbanair.AtmosphericEnvironment(1967)5(8),571-578.https://doi.org/10.1016/0004-6981(71)90113-2.Accessed12January2021.Espinosa,C.,GarcíaBeltrán,J.M.,Esteban,M.A.andCuesta,A.(2018).Invitroeffectsofvirginmicroplasticsonfishhead-kidneyleucocyteactivities.EnvironmentalPollution235,30-38.https://doi.org/10.1016/j.envpol.2017.12.054.Accessed12January2021.EuropeanBioplastics(2020).Bioplasticsmarketdata.https://www.european-bioplastics.org/market/.Accessed16January2021.EuropeanChemicalIndustryCouncil(2020).2020FactsandFiguresoftheEuropeanChemicalIndustry.https://cefic.org/app/uploads/2019/01/The-European-Chemical-Industry-Facts-And-Figures-2020.pdf.Accessed12January2021.EuropeanChemicalsAgency(2017a).AnnexXVReport:AnEvaluationofthePossibleHealthRisksofRecycledRubberGranulesUsedAsInfillInSyntheticTurfSportsFields.https://echa.europa.eu/documents/10162/13563/annex-xv_report_rubber_granules_en.pdf/dbcb4ee6-1c65-af35-7a18-f6ac1ac29fe4.Accessed12January2021.EuropeanChemicalsAgency(2017b).GlyphosateNotClassifiedasaCarcinogenbyECHA–AllNews–ECHA.Accessed4/5/20.https://echa.europa.eu/-/glyphosate-not-classified-as-a-carcinogen-by-echa.Accessed20/6/2021.EuropeanChemicalsAgency(2018).GuidanceinaNutshellonrequirementsforsubstancesinarticles.Version3.0–December2017https://echa.europa.eu/documents/10162/23036412/nutshell_guidance_articles2_en.pdf/1e13dcce-b46b-43cb-904e-6c4675613e9d.Accessed12January2021.125MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTEuropeanChemicalsAgency(2019).AnnexXVRegistrationReport:ProposalforaRestriction.SubstanceName(s):intentionallyaddedmicroplastics.https://echa.europa.eu/documents/10162/05bd96e3-b969-0a7c-c6d0-441182893720.Accessed12January2021.EuropeanCommission(2017).NauticalTourism.CommissionStaffWorkingDocument.Brussels,30.3.2017SWD(2017)126finalhttps://ec.europa.eu/oceans-and-fisheries/system/files/2021-03/swd-2017-126_en.pdf.Accessed31January2021.EuropeanCommission(2018a).ReducingMarineLitter:Actiononsingle-useplasticsandfishinggear.AccompanyingthedocumentProposalforaDirectiveoftheEuropeanParliamentandoftheCouncilonthereductionoftheimpactofcertainplasticsproductsontheenvironment.CommissionStaffWorkingDocumentImpactAssessment28.5.2018SWD(2018)254final.PART1/3.Brussels.https://eur-lex.europa.eu/resource.html?uri=cellar:4d0542a2-6256-11e8-ab9c-01aa75ed71a1.0001.02/DOC_1&format=PDF.Accessed25May2021.EuropeanCommission(2018b).Single-useplastics:NewEUrulestoreducemarinelitter.https://ec.europa.eu/commission/presscorner/detail/en/MEMO_18_3909.Accessed12January2021.EuropeanCommission(2018c).ProposalforaDirectiveoftheEuropeanParliamentandoftheCouncilonportreceptionfacilitiesforthedeliveryofwastefromships,repealingDirective2000/59/ECandamendingDirective2009/16/EC.16.1.2018COM(2018)33SWD22Final.https://eur-lex.europa.eu/legal-content/EN/TXT/DOC/?uri=CELEX:52018SC0021&from=EN.Accessed15February2021.EuropeanCommission(2019).TheEuropeanGreenDeal.Brussels,11.12.2019COM(2019)640final.https://ec.europa.eu/info/sites/default/files/european-green-deal-communication_en.pdf.Accessed20June2021.EuropeanCommission(2020).Circulareconomyactionplan.https://ec.europa.eu/environment/strategy/circular-economy-action-plan_en.Accessed19August2020.EuropeanCommissionARCADIS(2014).FinalReport:MarineLitterStudytosupporttheestablishmentofaninitialquantitativeheadlinereductiontarget-SFRA0025.EuropeanCommissionDGEnvironment,ProjectNumberBE0113.000668/finalversion.https://ec.europa.eu/environment/marine/good-environmental-status/descriptor-10/pdf/final_report.pdf.Accessed12January2021.EuropeanFoodSafetyAuthorityPanelonContaminantsintheFoodChain(2016).Presenceofmicroplasticsandnanoplasticsinfood,withparticularfocusonseafood.EFSAJournal14(6),e04501.https://doi.org/10.2903/j.efsa.2016.4501.Accessed12January2021.EuropeanUnion(2019a).EnvironmentalandHealthRisksofMicroplasticPollution.GroupofChiefScientificAdvisorsScientificOpinion6/2019(SupportedbySAPEAEvidenceReviewReportNo.4).ScientificAdviceMechanism(SAM).https://doi.org/10.2777/65378.Accessed12January2021.EuropeanUnion(2019b).Directive(EU)2019/904oftheEuropeanParliamentandoftheCouncilof5June2019onthereductionoftheimpactofcertainplasticproductsontheenvironment.OfficialJournaloftheEuropeanUnionL155/1.https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019L0904.Accessed12January2021.EuropeanUnion(2019c).Directive(EU)2019/883oftheEuropeanParliamentandoftheCouncilof17April2019onportreceptionfacilitiesforthedeliveryofwastefromships,amendingDirective2010/65/EUandrepealingDirective2000/59/ECL151/116.https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019L0883&from=IT.Accessed15February2021.EuropeanUnionNetworkfortheImplementationandEnforcementofEnvironmentalLaw(2019).Allaboutplasticwaste.IMPELWasteandTFSConference,Bucharest,October2019.https://www.impel.eu/impel-waste-tfs-conference-all-about-plastic-waste-bucharest-october-2019/.Accessed12January2021.Evangeliou,N.,Grythe,H.,Klimont,Z.Heyes,C.,Eckhardt,S.,Lopez-Aparicio,S.andStohl,A.(2020).Atmospherictransportisamajorpathwayofmicroplasticstoremoteregions.NatureCommunications11,3381.https://doi.org/10.1038/s41467-020-17201-9.Accessed12January2021.Eyheraguibel,B.,Leremboure,M.,Traikia,M.,Sancelme,M.,Bonhomme,S.,Fromageot,D.etal.(2018).Environmentalscenariiforthedegradationofoxo-polymers.Chemosphere198,182-190.https://doi.org/10.1016/j.chemosphere.2018.01.153.Accessed12January2021.Fanini,L.andBozzeda,F.(2018).Dynamicsofplasticresinpelletsdepositiononamicrotidalsandybeach:Informativevariablesandpotentialintegrationintosandybeachstudies.EcologicalIndicators89,309-316.https://doi.org/10.1016/j.ecolind.2018.02.027.Accessed12January2021.FAO(FoodandAgricultureOrganizationoftheUnitedNations)(2020).TheStateofWorldFisheriesandAquaculture2020.Rome.http://www.fao.org/state-of-fisheries-aquaculture.Accessed12January2021.Farrelly,T.,Borelle,S.andFuller,S.(2020).PlasticPollutionPreventioninPacificIslandCountries:GapAnalysisofCurrentLegislation,PoliciesandPlans.EnvironmentalInvestigationAgency.https://reports.eia-international.org/wp-content/uploads/sites/6/2020/09/Plastic-Prevention-Gap-Analysis-2020.pdf.Accessed12January2021.Faure,F.,Demars,C.,Wieser,O.,Kunz,M.anddeAlencastro,L.F.(2015).PlasticspollutioninSwisssurfacewaters:Natureandconcentrations,interactionwithpollutants.EnvironmentalChemistry12(5),582-591.https://doi.org/10.1071/EN14218.Accessed12January2021.Fazey,F.M.andRyan,P.G.(2016).Biofoulingonbuoyantmarineplastics:Anexperimentalstudyintotheeffectofsizeonsurfacelongevity.EnvironmentalPollution210,354-360.https://doi.org/10.1016/j.envpol.2016.01.026.Accessed12January2021.Ferreira,I.,Venânciob,C.,Lopesb,I.andOliveira,M.(2019).Nanoplasticsandmarineorganisms:Whathasbeenstudied?EnvironmentalToxicologyandPharmacy67,1-7.https://doi.org/10.1016/j.etap.2019.01.006.Accessed12January2021.Ferreira,S.,Convery,F.andMcDonnell,S.(2007).ThemostpopulartaxinEurope?LessonsfromtheIrishplasticbagslevy.EnvironmentalandResourceEconomics38,1-11.https://doi.org/10.1007/s10640-006-9059-2.Accessed12January2021.Filho,W.L.,Saari,U.,Fedoruk,M.,Iital,A.,Moora,H.,Klöga,M.etal.(2019).AnoverviewoftheproblemsposedbyplasticproductsandtheroleofextendedproducerresponsibilityinEurope.JournalofCleanerProduction214,550-558.https://doi.org/10.1016/j.jclepro.2018.12.256.Accessed12January2021.Fischer,B.,Milunov,M.,Floredo,Y.,Hofbauer,P.andJoas,A.(2014).IdentificationofRelevantEmissionPathwaystotheEnvironmentandQuantificationofEnvironmentalExposureforBisphenolA.ProjectNo.(FKZ)36001063,ReportNo.(UBA-FB)001933/E.Dessau-Roßlau,Germany:FederalEnvironmentAgency.(UmweltBundesamt).https://www.umweltbundesamt.de/en/publikationen/identification-of-relevant-emission-pathways-to-the.Accessed20June2021.Flaws,J.,Damdimopolou,P.,Patisaul,H.B.,Gore,A.,Raetzman,L.,andVandenberg,L.N.(2020).Plastics,EDCsandHealth.AGuideforPublicInterestOrganisationsandPolicy-makersonEndocrineDisruptingChemicalsandPlastics.EndocrineSocietyandIPEN.https://www.endocrine.org/-/media/endocrine/files/topics/edc_guide_2020_v1_6chqennew-version.pdf.Accessed25May2021.Fleet,D.,Vlachogianni,T.andHanke,G.(2021).AJointListofLitterCategoriesforMarineMacrolitterMonitoring.EUR30348EN;JRC121708.Luxembourg:PublicationsOfficeoftheEuropeanUnion.https://doi.org/10.2760/127473.Accessed17August2021.Forrest,A.,Giacovazzi,L.,Dunlop.S.,Reisser,J.,Tickler,D.,Jamieson,A.etal.(2019).Eliminatingplasticpollution:Howavoluntarycontributionfromindustrywilldrivethecircularplasticseconomy.FrontiersinMarineScience6,627.https://doi.org/10.3389/fmars.2019.00627.Accessed12January2021.126MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTForrest,S.A.,Bourdages,M.P.T.andVermaire,J.C.(2020).Microplasticsinfreshwaterecosystems.InHandbookofMicroplasticsintheEnvironment.Rocha-Santos,T.,Costa,M.,andMouneyrac,C.(eds.).Cham:Springer.1-19.https://doi.org/10.1007/978-3-030-10618-8_2-1.Accessed12January2021.Fortibuoni,T.,Ronchi,F.,Macic,V.,Mandic,M.,Mazziotto,C.,Peterlin,M.etal.(2019).AharmonizedandcoordinatedassessmentoftheabundanceandcompositionofseafloorlitterintheAdriatic-Ionianmacroregion(MediterraneanSea).MarinePollutionBulletin139,412-426.https://doi.org/10.1016/j.marpolbul.2019.01.017.Accessed12January2021.Fossatti,M.,TeixeiradeMello,F.Lozoya,J.P.(2020).MesoplasticsandlargemicroplasticsalongausegradientontheUruguayAtlanticcoast:Types,sources,fates,andchemicalloads.ScienceofTheTotalEnvironment721,137734.https://doi.org/10.1016/j.scitotenv.2020.137734.Accessed13January2021.Fossi,M.C.,Panti,C.,Guerranti,C.,Coppola,D.,Giannetti,M.,Marsili,L.etal.(2012).Arebaleenwhalesexposedtothethreatofmicroplastics?AcasestudyoftheMediterraneanfinwhale(Balaenopteraphysalus).MarinePollutionBulletin64(11),2374-2379.https://doi.org/10.1016/j.marpolbul.2012.08.013.Accessed12January2021.Fossi,M.C.,Coppola,D.,Baini,M.,Giannetti,M.,Guerranti,C.,Marsili,L.etal.(2014).Largefilterfeedingmarineorganismsasindicatorsofmicroplasticsinthepelagicenvironment:ThecasestudiesoftheMediterraneanbaskingshark(Cetorhinusmaximus)andfinwhale(Balaenopteraphysalus).MarineEnvironmentalResearch100,17-24.https://doi.org/10.1016/j.marenvres.2014.02.002.Accessed12January2021.Fossi,M.C.,Panti,C.,Baini,M.andLavers,J.L.(2018).Areviewofplastic-associatedpressures:CetaceansoftheMediterraneanSeaandEasternAustralianShearwatersascasestudies.FrontiersinMarineScience5,173.https://doi.org/10.3389/fmars.2018.00173.Accessed12January2021.Fossi,M.C.,Vlachogianni,T.,Galgani,F.,Innocenti,F.D.,Zampetti,G.andLeone,G.(2020).Assessingandmitigatingtheharmfuleffectsofplasticpollution:Thecollectivemulti-stakeholderdrivenEuro-Mediterraneanresponse.OceanandCoastalManagement184,105005.https://doi.org/10.1016/j.ocecoaman.2019.105005.Accessed12January2021.Franceschini,S.,Mattei,F.,D’Andrea,L.,Nardi,A.Di,Fiorentino,F.,Garofalo,G.etal.(2019).Rummagingthroughthebin:ModellingmarinelitterdistributionusingArtificialNeuralNetworks.MarinePollutionBulletin149,110580.https://doi.org/10.1016/j.marpolbul.2019.110580.Accessed12January2021.Franco-Trecu,V.,Drago,M.,Katz,H.,Machin,E.andMarin,Y.(2017).Withthenoosearoundtheneck:Marinedebrisentanglingotariidspecies.EnvironmentalPollution220(PartB),985-989.https://doi.org/10.1016/j.envpol.2016.11.057.Accessed12January2021.Fred-Ahmadu,O.H.,Bhagwat,G.,Oluyoye,I.,Benson,N.U.,Ayejuyo,O.OandPalanisami,T.(2020).Interactionofchemicalcontaminantswithmicroplastics:Principlesandperspectives.ScienceofTheTotalEnvironment706,135978.https://doi.org/10.1016/j.scitotenv.2019.135978.Accessed12January2021.Frère,L.,Paul-Pont,I.,Moreau,J.,Soudant,P.,Lambert,C.,Huvet,A.etal.(2016).Asemi-automatedRamanmicro-spectroscopymethodformorphologicalandchemicalcharacterizationsofmicroplasticlitter.MarinePollutionBulletin113(1-2),461-468.https://doi.org/10.1016/j.marpolbul.2016.10.051.Accessed12January2021.Frias,J.P.G.L.andNash,R.(2019).Microplastics:Findingaconsensusonthedefinition.MarinePollutionBulletin138,145-147.https://doi.org/10.1016/j.marpolbul.2018.11.022.Accessed12January2021.G20(2019).G20WorkshoponScientificKnowledgeandInnovativeSolutionsforMarinePlasticLitter:SupportingtheG20ImplementationFrameworkforActionsonMarinePlasticLitter.8October2019,Tokyo,Japan:MeetingReport.Luxembourg:PublicationsOfficeoftheEuropeanUnion.https://op.europa.eu/en/publication-detail/-/publication/2371d5f9-22d6-11ea-af81-01aa75ed71a1/language-en/format-PDF.Accessed12January2021.Galgani,F.,Hanke,G.andMaes,T.(2015).Globaldistribution,compositionandabundanceofmarinelitter.InMarineAnthropogenicLitter.Bergmann,M.,Gutow,LandKlages,M.(eds.).Cham:Springer.29-56.https://link.springer.com/content/pdf/bfm%3A978-3-319-16510-3%2F1.pdf.Accessed12January2021.Galgani,F.,Pham,C.K.,Claro,F.andConsoli,P.(2018).Marineanimalforestsasusefulindicatorsofentanglementbymarinelitter.MarinePollutionBulletin135,735-738.https://doi.org/10.1016/j.marpolbul.2018.08.004.Accessed12January2021.Galgani,F.,Brien,A.So.,Weis,J.,Ioakemedidis,C.,Schuyler,Q.,Makarenko,I.etal.(2021).Arelitter,plasticandmicroplasticquantitiesincreasingintheocean?MicroplasticsandNanoplastics1,2.https://doi.org/10.1186/s43591-020-00002-8.Accessed17August2021.Galimany,E.,Marco-Herrero,E.,Soto,S.,Recasens,L.,Lombarte,A.,Lleonart,J.etal.(2019).BenthicmarinelitterinshallowfishinggroundsintheNWMediterraneanSea.WasteManagement95,620-627.https://doi.org/10.1016/j.wasman.2019.07.004.Accessed12January2021.Gallo,F.,Fossi,C.,Weber,R.,Santillo,D.,Sousa,J.,Ingram,I.etal.(2018).Marinelitterplasticsandmicroplasticsandtheirtoxicchemicalscomponents:Theneedforurgentpreventivemeasures.EnvironmentalSciencesEurope30,13.https://doi.org/10.1186/s12302-018-0139-z.Accessed12January2021.Galloway,T.S.andLewisC.N.(2016).Marinemicroplasticsspellbigproblemsforfuturegenerations.ProceedingsoftheNationalAcademyofSciences113,2331-2333.https://doi.org/10.1073/pnas.1600715113.Accessed12January2021.Galloway,T.S.,Cole,M.andLewis,C.(2017).Interactionsofmicroplasticdebristhroughoutthemarineecosystem.NatureEcologyandEvolution1(5),1-8.https://doi.org/10.1038/s41559-017-0116.Accessed12January2021.Garaba,S.P.andDierssen,H.M.(2018).Anairborneremotesensingcasestudyofsynthetichydrocarbondetectionusingshortwaveinfraredabsorptionfeaturesidentifiedfrommarine-harvestedmacro-andmicroplastics.RemoteSensingofEnvironment205,224-235.https://doi.org/10.1016/j.rse.2017.11.023.Accessed12January2021.Garaba,S.P.,Aitken,J.,Slat,B.,Dierssen,H.M.,Lebreton,L.,Zielinski,O.andReisser,J.(2018).Sensingoceanplasticswithanairbornehyperspectralshortwaveinfraredimager.EnvironmentalScienceandTechnology52(20),11699-11707.https://doi.org/10.1021/acs.est.8b02855.Accessed12January2021.Garcés-Ordóñeza,O.,Castillo-Olayab,V.A.,Granados-Briceñoc,A.F.,BlandónGarcíaa,L.M.,EspinosaDíaz,L.F.(2019).MarinelitterandmicroplasticpollutiononmangrovesoilsoftheCiénagaGrandedeSantaMarta,ColombianCaribbean.MarinePollutionBulletin145,455-462.https://doi.org/10.1016/j.marpolbul.2019.06.058.Accessed12January2021.Garcia-Garin,O.,Garcia-Cuebas,I.,Drago,M.,Rita,D.,Parga,M.,Gazo,M.andCardona,L.(2020).NoevidenceofmicroplasticsinAntarcticfursealscatsfromahotspotofhumanactivityinWesternAntarctic.ScienceofTheTotalEnvironment737,140210.https://doi.org/10.1016/j.scitotenv.2020.140210.Accessed12January2021.Garcia-Soto,C.,vanderMeeren,G.I.,Busch,J.A.,Delany,J.,Domegan,C.,Dubsky,K.etal.(2017).AdvancingCitizenScienceforCoastalandOceanResearch.French,V.,Kellett,P.,Delany,J.andMcDonough,N.(eds.).PositionPaper23.Ostend,Belgium:EuropeanMarineBoard.https://www.marineboard.eu/sites/marineboard.eu/files/public/publication/EMB_PP23__Citizen_Science_web.pdf.Accessed12January2021.Gasperi,J.,Dris,R.,Miranda-Bret,C.Mandin,C.,Langlois,V.andTassin,B.(2015).Firstoverviewofmicroplasticsinindoorandoutdoorair.15thEuChemMSInternationalConferenceonChemistryandtheEnvironment.https://www.researchgate.net/publication/281657363_First_overview_of_microplastics_in_indoor_and_outdoor_air.Accessed12January2021.127MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTGattringer,C.W.(2018).Arevisitedconceptualizationofplasticpollutionaccumulationinmarineenvironments:Insightsfromasocialecologicaleconomicsperspective.MarinePollutionBulletin96,221-226.https://doi.org/10.1016/j.marpol.2017.11.036.Accessed12January2021.Gavigan,J.,Kefela,T.,Macadam-Somer,I.,Suh,S.andGeyerR.(2020).Syntheticmicrofiberemissionstolandrivalthosetowaterbodiesandaregrowing.PLoSONE15(9),e0237839.https://doi.org/10.1371/journal.pone.0237839.Accessed12January2021.Geiger,S.M.,Geiger,M.andWilhelm,O.(2019)Environment-specificvs.generalknowledgeandtheirroleinpro-environmentalbehavior.FrontiersinPsychology10,718.https://doi.org/10.3389/fpsyg.2019.00718.Accessed12January2021.Geraeds,M.,vanEmmerik,T.,deVries,R.andAbRazak,M.S.(2019).Riverineplasticlittermonitoringusingunmannedaerialvehicles(UAVs).RemoteSensing11,2045.https://doi.org/10.3390/rs11172045.Accessed12January2021.Gerdts,G.(2017).DefiningtheBASElinesandstandardsformicroplasticsANalysesinEuropeanwaters(BASEMAN.).2ndJPIOceansConference,26October2017,Lisbon.https://repository.oceanbestpractices.org/handle/11329/1205.Accessed11January2021.GESAMP(JointGroupofExpertsontheScientificAspectsofMarineEnvironmentalProtection)(2015).Sources,FateandEffectsofMicroplasticsintheMarineEnvironment:AGlobalAssessment.Kershaw,P.J.(ed.).IMO/FAO/UNESCO-IOC/UNIDO/WMO/IAEA/UN/UNEP/UNDP.https://ec.europa.eu/environment/marine/good-environmental-status/descriptor-10/pdf/GESAMP_microplastics%20full%20study.pdf.Accessed11January2021.GESAMP(2019).GuidelinesfortheMonitoringandAssessmentofPlasticsLitterintheOcean.IMO/FAO/UNESCO-IOC/UNIDO/WMO/IAEA/UN/UNEP/UNDP.http://www.gesamp.org/publications/guidelines-for-the-monitoring-and-assessment-of-plastic-litter-in-the-ocean.Accessed11January2021.GESAMP(2020a).ProceedingsoftheGESAMPInternationalWorkshoponAssessingtheRisksAssociatedwithPlasticsandMicroplasticsintheMarineEnvironment.Kershaw,P.J.,CarneyAlmroth,B.,Villarrubia-Gómez,P.,Koelmans,A.A.andGouin,T.(eds.).IMO/FAO/UNESCO-IOC/UNIDO/WMO/IAEA/UN/UNEP/UNDP/ISA.http://www.gesamp.org/publications/gesamp-international-workshop-on-assessing-the-risks-associated-with-plastics-and-microplastics-in-the-marine-environment.Accessed11January2021.GESAMP(2020b).Sea-basedSourcesofMarineLitter–AReviewofCurrentKnowledgeandAssessmentofDataGaps.SecondInterimReportofGESAMOWorkingGroup43.June2020.Rome:FoodandAgricultureOrganizationoftheUnitedNations.http://www.fao.org/3/cb0724en/cb0724en.pdf.Accessed11January2021.Gewert,B.,Plassmann,M.M.andMacleod,M.(2015).Pathwaysfordegradationofplasticpolymersfloatinginthemarineenvironment.EnvironmentalScience:ProcessesandImpacts17,1513-1521.https://doi.org/10.1039/c5em00207a.Accessed11January2021.Geyer,R.(2020).Production,useandfateofsyntheticpolymersinplasticwasteandrecycling.InPlasticWasteandRecycling:EnvironmentalImpact,SocietalIssues,Prevention,andSolutions.Letcher,T.M.(ed.).Cambridge,MA:AcademicPress.13-32.https://www.sciencedirect.com/science/article/pii/B9780128178805000025?via%3Dihub.Accessed11January2021.Geyer,R.,Kuczenski,B.,Zink,T.andHenderson,A.(2016).Commonmisconceptionsaboutrecycling.JournalofIndustrialEcology20(5),1010-1017.https://doi.org/10.1111/jiec.12355.Accessed11January2021.Geyer,R.,Jambeck,J.R.andLaw,K.L.(2017).Production,useandfateofallplasticsevermade.ScienceAdvances3(7),e1700782.https://doi.org/10.1126/sciadv.1700782.Accessed12January2021.Giampietro,M.andMayumi,K.(2018).UnravellingthecomplexityoftheJevons’Paradox:Thelinkbetweeninnovation,efficiencyandsustainability.FrontiersinEnergyResearch6,26.https://doi.org/10.3389/fenrg.2018.00026.Accessed12January2021.Gigault,J.,Pedrono,B.,Maxit,B.andterHalle,A.(2016).Marineplasticlitter:Theunanalyzednano-fraction.EnvironmentalScience:Nano3,346-350.https://doi.org/10.1039/C6EN00008H.Accessed12January2021.Gigault,J.,terHalle,A.,Baudrimont,M.,Pascal,P.-Y.,Gauffre,F.,Phi,T-L.etal.(2018).Currentopinion:Whatisananoplastic?EnvironmentalPollution235,1030-1034.https://doi.org/10.1016/j.envpol.2018.01.024.Accessed12January2021.Gilbreath,A.,McKee,L.,Shimabuku,I.,Lin,D.,Werbowski,L.M.,Zhu,X.etal.(2019).MultiyearwaterqualityperformanceandmassaccumulationofPCBs,mercury,methylmercury,copperandmicroplasticsinabioretentionraingarden.JournalofSustainableWaterintheBuiltEnvironment5(4),04019004.https://doi.org/10.1061/JSWBAY.0000883.Accessed12January2021.Gleason,C.J.andDurand,M.T.(2020).Remotesensingofriverdischarge:Areviewandaframingforthediscipline.RemoteSensing12,1107.https://doi.org/10.3390/rs12071107.Accessed12January2021.Goddijn-Murphy,L.,Steef,L.,vanSebille,E.,James,N.A.andGibb,S.(2018).Conceptforahyperspectralremotesensingalgorithmforfloatingmarinemacroplastics.MarinePollutionBulletin126,255-262.https://doi.org/10.1016/j.marpolbul.2017.11.011.Accessed12January2021.Godoy,D.andStockin,K.(2018).AnthropogenicimpactsongreenturtlesCheloniamydasinNewZealand.EndangeredSpeciesResearch37,1-9.https://doi.org/10.3354/esr00908.Accessed12January2021.Goel,N.,Fatima,S.W.,Kumar,S.,Sinha,R.andKhare,S.K.(2021).Antimicrobialresistanceinbiofilms:exploringmarineactinobacteiraasapotentialsourceofantibioticsandbiofilminhibitors.BiotechnologyReports,30,e00613https://doi.org/10.1016/j.btre.2021.e00613.Accessed8June2021.Golden,C.D.,Allison,E.H.,Cheung,W.W.L.,Dey,M.M.,Halpern.B.S.,McCauley,D.J.etal.(2016).Fallinfishcatchthreatenshumanhealth.Nature534,317-320.https://doi.org/10.1038/534317a.Accessed12January2021.Goldstein,C.M.,Rosenberg,M.andCheng,L.(2012).Increasedoceanicmicroplasticsdebrisenhancesovipositioninanendemicpelagicinsect.BiologyLetters8,817-820.https://doi.org/10.1098/rsbl.2012.0298.Accessed12January2021.Goldstein,M.C.,Titmus,A.andFord,M.(2013).ScalesofspatialheterogeneityofplasticmarinedebrisintheNortheastPacificOcean.PLoSONE8(11),e80020.https://doi.org/10.1371/journal.pone.0080020.Accessed12January2021.Goldstein,M.C.,Carson,H.S.andEriksen,M.(2014).RelationshipofdiversityandhabitatareainNorthPacificplastic-associatedraftingcommunities.MarineBiology161,1441-1453.https://doi.org/10.1007/s00227-014-2432-8.Accessed12January2021.González,D.,Hanke,G.,Tweehuysen,G.,Bellert,B.,Holzhauer,M.,Palatinus,A.etal.(2016).RiverineLitterMonitoring–OptionsandRecommendations.MSFDGESTGMarineLitterThematicReport.JRCTechnicalReports.EUR28307.https://doi.org/10.2788/461233.Accessed12January2021.González-Fernández,D.andHanke,G.(2017).Towardaharmonizedapproachformonitoringofriverinefloatingmacrolitterinputstothemarineenvironment.FrontiersinMarineScience4,86.https://doi.org/10.3389/fmars.2017.00086.Accessed12January2021.González-Fernández,D.,Cózar,A.,Hanke,G.,Viejo,J.etal.(2021).FloatingmacrolitterleakedfromEuropeintotheocean.NatureSustainability4,474–483.https://doi.org/10.1038/s41893-021-00722-6Accessed13October2021.González-Pleiter,M.,Tamayo-Belda,M.,Pulido-Reyes,G.,Amariei,G.,Leganés,F.,Rosal,R.andFernández-Piñas,F.(2019).Secondarynanoplasticsreleasedfromabiodegradablemicroplasticseverelyimpactfreshwaterenvironments.EnvironmentalScience:Nano6,1382-1392.https://doi.org/10.1039/C8EN01427B.Accessed12January2021.128MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTGouin,T.,Roche,N.,Lohmann,R.andHodges,G.