PM2.5 Chemical Compositions and Aerosol Optical Properties in Beijing during the Late Fall-Kebin HeVIP专享VIP免费

Atmosphere 2015, 6, 164-182; doi:10.3390/atmos6020164
atmosphere
ISSN 2073-4433
www.mdpi.com/journal/atmosphere
Article
PM2.5 Chemical Compositions and Aerosol Optical Properties in
Beijing during the Late Fall
Huanbo Wang 1, Xinghua Li 2, Guangming Shi 1, Junji Cao 3, Chengcai Li 4, Fumo Yang 1,*,
Yongliang Ma 5 and Kebin He 5
1 Key Laboratory of Reservoir Aquatic Environment of CAS, Chongqing Institute of Green and
Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China;
E-Mails: hbwang@cigit.ac.cn (H.W.); shigm@cigit.ac.cn (G.S.)
2 School of Chemistry and Environment, Beihang University, Beijing 100191, China;
E-Mail: lixinghua@buaa.edu.cn
3 Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of
Sciences, Xi’an 710075, China; E-Mail: cao@loess.llqg.ac.cn
4 School of Physics, Peking University, Beijing 100871, China; E-Mail: ccli@pku.edu.cn
5 State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex,
School of Environment, Tsinghua University, Beijing 100084, China;
E-Mails: liang@tsinghua.edu.cn (Y.M.); hekb@tsinghua.edu.cn (K.H.)
* Author to whom correspondence should be addressed; E-Mail: fmyang@cigit.ac.cn;
Tel.: +86-23-6593-5921.
Academic Editors: Ru-Jin Huang and Robert W. Talbot
Received: 21 November 2014 / Accepted: 7 January 2015 / Published: 26 January 2015
Abstract: Daily PM2.5 mass concentrations and chemical compositions together with the
aerosol optical properties were measured from 8–28 November 2011 in Beijing. PM2.5
mass concentration varied from 15.6–237.5 μg·m3 and showed a mean value of
111.2 ± 73.4 μg·m3. Organic matter, NH4NO3 and (NH4)2SO4 were the major constituents
of PM2.5, accounting for 39.4%, 15.4%, and 14.9% of the total mass, respectively, while
fine soil, chloride salt, and elemental carbon together accounted for 27.7%. Daily
scattering and absorption coefficients (σsc and σap) were in the range of 31.1–667 Mm1
and 8.24–158.0 Mm1, with mean values of 270 ± 200 Mm1 and 74.3 ± 43.4 Mm1.
Significant increases in σsc and σap were observed during the pollution accumulation
episodes. The revised IMPROVE algorithm was applied to estimate the extinction
coefficient (bext). On average, organic matter was the largest contributor, accounting for
OPEN ACCESS
Atmosphere 2015, 6 165
44.6% of bext, while (NH4)2SO4, NH4NO3, elemental carbon, and fine soil accounted for
16.3% 18.0%, 18.6%, and 2.34% of bext, respectively. Nevertheless, the contributions of
(NH4)2SO4 and NH4NO3 were significantly higher during the heavy pollution periods than
those on clean days. Typical pollution episodes were also explored, and it has been
characterized that secondary formation of inorganic compounds is more important than
carbonaceous pollution for visibility impairment in Beijing.
Keywords: PM2.5; visibility; aerosol optical properties; chemical composition
1. Introduction
The atmospheric visibility in China has been deteriorating with economic growth during the past
40 years [1,2]. Visibility impairment is resulted from light scattering and absorption by atmospheric
particles and gases, especially from the scattering by the particles of similar size range as the
wavelength range of visible light. Numerous studies have indicated that the fine particles caused most
of the visibility impairment, while the influence of gas and coarse particles on visibility degradation
was commonly weak [3,4]. Moreover, meteorological parameters, such as wind, rain, and temperature,
especially the relative humidity, have their contributions as well [5]. Additionally, atmospheric particles
have significant impacts on climate change, which is one of the greatest sources of uncertainty in
estimating the direct radiative forcing [6,7]. Generally, inorganic and organic aerosols have a cooling effect
on climate by scattering light, while black carbon (BC) has a warming effect by absorbing light.
Previous studies usually determined the chemical compositions and optical properties of atmospheric
aerosols separately [8–10]. Yang et al. [11] compared the characteristics of PM2.5 in representative
megacities of China. Results showed that five major species including organic carbon (OC),
elemental carbon (EC), SO42, NO3, and NH4+ amounted to 54%–59% of PM2.5 mass in Beijing,
Chongqing and Guangzhou, and the percentages of total carbon and secondary inorganic ions were
very close, implying that both primary and secondary particles had a significant contribution to the
PM2.5 mass. Recently, Zhang et al. [12] indicated that secondary inorganic aerosols, mineral dust and
organic matter (OM) each accounted for about 20% of PM2.5 in Beijing, respectively, suggesting both
primary and secondary components of PM2.5 in Beijing were equally important.
The parameters of light extinction (bext) can be measured directly using optical instruments such as
an integrating nephelometer for the light scattering coefficient (σsc), or an aethalometer for the
absorption coefficients (σap). Optical properties of PM2.5 have been conducted in Beijing, Shanghai,
and Guangzhou [13–17]. In recent years, a few studies have focused on the relationship between the
chemical compositions and optical properties of aerosols [18,19]. Results showed that NH4+, SO42,
NO3, and OC are the main contributors to aerosol scattering, and the light absorption coefficients had
strong linear correlations with EC in Shanghai. Furthermore, as an alternative method, the Interagency
Monitoring of Protected Visual Environments (IMPROVE) formula could be used to estimate bext
based on the chemical compositions of particulate matter (PM). The original and revised IMPROVE
algorithms for estimating bext were developed from the particle data at 21 rural/remote sites with low
scattering coefficients. Furthermore, the IMPROVE formula usually assumes externally mixed status
Atmosphere 2015, 6 166
of PM and fixed mass extinction efficiency for each species [20]. However, the actual mass absorption
efficiency (MAE) and mass scattering efficiency (MSE) were not constant due to large temporal and
spatial variations of chemical compositions of PM. Thus, it is necessary to evaluate the applicability of
the IMPROVE formula to the calculation of bext in more polluted urban Beijing in China.
In the present study, aerosol optical properties including σsc and σap, as well as the chemical
compositions of PM2.5 were measured in Beijing during the late fall of 2011. The applicability of the
IMPROVE formula to the calculation of bext was then evaluated, and the contribution of PM2.5
chemical compositions to visibility impairment was discussed. In addition, the formation mechanisms
of typical pollution episodes during the late fall were also explored.
2. Experimental Section
2.1. Sampling
Samples were collected from 8–28 November 2011 at the campus of Tsinghua University (39°98ʹN,
116°32ʹE) in urban Beijing, about 600 m north of the Fourth Ring Road. The campus is mainly
surrounded by residential areas without significant factory emissions. Beijing is connected to the
industrialized cities of the Great North China Plain in the South, and surrounded by the Yanshan
Mountains in the west, north, and northeast.
Daily 23 h integrated PM2.5 samples were collected using a five-channel Spiral Ambient Speciation
Sampler (SASS, MetOne Inc., Grants Pass, OR, USA) with a flow rate of 6.7 L·min1. The first
channel was used for PM2.5 mass and elemental analysis with a 47 mm Teflon filter. The second channel
collected the particles for the analysis of water-soluble inorganic ions with a 47 mm Teflon filter. The
third channel was used to collect PM2.5 on quartz filters for organic and elemental carbon analysis.
2.2. Gravimetric and Chemical Analysis
The PM2.5 mass concentrations were determined using an electronic balance with a detection limit
of 1 µg (Sartorius, Göttingen, Germany) after stabilizing at a constant temperature (22 ± 5 °C) and
relative humidity (40% ± 5%) for 24 h.
Four anions (SO42, NO3, Cl, and F) and five cations (Na+, NH4+, K+, Mg2+, and Ca2+) were
determined in aqueous extracts of the filters by Ion chromatography (ICS-1000 and ICS-2000 for
anion and cation, respectively, Dionex, Sunnyvale, CA, USA). To extract the water-soluble ions from
the Teflon filters, each sample was extracted twice with 7.5 ml Milli-Q water via an ultrasonic bath for
20 min, and then filtered through a 0.45 μm PTFE syringe filter and stored in a refrigerator at 4 °C
until analysis.
A 0.5 cm2 punch from each quartz filter was analyzed for OC and EC using a DRI Model 2001
Thermal/Optical Carbon Analyzer (Atmoslytic Inc., Calabasas, CA, USA), following the IMPROVE
thermal optical reflectance (TOR) protocol [21].
