Photoelectrocatalytic degradation of organic contaminants at Bi 2 O 3 TiO 2 nanotube array electrodeVIP专享VIP免费

Applied Surface Science 257 (2011) 4621–4624
Contents lists available at ScienceDirect
Applied Surface Science
journal homepage: www.elsevier.com/locate/apsusc
Photoelectrocatalytic degradation of organic contaminants at Bi2O3/TiO2
nanotube array electrode
Xu Zhao, Huijuan Liu, Jiuhui Qu
State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
article info
Article history:
Received 11 April 2010
Received in revised form
16 December 2010
Accepted 20 December 2010
Available online 24 December 2010
Keywords:
TiO2nanotube array
Bi2O3
Photoelectrocatalysis
Visible light
Photocatalyst
abstract
In the current work, TiO2nanotube array was prepared via electrochemical anode method. Then the Bi2O3
nanoparticles were deposited onto the TiO2nanotube array via dip-coating method from an amorphous
complex precursor. The crystal structures were characterized via X-ray diffraction analysis. Their sur-
face textures were observed via electron-scanning microscope. The prepared composite array electrode
exhibited high photoelectrocatalytic activities towards degrading organic contaminants under visible
light irradiation. High photoelectrocatalytic activities were also exhibited under UV light irradiation. The
catalytic mechanism was discussed based on the analysis of electrochemical and degradation kinetics
results. It is suggestedaP(Bi
2O3)–N (TiO2) junction was formed to increase the catalytic activates. The
stability of the electrode materials was confirmed finally.
© 2011 Elsevier B.V. All rights reserved.
1. Introduction
In recent years, highly ordered TiO2nanotube arrays prepared
by electrochemical anodization have attracted much attention due
to their unique architecture. A TiO2nanotube array can form a uni-
form TiO2film on a titanium substrate, which provides an ordered
structure and porous surface, without a decrease in geometric
thickness [1]. Such an infrastructure is especially favorable for mass
diffusion. Therefore, TiO2nanotube arrays show great potential for
practical environmental purification [2,3].
As a wide band gap semiconductor, TiO2need to be excited by
an ultraviolet light which is less than 5% of the solar irradiance
at the Earth’s surface. To prepare TiO2photocatalysts with visi-
ble light responsibility, several strategies have been adopted. One
of the approaches is coupling TiO2with other semiconductor with
appropriate band gaps. A large number of coupled polycrystalline or
colloidal semiconductor, in which the particles adhere to each other
in so-called sandwich structures or present a core–shell geome-
try, have been prepared such as SiO2–TiO2, CdS–TiO2, ZnO–TiO2,
SnO2–TiO2, NiO–Bi2O3, etc. Recently, several coupled systems such
as Bi2O3/SiTiO3[4–7] were reported to be efficient under visible
light irradiation. However, the photocatalytic mechanism for the
coupled system has not been systematically investigated, and no
clear evidence was provided for the complete decomposition of
organic pollutants under visible light.
Corresponding author. Tel.: +86 10 62849151; fax: +86 10 62923558.
E-mail address: jhqu@mail.rcees.ac.cn (J. Qu).
Bismuth oxide, Bi2O3, due to its high refractive index, dielectric
permittivity, marked photoconductivity and photoluminescence, is
used in a variety of areas, such as sensor technology, optical coat-
ings, and electrochromic materials. As a photocatalyst, Bi2O3is a
p-type semiconductor with conduction and valence band edges of
+0.33 and +3.13 V (vs. NHE), respectively [8]. Under visible light
irradiation, the photogenered electron and hole is able to oxidize
water. And, highly reactive species, such as O2•− and OH radicals
may be generated, which may act as initiators of oxidation reactions
[8–10].
In the present paper, we report a novel loading of Bi2O3
nanoparticles onto a TiO2electrode with a highly ordered verti-
cally oriented nanotube array prepared by anode oxidation. The
obtained results indicated that organic contaminants can be effi-
ciently degraded by the Bi2O3/TiO2nanotube array electrode under
UV and visible light irradiation. And, the composite electrode exhib-
ited higher catalytic activities towards the degradation of organic
contaminants than the individual Bi2O3or TiO2electrode did.
The enhanced mechanism was discussed. 2,4-Dichlorophenol, a
kind of typical refractory contaminants was used in the present
work.