(2011).Athermodynamicapproachforassessingtheenvironmentalexposureofchemicalsabsorbedtomicroplastic.EnvironmentalScienceandTechnology45(4),1466-1472.https://doi.org/10.1021/es1032025.Accessed12January2021.GPML(GlobalPartnershipforMarineLitter)(2021).GPMLDigitalPlatform.https://digital.gpmarinelitter.org/.Accessed13July2021.Green,D.S.(2016).EffectsofmicroplasticsonEuropeanflatoysters,Ostreaedulisandtheirassociatedbenthiccommunities.EnvironmentalPollution216,95-103.https://doi.org/10.1016/j.envpol.2016.05.043.Accessed12January2021.Green,D.S.,Boots,B.,Blockley,D.J.,Rocha,C.andThompson,R.(2015).Impactsofdiscardedplasticbagsonmarineassemblagesandecosystemfunctioning.EnvironmentalScienceandTechnology49(9),5380-5389.https://doi.org/10.1021/acs.est.5b00277.Accessed12January2021.Green,D.S.,Boots,B.,Sigwart,J.,Jiang,S.andRocha,C.(2016).Effectsofconventionalandbiodegradablemicroplasticsonamarineecosystemengineer(ArenicolaMarinamarina)andsedimentnutrientcycling.EnvironmentalPollution208,426-434.https://doi.org/10.1016/j.envpol.2015.10.010.Accessed12January2021.Green,D.S.,Boots,B.,O’Connor,N.E.andThompson,R.(2017).Microplasticsaffecttheecologicalfunctioningofanimportantbiogenichabitat.EnvironmentalScienceandTechnology51(1),68-77.https://doi.org/10.1021/acs.est.6b04496.Accessed12January2021.Green,D.,Kregting,L.andBoots,B.(2018).AcomparisonofsamplingmethodsforseawatermicroplasticsandafirstreportofthemicroplasticslitterincoastalwatersofAscensionandFalklandIslands.MarinePollutionBulletin137,695-701.https://doi.org/10.1016/j.marpolbul.2018.11.004.Accessed12January2021.Green,D.S.,Colgan,T.J.,Thompson,R.C.andCarolan,J.C.(2019).Exposuretomicroplasticsreducesattachmentstrengthandaltersthehaemolymphproteomeofbluemussels(Mytilusedulis).EnvironmentalPollution246,423-434.https://doi.org/10.1016/j.envpol.2018.12.017.Accessed12January2021.Greenpeace(2020).Biodegradableplatsics:BreakingDowntheFacts.Production,CompositionandEnvironmentalImpact.GreenpeaceEastAsia.https://www.greenpeace.org/static/planet4-eastasia-stateless/84075f56-biodegradable-plastics-report.pdf.Accessed20January2021.Groh,K.J.,Backhaus,T.,Carney-Almroth,B.,Gueke,B.,Inostroza,P.A.,Lennquist,A.etal.(2019).Overviewofknownplasticpackaging-associatedchemicalsandtheirhazards.ScienceofTheTotalEnvironment651,3253-3268.https://doi.org/10.1016/j.scitotenv.2018.10.015.Accessed12January2021.Guerranti,C.,Cannas,S.,Scopetani,C,Fastelli,P.,Cincimelli,A.andRenzi.,M.(2017).PlasticlitterinaquaticenvironmentsofMaremmaRegionalPark(TyrrhenianSea,Italy):ContributionbytheOmbroneriverandlevelsinmarinesediments.MarinePollutionBulletin117,366-370.https://doi.org/10.1016/j.marpolbul.2017.02.021.Accessed12January2021.Gulzar,T.,Farooq,T.,Kiran,S.,Ahmad,I.andHameed,A.(2019).Greenchemistryinthewetprocessingoftextiles.InTheImpactandProspectsofGreenChemistryforTextileTechnology.Shahid-ul-IslamandButola,B.S.(eds.).Woodhead(Elsevier).1-20.https://doi.org/10.1016/C2017-0-01957-2.Accessed12January2021.Guo,J.J.,Zhang,F.,Liu,C.H.,Li,Y,andZheng,R.E.(2017).Raman-fluorescencespectroscopyforunderwaterin-situapplication.SpectroscopyandSpectralAnalysis37,3099-3102.https://www.researchgate.net/publication/323666800_Raman-Fluorescence_Spectroscopy_for_Underwater_in-situ_Application.Accessed17August2021.Guo,X.andWang,J.(2019).Thechemicalbehavioursofmicroplasticsinmarineenvironment:Areview.MarinePollutionBulletin142,1-14.https://doi.org/10.1016/j.marpolbul.2019.03.019.Accessed12January2021.Güven,O.,Gökdağ,K.,Jovanović,B.andKideys,A.E.(2017).MicroplasticlittercompositionoftheTurkishterritorialwatersoftheMediterraneanSea,anditsoccurrenceinthegastrointestinaltractoffish.EnvironmentalPollution223,286-294.https://doi.org/10.1016/j.envpol.2017.01.025.Accessed12January2021.Haider,T.P,Völker,C.,Kramm,J.,Landfester,K.andWurm,F.R.(2018).Plasticsofthefuture?Theimpactofbiodegradablepolymersontheenvironmentandonsociety.AngewandteChemieInternationalEdition58,50-62.https://doi.org/10.1002/anie.201805766.Accessed12January2021.Hahladakis,J.N.,Velis,C.A.,Weber,R.,Iacovidou,E.andPurnella.P.(2018).Anoverviewofchemicaladditivespresentinplastics:Migration,release,fateandenvironmentalimpactduringtheiruse,disposalandrecycling.JournalofHazardousMaterials344,179-199.https://doi.org/10.1016/j.jhazmat.2017.10.014.Accessed12January2021.Hall,K.(2000).ImpactsofMarineDebrisandOil:EconomicandSocialCoststoCoastalCommunities.Lerwick,Shetland,UnitedKingdom:KommunenesInternasjonaleMiljøorganisasjon(KIMO).https://www.kimointernational.org/wp/wp-content/uploads/2017/09/KIMO_Impacts-of-Marine-Debris-and-Oil_Karen_Hall_2000.pdf.Accessed12January2021.Hall-Stoodley,L.,Costerton,J.W.andStoodley,P.(2004).Bacterialbiofilms:FromtheNaturalenvironmenttoinfectiousdiseases.NatureReviewsMicrobiology2,95-108.https://doi.org/10.1038/nrmicro821.Accessed12January2021.Hallanger,I.G.andGabrielsen,G.W.(2018).PlasticsintheEuropeanArctic.BriefReportNo.045,NorwegianPolarInstitute.http://www.synturf.org/images/NPI_Report_-_Kortrapport45.pdf.Accessed12January2021.Hämer,J.,Gutow,L.,Köhler,A.,Saborowski,R.,Hämer,J.,Gutow,L.etal.(2014).FateofmicroplasticsinthemarineisopodIdoteaemarginata.EnvironmentalScienceandTechnology48(22),13451-13458.https://doi.org/10.1021/es501385y.Accessed12January2021.Hamilton,S.E.andCasey,D.(2016).Creationofahighspatio-temporalresolutionglobaldatabaseofcontinuousmangroveforestcoverforthe21stcentury(CGMFC-21).GlobalEcologyandBiogeography25(6),729-738.https://doi.org/10.1111/geb.12449.Accessed12January2021.Hanke,G.,Walvoort,D.,VanLoon,W.,Addamo,A.M.,Brosich,A.,delMarChavesMontero,M.etal.(2019).EUMarineBeachLitterBaselines:AnalysisofaPan-European2012-2016BeachLitterDataset.EUR30022.Luxembourg:PublicationsOfficeoftheEuropeanUnion.https://doi.org/10.2760/16903.Accessed12January2021.Hansen,E.,Nilsson,N.H.,Lithner,D.andLassen,C.(2013).HazardousSubstancesinPlasticMaterials.COWIandtheDanishTechnologicalInstituteonbehalfoftheNorwegianClimateandPollutionAgency,Oslo.https://www.byggemiljo.no/wp-content/uploads/2014/10/72_ta3017.pdf.Accessed12January2021.Hanvey,J.S.,Lewis,P.J.,Lavers,J.L.,Crosbie,N.D.,Pozo,K.andClarke,B.O.(2017).Areviewofanalyticalmethodsforquantifyingmicroplasticsinsediments.AnalyticalMethods9,1369-1383.https://pubs.rsc.org/en/content/articlelanding/2017/ay/c6ay02707e.Accessed12January2021.Hantoro,I.,Löhr,A.J.,VanBelleghem,F.G.A.J.,Widianarko,B.andRagas,A.M.J.(2019).Microplasticsincoastalareasandseafood:implicationsforfoodsafety.FoodAdditivesandContaminants:PartA,5,36:674-711.https://doi.org/10.1080/19440049.2019.1585581.Accessed9June2021.Hardesty,B.D.andWilcox,C.(2017).Ariskframeworkfortacklingmarinedebris.AnalyticalMethods9,1429.https://pubs.rsc.org/en/content/articlepdf/2017/ay/c6ay02934e.Accessed20June2021.Hardesty,B.D.,Holdsworth,D.,Revill,A.T.andWilcox,C.(2015).Abiochemicalapproachforidentifyingplasticsexposureinlivewildlife.MethodsinEcologyandEvolution6,92-98.https://doi.org/10.1111/2041-210X.12277.Accessed12February2021.Harris,P.T.(2020).Thefateofmicroplasticinmarinesedimentaryenvironments:Areviewandsynthesis.MarinePollutionBulletin158,111398.https://doi.org/10.1016/j.marpolbul.2020.111398.Accessed12February2021.129MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTHarris,P.T.,Tamelander,J.,Lyons,Y.,Neo.M.L.andMaes,T.(2021).Takingamass-balanceapproachtoassessmarineplasticsintheSouthChinaSea.MarinePollutionBulletin171,112708.https://doi.org/10.1016/j.marpolbul.2021.112708.Accessed20June2021.Harrison,J.P.,Boardman,C.,O’Callaghan,K.,Delort,A.M.andSong,J.(2018).Biodegradabilitystandardsforcarrierbagsandplasticsfilmsinaquaticenvironments:Acriticalreview.RoyalSocietyOpenScience5,171792.https://doi.org/10.1098/rsos.171792.Accessed12January2021.Hartley,B.L.,Thompson,R.C.andPahl,S.(2015).Marinelittereducationboostschildren’sunderstandingandself-reportedactions.MarinePollutionBulletin90(1-2),209-217.https://doi.org/10.1016/j.marpolbul.2014.10.049.Accessed12January2021.Hartley,B.L.,Pahl,S.,Veiga,J.,Vlachogianni,T.,Vasconcelos,L.,Maes,T.etal.(2018a).ExploringpublicviewsonmarinelitterinEurope:Perceivedcauses,consequencesandpathwaystochange.MarinePollutionBulletin133,945-955.https://doi.org/10.1016/j.marpolbul.2018.05.061.Accessed12January2021.Hartley,B.L.,Pahl,S.,Holland,M.,Alampei,I.,Veiga,J.andThompson,R.C.(2018b).Turningthetideontrash:EmpoweringEuropeaneducatorsandschoolstudentstotacklemarinelitter.MarinePolicy96,227-234.https://doi.org/10.1016/j.marpol.2018.02.002.Accessed12January2021.Haward,M.(2018).Plasticpollutionoftheworld’sseasandoceansasacontemporarychallengeinoceangovernance.NatureCommunications9,667.http://doi.org/10.1038/s41467-018-03104-3.Accessed12January2021.He,P.,Chen,L.,Shao,L.,Zhang,H.andLu,F.(2019).Municipalsolidwaste(MSW)landfill:Asourceofmicroplastic?–Evidenceofmicroplasticsinlandfillleachate.WaterResearch159,38-45.https://doi.org/10.1016/j.watres.2019.04.060.Accessed12January2021.Heidbreder,L.M.,Bablok,I.,Drews,S.andMenzel,C.(2019)Tacklingtheplasticproblem:Areviewonperceptions,behavioursandinterventions.ScienceofTheTotalEnvironment668,1077-1093.https://doi.org/10.1016/j.scitotenv.2019.02.437.Accessed12January2021.HELCOM(2017).MeasuringProgressfortheSameTargetsintheBalticSea.TheBalticMarineEnvironmentProtectionCommission.http://www.helcom.fi/Lists/Publications/BSEP150.pdf.Accessed12January2021.HELCOM(2018).HELCOMGuidelinesforMonitoringBeachLitter.TheBalticMarineEnvironmentProtectionCommission.https://helcom.fi/wp-content/uploads/2021/03/HELCOM-guidelines-for-monitoring-beach-litter.pdf.Accessed12January2021.Henry,B.,Laitala,K.andGrimstadKlepp,I.(2019).Microfibresfromapparelandhometextiles:Prospectsforincludingmicroplasticsinenvironmentalsustainabilityassessment.ScienceofTheTotalEnvironment652,483-494.https://doi.org/10.1016/j.scitotenv.2018.10.166.Accessed12January2021.Hermabessiere,L.,Dehaut,A.,Paul-Pont,I.,Lacroix,C.,Jezequel,R.,Soudant,P.etal.(2017).Occurrenceandeffectsofplasticadditivesonmarineenvironmentsandorganisms:Areview.Chemosphere182,781-793.https://doi.org/10.1016/j.chemosphere.2017.05.096.Accessed12January2021.Hermsen,E.,Mintenig,S.M.,Besseling,E.andKoelmans,A.A.(2018).Qualitycriteriafortheanalysisofmicroplasticinbiotasamples:Acriticalreview.EnvironmentalScienceandTechnology52(18),10230-10240.https://doi.org/10.1021/acs.est.8b01611.Accessed12January2021.Herr,D.andLandis,E.(2016).CoastalBlueCarbonEcosystems.OpportunitiesforNationallyDeterminedContributions.PolicyBrief.InternationalUnionforConservationofNatureandtheNatureConservancy.https://portals.iucn.org/library/sites/library/files/documents/Rep-2016-026-En.pdf.Accessed12October2021.Herzke,D.,Anker-Nilssen,T.,Nøst,T.H.,Götsch,A.,Christensen-Dalsgaard,S.,Langset,M.etal.(2016).NegligibleimpactofingestedmicroplasticsontissueconcentrationsofpersistentorganicpollutantsinnorthernfulmarsoffcoastalNorway.EnvironmentalScienceandTechnology50(4),1924-1933.http://dx.doi.org/10.1021/acs.est.5b04663.Accessed12January2021.Heskett,M.,Takada,H.,Yamashita,R.,Yuyama,M.,Ito,M.,Geok,Y.B.etal.(2012).Measurementofpersistentorganicpollutants(POPs)inplasticresinpelletsfromremoteislands:TowardestablishmentofbackgroundconcentrationsforInternationalPelletWatch.MarinePollutionBulletin6,445-8.https://doi.org/10.1016/j.marpolbul.2011.11.004.Accessed12January2021.Hidalgo-Ruiz,V.andThiel,M.(2015).Thecontributionofcitizenscientiststothemonitoringofmarinelitter.InMarineAnthropogenicLitter.Bergmann,M.,Gutow,L.andKlages,E.(eds.).Cham:Springer.429-447.https://www.springer.com/gp/book/9783319165097.Accessed12January2021.Hinata,H.,Moria,K.,Ohnoa,K.,Miyaoa,Y.andKataoka,T.(2017).Anestimationoftheaverageresidencetimesandonshore-offshorediffusivitiesofbeachedmicroplasticsbasedonthepopulationdecayoftaggedmeso-andmacrolitter.MarinePollutionBulletin122(102),17-26.https://doi.org/10.1016/j.marpolbul.2017.05.012.Accessed12January2021.Hirai,H.,Takada,H.,Ogata,Y.,Yamashita,R.,Mizukawa,K.,Saha.M.etal.(2011).Organicmicropollutantsinmarineplasticdebrisfromtheopenoceanandremoteandurbanbeaches.MarinePollutionBulletin62,1683-1692.https://doi.org/10.1016/j.marpolbul.2011.06.004.Accessed12January2021.Hodgson,D.J.,Bréchon,A.L.andThompson,R.C.(2018).IngestionandfragmentationofplasticcarrierbagsbytheamphipodOrchetisgammaerellus:Effectsofplastictypeandfoulingload.MarinePollutionBulletin127,154-159.https://doi.org/10.1016/j.marpolbul.2017.11.057.Accessed12January2021.Hoellein,T.,Rojas,M.,Pink,A.,Gasior,J.andKelly,J.(2014).Anthropogeniclitterinurbanfreshwaterecosystems:Distributionandmicrobialinteractions.PLoSOne9(6),e98485.https://doi.org/10.1371/journal.pone.0098485.Accessed12January2021.Hoffman,M.J.andHittinger,E.(2017).InventoryandtransportofplasticdebrisintheLaurentianGreatLakes.MarinePollutionBulletin115,273-281.https://doi.org/10.1016/j.marpolbul.2016.11.061.Accessed12January2021.Holland,E.R.,Mallory,M.L.andShutler,D.(2016).PlasticsandotheranthropogenicdebrisinfreshwaterbirdsfromCanada.ScienceofTheTotalEnvironment571,251-258.https://doi.org/10.1016/j.scitotenv.2016.07.158.Accessed12January2021.Holmquist,H.,Schellenberger,S.,vanDerVeen,I.,Peters,G.,Leonards,P.andCousins,I.T.(2016).Properties,performanceandassociatedhazardsofstate-of-the-artdurablewaterrepellent(DWR)chemistryfortextilefinishing.EnvironmentInternational91,251-264.https://doi.org/10.1016/j.envint.2016.02035.Accessed12January2021.Hong,S.,Lee,J.,Jang,Y.C.,Kim,Y.J.,Kim,H.J.,Han,D.etal.(2013).ImpactsofmarinedebrisonwildanimalsinthecoastalareaofKorea.MarinePollutionBulletin66(1-2),117-124.https://doi.org/10.1016/j.marpolbul.2012.10.022.Accessed12January2021.Hong,S.H.,Shim,W.J.andHong,L.(2017a).Methodsofanalysingchemicalsassociatedwithmicroplastics:Areview.AnalyticalMethods9,1361.https://doi.org/10.1039/c6ay02971j.Accessed12January2021Hong,S.,Lee,J.andLim,S.(2017b).NavigationalthreatsbyderelictfishinggeartonavyshipsintheKoreanSeas.MarinePollutionBulletin119(2),100-105.https://doi.org/10.1016/j.marpolbul.2017.04.006.Accessed12January2021.Hoornweg,D.andBhada-Tata,P.(2012).WhataWaste:AGlobalReviewofSolidWasteManagement.UrbanDevelopmentSeries.WorldBankUrbanDevelopmentandLocalGovernmentUnitoftheSustainableDevelopmentNetwork.Washington,D.C.:WorldBank.https://openknowledge.worldbank.org/handle/10986/17388.Accessed12January2021Horodytska,O.,Cabanes,A.andFullana,A.(2020).Non-intentionallyaddedsubstances(NIAS)inrecycledplastics.Chemosphere251,126373.https://doi.org/10.1016/j.chemosphere.2020.126373.Accessed12January2021.130MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTHorstman,E.M.,Dohmen-Janssen,C.M.,Narra,P.M.F.,vandenBerg,N.J.F.,Siemerink,M.andHulscher,S.J.M.H.(2014).Waveattenuationinmangroves:Aquantitativeapproachtofieldobservations.CoastalEngineering94,47e62.https://doi.org/10.1016/j.coastaleng.2014.08.005.Accessed12January2021.Horton,A.A.andDixon,S.J.(2018).Microplastics:Anintroductiontoenvironmentaltransportprocesses.WIREsWater5(2),e1268.https://doi.org/10.1002/wat2.1268.Accessed12January2021.Horton,A.A.,Svendsen,C.,Williams,R.J.,Spurgeon,D.J.andLahive,E.(2017a).LargemicroplasticsparticlesinsedimentsoftributariesoftheRiverThames,UK–Abundance,sourcesandmethodsforeffectivequantification.MarinePollutionBulletin114(1),218-226.https://doi.org/10.1016/j.marpolbul.2016.09.004.Accessed12January2021.Horton,A.A.,Walton,A.,Spurgeon,D.J.,Lahive,E.andSvendsen,C.(2017b).Microplasticsinfreshwaterandterrestrialenvironments:Evaluatingthecurrentunderstandingtoidentifytheknowledgegapsandfutureresearchpriorities.ScienceofTheTotalEnvironment586,127-141.https://doi.org/10.1016/j.scitotenv.2017.01.190.Accessed12January2021.Houde,M.,DeSilva,A.O.,Muir,D.C.GandLetcher,R.J.(2011).Monitoringofperfluorinatedcompoundsinaquaticbiota:Anupdatedreview.EnvironmentalScienceandTechnology45(19),7962-7973.https://doi.org/10.1021/es104326w.Accessed12January2021.Huang,F.Y.,Yang,K.,Zhang,Z.X.,Su,J.Q.,Zhu,Y.G.andZhang,X.(2019).Effectsofmicroplasticsonantibioticresistancegenesinestuarinesediments.PMID40(5),2234-2239[inChinese].https://doi.org/10.13227/j.hjkx.201810108;Englishabstractathttps://pubmed.ncbi.nlm.nih.gov/31087861/.Accessed12January2021.Hüffer,T.,Praetorius,A.,Wagner,S.,derKammer,F.V.andHofmann,T.(2017).Microplasticexposureassessmentinaquaticenvironments:Learningfromsimilaritiesanddifferencestoengineerednanoparticles.EnvironmentalScienceandTechnology51(5),2499-2407.https://doi.org/10.1021/acs.est.6b04054.Accessed12January2021.Hurley,R.R.andNizzetto,L.(2018).Fateandoccurrenceofmicro(nano)plasticsinsoils:Knowledgegapsandpossiblerisks.CurrentOpinioninEnvironmentalScienceandHealth1,6-11.https://doi.org/10.1016/j.coesh.2017.10006.Accessed12January2021Hurley,R.,Woodward,J.andRothwell,J.J.(2018).Microplasticscontaminationofriverbedssignificantlyreducedbycatchment-wideflooding.NatureGeoscience11(4),251-257.https://doi.org/10.1038/s41561-018-0080-1.Accessed12January2021.ICIS(IndependentCommodityIntelligenceServices)(2020).Postcoronavirus,whatwillchange?https://icis.com/explore/resources/news/2020/04/30/10502603/post-corona-what-will-change.Accessed13July2021.IHSMarkit(2018).BisphenolA:ChemicalEconomicsHandbook.https://ihsmarkit.com/products/bisphenol-chemical-economics-handbook.html.Accessed20June2021.ILO(InternationalLabourOrganization)(2017).CooperationamongWorkersintheInformalEconomy:AFocusonHome-basedWorkersandWastePickers.AJointILOandWIEGOInitiative.Geneva.https://www.ilo.org/global/topics/cooperatives/publications/WCMS_567507/lang--en/index.htm.Accessed12January2021.ILO(2019).WastePickers’CooperativesandSocialandSolidarityEconomyOrganizations.CooperativesandtheWorldofWorkSeriesNo.12.Geneva.https://www.ilo.org/wcmsp5/groups/public/---ed_emp/---emp_ent/---coop/documents/publication/wcms_715845.pdf.Accessed12January2021IMarEST(InstituteofMarineEngineeringScienceandTechnology)(2019).SteeringtowardsanIndustryLevelResponsetoMarinePlasticPollution:RoundtableSummaryReport.London.https://www.imarest.org/policy-news/thought-leadership/1039-marine-plastics/file.Accessed12January2021.Imhof,H.K.,Ivleva,N.P.,Schmid,J.,Niessner,R.andLaforsch,C.(2013).Contaminationofbeachsedimentsofasubalpinelakewithmicroplasticparticles.CurrentBiology23(19),R867-R868.https://doi.org/10.1016/j.cub.2013.09.001.Accessed12January2021.Imhof,H.K.,Sigl,R.,Brauer,E.,Feyl,S.,Giesemann,P.,Klink,S.etal.(2017).Spatialandtemporalvariationofmacro-,meso-andmicroplasticabundanceonaremotecoralislandoftheMaldives,IndianOcean.MarinePollutionBulletin116,340-347.https://doi.org/10.1016/j.marpolbul.2017.01010.Accessed12January2021.Imhof,H.K.,Wiesheu,A.C.,Anger,P.M.,Niessner,R.,Ivleva,N.P.andLaforsch,C.(2018).Variationinplasticabundanceatdifferentlakebeachzones.Acasestudy.ScienceofTheTotalEnvironment613,530-537.https://doi.org/10.1016/j.scitotenv.2017.08300.Accessed12January2021.IMO(InternationalMaritimeOrganization)(2016).ReviewoftheCurrentStateofKnowledgeRegardingMarineLitterinWastesDumpedatSeaundertheLondonConventionandProtocol-FinalReport(LC38/16).London.https://wwwcdn.imo.org/localresources/en/OurWork/Environment/Documents/Marine%20litter%20review%20for%20publication%20April%202016_final_ebook_version.pdf.Accessed12January2021.IMO(2019).End-of-LifeManagementofFibreReinforcedPlasticVessels:AlternativestoAtSeaDisposal.London.https://wwwcdn.imo.org/localresources/en/OurWork/Environment/Documents/Fibre%20Reinforced%20Plastics%20final%20report.pdf.Accessed12January2021.InternationalChamberofShipping(2021).Shippingandworldtrade.https://www.ics-shipping.org/shipping-fact/shipping-and-world-trade-driving-prosperity/.Accessed10September2021.InternationalMonetaryFund(2019).DisposalisNotFree:FiscalInstrumentstoInternalizetheEnvironmentalCostsofSolidWaste.https://www.imf.org/en/Publications/WP/Issues/2019/12/20/Disposal-is-Not-Free-Fiscal-Instruments-to-Internalize-the-Environmental-Costs-of-Solid-Waste-48854.Accessed25May2021.InternationalPacificResearchCenter(2008).Trackingoceandebris.IPRCClimate8(2),14-16.http://iprc.soest.hawaii.edu/newsletters/newsletter_sections/iprc_climate_vol8_2/tracking_ocean_debris.pdf.Accessed12January2021.InternationalPollutantsEliminationNetwork(2019).PlasticWastePoisonsIndonesia’sFoodChain.https://ipen.org/documents/plastic-waste-poisons-indonesia-food-chain.Accessed25May2021.Interpol(2020).EmergingCriminalTrendsintheGlobalWasteMarketsinceJanuary2018.InterpolStrategicAnalysisReport.https://www.interpol.int/en/News-and-Events/News/2020/INTERPOL-report-alerts-to-sharp-rise-in-plastic-waste-crime.Accessed12January2021.IRP(InternationalResourcePanel)(2019).GlobalResourcesOutlook2019:NaturalResourcesfortheFutureWeWant.Oberle,B.,Bringezu,S.,Hatfield-Dodds,S.,Hellweg,S.,Schandl,H.,Clement,J.,andCabernard,L.,Che,N.,Chen,D.,Droz-Georgetetal.AReportoftheInternationalResourcePanel.Nairobi,Kenya:UnitedNationsEnvironmentProgramme.https://www.resourcepanel.org/reports/global-resources-outlook.Accessed15June2021.IRP(2021).IRP(2021).PolicyOptionstoEliminateAdditionalMarinePlasticLitterby2050UndertheG20OsakaBlueOceanVision.Nairobi:UNEP.https://www.resourcepanel.org/sites/default/files/documents/document/media/policy_options_to_eliminate_additional_marine_plastic_litter.pdfIsobe,A.,Uchida,K.,Tokai,T.andIwasaki,S.(2015).EastAsianseas:Ahotspotofpelagicmicroplastics.MarinePollutionBulletin101,618-623.https://doi.org/10.1016/j.marpolbul.2015.10.042.Accessed12January2021.Isobe,A.,Uchiyama-Matsumoto,K.,Uchida,K.andTokai,T.(2017).MicroplasticsintheSouthernOcean.MarinePollutionBulletin114(1),623-626.https://doi.org/10.1016/j.marpolbul.2016.09.037.Accessed12January2021.131MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTIsobe,A.,Buenaventura,N.T.Chastain,S.,Chavanich,S.,Cózar,A.,DeLorenzoetal.(2019).Aninterlaboratorycomparisonexperimenttoquantifytheabundanceofmicroplasticsinstandardsamplebottles.MarinePollutionBulletin146,831-837.https://doi.org/10.1016/j.marpolbul.2019.07.033.Accessed12January2021.IvardoSul,J.A.andCosta,M.F.(2014).Thepresentandfutureofmicroplasticpollutioninthemarineenvironment.EnvironmentalPollution185,352-364.https://doi.org/10.1016/j.envpol.2013.10.036.Accessed12January2021.IvardoSul,J.A.,Costa,M.F.,Silva-Cavalcanti,J.S.andAraújo,M.C.B.(2014).Plasticsdebrisretentionandexportationbyamangroveforestpatch.MarinePollutionBulletin78(1-2),252-257.https://doi.org/10.1016/j.marpolbul.2013.11.011.Accessed12January2021.Ivleva,N.P.,Wiesheu,A.andReinhard,N.(2018).Microplasticinaquaticecosystems.AngewandteChemieInternationalEdition56,1720-1739.https://doi.org/10.1002/anie.201606957.Accessed12January2021.Jacob,H.,Besson,M.,Swarzenski,P.W.,Lecchini,D.andMetian,M.(2020).Effectsofvirginmicro-andnanoplasticsonfish:Trends,meta-analysis,andperspectives.EnvironmentalScienceandTechnology54(8),4733-4745.https://dx.doi.org/10.1021/acs.est.9b05995.Accessed12January2021.Jacquin,J.,Cheng,J.,Odobel,C.,Pandin,C.,Conan,P.,Pujo-Pay,M.etal.(2019).Microbialecotoxicologyofmarineplasticdebris:Areviewoncolonizationandbiodegradationbythe“plastisphere”.FrontiersinMicrobiology,25April.https://doi.org/10.3389/fmicb.2019.00865.Accessed12January2021.Jambeck,J.R.,Geyer,R.,Wilcox,C.,Siegler,T.R.,Perryman,M.,Andrady,A.etal.