Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China-Kebin HVIP专享VIP免费

ENVIRONMENTAL SCIENCE 2016 © The Authors,
some rights reserved;
exclusive licensee
American Association
for the Advancement
of Science. Distributed
under a Creative
Commons Attribution
License 4.0 (CC BY).
Reactive nitrogen chemistry in aerosol water as a
source of sulfate during haze events in China
Yafang Cheng,
1
*
Guangjie Zheng,
1,2
* Chao Wei,
1
Qing Mu,
1
Bo Zheng,
2
Zhibin Wang,
1
Meng Gao,
3,4
Qiang Zhang,
5
Kebin He,
2
Gregory Carmichael,
3,4
Ulrich Pöschl,
1
Hang Su
6,1
Fine-particle pollution associated with winter haze threatens the health of more than 400 million people in the North
China Plain. Sulfate is a major component of fine haze particles. Record sulfate concentrations of up to ~300 mgm
3
were observed during the January 2013 winter haze event in Beijing. State-of-the-art air quality models that rely on
sulfate production mechanisms requiring photochemical oxidants cannot predict these high levels because of the
weak photochemistry activity during haze events. We find that the missing source of sulfate and particulate matter
can be explained by reactive nitrogen chemistry in aerosol water. The aerosol water serves as a reactor, where the
alkaline aerosol components trap SO
2
, which is oxidized by NO
2
to form sulfate, whereby high reaction rates are sus-
tained by the high neutralizing capacity of the atmosphere in northern China. This mechanism is self-amplifying be-
cause higher aerosol mass concentration corresponds to higher aerosol water content, leading to faster sulfate
production and more severe haze pollution.
INTRODUCTION
Persistent haze shrouding Beijing and the North China Plain (NCP) dur-
ing cold winter periods threatens the health of ~400 million people living
in a region of ~300,000 km
2
. Characteristic features of the winter haze in
northern China include stagnant meteorological conditions with low
mixing heights, high relative humidity (RH), large emissions of primary
air pollutants, and fast production of secondary inorganic aerosols, espe-
cially sulfate (see section M1) (15). Analyzing surface-based observa-
tions at a site in Beijing during January 2013 (see section M2) and
using concentration ratios of sulfate to sulfur dioxide ([SO
42
]/[SO
2
])
as a proxy for the sulfate production rate (5), we find that sulfate pro-
duction increases as PM
2.5
(particulate matter with a diameter of less
than 2.5 mm) levels increase (Fig. 1A). Ratios are six times higher during
the most polluted periods (PM
2.5
> 300 mgm
3
) than during clean to
moderately polluted conditions (ratios of 0.1 when PM
2.5
<50mgm
3
).
Traditional air quality models, however, fail to capture this key feature
of NCP winter haze events even after accounting for aerosol-radiation-
meteorology feedback (see sections M2 and M3) (68). The chemical
mechanisms used in these models usually comprise gas-phase oxidation
of sulfur dioxide by OH radicals and aqueous-phase reaction pathways
in cloud water, involving H
2
O
2
and O
3
, resulting in sulfate production
rates that scale with the intensity of solar ultraviolet (UV) radiation
(9,10). During NCP haze days, UV radiation is significantly reduced
because of the aerosol dimming effect, resulting in a decrease of most
oxidant concentrations (5). Figure 1B shows that the midday O
3
values
drop from ~22 parts per billion (ppb) under clean conditions to ~1 ppb
duringthehazeperiod(andalsolosetheir typical diurnal variation, fig.
S1). The reduced oxidant levels and increased sulfate production suggest
the existence of a missing sulfate production pathway. Even after consid-
ering the gas phase and cloud/fog chemistry, there is still a large gap
between modeled and observed sulfate (Fig. 1C). Adding an apparent
heterogeneous process with sulfate production rates that scale with
aerosol surface area and RH can greatly improve model predictions
(see sections M3 to M5) (7), but the chemical mechanism of the missing
sulfate production pathway has not yet been identified.
RESULTS AND DISCUSSION
We find that reactive nitrogen chemistry in aerosol water can explain
the missing source of sulfate in NCP winter haze. Aerosol water is a
key component of atmospheric aerosols, which serves as a medium
that enables aqueous-phase reactions (1113). The aerosol water con-
tent (AWC) in Beijing, calculated using measurements of RH and
aerosol composition and the ISORROPIA-II thermodynamic equilib-
rium model (see section M6) (1416), is well correlated with the
missing sulfate content, the difference between measured and modeled
sulfate (D[SO
42
]) (Fig. 1C) (see sections M2 to M4), suggesting its
involvement in the sulfate production. Note that because of the salt-
induced freezing point depression (17), aerosol water will not freeze
for a winter temperature of ~271 K in Beijing.
Taking the impact of mass transfer and ion strength into account,
we make a conservative estimation of sulfate production rate for dif-
ferent reactions in the aerosol water under relevant atmospheric trace
species concentration conditions (see sections M4 and M7 to M9) and
find NO
2
to be the most important oxidant in Beijing during haze
periods (Fig. 2B). In the presence of aerosol water, gas-phase NO
2
can partition into the condensed phase, react with SO
2
dissolved in
the aqueous phase, and produce sulfate as well as nitrite (R1) (18).
2NO
2ðaqÞþHSO3ðaqÞþH2OðaqÞ3H
þðaqÞ
þ2NO
2ðaqÞþSO42ðaqÞðR1Þ
Under heavy haze conditions (PM
2.5
300 mgm
3
), the sulfate pro-
duction rates of the NO
2
reaction pathway (R1) are ~1 to 7 mgm
3
h
1
,
much higher than the reaction rates involving other important aqueous
oxidants such as O
3
and H
2
O
2
. According to Zheng et al.(7), an ad-
ditional sulfate production of ~3 mgm
3
h
1
is needed to explain the
1
Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz 55128,
Germany.
2
State Key Joint Laboratory of Environment Simulation and Pollution Control,
School of Environment, Tsinghua University, Beijing 100084, China.
3
College of Engi-
neering, University of Iowa, Iowa City, IA 52242, USA.
4
Center for Global and Regional
Environmental Research, University of Iowa, Iowa City, IA 52242, USA.
5
Center for Earth
System Science, Tsinghua University, Beijing 100084, China.
6
Institute for
Environmental and Climate Research, Jinan University, Guangzhou 511443, China.
*These authors contributed equally to this work.
Corresponding author. Email: yafang.cheng@mpic.de (Y.C.); hekb@tsinghua.edu.
cn (K.H.); u.poschl@mpic.de (U.P.); h.su@mpic.de (H.S.)
SCIENCE ADVANCES |RESEARCH ARTICLE
Cheng et al.Sci. Adv. 2016; 2: e1601530 21 December 2016 1of11
observations in the severe winter haze periods of Beijing (see section
M9), which falls right into the range of production rates from the chem-
ical reaction mechanism we proposed (R1). As illustrated in Fig. 2, sul-
fate production in aerosol water underhazeconditionsdiffersfromthat
in cloud droplets, where the major oxidation pathways are reactions
with H
2
O
2
and O
3
,andNO
2
playsonlyaminorrole(12,19). Thus,
traditional air quality models usually include only the H
2
O
2
and O
3
re-
action pathways of sulfate production in the aqueous phase, whereas the
NO
2
reaction pathway is neglected (7,20).
The AWC is typically three to five orders of magnitude lower than
the water content of cloud or fog (21). On this basis, how can the NO
2
reaction pathway become important in such tiny amounts of water?
The increased importance is due to the relatively high aerosol pH and
elevated NO
2
concentrations in Beijing and the NCP during haze
periods. As shown in Fig. 2, aqueous oxidation rates of S(IV) by
NO
2
and O
3
are strongly pH-dependent. High pH increases the sol-
ubility and the effective Henrys law constant of SO
2
, pulling more
SO
2
into the aerosol water and thus increasing the reaction rate. When
pH increases by one unit, the reaction rates increase by one and two
orders of magnitude for NO
2
and O
3
, respectively. The H
2
O
2
reaction
does not show a strong dependence because high pH reduces its reac-
tion rate coefficient, which offsets the effect of increased solubility.
Compared with North America and Europe, aerosols in the NCP
are more neutralized (22), as shown by a higher cation-to-anion ratio
(Fig. 1D). This neutralized featureisalsowelldocumentedandisthe
reason that acid rain rarely occurs in northern China (see section
M10) (22). Using the ISORROPIA-II thermodynamic equilibrium
model (see section M6) (1416) and in situ aerosol bulk composition
measurements, we obtain average pH values of 5.4 to 6.2 for aerosol
water under NCP haze conditions (see sections M6 and M9). Similar
calculations based on size-segregated aerosol composition measure-
ments even show a higher effective pH and sulfate production rates
(fig. S2).
Elevated NO
2
is another key factor that leads to fast sulfate forma-
tion. Substantial amounts of NO
2
come from direct emission of NO
x
(= NO + NO
2
). Although the NO
2
-to-NO
x
ratios were reduced be-
cause of weak photochemistry during the haze event, the stagnant
weather trapped more NO
2
near the surface, resulting in elevated
NO
2
concentrations that were, on average, three times higher than
those under clean conditions (~66 ppb, Fig. 1B). These periods of
highest NO
2
levels occurred when the concentrations of other photo-
chemical oxidants that can produce sulfate (H
2
O
2
,O
3
,andOH)were
low (Fig. 1B and fig. S1). Changes in pH and precursor concentrations
together lead to the transition from an H
2
O
2
-dominated regime of
aqueous sulfate production in cloud droplets to an NO
2
-dominated
regime of aqueous sulfate production in haze (Fig. 2). Earlier studies
had already suggested that the NO
2
reaction pathway may contribute
to sulfate formation in fogs under polluted conditions (23,24), but
80
60
40
20
0
NO2 (ppb)
0–50
50–100
100–300
>300
PM2.5 (µg m–3
)
35
30
25
20
15
10
5
0
Midday O3 (ppb)
O3NO2
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
[SO4
2–] / [SO2]
0–50
50–100
100–300
>300
PM2.5 (µg m–3
)
300
250
200
150
100
50
0
SO4
2–
(obs. - model, µg m–3)
12008004000
Aerosol droplet solution (µg m–3)
4002000
AWC (µg m–3)
Europe
East Asia
North America
2.42.01.61.20.80.40.0
Anions (µmol m–3)
2.4
2.0
1.6
1.2
0.8
0.4
0.0
Cations (µmol m–3)
AB
CD
Fig. 1. Characteristic featuresof a major haze event in Beijing, China(January 2013). (A) Sulfate/sulfur dioxide ratio ([SO
42
]/[SO
2
]) and (B)middayozone(O
3
) concentrations
(10:00 to 15:00 local time) and nitrogen dioxide (NO
2
) concentrations at different fine-particle (PM
2.5
) concentration levels. (C) Correlation of the unexplained sulfate concentration
(DSO
42
= observation model) (see sections M2 and M3) with aerosol droplet solution and AWC (color-coded). (D) Anion-to-cation ratio in PM
2.5
as observed in Beijing (solid
symbols)andinotherstudiesinnorthernChina(opensymbols)(tableS1)compared to the characteristic ratios reported for aircraft measurements in the Arctic of outflow from
East Asia, Europe, and North America (solid red, blue, and green lines; here, only NH
4+
,NO
3
,andSO
42
were considered) (87).
SCIENCE ADVANCES |RESEARCH ARTICLE
Cheng et al.Sci. Adv. 2016; 2: e1601530 21 December 2016 2of11
during the Beijing haze event of January 2013, fog was not observed
and sulfate production by NO
2
occurred in aerosol water instead.
Sulfate production rates from the NO
2
reaction pathway (R1)
calculated on the basis of measurement data (hourly concentrations
of NO
2
,SO
2
,PM
2.5
, and RH; sections M2 and M4) show a positive
dependence on the PM
2.5
concentration, varying from 0.01 mgm
3
h
1
under relatively clean conditions to nearly 10 mgm
3
h
1
in the most
polluted periods (pink circles in Fig. 3). These reaction rates can account
for the systematic underprediction of models and explain the large
missing source of sulfate in the Beijing haze (black diamonds in Fig. 3).
Under clean conditions, the OH reaction (green crosses in Fig. 3) dom-
inates the oxidation pathways of SO
2
. As particle concentrations increase
and more sulfate is produced, the photochemistry slows down, leading to
less OH, and sulfate production via this pathway decreases. From this
aspect, the OH reaction has a negative feedback, which is self-buffered
against heavy pollution. As PM
2.5
concentrations and RH increase simul-
taneously [a special feature of haze events in NCP (5)], the OH reaction
becomes weaker, whereas the aqueous-phase reaction of NO
2
starts to
play a more important role. For the January 2013 conditions at PM
2.5
~100 to 200 mgm
3
, the aqueous-phase reaction becomes the dominant
oxidation pathway (Fig. 3). In contrast to the OH reaction, the NO
2
re-
action shows a positive feedback mechanism, where higher particle mat-
ter levels lead to more aerosol water, which accelerates sulfate production
and further increases the aerosol concentration. This positive feedback
intensifies the PM
2.5
levels during haze periods, resulting in a series of
record-breaking pollution events.