Crustal elements including Al, Si, Ca, Fe, and Ti were analyzed by Energy Dispersive X-ray
fluorescence spectrometry (Epsilon 5 ED-XRF, PANalytical Company, Almelo, The Netherlands) on
Teflon filters. Quality assurance/Quality Control (QA/QC) procedures of the XRF analysis procedure
were described by Xu et al. [22].
Atmosphere2015,6,164-182;doi:10.3390/atmos6020164atmosphereISSN2073-4433www.mdpi.com/journal/atmosphereArticlePM2.5ChemicalCompositionsandAerosolOpticalPropertiesinBeijingduringtheLateFallHuanboWang1,XinghuaLi2,GuangmingShi1,JunjiCao3,ChengcaiLi4,FumoYang1,,YongliangMa5andKebinHe51KeyLaboratoryofReservoirAquaticEnvironmentofCAS,ChongqingInstituteofGreenandIntelligentTechnology,ChineseAcademyofSciences,Chongqing400714,China;E-Mails:hbwang@cigit.ac.cn(H.W.);shigm@cigit.ac.cn(G.S.)2SchoolofChemistryandEnvironment,BeihangUniversity,Beijing100191,China;E-Mail:lixinghua@buaa.edu.cn3KeyLabofAerosolChemistry&Physics,InstituteofEarthEnvironment,ChineseAcademyofSciences,Xi’an710075,China;E-Mail:cao@loess.llqg.ac.cn4SchoolofPhysics,PekingUniversity,Beijing100871,China;E-Mail:ccli@pku.edu.cn5StateEnvironmentalProtectionKeyLaboratoryofSourcesandControlofAirPollutionComplex,SchoolofEnvironment,TsinghuaUniversity,Beijing100084,China;E-Mails:liang@tsinghua.edu.cn(Y.M.);hekb@tsinghua.edu.cn(K.H.)Authortowhomcorrespondenceshouldbeaddressed;E-Mail:fmyang@cigit.ac.cn;Tel.:+86-23-6593-5921.AcademicEditors:Ru-JinHuangandRobertW.TalbotReceived:21November2014/Accepted:7January2015/Published:26January2015Abstract:DailyPM2.5massconcentrationsandchemicalcompositionstogetherwiththeaerosolopticalpropertiesweremeasuredfrom8–28November2011inBeijing.PM2.5massconcentrationvariedfrom15.6–237.5μg·m−3andshowedameanvalueof111.2±73.4μg·m−3.Organicmatter,NH4NO3and(NH4)2SO4werethemajorconstituentsofPM2.5,accountingfor39.4%,15.4%,and14.9%ofthetotalmass,respectively,whilefinesoil,chloridesalt,andelementalcarbontogetheraccountedfor27.7%.Dailyscatteringandabsorptioncoefficients(σscandσap)wereintherangeof31.1–667Mm−1and8.24–158.0Mm−1,withmeanvaluesof270±200Mm−1and74.3±43.4Mm−1.Significantincreasesinσscandσapwereobservedduringthepollutionaccumulationepisodes.TherevisedIMPROVEalgorithmwasappliedtoestimatetheextinctioncoefficient(bext).Onaverage,organicmatterwasthelargestcontributor,accountingforOPENACCESSAtmosphere2015,616544.6%ofbext,while(NH4)2SO4,NH4NO3,elementalcarbon,andfinesoilaccountedfor16.3%18.0%,18.6%,and2.34%ofbext,respectively.Nevertheless,thecontributionsof(NH4)2SO4andNH4NO3weresignificantlyhigherduringtheheavypollutionperiodsthanthoseoncleandays.Typicalpollutionepisodeswerealsoexplored,andithasbeencharacterizedthatsecondaryformationofinorganiccompoundsismoreimportantthancarbonaceouspollutionforvisibilityimpairmentinBeijing.Keywords:PM2.5;visibility;aerosolopticalproperties;chemicalcomposition1.IntroductionTheatmosphericvisibilityinChinahasbeendeterioratingwitheconomicgrowthduringthepast40years[1,2].Visibilityimpairmentisresultedfromlightscatteringandabsorptionbyatmosphericparticlesandgases,especiallyfromthescatteringbytheparticlesofsimilarsizerangeasthewavelengthrangeofvisiblelight.Numerousstudieshaveindicatedthatthefineparticlescausedmostofthevisibilityimpairment,whiletheinfluenceofgasandcoarseparticlesonvisibilitydegradationwascommonlyweak[3,4].Moreover,meteorologicalparameters,suchaswind,rain,andtemperature,especiallytherelativehumidity,havetheircontributionsaswell[5].Additionally,atmosphericparticleshavesignificantimpactsonclimatechange,whichisoneofthegreatestsourcesofuncertaintyinestimatingthedirectradiativeforcing[6,7].Generally,inorganicandorganicaerosolshaveacoolingeffectonclimatebyscatteringlight,whileblackcarbon(BC)hasawarmingeffectbyabsorbinglight.Previousstudiesusuallydeterminedthechemicalcompositionsandopticalpropertiesofatmosphericaerosolsseparately[8–10].Yangetal.[11]comparedthecharacteristicsofPM2.5inrepresentativemegacitiesofChina.Resultsshowedthatfivemajorspeciesincludingorganiccarbon(OC),elementalcarbon(EC),SO42−,NO3−,andNH4+amountedto54%–59%ofPM2.5massinBeijing,ChongqingandGuangzhou,andthepercentagesoftotalcarbonandsecondaryinorganicionswereveryclose,implyingthatbothprimaryandsecondaryparticleshadasignificantcontributiontothePM2.5mass.Recently,Zhangetal.[12]indicatedthatsecondaryinorganicaerosols,mineraldustandorganicmatter(OM)eachaccountedforabout20%ofPM2.5inBeijing,respectively,suggestingbothprimaryandsecondarycomponentsofPM2.5inBeijingwereequallyimportant.Theparametersoflightextinction(bext)canbemeasureddirectlyusingopticalinstrumentssuchasanintegratingnephelometerforthelightscatteringcoefficient(σsc),oranaethalometerfortheabsorptioncoefficients(σap).OpticalpropertiesofPM2.5havebeenconductedinBeijing,Shanghai,andGuangzhou[13–17].Inrecentyears,afewstudieshavefocusedontherelationshipbetweenthechemicalcompositionsandopticalpropertiesofaerosols[18,19].ResultsshowedthatNH4+,SO42−,NO3−,andOCarethemaincontributorstoaerosolscattering,andthelightabsorptioncoefficientshadstronglinearcorrelationswithECinShanghai.Furthermore,asanalternativemethod,theInteragencyMonitoringofProtectedVisualEnvironments(IMPROVE)formulacouldbeusedtoestimatebextbasedonthechemicalcompositionsofparticulatematter(PM).TheoriginalandrevisedIMPROVEalgorithmsforestimatingbextweredevelopedfromtheparticledataat21rural/remotesiteswithlowscatteringcoefficients.Furthermore,theIMPROVEformulausuallyassumesexternallymixedstatusAtmosphere2015,6166ofPMandfixedmassextinctionefficiencyforeachspecies[20].However,theactualmassabsorptionefficiency(MAE)andmassscatteringefficiency(MSE)werenotconstantduetolargetemporalandspatialvariationsofchemicalcompositionsofPM.Thus,itisnecessarytoevaluatetheapplicabilityoftheIMPROVEformulatothecalculationofbextinmorepollutedurbanBeijinginChina.Inthepresentstudy,aerosolopticalpropertiesincludingσscandσap,aswellasthechemicalcompositionsofPM2.5weremeasuredinBeijingduringthelatefallof2011.TheapplicabilityoftheIMPROVEformulatothecalculationofbextwasthenevaluated,andthecontributionofPM2.5chemicalcompositionstovisibilityimpairmentwasdiscussed.Inaddition,theformationmechanismsoftypicalpollutionepisodesduringthelatefallwerealsoexplored.2.ExperimentalSection2.1.SamplingSampleswerecollectedfrom8–28November2011atthecampusofTsinghuaUniversity(39°98ʹN,116°32ʹE)inurbanBeijing,about600mnorthoftheFourthRingRoad.Thecampusismainlysurroundedbyresidentialareaswithoutsignificantfactoryemissions.BeijingisconnectedtotheindustrializedcitiesoftheGreatNorthChinaPlainintheSouth,andsurroundedbytheYanshanMountainsinthewest,north,andnortheast.Daily23hintegratedPM2.5sampleswerecollectedusingafive-channelSpiralAmbientSpeciationSampler(SASS,MetOneInc.,GrantsPass,OR,USA)withaflowrateof6.7L·min−1.ThefirstchannelwasusedforPM2.5massandelementalanalysiswitha47mmTeflonfilter.Thesecondchannelcollectedtheparticlesfortheanalysisofwater-solubleinorganicionswitha47mmTeflonfilter.ThethirdchannelwasusedtocollectPM2.5onquartzfiltersfororganicandelementalcarbonanalysis.2.2.GravimetricandChemicalAnalysisThePM2.5massconcentrationsweredeterminedusinganelectronicbalancewithadetectionlimitof1µg(Sartorius,Göttingen,Germany)afterstabilizingataconstanttemperature(22±5°C)andrelativehumidity(40%±5%)for24h.Fouranions(SO42−,NO3−,Cl−,andF−)andfivecations(Na+,NH4+,K+,Mg2+,andCa2+)weredeterminedinaqueousextractsofthefiltersbyIonchromatography(ICS-1000andICS-2000foranionandcation,respectively,Dionex,Sunnyvale,CA,USA).Toextractthewater-solubleionsfromtheTeflonfilters,eachsamplewasextractedtwicewith7.5mlMilli-Qwaterviaanultrasonicbathfor20min,andthenfilteredthrougha0.45μmPTFEsyringefilterandstoredinarefrigeratorat4°Cuntilanalysis.A0.5cm2punchfromeachquartzfilterwasanalyzedforOCandECusingaDRIModel2001Thermal/OpticalCarbonAnalyzer(AtmoslyticInc.,Calabasas,CA,USA),followingtheIMPROVEthermalopticalreflectance(TOR)protocol[21].CrustalelementsincludingAl,Si,Ca,Fe,andTiwereanalyzedbyEnergyDispersiveX-rayfluorescencespectrometry(Epsilon5ED-XRF,PANalyticalCompany,Almelo,TheNetherlands)onTeflonfilters.Qualityassurance/QualityControl(QA/QC)proceduresoftheXRFanalysisprocedureweredescribedbyXuetal.[22].Atmosphere2015,61672.3.QualityControlThefreshquartzfilterswerepre-heatedat450°Cinamufflefurnacefor6htoremoveanyvolatilecomponentsbeforesampling.Furthermore,aftercollection,thesamplesweresealedincleanplasticbags,andwerestoredinafreezerat−18°Cbeforechemicalanalysistominimizetheevaporationofvolatilecomponents.Beforeandaftersampling,theTeflonfiltersinthefirstchannelwereweighedafterbeingequilibratedfor24h.Theartifactsduringthesamplingandanalysiswereestimatedbyafieldblankfilter.2.4.MeasurementsofAerosolOpticalandMeteorologicalParametersBCmassconcentration,σscandmeteorologicaldataweremeasuredontheroofofthePhysicsBuildingabout30mabovethegroundinPekingUniversity,whichisabout1kmawayfromthesamplingsitesofTsinghuaUniversity.Anautomaticweatherstation(VaisalaLtd.,Helsinki,Finland)wasusedtorecordwindspeed(WS),winddirection,relativehumidity(RH),temperature(Temp),andvisibility(VR).σscwasmonitoredusingasinglewavelength(525nm)integratingNephelometer(M9003,Ecotech,Melbourne,VIC,Australia).ThisinstrumentdrewambientairthroughaheatedinlettubetomaintainRHintheNephelometerchamberbelow60%.Thescatteringintensityoveranglesfrom7°to170°wasmeasuredandintegratedtoyieldthescatteringcoefficient.Zerocalibrationwasperformedeverytwodayswithparticle-freeairtosubtracttheRayleighscattering,whilespancalibrationwascarriedouteverymonthusingR-134gas.BCmassconcentrationwasmeasuredwithanAethalometer(AE-16,MageeScientific,Berkeley,CA,USA).TheprincipleofthisinstrumenttocalculatetheBCconcentrationisbasedontheattenuationofanincidentbeamatawavelengthof800nmcausedbytheparticlesloadedinthequartzfilter.Nosize-selectiveinletwasusedforboththenephelometerandaethalometer.Consideringthenegligiblecontributionofcoarseparticlestolightextinction,themeasuredσsccanbeapproximatelyattributedtothePM2.5.2.5.DataAnalysis2.5.1.ReconstructionofPM2.5MassPM2.5componentscanbegroupedasfollows:secondaryinorganicaerosols(SNA),OM,EC,finesoil(FS),andchloridesalt(CS).SNAisthesumofSO42−,NO3−,andNH4+,andOMisderivedfrommultiplyingOCconcentrationsbyafactorof1.6toaccountforunmeasuredatomsaccordingtoXingetal.[23],whichdemonstratedthatthecalculatedOM/OCmassratioinsummerwasrelativelyhigh(1.75±0.13)andinwinterwaslower(1.59±0.18)inPM2.5collectedfrom14Chinesecities.Beijingisfarfromthecoastaloceans,andseasaltisnottransportedtoBeijing,thusithasaminorcontributiontoPM2.5inBeijing.TheCSwasconsideredinsteadofseasalt,andestimatedbysummingconcentrationsofCl−,K+,andNa+accordingtoZhangetal.[12].TheconcentrationsofFSareoftenestimatedbyassumingtheoxidesoftheelementsmainlyassociatedwithsoil(Al2O3,SiO2,K2O,CaO,FeO,Fe2O3,andTiO2),whichiscalculatedasfollows[24]:Atmosphere2015,6168[FS]=2.20[Al]+2.49[Si]+1.63[Ca]+2.42[Fe]+1.94[Ti](1)2.5.2.ReconstructionoftheLightExtinctionCoefficientAccordingtotherevisedIMPROVEalgorithm,thereconstructedbextisshownfromthefollowingequationassuminganexternallymixedaerosol[20]:ScatteringRayleighppbNOPMSaltSeaRHfSoilFineECeOMLSmallOMNOeNHLRHfNOSmallNHRHfSONHeLRHfSONHSmallRHfbbbbbssLsLssgagapspext+×+×+××+×+×+×+×+××+××+××+××≈+++=)]([33.0][6.0][)(7.1][1][10]arg[1.6][8.2]arg[)(1.5][)(4.2])(arg[)(8.4])([)(2.2210~5.23434424424(2)ThealgorithmdividestheconcentrationsofSO42−,NO3−,andOMintosmallandlarge-sizedfractions.Thesizemodesaredescribedbylog-normalmasssizedistributionswithgeometricmeandiameterandgeometricstandarddeviations.Thefractionofacomponentinthelarge-orsmall-sizedmodewasestimatedbyanempiricalapproach[20].Theapportionmentofthetotalconcentrationsof(NH4)2SO4intotheconcentrationsofthesmallandlargesizefractioninPM2.5isaccomplishedusingthefollowingequations:34244244244243[()][arg()][()],[()]20.20.TotalNHSOLeNHSOTotalNHSOforTotalNHSOgmgmμμ−−=×<(3)3424424424.20])([],)([])(arg[−>=mgSONHTotalforSONHTotalSONHeLμ(4)])(arg[])([])([424424424SONHeLSONHTotalSONHSmall−=(5)SimilarequationsareusedtoapportiontotalNH4NO3andtotalOMconcentrationsintosmallandlargesizefractions.Thewatergrowthadjustmenttermfs(RH),fL(RH)forsmallandlargesizedistributionof(NH4)2SO4andNH4NO3,andfss(RH)forseasaltareusedaccordingtothewatergrowthcurvesprovidedbyPitchfordetal.[20].AccordingtotherevisedIMPROVEmethod,SO42−andNO3−areassumedtobefullyneutralizedbyNH4+intheformsof(NH4)2SO4andNH4NO3,respectively.Therefore,(NH4)2SO4massisestimatedbytheSO42−massmultipliedbyafactorof1.38,andtheNH4NO3massisestimatedbytheNO3−massmultipliedbyafactorof1.29.InordertocomparewiththereconstructedbextcalculatedusingMietheoryat550nm,σscmeasuredat525nmwiththeintegratingnephelometershouldbeconvertedtothatat550nmaccordingtothemethodbyJungetal.[16].αλλσσ−=)525()550()525()550(nmnmnmnmscsc(6)whereαisthescatteringAngströmexponent,anaverageαvalueof1.18determinedinBeijingduringthesummerof2012byTianetal.