Jianetal.,Sci.Adv.2020;6:eaay39985June2020SCIENCEADVANCESRESEARCHARTICLE1of9MATERIALSSCIENCEUltrathinwater-stablemetal-organicframeworkmembranesforionseparationMeipengJian1,RuosangQiu1,YunXia1,JunLu1,YuChen2,QinfenGu3,RuipingLiu4,5,ChengzhiHu4,JiuhuiQu4,5,HuantingWang1,XiwangZhang1Owingtotherichporosityanduniformporesize,metal-organicframeworks(MOFs)offersubstantialadvantagesoverothermaterialsforthepreciseandfastmembraneseparation.However,achievingultrathinwater-stableMOFmembranesremainsagreatchallenge.Here,wefirstreportthesuccessfulexfoliationoftwo-dimensional(2D)monolayeraluminumtetra-(4-carboxyphenyl)porphyrinframework(termedAl-MOF)nanosheets.Ultrathinwater-stableAl-MOFmembranesareassembledbyusingtheexfoliatednanosheetsasbuildingblocks.Whileachievingawaterfluxofupto2.2molm−2hour−1bar−1,theobtained2DAl-MOFlaminarmembranesexhibitre-jectionratesofnearly100%oninvestigatedinorganicions.ThesimulationresultsconfirmthatintrinsicnanoporesoftheAl-MOFnanosheetsdomaintheion/waterseparation,andtheverticallyalignedaperturechannelsarethemaintransportpathwaysforwatermolecules.INTRODUCTIONIonseparationwithenergy-efficientandenvironment-friendlymem-branesisessentialinwaterenvironmentalfields,e.g.,wastewaterrecyclingandseawaterandbrackishwaterdesalination(1).Polymersare,byfar,themostwidespreadmembranematerials,largelyowingtotheireasyprocessabilityandlowcost(2).However,traditionalpolymericmembranesforionseparationfromwaterareusuallywithadense-selectivelayer,leadingtotheinsurmountablepermeability-selectivitytrade-off,governedbythesolution-diffusionmodel(3).Incontrast,nanoporousmembraneswherenanoporesactasthesievingrolemayovercomethelimitation(4,5).Inthisregard,re-centadvancesinnanoporousmembranes,suchasporouspolymers,nanotube,zeolite,andaquaporin-basedmembranes,havewitnessedsubstantialprogress(6–8).Theadvancementscollectivelyrecognizedthepotentialofnanoporousmembranesinenhancingionsievingcapacityiftheseparationchannelsareproperlydesigned.Neverthe-less,mostnanoporousmembranesareusuallythickatmicrometerscaleandareformedbydiscretechannels,hamperingmembranepermeability(9,10).Recently,two-dimensional(2D)materials,suchasgrapheneoxide(GO),reducedGO,MoS2,etc.,haverecentlyemergedasbuildingblocksformembranesynthesis(11–13).These2Dnanosheetshaveconstructedanewclassofmembraneswithanultrathinthickness,inwhichtheinterlayerspacebetweenadjacentnanosheetsactsasselectivenanochannelsforionsieving(14).De-spitethethinarchitectureandspecialtransportchannelsofthese2Dlaminarmembranes,therearestilldeficienciesinseparationperformance,suchashightransporttortuosityandinsecure/improperinterlayerdistance(15,16).Metal-organicframeworks(MOFs)areascientificallycompellingandevolvingclassofhighlyporousmaterials(17).Thus,MOFsareexpectedtobeoneofthemostpromisingmaterialsforseparationmembranes(18,19).Inparticular,theuseof2DMOFnanosheet-basedmembranesforgasseparationholdsthepromiseofmakingabreakthroughinachievingasimultaneousincreaseofbothpermea-bilityandselectivity(20).However,itremainsadauntingchallengetofabricateultrathinMOFmembranes(lessthan100nm)forwater-relatedprocessing,sincemostreportedMOFmembranesaretypicallythickbecauseof3Dcrystalconstitutionandsufferfrominsufficienthydrolyticstability(21,22).Here,wereportthepreparationofwater-stablemonolayeralumi-numtetra-(4-carboxyphenyl)porphyrinframework(termedAl-MOF)nanosheetsanddemonstratetheirexcellenceasbuildingmaterialsformembranesinionseparationfromwater.ExfoliatedAl-MOFnanosheetsexhibitalong-termstructuralrobustnessinaqueousenvironmentandcanformalaminarmembraneviaafacilevacuumfiltrationonporoussubstrates.Theresulting2DAl-MOFlaminarmembraneexhibitsanextremelylowpermeabilitytotestedions(~3.3×10−6molm−2hour−1bar−1)butachieveswaterfluxesofupto2.2molm−2hour−1bar−1.Overall,the2DMOFmembranesout-performthemostreported2Dlaminarmembranesonthewater/ionselectivity.Inaddition,theinterlayerdistanceintheAl-MOFlami-narmembraneisself-lockedviaparallel-interactions,leadingtoasteadyperformanceformorethan750hours.RESULTSANDDISCUSSIONBulk-typeAl-MOFcrystalswereobtainedthroughamodifiedsolvent-thermalmethod(23).Thecorrespondingscanningelectronmicroscopy(SEM)andatomicforcemicroscopy(AFM)images(Fig.1Aandfig.S1,AandB)showalayeredcrystallinestructure.Consider-ingtheweakinterlayerbondinginthe[0k0]directionofthebulk-typeAl-MOFcrystals,afacilesonicationapproachwasusedtosuccessfullyexfoliatetheminto2Dnanosheets(Methodsectionandfig.S1C).Impressively,theconvenientexfoliationroutecanreachahighnanosheetyieldofapproximately90%(fig.S1D).The2DultrathinmorphologyofexfoliatedAl-MOFnanosheetsisrevealedbytrans-missionelectronmicroscopy(TEM)images(Fig.1Bandfig.S2A).Morethan80%oftheAl-MOFnanosheetshavealateralsizebetween200nmand2m(fig.S2B).Aftertheexfoliation,theAl-MOF1DepartmentofChemicalEngineering,MonashUniversity,Clayton,Victoria3800,Australia.2MonashCentreforElectronMicroscopy,MonashUniversity,Clayton,Victoria3800,Australia.3AustralianSynchrotron(ANSTO),Clayton,Victoria,3168,Australia.4StateKeyLaboratoryofEnvironmentalAquaticChemistry,ResearchCenterforEco-EnvironmentalSciences,ChineseAcademyofSciences,Beijing100085,China.5CenterforWaterandEcology,StateKeyJointLaboratoryofEnvironmentSimulationandPollutionControl,SchoolofEnvironment,TsinghuaUniversity,Beijing100084,China.Correspondingauthor.Email:xiwang.zhang@monash.edu(X.Z.);qinfeng@ansto.gov.au(Q.G.)Copyright©2020TheAuthors,somerightsreserved;exclusivelicenseeAmericanAssociationfortheAdvancementofScience.NoclaimtooriginalU.S.GovernmentWorks.DistributedunderaCreativeCommonsAttributionNonCommercialLicense4.0(CCBY-NC).