The NO
2
reaction with SO
2
in aerosol water produces not only sul-
fate but also nitrite (R1), which may undergo subsequent oxidation or
disproportionation reactions forming nitrate. This is consistent with the
high nitrate concentrations observed during the haze event, which are of
similar magnitude to the sulfate concentrations (up to ~160 mgm
3
)(5)
and have also not yet been explained by air quality models (7). Depend-
ing on the pH value of the haze droplets, nitrite can also form nitrous
acid (HONO) and undergo reversible partitioning with the gas phase
(25,26). Moreover, the release of HONO removes H
+
,whichmayhelp
to sustain the droplet acidity and efficient sulfate production (27,28).
For the same haze periods, record high aerosol nitrite concentrations of
up to ~12 mgm
3
were observed in Shandong, northern China, with
nitrite concentrations well correlated with NO
x
at high RH (>50%)
(25). The nitrite-to-HONO molar ratio of ~3 in Shandong is a hundred
times higher than the ratio observed during a pollution event in
Nanjing, Yangtze River Delta of China, where only trace amounts of
nitrite were detected in the aerosol phase (up to ~0.4 mgm
3
), and
the aerosol water there was more acidic (pH ~4) (24,25). This further
confirms the more neutralized feature of aerosol particle composition
and haze in northern China.
Our study unfolds a new and more comprehensive conceptual
model of sulfate formation in NCP haze events, including not only
the traditional OH, H
2
O
2
, and O
3
reaction pathways in atmospheric
gas phase and cloud chemistry but also the NO
2
reaction pathway in
aerosol water (Fig. 4). The NO
2
pathway may not be limited to winter
haze because it may also be important at night and during fog events in
polluted regions with high boundary layer concentrations of PM
2.5
and
NO
2
andelevatedRH(23,24).Theimportanceofmultiphasechemistry
holds for a wide range of aerosol pH. When aerosols become more acid-
ic, the sulfate production can be maintained at a high rate through TMI
reactions (Fig. 2B). The important role of aerosol pH in the multiphase
reaction pathway highlights the need to better understand the sources of
ammonia and alkaline aerosol components from natural and anthropo-
genic emissions (soil dust, seawater, agriculture, energy, industrial, and
8765432
pH
10–7
10–6
10–5
10–4
10–3
10–2
10–1
100
101
102
103
Beijing haze
H2O2 O3 TMI NO2
8765432
pH
10–5
10–4
10–3
10–2
10–1
100
101
102
103
104
105
d [SO4
2–] / dt (µg m–3
h–1
)
Cloud droplets
AB
Fig. 2. Aqueous-phase sulfate production by sulfur dioxide oxidation under
characteristic conditions. Sulfate production rates for (A) cloud droplets and (B)Beijing
haze plotted against pH value. Light blueand gray-shaded areas indicate characteristic
pH ranges for cloud water under clean to moderately polluted conditions and aerosol
water during severe haze episodes in Beijing, respectively. The colored lines represent
sulfate production rates calculated for different aqueous-phase reaction pathways with
oxidants: hydrogen peroxide (H
2
O
2
), ozone (O
3
), transition metal ions (TMIs), and nitro-
gen dioxide (NO
2
). Characteristic reactant concentrations and model calculations for
clouds and haze are taken from the literature and observations, and specified in Materials
and Methods (see sections M7 to M9) (12,21).
10–3
10–2
10–1
100
101
d [SO4
2–] / dt (µg m–3
h–1
)
8006004002000
PM2.5 (µg m–3)
NO2 reaction
OH reaction
Missing source
Fig. 3. Importance of the NO
2
reaction pathway for sulfate production in the
Beijing haze (January 2013). Sulfate production rates calculated for the aqueous-
phase NO
2
reaction pathway (pH 5.8) and the gas-phase OH reaction pathway
compared to the missing source of sulfate. Crosses and circles represent hourly
production rates calculated on the basis of measurement data, and the diamonds
represent the average missing source (arithmetic mean ± SD) (see sections M3 to
M5) (7). The pink-shaded area shows the maximum and minimum sulfate produc-
tion rates by the NO
2
reaction pathway bounded by the aerosol water pH ranging
from 5.4 to 6.2 during haze periods.
SCIENCE ADVANCES |RESEARCH ARTICLE
Cheng et al.Sci. Adv. 2016; 2: e1601530 21 December 2016 3of11
ENVIRONMENTALSCIENCE2016©TheAuthors,somerightsreserved;exclusivelicenseeAmericanAssociationfortheAdvancementofScience.DistributedunderaCreativeCommonsAttributionLicense4.0(CCBY).ReactivenitrogenchemistryinaerosolwaterasasourceofsulfateduringhazeeventsinChinaYafangCheng,1†GuangjieZheng,1,2ChaoWei,1QingMu,1BoZheng,2ZhibinWang,1MengGao,3,4QiangZhang,5KebinHe,2†GregoryCarmichael,3,4UlrichPöschl,1†HangSu6,1†Fine-particlepollutionassociatedwithwinterhazethreatensthehealthofmorethan400millionpeopleintheNorthChinaPlain.Sulfateisamajorcomponentoffinehazeparticles.Recordsulfateconcentrationsofupto~300mgm−3wereobservedduringtheJanuary2013winterhazeeventinBeijing.State-of-the-artairqualitymodelsthatrelyonsulfateproductionmechanismsrequiringphotochemicaloxidantscannotpredictthesehighlevelsbecauseoftheweakphotochemistryactivityduringhazeevents.Wefindthatthemissingsourceofsulfateandparticulatemattercanbeexplainedbyreactivenitrogenchemistryinaerosolwater.Theaerosolwaterservesasareactor,wherethealkalineaerosolcomponentstrapSO2,whichisoxidizedbyNO2toformsulfate,wherebyhighreactionratesaresus-tainedbythehighneutralizingcapacityoftheatmosphereinnorthernChina.Thismechanismisself-amplifyingbe-causehigheraerosolmassconcentrationcorrespondstohigheraerosolwatercontent,leadingtofastersulfateproductionandmoreseverehazepollution.INTRODUCTIONPersistenthazeshroudingBeijingandtheNorthChinaPlain(NCP)dur-ingcoldwinterperiodsthreatensthehealthof~400millionpeoplelivinginaregionof~300,000km2.CharacteristicfeaturesofthewinterhazeinnorthernChinaincludestagnantmeteorologicalconditionswithlowmixingheights,highrelativehumidity(RH),largeemissionsofprimaryairpollutants,andfastproductionofsecondaryinorganicaerosols,espe-ciallysulfate(seesectionM1)(1–5).Analyzingsurface-basedobserva-tionsatasiteinBeijingduringJanuary2013(seesectionM2)andusingconcentrationratiosofsulfatetosulfurdioxide([SO42−]/[SO2])asaproxyforthesulfateproductionrate(5),wefindthatsulfatepro-ductionincreasesasPM2.5(particulatematterwithadiameteroflessthan2.5mm)levelsincrease(Fig.1A).Ratiosaresixtimeshigherduringthemostpollutedperiods(PM2.5>300mgm−3)thanduringcleantomoderatelypollutedconditions(ratiosof0.1whenPM2.5<50mgm−3).Traditionalairqualitymodels,however,failtocapturethiskeyfeatureofNCPwinterhazeeventsevenafteraccountingforaerosol-radiation-meteorologyfeedback(seesectionsM2andM3)(6–8).Thechemicalmechanismsusedinthesemodelsusuallycomprisegas-phaseoxidationofsulfurdioxidebyOHradicalsandaqueous-phasereactionpathwaysincloudwater,involvingH2O2andO3,resultinginsulfateproductionratesthatscalewiththeintensityofsolarultraviolet(UV)radiation(9,10).DuringNCPhazedays,UVradiationissignificantlyreducedbecauseoftheaerosoldimmingeffect,resultinginadecreaseofmostoxidantconcentrations(5).Figure1BshowsthatthemiddayO3valuesdropfrom~22partsperbillion(ppb)undercleanconditionsto~1ppbduringthehazeperiod(andalsolosetheirtypicaldiurnalvariation,fig.S1).Thereducedoxidantlevelsandincreasedsulfateproductionsuggesttheexistenceofamissingsulfateproductionpathway.Evenafterconsid-eringthegasphaseandcloud/fogchemistry,thereisstillalargegapbetweenmodeledandobservedsulfate(Fig.1C).AddinganapparentheterogeneousprocesswithsulfateproductionratesthatscalewithaerosolsurfaceareaandRHcangreatlyimprovemodelpredictions(seesectionsM3toM5)(7),butthechemicalmechanismofthemissingsulfateproductionpathwayhasnotyetbeenidentified.RESULTSANDDISCUSSIONWefindthatreactivenitrogenchemistryinaerosolwatercanexplainthemissingsourceofsulfateinNCPwinterhaze.Aerosolwaterisakeycomponentofatmosphericaerosols,whichservesasamediumthatenablesaqueous-phasereactions(11–13).Theaerosolwatercon-tent(AWC)inBeijing,calculatedusingmeasurementsofRHandaerosolcompositionandtheISORROPIA-IIthermodynamicequilib-riummodel(seesectionM6)(14–16),iswellcorrelatedwiththemissingsulfatecontent,thedifferencebetweenmeasuredandmodeledsulfate(D[SO42−])(Fig.1C)(seesectionsM2toM4),suggestingitsinvolvementinthesulfateproduction.Notethatbecauseofthesalt-inducedfreezingpointdepression(17),aerosolwaterwillnotfreezeforawintertemperatureof~271KinBeijing.Takingtheimpactofmasstransferandionstrengthintoaccount,wemakeaconservativeestimationofsulfateproductionratefordif-ferentreactionsintheaerosolwaterunderrelevantatmospherictracespeciesconcentrationconditions(seesectionsM4andM7toM9)andfindNO2tobethemostimportantoxidantinBeijingduringhazeperiods(Fig.2B).Inthepresenceofaerosolwater,gas-phaseNO2canpartitionintothecondensedphase,reactwithSO2dissolvedintheaqueousphase,andproducesulfateaswellasnitrite(R1)(18).2NO2ðaqÞþHSO3ÀðaqÞþH2OðaqÞ→3HþðaqÞþ2NO2ÀðaqÞþSO42ÀðaqÞðR1ÞUnderheavyhazeconditions(PM2.5≥300mgm−3),thesulfatepro-ductionratesoftheNO2reactionpathway(R1)are~1to7mgm−3h−1,muchhigherthanthereactionratesinvolvingotherimportantaqueousoxidantssuchasO3andH2O2.AccordingtoZhengetal.(7),anad-ditionalsulfateproductionof~3mgm−3h−1isneededtoexplainthe1MultiphaseChemistryDepartment,MaxPlanckInstituteforChemistry,Mainz55128,Germany.2StateKeyJointLaboratoryofEnvironmentSimulationandPollutionControl,SchoolofEnvironment,TsinghuaUniversity,Beijing100084,China.3CollegeofEngi-neering,UniversityofIowa,IowaCity,IA52242,USA.4CenterforGlobalandRegionalEnvironmentalResearch,UniversityofIowa,IowaCity,IA52242,USA.5CenterforEarthSystemScience,TsinghuaUniversity,Beijing100084,China.6InstituteforEnvironmentalandClimateResearch,JinanUniversity,Guangzhou511443,China.Theseauthorscontributedequallytothiswork.