Atmosphere2015,6,164-182;doi:10.3390/atmos6020164atmosphereISSN2073-4433www.mdpi.com/journal/atmosphereArticlePM2.5ChemicalCompositionsandAerosolOpticalPropertiesinBeijingduringtheLateFallHuanboWang1,XinghuaLi2,GuangmingShi1,JunjiCao3,ChengcaiLi4,FumoYang1,,YongliangMa5andKebinHe51KeyLaboratoryofReservoirAquaticEnvironmentofCAS,ChongqingInstituteofGreenandIntelligentTechnology,ChineseAcademyofSciences,Chongqing400714,China;E-Mails:hbwang@cigit.ac.cn(H.W.);shigm@cigit.ac.cn(G.S.)2SchoolofChemistryandEnvironment,BeihangUniversity,Beijing100191,China;E-Mail:lixinghua@buaa.edu.cn3KeyLabofAerosolChemistry&Physics,InstituteofEarthEnvironment,ChineseAcademyofSciences,Xi’an710075,China;E-Mail:cao@loess.llqg.ac.cn4SchoolofPhysics,PekingUniversity,Beijing100871,China;E-Mail:ccli@pku.edu.cn5StateEnvironmentalProtectionKeyLaboratoryofSourcesandControlofAirPollutionComplex,SchoolofEnvironment,TsinghuaUniversity,Beijing100084,China;E-Mails:liang@tsinghua.edu.cn(Y.M.);hekb@tsinghua.edu.cn(K.H.)Authortowhomcorrespondenceshouldbeaddressed;E-Mail:fmyang@cigit.ac.cn;Tel.:+86-23-6593-5921.AcademicEditors:Ru-JinHuangandRobertW.TalbotReceived:21November2014/Accepted:7January2015/Published:26January2015Abstract:DailyPM2.5massconcentrationsandchemicalcompositionstogetherwiththeaerosolopticalpropertiesweremeasuredfrom8–28November2011inBeijing.PM2.5massconcentrationvariedfrom15.6–237.5μg·m−3andshowedameanvalueof111.2±73.4μg·m−3.Organicmatter,NH4NO3and(NH4)2SO4werethemajorconstituentsofPM2.5,accountingfor39.4%,15.4%,and14.9%ofthetotalmass,respectively,whilefinesoil,chloridesalt,andelementalcarbontogetheraccountedfor27.7%.Dailyscatteringandabsorptioncoefficients(σscandσap)wereintherangeof31.1–667Mm−1and8.24–158.0Mm−1,withmeanvaluesof270±200Mm−1and74.3±43.4Mm−1.Significantincreasesinσscandσapwereobservedduringthepollutionaccumulationepisodes.TherevisedIMPROVEalgorithmwasappliedtoestimatetheextinctioncoefficient(bext).Onaverage,organicmatterwasthelargestcontributor,accountingforOPENACCESSAtmosphere2015,616544.6%ofbext,while(NH4)2SO4,NH4NO3,elementalcarbon,andfinesoilaccountedfor16.3%18.0%,18.6%,and2.34%ofbext,respectively.Nevertheless,thecontributionsof(NH4)2SO4andNH4NO3weresignificantlyhigherduringtheheavypollutionperiodsthanthoseoncleandays.Typicalpollutionepisodeswerealsoexplored,andithasbeencharacterizedthatsecondaryformationofinorganiccompoundsismoreimportantthancarbonaceouspollutionforvisibilityimpairmentinBeijing.Keywords:PM2.5;visibility;aerosolopticalproperties;chemicalcomposition1.IntroductionTheatmosphericvisibilityinChinahasbeendeterioratingwitheconomicgrowthduringthepast40years[1,2].Visibilityimpairmentisresultedfromlightscatteringandabsorptionbyatmosphericparticlesandgases,especiallyfromthescatteringbytheparticlesofsimilarsizerangeasthewavelengthrangeofvisiblelight.Numerousstudieshaveindicatedthatthefineparticlescausedmostofthevisibilityimpairment,whiletheinfluenceofgasandcoarseparticlesonvisibilitydegradationwascommonlyweak[3,4].Moreover,meteorologicalparameters,suchaswind,rain,andtemperature,especiallytherelativehumidity,havetheircontributionsaswell[5].Additionally,atmosphericparticleshavesignificantimpactsonclimatechange,whichisoneofthegreatestsourcesofuncertaintyinestimatingthedirectradiativeforcing[6,7].Generally,inorganicandorganicaerosolshaveacoolingeffectonclimatebyscatteringlight,whileblackcarbon(BC)hasawarmingeffectbyabsorbinglight.Previousstudiesusuallydeterminedthechemicalcompositionsandopticalpropertiesofatmosphericaerosolsseparately[8–10].Yangetal.[11]comparedthecharacteristicsofPM2.5inrepresentativemegacitiesofChina.Resultsshowedthatfivemajorspeciesincludingorganiccarbon(OC),elementalcarbon(EC),SO42−,NO3−,andNH4+amountedto54%–59%ofPM2.5massinBeijing,ChongqingandGuangzhou,andthepercentagesoftotalcarbonandsecondaryinorganicionswereveryclose,implyingthatbothprimaryandsecondaryparticleshadasignificantcontributiontothePM2.5mass.Recently,Zhangetal.[12]indicatedthatsecondaryinorganicaerosols,mineraldustandorganicmatter(OM)eachaccountedforabout20%ofPM2.5inBeijing,respectively,suggestingbothprimaryandsecondarycomponentsofPM2.5inBeijingwereequallyimportant.Theparametersoflightextinction(bext)canbemeasureddirectlyusingopticalinstrumentssuchasanintegratingnephelometerforthelightscatteringcoefficient(σsc),oranaethalometerfortheabsorptioncoefficients(σap).OpticalpropertiesofPM2.5havebeenconductedinBeijing,Shanghai,andGuangzhou[13–17].Inrecentyears,afewstudieshavefocusedontherelationshipbetweenthechemicalcompositionsandopticalpropertiesofaerosols[18,19].ResultsshowedthatNH4+,SO42−,NO3−,andOCarethemaincontributorstoaerosolscattering,andthelightabsorptioncoefficientshadstronglinearcorrelationswithECinShanghai.Furthermore,asanalternativemethod,theInteragencyMonitoringofProtectedVisualEnvironments(IMPROVE)formulacouldbeusedtoestimatebextbasedonthechemicalcompositionsofparticulatematter(PM).TheoriginalandrevisedIMPROVEalgorithmsforestimatingbextweredevelopedfromtheparticledataat21rural/remotesiteswithlowscatteringcoefficients.Furthermore,theIMPROVEformulausuallyassumesexternallymixedstatusAtmosphere2015,6166ofPMandfixedmassextinctionefficiencyforeachspecies[20].However,theactualmassabsorptionefficiency(MAE)andmassscatteringefficiency(MSE)werenotconstantduetolargetemporalandspatialvariationsofchemicalcompositionsofPM.Thus,itisnecessarytoevaluatetheapplicabilityoftheIMPROVEformulatothecalculationofbextinmorepollutedurbanBeijinginChina.Inthepresentstudy,aerosolopticalpropertiesincludingσscandσap,