Downloadedfromhttps://www.science.orgonOctober18,2021Jianetal.,Sci.Adv.2020;6:eaay39985June2020SCIENCEADVANCESRESEARCHARTICLE2of9nanosheetsuspensionshowsanexcellentdispersibility,andthecol-loidalsolutioncanbereservedformorethan2months(fig.S2C).ThethicknessofAl-MOFnanosheetswasmeasuredbyAFMtobearound1.9nm(Fig.1C),whichisclosetothetheoreticalheight(~1.35nm)ofamonolayerAl-MOFnanosheet(Fig.1D).ThecrystallinityofAl-MOFnanosheetswasexaminedbysyn-chrotronx-raypowderdiffraction(XRD).ThecrystalstructuresofAl-MOFcrystalsvieweddownthe[001]directionandthemono-layerAl-MOFnanosheetviewedfromthe[010]directionareillus-tratedinFig.1(DandE,respectively).TheobservedXRDpatternofexfoliatedAl-MOFnanosheetsfitwellwiththecalculatedpat-ternsofmonolayerAl-MOFnanosheets(Fig.1F),confirmingtheirinherentstructuralfeaturesofAl-MOFcrystal.Inaddition,aselected-areaelectrondiffractionpatterngivesindividualdiffractionspots,demonstratingthesingle-crystalnatureoftheexfoliatedAl-MOFnanosheets(fig.S3).ComparedwithAl-MOFbulks,XRDpeaksofAl-MOFnanosheetsareweak,andafewpeaksevendisappear(fig.S4),largelyowingtothelossofdiffractionsignalsintheout-of-planedirectionandthenonplanarshapeofthenanosheets(24).X-rayphotoelectronspectroscopy(XPS),energy-dispersivespectroscopy(EDS),ultraviolet-visiblespectra(UV-Vis),attenuatedtotalreflec-tanceFouriertransforminfraredspectroscopy(ATR-FTIR),andthermogravimetricanalysis(TGA)characterizationsinfigs.S5toS9furtherrevealthattheexfoliatednanosheetspreservethestruc-turalintegrity.ExfoliatedAl-MOFnanosheetsalsofeatureamicroporousstruc-ture(typeIisotherm)andgiveaspecificsurfaceareaof602m2g−1(fig.S10A).Meanwhile,itdisplaysauthenticangstrom-sizeporesfromexperimentalisothermanalysesinFig.1G.However,theporedistributionplotofAl-MOFnanosheetsshowsaslightdifferencefromthatofitsbulkcounterpart,whichcouldbecausedbytheex-foliationeffectandinevitablerestackingofdriednanosheetsalongthe[0k0]direction(fig.S10B).Toassessthewaterstability,Al-MOFnanosheetsweresoakedinwaterforamonth.Thewater-treatedAl-MOFnanosheetsexhibitedidenticalXRDpatternstotheirini-tialstatus(fig.S11).Furthermore,theN2adsorption-desorptionFig.1.SynthesisandstructureofAl-MOFnanosheets.(A)SEMimageoftherepresentativeAl-MOFbulkcrystals.(B)TEMimageofexfoliatedAl-MOFnanosheets.(C)AFMtopographicalimageofAl-MOFnanosheetsonasiliconwafer.Insetisthecorrespondingheightprofile.(D)SinglemonolayerAl-MOFnanosheetviewedfromthe[001]direction.(E)CrystalstructureofAl-MOFvieweddownthe[010]direction.TheAlcoordinationpolyhedraaredepictedinblue,whereasnitrogen,oxygen,andcarbonatomsareshowninpurple,red,andgray,respectively.Hatomsareomittedforclarity.(F)RietveldrefinementofthesynchrotronXRDdataofAl-MOFnanosheets.a.u.,arbitraryunits.(G)Pore-sizedistributionofAl-MOFnanosheetsfromN2adsorption-desorptionmeasurement.Downloadedfromhttps://www.science.orgonOctober18,2021Jianetal.,Sci.Adv.2020;6:eaay39985June2020SCIENCEADVANCESRESEARCHARTICLE3of9isothermandporedistributionoftheAl-MOFnanosheets,afterbeingimmergedinwater,werebothsimilartothoseofthepristinesample(fig.S12).Likewise,porphyrinligandandAl3+werenotpresentinthefiltrateafter1-monthwaterstabilitytest(fig.S13).TheseresultsconfirmtheunchangedcrystallinityofAl-MOFnanosheetsafterprolongedimmersioninwater.Inanotheraspect,Al-MOFnanosheetskepttheircharacteristicdiffractionpeaksafterbeingexchangedwithNaCl(fig.S14A),whichindicatesthatAl-MOFnanosheetscouldwithstandexposuretoinorganicions,havingadesiredchemicalendurance.Insituhigh-temperaturesynchrotronXRDcharacterizationwasalsoconductedonAl-MOFnanosheetsfrom50°to190°C,andnoobviousvariationswereobservedonthephasetransformationsandcrystallinelatticeswiththeincreaseintemperature,whichelucidatestheporerigidityinAl-MOFnanosheets(fig.S14,BtoD).A2DAl-MOFlaminarmembrane(Fig.2A)wasassembledbyvacuumfiltrationofadilutedAl-MOFnanosheetsuspension(fig.S15)usinganodicaluminumoxide(AAO)supportwithaporesizeof100nm.InanapparentcontrasttobareAAOsupport(Fig.2B),atop-viewSEMimageofa~10-nm-thickmembraneshowsauni-formcoverageofAl-MOFnanosheetsonthesurfaceofAAOsup-port,andnovisibledefectswereobserved(Fig.2C).ThecontinuousandflatAl-MOFlaminarmembranewasvisualizedbyAFMandcross-sectionalSEMcharacterizations(Fig.2Dandfig.S16).Inad-dition,themembraneexhibitsahydrophiliccharacter,demonstratedbyawatercontactangleof44°(fig.S17).BycontrollingtheloadingofAl-MOFnanosheets,thethicknessofthemembranescanbepre-ciselytunedfromafewnanometerstomicrometers(Fig.2Eandfigs.S18andS19).Notably,atypicalhomogeneouslaminarstruc-tureisseenwhenthemembranethicknessreaches500nm(Fig.2E).Fig.2.CharacterizationsofAl-MOFmembranes.(A)Digitalphotoofanas-prepared100-nm-thickAl-MOFlaminarmembraneonAAOsubstrate.(B)SEMimageofabareAAOsubstrate.(C)SEMimageofasub–10-nm-thickAl-MOFlaminarmembraneonAAOsubstrate.Thevisibilityofsubstratebackgroundelucidatestheultrathincoverage.(D)Cross-sectionaloverviewofa100-nm-thickAl-MOFlaminarmembraneonAAOsubstrate.(E)Magnifiedcross-sectionalviewsof2DAl-MOFmembraneswithdifferentthicknesses.Membraneslessthan100nm(greenandgold)showacompactstacking,whereasthemembraneatathicknessof500nm(purple)apparentlyshowstypicallaminarstructure.Scalebars,500nm.(F)Cross-sectionalTEMimageofthe2DAl-MOFlaminarmembrane.