(2015).Plasticwasteinputsfromlandintotheocean.Science347(6223),768-771.https://doi.org/10.1126/science.1260352.Accessed12January2021.Jambeck,J.,Hardesty,B.D.,Brooks,A.L.,Friend,T.,Teleki,K.,Fabres,J.etal.(2018).Challengesandemergingsolutionstotheland-basedplasticwasteissueinAfrica.MarinePolicy96,256-263.https://doi.org/10.1016/j.marpol.2017.10.041.Accessed12January2021.Jang,M.,Shim,W.J.,Han,G.M.,Rani,M.,Song,Y.K.andHong,S.H.(2016).Styrofoamdebrisasasourceofhazardousadditivesformarineorganisms.EnvironmentalScienceandTechnology50(10),4951-4960.https://doi.org/10.1021/acs.est.5b05485.Accessed12January2021.Jang,M.,Shim,W.J.,Han,G.M.,Song,Y.K.andHong,S.H.(2018).Formationofmicroplasticsbypolychaetes(Marphysasanguinea)inhabitingexpandedpolystyrenemarinedebris.MarinePollutionBulletin131,365-369.https://doi.org/10.1016/j.marpolbul.2018.04.017.Accessed12January2021.Jang,Y.C.,Hong,S.,Lee,J.,Lee,M.J.andShim,W.J.(2014).EstimationoflosttourismrevenueinGeojeislandfromthe2011marinedebrispollutioneventinSouthKorea.MarinePollutionBulletin81,49-54.https://doi.org/10.1016/j.marpolbul.2014.02.021.Accessed12January2021.Jang,Y.C.,Lee,J.,Hong,S.,Choi,H.W.,Shim,W.J.andHong,S.Y.(2015).Estimatingtheglobalinflowandstockofplasticmarinedebrisusingmaterialflowanalysis.JournaloftheKoreanSocietyforMarineEnvironmentandEnergy18,263-273.https://doi.org/10.7846/JKOSMEE.2015.18.4.263.Accessed12January2021.Janssen,C.,deRycke,M.andvanCauwenberghe,L.(2014).MarinePollutionalongtheEastAfricaCoast:ProblemsandChallenges.InternationalWorkshop–SustainableUseofCoastalandMarineResourcesinKenya:FromResearchtoSocietalBenefits.LaboratoryofEnvironmentalToxicologyandAquaticEcology,EnvironmentalToxicologyUnitLab(GhenToxLab),UniversityofGhent,Belgium.http://www.vliz.be/kenya/sites/vliz.be.kenya/files/public/KMFRIdocuments/Colin%20Janssen.pdf.Accessed12January2021.JapanMinistryoftheEnvironment(2012).EstimatedtotalamountofdebriswashedoutbytheGreatEastJapanEarthquake.https://www.env.go.jp/en/focus/docs/files/20120901-57.pdf.Accessed12January2021.JapanMinistryoftheEnvironment(2014).HistoryandCurrentStateofWasteManagementinJapan.https://www.env.go.jp/en/recycle/smcs/attach/hcswm.pdf.Accessed12January2021.Jeffrey,C.F.,Havens,K.J.,Slacum,H.W.,Bilkovic,D.M.,Zaveta,D.,Scheld,A.M.etal.(2016).AssessingEcologicalandEconomicEffectsofDerelictFishingGear:AGuidingFramework.VirginiaInstituteofMarineScience,WilliamandMary.http://doi.org/10.21220/V50W23.Accessed12January2021.Jobstvogt,N.,Hanley,N.,Hynes,S.,Kenter,J.andWitte,U.(2014).Twentythousandsterlingunderthesea:Estimatingthevalueofprotectingdeep-seabiodiversity.EcologicalEconomics97,10-19.https://doi.org/10.1016/j.ecolecon.2013.10.019.Accessed12January2021.Joshi,C.,Seay,J.andBanadda,N.(2019).Aperspectiveonlocallymanageddecentralizedcirculareconomyforwaterplasticindevelopingcountries.EnvironmentalProgrammesinSustainableEnergy38,3-11.https://doi.org/10.1002/ep.13086.Accessed12January2021.Kaminski,A.,Bell,K.P.,Noblet,C.L.andEvans,K.S.(2017).Aneconomicanalysisofcoastalbeachsafetyinformation-seekingbehavior.AgriculturalResourceEconomicsandReview46,365-387.https://doi.org/10.1017/age.2017.17.Accessed12January2021.Kandziora,J.H.,vanToulon,N.,Sobralb,P.,Taylor,H.L.,Ribbink,A.J.,Jambeck,J.R.etal.(2018).Theimportantroleofmarinedebrisnetworkstopreventandreduceoceanplasticpollution.MarinePollutionBulletin141,657-662.https://doi.org/10.1016/j.marpolbul.2019.01.034.Accessed12January2021.Kane,A.B.,Hurt,R.H.andGao,H.(2018).Theasbestos-carbonnanotubeanalogy:Anupdate.ToxicologyApplicationsandPharmacy361,68-80.https://doi.org/10.1016/j.taap.2018.06.027.Accessed12January2021.Kanhai,L.D.K.,Officer,R.,Lyashevska,O.,Thompson,R.C.andO’Connor,I.(2017).Microplasticabundance,distributionandcompositionalongalatitudinalgradientintheAtlanticOcean.MarinePollutionBulletin115(1-2),307-314.https://doi.org/10.1016/j.marpolbul.2016.12.025.Accessed12January2021.Kanhai,L.D.K.,Gårdfeldt,K.,Lyashevska,O.,Hesselhöv,Thompson,R.C.andO’Conner,I.(2018).Microplasticsinsub-surfacewatersoftheArcticCentralBasin.MarinePollutionBulletin130,8-18.https://doi.org/10.1016/j.marpolbul.2018.03.011.Accessed12January2021.Kanhai,L.D.K.,Johansson,C.,Frias,J.P.G.L.,Gårdfeldt,K.,Thompson,R.C.andO’Connor,I.(2019).DeepseasedimentsoftheArcticCentralBasin:Apotentialsinkformicroplastics.Deep-SeaResearchI:OceanographyResearchPapers145,137-142.https://doi.org/10.1016/j.dsr.2019.03.003.Accessed12January2021.Kanhai,L.D.K.,Gardfeldt,K.,Krumpen,T.,Thompson,R.CandO’Connor,I.(2020).MicroplasticsinseaiceandseawaterbeneathicefloesfromtheArcticOcean.ScientificReports10,5004.https://doi.org/10.1038/s41598-020-61948-6.Accessed12January2021.Käppler,A.,Fischer,M.,Scholz-Böttcher,B.M.,Oberbeckmann,S.,Labrenz,M.,Fischer,D.etal.(2018).Comparisonofμ-ATR-FTIRspectroscopyandpy-GCMSasidentificationtoolsformicroplasticparticlesandfibresisolatedfromriversediments.AnalyticalandBioanalyticalChemistry410,5313-5327.https://doi.org/10.1007/s00216-018-1185-5.Accessed12January2021.Karami,A.,Golieskardi,A.,Choo,C.K.,Larat,V.,Galloway,T.S.andSalamatinia,B.(2017).Thepresenceofmicroplasticsincommercialsaltsfromdifferentcountries.ScientificReports7,46173.https://doi.org/10.1038/srep46173.Accessed12January2021.Karasik,R.,Vegh,T.,Diana,Z.,Bering,J.,Caldas,J.,Pickle,A.,Rittschof,D.andVirdin,J.(2020).20YearsofGovernmentResponsestotheGlobalPlasticPollutionProblem.NicholasInstituteforEnvironmentalPolicySolutions,DukeUniversity,Durham,NorthCarolina,UnitedStates.https://nicholasinstitute.duke.edu/publications/20-years-government-responses-global-plastic-pollution-problem.Accessed12January2021.Karlsson,T.M.,Vethaaka,A.D.,CarneyAlmroth,B.,Ariesee,F.,vanVelzena,M.,Hassellöv,M.etal.(2017).Screeningformicroplasticsinsediment,water,marineinvertebratesandfish:Methoddevelopmentandmicroplasticaccumulation.MarinePollutionBulletin122(1-2),403-408.https://doi.org/10.1016/j.marpolbul.2017.06.081.Accessed12January2021.132MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTKarlsson,T.M.,Arneborg,L.Bronström,G.,CarneyAlmroth,B.,Gipperth,L.andHassellöv,M.(2018).Theunaccountabilitycaseofplasticpelletpollution.MarinePollutionBulletin129,52-60.https://doi.org/10.1016/j.marpolbul.2018.01.041.Accessed12January2021.Karlsson,T.M.,Kärman,A.,Rotander,A.andHassellöv,M.(2019).Comparisonbetweenmantatrawlandinsitupumpfiltrationmethods,andguidanceforvisualidentificationofmicroplasticsinsurfacewaters.EnvironmentalScienceandPollutionResearch27,5559-5571.https://doi.org/10.1007/s11356-019-07274-5.Accessed12January2021.Karn,S.andJenkinson,I.R.(2019).Plasticsandmacroplastic:Amajorriskfactortothesoil,waterandmarineenvironment.CurrentBiotechnology8(1),64-74.https://doi.org/10.2174/2211550108999190717091621.Accessed12January2021.Katija,K.,Choy,C.A.,Sherlock,R.E.,Sherman,A.D.andRobison,B.H.(2017).Fromthesurfacetotheseafloor:Howgiantlarvaceanstransportmicroplasticsintothedeepsea.ScienceAdvances3(8),e1700715.https://doi.org/10.1126/sciadv.1700715.Accessed12January2021.Katsanevakis,S.,Verriopoulos,G.,Nicolaidou,A.andThessalou-Legaki,M.(2007).Effectofmarinelitteronthebenthicmegafaunaofcoastalsoftbottoms:Amanipulativefieldexperiment.MarinePollutionBulletin54(6),771-778.https://doi.org/10.1016/j.marpolbul.2006.12.016.Accessed12January2021.Kaza,S.L.C.,Yao,P.,Bhada-Tata,P.andVanWoerden,F.(2018).WhataWaste2.0:AGlobalSnapshotofSolidWasteManagementto2050.UrbanDevelopmentSeries.Washington,D.C.:WorldBankGroup.https://openknowledge.worldbank.org/handle/10986/30317.Accessed12January2021.Kedzierski,M.,d’Almeida,M.,Magueresse,A.,LeGrand,A.,Duval,H.,César,G.etal.(2018).Threatofplasticageinginmarineenvironments.Adsorption/desorptionofmicropollutants.MarinePollutionBulletin127,684-694.https://doi.org/10.1016/j.marpolbul.2017.12.059.Accessed12January2021.Kern,D.G.,Crausman,R.S.andClapp,R.W.(2011).Aretrospectivecohortstudyoflungcancerincidenceinnylonflockworkers,1998-2008.InternationalJournalofOccupationalandEnvironmentalHealth17,345-352.https://doi.org/10.1179/107735211799041814.Accessed12January2021.Kern,D.G.,Kuhn,C.III.,Ely,W.,Pransky,G.S.,Mello,C.J.,Fraire,A.E.etal.(2000).Flockworker’slung:Broadeningthespectrumofclinicopathology,narrowingthespectrumofsuspectedetiologies.Chest117,251-259.https://doi.org/10.1378/chest.117.1.251.Accessed12January2021.Kettner,M.T.,Rojas‐Jimenez,K.,Oberbeckmann,S.,Labrenz,M.andGrossart,H.-P.(2017).Microplasticsaltercompositionoffungalcommunitiesinaquaticecosystems.EnvironmentalMicrobiology19(11),4447-4459.https://doi.org/10.1111/1462-2920.13891.Accessed12January2021.Khan,F.,Ahmed,W.andNajmi,A.(2019).Understandingconsumers’behaviorintentionstowardsdealingwiththeplasticwaste:Perspectiveofadevelopingcountry.Resources,ConservationandRecycling142,49-58.https://doi.org/10.1016/j.resconrec.2018.11.020.Accessed12January2021.KideysA.E.,Halisdemir,B.,Kideys,A.,Gucu,A.C.Gazihan,A.etal.(2018).AUniversity–Municipalitypartnership:MarineEnvironmentalAwarenesstraining(k12)inTurkey.AbstractpublishedintheEMSEA(EuropeanMarineScienceEducatorsAssociation)ConferenceBook,2-5October2018,Newcastle-Upon-Tyne,UK,pp3.https://conferences.ncl.ac.uk/emsea2018/.Accessed15February2021.Kiessling,T.,Gutow,L.andThiel,M.(2015).Marinelitterashabitatanddispersalvector.InMarineAnthropogenicLitter.Bergmann,M.,Gutow,L.andKlages,E.(eds.).Cham:Springer.141-184.https://link.springer.com/chapter/10.1007/978-3-319-16510-3_6#citeas.Accessed12January2021.Kiessling,T.,Salas,S.,Mutafoglu,K.andThiel,M.(2017).Whocaresaboutdirtybeaches?EvaluatingenvironmentalawarenessandactiononcoastallitterinChile.OceanandCoastalManagement137,82-95.https://doi.org/10.1016/j.ocecoaman.2016.11.029.Accessed12January2021.Kirstein,I.V.,Kirmizi,S.,Wichels,A.,Garin-Fernandez,A.,Erler,R.,Martin,L.etal.(2016).Dangeroushitchhikers?EvidenceforpotentiallypathogenicVibriospp.onmicroplasticsparticles.MarineEnvironmentalResearch120,1-8.https://doi.org/10.1016/j.marenvres.2016.07.004.Accessed12January2021.Klein,M.andFischer,E.K.(2019).MicroplasticsabundanceinatmosphericdepositionwithintheMetropolitanareaofHamburg,Germany.ScienceoftheTotalEnvironment685,96-103.https://doi.org/10.1016/j.scitotenv.2019.05.405.Accessed12January2021.Klein,S.,Worch,E.andKnepper,T.P.(2015).OccurrenceandspatialdistributionofmicroplasticsinrivershoresedimentsoftheRhine-MainareainGermany.EnvironmentalScienceandTechnology49(10),6070-6076.https://doi.org/10.1021/acs.est.5b00492.Accessed12January2021.Koelmans,A.A.,Besseling,E.andFoekema,E.L.(2014).Leachingofplasticsadditivestomarineorganisms.EnvironmentalPollution187,49-54.https://doi.org/10.1016/j.envpol.2013.12.013.Accessed12January2021.Koelmans,A.A.,Bakir,A.,Burton,G.A.andJanssenC.R.(2016).Microplasticasavectorforchemicalsintheaquaticenvironment:Criticalreviewandmodel-supportedreinterpretationofempiricalstudies.EnvironmentalScienceandTechnology50(7),3315-3326.https://doi.org/10.1021/acs.est.5b06069.Accessed12January2021.Koelmans,A.A.,Besseling,E.,Foekema,E.,Kooi,M.,Mintenig,S.,Ossendorp,B.C.etal.(2017a).Risksofplasticdebris:Unravellingfact,opinion,perceptionandbelief.EnvironmentalScienceandTechnology51(20),11513-11519.https://doi.org/10.1021/acs.est.7b02219.Accessed12January2021.Koelmans,A.A.,Kooi,M.Law,K.andvanSebille,E.(2017b).Allisnotlost:Derivingatop-downmassbudgetofplasticatsea.EnvironmentalResearchLetters12,114028.https://iopscience.iop.org/article/10.1088/1748-9326/aa9500.Accessed12January2021.Koelmans,A.A.,MohamedNor,N.H.,Hermsen,E.,Kooi,M.,Mintenig,S.M.andDeFrance,J.(2019).Microplasticsinfreshwatersanddrinkingwater:Criticalreviewandassessmentofdataquality.WaterResearch155,410-422.https://doi.org/10.1016/j.watres.2019.02.054.Accessed12January2021.Koelmans,A.A.,Redondo-Hasselerharm,P.E.,Nor,N.H.M.andKooi,M.(2020).Solvingthenonalignmentofmethodsandapproachesusedinmicroplasticresearchtoconsistentlycharacterizerisk.EnvironmentalScienceandTechnology54(19),12307-12315.https://doi.org/10.1021/acs.est.0c02982.Accessed12January2021.KögelT.,RefoscoA.andMaageA.(2020).Surveillanceofseafoodformicroplastics.InHandbookofMicroplasticsintheEnvironment.Rocha-Santos,T.,Costa,M.andMouneyrac,C.(eds.).Cham:Springer.1-34.https://doi.org/10.1007/978-3-030-10618-8_28-1.Accessed12January2021.Kooi,M.andKoelmans,A.A.(2019).Simplifyingmicroplasticviacontinuousprobabilitydistributionsforsize,shape,anddensity.EnvironmentalScienceandTechnologyLetters6(9),551-557.https://doi.org/10.1021/acs.estlett.9b00379.Accessed12January2021Kooi,M.,Reisser,J.,Slat,B.,Ferrari,F.F.,Schmid,M.S.,Cunsolo,S.etal.(2016).Theeffectofparticlepropertiesonthedepthprofileofbuoyantplasticsintheocean.ScientificReports6,33882.https://doi.org/10.1038/srep33882.Accessed12January2021.Krelling,A.P.,Williams,A.TandTurra,A.(2017).Differencesinperceptionandreactionoftouristgroupstobeachmarinedebristhatcaninfluencealossoftourismrevenueincoastalareas.MarinePolicy85,87-99.https://doi.org/10.1016/j.marpol.2017.08.021.Accessed12January2021.133MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTKrijnen,J.M.T.,Tannenbaum,D.andFox,C.R.(2017).Choicearchitecture2.0:Behavioralpolicyasanimplicitsocialinteraction.BehavioralScience&Policy3(2),1-18.https://behavioralscientist.org/choice-architecture-2-0-how-people-interpret-and-make-sense-of-nudges/.Accessed25May2021.Kroon,F.J.,Berry,K.L.B.,Brinkman,D.L.Kookana,R.,Leusch,F.D.L.,Melvin,S.D.etal.(2020).Sources,presenceandpotentialeffectsofcontaminantsofemergingconcerninthemarineenvironmentsoftheGreatBarrierReefandTorresStrait,Australia.ScienceofTheTotalEnvironment719,135140.https://doi.org/10.1016/j.scitotenv.2019.135140.Accessed12January2021Kühn,S.,BravoRebolledo,E.L.andvanFraneker,J.A.(2015).Deleteriouseffectsoflitteronmarinelife.InMarineAnthropogenicLitter.Bergmann,M.,Gutow,L.andKlages,E.(eds.).Cham:Springer.75-116.https://link.springer.com/chapter/10.1007/978-3-319-16510-3_4.Accessed12January2021.Kühn,S.,Schaafsma,F.L.,vanWerven,B.,Flores,H.,Bergmann,M.,Egelkraut-Holtus,M.etal.(2018).Plasticingestionbyjuvenilepolarcod(Boreogadussaida)intheArcticOcean.PolarBiology41,1269-1278.https://doi.org/10.1007/s00300-018-2283-8.Accessed12January2021.Kukulka,T.,Proskurowski,G.,Moret‐Ferguson,S.,Meyer,D.W.andLaw,K.L.(2012).Theeffectofwindmixingontheverticaldistributionofbuoyantplasticsdebris.GeophysicalResearchLetters39(7).https://doi.org/10.1029/2012GL051116.Accessed13January2021.Kukulka,T.andBrunner,K.(2015).Passivebuoyanttracersintheoceansurfaceboundarylayer:1.Influenceofequilibriumwind-wavesonverticaldistributions.JournalofGeophysicalResearchOceans120,3837-3858.https://doi.org/10.1002/2014JC010487.Accessed13January2021.Kutralam-Muniasamy,G.,Perez-Guevara,F.,Elizalde-Martinez,I.andShruti,V.C.(2020).Brandedmilks–aretheyimmunefrommicroplasticscontamination?ScienceofTheTotalEnvironment714,136823.https://doi.org/10.1016/j.scitotenv.2020.136823Accessed13January2021.Kylili,K.,Kyriakides,I.,Artusi,A.andHadjistassou,C.(2019).Identifyingfloatingplasticsmarinedebrisusingadeeplearningapproach.EnvironmentalScienceandPollutionResearch26(17),17091-17099.https://doi.org/10.1007/s11356-019-05148-4.Accessed13January2021.Lamb,J.B.,Willis,B.L.,Fiorenza,E.A.,Couch,C.S.,Howard,R.,Rader,D.N.etal.(2018).Plasticwasteassociatedwithdiseaseoncoralreefs.Science359(6374),460-462.https://doi.org/10.1126/science.aar3320.Accessed13January2021.Lambert,B.S.,Olson,R.J.andSosik,H.M.(2017).Afluorescence-activatedcellsortingsubsystemfortheimagingflowcytobot.LimnologyandOceanographyMethods15(1),94-102.https://doi.org/10.1002/lom3.10145.Accessed13January2021.Lambert,S.andWagner,M.(2016).Characterisationofnanoplasticsduringthedegradationofpolystyrene.Chemosphere145,265-268.https://doi.org/10.1016/j.chemosphere.2015.11.078.Accessed13January2021.Landon-Lane,M.(2018).Corporatesocialresponsibilityinmarineplasticdebrisgovernance.MarinePollutionBulletin127,310-319.https://doi.org/10.1016/j.marpolbul.2017.11.054.Accessed13January2021.Landrigan,P.J.,Fuller,R.,Acosta,N.J.R.,Adeyi,O.,Arnold,R.,Basu,N.etal.(2017).TheLancetCommissiononpollutionandhealth.TheLancet391(10119),P462-P512.http://dx.doi.org/10.1016/S0140-6736(17)32345-0.Accessed13January2021.Landrigan,P.J.,Stegeman,J.,Fleming,L.,Allemand,D.,Anderson,D.,Backer,L.etal.(2020)Humanhealthandoceanpollution.AnnalsofGlobalHealth86(1)151,1-64.https://doi.org/10.5334/aogh.2831.Accessed13January2021.Lau,W.Y.,Shiran,Y.,Bailey,R.M.,Cook,E.,Stutchey,M.R.,Koskella,J.etal.(2020).Evaluatingscenariostowardzeroplasticpollution.Science369(6510),1455-1461.https://doi.org/10.1126/science.aba9475;andLau,W.andPalardy,J.(2020).Plasticpollution,rampantworldwide,couldbecutby80%in20years.https://www.pewtrusts.org/en/research-and-analysis/articles/2020/10/08/plastic-pollution-rampant-worldwide-could-be-cut-by-80-percent-in-20-years.Accessed13January2021.Lavers,J.L.andBond,A.L.(2017).Exceptionalandrapidaccumulationofanthropogenicdebrisononeoftheworld’smostremoteandpristineislands.ProceedingsoftheNationalAcademyofSciences114(23),6052-6055.https://doi.org/10.1073/pnas.1619818114.Accessed13January2021.Lavers,J.L.,Hutton,I.andBond,A.L.(2018).IngestionofmarinedebrisbyWedge-tailedShearwaters(Ardennapacifica)onLordHoweIsland,Australiaduring2005-2018.MarinePollutionBulletin133,616-621.https://doi.org/10.1016/j.marpolbul.2018.06.023.Accessed13January2021.Law,K.L.L.(2017).Plasticsinthemarineenvironment.AnnualReviewofMarineScience9,205-29.https://doi.org/10.1146/annurev-marine-010816-060409.Accessed13January2021.Law,K.L.L.,Morét-Ferguson,S.,Maximenko,N.A.,Proskurowski,G.,Peacock,E.E.,Hafner,J.etal.(2010).PlasticaccumulationintheNorthAtlanticSubtropicalGyre.Science329(5996),1185-1188.https://doi.org/10.1126/science.1192321.Accessed13January2021.Law,K.L.,Morét-Ferguson,S.E.,Goodwin,D.S.,Zettler,E.R.,DeForce,E.,Kukulka,T.etal.(2014).DistributionofsurfaceplasticdebrisintheeasternPacificOceanfroman11-yeardataset.EnvironmentalScienceandTechnology48(9),4732-38.https://doi.org/10.1021/es4053076.Accessed13January2021.Lebreton,L.andAndrady,A.(2019).Futurescenariosofglobalplasticwastegenerationanddisposal.PalgraveCommunications5,6.https://doi.org/10.1057/s41599-018-0212-7.Accessed13January2021.Lebreton,L.C.,Greer,S.D.andBorrero,J.C.(2012).Numericalmodellingoffloatingdebrisintheworld’soceans.MarinePollutionBulletin64,653-661.https://doi.org/10.1016/j.marpolbul.2011.10.027.Accessed13January2021.Lebreton,L.C.,vanderZwet,J.,Damsteeg,J.W.,Slat,B.,Andrady,A.andReisser,J.(2017).Riverplasticemissionstotheworld’soceans.NatureCommunications8,5611.https://doi.org/10.1038/ncomms15611.Accessed13January2021.Lebreton,L.,Slat,B.,Ferrari,F.,Sainte-Rose,B.,Aitken,J.,Marthouse,R.etal.(2018).EvidencethattheGreatPacificGarbagePatchisrapidlyaccumulatingplastic.ScientificReports8,4666https://doi.org/10.1038/s41598-018-22939-w.Accessed13January2021.Lebreton,L.,Egger,M.andSlat,B.(2019)Aglobalmassbudgetforpositivelybuoyantmacroplasticdebrisintheocean.ScientificReports9,12922[alsoseeLebreton,L.,Egger,M.andSlat,B.(2020).Authorcorrection:Aglobalmassbudgetforpositivelybuoyantmacroplasticdebrisintheocean.ScientificReports10,1841,listedbelow].https://doi.org/10.1038/s41598-019-49413-5.Accessed13January2021.Lebreton,L.,Egger,M.andSlat,B.(2020).Authorcorrection:Aglobalmassbudgetforpositivelybuoyantmicroplasticdebrisintheoceanintheocean.ScientificReports10,1841.https://doi.org/10.1038/s41598-020-58755-4.Accessed13January2021.Lechner,A.,Keckeis,H.,Lumesberger-Loisl,F.,Zens,B.,Krusch,R.,Tritthart,M.etal.(2014).TheDanubesocolourful:ApotpourriofplasticslitteroutnumbersfishlarvaeinEurope’ssecondlargestriver.EnvironmentalPollution188,177-181.https://doi.org/10.1016/j.envpol.2014.02.006.Accessed13January2021.Leclerc,L.-M.E.,Lydersen,C.,Haug,T.,Bachmann,L.,Fisk,A.T.andKovacsK.M.(2012).AmissingpieceintheArcticfoodwebpuzzle?StomachcontentsofGreenlandsharkssampledinSvalbard,Norway.PolarBiology35,1197-1208.https://doi.org/10.1007/s00300-012-1166-7.Accessed13January2021.Lee,H.,Kunz,A.,Shim,W.J.andWalther,B.A.(2019).MicroplasticcontaminationoftablesaltsfromTaiwan,includingaglobalreview.ScientificReports9,10145.https://doi.org/10.1038/s41598-019-46417-z.https://doi.org/10.1038/s41598-019-46417-z.Accessed13January2021.Lee,J.,Lee,J.,Hong,S.,Hong,S.H.,Shimb,W.JandEo,S.(2017).Characteristicsofmeso-sizedplasticmarinedebrison20beachesinKorea.MarinePollutionBulletin123(1-2),92-96.https://doi.org/10.1016/j.marpolbul.2017.09.020.Accessed13January2021.134MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTLeggett,C.,Scherer,N.,Curry,M.andBailey,R.(2014).FinalReport:AssessingtheEconomicBenefitsofReductionsinMarineDebris:APilotStudyofBeachRecreationinOrangeCounty,California.PreparedfortheMarineDebrisDivision,UnitedStatesNationalOceanicandAtmosphericAdministration(NOAA).https://marinedebris.noaa.gov/sites/default/files/publications-files/MarineDebrisEconomicStudy_0.pdf.Accessed13January2021.Leggett,C.,Schere,N.,Haab,T.C.,Bailey,R.,Landrum,J.P.andDomanski,A.(2018).AssessingtheeconomicbenefitsofreductionsinmarinedebrisatsouthernCaliforniabeaches:Arandomutilitytravelcostmodel.MarineResourceEconomics33(2),133-153.https://doi.org/10.1086/697152.Accessed13January2021.Lenz,R.andLabrenz,M.(2018).Smallmicroplasticssamplinginwater:Developmentofanencapsulatedfiltrationdevice.Water10(8),1055.https://doi.org/10.3390/w10081055.Accessed13January2021.Léon,V.,Garcia,I.,González,E.,Samper,R.,Fernández-González,V.andMuniategui-Lorenzo,S.(2018).Potentialtransferoforganicpollutantsfromlittoralplasticsdebristothemarineenvironment.EnvironmentalPollution236,442-453.https://doi.org/10.1016/j.envpol.2018.01.114.Accessed13January2021.Lepawsky,J.,Araujo,E.,Davis,J.-M.andKahzat,R.(2017).Bestoftwoworlds?Towardsethicalelectronicsrepair,reuse,repurposingandrecycling.Geoforum81,87-99.https://doi.org/10.1016/j.geoforum.2017.02.007.Accessed13January2021.Leslie,H.A.,Leonards,P.E.G.,Brandsma,S.H.,J.deBoer,andJonkers,N.(2016)Propellingplasticsintothecirculareconomy–weedingoutthetoxicsfirst.EnvironmentInternational94,230-234.https://www.sciencedirect.com/science/article/pii/S0160412016301854.Accessed25May2021.Lewis,N.,Day,J.C.,Wilhelm,A.,Wagner,D.,Gaymer,C.F.,Parks,J.etal.(2017).Large-scaleMarineProtectedAreas:GuidelinesforDesignandManagement.PreparedbyBigOceanandtheIUCNWCPALarge-ScaleMPATaskForce.BestPracticeProtectedAreaGuidelinesSeriesNo.26.Gland,Switzerland:InternationalUnionforConservationofNature.https://portals.iucn.org/library/sites/library/files/documents/PAG-026.pdf.Accessed13January2021.Li,J.,Lusher,A.L.,Rotchell,J.M.,Deudero,S.,Turra,A.,Bråte,I.L.N.etal.(2019).Usingmusselasaglobalbioindicatorofcoastalmicroplasticpollution.EnvironmentalPollution2(44),522-533.https://doi.org/10.1016/j.envpol.2018.10.032.Accessed13January2021.Li,L.,Lu,Y.,Li,R.,Zhou,Q.,Peijnenburg,W.J.,Yin,N.etal.(2020).Effectiveuptakeofsubmicrometreplasticsbycropplantsviaacrack-entrymode.NatureSustainability3,929-937.https://doi.org/10.1038/s41893-020-0567-9.Accessed13January2021.Li,L.F.,Zhang,X.,Luan,Z.D.,Du,Z.F.,Xi,S.C.,Wang,B.etal.(2018).Insituquantitativeramandetectionofdissolvedcarbondioxideandsulfateindeepseahigh-temperaturehydrothermalventfluids.GeochemicalGeophysicalGeosystems19,7445.https://doi.org/10.1029/2018GC007445.Accessed20June2021.Li,X.,Chen,L.,Mei,Q.,Dong,B.,Dai,X.,Ding,G.etal.