Ultrathin water-stable metal-organic framework membranes for ion separationVIP专享VIP免费

Jian et al., Sci. Adv. 2020; 6 : eaay3998 5 June 2020
SCIENCE ADVANCES | RESEARCH ARTICLE
1 of 9
MATERIALS SCIENCE
Ultrathin water-stable metal-organic framework
membranes for ion separation
Meipeng Jian1, Ruosang Qiu1, Yun Xia1, Jun Lu1, Yu Chen2, Qinfen Gu3*, Ruiping Liu4,5,
Chengzhi Hu4, Jiuhui Qu4,5, Huanting Wang1, Xiwang Zhang1*
Owing to the rich porosity and uniform pore size, metal-organic frameworks (MOFs) offer substantial advantages
over other materials for the precise and fast membrane separation. However, achieving ultrathin water-stable
MOF membranes remains a great challenge. Here, we first report the successful exfoliation of two-dimensional
(2D) monolayer aluminum tetra-(4-carboxyphenyl) porphyrin framework (termed Al-MOF) nanosheets. Ultrathin
water-stable Al-MOF membranes are assembled by using the exfoliated nanosheets as building blocks. While
achieving a water flux of up to 2.2 mol m−2 hour−1 bar−1, the obtained 2D Al-MOF laminar membranes exhibit re-
jection rates of nearly 100% on investigated inorganic ions. The simulation results confirm that intrinsic nanopores
of the Al-MOF nanosheets domain the ion/water separation, and the vertically aligned aperture channels are the
main transport pathways for water molecules.
INTRODUCTION
Ion separation with energy-efficient and environment-friendly mem-
branes is essential in water environmental fields, e.g., wastewater
recycling and seawater and brackish water desalination (1). Polymers
are, by far, the most widespread membrane materials, largely owing
to their easy processability and low cost (2). However, traditional
polymeric membranes for ion separation from water are usually with
a dense-selective layer, leading to the insurmountable permeability-
selectivity trade-off, governed by the solution-diffusion model (3).
In contrast, nanoporous membranes where nanopores act as the
sieving role may overcome the limitation (4,5). In this regard, re-
cent advances in nanoporous membranes, such as porous polymers,
nanotube, zeolite, and aquaporin-based membranes, have witnessed
substantial progress (68). The advancements collectively recognized
the potential of nanoporous membranes in enhancing ion sieving
capacity if the separation channels are properly designed. Neverthe-
less, most nanoporous membranes are usually thick at micrometer
scale and are formed by discrete channels, hampering membrane
permeability (9,10). Recently, two-dimensional (2D) materials, such
as graphene oxide (GO), reduced GO, MoS2, etc., have recently
emerged as building blocks for membrane synthesis (1113). These
2D nanosheets have constructed a new class of membranes with an
ultrathin thickness, in which the interlayer space between adjacent
nanosheets acts as selective nanochannels for ion sieving (14). De-
spite the thin architecture and special transport channels of these 2D
laminar membranes, there are still deficiencies in separation perform-
ance, such as high transport tortuosity and insecure/improper
interlayer distance (15,16).
Metal-organic frameworks (MOFs) are a scientifically compelling
and evolving class of highly porous materials (17). Thus, MOFs are
expected to be one of the most promising materials for separation
membranes (18,19). In particular, the use of 2D MOF nanosheet-
based membranes for gas separation holds the promise of making a
breakthrough in achieving a simultaneous increase of both permea-
bility and selectivity (20). However, it remains a daunting challenge
to fabricate ultrathin MOF membranes (less than 100 nm) for water-
related processing, since most reported MOF membranes are typically
thick because of 3D crystal constitution and suffer from insufficient
hydrolytic stability (21,22).
Here, we report the preparation of water-stable monolayer alumi-
num tetra-(4-carboxyphenyl)porphyrin framework (termed Al-MOF)
nanosheets and demonstrate their excellence as building materials
for membranes in ion separation from water. Exfoliated Al-MOF
nanosheets exhibit a long-term structural robustness in aqueous
environment and can form a laminar membrane via a facile vacuum
filtration on porous substrates. The resulting 2D Al-MOF laminar
membrane exhibits an extremely low permeability to tested ions
(~3.3×10−6mol m−2hour−1bar−1) but achieves water fluxes of up
to 2.2 mol m−2hour−1bar−1. Overall, the 2D MOF membranes out-
perform the most reported 2D laminar membranes on the water/ion
selectivity. In addition, the interlayer distance in the Al-MOF lami-
nar membrane is self-locked via parallel - interactions, leading to
a steady performance for more than 750 hours.
RESULTS AND DISCUSSION
Bulk-type Al-MOF crystals were obtained through a modified solvent-
thermal method (23). The corresponding scanning electron micro-
scopy (SEM) and atomic force microscopy (AFM) images (Fig.1A
and fig. S1, A and B) show a layered crystalline structure. Consider-
ing the weak interlayer bonding in the [0k0] direction of the bulk-
type Al-MOF crystals, a facile sonication approach was used to
successfully exfoliate them into 2D nanosheets (Method section and fig.
S1C). Impressively, the convenient exfoliation route can reach a high
nanosheet yield of approximately 90% (fig. S1D). The 2D ultrathin
morphology of exfoliated Al-MOF nanosheets is revealed by trans-
mission electron microscopy (TEM) images (Fig.1B and fig. S2A).
More than 80% of the Al-MOF nanosheets have a lateral size between
200nm and 2 m (fig. S2B). After the exfoliation, the Al-MOF
1Department of Chemical Engineering, Monash University, Clayton, Victoria 3800,
Australia. 2Monash Centre for Electron Microscopy, Monash University, Clayton, Victoria
3800, Australia. 3Australian Synchrotron (ANSTO), Clayton, Victoria, 3168, Australia.
4State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-
Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. 5Center
for Water and Ecology, State Key Joint Laboratory of Environment Simulation and
Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
*Corresponding author. Email: xiwang.zhang@monash.edu (X.Z.); qinfeng@ansto.
gov.au (Q.G.)
Copyright © 2020
The Authors, some
rights reserved;
exclusive licensee
American Association
for the Advancement
of Science. No claim to
original U.S. Government
Works. Distributed
under a Creative
Commons Attribution
NonCommercial
License 4.0 (CC BY-NC).
Downloaded from https://www.science.org on October 18, 2021
Jian et al., Sci. Adv. 2020; 6 : eaay3998 5 June 2020
SCIENCE ADVANCES | RESEARCH ARTICLE
2 of 9
nanosheet suspension shows an excellent dispersibility, and the col-
loidal solution can be reserved for more than 2 months (fig. S2C).
The thickness of Al-MOF nanosheets was measured by AFM to be
around 1.9nm (Fig.1C), which is close to the theoretical height
(~1.35 nm) of a monolayer Al-MOF nanosheet (Fig.1D).
The crystallinity of Al-MOF nanosheets was examined by syn-
chrotron x-ray powder diffraction (XRD). The crystal structures of
Al-MOF crystals viewed down the [001] direction and the mono-
layer Al-MOF nanosheet viewed from the [010] direction are illus-
trated in Fig.1(DandE,respectively). The observed XRD pattern
of exfoliated Al-MOF nanosheets fit well with the calculated pat-
terns of monolayer Al-MOF nanosheets (Fig.1F), confirming their
inherent structural features of Al-MOF crystal. In addition, a selected-
area electron diffraction pattern gives individual diffraction spots,
demonstrating the single-crystal nature of the exfoliated Al-MOF
nanosheets (fig. S3). Compared with Al-MOF bulks, XRD peaks of
Al-MOF nanosheets are weak, and a few peaks even disappear (fig. S4),
largely owing to the loss of diffraction signals in the out-of-plane
direction and the nonplanar shape of the nanosheets (24). X-ray
photoelectron spectroscopy (XPS), energy-dispersive spectroscopy
(EDS), ultraviolet-visible spectra (UV-Vis), attenuated total reflec-
tance Fourier transform infrared spectroscopy (ATR-FTIR), and
thermogravimetric analysis (TGA) characterizations in figs. S5 to
S9 further reveal that the exfoliated nanosheets preserve the struc-
tural integrity.
Exfoliated Al-MOF nanosheets also feature a microporous struc-
ture (type I isotherm) and give a specific surface area of 602m2 g−1
(fig. S10A). Meanwhile, it displays authentic angstrom-size pores
from experimental isotherm analyses in Fig.1G. However, the pore
distribution plot of Al-MOF nanosheets shows a slight difference
from that of its bulk counterpart, which could be caused by the ex-
foliation effect and inevitable restacking of dried nanosheets along
the [0k0] direction (fig. S10B). To assess the water stability, Al-MOF
nanosheets were soaked in water for a month. The water-treated
Al-MOF nanosheets exhibited identical XRD patterns to their ini-
tial status (fig. S11). Furthermore, the N2 adsorption-desorption
Fig. 1. Synthesis and structure of Al-MOF nanosheets. (A) SEM image of the representative Al-MOF bulk crystals. (B) TEM image of exfoliated Al-MOF nanosheets. (C) AFM
topographical image of Al-MOF nanosheets on a silicon wafer. Inset is the corresponding height profile. (D) Single monolayer Al-MOF nanosheet viewed from the [001]
direction. (E) Crystal structure of Al-MOF viewed down the [010] direction. The Al coordination polyhedra are depicted in blue, whereas nitrogen, oxygen, and carbon
atoms are shown in purple, red, and gray, respectively. H atoms are omitted for clarity. (F) Rietveld refinement of the synchrotron XRD data of Al-MOF nanosheets. a.u.,
arbitrary units. (G) Pore-size distribution of Al-MOF nanosheets from N2 adsorption-desorption measurement.
