Wangetal.,Sci.Adv.2018;4:eaaq02101August2018SCIENCEADVANCESRESEARCHARTICLE1of10ENVIRONMENTALSTUDIESEvolvingwastewaterinfrastructureparadigmtoenhanceharmonywithnatureXuWang1,2,3,GlenDaigger4,Duu-JongLee5,6,JunxinLiu1,Nan-QiRen7,JiuhuiQu1,8,GangLiu9,DavidButler2Restoringandimprovingharmonybetweenhumanactivitiesandnatureareessentialtohumanwell-beingandsurvival.Theroleofwastewaterinfrastructureisevolvingtowardresourcerecoverytoaddressthischallenge.Yet,existingdesignapproachesforwastewatersystemsfocusmerelyontechnologicalaspectsofthesesystems.Ifsystemdesigncouldtakeadvantageofnaturalecologicalprocesses,itcouldensureinfrastructuredevelopmentwithinecologicalconstraintsandmaximizeotherbenefits.Totestthishypothesis,weillustrateadata-driven,systems-levelapproachthatcouplesnaturalecosystemsandtheservicestheydelivertoexplorehowsustainabilityprinci-plescouldbeembeddedintothelifephasesofwastewatersystems.Weshowthatourdesigncouldproduceoutcomesvastlysuperiortothoseofconventionalparadigmsthatfocusontechnologiesalone,byenablinghigh-levelrecoveryofbothenergyandmaterialsandprovidingsubstantialbenefitstooffsetahostofunintendedenvironmentaleffects.Thisintegrativestudyadvancesourunderstandingandsuggestsapproachesforregainingabalancebetweensatisfyinghumandemandsandmaintainingecosystems.INTRODUCTIONSatisfyingtheever-growingdemandsofhumanswhilemaintainingecosystemsisalong-standingchallenge(1).Upgradingurbanwaste-waterinfrastructureisacaseinpoint,asnearly70%oftheworldpopulationisexpectedtoliveincitiesby2050(2)and,ascitiescon-tinuetogrow,thepressureonandunwantedeffectsofexpandingwastewaterservicesystemswillincreasesignificantly.Sincetheearly20thcentury,wastewatertreatmenthasbeenimplemented,improved,andsubsequentlyoptimizedtoensurethesafetyoftheaquaticsys-temsandtominimizeriskstohumanhealth(3).However,increas-inglyoverthepastdecades,concernshavebeenraisedovertheunintendedeffectsofhistoricalapproachestowastewaterservicefacilities.Naturalresources,particularlyfossilfuels,areconsumedintheprocessofremovingwaterbornepollutants,andassociatedgreen-housegases(GHGs)areemitted.IntheUnitedStatesalone,nearly3.4%ofthegeneratedelectricity(15GW)isusedbywastewatertreatmentplants(WWTPs),representingthethirdlargestconsumerofelectricityinthatcountry(4).InatypicalU.S.city,wastewatertreatmentcanaccountforupto24%oftotalenergyusagebypublicutilities(5).Moreover,intheUnitedStates,CO2emissionof0.6giga-tonnes(Gt)year−1canbeattributedtodegradationofsewageorgan-icmatterovertheperiodof2010–2015.Thisamountisequivalentto~1.5%ofglobalemissionandisprojectedtoreach1.0Gtyear−1by2050(6,7).Yet,inanevolvingsocioeconomicenvironment,thesamewaterborneandairbornecontaminantscouldbeconsideredvaluablerecyclingresources.Forexample,organicscouldbeusedtoproducesufficientenergytooperateaWWTP(8).Roughly3millionmetrictonsyear−1ofphosphorusislostashumanwaste,while~20%oftheglobaldemandforphosphatecanbesatisfiedbyrecoveringphos-phorusfromthiswaste(9).Further,N2Oisacommonenergysourceinnumerousapplications,includingautomobile-relatedindustries,whereCO2canbecapturedandsynthesizedforbiomassproduction.WastewaterresourcemanagementhasattractedmoreattentionandisincludedinanumberoftheUnitedNations(UN)Sustain-ableDevelopmentGoals(SDGs)(10).Despiteampleopportunities,thetransitionofwastewatersystemsfromasoleemphasisonpol-lutantremovaltoafocusonresourcerecoveryisnoteasytorealize.Thisispartlybecauseemergingconceptsandmethodsarecompo-nentsofacomplexintegratedsystemintendedtodeliverbroaderbenefits,includingwaterreuse,nutrientrecycling,andenergypro-duction,amongothers(11),whileexistinginfrastructureparadigmshavenotbeendesignedwiththesemultiplepurposesinmind.More-over,wastewaterservicesystemsoftenfunctioninisolation,relyingonlyontechnologytoresolveproblemsandfailingtoaddressthosefactorsbeyondthetraditionalscopeofengineering.Currently,theenormousriseinurbanizationandeconomicac-tivityhascompelledurbanareastoincreasetheirwastewaterser-vices.Sincemanywastewaterinfrastructureelementshaveservicelivesof50to100years,orevenlonger,thedecisionsmadetodayhavelong-lastingimplicationsand,consequently,mustbebasedonfutureratherthancurrentorpastscenarios.Torealizethepotentialforenhancedsustainability(12),theindustryneedsafundamentalchangeinitsapproachtoandassumptionsonmanagingwastewaterresources,includingcreationofmuch-needednew-buildwastewatersystems(13).Accordingly,weillustratearefinedapproachtointe-gratemultipleoptionstoreusepollutantsfromusedwaterasre-sources(referredtoasREPUREinfrastructure),withthefollowingmainfeatures:(i)repurposingwaterbornematerial(organicmatter,nitro-gen,andphosphorus,amongothersubstances)toenablepollutioncontrol,resourcecapture,andenduseoftheharvestedproducts;1ResearchCenterforEco-EnvironmentalSciences,ChineseAcademyofSciences,Beijing100085,China.2CentreforWaterSystems,CollegeofEngineering,Mathe-maticsandPhysicalSciences,UniversityofExeter,ExeterEX44QF,UK.3StateKeyJointLaboratoryofEnvironmentalSimulationandPollutionControl,ResearchCenterforEco-EnvironmentalSciences,ChineseAcademyofSciences,Beijing100085,China.4DepartmentofCivilandEnvironmentalEngineering,UniversityofMichigan,AnnArbor,MI48109,USA.5DepartmentofChemicalEngineering,NationalTaiwanUniversityofScienceandTechnology,Taipei10607,Taiwan.6DepartmentofChem-icalEngineering,NationalTaiwanUniversity,Taipei10617,Taiwan.7StateKeyLab-oratoryofUrbanWaterResourceandEnvironment,SchoolofEnvironment,HarbinInstituteofTechnology,Harbin150090,China.8SchoolofEnvironment,TsinghuaUniversity,Beijing100084,China.9SanitaryEngineering,DepartmentofWaterMan-agement,FacultyofCivilEngineeringandGeosciences,DelftUniversityofTech-nology,2600GA,Delft,Netherlands.Correspondingauthor.Email:xuwang@rcees.ac.cn;x.wang@exeter.ac.ukCopyright©2018TheAuthors,somerightsreserved;exclusivelicenseeAmericanAssociationfortheAdvancementofScience.NoclaimtooriginalU.S.GovernmentWorks.DistributedunderaCreativeCommonsAttributionLicense4.0(CCBY).Downloadedfromhttps://www.science.orgonOctober18,2021Wangetal.,Sci.Adv.2018;4:eaaq02101August2018SCIENCEADVANCESRESEARCHARTICLE2of10(ii)applyingasustainabilityphilosophytoreplacethetraditionalengineeringmethodthatfocusesonlyonthetechnicalaspectofsys-temdesign;(iii)takingecosystemsintoaccounttoleveragethecapa-bilitiesofthenaturalsystemsatthesystemslevel.Totesttheviabilityofthisapproach,weappliedtheREPUREconcepttorepurposecarbon(C),nitrogen(N),andphosphorus(P)inwastewatertoattainhigherresourceefficiency(Fig.1),buildinguponconventionalandemergingconceptsandmethodsinwastewaterresourcerecovery.Next,weappliedarigorousdynamicpro-cessmodeling(DPM)methodtobuildthesystemcharacteristicsofasampleREPUREscenario,andthentestedthetechnicalfeasibilityoftheprocessconfiguration,takingintoaccountthevariationsandun-certaintiesofmultilevelparameters.Further,weusedasubstanceflowanalysis(SFA)tooltoacquireaggregateddataandtovisualizetheresourceharvestingpatternsandlossesfromtheentiresystem.Finally,weusedaprobabilisticlifecycleassessment(LCA)methodtotraceandassessthesustainabilityoftheselectedscenarioandtooutlineanavenueforfuturewastewaterserviceprotocolsinreal-worldcontexts.MATERIALSANDMETHODSOverallapproachAtailoredprocessconfigurationwasestablishedtoexamineandevaluatetheREPUREapproach.AsillustratedinFig.2,theprocessconfigurationoftheREPUREapproachconsistedofthreemaintech-nologicalcomponents—SRS,PTS,andRHS—tohandleanexampleinfluentflowof1×105m3day−1,withachemicaloxygendemand(COD)of400mgliter−1,totalnitrogen(TN)of40mgNliter−1,andtotalphosphorus(TP)of7mgPliter−1.Eachofthethreesystemcomponentsusedadifferentsetofreactorstoprovidetherequiredfunctions.Thekeydesignfactorsforthesystem,alongwiththewaste-watercharacteristicsandenvironmentalfactors,amongothers,forthesubsequentmodelingandsimulation,areprovidedintablesS1toS3.Dynamicsimulationswereaddressedinthisworktosatisfyasetofsampleeffluentqualityrequirementsforapollutantremoval–orientedsystem(COD<30mgliter−1,TN<15mgNliter−1,NH4+-N<5mgNliter−1,andTP<0.5mgliter−1;thesearestringenteffluentlimitsinChina)(14),althoughtheeffluentwasconsideredaresourceforrecycling.SynergybetweentechnologicalandecologicalsystemswasincludedintheREPUREexample,andtwosoil-mediatedeco-systemservices(carboncaptureandnutrientretention)werecharac-terized.CalculationsarepresentedintablesS4toS11.InventorydataandprocessmodelsThebackgroundinventorydataonchemical,energy,andmaterialsproductionareavailableintheliterature(4,7,12,15)andtheEco-inventlibraries(16).Theinventorydataforthesystemelements,includingsystemoperation,werecomputedusingmodel-basedsimu-lations.TheDPMsoftwareBioWinversion5.0(EnviroSimAssociatesLtd.)wasusedtoconstructandsimulatethephysical,chemical,andbiologicalprocessesinvolvedintheselectedconfiguration.Themodelfactorswerefixedinitially,andasetofreal-lifedynamicinfluentdataforamegacityinChinawasincorporatedforthesimulation(relevantstatisticfactorsareprovidedintableS1).Consideringtheseasonalvariationsandslowdynamicsofanaerobicprocesses,theevaluationperiodwasextendedtonearly600days(17).ThedetailsondeterminingtheembodiedandharvestedenergyandtheGHGemis-sions,amongothers,arepresentedintheSupplementaryMaterials.StaticSFAAstaticSFAproducesasystems-leveloverviewofinterlinkedpro-cessandsubstanceflowstodesignandassessthemanagementop-tions(18).Here,wequantifiedtheC,N,andPfluxesbymodelingCarbonrecoverysystem(CRS)Carbonconversionsystem(CCS)Resourcesharvestingsystem(RHS)Partialtreatmentsystem(PTS)(C,N,P)(N,P)HAc-richliquidC-richsludgeP-containingsludgeC→HAc-richSCFAs(P)UsedwaterIrrigationC:Liquid→microbesSCFAs-containingsludgeC→CH4(+N2O→Power)orC→PHAN,P→Struvite(fertilizer)BiosolidsforincinerationandresiduestoagricultureN:NH4+→N2OWaterlineSludgelineP:Liquid→microbesFig.1.Overviewofinputs,internalflows,andoutputsoftheREPUREapproach.Mostoftheinfluentcarbonsubstrates(C)areconcentratedinthecarbonrecoverysystem(CRS),whereastheresultingC-richbiomassisfermentedpartlytoaceticacid(HAc)–dominantshort-chainfattyacids(SCFAs)inthesubsequentcarbonconversionsystem(CCS).TheHAc-richliquidservesasapromisingcarbonsourceinthepartialtreatmentsystem(PTS)fornutrientremoval.TheresultingsludgefromCCSandPTSistransformedtovariousproductsintheresourcesharvestingsystem(RHS).MostofthesludgeCisconvertedtoCH4,whereastheremainderisusedforpolyhydroxy-alkanoate(PHA)synthesis.ThewastewaterNisconvertedtoN2O,whichisusedforcombustionwithCH4forpowergeneration.ThesludgePcanberecoveredasstruvite.Downloadedfromhttps://www.science.orgonOctober18,2021Wangetal.,Sci.Adv.2018;4:eaaq02101August2018SCIENCEADVANCESRESEARCHARTICLE3of10thepartitioningfactorstowater,air,andsludgeforeachprocessstepinthewater,sludge,andproductpathwaysbyusingandaggregatinginputandoutputdataderivedfromtheprocessmodels.TheSFAre-sultswerepresentedasaSankeydiagrampreparedwiththegraphicalsoftwareprogramAdobeIllustratorCS6(AdobeSystems).Specifi-cally,thewidthofeachhorizontallineonthefigurewasproportionaltotheflowofthesubstance.Themeanvaluesforthe600-daysimu-lationswereusedtoconstructthediagram.LCAmetricsTwelvemainLCAmetricsweretracedandassessedusingtheHier-archistReCiPe(H)midpointmethodversion1.12,whichisbasedoncommonpolicyprinciples,includingthetimeframe(19).Spe-cifically,midpointmethodsrelatetheinventoryresultsdirectlytoenvironmentalimpacts,suchastheclimatechangepotential(20).Asmostoftherecoveredproductsweredivertedtolanduse,terres-trialecotoxicitywasaninterestingeffectcategorytoconsider.AstheReCiPemethodcomplieswithallthecriticalaspectsofhumantoxic-ityandincludesterrestrialecotoxicity,weselecteditforuseinourstudy.Slightmodificationsweremadetofitthemethodcloselywiththegoalofthiswork.BothclimatechangeandozonedepletionincludedacharacterizationfactorforN2O(298kgCO2-eqkg−1and0.018kgCFC11-eqkg−1,respectively),asN2Oreportedlyaffectedwastewatertreatmentandmanagementalternativesinthewastewaterindustry(21).TheadjustedReCiPeapproachwasaccessedsubsequentlyintheLCAplatformSimaPro(PRéSustainability)todeterminetheLCAmetrics.HybridDPM-SFA-LCAprotocolForintegrativeanalyses,ahybridDPM-SFA-LCAdataintegrationapproachwasconstructedbyestablishinginterfacestointerconnectthethreeplatformsusingPythonscriptsfromtheliterature(22).Py-thonscriptsintegratedtheresultsfromBioWinoverthesimulationperiodtofurtheraggregatetheinputandoutputdataforSFAvisu-alizationinAdobeIllustratorC6.Theintegratedfindingsweretrans-formedsubsequentlytoaSimaPro-compatibleinputfileforbothforegroundandbackgroundprocesses.TheLCAmetricswerecalcu-latedsubsequentlywithSimaProusingtheEcoinventdatabases.Thisfinalstepmeasuredtheinventoryresultsbyaddingthecontributionofthebackgroundandforegroundprocessesandsubsequentlydeter-minedthefinalLCAmetricsusingthemodifiedReCiPemethod.UncertaintyaccountingItisessentialforproperinterpretationtomodeltheattendantun-certaintywithvariationsinseveralparameters,includinginflowrate,influentcharacteristics,andenvironmentalconditions.Here,wein-corporatedthesevariablesusingaprobability-basedmethod(12).Briefly,thesedirectinputswerefullyintegratedwiththeappropriatedistributeduncertaintyrangesforalltheindirectinputsandemis-sionsbuiltfortheprocesses.AMonteCarlosimulationanalysiswith100,000runswasalsoconductedinSimaProtoaccountfortheeffectsoftheseparameterdistributionsontheoverallLCAresults.AlltherangesandfactorvaluesareprovidedintheSupplementaryMaterials.RESULTSRepurposingwaterpollutants:Whatistheidea?Toenabletheevolutionofwastewatersystemsfromasinglefocusonpollutantremovaltotheproposedrecoveryofresources,theleveragepointistoredesignandrealigntheprocessconfigurations,aimingatrepurposingthesysteminputsanddivertingmatterandenergyflowfromcatabolismtoanabolism.Buildinguponthisthe-oreticalbasisandrecoverytechnologiesforwastewaterresources,Fig.1showstheschematicflowofourREPUREdesign.Here,rawwastewaterisfedinitiallyintoaCRStoconcentratetheinfluentcar-bonsubstratesforfurtherreallocation.Thisapproachhelpstoad-dressthemajordrawbackoftraditionalactivatedsludgetreatmentprocesses,wherewastewaterorganicmattersareusuallymineral-izedandtheirchemicalenergypotential[~1.9kilowatt-hour(kWh)m−3]istypicallyconsumedbyenergy-intensiveaeration(0.3to0.7kWhm−3)(23).Subsequently,C-richbiosolidsarefermentedintoSCFAsinaCCS.Thisstepprovidestriplebenefits:(i)SCFAsSludgepipelineWaterpipelineCarbonconversionreactor(CCR)Carbonrecoveryreactor(CRR)SecondclarifierFirstclarifierThirdclarifierEffluentResidualbiosolidsResourcesharvestingsystem(RHS)AlkalinityadjustmentThickenerWaste-to-resourcereactor(WRR)DewateringAnoxicreactor(AnoR)Anaerobicreactor(AnaR)Aerobicreactor(AeR)Partialtreatmentsystem(PTS)Substratereallocationsystem(SRS)Fig.2.SchematicofatailoredprocessconfigurationfortheREPUREapproach.Thisconfigurationisconstructedbythreeinterlinkedtechnologicalcomponents(SRS,PTS,andRHS)toenablesmoothoperationandmaintenance.Downloadedfromhttps://www.science.orgonOctober18,2021Wangetal.,Sci.Adv.2018;4:eaaq02101August2018SCIENCEADVANCESRESEARCHARTICLE4of10areexceptionallypromisingsubstratesfornutrient-removingmicrobes(