[18]wasusedinthepresentstudy.σabat550nmwascalculatedbasedonBCconcentrationfollowingtheequation:Atmosphere2015,6169σab=K×[BC](7)whereKistheconversionfactor,whichwassetto8.1m2·g−1inthisstudyaccordingtoapreviousstudy[25].Thesinglescatteringalbedo(SSA)isdefinedastheratiooftheaerosolscatteringcoefficienttotheextinctioncoefficientataknownwavelength,asderivedfromtheformula:abscscSSAσσσ+=(8)3.ResultsandDiscussion3.1.PM2.5ChemicalCompositionsThetimeseriesofdailyPM2.5massconcentrationsandthemeteorologicalparameters,includingRH,temperature,andWSareshowninFigure1.ThemassconcentrationsofPM2.5rangedfrom15.6–237.5μg·m−3andaveraged111.2±73.4μg·m−3.ComparedwithotherstudiesconductedinurbanBeijing,theaveragePM2.5concentrationinthisstudywaslowerthanthatmeasuredduringautumnof2006(194.2μg·m−3)[26]and2009(135μg·m−3)[12],whilecomparablewiththatobservedduringthesameseasonin2005(115.0μg·m−3)and2012(106.9μg·m−3)[27].ThereweresixtypercentofdayswithdailyPM2.5massconcentrationexceedingtheChinaAmbientAirQualityStandards(75μg·m−3).ThehighestPM2.5massconcentrationoccurredon26November,whichwasassociatedwiththehighrelativehumidityandlowwindspeed.01530456075900123456RH(%),Temp(oC)TempRHWS(ms-1)WS2011-11-92011-11-112011-11-132011-11-152011-11-172011-11-192011-11-212011-11-232011-11-252011-11-2703060901201501802102400510152025303540PM2.5PM2.5concentration(μgm-3)VRVR(km-1)01530456075900123456RH(%),Temp(oC)TempRHWS(ms-1)WS2011-11-92011-11-112011-11-132011-11-152011-11-172011-11-192011-11-212011-11-232011-11-252011-11-2703060901201501802102400510152025303540PM2.5PM2.5concentration(μgm-3)VRVR(km-1)Figure1.DailyvariationsofPM2.5massconcentrationandmeteorologicalparameters.Atmosphere2015,6170Thetemporalvariationsofninewater-solubleinorganicions(WSIIs)arepresentedinFigure2.Theaverageconcentrationoftotalnineionswas46.9±33.8μg·m−3,accountingfor41.5%ofPM2.5massconcentration.NO3−wasthemostabundantspeciesinWSIIswithanaverageconcentrationof14.7±11.2μg·m−3,followedbySO42−(12.2±9.63μg·m−3),NH4+(9.13±7.26μg·m−3),andCl−(6.62±4.62μg·m−3),accountingfor28.9%,25.6%,17.7%,and14.6%ofWSIIs,respectively.TherestofK+(1.66±1.41μg·m−3),Na+(0.95±0.52μg·m−3),Ca2+(0.81±0.32μg·m−3),F−(0.61±0.34μg·m−3),andMg2+(0.25±0.18μg·m−3)eachhadaminorcontributiontotheWSIIs,totallyaccountingfor13.2%ofWSIIs.SNAtypicallyconstituted33.5%–87.1%ofthetotalWSIIsand15.3%–46.0%ofPM2.5,respectively.0.00.30.60.91.21.51.82.12.42011-11-92011-11-112011-11-132011-11-152011-11-172011-11-192011-11-212011-11-232011-11-252011-11-27020406080100120Concentration(μgm-3)NH4+Ca2+Mg2+k+Na+Cl-F-NO3-SO42-[NO3-]/[SO42-]Figure2.Dailyvariationsofwater-solubleionsand[NO3−]/[SO42−]ratios.NO3−andSO42−aremainlyformedbyatmosphericreactionsofprecursorgasessuchasNOxandSO2.Generally,SO2emitsfromcoalcombustion,whileNOxistheresultofanytypeofcombustionsuchascoal-firedpowerplantsandautomobiles.Themassratio[NO3−]/[SO42−]hasbeenusedtoidentifytheinfluenceofthestationaryandmobilesourcesofsulfurandnitrogen[28].The[NO3−]/[SO42−]ratiorangedfrom0.41–2.42,withanaveragevalueof1.19.Itwashigherthanthatofvalues(around0.68)measuredinBeijingfrom2001–2006[26,29–31],butrathermorecomparabletothoseobservedinrecentyears[12].AsillustratedinFigure2,theratiowasusuallylowerduringweekenddays(12,18–19November)thanonworkdays,indicatingthatthehigher[NO3−]/[SO42−]ratiointhepresentstudywasprobablyassociatedwiththerapidincreaseofmotorvehiclesinrecentyears.AccordingtothestatisticsfromtheChinaVehicleEmissionControlAnnualReportin2013,theamountofvehiclesreached5millioninBeijingby2012,whichwasanincreaseofaboutthreetimescomparedwiththeamountofvehiclesin2001[32].PreviousstudyshowedthatCl−mightbederivedfromcoalcombustionwhentheCl−/Na+equivalentconcentrationratioswerelargerthanthemeanratio(1.17)forseawater.TheratiosofCl−/Na+wereintherangeof1.6–11.6withameanvalueof6.63duringthestudyperiod,implyingthatCl−maybeoriginatedfromcoalcombustionratherthanseaspray[12].Theequivalentmolarratiooftotalcationstototalanions(CE/AE)rangedfrom0.71–1.40,withanaveragevalueof0.95±0.14duringthestudyperiod.Figure3illustratesthescatterplotsofthesumofcationsversusanions.Resultsshowedthattheslopewasslightlylowerthan1,implyingthatthefineparticlescollectedinthestudyperiodwereweaklyacidic.Moreover,theratiosof[NH4+]/[SO42−+NO3−]Atmosphere2015,6171werecloseto1,demonstratingthatSO42−andNO3−werefullyneutralizedbyNH3.Therefore,thedominantchemicalformofSO42−was(NH4)2SO4ratherthanNH4HSO4,whichcanbeestimatedbytheSO42−massconcentrationmultipliedbyafactorof1.38,whileNO3−existedasNH4NO3,andcanbeestimatedbytheNO3−massconcentrationmultipliedbyafactorof1.29.0.00.20.40.60.81.01.21.41.61.80.00.20.40.60.81.01.21.41.61.8y=0.91x;R=0.991CE(μeqm-3)AE(μeqm-3)(a)0.00.20.40.60.81.01.21.40.00.20.40.60.81.01.21.4(b)NH4+(μeqm-3)SO42-+NO3-(μeqm-3)y=1.04x;R=0.981Figure3.Relationshipsofequivalentconcentrationsofcationsversusanions(a)and[NH4+]versus[SO42−+NO3−](b).AsillustratedinFigure4,OCvariedfrom2.1to64.3μg·m−3,averaging27.5±19.9μg·m−3,whileECrangedfrom0.86to19.6μg·m−3,averaging9.62±6.24μg·m−3.ThecontributionofOCandECtoPM2.5were24.5%and8.96%,respectively.SuchlevelsofOCandECwereclosetothoseobservedinthesameseasoninrecentyears[10,26,30,33],whereaslowerthanthosemeasuredtenyearsago[29,34].2011-11-92011-11-112011-11-132011-11-152011-11-172011-11-192011-11-212011-11-232011-11-252011-11-270102030405060700.00.51.01.52.02.53.03.54.0OC/ECConcentration(μgm-3)OCECOC/EC(a)2011-11-92011-11-112011-11-132011-11-152011-11-172011-11-192011-11-212011-11-232011-11-252011-11-2701020304050607001020304050SOC/OC(%)Concentration(μgm-3)POCSOCSOC/OC(b)Figure4.VariationsofOC,EC,andOC/EC(a)aswellasprimaryorganiccarbon(POC),secondaryorganiccarbon(SOC),andSOC/OC(b).TherelationshipsbetweenOCandECcanbeusedtoidentifytheoriginsofcarbonaceousparticles[35,36].AsshowninFigure5,strongcorrelationsbetweenOCandECwereobservedwithacorrelationcoefficientof0.97,indicatingthatOCandECwerelikelyderivedfromthesamemajorprimarysourcesduringthecampaigns.Ontheotherhand,theOC/ECratiosdidnotvarydistinctlyduringthestudyperiod,especiallyduringthespaceheatingdays.Theratiosrangedfrom1.96–3.52,averaging2.79,andwereveryclosetothevalueof2.7fromcoalcombustionsuggestedbyAtmosphere2015,6172Watsonetal.