†Correspondingauthor.Email:yafang.cheng@mpic.de(Y.C.);hekb@tsinghua.edu.cn(K.H.);u.poschl@mpic.de(U.P.);h.su@mpic.de(H.S.)SCIENCEADVANCESRESEARCHARTICLEChengetal.Sci.Adv.2016;2:e160153021December20161of11observationsintheseverewinterhazeperiodsofBeijing(seesectionM9),whichfallsrightintotherangeofproductionratesfromthechem-icalreactionmechanismweproposed(R1).AsillustratedinFig.2,sul-fateproductioninaerosolwaterunderhazeconditionsdiffersfromthatinclouddroplets,wherethemajoroxidationpathwaysarereactionswithH2O2andO3,andNO2playsonlyaminorrole(12,19).Thus,traditionalairqualitymodelsusuallyincludeonlytheH2O2andO3re-actionpathwaysofsulfateproductionintheaqueousphase,whereastheNO2reactionpathwayisneglected(7,20).TheAWCistypicallythreetofiveordersofmagnitudelowerthanthewatercontentofcloudorfog(21).Onthisbasis,howcantheNO2reactionpathwaybecomeimportantinsuchtinyamountsofwater?TheincreasedimportanceisduetotherelativelyhighaerosolpHandelevatedNO2concentrationsinBeijingandtheNCPduringhazeperiods.AsshowninFig.2,aqueousoxidationratesofS(IV)byNO2andO3arestronglypH-dependent.HighpHincreasesthesol-ubilityandtheeffectiveHenry’slawconstantofSO2,pullingmoreSO2intotheaerosolwaterandthusincreasingthereactionrate.WhenpHincreasesbyoneunit,thereactionratesincreasebyoneandtwoordersofmagnitudeforNO2andO3,respectively.TheH2O2reactiondoesnotshowastrongdependencebecausehighpHreducesitsreac-tionratecoefficient,whichoffsetstheeffectofincreasedsolubility.ComparedwithNorthAmericaandEurope,aerosolsintheNCParemoreneutralized(22),asshownbyahighercation-to-anionratio(Fig.1D).ThisneutralizedfeatureisalsowelldocumentedandisthereasonthatacidrainrarelyoccursinnorthernChina(seesectionM10)(22).UsingtheISORROPIA-IIthermodynamicequilibriummodel(seesectionM6)(14–16)andinsituaerosolbulkcompositionmeasurements,weobtainaveragepHvaluesof5.4to6.2foraerosolwaterunderNCPhazeconditions(seesectionsM6andM9).Similarcalculationsbasedonsize-segregatedaerosolcompositionmeasure-mentsevenshowahighereffectivepHandsulfateproductionrates(fig.S2).ElevatedNO2isanotherkeyfactorthatleadstofastsulfateforma-tion.SubstantialamountsofNO2comefromdirectemissionofNOx(=NO+NO2).AlthoughtheNO2-to-NOxratioswerereducedbe-causeofweakphotochemistryduringthehazeevent,thestagnantweathertrappedmoreNO2nearthesurface,resultinginelevatedNO2concentrationsthatwere,onaverage,threetimeshigherthanthoseundercleanconditions(~66ppb,Fig.1B).TheseperiodsofhighestNO2levelsoccurredwhentheconcentrationsofotherphoto-chemicaloxidantsthatcanproducesulfate(H2O2,O3,andOH)werelow(Fig.1Bandfig.S1).ChangesinpHandprecursorconcentrationstogetherleadtothetransitionfromanH2O2-dominatedregimeofaqueoussulfateproductioninclouddropletstoanNO2-dominatedregimeofaqueoussulfateproductioninhaze(Fig.2).EarlierstudieshadalreadysuggestedthattheNO2reactionpathwaymaycontributetosulfateformationinfogsunderpollutedconditions(23,24),but806040200NO2(ppb)0–5050–100100–300>300PM2.5(µgm–3)35302520151050MiddayO3(ppb)O3NO21.41.21.00.80.60.40.20.0[SO42–]/[SO2]0–5050–100100–300>300PM2.5(µgm–3)300250200150100500SO42–(obs.-model,µgm–3)12008004000Aerosoldropletsolution(µgm–3)4002000AWC(µgm–3)EuropeEastAsiaNorthAmerica2.42.01.61.20.80.40.0Anions(µmolm–3)2.42.01.61.20.80.40.0Cations(µmolm–3)ABCDFig.1.CharacteristicfeaturesofamajorhazeeventinBeijing,China(January2013).(A)Sulfate/sulfurdioxideratio([SO42−]/[SO2])and(B)middayozone(O3)concentrations(10:00to15:00localtime)andnitrogendioxide(NO2)concentrationsatdifferentfine-particle(PM2.5)concentrationlevels.(C)Correlationoftheunexplainedsulfateconcentration(DSO42−=observation−model)(seesectionsM2andM3)withaerosoldropletsolutionandAWC(color-coded).(D)Anion-to-cationratioinPM2.5asobservedinBeijing(solidsymbols)andinotherstudiesinnorthernChina(opensymbols)(tableS1)comparedtothecharacteristicratiosreportedforaircraftmeasurementsintheArcticofoutflowfromEastAsia,Europe,andNorthAmerica(solidred,blue,andgreenlines;here,onlyNH4+,NO3−,andSO42−wereconsidered)(87).SCIENCEADVANCESRESEARCHARTICLEChengetal.Sci.Adv.2016;2:e160153021December20162of11duringtheBeijinghazeeventofJanuary2013,fogwasnotobservedandsulfateproductionbyNO2occurredinaerosolwaterinstead.SulfateproductionratesfromtheNO2reactionpathway(R1)calculatedonthebasisofmeasurementdata(hourlyconcentrationsofNO2,SO2,PM2.5,andRH;sectionsM2andM4)showapositivedependenceonthePM2.5concentration,varyingfrom0.01mgm−3h−1underrelativelycleanconditionstonearly10mgm−3h−1inthemostpollutedperiods(pinkcirclesinFig.3).ThesereactionratescanaccountforthesystematicunderpredictionofmodelsandexplainthelargemissingsourceofsulfateintheBeijinghaze(blackdiamondsinFig.3).Undercleanconditions,theOHreaction(greencrossesinFig.3)dom-inatestheoxidationpathwaysofSO2.Asparticleconcentrationsincreaseandmoresulfateisproduced,thephotochemistryslowsdown,leadingtolessOH,andsulfateproductionviathispathwaydecreases.Fromthisaspect,theOHreactionhasanegativefeedback,whichisself-bufferedagainstheavypollution.AsPM2.5concentrationsandRHincreasesimul-taneously[aspecialfeatureofhazeeventsinNCP(5)],theOHreactionbecomesweaker,whereastheaqueous-phasereactionofNO2startstoplayamoreimportantrole.FortheJanuary2013conditionsatPM2.5~100to200mgm−3,theaqueous-phasereactionbecomesthedominantoxidationpathway(Fig.3).IncontrasttotheOHreaction,theNO2re-actionshowsapositivefeedbackmechanism,wherehigherparticlemat-terlevelsleadtomoreaerosolwater,whichacceleratessulfateproductionandfurtherincreasestheaerosolconcentration.ThispositivefeedbackintensifiesthePM2.5levelsduringhazeperiods,resultinginaseriesofrecord-breakingpollutionevents.TheNO2reactionwithSO2inaerosolwaterproducesnotonlysul-fatebutalsonitrite(R1),whichmayundergosubsequentoxidationordisproportionationreactionsformingnitrate.Thisisconsistentwiththehighnitrateconcentrationsobservedduringthehazeevent,whichareofsimilarmagnitudetothesulfateconcentrations(upto~160mgm−3)(5)andhavealsonotyetbeenexplainedbyairqualitymodels(7).Depend-ingonthepHvalueofthehazedroplets,nitritecanalsoformnitrousacid(HONO)andundergoreversiblepartitioningwiththegasphase(25,26).Moreover,thereleaseofHONOremovesH+,whichmayhelptosustainthedropletacidityandefficientsulfateproduction(27,28).Forthesamehazeperiods,recordhighaerosolnitriteconcentrationsofupto~12mgm−3wereobservedinShandong,northernChina,withnitriteconcentrationswellcorrelatedwithNOxathighRH(>50%)(25).Thenitrite-to-HONOmolarratioof~3inShandongisahundredtimeshigherthantheratioobservedduringapollutioneventinNanjing,YangtzeRiverDeltaofChina,whereonlytraceamountsofnitriteweredetectedintheaerosolphase(upto~0.4mgm−3),andtheaerosolwatertherewasmoreacidic(pH~4)(24,25).ThisfurtherconfirmsthemoreneutralizedfeatureofaerosolparticlecompositionandhazeinnorthernChina.OurstudyunfoldsanewandmorecomprehensiveconceptualmodelofsulfateformationinNCPhazeevents,includingnotonlythetraditionalOH,H2O2,andO3reactionpathwaysinatmosphericgasphaseandcloudchemistrybutalsotheNO2reactionpathwayinaerosolwater(Fig.4).TheNO2pathwaymaynotbelimitedtowinterhazebecauseitmayalsobeimportantatnightandduringfogeventsinpollutedregionswithhighboundarylayerconcentrationsofPM2.5andNO2andelevatedRH(23,24).TheimportanceofmultiphasechemistryholdsforawiderangeofaerosolpH.Whenaerosolsbecomemoreacid-ic,thesulfateproductioncanbemaintainedatahighratethroughTMIreactions(Fig.2B).TheimportantroleofaerosolpHinthemultiphasereactionpathwayhighlightstheneedtobetterunderstandthesourcesofammoniaandalkalineaerosolcomponentsfromnaturalandanthropo-genicemissions(soildust,seawater,agriculture,energy,industrial,and8765432pH10–710–610–510–410–310–210–1100101102103BeijinghazeH2O2O3TMINO28765432pH10–510–410–310–210–1100101102103104105d[SO42–]/dt(µgm–3h–1)ClouddropletsABFig.2.Aqueous-phasesulfateproductionbysulfurdioxideoxidationundercharacteristicconditions.Sulfateproductionratesfor(A)clouddropletsand(B)BeijinghazeplottedagainstpHvalue.Lightblue–andgray-shadedareasindicatecharacteristicpHrangesforcloudwaterundercleantomoderatelypollutedconditionsandaerosolwaterduringseverehazeepisodesinBeijing,respectively.Thecoloredlinesrepresentsulfateproductionratescalculatedfordifferentaqueous-phasereactionpathwayswithoxidants:hydrogenperoxide(H2O2),ozone(O3),transitionmetalions(TMIs),andnitro-gendioxide(NO2).Characteristicreactantconcentrationsandmodelcalculationsforcloudsandhazearetakenfromtheliteratureandobservations,andspecifiedinMaterialsandMethods(seesectionsM7toM9)(12,21).10–310–210–1100101d[SO42–]/dt(µgm–3h–1)8006004002000PM2.5(µgm–3)NO2reactionOHreactionMissingsourceFig.3.ImportanceoftheNO2reactionpathwayforsulfateproductionintheBeijinghaze(January2013).Sulfateproductionratescalculatedfortheaqueous-phaseNO2reactionpathway(pH5.8)andthegas-phaseOHreactionpathwaycomparedtothemissingsourceofsulfate.Crossesandcirclesrepresenthourlyproductionratescalculatedonthebasisofmeasurementdata,andthediamondsrepresenttheaveragemissingsource(arithmeticmean±SD)(seesectionsM3toM5)(7).Thepink-shadedareashowsthemaximumandminimumsulfateproduc-tionratesbytheNO2reactionpathwayboundedbytheaerosolwaterpHrangingfrom5.4to6.2duringhazeperiods.SCIENCEADVANCESRESEARCHARTICLEChengetal.Sci.Adv.2016;2:e160153021December20163of11traffic).Furthermore,reactivenitrogenchemistryinaerosolwatermightalsoplayaroleinnitrateandsecondaryorganicaerosolproduc-tionduringhazedayswhenphotochemistryisreduced.OurresultsrevealthecomplexnatureofhazepollutioneventsinChina,whereNOxisnotonlyaprecursorfornitratebutalsoanim-portantoxidantforsulfateformation.Thus,reductionsofNOxemis-sionsareexpectedtoreducenitrate,sulfate,andPM2.5muchmorethananticipatedbytraditionalairqualitymodels.AlargedecreaseinPM2.5hasalreadybeenobservedinrelationtotrafficandenergycontrolmeasuresduringtheBeijingOlympicGamesin2008andoth-ereventsintheNCP.Heavyhazeconditionswithhighpollutantcon-centrationlevelsandlargelyneutralizedaerosolwaterarekeyfeaturesofatmosphericchemistryintheNCP.Thesefeatureswillneedtobeconsideredinfutureairqualityandpollutantemissioncontrolstrate-giesinnorthernChina,andperhapsalsoinotherregions.MATERIALSANDMETHODSM1.TheJanuary2013hazeinBeijingTheseverehazeepisodeinJanuary2013isoneoftheworstatmosphericpollutioneventseverrecordedinChina(2,9).InBeijing,thedailyfine-particle(PM2.5)concentrationreachedupto400mgm−3,exceedingtheWorldHealthOrganizationguidelinevalueby16times.TheweakEastAsianwintermonsoon,whichresultedinweakenedsurfacewindsandtheanomaloussoutherlywinds,wasresponsibleforthehazeevents(4).Thesoutherlywindstransportedmorewatervaporfromtheseatoeast-ernChina.Theanomaloushigh-pressuresystemat500hPasuppressedconvection.Thus,theairinJanuarywasmorestagnant,trappingmoreairpollutantsandwatervapornearthesurface.ThehighPM2.5concen-trationreducedthesolarradiationandatmosphericphotochemistry,resultingindecreasesintheconcentrationofphotochemicalproductssuchasOHandO3(fig.S1).AmajorfeatureofPM2.5pollutionduringthishazeeventwasthelargecontributionfromsecondaryspecies,includinginorganic(mainlysulfate,nitrate,andammonium)andorganicspecies(2,5).However,contributionfromsecondaryinorganicspecies(suchassulfateandni-trate)showedanincreasingtrendwithincreasingpollutionlevels,whereascontributionfromorganicsdecreased(5).Thefastproductionofsulfate,however,cannotbereproducedbymodelsimulations,whichhaveimplementedaerosol-meteorology-radiationfeedbackandastate-of-the-artchemicalmechanism(6,7),thatis,thegas-phaseoxidationbyOH(29,30)andaqueous-phaseoxidationincloudsbyH2O2andO3(12,21).StabilizedCriegeeintermediates(sCIs)werealsosuggestedasanoxidantofSO2butcontributeminorH2SO4productioncomparedwiththeconventionalOHreactioninthemidday(31–33).FurtheranalysishasshownthatthemodelsimulationcanbeimprovedbyintroducinganapparentheterogeneousprocesswithareactionratecoefficientscaledwithRH(seesectionM3)(7).M2.SamplinglocationandexperimentalmethodsWeperformedaerosolmeasurementsfrom1to31January2013ontheroofoftheEnvironmentalScienceBuilding(40°00′17″N,116°19′34″E,~10mabovetheground)onthecampusofTsinghuaUniversity,anurbanbackgroundsiteinBeijing.TableS2summarizestheaerosol-relatedparametersandexperimentalmethods.ConcentrationsofPM2.5andPM10weremeasuredbyanonlinePM-712monitor(KimotoElectricCo.Ltd.)equippedwithaU.S.EnvironmentalProtectionAgen-cyPM10inletandaPM2.5virtualimpactor(34).SO42−andotherionsinPM2.5weremeasuredbyanonlineACSA-08monitor(KimotoElectricCo.Ltd.)andthefilter-basedanalysis.ThePM2.5filtersampleswerecollectedfrom12to24Januarybymedian-volumesamplers(Laoying)onprebakedQuartzfilters(2500QAT-UP;PallCorporation)withaflowrateof100litersmin−1(35).ThefiltersampleswereanalyzedbytheDionexionchromatograph(DX-600forcationsandICS-2000foranions)(DionexCorporation)fortheconcentrationofwater-solubleinorganicions,includingNa+,K+,Ca2+,Mg2+,NH4+,SO42−,NO3−,andCl−.Organiccarbon(OC)andelementarycarbonconcentrationsinPM2.5weremeasuredbyaSunsetModel4semicontinuouscarbonanalyzer(Beaverton)withaNationalInstituteforOccupationalSafetyandHealth–typetemperatureprotocol(36).Afactorof1.6wasadoptedtoconvertthemassofOCintothemassoforganics(37,38).GaseousairpollutantsSO2,NO2,andO3weremeasuredbytheAtmosphericEnvironmentMonitoringNetwork(39).ThemeteorologydataweremeasuredbytheMilos520WeatherStation(VAISALAInc.).Morede-tailscanbefoundintheworkofZhengetal.(5).M3.WRF-CMAQmodelsimulationTheWeatherResearchandForecasting—CommunityMultiscaleAirQuality(WRF-CMAQ)modelsystemwasusedtodeterminethemissingsourceofsulfatethroughcomparisonwithobservationaldata.WRFisanew-generationmesoscalenumericalweatherpredictionsystemdesignedtoserveawiderangeofmeteorologicalapplications(www.wrf-model.org/),andCMAQisathree-dimensionalEulerianatmosphericchemistryandtransportmodelingsystemthatsimulatesmultipollutants(www.cmascenter.org/cmaq/).ThereleasesofWRFv3.5.1andCMAQv5.0.1wereusedinthisstudy.CloudchemistryPhotochemistryHazechemistrySO2+NO2SO42−SO2+OHSO42−SO2+H2O2/O3SO42–SO2NOXNH3DustFig.4.ConceptualmodelofsulfateformationinhazeeventsinNCP.ThetraditionalOH,H2O2,andO3reactionpathwaysinatmosphericgasphaseandcloudchemistryareincludedhere,aswellastheNO2reactionpathwayinaerosolwaterwithelevatedpHandNO2concentrationsproposedinthisstudy.SCIENCEADVANCESRESEARCHARTICLEChengetal.Sci.Adv.2016;2:e160153021December20164of11ThemodelsimulationwasconfiguredthesameasintheworkofZhengetal.(7),asdetailedintableS3.Tobettercharacterizethestagnantmeteorologicalconditions,weappliedobservationalnudg-ingfortemperature(T)andRH[abovetheplanetaryboundarylayer(PBL)],andwind(withinandabovethePBL).ThesurfaceroughnessiscorrectedaccordingtoMassandOvens(40)byincreasingthefrictionvelocityby1.5timesinthePBLscheme,whichsignificantlyreducedthehighbiasesinwindandRHsimu-lations.Ingeneral,thesimulatedT,RH,andwindatthegroundsurfaceagreewithobservations(7).Forthegas-phasereactions,weusedtheCB05mechanismwithactivechlorinechemistryandtheupdatedtoluenemechanismofWhittenetal.(41).Fortheaqueous-phasereactionsinclouds,weusedtheupdatedmecha-nismoftheRADMmodel(20,42).Reactionsrelevantforthesul-fateformationwerediscussedindetailinsectionM4.Here,theWRF-CMAQmodelingresultswereusedinthefollowinganalysis:(i)themodeledsulfateconcentration[SO42−]wasusedtocalculateD[SO42−],thedifferencebetweenobservedandmodeled[SO42−],and(ii)themodeledOHandH2O2concentrationswereusedintheestimationofsulfateformationfromthegas-phasereactionofOHwithSO2andtheaqueous-phasereactionofH2O2withHSO3−.M4.ProductionofsulfateinWRF-CMAQmodelAccordingtocurrentunderstanding,secondarysulfateisproducedthroughtheoxidationofSO2.IntheWRF-CMAQmodel,oxidationoccursbothinthegasphaseandinthecloud/fogdroplets.Inthegasphase,themajorpathwayistheOH-initiatedreaction(12,43)OHþSO2þM→HO2þSulfateðM1Þinwhichthesecond-orderkineticconstantcanbeexpressedaskTðÞ¼k0ðTÞ½MŠ1þk0ðTÞ½MŠk∞ðTÞ8<:9=;0:6ZandZ¼1þlog10k0ðTÞ½MŠk∞ðTÞ2()−1ðM2Þwhere[M]istheconcentrationofN2andO2,andk0(T)andk∞(T)rep-resentthelow-andhigh-pressurelimitingrateconstants,respectively.Theirtemperaturedependencecanbeexpressedask0TðÞ¼k3000T300Ànandk∞TðÞ¼k300∞T300ÀmðM3Þwherek0300=3.3×10−31cm6molecule−2s−1andn=4.3,andk∞300=1.6×10−12cm3molecule−1s−1andm=0.Incloud/fogdroplets,thefollowingaqueousreactionshavebeenin-cludedintheWRF-CMAQmodel(7).Theexpressionoftheirreactionrate,aswellastheratecoefficients,issummarizedintableS4.HSO3ÀþH2O2→SO42ÀþHþþH2OðM4ÞSO2þO3þH2O→SO42Àþ2HþþO2ðM5ÞHSO3ÀþO3→SO42ÀþHþþO2ðM6ÞSO32ÀþO3→SO42ÀþO2ðM7ÞSO2þH2Oþ0:5O2þFeðIIIÞ=MnðIIÞ→SO42Àþ2HþðM8ÞHSO3ÀþCH3OOH→SO42ÀþHþþCH3OHðM9ÞHSO3ÀþCH3COOOH→SO42ÀþHþþCH3COOHðM10ÞM5.ApparentheterogeneousuptakeofSO2onaerosolsurfacesToimprovethemodelsimulationforthewinterhazeeventsinBeijingandtheNCP,Zhengetal.(7)suggestedtheuseofanapparentheter-ogeneousuptakecoefficient(g)ofSO2onaerosolsurfacesasafunctionofRH(Eq.M11).gisdefinedastheratioofthenumberofcollisionsthatresultinthereactionSO2(g)+Aerosol→SO42−tothetheoreticaltotalnumberofcollisions.TheoverallratesofSO2uptakeandsulfateproductionareasfastasifthewholeaerosolsurfaceiscoveredbydust(44).Althoughtheexactmechanismsupportingthisfastproductionrateisstillunknown(7),thisapparentheterogeneoussourceofsulfatecanaccountfortheunderpredictionofmodeledsulfate,withsignificantreductionofnormalizedmodelbiasfrom−54.2to6.3%.g¼glow;0%≤RH≤50%glowþðghighÀglowÞ=ð1–0:5ÞÂðRHÀ50%Þ;50%<RH≤100%ðM11Þwhereglow=2×10−5andghigh=5×10−5.Withg,asulfateproductionrateRH,gcanbedeterminedbyEq.M12:RH;g¼d½SO42ÀŠdt¼RpDgþ4gnÀ1SaerosolSO2½ŠðM12ÞwhereRpistheradiusofaerosolparticles,Dgisthegas-phasemoleculardiffusioncoefficientofSO2,nisthemeanspeedofgaseousSO2mole-cules,andSaerosolisthesurfaceareaconcentrationofaerosolparticles.M6.ISORROPIA-IImodelcalculationTheISORROPIA-IImodel(15)wasusedtocalculatetheAWCandpH.TheISORROPIA-IIisathermodynamicequilibriummodelthatpredictsthephysicalstateandcompositionofatmosphericinorganicaerosols.Itcanbeusedintwomodes:thereversemodeandthefor-wardmode.Thereversemodecalculatedthethermodynamicequilib-riumbasedonaerosol-phaseconcentrations,whereastheforwardmodereliedonbothaerosol-phaseandgas-phaseconcentrations(16).ItsabilityinpredictingAWCandpHhasbeendemonstratedbyGuoetal.(45)andXuetal.(16).ToevaluatetheaerosolpHandAWC,weperformedbothreverse-modeandforward-modemodelsimulationsandusedtheiraveragesforfurtheranalyses.ThegaseousNH3wasnotmeasuredinourJan-uarycampaign,butlong-termmeasurement(46)showsacompactcorrelationbetweenNH3andNOxconcentrationsinthewintersea-sonofBeijing.Accordingly,weestimatedtheNH3concentrationfromtheobservedNOxconcentrationwithanempiricalequationderivedfromMengetal.(46),thatis,NH3(ppb)=0.34×NOx(ppb)+0.63.SCIENCEADVANCESRESEARCHARTICLEChengetal.Sci.Adv.2016;2:e160153021December20165of11ThecontributionoforganiccompoundstoAWC,Worg(themassconcentrationofaerosolwaterassociatedwithorganics),wasesti-matedbythesameapproachofGuoetal.