(2018).MicroplasticsinsewagesludgefromthewastewatertreatmentplantsinChina.142,75-85.https://doi.org/10.1016/j.watres.2018.05.034.Accessed13January2021.Li,Y.,Zhang,H.,Shao,L.-M.andHe,P.-J.(2017).TracingsourceandmigrationofPbduringwasteincinerationusingstablePbisotopes.JournalofHazardousMaterials327,28-34.https://doi.org/10.1016/j.jhazmat.2016.12.029.Accessed13January2021.Liebezeit,G.andLiebezeit,E.(2013).Non-pollenparticulatesinhoneyandsugar.FoodAdditivesandContaminants30(12),2136-12124.https://doi.org/10.1080/19440049.2013.843025.Accessed13January2021.Lieder,M.andRashid,A.(2015)Towardscirculareconomyimplementation:acomprehensivereviewincontextofmanufacturingindustry.JournalofCleanerProduction115,36-51.https://doi.org/10.1016/j.jclepro.2015.12.042.Accessed20June202.1Liedermann,M.,Gmeiner,P.,Pessenlehner,S.,Haimann,M.,Hohenblum,P.andHabersack,H.(2018).Amethodologyformeasuringmicroplasticstransportinlargeormediumrivers.Water10(4),414.https://doi.org/10.3390/w10040414.Accessed13January2021.Lima,A.R.A.,Costa,M.F.andBarletta,M.(2014).Distributionpatternsofmicroplasticswithintheplanktonofatropicalestuary.EnvironmentalResearch132,146-155.https://doi.org/10.1016/j.envres.2014.03.031.Accessed13January2021.Lin,C.andNakamura,S.(2018).ApproachestosolvingChina’smarineplasticpollutionandCO2emissionproblems.EconomicSystemsResearch31,143-157.https://doi.org/10.1080/09535314.2018.1486808.Accessed13January2021.Lindeque,P.K.,Cole,M.,Coppock,R.L.,Lewis,C.N.,Miller,R.Z.,Watts,A.J.R.etal.(2020).Areweunderestimatingmicroplasticabundanceinthemarineenvironment?Acomparisonofmicroplasticcapturewithnetsofdifferentmesh-size.EnvironmentalPollution265,PartA,114721.https://doi.org/10.1016/j.envpol.2020.114721.Accessed13January2021.Ling,S.D.,Sinclair,M.,Levi,C.J.,Reeves,S.E.andEdgar,G.J.(2017).Ubiquityofmicroplasticsincoastalseafloorsediments.MarinePollutionBulletin121(1-2),104-110.https://doi.org/10.1016/j.marpolbul.2017.05.038.Accessed13January2021.Lithner,D.,Larsson,A.andDave,G.(2011).Environmentalandhealthhazardrankingandassessmentofplasticpolymersbasedonchemicalcomposition.ScienceofTheTotalEnvironment409(18),3309-3324.https://doi.org/10.1016/j.scitotenv.2011.04.038.Accessed13January2021.Lithner,D.,Nordensvan,I.andDave,G.(2012).Comparativeacutetoxicityofleachatesfromplasticproductsmadeofpolypropylene,polyethylene,PVC,acrylonitrile-butadiene-styrene,andepoxytoDaphniamagna.EnvironmentalScienceandPollutionResearch19(5),1763-1772.https://doi.org/10.1007/s11356-011-0663-5.Accessed13January2021.Liu,M.,Lu,S.,Song,Y.,Lei.L.,Hu,J.,Lu,W.etal.(2018).MicroplasticandmesoplasticpollutioninfarmlandsoilsinsuburbsofShanghai,China.EnvironmentalPollution242,PartA,855-862https://doi.org/10.1016/j.envpol.2018.07.051.Accessed13January2021.Liubartseva,S.,Coppini,G.andLecci,R.(2019).AreMediterraneanMarineProtectedAreasshelteredfromplasticpollution?MarinePollutionBulletin140,579-587.https://doi.org/10.1016/j.marpolbul.2019.01.022.Accessed13January2021.Löder,M.G.andGerdts,G.(2015).Methodologyusedforthedetectionandidentificationofmicroplastics–acriticalappraisal.InMarineAnthropogenicLitter.Bergmann,M.,Gutow,L.andKlages,E.(eds.).Cham:Springer.201-227.https://doi.org/10.1007/978-3-319-16510-3_8.Accessed13January2021.Löder,M.G.J.,Imhof,H.K.,Ladehoff,M.,Loschel,L.A.,Lorenz,C.,Mintenig,S.etal.(2017).Enzymaticpurificationofmicroplasticsinenvironmentalsamples.EnvironmentalScienceandTechnology51(24),14283-14292.https://doi.org/10.1021/acs.est.7b03055.Accessed13January2021.Löhr,A.,Savelli,H.,Beunen.R.,Kalz,M,Ragas,A.andF.VanBelleghem(2017).Solutionsforglobalmarinelitterpollution.CurrentOpinioninEnvironmentalSustainability28,90-99.https://doi.org/10.1016/j.cosust.2017.08.009.Accessed13January2021.Lotze,H.K.,Guest,H.,O’Leary,J.,Tuda,A.andWallace,D.(2018).Publicperceptionofmarinethreatsandprotectionfromaroundtheworld.OceanandCoastalManagement152,14-22.https://doi.org/10.1016/j.ocecoaman.2017.11004.Accessed13January2021.Lourenço,P.M.,Serra-Gonçalves,C.,Ferreira,J.L.,Catry,T.andGranadeiro,P.(2017).Plasticandothermicrofibresinsediments,macroinvertebratesandshorebirdsfromthreeintertidalwetlandsofsouthernEuropeandwestAfrica.EnvironmentalPollution23,Part1,123e133.https://doi.org/10.1016/j.envpol.2017.07.103.Accessed13January2021.Luna-Jorquera,G.,Thiel,M.,Portflitt-Toro,M.andDewitte,B.(2019).Marineprotectedareasinvadedbyfloatinganthropogeniclitter:AnexamplefromtheSouthPacific.AquaticConservationMarineandFreshwaterEcosystems29(S2),245-259.https://doi.org/10.1002/aqc.3095.https://doi.org/10.1002/aqc.3095.Accessed13January2021.135MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTLusher,A.L.,Burke,A.,O’Connor,I.andOfficer,R.(2014).MicroplasticpollutionintheNortheastAtlanticOcean:Validatedandopportunisticsampling.MarinePollutionBulletin88(1-2),325-333.https://doi.org/10.1016/j.marpolbul.2014.08.023.Accessed13January2021.Lusher,A.L.,Tirelli,V.,O’Connor,I.andOfficer,R.(2015).MicroplasticsinArcticpolarwaters:Thefirstreportedvaluesofparticlesinsurfaceandsub-surfacesamples.ScientificReports5,1-9.https://doi.org/10.1038/srep14947.Accessed13January2021.Lusher,A.L.,Hollman,P.C.H.andMendoza-Hill,J.J.(2017a).MicroplasticsinFisheriesandAquaculture:StatusofKnowledgeonTheirOccurrenceandImplicationsforAquaticOrganismsandFoodSafety.FAOFisheriesandAquacultureTechnicalPaperNo.615.Rome.http://www.fao.org/3/a-i7677e.pdf.Accessed13January2021.Lusher,A.L.,Welden,N.A.,Sobral,P.andCole,M.(2017b).Sampling,isolatingandidentifyingmicroplasticsingestedbyfishandinvertebrates.AnalyticalMethods9,1346.https://doi.org/10.1039/C6AY02415G.Accessed13January2021.Lynn,H.,Rech,S.andSamwel-Mantingh,M.(2017).Plastics,GenderandtheEnvironment:FindingsofaLiteratureStudyontheLifecycleofPlasticsanditsImpactsonWomenandMen,fromProductiontoLitter.WomenEngageforaCommonFuture(WECF),TheNetherlands,FranceandGermany.https://www.wecf.org/wp-content/uploads/2018/11/PlasticsgenderandtheenvironmentHighRes-min.pdf.Accessed13January2021.Lyons,Y.,Su,T.L.andMeo,M.L.(2019).AReviewofResearchonMarinePlasticsinSoutheastAsia.WhoDoesWhat?NationalUniversityofSingapore,BritishHighCommissionSingapore,UKScience&InnovationNetwork.https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/813009/A_review_of_research_on_marine_plastics_in_Southeast_Asia_-_Who_does_what.pdf.Accessed13January2021.Ma,X.,Park,C.andMoultrie,J.(2020).Factorsforeliminatingplasticinpackaging:TheEuropeanFMCGexperts’view.JournalofCleanerProduction256,120492.https://doi.org/10.1016/j.jclepro.2020.120492.Accessed13January2021.Macfadyen,G.,Huntington,T.andCappell,R.(2009).Abandoned,LostorOtherwiseDiscardedFishingGear.UNEPRegionalSeasReportsandStudiesNo.185;FAOFisheriesandAquacultureTechnicalPaperNo.523.Rome.http://www.fao.org/3/i0620e/i0620e00.htm.Accessed13January2021.Maeland.C.E.andStaupe-Delgado,R.(2020).Cantheglobalproblemofmarinelitterbeconsideredacrisis?Risks,HazardsandCrisisinPublicPolicy11,87-104.https://doi.org/10.1002/rhc3.12180.Accessed13January2021.Maes,T.,VanderMeulen,M.D.,Devriese,L.I.,Leslie,H.A.,Huvet,A.,Frère,L.etal.(2017a).MicroplasticsbaselinesurveysatthewatersurfaceandinsedimentsoftheNorth-EastAtlantic.FrontiersinMarineScience4,135.https://doi.org/10.3389/fmars.2017.00135.Accessed13January2021.Maes,T.,Jessop,R.,Wellner,N.,Haupt,K.&Mayes,A.G.(2017b).Arapid-screeningapproachtodetectandquantifymicroplasticsbasedonfluorescenttaggingwithNileRed.ScienceReport7,44501.https://doi:10.1038/srep44501.Accessed15February2021.Maes,T.,Barry,J.,Leslie,H.A.,Vethaak,A.D.,Nicolaus,E.E.M.,Law,R.J.etal.(2018).Belowthesurface:Twenty-fiveyearsofseafloorlittermonitoringincoastalseasofNorthWestEurope(1992-2017).ScienceofTheTotalEnvironment630,790-798.https://doi.org/10.1016/j.scitotenv.2018.02.245.Accessed13January2021.Maes,T.,Perry,J.,Alliji,K.,Clarke,C.andBirchenough,A.N.R.(2019).Shadesofgrey:MarinelitterresearchdevelopmentsinEurope.MarinePollutionBulletin146,274-281.https://doi.org/10.1016/j.marpolbul.2019.06.019.Accessed13January2021.Maes,T.,Barry,J.,Stenton,C.,Roberts,E.,Hicks,R.,Bignell,J.etal.(2020).Theworldisyouroyster:Low-dose,long-termmicroplasticexposureofjuvenileoysters.HeliyonResearchArticle6E03103.https://doi.org/10.1016/j.heliyon.2019.e03103.Accessed15February2021.Mahon,A.M.,O’Connell,B.,Healy,M.G.,O’Connor,I.,Officer,R.,Nash,R.etal.(2017).Microplasticsinsewagesludge:Effectsoftreatment.EnvironmentalScienceandTechnology51(2),810-818.https://doi.org/10.1021/acs.est.6b04048.Accessed13January2021.Majer,A.P.,Vedolin,M.C.andTurra,A.(2012).Plasticpelletsasovipositionsiteandmeansofdispersalfortheocean-skaterinsectHalobates.MarinePollutionBulletin64(6),1143-1147.https://doi.org/10.1016/j.marpolbul.2012.03.029.Accessed13January2021.Malik,D.,Manchanda,P.,Simons,T.J.andWallach,J.(2020).TheimpactofCOVID-19ontheglobalpetrochemicalindustry,McKinseyandCompany,28October.https://www.mckinsey.com/industries/chemicals/our-insights/the-impact-of-covid-19-on-the-global-petrochemical-industry.Accessed10February2020.Mani,T.,Hauk,A.,Walter,U.andBurkhardt-Holm,P.(2015).MicroplasticsprofilealongtheRhineRiver.ScientificReports5,1-7.https://doi.org/10.1038/srep17988.Accessed13January2021.Mani,T.,Primpke,S.,Lorenz,C.,Gerdts,G.andBurkhardt-Holm,P.(2019).Microplasticpollutioninbenthicmid-streamsedimentsoftheRhineRiver.EnvironmentalScienceandTechnology53(10),6053-6062.https://doi.org/10.1021/acs.est.9b01363.Accessed13January2021.Mansui,J.,Molcard,A.andOurmieres,A.(2015).ModellingthetransportandaccumulationoffloatingmarinedebrisintheMediterraneanbasin.MarinePollutionBulletin91(1),249-257.https://doi.org/10.1016/j.marpolbul.2014.11.037.Accessed13January2021.Markic,A.,Gaertner,J.C.,Gaertner-Mazouni,N.andKoelmans,A.A.(2020).Plasticingestionbymarinefishinthewild.CriticalReviewsinEnvironmentalScienceandTechnology50(7),67-697.https://doi.org/10.1080/10643389.2019.1631990.Accesed13January2021.Martin,C.,Almahasheer,H.andDuarte,C.M.(2019).Mangroveforestsastrapsformarinelitter.EnvironmentalPollution247,499-508.https://doi.org/10.1016/j.envpol.2019.01.067.Accessed13January2021.Martin,C.,Parkes,S.,Zhang,Q.,Zhang,X.,McCabe,M.andDuarte,C.M.(2018).Useofunmannedaerialvehiclesforefficientbeachlittermonitoring.MarinePollutionBulletin131,PartA,662-673.https://doi.org/10.1016/j.marpolbul.2018.04.045.Accessed13January2021.Martínez-Gómez,C.,León,V.M.,Calles,S.,Gomáriz-Olcina,M.andVethaak,A.D.(2017).Theadverseeffectsofvirginmicroplasticsonthefertilizationandlarvaldevelopmentofseaurchins.MarineEnvironmentalResearch130,69-76.https://doi.org/10.1016/j.marenvres.2017.06.016.Accessed13January2021.Martínez-Vicente,V.,Clark,J.R.Corradi,P.,Aliani,S.,Arias,M.,Bochow,M.etal.(2019).Measuringmarineplasticdebrisfromspace:Initialassessmentofobservationrequirements.RemoteSensing11,2443.https://doi.org/10.3390/rs11202443.Accessed13January2021.MarylandGeneralAssembly(2020).Environment-Compostable,Degradable,andBiodegradablePlasticProducts-Labeling.Annapolis,MD,USA.https://mgaleg.maryland.gov/mgawebsite/legislation/details/hb1349?ys=2017rs.Accessed22September2020.Mason,S.A.,Garneau,D.,Sutton,R.,Chu,Y.,Ehmann,K.,Barnes,J.etal.(2016).MicroplasticspollutioniswidelydetectedinUSmunicipalwastewatertreatmentplanteffluent.EnvironmentalPollution218,1045-1054.https://doi.org/10.1016/j.envpol.2016.08.056.Accessed13January2021.Mason,S.A.,Welch,V.G.andNeratko,J.(2018).Syntheticpolymercontaminationinbottledwater.FrontiersinChemistry6,407.https://doi.org/10.3389/fchem.2018.00407.Accessed13January2021.Masura,J.,Baker,J.,Foster,G.andArthur,C.(2015).LaboratoryMethodsfortheAnalysisofMicroplasticsintheMarineEnvironment:RecommendationsforQuantifyingSyntheticParticlesinWatersandSediments.UnitedStatesNationalOceanicandAtmosphericAdministration,MarineDebrisProgram.NOAATechnicalMemorandumNOS-OR&R-48.https://repository.oceanbestpractices.net/bitstream/handle/11329/1076/noaa_microplastics_methods_manual.pdf?sequence=1&isAllowed=y.Accessed13January2021.136MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTMathalon,A.andHill,P.(2014).MicroplasticfibresintheintertidalecosystemsurroundingHalifaxHarbor,NovaScotia.MarinePollutionBulletin81(1),69-79.https://doi.org/10.1016/j.marpolbul.2014.02.018.Accessed13January2021.Matheson,T.(2019).DisposalisNotFree:FiscalInstrumentstoInternalizetheEnvironmentalCostsofSolidWaste.InternationalMonetaryFundWorkingPaper19/283.https://www.imf.org/en/Publications/WP/Issues/2019/12/20/Disposal-is-Not-Free-Fiscal-Instruments-to-Internalize-the-Environmental-Costs-of-Solid-Waste-48854.Accessed13January2021.Matiddi,M.,Hoschsheid,S.,Camedda,A.,Baini,M.,Cocumelli,C.,Serena,P.etal.(2017).Loggerheadseaturtles(Carettacaretta):AtargetspeciesformonitoringlitteringestedbymarineorganismsintheMediterraneanSea.EnvironmentalPollution230,199-209.https://doi.org/10.1016/j.envpol.2017.06.054.Accessed13January2021.Mattsson,K.,Hansson,L.-A.andCedervalla,T.(2015).Nano-plasticsintheaquaticenvironment.EnvironmentalSciences:ProcessesandImpacts17,1712.https://doi.org/10.1039/c5em00227C.Accessed13January2021.Maximenko,N.,Hafner,J.andNiller,P.(2012).PathwaysofmarinedebrisderivedfromtrajectoriesofLagrangiandrifters.MarinePollutionBulletin65(1-3),51-62.http://dx.doi.org/10.1016/j.marpolbul.2011.04.016.Accessed13January2021.Maximenko,N.,Corradi,P.,Law,K.L.,VanSebille,E.,Garaba,S.P.,Lampitt,R.S.etal.(2019).TowardtheIntegratedMarineDebrisObservingSystem.FrontiersinMarineScience6,447.https://doi.org/10.3389/fmars.2019.00447.Accessed13January2021.McAdam,R.(2017).Plasticintheocean:Howmuchisoutthere?Significance14(5),24-27.https://doi.org/10.1111/j.1740-9713.2017.01072.x.Accessed13January2021.McCormick,A.,Hoellein,T.,Mason,S.,Schluep,J.andKelly,J.(2014).Microplasticisanabundantanddistinctmicrobialhabitatinanurbanriver.EnvironmentalScienceandTechnology48(20),11863-11871.https://doi.org/10.1021/es503610r.Accessed13January2021.McCormick,A.R.andHoellein,T.J.(2016).Anthropogeniclitterisabundant,diverseandmobileinurbanrivers:Insightsfromcross-ecosystemanalysesusingecosystemandcommunityecologytools.LimnologyandOceanography61(5),1718-1734.https://doi.org/10.1002/lno.10328.Accessed13January2021.McDermid,K.J.andMcMullen,T.L.(2004).Quantitativeanalysisofsmall-plasticdebrisonbeachesintheHawaiianarchipelago.MarinePollutionBulletin48(7-8),790-794.https://doi.org/10.1016/j.marpolbul.2003.10.017.Accessed13January2021.McGuire,N.M.(2015).Environmentaleducationandbehaviouralchange:Anidentity-basedenvironmentaleducationmodel.InternationalJournalofEnvironmentalScienceEducation10,695-715.https://files.eric.ed.gov/fulltext/EJ1081842.pdf.Accessed13January2021.McIlgorm,A.,CampbellH.F.andRuleM.J.(2008).UnderstandingtheEconomicBenefitsandCostsofControllingMarineDebrisintheAPECRegion(MRC02/2007).AreporttotheAsia-PacificEconomicCooperationMarineResourceConservationWorkingGroupbytheNationalMarineScienceCentre(UniversityofNewEnglandandSouthernCrossUniversity),CoffsHarbour,NSW,Australia,December.https://www.apec.org/Publications/2009/04/Understanding-the-Economic-Benefits-and-Costs-of-Controlling-Marine-Debris-In-the-APEC-Region.Accessed27July2021.McIlgorm,A.,Campbell,H.F.andRule,M.J.(2011).TheeconomiccostandcontrolofmarinedebrisdamageintheAsia-Pacificregion.OceanandCoastalManagement54(9),643-651.https://doi.org/10.1016/j.ocecoaman.2011.05.007.Accessed13January2021.McIlgorm,A.,Raubenheimer,K.andMcIlgorm,D.E.(2020).Updateof2009APECReportonEconomicCostsofMarineDebristoAPECEconomies.ReporttotheAPECOceansandFisheriesWorkingGroupbytheAustralianNationalCentreforOceanResourcesandSecurity(ANCORS),UniversityofWollongong,Australia.https://www.apec.org/Publications/2020/03/Update-of-2009-APEC-Report-on-Economic-Costs-of-Marine-Debris-to-APEC-Economies.Accessed13January2021.McKinseyandCompany(2020).TheStateoftheChemicalIndustry–Itisgettingmorecomplex.https://www.mckinsey.com/industries/chemicals/our-insights/the-state-of-the-chemical-industry-it-is-getting-more-complex.Accessed10February2020.McLeod,E.,Chmura,G.L.,Bouillon,S.,Salm,R.,Björk,M.,Duarte,C.M.etal.(2011).Ablueprintforbluecarbon:TowardanimprovedunderstandingoftheroleofvegetatedcoastalhabitatsinsequesteringCO2.FrontiersinEcologyandtheEnvironment9(10),552-560.https://doi.org/10.1890/110004.Accessed15February2021.McNeish,R.E.,Kim,L.H.,Barrett,H.A.,Mason,S.A,Kelly,J.J.andHoellein,T.J.(2018).Microplasticinriverinefishisconnectedtospeciestraits.ScientificReports8(1),11639.https://doi.org/10.1038/s41598-018-29980-9.Accessed13January2021.Meijer,J.J.,vanEmmerik,T.,vanderEnt,R.Schmidt,C.andLebreton,L.(2021).Morethan1000riversaccountfor80%ofglobalriverineplasticemissionsintotheocean.ScienceAdvances7(18),eaaz5803.https://doi.org/10.1126/sciadv.aaz5803.Accessed30May2021.Meyerjürgens,J.,Badewien,T.H.,Garaba,S.P.,Wolff,J.O.andZielinski,O.(2019).Astate-of-the-artcompactsurfacedrifterrevealspathwaysoffloatingmarinelitterintheGermanbight.FrontiersinMarineScience6,58.https://doi.org/10.3389/fmars.2019.00058.Accessed13January2021.Michida,Y.,Chavanich,S.,CózarCabañas,A.,Hagmann,P.,Hinata,H.,Isobe,A.etal.(2020).GuidelinesforHarmonizingOceanSurfaceMicroplasticMonitoringMethods.Version1.1,June2020.MinistryoftheEnvironmentofJapan.https://www.env.go.jp/en/water/marine_litter/guidelines/guidelines.pdf.Accessed13January2021.Miller,R.Z.,Watts,A.J.,Winslow,B.O.,Galloway,T.S.andBarrows,A.P.W.(2017).Mountainstothesea:Riverstudyofplasticandnon-plasticmicrofibrepollutioninthenortheastUSA.MarinePollutionBulletin124(1),245-251.https://doi.org/10.1016/j.marpolbul.2017.07.028.Accessed13January2021.Mintenig,S.M.,Int-Veen,I.,Löder,M.G.,Primpke,S.andGerdts,G.(2017).Identificationofmicroplasticsineffluentsofwastewatertreatmentplantsusingfocalplanearray-basedmicro-Fourier-transforminfraredimaging.WaterResearch108,365-372.https://doi.org/10.1016/j.watres.2016.11.015.Accessed13January2021.MohamedNor,N.H.andKoelmans,A.A.(2019).TransferofPCBsfrommicroplasticsundersimulatedconditionsisbiphasicandreversible.EnvironmentalScienceandTechnology53(4),1874-1883.https://doi.org/10.1021/acs.est.8b05143.Accessed13January2021.Moltmann,T.,Turton,J.,Zhang,H.-M.,Nolan,G.,Gouldman,C.,Griesbauer,L.etal.(2019).AGlobalOceanObservingSystem(GOOS),deliveredthroughenhancedcollaborationacrossregions,communities,andnewtechnologies.FrontiersinMarineScience6,291.https://doi.org/10.3389/fmars.2019.00291.Accessed13January2021.Morgana,S.,Ghigliotti,L.,Estévez-Calvar,N.,Stifanese,R.,Wieckzorek,A.,Doyle,T.etal.(2018).MicroplasticsintheArctic:Acasestudywithsub-surfacewaterandfishsamplesoffNortheastGreenland.EnvironmentalPollution242,PartB,1078-1086.https://doi.org/10.1016/j.envpol.2018.08.001.Accessed13January2021.Morohoshi,T.,Ogata,K.,Okura,T.andSato,S.(2018).Molecularcharacterizationofthebacterialcommunityinbiofilmsfordegradationofpoly(3-hydroxybutyrate-co-3-hydroxyhexanoate)filmsinseawater.MicrobesandEnvironment33(1),19-25.https://doi.org/10.1264/jsme2.ME17052.Accessed13January2021.Morritt,D.,Stefanoudis,P.V.,Pearce,D.,Crimmen,O.A.andClark,P.F.(2014).PlasticintheThames:Ariverrunsthroughit.MarinePollutionBulletin78(1-2),196-200.https://doi.org/10.1016/j.marpolbul.2013.10.035.Accessed13January2021.137MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTMouat,J.,Lozano,R.L.andBateson,H.(2010).EconomicImpactsofMarineLitter.KIMO(KommunernesInternationalMiljøorganisation/LocalAuthoritiesInternationalEnvironmentalOrganisation).http://www.kimointernational.org/wp/wp-content/uploads/2017/09/KIMO_Economic-Impacts-of-Marine-Litter.pdf.Accessed13January2021.M’Rabat,C.,Pringault,O.,Zmerli-Triki,H.,Héla,B.G.,Couet,D.andKéfi-DalyYahia,O.(2018).Impactoftwoplastic-derivedchemicals,theBisphenolAandthedi-2-ethylhexylphthalate,exposureonthemarinetoxicdinoflagellateAlexandriumpacificum.MarinePollutionBulletin126,241-249.https://doi.org/10.1016/j.marpolbul.2017.10.090.Accessed13January2021.Mu,J.Zhang,S.,Qu,L.,Jin,F.,Fang,C.,Ma,A.etal.(2019).MicroplasticsabundanceandcharacteristicsinsurfacewatersfromtheNorthwestPacific,theBeringSea,andtheChukchiSea.MarinePollutionBulletin143,58-65,https://doi.org/10.1016/j.marpolbul.2019.04.023.Accessed13January2021.Muirhead,J.andPorter,T.(2019).Traceabilityinglobalgovernance.GlobalNetworks19(3),423-443.https://doi.org/10.1111/glob.12237.Accessed13January2021.Munari,C.,Corbau,C.,Simeoni,U.andMistri,M.,(2015).MarinelitteronMediterraneanshores:Analysisofcomposition,spatialdistributionandsourcesinnorth-westernAdriaticbeaches.WasteManagement49,483-490.https://doi.org/10.1016/j.wasman.2015.12.010.Accessed13January2021.Munari,C.,Infantini,V.,Scoponi,M.,Rastelli,E.,Coridesi,C.andMistri,M.(2017).MicroplasticsinthesedimentsofTerraNovaBay(RossSea,Antarctica).MarinePollutionBulletin122(1-2),161-165.https://doi.org/10.1016/j.marpolbul.2017.06.039.Accessed13January2021.Muncke,J.,Andersson,A.M.,Backhaus,T.,Boucher,J.M.,Almroth,B.C.,Castillo,A.C.etal.(2020).Impactsoffoodcontactchemicalsonhumanhealth:Aconsensusstatement.EnvironmentalHealth19,25.https://doi.org/10.1186/s12940-020-0572-5.Accessed13January2021.Murphy,F.,Ewins,C.,Carbonnier,F.andQuinn,B.(2016).WastewaterTreatmentWorks(WwTW)asasourceofmicroplasticsintheaquaticenvironment.EnvironmentalScienceandTechnology50(11),5800-5808.https://doi.org/10.1021/acs.est.5b05416.Accessed13January2021.Murray,C.C.,Maximenko,N.andLippiatt,S.(2018).TheinfluxofmarinedebrisfromthegreatJapanTsunamiof2011toNorthAmericashorelines.MarinePollutionBulletin132,26-32.https://doi.org/10.1016/j.marpolbul.2018.01.004.Accessed13January2021.Naji,A.,Esmaili,Z.andKhan,F.R.(2017).PlasticdebrisandmicroplasticsalongthebeachesofthestraitofHormuz,PersianGulf.MarinePollutionBulletin114(2),1057e1062.https://doi.org/10.1016/j.marpolbul.2016.11.032.Accessed13January2021.Nakashima,E.,Isobe,A.,Kako,S.,Itai,T.,Takahashi,S.andGuo,X.(2016).Thepotentialofoceanictransportandonshoreleachingofadditive-derivedleadbymarinemacro-plasticdebris.MarinePollutionBulletin107,333-339.https://doi.org/10.1016/j.marpolbul.2016.03.038.Accessed13January2021.NäkkiP.,Setälä,O.andLehtiniemi,M.(2017).BioturbationtransportssecondarymicroplasticstodeeperlayersinsoftmarinesedimentsofthenorthernBalticSea.MarinePollutionBulletin119(1),255-261.https://doi.org/10.1016/j.marpolbul.2017.03.065.Accessed13January2021.Napper,I.E.andThompson,R.C.(2019).Environmentaldeteriorationofbiodegradable,oxobiodegradable,compostable,andconventionalplasticscarrierbagsinthesea,soil,andopen-airovera3-yearperiod.EnvironmentalScienceandTechnology53(9),4775-4783.https://doi.org/10.1021/acs.est.8b06984.Accessed13January2021.Narancic,T.,Verstichel,S.,Chaganto,S.R.,Morales-Gamez,L.,Kenny,S.T.,DeWilde,B.etal.(2018).Biodegradableplasticblendscreatenewpossibilitiesforend-of-lifemanagementofplasticsbuttheyarenotapanaceaforplasticpollution.EnvironmentalScienceandTechnology52(18),10441-10452.https://doi.org/10.1021/acs.est.8b02963.Accessed13January2021.Nashoug,B.F.(2017).”SourcesofMarineLitter”–WorkshopReportfromWP1.2intheMARP3project.Svalbard,4-6September2016.SALTReport1017.Lofoten,Norway.https://pame.is/document-library/desktop-study-on-marine-litter-library/marine-litter-sources/577-nashoug-2017-sources-of-marine-litter-worksh/file.Accessed13January2021.Nelms,S.E.,Coombes,C.,Foster,L.C.,Galloway,T.S.,Godley,B.J.,Lindeque,P.K.etal.(2017).MarineanthropogeniclitteronBritishbeaches:A10-yearnationwideassessmentusingcitizensciencedata.ScienceofTheTotalEnvironment579,1399-1409.https://doi.org/10.1016/j.scitotenv.2016.11.137.Accessed13January2021.Nelms,S.E.,Barnett,J.,Brownlow,A.,Davison,N.J.,Deaville,R.,Galloway,T.S.etal.(2019a).MicroplasticsinmarinemammalsstrandedaroundtheBritishcoast:Ubiquitousbuttransitory?ScientificReports9(1),1075.https://doi.org/10.1038/s41598-018-37428-3.Accessed13January2021.Nelms,S.E.,Parry,H.E.,Bennett,K.A.,Galloway,T.S.,Godley,B.J.,Santillo,D.etal.(2019b).Whatgoesin,mustcomeout:Combiningscat‐basedmoleculardietanalysisandquantificationofingestedmicroplasticsinamarinetoppredator.MethodsinEcologicalEvolution10(10),1712-1722.https://doi.org/10.1111/2041-210X.13271.Accessed13January2021.NewZealandMinistryfortheEnvironment(2019).Reducingwaste:amoreeffectivelandfilllevy.https://environment.govt.nz/publications/reducing-waste-a-more-effective-landfill-levy-consultation-document/.Accessed25May2021.Newman,S.,Watkins,E.,Farmer,A.,tenBrink,P.andSchweitzer,J.P.(2015).Theeconomicsofmarinelitter.InMarineAnthropogenicLitter.Bergmann,M.,Gutow,L.andKlages,E.(eds.).Cham:SpringerOpenAccess.367-394.https://link.springer.com/chapter/10.1007/978-3-319-16510-3_14.Accessed13January2021.Ng,E-L.,Lwanga,E.H.,Edridge,S.M.,Johnston,P.,Hu,H-W.,Geissen,V.etal.(2018).Anoverviewofmicroplasticandnanoplasticpollutioninagroecosystems.ScienceofTheTotalEnvironment627,1377-1388.https://doi.org/10.1016/j.scitotenv.2018.01.341.Accessed13January2021.Niaounoukis,M.,Kontou,E.,Pispas,S.,Kafetzi,M.andGiaouzi,D.(2019).Agingofpackagingfilmsinthemarineenvironment.PolymerEngineeringScience59(issues2),E432-441.https://doi.org/10.1002/pen.25079.Accessed13January2021.NielsenJ.,HedeholmR.B.,Simon,M.andSteffensenJ.F.(2014).DistributionandfeedingecologyoftheGreenlandshark(Somniosusmicrocephalus)inGreenlandwaters.PolarBiology37,37-46.https://doi.org/10.1007/s00300-013-1408-3.Accessed13January2021.Nizzetto,L.,Futter,M.andLangaas,S.(2016a).Areagriculturalsoilsdumpsformicroplasticsofurbanorigin?EnvironmentalScienceandTechnology50(20),10777-10779.https://doi.org/10.1021/acs.est.6b04140.Accessed13January2021.Nizzetto,L.,Bussi,G.,Futter,M.N.,Butterfield,D.andWhitehead,P.G.(2016b).Atheoreticalassessmentofmicroplastictransportinrivercatchmentsandtheirretentionbysoilsandriversediments.EnvironmentalScience:ProcessesandImpacts18(8),1050-1059.https://doi.org/10.1039/C6EM00206D.Accessed13January2021.Njeru,J.(2006).TheurbanpoliticalecologyofplasticbagwasteprobleminNairobi,Kenya.Geoforum37(6),1046-1058.https://doi.org/10.1016/j.geoforum.2006.03.003.Accessed13January2021.NOAA(UnitedStatesNationalOceanographicandAtmosphericAdministration)(2015).DetectingJapanTsunamiMarineDebrisatSea:ASynthesisofEffortsandLessonsLearned.NOAAMarineDebrisProgram,UnitedStatesDepartmentofCommerce,TechnicalMemorandumNOS-OR&R-51.https://marinedebris.noaa.gov/sites/default/files/JTMD_Detection_Report.pdf.Accessed20November2020.Nobre,C.R.,Santana,M.F.M.,Maluf,A.,Cortez,F.S.,Cesar,A.,Pereira,C.D.S.etal.(2015).AssessmentofmicroplastictoxicitytoembryonicdevelopmentoftheseaurchinLytechinusvariegatus(Echinodermata:Echinoidea).MarinePollutionBulletin92(1-2),99-104.https://doi.org/10.1016/j.marpolbul.2014.12.050.Accessed13January2021.138MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTNorris,B.K.,Mullarney,J.C.,Bryan,K.R.andHenderson,S.M.(2017).Theeffectofpneumatophoredensityonturbulence:AfieldstudyinaSonneratia-dominatedmangroveforest,Vietnam.ContinentalShelfResearch147,114e127.https://doi.org/10.1016/j.csr.2017.06.002.Accessed13January2021.NorthwestPacificActionPlan(2017).NOWPAPMedium-termStrategy2018-2023.https://wedocs.unep.org/handle/20.500.11822/27258.Accessed13January2021.Obbard,R.W.(2018).Microplasticsinpolarregions:Theroleoflongrangetransport.CurrentOpinioninEnvironmentalScienceandHealth1,24-29.https://doi.org/10.1016/j.coesh.2017.10.004.Accessed13January2021.Obbard,R.W.,Sadri,S.,Wong,Y.Q.,Khitun,A.A.,Baker,I.andThompson,R.C.(2014).GlobalwarmingreleasesmicroplasticslegacyfrozeninArcticSeaice.Earth’sFuture2(6),315-320.https://doi.org/10.1002/2014EF000240.Accessed13January2021.Oberbeckmann,S.,Osborn,A.M.andDuhaime,M.B.(2016).Microbesonabottle:substrate,seasonandgeographyinfluencecommunitycompositionofmicrobescolonizingmarineplasticdebris.PLoSOne11,e0159289.https://doi.org/10.1371/journal.pone.0159289.Accessed23May2020.O’Brine,T.andThompson,R.C.(2010).Degradationofplasticcarrierbagsinthemarineenvironment.MarinePollutionBulletin60,2279-2283.https://doi.org/10.1016/j.marpolbul.2010.08.005.Accessed13January2021.Oßmann,B.E.,Sarau,G.,Holtmannspötter,H.,Pischetsrieder,M.,Christiansen,S.H.andDicke,W.(2018).Small-sizedmicroplasticsandpigmentedparticlesinbottledmineralwater.WaterResearch141,307-316.https://doi.org/10.1016/j.watres.2018.05.027.Accessed13January2021.OceanConservancyandMcKinseyCenterforBusinessandEnvironment(2015).StemmingtheTide;Land-basedStrategiesforaPlastic-freeOcean.https://www.mckinsey.com/business-functions/sustainability/our-insights/stemming-the-tide-land-based-strategies-for-a-plastic-free-ocean.Accessed13January2021.OECD(OrganisationforEconomicCo-operationandDevelopment)(2009).GuidanceManualfortheControlofTransboundaryMovementsofRecoverableWastes.https://www.oecd.org/env/waste/guidance-manual-control-transboundary-movements-recoverable-wastes.pdf.Accessed13January2021.OECD(2016).ExtendedProducerResponsibility:UpdatedGuidanceforEfficientWasteManagement.https://doi.org/10.1787/9789264256385-en.Accessed13January2021.Okshevsky,M.,Gautier,E.,Farner,J.M.,Schreiber,L.andTufenkji,N.(2020).Biofilmformationbymarinebacteriaisimpactedbyconcentrationandsurfacefunctionalizationofpolystyrenenanoparticlesinaspecies-specificmanner.EnvironmentalMicrobiologyReports12(2),203-213.https://doi.org/10.1111/1758-2229.12824.Accessed13January2021.Olson,R.J.,Shalapyonok,A.,Kalb,D.J.,Graves,S.W.andSosik,H.M.(2017).Imagingflowcytobotmodifiedforhighthroughputbyin-lineacousticfocusingofsampleparticles.LimnologyandOceanographyMethods15,867-874.https://doi.org/10.1002/lom3.10205.Accessed13January2021.Onda,D.F.,andSharief,K.M.(2021).Identifcationofmicroorganismsrelatedtomicroplastics.HandbookofMicroplasticsintheEnvironment.T.Rocha-Santosetal.(eds.).https://doi.org/10.1007/978-3-030-10618-8_40-1.Accessed20June2021.O’Neill,K.(2018).Thenewglobalpoliticaleconomyofwaste.InAResearchAgendaforGlobalEnvironmentalPolitics.Dauvergne,P.andAlger,J.(eds.).Cheltenham,UK:EdwardElgar.87-100.https://www.e-elgar.com/shop/gbp/a-research-agenda-for-global-environmental-politics-9781789902181.html.Accessed13January2021.Onink,V.,Wichmann,D.,Delandmeter,P.andvanSebille,E.(2019).TheroleofEkmancurrents,geostrophy,andStokesdriftintheaccumulationoffloatingmicroplastic.JournalofGeophysicalResearch:Oceans124,1474-1490.https://doi.org/10.1029/2018JC014547.Accessed13January2021.Oosterhius,F.,Papyrakis,E.andBoteler,B.(2014).EconomicInstrumentandmarinelittercontrol.OceanandCoastalManagement102,47-54.https://doi.org/10.1016/j.ocecoaman.2014.08.005.Accessed13January2021.OSPAR(2015).OSPARrequestondevelopmentofacommonmonitoringprotocolforplasticsparticlesinfishstomachsandselectedshellfishonthebasisofexistingfishdiseasesurveys.http://www.ices.dk/sites/pub/Publication%20Reports/Advice/2015/Special_Requests/OSPAR_PLAST_advice.pdf.Accessed13January2021.OSPAR(2020).Monitoringandassessingmarinelitter:Marinelitterindicatorassessments.https://www.ospar.org/work-areas/eiha/marine-litter/assessment-of-marine-litter.Accessed13January2021.Ostle,C.,Thompson,R.C.,Broughton,D.,Gregory,L.,Wootton,M.andJohns,D.G.(2019).Theriseinoceanplasticsevidencefroma60-yeartimeseries.NatureCommunications10,1622.http://doi.org/10.1038/s41467-019-09506-1.Accessed13January2021.Pabortsava,K.andLampitt.R.S.(2020).HighconcentrationsofplastichiddenbeneaththesurfaceoftheAtlanticOcean.NatureCommunications11,4073.https://doi.org/10.1038/s41467-020-17932-9.Accessed13January2021.Palatinus,A.,KovačViršek,M.,Robič,U.,Grego,M.,Bajt,O.,Šiljić,J.etal.(2019).MarinelitterintheCroatianpartofthemiddleAdriaticSea:Simultaneousassessmentoffloatingandseabedmacroandmicrolitterabundanceandcomposition.MarinePollutionBulletin139,427-439.https://doi.org/10.1016/j.marpolbul.2018.12.038.Accessed13January2021.PAME(ProtectionoftheArcticMarineEnvironmentWorkingGroupoftheArcticCouncil)(2019).DesktopStudyonMarineLitterincludingMicroplasticsintheArctic.http://hdl.handle.net/11374/2389.Accessed13January2021.Panno,S.V.,Kelly,W.R.,Scott,J.,Zheng,W.,McNeish,R.E.,Holm,N.etal.(2019).MicroplasticscontaminationinKarstgroundwatersystems.Groundwater5,189-196.https://doi.org/10.1111/gwat.12862.Accessed13January2021.Panti,C.,Giannetti,M.,Baini,M.,Rubegni,F.,Minutoli,R.andFossi,M.C.(2015).Occurrence,relativeabundanceandspatialdistributionofmicroplasticsandzooplanktonNWofSardiniainthePelagossanctuaryprotectedarea,MediterraneanSea.EnvironmentalChemistry12,618.https://doi.org/10.1071/EN14234.Accessed13January2021.Papathanasopoulou,I.,White,M.P.,Hattam,C.,Lannin,A.,Harvey,A.andSpencer,A.,(2016).Valuingthehealthbenefitsofphysicalactivitiesinthemarineenvironmentandtheirimportanceformarinespatialplanning.MarinePolicy63,144-152.https://doi.org/10.1016/j.marpol.2015.10.009.Accessed13January2021.Parts,C.(2019).Wastenotwantnot:Chineserecyclablewasterestrictions,theirglobalimpact,andpotentialU.S.responses.ChicagoJournalofInternationalLaw20(1),article8.https://chicagounbound.uchicago.edu/cjil/vol20/iss1/8.Accessed13January2021.Pasternak,G.,Zviely,D.andRibic,C.A.(2017).Sources,compositionandspatialdistributionofmarinelitteralongtheMediterraneancoastofIsrael.MarinePollutionBulletin114,1036-1045.https://doi.org/10.1016/j.marpolbul.2016.11.023.Accessed13January2021.Patra,J.K.andGouda,S.(2013).Applicationofnanotechnologyintextileengineering:Anoverview.JournalofEngineeringandTechnologyResearch5(5),104-111.https://academicjournals.org/article/article1379503776_Patra%20and%20Sgouda.pdf.Accessed13January2021.Paul-Pont,I.,Lacroix,C.,Fernández,C.G.,Hégaret,H.,Lambert,C.,LeGoïc,N.etal.(2016).ExposureofmarinemusselsMytilusspp.topolystyrenemicroplastics:toxicityandinfluenceonfluoranthenebioaccumulation.EnvironmentalPollution216,724-737.https://doi.org/10.1016/j.envpol.2016.06.039.Accessed13January2021.139MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTPaul-Pont.I.,Tallec,K.,Gonzalez-Fernandez,C.,Lambert,C.,Vincent,D.,Mazurais,D.etal.(2018).Constraintsandprioritiesforconductingexperimentalexposuresofmarineorganismmicroplastics.FrontiersinMarineScience5,252.https://doi.org/10.3389/fmars.2018.00252.Accessed13January2021.Pauly,J.L.,Stegmeier,S.J.,Allaart,H.A.,Cheney,R.T.,Zhang,P.J.,Mayer,A.G.etal.(1998).Inhaledcellulosicandplasticfibresfoundinhumanlungtissue.Cancer,Epidemiology,BiomarkersandPrevention7,419-428.https://cebp.aacrjournals.org/content/cebp/7/5/419.full.pdf.Accessed13January2021.Pedrós-Alió,C.(2012).Therarebacterialbiosphere.AnnualReviewofMarineScience4,449–466.https://doi.org/10.1146/annurev-marine-120710-100948.Accessed23May2020.Pedrotti,M.L.,Petit,S.,Elineau,A.,Bruzaud,S.,Crebassa,J.-C.,Dumontet,B.etal.(2016).ChangesinthefloatingplasticspollutionoftheMediterraneanSeainrelationtothedistancetoland.PLoSONE11(8),e0161581.https://doi.org/10.1371/journal.pone.0161581.Accessed13January2021.Peeken,I.,Primpke,S.,Beyer,B.,Gütermann,J.,Katlein,C.,Krumpen,T.etal.(2018).Arcticseaiceisanimportanttemporalsinkandmeansoftransportformicroplastic.NatureCommunications9(1):1-12.https://doi.org/10.1038/s41467-018-03825-5.Accessed13January2021.Peelman,N.,Ragaert,P.,DeMeulenaer,B.,Adons,D.,Peeters,R.,Cardon,L.,VanImpe,F.andDevlieghere,F.(2013).Applicationofbioplasticsforfoodpackaging.TrendsinFoodScienceandTechnology32,128-141.https://doi.org/10.1016/j.tifs.2013.06.003.Accessed13January2021Pellini,G.,Gomiero,A.,Fortibuoni,T.,Ferrà,C.,Grati,F.,Tassetti,N.etal.(2018).CharacterizationofmicroplasticlitterinthegastrointestinaltractofSoleasoleafromtheAdriaticSea.EnvironmentalPollution234,943-952.https://doi.org/10.1016/j.envpol.2017.12.038.Accessed13January2021.Pendleton,L.H.,Thebaud,O.,Mongruel,R.C.andLevrel,H.(2016).Hasthevalueofglobalmarineandcoastalecosystemserviceschanged?MarinePolicy64,156-158.https://doi.org/10.1016/j.marpol.2015.11.018.Accessed13January2021.Peng,G.,Bellerby,R.,Zhang,F.,Sun,X.andLi,D.(2020).Theocean’sultimatetrashcan:Hadaltrenchesasmajordepositoriesforplasticspollution.WaterResearch168,15121.https://doi.org/10.1016/j.watres.2019.115121.Accessed13January2021.Peng,L.,Du,D.,Qi,H.,Lan,C.Q.,Yu,H.andGe,C.(2020).Micro-andnano-plasticsinmarineenvironment:Source,distributionandthreats–areview.ScienceofTheTotalEnvironment698,134254.https://doi.org/10.1016/j.scitotenv.2019.134254.Accessed13January2021.Peng,X.,Dasgupta,S.,Zhong,G.,Du,M.,Xu,H.,Chen,M.etal.(2019).LargedebrisdumpsinthenorthernSouthChinaSea.MarinePollutionBulletin142,164-168.https://doi.org/10.1016/j.marpolbul.2019.03.041.Accessed13January2021.Penn,J.(2015).ValuesforrecreationalbeachqualityinOahu,Hawaii.MarineResourceEconomics31,47-62.https://doi.org/10.1086/683795.Accessed13January2021.Peters,C.A.andBratton,S.P.(2016).UrbanizationisamajorinfluenceonmicroplasticsingestionbysunfishintheBrazosRiverBasin,CentralTexas,USA.EnvironmentalPollution210,380-387.https://doi.org/10.1016/j.envpol.2016.01.018.Accessed13January2021.Petrolia,D.P.,Penn,J.,Quainoo,R.,Caffey,R.H.andFannin,J.M.(2019).Knowthebeach:Valuesofbeachconditioninformation.MarineResourceEconomics34,331-359.https://doi.org/10.1086/706248.Accessed13January2021.Pettit,T.N.,Grant,G.S.andWhittow,G.C.(1981).IngestionofplasticsbyLaysanalbatross.TheAuk98,839-841.http://www.jstor.org/stable/4085908.Accessed13January2021.Pham,C.,Rodríguez,Y.,Dauphin,A.,Carriço,R.,Frias,J.P.G.L.,Vandeperre,F.etal.(2017).Plasticsingestioninoceanic-stageloggerheadseaturtles(Carettacaretta)offtheNorthAtlanticsubtropicalgyre.MarinePollutionBulletin121(1-2),222-229.https://doi.org/10.1016/j.marpolbul.2017.06.008.Accessed13January2021.Picó,Y.andBarceló,D.(2019).Analysisandpreventionofmicroplasticspollutioninwater:Currentperspectivesandfuturedirections.ACSOmega4,4,6709-6719.https://doi.org/10.1021/acsomega.9b00222.Accessed13January2021.Piehl,S.,Leibner,A.,Loder,M.G.,Dris,R.,Bogner,C.andLaforsch,C.(2018).Identificationandquantificationofmacro-andmicroplasticsonanagriculturalfarmland.ScientificReports8,17950.https://doi.org/10.1038/s41598-018-36172-y.Accessed13January2021.PlasticsEurope(2019).Plastics–TheFacts2019.AnAnalysisofEuropeanPlasticsProduction,DemandandWasteDatahttps://www.plasticseurope.org/application/files/9715/7129/9584/FINAL_web_version_Plastics_th.Accessed13January2021.PlasticsIndustryAssociation(2018).PositionPaperonDegradableAdditives.https://www.plasticsindustry.org/sites/default/files/2018%20PLASTICS%20-%20Position%20Paper%20on%20Degradable%20Additives.pdf.Accessed13January2021.Poppi,L.,Zaccaroni,A.,Pasotto,D.andMazzariol,S.(2012).Post-morteminvestigationsonaleatherbackturtleDermochelyscoriaceastrandedalongtheNorthernAdriaticcoastline.DiseasesofAquaticOrganisms100,71-76.https://doi.org/10.3354/dao02479.Accessed13January2021.Porter,A.,Lyons,B.P.,Galloway,T.S.andLewis,C.(2018).Roleofmarinesnowsinmicroplasticsfateandbioavailability.EnvironmentalScienceandTechnology52(12),7111-7119.https://doi.org/10.1021/acs.est.8b01000.Accessed13January2021.Porter,A.,Smith,K.E.andLewis,C.(2019).TheseaurchinParacentrotuslividusasabioeroderofplastic.ScienceofTheTotalEnvironment693,133621.https://doi.org/10.1016/j.scitotenv.2019.133621.Accessed13January2021.Posen,I.D.,Jramillo,P.,Landis,A.E.andGriffin,W.M.(2017).GreenhousegasmitigationforU.S.plasticsproduction:Energyfirst,feedstockslater.EnvironmentalResearchLetters12,034024.https://iopscience.iop.org/article/10.1088/1748-9326/aa60a7/meta.Accessed13January2021.Pozo,K.,Urbina,W.,Gómez,V.,Torres,M.,Nuñez,D.,Přibylová,P.etal.(2020).Persistentorganicpollutantssorbedinplasticresinpellet–“Nurdles”fromcoastalareasofCentralChile.MarinePollutionBulletin151,110786.https://doi.org/10.1016/j.marpolbul.2019.110786.Accessed13January2021.Prata,J.C.(2018).Airbornemicroplastics:Consequencestohumanhealth?EnvironmentalPollution234,115-126.https://doi.org/10.1016/j.envpol.2017.11.043.Accessed13January2021.Prata,J.C.,daCosta,J.P.,Lopes,I.,Duarte,A.C.andRocha-Santos,T.(2019a).Effectsofmicroplasticsonmicroalgaepopulations:Acriticalreview.ScienceofTheTotalEnvironment665,400-405.https://doi.org/10.1016/j.scitotenv.2019.02.132.Accessed13January2021.Prata,J.C.,daCosta,J.P.Duarte,A.C.andRocha-Santos,R.(2019b).Methodsforsamplinganddetectionofmicroplasticsinwaterandsediment:Acriticalreview.TrACTrendsinAnalyticalChemistry110,150-159.https://doi.org/10.1016/j.trac.2018.10.029.Accessed13January2021.Prata,J.C.,daCosta,J.P.Lopes,I.,Duarte,A.C.andRocha-Santos,T.(2020a).Environmentalexposuretomicroplastics:Anoverviewonpossiblehumanhealtheffects.ScienceofTheTotalEnvironment702,13445.https://doi.org/10.1016/j.scitotenv.2019.134455.Accessed13January2021.Prata,J.C.,Silva,A.L.P.,Walker,T.R.,Duarte,A.C.,andRocha-Santos,T.(2020b).COVID-19pandemicrepercussionsontheuseandmanagementofplastics.EnvironmentalScienceandTechnology54(13),7760-7765.https://doi.org/10.1021/acs.est.0c02178.Accessed13January2021.PrataJ.C.,CastroJ.L.,daCostaJ.P.,CerqueiraM.,DuarteA.C.,andRocha-SantosT.(2021).Airbornemicroplastics.InHandbookofMicroplasticsintheEnvironment.Rocha-Santos,T.,Costa,M.andMouneyrac,C.(eds.).Cham:140MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTSpringer.1-25.https://doi.org/10.1007/978-3-030-10618-8_37-2.Accessed13January2021.Primpke,S.,Dias,P.A.andGerdts,G.(2019).Automatedidentificationandquantificationofmicrofibresandmicroplastics.AnalyticalMethods11,2138-2147.https://doi.org/10.1039/C9AY00126C.Accessed13January2021.Provencher,J.F.,Bond,A.L.andMallory,M.L.(2015).MarinebirdsandplasticdebrisinCanada:Anationalsynthesisandawayforward.EnvironmentalReviews23,1-13.https://doi.org/10.1139/er-2014-0039.Accessed13January2021.Provencher,J.F.,Bond,A.L.,Avery-Gomm,S.,Borrelle,S.,Rebolledo,E.L.B.,Hammer,S.etal.(2017).Quantifyingingesteddebrisinmarinemegafauna:Areviewandrecommendationsforstandardization.AnalyticalMethods9,1454.https://doi.org/10.1039/c6ay02419j.Accessed13January2021.Provencher,J.F.,Vermaire,J.C.,Avery-Gomm,S.,Braune,B.M.andMallory,M.L.(2018).Garbageinguano?Microplasticdebrisfoundinfaecalprecursorsofseabirdsknowntoingestplastics.ScienceofTheTotalEnvironment644,1477-1484.https://doi.org/10.1016/j.scitotenv.2018.07101.Accessed13January2021.Provencher,J.F.,Borrelle,S.B.,Bond,A.L.,Lavers,J.L.,vanFraneker,J.A.,Kühn,S.etal.(2019).Recommendedbestpracticesforplasticsandlitteringestionstudiesinmarinebirds:Collection,processing,andreporting.Facets4,111-130.https://doi.org/10.1139/facets-2018-0043.Accessed13January2021.Purba,N.P.,Handyman,D.I.W.,Pribadi,T.D.,Syakti,A.D.,Pranowo,W.S.,Harvey,A.,andIhsan,Y.(2019)MarinedebrisinIndonesia:Areviewofresearchandstatus.MarinePollutionBulletin,146,1340144.https://doi.org/10.1016/j.marpolbul.2019.05.057.Accessed20June2021.Qiang,M.,Shen,M.andXie,H.(2020).Lossoftourismrevenueinducedbycoastalenvironmentalpollution:Alength-of-stayperspective.JournalofSustainableTourism,28(4):550-567.https://doi.org/10.1080/09669582.2019.1684931.Accessed13January2021.Qiao,R.,Deng,Y.,ZhangS.,Wolosker,M.B.,Zhu,Q.,Ren,H.etal.(2019).Accumulationofdifferentshapesofmicroplasticsinitiatesintestinalinjuryandgutmicrobiotadysbiosisinthegutofzebrafish.Chemosphere236,124334.https://doi.org/10.1016/j.chemosphere.2019.07.065.Accessed13January2021.Quina,M.J.,Bontemp,E.,Bogush,A.,Schlumberger,S.,Weibel,G.,Braga,R.etal.(2018).TechnologiesforthemanagementofMSWincinerationashesfromgascleaning:Newperspectivesonrecoveryofsecondaryrawmaterialsandcirculareconomy.ScienceofTheTotalEnvironment635,526-542.https://doi.org/10.1016/j.scitotenv.2018.04.150.https://doi.org/10.1016/j.scitotenv.2018.04.150.Accessed13January2021Radetić,M.(2013).FunctionalizationoftextilematerialswithTiO2nanoparticles.JournalofPhotochemistryandPhotobiologyC:PhotochemistryReviews16,62-76.https://doi.org/10.1016/j.jphotochemrev.2013.04.002.Accessed13January2021.Ragaert,K.,Delva,L.,andVanGeem,K.(2017).Mechanicalandchemicalrecyclingofsolidplasticwaste.WasteManagement69,24-58.https://pubmed.ncbi.nlm.nih.gov/28823699/.Accessed25May2021.Ragusa,A.,Svelato,A.,Santacroce,C.,Catalano,P.,Notarstefano,V.,Carneval,O.etal.(2021)Plasticenta:Firstevidenceofmicroplasticsinhumanplacenta.EnvironmentInternational146,106274.https://doi.org/10.1016/j.envint.2020.106274.Accessed25May2021.Rahimi,A.andGarcía,J.M.(2017).Chemicalrecyclingofwasteplasticsfornewmaterialsproduction.NatureReviewsinChemistry1,46.https://www.researchgate.net/publication/317835495_Chemical_recycling_of_waste_plastics_for_new_materials_production.Accessed25May2021.Raubenheimer,K.andMcIlgorm,A.(2018).CantheBaselandStockholmconventionsprovideaglobalframeworktoreducetheimpactofmarineplasticslitter?MarinePolicy96,285-290.https://doi.org/10.1016/j.marpol.2018.01.013.Accessed13January2021.Raubenheimer,K.andUhro,N.(2020).Rethinkingglobalgovernanceofplastics–theroleofindustry.MarinePolicy,113,103802.https://doi.org/10.1016/j.marpol.2019.103802.Accessed13January2021.Rech,S.,Borrell,Y.andGarcía-Vazquez,E.(2016).Marinelitterasavectorfornon-nativespecies:Whatweneedtoknow.MarinePollutionBulletin113(1-2),40-43.https://doi.org/10.1016/j.marpolbul.2016.08.032.Accessed13January2021.Reddy,M.S.,ShaikBasha,Adimurthy,S.andRamachandraiah,G.(2006).DescriptionofthesmallplasticsfragmentsinmarinesedimentsalongtheAlang-Sosiyaship-breakingyard,India.Estuarine,CoastalandShelfScience68(3-4),656-660.https://doi.org/10.1016/j.ecss.2006.03.018.Accessed20June2021.Redondo-Hasselerharm,P.E.,Gort,G.,Peeters,E.T.H.M.andKoelmans,A.A.(2020).Nano-andmicroplasticsaffectthecompositionoffreshwaterbenthiccommunitiesinthelongterm.ScienceAdvances6(5),eaay4054.http://doi.org/10.1126/sciadv.aay4054.Accessed13January2021.Rehn,A.C.,Barnett,A.J.andWiber,M.G.(2018).StabilizingriskusingpublicparticipatoryGIS:AcasestudyonmitigatingmarinedebrisintheBayofFundy,SouthwestNewBrunswick,Canada.MarinePolicy96,264-269.https://doi.org/10.1016/j.marpol.2017.11.033.Accessed13January2021.Reichert,J.,Arnold,A.L.,Hoogenboom,M.O.,Schubert,P.andWilke,T.(2019).Impactsofmicroplasticsongrowthandhealthofhermatypiccoralsarespecies-specific.EnvironmentalPollution254,PartB,113074.https://doi.org/10.1016/j.envpol.2019.113074.Accessed13January2021.Reid,P.C.,Fischer,A.C.,Lewis-Brown,E.,Meredith,M.P.,Sparrow,Metal.(2009).Impactsoftheoceansonclimatechange.AdvancesinMarineBiology56,1-150.https://doi.org/10.1016/S0065-2881(09)56001-4.Accessed15February2021.Reinert,T.R.,SpellmanA.C.andBassett,B.L.(2017).EntanglementinandingestionoffishinggearandothermarinedebrisbyFloridamanatees,1993to2012.EndangeredSpeciesResearch32,415-427.https://doi.org/10.3354/esr00816.Accessed13January2021.Reisser,J.,Slat,B.,Noble,K.,duPlessis,K.,Epp,M.,Proiett,M.etal.