24),(ii)SCFAsserveasfeedstocksforbioenergyandbiochemicalproduction(25),and(iii)wastewatersystemsfedwithHAc-dominantSCFAscouldachieveenergyneutralityandenableanegativecarbonfootprint(26).Subsequently,thecombinedstreamfromtheCCSandCRSistreatedtoreducethenutrientloads.Wastewaternitrogeniscommonlyremovedbyaerobicnitrificationandsubsequentanoxicdenitrification,whichrequiresenergyfromthemineralizationoforganicmattersthatcouldbeusedotherwisetoproduceenergycarriers(forexample,methane).AnotherchallengeisthegenerationofN2Ointhesemicro-bialprocesses(27).N2OisacriticalGHGthatis310timesmorepowerfulthanCO2.Yet,N2Oisalsoacommonsourceofenergyinnumerousapplications.Therefore,thePTSentailstwoessentialsteps:(i)conversionofNH4+toN2Ousingecologicalshortcircuitstoreducetheoxygensupplyandcarbonaceousdegradation(28)and(ii)conversionofN2OtoN2,throughwhichpowercanbegeneratedbyusingN2Oasanoxidantinmethanecombustion(29).Further,thefermentationliquidoffersafeasiblecarbonsource(HAc)toenablephosphorusaccumulationinthewaste-activatedsludgebypolyphosphate-accumulatingorganisms(PAOs)(30).Thetreatedeffluentcouldbeusedforvariousnonpotablepur-poses,includingagriculture(31),whereastheresultingbiosolidswillbeprocessedintheRHSandconvertedintousefulproducts.Inpar-ticular,mostorganicmattersinbiosolidscanbefermentedintomethaneandcombustedwiththeN2Oforenergygeneration,whilethePAOsintheRHSwilltakeuptheremainingSCFAsandstorethemintracellularlyasPHA(32),whichisafeasiblesubstituteforpetroleum-basedplastics(33).Struvite(NH4MgPO4·6H2O)ishar-vestedfromthesupernatantforuseasaslow-releasefertilizer(34).Thedigestedbiosolidsarecombustedtorecoverenergy,andtheresi-duesarerecycledtotheland.Thesoilsystemreceivingtheseproductsprovidescarboncaptureandnutrientretentionservices(35,36).CanaREPUREexamplebeformulatedfromconcepttoreality?Totesttheabove-mentionedconcept,wedevelopedatailoredREPUREconfiguration(Fig.2)andassesseditbyapplyingaprocessmodelingapproach.Theexperimentaldifferenceswerenotconsid-eredinthisstudy.TheremovalefficienciesofCOD,TN,andTPwere92,81,and93%,respectively,duringa600-dayevaluationpe-riodinthesimulationmodel(tableS12).Inparticular,theresultingwaterhad29±4mgCODliter−1,7.8±1.4mgNliter−1,and0.47±0.11mgPliter−1(Fig.3,AandB),withaneffluentconcentrationofNH4+-Nof1.7±0.5mgNliter−1.ThisREPUREexamplecomplieswiththeacceptedeffluentlimitswhileavoidingthecommonchemicals(ironandmethanol)usedinthetraditionaltreatmentprocesses(37).IntheSRS,theCRRfirstlyaccumulatedmostoftheorganicsintheinfluentwastestreamtosynthesizestructuralmoleculesandbio-massviaanabolism.Therequiredmetabolicenergyisprovidedbytheaerobicmineralizationoftheremainingorganicmattersandisrelativelylow.ThisisshownbytheminornumbersofheterotrophsthatusedsolublebiodegradableCODandexhibitedlowoxygencon-sumption(fig.S1).Next,theCCRconvertedtheC-richbiosolidsintoHAc-richsubstrates.Ingeneral,theremovalof1mgofNand1mgofPconsumes6to8mgand7to10mgofCOD,respectively(30).BecauseofthehighcarboncontentintheCCR,theinfluentCODintothePTSwasobviouslyinsufficienttosatisfybiologicalnutrientremoval.However,thereallocationofthecarbonsubstratesandcomplementaryadditionofWRRfermentationliquidincreasedtheHAc-basedCOD(tableS13),whichisoneofthemainreasonsfortheenhancednutrientremoval.TheexpectedshorteningofthenitrificationprocesswasachievedinthePTS,asillustratedbythelowNO3−production(tableS14)andcorrespondingweakmetabolicactivityofthenitrite-oxidizingbacteria(NOB)(tableS15).SubstantialN2Oproductionisseen,withanaver-ageemissionrateof1.0m3min−1(Fig.3C,goldencurve),equivalenttoaharvestingrateof2.6metrictonsNday−1.TherearetypicallythreemainpathwaysinvolvedinN2Oformation:(i)NH2OHoxida-tion,(ii)nitrifierdenitrification,and(iii)heterotrophicdenitri-fication,mediatedbytheammonia-oxidizingbacteria(AOB)andheterotrophs(fig.S2).TheAOB-relatedN2Oproductionpathwayswerepredominant,asshownbythehighestN2Oproductionduringautotrophicnitrification(4.4mgNliter−1hour−1;tableS14).Themeta-bolicdataonAOBfurtherdemonstratedthatNH2OHoxidation,ratherthanAOBdenitrification,wasthedominantpathwayforgeneratingN2Ointhesimulations(fig.S3).Thefluxesofmethane,struvite,andPHAarepresentedinFig.3(CandD),indicatingstableyieldratesof4.8m3min−1,1.8metrictonsday−1,and0.68metrictonCODday−1,respectively.ThisfindingindicatesthefeasibilityoftheHRS.SFAvisualization:Howmanyresourcescanbecaptured?TheresultoftheSFA(Fig.4)indicatesthatmostwastewaterele-mentswereconsumedforenergyproductionandweretransformedintousefulmaterials,witharelativelyminorproportionofCandNlosttotheatmosphere(28and18%,respectively,asbioticCO2andN2).AnexaminationofthefateofC(Fig.4,blueseries)indicatesthat58%oftheCloadwasconvertedintoenergyresources,with33%convertedtomethane,andanadditionalfractionof25%accu-mulatedinthebiosolids.Nearly7%oftheincomingCremainedintheeffluent,andaminorfractionoftheCloadwasconvertedintoPHA(2%).RegardingN(Fig.4,orange-redseries),22,15,and3%remainedintheeffluent,biosolids,andstruvite,respectively.Thisimpliesthat40%