(45)Worg¼OMrorg⋅rw⋅korgð100%=RHÀ1ÞðM13ÞwhereOMisthemassconcentrationoforganicmatter,rwisthedensityofwater(rw=1.0×103kgm−3),rorgisthedensityoforganics(rorg=1.4×103kgm−3)(45),andkorgisthehygroscopicityparameter(47)oforganicaerosolcompositions.Weadoptedakorgof0.06basedonpre-viouscloudcondensationnucleimeasurementsinBeijing(48).M7.KineticsofmasstransportFormultiphasereactions,theoverallreactionratedependsnotonlyontherateofchemicalreactionsbutalsoonthemasstransportindifferentmediumandacrosstheinterface.Toaccountfortheeffectsofmasstransport,weadoptedtheformulationofastandardresistancemodel(12)1RH;aq¼1Raqþ1Jaq;limðM14ÞwhereRH,aqisthesulfateproductionrate,Raqistheaqueous-phasereac-tionrate,andJaq,limisthelimitingmasstransferrate.FortheoxidationofS(IV)byagivenoxidantOxi(12)Raq¼ðk0½SO2⋅H2OŠþk1½HSO3ÀŠþk2½SO32ÀŠÞ½OxiŠðM15Þwhere[SO2·H2O],[HSO3−],[SO32−],and[Oxi]aretherespectiveaqueous-phaseconcentrations,andk0,k1,andk2arethecorrespondingsecond-orderreactionratecoefficientsasdetailedintableS4.Theaqueous[Oxi]isassumedtobeinequilibriumwithitsgas-phaseconcentrationandcanbedeterminedbyHenry’slaw(12)½XŠ¼p∞ðXÞ⋅HðXÞðM16Þwherep∞(X)(atm)isthepartialpressureofspeciesXinthebulkgasphaseandH(Matm−1)istheeffectiveHenry’sconstant(tableS5).ThelimitingmasstransferrateJaq(Ms−1)iscalculatedbyEqs.M17andM18(12)Jaq;lim¼minfJaqðSO2Þ;JaqðOxiÞgðM17ÞJaqðXÞ¼kMTðXÞ⋅p∞ðXÞ⋅HðXÞðM18ÞwhereXreferstoSO2ortheoxidantOxisuchasO3,H2O2,andNO2.ThemasstransferratecoefficientkMT(s−1)canbecalculatedby(12)kMTXðÞ¼Rp23Dgþ4Rp3anÀ1ðM19ÞwhereRpistheaerosolradius,andRp23Dgand4Rp3anarethecontinuumregimeresistanceandthefree-molecular(orkinetic)regimeresistance,respectively.Dgisthegas-phasemoleculardiffusioncoefficient,andnisthemeanmolecularspeedofX.aisthemassaccommodationco-efficientofXonthedropletsurface,whichaccountsforimperfectstickingofimpingingmoleculestothesurface,andweadoptedliter-aturevaluesof0.11,0.23,2.0×10−3(12),and2.0×10−4(49)forSO2,H2O2,O3,andNO2,respectively.Aqueous-phasemasstransfercanbeignoredforthesizerangeconsideredhere(Dp≤2.5mm)(12).AnequivalentRpof0.15and15mmwasassumedforaerosolsandclouddroplets,respectively.M8.Influencesofionicstrengthonaqueoussulfate-producingreactionsAerosolliquidwaterconstitutesanaqueouselectrolytethatcanbeex-tremelyconcentratedwithhighionicstrength(I)upto100M(50).Thishighlyconcentratedchemicalenvironmentwillaffecttheinclina-tionofaspeciestoparticipateintheaqueous-phasechemicalreac-tions,reflectedbyanapparentreactionrateconstant(k)differentfromthatinanidealsolution(21).TheinfluenceofIonkiscomplicatedandisnotyetfullyunder-stood.Accordingtocurrentunderstanding,Iaffectskthroughitsintegratedeffectsontheactivitycoefficient(a)ofreactantsandproductsformostreactions(51).Forexample,forareactionwherereactantsAandBformanactivatedcomplex(AB),whichthenquicklydecomposesintoafinalproductP(A+B→(AB)→P),thek-Idependencecanbedescribedas(51)logkkI¼0¼logaAþlogaBÀlogaðABÞðM20ÞwherekI=0referstothekineticconstantatIof0M.TheoriesusedtopredictaiatgivenIvariedwiththerangesofIandthespeciesnature,thatis,beinganionoraneutralspecies,assummarizedintableS6.Majoraqueoussulfate-producingreactionsconsideredhereincludeS(IV)oxidationbyH2O2,O3,TMI+O2,andNO2(Fig.2).Amongthesereactions,theinfluenceofIhasbeenstudiedexperimentally,withIrang-ingupto~5MforH2O2andslightlyhigherthan1MforO3andTMI+O2.Theobservedk-Irelationshipsofthesereactionsagreewiththeore-ticalpredictionssummarizedintableS7(52–56).Asshowninfig.S3,withincreasingionicstrength,therateconstantforH2O2decreasesfirstwhenIisbelow~1MandbeginstoincreaseonceIgoesabove~1M(52,57).ForO3,therateconstantispositivelyrelatedtoI.ForTMI+O2[here,onlyFe(III)andMn(II)areconsideredaseffectivecatalyzingTMIs(58,59)],therateconstantdecreasessignificantlywithincreasingI,evenwithoutconsideringthesulfateinhabitationeffect(referringtotheeffectthattheformationofthesulfate-TMIcomplexwouldreducecatalyticallyactiveTMIconcentrations)(55,60).Currently,however,nok-IrelationshipwasreportedforNO2,whereassomeplausibleestimationcanbemadeonthebasisoftheprin-cipleoftheoriesdiscussedabove.TwokindsofmechanismshavebeensuggestedfortheNO2-S(IV)reactions.Oneistheoxygen-atomtransferreaction(61)2NO2þSO2À3↔ðO2NÀSO3ÀNO2Þ2ÀðM21aÞðO2NÀSO3ÀNO2Þ2ÀþOHÀ↔HOÀSO3ÀðNO2Þ23ÀðM21bÞSCIENCEADVANCESRESEARCHARTICLEChengetal.Sci.Adv.2016;2:e160153021December20166of11HOÀSO3ÀðNO2Þ23ÀþOHÀ→2NO2ÀþSO2À4þH2OðM21cÞinwhichthefirstreaction(Eq.M21a)istherate-controllingstep.Theothermechanismisanelectrontransferreaction(62–64)NO2þSO2À3→NO2ÀþSO3•ÀðM22Þfollowedbythesulfurauto-oxidationprocesses(12).Thefirstreaction(Eq.M22)istherate-controllingstepbecausefollow-upreactionswithradicalsareveryfast.Forbothmechanisms,therate-controllingstepoftheNO2-S(IV)reactionisareactionofanionwithaneutralmolecule.AccordingtoHerrmann(51),thek-IrelationforthistypeofreactionshouldfollowlogkkI¼0¼bIðM23Þwherebisthekineticsaltingcoefficient.AccordingtoKameokaandPigford(65),bisexpectedtobepositive.Givenapositiveb,in-creasingIwillleadtoanincreaseink,asshownbythereddashedcurveinfig.S3(wetakeanarbitraryvalueof0.5M−1forb,whichisnotdeterminedfromexperimentsandisusedonlyforthepurposeofillustration).DuringthesevereBeijinghazes(whenPM2.5ishigherthan300mgm−3),ionicstrengthinaerosolliquidwaterrangedfrom13to43M,aspredictedbytheISORROPIA-IImodel(seesectionM6)(15).Directextrapolationoftheobserved/predictedk-Irelationship(fig.S3)intosuchhighrangesofionicstrengthmaynotbeappropriate.Thus,therateconstantsaretakenasfordilutedsolution,althoughbasedoncurrentobservationsandtheories(tableS7andfig.S3),thistreatmentwillleadtoconservativeestimationsoftherealsulfatepro-ductionratesoftheNO2,O3,andH2O2pathwaysinFig.2butanoverestimationoftheTMI+O2pathway.M9.DatausedinFig.2Detaileddescriptionsonhowtoderivethesulfateproductionratefordifferentaqueous-phaseoxidationpathwaysofSO2(thatis,byH2O2,O3,TMI+O2,andNO2)inFig.2canbefoundinthestudyofSeinfeldandPandis(12).Theaqueous-phasereactionsinvolvedarelistedasRe-actionsR1andM4toM8.TherateexpressionsandratecoefficientsandtheconstantsthatweusedforcalculatingtheapparentHenry’sconstantaresummarizedintablesS4andS5,respectively.InFig.2,the“clouddroplets”scenarioistakenfromtheworkofSeinfeldandPandis(12)andHerrmannetal.(21):[SO2(g)]=5ppb,[NO2(g)]=1ppb,[H2O2(g)]=1ppb,[O3(g)]=50ppb,[Fe(III)]=0.3mM,[Mn(II)]=0.03mM,liquidwatercontent=0.1gm−3,andclouddropletradiusRp=15mm.Inthisscenario,thetemperatureTistakentobethesameasthatusedinthe“Beijinghaze”scenariodescribedbelow.The“Beijinghaze”scenariowastakenaccordingtothemeasure-mentdataduringthemostpollutedhazeperiods(PM2.5>300mgm−3).Theaveragevalueswereusedinourcalculation:[SO2(g)]=40ppb,[NO2(g)]=66ppb,[H2O2(g)]=0.01ppb,[O3(g)]=1ppb,AWC=300mgm−3,aerosoldropletradiusRp=0.15mm,andT=271K.Theconcentrationsof[Fe(III)]and[Mn(II)]arepH-dependent(fig.S4).ThepHdependenceismostlyduetotheprecipitationequilibriumofFe(OH)3andMn(OH)2FeðIIIÞ½Š¼Ksp;FeðOHÞ3½OHÀŠ3and½MnðIIފsat¼Ksp;MnðOHÞ2½OHÀŠ2ðM24ÞwhereKsp;FeðOHÞ3andKsp;MnðOHÞ2aretheprecipitationconstantsofFe(OH)3andMn(OH)2,respectively(66).WhenallFe(OH)3andMn(OH)2aredissolved,furtherdecreaseofpHwillnotincrease[Fe(III)]and[Mn(II)],resultinginaplateauatlowpH(fig.S4).ThetotalsolubleFeandMnareestimatedtobe18and42ngm−3,respectively,basedondataintheliteratureandobservationsinBeijing(2,59,66–70).TheseverehazeeventsobservedinBeijingarearegionalphenom-enon(5).BecauseBeijingislocatedinthenorthwesternedgeofthepollutedarea,theairpollutionincitiessouthofBeijingisevenmoresevere.NO2concentrationsinBeijingarecomparabletothesoutherncities,whereasSO2concentrationsinthelatteraretypicallytwotofourtimeshigherthanthoseinBeijing(fig.S5).Thus,thesulfatepro-ductionratefromtheNO2pathwaythatwepredictedwiththeBeijingdatainFig.2isaconservativeestimationforthecontributionofthispathwaytothesulfateformationinthewholeNCP.ConsideringthatregionaltransportfromcitiessouthofBeijinghascontributedtotheseverehazeepisodeinJanuary2013(5,71)andjudgingfromtheairpollutiontrendshowninfig.S5,thepollutedairparcelscouldtypicallyhavebeenprocessedunderseverehazeconditionsinBeijingandincitiessouthofitformorethan3daysbeforethepeakpollutionhourinBeijing.Becausecloudamountswerelow(7,72,73)duringtheJanuary2013winterhazeperiods,weassumedthataerosolsspent100%oftheirlifetimeundernoncloudconditions(RH<100%)(21).Undertheseconditions,toproducetheobservedsulfateconcentration(~200mgm−3),therequiredaverageheterogeneousproductionratecanbedeterminedtobe~3mgm−3h−1.Thisestimationalsofallsintotherangesof1to7mgm−3h−1thatwepredictedfortheNO2pathwayinFig.2.M10.AerosolacidityinnorthernChinaTheneutralizedfeatureofaerosolsinEastAsia(includingBeijingandtheNCP)hasbeenwelldocumentedintheliterature,withhighcation-to-anionratios(45,74–86).AircraftmeasurementsintheArcticfurthersupportthisconclusion,showingthattheaerosolsintheArcticcharac-terizedascomingfromtheoutflowofEastAsiaweremostlyneutralized,whereastheaerosolstransportedfromNorthAmericatotheArcticwerehighlyacidic(linesinFig.1D)(87).ThelowaerosolacidityinEastAsiacanbeattributedtoitshighNH3andmineraldustemissions.Forexample,in2008,theemissionratiosofNH3to2×SO2(molarratioofNH3emissiondividedbytwicetheSO2emission)are0.37,0.86,and1.04forNorthAmerica,Europe,andEastAsia,respectively(87).NorthernChinaisexpectedtohaveahigheratmosphericneutralizingcapacitythanotherpartsofEastAsiabecauseofthehighNH3emissioninthisregion.Bothsatellitedata(88,89)andemissioninventories(90)showthatnorthernChinaisoneofthemostNH3-richareasinEastAsiabecauseofitsintenseagricultureactivities.TheNCP(thatis,thecitiesofBeijingandTianjinandtheprovincesofHebei,Henan,andShandong)accountsfor30to40%ofthetotalNH3emissionsinChina(90)whilecon-tributing~20%oftheemissionsforSO2andNOx(91).SCIENCEADVANCESRESEARCHARTICLEChengetal.Sci.Adv.2016;2:e160153021December20167of11Thehighmassfractionofmineraldust(10to20%)isadistinctcharacteristicofPM2.5intheNCP(2,70,92,93).Theinfluenceofmin-eralaerosolsisalsohigherfornorthernChinathanforsouthernChina(94–98).Majorsourcesofmineralaerosolsincludeurbanfugitivedust(resuspendedroaddust,constructiondust,etc.)andthelong-rangetransportedAsiandust(99–101).Themineraldustsareobservedtobeinternallymixedwithsulfate,nitrate,andammonia,suggestingtheirparticipationinatmosphericprocessing(102–105).Withoutmineralcomponents(Ca2+,Mg2+,K+,andNa+),aerosolpHinnorthernChinamaydropbelow5.6,showinganacidicnature(37).Inaddition,despitethehighemissionofacidicgases(SO2andNOx),rainwaterinnorthernChinahasaveragepHvalueshigherthan5.6(fig.S6),suggestinganalkalinetendencyincontrasttootherareas(forexample,theUnitedStates)(12,22).ApHof5.6isoftentakenasthe“natural”acidityofrainwater(waterinequilibriumwithCO2),whichhasbeenconsideredasthedemarcationlineofacidicprecipi-tation(12).ThehighpHvaluesinrainwaterofnorthernChinaarecausedbyalkalineaerosolparticles(12),whichhavealargebufferingcapacitytooffsettheeffectsofanthropogenicacidity.M11.ContributionfromsCIsandNO3radicalsWehavealsoinvestigatedthereactionsofS(IV)withNO3radicalsandsCIs,bothofwhichshowminorcontributions(0.03and0.69%)comparedtoourproposedmechanismS(IV)+NO2(aq).OxidationbyNO3radicals.AnaverageNO3radicalconcentrationof~2.5×10−3partspertrillionwasdeterminedbyourmodelingresultsfortheseverepollutionperiods.TakinganeffectiveHenry’sconstantof0.6Matm−1forNO3andare-actionrateconstantof1.4×109M−1s−1(106),wedeterminedasulfateproductionrateof5.1×10−4mgm−3h−1fortheNO3reaction.Thisrateisonly0.03%comparedtotheproposedmechanismS(IV)+NO2(aq)atpH5.8(Fig.2)andisthusnegligible.OxidationbysCI.AccordingtoMauldinetal.(31),wecalculatedRsCI,thesulfatefor-mationratefromthesCImechanism,byRsCI¼ksCIþSO2½sCIŠ½SO2ŠðM25Þwhere[sCI]and[SO2]aretheconcentrationsofsCIandSO2,respectively,andthereactionratecoefficientksCIþSO2is6×10−13cm3molecule−1s−1.TheconcentrationofsCIcanbedeterminedbythefollowingequation(31)½sCIŠ¼YsCIkO3þalkene½O3Š½alkeneŠtsCIðM26ÞwhereYsCIistheyieldofsCI~0.5,kO3þalkeneisthecorrespondingratecoefficientforthereactionofO3withindividualalkenes,andtsCIisthelifetimeofthesCI,whichis0.2s(31).Aftertakingatypicalalkeneprofileforthehazeperiod(107),wedeterminedanRsCIof~0.69%oftheproposedS(IV)+NO2(aq)mechanism.SUPPLEMENTARYMATERIALSSupplementarymaterialforthisarticleisavailableathttp://advances.sciencemag.org/cgi/content/full/2/12/e1601530/DC1fig.S1.WeakenedphotochemistrybyaerosoldimmingeffectsduringJanuary2013inBeijing.fig.S2.ImportanceoftheNO2reactionpathwayforsulfateproductionintheBeijinghaze(January2013).fig.S3.Influenceofionicstrength(I)onrateofaqueoussulfate-producingreactions.fig.S4.EstimationofFe3+andMn2+concentrationsasafunctionofaerosolwaterpHduringBeijinghazes.fig.S5.RegionalpollutionacrosstheNCPduringJanuary2013.fig.S6.AnnualprecipitationpHofChinain2013.fig.S7.ThesameasFig.2butwithalowerlimitofreactionrateconstantsreportedbyLeeandSchwartz(18).tableS1.PreviouslyreportedconcentrationsofcationsandanionsinPM2.5duringwinterforcitiesinNCPusedinFig.1D.tableS2.Summaryoffieldobservationandmethodsinthisstudy.tableS3.Domain,configurations,andmajordynamicandphysicaloptionsusedinWRFv3.5.1.tableS4.Rateexpressionandratecoefficientsofrelevantaqueous-phasereactions.tableS5.ConstantsforcalculatingtheapparentHenry’sconstant(H).tableS6.Summaryofsuggestedactivitycoefficient(a)–ionicstrength(I)dependence.tableS7.Influenceofionicstrength(I)onrateofaqueoussulfate-producingreactions.References(108–128)REFERENCESANDNOTES1.P.Brimblecombe,TheBigSmoke(Methuen,1987).2.R.-J.Huang,Y.Zhang,C.Bozzetti,K.-F.Ho,J.-J.Cao,Y.Han,K.R.Daellenbach,J.G.Slowik,S.M.Platt,F.Canonaco,P.Zotter,R.Wolf,S.M.Pieber,E.A.Bruns,M.Crippa,G.Ciarelli,A.Piazzalunga,M.Schwikowski,G.Abbaszade,J.Schnelle-Kreis,R.Zimmermann,Z.An,S.Szidat,U.Baltensperger,I.ElHaddad,A.S.H.Prévôt,HighsecondaryaerosolcontributiontoparticulatepollutionduringhazeeventsinChina.Nature514,218–222(2014).3.S.Guo,M.Hu,M.L.Zamora,J.Peng,D.Shang,J.Zheng,Z.Du,Z.Wu,M.Shao,L.Zeng,M.J.Molina,R.Zhang,ElucidatingsevereurbanhazeformationinChina.Proc.Natl.Acad.Sci.U.S.A.111,17373–17378(2014).4.R.Zhang,Q.Li,R.Zhang,MeteorologicalconditionsforthepersistentseverefogandhazeeventovereasternChinainJanuary2013.Sci.ChinaEarthSci.57,26–35(2014).5.G.J.Zheng,F.K.Duan,H.Su,Y.L.Ma,Y.Cheng,B.Zheng,Q.Zhang,T.Huang,T.Kimoto,D.Chang,U.Pöschl,Y.F.Cheng,K.B.He,ExploringtheseverewinterhazeinBeijing:Theimpactofsynopticweather,regionaltransportandheterogeneousreactions.Atmos.Chem.Phys.15,2969–2983(2015).6.J.Wang,J.Wang,S.Wang,J.Jiang,A.Ding,M.Zheng,B.Zhao,D.C.Wong,W.Zhou,G.Zheng,L.Wang,J.E.Pleim,J.Hao,Impactofaerosol–meteorologyinteractionsonfineparticlepollutionduringChina’sseverehazeepisodeinJanuary2013.Environ.Res.Lett.9,094002(2014).7.B.Zheng,Q.Zhang,Y.Zhang,K.B.He,K.Wang,G.J.Zheng,F.K.Duan,Y.L.Ma,T.Kimoto,Heterogeneouschemistry:AmechanismmissingincurrentmodelstoexplainsecondaryinorganicaerosolformationduringtheJanuary2013hazeepisodeinNorthChina.Atmos.Chem.Phys.14,16731–16776(2014).8.R.Zhang,G.Wang,S.Guo,M.L.Zamora,Q.Ying,Y.Lin,W.Wang,M.Hu,Y.Wang,Formationofurbanfineparticulatematter.Chem.Rev.115,3803–3855(2015).9.D.H.Ehhalt,F.Rohrer,DependenceoftheOHconcentrationonsolarUV.J.Geophys.Res.105,3565–3571(2000).10.F.Rohrer,H.Berresheim,Strongcorrelationbetweenlevelsoftropospherichydroxylradicalsandsolarultravioletradiation.Nature442,184–187(2006).11.C.Pilinis,J.H.Seinfeld,D.Grosjean,Watercontentofatmosphericaerosols.Atmos.Environ.23,1601–1606(1989).12.J.H.Seinfeld,S.N.Pandis,AtmosphericChemistryandPhysics,fromAirPollutiontoClimateChange(Wiley,2006).13.B.Ervens,B.J.Turpin,R.J.Weber,Secondaryorganicaerosolformationinclouddropletsandaqueousparticles(aqSOA):Areviewoflaboratory,fieldandmodelstudies.Atmos.Chem.Phys.11,11069–11102(2011).14.A.Nenes,S.N.Pandis,C.Pilinis,Continueddevelopmentandtestingofanewthermodynamicaerosolmoduleforurbanandregionalairqualitymodels.Atmos.Environ.33,1553–1560(1999).15.C.Fountoukis,A.Nenes,ISORROPIAII:AcomputationallyefficientthermodynamicequilibriummodelforK+-Ca2+-Mg2+-NH4+-Na+-SO42−-NO3−-Cl−-H2Oaerosols.Atmos.Chem.Phys.7,4639–4659(2007).16.L.Xu,H.Guo,C.M.Boyd,M.Klein,A.Bougiatioti,K.M.Cerully,J.R.Hite,G.Isaacman-VanWertz,N.M.Kreisberg,C.Knote,K.Olson,A.Koss,A.H.Goldstein,S.V.Hering,J.deGouw,K.Baumann,S.-H.Lee,A.Nenes,R.J.Weber,N.LeeNg,EffectsofanthropogenicemissionsonaerosolformationfromisopreneandmonoterpenesinthesoutheasternUnitedStates.Proc.Natl.Acad.Sci.U.S.A.112,37–42(2015).17.T.Koop,B.Luo,A.Tsias,T.Peter,Wateractivityasthedeterminantforhomogeneousicenucleationinaqueoussolutions.Nature406,611–614(2000).18.Y.N.Lee,S.E.Schwartz,PrecipitationScavenging,DryDepositionandResuspension(Elsevier,1983),pp.453–470.SCIENCEADVANCESRESEARCHARTICLEChengetal.Sci.Adv.2016;2:e160153021December20168of1119.X.Huang,Y.Song,C.Zhao,M.Li,T.Zhu,Q.Zhang,X.Zhang,PathwaysofsulfateenhancementbynaturalandanthropogenicmineralaerosolsinChina.J.Geophys.Res.119,14165–14179(2014).20.C.J.Walcek,G.R.Taylor,Atheoreticalmethodforcomputingverticaldistributionsofacidityandsulfateproductionwithincumulusclouds.J.Atmos.Sci.43,339–355(1986).21.H.Herrmann,T.Schaefer,A.Tilgner,S.A.Styler,C.Weller,M.Teich,T.Otto,A.Che,Troposphericaqueous-phasechemistry:Kinetics,mechanisms,anditscouplingtoachanginggasphase.Chem.Rev.115,4259–4334(2015).22.J.Cao,X.Tie,W.F.Dabberdt,T.Jie,Z.Zhao,Z.An,Z.Shen,OnthepotentialhighaciddepositioninnortheasternChina.J.Geophys.Res.118,4834–4846(2013).23.S.N.Pandis,J.H.Seinfeld,Mathematicalmodelingofaciddepositionduetoradiationfog.J.Geophys.Res.94,12911–12923(1989).24.Y.Xie,A.Ding,W.Nie,H.Mao,X.Qi,X.Huang,Z.Xu,V.-M.Kerminen,T.Petäjä,X.Chi,A.Virkula,M.Boy,L.Xue,J.Guo,J.Sun,X.Yang,M.Kulmala,C.Fu,Enhancedsulfateformationbynitrogendioxide:Implicationsfromin-situobservationsattheSORPESStation.J.Geophys.Res.120,12679–12694(2015).25.L.Wang,L.Wen,C.Xu,J.Chen,X.Wang,L.Yang,W.Wang,X.Yang,X.Sui,L.Yao,Q.Zhang,HONOanditspotentialsourceparticulatenitriteatanurbansiteinNorthChinaduringthecoldseason.Sci.TotalEnviron.538,93–101(2015).26.H.Su,Y.Cheng,R.Oswald,T.Behrendt,I.Trebs,F.X.Meixner,M.O.Andreae,P.Cheng,Y.Zhang,U.Pöschl,SoilnitriteasasourceofatmosphericHONOandOHradicals.Science333,1616–1618(2011).27.A.Laskin,D.J.Gaspar,W.Wang,S.W.Hunt,J.P.Cowin,S.D.Colson,B.J.Finlayson-Pitts,Reactionsatinterfacesasasourceofsulfateformationinsea-saltparticles.Science301,340–344(2003).28.B.Alexander,R.J.Park,D.J.Jacob,Q.B.Li,R.M.Yantosca,J.Savarino,C.C.W.Lee,M.H.Thiemens,Sulfateformationinsea-saltaerosols:Constraintsfromoxygenisotopes.J.Geophys.Res.110,D10307(2005).29.W.R.Stockwell,J.G.Calvert,ThemechanismoftheHO-SO2reaction.Atmos.Environ.17,2231–2235(1983).30.M.A.Blitz,K.J.Hughes,M.J.Pilling,Determinationofthehigh-pressurelimitingratecoefficientandtheenthalpyofreactionforOH+SO2.J.Phys.Chem.A107,1971–1978(2003).31.R.L.MauldinIII,T.Berndt,M.Sipilä,P.Paasonen,T.Petäjä,S.Kim,T.Kurtén,F.Stratmann,V.