Downloaded from https://www.science.org on October 18, 2021
Jian et al., Sci. Adv. 2020; 6 : eaay3998 5 June 2020
SCIENCE ADVANCES | RESEARCH ARTICLE
3 of 9
isotherm and pore distribution of the Al-MOF nanosheets, after
being immerged in water, were both similar to those of the pristine
sample (fig. S12). Likewise, porphyrin ligand and Al3+ were not
present in the filtrate after 1-month water stability test (fig. S13).
These results confirm the unchanged crystallinity of Al-MOF nano-
sheets after prolonged immersion in water. In another aspect, Al-MOF
nanosheets kept their characteristic diffraction peaks after being
exchanged with NaCl (fig. S14A), which indicates that Al-MOF
nanosheets could withstand exposure to inorganic ions, having a
desired chemical endurance. In situ high-temperature synchrotron
XRD characterization was also conducted on Al-MOF nanosheets
from 50° to 190°C, and no obvious variations were observed on the
phase transformations and crystalline lattices with the increase in
temperature, which elucidates the pore rigidity in Al-MOF nano-
sheets (fig. S14, B to D).
A 2D Al-MOF laminar membrane (Fig.2A) was assembled by
vacuum filtration of a diluted Al-MOF nanosheet suspension (fig.
S15) using anodic aluminum oxide (AAO) support with a pore size
of 100nm. In an apparent contrast to bare AAO support (Fig.2B),
a top-view SEM image of a~10-nm-thick membrane shows a uni-
form coverage of Al-MOF nanosheets on the surface of AAO sup-
port, and no visible defects were observed (Fig.2C). The continuous
and flat Al-MOF laminar membrane was visualized by AFM and
cross-sectional SEM characterizations (Fig.2D and fig. S16). In ad-
dition, the membrane exhibits a hydrophilic character, demonstrated
by a water contact angle of 44° (fig. S17). By controlling the loading
of Al-MOF nanosheets, the thickness of the membranes can be pre-
cisely tuned from a few nanometers to micrometers (Fig.2E and
figs. S18 and S19). Notably, a typical homogeneous laminar struc-
ture is seen when the membrane thickness reaches 500nm (Fig.2E).
Fig. 2. Characterizations of Al-MOF membranes. (A) Digital photo of an as-prepared 100-nm-thick Al-MOF laminar membrane on AAO substrate. (B) SEM image of a
bare AAO substrate. (C) SEM image of a sub–10-nm-thick Al-MOF laminar membrane on AAO substrate. The visibility of substrate background elucidates the ultrathin
coverage. (D) Cross-sectional overview of a 100-nm-thick Al-MOF laminar membrane on AAO substrate. (E) Magnified cross-sectional views of 2D Al-MOF membranes
with different thicknesses. Membranes less than 100 nm (green and gold) show a compact stacking, whereas the membrane at a thickness of 500 nm (purple) apparently
shows typical laminar structure. Scale bars, 500 nm. (F) Cross-sectional TEM image of the 2D Al-MOF laminar membrane. (G) GIXRD pattern of the Al-MOF laminar mem-
brane. The pattern was acquired from a thick membrane (~20 m) due to the detection limit. The sharp (0k0) phase peak at 2 = 7.6° indicates an average value of 6.0 Å.
Downloaded from https://www.science.org on October 18, 2021
Jianetal.,Sci.Adv.2020;6:eaay39985June2020SCIENCEADVANCESRESEARCHARTICLE1of9MATERIALSSCIENCEUltrathinwater-stablemetal-organicframeworkmembranesforionseparationMeipengJian1,RuosangQiu1,YunXia1,JunLu1,YuChen2,QinfenGu3,RuipingLiu4,5,ChengzhiHu4,JiuhuiQu4,5,HuantingWang1,XiwangZhang1Owingtotherichporosityanduniformporesize,metal-organicframeworks(MOFs)offersubstantialadvantagesoverothermaterialsforthepreciseandfastmembraneseparation.However,achievingultrathinwater-stableMOFmembranesremainsagreatchallenge.Here,wefirstreportthesuccessfulexfoliationoftwo-dimensional(2D)monolayeraluminumtetra-(4-carboxyphenyl)porphyrinframework(termedAl-MOF)nanosheets.Ultrathinwater-stableAl-MOFmembranesareassembledbyusingtheexfoliatednanosheetsasbuildingblocks.Whileachievingawaterfluxofupto2.2molm−2hour−1bar−1,theobtained2DAl-MOFlaminarmembranesexhibitre-jectionratesofnearly100%oninvestigatedinorganicions.ThesimulationresultsconfirmthatintrinsicnanoporesoftheAl-MOFnanosheetsdomaintheion/waterseparation,andtheverticallyalignedaperturechannelsarethemaintransportpathwaysforwatermolecules.INTRODUCTIONIonseparationwithenergy-efficientandenvironment-friendlymem-branesisessentialinwaterenvironmentalfields,e.g.,wastewaterrecyclingandseawaterandbrackishwaterdesalination(1).Polymersare,byfar,themostwidespreadmembranematerials,largelyowingtotheireasyprocessabilityandlowcost(2).However,traditionalpolymericmembranesforionseparationfromwaterareusuallywithadense-selectivelayer,leadingtotheinsurmountablepermeability-­selectivitytrade-off,governedbythesolution-diffusionmodel(3).Incontrast,nanoporousmembraneswherenanoporesactasthesievingrolemayovercomethelimitation(4,5).Inthisregard,re-centadvancesinnanoporousmembranes,suchasporouspolymers,nanotube,zeolite,andaquaporin-basedmembranes,havewitnessedsubstantialprogress(6–8).Theadvancementscollectivelyrecognizedthepotentialofnanoporousmembranesinenhancingionsievingcapacityiftheseparationchannelsareproperlydesigned.Neverthe-less,mostnanoporousmembranesareusuallythickatmicrometerscaleandareformedbydiscretechannels,hamperingmembranepermeability(9,10).Recently,two-dimensional(2D)materials,suchasgrapheneoxide(GO),reducedGO,MoS2,etc.,haverecentlyemergedasbuildingblocksformembranesynthesis(11–13).These2Dnanosheetshaveconstructedanewclassofmembraneswithanultrathinthickness,inwhichtheinterlayerspacebetweenadjacentnanosheetsactsasselectivenanochannelsforionsieving(14).De-spitethethinarchitectureandspecialtransportchannelsofthese2Dlaminarmembranes,therearestilldeficienciesinseparationperform­ance,suchashightransporttortuosityandinsecure/improperinterlayerdistance(15,16).Metal-organicframeworks(MOFs)areascientificallycompellingandevolvingclassofhighlyporousmaterials(17).Thus,MOFsareexpectedtobeoneofthemostpromisingmaterialsforseparationmembranes(18,19).Inparticular,theuseof2DMOFnanosheet-basedmembranesforgasseparationholdsthepromiseofmakingabreakthroughinachievingasimultaneousincreaseofbothpermea-bilityandselectivity(20).However,itremainsadauntingchallengetofabricateultrathinMOFmembranes(lessthan100nm)forwater-­relatedprocessing,sincemostreportedMOFmembranesaretypicallythickbecauseof3Dcrystalconstitutionandsufferfrominsufficienthydrolyticstability(21,22).Here,wereportthepreparationofwater-stablemonolayeralumi-numtetra-(4-carboxyphenyl)porphyrinframework(termedAl-MOF)nanosheetsanddemonstratetheirexcellenceasbuildingmaterialsformembranesinionseparationfromwater.ExfoliatedAl-MOFnanosheetsexhibitalong-termstructuralrobustnessinaqueousenvironmentandcanformalaminarmembraneviaafacilevacuumfiltrationonporoussubstrates.Theresulting2DAl-MOFlaminarmembraneexhibitsanextremelylowpermeabilitytotestedions(~3.3×10−6molm−2hour−1bar−1)butachieveswaterfluxesofupto2.2molm−2hour−1bar−1.Overall,the2DMOFmembranesout-performthemostreported2Dlaminarmembranesonthewater/ionselectivity.Inaddition,theinterlayerdistanceintheAl-MOFlami-narmembraneisself-lockedviaparallel-interactions,leadingtoasteadyperformanceformorethan750hours.RESULTSANDDISCUSSIONBulk-typeAl-MOFcrystalswereobtainedthroughamodifiedsolvent-­thermalmethod(23).Thecorrespondingscanningelectronmicro­scopy(SEM)andatomicforcemicroscopy(AFM)images(Fig.1Aandfig.S1,AandB)showalayeredcrystallinestructure.Consider-ingtheweakinterlayerbondinginthe[0k0]directionofthebulk-typeAl-MOFcrystals,afacilesonicationapproachwasusedtosuccessfullyexfoliatetheminto2Dnanosheets(Methodsectionandfig.S1C).Impressively,theconvenientexfoliationroutecanreachahighnanosheetyieldofapproximately90%(fig.S1D).The2DultrathinmorphologyofexfoliatedAl-MOFnanosheetsisrevealedbytrans-missionelectronmicroscopy(TEM)images(Fig.1Bandfig.S2A).Morethan80%oftheAl-MOFnanosheetshavealateralsizebetween200nmand2m(fig.S2B).Aftertheexfoliation,theAl-MOF1DepartmentofChemicalEngineering,MonashUniversity,Clayton,Victoria3800,Australia.2MonashCentreforElectronMicroscopy,MonashUniversity,Clayton,Victoria3800,Australia.3AustralianSynchrotron(ANSTO),Clayton,Victoria,3168,Australia.4StateKeyLaboratoryofEnvironmentalAquaticChemistry,ResearchCenterforEco-­EnvironmentalSciences,ChineseAcademyofSciences,Beijing100085,China.5CenterforWaterandEcology,StateKeyJointLaboratoryofEnvironmentSimulationandPollutionControl,SchoolofEnvironment,TsinghuaUniversity,Beijing100084,China.Correspondingauthor.Email:xiwang.zhang@monash.edu(X.Z.);qinfeng@ansto.gov.au(Q.G.)Copyright©2020TheAuthors,somerightsreserved;exclusivelicenseeAmericanAssociationfortheAdvancementofScience.NoclaimtooriginalU.S.GovernmentWorks.DistributedunderaCreativeCommonsAttributionNonCommercialLicense4.0(CCBY-NC).Downloadedfromhttps://www.science.orgonOctober18,2021Jianetal.,Sci.Adv.2020;6:eaay39985June2020SCIENCEADVANCESRESEARCHARTICLE2of9nanosheetsuspensionshowsanexcellentdispersibility,andthecol-loidalsolutioncanbereservedformorethan2months(fig.S2C).ThethicknessofAl-MOFnanosheetswasmeasuredbyAFMtobearound1.9nm(Fig.1C),whichisclosetothetheoreticalheight(~1.35nm)ofamonolayerAl-MOFnanosheet(Fig.1D).ThecrystallinityofAl-MOFnanosheetswasexaminedbysyn-chrotronx-raypowderdiffraction(XRD).ThecrystalstructuresofAl-MOFcrystalsvieweddownthe[001]directionandthemono-layerAl-MOFnanosheetviewedfromthe[010]directionareillus-tratedinFig.1(DandE,respectively).TheobservedXRDpatternofexfoliatedAl-MOFnanosheetsfitwellwiththecalculatedpat-ternsofmonolayerAl-MOFnanosheets(Fig.1F),confirmingtheirinherentstructuralfeaturesofAl-MOFcrystal.Inaddition,aselected-­areaelectrondiffractionpatterngivesindividualdiffractionspots,demonstratingthesingle-crystalnatureoftheexfoliatedAl-MOFnanosheets(fig.S3).ComparedwithAl-MOFbulks,XRDpeaksofAl-MOFnanosheetsareweak,andafewpeaksevendisappear(fig.S4),largelyowingtothelossofdiffractionsignalsintheout-of-planedirectionandthenonplanarshapeofthenanosheets(24).X-rayphotoelectronspectroscopy(XPS),energy-dispersivespectroscopy(EDS),ultraviolet-visiblespectra(UV-Vis),attenuatedtotalreflec-tanceFouriertransforminfraredspectroscopy(ATR-FTIR),andthermogravimetricanalysis(TGA)characterizationsinfigs.S5toS9furtherrevealthattheexfoliatednanosheetspreservethestruc-turalintegrity.ExfoliatedAl-MOFnanosheetsalsofeatureamicroporousstruc-ture(typeIisotherm)andgiveaspecificsurfaceareaof602m2g−1(fig.S10A).Meanwhile,itdisplaysauthenticangstrom-sizeporesfromexperimentalisothermanalysesinFig.1G.However,theporedistributionplotofAl-MOFnanosheetsshowsaslightdifferencefromthatofitsbulkcounterpart,whichcouldbecausedbytheex-foliationeffectandinevitablerestackingofdriednanosheetsalongthe[0k0]direction(fig.S10B).Toassessthewaterstability,Al-MOFnanosheetsweresoakedinwaterforamonth.Thewater-treatedAl-MOFnanosheetsexhibitedidenticalXRDpatternstotheirini-tialstatus(fig.S11).Furthermore,theN2adsorption-desorptionFig.1.SynthesisandstructureofAl-MOFnanosheets.(A)SEMimageoftherepresentativeAl-MOFbulkcrystals.(B)TEMimageofexfoliatedAl-MOFnanosheets.(C)AFMtopographicalimageofAl-MOFnanosheetsonasiliconwafer.Insetisthecorrespondingheightprofile.(D)SinglemonolayerAl-MOFnanosheetviewedfromthe[001]direction.(E)CrystalstructureofAl-MOFvieweddownthe[010]direction.TheAlcoordinationpolyhedraaredepictedinblue,whereasnitrogen,oxygen,andcarbonatomsareshowninpurple,red,andgray,respectively.Hatomsareomittedforclarity.(F)RietveldrefinementofthesynchrotronXRDdataofAl-MOFnanosheets.a.u.,arbitraryunits.(G)Pore-sizedistributionofAl-MOFnanosheetsfromN2adsorption-desorptionmeasurement.Downloadedfromhttps://www.science.orgonOctober18,2021Jianetal.,Sci.Adv.2020;6:eaay39985June2020SCIENCEADVANCESRESEARCHARTICLE3of9isothermandporedistributionoftheAl-MOFnanosheets,afterbeingimmergedinwater,werebothsimilartothoseofthepristinesample(fig.S12).Likewise,porphyrinligandandAl3+werenotpresentinthefiltrateafter1-monthwaterstabilitytest(fig.S13).TheseresultsconfirmtheunchangedcrystallinityofAl-MOFnano­sheetsafterprolongedimmersioninwater.Inanotheraspect,Al-MOFnanosheetskepttheircharacteristicdiffractionpeaksafterbeingexchangedwithNaCl(fig.S14A),whichindicatesthatAl-MOFnanosheetscouldwithstandexposuretoinorganicions,havingadesiredchemicalendurance.Insituhigh-temperaturesynchrotronXRDcharacterizationwasalsoconductedonAl-MOFnanosheetsfrom50°to190°C,andnoobviousvariationswereobservedonthephasetransformationsandcrystallinelatticeswiththeincreaseintemperature,whichelucidatestheporerigidityinAl-MOFnano­sheets(fig.S14,BtoD).A2DAl-MOFlaminarmembrane(Fig.2A)wasassembledbyvacuumfiltrationofadilutedAl-MOFnanosheetsuspension(fig.S15)usinganodicaluminumoxide(AAO)supportwithaporesizeof100nm.InanapparentcontrasttobareAAOsupport(Fig.2B),atop-viewSEMimageofa~10-nm-thickmembraneshowsauni-formcoverageofAl-MOFnanosheetsonthesurfaceofAAOsup-port,andnovisibledefectswereobserved(Fig.2C).ThecontinuousandflatAl-MOFlaminarmembranewasvisualizedbyAFMandcross-sectionalSEMcharacterizations(Fig.2Dandfig.S16).Inad-dition,themembraneexhibitsahydrophiliccharacter,demonstratedbyawatercontactangleof44°(fig.S17).BycontrollingtheloadingofAl-MOFnanosheets,thethicknessofthemembranescanbepre-ciselytunedfromafewnanometerstomicrometers(Fig.2Eandfigs.S18andS19).Notably,atypicalhomogeneouslaminarstruc-tureisseenwhenthemembranethicknessreaches500nm(Fig.2E).Fig.2.CharacterizationsofAl-MOFmembranes.(A)Digitalphotoofanas-prepared100-nm-thickAl-MOFlaminarmembraneonAAOsubstrate.(B)SEMimageofabareAAOsubstrate.(C)SEMimageofasub–10-nm-thickAl-MOFlaminarmembraneonAAOsubstrate.Thevisibilityofsubstratebackgroundelucidatestheultrathincoverage.(D)Cross-sectionaloverviewofa100-nm-thickAl-MOFlaminarmembraneonAAOsubstrate.(E)Magnifiedcross-sectionalviewsof2DAl-MOFmembraneswithdifferentthicknesses.Membraneslessthan100nm(greenandgold)showacompactstacking,whereasthemembraneatathicknessof500nm(purple)apparentlyshowstypicallaminarstructure.Scalebars,500nm.(F)Cross-sectionalTEMimageofthe2DAl-MOFlaminarmembrane.(G)GIXRDpatternoftheAl-MOFlaminarmem-brane.Thepatternwasacquiredfromathickmembrane(~20m)duetothedetectionlimit.Thesharp(0k0)phasepeakat2=7.6°indicatesanaveragevalueof6.0Å.Downloadedfromhttps://www.science.orgonOctober18,2021Jianetal.,Sci.Adv.2020;6:eaay39985June2020SCIENCEADVANCESRESEARCHARTICLE4of9Thelaminarstructurewasalsorevealedbyacross-sectionalTEMcharacterization(Fig.2F).Furthermore,thesynchrotrongrazingincidencex-raydiffraction(GIXRD)analysisobservedaprominent(0k0)peakat2=7.6°,showingthedvalueof~6.0Å.Thismani-feststhattheslitwidth(h)isclosetothesizeoftherectangularporeinonelayer(δ=6.1Å;Fig.2Gandinset).ThewaterpermeationacrosstheAl-MOFlaminarmembranewasfirstexaminedbymeasuringtheweightlossofacontainercov-eredbya100-nm-thickAl-MOFmembrane(fig.S20).Figure3Ashowsthatthewaterevaporationrateofthesealedcontainerisclosetothatoftheopenaperture(intheabsenceoftheAl-MOFmem-brane).ThisdemonstratestheunimpededwatervaporflowthroughtheAl-MOFmembrane.Afterward,wefurtherinvestigatedtheper-meationoftheAl-MOFmembraneforliquidwaterinadiffusioncellusingdeionizedwaterand0.5MCoCl2asfeedanddrawsolu-tions,respectively(fig.S21).Thevolumeofthedrawsolutiongrad-uallyincreasedwithtime,owingtowatertransportfromthefeedsidedrivenbytheosmoticpressuredifference(Fig.3B).ThetwoexperimentscollectivelyshowthattheAl-MOFlaminarmembraneispermeabletowatermolecules.Inthediffusiontest,itisworthnotingthatthewaterpermeanceisdependentonthesaltinthedrawsolutions.HighwaterpermeancewasachievedbyAlCl3andCoCl2solutions,whereasrelativelylowwaterpermeancewasachievedforNaCl,KCl,MgCl2,andCaCl2solutions(Fig.3C).ThisanomalousresultmightbecausedbythedifferenceintheaffinityofthesecationsontoAl-MOFsheets,whichwasverifiedbyanadsorptionexperiment(fig.S22).FurtherXPScharacterizationshowsthatalu-minumhydroxylgroupsfromAl-MOFnanosheetsplayavitalroleinadsorbingtheseions(fig.S23).Consideringthattheadsorbedionssuppresswatertransporttosomeextent,surfacemodificationtoinhibitadsorptionofionscouldbeastrategyinfuturestudiestoimprovethewaterpermeanceoftheAl-MOFmembranes.ThepermeationratesoftheseionsintheAl-MOFlaminarmem-branewerealsoevaluatedinthediffusioncell,using0.5MNaCl,KCl,MgCl2,CaCl2,AlCl3,andCoCl2,respectively.Theyareallultralow,lessthan3.3×10−6molm−2hour−1bar−1(Fig.3C),whichisgenerallyconsideredimpermeable(nearly100%rejection)(11).Comparedwithotherreported2Dlaminarmembranes,theAl-MOFmembranehasalowerionpermeance(tableS1).AfterthediffusiontestingusingNaCl,thesurfaceandunderneathlayersoftheusedmembranewerecharacterizedbyXPS.Exceptforthemembranesurface,NaClwashardlydetectedinsidethemembrane(fig.S24).ThisfurtherverifiesthehindranceofAl-MOFporesonthehydratedsalts.Inaddition,anionspecieshavenoapparentimpactonsaltpermeation(fig.S25).Becauseoftheaffinityofsomesalts(NaCl,KCl,MgCl2,andCaCl2)onAl-MOFactivesites,thewaterpermeanceFig.3.PerformancesofAl-MOFmembranes.(A)WaterevaporationthroughtheAl-MOFmembrane.Thefiguredepictstheweightlossofwaterfromacontainersealedwitha100-nm-thickAl-MOFmembrane.Insetisaschematicsetupforthewaterevaporationprocess.(B)Liquidvolumechangeofthedrawsolutionwithtimeduringthediffusionprocess.FeedsideisDIwater,whereasdrawsideis0.5MCoCl2aqueoussolution.InsetisaschematicU-shapedsetupforthediffusionprocess.(C)Waterfluxthrougha100-nm-thickAl-MOFmembraneusingdifferentdrawsolutions(0.5M)andthecorrespondingionpermeationrates.(D)Correlationbetweenwaterfluxandwater/saltselectivityofAl-MOFmembranesandotherrepresentative2Dlaminarmembranesondifferentsupports.ThedetaileddataarelistedintableS1.Eachsetofsymbolsrepresentsadifferentsalt.Downloadedfromhttps://www.science.orgonOctober18,2021Jianetal.,Sci.Adv.2020;6:eaay39985June2020SCIENCEADVANCESRESEARCHARTICLE5of9ofAl-MOFlaminarmembranesiscomparablylow.Despitethat,thewaterpermeanceoftheAl-MOFmembraneisstillcomparabletothoseofthestate-of-the-art2DlaminarmembraneswhenAlCl3andCoCl2areusedasdrawsolutions(Fig.3D).Notably,thewaterpermeanceoftheAl-MOFmembranecanbeexponentiallyincreasedto2.22molm−2hour−1bar−1byreducingthethicknessdownto20nm,whilehighsaltrejectionremains(fig.S26).Owingtotheultralowsaltpermeation,thewater/ionselectivityoftheAl-MOFlaminarmembranereachesupto5.00×105(Fig.3DandtableS1),whichoutperformsmost2Dlaminarmembranesondifferentsub-stratesreportedsofar.Thelong-termintegrityoftheAl-MOFmembranewasexaminedbyassessingtheNa+permeationrateandwaterfluxinacontinuoustesting.Asshowninfig.S27,thesteadyplotofNa+concentrationatthefeedsideandaconstantwaterfluxofthemembraneover30dayswereobserved,confirmingthelong-lastingstability.ThesuperiorstabilityofAl-MOFmembranesshouldbeattributedtothelockingeffectofadjacentnanosheetsbymeansofparallel-interaction(25,26).Meanwhile,fig.S28givestheunchangedreflection(0k0)peakat2=7.6°oftheAl-MOFmembraneafter1-monthcontinuoustesting.Furthermore,theantiswellingabilityofAl-MOFmembraneswerevisuallyexamined(fig.S29).InadditiontotheAAOsubstrate,Al-MOFlaminarmembraneswithsimilarperformancewerealsosuccessfullysynthesizedonlow-costpolymersubstratessuchaspolycarbonateandpolyethersulfone(fig.S30).Moleculardynamics(MD)simulationswereconductedtogaininsightsintosaltrejectionandwatertransportintheAl-MOFmembrane.First,thekineticbehaviorofwaterandiontransportFig.4.WatertransportbehaviorthroughAl-MOFmembranes.(A)CrystallineillustrationofAl-MOFmembraneconstructedwithtwo-layernanosheetsunderABstackingsequence(viewedalongthe[010]direction).Dashedlinespresenttwodifferentincisionpositionsforcross-sectionalmembranegeometries(markedwithcut1andcut2,respectively).Belowfigureisthecorrespondingwaterdensitymap.Thebluecolorcorrespondstonowaterexistenceandtheredcorrespondstothemaximumwaterdensity.(B)Linearwaterdensityprofilecollectedfromtheupperwaterdensitymap.Whitelinesrepresentthewaterdensityinthethreearrangedpores(9.3ÅintheXaxis×3.7ÅintheYaxis),andredlinesrefertothatinthetwoarrangedpores(3.7ÅintheXaxis×9.3ÅintheYaxis),asillustratedinwhiteandreddashedrectangles,respectively.(C)Sideviewofthemembraneatcut1sectionisviewedalongthe[001]direction,whichgivestheinterlayerdistanceof6.1Å.Belowfigureisthecorrespond-ingwaterdensitymap.