ENVIRONMENTALSCIENCE2016©TheAuthors,somerightsreserved;exclusivelicenseeAmericanAssociationfortheAdvancementofScience.DistributedunderaCreativeCommonsAttributionLicense4.0(CCBY).ReactivenitrogenchemistryinaerosolwaterasasourceofsulfateduringhazeeventsinChinaYafangCheng,1†GuangjieZheng,1,2ChaoWei,1QingMu,1BoZheng,2ZhibinWang,1MengGao,3,4QiangZhang,5KebinHe,2†GregoryCarmichael,3,4UlrichPöschl,1†HangSu6,1†Fine-particlepollutionassociatedwithwinterhazethreatensthehealthofmorethan400millionpeopleintheNorthChinaPlain.Sulfateisamajorcomponentoffinehazeparticles.Recordsulfateconcentrationsofupto~300mgm−3wereobservedduringtheJanuary2013winterhazeeventinBeijing.State-of-the-artairqualitymodelsthatrelyonsulfateproductionmechanismsrequiringphotochemicaloxidantscannotpredictthesehighlevelsbecauseoftheweakphotochemistryactivityduringhazeevents.Wefindthatthemissingsourceofsulfateandparticulatemattercanbeexplainedbyreactivenitrogenchemistryinaerosolwater.Theaerosolwaterservesasareactor,wherethealkalineaerosolcomponentstrapSO2,whichisoxidizedbyNO2toformsulfate,wherebyhighreactionratesaresus-tainedbythehighneutralizingcapacityoftheatmosphereinnorthernChina.Thismechanismisself-amplifyingbe-causehigheraerosolmassconcentrationcorrespondstohigheraerosolwatercontent,leadingtofastersulfateproductionandmoreseverehazepollution.INTRODUCTIONPersistenthazeshroudingBeijingandtheNorthChinaPlain(NCP)dur-ingcoldwinterperiodsthreatensthehealthof~400millionpeoplelivinginaregionof~300,000km2.CharacteristicfeaturesofthewinterhazeinnorthernChinaincludestagnantmeteorologicalconditionswithlowmixingheights,highrelativehumidity(RH),largeemissionsofprimaryairpollutants,andfastproductionofsecondaryinorganicaerosols,espe-ciallysulfate(seesectionM1)(1–5).Analyzingsurface-basedobserva-tionsatasiteinBeijingduringJanuary2013(seesectionM2)andusingconcentrationratiosofsulfatetosulfurdioxide([SO42−]/[SO2])asaproxyforthesulfateproductionrate(5),wefindthatsulfatepro-ductionincreasesasPM2.5(particulatematterwithadiameteroflessthan2.5mm)levelsincrease(Fig.1A).Ratiosaresixtimeshigherduringthemostpollutedperiods(PM2.5>300mgm−3)thanduringcleantomoderatelypollutedconditions(ratiosof0.1whenPM2.5<50mgm−3).Traditionalairqualitymodels,however,failtocapturethiskeyfeatureofNCPwinterhazeeventsevenafteraccountingforaerosol-radiation-meteorologyfeedback(seesectionsM2andM3)(6–8).Thechemicalmechanismsusedinthesemodelsusuallycomprisegas-phaseoxidationofsulfurdioxidebyOHradicalsandaqueous-phasereactionpathwaysincloudwater,involvingH2O2andO3,resultinginsulfateproductionratesthatscalewiththeintensityofsolarultraviolet(UV)radiation(9,10).DuringNCPhazedays,UVradiationissignificantlyreducedbecauseoftheaerosoldimmingeffect,resultinginadecreaseofmostoxidantconcentrations(5).Figure1BshowsthatthemiddayO3valuesdropfrom~22partsperbillion(ppb)undercleanconditionsto~1ppbduringthehazeperiod(andalsolosetheirtypicaldiurnalvariation,fig.S1).Thereducedoxidantlevelsandincreasedsulfateproductionsuggesttheexistenceofamissingsulfateproductionpathway.Evenafterconsid-eringthegasphaseandcloud/fogchemistry,thereisstillalargegapbetweenmodeledandobservedsulfate(Fig.1C).AddinganapparentheterogeneousprocesswithsulfateproductionratesthatscalewithaerosolsurfaceareaandRHcangreatlyimprovemodelpredictions(seesectionsM3toM5)(7),butthechemicalmechanismofthemissingsulfateproductionpathwayhasnotyetbeenidentified.RESULTSANDDISCUSSIONWefindthatreactivenitrogenchemistryinaerosolwatercanexplainthemissingsourceofsulfateinNCPwinterhaze.Aerosolwaterisakeycomponentofatmosphericaerosols,whichservesasamediumthatenablesaqueous-phasereactions(11–13).Theaerosolwatercon-tent(AWC)inBeijing,calculatedusingmeasurementsofRHandaerosolcompositionandtheISORROPIA-IIthermodynamicequilib-riummodel(seesectionM6)(14–16),iswellcorrelatedwiththemissingsulfatecontent,thedifferencebetweenmeasuredandmodeledsulfate(D[SO42−])(Fig.1C)(seesectionsM2toM4),suggestingitsinvolvementinthesulfateproduction.Notethatbecauseofthesalt-inducedfreezingpointdepression(17),aerosolwaterwillnotfreezeforawintertemperatureof~271KinBeijing.Takingtheimpactofmasstransferandionstrengthintoaccount,wemakeaconservativeestimationofsulfateproductionratefordif-ferentreactionsintheaerosolwaterunderrelevantatmospherictracespeciesconcentrationconditions(seesectionsM4andM7toM9)andfindNO2tobethemostimportantoxidantinBeijingduringhazeperiods(Fig.2B).Inthepresenceofaerosolwater,gas-phaseNO2canpartitionintothecondensedphase,reactwithSO2dissolvedintheaqueousphase,andproducesulfateaswellasnitrite(R1)(18).2NO2ðaqÞþHSO3ÀðaqÞþH2OðaqÞ→3HþðaqÞþ2NO2ÀðaqÞþSO42ÀðaqÞðR1ÞUnderheavyhazeconditions(PM2.5≥300mgm−3),thesulfatepro-ductionratesoftheNO2reactionpathway(R1)are~1to7mgm−3h−1,muchhigherthanthereactionratesinvolvingotherimportantaqueousoxidantssuchasO3andH2O2.AccordingtoZhengetal.(7),anad-ditionalsulfateproductionof~3mgm−3h−1isneededtoexplainthe1MultiphaseChemistryDepartment,MaxPlanckInstituteforChemistry,Mainz55128,Germany.2StateKeyJointLaboratoryofEnvironmentSimulationandPollutionControl,SchoolofEnvironment,TsinghuaUniversity,Beijing100084,China.3CollegeofEngi-neering,UniversityofIowa,IowaCity,IA52242,USA.4CenterforGlobalandRegionalEnvironmentalResearch,UniversityofIowa,IowaCity,IA52242,USA.5CenterforEarthSystemScience,TsinghuaUniversity,Beijing100084,China.6InstituteforEnvironmentalandClimateResearch,JinanUniversity,Guangzhou511443,China.Theseauthorscontributedequallytothiswork.†Correspondingauthor.Email:yafang.cheng@mpic.de(Y.C.);hekb@tsinghua.edu.cn(K.H.);u.poschl@mpic.de(U.P.);h.su@mpic.de(H.S.)SCIENCEADVANCESRESEARCHARTICLEChengetal.Sci.Adv.2016;2:e160153021December20161of11observationsintheseverewinterhazeperiodsofBeijing(seesectionM9),whichfallsrightintotherangeofproductionratesfromthechem-icalreactionmechanismweproposed(R1).AsillustratedinFig.2,sul-fateproductioninaerosolwaterunderhazeconditionsdiffersfromthatinclouddroplets,wherethemajoroxidationpathwaysarereactionswithH2O2andO3,andNO2playsonlyaminorrole(12,19).Thus,traditionalairqualitymodelsusuallyincludeonlytheH2O2andO3re-actionpathwaysofsulfateproductionintheaqueousphase,whereastheNO2reactionpathwayisneglected(7,20).TheAWCistypicallythreetofiveordersofmagnitudelowerthanthewatercontentofcloudorfog(21).Onthisbasis,howcantheNO2reactionpathwaybecomeimportantinsuchtinyamountsofwater?TheincreasedimportanceisduetotherelativelyhighaerosolpHandelevatedNO2concentrationsinBeijingandtheNCPduringhazeperiods.AsshowninFig.2,aqueousoxidationratesofS(IV)byNO2andO3arestronglypH-dependent.HighpHincreasesthesol-ubilityandtheeffectiveHenry’slawconstantofSO2,pullingmoreSO2intotheaerosolwaterandthusincreasingthereactionrate.WhenpHincreasesbyoneunit,thereactionratesincreasebyoneandtwoordersofmagnitudeforNO2andO3,respectively.TheH2O2reactiondoesnotshowastrongdependencebecausehighpHreducesitsreac-tionratecoefficient,whichoffsetstheeffectofincreasedsolubility.ComparedwithNorthAmericaandEurope,aerosolsintheNCParemoreneutralized(22),asshownbyahighercation-to-anionratio(Fig.1D).ThisneutralizedfeatureisalsowelldocumentedandisthereasonthatacidrainrarelyoccursinnorthernChina(seesectionM10)(22).UsingtheISORROPIA-IIthermodynamicequilibriummodel(seesectionM6)(14–16)andinsituaerosolbulkcompositionmeasurements,weobtainaveragepHvaluesof5.4to6.2foraerosolwaterunderNCPhazeconditions(seesectionsM6andM9).Similarcalculationsbasedonsize-segregatedaerosolcompositionmeasure-mentsevenshowahighereffectivepHandsulfateproductionrates(fig.S2).ElevatedNO2isanotherkeyfactorthatleadstofastsulfateforma-tion.SubstantialamountsofNO2comefromdirectemissionofNOx(=NO+NO2).AlthoughtheNO2-to-NOxratioswerereducedbe-causeofweakphotochemistryduringthehazeevent,thestagnantweathertrappedmoreNO2nearthesurface,resultinginelevatedNO2concentrationsthatwere,onaverage,threetimeshigherthanthoseundercleanconditions(~66ppb,Fig.1B).TheseperiodsofhighestNO2levelsoccurredwhentheconcentrationsofotherphoto-chemicaloxidantsthatcanproducesulfate(H2O2,O3,andOH)werelow(Fig.1Bandfig.S1).ChangesinpHandprecursorconcentrationstogetherleadtothetransitionfromanH2O2-dominatedregimeofaqueoussulfateproductioninclouddropletstoanNO2-dominatedregimeofaqueoussulfateproductioninhaze(Fig.2).EarlierstudieshadalreadysuggestedthattheNO2reactionpathwaymaycontributetosulfateformationinfogsunderpollutedconditions(23,24),but806040200NO2(ppb)0–5050–100100–300>300PM2.5(µgm–3)35302520151050MiddayO3(ppb)O3NO21.41.21.00.80.60.40.20.0[SO42–]/[SO2]0–5050–100100–300>300PM2.5(µgm–3)300250200150100500SO42–(obs.