-M.Kerminen,M.Kulmala,Anewatmosphericallyrelevantoxidantofsulphurdioxide.Nature488,193–196(2012).32.S.Kim,A.Guenther,B.Lefer,J.Flynn,R.Griffin,A.P.Rutter,L.Gong,B.K.Cevik,PotentialroleofstabilizedCriegeeradicalsinsulfuricacidproductioninahighbiogenicVOCenvironment.Environ.Sci.Technol.49,3383–3391(2015).33.M.Boy,D.Mogensen,S.Smolander,L.Zhou,T.Nieminen,P.Paasonen,C.Plass-Dülmer,M.Sipilä,T.Petäjä,L.Mauldin,H.Berresheim,M.Kulmala,OxidationofSO2bystabilizedCriegeeintermediate(sCI)radicalsasacrucialsourceforatmosphericsulfuricacidconcentrations.Atmos.Chem.Phys.13,3865–3879(2013).34.N.Kaneyasu,S.Yamamoto,K.Sato,A.Takami,M.Hayashi,K.Hara,K.Kawamoto,T.Okuda,S.Hatakeyama,Impactoflong-rangetransportofaerosolsonthePM2.5compositionatamajormetropolitanareainthenorthernKyushuareaofJapan.Atmos.Environ.97,416–425(2014).35.Q.Zhang,F.Duan,K.He,Y.Ma,H.Li,T.Kimoto,A.Zheng,OrganicnitrogeninPM2.5inBeijing.Front.Environ.Sci.Eng.9,1004–1014(2015).36.G.J.Zheng,Y.Cheng,K.B.He,F.K.Duan,Y.L.Ma,AnewlyidentifiedcalculationdiscrepancyoftheSunsetsemi-continuouscarbonanalyzer.Atmos.Meas.Tech.7,1969–1977(2014).37.J.K.Zhang,Y.Sun,Z.R.Liu,D.S.Ji,B.Hu,Q.Liu,Y.S.Wang,CharacterizationofsubmicronaerosolsduringamonthofseriouspollutioninBeijing,2013.Atmos.Chem.Phys.14,2887–2903(2014).38.L.Xing,T.Fu,J.J.Cao,S.C.Lee,G.H.Wang,K.F.Ho,M.Cheng,C.You,T.J.Wang,SeasonalandspatialvariabilityoftheOM/OCmassratiosandhighregionalcorrelationbetweenoxalicacidandzincinChineseurbanorganicaerosols.Atmos.Chem.Phys.13,4307–4318(2013).39.G.Tang,Y.Wang,X.Li,D.Ji,S.Hsu,X.Gao,Spatial-temporalvariationsinsurfaceozoneinNorthernChinaasobservedduring2009–2010andpossibleimplicationsforfutureairqualitycontrolstrategies.Atmos.Chem.Phys.12,2757–2776(2012).40.C.Mass,D.Ovens,WRFmodelphysics:Progress,problems,andperhapssomesolutions,the11thWRFUsers’Workshop,21–25June,NCARCenterGreenCampus,http://www2.mmm.ucar.edu/wrf/users/workshops/WS2010/presentations/session4/4-1_WRFworkshop2010Final.pdf(2010)[accessedDecember2015].41.G.Z.Whitten,G.Heo,Y.Kimura,E.McDonald-Buller,D.T.Allen,W.P.L.Carter,G.Yarwood,AnewcondensedtoluenemechanismforCarbonBond:CB05-TU.Atmos.Environ.44,5346–5355(2010).42.J.S.Chang,R.A.Brost,I.S.A.Isaksen,S.Madronich,P.Middleton,W.R.Stockwell,C.J.Walcek,Athree-dimensionalEulerianaciddepositionmodel:Physicalconceptsandformulation.J.Geophys.Res.92,14681–14700(1987).43.NASA/JetPropulsionLaboratory,ChemicalKineticsandPhotochemicalDataforUseinAtmosphericStudies(NASA/JetPropulsionLaboratory,2010).44.Y.Zhang,G.R.Carmichael,TheroleofmineralaerosolintroposphericchemistryinEastAsia—Amodelstudy.J.Appl.Meteorol.38,354–366(1999).45.H.Guo,L.Xu,A.Bougiatioti,K.Cerully,S.Capps,J.Hite,A.Carlton,S.Lee,M.Bergin,N.Ng,A.Nenes,R.Weber,Fine-particlewaterandpHinthesoutheasternUnitedStates.Atmos.Chem.Phys.15,5211–5228(2015).46.Z.Y.Meng,W.L.Lin,X.M.Jiang,P.Yan,Y.Wang,Y.M.Zhang,X.F.Jia,X.L.Yu,CharacteristicsofatmosphericammoniaoverBeijing,China.Atmos.Chem.Phys.11,6139–6151(2011).47.M.D.Petters,S.M.Kreidenweis,Asingleparameterrepresentationofhygroscopicgrowthandcloudcondensationnucleusactivity.Atmos.Chem.Phys.7,1961–1971(2007).48.S.S.Gunthe,D.Rose,H.Su,R.M.Garland,P.Achtert,A.Nowak,A.Wiedensohler,M.Kuwata,N.Takegawa,Y.Kondo,M.Hu,M.Shao,T.Zhu,M.O.Andreae,U.Pöschl,Cloudcondensationnuclei(CCN)fromfreshandagedairpollutioninthemegacityregionofBeijing.Atmos.Chem.Phys.11,11023–11039(2011).49.D.J.Jacob,Heterogeneouschemistryandtroposphericozone.Atmos.Environ.34,2131–2159(2000).50.Y.Cheng,H.Su,T.Koop,E.Mikhailov,U.Pöschl,Sizedependenceofphasetransitionsinaerosolnanoparticles.Nat.Commun.6,5923(2015).51.H.Herrmann,Kineticsofaqueousphasereactionsrelevantforatmosphericchemistry.Chem.Rev.103,4691–4716(2003).52.F.Maaß,H.Elias,K.J.Wannowius,Kineticsoftheoxidationofhydrogensulfitebyhydrogenperoxideinaqueoussolution:Ionicstrengtheffectsandtemperaturedependence.Atmos.Environ.33,4413–4419(1999).53.H.G.Maahs,KineticsandmechanismoftheoxidationofS(IV)byozoneinaqueoussolutionwithparticularreferencetoSO2conversioninnonurbantroposphericclouds.J.Geophys.Res.88,10721–10732(1983).54.J.Lagrange,C.Pallares,P.Lagrange,Electrolyteeffectsonaqueousatmosphericoxidationofsulphurdioxidebyozone.J.Geophys.Res.99,14595–14600(1994).55.L.R.Martin,M.W.Hill,Theironcatalyzedoxidationofsulfur:Reconciliationoftheliteraturerates.Atmos.Environ.21,1487–1490(1987).56.L.R.Martin,M.W.Hill,A.F.Tai,T.W.Good,Theironcatalyzedoxidationofsulfur(IV)inaqueoussolution:DifferingeffectsoforganicsathighandlowpH.J.Geophys.Res.96,3085–3097(1991).57.H.M.Ali,M.Iedema,X.-Y.Yu,J.P.Cowin,IonicstrengthdependenceoftheoxidationofSO2byH2O2insodiumchlorideparticles.Atmos.Environ.89,731–738(2014).58.A.HussJr.,P.K.Lim,C.A.Eckert,Oxidationofaqueoussulfurdioxide.1.Homogeneousmanganese(II)andiron(II)catalysisatlowpH.J.Phys.Chem.86,4224–4228(1982).59.B.Alexander,R.J.Park,D.J.Jacob,S.Gong,Transitionmetal-catalyzedoxidationofatmosphericsulfur:Globalimplicationsforthesulfurbudget.J.Geophys.Res.114,D02309(2009).60.L.R.Martin,T.W.Good,Catalyzedoxidationofsulfurdioxideinsolution:Theiron-manganesesynergism.Atmos.Environ.25,2395–2399(1991).61.C.L.Clifton,N.Altstein,R.E.Huie,Rateconstantforthereactionofnitrogendioxidewithsulfur(IV)overthepHrange5.3-13.Environ.Sci.Technol.22,586–589(1988).62.T.Nash,Theeffectofnitrogendioxideandofsometransitionmetalsontheoxidationofdilutebisulphitesolutions.Atmos.Environ.13,1149–1154(1979).63.R.E.Huie,ThereactionkineticsofNO2.Toxicology89,193–216(1994).64.G.Spindler,J.Hesper,E.Brüggemann,R.Dubois,T.Müller,H.Herrmann,Wetannulardenudermeasurementsofnitrousacid:LaboratorystudyoftheartefactreactionofNO2withS(IV)inaqueoussolutionandcomparisonwithfieldmeasurements.Atmos.Environ.37,2643–2662(2003).65.Y.Kameoka,R.L.Pigford,Absorptionofnitrogendioxideintowater,sulfuricacid,sodiumhydroxide,andalkalinesodiumsulfiteaqueoussolutions.Ind.Eng.Chem.Fundam.16,163–169(1977).66.T.E.Graedel,C.J.Weschler,Chemistrywithinaqueousatmosphericaerosolsandraindrops.Rev.Geophys.19,505–539(1981).67.N.Meskhidze,W.L.Chameides,A.Nenes,G.Chen,Ironmobilizationinmineraldust:CananthropogenicSO2emissionsaffectoceanproductivity?Geophys.Res.Lett.30,2085(2003).68.F.Solmon,P.Y.Chuang,N.Meskhidze,Y.Chen,AcidicprocessingofmineraldustironbyanthropogeniccompoundsoverthenorthPacificOcean.J.Geophys.Res.114,D02305(2009).69.S.-C.Hsu,G.T.F.Wong,G.-C.Gong,F.-K.Shiah,Y.-T.Huang,S.-J.Kao,F.Tsai,S.-C.C.Lung,F.-J.Lin,I.-I.Lin,C.-C.Hung,C.-M.Tseng,Sources,solubility,anddrydepositionofaerosoltraceelementsovertheEastChinaSea.Mar.Chem.120,116–127(2010).70.S.Tian,Y.Pan,Z.Liu,T.Wen,Y.Wang,Size-resolvedaerosolchemicalanalysisofextremehazepollutioneventsduringearly2013inurbanBeijing,China.J.Hazard.Mater.279,452–460(2014).71.Z.Wang,J.Li,Z.Wang,W.Yang,X.Tang,B.Ge,P.Yan,L.Zhu,X.Chen,H.Chen,W.Wand,J.Li,B.Liu,X.Wang,W.Wand,Y.Zhao,N.Lu,D.Su,ModelingstudyofregionalseverehazesSCIENCEADVANCESRESEARCHARTICLEChengetal.Sci.Adv.2016;2:e160153021December20169of11overmid-easternChinainJanuary2013anditsimplicationsonpollutionpreventionandcontrol.Sci.ChinaEarthSci.57,3–13(2014).72.B.Zhang,Y.Wang,J.Hao,Simulatingaerosol–radiation–cloudfeedbacksonmeteorologyandairqualityovereasternChinaunderseverehazeconditionsinwinter.Atmos.Chem.Phys.15,2387–2404(2015).73.Y.Wang,Q.Zhang,J.Jiang,W.Zhou,B.Wang,K.He,F.Duan,Q.Zhang,S.Philip,Y.Xie,EnhancedsulfateformationduringChina’sseverewinterhazeepisodeinJanuary2013missingfromcurrentmodels.J.Geophys.Res.119,10425–10440(2014).74.P.K.Quinn,D.J.Coffman,T.S.Bates,T.L.Miller,J.E.Johnson,K.Voss,E.J.Welton,C.Neusüss,DominantaerosolchemicalcomponentsandtheircontributiontoextinctionduringtheAerosols99cruiseacrosstheAtlantic.J.Geophys.Res.106,20783–20809(2001).75.R.J.Park,D.J.Jacob,B.D.Field,R.M.Yantosca,M.Chin,Naturalandtransboundarypollutioninfluencesonsulfate-nitrate-ammoniumaerosolsintheUnitedStates:Implicationsforpolicy.J.Geophys.Res.109,D15204(2004).76.S.-H.Chu,PM2.5episodesasobservedinthespeciationtrendsnetwork.Atmos.Environ.38,5237–5246(2004).77.T.K.V.Nguyen,M.D.Petters,S.R.Suda,H.Guo,R.J.Weber,A.M.G.Carlton,TrendsinparticlephaseliquidwaterduringtheSouthernOxidantandAerosolStudy.Atmos.Chem.Phys.14,10911–10930(2014).78.D.Voutsa,C.Samara,E.Manoli,D.Lazarou,P.Tzoumaka,IoniccompositionofPM2.5aturbansitesofnorthernGreece:Secondaryinorganicaerosolformation.Environ.Sci.Pollut.Res.21,4995–5006(2014).79.U.Makkonen,A.Virkkula,J.Mäntykenttä,H.Hakola,P.Keronen,V.Vakkari,P.P.Aalto,Semi-continuousgasandinorganicaerosolmeasurementsataFinnishurbansite:Comparisonswithfilters,nitrogeninaerosolandgasphases,andaerosolacidity.Atmos.Chem.Phys.12,5617–5631(2012).80.V.-M.Kerminen,R.Hillamo,K.Teinilä,T.Pakkanen,I.Allegrini,R.Sparapani,Ionbalancesofsize-resolvedtroposphericaerosolsamples:Implicationsfortheacidityandatmosphericprocessingofaerosols.Atmos.Environ.35,5255–5265(2001).81.M.Sillanpää,R.Hillamo,S.Saarikoski,A.Frey,A.Pennanen,U.Makkonen,Z.Spolnik,R.VanGrieken,M.Braniš,B.Brunekreef,M.-C.Chalbot,T.Kuhlbusch,J.Sunyer,V.-M.Kerminen,M.Kulmala,R.O.Salonen,ChemicalcompositionandmassclosureofparticulatematteratsixurbansitesinEurope.Atmos.Environ.40,212–223(2006).82.A.Ianniello,F.Spataro,G.Esposito,I.Allegrini,M.Hu,T.Zhu,ChemicalcharacteristicsofinorganicammoniumsaltsinPM2.5intheatmosphereofBeijing(China).Atmos.Chem.Phys.11,10803–10822(2011).83.L.-x.Yang,D.-c.Wang,S.-h.Cheng,Z.Wang,Y.Zhou,X.-h.Zhou,W.