(2015).Theverticaldistributionofbuoyantplasticsatsea:AnobservationalstudyintheNorthAtlanticGyre.Biogeosciences12:1249-1256.https://doi.org/10.5194/bg-12-1249-2015.Accessed13January2021.Remy,F.,Collard,F.,Gilbert,B.,Compoére,P.,Eppe,G.andLepoint,G.(2015).Whenmicroplasticisnotplastic:Theingestionofartificialcellulosefibresbymacrofaunalivinginseagrassmacrophytodetritus.EnvironmentalScienceandTechnology49(18),11158-11166.https://doi.org/10.1021/acs.est.5b02005.Accessed13January2021Renzi,M.,Blaškovic,A.,Bernardi,G.andRusso,G.F.(2018).Plasticlittertransferfromsedimentstowardsmarinetrophicwebs:Acasestudyonholothurians.MarinePollutionBulletin,135,376-385.https://doi.org/10.1016/j.marpolbul.2018.07.038.Accessed13January2021.Renzi,M.,Grazioli,E.andBlašković,A.(2019).Effectsofdifferentmicroplastictypesandsurfactant-microplasticmixturesunderfastingandfeedingconditions:AcasestudyonDaphniamagna.BulletinofEnvironmentalContaminationandToxicology103(3),367-373.https://doi.org/10.1007/s00128-019-02678-y.Accessed13January2021.Reynolds,C.andRyan,P.G.(2018).Micro-plasticingestionbywaterbirdsfromcontaminatedwetlandsinSouthAfrica.MarinePollutionBulletin126,330-333.https://doi.org/10.1016/j.marpolbul.2017.11.021.Accessed13January2021.Riascos,J.M.,Valencia,N.,Peña,E.J.andCantera,J.R.(2019).Inhabitingthetechnosphere:TheencroachmentofanthropogenicmarinelitterinNeotropicalmangroveforestsanditsuseashabitatbymacrobenthicbiota.MarinePollutionBulletin142,559-568.https://doi.org/10.1016/j.marpolbul.2019.04.010.Accessed13January2021.141MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTRichards,Z.T.andBeger,M.(2011).Aquantificationofthestandingstockofmacro-debrisinMajurolagoonanditseffectonhardcoralcommunities.MarinePollutionBulletin62(8),1693-1701.https://doi.org/10.1016/j.marpolbul.2011.06003.Accessed13January2021.Richardson,K.,Asmutis-Silvia,R.,Drinkwin,J.,Gilardi,K.V.K.,Giskes,I.,Jones,G.etal.(2019).Buildingevidencearoundghostgear:Globaltrendsandanalysisforsustainablesolutionsatscale.MarinePollutionBulletin138,222-229.https://doi.org/10.1016/j.marpolbul.2018.11.031.Accessed13January2021.RiosMendoza,L.M.andBalcer,M.(2019).Microplasticsinfreshwaterenvironments:Areviewofquantificationassessment.TrACTrendsinAnalyticalChemistry113,402-408.https://doi.org/10.1016/j.trac.2018.10020.Accessed13January2021.Rivers,M.L.,Gwinnett,C.andWoodall,L.(2019).Quantificationismorethancounting:Actionsrequiredtoaccuratelyquantifyandreportisolatedmarinemicroplastics.MarinePollutionBulletin139,100-104.https://doi.org/10.1016/j.marpolbul.2018.12024.Accessed13January2021.Rochman,C.M.,Hentschel,B.T.andTeh,S.J.(2014a).Long-termsorptionofmetalsissimilaramongplastictypes:Implicationsforplasticdebrisinaquaticenvironments.PLoSONE9(1),e85433.https://doi.org/10.1371/journal.pone.0085433.Accessed13January2021.Rochman,C.M.,Kurobe,T.,Flores,I.andTeh,S.J.(2014b).Earlywarningsignsofendocrinedisruptioninadultfishfromtheingestionofpolyethylenewithandwithoutsorbedchemicalpollutantsfromthemarineenvironment.ScienceofTheTotalEnvironment493,656-661.https://doi.org/10.1016/j.scitotenv.2014.06.051.Accessed13January2021.Rochman,C.M.,Tahir,A.,Williams,S.L.,Baxa,D.V.,Lam,R.,Miller,J.T.etal.(2015)Anthropogenicdebrisinseafood:Plasticdebrisandfibresfromtextilesinfishandbivalvessoldforhumanconsumption.ScientificReports5,14340.https://doi.org/10.1038/srep14340.Accessed13January2021.Rochman,C.M.,Browne,M.A.,Underwood,A.J.,vanFraneker,J.A.,Thompson,R.C.andAmaral-Zettler,L.A.(2016a).Theecologicalimpactsofmarinedebris:Unravelingthedemonstratedevidencefromwhatisperceived.Ecology97(2),302-312.https://doi.org/10.1890/14-2070.1.Accessed13January2021.Rochman,C.M.,Cook,A.M.andKoelmansk,A.A.(2016b).Plasticdebrisandpolicy:Usingcurrentscientificunderstandingtoinvokepositivechange.EnvironmentalToxicologyandChemistry35(7),1617-1626.https://doi.org/10.1002/etc.3408.Accessed13January2021.Rochman,C.M.,Brookson,C.,Bikker,J.,Djuric,N.,Earn,A.,Bucci,K.etal.(2019).Rethinkingmicroplasticsasadiversecontaminantsuite.EnvironmentalToxicologyandChemistry38,703-711.https://doi.org/10.1002/etc.4371.Accessed13January2021.Rodrigues,D.,Antunes,A.,Otero,V.,Sobral,P.andCosta,M.H.(2020).DistributionpatternsofmicroplasticsinseawatersurfaceataPortugueseestuaryandmarinepark.FrontiersinEnvironmentalScience8,582217.https://doi.org/10.3389/fenvs.2020.582217.AccessedJanuary2021Roman,L.,Lowenstine,L.,Parsley,L.M.,Wilcox,C.,Hardesty,B.D.,Gilardi,K.etal.(2019).Isplasticingestioninbirdsastoxicaswethink?Insightsfromaplasticfeedingexperiment.ScienceofTheTotalEnvironment665,660-667.https://doi.org/10.1016/j.scitotenv.2019.02.184.Accessed13January2021.Ronda,A.C.,Arias,A.H.,Oliva,A.L.andMarcovecchio,J.E.(2019).SyntheticmicrofibresinmarinesedimentsandsurfaceseawaterfromtheArgentineancontinentalshelfandaMarineProtectedArea.MarinePollutionBulletin149,110618.https://doi.org/10.1016/j.marpolbul.2019.110618.Accessed13January2021.Roos,S.,Jönsson,C.,Posner,S.,Arvidsson,R.andSvanström,M.(2019).Aninventoryframeworkforinclusionoftextilechemicalsinlifecycleassessment.InternationalJournalofLifeCycleAssessment24(5),838-847.https://doi.org/10.1007/s11367-018-1537-6.Accessed13January2021.Rosenkranz,P.,Chaudhry,Q.,Stone,V.andFernandes,T.F.(2009).AcomparisonofnanoparticleandfineparticleuptakebyDaphniamagna.EnvironmentalToxicologyandChemistry28(10),2142-2149.https://doi.org/10.1897/08-559.1.Accessed13January2021.Royer,S.-J.andDeheyn,D.D.(2019).Thetechnologicalchallengesofdealingwithplasticsintheenvironment.MarineTechnologySocietyJournal53,13-20.https://assets.theoceancleanup.com/app/uploads/2019/12/The_Technological_Challenges_of_Dealing-with-Plastic-in-the-Environment.pdf.Accessed13January2021.Royer,S.-J.,Ferrón,S.,Wilson,S.T.andKarl,D.M.(2018).Productionofmethaneandethylenefromplasticintheenvironment.PLoSONE,13(8),e0200574.https://doi.org/10.1371/journal.pone.0200574.Accessed13January2021.Rubio,L.,Marcos,R.andHernández,A.(2020).Potentialadversehealtheffectsofingestedmicro-andnanoplasticsonhumans.Lessonslearnedfrominvivoandinvitromammalianmodels.JournalofToxicologyandEnvironmentalHealth(PartB)23(2),51-68.https://doi.org/10.1080/10937404.2019.1700598.Accessed13January2021.Rüdel,H.,Müller,J.,Quack,M.andKlein,R.(2012).MonitoringofhexabromocyclododecanediastereomersinfishfromEuropeanfreshwatersandestuaries.EnvironmentalScienceandPollutionResearch19,772-783.https://doi.org/10.1007/s11356-011-0604-3.Accessed13January2021.Ruiz,M.andStankiewicz,M.(2019).Fiveyearssincethe2013HELCOMMinisterialDeclaration.InTheHandbookofEnvironmentalChemistry.Berlin,Heidelberg:Springer.1-26.https://link.springer.com/chapter/10.1007/698_2019_378.Accessed13January2021.Rummel,C.D.,Löder,M.G.J.,Fricke,N.F.,Lang,T.,Griebeler,E-M.,Janke,M.etal.(2016).PlasticingestionbypelagicanddemersalfishfromtheNorthSeaandBalticSea.MarinePollutionBulletin102,134-141.https://doi.org/10.1016/j.marpolbul.2015.11.043.Accessed13January2021.Rummel,C.D.,Jahnke,A.,Gorokhova,E.,Kühnel,D.andSchmitt-Jansen,M.(2017).Impactsofbiofilmformationonthefateandpotentialeffectsofmicroplasticsintheaquaticenvironment.EnvironmentalScienceandTechnologyLetters4(7),258-267.https://doi.org/10.1021/acs.estlett.7b00164.Accessed13January2021.Ryan,P.G.(2014).LittersurveydetectstheSouthAtlantic‘garbagepatch’.MarinePollutionBulletin79,220-224.https://doi.org/10.1016/j.marpolbul.2013.12.010.Accessed13January2021.Ryan,P.G.(2015).Abriefhistoryofmarinelitterresearch.InMarineAnthropogenicLitter.Bergmann,M.,Gutow,L.andKlages.M(eds.).Cham:Springer.1-25.https://doi.org/10.1007/978-3-319-16510-3_1.Accessed13January2021.Ryan,P.G.(2018).Entanglementofbirdsinplasticsandothersyntheticmaterials.MarinePollutionBulletin135,159-164.https://doi.org/10.1016/j.marpolbul.2018.06.057.Accessed13January2021.Ryan,P.G.,Dilley,B.J.,Ronconi,R.A.andConnan,M.(2019).RapidincreaseinAsianbottlesintheSouthAtlanticOceanindicatesmajordebrisinputsfromships.ProceedingsoftheNationalAcademyofSciences116(42),20892-20897.https://doi.org/10.1073/pnas.1909816116.Accessed13January2021.Ryan,P.G.,Suaria,G.,Perolda,V.,Pierucci,A.,Bornman,T.G.andAliani,S.(2020).Samplingmicrofibresattheseasurface:Theeffectsofmeshsize,samplevolumeandwaterdepth.EnvironmentalPollution258,113413.https://doi.org/10.1016/j.envpol.2019.113413.Accessed13January2021Ryberg,M.W.,Hauschild,M.Z.,Wang,F.,Averous-Monnery,S.,andLaurent,A.(2019):Globalenvironmentallossesofplasticsacrosstheirvaluechains.Resources,ConservationandRecycling151,104459.https://orbit.dtu.dk/en/publications/global-environmental-losses-of-plastics-across-their-value-chains.Accessed20June2021.142MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTSadri,S.S.andThompson,R.C.(2014).OnthequantityandcompositionoffloatingplasticsdebrisenteringandleavingtheTamarEstuary,SouthwestEngland.MarinePollutionBulletin81(1),55-60.https://doi.org/10.1016/j.marpolbul.2014.02.020.Accessed13January2021.Saley,A.M.,Smart,A.C.,Bezerra,M.F.,Burnham,T.L.U.,Capece,L.R.,Lima,L.F.O.etal.(2019).Microplasticaccumulationandbiomagnificationinacoastalmarineresearchsituatedinasparselypopulatedarea.MarinePollutionBulletin146,54-59.https://doi.org/10.1016/j.marpolbul.2019.05.065.Accessed13January2021.Saliu,F.,Montano,S.,Leioni,B.,Lasagni,M.andGalli,P.(2019).Microplasticsasathreattocoralreefenvironments:DetectionofphthalateestersinneustonandscleractiniancoralsfromtheFaafuAtoll,Maldives.MarinePollutionBulletin142,234-241.https://doi.org/10.1016/j.marpolbul.2019.03.043.Accessed13January2021.Sanchez-Vidal,A.,Thompson,R.C.,Canals,M.,anddeHaan,W.P.(2018).TheimprintofmicrofibresinsouthernEuropeandeepseas.PLoSONE13,e0207033.https://doi.org/10.1371/journal.pone.0207033.Accessed13January2021Santana,M.F.M.,Moreira,F.T.andTurra,A.(2017).Trophictransferenceofmicroplasticsunderalowexposurescenario:Insightsonthelikelihoodofparticlescascadingalongmarinefood-webs.MarinePollutionBulletin121(1-2),154-59.https://doi.org/10.1016/j.marpolbul.2017.05.061.Accessed13January2021.Santana,M.F.M.andTurra,A.(2020).Toxicityofmicroplasticsinthemarineenvironment.InAHandbookofEnvironmentalToxicology:HumanDisordersandEcotoxicology.D’Mello,J.P.F.(ed.).London:CABInternational.436-453.https://www.cabi.org/environmentalimpact/ebook/20193493760.Accessed13January2021.Santos,I.R.,Friedrich,A.C.,Wallner-Kersanach,M.andFillmann,G.(2005).Influenceofsocio-economiccharacteristicsofbeachusersonlittergeneration.OceanandCoastalManagement48(9-10),742e752.https://doi.org/10.1016/j.ocecoaman.2005.08.006.Accessed13January2021.Santos,R.G.,Andrades,R.,Boldrini,M.A.andMartins,A.S.(2015).Debrisingestionbyjuvenilemarineturtles:Anunderestimatedproblem.MarinePollutionBulletin93(1-2),37-43.https://doi.org/10.1016/j.marpolbul.2015.02.022.Accessed13January2021.SAPEA(ScienceAdviceforPolicybyEuropeanAcademies)(2019).AScientificPerspectiveonMicroplasticsinNatureandSociety.https://doi.org/10.26356/microplastics.Accessed23May2020.Sauret,C.,Severin,T.,Vétion,G.,Guigue,C.,Goutx,M.,Pujo-Pay,M.etal.(2014).‘Rarebiosphere’bacteriaaskeyphenanthrenedegradersincoastalseawaters.EnvironmentalPollution194,246-253.https://doi.org/10.1016/j.envpol.2014.07.024.Accessed23May2020.Sbrana,A.,Valente,T.,Scacco,U.,Bianchi,J.,Silvestri,J.,Palazzo,L.etal.(2017).SpatialvariabilityandinfluenceofbiologicalparametersonmicroplasticingestionbyBoopsboops(L.)alongtheItaliancoasts(WesternMediterraneanSea).EnvironmentalPollution263(PartA),114429.https://doi.org/10.1016/j.envpol.2020.114429.Accessed13January2021.Scheld,A.M.,Bilkovic,D.M.andHavens,K.J.,(2016).Thedilemmaofderelictgear.ScientificReports6,19671.https://doi.org/10.1038/srep19671.Accessed13January2021.Schmidt,C.,Krauth,T.andWagner,S.(2017).Exportofplasticsdebrisbyriversintothesea.EnvironmentalScienceandTechnology51(21),12246-12253.https://doi.org/10.1021/acs.est.7b02368.Accessed13January2021.Schneider,F.,Parsons,S.,Clift,S.,Stolte,A.andMcManus,M.C.(2018).Collectedmarinelitter–Agrowingwastechallenge.MarinePollutionBulletin128,162-174.https://doi.org/10.1016/j.marpolbul.2018.01.011.Accessed13January2021.Scholin,C.A.,Birch,J.,Jensen,S.,Marin,R.,Massion,E.,Pargett,D.etal.(2017).Thequesttodevelopecogenomicsensors:A25-yearhistoryoftheEnvironmentalSampleProcessor(ESP)asacasestudy.Oceanography30,427.https://doi.org/10.5670/oceanog.2017.427.Accessed13January2021.Schulz,M.,vanLoon,W.,Fleet,D.M.,Baggelaar,P.andderMeulene,E.(2017).OSPARstandardmethodandsoftwareforstatisticalanalysisofbeachlitterdata.MarinePollutionBulletin122(1-2),166-175.https://doi.org/10.1016/j.marpolbul.2017.06.045.Accessed13January2021.Schulz,M.,Walvoort,D.J.J.,Barry,J.,Fleet,D.M.andvanLoon,W.G.M.(2019).BaselineandpoweranalysesfortheassessmentofbeachlitterreductionsintheEuropeanOSPARregion.EnvironmentalPollution248,555-564.https://doi.org/10.1016/j.envpol.2019.02.030.Accessed13January2021.Schür,C.,Rist,S.,Baun,A.,Mayer,P.,Hartmann,N.B.andWagner,M.(2019).Whenfluorescenceisnotaparticle:ThetissuetranslocationofmicroplasticsinDaphniamagnaseemsanartefact.EnvironmentalToxicologyandChemistry38(7),1495-1503.https://doi.org/10.1002/etc.4436.Accessed13January2021.Schuyler,Q.A.,Wilcox,C.,Townsend,K.,Hardesty,B.D.andMarshall,N.J.(2014).Mistakenidentity?Visualsimilaritiesofmarinedebristonaturalpreyitemsofseaturtles.BMCEcology14,14.https://doi.org/10.1186/1472-6785-14-14.Accessed13January2021.Schuyler,Q.A.,Hardesty,B.D.,Lawson,T.J.,Opie,K.andWilcox,C.(2018).Economicincentivesreduceplasticinputstotheocean.MarinePolicy96,250-255.https://doi.org/10.1016/j.marpol.2018.02.009.Accessed13January2021.Schweitzer,J.-P.,Gionfra,S.,Pantzar,M.,Mottershead,D.,Watkins,E.,Petsinaris,F.etal.(2018).Unwrapped:HowThrowawayPlasticisFailingtoSolveEurope’sFoodWasteProblem(AndWhatWeNeedtoDoInstead).AStudybyZeroWasteEuropeandFriendsoftheEuropefortheRethinkPlasticAlliance.Brussels:InstituteforEuropeanEnvironmentalPolicy.https://www.foeeurope.org/sites/default/files/materials_and_waste/2018/unwrapped_-_throwaway_plastic_failing_to_solve_europes_food_waste_problem.pdf.Accessed13January2021.Schymanski,D.,Goldbeck,C.,Humpf,A.U.andFürst,P.(2018).Analysisofmicroplasticsinwaterbymicro-Ramanspectroscopy:Releaseofplasticparticlesfromdifferentpackagingintomineralwater.WaterResearch129,154-162.https://doi.org/10.1016/j.watres.2017.11.011.Accessed13January2021.ScienceforEnvironmentPolicy(2016).ShipRecycling:ReducingHumanandEnvironmentalImpacts.ThematicIssue55.IssueproducedfortheEuropeanCommissionDGEnvironmentbytheScienceCommunicationUnit,UWE,Bristol,UK.http://ec.europa.eu/science-environment-policyhttps://ec.europa.eu/environment/integration/research/newsalert/pdf/ship_recycling_reducing_human_and_environmental_impacts_55si_en.pdf.Accessed20June2021.SecretariatoftheBaselConvention(2015).TechnicalGuidelinesonTransboundaryMovementsofElectricalandElectronicWasteandUsedElectricalandElectronicEquipment,inParticularRegardingtheDistinctionbetweenWasteandNon-wasteundertheBaselConvention(UNEP/CHW.12/5/Add.1/Rev.1),http://www.basel.int/Portals/4/download.aspx?d=UNEP-CHW.12-.Accessed13January2021.SecretariatoftheConventiononBiologicalDiversity(2016a).DecisionAdoptedbyTheConferenceofthePartiestoTheConventionOnBiologicalDiversityXIII/10.AddressingImpactsofMarineDebrisandAnthropogenicUnderwaterNoiseonMarineandCoastalBiodiversity(CBD/COP/DEC/XIII/10).https://www.cbd.int/doc/decisions/cop-13/cop-13-dec-10-en.pdf.Accessed13January2021.SecretariatoftheConventiononBiologicalDiversity(2016b).MarineDebris:Understanding,PreventingandMitigatingtheSignificantAdverseImpactsonMarineandCoastalBiodiversity.TechnicalSeriesNo.83.https://www.cbd.int/doc/publications/cbd-ts-83-en.pdf.Accessed13January2021.143MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTSecretariatoftheStockholmConvention(2020).AllPOPslistedintheStockholmConvention.http://chm.pops.int/TheConvention/ThePOPs/ListingofPOPs/tabid/2509/Default.aspx.Accessed13January2021.SecretariatoftheSouthPacificEnvironmentProgramme(SPREP)(2017).ReportontheStatusofActionsTakenontheImplementationofthe2016-2017BusinessPlansinceCOP-8.https://www.sprep.org/attachments/2017SM28/Waigani%20Convention/WC%20COP-9%20-%20Agenda%204.3.Att.1%20-%20Project%20related%20activities.pdf.Accessed13January2021.Serra-Gonçalves,A.C.,Lavers,J.L.andBond,A.L.(2019).Globalreviewofbeachdebrismonitoringandfuturerecommendations.EnvironmentalScienceandTechnology53(21),12158-12167.https://doi.org/10.1021/acs.est.9b01424.Accessed13January2021.Setälä,O.,Fleming-Lehtinen,V.andLehtiniemi,M.(2014).Ingestionandtransferofmicroplasticsintheplanktonicfoodweb.EnvironmentalPollution185,77-83.https://doi.org/10.1016/j.envpol.2013.10013.Accessed13January2021.Setälä,O.,Granberg,M.,Hassellöv,M.,Karlsson,T.,Lehtiniemi,M.,Mattsson,K.etal.(2019).MonitoringofMicroplasticsintheMarineEnvironment:ChangingDirectionstowardsQualityControlledTailoredSolutions.NordicCouncilofMinisters.http://norden.diva-portal.org/smash/get/diva2:1373249/FULLTEXT02.pdf.Accessed13January2021.Sgier,L.,Freimann,R.,Zupanic,A.andKroll,A.(2016).FlowcytometrycombinedwithviSNEfortheanalysisofmicrobialbiofilmsanddetectionofmicroplastics.NatureCommunications7,11587.http://doi.org/10.1038/ncomms11587.Accessed13January2021.Shaw,E.andTurner,A.(2019).Recycledelectronicplasticandmarinelitter.ScienceofTheTotalEnvironment694,133644.https://doi.org/10.1016/j.scitotenv.2019.133644.Accessed13January2021.Shen,M.,Huang,W.,Chen,M.,Song,B.,Zeng,G.andZhang,Y.(2020).(Micro)plasticcrisis:Un-ignorablecontributiontoglobalgreenhousegasemissionsandclimatechange.JournalofCleanerProduction254,120138.https://doi.org/10.1016/J.JCLEPRO.2020.120138.Accessed13January2021.Sherman,P.andvanSebille,E.(2016).Modelingmarinesurfacemicroplastictransporttoassessoptimalremovallocations.EnvironmentalResearchLetters11,014006.https://doi.org/10.1088/1748-9326/11/1/014006.Accessed13January2021.Shevealy,S.,Courtney,K.andParks,J.E.(2012).TheHonoluluStrategy:AGlobalFrameworkforPreventionandManagementofMarineDebris.UNEPandUnitedStatesNationalOceanicandAtmosphericAdministration(NOAA).https://wedocs.unep.org/bitstream/handle/20.500.11822/10670/Honolulu%20strategy.pdf?sequence=1&isAllowed=y.Accessed13January2021.Shim,W.J.,Hong,S.H.andEo,S.(2017).Identificationmethodsinmicroplasticanalysis:Areview.AnalyticalMethods9,1384-1391.https://doi.org/10.1039/C6AY02558G.Accessed13January2021.Shu,C.(2018).TheOceanPM2.5.LandResource23-27[inChinese].Sijtsema,S.J.,Onwezen,M.,Reinders,M.J.,Dagevos,H.,Partanen,A.andMeeusen,M.(2016).Consumerperceptionsofbio-based–anexploratorystudyin5Europeancountries.NJAS-WageningenJournalofLifeSciences77,61-69.https://doi.org/10.1016/j.njas.2016.03.007.Accessed13January2021.Silva,M.S.S.,Oliveira,M.,Lopéz,D.,Martins,M.,Figueira,E.andPires,A.(2020).DonanoplasticsimpacttheabilityofthepolychaetaHedistediversicolortoregenerate?EcologicalIndicators110,105921.https://doi.org/10.1016/j.ecolind.2019.105921.Accessed13January2021.Sogin,M.L.,Morrison,H.G.,Huber,J.A.,Welch,D.M.,Huse,S.M.,Neal,P.R.etal.(2006).Microbialdiversityinthedeepseaandtheunderexplored“rarebiosphere”.ProceedingsoftheNationalAcademyofSciences103,12115-12120.https://doi.org/10.1073/pnas.0605127103.Accessed23May2020Song,Y.K.,Hong,S.H.,Eo,S.,Jang,M.,Han,G.M.,Isobe,A.,andShim,W.J.(2018).HorizontalandverticaldistributionofmicroplasticsinKoreancoastalwaters.EnvironmentalScienceandTechnology52(21),12188-12197.https://doi.org/10.1021/acs.est.8b04032.Accessed13January2021.Spedicato,M.T.,Zupa,W.,Carbonara,P.,Fiorentino,F.,Follesa,M.C.,Galgani,F.etal.(2019).Spatialdistributionofmarinemacro-litterontheseafloorinthenorthernMediterraneanSea:TheMEDITSinitiative.ScientiaMarina83,267.https://doi.org/10.3989/scimar.04987.14a.Accessed13January2021.Spierling,S.,Knüpffer,E.,Behsen,H.,Mudersbach,M.,Krieg,H.,Springer,S.etal.(2018).Bio-basedplastics–areviewofenvironmental,socialandeconomicimpactassessments.JournalofCleanerProduction185,476-491.https://doi.org/10.1016/j.jclepro.2018.03.014.Accessed13January2021.Stachowitsch,M.(2020).TheBeachcomber’sGuidetoMarineDebris.SpringerNature.https://www.springer.com/gp/book/9783319907277.Accessed13January2021.Stanton,T.,Johnson,M.,Nathanail,P.,Gomes,R.L.,Needham,T.andBurson,A.(2019a).ExploringtheefficacyofNileredinmicroplasticsquantification:Acostainingapproach.EnvironmentalScienceandTechnologyLetters6(10),606-611.https://doi.org/10.1021/acs.estlett.9b00499.Accessed13January2021.Stanton,T.,Johnson,M.,Nathanail,P.,MacNaughtan,W.andGomes,R.L.(2019b).Freshwaterandairbornetextilefibrepopulationsaredominatedby‘natural’,notmicroplastic,fibres.ScienceofTheTotalEnvironment666,377-389.https://doi.org/10.1016/j.scitotenv.2019.02.278.Accessed13January2021.Stanton,T.,Kay,P.,JohnsonM.,KaShunChan,F.,Gomes,R.L.,Hughes,J.etal.(2020).It’stheproductnotthepolymer:Rethinkingplasticpollution.WIREsWater8(1),e1490.https://dx.doi.org/10.1002/wat2.1490.Accessed13January2021.Stark,M.(2019).Lettertotheeditorregarding“AreWeSpeakingtheSameLanguage?Recommendationsforadefinitionandcategorizationframeworkforplasticdebris”.EnvironmentalScienceandTechnology53(9),4677-4677.https://doi.org/10.1021/acs.est.9b01360.Accessed13January2021.Statista(2019).GlobalgenerationofplasticMSWbyregion2018(publishedbyTiseo,I.24June2019).https://www.statista.com/statistics/1016756/generated-plastic-municipal-solid-waste-globally-by-region/.Accessed11January2021Statista(2021a).Globalplasticmarketsize2016-2028(publishedbyTiseo,I.24June2021).https://www.statista.com/statistics/1060583/global-market-value-of-plastic/.Accessed12September2021.Statista(2021b).Cumulativeplasticproductionvolumeworldwidefrom1950to2050.PublishedbyTiseo,I.27January2020.https://www.statista.com/statistics/1019758/plastics-production-volume-worldwide/.Accessed11February2021.Steer,M.,Cole,M.,Thompson,R.C.andLindeque,P.K.(2017).MicroplasticingestioninfishlarvaeinthewesternEnglishChannel.EnvironmentalPollution,226,250-259.https://doi.org/10.1016/j.envpol.2017.03062.Accessed13January2021.Stehel,V.,Dvořák,J.,Wittlingerová,Z.andPetruželková,A.(2019).Economiccontradictionsofthewaste-to-energyconceptandemissionsreductionplan(casestudy,CzechRepublic).EnergySources,PartA:Recovery,Utilization,andEnvironmentalEffects41(13),1622-1629.https://doi.org/10.1080/15567036.2018.1549137.Accessed13January2021.Stelfox,M.,Hudgins,J.andSweet,M.(2016).Areviewofghostgearentanglementamongstmarinemammals,reptilesandelasmobranchs.MarinePollutionBulletin111(102),6-17.https://doi.org/10.1016/j.marpolbul.2016.06.034.Accessed13January2021.Stewart,P.S.andCosterson,J.W.(2001).Antibioticresistanceofbacteriainbiofilms.TheLancet358,135-38.https://doi.org/10.1016/S0140-6736(01)05321-1.Accessed13January2021.144MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTStrand,J.,Feld,L.,Murphy,F.,Mackevica,A.andHartmann,N.B.(2018).AnalysisofMicroplasticParticlesinDanishDrinkingWater.AarhusUniversity,DCE–DanishCentreforEnvironmentandEnergy.ScientificReportNo.291.http://dce2.au.dk/pub/SR291.pdf.Accessed13January2021.Straub,S.,Hirsch,P.E.andBurkhardt-Holm,P.(2017).Biodegradableandpetroleum-basedmicroplasticsdonotdifferintheiringestionandexcretionbutintheirbiologicaleffectsinafreshwaterinvertebrateGammarusfossarum.InternationalJournalofEnvironmentalResearchandPublicHealth14(7),774.https://doi.org/10.3390/ijerph14070774.Accessed13January2021.Su,L.,Xue,Y.,Li,L.,Yang,D.,Kolandhasamy,P.,Li,D.etal.(2016).MicroplasticsinTaihuLake.China.EnvironmentalPollution216,711-719.https://doi.org/10.1016/j.envpol.2016.06.036.Accessed13January2021.Suaria,G.,Avio,C.G.,Mineo,A.,Lattin,G.L.,Magaldi,M.G.,Belmonte,G.etal.(2016).TheMediterraneanPlasticSoup:SyntheticpolymersinMediterraneansurfacewaters.ScientificReports6,37551.https://doi.org/10.1038/srep37551.Accessed13January2021.Suaria,G.,Achtypi,A.,Perold,V.,Lee,J.R.,Peirucci,A.,Bornmans,T.G.,Aliani,S.andRyan,P.G.(2020).Microfibersinoceanicsurfacewaters:Aglobalcharacterization.ScienceAdvances6(23),eaay8493.http://doi.org/10.1126/sciadv.aay8493.Accessed17August2021.Suedel,B.,Boraczek,J.,Peddicord,R.,Clifford,P.andDillon,T.(1994).Trophictransferandbiomagnificationpotentialofcontaminantsinaquaticecosystems.InReviewsofEnvironmentalContaminationandToxicology(ContinuationofResidueReviews)vol.136.Ware,G.W.(ed.).NewYork:Springer.21-89.https://doi.org/10.1007/978-1-4612-2656-7_2.Accessed13January2021.Sullivan,M.,Evet,S.,Straub,P.,Reding,M.,Robinson,N.,Zimmermann,E.etal.(2019).Identification,recovery,andimpactofghostfishinggearintheMullicariver-greatbayestuary(NewJersey,USA):Stakeholder-drivenrestorationforsmaller-scalesystems.MarinePollutionBulletin138,37-48.https://doi.org/10.1016/j.marpolbul.2018.10.058.Accessed13January2021.Sun,J.,Dai,X.,Wang,Q.,vanLoosdrecht,M.C.andNi,B.J.(2019).Microplasticsinwastewatertreatmentplants:Detection,occurrenceandremoval.WaterResearch152,21-37.https://doi.org/10.1016/j.watres.2018.12.050.Accessed13January2021.Sun,Q.,Ren,S.-Y.andNi,H.-G.(2020).Incidenceofmicroplasticsinpersonalcareproducts:Anappreciablepartofplasticpollution.ScienceofTheTotalEnvironment742,140218.https://doi.org/10.1016/j.scitotenv.2020.140218.Accessed13January2021.Sundet,J.H.,HerzkeD.andJenssen,M.(2016).SvalvardsMiljøvernfond.Forekomstogkilderimikroplastikkisediment,ogkonsekvenserforbunnlevendefiskogevertebraterpåSvalbard.RIS-prosjektnr.10495.https://pame.is/document-library/desktop-study-on-marine-litter-library/additional-documents/annexes-literature-from-the-desktop-study/table-2-4-abundance-of-microplastics-observed-in-sediments.Accessed13January2021.Sussarellu,R.,Suquet,M.,Thomas,Y.,Lambert,C.,Fabioux,C.,Pernet,M.E.J.etal.(2016).Oysterreproductionisaffectedbyexposuretopolystyrenemicroplastics.ProceedingsoftheNationalAcademyofSciences113(9),2430-2435.http://doi.org/10.1073/pnas.1519019113.Accessed13January2021.Sweet,M.J.andBrown,B.E.(2016).Coralresponsestoanthropogenicstressinthetwenty-firstcentury:Anecophysiologicalperspective.InOceanographyandMarineBiology:AnAnnualReviewvol.54.Hughes,R.N.,Hughes,D.J.,Smith,I.P.andDale,A.C.(eds.).CRCPress.271-314.https://www.routledge.com/Oceanography-and-Marine-Biology-An-Annual-Review-Volume-54/Hughes-Hughes-Smith-Dale/p/book/9781498747981.Accessed13January2021.Sweet,M.J.andBythell,J.(2015).WhitesyndromeinAcroporamuricata:Nonspecificbacterialinfectionandciliatehistophagy.MolecularEcology24(5),1150-1159.https://doi.org/10.1111/mec.13097.Accessed13January2021.Sweet,M.J.andSéré,M.G.(2016).Ciliatecommunitiesconsistentlyassociatedwithcoraldiseases.JournalofSeaResearch113,119-131.https://doi.org/10.1016/j.seares.2015.06.008.Accessed13January2021.Takada,H.andKarapangioti,H.K.(eds.)(2019).HazardousChemicalsAssociatedwithPlasticsintheMarineEnvironment.HandbookofEnvironmentalChemistryvol78.SpringerNatureSwitzerland.https://doi.org/10.1007/978-3-319-95568-1.Accessed13January2021.Talvitie,J.,Mikola,A.,Koistinen,A.andSetälä,O.(2017).Solutionstomicroplasticspollution–Removalofmicroplasticsfromwastewatereffluentwithadvancedwastewatertreatmenttechnologies.WaterResearch123,401-407.https://doi.org/10.1016/j.watres.2017.07.005.Accessed13January2021.Tanaka,K.,Takada,H.,Yamashita,R.,Mizukawa,K.,Fukuwaka,M.andWatanuki,Y.(2013).Accumulationofplastic-derivedchemicalsintissuesofseabirdsingestingmarineplastic.MarinePollutionBulletin69(1-2),219-222.https://doi.org/10.1016/j.marpolbul.2012.12.010.Accessed13January2021.Tanaka,K.,Watanuki,Y.,Takada,H.,Ishizuka,M.,Yamashita,R.,Kazama,M.etal.(2020).Invivoaccumulationofplastic-derivedchemicalsintoseabirdtissues.CurrentBiology30(4),723-728.https://doi.org/10.1016/j.cub.2019.12.037.Accessed13January2021.Tavares,D.C.,daCosta,L.L.,Rangel,D.F.,deMoura,J.F.,Zalmon,I.R.andSiciliano,S.(2016).Nestsofthebrownbooby(Sulaleucogaster)asapotentialindicatoroftropicaloceanpollutionbymarinedebris.EcologicalIndicators70,10-14.https://doi.org/10.1016/j.ecolind.2016.06.005.Accessed13January2021.Taylor,M.L.,Gwinnett,C.,Robinson,L.F.andWoodall,L.C.(2016).Plasticmicrofibreingestionbydeep-seaorganisms.ScientificReports6,33997.https://doi.org/10.1038/srep33997.Accessed13January2021.Tekman,M.B.,Krumpen,T.andBergmann,M.(2017).MarinelitterondeepArcticseafloorcontinuestoincreaseandspreadstotheNorthattheHAUSGARTENobservatory.DeepSeaResearchPartI:OceanographicResearchPapers120,88-99.https://doi.org/10.1016/j.dsr.2016.12.011.Accessed13January2021.Tekman,M.B.,Wekerle,C.,Lorenz,C.,Primpke,S.,Hasemann,C.,Gerdts,G.etal.(2020).TyinguplooseendsofmicroplasticpollutionintheArctic:Distributionfromtheseasurfacethroughthewatercolumntodeep-seasedimentsattheHAUSGARTENObservatory.EnvironmentalScienceandTechnology54(7),4079-4090.https://dx.doi.org/10.1021/acs.est.9b06981.Accessed13January2021.Temmerman,S.,Meire,P.,Bouma,T.,Herman,P.M.J.,Ysebaert,TandDeVriend,H.J.(2013).Ecosystem-basedcoastaldefenceinthefaceofglobalchange.Nature504,79-83.https://doi.org/10.1038/nature12859.Accessed15February2021.tenBrink,P.,Schweitzer,J-P.,Watkins,E.,Janssens,C.,DeSmet,M.,Leslie,H.etal.(2018).CircularEconomyMeasurestoKeepPlasticsandtheirValueintheEconomy,AvoidWasteandReduceMarineLitter.EconomicsDiscussionPapers2018-3.KielInstitutefortheWorldEconomy.http://www.economics-ejournal.org/economics/discussionpapers/2018-3/.Accessed13January2021.terHalle,A.,Ladirat,L.,Gendre,X.,Goudounèche,D.,Pusineri,C.,Routaboul,C.etal.(2016).Understandingthefragmentationpatternofmarineplasticdebris.EnvironmentalScienceandTechnology50(11),5668-5675.https://doi.org/10.1021/acs.est.6b00594.Accessed13January2021.Teuten,E.L.,Saquing,J.M.,Knappe,S.D.R.U.,Barlaz,M.A.,Jonsson,S.,Bjoern,A.etal.(2009).Transportandreleaseofchemicalsfromplasticstotheenvironmentandtowildlife.PhilosophicalTransactionsoftheRoyalSocietyB:BiologicalSciences364,2027-2045.https://doi.org/10.1098/rstb.2008.0284.Accessed13January2021.145MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTThaysen,C.,Sorais,M.,Verreault,J.,Diamond,M.L.,andRochman,C.M.(2020).Bidirectionaltransferofhalogenatedflameretardantsbetweenthegastrointestinaltractandingestedplasticsinurban-adaptedring-billedgulls.ScienceofTheTotalEnvironment730,138887.https://doi.org/10.1016/j.scitotenv.2020.138887.Accessed13January2021.Theocharis,A.,Balopoulos,E.,Kioroglou,S.,Kontoyiannis,H.andIona,A.(1999).AsynthesisofthecirculationandhydrographyoftheSouthAegeanSeaandtheStraitsoftheCretanArc(March1994-January1995).ProgressinOceanography44(4),469-509.https://doi.org/10.1016/S0079-6611(99)00041-5.Accessed13January2021.ThePewCharitableTrustsandSYSTEMIQ(2020).BreakingthePlasticsWave:AComprehensiveAssessmentofPathwaystowardsStoppingOceanPlasticPollution.https://www.oneplanetnetwork.org/resource/breaking-plastic-wave-comprehensive-assessment-pathways-towards-stopping-ocean-plastic.Accessed13January2021.Thiel,M.andGutow,L.(2005).Theecologyofraftinginthemarineenvironment.II.Theraftingorganismsandcommunity.OceanographyandMarineBiology:AnAnnualReview43,279-418.https://epic.awi.de/id/eprint/11613/1/Thi2005a.pdf.Accessed13January2021.Thiel,M.,Hinojosa,I.A.,Miranda,L.,Pantoja,J.,Rivadeneira,M.M.andVasquez,N.(2013).Anthropogenicmarinedebrisinthecoastalenvironment:Amultiyearcomparisonbetweencoastalwatersandlocalbeaches.MarinePollutionBulletin71(1-2),307-316.https://doi.org/10.1016/j.marpolbul.2013.01.005.Accessed13January2021.Thiel,M.,Luna-Jorquera,G.,Álvarez-Varas,R.,Gallardo,C.,Hinojosa,I.A.,Luna,N.etal.(2018).Impactsofmarineplasticpollutionfromcontinentalcoaststosubtropicalgyres–fish,seabirds,andothervertebratesintheSEPacific.FrontiersinMarineScience5,238.https://doi.org/10.3389/fmars.2018.00238.Accessed13January2021.Thompson,R.C.,Moore,C.J.,vomSaal,F.S.andSwan,S.H.(2009).Plastics,theenvironmentandhumanhealth:Currentconsensusandfuturetrends.PhilosophicalTransactionsoftheRoyalSocietyBBiologicalSciences364,2153-2166.https://doi.org/10.1098/rstb.2009.0053.Accessed13January2021.Tibbetts,J.,Krause,S.,Lynch,I.andSambrookSmith,G.(2018).Abundance,distributionanddriversofmicroplasticscontaminationinurbanriverenvironments.Water10(11),1597-1611.https://doi.org/10.3390/w10111597.Accessed13January2021.Tirelli,V.,Suaria,G.,andLusher,A.L.(2020).Microplasticsinpolarsamples.InHandbookofMicroplasticsintheEnvironment.Rocha-Santos,T.,Costa,M.andMouneyrac,C.(eds,).Cham:Springer.1-42.https://doi.org/10.1007/978-3-030-10618-8_4-1.Accessed13January2021.Topouzelis,K.,Papakonstantinou,A.,andGaraba,S.P.(2019).Detectionoffloatingplasticsfromsatelliteandunmannedaerialsystems(plasticlitterproject2018).InternationalJournalof.AppliedEarthObservationandGeoinformatics,79:175–183.https://doi.org/10.1016/j.jag.2019.03.011Trevail,A.,Gabrielsen,G.W.,Kühn,S.,Bock,A.andvanFraneker,J.A.(2014).PlasticingestionbyNorthernFulmars,Fulmarusglacialis,inSvalbardandIceland,andrelationshipsbetweenplasticingestionandcontaminantuptake.Kortrapport/Briefreport.029.NorwegianPolarInstitute,Tromsø,Norway.https://www.researchgate.net/publication/283398736_Plastic_Ingestion_by_Northern_Fulmars_Fulmarus_glacialis_in_Svalbard_and_Iceland_and_Relationships_between_Plastic_Ingestion_and_Contaminant_Uptake.Accessed13January2021.Tudor,D.T.andWilliams,A.T.(2003).Publicperceptionandopinionofvisiblebeachaestheticpollution:Theutilisationofphotography.JournalofCoastalResearch19,1104-1115.https://www.jstor.org/stable/4299252.Accessed13January2021.Turner,A.(2016).Heavymetals,metalloidsandotherhazardouselementsinmarineplasticlitter.MarinePollutionBulletin111(1-2),136-142.https://doi.org/10.1016/j.marpolbul.2016.07.020.Accessed13January2021.Turner,A.(2018).Blackplastics:Linearandcirculareconomies,hazardousadditivesandmarinepollution.EnvironmentInternational117,308-318.https://doi.org/10.1016/j.envint.2018.04.036.Accessed20December2020.Turra,A.,Manzano,A.B.,Dias,R.J.S.,Mahiques,M.M.,Barbosa,L.etal.(2014).Threedimensionaldistributionofplasticpelletsinsandybeaches:Shiftingparadigms.ScientificReports4,4435.https://doi.org/10.1038/srep04435.Accessed13January2021.Turrell,W.(2019).SpatialdistributionofforeshorelitteronthenorthwestEuropeancontinentalshelf.MarinePollutionBulletin142,583-594.https://doi.org/10.1016/j.marpolbul.2019.04.009.Accessed13January2021.UNCTAD(UnitedNationsConferenceonTradeandDevelopment)(2020).Globaltradeinplastics:insightsfromthefirstlife-cycletradedatabase-UNCTADResearchPaperNo.53.https://unctad.org/fr/node/32014.Accessed20October2021.Unger,A.andHarrison,N.(2016).FisheriesasasourceofmarinedebrisonbeachesintheUnitedKingdom.MarinePollutionBulletin107(1),52-58.https://doi.org/10.1016/j.marpolbul.2016.04.024.Accessed11January2021.UN(UnitedNations)(2020).SustainableDevelopmentGoalsReport2020.NewYork.https://unstats.un.org/sdgs/report/2019/The-Sustainable-Development-Goals-Report-2019.pdf.Accessed11January2021.UNDRR(UnitedNationsOfficeforDisasterRiskReduction)(2019).GlobalAssessmentReportonDisasterRiskReduction2019.Distillationandfullreport.Geneva.https://gar.undrr.org/report-2019.Accessed11January2021.UNEA(UnitedNationsEnvironmentAssembly)(2018).CombatingMarinePlasticLitterandMicroplastics:AnAssessmentoftheEffectivenessofRelevantInternational,RegionalandSubregionalGovernanceStrategiesandApproaches–SummaryforPolicyMakers.UNEP/AHEG/2018/1/INF/3.Nairobi.https://wedocs.unep.org/bitstream/handle/20.500.11822/31035/k1800347inf5.pdf.Accessed14January2021.UNEP(UnitedNationsEnvironmentProgramme)(2014).ValuingPlastic:TheBusinessCaseforMeasuring,ManagingandDisclosingPlasticUseintheConsumerGoodsIndustry.Nairobi.https://wedocs.unep.org/handle/20.500.11822/9238.Accessed14January2021.UNEP(2015).BiodegradablePlasticsandMarineLitter:Misconceptions,ConcernsandImpactsonMarineEnvironments.Nairobi.https://wedocs.unep.org/20.500.11822/7468.Accessed14January2021.UNEP(2016).MarinePlasticDebrisandMicroplastics:GlobalLessonsandResearchtoInspireandGuidePolicyChange.Nairobi.https://wedocs.unep.org/handle/20.500.11822/7720.Accessed14January2021.UNEP(2017a).MarineLitterSocio-EconomicStudy.Nairobi.https://wedocs.unep.org/20.500.11822/26014.Accessed14January2021.UNEP(2017b).WasteManagementinASEANCountries:SummaryReport.Bangkok.https://stg-wedocs.unep.org/bitstream/handle/20.500.11822/21134/waste_mgt_asean_summary.pdf.Accessed14January2021.UNEP(2018a).ExploringthePotentialforAdoptingAlternativeMaterialstoReduceMarinePlasticLitter.Nairobi.https://stg-wedocs.unep.org/bitstream/handle/20.500.11822/21134/waste_mgt_asean_summary.pdf.Accessed14January2021.UNEP(2018b).Single-usePlastics:ARoadmapforSustainability.Nairobi.https://www.unenvironment.org/resources/report/single-use-plastics-roadmap-sustainability.Accessed14January2021.UNEP(2018c).AfricaWasteManagementOutlook.Nairobi.https://wedocs.unep.org/handle/20.500.11822/25514.Accessed14January2021.UNEP(2018d).AddressingMarinePlastics:ASystemicApproach–RecommendationsforAction.Notten,P.(author).Nairobi.https://www.unenvironment.org/resources/report/addressing-marine-plastics-systemic-approach-recommendations-actions.Accessed14January2021.146MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTUNEP(2018e).MappingofGlobalPlasticsValueChainandPlasticsLossestotheEnvironment:WithaParticularFocusonMarineEnvironment.Nairobi.https://wedocs.unep.org/handle/20.500.11822/26745.Accessed16/6/2021UNEP(2019a).PlasticsandShallowWaterCoralReefs:SynthesisoftheScienceforPolicy-makers.Sweet,M.,Stelfox,M.andLamb,J.(authors).Nairobi.https://stg-wedocs.unep.org/handle/20.500.11822/27646.Accessed14January2021.UNEP(2019b).TheRoleofPackagingRegulationsandStandardsinDrivingtheCircularEconomy.Nairobi.http://sos2019.sea-circular.org/wp-content/uploads/2019/11/FINAL_THE-ROLE-OF-PACKAGING-REGULATIONS-AND-STANDARDS-IN-DRIVING-THE-CIRCULAR-ECONOMY.pdf.Accessed14January2021.UNEP(2019c).LessonsfromaDecadeofEmissionsGapAssessments.Christensen,J.andOhloff,A.(authors).Nairobi.https://wedocs.unep.org/bitstream/handle/20.500.11822/30022/EGR10.pdf?sequence=1&isAllowed=y.Accessed14January2021.UNEP(2019d).MeasuringFossilFuelSubsidiesintheContextoftheSustainableDevelopmentGoals.Nairobi.https://wedocs.unep.org/bitstream/handle/20.500.11822/28111/FossilFuel.pdf?sequence=1&isAllowed=y.Accessed14January2021.UNEP(2019e)GlobalChemicalsOutlookII.FromLegaciestoInnovativeSolutions:Implementingthe2030AgendaforSustainableDevelopment.Nairobi.https://www.unep.org/explore-topics/chemicals-waste/what-we-do/policy-and-governance/global-chemicals-outlook.Accessed20November2020.UNEP(2020a).GlobalPartnershiponMarineLitter.https://www.unenvironment.org/explore-topics/oceans-seas/what-we-do/addressing-land-based-pollution/global-partnership-marine.Accessed20November2020.UNEP(2020b).MonitoringPlasticsinRiversandLakes:GuidelinesfortheHarmonizationofMethodologies.Nairobi.https://wedocs.unep.org/bitstream/handle/20.500.11822/35405/MPRL.pdf.Accessed6May2021.UNEP(2020c).WaterPollutionbyPlasticsandMicroplastics:AReviewofTechnicalSolutionsfromSourcetoSea.Nairobi.https://www.unep.org/resources/report/water-pollution-plastics-and-microplastics-review-technical-solutions-source-sea.Accessed6May2021.UNEP(2020d).CatalogueofTechnologiestoAddresstheRisksofContaminationofWaterBodieswithPlasticsandMicroplastics.Nairobi.https://wedocs.unep.org/handle/20.500.11822/34423.Accessed6May2021.UNEP(2020e).AnAssessmentReportonIssuesofConcern:ChemicalsandWasteIssuesPosingRiskstoHumanHealthandtheEnvironment.Nairobi.https://wedocs.unep.org/bitstream/handle/20.500.11822/33807/ARIC.pdf?sequence=1&isAllowed=y.Accessed7June2021.UNEP(2021a).GreenandSustainableChemistry:FrameworkManual.Nairobi.https://wedocs.unep.org/handle/20.500.11822/34338.Accessed20June2021.UNEP(2021b).Single-UsePlasticProductsandTheirAlternatives:RecommendationsfromLifeCycleAssessments.https://wedocs.unep.org/xmlui/bitstream/handle/20.500.11822/31932/SUPB.pdf?sequence=1&isAllowed=y.Accessed18June2021.UNEP(2021c).UnderstandingtheStateoftheOcean:AGlobalManualonMeasuringSDG14.1.1,SDG14.2.1andSDG14.5.1.https://wedocs.unep.org/handle/20.500.11822/35086;jsessionid=BD2C69D18A6CBD1A14C24C40A895133D.Accessed18June2021.UNEP/GPA(GlobalProgrammeofActionfortheProtectionoftheMarineEnvironmentfromLand-basedActivities)(2020).GoverningtheGlobalProgrammeofAction.https://www.unenvironment.org/explore--topics/oceans-seas/what-we-do/addressing-land-based-pollution/governing-global-programmetopics/oceans-seas/what-we-do/addressing-land-based-pollution/governing-global-programme.Accessed14January2021.UNEP/IPCP(InternationalPanelonChemicalPollution)(2016).OverviewReportI:ACompilationofListsofChemicalsRecognisedasEndocrineDisruptingChemicals(EDCs)orSuggestedasPotentialEDCs.Geneva.https://wedocs.unep.org/handle/20.500.11822/12218.Accessed14June2021.UNEP/MAP(MediterraneanActionPlan)(2015).MarineLitterAssessmentintheMediterranean.Athens.https://wedocs.unep.org/handle/20.500.11822/7098.Accessed14June2021.UNEP/MAP(2017).IntegratedMonitoringandAssessmentProgrammeoftheMediterraneanSeaandCoastandRelatedAssessmentCriteria.Athens.https://wedocs.unep.org/bitstream/handle/20.500.11822/17012/imap_2017_eng.pdf?sequence=5andisAllowed=y.Accessed14June2021.UNEP/StockholmConvention(2017).The16NewPOPs.AnIntroductiontotheChemicalsAddedtotheStockholmConventionasPersistentOrganicPollutantsbytheConferencesoftheParties.Geneva.http://www.pops.int/TheConvention/ThePOPs/TheNewPOPs/tabid/2511/Default.aspx.Accessed14January2021.UNEPandConsumersInternational(2020).CanIRecycleThis?AGlobalMappingandAssessmentofStandards,LabelsandClaimsonPlasticPackaging.https://www.oneplanetnetwork.org/resource/can-i-recycle-global-mapping-and-assessment-standards-labels-and-claims-plastic-packaging.Accessed14January2021.UNEPandtheInternationalTradeCentre(2017).GuidelinesforProvidingProductSustainabilityInformation:GlobalGuidanceonMakingEffectiveEnvironmental,SocialandEconomicclaims,toEmpowerandEnableConsumerChoice.Geneva.https://www.oneplanetnetwork.org/resource/guidelines-providing-product-sustainability-information.Accessed14January2021.UNESCAP(UnitedNationsEconomicandSocialCommissionforAsiaandthePacific)(2019).ClosingtheLoop:RegionalPolicyGuide.InnovativePartnershipswithInformalWorkerstoRecoverPlasticWaste,inanInclusiveCircularEconomyApproach.https://www.unescap.org/resources/closing-loop-regional-policy-guide.Accessed11January2021.UNGeneralAssembly(2015).TransformingourWorld:The2030AgendaforSustainableDevelopment.A/RES/70/1.https://sdgs.un.org/sites/default/files/publications/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf.Accessed11January2021.UNGeneralAssembly(2016).ReportoftheOpen-endedIntergovernmentalExpertWorkingGrouponIndicatorsandTerminologyRelatingtoDisasterRiskReduction.UnitedNationsGeneralAssemblySeventy-firstsession,1December2016.A/71/644.https://reliefweb.int/sites/reliefweb.int/files/resources/50683_oiewgreportenglish.pdf.Accessed11January2021.UNGeneralAssembly(2021).ReportoftheSpecialRapporteurontheimplicationsforhumanrightsoftheenvironmentallysoundmanagementanddisposalofhazardoussubstancesandwastes,MarcosOrellana:Thestagesoftheplasticscycleandtheirimpactsonhumanrights.UnitedNationsGeneralAssemblySeventy-sixthsession,22July2021.A/76/207.https://undocs.org/A/76/207.Accessed18October2021.UnitedStatesEnvironmentalProtectionAgency(2014).PriorityPollutantList.Report40CFRPart423.AppendixA.https://www.epa.gov/sites/production/files/2015-09/documents/priority-pollutant-list-epa.pdf.Accessed30April2019.Uyarra,M.C.andBorja,A.(2016).Oceanliteracy:A‘new’socio-ecologicalconceptforasustainableuseoftheseas.MarinePollutionBulletin104,1-2.https://doi.org/10.1016/j.marpolbul.2016.02.060.Accessed14January2021.vanCalcar,C.J.andvanEmmerik,T.H.M.(2019).AbundanceofplasticdebrisacrossEuropeanandAsianrivers.EnvironmentalResearchLetters14,124051.https://iopscience.iop.org/article/10.1088/1748-9326/ab5468/meta.Accessed12January2021.147MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTvanCauwenberghe,L.,Claessens,M.,Vandegehuchte,M.B.andJanssen,C.R.(2015).Microplasticsaretakenupbymussels(Mytilusedulis)andlugworms(Arenicolamarina)livinginnaturalhabitats.EnvironmentalPollution199,10-17.https://doi.org/10.1016/j.envpol.2015.01.008.Accessed12January2021.vandenBergh,J.andBotzen,W.(2015).MonetaryvaluationofthesocialcostofCO2emissions:Acriticalsurvey.EcologicalEconomics114,33-46.https://doi.org/10.1016/j.ecolecon.2015.03.015.Accessed12January2021.vanderMheen,M.,Pattiaratchi,C.andvanSebille,E.(2019).RoleofIndianOceandynamicsonaccumulationofbuoyantdebris.JournalofGeophysicalResearch:Oceans124,2571–2590.https://doi.org/10.1029/2018JC014806.Accessed12January2021.vanderWal,M.,vanderMeule,M.,Roex,E.,Wolthuis,Y.,Tweehuysen,G.andVethaak,D.(2013).Summaryreport:PlasticslitterinRhine,MeuseandScheldt,contributiontoplasticslitterintheNorthSea.Project1205955,Deltares,Delft,theNetherlands.https://kenniswijzerzwerfafval.nl/document/summary-report-plastic-litter-rhine-meuse-and-scheldt-contribution-plastic-litter-north-sea.Accessed12January2021.vanEmmerik,T.,Kieu-Le,T.-C.,Loozen,M.,vanOeveren,K.,Strady,E.,Bui,X-T.etal.(2018)Amethodologytocharacterizeriverinemacroplasticemissionintotheocean.FrontiersinMarineScience5,372.https://doi.org/10.3389/fmars.2018.00372.Accessed12January2021.vanEmmerik,T.,Loozen,M.,vanOeveren,K.,Buschman,F.andPrinsen,G.(2019).RiverineplasticemissionfromJakartaintotheocean.EnvironmentalResearchLetters14(8),084033.https://doi.org/10.1088/1748-9326/ab30e8.Accessed12January2021.vanEmmerik,T.andSchwarz,A.(2019).Plasticdebrisinrivers.WIREsWater7(1),e1398.https://doi.org/10.1002/wat2.1398.Accessed12January2021.vanSebille,E.,England,M.H.andFroyland,G.(2012).Origin,dynamicsandevolutionofoceangarbagepatchesfromobservedsurfacedrifters.EnvironmentalResearchLetters7,044040.https://doi.org/10.1088/1748-9326/7/4/044040.Accessed12January2021.vanSebille,E.,Wilcox,C.,Lebreton,L.,Maximenko,N.,Hardesty,B.D.,vanFranekeretal.(2015).Aglobalinventoryofsmallfloatingplasticdebris.EnvironmentalResearchLetters10,124006.https://doi.org/10.1088/1748-9326/10/12/124006.Accessed12January2021.vanSebille,E.,Delandmeter,P.,Schofield,J.,Hardesty,B.D.,Jones,J.andDonnelly,A.(2019).Basin-scalesourcesandpathwaysofmicroplasticthatendsupintheGalápagosArchipelago.OceanScience15,1341-1349.https://doi.org/10.5194/os-15-1341-2019.Accessed12January2021.vanSebille,E.,Aliani,S.,Law,K.L.,Maximenko,N.,Alsina,J.M.,Bagaev,A.etal.