-model,µgm–3)12008004000Aerosoldropletsolution(µgm–3)4002000AWC(µgm–3)EuropeEastAsiaNorthAmerica2.42.01.61.20.80.40.0Anions(µmolm–3)2.42.01.61.20.80.40.0Cations(µmolm–3)ABCDFig.1.CharacteristicfeaturesofamajorhazeeventinBeijing,China(January2013).(A)Sulfate/sulfurdioxideratio([SO42−]/[SO2])and(B)middayozone(O3)concentrations(10:00to15:00localtime)andnitrogendioxide(NO2)concentrationsatdifferentfine-particle(PM2.5)concentrationlevels.(C)Correlationoftheunexplainedsulfateconcentration(DSO42−=observation−model)(seesectionsM2andM3)withaerosoldropletsolutionandAWC(color-coded).(D)Anion-to-cationratioinPM2.5asobservedinBeijing(solidsymbols)andinotherstudiesinnorthernChina(opensymbols)(tableS1)comparedtothecharacteristicratiosreportedforaircraftmeasurementsintheArcticofoutflowfromEastAsia,Europe,andNorthAmerica(solidred,blue,andgreenlines;here,onlyNH4+,NO3−,andSO42−wereconsidered)(87).SCIENCEADVANCESRESEARCHARTICLEChengetal.Sci.Adv.2016;2:e160153021December20162of11duringtheBeijinghazeeventofJanuary2013,fogwasnotobservedandsulfateproductionbyNO2occurredinaerosolwaterinstead.SulfateproductionratesfromtheNO2reactionpathway(R1)calculatedonthebasisofmeasurementdata(hourlyconcentrationsofNO2,SO2,PM2.5,andRH;sectionsM2andM4)showapositivedependenceonthePM2.5concentration,varyingfrom0.01mgm−3h−1underrelativelycleanconditionstonearly10mgm−3h−1inthemostpollutedperiods(pinkcirclesinFig.3).ThesereactionratescanaccountforthesystematicunderpredictionofmodelsandexplainthelargemissingsourceofsulfateintheBeijinghaze(blackdiamondsinFig.3).Undercleanconditions,theOHreaction(greencrossesinFig.3)dom-inatestheoxidationpathwaysofSO2.Asparticleconcentrationsincreaseandmoresulfateisproduced,thephotochemistryslowsdown,leadingtolessOH,andsulfateproductionviathispathwaydecreases.Fromthisaspect,theOHreactionhasanegativefeedback,whichisself-bufferedagainstheavypollution.AsPM2.5concentrationsandRHincreasesimul-taneously[aspecialfeatureofhazeeventsinNCP(5)],theOHreactionbecomesweaker,whereastheaqueous-phasereactionofNO2startstoplayamoreimportantrole.FortheJanuary2013conditionsatPM2.5~100to200mgm−3,theaqueous-phasereactionbecomesthedominantoxidationpathway(Fig.3).IncontrasttotheOHreaction,theNO2re-actionshowsapositivefeedbackmechanism,wherehigherparticlemat-terlevelsleadtomoreaerosolwater,whichacceleratessulfateproductionandfurtherincreasestheaerosolconcentration.ThispositivefeedbackintensifiesthePM2.5levelsduringhazeperiods,resultinginaseriesofrecord-breakingpollutionevents.TheNO2reactionwithSO2inaerosolwaterproducesnotonlysul-fatebutalsonitrite(R1),whichmayundergosubsequentoxidationordisproportionationreactionsformingnitrate.Thisisconsistentwiththehighnitrateconcentrationsobservedduringthehazeevent,whichareofsimilarmagnitudetothesulfateconcentrations(upto~160mgm−3)(5)andhavealsonotyetbeenexplainedbyairqualitymodels(7).Depend-ingonthepHvalueofthehazedroplets,nitritecanalsoformnitrousacid(HONO)andundergoreversiblepartitioningwiththegasphase(25,26).Moreover,thereleaseofHONOremovesH+,whichmayhelptosustainthedropletacidityandefficientsulfateproduction(27,28).Forthesamehazeperiods,recordhighaerosolnitriteconcentrationsofupto~12mgm−3wereobservedinShandong,northernChina,withnitriteconcentrationswellcorrelatedwithNOxathighRH(>50%)(25).Thenitrite-to-HONOmolarratioof~3inShandongisahundredtimeshigherthantheratioobservedduringapollutioneventinNanjing,YangtzeRiverDeltaofChina,whereonlytraceamountsofnitriteweredetectedintheaerosolphase(upto~0.4mgm−3),andtheaerosolwatertherewasmoreacidic(pH~4)(24,25).ThisfurtherconfirmsthemoreneutralizedfeatureofaerosolparticlecompositionandhazeinnorthernChina.OurstudyunfoldsanewandmorecomprehensiveconceptualmodelofsulfateformationinNCPhazeevents,includingnotonlythetraditionalOH,H2O2,andO3reactionpathwaysinatmosphericgasphaseandcloudchemistrybutalsotheNO2reactionpathwayinaerosolwater(Fig.4).TheNO2pathwaymaynotbelimitedtowinterhazebecauseitmayalsobeimportantatnightandduringfogeventsinpollutedregionswithhighboundarylayerconcentrationsofPM2.5andNO2andelevatedRH(23,24).TheimportanceofmultiphasechemistryholdsforawiderangeofaerosolpH.Whenaerosolsbecomemoreacid-ic,thesulfateproductioncanbemaintainedatahighratethroughTMIreactions(Fig.2B).TheimportantroleofaerosolpHinthemultiphasereactionpathwayhighlightstheneedtobetterunderstandthesourcesofammoniaandalkalineaerosolcomponentsfromnaturalandanthropo-genicemissions(soildust,seawater,agriculture,energy,industrial,and8765432pH10–710–610–510–410–310–210–1100101102103BeijinghazeH2O2O3TMINO28765432pH10–510–410–310–210–1100101102103104105d[SO42–]/dt(µgm–3h–1)ClouddropletsABFig.2.Aqueous-phasesulfateproductionbysulfurdioxideoxidationundercharacteristicconditions.Sulfateproductionratesfor(A)clouddropletsand(B)BeijinghazeplottedagainstpHvalue.Lightblue–andgray-shadedareasindicatecharacteristicpHrangesforcloudwaterundercleantomoderatelypollutedconditionsandaerosolwaterduringseverehazeepisodesinBeijing,respectively.Thecoloredlinesrepresentsulfateproductionratescalculatedfordifferentaqueous-phasereactionpathwayswithoxidants:hydrogenperoxide(H2O2),ozone(O3),transitionmetalions(TMIs),andnitro-gendioxide(NO2).Characteristicreactantconcentrationsandmodelcalculationsforcloudsandhazearetakenfromtheliteratureandobservations,andspecifiedinMaterialsandMethods(seesectionsM7toM9)(12,21).10–310–210–1100101d[SO42–]/dt(µgm–3h–1)8006004002000PM2.5(µgm–3)NO2reactionOHreactionMissingsourceFig.3.ImportanceoftheNO2reactionpathwayforsulfateproductionintheBeijinghaze(January2013).Sulfateproductionratescalculatedfortheaqueous-phaseNO2reactionpathway(pH5.8)andthegas-phaseOHreactionpathwaycomparedtothemissingsourceofsulfate.Crossesandcirclesrepresenthourlyproductionratescalculatedonthebasisofmeasurementdata,andthediamondsrepresenttheaveragemissingsource(arithmeticmean±SD)(seesectionsM3toM5)(7).Thepink-shadedareashowsthemaximumandminimumsulfateproduc-tionratesbytheNO2reactionpathwayboundedbytheaerosolwaterpHrangingfrom5.4to6.2duringhazeperiods.SCIENCEADVANCESRESEARCHARTICLEChengetal.Sci.Adv.2016;2:e160153021December20163of11traffic).Furthermore,reactivenitrogenchemistryinaerosolwatermightalsoplayaroleinnitrateandsecondaryorganicaerosolproduc-tionduringhazedayswhenphotochemistryisreduced.OurresultsrevealthecomplexnatureofhazepollutioneventsinChina,whereNOxisnotonlyaprecursorfornitratebutalsoanim-portantoxidantforsulfateformation.Thus,reductionsofNOxemis-sionsareexpectedtoreducenitrate,sulfate,andPM2.5muchmorethananticipatedbytraditionalairqualitymodels.AlargedecreaseinPM2.5hasalreadybeenobservedinrelationtotrafficandenergycontrolmeasuresduringtheBeijingOlympicGamesin2008andoth-ereventsintheNCP.Heavyhazeconditionswithhighpollutantcon-centrationlevelsandlargelyneutralizedaerosolwaterarekeyfeaturesofatmosphericchemistryintheNCP.Thesefeatureswillneedtobeconsideredinfutureairqualityandpollutantemissioncontrolstrate-giesinnorthernChina,andperhapsalsoinotherregions.MATERIALSANDMETHODSM1.TheJanuary2013hazeinBeijingTheseverehazeepisodeinJanuary2013isoneoftheworstatmosphericpollutioneventseverrecordedinChina(2,9).InBeijing,thedailyfine-particle(PM2.5)concentrationreachedupto400mgm−3,exceedingtheWorldHealthOrganizationguidelinevalueby16times.TheweakEastAsianwintermonsoon,whichresultedinweakenedsurfacewindsandtheanomaloussoutherlywinds,wasresponsibleforthehazeevents(4).Thesoutherlywindstransportedmorewatervaporfromtheseatoeast-ernChina.Theanomaloushigh-pressuresystemat500hPasuppressedconvection.Thus,theairinJanuarywasmorestagnant,trappingmoreairpollutantsandwatervapornearthesurface.ThehighPM2.5concen-trationreducedthesolarradiationandatmosphericphotochemistry,resultingindecreasesintheconcentrationofphotochemicalproductssuchasOHandO3(fig.S1).AmajorfeatureofPM2.5pollutionduringthishazeeventwasthelargecontributionfromsecondaryspecies,includinginorganic(mainlysulfate,nitrate,andammonium)andorganicspecies(2,5).However,contributionfromsecondaryinorganicspecies(suchassulfateandni-trate)showedanincreasingtrendwithincreasingpollutionlevels,whereascontributionfromorganicsdecreased(5).Thefastproductionofsulfate,however,cannotbereproducedbymodelsimulations,whichhaveimplementedaerosol-meteorology-radiationfeedbackandastate-of-the-artchemicalmechanism(6,7),thatis,thegas-phaseoxidationbyOH(29,30)andaqueous-phaseoxidationincloudsbyH2O2andO3(12,21).StabilizedCriegeeintermediates(sCIs)werealsosuggestedasanoxidantofSO2butcontributeminorH2SO4productioncomparedwiththeconventionalOHreactioninthemidday(31–33).FurtheranalysishasshownthatthemodelsimulationcanbeimprovedbyintroducinganapparentheterogeneousprocesswithareactionratecoefficientscaledwithRH(seesectionM3)(7).M2.SamplinglocationandexperimentalmethodsWeperformedaerosolmeasurementsfrom1to31January2013ontheroofoftheEnvironmentalScienceBuilding(40°00′17″N,116°19′34″E,~10mabovetheground)onthecampusofTsinghuaUniversity,anurbanbackgroundsiteinBeijing.TableS2summarizestheaerosol-relatedparametersandexperimentalmethods.ConcentrationsofPM2.5andPM10weremeasuredbyanonlinePM-712monitor(KimotoElectricCo.Ltd.)equippedwithaU.S.EnvironmentalProtectionAgen-cyPM10inletandaPM2.5virtualimpactor(34).SO42−andotherionsinPM2.5weremeasuredbyanonlineACSA-08monitor(KimotoElectricCo.Ltd.)andthefilter-basedanalysis.ThePM2.5filtersampleswerecollectedfrom12to24Januarybymedian-volumesamplers(Laoying)onprebakedQuartzfilters(2500QAT-UP;PallCorporation)withaflowrateof100litersmin−1(35).ThefiltersampleswereanalyzedbytheDionexionchromatograph(DX-600forcationsandICS-2000foranions)(DionexCorporation)fortheconcentrationofwater-solubleinorganicions,includingNa+,K+,Ca2+,Mg2+,NH4+,SO42−,NO3−,andCl−.Organiccarbon(OC)andelementarycarbonconcentrationsinPM2.5weremeasuredbyaSunsetModel4semicontinuouscarbonanalyzer(Beaverton)withaNationalInstituteforOccupationalSafetyandHealth–typetemperatureprotocol(36).Afactorof1.6wasadoptedtoconvertthemassofOCintothemassoforganics(37,38).GaseousairpollutantsSO2,NO2,andO3weremeasuredbytheAtmosphericEnvironmentMonitoringNetwork(39).ThemeteorologydataweremeasuredbytheMilos520WeatherStation(VAISALAInc.).Morede-tailscanbefoundintheworkofZhengetal.(5).M3.WRF-CMAQmodelsimulationTheWeatherResearchandForecasting—CommunityMultiscaleAirQuality(WRF-CMAQ)modelsystemwasusedtodeterminethemissingsourceofsulfatethroughcomparisonwithobservationaldata.WRFisanew-generationmesoscalenumericalweatherpredictionsystemdesignedtoserveawiderangeofmeteorologicalapplications(www.wrf-model.org/),andCMAQisathree-dimensionalEulerianatmosphericchemistryandtransportmodelingsystemthatsimulatesmultipollutants(www.cmascenter.org/cmaq/).ThereleasesofWRFv3.5.1andCMAQv5.0.1wereusedinthisstudy.CloudchemistryPhotochemistryHazechemistrySO2+NO2SO42−SO2+OHSO42−SO2+H2O2/O3SO42–SO2NOXNH3DustFig.4.ConceptualmodelofsulfateformationinhazeeventsinNCP.ThetraditionalOH,H2O2,andO3reactionpathwaysinatmosphericgasphaseandcloudchemistryareincludedhere,aswellastheNO2reactionpathwayinaerosolwaterwithelevatedpHandNO2concentrationsproposedinthisstudy.SCIENCEADVANCESRESEARCHARTICLEChengetal.Sci.Adv.2016;2:e160153021December20164of11ThemodelsimulationwasconfiguredthesameasintheworkofZhengetal.(7),asdetailedintableS3.Tobettercharacterizethestagnantmeteorologicalconditions,weappliedobservationalnudg-ingfortemperature(T)andRH[abovetheplanetaryboundarylayer(PBL)],andwind(withinandabovethePBL).ThesurfaceroughnessiscorrectedaccordingtoMassandOvens(40)byincreasingthefrictionvelocityby1.5timesinthePBLscheme,whichsignificantlyreducedthehighbiasesinwindandRHsimu-lations.Ingeneral,thesimulatedT,RH,andwindatthegroundsurfaceagreewithobservations(7).Forthegas-phasereactions,weusedtheCB05mechanismwithactivechlorinechemistryandtheupdatedtoluenemechanismofWhittenetal.(41).Fortheaqueous-phasereactionsinclouds,weusedtheupdatedmecha-nismoftheRADMmodel(20,42).Reactionsrelevantforthesul-fateformationwerediscussedindetailinsectionM4.Here,theWRF-CMAQmodelingresultswereusedinthefollowinganalysis:(i)themodeledsulfateconcentration[SO42−]wasusedtocalculateD[SO42−],thedifferencebetweenobservedandmodeled[SO42−],and(ii)themodeledOHandH2O2concentrationswereusedintheestimationofsulfateformationfromthegas-phasereactionofOHwithSO2andtheaqueous-phasereactionofH2O2withHSO3−.M4.ProductionofsulfateinWRF-CMAQmodelAccordingtocurrentunderstanding,secondarysulfateisproducedthroughtheoxidationofSO2.IntheWRF-CMAQmodel,oxidationoccursbothinthegasphaseandinthecloud/fogdroplets.Inthegasphase,themajorpathwayistheOH-initiatedreaction(12,43)OHþSO2þM→HO2þSulfateðM1Þinwhichthesecond-orderkineticconstantcanbeexpressedaskTðÞ¼k0ðTÞ½M1þk0ðTÞ½Mk∞ðTÞ8<:9=;0:6ZandZ¼1þlog10k0ðTÞ½Mk∞ðTÞ2()−1ðM2Þwhere[M]istheconcentrationofN2andO2,andk0(T)andk∞(T)rep-resentthelow-andhigh-pressurelimitingrateconstants,respectively.Theirtemperaturedependencecanbeexpressedask0TðÞ¼k3000T300Ànandk∞TðÞ¼k300∞T300ÀmðM3Þwherek0300=3.3×10−31cm6molecule−2s−1andn=4.3,andk∞300=1.6×10−12cm3molecule−1s−1andm=0.Incloud/fogdroplets,thefollowingaqueousreactionshavebeenin-cludedintheWRF-CMAQmodel(7).Theexpressionoftheirreactionrate,aswellastheratecoefficients,issummarizedintableS4.HSO3ÀþH2O2→SO42ÀþHþþH2OðM4ÞSO2þO3þH2O→SO42Àþ2HþþO2ðM5ÞHSO3ÀþO3→SO42ÀþHþþO2ðM6ÞSO32ÀþO3→SO42ÀþO2ðM7ÞSO2þH2Oþ0:5O2þFeðIIIÞ=MnðIIÞ→SO42Àþ2HþðM8ÞHSO3ÀþCH3OOH→SO42ÀþHþþCH3OHðM9ÞHSO3ÀþCH3COOOH→SO42ÀþHþþCH3COOHðM10ÞM5.ApparentheterogeneousuptakeofSO2onaerosolsurfacesToimprovethemodelsimulationforthewinterhazeeventsinBeijingandtheNCP,Zhengetal.(7)suggestedtheuseofanapparentheter-ogeneousuptakecoefficient(g)ofSO2onaerosolsurfacesasafunctionofRH(Eq.M11).gisdefinedastheratioofthenumberofcollisionsthatresultinthereactionSO2(g)+Aerosol→SO42−tothetheoreticaltotalnumberofcollisions.TheoverallratesofSO2uptakeandsulfateproductionareasfastasifthewholeaerosolsurfaceiscoveredbydust(44).Althoughtheexactmechanismsupportingthisfastproductionrateisstillunknown(7),thisapparentheterogeneoussourceofsulfatecanaccountfortheunderpredictionofmodeledsulfate,withsignificantreductionofnormalizedmodelbiasfrom−54.2to6.3%.g¼glow;0%≤RH≤50%glowþðghighÀglowÞ=ð1–0:5ÞÂðRHÀ50%Þ;50%<RH≤100%ðM11Þwhereglow=2×10−5andghigh=5×10−5.Withg,asulfateproductionrateRH,gcanbedeterminedbyEq.M12:RH;g¼d½SO42Àdt¼RpDgþ4gnÀ1SaerosolSO2½ðM12ÞwhereRpistheradiusofaerosolparticles,Dgisthegas-phasemoleculardiffusioncoefficientofSO2,nisthemeanspeedofgaseousSO2mole-cules,andSaerosolisthesurfaceareaconcentrationofaerosolparticles.M6.ISORROPIA-IImodelcalculationTheISORROPIA-IImodel(15)wasusedtocalculatetheAWCandpH.TheISORROPIA-IIisathermodynamicequilibriummodelthatpredictsthephysicalstateandcompositionofatmosphericinorganicaerosols.Itcanbeusedintwomodes:thereversemodeandthefor-wardmode.Thereversemodecalculatedthethermodynamicequilib-riumbasedonaerosol-phaseconcentrations,whereastheforwardmodereliedonbothaerosol-phaseandgas-phaseconcentrations(16).ItsabilityinpredictingAWCandpHhasbeendemonstratedbyGuoetal.