2. Experimental
2.1. Preparation and characterization of Bi2O3/TiO2nanotube
array
All chemicals were analytical grade reagents and used without
further treatment. Electrolyte was freshly prepared from deionized
0169-4332/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.apsusc.2010.12.099
4622 X. Zhao et al. / Applied Surface Science 257 (2011) 4621–4624
Fig. 1. (a) The XRD patterns for TiO2(A) and Bi2O3/TiO2(B) nanotube composite array electrodes, (b) SEM analysis of TiO2(A) and Bi2O3/TiO2(B) nanotube composite array
electrodes.
water. After chemical polishing, titanium foil (thickness about
250 m, purity 99.4%, Beijing Cuibolin Non-Ferrous Technology
Developing Co., Ltd.) was subjected to potentiostatic anodization
in an electrochemical anodization cell with a platinum cathode
in a 0.5wt% HF+1M H
3PO4electrolyte at ambient temperature.
The potential of 20 V was applied for 30 min. Then the samples
were rinsed with deionized water and annealed at 450 C for 24 h.
Porous Bi2O3nanoparticles were deposited onto the TiO2nanotube
array from an amorphous heteronuclear complex via a dip-coating
method.
X-ray diffraction (XRD) of the composite electrodes was
recorded on a Scintag-XDS-2000 diffractometer with Cu Kradia-
tion. The morphology of the Bi2O3nanoparticles was characterized
by a JSM 6301 electron-scanning microscope (SEM). The photo-
electrochemical measure employed a basic electrochemical system
(Princeton Applied Research) connected with a counter-electrode
(Pt wire, 70 mm in length with a 0.4-mm diameter), a working elec-
trode (the hybrid electrode, active area of 11 cm2), and a reference
electrode (a saturated calomel electrode (SCE)). Na2SO4solution
(0.12 mg/L) was used as electrolyte solution.
2.2. Degradation experiments
Degradation experiments were performed in a cylindrical
quartz reactor. The reactor, which contained a 60 mL sample solu-
tion allowing 4.5 cm of the supported film electrode to be immersed
into the solution, was placed 3 cm in front of a 150 W Xe lamp pur-
chased from the German Osram. The intensity of light, as measured
by an irradiance meter (Instruments of Beijing Normal University)
was c.a. 25 mW/cm2at 4 cm into the reactor, the position where
the electrode was placed. The photoelectrocatalytic (PEC) reac-
tion employed a basic electrochemical system (Princeton Applied
Research) connected with a counter-electrode (Pt wire, 70 mm
in length with a 0.4-mm diameter), a working electrode (hybrid
electrode, active area of 10 cm2), and a reference electrode (a sat-
urated calomel electrode (SCE)). 0.1 M Na2SO4solution was used
as electrolyte solution. Initial concentration of the organic contam-
inants solution was 10 mg/L and was analyzed by reversed-phase
high performance liquid chromatogram (HPLC) with a Hitachi HPLC
apparatus (Diode Array Detector L-2450, Column Oven L-2300, and
Pump L-2130). All experiments were carried out at least in dupli-
cate. The reported values are within the experimental error of ±3%.
3. Results and discussion
3.1. Characterization of the composite film electrode
The XRD patterns revealed that all the undoped TiO2and
Bi2O3/TiO2samples displayed well-crystallized anatase phase after
being calcined at 773 K (Fig. 1(a)). The Bi-species are present in a
separated phase of Bi2O3. The peak at 27.42is identified as the
main peak of -Bi2O3with cubic phase. The typical SEM images
X. Zhao et al. / Applied Surface Science 257 (2011) 4621–4624 4623
140120100806040200
0
200
400
600
800
1000
Z''(ohm)
Z (ohm)
'
TiO2 electrode
dark
400 nm irradiation
Xe lamp irradiation
9008007006005004003002001000
0
100
200
300
400
500
600
700
800
900
Xe lamp
400 nm irradiation
-Z" (ohm)
Z (ohm)
'
Bi2O3/TiO2 electrode
dark
Fig. 2. Effects of applied bias potentials and light irradiation on EIS variation at TiO2
and Bi2O3/TiO2nanotube array electrodes (0.1 M Na2SO4).
of TiO2nanotube and Bi2O3/TiO2nanotube composite samples are
shown in Fig. 1(b). It is clear that TiO2nanotube is successfully fab-
ricated by anodic oxidation and most of the nanotubes are uniform
in size and highly oriented. Interestingly, tubular structures are still
in existence after Bi2O3deposition (Fig. 1(b)). However, the mor-
phology of composite nanotube composite is different from that of
TiO2nanotube. These Bi2O3nanoparticles are deposited on the top
of TiO2nanotube or entered into tube.