(G)GIXRDpatternoftheAl-MOFlaminarmem-brane.Thepatternwasacquiredfromathickmembrane(~20m)duetothedetectionlimit.Thesharp(0k0)phasepeakat2=7.6°indicatesanaveragevalueof6.0Å.Downloadedfromhttps://www.science.orgonOctober18,2021Jianetal.,Sci.Adv.2020;6:eaay39985June2020SCIENCEADVANCESRESEARCHARTICLE4of9Thelaminarstructurewasalsorevealedbyacross-sectionalTEMcharacterization(Fig.2F).Furthermore,thesynchrotrongrazingincidencex-raydiffraction(GIXRD)analysisobservedaprominent(0k0)peakat2=7.6°,showingthedvalueof~6.0Å.Thismani-feststhattheslitwidth(h)isclosetothesizeoftherectangularporeinonelayer(δ=6.1Å;Fig.2Gandinset).ThewaterpermeationacrosstheAl-MOFlaminarmembranewasfirstexaminedbymeasuringtheweightlossofacontainercov-eredbya100-nm-thickAl-MOFmembrane(fig.S20).Figure3Ashowsthatthewaterevaporationrateofthesealedcontainerisclosetothatoftheopenaperture(intheabsenceoftheAl-MOFmem-brane).ThisdemonstratestheunimpededwatervaporflowthroughtheAl-MOFmembrane.Afterward,wefurtherinvestigatedtheper-meationoftheAl-MOFmembraneforliquidwaterinadiffusioncellusingdeionizedwaterand0.5MCoCl2asfeedanddrawsolu-tions,respectively(fig.S21).Thevolumeofthedrawsolutiongrad-uallyincreasedwithtime,owingtowatertransportfromthefeedsidedrivenbytheosmoticpressuredifference(Fig.3B).ThetwoexperimentscollectivelyshowthattheAl-MOFlaminarmembraneispermeabletowatermolecules.Inthediffusiontest,itisworthnotingthatthewaterpermeanceisdependentonthesaltinthedrawsolutions.HighwaterpermeancewasachievedbyAlCl3andCoCl2solutions,whereasrelativelylowwaterpermeancewasachievedforNaCl,KCl,MgCl2,andCaCl2solutions(Fig.3C).ThisanomalousresultmightbecausedbythedifferenceintheaffinityofthesecationsontoAl-MOFsheets,whichwasverifiedbyanadsorptionexperiment(fig.S22).FurtherXPScharacterizationshowsthatalu-minumhydroxylgroupsfromAl-MOFnanosheetsplayavitalroleinadsorbingtheseions(fig.S23).Consideringthattheadsorbedionssuppresswatertransporttosomeextent,surfacemodificationtoinhibitadsorptionofionscouldbeastrategyinfuturestudiestoimprovethewaterpermeanceoftheAl-MOFmembranes.ThepermeationratesoftheseionsintheAl-MOFlaminarmem-branewerealsoevaluatedinthediffusioncell,using0.5MNaCl,KCl,MgCl2,CaCl2,AlCl3,andCoCl2,respectively.Theyareallultralow,lessthan3.3×10−6molm−2hour−1bar−1(Fig.3C),whichisgenerallyconsideredimpermeable(nearly100%rejection)(11).Comparedwithotherreported2Dlaminarmembranes,theAl-MOFmembranehasalowerionpermeance(tableS1).AfterthediffusiontestingusingNaCl,thesurfaceandunderneathlayersoftheusedmembranewerecharacterizedbyXPS.Exceptforthemembranesurface,NaClwashardlydetectedinsidethemembrane(fig.S24).ThisfurtherverifiesthehindranceofAl-MOFporesonthehydratedsalts.Inaddition,anionspecieshavenoapparentimpactonsaltpermeation(fig.S25).Becauseoftheaffinityofsomesalts(NaCl,KCl,MgCl2,andCaCl2)onAl-MOFactivesites,thewaterpermeanceFig.3.PerformancesofAl-MOFmembranes.(A)WaterevaporationthroughtheAl-MOFmembrane.Thefiguredepictstheweightlossofwaterfromacontainersealedwitha100-nm-thickAl-MOFmembrane.Insetisaschematicsetupforthewaterevaporationprocess.(B)Liquidvolumechangeofthedrawsolutionwithtimeduringthediffusionprocess.FeedsideisDIwater,whereasdrawsideis0.5MCoCl2aqueoussolution.InsetisaschematicU-shapedsetupforthediffusionprocess.(C)Waterfluxthrougha100-nm-thickAl-MOFmembraneusingdifferentdrawsolutions(0.5M)andthecorrespondingionpermeationrates.(D)Correlationbetweenwaterfluxandwater/saltselectivityofAl-MOFmembranesandotherrepresentative2Dlaminarmembranesondifferentsupports.ThedetaileddataarelistedintableS1.Eachsetofsymbolsrepresentsadifferentsalt.Downloadedfromhttps://www.science.orgonOctober18,2021Jianetal.,Sci.Adv.2020;6:eaay39985June2020SCIENCEADVANCESRESEARCHARTICLE5of9ofAl-MOFlaminarmembranesiscomparablylow.Despitethat,thewaterpermeanceoftheAl-MOFmembraneisstillcomparabletothoseofthestate-of-the-art2DlaminarmembraneswhenAlCl3andCoCl2areusedasdrawsolutions(Fig.3D).Notably,thewaterpermeanceoftheAl-MOFmembranecanbeexponentiallyincreasedto2.22molm−2hour−1bar−1byreducingthethicknessdownto20nm,whilehighsaltrejectionremains(fig.S26).Owingtotheultralowsaltpermeation,thewater/ionselectivityoftheAl-MOFlaminarmembranereachesupto5.00×105(Fig.3DandtableS1),whichoutperformsmost2Dlaminarmembranesondifferentsub-stratesreportedsofar.Thelong-termintegrityoftheAl-MOFmembranewasexaminedbyassessingtheNa+permeationrateandwaterfluxinacontinuoustesting.Asshowninfig.S27,thesteadyplotofNa+concentrationatthefeedsideandaconstantwaterfluxofthemembraneover30dayswereobserved,confirmingthelong-lastingstability.ThesuperiorstabilityofAl-MOFmembranesshouldbeattributedtothelockingeffectofadjacentnanosheetsbymeansofparallel-interaction(25,26).Meanwhile,fig.S28givestheunchangedreflection(0k0)peakat2=7.6°oftheAl-MOFmembraneafter1-monthcontinuoustesting.Furthermore,theantiswellingabilityofAl-MOFmembraneswerevisuallyexamined(fig.S29).InadditiontotheAAOsubstrate,Al-MOFlaminarmembraneswithsimilarperformancewerealsosuccessfullysynthesizedonlow-costpolymersubstratessuchaspolycarbonateandpolyethersulfone(fig.S30).Moleculardynamics(MD)simulationswereconductedtogaininsightsintosaltrejectionandwatertransportintheAl-MOFmembrane.First,thekineticbehaviorofwaterandiontransportFig.4.WatertransportbehaviorthroughAl-MOFmembranes.(A)CrystallineillustrationofAl-MOFmembraneconstructedwithtwo-layernanosheetsunderABstackingsequence(viewedalongthe[010]direction).Dashedlinespresenttwodifferentincisionpositionsforcross-sectionalmembranegeometries(markedwithcut1andcut2,respectively).Belowfigureisthecorrespondingwaterdensitymap.Thebluecolorcorrespondstonowaterexistenceandtheredcorrespondstothemaximumwaterdensity.(B)Linearwaterdensityprofilecollectedfromtheupperwaterdensitymap.Whitelinesrepresentthewaterdensityinthethreearrangedpores(9.3ÅintheXaxis×3.7ÅintheYaxis),andredlinesrefertothatinthetwoarrangedpores(3.7ÅintheXaxis×9.3ÅintheYaxis),asillustratedinwhiteandreddashedrectangles,respectively.(C)Sideviewofthemembraneatcut1sectionisviewedalongthe[001]direction,whichgivestheinterlayerdistanceof6.1Å.Belowfigureisthecorrespond-ingwaterdensitymap.(D)Sideviewofthemembraneatcut2sectionisviewedalongthe[100]direction.Whitedashedrectanglesstandforthelow-waterdensitiesinsidetheinterlayerspace.Downloadedfromhttps://www.science.orgonOctober18,2021Jianetal.,Sci.Adv.2020;6:eaay39985June2020SCIENCEADVANCESRESEARCHARTICLE6of9acrosstheporeapertureofAl-MOFmembraneswassimulated.Inaccordancewiththeexperimentalresults,allexaminedionsareef-fectivelyblockedbytheAl-MOFnanopores,whereaswatermole-culesareallowedtopenetrateonthebasisofsizeexclusion(tableS2andfig.S31).AlthoughbothAAandABstackingregimesaretheo-reticallypossiblewhenAl-MOFnanosheetsareassembledintomembranes,densityfunctionaltheory(DFT)calculationrevealsthatABstackingismorelikelythanAAstackingduetoalowerDFTenergy(fig.S32).TheDFTcalculationalsoshowsthattheinterlayerspaceoftheAl-MOFlaminarmembraneformedviaABstackingis6.1Å,whichisconsistentwiththeGIXRDcharacterization(Fig.2Gandfig.S32).Therefore,onthebasisofABstacking,anMDmodelfortheAl-MOFlaminarmembranewasbuilt,whichconsistsoftwo-layerAl-MOFnanosheets(Fig.4),tocomputetheprobabilitydistributionofwatermoleculesinsidethemembrane.Thewaterdensitymap(Fig.4A)revealsthatthewaterflowishighlylocalizedtotheintrinsicporesofAl-MOFnanosheets.Fur-thermore,thecorrespondinglineargradientprofile(Fig.4B)indi-catesthatwatermoleculesalignsidebysidewhenflowingthroughthesepores(asillustratedinthewaterdensitymap)duetoconfinedspace.ThesideviewsofwatertransportchannelsoftheABstackedmembranearepresentedbyusingtwoincisionpositions(Fig.4,CandD).Mostofthewatermoleculesareobservedinthestraightchannels(theverticallyalignedintrinsicporesofneighboringAl-MOFnanosheets),whereasasmallamountofwaterisintheinter-layerspaces,asindicatedwithwhitedashedrectangles(Fig.4,CandD).Thisisinagreementwiththewatertrajectoryresults,whichshowthatmostwatermoleculesflowthroughtheAl-MOFmembraneviatheverticallyalignedaperturechannels(straightflow),andonly17.08%ofwatermoleculesshiftfromonechanneltoanotherviatheinterlayerspace(shiftflow)whenpassingthroughthemembrane(fig.S33).SimilarwaterdynamicbehaviorwasobservedinAAstackingmodel(fig.S34),althoughtheshiftflowismuchmorelikelytooccurbecauseoftherelativelylargerinterlayerspaces(6.2and12.5Å).Furthermore,theMDsimulationsonNaCldiffusionrevealthatsaltspeciescannotpermeatethroughtheslitchannelsbetweenthenanosheetsinbothABandAAstackedmembranes(fig.S35).CONCLUSIONOurfindingsdemonstratedthefabricationofultrathinnanoporousmembranesassembledby2DMOFnanosheetsforionseparationfromwater.Theobtainedlaminarmembraneexhibitedanexcellentlong-termstabilityinwater,againsttheintractableswellingfor2D-basedmembranes.Allthetestedionshadultralowpermeationrates,whichwereattributedtotheAl-MOFporehindrance.WatertransportmainlyoccursintheverticallyalignedaperturechannelsformedbytheintrinsicporesofAl-MOFnanosheets.Thismembraneopensupthepossibilitytoexploreemergingnanoporous-basedmembranesandmeetsthecriticalneedforincreasedselectivityfordesalinationmembranes(27).However,weenvisagethatfullunder-standingofthemembranerequiresfurthereffortsintermsofapertureshape,channelcharge,transportfriction,poredensity,etc.MATERIALSANDMETHODSMaterialsAl(NO3)3·9H2O,pyrazine,andp-xylenewereallpurchasedfromSigma-Aldrich.Tetrakis(4-carboxyphenyl)porphyrin(H2TCPP,97%)waspurchasedfromTokyoChemicalIndustryCo.Ltd.Allsaltpowders,N,N-dimethylformamide(DMF),andethanolwerepurchasedfromMerck.Allthechemicalswereofanalyticalgradeandwereusedasre-ceivedwithoutfurtherpurification.Deionizedwaterusedinallexper-imentswasfromaMilli-Qsystem(AdvantageA10,MerckMillipore,USA).AAOdiscfilters(100-nmpore,13-mmdiameter)werepurchasedfromGEHealthcareWhatman.Polyethersulfone(PES;30-nmpore,13-mmdiameter)andpolycarbonatetracketch(PCTE;100-nmpore,25-mmdiameter)membranefilterswerepurchasedfromSteritech.MethodsSynthesisofAl-MOFbulksBulk-typeAl-MOFwaspreparedfollowingamodifiedmethodinourpreviousstudy(28).First,93.23mgofAl(NO3)3·9H2O,14mgpyrazine,150mlofN,N-dimethylformamide(DMF),and50mlofethanolweremixedina250-mlSchottDuranbottleandsonicated30mintodissolvecompletelyatroomtemperature.ThisistheAlprecursorsolutionforAl-MOFproduction.Second,200mgoftetrakis(4-carboxyphenyl)porphyrin(H2TCPP)wasdissolvedin200mlofDMFwithanassistanceof30-minsonication.ThisistheligandsolutionforAl-MOFsynthesis.Al-MOFbulksweresynthe-sizedinatypicalprocedurebypipetting8mlofAlprecursorsolu-tionand4mloftheligandsolutionina20-mlglassvial,respectively.Theglassvialwasthencapped,andthemixturewasstirredonanorbitalvortexshaker(Labco)for1min.Afterward,thecappedvialswereheatedto120°Cfor16hoursinanoilbath.Last,theresultingpurpleprecipitatewascollectedbycentrifugationandwashedthreetimeswith40mlofabsoluteethanol.SonicationexfoliationofAl-MOFbulkstomonolayernanosheetsLikewise,Al-MOFbulksfromfourglassvialswereobtainedafterthesolvent-thermalreaction.Thepurpleresultantwaswashedwithabsolute40mlofDMFtwiceand40mlofethanolonce,respectively.Thefinaldispersioninethanolwasthenbath-sonicatedfor3hoursusingaUnisonicsFXP12Msonicbath(40kHz,100W).Tocombattheconsiderablewaterheatingcausedbyconsecutivesonication,thebathwaterwasrenewedperiodicallyevery30min.Aftersonica-tion,thesuspensionbecomeshighlydispersed.Toremovetheun-exfoliatedbulks,thedispersionwascentrifuged(Sigma2-16P)at8500rpmfor30min.Theretainedsupernatantwasthususedformembraneassembling.TheexfoliationyieldratewascalculatedthroughUV-Vismonitor,asshowninfig.S2(DandE).ToobtaindriedsamplesofAl-MOFnanosheetsandbulksforfuturecharac-terizations,weusedafreeze-dryingprocess,whichwasperformedinafreezedryer(FreeZone2.5liters,LabconcoCorporation,USA).Forthesakeofeliminatingwaterinterference,theas-synthesizedAl-MOFnanosheetsandbulksweredriedbyfreezingtheircolloidalsuspensionsinp-xyleneandremovingthesolventviafreeze-dryingfor3days.Al-MOFnanosheetsafterthewaterstabilitytestweredriedfollowingthesameprocessesasdescribedabove,exceptthatwaterwasusedasthesolvent.PreparationofAl-MOFnanosheetaqueoussuspension(1mg/liter)OriginalAl-MOFnanosheetdispersioninethanolwascalibratedat2000mg/literbyaUV-Visspectrophotometerbasedonthepre-determinedstandardcurve(fig.S2,DandE).Wethendilutedtheabovedispersionto1mg/literwithdeionized(DI)waterformem-branepreparation,asshowninfig.S14.MembranefabricationAl-MOFmembraneswerefabricatedbyavacuumfiltration(Welch,2511WOB-LPump)ofthedilutedAl-MOFnanosheetaqueousDownloadedfromhttps://www.science.orgonOctober18,2021Jianetal.,Sci.Adv.2020;6:eaay39985June2020SCIENCEADVANCESRESEARCHARTICLE7of9suspension(1mg/liter)ontheprescribedporoussubstrates(seemoreinformationofthesesubstratesin“Materials”section).TheAl-MOFnanosheetloading(g/mm2)ormembranethickness(nm)wascon-trolledbyvaryingthevolumeoftheAl-MOFsuspensiontobefil-tered.Forconsistency,themembranesdescribedinthisworkwereall100nmthick,unlessspecifiedotherwise.Theresultantmem-branesweredriedinanovenat60°Covernightandthenstoredinavacuumdesiccatorbeforetesting.MembranesealingPleaserefertofig.S21fordetailedsteps.CharacterizationX-raypowderdiffraction.Becauseofthedetectionlimitoflabora-toryx-raysources,thestructureandphasetransformationofAl-MOFsamplesweredeterminedbyusingsynchrotronXRD.Al-MOFnanosheetsandbulksampleswereloadedin0.5-mmIDKaptoncapillaries,whichweresealedatbothendswithaLoctiteadhesive.Thepatternswerecollectedatanenergyof18keV(=0.812Å)andaMYTHEN-IIcapillarydetector(d=250mm)onthehigh-resolutionpowderdiffractionbeamlineatAustralianSynchrotron(ANSTO).Withregardtothemembranespecimens,GIXRDisapowerfulmethodtoprovideinformationoftheinterlayerdistanced(nm).However,owingtothex-raydiffractiondetectionlimitforthinmembranes,weelaboratelypreparedathickfreestandingmem-brane(~20m)toharvestthesignals.ThethickfreestandingAl-MOFmembranewasfirstfabricatedbyvacuumfiltrationofAl-MOFnanosheetsonaPCTEsupportandthenslowlytransferredinDMFsolvent(membranesidefaceup).Afterapproximately5min,PCTEsubstratewascompletelydissolvedinDMF,andthethickfreestandingAl-MOFmembranewouldbefloatedonthesurfaceofDMF.Afterward,asquaretransparentmicroscopeglassslide(35cmby35cm,1-mmthickness,ThermoFisherScientific)wasusedtomaketheisolatedmembraneintegralseatedonthesurface.Intheend,thethickmembraneontheslidewasdriedfor2daysintheovenat80°C.Field-emissionscanningelectronmicroscope.Themorphologyofthesampleswasdetectedviaafield-emissionscanningelectronmi-croscope(FESEM;FEIMagellan400XHR)equippedwithEDS.ForexaminingmorphologiesofAl-MOFnanosheetsandbulks,onedrop(1-cm-diameterpipettetip)oftheirethanolsuspensions(2mg/liter)wasdepositedonafresh1cmby1cmsquareofsiliconwaferandthendriedinair.CrosssectionofthesupportedmembraneswaspreparedbybreakingthemembranesdepositedonAAOsubstratesusingafinetweezer.AllSEMspecimenswerecoatedwithiridium(1.5to2.0nmthick)toeliminatechargingeffect.Transmissionelectronmicroscope.AFEITecnaiG2T20TWINoperatedat200kVwasusedforTEMstudies.Allimageswerere-cordedusingacharge-coupleddevicecamera.SamplesofAl-MOFnanosheetsandbulkswerepreparedbyaddingonedrop(1-cm-diameterpipettetip)oftheirethanoldispersion(2mg/liter)onholeycarbongrids(230meshCu,EMC)andwereair-dried.Cross-sectionalTEMexaminationformembranespecimenswascarriedoutusingaLeicaUltraCutSultramicrotomewithadiamondknife.Thesectionswerethenmountedonholeycarbonfilmcoppergrids(400meshCu,Pelco),andthepreparedsampleswereair-driedovernightforfurthermicroscopeobservations.Atomicforcemicroscopy.AFMimageswerecollectedusingaBrukerDimensionIcon.Nanosheetandbulkspecimenswerepre-paredbyplacingadropoftheirethanolsuspensionsonafresh1cmby1cmsquareofsiliconwaferfollowedbyair-drying.AFMcanti-levertipsfromRTESPA(MPP-11120-10)wereused.Theanalysiswasperformedinatappingmodeunderair.TheimageanalysiswasperformedwiththesoftwareNanoScopeAnalysisversion1.5.Thermogravimetricanalysis.TGAwasperformedonaPerkin-ElmerSTA6000.Driedsamplesofnanosheetsandbulkswerebothheatedfrom25°to800°Catarateof10°C/mininair.N2adsorption-desorptionisotherms.N2adsorption-desorptionisothermsofthesesamplesweremeasuredbyaMicromeriticsASAP2020volumetricadsorptionanalyzeratliquidnitrogentem-perature(77K).Samplesofnanosheetsandbulkswerebothde-gassedat150°Cfor12hoursundervacuumbeforemeasurement.AttenuatedtotalreflectanceFouriertransforminfraredspectra.FunctionalgroupsofnanosheetsandbulkswereidentifiedbyaPerkinElmerATR-FTIRspectrometerwithadiamondcrystalandresolutionof4cm−1byaveragingthemeasurementsover16scans.Anaverageof10adjacentpointsfromthediamondcrystaldetectorwassmoothlyappliedtothedriednanosheetsandbulksamples.Zetapotentialmeasurement.Zetasizer(MalvernNanoZS,UK)wasusedtodeterminethesurfacezetapotentialofAl-MOFnanosheets.Eachsamplescanwasrepeatedthreetimes.Al-MOFnanosheetwatersuspension(5mg/liter)atdifferentpHswaspreparedforthemeasurement.X-rayphotoelectronspectra.X-rayphotoelectronspectraweredeterminedbyusinganAXISUltraspectrometer(KratosAnalytical,Manchester,UK)withanAlKanode(1486.6-eVphotonenergy,0.05-eVphotonenergyresolution,300W).Ultraviolet-visiblespectra.UV-VisspectrawererecordedonaUVspectrophotometer(ShimadzuUV-2401PC).BothAl-MOFnanosheetsandbulksuspensionswerepreparedat5mg/literforthemeasurement.Inductivelycoupledplasmaopticalemissionspectroscopy.Induc-tivelycoupledplasmaopticalemissionspectroscopy(ICP-OES)fromPerkinElmer(Optima7000DV)wasusedtoquantifythecon-centrationofionsintheionseparationexperiment.Contactangle.ThestaticcontactangleoftheAl-MOFmembranewasmeasuredbyplacingadropletofwater(2l)onthemembraneusingacapillarywithadiameterof0.7mm(OCA15EC,DataPhysics,Germany).Theequippeddigitalcamerawasusedtomonitortheshapeofthedropletimmediatelyafterthedropletdeposition.Theaveragevalueofthecontactanglewasdeterminedfromthemea-surementsofthecontactanglesatsevendifferentlocationsonmembranes.IonseparationtestsoftheAl-MOFmembranesThesealingstepsofAl-MOFmembranesintodiffusioncellsrefertofig.S20A.ConsideringthepotentialdeformityofthethinAl-MOFmembranescausedbyanexternalpressure,theseparationperfor-mancewasevaluatedusingaself-madediffusioncellasshowninfig.S20B,inwhichthepermeationprocesswasdrivenbyanosmoticpressure.Al-MOFmembranesfacingdrawsolutionweretightlyfixedinthemiddlebyclamps.Differentconcentrations(0.02,0.05,0.10,0.20,0.50,and1.00M)ofsaltsolutions(NaCl,NaNO3,Na2SO4,KCl,MgCl2,CaCl2,CoCl2,andAlCl3,respectively)wereusedasthedrawsolutions.Deionizedwaterwasusedasthefeedsolution.Mag-neticstirringwasappliedinbothdrawandfeedsidestoalleviatetheexternalconcentrationpolarizationeffect.Themasschangeofthedrawsolutionwasmeasuredbymonitoringtheheightincreaseofliquidlevelatthedrawsolutionside(thedraw-sidecompartmentwasreformedwith1.5-mminnerdiameteratthetop;fig.S20B).ThesaltleakageintothefeedsolutionwasmonitoredbyaconductivityDownloadedfromhttps://www.science.orgonOctober18,2021Jianetal.,Sci.Adv.2020;6:eaay39985June2020SCIENCEADVANCESRESEARCHARTICLE8of9meter(labCHEM-CP)andICP-OES.Thesystemtemperaturewasmaintainedat25°±0.5°Cthroughouttheexperiment.Thewaterflux(Jw;molm−2h−1)andsaltionpermeationrate(Js;molm−2hour−1)ofAl-MOFmembraneswerecalculatedasfollows(29)Jw=∆V─A∙∆tJs=(Ct∙Vt)−(C0∙V0)───────────A∙∆t∙Mwwhere∆Visthevolumechange(l=5.6×10−5mol)ofthedrawsolutionoverarunningtimeinterval∆t(hours)ineachexperiment.AistheeffectiveareaoftheAl-MOFmembrane(7mm2).C0andV0denotetheinitialsaltconcentration(M)andfeedsolutionvolume(ml),whileCtandVtaretheirrespondingvaluesatagiventimet.Mwisthemolecularweightofsalts(g/mol).Thewater/saltselectivityJw_Jsisdefinedastheratioofthewaterfluxtosaltionpermeationrate(30–32).WaterevaporationtestoftheAl-MOFmembranesForevaporationtest,30mlofwaterwasfilledina150-mlflaskineachrun.Arubberwith8-mmstraightporewaspluggedinthetopneck,andwaterproofgluesurroundstheedgetoavoidanyleakage.SealedAl-MOFmembranes(7mm2)werestronglygluedonthetoprubberoftheflaskbythecarbontabs(ProSciTech).Theentireap-paratuswasunderadarkenvironmentandrunningatastabletem-peratureof25°±0.5°C.Theweightlosswasconstantlymonitoredusingadigitalcomputer-controlledbalance(ANDFX-3000i).SaltsadsorptioncapacityonAl-MOFnanosheetsAdsorptionisothermexperimentswereconductedin20-mlplasticvialscontainingsaltsolution(10ml)andAl-MOFnanosheetpow-der(10mg).Theinitialconcentrationsofthesesaltswere0.02,0.05,0.10,0.20,0.50,and1.0M,respectively.Thevialswereshakenat200rpmfor24hoursat25°C.Beforetheadsorptionexperiments,themixturesuspensionsweresonicatedfor10mintoalleviateaggregation.Solutionsafteradsorptionwerefilteredwithsyringeprefilters(PTFEMillipore;poresize,0.2m).Theconcentrationchangeofeachsaltsolutionbeforeandafteradsorptionwasdeter-minedbymeasuringtheconductivity.Theadsorptioncapacityq(mmol/g)wascalculatedasfollows(33)q=∆C∙V─mwhere∆C(M)istheconcentrationdifferenceofsaltsolutionbeforeandaftersaltadsorption,V(ml)isthevolumeofsaltsolution,andm(mg)istheadsorbentweight.DFTcalculationsDFTcalculationswereperformedusingtheViennaAbinitioSimulationPackage5.4.4codeonAustralianSynchrotronComputeInfrastruc-ture.ThegeneralizedgradientapproximationwithaPerdew-Burke-Ernzerhofexchangecorrelationfunctionwasused.Theinteractionsbetweentheioniccoresandthevalenceelectronsweretreatedbyultrasoftpseudopotentialswithatomicpseudopotentialscorrespond-ingtoNa3s1,K3s23p64s1,Mg3s2,Ca3s23p64s2,Co3d84s1,andAl3s23p1.Thezero-dampingDFT-D3dispersioncorrectionmethodofGrimmewasusedtoaccountfortheimportanceofvanderWaalsinteractionsoftheadsorptionofionsandinterlayersofAl-MOFinthesystem.Inallcalculations,thecutoffenergyoftheplanewavewassetat400eV,andMonkhorstPackk-pointwasusedtoensurethetotalenergyvalueconvergencewithin1meVperatom.DFTgeometryoptimizationwasconductedtorevealthemoststablestackingconfigurationofAl-MOFnanosheet-assembledmem-branes.FigureS32showsthetypicalstackingconfigurationsofthestackedmembranemodelsfromtwo-layerAl-MOFnanosheets.Fromourcalculations,itshowsthatthebindingenergyoftwo-layerAl-MOFnanosheetsinABstackingarethelowest,revealingthemoststablestructure.MDsimulationsAll-atommolecularstructuresofAl-MOFmembraneswerebuiltonthebasisoftheresultsofDFTsimulationsandchargedviatheGasteigermethod(34).Solvatingthefixedmembranesaccordingtotherequirementsof(i)soakingand(ii)diffusionprocessesisfur-therdescribedbelow.Onefree-vibratingimpermeablesheetwasplacedateachendofthereservoir,whichwasfarawayfromthesimulationboxboundary,tomaintainthesystemequilibrium.Lateron,weextendedthesystemwithperiodicboundaryconditioninalldirections.ThesimulationswereundertakenbyNotAnotherMolecularDynamics(NAMD)program(Git-2018-09-13Linux-x86_64-multicore)witha2-fstimestepunder300KthatwasperformedintheNVTensemble.NonbondedinteractionwascalculatedwithCHARMMGeneralForceFieldandMultivalentIonForceField(35),whichwereappliedwithLorentz-Berthelotmixingrules.Itscutoffradiuswasusedwith12Å.ParticlemeshEwaldwasusedforlong-rangeelectrostaticinteraction,andSHAKEAlgorithmwasappliedonTIP3Pwatermolecules.