(45)andXuetal.(16).ToevaluatetheaerosolpHandAWC,weperformedbothreverse-modeandforward-modemodelsimulationsandusedtheiraveragesforfurtheranalyses.ThegaseousNH3wasnotmeasuredinourJan-uarycampaign,butlong-termmeasurement(46)showsacompactcorrelationbetweenNH3andNOxconcentrationsinthewintersea-sonofBeijing.Accordingly,weestimatedtheNH3concentrationfromtheobservedNOxconcentrationwithanempiricalequationderivedfromMengetal.(46),thatis,NH3(ppb)=0.34×NOx(ppb)+0.63.SCIENCEADVANCESRESEARCHARTICLEChengetal.Sci.Adv.2016;2:e160153021December20165of11ThecontributionoforganiccompoundstoAWC,Worg(themassconcentrationofaerosolwaterassociatedwithorganics),wasesti-matedbythesameapproachofGuoetal.(45)Worg¼OMrorg⋅rw⋅korgð100%=RHÀ1ÞðM13ÞwhereOMisthemassconcentrationoforganicmatter,rwisthedensityofwater(rw=1.0×103kgm−3),rorgisthedensityoforganics(rorg=1.4×103kgm−3)(45),andkorgisthehygroscopicityparameter(47)oforganicaerosolcompositions.Weadoptedakorgof0.06basedonpre-viouscloudcondensationnucleimeasurementsinBeijing(48).M7.KineticsofmasstransportFormultiphasereactions,theoverallreactionratedependsnotonlyontherateofchemicalreactionsbutalsoonthemasstransportindifferentmediumandacrosstheinterface.Toaccountfortheeffectsofmasstransport,weadoptedtheformulationofastandardresistancemodel(12)1RH;aq¼1Raqþ1Jaq;limðM14ÞwhereRH,aqisthesulfateproductionrate,Raqistheaqueous-phasereac-tionrate,andJaq,limisthelimitingmasstransferrate.FortheoxidationofS(IV)byagivenoxidantOxi(12)Raq¼ðk0½SO2⋅H2Oþk1½HSO3Àþk2½SO32ÀÞ½OxiðM15Þwhere[SO2·H2O],[HSO3−],[SO32−],and[Oxi]aretherespectiveaqueous-phaseconcentrations,andk0,k1,andk2arethecorrespondingsecond-orderreactionratecoefficientsasdetailedintableS4.Theaqueous[Oxi]isassumedtobeinequilibriumwithitsgas-phaseconcentrationandcanbedeterminedbyHenry’slaw(12)½X¼p∞ðXÞ⋅HðXÞðM16Þwherep∞(X)(atm)isthepartialpressureofspeciesXinthebulkgasphaseandH(Matm−1)istheeffectiveHenry’sconstant(tableS5).ThelimitingmasstransferrateJaq(Ms−1)iscalculatedbyEqs.M17andM18(12)Jaq;lim¼minfJaqðSO2Þ;JaqðOxiÞgðM17ÞJaqðXÞ¼kMTðXÞ⋅p∞ðXÞ⋅HðXÞðM18ÞwhereXreferstoSO2ortheoxidantOxisuchasO3,H2O2,andNO2.ThemasstransferratecoefficientkMT(s−1)canbecalculatedby(12)kMTXðÞ¼Rp23Dgþ4Rp3anÀ1ðM19ÞwhereRpistheaerosolradius,andRp23Dgand4Rp3anarethecontinuumregimeresistanceandthefree-molecular(orkinetic)regimeresistance,respectively.Dgisthegas-phasemoleculardiffusioncoefficient,andnisthemeanmolecularspeedofX.aisthemassaccommodationco-efficientofXonthedropletsurface,whichaccountsforimperfectstickingofimpingingmoleculestothesurface,andweadoptedliter-aturevaluesof0.11,0.23,2.0×10−3(12),and2.0×10−4(49)forSO2,H2O2,O3,andNO2,respectively.Aqueous-phasemasstransfercanbeignoredforthesizerangeconsideredhere(Dp≤2.5mm)(12).AnequivalentRpof0.15and15mmwasassumedforaerosolsandclouddroplets,respectively.M8.Influencesofionicstrengthonaqueoussulfate-producingreactionsAerosolliquidwaterconstitutesanaqueouselectrolytethatcanbeex-tremelyconcentratedwithhighionicstrength(I)upto100M(50).Thishighlyconcentratedchemicalenvironmentwillaffecttheinclina-tionofaspeciestoparticipateintheaqueous-phasechemicalreac-tions,reflectedbyanapparentreactionrateconstant(k)differentfromthatinanidealsolution(21).TheinfluenceofIonkiscomplicatedandisnotyetfullyunder-stood.Accordingtocurrentunderstanding,Iaffectskthroughitsintegratedeffectsontheactivitycoefficient(a)ofreactantsandproductsformostreactions(51).Forexample,forareactionwherereactantsAandBformanactivatedcomplex(AB),whichthenquicklydecomposesintoafinalproductP(A+B→(AB)→P),thek-Idependencecanbedescribedas(51)logkkI¼0¼logaAþlogaBÀlogaðABÞðM20ÞwherekI=0referstothekineticconstantatIof0M.TheoriesusedtopredictaiatgivenIvariedwiththerangesofIandthespeciesnature,thatis,beinganionoraneutralspecies,assummarizedintableS6.Majoraqueoussulfate-producingreactionsconsideredhereincludeS(IV)oxidationbyH2O2,O3,TMI+O2,andNO2(Fig.2).Amongthesereactions,theinfluenceofIhasbeenstudiedexperimentally,withIrang-ingupto~5MforH2O2andslightlyhigherthan1MforO3andTMI+O2.Theobservedk-Irelationshipsofthesereactionsagreewiththeore-ticalpredictionssummarizedintableS7(52–56).Asshowninfig.S3,withincreasingionicstrength,therateconstantforH2O2decreasesfirstwhenIisbelow~1MandbeginstoincreaseonceIgoesabove~1M(52,57).ForO3,therateconstantispositivelyrelatedtoI.ForTMI+O2[here,onlyFe(III)andMn(II)areconsideredaseffectivecatalyzingTMIs(58,59)],therateconstantdecreasessignificantlywithincreasingI,evenwithoutconsideringthesulfateinhabitationeffect(referringtotheeffectthattheformationofthesulfate-TMIcomplexwouldreducecatalyticallyactiveTMIconcentrations)(55,60).Currently,however,nok-IrelationshipwasreportedforNO2,whereassomeplausibleestimationcanbemadeonthebasisoftheprin-cipleoftheoriesdiscussedabove.TwokindsofmechanismshavebeensuggestedfortheNO2-S(IV)reactions.Oneistheoxygen-atomtransferreaction(61)2NO2þSO2À3↔ðO2NÀSO3ÀNO2Þ2ÀðM21aÞðO2NÀSO3ÀNO2Þ2ÀþOHÀ↔HOÀSO3ÀðNO2Þ23ÀðM21bÞSCIENCEADVANCESRESEARCHARTICLEChengetal.Sci.Adv.2016;2:e160153021December20166of11HOÀSO3ÀðNO2Þ23ÀþOHÀ→2NO2ÀþSO2À4þH2OðM21cÞinwhichthefirstreaction(Eq.M21a)istherate-controllingstep.Theothermechanismisanelectrontransferreaction(62–64)NO2þSO2À3→NO2ÀþSO3•ÀðM22Þfollowedbythesulfurauto-oxidationprocesses(12).Thefirstreaction(Eq.M22)istherate-controllingstepbecausefollow-upreactionswithradicalsareveryfast.Forbothmechanisms,therate-controllingstepoftheNO2-S(IV)reactionisareactionofanionwithaneutralmolecule.AccordingtoHerrmann(51),thek-IrelationforthistypeofreactionshouldfollowlogkkI¼0¼bIðM23Þwherebisthekineticsaltingcoefficient.AccordingtoKameokaandPigford(65),bisexpectedtobepositive.Givenapositiveb,in-creasingIwillleadtoanincreaseink,asshownbythereddashedcurveinfig.S3(wetakeanarbitraryvalueof0.5M−1forb,whichisnotdeterminedfromexperimentsandisusedonlyforthepurposeofillustration).DuringthesevereBeijinghazes(whenPM2.5ishigherthan300mgm−3),ionicstrengthinaerosolliquidwaterrangedfrom13to43M,aspredictedbytheISORROPIA-IImodel(seesectionM6)(15).Directextrapolationoftheobserved/predictedk-Irelationship(fig.S3)intosuchhighrangesofionicstrengthmaynotbeappropriate.Thus,therateconstantsaretakenasfordilutedsolution,althoughbasedoncurrentobservationsandtheories(tableS7andfig.S3),thistreatmentwillleadtoconservativeestimationsoftherealsulfatepro-ductionratesoftheNO2,O3,andH2O2pathwaysinFig.2butanoverestimationoftheTMI+O2pathway.M9.DatausedinFig.2Detaileddescriptionsonhowtoderivethesulfateproductionratefordifferentaqueous-phaseoxidationpathwaysofSO2(thatis,byH2O2,O3,TMI+O2,andNO2)inFig.2canbefoundinthestudyofSeinfeldandPandis(12).Theaqueous-phasereactionsinvolvedarelistedasRe-actionsR1andM4toM8.TherateexpressionsandratecoefficientsandtheconstantsthatweusedforcalculatingtheapparentHenry’sconstantaresummarizedintablesS4andS5,respectively.InFig.2,the“clouddroplets”scenarioistakenfromtheworkofSeinfeldandPandis(12)andHerrmannetal.