3.2. Photoelectrochemical properties
Electrochemical impedance spectroscopy (EIS) is an effective
tool for probing the features of surface-modified electrodes and
was further employed to analyze the semiconducting properties
of the Bi2O3/TiO2nanotube array electrodes. As shown in Fig. 2,
both samples show a pronounced arc (semicircle portion) at higher
frequencies in the EIS plane, whose diameter corresponds to the
electron-transfer resistance controlling the kinetics at the electrode
interface. Significant changes in the EIS spectra are observed for the
composite electrodes, following Bi2O3modification. In fact, depo-
sition of the Bi2O3nanoparticles on the TiO2nanotube electrode
results in a marked decrease of semicircle diameter, which justi-
fies an analogous decrease of the electron-transfer resistance and
relates directly to the accessibility of the underlying electrode or
the film permeability. In this case, the enhanced performance of
the composite TiO2nanotube electrode could originate from the
improvement of charge carrier separation.
1.51.20.90.60.30.0-0.3
0.0
0.1
0.2
0.3
0.4
Current density (mA/cm2)
Applied potential (V SCE)
400 nm irradiation dark
Xe lamp
TiO2
1.51.20.90.60.30.0-0.3
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
dark
400 nm irradiation
Current density (mA/cm2)
Applied bias potential (SCE)
Bi2O3/TiO2Xe lamp
Fig. 3. LSV analysis of TiO2and Bi2O3/TiO2nanotube array electrodes with and
without Xe lamp or visible light irradiation (> 400 nm) (0.1 M Na2SO4).
At the meantime, current response of TiO2and Bi2O3/TiO2
electrode with light irradiation and without light irradiation was
observed (Fig. 3). It can be observed that under Xe lamp irra-
diation, the TiO2and Bi2O3/TiO2electrodes exhibited enhanced
current response compared with that under dark condition. And,
it is observed that no photocurrent was observed under visible
light irradiation for TiO2electrode. By contrast, photocurrent was
observed for Bi2O3/TiO2electrode under visible light irradiation. It
is concluded that it is the Bi2O3nanoparticles that contribute to the
generation of photocurrent under visible light irradiation.
3.3. Degradation of organic contaminants
Under UV and visible light irradiation, degradations of tar-
get organic contaminants were performed in the processes of
individual electrolysis (1.5 V), individual photocatalysis, and photo-
electrocatalysis process. Under visible light irradiation, as shown in
Fig. 4(a), organic contaminants can be photocatalytically degraded
using the composite film electrode; it can also be degraded via the
electro-oxidation process at the bias potential of 1.5 V. Clearly, the
degradation rate of organic contaminants was the highest under the
PEC process with the same bias potential. Thus, it can be concluded
that a sort of synergetic effect occurs during the PEC process in the
degradation of organic contaminants. Additionally, no concentra-
tion variation was observed in the presence of the film electrode
without visible light irradiation. Thus, it was concluded that the