aswellasthechemicalcompositionsofPM2.5weremeasuredinBeijingduringthelatefallof2011.TheapplicabilityoftheIMPROVEformulatothecalculationofbextwasthenevaluated,andthecontributionofPM2.5chemicalcompositionstovisibilityimpairmentwasdiscussed.Inaddition,theformationmechanismsoftypicalpollutionepisodesduringthelatefallwerealsoexplored.2.ExperimentalSection2.1.SamplingSampleswerecollectedfrom8–28November2011atthecampusofTsinghuaUniversity(39°98ʹN,116°32ʹE)inurbanBeijing,about600mnorthoftheFourthRingRoad.Thecampusismainlysurroundedbyresidentialareaswithoutsignificantfactoryemissions.BeijingisconnectedtotheindustrializedcitiesoftheGreatNorthChinaPlainintheSouth,andsurroundedbytheYanshanMountainsinthewest,north,andnortheast.Daily23hintegratedPM2.5sampleswerecollectedusingafive-channelSpiralAmbientSpeciationSampler(SASS,MetOneInc.,GrantsPass,OR,USA)withaflowrateof6.7L·min−1.ThefirstchannelwasusedforPM2.5massandelementalanalysiswitha47mmTeflonfilter.Thesecondchannelcollectedtheparticlesfortheanalysisofwater-solubleinorganicionswitha47mmTeflonfilter.ThethirdchannelwasusedtocollectPM2.5onquartzfiltersfororganicandelementalcarbonanalysis.2.2.GravimetricandChemicalAnalysisThePM2.5massconcentrationsweredeterminedusinganelectronicbalancewithadetectionlimitof1µg(Sartorius,Göttingen,Germany)afterstabilizingataconstanttemperature(22±5°C)andrelativehumidity(40%±5%)for24h.Fouranions(SO42−,NO3−,Cl−,andF−)andfivecations(Na+,NH4+,K+,Mg2+,andCa2+)weredeterminedinaqueousextractsofthefiltersbyIonchromatography(ICS-1000andICS-2000foranionandcation,respectively,Dionex,Sunnyvale,CA,USA).Toextractthewater-solubleionsfromtheTeflonfilters,eachsamplewasextractedtwicewith7.5mlMilli-Qwaterviaanultrasonicbathfor20min,andthenfilteredthrougha0.45μmPTFEsyringefilterandstoredinarefrigeratorat4°Cuntilanalysis.A0.5cm2punchfromeachquartzfilterwasanalyzedforOCandECusingaDRIModel2001Thermal/OpticalCarbonAnalyzer(AtmoslyticInc.,Calabasas,CA,USA),followingtheIMPROVEthermalopticalreflectance(TOR)protocol[21].CrustalelementsincludingAl,Si,Ca,Fe,andTiwereanalyzedbyEnergyDispersiveX-rayfluorescencespectrometry(Epsilon5ED-XRF,PANalyticalCompany,Almelo,TheNetherlands)onTeflonfilters.Qualityassurance/QualityControl(QA/QC)proceduresoftheXRFanalysisprocedureweredescribedbyXuetal.[22].Atmosphere2015,61672.3.QualityControlThefreshquartzfilterswerepre-heatedat450°Cinamufflefurnacefor6htoremoveanyvolatilecomponentsbeforesampling.Furthermore,aftercollection,thesamplesweresealedincleanplasticbags,andwerestoredinafreezerat−18°Cbeforechemicalanalysistominimizetheevaporationofvolatilecomponents.Beforeandaftersampling,theTeflonfiltersinthefirstchannelwereweighedafterbeingequilibratedfor24h.Theartifactsduringthesamplingandanalysiswereestimatedbyafieldblankfilter.2.4.MeasurementsofAerosolOpticalandMeteorologicalParametersBCmassconcentration,σscandmeteorologicaldataweremeasuredontheroofofthePhysicsBuildingabout30mabovethegroundinPekingUniversity,whichisabout1kmawayfromthesamplingsitesofTsinghuaUniversity.Anautomaticweatherstation(VaisalaLtd.,Helsinki,Finland)wasusedtorecordwindspeed(WS),winddirection,relativehumidity(RH),temperature(Temp),andvisibility(VR).σscwasmonitoredusingasinglewavelength(525nm)integratingNephelometer(M9003,Ecotech,Melbourne,VIC,Australia).ThisinstrumentdrewambientairthroughaheatedinlettubetomaintainRHintheNephelometerchamberbelow60%.Thescatteringintensityoveranglesfrom7°to170°wasmeasuredandintegratedtoyieldthescatteringcoefficient.Zerocalibrationwasperformedeverytwodayswithparticle-freeairtosubtracttheRayleighscattering,whilespancalibrationwascarriedouteverymonthusingR-134gas.BCmassconcentrationwasmeasuredwithanAethalometer(AE-16,MageeScientific,Berkeley,CA,USA).TheprincipleofthisinstrumenttocalculatetheBCconcentrationisbasedontheattenuationofanincidentbeamatawavelengthof800nmcausedbytheparticlesloadedinthequartzfilter.Nosize-selectiveinletwasusedforboththenephelometerandaethalometer.Consideringthenegligiblecontributionofcoarseparticlestolightextinction,themeasuredσsccanbeapproximatelyattributedtothePM2.5.2.5.DataAnalysis2.5.1.ReconstructionofPM2.5MassPM2.5componentscanbegroupedasfollows:secondaryinorganicaerosols(SNA),OM,EC,finesoil(FS),andchloridesalt(CS).SNAisthesumofSO42−,NO3−,andNH4+,andOMisderivedfrommultiplyingOCconcentrationsbyafactorof1.6toaccountforunmeasuredatomsaccordingtoXingetal.[23],whichdemonstratedthatthecalculatedOM/OCmassratioinsummerwasrelativelyhigh(1.75±0.13)andinwinterwaslower(1.59±0.18)inPM2.5collectedfrom14Chinesecities.Beijingisfarfromthecoastaloceans,andseasaltisnottransportedtoBeijing,thusithasaminorcontributiontoPM2.5inBeijing.TheCSwasconsideredinsteadofseasalt,andestimatedbysummingconcentrationsofCl−,K+,andNa+accordingtoZhangetal.