(21):[SO2(g)]=5ppb,[NO2(g)]=1ppb,[H2O2(g)]=1ppb,[O3(g)]=50ppb,[Fe(III)]=0.3mM,[Mn(II)]=0.03mM,liquidwatercontent=0.1gm−3,andclouddropletradiusRp=15mm.Inthisscenario,thetemperatureTistakentobethesameasthatusedinthe“Beijinghaze”scenariodescribedbelow.The“Beijinghaze”scenariowastakenaccordingtothemeasure-mentdataduringthemostpollutedhazeperiods(PM2.5>300mgm−3).Theaveragevalueswereusedinourcalculation:[SO2(g)]=40ppb,[NO2(g)]=66ppb,[H2O2(g)]=0.01ppb,[O3(g)]=1ppb,AWC=300mgm−3,aerosoldropletradiusRp=0.15mm,andT=271K.Theconcentrationsof[Fe(III)]and[Mn(II)]arepH-dependent(fig.S4).ThepHdependenceismostlyduetotheprecipitationequilibriumofFe(OH)3andMn(OH)2FeðIIIÞ½¼Ksp;FeðOHÞ3½OHÀ3and½MnðIIÞsat¼Ksp;MnðOHÞ2½OHÀ2ðM24ÞwhereKsp;FeðOHÞ3andKsp;MnðOHÞ2aretheprecipitationconstantsofFe(OH)3andMn(OH)2,respectively(66).WhenallFe(OH)3andMn(OH)2aredissolved,furtherdecreaseofpHwillnotincrease[Fe(III)]and[Mn(II)],resultinginaplateauatlowpH(fig.S4).ThetotalsolubleFeandMnareestimatedtobe18and42ngm−3,respectively,basedondataintheliteratureandobservationsinBeijing(2,59,66–70).TheseverehazeeventsobservedinBeijingarearegionalphenom-enon(5).BecauseBeijingislocatedinthenorthwesternedgeofthepollutedarea,theairpollutionincitiessouthofBeijingisevenmoresevere.NO2concentrationsinBeijingarecomparabletothesoutherncities,whereasSO2concentrationsinthelatteraretypicallytwotofourtimeshigherthanthoseinBeijing(fig.S5).Thus,thesulfatepro-ductionratefromtheNO2pathwaythatwepredictedwiththeBeijingdatainFig.2isaconservativeestimationforthecontributionofthispathwaytothesulfateformationinthewholeNCP.ConsideringthatregionaltransportfromcitiessouthofBeijinghascontributedtotheseverehazeepisodeinJanuary2013(5,71)andjudgingfromtheairpollutiontrendshowninfig.S5,thepollutedairparcelscouldtypicallyhavebeenprocessedunderseverehazeconditionsinBeijingandincitiessouthofitformorethan3daysbeforethepeakpollutionhourinBeijing.Becausecloudamountswerelow(7,72,73)duringtheJanuary2013winterhazeperiods,weassumedthataerosolsspent100%oftheirlifetimeundernoncloudconditions(RH<100%)(21).Undertheseconditions,toproducetheobservedsulfateconcentration(~200mgm−3),therequiredaverageheterogeneousproductionratecanbedeterminedtobe~3mgm−3h−1.Thisestimationalsofallsintotherangesof1to7mgm−3h−1thatwepredictedfortheNO2pathwayinFig.2.M10.AerosolacidityinnorthernChinaTheneutralizedfeatureofaerosolsinEastAsia(includingBeijingandtheNCP)hasbeenwelldocumentedintheliterature,withhighcation-to-anionratios(45,74–86).AircraftmeasurementsintheArcticfurthersupportthisconclusion,showingthattheaerosolsintheArcticcharac-terizedascomingfromtheoutflowofEastAsiaweremostlyneutralized,whereastheaerosolstransportedfromNorthAmericatotheArcticwerehighlyacidic(linesinFig.1D)(87).ThelowaerosolacidityinEastAsiacanbeattributedtoitshighNH3andmineraldustemissions.Forexample,in2008,theemissionratiosofNH3to2×SO2(molarratioofNH3emissiondividedbytwicetheSO2emission)are0.37,0.86,and1.04forNorthAmerica,Europe,andEastAsia,respectively(87).NorthernChinaisexpectedtohaveahigheratmosphericneutralizingcapacitythanotherpartsofEastAsiabecauseofthehighNH3emissioninthisregion.Bothsatellitedata(88,89)andemissioninventories(90)showthatnorthernChinaisoneofthemostNH3-richareasinEastAsiabecauseofitsintenseagricultureactivities.TheNCP(thatis,thecitiesofBeijingandTianjinandtheprovincesofHebei,Henan,andShandong)accountsfor30to40%ofthetotalNH3emissionsinChina(90)whilecon-tributing~20%oftheemissionsforSO2andNOx(91).SCIENCEADVANCESRESEARCHARTICLEChengetal.Sci.Adv.2016;2:e160153021December20167of11Thehighmassfractionofmineraldust(10to20%)isadistinctcharacteristicofPM2.5intheNCP(2,70,92,93).Theinfluenceofmin-eralaerosolsisalsohigherfornorthernChinathanforsouthernChina(94–98).Majorsourcesofmineralaerosolsincludeurbanfugitivedust(resuspendedroaddust,constructiondust,etc.)andthelong-rangetransportedAsiandust(99–101).Themineraldustsareobservedtobeinternallymixedwithsulfate,nitrate,andammonia,suggestingtheirparticipationinatmosphericprocessing(102–105).Withoutmineralcomponents(Ca2+,Mg2+,K+,andNa+),aerosolpHinnorthernChinamaydropbelow5.6,showinganacidicnature(37).Inaddition,despitethehighemissionofacidicgases(SO2andNOx),rainwaterinnorthernChinahasaveragepHvalueshigherthan5.6(fig.S6),suggestinganalkalinetendencyincontrasttootherareas(forexample,theUnitedStates)(12,22).ApHof5.6isoftentakenasthe“natural”acidityofrainwater(waterinequilibriumwithCO2),whichhasbeenconsideredasthedemarcationlineofacidicprecipi-tation(12).ThehighpHvaluesinrainwaterofnorthernChinaarecausedbyalkalineaerosolparticles(12),whichhavealargebufferingcapacitytooffsettheeffectsofanthropogenicacidity.M11.ContributionfromsCIsandNO3radicalsWehavealsoinvestigatedthereactionsofS(IV)withNO3radicalsandsCIs,bothofwhichshowminorcontributions(0.03and0.69%)comparedtoourproposedmechanismS(IV)+NO2(aq).OxidationbyNO3radicals.AnaverageNO3radicalconcentrationof~2.5×10−3partspertrillionwasdeterminedbyourmodelingresultsfortheseverepollutionperiods.TakinganeffectiveHenry’sconstantof0.6Matm−1forNO3andare-actionrateconstantof1.4×109M−1s−1(106),wedeterminedasulfateproductionrateof5.1×10−4mgm−3h−1fortheNO3reaction.Thisrateisonly0.03%comparedtotheproposedmechanismS(IV)+NO2(aq)atpH5.8(Fig.2)andisthusnegligible.OxidationbysCI.AccordingtoMauldinetal.(31),wecalculatedRsCI,thesulfatefor-mationratefromthesCImechanism,byRsCI¼ksCIþSO2½sCI½SO2ðM25Þwhere[sCI]and[SO2]aretheconcentrationsofsCIandSO2,respectively,andthereactionratecoefficientksCIþSO2is6×10−13cm3molecule−1s−1.TheconcentrationofsCIcanbedeterminedbythefollowingequation(31)½sCI¼YsCIkO3þalkene½O3½alkenetsCIðM26ÞwhereYsCIistheyieldofsCI~0.5,kO3þalkeneisthecorrespondingratecoefficientforthereactionofO3withindividualalkenes,andtsCIisthelifetimeofthesCI,whichis0.2s(31).Aftertakingatypicalalkeneprofileforthehazeperiod(107),wedeterminedanRsCIof~0.69%oftheproposedS(IV)+NO2(aq)mechanism.SUPPLEMENTARYMATERIALSSupplementarymaterialforthisarticleisavailableathttp://advances.sciencemag.org/cgi/content/full/2/12/e1601530/DC1fig.S1.WeakenedphotochemistrybyaerosoldimmingeffectsduringJanuary2013inBeijing.fig.S2.ImportanceoftheNO2reactionpathwayforsulfateproductionintheBeijinghaze(January2013).fig.S3.Influenceofionicstrength(I)onrateofaqueoussulfate-producingreactions.fig.S4.EstimationofFe3+andMn2+concentrationsasafunctionofaerosolwaterpHduringBeijinghazes.fig.S5.RegionalpollutionacrosstheNCPduringJanuary2013.fig.S6.AnnualprecipitationpHofChinain2013.fig.S7.ThesameasFig.2butwithalowerlimitofreactionrateconstantsreportedbyLeeandSchwartz(18).tableS1.PreviouslyreportedconcentrationsofcationsandanionsinPM2.5duringwinterforcitiesinNCPusedinFig.1D.tableS2.Summaryoffieldobservationandmethodsinthisstudy.tableS3.Domain,configurations,andmajordynamicandphysicaloptionsusedinWRFv3.5.1.tableS4.Rateexpressionandratecoefficientsofrelevantaqueous-phasereactions.tableS5.ConstantsforcalculatingtheapparentHenry’sconstant(H).tableS6.Summaryofsuggestedactivitycoefficient(a)–ionicstrength(I)dependence.tableS7.Influenceofionicstrength(I)onrateofaqueoussulfate-producingreactions.References(108–128)REFERENCESANDNOTES1.P.Brimblecombe,TheBigSmoke(Methuen,1987).2.R.-J.Huang,Y.Zhang,C.Bozzetti,K.-F.Ho,J.-J.Cao,Y.Han,K.R.Daellenbach,J.G.Slowik,S.M.Platt,F.Canonaco,P.Zotter,R.Wolf,S.M.Pieber,E.A.Bruns,M.Crippa,G.Ciarelli,A.Piazzalunga,M.Schwikowski,G.Abbaszade,J.Schnelle-Kreis,R.Zimmermann,Z.An,S.Szidat,U.Baltensperger,I.ElHaddad,A.S.H.Prévôt,HighsecondaryaerosolcontributiontoparticulatepollutionduringhazeeventsinChina.Nature514,218–222(2014).3.S.Guo,M.Hu,M.L.Zamora,J.Peng,D.Shang,J.Zheng,Z.Du,Z.Wu,M.Shao,L.Zeng,M.J.Molina,R.Zhang,ElucidatingsevereurbanhazeformationinChina.Proc.Natl.Acad.Sci.U.S.A.111,17373–17378(2014).4.R.Zhang,Q.Li,R.Zhang,MeteorologicalconditionsforthepersistentseverefogandhazeeventovereasternChinainJanuary2013.Sci.ChinaEarthSci.57,26–35(2014).5.G.J.Zheng,F.K.Duan,H.Su,Y.L.Ma,Y.Cheng,B.Zheng,Q.Zhang,T.Huang,T.Kimoto,D.Chang,U.Pöschl,Y.F.Cheng,K.B.He,ExploringtheseverewinterhazeinBeijing:Theimpactofsynopticweather,regionaltransportandheterogeneousreactions.Atmos.Chem.Phys.15,2969–2983(2015).6.J.Wang,J.Wang,S.Wang,J.Jiang,A.Ding,M.Zheng,B.Zhao,D.C.Wong,W.Zhou,G.Zheng,L.Wang,J.E.Pleim,J.Hao,Impactofaerosol–meteorologyinteractionsonfineparticlepollutionduringChina’sseverehazeepisodeinJanuary2013.Environ.Res.Lett.9,094