oftheREPURE-basedNfluxescanberecycledforlanduse.Thisisanadvantageoverthetraditionalbiologicalnutrientremovalsystems,wheremostoftheN2isemittedtotheatmosphere.Anothermajorbenefitisthattheremaining42%oftheincomingNwasconvertedintoN2Oasapowerfuloxidantthatcouldincreasetheenergyharvestingefficiencybyco-combustionwithmethane.Nearly35%ofthePloadwasusedinstruviteformation,whereas58%oftheincomingPaccumulatedinthebiosolidsforrecyclinginagri-culture.Asmallerproportion(7%)remainedintheeffluent(Fig.4,greenseries).ThisREPUREapproachprovidessynergy,avoidingwasteofbio-massmaterialswhileenablingenergyself-sufficiency.Emphasizingtheaccumulativeenergybalanceforthisconfiguration,Fig.5sum-marizestheenergyembodied(leftgrayarea)andexploited(rightwhitearea)acrossthesubsystems.Theembodiedenergyforsystemoperationandmaintenancewasapproximately1.4kWhm−3,whereasenergygainedfrommethaneexploitationandresidueincinerationcompletelysatisfiedtheenergyintakeoftheentiresystem,withanetpowerof0.40kWhm−3.Environmentalsustainability:Whataretheeffects?Hitherto,wehaveaddressedthetechnologicalfeasibilityandresourceefficiencyofthisparticularREPUREscenario.However,anassess-mentofthelifecycleenvironmentaleffectsisrequired.Theproba-bilisticLCAresultsinFig.6showthattheREPUREapproachprovidesDownloadedfromhttps://www.science.orgonOctober18,2021Wangetal.,Sci.Adv.2018;4:eaaq02101August2018SCIENCEADVANCESRESEARCHARTICLE5of10environmentalbenefitsbyredirectingtheusedwaterresources.Asregardtheevaluatedeffects,theentiresystemcontributesoffsetstoclimatechange(−2.3kgofCO2-eq),fossilfueldepletion(−0.86kgofoil-eq),freshwaterecotoxicity(−4.6×10−2kgof1,4-DB–eq),humantoxicity(−0.28kgof1,4-DB–eq),marineecotoxicity(−4.3×10−2kgof1,4-DB–eq),marineeutrophication(−5.3×10−2kgofN-eq),particulateformation(−7.9×10−3kgofPM10-eq),photo-chemicaloxidantformation[−13×10−3kg-NMVOC(nonmethanevolatileorganiccompound)]andterrestrialacidification(−1.8×10−2kgofSO2-eq),expressedpercubicmeterofwastewatertreated.ThisREPUREcaserealized100%energyself-sufficiencybydi-vertingwastewaterorganicsforenergygeneration.Furthermore,thecontributionofthesystemtoclimatechangeandfossilfueldepletionwasreduced,althoughCO2wasstillreleasedfromthegenerationofbioenergy(fig.S4).Furthermore,diversionoftheexcessenergycapturedfromthesystemtootherurbansectorscouldassistinlimit-ingtheuseoffossilfuel,therebyhelpingtoreducetheattendantGHGemissions(0.10kgoil-eqm−3and0.42kgCO2-eqm−3).Theexploitationofbioenergyplaysanessentialroleinreducingthenega-tiveconsequencesassociatedtypicallywithfossilfuelexploitation,suchasparticulateformation,photochemicaloxidantformation,andterrestrialacidification.Further,usingtheremainingbiosolidsforagriculturecouldhelpreducethemostnegativeeffectsbyrestrictingtheproductionandutilizationofcommercialfertilizers,exceptforozonedepletion,fresh-watereutrophication,andterrestrialecotoxicity.Inparticular,thegaseousemissionsofCH4andN2Ofromlanduseincreasetheozonedepletionpotential.Byapplyingtheproductstolanduse,theissueofnutrientdischargewillbetransferredfromtheaquaticecosystemstotheenvironmentatthesiteofapplication.While95%ofPinbio-solidscouldbeabsorbedbysoils(seetheSupplementaryMaterials),theremainingPisunavailabletothelandandwillrunoff,present-ingafreshwatereutrophicationpotentialof1.6×10−2kgP-eqm−3.Inaddition,recyclingthebiosolidsforlanduseposestheriskofpo-tentialterrestrialecotoxicity,owingtothemetalsinthebiosolidsratherthantheorganicpollutants,asmostofthelatterwillbede-gradedduringincineration.ConsideringtherelativelyloweryieldsofbothPHAandstruvite,itisnotsurprisingthattheireffectsarenegligible.Thisanalysisassumedthattheeffluentwasusedasanalternativeirrigationsource.Hence,itmitigatedthepotentialsforclimatechangeandfossilfueldepletion.Further,divertingtheeffluentfromthereceivingwaterbodiestolandusewouldbenefittheaquaticecosystems,consider-ingitsnegligibleeutrophicationpotential.Inaddition,thedissolvedammoniawasreleasedwiththeeffluentirrigation,resultinginanetterrestrialacidificationpotentialof0.41kgSO2-eqm−3.Moreover,effluentirrigationaddedmetalsandorganiccontaminantstosoils,causingnetpotentialterrestrialecotoxicity(1.4×10−3kg1,4-DB–eqm−3)andhumantoxicity(0.40kg1,4-DB–eqm−3).Nevertheless,otherusesforthereclaimedwatercouldsimilarlyreducetheapplicationoftraditionalwaterresourcesandproduceothernetbenefits.DISCUSSIONThe17SDGsunderAgenda2030oftheUNhavemappedacoherentpathandreachedconsensusonachievingglobalsustainability.0.00.20.40.60.81.001020304050ABCD0150300450600EffluentTP(mgliter)EffluentCOD(mgliter)Time(days)CODTP0.01.53.04.56.003691215180150300450600Effluentammonia(mgliter)EffluentTN(mgliter)Time(days)TNAmmonia0.40.50.60.70.81.21.41.61.82.20150300450600PHAgeneration(metrictonCODday)Struviteformation(metrictonday)Time(days)StruvitePHA0.02.55.07.50.00.40.81.21.60150300450600Methanecollected()Nitrousoxidecollected(m3min)Time(days)NitrousoxideMethane2030400.20.50.83.05.07.00.51.01.51.41.72.00.500.650.80591301.53.02.0Fig.3.Long-termperformanceoftheREPUREprocessconfiguration.DynamicprofilesofeffluentCODandTP(A),effluentammoniaandTN(B),emittednitrousoxideandmethane(C),andformationsofstruviteandPHA(D)intheexemplifiedREPUREconfiguration.Thesmallboxplotsineachchartdepictthestatisticalinformationofthedynamicprofiles,thecentrallinesrepresentmedianvalues,theboxesrepresentthe25thto75thpercentiles,andthebarsdepictthe5thto95thpercentilesofthedistributionsresultingfromthe600-daysimulation.Downloadedfromhttps://www.science.orgonOctober18,2021Wangetal.,Sci.Adv.2018;4:eaaq02101August2018SCIENCEADVANCESRESEARCHARTICLE6of10ReusingwastewaterhasbecomeanessentialtargetacrossseveralSDGs,particularlyinCleanWaterandSanitation(Goal6).Giventhetimeframeoflessthan13years,progresstowardachievingtheSDGsre-quirestheeffectiveconversionofevolvingknowledgeintopracticalsolutions.Manycountrieshaveoutlinedarangeofprogramsandactionstotransformtheexistingwastewatertreatmentinfrastruc-tureintoresourcerecoveryfacilities(38).Ourfindingsindicatedthatasystemsintegrationapproachtodevelopcompletesystemsallowedthisongoingrevolutiontoproducesignificantlysuperioroutcomesinareal-worldcontext.Thisisincontrasttoamoretraditionalap-proachbasedonthequalitativeassumptionthat“moreisbetter,”inwhichsimplyaddingmanyalternativeoptionsisbelievedtoleadtoasustainablewastewatertreatmentsystem.Combiningvarioustechnologicalcomponentsintoacompletesystemandassessingthesesystemssystematicallyfacilitatethedevelopmentandselectionofwaste-watersystemsthatprovidesuperiornetresourcesustainability.Furthermore,thesesystemscanreducethenegativeconsequencesofandoffsetclimatechange,fossilfueldepletion,aquaticecotox-icity,andadditionalbroadereffects.Althoughdivertingreclaimedwaterandbiosolidstoproductiveusescancreatebenefits,itcouldalsoshiftseeminglyunrelatedeffectsacrosssystemsandscales.Toovercometheseobstacles,anapproachthatismuchmorequantita-tivelyrigorousandecologicallyinclusiveshouldbeconsideredintheplanninganddesignofwastewaterinfrastructure,fromconceptiontoconfigurationandanalysisatthesystemslevel.SuchanidealapproachispresentedbythecurrentmethodillustratedthroughtheREPUREexample.Globalsustainabilitychallengesarecloselylinkedyetoftencon-sideredanddealtwithseparately(39).Thepotentialofwastewaterresourceinfrastructureforeffectivecouplingwithnaturalecosys-temsshouldbeexploredbyconsideringboththeemissionsandtherecoveredproducts.Aholisticmethodologytostudythecouplingoftechnicalandecologicalsystemsisneededtoadvanceourunderstand-ingandmethodsofcreatingtrulysustainablewastewatermanagementprotocols.Here,weincludedthetwomostcommonecosystemservices(carboncaptureandnutrientretention)providedbysoils,astheywerefoundtohelpreduceenvironmentaleffectsduringlanduseoftheWastewaterelementsPNCProcessingviaREPURE35%7%58%3%22%42%15%18%33%7%5%25%2%28%ProductsStruviteBiomassCH4CO2N2H2N2OBy-producedPHATreatedwater(forirrigation)Residualbiosolids(forfurtherrecycling)PowergenerationAirbornesubstances(releasetotheatmosphere)Fig.4.SankeydiagramtracingtheintersystemicflowsofC,N,andPfromin-fluentwastewater(fromREPUREprocessingtothedeliveryofrecoveredproducts).Thelinewidthisproportionaltothemassflux.Theaveragevaluesofthe600-daysimulationswereusedtopreparethisfigure.2.01.51.00.500.51.01.52.0SRSpartPTSpartRHSpartWholesystem(REPURE)Accumulativeenergybalance(kWhperm3wastewatertreated)AerationReactormixingLiquidpumpingSludgepumpingReactorheatingSludgethickeningSludgedewateringEnergycaptureviaCH4andN2OcombustionEnergycaptureviaCH4andO2combustionEnergycaptureviasludgeincinerationNetgain:0.40Fig.5.EnergybalanceanddistributionintheREPUREprocessconfiguration.Theleftgrayareainthechartindicatestheenergyrequiredforsystemmaintenance,whereastherightwhiteareapresentstheenergyproducedfrommethanecombustionandbiosolidincineration.Theblackboxpresentsthenetenergygainrelativetothesystemboundaryconsidered,andtheaveragevaluesofthemodelingresultsareshown.Downloadedfromhttps://www.science.orgonOctober18,2021Wangetal.,Sci.Adv.2018;4:eaaq02101August2018SCIENCEADVANCESRESEARCHARTICLE7of10biosolidsandreclaimedwater.Thisapproachcouldbepromotedformanysites,assoilisamajorcomponentoftheplanetandexistsinnearlyeverycountry.Althoughonlytwoecosystemservicesprovidedbysoilswereincludedatthesystemslevel,usingsimplecalculationparameters,theresultsshowedthatcouplingtechnicalsystemsandecosystemsprovidedthepotentialtopinpointnovelandmutuallybeneficialsolutionsthatmightnotbediscoveredbyatraditionaltechnocentricapproach.Nevertheless,expansionofthisapproachisnotonlypossiblebutalsonecessary.Forinstance,thecouplingoftechnologiesandecosystemsshouldconsiderlocalandlargerscalesandincludeadditionalecosystems,suchastrees,toclosemorere-sourceloopstomanagewastewatertreatmentinfrastructureinasus-tainablemanner.Advancedalgorithmstodescribe,simulate,andpredictecosystemservicebenefitsshouldalsobeintegratedinfu-turestudies.TheexpectedproductsgeneratedbytheREPUREsystemmainlyincludeenergycarriers,biosolids,andreclaimedwater.Exploitationoftherenewableenergycarriers(suchasCH4)forpoweristhemostcommonaction,particularlyastheharvestedenergyisusedimme-diatelyonsiteforplantoperations.Further,biosolidsfromwastewaterfacilitieshavebeencommonlyusedworldwidefortherecyclingoforganicmattersandnutrientsinagriculturalfields,eitherdirectlyvialandspreadorthroughcomposting.Inaddition,reclaimedwaterisin-creasinglyappliedforavarietyofnonpotablepurposes,includinglandirrigation,asassumedinthisstudy.AnothertwoREPUREproducts,struviteandbiopolymer,arestillintheirinfancy,withrealizationbeing32101.0SystemoperationEffluenttoirrigationResiduestoagricultureStruvitetoagriculturePHAformationEnergyrecoveryAvoidedresourceEmissiontoenvironmentTransportNet1.00.500.51.0SystemoperationEffluenttoirrigationResiduestoagricultureStruvitetoagriculturePHAformationEnergyrecovery64202SystemoperationEffluenttoirrigationResiduestoagricultureStruvitetoagriculturePHAformationEnergyrecovery0.50.30.10.1432101210.21.010123Climatechange(kgCO2eq)Fossilfueldepletion(kgoileq)432101Freshwaterecotoxicity(10−2kg1,4-DBeq)0.500.51.01.52.0Freshwatereutrophication(10−2kgPeq)Humantoxicity(kg1,4-DBeq)Marineecotoxicity(10−2kg1,4-DBeq)864202Marineeutrophication(10−2kgNeq)0.20.6Ozonedepletion(10−4kgCFC1eq)Particulateformation(10−3kgPM10eq)864202Photochemicaloxidantformation(10−3kgNMVOC)10Terrestrialacidification(10−2kgSO2eq)Terrestrialecotoxicity(10−3kg1,4-DBeq)Mean:2.3SD:0.5Mean:0.86SD:0.08Mean:4.6SD:0.6Mean:1.4SD:0.3Mean:0.28SD:0.5Mean:4.3SD:0.6Mean:5.3SD:1.1Mean:0.63SD:0.3Mean:7.9SD:1.2Mean:13SD:1.2Mean:1.8SD:0.5Mean:2.5SD:1.2Fig.6.Netchangeinandprocessescontributingto12midpointLCAeffects,expressedpercubicmeterofwastewaterprocessedover50yearsofoperationoftheREPUREconfiguration.Anegativevaluerepresentsanenvironmentalbenefit,whereaspositivevaluesindicateanincreaseintheenvironmentalburden.Therela-tivesize,ortheapparentabsence,ofeachcolorreflectsthecontributionoftheprocesstoeacheffect.Theerrorbarspresentthebestandworstcasesofthepathwayanalyzed.Thegreenorredtextindicatesstatisticallythenetcontributionofthesystemtoeacheffectresultingfrommorethan100,000MonteCarlosimulationruns,andthegreenmeansanetbenefitfortheenvironment.Downloadedfromhttps://www.science.orgonOctober18,2021Wangetal.,Sci.Adv.2018;4:eaaq02101August2018SCIENCEADVANCESRESEARCHARTICLE8of10hamperedpartlybyeconomicortechnicalconstraints.However,thisstudyhasgeneratedacompleteandgeneralizedexampleofanapproachtorecoversubstantialamountsofwastewaterenergyandma-terials.Itshouldbenotedthatourscenariocanbeupgradedaccordingtoactualneedsandtechnologydevelopment.Forexample,inthissimulation,approximately28%ofwastewaterorganicswasconvertedtobioticCO2.Additionalapproaches,suchasmicroalgalsystems,couldbeintegratedwiththecurrentscenariotoenhanceenergybalancesandsubstantiallyreduceonsitecarbonemissions,asalgaecul-tivationisabletocaptureCO2andproducealgaebiofuels.Here,theintegratedanalysisoftheemergingapproachreliesonthehybridmodels.Suchacomputer-basedanalysisconductedatanearlystageofanysubstantialpracticecouldhelppinpointpromisingavenuesforwastewaterresourcerecoveryfacilities.Inaddition,itcandirecttimelyinfrastructureinvestmentsthatwouldbeadequateforfuturescenarios.However,ourmodelscouldberefinedfurtheroncemoredataaremadeavailable.Here,themajorsourceofuncertaintyderivedfromtheuseoftheReCiPemodelitself,whichisthebasisfortheimpactcharacterizationconductedintheLCAanalysis.Althoughthetoxicitymodelsincludemetals(40),manyemergingcontami-nantsarestillexcludedfromcurrentmodels.RecentadvancesintheReCiPemodelfeaturecharacterizationfactorsformoreorganiccontaminants,althoughthismodelstillincorporatedonly55%ofthe110organiccontaminantsinbiosolidsidentifiedfromtheliterature.Inaddition,nearly30%ofupto300organicpollutantswereidenti-fiedingraywaterortreatedwater.Althoughmanyorganiccontam-inantswerestillexcluded,previousresultssuggestedthat,onthebasisoftheexistingtoxicitymodels,theinclusionofadditionalorganicpollutantswouldprobablynotalterthehumantoxicitypotentialofanycasestudy(41).Yet,theterrestrialandfreshwaterecotoxicitypotentialsofbiosolidusecouldbesensitivetotheinclusionofotherorganicpollutants.Therefore,furtherresearchisrequired.AlthoughtheREPUREapproachhassignificantpotentialtosus-tainwastewaterinfrastructuretransformation,subsequentstudiesareneededtoverifythisapproachatapilotscale.AnidealpilotREPUREfacilitymustbefullyintegratedandshouldbeabletoas-sessthewholesystemwhilehavingsufficientflexibilitytoexplorealternativeconfigurationsandtotestoptionsforimprovedsystemintegrationandrecyclingoftheelementstreams(includingC,N,andP).Suchapilotfacilitycouldbeoperatedinaspecificlocation,butitsproductscanbeusedelsewhereacrossregionsorevennations.Therefore,suchalargecoupledsystem,includingbothresourcerecoveryandutilization,mustbepilotedinitiallywithspecificlocalconditionstofacilitateeasytesting.OurREPUREsystemproducedrenewableenergyduringwastewaterhandlinganddivertedthetreatedwaterfromdischargetolanduse.Wefoundthataquatic-