[12].TheconcentrationsofFSareoftenestimatedbyassumingtheoxidesoftheelementsmainlyassociatedwithsoil(Al2O3,SiO2,K2O,CaO,FeO,Fe2O3,andTiO2),whichiscalculatedasfollows[24]:Atmosphere2015,6168[FS]=2.20[Al]+2.49[Si]+1.63[Ca]+2.42[Fe]+1.94[Ti](1)2.5.2.ReconstructionoftheLightExtinctionCoefficientAccordingtotherevisedIMPROVEalgorithm,thereconstructedbextisshownfromthefollowingequationassuminganexternallymixedaerosol[20]:ScatteringRayleighppbNOPMSaltSeaRHfSoilFineECeOMLSmallOMNOeNHLRHfNOSmallNHRHfSONHeLRHfSONHSmallRHfbbbbbssLsLssgagapspext+×+×+××+×+×+×+×+××+××+××+××≈+++=)]([33.0][6.0][)(7.1][1][10]arg[1.6][8.2]arg[)(1.5][)(4.2])(arg[)(8.4])([)(2.2210~5.23434424424(2)ThealgorithmdividestheconcentrationsofSO42−,NO3−,andOMintosmallandlarge-sizedfractions.Thesizemodesaredescribedbylog-normalmasssizedistributionswithgeometricmeandiameterandgeometricstandarddeviations.Thefractionofacomponentinthelarge-orsmall-sizedmodewasestimatedbyanempiricalapproach[20].Theapportionmentofthetotalconcentrationsof(NH4)2SO4intotheconcentrationsofthesmallandlargesizefractioninPM2.5isaccomplishedusingthefollowingequations:34244244244243[()][arg()][()],[()]20.20.TotalNHSOLeNHSOTotalNHSOforTotalNHSOgmgmμμ−−=×<(3)3424424424.20])([],)([])(arg[−>=mgSONHTotalforSONHTotalSONHeLμ(4)])(arg[])([])([424424424SONHeLSONHTotalSONHSmall−=(5)SimilarequationsareusedtoapportiontotalNH4NO3andtotalOMconcentrationsintosmallandlargesizefractions.Thewatergrowthadjustmenttermfs(RH),fL(RH)forsmallandlargesizedistributionof(NH4)2SO4andNH4NO3,andfss(RH)forseasaltareusedaccordingtothewatergrowthcurvesprovidedbyPitchfordetal.[20].AccordingtotherevisedIMPROVEmethod,SO42−andNO3−areassumedtobefullyneutralizedbyNH4+intheformsof(NH4)2SO4andNH4NO3,respectively.Therefore,(NH4)2SO4massisestimatedbytheSO42−massmultipliedbyafactorof1.38,andtheNH4NO3massisestimatedbytheNO3−massmultipliedbyafactorof1.29.InordertocomparewiththereconstructedbextcalculatedusingMietheoryat550nm,σscmeasuredat525nmwiththeintegratingnephelometershouldbeconvertedtothatat550nmaccordingtothemethodbyJungetal.[16].αλλσσ−=)525()550()525()550(nmnmnmnmscsc(6)whereαisthescatteringAngströmexponent,anaverageαvalueof1.18determinedinBeijingduringthesummerof2012byTianetal.[18]wasusedinthepresentstudy.σabat550nmwascalculatedbasedonBCconcentrationfollowingtheequation:Atmosphere2015,6169σab=K×[BC](7)whereKistheconversionfactor,whichwassetto8.1m2·g−1inthisstudyaccordingtoapreviousstudy[25].Thesinglescatteringalbedo(SSA)isdefinedastheratiooftheaerosolscatteringcoefficienttotheextinctioncoefficientataknownwavelength,asderivedfromtheformula:abscscSSAσσσ+=(8)3.ResultsandDiscussion3.1.PM2.5ChemicalCompositionsThetimeseriesofdailyPM2.5massconcentrationsandthemeteorologicalparameters,includingRH,temperature,andWSareshowninFigure1.ThemassconcentrationsofPM2.5rangedfrom15.6–237.5μg·m−3andaveraged111.2±73.4μg·m−3.ComparedwithotherstudiesconductedinurbanBeijing,theaveragePM2.5concentrationinthisstudywaslowerthanthatmeasuredduringautumnof2006(194.2μg·m−3)[26]and2009(135μg·m−3)[12],whilecomparablewiththatobservedduringthesameseasonin2005(115.0μg·m−3)and2012(106.9μg·m−3)[27].ThereweresixtypercentofdayswithdailyPM2.5massconcentrationexceedingtheChinaAmbientAirQualityStandards(75μg·m−3).ThehighestPM2.5massconcentrationoccurredon26November,whichwasassociatedwiththehighrelativehumidityandlowwindspeed.01530456075900123456RH(%),Temp(oC)TempRHWS(ms-1)WS2011-11-92011-11-112011-11-132011-11-152011-11-172011-11-192011-11-212011-11-232011-11-252011-11-2703060901201501802102400510152025303540PM2.5PM2.5concentration(μgm-3)VRVR(km-1)01530456075900123456RH(%),Temp(oC)TempRHWS(ms-1)WS2011-11-92011-11-112011-11-132011-11-152011-11-172011-11-192011-11-212011-11-232011-11-252011-11-2703060901201501802102400510152025303540PM2.5PM2.5concentration(μgm-3)VRVR(km-1)Figure1.DailyvariationsofPM2.5massconcentrationandmeteorologicalparameters.Atmosphere2015,6170Thetemporalvariationsofninewater-solubleinorganicions(WSIIs)arepresentedinFigure2.Theaverageconcentrationoftotalnineionswas46.9±33.8μg·m−3,accountingfor41.5%ofPM2.5massconcentration.NO3−wasthemostabundantspeciesinWSIIswithanaverageconcentrationof14.7±11.2μg·m−3,followedbySO42−(12.2±9.63μg·m−3),NH4+(9.13±7.26μg·m−3),andCl−(6.62±4.62μg·m−3),accountingfor28.9%,25.6%,17.7%,and14.6%ofWSIIs,respectively.TherestofK+(1.66±1.41μg·m−3),Na+(0.95±0.52μg·m−3),Ca2+(0.81±0.32μg·m−3),F−(0.61±0.34μg·m−3),andMg2+(0.25±0.18μg·m−3)eachhadaminorcontributiontotheWSIIs,totallyaccountingfor13.2%ofWSIIs.SNAtypicallyconstituted33.5%–87.1%ofthetotalWSIIsand15.3%–46.0%ofPM2.5,respectively.0.00.30.60.91.21.51.82.12.42011-11-92011-11-112011-11-132011-11-152011-11-172011-11-192011-11-212011-11-232011-11-252011-11-27020406080100120Concentration(μgm-3)NH4+Ca2+Mg2+k+Na+Cl-F-NO3-SO42-[NO3-]/[SO42-]Figure2.Dailyvariationsofwater-solubleionsand[NO3−]/[SO42−]ratios.NO3−andSO42−aremainlyformedbyatmosphericreactionsofprecursorgasessuchasNOxandSO2.Generally,SO2emitsfromcoalcombustion,whileNOxistheresultofanytypeofcombustionsuchascoal-firedpowerplantsandautomobiles.Themassratio[NO3−]/[SO42−]hasbeenusedtoidentifytheinfluenceofthestationaryandmobilesourcesofsulfurandnitrogen[28].The[NO3−]/[SO42−]ratiorangedfrom0.41–2.42,withanaveragevalueof1.19.Itwashigherthanthatofvalues(around0.68)measuredinBeijingfrom2001–2006[26,29–31],butrathermorecomparabletothoseobservedinrecentyears[12].AsillustratedinFigure2,theratiowasusuallylowerduringweekenddays(12,18–19November)thanonworkdays,indicatingthatthehigher[NO3−]/[SO42−]ratiointhepresentstudywasprobablyassociatedwiththerapidincreaseofmotorvehiclesinrecentyears.AccordingtothestatisticsfromtheChinaVehicleEmissionControlAnnualReportin2013,theamountofvehiclesreached5millioninBeijingby2012,whichwasanincreaseofaboutthreetimescomparedwiththeamountofvehiclesin2001[32].PreviousstudyshowedthatCl−mightbederivedfromcoalcombustionwhentheCl−/Na+equivalentconcentrationratioswerelargerthanthemeanratio(1.17)forseawater.TheratiosofCl−/Na+wereintherangeof1.6–11.6withameanvalueof6.63duringthestudyperiod,implyingthatCl−maybeoriginatedfromcoalcombustionratherthanseaspray[12].Theequivalentmolarratiooftotalcationstototalanions(CE/AE)rangedfrom0.71–1.40,withanaveragevalueof0.95±0.14duringthestudyperiod.Figure3illustratesthescatterplotsofthesumofcationsversusanions