002(2014).7.B.Zheng,Q.Zhang,Y.Zhang,K.B.He,K.Wang,G.J.Zheng,F.K.Duan,Y.L.Ma,T.Kimoto,Heterogeneouschemistry:AmechanismmissingincurrentmodelstoexplainsecondaryinorganicaerosolformationduringtheJanuary2013hazeepisodeinNorthChina.Atmos.Chem.Phys.14,16731–16776(2014).8.R.Zhang,G.Wang,S.Guo,M.L.Zamora,Q.Ying,Y.Lin,W.Wang,M.Hu,Y.Wang,Formationofurbanfineparticulatematter.Chem.Rev.115,3803–3855(2015).9.D.H.Ehhalt,F.Rohrer,DependenceoftheOHconcentrationonsolarUV.J.Geophys.Res.105,3565–3571(2000).10.F.Rohrer,H.Berresheim,Strongcorrelationbetweenlevelsoftropospherichydroxylradicalsandsolarultravioletradiation.Nature442,184–187(2006).11.C.Pilinis,J.H.Seinfeld,D.Grosjean,Watercontentofatmosphericaerosols.Atmos.Environ.23,1601–1606(1989).12.J.H.Seinfeld,S.N.Pandis,AtmosphericChemistryandPhysics,fromAirPollutiontoClimateChange(Wiley,2006).13.B.Ervens,B.J.Turpin,R.J.Weber,Secondaryorganicaerosolformationinclouddropletsandaqueousparticles(aqSOA):Areviewoflaboratory,fieldandmodelstudies.Atmos.Chem.Phys.11,11069–11102(2011).14.A.Nenes,S.N.Pandis,C.Pilinis,Continueddevelopmentandtestingofanewthermodynamicaerosolmoduleforurbanandregionalairqualitymodels.Atmos.Environ.33,1553–1560(1999).15.C.Fountoukis,A.Nenes,ISORROPIAII:AcomputationallyefficientthermodynamicequilibriummodelforK+-Ca2+-Mg2+-NH4+-Na+-SO42−-NO3−-Cl−-H2Oaerosols.Atmos.Chem.Phys.7,4639–4659(2007).16.L.Xu,H.Guo,C.M.Boyd,M.Klein,A.Bougiatioti,K.M.Cerully,J.R.Hite,G.Isaacman-VanWertz,N.M.Kreisberg,C.Knote,K.Olson,A.Koss,A.H.Goldstein,S.V.Hering,J.deGouw,K.Baumann,S.-H.Lee,A.Nenes,R.J.Weber,N.LeeNg,EffectsofanthropogenicemissionsonaerosolformationfromisopreneandmonoterpenesinthesoutheasternUnitedStates.Proc.Natl.Acad.Sci.U.S.A.112,37–42(2015).17.T.Koop,B.Luo,A.Tsias,T.Peter,Wateractivityasthedeterminantforhomogeneousicenucleationinaqueoussolutions.Nature406,611–614(2000).18.Y.N.Lee,S.E.Schwartz,PrecipitationScavenging,DryDepositionandResuspension(Elsevier,1983),pp.453–470.SCIENCEADVANCESRESEARCHARTICLEChengetal.Sci.Adv.2016;2:e160153021December20168of1119.X.Huang,Y.Song,C.Zhao,M.Li,T.Zhu,Q.Zhang,X.Zhang,PathwaysofsulfateenhancementbynaturalandanthropogenicmineralaerosolsinChina.J.Geophys.Res.119,14165–14179(2014).20.C.J.Walcek,G.R.Taylor,Atheoreticalmethodforcomputingverticaldistributionsofacidityandsulfateproductionwithincumulusclouds.J.Atmos.Sci.43,339–355(1986).21.H.Herrmann,T.Schaefer,A.Tilgner,S.A.Styler,C.Weller,M.Teich,T.Otto,A.Che,Troposphericaqueous-phasechemistry:Kinetics,mechanisms,anditscouplingtoachanginggasphase.Chem.Rev.115,4259–4334(2015).22.J.Cao,X.Tie,W.F.Dabberdt,T.Jie,Z.Zhao,Z.An,Z.Shen,OnthepotentialhighaciddepositioninnortheasternChina.J.Geophys.Res.118,4834–4846(2013).23.S.N.Pandis,J.H.Seinfeld,Mathematicalmodelingofaciddepositionduetoradiationfog.J.Geophys.Res.94,12911–12923(1989).24.Y.Xie,A.Ding,W.Nie,H.Mao,X.Qi,X.Huang,Z.Xu,V.-M.Kerminen,T.Petäjä,X.Chi,A.Virkula,M.Boy,L.Xue,J.Guo,J.Sun,X.Yang,M.Kulmala,C.Fu,Enhancedsulfateformationbynitrogendioxide:Implicationsfromin-situobservationsattheSORPESStation.J.Geophys.Res.120,12679–12694(2015).25.L.Wang,L.Wen,C.Xu,J.Chen,X.Wang,L.Yang,W.Wang,X.Yang,X.Sui,L.Yao,Q.Zhang,HONOanditspotentialsourceparticulatenitriteatanurbansiteinNorthChinaduringthecoldseason.Sci.TotalEnviron.538,93–101(2015).26.H.Su,Y.Cheng,R.Oswald,T.Behrendt,I.Trebs,F.X.Meixner,M.O.Andreae,P.Cheng,Y.Zhang,U.Pöschl,SoilnitriteasasourceofatmosphericHONOandOHradicals.Science333,1616–1618(2011).27.A.Laskin,D.J.Gaspar,W.Wang,S.W.Hunt,J.P.Cowin,S.D.Colson,B.J.Finlayson-Pitts,Reactionsatinterfacesasasourceofsulfateformationinsea-saltparticles.Science301,340–344(2003).28.B.Alexander,R.J.Park,D.J.Jacob,Q.B.Li,R.M.Yantosca,J.Savarino,C.C.W.Lee,M.H.Thiemens,Sulfateformationinsea-saltaerosols:Constraintsfromoxygenisotopes.J.Geophys.Res.110,D10307(2005).29.W.R.Stockwell,J.G.Calvert,ThemechanismoftheHO-SO2reaction.Atmos.Environ.17,2231–2235(1983).30.M.A.Blitz,K.J.Hughes,M.J.Pilling,Determinationofthehigh-pressurelimitingratecoefficientandtheenthalpyofreactionforOH+SO2.J.Phys.Chem.A107,1971–1978(2003).31.R.L.MauldinIII,T.Berndt,M.Sipilä,P.Paasonen,T.Petäjä,S.Kim,T.Kurtén,F.Stratmann,V.-M.Kerminen,M.Kulmala,Anewatmosphericallyrelevantoxidantofsulphurdioxide.Nature488,193–196(2012).32.S.Kim,A.Guenther,B.Lefer,J.Flynn,R.Griffin,A.P.Rutter,L.Gong,B.K.Cevik,PotentialroleofstabilizedCriegeeradicalsinsulfuricacidproductioninahighbiogenicVOCenvironment.Environ.Sci.Technol.49,3383–3391(2015).33.M.Boy,D.Mogensen,S.Smolander,L.Zhou,T.Nieminen,P.Paasonen,C.Plass-Dülmer,M.Sipilä,T.Petäjä,L.Mauldin,H.Berresheim,M.Kulmala,OxidationofSO2bystabilizedCriegeeintermediate(sCI)radicalsasacrucialsourceforatmosphericsulfuricacidconcentrations.Atmos.Chem.Phys.13,3865–3879(2013).34.N.Kaneyasu,S.Yamamoto,K.Sato,A.Takami,M.Hayashi,K.Hara,K.Kawamoto,T.Okuda,S.Hatakeyama,Impactoflong-rangetransportofaerosolsonthePM2.5compositionatamajormetropolitanareainthenorthernKyushuareaofJapan.Atmos.Environ.97,416–425(2014).35.Q.Zhang,F.Duan,K.He,Y.Ma,H.Li,T.Kimoto,A.Zheng,OrganicnitrogeninPM2.5inBeijing.Front.Environ.Sci.Eng.9,1004–1014(2015).36.G.J.Zheng,Y.Cheng,K.B.He,F.K.Duan,Y.L.Ma,AnewlyidentifiedcalculationdiscrepancyoftheSunsetsemi-continuouscarbonanalyzer.Atmos.Meas.Tech.7,1969–1977(2014).37.J.K.Zhang,Y.Sun,Z.R.Liu,D.S.Ji,B.Hu,Q.Liu,Y.S.Wang,CharacterizationofsubmicronaerosolsduringamonthofseriouspollutioninBeijing,2013.Atmos.Chem.Phys.14,2887–2903(2014).38.L.Xing,T.Fu,J.J.Cao,S.C.Lee,G.H.Wang,K.F.Ho,M.Cheng,C.You,T.J.Wang,SeasonalandspatialvariabilityoftheOM/OCmassratiosandhighregionalcorrelationbetweenoxalicacidandzincinChineseurbanorganicaerosols.Atmos.Chem.Phys.13,4307–4318(2013).39.G.Tang,Y.Wang,X.Li,D.Ji,S.Hsu,X.Gao,Spatial-temporalvariationsinsurfaceozoneinNorthernChinaasobservedduring2009–2010andpossibleimplicationsforfutureairqualitycontrolstrategies.Atmos.Chem.Phys.12,2757–2776(2012).40.C.Mass,D.Ovens,WRFmodelphysics:Progress,problems,andperhapssomesolutions,the11thWRFUsers’Workshop,21–25June,NCARCenterGreenCampus,http://www2.mmm.ucar.edu/wrf/users/workshops/WS2010/presentations/session4/4-1_WRFworkshop2010Final.pdf(2010)[accessedDecember2015].41.G.Z.Whitten,G.Heo,Y.Kimura,E.McDonald-Buller,D.T.Allen,W.P.L.Carter,G.Yarwood,AnewcondensedtoluenemechanismforCarbonBond:CB05-TU.Atmos.Environ.44,5346–5355(2010).42.J.S.Chang,R.A.Brost,I.S.A.Isaksen,S.Madronich,P.Middleton,W.R.Stockwell,C.J.Walcek,Athree-dimensionalEulerianaciddepositionmodel:Physicalconceptsandformulation.J.Geophys.Res.92,14681–14700(1987).43.NASA/JetPropulsionLaboratory,ChemicalKineticsandPhotochemicalDataforUseinAtmosphericStudies(NASA/JetPropulsionLaboratory,2010).44.Y.Zhang,G.R.Carmichael,TheroleofmineralaerosolintroposphericchemistryinEastAsia—Amodelstudy.J.Appl.Meteorol.38,354–366(1999).45.H.Guo,L.Xu,A.Bougiatioti,K.Cerully,S.Capps,J.Hite,A.Carlton,S.Lee,M.Bergin,N.Ng,A.Nenes,R.Weber,Fine-particlewaterandpHinthesoutheasternUnitedStates.Atmos.Chem.Phys.15,5211–5228(2015).46.Z.Y.Meng,W.L.Lin,X.M.Jiang,P.Yan,Y.Wang,Y.M.Zhang,X.F.Jia,X.L.Yu,CharacteristicsofatmosphericammoniaoverBeijing,China.Atmos.Chem.Phys.11,6139–6151(2011).47.M.D.Petters,S.M.Kreidenweis,Asingleparameterrepresentationofhygroscopicgrowthandcloudcondensationnucleusactivity.Atmos.Chem.Phys.7,1961–1971(2007).48.S.S.Gunthe,D.Rose,H.Su,R.M.Garland,P.Achtert,A.Nowak,A.Wiedensohler,M.Kuwata,N.Takegawa,Y.Kondo,M.Hu,M.Shao,T.Zhu,M.O.Andreae,U.Pöschl,Cloudcondensationnuclei(CCN)fromfreshandagedairpollutioninthemegacityregionofBeijing.Atmos.Chem.Phys.11,11023–11039(2011).49.D.J.Jacob,Heterogeneouschemistryandtroposphericozone.Atmos.Environ.34,2131–2159(2000).50.Y.Cheng,H.Su,T.Koop,E.Mikhailov,U.Pöschl,Sizedependenceofphasetransitionsinaerosolnanoparticles.Nat.Commun.6,5923(2015).51.H.Herrmann,Kineticsofaqueousphasereactionsrelevantforatmosphericchemistry.Chem.Rev.103,4691–4716(2003).52.F.Maaß,H.Elias,K.J.Wannowius,Kineticsoftheoxidationofhydrogensulfitebyhydrogenperoxideinaqueoussolution:Ionicstrengtheffectsandtemperaturedependence.Atmos.Environ.33,4413–4419(1999).53.H.G.Maahs,KineticsandmechanismoftheoxidationofS(IV)byozoneinaqueoussolutionwithparticularreferencetoSO2conversioninnonurbantroposphericclouds.J.Geophys.Res.88,10721–10732(1983).54.J.Lagrange,C.Pallares,P.Lagrange,Electrolyteeffectsonaqueousatmosphericoxidationofsulphurdioxidebyozone.J.Geophys.Res.99,14595–14600(1994).55.L.R.Martin,M.W.Hill,Theironcatalyzedoxidationofsulfur:Reconciliationoftheliteraturerates.Atmos.Environ.21,1487–1490(1987).56.L.R.Martin,M.W.Hill,A.F.Tai,T.W.Good,Theironcatalyzedoxidationofsulfur(IV)inaqueoussolution:DifferingeffectsoforganicsathighandlowpH.J.Geophys.Res.96,3085–3097(1991).57.H.M.Ali,M.Iedema,X.