(D)Sideviewofthemembraneatcut2sectionisviewedalongthe[100]direction.Whitedashedrectanglesstandforthelow-waterdensitiesinsidetheinterlayerspace.Downloadedfromhttps://www.science.orgonOctober18,2021Jianetal.,Sci.Adv.2020;6:eaay39985June2020SCIENCEADVANCESRESEARCHARTICLE6of9acrosstheporeapertureofAl-MOFmembraneswassimulated.Inaccordancewiththeexperimentalresults,allexaminedionsareef-fectivelyblockedbytheAl-MOFnanopores,whereaswatermole-culesareallowedtopenetrateonthebasisofsizeexclusion(tableS2andfig.S31).AlthoughbothAAandABstackingregimesaretheo-reticallypossiblewhenAl-MOFnanosheetsareassembledintomembranes,densityfunctionaltheory(DFT)calculationrevealsthatABstackingismorelikelythanAAstackingduetoalowerDFTenergy(fig.S32).TheDFTcalculationalsoshowsthattheinterlayerspaceoftheAl-MOFlaminarmembraneformedviaABstackingis6.1Å,whichisconsistentwiththeGIXRDcharacterization(Fig.2Gandfig.S32).Therefore,onthebasisofABstacking,anMDmodelfortheAl-MOFlaminarmembranewasbuilt,whichconsistsoftwo-layerAl-MOFnanosheets(Fig.4),tocomputetheprobabilitydistributionofwatermoleculesinsidethemembrane.Thewaterdensitymap(Fig.4A)revealsthatthewaterflowishighlylocalizedtotheintrinsicporesofAl-MOFnanosheets.Fur-thermore,thecorrespondinglineargradientprofile(Fig.4B)indi-catesthatwatermoleculesalignsidebysidewhenflowingthroughthesepores(asillustratedinthewaterdensitymap)duetoconfinedspace.ThesideviewsofwatertransportchannelsoftheABstackedmembranearepresentedbyusingtwoincisionpositions(Fig.4,CandD).Mostofthewatermoleculesareobservedinthestraightchannels(theverticallyalignedintrinsicporesofneighboringAl-MOFnanosheets),whereasasmallamountofwaterisintheinter-layerspaces,asindicatedwithwhitedashedrectangles(Fig.4,CandD).Thisisinagreementwiththewatertrajectoryresults,whichshowthatmostwatermoleculesflowthroughtheAl-MOFmembraneviatheverticallyalignedaperturechannels(straightflow),andonly17.08%ofwatermoleculesshiftfromonechanneltoanotherviatheinterlayerspace(shiftflow)whenpassingthroughthemembrane(fig.S33).SimilarwaterdynamicbehaviorwasobservedinAAstackingmodel(fig.S34),althoughtheshiftflowismuchmorelikelytooccurbecauseoftherelativelylargerinterlayerspaces(6.2and12.5Å).Furthermore,theMDsimulationsonNaCldiffusionrevealthatsaltspeciescannotpermeatethroughtheslitchannelsbetweenthenanosheetsinbothABandAAstackedmembranes(fig.S35).CONCLUSIONOurfindingsdemonstratedthefabricationofultrathinnanoporousmembranesassembledby2DMOFnanosheetsforionseparationfromwater.Theobtainedlaminarmembraneexhibitedanexcellentlong-termstabilityinwater,againsttheintractableswellingfor2D-basedmembranes.Allthetestedionshadultralowpermeationrates,whichwereattributedtotheAl-MOFporehindrance.WatertransportmainlyoccursintheverticallyalignedaperturechannelsformedbytheintrinsicporesofAl-MOFnanosheets.Thismembraneopensupthepossibilitytoexploreemergingnanoporous-basedmembranesandmeetsthecriticalneedforincreasedselectivityfordesalinationmembranes(27).However,weenvisagethatfullunder-standingofthemembranerequiresfurthereffortsintermsofapertureshape,channelcharge,transportfriction,poredensity,etc.MATERIALSANDMETHODSMaterialsAl(NO3)3·9H2O,pyrazine,andp-xylenewereallpurchasedfromSigma-Aldrich.Tetrakis(4-carboxyphenyl)porphyrin(H2TCPP,97%)waspurchasedfromTokyoChemicalIndustryCo.Ltd.Allsaltpowders,N,N-dimethylformamide(DMF),andethanolwerepurchasedfromMerck.Allthechemicalswereofanalyticalgradeandwereusedasre-ceivedwithoutfurtherpurification.Deionizedwaterusedinallexper-imentswasfromaMilli-Qsystem(AdvantageA10,MerckMillipore,USA).AAOdiscfilters(100-nmpore,13-mmdiameter)werepurchasedfromGEHealthcareWhatman.Polyethersulfone(PES;30-nmpore,13-mmdiameter)andpolycarbonatetracketch(PCTE;100-nmpore,25-mmdiameter)membranefilterswerepurchasedfromSteritech.MethodsSynthesisofAl-MOFbulksBulk-typeAl-MOFwaspreparedfollowingamodifiedmethodinourpreviousstudy(28).First,93.23mgofAl(NO3)3·9H2O,14mgpyrazine,150mlofN,N-dimethylformamide(DMF),and50mlofethanolweremixedina250-mlSchottDuranbottleandsonicated30mintodissolvecompletelyatroomtemperature.ThisistheAlprecursorsolutionforAl-MOFproduction.Second,200mgoftetrakis(4-carboxyphenyl)porphyrin(H2TCPP)wasdissolvedin200mlofDMFwithanassistanceof30-minsonication.ThisistheligandsolutionforAl-MOFsynthesis.Al-MOFbulksweresynthe-sizedinatypicalprocedurebypipetting8mlofAlprecursorsolu-tionand4mloftheligandsolutionina20-mlglassvial,respectively.Theglassvialwasthencapped,andthemixturewasstirredonanorbitalvortexshaker(Labco)for1min.Afterward,thecappedvialswereheatedto120°Cfor16hoursinanoilbath.Last,theresultingpurpleprecipitatewascollectedbycentrifugationandwashedthreetimeswith40mlofabsoluteethanol.SonicationexfoliationofAl-MOFbulkstomonolayernanosheetsLikewise,Al-MOFbulksfromfourglassvialswereobtainedafterthesolvent-thermalreaction.Thepurpleresultantwaswashedwithabsolute40mlofDMFtwiceand40mlofethanolonce,respectively.Thefinaldispersioninethanolwasthenbath-sonicatedfor3hoursusingaUnisonicsFXP12Msonicbath(40kHz,100W).Tocombattheconsiderablewaterheatingcausedbyconsecutivesonication,thebathwaterwasrenewedperiodicallyevery30min.Aftersonica-tion,thesuspensionbecomeshighlydispersed.Toremovetheun-exfoliatedbulks,thedispersionwascentrifuged(Sigma2-16P)at8500rpmfor30min.Theretainedsupernatantwasthususedformembraneassembling.TheexfoliationyieldratewascalculatedthroughUV-Vismonitor,asshowninfig.S2(DandE).ToobtaindriedsamplesofAl-MOFnanosheetsandbulksforfuturecharac-terizations,weusedafreeze-dryingprocess,whichwasperformedinafreezedryer(FreeZone2.5liters,LabconcoCorporation,USA).Forthesakeofeliminatingwaterinterference,theas-synthesizedAl-MOFnanosheetsandbulksweredriedbyfreezingtheircolloidalsuspensionsinp-xyleneandremovingthesolventviafreeze-dryingfor3days.Al-MOFnanosheetsafterthewaterstabilitytestweredriedfollowingthesameprocessesasdescribedabove,exceptthatwaterwasusedasthesolvent.PreparationofAl-MOFnanosheetaqueoussuspension(1mg/liter)OriginalAl-MOFnanosheetdispersioninethanolwascalibratedat2000mg/literbyaUV-Visspectrophotometerbasedonthepre-determinedstandardcurve(fig.S2,DandE).Wethendilutedtheabovedispersionto1mg/literwithdeionized(DI)waterformem-branepreparation,asshowninfig.S14.MembranefabricationAl-MOFmembraneswerefabricatedbyavacuumfiltration(Welch,2511WOB-LPump)ofthedilutedAl-MOFnanosheetaqueousDownloadedfromhttps://www.science.orgonOctober18,2021Jianetal.,Sci.Adv.2020;6:eaay39985June2020SCIENCEADVANCESRESEARCHARTICLE7of9suspension(1mg/liter)ontheprescribedporoussubstrates(seemoreinformationofthesesubstratesin“Materials”section).TheAl-MOFnanosheetloading(g/mm2)ormembranethickness(nm)wascon-trolledbyvaryingthevolumeoftheAl-MOFsuspensiontobefil-tered.Forconsistency,themembranesdescribedinthisworkwereall100nmthick,unlessspecifiedotherwise.Theresultantmem-branesweredriedinanovenat60°Covernightandthenstoredinavacuumdesiccatorbeforetesting.MembranesealingPleaserefertofig.S21fordetailedsteps.CharacterizationX-raypowderdiffraction.Becauseofthedetectionlimitoflabora-toryx-raysources,thestructureandphasetransformationofAl-MOFsamplesweredeterminedbyusingsynchrotronXRD.Al-MOFnanosheetsandbulksampleswereloadedin0.5-mmIDKaptoncapillaries,whichweresealedatbothendswithaLoctiteadhesive.Thepatternswerecollectedatanenergyof18keV(=0.812Å)andaMYTHEN-IIcapillarydetector(d=250mm)onthehigh-resolutionpowderdiffractionbeamlineatAustralianSynchrotron(ANSTO).Withregardtothemembranespecimens,GIXRDisapowerfulmethodtoprovideinformationoftheinterlayerdistanced(nm).However,owingtothex-raydiffractiondetectionlimitforthinmembranes,weelaboratelypreparedathickfreestandingmem-brane(~20m)toharvestthesignals.ThethickfreestandingAl-MOFmembranewasfirstfabricatedbyvacuumfiltrationofAl-MOFnanosheetsonaPCTEsupportandthenslowlytransferredinDMFsolvent(membranesidefaceup).Afterapproximately5min,PCTEsubstratewascompletelydissolvedinDMF,andthethickfreestandingAl-MOFmembranewouldbefloatedonthesurfaceofDMF.Afterward,asquaretransparentmicroscopeglassslide(35cmby35cm,1-mmthickness,ThermoFisherScientific)wasusedtomaketheisolatedmembraneintegralseatedonthesurface.Intheend,thethickmembraneontheslidewasdriedfor2daysintheovenat80°C.Field-emissionscanningelectronmicroscope.Themorphologyofthesampleswasdetectedviaafield-emissionscanningelectronmi-croscope(FESEM;FEIMagellan400XHR)equippedwithEDS.ForexaminingmorphologiesofAl-MOFnanosheetsandbulks,onedrop(1-cm-diameterpipettetip)oftheirethanolsuspensions(2mg/liter)wasdepositedonafresh1cmby1cmsquareofsiliconwaferandthendriedinair.CrosssectionofthesupportedmembraneswaspreparedbybreakingthemembranesdepositedonAAOsubstratesusingafinetweezer.AllSEMspecimenswerecoatedwithiridium(1.5to2.0nmthick)toeliminatechargingeffect.Transmissionelectronmicroscope.AFEITecnaiG2T20TWINoperatedat200kVwasusedforTEMstudies.Allimageswerere-cordedusingacharge-coupleddevicecamera.SamplesofAl-MOFnanosheetsandbulkswerepreparedbyaddingonedrop(1-cm-­diameterpipettetip)oftheirethanoldispersion(2mg/liter)onholeycarbongrids(230meshCu,EMC)andwereair-dried.Cross-sectionalTEMexaminationformembranespecimenswascarriedoutusingaLeicaUltraCutSultramicrotomewithadiamondknife.Thesectionswerethenmountedonholeycarbonfilmcoppergrids(400meshCu,Pelco),andthepreparedsampleswereair-driedovernightforfurthermicroscopeobservations.Atomicforcemicroscopy.AFMimageswerecollectedusingaBrukerDimensionIcon.Nanosheetandbulkspecimenswerepre-paredbyplacingadropoftheirethanolsuspensionsonafresh1cmby1cmsquareofsiliconwaferfollowedbyair-drying.AFMcanti-levertipsfromRTESPA(MPP-11120-10)wereused.Theanalysiswasperformedinatappingmodeunderair.TheimageanalysiswasperformedwiththesoftwareNanoScopeAnalysisversion1.5.Thermogravimetricanalysis.TGAwasperformedonaPerkin-ElmerSTA6000.Driedsamplesofnanosheetsandbulkswerebothheatedfrom25°to800°Catarateof10°C/mininair.N2adsorption-desorptionisotherms.N2adsorption-desorptionisothermsofthesesamplesweremeasuredbyaMicromeriticsASAP2020volumetricadsorptionanalyzeratliquidnitrogentem-perature(77K).Samplesofnanosheetsandbulkswerebothde-gassedat150°Cfor12hoursundervacuumbeforemeasurement.AttenuatedtotalreflectanceFouriertransforminfraredspectra.FunctionalgroupsofnanosheetsandbulkswereidentifiedbyaPerkinElmerATR-FTIRspectrometerwithadiamondcrystalandresolutionof4cm−1byaveragingthemeasurementsover16scans.Anaverageof10adjacentpointsfromthediamondcrystaldetectorwassmoothlyappliedtothedriednanosheetsandbulksamples.Zetapotentialmeasurement.Zetasizer(MalvernNanoZS,UK)wasusedtodeterminethesurfacezetapotentialofAl-MOFnano­sheets.Eachsamplescanwasrepeatedthreetimes.Al-MOFnano­sheetwatersuspension(5mg/liter)atdifferentpHswaspreparedforthemeasurement.X-rayphotoelectronspectra.X-rayphotoelectronspectraweredeterminedbyusinganAXISUltraspectrometer(KratosAnalytical,Manchester,UK)withanAlKanode(1486.6-eVphotonenergy,0.05-eVphotonenergyresolution,300W).Ultraviolet-visiblespectra.UV-VisspectrawererecordedonaUVspectrophotometer(ShimadzuUV-2401PC).BothAl-MOFnano­sheetsandbulksuspensionswerepreparedat5mg/literforthemeasurement.Inductivelycoupledplasmaopticalemissionspectroscopy.Induc-tivelycoupledplasmaopticalemissionspectroscopy(ICP-OES)fromPerkinElmer(Optima7000DV)wasusedtoquantifythecon-centrationofionsintheionseparationexperiment.Contactangle.ThestaticcontactangleoftheAl-MOFmembranewasmeasuredbyplacingadropletofwater(2l)onthemembraneusingacapillarywithadiameterof0.7mm(OCA15EC,DataPhysics,Germany).Theequippeddigitalcamerawasusedtomonitortheshapeofthedropletimmediatelyafterthedropletdeposition.Theaveragevalueofthecontactanglewasdeterminedfromthemea-surementsofthecontactanglesatsevendifferentlocationsonmembranes.IonseparationtestsoftheAl-MOFmembranesThesealingstepsofAl-MOFmembranesintodiffusioncellsrefertofig.S20A.ConsideringthepotentialdeformityofthethinAl-MOFmembranescausedbyanexternalpressure,theseparationperfor-mancewasevaluatedusingaself-madediffusioncellasshowninfig.S20B,inwhichthepermeationprocesswasdrivenbyanosmoticpressure.Al-MOFmembranesfacingdrawsolutionweretightlyfixedinthemiddlebyclamps.Differentconcentrations(0.02,0.05,0.10,0.20,0.50,and1.00M)ofsaltsolutions(NaCl,NaNO3,Na2SO4,KCl,MgCl2,CaCl2,CoCl2,andAlCl3,respectively)wereusedasthedrawsolutions.Deionizedwaterwasusedasthefeedsolution.Mag-neticstirringwasappliedinbothdrawandfeedsidestoalleviatetheexternalconcentrationpolarizationeffect.Themasschangeofthedrawsolutionwasmeasuredbymonitoringtheheightincreaseofliquidlevelatthedrawsolutionside(thedraw-sidecompartmentwasreformedwith1.5-mminnerdiameteratthetop;fig.S20B).ThesaltleakageintothefeedsolutionwasmonitoredbyaconductivityDownloadedfromhttps://www.science.orgonOctober18,2021Jianetal.,Sci.Adv.2020;6:eaay39985June2020SCIENCEADVANCESRESEARCHARTICLE8of9meter(labCHEM-CP)andICP-OES.Thesystemtemperaturewasmaintainedat25°±0.5°Cthroughouttheexperiment.Thewaterflux(Jw;molm−2h−1)andsaltionpermeationrate(Js;molm−2hour−1)ofAl-MOFmembraneswerecalculatedasfollows(29)​​​J​w​​=​∆V─A∙∆t​​​J​s​​=​(​C​t​​∙​V​t​​)−(​C​0​​∙​V​0​​)───────────A∙∆t∙​M​w​​​​​where∆Visthevolumechange(l=5.6×10−5mol)ofthedrawsolutionoverarunningtimeinterval∆t(hours)ineachexperiment.AistheeffectiveareaoftheAl-MOFmembrane(7mm2).C0andV0denotetheinitialsaltconcentration(M)andfeedsolutionvolume(ml),whileCtandVtaretheirrespondingvaluesatagiventimet.Mwisthemolecularweightofsalts(g/mol).Thewater/saltselectivity​​​J​w​​_​J​s​​​​isdefinedastheratioofthewaterfluxtosaltionpermeationrate(30–32).WaterevaporationtestoftheAl-MOFmembranesForevaporationtest,30mlofwaterwasfilledina150-mlflaskineachrun.Arubberwith8-mmstraightporewaspluggedinthetopneck,andwaterproofgluesurroundstheedgetoavoidanyleakage.SealedAl-MOFmembranes(7mm2)werestronglygluedonthetoprubberoftheflaskbythecarbontabs(ProSciTech).Theentireap-paratuswasunderadarkenvironmentandrunningatastabletem-peratureof25°±0.5°C.Theweightlosswasconstantlymonitoredusingadigitalcomputer-controlledbalance(ANDFX-3000i).SaltsadsorptioncapacityonAl-MOFnanosheetsAdsorptionisothermexperimentswereconductedin20-mlplasticvialscontainingsaltsolution(10ml)andAl-MOFnanosheetpow-der(10mg).Theinitialconcentrationsofthesesaltswere0.02,0.05,0.10,0.20,0.50,and1.0M,respectively.Thevialswereshakenat200rpmfor24hoursat25°C.Beforetheadsorptionexperiments,themixturesuspensionsweresonicatedfor10mintoalleviateaggregation.Solutionsafteradsorptionwerefilteredwithsyringeprefilters(PTFEMillipore;poresize,0.2m).Theconcentrationchangeofeachsaltsolutionbeforeandafteradsorptionwasdeter-minedbymeasuringtheconductivity.Theadsorptioncapacityq(mmol/g)wascalculatedasfollows(33)​q=​∆C∙V─m​​where∆C(M)istheconcentrationdifferenceofsaltsolutionbeforeandaftersaltadsorption,V(ml)isthevolumeofsaltsolution,andm(mg)istheadsorbentweight.DFTcalculationsDFTcalculationswereperformedusingtheViennaAbinitioSimulationPackage5.4.4codeonAustralianSynchrotronComputeInfrastruc-ture.ThegeneralizedgradientapproximationwithaPerdew-­Burke-Ernzerhofexchangecorrelationfunctionwasused.Theinteractionsbetweentheioniccoresandthevalenceelectronsweretreatedbyultrasoftpseudopotentialswithatomicpseudopotentialscorrespond-ingtoNa3s1,K3s23p64s1,Mg3s2,Ca3s23p64s2,Co3d84s1,andAl3s23p1.Thezero-dampingDFT-D3dispersioncorrectionmethodofGrimmewasusedtoaccountfortheimportanceofvanderWaalsinteractionsoftheadsorptionofionsandinterlayersofAl-MOFinthesystem.Inallcalculations,thecutoffenergyoftheplanewavewassetat400eV,andMonkhorstPackk-pointwasusedtoensurethetotalenergyvalueconvergencewithin1meVperatom.DFTgeometryoptimizationwasconductedtorevealthemoststablestackingconfigurationofAl-MOFnanosheet-assembledmem-branes.FigureS32showsthetypicalstackingconfigurationsofthestackedmembranemodelsfromtwo-layerAl-MOFnanosheets.Fromourcalculations,itshowsthatthebindingenergyoftwo-layerAl-MOFnanosheetsinABstackingarethelowest,revealingthemoststablestructure.MDsimulationsAll-atommolecularstructuresofAl-MOFmembraneswerebuiltonthebasisoftheresultsofDFTsimulationsandchargedviatheGasteigermethod(34).Solvatingthefixedmembranesaccordingtotherequirementsof(i)soakingand(ii)diffusionprocessesisfur-therdescribedbelow.Onefree-vibratingimpermeablesheetwasplacedateachendofthereservoir,whichwasfarawayfromthesimulationboxboundary,tomaintainthesystemequilibrium.Lateron,weextendedthesystemwithperiodicboundaryconditioninalldirections.ThesimulationswereundertakenbyNotAnotherMolecularDynamics(NAMD)program(Git-2018-09-13Linux-x86_64-multicore)witha2-fstimestepunder300KthatwasperformedintheNVTensemble.NonbondedinteractionwascalculatedwithCHARMMGeneralForceFieldandMultivalentIonForceField(35),whichwereappliedwithLorentz-­Berthelotmixingrules.Itscutoffradiuswasusedwith12Å.ParticlemeshEwaldwasusedforlong-rangeelectrostaticinteraction,andSHAKEAlgorithmwasappliedonTIP3Pwatermolecules.1)Soakingprocess:Solvatingfixedtwo-layerAAorABstackedAl-MOFnanosheets(thecorrespondinginterlayerdistanceisbasedonDFTresults)withwatermolecules;averagingoutthenumberofwatermoleculesinsidemembranesover4nsformembranewaterdistributionandtransporttrajectory.2)Diffusionprocess:Solvatingfixedone-layerAl-MOFnano­sheetswithwatermoleculesandionizedonesidewith0.5MAlCl3,CoCl2,CaCl2,MgCl2,NaCl,andKCl,respectively;collectingthetotalnumberofwatermoleculesattheionizedsideover30nsforcalculatingtransmembranewaterflux.3)NaClrejectionperformancebytheslitchannel:Two-layerAl-MOFnanosheetswerebuiltforillustration.ThemiddlepartofthefirstAl-MOFnanosheetcrystallinewassubtracted,whilethesec-ondAl-MOFnanosheetcrystallinewasashortnanosheettocoverthedefectandformtherequiredslitchannelwiththefirstlayer;solvatingthemembranewithwatermoleculesandionizedonesidewith0.5MNaCl.ThecorrespondingNaClconcentrationwasaver-agedfroma2-nsfiltrationprocess.SUPPLEMENTARYMATERIALSSupplementarymaterialforthisarticleisavailableathttp://advances.sciencemag.org/cgi/content/full/6/23/eaay3998/DC1REFERENCESANDNOTES1.M.R.Chowdhury,J.Steffes,B.D.Huey,J.R.McCutcheon,3Dprintedpolyamidemembranesfordesalination.Science361,682–686(2018).2.W.J.Koros,C.Zhang,Materialsfornext-generationmolecularlyselectivesyntheticmembranes.Nat.Mater.16,289–297(2017).3.J.R.Werber,C.O.Osuji,M.Elimelech,Materialsfornext-generationdesalinationandwaterpurificationmembranes.Nat.Rev.Mater.1,16018(2016).4.D.L.Gin,R.D.Noble,Designingthenextgenerationofchemicalseparationmembranes.Science332,674–676(2011).5.H.B.Park,J.Kamcev,L.M.Robeson,M.Elimelech,B.D.Freeman,Maximizingtherightstuff:Thetrade-offbetweenmembranepermeabilityandselectivity.Science356,eaab0530(2017).Downloadedfromhttps://www.science.orgonOctober18,2021Jianetal.,Sci.Adv.2020;6:eaay39985June2020SCIENCEADVANCESRESEARCHARTICLE9of96.P.Wang,M.Wang,F.Liu,S.Y.Ding,X.Wang,G.Du,J.Liu,P.Apel,P.Kluth,C.Trautmann,Y.Wang,Ultrafastionsievingusingnanoporouspolymericmembranes.Nat.Commun.9,569(2018).7.M.Tsapatsis,Towardhigh-throughputzeolitemembranes.Science334,767–768(2011).8.R.H.Tunuguntla,R.Y.Henley,Y.C.Yao,T.A.Pham,M.Wanunu,A.Noy,Enhancedwaterpermeabilityandtunableionselectivityinsubnanometercarbonnanotubeporins.Science357,792–796(2017).9.B.J.Hinds,N.Chopra,T.Rantell,R.Andrews,V.Gavalas,L.G.Bachas,Alignedmultiwalledcarbonnanotubemembranes.Science303,62–65(2004).10.I.Stassen,M.Styles,G.Grenci,H.VanGorp,W.Vanderlinden,S.DeFeyter,P.Falcaro,D.DeVos,P.Vereecken,R.Ameloot,Chemicalvapourdepositionofzeoliticimidazolateframeworkthinfilms.Nat.Mater.15,304–310(2016).11.R.K.Joshi,P.Carbone,F.C.Wang,V.G.Kravets,Y.Su,I.V.Grigorieva,H.A.Wu,A.K.Geim,R.R.Nair,Preciseandultrafastmolecularsievingthroughgrapheneoxidemembranes.Science343,752–754(2014).12.H.Liu,H.Wang,X.Zhang,Facilefabricationoffreestandingultrathinreducedgrapheneoxidemembranesforwaterpurification.Adv.Mater.27,249–254(2015).13.Y.Kang,Y.Xia,H.Wang,X.Zhang,2Dlaminarmembranesforselectivewaterandiontransport.Adv.Funct.Mater.29,1902014(2019).14.Z.Zheng,R.Grünker,X.Feng,Synthetictwo-dimensionalmaterials:Anewparadigmofmembranesforultimateseparation.Adv.Mater.28,6529–6545(2016).15.B.Mi,Materialsscience.Grapheneoxidemembranesforionicandmolecularsieving.Science343,740–742(2014).16.J.Wang,P.Chen,B.Shi,W.Guo,M.Jaroniec,S.-Z.Qiao,Aregularlychanneledlamellarmembraneforunparalleledwaterandorganicspermeation.Angew.Chem.Int.Ed.Engl.57,6814–6818(2018).17.H.Furukawa,N.Ko,Y.B.Go,N.Aratani,S.B.Choi,E.Choi,A.O.Yazaydin,R.Q.Snurr,M.O’Keeffe,J.Kim,O.M.Yaghi,Ultrahighporosityinmetal-organicframeworks.Science329,424–428(2010).18.S.Qiu,M.Xue,G.Zhu,Metal-organicframeworkmembranes:Fromsynthesistoseparationapplication.Chem.Soc.Rev.43,6116–6140(2014).19.X.Li,Y.Liu,J.Wang,J.Gascon,J.Li,B.VanderBruggen,Metal–organicframeworksbasedmembranesforliquidseparation.Chem.Soc.Rev.46,7124–7144(2017).20.Y.Peng,Y.Li,Y.Ban,H.Jin,W.Jiao,X.Liu,W.Yang,Membranes.Metal-organicframeworknanosheetsasbuildingblocksformolecularsievingmembranes.Science346,1356–1359(2014).21.M.S.DennyJr.,J.C.Moreton,L.Benz,S.M.Cohen,Metal–organicframeworksformembrane-basedseparations.Nat.Rev.Mater.1,16078(2016).22.A.J.Howarth,Y.Liu,P.Li,Z.Li,T.C.Wang,J.T.Hupp,O.K.Farha,Chemical,thermalandmechanicalstabilitiesofmetal–organicframeworks.Nat.Rev.Mater.1,15018(2016).23.A.Fateeva,P.A.Chater,C.P.Ireland,A.A.Tahir,Y.Z.Khimyak,P.V.Wiper