(2020).Thephysicaloceanographyofthetransportoffloatingmarinedebris.EnvironmentalResearchLetters15,023003.https://doi.org/10.1088/1748-9326/ab6d7d.Accessed12January2021vanTruong,N.andPing,C.B.(2019).Plasticmarinedebris:Sources,impactsandmanagement,InternationalJournalofEnvironmentalStudies76(6),953-973.https://doi.org/10.1080/00207233.2019.1662211.Accessed12January2021.Vaughan,R.,Turner,S.D.andRose,N.(2017).MicroplasticsinthesedimentsofaUKurbanlake.EnvironmentalPollution229,10-18.https://doi.org/10.1016/j.envpol.2017.05.057.Accessed12January2021.Vázquez-Morillas,A.,Beltrán-Villavicencio,M.,Alvarez-Zeferino,J.C.,Osada-Velázquez,M.H.,Moreno,A.,Martínez,L.etal.(2016).Biodegradationandecotoxicityofpolyethylenefilmscontainingpro-oxidantadditive.JournalofPolymersandtheEnvironment24,221-229.https://doi.org/10.1007/s10924-016-0765-8.Accessed12January2021.Vegter,A.C.,Barletta,M.,Beck,C.,Borrero,J.,Burton,H.,Campbell,M.L.etal.(2014).Globalresearchprioritiestomitigateplasticpollutionimpactsonmarinewildlife.EndangeredSpeciesResearch25(3),225-247.https://doi.org/10.3354/esr00623.Accessed12January2021.Veiga,J.M.,Fleet,D.,Kinsey,S.,Nilsson,P.,Vlachogianni,T.,Werner,S.etal.(2016).IdentifyingSourcesofMarineLitter.MSFDGESTGMarineLitterThematicReport;JRCTechnicalReport;EUR28309.https://doi.org/10.2788/018068.Accessed12January2021.Velis,C.A.andCook,E.(2021).Mismanagementofplasticwastethroughopenburningwithemphasisontheglobalsouth:Asystematicreviewofriskstooccupationalandpublichealth.EnvironmentalScienceandTechnology,55,11,7186-7207.https://doi.org/10.1021/acs.est.0c08536.Accessed13July2021.Verlis,K.M.,Campbell,M.L.andWilson,S.P.(2018).Seabirdsandplasticsdon’tmix:Examiningthedifferencesinmarineplasticingestioninwedge-tailedshearwaterchicksatnear-shoreandoffshorelocations.MarinePollutionBulletin135,852-861.https://doi.org/10.1016/j.marpolbul.2018.08.016.Accessed12January2021.Vethaak,A.D.andLegler,J.(2021).Microplasticsandhumanhealth.Science371,672-674.https://doi.org/10.1126/science.abe5041.Accessed15February2021.Vianello,A.,Jensen,R.L.,Liu,L.andVollertsen,J.(2019).SimulatinghumanexposuretoindoorairbornemicroplasticsusingaBreathingThermalManikin.ScienceReports,9:8670https://doi.org/10.1038/s41598-019-45054-w.Accessed30November2020.Villarubia-Gómez,P.,Cornell,S.E.andFabres,J.(2018).Marineplasticpollutionasaplanetaryboundarythreat–thedriftingpieceinthesustainablepuzzle.MarinePolicy96,213-220.https://doi.org/10.1016/j.marpol.2017.11.035.Accessed12January2021.Vincent,A.,Drag,N.,Lyandres,O.,Neville,S.andHoellein,T.(2017).CitizensciencedatasetsrevealdriversofspatialandtemporalvariationforanthropogeniclitteronGreatLakesbeaches.ScienceofTheTotalEnvironment15,577:105-112.https://doi.org/10.1016/j.scitotenv.2016.10.113.Accessed12January2021.Viršek,M.K.,Lovšin,M.N.,Koren,Š.,Kržan,A.andPeterlin,M.(2017).MicroplasticsasavectorforthetransportofthebacterialfishpathogenspeciesAeromonassalmonicida.MarinePollutionBulletin125(1-2),301-309.https://doi.org/10.1016/j.marpolbul.2017.08.024.Accessed14January2021.Vlachogianni,T.,Anastasopoulou,A.,Fortibouni,T.,Ronchi,F.andZeri,C.(2017).MarineLitterAssessmentintheAdriaticandIonianseas.IPA-AdriaticDeFishGearProject,MIO-ECSDE,HCMRandISPRA.https://mio-ecsde.org/project/5054/.Accessed12January2021.Vlachogianni,T.,Fortibuoni,T.,Ronchi,F.,Zeri,C.,Mazziotti,C.,Tutman,P.etal.(2018).MarinelitteronthebeachesoftheAdriaticandIonianSeas:Anassessmentoftheirabundance,compositionandsources.MarinePollutionBulletin131,745-756.https://doi.org/10.1016/j.marpolbul.2018.05.006.Accessed12January2021.vonFriesen,L.W.,Granberg,M.E.,Hassellöv,M.,Gabrielsen,G.W.andMagnusson,G.(2019).Anefficientandgentleenzymaticdigestionprotocolfortheextractionofmicroplasticsfrombivalvetissue.MarinePollutionBulletin142,129-134.https://doi.org/10.1016/j.marpolbul.2019.03.016.Accessed14January2021.vonMoos,N.,Burkhardt-Holm,P.andKöhler,A.(2012).UptakeandeffectsofmicroplasticsoncellsandtissueofthebluemusselMytilusedulisL.afteranexperimentalexposure.EnvironmentalScienceandTechnology46(20),11327-11335.https://doi.org/10.1021/es302332w.Accessed14January2021.Waite,H.R.,Donnelly,M.J.andWalters,L.J.(2018).QuantityandtypesofmicroplasticsintheorganictissuesoftheeasternoysterCrassostreavirginicaandAtlanticmudcrabPanopeusherbstiifromaFloridaestuary.MarinePollutionBulletin129(1),179-185.https://doi.org/10.1016/j.marpolbul.2018.02.026.Accessed14January2021.Walker,T.,Gramlich,D.andDumont-Bergeron,A.(2020).Thecaseforaplastictax:Areviewofitsbenefitsanddisadvantageswithinacirculareconomy.InSustainability.BusinessandSociety360vol.4.Wasieleski,D.M.andWeber,J.(eds.).EmeraldPublishingLimited.185-211.https://www.emerald.com/insight/content/doi/10.1108/S2514-175920200000004010/full/html.Accessed14January2021.148MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTWalther,B.A.,Kusui,T.,Yen,N.,Hu,C.S.andLee,H.(2020).PlasticpollutioninEastAsia:Macroplasticsandmicroplasticsintheaquaticenvironmentandmitigationeffortsbyvariousactors.InTheHandbookofEnvironmentalChemistry.Berlin,Heidelberg:Springer.https://link.springer.com/chapter/10.1007%2F698_2020_508.Accessed14January2021.Wang,J.(2018).HighlevelsofmicroplasticpollutioninthesedimentsandbenthicorganismsoftheSouthYellowSea,China.ScienceofTheTotalEnvironment651,Part2,1661-1669.https://doi.org/10.1016/j.scitotenv.2018.10.007.Accessed14January2021.Wang,J.,Peng,J.,Tan,Z.,Gao,Y.,Zhan,Z.,Chen,Q.etal.(2017).MicroplasticsinthesurfacesedimentsfromtheBeijingRiverlittoralzone:Composition,abundance,surfacetexturesandinteractionwithheavymetals.Chemosphere171,248-258.https://doi.org/10.1016/j.chemosphere.2016.12.074.Accessed14January2021.Wang,J.,Liu,X.,Li,Y.,Powell,T.,Wang,X.,Wang,G.etal.(2019a).Microplasticsascontaminantsinthesoilenvironment:Amini-review.ScienceofTheTotalEnvironment691848-857.https://doi.org/10.1016/j.scitotenv.2019.07.209.Accessed14January2021.Wang,J.,Coffin,S.,Sun,C.,Schlenk,D.andGan,J.(2019b).NegligibleeffectsofmicroplasticsonanimalfitnessandHOCbioaccumulationinearthwormEiseniafetidainsoil.EnvironmentalPollution249,776-784.https://doi.org/10.1016/j.envpol.2019.03.102.Accessed14January2021.Wang,S.,Lydon,K.A.,White,E.M.,GrubbsIII,J.B.,Lipp,E.K.,Locklin,J.etal.(2018).Biodegradationofpoly(3-hydroxybutyrate-co-3-hydroxyhexanoate)plasticunderanaerobicsludgeandaerobicseawaterconditions:Gasevolutionandmicrobialdiversity.EnvironmentalScienceandTechnology52(10),5700-5709.https://doi.org/10.1021/acs.est.7b06688.Accessed14January2021.Wang,W.andWang,J.(2018).Investigationofmicroplasticsinaquaticenvironments,Anoverviewofthemethodsused,fromfieldsamplingtolaboratoryanalysis.TrACTrendsinAnalyticalChemistry108,26.https://doi.org/10.1016/j.trac.2018.08.026.Accessed14January2021.Wang,Y.,Zhu,H.andKannan,K.(2019).AReviewofBiomonitoringofPhthalateExposures.Toxics7(2),21.https://doi.org/10.3390/toxics7020021Accessed8June2021.WasteAtlas(2014).TheWorld’s50BiggestDumpSites.2014Report.http://atlas.d-waste.com/.Accessed14January2021.Webb,H.K.,Arnott,J.,Crawford,R.J.andIvanova,E.P.(2013).Plasticdegradationanditsenvironmentalimplicationswithspecialreferencetopoly(ethyleneterephthalate).Polymers5,1-18.https://doi.org/10.3390/polym5010001.Accessed14January2021.Webber,D.N.andParker,S.J.(2012).EstimatingunaccountedfishingmortalityintheRossSearegionandAmundsenSea(CCAMLRsubareas88.1and88.2)bottomlonglinefisheriestargetingAntarctictoothfish.CCAMLRScience19,17-30.https://www.ccamlr.org/en/publications/science_journal/ccamlr-science-volume-19/17–30.Accessed14January2021.Wedemeyer-Strombel,K.R.,Balazs,G.H.,Johnson,J.B.,Peterson,T.D.,Wicksten,M.K.andPlotkin,P.T.(2015).HighfrequencyofoccurrenceofanthropogenicdebrisingestionbyseaturtlesintheNorthPacificOcean.MarineBiology162,2079-2091.https://doi.org/10.1007/s00227-015-2738-1.Accessed14January2021.Welden,N.A.andCowie,P.R.(2017).Degradationofcommonpolymerropesinasublittoralmarineenvironment.MarinePollutionBulletin118(1-2),248-253.https://doi.org/10.1016/j.marpolbul.2017.02.072.Accessed14January2021.Welden,N.A.andLusher,A.L.(2017).Impactsofchangingoceancirculationonthedistributionofmarinemicroplasticlitter.IntegratedEnvironmentalAssessmentandManagement13(3),483-487.https://doi.org/10.1002/ieam.1911.Accessed14January2021.Welle,F.(2018).Microplasticinbottlednaturalmineralwater–literaturereviewandconsiderationsonexposureandriskassessment.FoodAdditivesandContaminants35,2482-2492.https://doi.org/10.1080/19440049.2018.1543957.Accessed14January2021.Werbowski,L.M.,Gilbreath,A.N.,Munno,K.,Zhu,X.,Grbic,J.,Wu,T.,Sutton,R.,Sedlak,M.D.Deshpande,A.D.,andRochman,C.M.(2021).Urbanstormwaterrunoff:amajorpathwayforanthropogenicparticles,blackrubberyfragments,andothertypesofmicroplasticstourbanreceivingwaters.AmericanChemicalSocietyEnvironmentalScience&TechnologyWater1(6),1420-1428https://doi.org/10.1021/acsestwater.1c00017.Accessed23June2021.Wesch,C.,Barthel,A.-K.,Braun,U.,Klein,R.,andPaulus,M.,(2016).Nomicroplasticsinbenthiceelpout(Zoarcesviviparus):Anurgentneedforspectroscopicanalysesinmicroplasticdetection.EnvironmentalResearch148,36-38.https://doi.org/10.1016/j.envres.2016.03.017.Accessed14January2021.Whelpdale,D.M.(1974).Particulateresidencetimes.Water,AirandSoilPollution3,293-300.https://doi.org/10.1080/19440049.2018.1543957.Accessed14January2021.Whitaker,J.,Garza,T.N.andJanosik,A.M.(2019).SamplingwithNiskinbottlesandmicrofiltrationrevealsahighprevalenceofmicrofibres.Limnologica–EcologyandManagementofInlandWaters78,125711.http://doi.org/10.1016/j.limno.2019.125711.Accessed14January2021.White,M.P.,Elliott,L.R.,Gascon,M.,Roberts,B.andFleming,L.E.(2020).Bluespace,healthandwell-being:anarrativeoverviewandsynthesisofpotentialbenefits.EnvironmentalResearch191,110169-110169.https://doi.org/10.1016/j.envres.2020.110169.Accessed14January2021.WHO(WorldHealthOrganization)(2016).AmbientAirPollution:AGlobalAssessmentofExposureandBurdenofDisease.Geneva.https://apps.who.int/iris/bitstream/handle/10665/250141/9789241511353-eng.pdf?sequence=1.Accessed14January2021.WHO(2019).MicroplasticsinDrinking-water.Geneva.https://apps.who.int/iris/bitstream/handle/10665/326499/9789241516198-eng.pdf?ua=1.Accessed14January2021.Wichmann,D.,Delandmeter,P.andvanSebille,E.(2019).Influenceofnear-surfacecurrentontheglobaldispersalofmarinemicroplastic.JGROceans124(8),6086-6096.https://doi.org/10.1029/2019JC015328.Accessed14January2021.Wieczorek,A.,Croot,P.,Lombard,L.,Sheahan,J.andDoyle,T.(2019).Microplasticingestionbygelatinouszooplanktonmaylowerefficiencyofthebiologicalpump.EnvironmentalScienceandTechnology53(9),5387–5395.https://doi.org/10.1021/acs.est.8b07174.Accessed14January2021.Wilcox,C.,vanSebille,E.,andHardesty,B.D.(2015).Threatofplasticpollutiontoseabirdsisglobal,pervasive,andincreasing.ProceedingsoftheNationalAcademyofSciences38,11899-11904.http://doi.org/10.1073/pnas.1502108112.Accessed14January2021.Williams,A.T.andRangel-Buitrago,N.(2019).Marinelitter:Solutionsforamajorenvironmentalproblem.JournalofCoastalResearch35(3),648-663.https://doi.org/10.2112/JCOASTRES-D-18-00096.1.Accessed14January2021.Willis,K.,Maureaud,C.,Wilcox,C.andHardesty,B.D.(2018).Howsuccessfularewasteabatementcampaignsandgovernmentpoliciesatreducingplasticwasteintothemarineenvironment?MarinePolicy96,243-249.https://doi.org/10.1016/j.marpol.2017.11.037.Accessed14January2021.Windsor,F.M.,Durance,I.,Horton,A.A.,Thompson,R.C.,Tyler,C.R.andOrmerod,S.J.(2018).Acatchment-scaleperspectiveofplasticpollution.GlobalChangeBiology25,1207-1221.https://doi.org/10.1111/gcb.14572.Accessed14January2021.Windsor,F.M.,Tilley,R.M.,Tyler,C.R.andOmerod,S.J.(2019).Microplasticingestionbyriverinemacroinvertebrates.ScienceofTheTotalEnvironment646,68-74.https://doi.org/10.1016/j.scitotenv.2018.07.271.Accessed14January2021.Woodall,L.C.,Sanchez-Vidal,A.,Canals,M.,Paterson,G.L.,Coppock,R.,Sleight,V.etal.(2014).Thedeepseaisamajorsinkformicroplasticdebris.RoyalSocietyOpenScience1,140317.https://doi.org/10.1098/rsos.140317.Accessed14January2021.149MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTWoodall,L.C.,Robinson,L.F.,Narayanaswamy,B.E.andPaterson,G.L.J.(2015).Deep-sealitter:Acomparisonofseamounts,banksandaridgeintheAtlanticandIndianOceansrevealsbothenvironmentalandanthropogenicfactorsimpactaccumulationandcomposition.FrontiersinMarineScience,2February.https://doi.org/10.3389/fmars.2015.00003.Accessed14January2021.Woods,J.S.,Rødder,G.andVerones,F.(2019).Aneffectfactorapproachforquantifyingtheentanglementimpactonmarinespeciesofmacroplasticdebriswithinthelifecycleimpactassessment.EcologicalIndicators99,61-66.https://doi.org/10.1016/j.ecolind.2018.12.018.Accessed14January2021.WorldEconomicForum(2020).RadicallyReducingPlasticPollutioninIndonesia:AMultistakeholderActionPlan.NationalPlasticActionPartnership.https://globalplasticaction.org/wp-content/uploads/NPAP-Indonesia-Multistakeholder-Action-Plan_April-2020.pdf.Accessed14January2021.WorldShippingCouncil(2020).Containerslostatsea2020update.Accessed14January2021.https://test.iims.org.uk/wp-content/uploads/2020/11/World-Shipping-Council-containers-lost-at-sea-2020.pdf.Accessed10September2021.WorldTradeOrganization(2021).Internationaltradestatistics.https://data.wto.org.Accessed10September2021.WRAP(2018).Aroadmapto2025–TheUKPlasticsPact.https://www.wrap.org.uk/content/the-uk-plastics-pact-roadmap-2025.Accessed14January2021.Wright,R.J.,Erni-Cassola,G.,Zadjelovic,V.,Latva,M.,andChristie-Oleza,J.A.(2020).Marineplasticdebris:Anewsurfaceforcolonization.EnvironmentalScienceandTechnology54(19),11657-11672.https://pubs.acs.org/doi/10.1021/acs.est.0c02305,Accessed14January2021.Wright,S.L.,Rowe,D.,Thompson,R.C.andGalloway,T.S.(2013a).Microplasticingestiondecreasesenergyreservesinmarineworms.CurrentBiology23,R1031-R1033.https://doi.org/10.1016/j.cub.2013.10.068.Accessed14January2021.Wright,S.L.,Thompson,R.C.andGalloway,T.S.(2013b).Thephysicalimpactsofmicroplasticsonmarineorganisms:Areview.EnvironmentalPollution178,483-492.https://doi.org/10.1016/j.envpol.2013.02.031.Accessed14January2021.Wright,S.L.,andKelly,F.J.(2017).Plasticandhumanhealth:Amicroissue?EnvironmentalScienceandTechnology51(12),6634-6647.https://doi.org/10.1021/acs.est.7b00423.Accessed14January2021.Wright,S.L.,Levermore,J.M.andKelly,F.J.(2019).Ramanspectralimagingforthedetectionofinhalablemicroplasticsinambientparticulatemattersamples.EnvironmentalScienceandTechnology53(15),8947-8956.https://doi.org/10.1021/acs.est.8b06663.Accessed14January2021.WWF(2020).PlasticPackaginginSoutheastAsiaandChina.https://www.greengrowthknowledge.org/sites/default/files/downloads/resource/Plastic_Packaging_in_SE_Asia_and_China2020_WWF%20-%20Copy.pdf.Accessed14January2021.WWF,theEllenMacArthurFoundationandBCG(BostonConsultingGroup)(2020).TheBusinessCaseforaUNTreatyonPlasticPollution.https://f.hubspotusercontent20.net/hubfs/4783129/Plastics/UN%20treaty%20plastic%20poll%20report%20a4_single_pages_v15-web-prerelease-3mb.pdf.Accessed13July2021.Wyles,K.J.,Pahl,S.,Thomas,K.,andThompson,R.C.(2015).Factorsthatcanunderminethepsychologicalbenefitsofcoastalenvironments:Exploringtheeffectoftidalstate,presence,andtypeoflitter.EnvironmentandBehavior48(9),1095-1126.https://journals.sagepub.com/doi/full/10.1177/0013916515592177.Accessed14January2021.Wyles,K.J.,Pahl,S.,Holland,M.,andThompson,R.C.(2016).Canbeachcleansdomorethanclean-uplitter?ComparingbeachcleanstoothercoastalactivitiesEnvironmentandBehavior49(5),509-535.https://doi.org/10.1177/0013916516649412.Accessed14January2021.Xanthos,D.andWalker,T.R.(2017).Internationalpoliciestoreduceplasticmarinepollutionfromsingle-useplastics(plasticbagsandmicrobeads):Areview.MarinePollutionBulletin18(1-2),17-26.https://doi.org/10.1016/j.marpolbul.2017.02.048.Accessed14January2021.Xia,Z.(2020).Studyonthemigrationofbisphenolsfromplasticfoodcontactmaterialstofoodsimulants.InternationalConferenceonEnergy,ChemicalandMaterialsScience(ECMS2019),6-8December2019,Malacca,Malaysia.MaterialsScienceandEngineering738,012024.https://iopscience.iop.org/article/10.1088/1757-899X/738/1/012024.Accessed14January2021.Xiong,X.,Chen,X.,Zhang,K.,Mei,Z.,Hao,Y.,Zheng,J.etal.(2018).MicroplasticsintheintestinaltractsofEastAsianfinlessporpoises(Neophocaenaasiaeorientalissunameri)fromYellowSeaandBohaiSeaofChina.MarinePollutionBulletin136,55-60.https://doi.org/10.1016/j.marpolbul.2018.09.006.Accessed14January2021.Xu,S.,Ma.,J.,Ji,R.,Pan,K.andMiao,A-J.(2020).Microplasticsinaquaticenvironments:occurrence,accumulationandbiologicaleffects.ScienceofTheTotalEnvironment703,134699.https://doi.org/10.1016/j.scitotenv.2019.134699.Accessed14January2021.Yang,D.,Shi,H.,Li,L.,Li,J.,Jabeen,K.andKolandhaasamy,P.(2015).MicroplasticpollutionintablesaltsfromChina.EnvironmentalScienceandTechnology49(22),13622-13627.https://doi.org/10.1021/acs.est.5b03163.Accessed14January2021.Yang,Y.,Liu,G.,Song,W.,Ye,C.,Lin,H.,Li,Z.etal.(2019).Plasticsinthemarineenvironmentarereservoirsforantibioticandmetalresistancegenes.EnvironmentInternational123.79-86.https://doi.org/10.1016/j.envint.2018.11.061.Accessed14January2021.Ye,S.andAndrady,A.L.(1991).FoulingoffloatingplasticdebrisunderBiscayneBayexposureconditions.MarinePollutionBulletin22(12),608-613.https://doi.org/10.1016/0025-326x(91)90249-r.Accessed14January2021.Yeo,B.G.,Takada,H.,Taylor,H.,Ito,M.,Hosoda,J.,Allinson,M.etal.(2015).POPsmonitoringinAustraliaandNewZealandusingplasticresinpellets,andInternationalPelletWatchasatoolforeducationandraisingpublicawarenessonplasticdebrisandPOPs.MarinePollutionBulletin101(1),137-145.http://doi.org/10.1016/j.marpolbul.2015.11.006.Accessed14January2021.Yokota,K.,Waterfield,H.,Hastings,C.,Davidson,E.,Kwietniewski,E.andWells,B.(2017).Findingthemissingpieceoftheaquaticplasticspollutionpuzzle:Interactionbetweenprimaryproducersandmicroplastics.LimnologyandOceanographyLetters2,91-104.https://doi.org/10.1002/lol2.10040.Accessed14January2021.Yu,F.,Sun,Y.,Yang,M.andMa,J.(2019).Adsorptionmechanismandeffectofmoisturecontentsonciprofloxacinremovalbythree-dimensionalporousgraphenehydrogel.JournalofHazardousMaterials374,195-202.https://doi.org/10.1016/j.jhazmat.2019.04.021.Accessed14January2021.Yu,H.,Fan,P.,Hou,J.,Dang,Q.,Cui,D.,Xi,B.andTan,W.(2020).Inhibitoryeffectofmicroplasticsonsoilextracellularenzymaticactivitiesbychangingsoilpropertiesanddirectadsorption:Aninvestigationattheaggregate-fractionlevel.EnvironmentalPollution267,115544.https://doi.org/10.1016/j.envpol.2020.115544.Accessed14January2021.Zalasiewicz,J.,Waters,C.N.,IvardoSul,J.A.,Corcoran,P.L.,Barnosky,A.D.,Cearreta,A.etal.(2016).ThegeologicalcycleofplasticsandtheiruseasastratigraphicindicatoroftheAnthropocene.Anthropocene13,4-17.https://doi.org/10.1016/j.ancene.2016.01.002.Accessed14January2021.150MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENTZambianchi,E.,Trani,M.andFalco,P.(2017).LagrangiantransportofmarinelitterintheMediterraneanSea.FrontiersinEnvironmentalScience,1February.https://doi.org/10.3389/fenvs.2017.00005.Accessed14January2021.Zambrano,M.C.,Pawlak,J.J.,Daystar,J.,Ankeny,M.,Cheng,J.J.andVenditti,R.A.(2019).Microfibresgeneratedfromthelaunderingofcotton,rayonandpolyesterbasedfabricsandtheiraquaticbiodegradation.MarinePollutionBulletin142,394-407.https://doi.org/10.1016/j.marpolbul.2019.02.062.Accessed14January2021.Zeri,C.,Adampoulou,A.,Varezić,D.B.,Fortibuoni,T.,Viršek,M.K.,Kržan,A.etal.(2018).FloatingplasticsinAdriaticwaters(MediterraneanSea):Fromthemacro-tothemicro-scale.MarinePollutionBulletin136,341-350.https://doi.org/10.1016/j.marpolbul.2018.09.016.Accessed14January2021.Zettler,E.R.,Mincer,T.J.andAmaral-Zettler,L.A.(2013).Lifeinthe“Plastisphere”:Microbialcommunitiesonplasticmarinedebris.EnvironmentalScienceandTechnology47(13),7137-7146.https://doi.org/10.1021/es401288x.Accessed14January2021.Zettler,E.R.,Takada,H.,Monteleone,B.,Mallos,N.,Eriksen,M.andAmaral-Zettler,L.A.(2017).Incorporatingcitizensciencetostudyplasticsintheenvironment.AnalyticalMethods9,1392-1403.http://doi.org/10.1039/C6AY02716D.Accessed14January2021.Zhang,D.,Liu,X.,Huang,W.,Li,J.,Wang,C.,Zhang,D.etal.(2020).Microplasticpollutionindeep-seasedimentsandorganismsofthewesternPacificOcean.EnvironmentalPollution259,113948.https://doi.org/10.1016/j.envpol.2020.113948.Accessed14January2021.Zhang,H.(2017).Transportofmicroplasticsincoastalseas.Estuarine,CoastalandShelfScience199,74-86.https://doi.org/10.1016/j.ecss.2017.09.032.Accessed14January2021.Zhang,K.,Gong,W.,Lu,J.,Xiong,X.andWu,C.(2015).AccumulationoffloatingmicroplasticsbehindtheThreeGorgesDam.EnvironmentalPollution204,117-23.https://doi.org/10.1016/j.envpol.2015.04.023.Accessed14January2021Zhang,K.,Su,J.,Xiong,X.,Wu,X.,Wu,C.andLiu,J.(2016).MicroplasticpollutionoflakeshoresedimentsfromremotelakesinTibetplateau,China.EnvironmentalPollution219,450-455.https://doi.org/10.1016/j.envpol.2016.05.048.Accessed14January2021.Zhang,M.,Buekens,A.andLi,X.(2017).Openburningasasourceofdioxins.CriticalReviewsinEnvironmentalScienceandTechnology47(8),543-620.https://doi.org/10.1080/10643389.2017.1320154.Accessed20November2020.Zhao,S.,Zhu,L.,Wang,T.andLi,D.(2014).SuspendedmicroplasticsinthesurfacewateroftheYangtzeEstuarySystem,China:Firstobservationsonoccurrence,distribution.MarinePollutionBulletin86(1-2),562-568.http://doi.org/10.1016/j.marpolbul.2014.06.032.Accessed14January2021.Zheng,J.andSuh,S.(2019).Strategiestoreducetheglobalcarbonfootprintofplastics.NatureClimateChange9,374-378.http://doi.org/10.1038/s41558-019-0459-z.Accessed14January2021.Zheng,Y.,Li,J.,Cao,W.,Liu,X.,Jiang,F.,Ding,J.etal.(2019).Distributioncharacteristicsofmicroplasticsintheseawaterandsediment:AcasestudyinJiaozhouBay,China.ScienceofTheTotalEnvironment674,27-35.https://doi.org/10.1016/j.scitotenv.2019.04.008.Accessed14January2021.Zhu,C.,Li,D.,Sun,Y.,Zheng,X.,Peng,X.,Zheng,K.etal.(2019).PlasticdebrisinmarinebirdsfromanislandlocatedintheSouthChinaSea.MarinePollutionBulletin149,110566.https://doi.org/10.1016/j.marpolbul.2019.110566.Accessed13January2021.Zhu,L.,Wang,H.,Chen,B.,Suna,Z.andXi,Q.B.(2019).Microplasticingestionindeep-seafishfromtheSouthChinaSea.ScienceofTheTotalEnvironment677,493-501.https://doi.org/10.1016/j.scitotenv.2019.04.380.Accessed14January2021.Ziajahromi,S.,Neale,P.A.,Rintoul,L.andLeusch,F.D.(2017).Wastewatertreatmentplantsasapathwayformicroplastics:Developmentofanewapproachtosamplewastewater-basedmicroplastics.WaterResearch112,93-99.https://doi.org/10.1016/j.watres.2017.01.042.Accessed14January2021.Zimmermann,L.,Dombrowski,A.,Völker,C.andWagner,M.(2020).Arebioplasticsandplant-basedmaterialssaferthanconventionalplastics?Invitrotoxicityandchemicalcomposition.EnvironmentInternational145,106066.https://doi.org/10.1016/j.envint.2020.106066.Accessed13January2021.Zink,T.andGeyer,R.(2018)Materialrecyclingandthemythoflandfilldiversion.JournalofIndustrialEcology23,541-548.https://doi.org/10.1111/jiec.12808.Accessed13January2021.Zink,T.,Geyer,R.andStartz,R.(2018).Towardestimatingdisplacedprimaryproductionfromrecycling.JournalofIndustrialEcology22,314-326.https://doi.org/10.1111/jiec.12557.Accessed14January2021.151MARINELITTERANDPLASTICPOLLUTIONGLOBALASSESSMENT©iStock/DuxX©iStock/Tunatura©iStock/AlenaPaulus

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