1)Soakingprocess:Solvatingfixedtwo-layerAAorABstackedAl-MOFnanosheets(thecorrespondinginterlayerdistanceisbasedonDFTresults)withwatermolecules;averagingoutthenumberofwatermoleculesinsidemembranesover4nsformembranewaterdistributionandtransporttrajectory.2)Diffusionprocess:Solvatingfixedone-layerAl-MOFnanosheetswithwatermoleculesandionizedonesidewith0.5MAlCl3,CoCl2,CaCl2,MgCl2,NaCl,andKCl,respectively;collectingthetotalnumberofwatermoleculesattheionizedsideover30nsforcalculatingtransmembranewaterflux.3)NaClrejectionperformancebytheslitchannel:Two-layerAl-MOFnanosheetswerebuiltforillustration.ThemiddlepartofthefirstAl-MOFnanosheetcrystallinewassubtracted,whilethesec-ondAl-MOFnanosheetcrystallinewasashortnanosheettocoverthedefectandformtherequiredslitchannelwiththefirstlayer;solvatingthemembranewithwatermoleculesandionizedonesidewith0.5MNaCl.ThecorrespondingNaClconcentrationwasaver-agedfroma2-nsfiltrationprocess.SUPPLEMENTARYMATERIALSSupplementarymaterialforthisarticleisavailableathttp://advances.sciencemag.org/cgi/content/full/6/23/eaay3998/DC1REFERENCESANDNOTES1.M.R.Chowdhury,J.Steffes,B.D.Huey,J.R.McCutcheon,3Dprintedpolyamidemembranesfordesalination.Science361,682–686(2018).2.W.J.Koros,C.Zhang,Materialsfornext-generationmolecularlyselectivesyntheticmembranes.Nat.Mater.16,289–297(2017).3.J.R.Werber,C.O.Osuji,M.Elimelech,Materialsfornext-generationdesalinationandwaterpurificationmembranes.Nat.Rev.Mater.1,16018(2016).4.D.L.Gin,R.D.Noble,Designingthenextgenerationofchemicalseparationmembranes.Science332,674–676(2011).5.H.B.Park,J.Kamcev,L.M.Robeson,M.Elimelech,B.D.Freeman,Maximizingtherightstuff:Thetrade-offbetweenmembranepermeabilityandselectivity.Science356,eaab0530(2017).Downloadedfromhttps://www.science.orgonOctober18,2021Jianetal.,Sci.Adv.2020;6:eaay39985June2020SCIENCEADVANCESRESEARCHARTICLE9of96.P.Wang,M.Wang,F.Liu,S.Y.Ding,X.Wang,G.Du,J.Liu,P.Apel,P.Kluth,C.Trautmann,Y.Wang,Ultrafastionsievingusingnanoporouspolymericmembranes.Nat.Commun.9,569(2018).7.M.Tsapatsis,Towardhigh-throughputzeolitemembranes.Science334,767–768(2011).8.R.H.Tunuguntla,R.Y.Henley,Y.C.Yao,T.A.Pham,M.Wanunu,A.Noy,Enhancedwaterpermeabilityandtunableionselectivityinsubnanometercarbonnanotubeporins.Science357,792–796(2017).9.B.J.Hinds,N.Chopra,T.Rantell,R.Andrews,V.Gavalas,L.G.Bachas,Alignedmultiwalledcarbonnanotubemembranes.Science303,62–65(2004).10.I.Stassen,M.Styles,G.Grenci,H.VanGorp,W.Vanderlinden,S.DeFeyter,P.Falcaro,D.DeVos,P.Vereecken,R.Ameloot,Chemicalvapourdepositionofzeoliticimidazolateframeworkthinfilms.Nat.Mater.15,304–310(2016).11.R.K.Joshi,P.Carbone,F.C.Wang,V.G.Kravets,Y.Su,I.V.Grigorieva,H.A.Wu,A.K.Geim,R.R.Nair,Preciseandultrafastmolecularsievingthroughgrapheneoxidemembranes.Science343,752–754(2014).12.H.Liu,H.Wang,X.Zhang,Facilefabricationoffreestandingultrathinreducedgrapheneoxidemembranesforwaterpurification.Adv.Mater.27,249–254(2015).13.Y.Kang,Y.Xia,H.Wang,X.Zhang,2Dlaminarmembranesforselectivewaterandiontransport.Adv.Funct.Mater.29,1902014(2019).14.Z.Zheng,R.Grünker,X.Feng,Synthetictwo-dimensionalmaterials:Anewparadigmofmembranesforultimateseparation.Adv.Mater.28,6529–6545(2016).15.B.Mi,Materialsscience.Grapheneoxidemembranesforionicandmolecularsieving.Science343,740–742(2014).16.J.Wang,P.Chen,B.Shi,W.Guo,M.Jaroniec,S.-Z.Qiao,Aregularlychanneledlamellarmembraneforunparalleledwaterandorganicspermeation.Angew.Chem.Int.Ed.Engl.57,6814–6818(2018).17.H.Furukawa,N.Ko,Y.B.Go,N.Aratani,S.B.Choi,E.Choi,A.O.Yazaydin,R.Q.Snurr,M.O’Keeffe,J.Kim,O.M.Yaghi,Ultrahighporosityinmetal-organicframeworks.Science329,424–428(2010).18.S.Qiu,M.Xue,G.Zhu,Metal-organicframeworkmembranes:Fromsynthesistoseparationapplication.Chem.Soc.Rev.43,6116–6140(2014).19.X.Li,Y.Liu,J.Wang,J.Gascon,J.Li,B.VanderBruggen,Metal–organicframeworksbasedmembranesforliquidseparation.Chem.Soc.Rev.46,7124–7144(2017).20.Y.Peng,Y.Li,Y.Ban,H.Jin,W.Jiao,X.Liu,W.Yang,Membranes.Metal-organicframeworknanosheetsasbuildingblocksformolecularsievingmembranes.Science346,1356–1359(2014).21.M.S.DennyJr.,J.C.Moreton,L.Benz,S.M.Cohen,Metal–organicframeworksformembrane-basedseparations.Nat.Rev.Mater.1,16078(2016).22.A.J.Howarth,Y.Liu,P.Li,Z.Li,T.C.Wang,J.T.Hupp,O.K.Farha,Chemical,thermalandmechanicalstabilitiesofmetal–organicframeworks.Nat.Rev.Mater.1,15018(2016).23.A.Fateeva,P.A.Chater,C.P.Ireland,A.A.Tahir,Y.Z.Khimyak,P.V.Wiper,J.R.Darwent,M.J.Rosseinsky,Awater-stableporphyrin-basedmetal–organicframeworkactiveforvisible-lightphotocatalysis.Angew.Chem.Int.Ed.51,7440–7444(2012).24.Y.Jiang,L.Cao,X.Hu,Z.Ren,C.Zhang,C.Wang,SimulatingpowderX-raydiffractionpatternsoftwo-dimensionalmaterials.Inorg.Chem.57,15123–15132(2018).25.S.Motoyama,R.Makiura,O.Sakata,H.Kitagawa,Highlycrystallinenanofilmbylayeringofporphyrinmetal−organicframeworksheets.J.Am.Chem.Soc.133,5640–5643(2011).26.R.Makiura,S.Motoyama,Y.Umemura,H.Yamanaka,O.Sakata,H.Kitagawa,Surfacenano-architectureofametal–organicframework.Nat.Mater.9,565–571(2010).27.J.R.Werber,A.Deshmukh,M.Elimelech,Thecriticalneedforincreasedselectivity,notincreasedwaterpermeability,fordesalinationmembranes.Environ.Sci.Technol.Lett.3,112–120(2016).28.M.P.Jian,H.Y.Liu,T.Williams,J.S.Ma,H.T.Wang,X.W.Zhang,Temperature-inducedorientedgrowthoflargearea,few-layer2Dmetal-organicframeworknanosheets.Chem.Commun.53,13161–13164(2017).29.M.Rastgar,A.Bozorg,A.Shakeri,Noveldimensionallycontrollednanoporeformingtemplateinforwardosmosismembranes.Environ.Sci.Technol.52,2704–2716(2018).30.W.A.Phillip,J.S.Yong,M.Elimelech,Reversedrawsolutepermeationinforwardosmosis:Modelingandexperiments.Environ.Sci.Technol.44,5170–5176(2010).31.Y.Wang,R.Ou,H.Wang,T.Xu,Grapheneoxidemodifiedgraphiticcarbonnitrideasamodifierforthinfilmcompositeforwardosmosismembrane.J.Membr.Sci.475,281–289(2015).32.N.