,J.R.Darwent,M.J.Rosseinsky,Awater-stableporphyrin-basedmetal–organicframeworkactiveforvisible-lightphotocatalysis.Angew.Chem.Int.Ed.51,7440–7444(2012).24.Y.Jiang,L.Cao,X.Hu,Z.Ren,C.Zhang,C.Wang,SimulatingpowderX-raydiffractionpatternsoftwo-dimensionalmaterials.Inorg.Chem.57,15123–15132(2018).25.S.Motoyama,R.Makiura,O.Sakata,H.Kitagawa,Highlycrystallinenanofilmbylayeringofporphyrinmetal−organicframeworksheets.J.Am.Chem.Soc.133,5640–5643(2011).26.R.Makiura,S.Motoyama,Y.Umemura,H.Yamanaka,O.Sakata,H.Kitagawa,Surfacenano-architectureofametal–organicframework.Nat.Mater.9,565–571(2010).27.J.R.Werber,A.Deshmukh,M.Elimelech,Thecriticalneedforincreasedselectivity,notincreasedwaterpermeability,fordesalinationmembranes.Environ.Sci.Technol.Lett.3,112–120(2016).28.M.P.Jian,H.Y.Liu,T.Williams,J.S.Ma,H.T.Wang,X.W.Zhang,Temperature-inducedorientedgrowthoflargearea,few-layer2Dmetal-organicframeworknanosheets.Chem.Commun.53,13161–13164(2017).29.M.Rastgar,A.Bozorg,A.Shakeri,Noveldimensionallycontrollednanoporeformingtemplateinforwardosmosismembranes.Environ.Sci.Technol.52,2704–2716(2018).30.W.A.Phillip,J.S.Yong,M.Elimelech,Reversedrawsolutepermeationinforwardosmosis:Modelingandexperiments.Environ.Sci.Technol.44,5170–5176(2010).31.Y.Wang,R.Ou,H.Wang,T.Xu,Grapheneoxidemodifiedgraphiticcarbonnitrideasamodifierforthinfilmcompositeforwardosmosismembrane.J.Membr.Sci.475,281–289(2015).32.N.-N.Bui,J.R.McCutcheon,Nanoparticle-embeddednanofibersinhighlypermselectivethin-filmnanocompositemembranesforforwardosmosis.J.Membr.Sci.518,338–346(2016).33.J.Tóth,Adsorption:Theory,Modeling,andAnalysis(MarcelDekkerInc.,2002),vol.107,878pp.34.J.Gasteiger,M.Marsili,Iterativepartialequalizationoforbitalelectronegativity—Arapidaccesstoatomiccharges.Tetrahedron36,3219–3228(1980).35.P.Li,L.F.Song,K.M.MerzJr.,Parameterizationofhighlychargedmetalionsusingthe12-6-4LJ-typenonbondedmodelinexplicitwater.J.Phys.Chem.B119,883–895(2014).36.X.Zou,G.Zhu,I.J.Hewitt,F.Sun,S.Qiu,Synthesisofametal-organicframeworkfilmbydirectconversiontechniqueforVOCssensing.DaltonTrans.3009–3013(2009).37.A.Fidalgo-Marijuan,G.Barandika,B.Bazán,M.K.Urtiaga,E.S.Larrea,M.Iglesias,L.Lezama,M.I.Arriortua,Heterogeneouscatalyticpropertiesofunprecedented-O-[FeTCPP]2dimers(H2TCPP=meso-tetra(4-carboxyphenyl)porphyrin):AnunusualsuperhyperfineEPRstructure.DaltonTrans.44,213–222(2015).38.H.-Y.Zeng,J.-Z.Du,S.Xu,M.-C.Liao,X.-J.Liu,H.-Z.Duan,C.-R.Chen,Influencesofaglycerinco-solventonthecompatibilityofMgAlhydrotalciteswithapolypropylenematrix.RSCAdv.5,64814–64820(2015).39.L.G.Joyner,E.P.Barrett,R.Skold,Thedeterminationofporevolumeandareadistributionsinporoussubstances.II.Comparisonbetweennitrogenisothermandmercuryporosimetermethods.J.Am.Chem.Soc.73,3155–3158(1951).40.W.L.Xu,C.Fang,F.Zhou,Z.Song,Q.Liu,R.Qiao,M.Yu,Self-assembly:Afacilewayofformingultrathin,high-performancegrapheneoxidemembranesforwaterpurification.NanoLett.17,2928–2933(2017).41.L.Chen,G.Shi,J.Shen,B.Peng,B.Zhang,Y.Wang,F.Bian,J.Wang,D.Li,Z.Qian,G.Xu,G.Liu,J.Zeng,L.Zhang,Y.Yang,G.Zhou,M.Wu,W.Jin,J.Li,H.Fang,Ionsievingingrapheneoxidemembranesviacationiccontrolofinterlayerspacing.Nature550,380–383(2017).42.J.Abraham,K.S.Vasu,C.D.Williams,K.Gopinadhan,Y.Su,C.T.Cherian,J.Dix,E.Prestat,S.J.Haigh,I.V.Grigorieva,P.Carbone,A.K.Geim,R.R.Nair,Tunablesievingofionsusinggrapheneoxidemembranes.Nat.Nanotechnol.12,546–550(2017).43.W.Hirunpinyopas,E.Prestat,S.D.Worrall,S.J.Haigh,R.A.W.Dryfe,M.A.Bissett,DesalinationandnanofiltrationthroughfunctionalizedlaminarMoS2membranes.ACSNano11,11082–11090(2017).44.M.Deng,K.Kwac,M.Li,Y.Jung,H.G.Park,Stability,molecularsieving,andiondiffusionselectivityofalamellarmembranefromtwo-dimensionalmolybdenumdisulfide.NanoLett.17,2342–2348(2017).45.Z.Lu,Y.Wei,J.Deng,L.Ding,Z.K.Li,H.Wang,Self-crosslinkedMXene(Ti3C2Tx)membraneswithgoodantiswellingpropertyformonovalentmetalionexclusion.ACSNano13,10535–10544(2019).46.R.A.Robinson,R.H.Stokes,ElectrolyteSolutions(DoverPublications,ed.2,2002).Acknowledgments:ThisworkwasperformedinpartattheMelbourneCentreforNanofabrication(MCN)intheVictorianNodeoftheAustralianNationalFabricationFacility(ANFF).WethanktheAustralianSynchrotronfortheuseofthePowderDiffractionBeamline.WealsoacknowledgetheuseoffacilitieswithintheMonashCentreforElectronMicroscopy(MCEM)andtheMonashX-rayPlatform(MXP).DFTcalculationwasperformedonAustralianSynchrotronComputeInfrastructure(ASCI).TheMDsimulationwasundertakenwiththeassistanceofresourcesandservices(theNationalKeyResearchandDevelopmentProgramofChina,ISTCP,2016YFE0101200)fromSoochowUniversity.AlldataarereportedinthemaintextandtheSupplementaryMaterials.Funding:ThisworkwassupportedbyAustralianResearchCouncilResearchHubforEnergy-EfficientSeparation(IH170100009).M.J.thanksMonashUniversityandtheMonashCentreforAtomicallyThinMaterials(MCATM)forthescholarships.Authorcontributions:X.Z.andM.J.designedtheproject.M.J.carriedouttheexperimentsandanalysiswithhelpfromY.X.andJ.L.R.Q.carriedoutMDsimulationsanddataanalysis.Y.C.helpedinTEMcharacterizations.Q.G.contributedtosynchrotroncharacterizationandDFTcalculations.R.L.,C.H.,J.Q.,andH.W.participatedindiscussionsandanalyzedthedata.M.J.andX.Z.wrotethemanuscriptwithinputfromallauthors.Competinginterests:M.J.andX.Z.areinventorsonapatentapplicationrelatedtothisworkfiledbyMonashUniversity(AustralianProvisionalPatentApplicationNo.2020900819,filed17March2020).Theauthorsdeclarethattheyhavenoothercompetinginterests.Dataandmaterialsavailability:Alldataneededtoevaluatetheconclusionsinthepaperarepresentinthepaperand/ortheSupplementaryMaterials.Additionaldatarelatedtothispapermayberequestedfromtheauthors.Submitted14June2019Accepted1April2020Published5June202010.1126/sciadv.aay3998Citation:M.Jian,R.Qiu,Y.Xia,J.Lu,Y.Chen,Q.Gu,R.Liu,C.Hu,J.Qu,H.Wang,X.Zhang,Ultrathinwater-stablemetal-organicframeworkmembranesforionseparation.Sci.Adv.6,eaay3998(2020).Downloadedfromhttps://www.science.orgonOctober18,2021UseofthinkarticleissubjecttotheTermsofserviceScienceAdvances(ISSN2375-2548)ispublishedbytheAmericanAssociationfortheAdvancementofScience.1200NewYorkAvenueNW,Washington,DC20005.ThetitleScienceAdvancesisaregisteredtrademarkofAAAS.Copyright©2020TheAuthors,somerightsreserved;exclusivelicenseeAmericanAssociationfortheAdvancementofScience.NoclaimtooriginalU.S.GovernmentWorks.DistributedunderaCreativeCommonsAttributionNonCommercialLicense4.0(CCBY-NC).Ultrathinwater-stablemetal-organicframeworkmembranesforionseparationMeipengJianRuosangQiuYunXiaJunLuYuChenQinfenGuRuipingLiuChengzhiHuJiuhuiQuHuantingWangXiwangZhangSci.Adv.,6(23),eaay3998.•DOI:10.1126/sciadv.aay3998Viewthearticleonlinehttps://www.science.org/doi/10.1126/sciadv.aay3998Permissionshttps://www.science.org/help/reprints-and-permissionsDownloadedfromhttps://www.science.orgonOctober18,2021

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