-Y.Yu,J.P.Cowin,IonicstrengthdependenceoftheoxidationofSO2byH2O2insodiumchlorideparticles.Atmos.Environ.89,731–738(2014).58.A.HussJr.,P.K.Lim,C.A.Eckert,Oxidationofaqueoussulfurdioxide.1.Homogeneousmanganese(II)andiron(II)catalysisatlowpH.J.Phys.Chem.86,4224–4228(1982).59.B.Alexander,R.J.Park,D.J.Jacob,S.Gong,Transitionmetal-catalyzedoxidationofatmosphericsulfur:Globalimplicationsforthesulfurbudget.J.Geophys.Res.114,D02309(2009).60.L.R.Martin,T.W.Good,Catalyzedoxidationofsulfurdioxideinsolution:Theiron-manganesesynergism.Atmos.Environ.25,2395–2399(1991).61.C.L.Clifton,N.Altstein,R.E.Huie,Rateconstantforthereactionofnitrogendioxidewithsulfur(IV)overthepHrange5.3-13.Environ.Sci.Technol.22,586–589(1988).62.T.Nash,Theeffectofnitrogendioxideandofsometransitionmetalsontheoxidationofdilutebisulphitesolutions.Atmos.Environ.13,1149–1154(1979).63.R.E.Huie,ThereactionkineticsofNO2.Toxicology89,193–216(1994).64.G.Spindler,J.Hesper,E.Brüggemann,R.Dubois,T.Müller,H.Herrmann,Wetannulardenudermeasurementsofnitrousacid:LaboratorystudyoftheartefactreactionofNO2withS(IV)inaqueoussolutionandcomparisonwithfieldmeasurements.Atmos.Environ.37,2643–2662(2003).65.Y.Kameoka,R.L.Pigford,Absorptionofnitrogendioxideintowater,sulfuricacid,sodiumhydroxide,andalkalinesodiumsulfiteaqueoussolutions.Ind.Eng.Chem.Fundam.16,163–169(1977).66.T.E.Graedel,C.J.Weschler,Chemistrywithinaqueousatmosphericaerosolsandraindrops.Rev.Geophys.19,505–539(1981).67.N.Meskhidze,W.L.Chameides,A.Nenes,G.Chen,Ironmobilizationinmineraldust:CananthropogenicSO2emissionsaffectoceanproductivity?Geophys.Res.Lett.30,2085(2003).68.F.Solmon,P.Y.Chuang,N.Meskhidze,Y.Chen,AcidicprocessingofmineraldustironbyanthropogeniccompoundsoverthenorthPacificOcean.J.Geophys.Res.114,D02305(2009).69.S.-C.Hsu,G.T.F.Wong,G.-C.Gong,F.-K.Shiah,Y.-T.Huang,S.-J.Kao,F.Tsai,S.-C.C.Lung,F.-J.Lin,I.-I.Lin,C.-C.Hung,C.-M.Tseng,Sources,solubility,anddrydepositionofaerosoltraceelementsovertheEastChinaSea.Mar.Chem.120,116–127(2010).70.S.Tian,Y.Pan,Z.Liu,T.Wen,Y.Wang,Size-resolvedaerosolchemicalanalysisofextremehazepollutioneventsduringearly2013inurbanBeijing,China.J.Hazard.Mater.279,452–460(2014).71.Z.Wang,J.Li,Z.Wang,W.Yang,X.Tang,B.Ge,P.Yan,L.Zhu,X.Chen,H.Chen,W.Wand,J.Li,B.Liu,X.Wang,W.Wand,Y.Zhao,N.Lu,D.Su,ModelingstudyofregionalseverehazesSCIENCEADVANCESRESEARCHARTICLEChengetal.Sci.Adv.2016;2:e160153021December20169of11overmid-easternChinainJanuary2013anditsimplicationsonpollutionpreventionandcontrol.Sci.ChinaEarthSci.57,3–13(2014).72.B.Zhang,Y.Wang,J.Hao,Simulatingaerosol–radiation–cloudfeedbacksonmeteorologyandairqualityovereasternChinaunderseverehazeconditionsinwinter.Atmos.Chem.Phys.15,2387–2404(2015).73.Y.Wang,Q.Zhang,J.Jiang,W.Zhou,B.Wang,K.He,F.Duan,Q.Zhang,S.Philip,Y.Xie,EnhancedsulfateformationduringChina’sseverewinterhazeepisodeinJanuary2013missingfromcurrentmodels.J.Geophys.Res.119,10425–10440(2014).74.P.K.Quinn,D.J.Coffman,T.S.Bates,T.L.Miller,J.E.Johnson,K.Voss,E.J.Welton,C.Neusüss,DominantaerosolchemicalcomponentsandtheircontributiontoextinctionduringtheAerosols99cruiseacrosstheAtlantic.J.Geophys.Res.106,20783–20809(2001).75.R.J.Park,D.J.Jacob,B.D.Field,R.M.Yantosca,M.Chin,Naturalandtransboundarypollutioninfluencesonsulfate-nitrate-ammoniumaerosolsintheUnitedStates:Implicationsforpolicy.J.Geophys.Res.109,D15204(2004).76.S.-H.Chu,PM2.5episodesasobservedinthespeciationtrendsnetwork.Atmos.Environ.38,5237–5246(2004).77.T.K.V.Nguyen,M.D.Petters,S.R.Suda,H.Guo,R.J.Weber,A.M.G.Carlton,TrendsinparticlephaseliquidwaterduringtheSouthernOxidantandAerosolStudy.Atmos.Chem.Phys.14,10911–10930(2014).78.D.Voutsa,C.Samara,E.Manoli,D.Lazarou,P.Tzoumaka,IoniccompositionofPM2.5aturbansitesofnorthernGreece:Secondaryinorganicaerosolformation.Environ.Sci.Pollut.Res.21,4995–5006(2014).79.U.Makkonen,A.Virkkula,J.Mäntykenttä,H.Hakola,P.Keronen,V.Vakkari,P.P.Aalto,Semi-continuousgasandinorganicaerosolmeasurementsataFinnishurbansite:Comparisonswithfilters,nitrogeninaerosolandgasphases,andaerosolacidity.Atmos.Chem.Phys.12,5617–5631(2012).80.V.-M.Kerminen,R.Hillamo,K.Teinilä,T.Pakkanen,I.Allegrini,R.Sparapani,Ionbalancesofsize-resolvedtroposphericaerosolsamples:Implicationsfortheacidityandatmosphericprocessingofaerosols.Atmos.Environ.35,5255–5265(2001).81.M.Sillanpää,R.Hillamo,S.Saarikoski,A.Frey,A.Pennanen,U.Makkonen,Z.Spolnik,R.VanGrieken,M.Braniš,B.Brunekreef,M.-C.Chalbot,T.Kuhlbusch,J.Sunyer,V.-M.Kerminen,M.Kulmala,R.O.Salonen,ChemicalcompositionandmassclosureofparticulatematteratsixurbansitesinEurope.Atmos.Environ.40,212–223(2006).82.A.Ianniello,F.Spataro,G.Esposito,I.Allegrini,M.Hu,T.Zhu,ChemicalcharacteristicsofinorganicammoniumsaltsinPM2.5intheatmosphereofBeijing(China).Atmos.Chem.Phys.11,10803–10822(2011).83.L.-x.Yang,D.-c.Wang,S.-h.Cheng,Z.Wang,Y.Zhou,X.-h.Zhou,W.-x.Wang,InfluenceofmeteorologicalconditionsandparticulatematteronvisualrangeimpairmentinJinan,China.Sci.TotalEnviron.383,164–173(2007).84.S.Long,J.Zeng,Y.Li,L.Bao,L.Cao,K.Liu,L.Xu,J.Lin,W.Liu,G.Wang,J.Yao,C.Ma,Y.Zhao,Characteristicsofsecondaryinorganicaerosolandsulfatespeciesinsize-fractionatedaerosolparticlesinShanghai.J.Environ.Sci.26,1040–1051(2014).85.S.N.Behera,M.Sharma,Investigatingthepotentialroleofammoniainionchemistryoffineparticulatematterformationforanurbanenvironment.Sci.TotalEnviron.408,3569–3575(2010).86.E.Stone,J.Schauer,T.A.Quraishi,A.Mahmood,ChemicalcharacterizationandsourceapportionmentoffineandcoarseparticulatematterinLahore,Pakistan.Atmos.Environ.44,1062–1070(2010).87.J.A.Fisher,D.J.Jacob,Q.Wang,R.Bahreini,C.C.Carouge,M.J.Cubison,J.E.Dibb,T.Diehl,J.L.Jimenez,E.M.Leibensperger,Z.Lu,M.B.J.Meinders,H.O.T.Pye,P.K.Quinn,S.Sharma,D.G.Streets,A.vanDonkelaar,R.M.Yantosca,Sources,distribution,andacidityofsulfate–ammoniumaerosolintheArcticinwinter–spring.Atmos.Environ.45,7301–7318(2011).88.L.Clarisse,C.Clerbaux,F.Dentener,D.Hurtmans,P.-F.Coheur,Globalammoniadistributionderivedfrominfraredsatelliteobservations.Nat.Geosci.2,479–483(2009).89.A.Boynard,C.Clerbaux,L.Clarisse,S.Safieddine,M.Pommier,M.VanDamme,S.Bauduin,C.Oudot,J.Hadji-Lazaro,D.Hurtmans,P.-F.Coheur,FirstsimultaneousspacemeasurementsofatmosphericpollutantsintheboundarylayerfromIASI:AcasestudyintheNorthChinaPlain.Geophys.Res.Lett.41,645–651(2014).90.X.Huang,Y.Song,M.Li,J.Li,Q.Huo,X.Cai,T.Zhu,M.Hu,H.Zhang,Ahigh-resolutionammoniaemissioninventoryinChina.GlobalBiogeochem.Cycles26,GB1030(2012).91.Q.Zhang,D.Streets,G.Carmichael,K.B.He,H.Huo,A.Kannari,Z.Klimont,I.S.Park,S.Reddy,J.S.Fu,D.Chen,L.Duan,Y.Lei,L.T.Wang,Z.L.Yao,Asianemissionsin2006fortheNASAINTEX-Bmission.Atmos.Chem.Phys.9,5131–5153(2009).92.F.Yang,J.Tan,Q.Zhao,Z.Du,K.He,Y.Ma,F.Duan,G.Chen,Q.Zhao,CharacteristicsofPM2.5speciationinrepresentativemegacitiesandacrossChina.Atmos.Chem.Phys.11,5207–5219(2011).93.J.