-N.Bui,J.R.McCutcheon,Nanoparticle-embeddednanofibersinhighlypermselectivethin-filmnanocompositemembranesforforwardosmosis.J.Membr.Sci.518,338–346(2016).33.J.Tóth,Adsorption:Theory,Modeling,andAnalysis(MarcelDekkerInc.,2002),vol.107,878pp.34.J.Gasteiger,M.Marsili,Iterativepartialequalizationoforbitalelectronegativity—Arapidaccesstoatomiccharges.Tetrahedron36,3219–3228(1980).35.P.Li,L.F.Song,K.M.MerzJr.,Parameterizationofhighlychargedmetalionsusingthe12-6-4LJ-typenonbondedmodelinexplicitwater.J.Phys.Chem.B119,883–895(2014).36.X.Zou,G.Zhu,I.J.Hewitt,F.Sun,S.Qiu,Synthesisofametal-organicframeworkfilmbydirectconversiontechniqueforVOCssensing.DaltonTrans.3009–3013(2009).37.A.Fidalgo-Marijuan,G.Barandika,B.Bazán,M.K.Urtiaga,E.S.Larrea,M.Iglesias,L.Lezama,M.I.Arriortua,Heterogeneouscatalyticpropertiesofunprecedented-O-[FeTCPP]2dimers(H2TCPP=meso-tetra(4-carboxyphenyl)porphyrin):AnunusualsuperhyperfineEPRstructure.DaltonTrans.44,213–222(2015).38.H.-Y.Zeng,J.-Z.Du,S.Xu,M.-C.Liao,X.-J.Liu,H.-Z.Duan,C.-R.Chen,Influencesofaglycerinco-solventonthecompatibilityofMgAlhydrotalciteswithapolypropylenematrix.RSCAdv.5,64814–64820(2015).39.L.G.Joyner,E.P.Barrett,R.Skold,Thedeterminationofporevolumeandareadistributionsinporoussubstances.II.Comparisonbetweennitrogenisothermandmercuryporosimetermethods.J.Am.Chem.Soc.73,3155–3158(1951).40.W.L.Xu,C.Fang,F.Zhou,Z.Song,Q.Liu,R.Qiao,M.Yu,Self-assembly:Afacilewayofformingultrathin,high-performancegrapheneoxidemembranesforwaterpurification.NanoLett.17,2928–2933(2017).41.L.Chen,G.Shi,J.Shen,B.Peng,B.Zhang,Y.Wang,F.Bian,J.Wang,D.Li,Z.Qian,G.Xu,G.Liu,J.Zeng,L.Zhang,Y.Yang,G.Zhou,M.Wu,W.Jin,J.Li,H.Fang,Ionsievingingrapheneoxidemembranesviacationiccontrolofinterlayerspacing.Nature550,380–383(2017).42.J.Abraham,K.S.Vasu,C.D.Williams,K.Gopinadhan,Y.Su,C.T.Cherian,J.Dix,E.Prestat,S.J.Haigh,I.V.Grigorieva,P.Carbone,A.K.Geim,R.R.Nair,Tunablesievingofionsusinggrapheneoxidemembranes.Nat.Nanotechnol.12,546–550(2017).43.W.Hirunpinyopas,E.Prestat,S.D.Worrall,S.J.Haigh,R.A.W.Dryfe,M.A.Bissett,DesalinationandnanofiltrationthroughfunctionalizedlaminarMoS2membranes.ACSNano11,11082–11090(2017).44.M.Deng,K.Kwac,M.Li,Y.Jung,H.G.Park,Stability,molecularsieving,andiondiffusionselectivityofalamellarmembranefromtwo-dimensionalmolybdenumdisulfide.NanoLett.17,2342–2348(2017).45.Z.Lu,Y.Wei,J.Deng,L.Ding,Z.K.Li,H.Wang,Self-crosslinkedMXene(Ti3C2Tx)membraneswithgoodantiswellingpropertyformonovalentmetalionexclusion.ACSNano13,10535–10544(2019).46.R.A.Robinson,R.H.Stokes,ElectrolyteSolutions(DoverPublications,ed.2,2002).Acknowledgments:ThisworkwasperformedinpartattheMelbourneCentreforNanofabrication(MCN)intheVictorianNodeoftheAustralianNationalFabricationFacility(ANFF).WethanktheAustralianSynchrotronfortheuseofthePowderDiffractionBeamline.WealsoacknowledgetheuseoffacilitieswithintheMonashCentreforElectronMicroscopy(MCEM)andtheMonashX-rayPlatform(MXP).DFTcalculationwasperformedonAustralianSynchrotronComputeInfrastructure(ASCI).TheMDsimulationwasundertakenwiththeassistanceofresourcesandservices(theNationalKeyResearchandDevelopmentProgramofChina,ISTCP,2016YFE0101200)fromSoochowUniversity.AlldataarereportedinthemaintextandtheSupplementaryMaterials.Funding:ThisworkwassupportedbyAustralianResearchCouncilResearchHubforEnergy-EfficientSeparation(IH170100009).M.J.thanksMonashUniversityandtheMonashCentreforAtomicallyThinMaterials(MCATM)forthescholarships.Authorcontributions:X.Z.andM.J.designedtheproject.M.J.carriedouttheexperimentsandanalysiswithhelpfromY.X.andJ.L.R.Q.carriedoutMDsimulationsanddataanalysis.Y.C.helpedinTEMcharacterizations.Q.G.contributedtosynchrotroncharacterizationandDFTcalculations.R.L.,C.H.,J.Q.,andH.W.participatedindiscussionsandanalyzedthedata.M.J.andX.Z.wrotethemanuscriptwithinputfromallauthors.Competinginterests:M.J.andX.Z.areinventorsonapatentapplicationrelatedtothisworkfiledbyMonashUniversity(AustralianProvisionalPatentApplicationNo.2020900819,filed17March2020).Theauthorsdeclarethattheyhavenoothercompetinginterests.Dataandmaterialsavailability:Alldataneededtoevaluatetheconclusionsinthepaperarepresentinthepaperand/ortheSupplementaryMaterials.Additionaldatarelatedtothispapermayberequestedfromtheauthors.Submitted14June2019Accepted1April2020Published5June202010.1126/sciadv.aay3998Citation:M.Jian,R.Qiu,Y.Xia,J.Lu,Y.Chen,Q.Gu,R.Liu,C.Hu,J.Qu,H.Wang,X.Zhang,Ultrathinwater-stablemetal-organicframeworkmembranesforionseparation.Sci.Adv.6,eaay3998(2020).Downloadedfromhttps://www.science.orgonOctober18,2021UseofthinkarticleissubjecttotheTermsofserviceScienceAdvances(ISSN2375-2548)ispublishedbytheAmericanAssociationfortheAdvancementofScience.1200NewYorkAvenueNW,Washington,DC20005.ThetitleScienceAdvancesisaregisteredtrademarkofAAAS.Copyright©2020TheAuthors,somerightsreserved;exclusivelicenseeAmericanAssociationfortheAdvancementofScience.NoclaimtooriginalU.S.GovernmentWorks.DistributedunderaCreativeCommonsAttributionNonCommercialLicense4.0(CCBY-NC).Ultrathinwater-stablemetal-organicframeworkmembranesforionseparationMeipengJianRuosangQiuYunXiaJunLuYuChenQinfenGuRuipingLiuChengzhiHuJiuhuiQuHuantingWangXiwangZhangSci.Adv.,6(23),eaay3998.•DOI:10.1126/sciadv.aay3998Viewthearticleonlinehttps://www.science.org/doi/10.1126/sciadv.aay3998Permissionshttps://www.science.org/help/reprints-and-permissionsDownloadedfromhttps://www.science.orgonOctober18,2021