.Resultsshowedthattheslopewasslightlylowerthan1,implyingthatthefineparticlescollectedinthestudyperiodwereweaklyacidic.Moreover,theratiosof[NH4+]/[SO42−+NO3−]Atmosphere2015,6171werecloseto1,demonstratingthatSO42−andNO3−werefullyneutralizedbyNH3.Therefore,thedominantchemicalformofSO42−was(NH4)2SO4ratherthanNH4HSO4,whichcanbeestimatedbytheSO42−massconcentrationmultipliedbyafactorof1.38,whileNO3−existedasNH4NO3,andcanbeestimatedbytheNO3−massconcentrationmultipliedbyafactorof1.29.0.00.20.40.60.81.01.21.41.61.80.00.20.40.60.81.01.21.41.61.8y=0.91x;R=0.991CE(μeqm-3)AE(μeqm-3)(a)0.00.20.40.60.81.01.21.40.00.20.40.60.81.01.21.4(b)NH4+(μeqm-3)SO42-+NO3-(μeqm-3)y=1.04x;R=0.981Figure3.Relationshipsofequivalentconcentrationsofcationsversusanions(a)and[NH4+]versus[SO42−+NO3−](b).AsillustratedinFigure4,OCvariedfrom2.1to64.3μg·m−3,averaging27.5±19.9μg·m−3,whileECrangedfrom0.86to19.6μg·m−3,averaging9.62±6.24μg·m−3.ThecontributionofOCandECtoPM2.5were24.5%and8.96%,respectively.SuchlevelsofOCandECwereclosetothoseobservedinthesameseasoninrecentyears[10,26,30,33],whereaslowerthanthosemeasuredtenyearsago[29,34].2011-11-92011-11-112011-11-132011-11-152011-11-172011-11-192011-11-212011-11-232011-11-252011-11-270102030405060700.00.51.01.52.02.53.03.54.0OC/ECConcentration(μgm-3)OCECOC/EC(a)2011-11-92011-11-112011-11-132011-11-152011-11-172011-11-192011-11-212011-11-232011-11-252011-11-2701020304050607001020304050SOC/OC(%)Concentration(μgm-3)POCSOCSOC/OC(b)Figure4.VariationsofOC,EC,andOC/EC(a)aswellasprimaryorganiccarbon(POC),secondaryorganiccarbon(SOC),andSOC/OC(b).TherelationshipsbetweenOCandECcanbeusedtoidentifytheoriginsofcarbonaceousparticles[35,36].AsshowninFigure5,strongcorrelationsbetweenOCandECwereobservedwithacorrelationcoefficientof0.97,indicatingthatOCandECwerelikelyderivedfromthesamemajorprimarysourcesduringthecampaigns.Ontheotherhand,theOC/ECratiosdidnotvarydistinctlyduringthestudyperiod,especiallyduringthespaceheatingdays.Theratiosrangedfrom1.96–3.52,averaging2.79,andwereveryclosetothevalueof2.7fromcoalcombustionsuggestedbyAtmosphere2015,6172Watsonetal.[37].ThispointedtothefactthatOCandEClikelyoriginatedmainlyfromcoalcombustions.Furthermore,themeanOC/ECratiowashigherthan2,indicatingthatSOCmightbepresentduringthestudyperiod[38].03691215182101020304050607080OCconcentrations(μgm-3)ECconcentrations(μgm-3)y=2.88xR=0.97Figure5.RelationshipsofOCandECconcentrations.ThemethodofEC-tracerhasbeenwidelyusedtoestimatetheSOCconcentrationsinceitwasfirstintroducedbyCastroetal.[9,39].ThisapproachsuggestedthatsampleshavingthelowestOC/ECratiocontainedalmostexclusivelyPOC.Then,theconcentrationofSOCcanbeestimatedbythefollowingformula:POC=EC×(OC/EC)min(9)SOC=OC–POC(10)where(OC/EC)minwasthevalueofthelowestOC/ECratio.Basedonthe(OC/EC)minof1.63,theSOCconcentrationsvariedfrom0.02–25.9μg·m−3withanaveragevalueof9.03μg·m−3.AsillustratedinFigure4,itisinterestingtonotethattheconcentrationsofSOCwerestillhighwithlowtemperatureduringthestudyperiodexcepton10,12and22November.Thismaybecausedbythecombinationofthehighprecursoremissionduetothelargelyincreasedcoalcombustionforresidentialheatingandlowwindspeed(averaging0.79m·s−1),whichwasfavorableforthepollutantsaccumulationandformationofsecondaryorganicaerosol.Thelowtemperaturewasnotfavorableforthegastoparticleconversion,whereasthefrequentinversionconditionswerelikelyfavorablefortheformationofSOC[40].DailyvariationsofcrustalelementsareshowninFigure6.FivecrustalelementshaveasimilarvariationasthePM2.5massconcentrations.Theirconcentrationsvariedsignificantlyfromdaytoday.TheaverageconcentrationforAl,Si,Ca,Fe,andTiwas0.51±0.26,1.01±0.58,0.74±0.36,1.10±0.64,and0.06±0.03μg·m−3,respectively.Increasingwindspeedcouldbeexpectedtoincreasetheconcentrationsofcrustalelements,buttheconcentrationofthefiveelementshadaweakcorrelationwiththewindspeed(R<0.4)inthepresentstudy.However,whenthewindspeedexceeded1.5m·s−1(11and18November),theconcentrationsofcrustalelementswerehigherthanthoseonanyotherday.TheFSmassconcentrationwasestimatedbysummingtheabovefivecrustalelementsplusoxygenforAtmosphere2015,6173thenormaloxidesasEquation(1).TheaveragemassconcentrationsofFSwere7.66±3.62μg·m−3,rangingfrom1.99–15.1μg·m−3,andaccountingfor9.42%ofPM2.5.2011-11-92011-11-112011-11-132011-11-152011-11-172011-11-192011-11-212011-11-232011-11-252011-11-270.00.30.60.91.21.51.82.12.42.73.0AlSiCaFeTiElementconcentration(μgm-3)Figure6.Timeseriesofcrustalelementsconcentration.3.2.PM2.5MassBalanceThereconstructedPM2.5massconcentrationswereclosetothemeasuredoneswithstrongcorrelation(Figure7),indicatingthatthereconstructionofPM2.5couldbereasonable.Nevertheless,afewbiaseswereobservedinthereconstructedPM2.5mass.Waterabsorptionofthewater-solublecomponentsmayleadtopositivebiasesandoverestimatethePM2.5mass,whilethevolatilizationofNH4NO3andvolatileorganicmattermayresultinnegativebiases.Moreover,theconversionusedtoestimateOMfromOCalsocausedanuncertaintyincalculatingthePM2.5mass.050100150200250300050100150200250300ReconstructedPM2.5(μgm-3)MeasuredPM2.5(μgm-3)y=0.97xR=0.9971:1lineFigure7.ScatterplotsofmeasuredandreconstructedPM2.5massconcentrations.Figure8presentsthereconstructedchemicalcompositionsinPM2.5.Onaverage,thefractionsofmajorchemicalcompositionsfollowedtheorderofOM>NH4NO3>(NH4)2SO4>FS,CS,andEC.OMwasthemostabundantcomponentinPM2.5(averaging45.8±31.7μg·m−3),accountingfor39.4%Atmosphere2015,6174ofPM2.5.ThecontributionofFS(averaging7.66±3.62μg·m−3),CS(averaging9.47±6.24μg·m−3),andEC(averaging9.97±6.28μg·m−3)toPM2.5wassimilar,eachapproximatedto9%.ThepercentageofSNA(30.2%)wasmuchhigherthanthethreespeciesofFS,CS,andEC,butslightlylowerthanthatofOM.Thepercentagesof(NH4)2SO4andNH4NO3(averaging16.7±13.2and19.0±14.4μg·m−3,respectively)were14.9%and15.4%,respectively.Comparedwiththeresultsdeterminedoverthesameperiodinearlieryears[11],itisnotedthatthepercentageofSNAinourstudydecreasedby3%–10%comparedwiththatmeasuredduring2003–2007,whiletheOMfractionroseabout5%.2011-11-92011-11-112011-11-132011-11-152011-11-172011-11-192011-11-212011-11-232011-11-252011-11-270306090120150180210240ECCSFSOMNH4NO3(NH4)2SO4Concentration(μgm-3)PM2.5measuredFigure8.DailyvariationsofthereconstructedchemicalcompositioninPM2.5.3.3.AnalysisofAerosolOpticalPropertiesThetimeseriesofdailyaveragedopticalpropertiesincludingσsc,σap,andSSAareshowninFigure9.Dailyσscrangedfrom31.1–667Mm−1,withameanvalueof270±200Mm−1,whileσapwasintherangeof8.24–158.0Mm−1,withameanvalueof74.3±43.4Mm−1.ThemeanσscvaluewasconsiderablelowerthanthatmeasuredinurbanBeijingin2009andduring2005–2006[41,42],buthigherthanthatobtainedatasuburbansite(Changping)andruralsite(Shangdianzi)[15].Comparedwiththeresultsmentionedabove,themeanσapvaluewaslowerthanthatmeasuredin2009aswell,buthigherthanthatduring2005–2006.Theincreasedσapinrecentyearsislikelyattributabletotherapidincreaseofvehiclepollution,sincevehicularexhaustwasoneoftheprimaryfactorsaffectingaerosolabsorption.ThemeanvalueofSSAwas0.76,whichwascomparablewiththeresultsdeterminedinBeijingduring2005–2006[42]andin2009[41].MSEisanimportantparameterforestimatingradiativeforcingofaerosolsandchemicalextinctionbudgetsforvisibilityimpairment.Generally,therearetwomethodstoestimateMSE,i.e.,measurementmethodandmultilinearregressionmethod[43].MSEwasdefinedastheratioofmeasuredσsctoaerosolmassconcentrationaccordingtothemeasurementmethod.Onealternativemethodcanalsobeusedbyregressionofthemeasuredσscagainstaerosolmassconcentration.SincetheRHinthenephelometerwasmaintainedbelow60%andthePM2.5massconcentrationsweremeasuredatRHof40%,thosedayswithRHbelow50%wereselectedforregressingtominimizetheimpactofparticlehygroscopicgrowthonσsc.Accordingtothemeasurementmethod,dailyMSEvariedfrom1.70–3.02m2·g−1,withameanvalueof2.32±0.44m2·g−1.ItisnotedthatastrongAtmosphere2015,6175correlationbetweenthemeasuredσscandPM2.5massconcentrationwasobservedwithahighcorrelationcoefficientof0.988(Figure9).Theslopewas2.67fromalinearregression,whichwasslightlyhigherthanthevalueobtainedbythemeasurementmethod,alsofoundbyTitosetal.[43].ComparedtothatmeasuredinurbanBeijingbyZhaoetal.,andJingetal.[41],therelativelowerMSEinourstudywaslikelyrelatedtotheheavilypollutedevents.2011-11-92011-11-112011-11-132011-11-152011-11-172011-11-192011-11-212011-11-232011-11-252011-11-2701002003004005006007008000.00.20.40.60.81.0σscandσap(Mm-1)σscσapSSASSA(a)0501001502002500100200300400500600700Measuredσsc(Μm-1)PM2.5concentration(μgm-3)y=2.67xR=0.988(b)Figure9.Thetimeseriesofdailyaveragedaerosolopticalproperties(a)andrelationshipbetweenthemeasuredσscandPM2.5concentration(b).3.4.ChemicalApportionmentoftheAerosolOpticalParametersInordertoappointthecontributiontothevisibilityimpairment,bextwasreconstructedbasedonthechemicalcompositionsofaerosol.Inthepresentstudy,theextinctioneffectbyfineparticleswasstudied,whilethecontributionsofgaseswereexcludedbecausetheyonlyaccountedforasmallfraction(about2%–4%)ofbext[44].TheimpactofseasaltonbextwasignoredsinceBeijingisabout150kmawayfromtheEastChina’scoastaloceans.Moreover,thecontributionofcoarsemasstobextwasnotincludedbecauseoflackoftheconcentrationsofcoarsematter.Then,therevisedIMPROVEformulaofEquation(2)wasmodifiedasfollows:][1][10]arg[1.6][8.2]arg[)(1.5][)(4.2])(arg[)(8.4])([)(2.23434424424SoilFineECeOMLSmallOMNOeNHLRHfNOSmallNHRHfSONHeLRHfSONHSmallRHfbLsLsext×+×+×+×+××+××+××+××=(11)ThemeasuredandreconstructedbextareillustratedinFigure10.Itisfoundthatthemeasuredbextwereconsiderablylowerthanthereconstructedvalue,especiallyduringtheheavilypollutionlevels.Thedeviationvariedfrom18.1%–140%,withanaveragevalueofabout70%.Jungetal.[45]alsofoundthatthebextwasoverestimatedby36.7%basedontherevisedIMPROVEalgorithm.However,afewotherstudiesusingtheIMPROVEformulafoundthatthereexistedagoodcorrelationbetweenthemeasuredandreconstructedbext,andtheslopeswerecloseto1.0inShanghai[19]andGuangzhou[4].ComparedtotheresultsconductedinShanghai,alowerMAE(7.7)wasusedtocalculatebap.Ifthesamevalueof7.7wasusedinthepresentstudy,thebiaseswoulddecreaseby8%.Additionally,theMSEusedtocalculatebextinGuangzhouwasmuchhigherthanthevalueinthepresentstudy.Thus,itcanbededucedthatalowerMSEthanthevalueadoptedaccordingtotherevisedIMPROVEAtmosphere2015,6176algorithminthepresentstudyshouldbeusedtoreconstructbext,whichmayresultinareconstructedbextapproximatelyequaltothemeasuredbext.Althoughmorelocally-derivedMSEandMAEwerenecessaryforeffectivelyreconstructingthebext,wedidnotobtainthesevaluesinthepresentstudyduetolackoftheamountofinsituandsamplingdata.2011-11-92011-11-112011-11-132011-11-152011-11-172011-11-192011-11-212011-11-232011-11-252011-11-270300600900120015001800ReconstructedbextMeasuredbextbext(Mm-1)(a)0100200300400500600700020040060080010001200140016001800ScatteringcoefficientAbsorptioncoefficientExtintioncoefficienty=1.829x+0.708R=0.989y=1.289x+6.906R=0.967y=1.759x-10.33R=0.989Reconstructedbsp,bap(Mm-1)Measuredσsp,σap(Mm-1)(b)Figure10.Thetemporalvariationsofmeasuredandreconstructedbext(a)andthecorrelationbetweenmeasuredandreconstructedopticalparameters(b).Althoughthereconstructedbextwashigherthanthatmeasuredone,bothwerecorrelatedwell(R=0.989),sodidbspandbap(Figure11).Therefore,therelativecontributionofeachchemicalcompositiontobextcanalsobeanalyzedbythemodifiedIMPROVEalgorithm.AsshowninFigure11,OM,(NH4)2SO4,NH4NO3andECwerethedominantcontributors,accountingfor97.7%ofbexttogether,whilethecontributionofFSwassmall,accountingforonly2.3%ofbext.Onaverage,OMwasthelargestcontributortothebext,accountingfor44.7%ofbext,whileSNAaccountedfor34.4%ofbext.