-j.Cao,Q.-y.Wang,J.C.Chow,J.G.Watson,X.-x.Tie,Z.-x.Shen,P.Wang,Z.-s.An,ImpactsofaerosolcompositionsonvisibilityimpairmentinXi’an,China.Atmos.Environ.59,559–566(2012).94.T.Okuda,J.Kato,J.Mori,M.Tenmoku,Y.Suda,S.Tanaka,K.He,Y.Ma,F.Yang,X.Yu,F.Duan,Y.Lei,DailyconcentrationsoftracemetalsinaerosolsinBeijing,China,determinedbyusinginductivelycoupledplasmamassspectrometryequippedwithlaserablationanalysis,andsourceidentificationofaerosols.Sci.TotalEnviron.330,145–158(2004).95.J.Duan,J.Tan,S.Wang,J.Hao,F.Chai,Sizedistributionsandsourcesofelementsinparticulatematteratcurbside,urbanandruralsitesinBeijing.J.Environ.Sci.24,87–94(2012).96.G.Zhang,X.Bi,L.Y.Chan,X.Wang,G.Sheng,J.Fu,Size-segregatedchemicalcharacteristicsofaerosolduringhazeinanurbanareaofthePearlRiverDeltaregion,China.UrbanClim.4,74–84(2013).97.Y.L.Sun,Z.F.Wang,P.Q.Fu,T.Yang,Q.Jiang,H.B.Dong,J.Li,J.J.Jia,Aerosolcomposition,sourcesandprocessesduringwintertimeinBeijing,China.Atmos.Chem.Phys.13,4577–4592(2013).98.Y.Wang,G.Zhuang,X.Zhang,K.Huang,C.Xu,A.Tang,J.Chen,Z.An,Theionchemistry,seasonalcycle,andsourcesofPM2.5andTSPaerosolinShanghai.Atmos.Environ.40,2935–2952(2006).99.J.-J.Cao,Z.-X.Shen,J.C.Chow,J.G.Watson,S.-C.Lee,X.-X.Tie,K.-F.Ho,G.-H.Wang,Y.-M.Han,WinterandsummerPM2.5chemicalcompositionsinfourteenChinesecities.J.AirWasteManag.Assoc.62,1214–1226(2012).100.H.Wang,S.-C.Tan,Y.Wang,C.Jiang,G.-y.Shi,M.-X.Zhang,H.-Z.Che,AmultisourceobservationstudyofthesevereprolongedregionalhazeepisodeovereasternChinainJanuary2013.Atmos.Environ.89,807–815(2014).101.X.Y.Zhang,Y.Q.Wang,T.Niu,X.C.Zhang,S.L.Gong,Y.M.Zhang,J.Y.Sun,J.Brandt,AtmosphericaerosolcompositionsinChina:Spatial/temporalvariability,chemicalsignature,regionalhazedistributionandcomparisonswithglobalaerosols.Atmos.Chem.Phys.12,779–799(2012).102.Y.Hu,J.Lin,S.Zhang,L.Kong,H.Fu,J.Chen,Identificationofthetypicalmetalparticlesamonghaze,fog,andclearepisodesintheBeijingatmosphere.Sci.TotalEnviron.511,369–380(2015).103.H.Hwang,C.-U.Ro,Directobservationofnitrateandsulfateformationsfrommineraldustandsea-saltsusinglow-ZparticleelectronprobeX-raymicroanalysis.Atmos.Environ.40,3869–3880(2006).104.L.Li,M.Li,Z.Huang,W.Gao,H.Nian,Z.Fu,J.Gao,F.Chai,Z.Zhou,AmbientparticlecharacterizationbysingleparticleaerosolmassspectrometryinanurbanareaofBeijing.Atmos.Environ.94,323–331(2014).105.Q.Yuan,W.Li,S.Zhou,L.Yang,J.Chi,X.Sui,W.Wang,Integratedevaluationofaerosolsduringhaze-fogepisodesatoneregionalbackgroundsiteinNorthChinaPlain.Atmos.Res.156,102–110(2015).106.Y.Rudich,R.K.Talukdar,A.R.Ravishankara,MultiphasechemistryofNO3intheremotetroposphere.J.Geophys.Res.103,16133–16143(1998).107.S.Guo,J.Tan,J.Duan,Y.Ma,F.Yang,K.He,J.Hao,Characteristicsofatmosphericnon-methanehydrocarbonsduringhazeepisodeinBeijing,China.Environ.Monit.Assess.184,7235–7246(2012).108.R.Zhang,J.Jing,J.Tao,S.-C.Hsu,G.Wang,J.Cao,C.S.L.Lee,L.Zhu,Z.Chen,Y.Zhao,Z.Shen,ChemicalcharacterizationandsourceapportionmentofPM2.5inBeijing:Seasonalperspective.Atmos.Chem.Phys.13,7053–7074(2013).109.K.He,Q.Zhao,Y.Ma,F.Duan,F.Yang,Z.Shi,G.Chen,SpatialandseasonalvariabilityofPM2.5acidityattwoChinesemegacities:Insightsintotheformationofsecondaryinorganicaerosols.Atmos.Chem.Phys.12,1377–1395(2012).110.Y.Sun,G.Zhuang,Y.Wang,L.Han,J.Guo,M.Dan,W.Zhang,Z.Wang,Z.Hao,Theair-borneparticulatepollutioninBeijing—Concentration,composition,distributionandsources.Atmos.Environ.38,5991–6004(2004).111.X.Gao,L.Yang,S.Cheng,R.Gao,Y.Zhou,L.Xue,Y.Shou,J.Wang,X.Wang,W.Nie,P.Xu,W.Wang,Semi-continuousmeasurementofwater-solubleionsinPM2.5inJinan,China:Temporalvariationsandsourceapportionments.Atmos.Environ.45,6048–6056(2011).112.M.-D.Chou,M.J.Suarez,C.-H.Ho,M.M.-H.Yan,K.-T.Lee,Parameterizationsforcloudoverlappingandshortwavesingle-scatteringpropertiesforuseingeneralcirculationandcloudensemblemodels.J.Climate11,202–214(1998).113.E.J.Mlawer,S.J.Taubman,P.D.Brown,M.J.Iacono,S.A.Clough,Radiativetransferforinhomogeneousatmospheres:RRTM,avalidatedcorrelated-kmodelforthelongwave.J.Geophys.Res.102,16663–16682(1997).114.A.Xiu,J.E.Pleim,Developmentofalandsurfacemodel.PartI:Applicationinamesoscalemeteorologicalmodel.J.Appl.Meteorol.40,192–209(2001).115.J.E.Pleim,Acombinedlocalandnonlocalclosuremodelfortheatmosphericboundarylayer.PartI:Modeldescriptionandtesting.J.Appl.Meteorol.Clim.46,1383–1395(2007).116.J.S.Kain,TheKain–Fritschconvectiveparameterization:Anupdate.J.Appl.Meteorol.43,170–181(2004).117.S.-Y.Hong,J.-O.J.Lim,TheWRFsingle-moment6-classmicrophysicsscheme(WSM6).J.KoreanMeteor.Soc.42,129–151(2006).118.T.Ibusuki,K.Takeuchi,Sulfurdioxideoxidationbyoxygencatalyzedbymixturesofmanganese(II)andiron(III)inaqueoussolutionsatenvironmentalreactionconditions.Atmos.Environ.21,1555–1560(1987).SCIENCEADVANCESRESEARCHARTICLEChengetal.Sci.Adv.2016;2:e160153021December201610of11119.P.Debye,E.Hückel,Theinterionicattractiontheoryofdeviationsfromidealbehaviorinsolution.Z.Phys.24,185(1923).120.P.Debye,W.McAuley,Theelectricfieldoftheionsandtheneutralsalteffect.PhysikZ26,22(1925).121.C.W.Davies,T.Shedlovsky,Ionassociation.J.Electrochem.Soc.111,85C–86C(1964).122.H.C.Helgeson,T.H.Brown,A.Nigrini,T.A.Jones,Calculationofmasstransferingeochemicalprocessesinvolvingaqueoussolutions.Geochim.Cosmochim.Acta34,569–592(1970).123.K.S.Pitzer,Electrolytetheory—ImprovementssinceDebyeandHueckel.Acc.Chem.Res.10,371–377(1977).124.K.S.Pitzer,ActivityCoefficientsinElectrolyteSolutions(CRCPress,1991).125.F.J.Millero,J.B.Hershey,G.Johnson,J.-Z.Zhang,ThesolubilityofSO2andthedissociationofH2SO3inNaClsolutions.J.Atmos.Chem.8,377–389(1989).126.C.Bretti,F.Crea,C.Foti,S.Sammartano,Solubilityandactivitycoefficientsofacidicandbasicnonelectrolytesinaqueoussaltsolutions.2.Solubilityandactivitycoefficientsofsuberic,azelaic,andsebacicacidsinNaCl(aq),(CH3)4NCl(aq),and(C2H5)4NI(aq)atdifferentionicstrengthsandatt=25°C.J.Chem.Eng.Data51,1660–1667(2006).127.C.Bretti,F.Crea,C.DeStefano,S.Sammartano,G.Vianelli,SomethermodynamicpropertiesofDL-tyrosineandDL-tryptophan.Effectoftheionicmedium,ionicstrengthandtemperatureonthesolubilityandacid–baseproperties.FluidPhaseEquilib.314,185–197(2012).128.A.J.Rusumdar,“Treatmentofnon-idealityinthemultiphasemodelSPACCIMandinvestigationofitsinfluenceontroposphericaqueousphasechemistry,”thesis,BrandenburgUniversityofTechnology,Cottbus,Germany(2013).AcknowledgmentsFunding:ThisstudywassupportedbytheMaxPlanckSociety(MPG),theNationalNaturalScienceFoundationofChina(21107061,21190054)andtheEUprojectBACCHUS(603445)andPEGASOS(265148).Y.C.thankstheMPGMinervaprogram.G.Z.thanksChineseScholarshipCouncilforfinancialsupportofherstudyattheMaxPlanckInstituteforChemistry.Authorcontributions:K.H.,Y.C.,andG.Z.proposedtheinitialidea.Y.C.andH.S.designedandledthestudy.G.Z.,Y.C.,andH.S.conductedthedataanalyses.C.W.,Q.M.,andB.Z.performedthemodelsimulation.Q.Z.andK.H.providedthefieldobservationandsupportedthemodelanalyses.Z.W.andM.G.supportedthemodelanalyses.Y.C.,H.S.,G.Z.,andU.P.interpretedthedata.Y.C.,H.S.,U.P.,G.Z.,andG.C.wrotethemanuscript,withinputsfromallcoauthors.Competinginterests:Theauthorsdeclarethattheyhavenocompetinginterests.Dataandmaterialsavailability:Alldataneededtoevaluatetheconclusionsinthepaperarepresentinthepaperand/ortheSupplementaryMaterials.Additionaldatarelatedtothispapermayberequestedfromtheauthors.Originalsubmission17December2015Transferredsubmission7July2016Accepted30November2016Published21December201610.1126/sciadv.1601530Citation:Y.Cheng,G.Zheng,C.Wei,Q.Mu,B.Zheng,Z.Wang,M.Gao,Q.Zhang,K.He,G.Carmichael,U.Pöschl,H.Su,ReactivenitrogenchemistryinaerosolwaterasasourceofsulfateduringhazeeventsinChina.Sci.Adv.2,e1601530(2016).SCIENCEADVANCESRESEARCHARTICLEChengetal.Sci.Adv.2016;2:e160153021December201611of11