[37].ThispointedtothefactthatOCandEClikelyoriginatedmainlyfromcoalcombustions.Furthermore,themeanOC/ECratiowashigherthan2,indicatingthatSOCmightbepresentduringthestudyperiod[38].03691215182101020304050607080OCconcentrations(μgm-3)ECconcentrations(μgm-3)y=2.88xR=0.97Figure5.RelationshipsofOCandECconcentrations.ThemethodofEC-tracerhasbeenwidelyusedtoestimatetheSOCconcentrationsinceitwasfirstintroducedbyCastroetal.[9,39].ThisapproachsuggestedthatsampleshavingthelowestOC/ECratiocontainedalmostexclusivelyPOC.Then,theconcentrationofSOCcanbeestimatedbythefollowingformula:POC=EC×(OC/EC)min(9)SOC=OC–POC(10)where(OC/EC)minwasthevalueofthelowestOC/ECratio.Basedonthe(OC/EC)minof1.63,theSOCconcentrationsvariedfrom0.02–25.9μg·m−3withanaveragevalueof9.03μg·m−3.AsillustratedinFigure4,itisinterestingtonotethattheconcentrationsofSOCwerestillhighwithlowtemperatureduringthestudyperiodexcepton10,12and22November.Thismaybecausedbythecombinationofthehighprecursoremissionduetothelargelyincreasedcoalcombustionforresidentialheatingandlowwindspeed(averaging0.79m·s−1),whichwasfavorableforthepollutantsaccumulationandformationofsecondaryorganicaerosol.Thelowtemperaturewasnotfavorableforthegastoparticleconversion,whereasthefrequentinversionconditionswerelikelyfavorablefortheformationofSOC[40].DailyvariationsofcrustalelementsareshowninFigure6.FivecrustalelementshaveasimilarvariationasthePM2.5massconcentrations.Theirconcentrationsvariedsignificantlyfromdaytoday.TheaverageconcentrationforAl,Si,Ca,Fe,andTiwas0.51±0.26,1.01±0.58,0.74±0.36,1.10±0.64,and0.06±0.03μg·m−3,respectively.Increasingwindspeedcouldbeexpectedtoincreasetheconcentrationsofcrustalelements,buttheconcentrationofthefiveelementshadaweakcorrelationwiththewindspeed(R<0.4)inthepresentstudy.However,whenthewindspeedexceeded1.5m·s−1(11and18November),theconcentrationsofcrustalelementswerehigherthanthoseonanyotherday.TheFSmassconcentrationwasestimatedbysummingtheabovefivecrustalelementsplusoxygenforAtmosphere2015,6173thenormaloxidesasEquation(1).TheaveragemassconcentrationsofFSwere7.66±3.62μg·m−3,rangingfrom1.99–15.1μg·m−3,andaccountingfor9.42%ofPM2.5.2011-11-92011-11-112011-11-132011-11-152011-11-172011-11-192011-11-212011-11-232011-11-252011-11-270.00.30.60.91.21.51.82.12.42.73.0AlSiCaFeTiElementconcentration(μgm-3)Figure6.Timeseriesofcrustalelementsconcentration.3.2.PM2.5MassBalanceThereconstructedPM2.5massconcentrationswereclosetothemeasuredoneswithstrongcorrelation(Figure7),indicatingthatthereconstructionofPM2.5couldbereasonable.Nevertheless,afewbiaseswereobservedinthereconstructedPM2.5mass.Waterabsorptionofthewater-solublecomponentsmayleadtopositivebiasesandoverestimatethePM2.5mass,whilethevolatilizationofNH4NO3andvolatileorganicmattermayresultinnegativebiases.Moreover,theconversionusedtoestimateOMfromOCalsocausedanuncertaintyincalculatingthePM2.5mass.050100150200250300050100150200250300ReconstructedPM2.5(μgm-3)MeasuredPM2.5(μgm-3)y=0.97xR=0.9971:1lineFigure7.ScatterplotsofmeasuredandreconstructedPM2.5massconcentrations.Figure8presentsthereconstructedchemicalcompositionsinPM2.5.Onaverage,thefractionsofmajorchemicalcompositionsfollowedtheorderofOM>NH4NO3>(NH4)2SO4>FS,CS,andEC.OMwasthemostabundantcomponentinPM2.5(averaging45.8±31.7μg·m−3),accountingfor39.4%Atmosphere2015,6174ofPM2.5.ThecontributionofFS(averaging7.66±3.62μg·m−3),CS(averaging9.47±6.24μg·m−3),andEC(averaging9.97±6.28μg·m−3)toPM2.5wassimilar,eachapproximatedto9%.ThepercentageofSNA(30.2%)wasmuchhigherthanthethreespeciesofFS,CS,andEC,butslightlylowerthanthatofOM.Thepercentagesof(NH4)2SO4andNH4NO3(averaging16.7±13.2and19.0±14.4μg·m−3,respectively)were14.9%and15.4%,respectively.Comparedwiththeresultsdeterminedoverthesameperiodinearlieryears[11],itisnotedthatthepercentageofSNAinourstudydecreasedby3%–10%comparedwiththatmeasuredduring2003–2007,whiletheOMfractionroseabout5%.2011-11-92011-11-112011-11-132011-11-152011-11-172011-11-192011-11-212011-11-232011-11-252011-11-270306090120150180210240ECCSFSOMNH4NO3(NH4)2SO4Concentration(μgm-3)PM2.5measuredFigure8.DailyvariationsofthereconstructedchemicalcompositioninPM2.5.3.3.AnalysisofAerosolOpticalPropertiesThetimeseriesofdailyaveragedopticalpropertiesincludingσsc,σap,andSSAareshowninFigure9.Dailyσscrangedfrom31.1–667Mm−1,withameanvalueof270±200Mm−1,whileσapwasintherangeof8.24–158.0Mm−1,withameanvalueof74.3±43.4Mm−1.ThemeanσscvaluewasconsiderablelowerthanthatmeasuredinurbanBeijingin2009andduring2005–2006[41,42],buthigherthanthatobtainedatasuburbansite(Changping)andruralsite(Shangdianzi)[15].Comparedwiththeresultsmentionedabove,themeanσapvaluewaslowerthanthatmeasuredin2009aswell,buthigherthanthatduring2005–2006.Theincreasedσapinrecentyearsislikelyattributabletotherapidincreaseofvehiclepollution,sincevehicularexhaustwasoneoftheprimaryfactorsaffectingaerosolabsorption.ThemeanvalueofSSAwas0.76,whichwascomparablewiththeresultsdeterminedinBeijingduring2005–2006[42]andin2009[41].MSEisanimportantparameterforestimatingradiativeforcingofaerosolsandchemicalextinctionbudgetsforvisibilityimpairment.Generally,therearetwomethodstoestimateMSE,i.e.,measurementmethodandmultilinearregressionmethod[43].MSEwasdefinedastheratioofmeasuredσsctoaerosolmassconcentrationaccordingtothemeasurementmethod.Onealternativemethodcanalsobeusedbyregressionofthemeasuredσscagainstaerosolmassconcentration.SincetheRHinthenephelometerwasmaintainedbelow60%andthePM2.5massconcentrationsweremeasuredatRHof40%,thosedayswithRHbelow50%wereselectedforregressingtominimizetheimpactofparticlehygroscopicgrowthonσsc.Accordingtothemeasurementmethod,dailyMSEvariedfrom1.70–3.02m2·g−1,withameanvalueof2.32±0.44m2·g−1.ItisnotedthatastrongAtmosphere2015,6175correlationbetweenthemeasuredσscandPM2.5massconcentrationwasobservedwithahighcorrelationcoefficientof0.988(Figure9).Theslopewas2.67fromalinearregression,whichwasslightlyhigherthanthevalueobtainedbythemeasurementmethod,alsofoundbyTitosetal.[43].ComparedtothatmeasuredinurbanBeijingbyZhaoetal.,andJingetal.