AppliedSurfaceScience257(2011)4621–4624ContentslistsavailableatScienceDirectAppliedSurfaceSciencejournalhomepage:www.elsevier.com/locate/apsuscPhotoelectrocatalyticdegradationoforganiccontaminantsatBi2O3/TiO2nanotubearrayelectrodeXuZhao,HuijuanLiu,JiuhuiQu∗StateKeyLaboratoryofEnvironmentalAquaticChemistry,ResearchCenterforEco-EnvironmentalSciences,ChineseAcademyofSciences,Beijing,100085,PRChinaarticleinfoArticlehistory:Received11April2010Receivedinrevisedform16December2010Accepted20December2010Availableonline24December2010Keywords:TiO2nanotubearrayBi2O3PhotoelectrocatalysisVisiblelightPhotocatalystabstractInthecurrentwork,TiO2nanotubearraywaspreparedviaelectrochemicalanodemethod.ThentheBi2O3nanoparticlesweredepositedontotheTiO2nanotubearrayviadip-coatingmethodfromanamorphouscomplexprecursor.ThecrystalstructureswerecharacterizedviaX-raydiffractionanalysis.Theirsur-facetextureswereobservedviaelectron-scanningmicroscope.Thepreparedcompositearrayelectrodeexhibitedhighphotoelectrocatalyticactivitiestowardsdegradingorganiccontaminantsundervisiblelightirradiation.HighphotoelectrocatalyticactivitieswerealsoexhibitedunderUVlightirradiation.Thecatalyticmechanismwasdiscussedbasedontheanalysisofelectrochemicalanddegradationkineticsresults.ItissuggestedaP(Bi2O3)–N(TiO2)junctionwasformedtoincreasethecatalyticactivates.Thestabilityoftheelectrodematerialswasconfirmedfinally.©2011ElsevierB.V.Allrightsreserved.1.IntroductionInrecentyears,highlyorderedTiO2nanotubearrayspreparedbyelectrochemicalanodizationhaveattractedmuchattentionduetotheiruniquearchitecture.ATiO2nanotubearraycanformauni-formTiO2filmonatitaniumsubstrate,whichprovidesanorderedstructureandporoussurface,withoutadecreaseingeometricthickness[1].Suchaninfrastructureisespeciallyfavorableformassdiffusion.Therefore,TiO2nanotubearraysshowgreatpotentialforpracticalenvironmentalpurification[2,3].Asawidebandgapsemiconductor,TiO2needtobeexcitedbyanultravioletlightwhichislessthan5%ofthesolarirradianceattheEarth’ssurface.ToprepareTiO2photocatalystswithvisi-blelightresponsibility,severalstrategieshavebeenadopted.OneoftheapproachesiscouplingTiO2withothersemiconductorwithappropriatebandgaps.Alargenumberofcoupledpolycrystallineorcolloidalsemiconductor,inwhichtheparticlesadheretoeachotherinso-calledsandwichstructuresorpresentacore–shellgeome-try,havebeenpreparedsuchasSiO2–TiO2,CdS–TiO2,ZnO–TiO2,SnO2–TiO2,NiO–Bi2O3,etc.Recently,severalcoupledsystemssuchasBi2O3/SiTiO3[4–7]werereportedtobeefficientundervisiblelightirradiation.However,thephotocatalyticmechanismforthecoupledsystemhasnotbeensystematicallyinvestigated,andnoclearevidencewasprovidedforthecompletedecompositionoforganicpollutantsundervisiblelight.∗Correspondingauthor.Tel.:+861062849151;fax:+861062923558.E-mailaddress:jhqu@mail.rcees.ac.cn(J.Qu).Bismuthoxide,Bi2O3,duetoitshighrefractiveindex,dielectricpermittivity,markedphotoconductivityandphotoluminescence,isusedinavarietyofareas,suchassensortechnology,opticalcoat-ings,andelectrochromicmaterials.Asaphotocatalyst,Bi2O3isap-typesemiconductorwithconductionandvalencebandedgesof+0.33and+3.13V(vs.NHE),respectively[8].Undervisiblelightirradiation,thephotogeneredelectronandholeisabletooxidizewater.And,highlyreactivespecies,suchasO2•−and•OHradicalsmaybegenerated,whichmayactasinitiatorsofoxidationreactions[8–10].Inthepresentpaper,wereportanovelloadingofBi2O3nanoparticlesontoaTiO2electrodewithahighlyorderedverti-callyorientednanotubearraypreparedbyanodeoxidation.Theobtainedresultsindicatedthatorganiccontaminantscanbeeffi-cientlydegradedbytheBi2O3/TiO2nanotubearrayelectrodeunderUVandvisiblelightirradiation.And,thecompositeelectrodeexhib-itedhighercatalyticactivitiestowardsthedegradationoforganiccontaminantsthantheindividualBi2O3orTiO2electrodedid.Theenhancedmechanismwasdiscussed.2,4-Dichlorophenol,akindoftypicalrefractorycontaminantswasusedinthepresentwork.2.Experimental2.1.PreparationandcharacterizationofBi2O3/TiO2nanotubearrayAllchemicalswereanalyticalgradereagentsandusedwithoutfurthertreatment.Electrolytewasfreshlypreparedfromdeionized0169-4332/$–seefrontmatter©2011ElsevierB.V.Allrightsreserved.doi:10.1016/j.apsusc.2010.12.0994622X.Zhaoetal./AppliedSurfaceScience257(2011)4621–4624Fig.1.