-x.Wang,InfluenceofmeteorologicalconditionsandparticulatematteronvisualrangeimpairmentinJinan,China.Sci.TotalEnviron.383,164–173(2007).84.S.Long,J.Zeng,Y.Li,L.Bao,L.Cao,K.Liu,L.Xu,J.Lin,W.Liu,G.Wang,J.Yao,C.Ma,Y.Zhao,Characteristicsofsecondaryinorganicaerosolandsulfatespeciesinsize-fractionatedaerosolparticlesinShanghai.J.Environ.Sci.26,1040–1051(2014).85.S.N.Behera,M.Sharma,Investigatingthepotentialroleofammoniainionchemistryoffineparticulatematterformationforanurbanenvironment.Sci.TotalEnviron.408,3569–3575(2010).86.E.Stone,J.Schauer,T.A.Quraishi,A.Mahmood,ChemicalcharacterizationandsourceapportionmentoffineandcoarseparticulatematterinLahore,Pakistan.Atmos.Environ.44,1062–1070(2010).87.J.A.Fisher,D.J.Jacob,Q.Wang,R.Bahreini,C.C.Carouge,M.J.Cubison,J.E.Dibb,T.Diehl,J.L.Jimenez,E.M.Leibensperger,Z.Lu,M.B.J.Meinders,H.O.T.Pye,P.K.Quinn,S.Sharma,D.G.Streets,A.vanDonkelaar,R.M.Yantosca,Sources,distribution,andacidityofsulfate–ammoniumaerosolintheArcticinwinter–spring.Atmos.Environ.45,7301–7318(2011).88.L.Clarisse,C.Clerbaux,F.Dentener,D.Hurtmans,P.-F.Coheur,Globalammoniadistributionderivedfrominfraredsatelliteobservations.Nat.Geosci.2,479–483(2009).89.A.Boynard,C.Clerbaux,L.Clarisse,S.Safieddine,M.Pommier,M.VanDamme,S.Bauduin,C.Oudot,J.Hadji-Lazaro,D.Hurtmans,P.-F.Coheur,FirstsimultaneousspacemeasurementsofatmosphericpollutantsintheboundarylayerfromIASI:AcasestudyintheNorthChinaPlain.Geophys.Res.Lett.41,645–651(2014).90.X.Huang,Y.Song,M.Li,J.Li,Q.Huo,X.Cai,T.Zhu,M.Hu,H.Zhang,Ahigh-resolutionammoniaemissioninventoryinChina.GlobalBiogeochem.Cycles26,GB1030(2012).91.Q.Zhang,D.Streets,G.Carmichael,K.B.He,H.Huo,A.Kannari,Z.Klimont,I.S.Park,S.Reddy,J.S.Fu,D.Chen,L.Duan,Y.Lei,L.T.Wang,Z.L.Yao,Asianemissionsin2006fortheNASAINTEX-Bmission.Atmos.Chem.Phys.9,5131–5153(2009).92.F.Yang,J.Tan,Q.Zhao,Z.Du,K.He,Y.Ma,F.Duan,G.Chen,Q.Zhao,CharacteristicsofPM2.5speciationinrepresentativemegacitiesandacrossChina.Atmos.Chem.Phys.11,5207–5219(2011).93.J.-j.Cao,Q.-y.Wang,J.C.Chow,J.G.Watson,X.-x.Tie,Z.-x.Shen,P.Wang,Z.-s.An,ImpactsofaerosolcompositionsonvisibilityimpairmentinXi’an,China.Atmos.Environ.59,559–566(2012).94.T.Okuda,J.Kato,J.Mori,M.Tenmoku,Y.Suda,S.Tanaka,K.He,Y.Ma,F.Yang,X.Yu,F.Duan,Y.Lei,DailyconcentrationsoftracemetalsinaerosolsinBeijing,China,determinedbyusinginductivelycoupledplasmamassspectrometryequippedwithlaserablationanalysis,andsourceidentificationofaerosols.Sci.TotalEnviron.330,145–158(2004).95.J.Duan,J.Tan,S.Wang,J.Hao,F.Chai,Sizedistributionsandsourcesofelementsinparticulatematteratcurbside,urbanandruralsitesinBeijing.J.Environ.Sci.24,87–94(2012).96.G.Zhang,X.Bi,L.Y.Chan,X.Wang,G.Sheng,J.Fu,Size-segregatedchemicalcharacteristicsofaerosolduringhazeinanurbanareaofthePearlRiverDeltaregion,China.UrbanClim.4,74–84(2013).97.Y.L.Sun,Z.F.Wang,P.Q.Fu,T.Yang,Q.Jiang,H.B.Dong,J.Li,J.J.Jia,Aerosolcomposition,sourcesandprocessesduringwintertimeinBeijing,China.Atmos.Chem.Phys.13,4577–4592(2013).98.Y.Wang,G.Zhuang,X.Zhang,K.Huang,C.Xu,A.Tang,J.Chen,Z.An,Theionchemistry,seasonalcycle,andsourcesofPM2.5andTSPaerosolinShanghai.Atmos.Environ.40,2935–2952(2006).99.J.-J.Cao,Z.-X.Shen,J.C.Chow,J.G.Watson,S.-C.Lee,X.-X.Tie,K.-F.Ho,G.-H.Wang,Y.-M.Han,WinterandsummerPM2.5chemicalcompositionsinfourteenChinesecities.J.AirWasteManag.Assoc.62,1214–1226(2012).100.H.Wang,S.-C.Tan,Y.Wang,C.Jiang,G.-y.Shi,M.-X.Zhang,H.-Z.Che,AmultisourceobservationstudyofthesevereprolongedregionalhazeepisodeovereasternChinainJanuary2013.Atmos.Environ.89,807–815(2014).101.X.Y.Zhang,Y.Q.Wang,T.Niu,X.C.Zhang,S.L.Gong,Y.M.Zhang,J.Y.Sun,J.Brandt,AtmosphericaerosolcompositionsinChina:Spatial/temporalvariability,chemicalsignature,regionalhazedistributionandcomparisonswithglobalaerosols.Atmos.Chem.Phys.12,779–799(2012).102.Y.Hu,J.Lin,S.Zhang,L.Kong,H.Fu,J.Chen,Identificationofthetypicalmetalparticlesamonghaze,fog,andclearepisodesintheBeijingatmosphere.Sci.TotalEnviron.511,369–380(2015).103.H.Hwang,C.-U.Ro,Directobservationofnitrateandsulfateformationsfrommineraldustandsea-saltsusinglow-ZparticleelectronprobeX-raymicroanalysis.Atmos.Environ.40,3869–3880(2006).104.L.Li,M.Li,Z.Huang,W.Gao,H.Nian,Z.Fu,J.Gao,F.Chai,Z.Zhou,AmbientparticlecharacterizationbysingleparticleaerosolmassspectrometryinanurbanareaofBeijing.Atmos.Environ.94,323–331(2014).105.Q.Yuan,W.Li,S.Zhou,L.Yang,J.Chi,X.Sui,W.Wang,Integratedevaluationofaerosolsduringhaze-fogepisodesatoneregionalbackgroundsiteinNorthChinaPlain.Atmos.Res.156,102–110(2015).106.Y.Rudich,R.K.Talukdar,A.R.Ravishankara,MultiphasechemistryofNO3intheremotetroposphere.J.Geophys.Res.103,16133–16143(1998).107.S.Guo,J.Tan,J.Duan,Y.Ma,F.Yang,K.He,J.Hao,Characteristicsofatmosphericnon-methanehydrocarbonsduringhazeepisodeinBeijing,China.Environ.Monit.Assess.184,7235–7246(2012).108.R.Zhang,J.Jing,J.Tao,S.-C.Hsu,G.Wang,J.Cao,C.S.L.Lee,L.Zhu,Z.Chen,Y.Zhao,Z.Shen,ChemicalcharacterizationandsourceapportionmentofPM2.5inBeijing:Seasonalperspective.Atmos.Chem.Phys.13,7053–7074(2013).109.K.He,Q.Zhao,Y.Ma,F.Duan,F.Yang,Z.Shi,G.Chen,SpatialandseasonalvariabilityofPM2.5acidityattwoChinesemegacities:Insightsintotheformationofsecondaryinorganicaerosols.Atmos.Chem.Phys.12,1377–1395(2012).110.Y.Sun,G.Zhuang,Y.Wang,L.Han,J.Guo,M.Dan,W.Zhang,Z.Wang,Z.Hao,Theair-borneparticulatepollutioninBeijing—Concentration,composition,distributionandsources.Atmos.Environ.38,5991–6004(2004).111.X.Gao,L.Yang,S.Cheng,R.Gao,Y.Zhou,L.Xue,Y.Shou,J.Wang,X.Wang,W.Nie,P.Xu,W.Wang,Semi-continuousmeasurementofwater-solubleionsinPM2.5inJinan,China:Temporalvariationsandsourceapportionments.Atmos.Environ.45,6048–6056(2011).112.M.-D.Chou,M.J.Suarez,C.-H.Ho,M.M.-H.Yan,K.-T.Lee,Parameterizationsforcloudoverlappingandshortwavesingle-scatteringpropertiesforuseingeneralcirculationandcloudensemblemodels.J.Climate11,202–214(1998).113.E.J.Mlawer,S.J.Taubman,P.D.Brown,M.J.Iacono,S.A.Clough,Radiativetransferforinhomogeneousatmospheres:RRTM,avalidatedcorrelated-kmodelforthelongwave.J.Geophys.Res.102,16663–16682(1997).114.A.Xiu,J.E.Pleim,Developmentofalandsurfacemodel.PartI:Applicationinamesoscalemeteorologicalmodel.J.Appl.Meteorol.40,192–209(2001).115.J.E.Pleim,Acombinedlocalandnonlocalclosuremodelfortheatmosphericboundarylayer.PartI:Modeldescriptionandtesting.J.Appl.Meteorol.Clim.46,1383–1395(2007).116.J.S.Kain,TheKain–Fritschconvectiveparameterization:Anupdate.J.Appl.Meteorol.43,170–181(2004).117.S.-Y.Hong,J.-O.J.Lim,TheWRFsingle-moment6-classmicrophysicsscheme(WSM6).J.KoreanMeteor.Soc.42,129–151(2006).118.T.Ibusuki,K.Takeuchi,Sulfurdioxideoxidationbyoxygencatalyzedbymixturesofmanganese(II)andiron(III)inaqueoussolutionsatenvironmentalreactionconditions.Atmos.Environ.21,1555–1560(1987).SCIENCEADVANCESRESEARCHARTICLEChengetal.Sci.Adv.2016;2:e160153021December201610of11119.P.Debye,E.Hückel,Theinterionicattractiontheoryofdeviationsfromidealbehaviorinsolution.Z.Phys.24,185(1923).120.P.Debye,W.McAuley,Theelectricfieldoftheionsandtheneutralsalteffect.PhysikZ26,22(1925).121.C.W.Davies,T.Shedlovsky,Ionassociation.J.Electrochem.Soc.111,85C–86C(1964).122.H.C.Helgeson,T.H.Brown,A.Nigrini,T.A.Jones,Calculationofmasstransferingeochemicalprocessesinvolvingaqueoussolutions.Geochim.Cosmochim.Acta34,569–592(1970).123.K.S.Pitzer,Electrolytetheory—ImprovementssinceDebyeandHueckel.Acc.Chem.Res.10,371–377(1977).124.K.S.Pitzer,ActivityCoefficientsinElectrolyteSolutions(CRCPress,1991).125.F.J.Millero,J.B.Hershey,G.Johnson,J.-Z.Zhang,ThesolubilityofSO2andthedissociationofH2SO3inNaClsolutions.J.Atmos.Chem.8,377–389(1989).126.C.Bretti,F.Crea,C.Foti,S.Sammartano,Solubilityandactivitycoefficientsofacidicandbasicnonelectrolytesinaqueoussaltsolutions.2.Solubilityandactivitycoefficientsofsuberic,azelaic,andsebacicacidsinNaCl(aq),(CH3)4NCl(aq),and(C2H5)4NI(aq)atdifferentionicstrengthsandatt=25°C.J.Chem.Eng.Data51,1660–1667(2006).127.C.Bretti,F.Crea,C.DeStefano,S.Sammartano,G.Vianelli,SomethermodynamicpropertiesofDL-tyrosineandDL-tryptophan.Effectoftheionicmedium,ionicstrengthandtemperatureonthesolubilityandacid–baseproperties.FluidPhaseEquilib.314,185–197(2012).128.A.J.Rusumdar,“Treatmentofnon-idealityinthemultiphasemodelSPACCIMandinvestigationofitsinfluenceontroposphericaqueousphasechemistry,”thesis,BrandenburgUniversityofTechnology,Cottbus,Germany(2013).AcknowledgmentsFunding:ThisstudywassupportedbytheMaxPlanckSociety(MPG),theNationalNaturalScienceFoundationofChina(21107061,21190054)andtheEUprojectBACCHUS(603445)andPEGASOS(265148).Y.C.thankstheMPGMinervaprogram.G.Z.thanksChineseScholarshipCouncilforfinancialsupportofherstudyattheMaxPlanckInstituteforChemistry.Authorcontributions:K.H.,Y.C.,andG.Z.proposedtheinitialidea.Y.C.andH.S.designedandledthestudy.G.Z.,Y.C.,andH.S.conductedthedataanalyses.C.W.,Q.M.,andB.Z.performedthemodelsimulation.Q.Z.andK.H.providedthefieldobservationandsupportedthemodelanalyses.Z.W.andM.G.supportedthemodelanalyses.Y.C.,H.S.,G.Z.,andU.P.interpretedthedata.Y.C.,H.S.,U.P.,G.Z.,andG.C.wrotethemanuscript,withinputsfromallcoauthors.Competinginterests:Theauthorsdeclarethattheyhavenocompetinginterests.Dataandmaterialsavailability:Alldataneededtoevaluatetheconclusionsinthepaperarepresentinthepaperand/ortheSupplementaryMaterials.Additionaldatarelatedtothispapermayberequestedfromtheauthors.Originalsubmission17December2015Transferredsubmission7July2016Accepted30November2016Published21December201610.1126/sciadv.1601530Citation:Y.Cheng,G.Zheng,C.Wei,Q.Mu,B.Zheng,Z.Wang,M.Gao,Q.Zhang,K.He,G.Carmichael,U.Pöschl,H.Su,ReactivenitrogenchemistryinaerosolwaterasasourceofsulfateduringhazeeventsinChina.Sci.Adv.2,e1601530(2016).SCIENCEADVANCESRESEARCHARTICLEChengetal.Sci.Adv.2016;2:e160153021December201611of11

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