[41],therelativelowerMSEinourstudywaslikelyrelatedtotheheavilypollutedevents.2011-11-92011-11-112011-11-132011-11-152011-11-172011-11-192011-11-212011-11-232011-11-252011-11-2701002003004005006007008000.00.20.40.60.81.0σscandσap(Mm-1)σscσapSSASSA(a)0501001502002500100200300400500600700Measuredσsc(Μm-1)PM2.5concentration(μgm-3)y=2.67xR=0.988(b)Figure9.Thetimeseriesofdailyaveragedaerosolopticalproperties(a)andrelationshipbetweenthemeasuredσscandPM2.5concentration(b).3.4.ChemicalApportionmentoftheAerosolOpticalParametersInordertoappointthecontributiontothevisibilityimpairment,bextwasreconstructedbasedonthechemicalcompositionsofaerosol.Inthepresentstudy,theextinctioneffectbyfineparticleswasstudied,whilethecontributionsofgaseswereexcludedbecausetheyonlyaccountedforasmallfraction(about2%–4%)ofbext[44].TheimpactofseasaltonbextwasignoredsinceBeijingisabout150kmawayfromtheEastChina’scoastaloceans.Moreover,thecontributionofcoarsemasstobextwasnotincludedbecauseoflackoftheconcentrationsofcoarsematter.Then,therevisedIMPROVEformulaofEquation(2)wasmodifiedasfollows:][1][10]arg[1.6][8.2]arg[)(1.5][)(4.2])(arg[)(8.4])([)(2.23434424424SoilFineECeOMLSmallOMNOeNHLRHfNOSmallNHRHfSONHeLRHfSONHSmallRHfbLsLsext×+×+×+×+××+××+××+××=(11)ThemeasuredandreconstructedbextareillustratedinFigure10.Itisfoundthatthemeasuredbextwereconsiderablylowerthanthereconstructedvalue,especiallyduringtheheavilypollutionlevels.Thedeviationvariedfrom18.1%–140%,withanaveragevalueofabout70%.Jungetal.[45]alsofoundthatthebextwasoverestimatedby36.7%basedontherevisedIMPROVEalgorithm.However,afewotherstudiesusingtheIMPROVEformulafoundthatthereexistedagoodcorrelationbetweenthemeasuredandreconstructedbext,andtheslopeswerecloseto1.0inShanghai[19]andGuangzhou[4].ComparedtotheresultsconductedinShanghai,alowerMAE(7.7)wasusedtocalculatebap.Ifthesamevalueof7.7wasusedinthepresentstudy,thebiaseswoulddecreaseby8%.Additionally,theMSEusedtocalculatebextinGuangzhouwasmuchhigherthanthevalueinthepresentstudy.Thus,itcanbededucedthatalowerMSEthanthevalueadoptedaccordingtotherevisedIMPROVEAtmosphere2015,6176algorithminthepresentstudyshouldbeusedtoreconstructbext,whichmayresultinareconstructedbextapproximatelyequaltothemeasuredbext.Althoughmorelocally-derivedMSEandMAEwerenecessaryforeffectivelyreconstructingthebext,wedidnotobtainthesevaluesinthepresentstudyduetolackoftheamountofinsituandsamplingdata.2011-11-92011-11-112011-11-132011-11-152011-11-172011-11-192011-11-212011-11-232011-11-252011-11-270300600900120015001800ReconstructedbextMeasuredbextbext(Mm-1)(a)0100200300400500600700020040060080010001200140016001800ScatteringcoefficientAbsorptioncoefficientExtintioncoefficienty=1.829x+0.708R=0.989y=1.289x+6.906R=0.967y=1.759x-10.33R=0.989Reconstructedbsp,bap(Mm-1)Measuredσsp,σap(Mm-1)(b)Figure10.Thetemporalvariationsofmeasuredandreconstructedbext(a)andthecorrelationbetweenmeasuredandreconstructedopticalparameters(b).Althoughthereconstructedbextwashigherthanthatmeasuredone,bothwerecorrelatedwell(R=0.989),sodidbspandbap(Figure11).Therefore,therelativecontributionofeachchemicalcompositiontobextcanalsobeanalyzedbythemodifiedIMPROVEalgorithm.AsshowninFigure11,OM,(NH4)2SO4,NH4NO3andECwerethedominantcontributors,accountingfor97.7%ofbexttogether,whilethecontributionofFSwassmall,accountingforonly2.3%ofbext.Onaverage,OMwasthelargestcontributortothebext,accountingfor44.7%ofbext,whileSNAaccountedfor34.4%ofbext.(NH4)2SO4andNH4NO3contributed16.4%and18.0%ofbext,respectively.OurresultsweredifferentfromthosedeterminedinBeijinginpreviousstudiesconductedinsummer[16,18,46],whichshowedthat(NH4)2SO4andNH4NO3werethelargestcontributortothebext.2011-11-92011-11-112011-11-132011-11-152011-11-172011-11-192011-11-212011-11-232011-11-252011-11-27020406080100ECFSOMNH4NO3(NH4)2SO4Percentage(%)meanFigure11.RelativecontributionsofeachchemicalcompositioninPM2.5tobext.Atmosphere2015,61773.5.TypicalPollutionEpisodesAsshowninFigure1,fourobviouspollutionepisodeswereobservedduringthecampaign,withthevisibilitydeterioratingtolessthan10km.Theywereobservedon9–11November,14–17November,20and21November,and23–27November.Obviously,inthefirstpollutionperiod,pollutantsaccumulatedgraduallyfrom8–10November,withdailyPM2.5massconcentrationincreasingfrom36.3–98.8μg·m−3,andthendecreasingdramaticallyto17.1μg·m−3.AllthechemicalcomponentsincreasedwithPM2.5mass,especiallyforNO3−,whichincreasedbysixtimescomparedwiththevalueon8November.Furthermore,itcanbefoundthatduringthepollutionaccumulationperiod,thewindspeedwaslessthan0.5m·s−1.On11November,strongwindwasfavorablefordispersionofthepollutantsandaccumulationofthecrustalmaterial.Moreover,12Novemberwasweekend,andthereductionofvehiclesmayalsocontributetothelowerconcentrationofPM2.5.Fromanextinctionperspective,inthefirstpollutionstage,σscincreasedfrom71.6–177.2Mm−1,whileσapvariedlittle,implyingthatthevisibilitydegradationwasmainlycausedbytherapidincreaseofSNA.Inthesecondpollutionperiodfrom12–19November,dailyPM2.5massconcentrationincreasedfrom17.1–215.5μg·m−3,withthemaximumvalueoccurringon15November,andthenplungingto32.0μg·m−3withinthreedays.AsillustratedinFigure1,itcanbefoundthatthewindspeedswereverylowfrom12–15November,andinfavoroftheaccumulationofthepollutants.Ontheotherhand,theRHincreasedfrom30%to82%,whichwasfavorablefortheformationofSNA.ResidentialheatingstartinginthemiddleofNovembermightbetheprimaryreasonfortheheavierpollutioninthesecondstage.AsshowninFigure2,theconcentrationofCl−on13Novemberhadadramaticincreasecomparedwiththepreviousdays,approximatelyto10timeshigherthanthaton12November.ChloridemaybeessentiallycontributedbycoalcombustioninBeijingduringtheheatingseason.Thus,thehighPM2.5massconcentrationwasmainlyassociatedwithcoalcombustion.Infact,theconcentrationsofOCandECduring13–27Novemberweremuchhigherthanthosebefore12November.ThesharpincreaseofOCandECalsoverifiedtheinfluenceofcoalcombustionontheincreaseofPM2.5massconcentration.Unlikethefirstpollutionstage,σaponthemostheavypollutionday(15November)wasabout15timeshigherthanthatonthecleandays.Meanwhile,σscrosefrom31.0–439.2Mm−1,withasimilargrowthrateasσap.AsshowninFigure11,duringthesecondpollutionepisode,thecontributionofOMandECtobextdecreasedfrom54.2%and25.6%to32.7%and11.5%asthepollutantsaccumulated,respectively,whilethecontributionofSNAtobextincreasedfrom18.3%–54.8%ontheaccumulationperiod.On16November,althoughthemassconcentrationofPM2.5reducedby40%,thevisibilitywasstilllessthan3km,whichwasascribedtothelargestcontributionofSNAtobext.AspresentedinFigure11,thecontributionofSNAreachedupto73.7%whereasthatofOMandECdecreasedto26.7%tobext.ThePM2.5massconcentrationhadasignificantdecreaseon18Novemberduetorainandstrongwind(Figure1).Basedontheanalysisofatypicalpollutionepisode,itcanbeconcludedthatthesecondaryformationofaerosolwasmoreimportantthanthecarbonaceouspollutionforthehazeformationinBeijing.Intheothertwopollutionperiods,asimilartrendofthechemicalcompositiontothatduringthesecondpollutionstagewasobserved.Ingeneral,thepollutionaccumulationwasinaccordancewiththeincreaseoftheSNA,OCandECconcentrationsunderstableweatherconditionsuntilarrivalofstrongwind.Atmosphere2015,61784.ConclusionsDuringtheheatingperiodfrom8–28November2011,aerosolopticalpropertiesaswellaschemicalcompositionswereinvestigatedsimultaneouslyinBeijing.DailyPM2.5massconcentrationvariedfrom15.6–237.5μg·m−3andpresentedameanvalueof111.2±73.4μg·m−3.AmongthechemicalcomponentsinPM2.5,NO3−wasthemostabundantspeciesinWSIIswithanaverageconcentrationof14.7±11.2μg·m−3,followedbySO42−,NH4+,andCl−,accountingfor28.9%,25.6%,17.7%,and14.6%ofWSIIs,respectively.TherestofK+,Na+,Ca2+,F−,andMg2+haveaminorcontributiontotheWSIIs,accountingfor13.2%ofWSIIstogether.Themeanσsc,σapandSSAvaluesat550nmwere270±200Mm−1,74.3±43.4Mm−1and0.76duringtheentireobservationperiod,respectively.Bothoftheσscandσapincreasedsignificantlyduringthepollutionaccumulationepisode.ThebextwereestimatedbytherevisedIMPROVEformulabasedonthechemicalcompositionsofPM2.5.Comparedwiththemeasuredσscandσap,thereconstructedbextwasoverestimated,buthadastrongcorrelationwithahighcorrelationcoefficientof0.989.OMwasthelargestcontributor,accountingfor44.7%ofbext,followedbyNH4NO3,(NH4)2SO4,withminorcontributionfromsoildust(2.3%).PollutionepisodesinBeijingwerestronglyinfluencedbybothemissionsandmeteorologicalconditions.Pollutantwasaccumulatedincalmorweakwindswhilediffusedunderstrongwindconditions.Additionally,thecoalcombustionforresidentialheatingwasanothermajorreasonfortheheavypollutionduringthesamplingperiod.Fourtypicalpollutionepisodesduringthestudyperiodwereobserved,itwasfoundthatNH4NO3and(NH4)2SO4werethelargestcontributortothebextratherthancarbonaceouscomponentsduringthepollutionaccumulationepisodes,implyingthatthesecondaryinorganicpollutantsweremoreimportantthanthecarbonaceouspollutionforheavypollutionformation.Therefore,thereductionoftheirprecursorssuchasSO2,NOxandNH3couldeffectivelyimprovethevisibilityinBeijing.AcknowledgmentsThisstudywassupportedbytheNationalNaturalScienceFoundationofChinaprojects(41075093,41275121and41375123),the“StrategicPriorityResearchProgram”oftheChineseAcademyofSciences(KJZD-EW-TZ-G06-04),theMinistryofEnvironmentalProtectionofChina(201209007),StateEnvironmentalProtectionKeyLaboratoryofSourcesandControlofAirPollutionComplex(SCAPC201310),JiangsuKeyLaboratoryofAtmosphericEnvironmentMonitoringandPollutionControlofNanjingUniversityofInformationScienceandTechnology,andJiangsuProvinceInnovationPlatformforSuperioritySubjectofEnvironmentalScienceandEngineering(KHK1201).TheauthorsthankLian-fangWei,Jin-luDong,andRongZhangfortheircontributionstothefieldandlaboratorywork.AuthorContributionsTheworkwascompletedwithcollaborationbetweenalltheauthors.Thecorrespondingauthordesignedtheresearchtheme,organizedthePM2.5samplingwithXinghuaLi,checkedtheexperimentalresults,anddesignedthemanuscriptwithHuanboWang.HuanboWanganalyzedthedata,interpretedAtmosphere2015,6179theresultsandwrotethemanuscript.XinghuaLiwasinchargeofPM2.5samplingandcollectedallrelevantdata,andChengcaiLiwasinchargeofobservationofopticalparameters.JunjiCaowasinchargeofinorganicelementsanalysis.YongliangMaandKebinHeprovidedanalysesofwater-solubleionsandOC/EC.GuangmingShiwasinvolvedinrelevantdatainterpretationanddiscussion.ConflictsofInterestTheauthorsdeclarenoconflictofinterest.Reference1.Wang,Q.Y.;Cao,J.J.;Tao,J.;Li,N.;Su,X.O.;Chen,L.W.A.;Wang,P.;Shen,Z.X.;Liu,S.X.;Dai,W.T.Long-termtrendsinvisibilityandatChengdu,China.PLoSOne2013,doi:10.1371/journal.pone.00688942.Zhang,X.Y.;Wang,Y.Q.;Niu,T.;Zhang,X.C.;Gong,S.L.;Zhang,Y.M.;Sun,J.Y.AtmosphericaerosolcompositionsinChina:Spatial/temporalvariability,chemicalsignature,regionalhazedistributionandcomparisonswithglobalaerosols.Atmos.Chem.Phys.2012,12,779–799.3.Shen,G.F.;Xue,M.;Yuan,S.Y.;Zhang,J.;Zhao,Q.Y.;Li,B.;Wu,H.S.;Ding,A.J.Chemicalcompositionsandreconstructedlightextinctioncoefficientsofparticulatematterinamega-city.InthewesternYangtzeRiverDelta,China.Atmos.Environ.2014,83,14–20.4.Tao,J.;Zhang,L.M.;Ho,K.F.;Zhang,R.J.;Lin,Z.J.;Zhang,Z.S.;Lin,M.;Cao,J.J.;Liu,S.X.;Wang,G.H.ImpactofPM2.5chemicalcompositionsonaerosollightscatteringinGuangzhou—ThelargestmegacityinsouthChina.Atmos.Res.2014,135,48–58.5.Chen,J.;Qiu,S.S.;Shang,J.;Wilfrid,O.M.F.;Liu,X.G.;Tian,H.Z.;Boman,J.ImpactofrelativehumidityandwatersolubleconstituentsofPM2.5onvisibilityimpairmentinBeijing,China.AerosolAirQual.Res.2014,14,260–268.6.Ramanathan,V.;Feng,Y.Airpollution,greenhousegasesandclimatechange:Globalandregionalperspectives.Atmos.Environ.2009,43,37–50.7.Ma,X.;Yu,F.;Luo,G.AerosoldirectradiativeforcingbasedonGEOS-Chem-APManduncertainties.Atmos.Chem.Phys.2012,12,5563–5581.8.Yang,F.;Huang,L.;Duan,F.;Zhang,W.;He,K.;Ma,Y.;Brook,J.R.;Tan,J.;Zhao,Q.;Cheng,Y.CarbonaceousspeciesinPM2.5atapairofrural/urbansitesinBeijing,2005–2008.Atmos.Chem.Phys.2011,11,7893–7903.9.Yang,F.M.;He,K.B.;Ma,Y.L.;Zhang,Q.;Cadle,S.H.;Chan,T.;Mulawa,P.A.CharacterizationofcarbonaceousspeciesofambientPM2.5inBeijing,China.J.AirWasteManag.2005,55,984–992.10.Zhao,P.S.;Dong,F.;He,D.;Zhao,X.J.;Zhang,X.L.;Zhang,W.Z.;Yao,Q.;Liu,H.Y.CharacteristicsofconcentrationsandchemicalcompositionsforPM2.5intheregionofBeijing,Tianjin,andHebei,China.Atmos.Chem.Phys.2013,13,4631–4644.11.Yang,F.;Tan,J.;Zhao,Q.;Du,Z.;He,K.;Ma,Y.;Duan,F.;Chen,G.;Zhao,Q.CharacteristicsofPM2.5speciationinrepresentativemegacitiesandacrossChina.Atmos.Chem.Phys.2011,11,5207–5219.Atmosphere2015,618012.Zhang,R.;Jing,J.;Tao,J.;Hsu,S.C.;Wang,G.;Cao,J.;Lee,C.S.L.;Zhu,L.;Chen,Z.;Zhao,Y.;etal.ChemicalcharacterizationandsourceapportionmentofPM2.5inBeijing:Seasonalperspective.Atmos.Chem.Phys.2013,13,7053–7074.13.Xu,J.W.;Tao,J.;Zhang,R.J.;Cheng,T.T.;Leng,C.P.;Chen,J.M.;Huang,G.H.;Li,X.;Zhu,Z.Q.MeasurementsofsurfaceaerosolopticalpropertiesinwinterofShanghai.Atmos.Res.2012,109,25–35.14.Yan,P.;Tang,J.;Huang,J.;Mao,J.T.;Zhou,X.J.;Liu,Q.;Wang,Z.F.;Zhou,H.G.ThemeasurementofaerosolopticalpropertiesataruralsiteinnorthernChina.Atmos.Chem.Phys.2008,8,2229–2242.15.Zhao,X.J.;Zhang,X.L.;Pu,W.W.;Meng,W.;Xu,X.F.ScatteringpropertiesoftheatmosphericaerosolinBeijing,China.Atmos.Res.2011,101,799–808.16.Jung,J.;Lee,H.;Kim,Y.J.;Liu,X.G.;Zhang,Y.H.;Hu,M.;Sugimoto,N.Opticalpropertiesofatmosphericaerosolsobtainedbyinsituandremotemeasurementsduring2006CampaignofAirQualityResearchinBeijing(CAREBeijing-2006).J.Geophys.Res.:Atmos.2009,doi:10.1029/2008JD010337.17.Garland,R.M.;Yang,H.;Schmid,O.;Rose,D.;Nowak,A.;Achtert,P.;Wiedensohler,A.;Takegawa,N.;Kita,K.;Miyazaki,Y.;etal.Aerosolopticalpropertiesinaruralenvironmentnearthemega-cityGuangzhou,China:Implicationsforregionalairpollution,radiativeforcingandremotesensing.Atmos.Chem.Phys.2008,8,5161–5186.18.Tian,P.;Wang,G.F.;Zhang,R.J.ImpactsofaerosolchemicalcompositionsonopticalpropertiesinurbanBeijing,China.Particuology2014,doi:10.1016/j.partic.2014.1003.1014.19.Huang,G.H.;Cheng,T.T.;Zhang,R.J.;Tao,J.;Leng,C.P.;Zhang,Y.W.;Zha,S.P.;Zhang,D.Q.;Li,X.;Xu,C.Y.OpticalpropertiesandchemicalcompositionofPM2.5inShanghaiinthespringof2012.Particuology2014,13,52–59.20.Pitchford,M.;Malm,W.;Schichtel,B.;Kumar,N.;Lowenthal,D.;Hand,J.Revisedalgorithmforestimatinglightextinctionfromimproveparticlespeciationdata.J.AirWasteManag.2007,57,1326–1336.21.Chow,J.C.;Watson,J.G.;Chen,L.W.A.;Chang,M.C.O.;Robinson,N.F.;Trimble,D.;Kohl,S.TheIMPROVE_Atemperatureprotocolforthermal/opticalcarbonanalysis:Maintainingconsistencywithalong-termdatabase.J.AirWasteManag.2007,57,1014–1023.22.Xu,H.M.;Cao,J.J.;Ho,K.F.;Ding,H.;Han,Y.M.;Wang,G.H.;Chow,J.C.;Watson,J.G.;Khol,S.D.;Qiang,J.;etal.LeadconcentrationsinfineparticulatematterafterthephasingoutofleadedgasolineinXi’an,China.Atmos.Environ.2012,46,217–224.23.Xing,L.;Fu,T.M.;Cao,J.J.;Lee,S.C.;Wang,G.H.;Ho,K.F.;Cheng,M.C.;You,C.F.;Wang,T.J.SeasonalandspatialvariabilityoftheOM/OCmassratiosandhighregionalcorrelationbetweenoxalicacidandzincinChineseurbanorganicaerosols.Atmos.Chem.Phys.2013,13,4307–4318.24.Malm,W.C.;Sisler,J.F.;Huffman,D.;Eldred,R.A.;Cahill,T.A.SpatialandseasonaltrendsinparticleconcentrationandopticalextinctionintheUnitedStates.J.Geophys.Res.:Atmos.1994,99,1347–1370.25.Barnard,J.C.;Kassianov,E.I.;Ackerman,T.P.;Johnson,K.;Zuberi,B.;Molina,L.T.;Molina,M.J.Estimationofa“radiativelycorrect”blackcarbonspecificabsorptionduringtheMexicoCityMetropolitanArea(MCMA)2003fieldcampaign.Atmos.Chem.Phys.2007,7,1645–1655.Atmosphere2015,618126.Zhou,J.M.;Zhang,R.J.;Cao,J.J.;Chow,J.C.;Watson,J.G.CarbonaceousandioniccomponentsofatmosphericfineparticlesinBeijingandtheirimpactonatmosphericvisibility.AerosolAirQual.Res.2012,12,492–502.27.Sun,K.;Qu,Y.;Wu,Q.;Han,T.T.;Gu,J.W.;Zhao,J.J.;Sun,Y.L.;Jiang,Q.;Gao,Z.Q.;Hu,M.;etal.Chemicalcharacteristicsofsize-resolvedaerosolsinwinterinBeijing.J.Environ.Sci.2014,26,1641–1650.28.Arimoto,R.;Duce,R.A.;Savoie,D.L.;Prospero,J.M.;Talbot,R.;Cullen,J.D.;Tomza,U.;Lewis,N.F.;Jay,B.J.RelationshipsamongaerosolconstituentsfromAsiaandtheNorthPacificduringPem-WestA.J.Geophys.Res.:Atmos.1996,101,2011–2023.29.Duan,F.K.;He,K.B.;Ma,Y.L.;Yang,F.M.;Yu,X.C.;Cadle,S.H.;Chan,T.;Mulawa,P.A.ConcentrationandchemicalcharacteristicsofPM2.5inBeijing,China:2001–2002.Sci.TotalEnviron.2006,355,264–275.30.Wang,S.X.;Xing,J.;Chatani,S.;Hao,J.M.;Klimont,Z.;Cofala,J.;Amann,M.VerificationofanthropogenicemissionsofChinabysatelliteandgroundobservations.Atmos.Environ.2011,45,6347–6358.31.Wang,Y.;Zhuang,G.S.;Tang,A.H.;Yuan,H.;Sun,Y.L.;Chen,S.A.;Zheng,A.H.TheionchemistryandthesourceofPM2.5aerosolinBeijing.Atmos.Environ.2005,39,3771–3784.32.Wang,R.S.;Xiao,H.;Bai,T.;Wang,Y.J.;Qian,L.Y.Theamountofvehiclesby“Chinavehicleemissioncontrolannualreportin2013”.Environ.Sustain.Dev.2014,2014,88–90.33.Cheng,Y.;Engling,G.;He,K.B.;Duan,F.K.;Ma,Y.L.;Du,Z.Y.;Liu,J.M.;Zheng,M.;Weber,R.J.BiomassburningcontributiontoBeijingaerosol.Atmos.Chem.Phys.2013,13,7765–7781.34.Yang,F.;He,K.;Ye,B.;Chen,X.;Cha,L.;Cadle,S.H.;Chan,T.;Mulawa,P.A.One-yearrecordoforganicandelementalcarboninfineparticlesindowntownBeijingandShanghai.Atmos.Chem.Phys.2005,5,1449–1457.35.Cao,J.J.;Lee,S.C.;Chow,J.C.;Watson,J.G.;Ho,K.F.;Zhang,R.J.;Jin,Z.D.;Shen,Z.X.;Chen,G.C.;Kang,Y.M.;etal.SpatialandseasonaldistributionsofcarbonaceousaerosolsoverChina.J.Geophys.Res.:Atmos.2007,doi:10.1029/2006JD008205.36.Turpin,B.J.;Huntzicker,J.J.IdentificationofsecondaryorganicaerosolepisodesandquantitationofprimaryandsecondaryorganicaerosolconcentrationsduringSCAQS.Atmos.Environ.1995,29,3527–3544.37.Watson,J.G.;Chow,J.C.;Houck,J.E.PM2.5chemicalsourceprofilesforvehicleexhaust,vegetativeburning,geologicalmaterial,andcoalburninginnorthwesternColoradoduring1995.Chemosphere2001,43,1141–1151.38.Chow,J.C.;Watson,J.G.;Lu,Z.Q.;Lowenthal,D.H.;Frazier,C.A.;Solomon,P.A.;Thuillier,R.H.;Magliano,K.DescriptiveanalysisofPM2.5andPM10atregionallyrepresentativelocationsduringSJVAQS/AUSPEX.Atmos.Environ.1996,30,2079–2112.39.Castro,L.M.;Pio,C.A.;Harrison,R.M.;Smith,D.J.T.CarbonaceousaerosolinurbanandruralEuropeanatmospheres:Estimationofsecondaryorganiccarbonconcentrations.Atmos.Environ.1999,33,2771–2781.40.Sheehan,P.E.;Bowman,F.M.Estimatedeffectsoftemperatureonsecondaryorganicaerosolconcentrations.Environ.Sci.Technol.2001,35,2129–2135.Atmosphere2015,618241.Jing,J.S.;Wu,Y.F.;Tao,J.;Che,H.Z.Observationandanalysisofnear-surfaceatmosphericaerosolopticalpropertiesinurbanBeijing.Particuology2014,doi:10.1016/j.partic.2014.1003.1013.42.He,X.;Li,C.C.;Lau,A.K.H.;Deng,Z.Z.;Mao,J.T.;Wang,M.H.;Liu,X.Y.AnintensivestudyofaerosolopticalpropertiesinBeijingurbanarea.Atmos.Chem.Phys.2009,9,8903–8915.43.Titos,G.;Foyo-Moreno,I.;Lyamani,H.;Querol,X.;Alastuey,A.;Alados-Arboledas,L.Opticalpropertiesandchemicalcompositionofaerosolparticlesatanurbanlocation:Anestimationoftheaerosolmassscatteringandabsorptionefficiencies.J.Geophys.Res.:Atmos.2012,doi:10.1029/2011JD016671.44.Cao,J.J.;Wang,Q.Y.;Chow,J.C.;Watson,J.G.;Tie,X.X.;Shen,Z.X.;Wang,P.;An,Z.S.ImpactsofaerosolcompositionsonvisibilityimpairmentinXi’an,China.Atmos.Environ.2012,59,559–566.45.Jung,J.;Lee,H.;Kim,Y.J.;Liu,X.G.;Zhang,Y.H.;Gu,J.W.;Fan,S.J.AerosolchemistryandtheeffectofaerosolwatercontentonvisibilityimpairmentandradiativeforcinginGuangzhouduringthe2006PearlRiverDeltacampaign.J.Environ.Manag.2009,90,3231–3244.46.Li,X.H.;He,K.B.;Li,C.C.;Yang,F.M.;Zhao,Q.;Ma,Y.L.;Cheng,Y.;Ouyang,W.J.;Chen,G.C.PM2.5mass,chemicalcomposition,andlightextinctionbeforeandduringthe2008BeijingOlympics.J.Geophys.Res.:Atmos.2013,118,12158–12167.©2015bytheauthors;licenseeMDPI,Basel,Switzerland.ThisarticleisanopenaccessarticledistributedunderthetermsandconditionsoftheCreativeCommonsAttributionlicense(http://creativecommons.org/licenses/by/4.0/).

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