(NH4)2SO4andNH4NO3contributed16.4%and18.0%ofbext,respectively.OurresultsweredifferentfromthosedeterminedinBeijinginpreviousstudiesconductedinsummer[16,18,46],whichshowedthat(NH4)2SO4andNH4NO3werethelargestcontributortothebext.2011-11-92011-11-112011-11-132011-11-152011-11-172011-11-192011-11-212011-11-232011-11-252011-11-27020406080100ECFSOMNH4NO3(NH4)2SO4Percentage(%)meanFigure11.RelativecontributionsofeachchemicalcompositioninPM2.5tobext.Atmosphere2015,61773.5.TypicalPollutionEpisodesAsshowninFigure1,fourobviouspollutionepisodeswereobservedduringthecampaign,withthevisibilitydeterioratingtolessthan10km.Theywereobservedon9–11November,14–17November,20and21November,and23–27November.Obviously,inthefirstpollutionperiod,pollutantsaccumulatedgraduallyfrom8–10November,withdailyPM2.5massconcentrationincreasingfrom36.3–98.8μg·m−3,andthendecreasingdramaticallyto17.1μg·m−3.AllthechemicalcomponentsincreasedwithPM2.5mass,especiallyforNO3−,whichincreasedbysixtimescomparedwiththevalueon8November.Furthermore,itcanbefoundthatduringthepollutionaccumulationperiod,thewindspeedwaslessthan0.5m·s−1.On11November,strongwindwasfavorablefordispersionofthepollutantsandaccumulationofthecrustalmaterial.Moreover,12Novemberwasweekend,andthereductionofvehiclesmayalsocontributetothelowerconcentrationofPM2.5.Fromanextinctionperspective,inthefirstpollutionstage,σscincreasedfrom71.6–177.2Mm−1,whileσapvariedlittle,implyingthatthevisibilitydegradationwasmainlycausedbytherapidincreaseofSNA.Inthesecondpollutionperiodfrom12–19November,dailyPM2.5massconcentrationincreasedfrom17.1–215.5μg·m−3,withthemaximumvalueoccurringon15November,andthenplungingto32.0μg·m−3withinthreedays.AsillustratedinFigure1,itcanbefoundthatthewindspeedswereverylowfrom12–15November,andinfavoroftheaccumulationofthepollutants.Ontheotherhand,theRHincreasedfrom30%to82%,whichwasfavorablefortheformationofSNA.ResidentialheatingstartinginthemiddleofNovembermightbetheprimaryreasonfortheheavierpollutioninthesecondstage.AsshowninFigure2,theconcentrationofCl−on13Novemberhadadramaticincreasecomparedwiththepreviousdays,approximatelyto10timeshigherthanthaton12November.ChloridemaybeessentiallycontributedbycoalcombustioninBeijingduringtheheatingseason.Thus,thehighPM2.5massconcentrationwasmainlyassociatedwithcoalcombustion.Infact,theconcentrationsofOCandECduring13–27Novemberweremuchhigherthanthosebefore12November.ThesharpincreaseofOCandECalsoverifiedtheinfluenceofcoalcombustionontheincreaseofPM2.5massconcentration.Unlikethefirstpollutionstage,σaponthemostheavypollutionday(15November)wasabout15timeshigherthanthatonthecleandays.Meanwhile,σscrosefrom31.0–439.2Mm−1,withasimilargrowthrateasσap.AsshowninFigure11,duringthesecondpollutionepisode,thecontributionofOMandECtobextdecreasedfrom54.2%and25.6%to32.7%and11.5%asthepollutantsaccumulated,respectively,whilethecontributionofSNAtobextincreasedfrom18.3%–54.8%ontheaccumulationperiod.On16November,althoughthemassconcentrationofPM2.5reducedby40%,thevisibilitywasstilllessthan3km,whichwasascribedtothelargestcontributionofSNAtobext.AspresentedinFigure11,thecontributionofSNAreachedupto73.7%whereasthatofOMandECdecreasedto26.7%tobext.ThePM2.5massconcentrationhadasignificantdecreaseon18Novemberduetorainandstrongwind(Figure1).Basedontheanalysisofatypicalpollutionepisode,itcanbeconcludedthatthesecondaryformationofaerosolwasmoreimportantthanthecarbonaceouspollutionforthehazeformationinBeijing.Intheothertwopollutionperiods,asimilartrendofthechemicalcompositiontothatduringthesecondpollutionstagewasobserved.Ingeneral,thepollutionaccumulationwasinaccordancewiththeincreaseoftheSNA,OCandECconcentrationsunderstableweatherconditionsuntilarrivalofstrongwind.Atmosphere2015,61784.ConclusionsDuringtheheatingperiodfrom8–28November2011,aerosolopticalpropertiesaswellaschemicalcompositionswereinvestigatedsimultaneouslyinBeijing.DailyPM2.5massconcentrationvariedfrom15.6–237.5μg·m−3andpresentedameanvalueof111.2±73.4μg·m−3.AmongthechemicalcomponentsinPM2.5,NO3−wasthemostabundantspeciesinWSIIswithanaverageconcentrationof14.7±11.2μg·m−3,followedbySO42−,NH4+,andCl−,accountingfor28.9%,25.6%,17.7%,and14.6%ofWSIIs,respectively.TherestofK+,Na+,Ca2+,F−,andMg2+haveaminorcontributiontotheWSIIs,accountingfor13.2%ofWSIIstogether.Themeanσsc,σapandSSAvaluesat550nmwere270±200Mm−1,74.3±43.4Mm−1and0.76duringtheentireobservationperiod,respectively.Bothoftheσscandσapincreasedsignificantlyduringthepollutionaccumulationepisode.ThebextwereestimatedbytherevisedIMPROVEformulabasedonthechemicalcompositionsofPM2.5.Comparedwiththemeasuredσscandσap,thereconstructedbextwasoverestimated,buthadastrongcorrelationwithahighcorrelationcoefficientof0.989.OMwasthelargestcontributor,accountingfor44.7%ofbext,followedbyNH4NO3,(NH4)2SO4,withminorcontributionfromsoildust(2.3%).PollutionepisodesinBeijingwerestronglyinfluencedbybothemissionsandmeteorologicalconditions.Pollutantwasaccumulatedincalmorweakwindswhilediffusedunderstrongwindconditions.Additionally,thecoalcombustionforresidentialheatingwasanothermajorreasonfortheheavypollutionduringthesamplingperiod.Fourtypicalpollutionepisodesduringthestudyperiodwereobserved,itwasfoundthatNH4NO3and(NH4)2SO4werethelargestcontributortothebextratherthancarbonaceouscomponentsduringthepollutionaccumulationepisodes,implyingthatthesecondaryinorganicpollutantsweremoreimportantthanthecarbonaceouspollutionforheavypollutionformation.Therefore,thereductionoftheirprecursorssuchasSO2,NOxandNH3couldeffectivelyimprovethevisibilityinBeijing.AcknowledgmentsThisstudywassupportedbytheNationalNaturalScienceFoundationofChinaprojects(41075093,41275121and41375123),the“StrategicPriorityResearchProgram”oftheChineseAcademyofSciences(KJZD-EW-TZ-G06-04),theMinistryofEnvironmentalProtectionofChina(201209007),StateEnvironmentalProtectionKeyLaboratoryofSourcesandControlofAirPollutionComplex(SCAPC201310),JiangsuKeyLaboratoryofAtmosphericEnvironmentMonitoringandPollutionControlofNanjingUniversityofInformationScienceandTechnology,andJiangsuProvinceInnovationPlatformforSuperioritySubjectofEnvironmentalScienceandEngineering(KHK1201).TheauthorsthankLian-fangWei,Jin-luDong,andRongZhangfortheircontributionstothefieldandlaboratorywork.AuthorContributionsTheworkwascompletedwithcollaborationbetweenalltheauthors.Thecorrespondingauthordesignedtheresearchtheme,organizedthePM2.5samplingwithXinghuaLi,checkedtheexperimentalresults,anddesignedthemanuscriptwithHuanboWang.HuanboWanganalyzedthedata,interpretedAtmosphere2015,6179theresultsandwrotethemanuscript.XinghuaLiwasinchargeofPM2.5samplingandcollectedallrelevantdata,andChengcaiLiwasinchargeofobservationofopticalparameters.JunjiCaowasinchargeofinorganicelementsanalysis.YongliangMaandKebinHeprovidedanalysesofwater-solubleionsandOC/EC.GuangmingShiwasinvolvedinrelevantdatainterpretationanddiscussion.ConflictsofInterestTheauthorsdeclarenoconflictofinterest.Reference1.Wang,Q.Y.;Cao,J.J.;Tao,J.;Li,N.;Su,X.O.;Chen,L.W.A.;Wang,P.;Shen,Z.X.;Liu,S.X.;Dai,W.T.Long-termtrendsinvisibilityandatChengdu,China.PLoSOne2013,doi:10.1371/journal.pone.00688942.Zhang,X.Y.;Wang,Y.Q.;Niu,T.;Zhang,X.C.;Gong,S.L.;Zhang,Y.M.;Sun,J.Y.AtmosphericaerosolcompositionsinChina:Spatial/temporalvariability,chemicalsignature,regionalhazedistributionandcomparisonswithglobalaerosols.Atmos.Chem.Phys.2012,12,779–799.3.Shen,G.F.;Xue,M.;Yuan,S.Y.;Zhang,J.;Zhao,Q.Y.;Li,B.;Wu,H.S.;Ding,A.J.Chemicalcompositionsandreconstructedlightextinctioncoefficientsofparticulatematterinamega-city.InthewesternYangtzeRiverDelta,China.Atmos.Environ.2014,83,14–20.4.Tao,J.;Zhang,L.M.;Ho,K.F.;Zhang,R.J.;Lin,Z.J.;Zhang,Z.S.;Lin,M.;Cao,J.J.;Liu,S.X.;Wang,G.H.ImpactofPM2.5chemicalcompositionsonaerosollightscatteringinGuangzhou—ThelargestmegacityinsouthChina.Atmos.Res.2014,135,48–58.5.Chen,J.;Qiu,S.S.;Shang,J.;Wilfrid,O.M.F.;Liu,X.G.;Tian,H.Z.;Boman,J.ImpactofrelativehumidityandwatersolubleconstituentsofPM2.5onvisibilityimpairmentinBeijing,China.AerosolAirQual.Res.2014,14,260–268.6.Ramanathan,V.;Feng,Y.Airpollution,greenhousegasesandclimatechange:Globalandregionalperspectives.Atmos.Environ.2009,43,37–50.7.Ma,X.;Yu,F.;Luo,G.AerosoldirectradiativeforcingbasedonGEOS-Chem-APManduncertainties.Atmos.Chem.Phys.2012,12,5563–5581.8.Yang,F.;Huang,L.;Duan,F.;Zhang,W.;He,K.;Ma,Y.;Brook,J.R.;Tan,J.;Zhao,Q.;Cheng,Y.CarbonaceousspeciesinPM2.5atapairofrural/urbansitesinBeijing,2005–2008.Atmos.Chem.Phys.2011,11,7893–7903.9.Yang,F.M.;He,K.B.;Ma,Y.L.;Zhang,Q.;Cadle,S.H.;Chan,T.;Mulawa,P.A.CharacterizationofcarbonaceousspeciesofambientPM2.5inBeijing,China.J.AirWasteManag.2005,55,984–992.10.Zhao,P.S.;Dong,F.;He,D.;Zhao,X.J.;Zhang,X.L.;Zhang,W.Z.;Yao,Q.;Liu,H.Y.CharacteristicsofconcentrationsandchemicalcompositionsforPM2.5intheregionofBeijing,Tianjin,andHebei,China.Atmos.Chem.Phys.2013,13,4631–4644.11.Yang,F.;Tan,J.;Zhao,Q.;Du,Z.;He,K.;Ma,Y.;Duan,F.;Chen,G.;Zhao,Q.CharacteristicsofPM2.5speciationinrepresentativemegacitiesandacrossChina.Atmos.Chem.Phys.2011,11,5207–5219.Atmosphere2015,618012.Zhang,R.;Jing,J.;Tao,J.;Hsu,S.C.;Wang,G.;Cao,J.;Lee,C.S.L.;Zhu,L.;Chen,Z.;Zhao,Y.;etal.ChemicalcharacterizationandsourceapportionmentofPM2.5inBeijing:Seasonalperspective.Atmos.Chem.Phys.2013,13,7053–7074.13.Xu,J.W.;Tao,J.;Zhang,R.J.;Cheng,T.T.;Leng,C.P.;Chen,J.M.;Huang,G.H.;Li,X.;Zhu,Z.Q.MeasurementsofsurfaceaerosolopticalpropertiesinwinterofShanghai.Atmos.Res.2012,109,25–35.14.Yan,P.;Tang,J.;Huang,J.;Mao,J.T.;Zhou,X.J.;Liu,Q.;Wang,Z.F.;Zhou,H.G.ThemeasurementofaerosolopticalpropertiesataruralsiteinnorthernChina.Atmos.Chem.Phys.2008,8,2229–2242.15.Zhao,X.J.;Zhang,X.L.;Pu,W.W.;Meng,W.;Xu,X.F.ScatteringpropertiesoftheatmosphericaerosolinBeijing,China.Atmos.Res.2011,101,799–808.16.Jung,J.;Lee,H.;Kim,Y.J.;Liu,X.G.;Zhang,Y.H.;Hu,M.;Sugimoto,N.Opticalpropertiesofatmosphericaerosolsobtainedbyinsituandremotemeasurementsduring2006CampaignofAirQualityResearchinBeijing(CAREBeijing-2006).J.Geophys.Res.:Atmos.2009,doi:10.1029/2008JD010337.17.Garland,R.M.;Yang,H.;Schmid,O.;Rose,D.;Nowak,A.;Achtert,P.;Wiedensohler,A.;Takegawa,N.;Kita,K.;Miyazaki,Y.;etal.Aerosolopticalpropertiesinaruralenvironmentnearthemega-cityGuangzhou,China:Implicationsforregionalairpollution,radiativeforcingandremotesensing.Atmos.Chem.Phys.2008,8,5161–5186.18.Tian,P.;Wang,G.F.;Zhang,R.J.ImpactsofaerosolchemicalcompositionsonopticalpropertiesinurbanBeijing,China.Particuology2014,doi:10.1016/j.partic.2014.1003.1014.19.Huang,G.H.;Cheng,T.T.;Zhang,R.J.;Tao,J.;Leng,C.P.;Zhang,Y.W.;Zha,S.P.;Zhang,D.Q.;Li,X.;Xu,C.Y.OpticalpropertiesandchemicalcompositionofPM2.5inShanghaiinthespringof2012.Particuology2014,13,52–59.20.Pitchford,M.;Malm,W.;Schichtel,B.;Kumar,N.;Lowenthal,D.;Hand,J.Revisedalgorithmforestimatinglightextinctionfromimproveparticlespeciationdata.J.AirWasteManag.2007,57,1326–1336.21.Chow,J.C.;Watson,J.G.;Chen,L.W.A.;Chang,M.C.O.;Robinson,N.F.;Trimble,D.;Kohl,S.TheIMPROVE_Atemperatureprotocolforthermal/opticalcarbonanalysis:Maintainingconsistencywithalong-termdatabase.J.AirWasteManag.2007,57,1014–1023.22.Xu,H.M.;Cao,J.J.;Ho,K.F.;Ding,H.;Han,Y.M.;Wang,G.H.;Chow,J.C.;Watson,J.G.;Khol,S.D.;Qiang,J.;etal.LeadconcentrationsinfineparticulatematterafterthephasingoutofleadedgasolineinXi’an,China.Atmos.Environ.2012,46,217–224.23.Xing,L.;Fu,T.M.;Cao,J.J.;Lee,S.C.;Wang,G.H.;Ho,K.F.;Cheng,M.C.;You,C.F.;Wang,T.J.SeasonalandspatialvariabilityoftheOM/OCmassratiosandhighregionalcorrelationbetweenoxalicacidandzincinChineseurbanorganicaerosols.Atmos.Chem.Phys.2013,13,4307–4318.24.Malm,W.C.;Sisler,J.F.;Huffman,D.;Eldred,R.A.;Cahill,T.A.SpatialandseasonaltrendsinparticleconcentrationandopticalextinctionintheUnitedStates.J.Geophys.Res.:Atmos.1994,99,1347–1370.25.Barnard,J.C.;Kassianov,E.I.;Ackerman,T.P.;Johnson,K.;Zuberi,B.;Molina,L.T.;Molina,M.J.Estimationofa“radiativelycorrect”blackcarbonspecificabsorptionduringtheMexicoCityMetropolitanArea(MCMA)2003fieldcampaign.Atmos.Chem.Phys.2007,7,1645–1655.Atmosphere2015,618126.Zhou,J.M.;Zhang,R.J.;Cao,J.J.;Chow,J.C.;Watson,J.G.CarbonaceousandioniccomponentsofatmosphericfineparticlesinBeijingandtheirimpactonatmosphericvisibility.AerosolAirQual.Res.2012,12,492–502.27.Sun,K.;Qu,Y.;Wu,Q.;Han,T.T.;Gu,J.W.;Zhao,J.J.;Sun,Y.L.;Jiang,Q.;Gao,Z.Q.;Hu,M.;etal.Chemicalcharacteristicsofsize-resolvedaerosolsinwinterinBeijing.J.Environ.Sci.2014,26,1641–1650.28.Arimoto,R.;Duce,R.A.;Savoie,D.L.;Prospero,J.M.;Talbot,R.;Cullen,J.D.;Tomza,U.;Lewis,N.F.;Jay,B.J.RelationshipsamongaerosolconstituentsfromAsiaandtheNorthPacificduringPem-WestA.J.Geophys.Res.:Atmos.1996,101,2011–2023.29.Duan,F.K.;He,K.B.;Ma,Y.L.;Yang,F.M.;Yu,X.C.;Cadle,S.H.;Chan,T.;Mulawa,P.A.ConcentrationandchemicalcharacteristicsofPM2.5inBeijing,China:2001–2002.Sci.TotalEnviron.2006,355,264–275.30.Wang,S.X.;Xing,J.;Chatani,S.;Hao,J.M.;Klimont,Z.;Cofala,J.;Amann,M.VerificationofanthropogenicemissionsofChinabysatelliteandgroundobservations.Atmos.Environ.2011,45,6347–6358.31.Wang,Y.;Zhuang,G.S.;Tang,A.H.;Yuan,H.;Sun,Y.L.;Chen,S.A.;Zheng,A.H.TheionchemistryandthesourceofPM2.5aerosolinBeijing.Atmos.Environ.2005,39,3771–3784.32.Wang,R.S.;Xiao,H.;Bai,T.;Wang,Y.J.;Qian,L.Y.Theamountofvehiclesby“Chinavehicleemissioncontrolannualreportin2013”.Environ.Sustain.Dev.2014,2014,88–90.33.Cheng,Y.;Engling,G.;He,K.B.;Duan,F.K.;Ma,Y.L.;Du,Z.Y.;Liu,J.M.;Zheng,M.;Weber,R.J.BiomassburningcontributiontoBeijingaerosol.Atmos.Chem.Phys.2013,13,7765–7781.34.Yang,F.;He,K.;Ye,B.;Chen,X.;Cha,L.;Cadle,S.H.;Chan,T.;Mulawa,P.A.One-yearrecordoforganicandelementalcarboninfineparticlesindowntownBeijingandShanghai.Atmos.Chem.Phys.2005,5,1449–1457.35.Cao,J.J.;Lee,S.C.;Chow,J.C.;Watson,J.G.;Ho,K.F.;Zhang,R.J.;Jin,Z.D.;Shen,Z.X.;Chen,G.C.;Kang,Y.M.;etal.SpatialandseasonaldistributionsofcarbonaceousaerosolsoverChina.J.Geophys.Res.:Atmos.2007,doi:10.1029/2006JD008205.36.Turpin,B.J.;Huntzicker,J.J.IdentificationofsecondaryorganicaerosolepisodesandquantitationofprimaryandsecondaryorganicaerosolconcentrationsduringSCAQS.Atmos.Environ.1995,29,3527–3544.37.Watson,J.G.;Chow,J.C.;Houck,J.E.PM2.5chemicalsourceprofilesforvehicleexhaust,vegetativeburning,geologicalmaterial,andcoalburninginnorthwesternColoradoduring1995.Chemosphere2001,43,1141–1151.38.Chow,J.C.;Watson,J.G.;Lu,Z.Q.;Lowenthal,D.H.;Frazier,C.A.;Solomon,P.A.;Thuillier,R.H.;Magliano,K.DescriptiveanalysisofPM2.5andPM10atregionallyrepresentativelocationsduringSJVAQS/AUSPEX.Atmos.Environ.1996,30,2079–2112.39.Castro,L.M.;Pio,C.A.;Harrison,R.M.;Smith,D.J.T.CarbonaceousaerosolinurbanandruralEuropeanatmospheres:Estimationofsecondaryorganiccarbonconcentrations.Atmos.Environ.1999,33,2771–2781.40.Sheehan,P.E.;Bowman,F.M.Estimatedeffectsoftemperatureonsecondaryorganicaerosolconcentrations.Environ.Sci.Technol.2001,35,2129–2135.Atmosphere2015,618241.Jing,J.S.;Wu,Y.F.;Tao,J.;Che,H.Z.Observationandanalysisofnear-surfaceatmosphericaerosolopticalpropertiesinurbanBeijing.Particuology2014,doi:10.1016/j.partic.2014.1003.1013.42.He,X.;Li,C.C.;Lau,A.K.H.;Deng,Z.Z.;Mao,J.T.;Wang,M.H.;Liu,X.Y.AnintensivestudyofaerosolopticalpropertiesinBeijingurbanarea.Atmos.Chem.Phys.2009,9,8903–8915.43.Titos,G.;Foyo-Moreno,I.;Lyamani,H.;Querol,X.;Alastuey,A.;Alados-Arboledas,L.Opticalpropertiesandchemicalcompositionofaerosolparticlesatanurbanlocation:Anestimationoftheaerosolmassscatteringandabsorptionefficiencies.J.Geophys.Res.:Atmos.2012,doi:10.1029/2011JD016671.44.Cao,J.J.;Wang,Q.Y.;Chow,J.C.;Watson,J.G.;Tie,X.X.;Shen,Z.X.;Wang,P.;An,Z.S.ImpactsofaerosolcompositionsonvisibilityimpairmentinXi’an,China.Atmos.Environ.2012,59,559–566.45.Jung,J.;Lee,H.;Kim,Y.J.;Liu,X.G.;Zhang,Y.H.;Gu,J.W.;Fan,S.J.AerosolchemistryandtheeffectofaerosolwatercontentonvisibilityimpairmentandradiativeforcinginGuangzhouduringthe2006PearlRiverDeltacampaign.J.Environ.Manag.2009,90,3231–3244.46.Li,X.H.;He,K.B.;Li,C.C.;Yang,F.M.;Zhao,Q.;Ma,Y.L.;Cheng,Y.;Ouyang,W.J.;Chen,G.C.PM2.5mass,chemicalcomposition,andlightextinctionbeforeandduringthe2008BeijingOlympics.J.Geophys.Res.:Atmos.2013,118,12158–12167.©2015bytheauthors;licenseeMDPI,Basel,Switzerland.ThisarticleisanopenaccessarticledistributedunderthetermsandconditionsoftheCreativeCommonsAttributionlicense(http://creativecommons.org/licenses/by/4.0/).