(a)TheXRDpatternsforTiO2(A)andBi2O3/TiO2(B)nanotubecompositearrayelectrodes,(b)SEManalysisofTiO2(A)andBi2O3/TiO2(B)nanotubecompositearrayelectrodes.water.Afterchemicalpolishing,titaniumfoil(thicknessabout250␮m,purity99.4%,BeijingCuibolinNon-FerrousTechnologyDevelopingCo.,Ltd.)wassubjectedtopotentiostaticanodizationinanelectrochemicalanodizationcellwithaplatinumcathodeina0.5wt%HF+1MH3PO4electrolyteatambienttemperature.Thepotentialof20Vwasappliedfor30min.Thenthesampleswererinsedwithdeionizedwaterandannealedat450◦Cfor24h.PorousBi2O3nanoparticlesweredepositedontotheTiO2nanotubearrayfromanamorphousheteronuclearcomplexviaadip-coatingmethod.X-raydiffraction(XRD)ofthecompositeelectrodeswasrecordedonaScintag-XDS-2000diffractometerwithCuK␣radia-tion.ThemorphologyoftheBi2O3nanoparticleswascharacterizedbyaJSM6301electron-scanningmicroscope(SEM).Thephoto-electrochemicalmeasureemployedabasicelectrochemicalsystem(PrincetonAppliedResearch)connectedwithacounter-electrode(Ptwire,70mminlengthwitha0.4-mmdiameter),aworkingelec-trode(thehybridelectrode,activeareaof11cm2),andareferenceelectrode(asaturatedcalomelelectrode(SCE)).Na2SO4solution(0.12mg/L)wasusedaselectrolytesolution.2.2.DegradationexperimentsDegradationexperimentswereperformedinacylindricalquartzreactor.Thereactor,whichcontaineda60mLsamplesolu-tionallowing4.5cmofthesupportedfilmelectrodetobeimmersedintothesolution,wasplaced3cminfrontofa150WXelamppur-chasedfromtheGermanOsram.Theintensityoflight,asmeasuredbyanirradiancemeter(InstrumentsofBeijingNormalUniversity)wasc.a.25mW/cm2at4cmintothereactor,thepositionwheretheelectrodewasplaced.Thephotoelectrocatalytic(PEC)reac-tionemployedabasicelectrochemicalsystem(PrincetonAppliedResearch)connectedwithacounter-electrode(Ptwire,70mminlengthwitha0.4-mmdiameter),aworkingelectrode(hybridelectrode,activeareaof10cm2),andareferenceelectrode(asat-uratedcalomelelectrode(SCE)).0.1MNa2SO4solutionwasusedaselectrolytesolution.Initialconcentrationoftheorganiccontam-inantssolutionwas10mg/Landwasanalyzedbyreversed-phasehighperformanceliquidchromatogram(HPLC)withaHitachiHPLCapparatus(DiodeArrayDetectorL-2450,ColumnOvenL-2300,andPumpL-2130).Allexperimentswerecarriedoutatleastindupli-cate.Thereportedvaluesarewithintheexperimentalerrorof±3%.3.Resultsanddiscussion3.1.CharacterizationofthecompositefilmelectrodeTheXRDpatternsrevealedthatalltheundopedTiO2andBi2O3/TiO2samplesdisplayedwell-crystallizedanatasephaseafterbeingcalcinedat773K(Fig.1(a)).TheBi-speciesarepresentinaseparatedphaseofBi2O3.Thepeakat27.42◦isidentifiedasthemainpeakof␣-Bi2O3withcubicphase.ThetypicalSEMimagesX.Zhaoetal./AppliedSurfaceScience257(2011)4621–4624462314012010080604020002004006008001000Z''(ohm)Z(ohm)'TiO2electrodedark400nmirradiationXelampirradiation90080070060050040030020010000100200300400500600700800900Xelamp400nmirradiation-Z"(ohm)Z(ohm)'Bi2O3/TiO2electrodedarkFig.2.EffectsofappliedbiaspotentialsandlightirradiationonEISvariationatTiO2andBi2O3/TiO2nanotubearrayelectrodes(0.1MNa2SO4).ofTiO2nanotubeandBi2O3/TiO2nanotubecompositesamplesareshowninFig.1(b).ItisclearthatTiO2nanotubeissuccessfullyfab-ricatedbyanodicoxidationandmostofthenanotubesareuniforminsizeandhighlyoriented.Interestingly,tubularstructuresarestillinexistenceafterBi2O3deposition(Fig.1(b)).However,themor-phologyofcompositenanotubecompositeisdifferentfromthatofTiO2nanotube.TheseBi2O3nanoparticlesaredepositedonthetopofTiO2nanotubeorenteredintotube.3.2.PhotoelectrochemicalpropertiesElectrochemicalimpedancespectroscopy(EIS)isaneffectivetoolforprobingthefeaturesofsurface-modifiedelectrodesandwasfurtheremployedtoanalyzethesemiconductingpropertiesoftheBi2O3/TiO2nanotubearrayelectrodes.AsshowninFig.2,bothsamplesshowapronouncedarc(semicircleportion)athigherfrequenciesintheEISplane,whosediametercorrespondstotheelectron-transferresistancecontrollingthekineticsattheelectrodeinterface.SignificantchangesintheEISspectraareobservedforthecompositeelectrodes,followingBi2O3modification.Infact,depo-sitionoftheBi2O3nanoparticlesontheTiO2nanotubeelectroderesultsinamarkeddecreaseofsemicirclediameter,whichjusti-fiesananalogousdecreaseoftheelectron-transferresistanceandrelatesdirectlytotheaccessibilityoftheunderlyingelectrodeorthefilmpermeability.Inthiscase,theenhancedperformanceofthecompositeTiO2nanotubeelectrodecouldoriginatefromtheimprovementofchargecarrierseparation.1.51.20.90.60.30.0-0.30.00.10.20.30.4Currentdensity(mA/cm2)Appliedpotential(VSCE)400nmirradiationdarkXelampTiO21.51.20.90.60.30.0-0.30.000.020.040.060.080.100.120.14dark400nmirradiationCurrentdensity(mA/cm2)Appliedbiaspotential(SCE)Bi2O3/TiO2XelampFig.3.LSVanalysisofTiO2andBi2O3/TiO2nanotubearrayelectrodeswithandwithoutXelamporvisiblelightirradiation(>400nm)(0.1MNa2SO4).Atthemeantime,currentresponseofTiO2andBi2O3/TiO2electrodewithlightirradiationandwithoutlightirradiationwasobserved(Fig.3).ItcanbeobservedthatunderXelampirra-diation,theTiO2andBi2O3/TiO2electrodesexhibitedenhancedcurrentresponsecomparedwiththatunderdarkcondition.And,itisobservedthatnophotocurrentwasobservedundervisiblelightirradiationforTiO2electrode.Bycontrast,photocurrentwasobservedforBi2O3/TiO2electrodeundervisiblelightirradiation.ItisconcludedthatitistheBi2O3nanoparticlesthatcontributetothegenerationofphotocurrentundervisiblelightirradiation.3.3.DegradationoforganiccontaminantsUnderUVandvisiblelightirradiation,degradationsoftar-getorganiccontaminantswereperformedintheprocessesofindividualelectrolysis(1.5V),individualphotocatalysis,andphoto-electrocatalysisprocess.Undervisiblelightirradiation,asshowninFig.4(a),organiccontaminantscanbephotocatalyticallydegradedusingthecompositefilmelectrode;itcanalsobedegradedviatheelectro-oxidationprocessatthebiaspotentialof1.5V.Clearly,thedegradationrateoforganiccontaminantswasthehighestunderthePECprocesswiththesamebiaspotential.Thus,itcanbeconcludedthatasortofsynergeticeffectoccursduringthePECprocessinthedegradationoforganiccontaminants.Additionally,noconcentra-tionvariationwasobservedinthepresenceofthefilmelectrodewithoutvisiblelightirradiation.Thus,itwasconcludedthatthe4624X.Zhaoetal./AppliedSurfaceScience257(2011)4621–46242.52.01.51.00.50.0020406080100VisirradiationRemovalefficiency(100%)Time(hr)PECPCEC2.01.51.00.50.0020406080100Removalefficiency(100%)Time(hr)PECPCECUvirradiationFig.4.RemovalefficiencyoftargetpollutantsinPEC,PC,andECprocesseswithvisiblelightorUVlightirradiation.adsorptioneffectcanbeignoredwithinthereactionprocess.Sim-ilarresultswereobservedunderUVlightirradiation.AsshowninFig.4(b),thetargetcontaminantscanbedegradedviaphotocataly-sisprocessandelectrolysis,respectively.And,thedegradationrateoftargetcontaminantswaslargelyimprovedwithPECprocesswiththesamelightirradiationandappliedbiaspotential.3.4.MechanismanalysisIthasbeenreportedthattheTiO2isapotentialphotocatalystindecomposingorganiccontaminantsunderUVlightirradiation.Thus,itisconsideredthatTiO2worksasamainphotocatalystfortheBi2O3/TiO2,whiletheroleofBi2O3isasensitizerabsorbingvis-iblelight.ItisreportedthattheVBofBi2O3islowerby0.7VthanthatofTiO2[11].Undervisiblelightirradiation,theelectronsintheVBofBi2O3areexcitedtoitsCB.Therefore,theVBofBi2O3isren-deredpartiallyvacant,andtheelectronsintheVBofTiO2canbetransferredtothatofBi2O3.Asaresult,holesaregeneratedintheVBofTiO2.Theseaboveprocessesinitiatephotocatalyticoxidationreactions.Therefore,withtheirradiationofvisiblelight,thehetero-juctionsystemcaninduceefficientdegradationoforganics.Intheheterojunctionpreparedinthisstudy,theBi2O3andTiO2nanotubearetightlyboundeachotherinnanosizedlevel.Therefore,theholetransferthroughthejunctionwillbegreatlyefficient.Moreover,theTiO2workingasmainphotocatalystsisuncoatedcompletelybytheBi2O3nanoparticles.Thustheeffectivecatalyticsitesarenotscreenedbytheformationofheterojunctionstructure.AsthebandgapofBi2O3isca.2.85eV,itcanbeexcitedbylightwithwavelengthlessthan435nm.Duetothehighelectron–holerecombinationrateinBi2O3,thephotocatalyticactivityofBi2O3isverylow.BecausethevalencebandofBi2O3islowerthanthatoftitaniumoxide[12],theheterojunctionsformedinthecompositenanotubefilmwillpromotethephotogeneratedholesinBi2O3tobetransferredtotheupperlyingvalencebandsoftitaniumoxide.Thus,thephotocatalyticactivityofthecompositeelectrodewasenhanced.4.ConclusionsTheBi2O3.nanoparticleswaspartlydepositedontoself-organizedTiO2nanotubearraysfromamorphouscomplexviadip-coatingmethod.Ithasbeendemonstratedthesurfacefunc-tionalizationbycoatedBi2O3nanoparticles,providingacompositeverticallyorientednanostructureandexhibitedhighphoto-electrocatalyticactivitiestowardsthedegradationoforganiccontaminantsunderUVandvisiblelightirradiation.AcknowledgmentsThisworkwassupportedbytheNationalNaturalScienceFoun-dationofChina(No.20977103,20837001).References[1]D.Wang,Y.Liu,B.Yu,F.Zhou,W.M.Liu,Chem.Mater.21(2009)1198–1206.[2]Y.S.Chen,J.C.Crittenden,S.Hackney,L.Sutter,D.W.Hand,Environ.Sci.Technol.39(2005)1201–1208.[3]Y.Hou,X.Y.Li,X.J.Zou,X.Quan,G.H.Chen,Environ.Sci.Technol.43(2009)858–863.[4]H.Zhang,S.Ouyang,Z.Li,L.Liu,T.Yu,J.Ye,Z.Zou,J.Phys.Chem.Solids67(2006)2501.[5]Y.Bessekhouad,D.Robert,J.-V.Weber,Catal.Today101(2005)315.[6]A.Hameed,V.Gombac,T.Montini,L.Felisari,P.Fornasiero,Chem.Phys.Lett.483(2009)254–261.[7]A.Hameed,V.Gombac,T.Montini,M.Graziani,P.Fornasiero,Chem.Phys.Lett.472(2009)212–216.[8]S.Y.Chai,Y.J.Kim,M.H.Jung,A.K.Chakrabory,D.Jung,I.W.Lee,J.Catal.262(2009)144–149.[9]A.Hameed,T.Montini,V.Gombac,P.Fornasiero,J.Am.Chem.Soc.130(2008)9658–9659.[10]L.F.Yin,J.F.Niu,Z.Y.Shen,J.Chen,Environ.Sci.Technol.44(2010)5581–5586.[11]Y.H.Ao,J.J.Xu,D.G.Fu,C.W.Yuan,Appl.Surf.Sci.118(2009)382–386.[12]T.P.Gujar,V.R.Shinde,C.D.Lokhande,Mater.Res.Bull.4(2006)1558–1564.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