eutrophicregionsusuallycollocatedwithlargeenergyconsumers,suchasfoodprocessingplants,pulpandpaperplants,refineries,andagriculture.SitingnearenergyconsumersanideallocationforthepilotREPUREfacility,asitreusesthetreatedeffluentandalleviatesthelocaleutro-phicationpressure.Further,italsoprovidesrenewableenergyfortheenergy-intensiveindustrieslocatednearbytosavemoreappliedpower,whiletheneighboringplantscanhelptoaddresstheenduseofthematerialsproducedfromtheREPUREfacility.Inthisanalysis,weusedbroadsiteparameterswithawiderangeofvariablesinordertoexploretheapplicabilityofourapproachtoabroadrangeofsituations.Accordingly,itcanbeexpectedthatthere-sultspresented,particularlythoserelatedsignificantlytotheprocessperformanceandresourceefficiencyoftheapproach,wouldlikelynotbealteredwhentheapproachisimplementedunderdifferentspatialconditions.Nevertheless,furtherstudyshouldconcentrateonscenarioanalysisofthisapproachataglobalscale,aspotentiallyvaluableinsightscouldbegainedfromathoroughexploration,withspatialvariations,ofthisnew-buildapproach.Forexample,differ-encesmightbeencounteredintheLCAfindings,especiallythosewithcloserelevancetotheassumptionsofbothcarbonsequestra-tionandnutrientretention.Suchdifferencescouldarisebecausethecapabilitiesofsoilstoprovidethesetwoecosystemservicescouldvaryacrossregions.Notwithstandingthepotentialbenefits,suchanenter-priseisdata-intensive,makinghighdemandsonboththeamountandqualityoftheunderlyingdata(42).Furtherexplorationofourapproachataglobalscalerequiresspatiallyexplicitinputdataofextremelydiversetypesandfrommanydifferentsources,includinglocalclimate,demographics,socioeconomicfactors,waterquality,soilcharacteristics,andsystemperformance,amongothers(43).TheincreasedavailabilityofmanifolddatainEuropeorNorthAmericaallowsthereliabilityandgeneralityofourapproachtobeverifiedexplicitlyataspatialscale.However,slowadvancesinanalytics,sensing,monitoring,andcomputinganddatamanagementstillexistinmanyplacesaroundtheworld(44,45),particularlyinIndiaandsub-SaharanAfrica,makingdataacquisitionrudimentaryandtedious.Appropriateprotocolsareneededintheseplacestoaddressdatacollection,use,andsharing,whichwouldprovidemoreextensiveandmorereliabledatatofacilitateinfrastructuretransformationintheglobalwatersector.Overall,large-scaleapplicationoftheREPUREapproachneedsthefollowing:(i)aggregationofmorereliabledatafromdiversecondi-tions,coupledmodelsfromwastewaterengineering,LCA,andeco-logicalmodeling;(ii)advancesintraditionaldisciplines,forexample,theeconomicfeasibilityoftotallynewmethodsforwaterresourcerecoveryshouldbeanalyzedcarefullyincomparisonwiththosemethodsaimedtoretrofitexistingfacilities,asconversioncostisacriticalconstraintofinfrastructuretransformation;and(iii)multidis-ciplinarycollaborationandindustryengagement.Manyopportuni-tiesexistfortheoreticalandappliedstudiestodevelopsustainablewastewatermanagementprotocols.Ourpresentstudyprovideses-sentialinformationtoabroadmultidisciplinaryaudiencetobuildeffectivesolutionstoimprovetheharmonybetweenhumansandna-ture,withthegoalofregainingthebalancebetweensatisfyinghu-manneedsandprotectingecosystems.SUPPLEMENTARYMATERIALSSupplementarymaterialforthisarticleisavailableathttp://advances.sciencemag.org/cgi/content/full/4/8/eaaq0210/DC1SupplementaryTextFig.S1.ProfilesofoxygenconsumptionandactivemicrobesinCRR.Fig.S2.SimplifiedillustrationofthethreekeyN2OproductionpathwaysbyAOBandheterotrophicdenitrifiers.Fig.S3.GrowthanddecayratesofAOBinthePTSreactors.Fig.S4.CarbonfootprintduringoperationoftheREPUREprocessconfiguration.TableS1.Environmentalparametersandmaincharacteristicsofinfluentforprocessdesignandmodeling.TableS2.Designparametersforthedevelopedtechnologicalconfiguration.TableS3.ConstructioninventorydatafortheREPUREprocessconfiguration.TableS4.Defaultassumptionsforgaseousemissionsandattendantvariabilityforuncertaintyanalysis.TableS5.Heavymetalcontaminantsinbiosolids.TableS6.Metalcontaminantsinstruvite.TableS7.Heavymetalconcentrationsintreatedeffluent.TableS8.Organiccontaminantsinbiosolids.Downloadedfromhttps://www.science.orgonOctober18,2021Wangetal.,Sci.Adv.2018;4:eaaq02101August2018SCIENCEADVANCESRESEARCHARTICLE9of10TableS9.Organiccontaminantsintreatedeffluent.TableS10.Assumedavailabilityofnutrientsinrecoveredfertilizersasafractionofcommercialfertilizeravailability.TableS11.Transportassumptionanddistancesforrecoveredandcommercialfertilizers.TableS12.RemovalefficienciesofeffluentCOD,TN,andTPfortheREPUREsystem.TableS13.ComparisonoftheaverageconcentrationofthemajorcarbonsubstancesintheoutflowfromCRR,CCR,andRHSwithinfluentwastewater.TableS14.AverageremovalandproductionratesofdifferentnitrogenspeciesinthePTSreactors.TableS15.MetabolismofNOBinthethreePTSreactors.References(46–93)REFERENCESANDNOTES1.T.A.Larsen,S.Hoffmann,C.Luthi,B.Truffer,M.Maurer,Emergingsolutionstothewaterchallengesofanurbanizingworld.Science352,928–933(2016).2.WorldUrbanizationProspects:The2014Revision(UnitedNations,2014).3.G.T.Daigger,S.Murthy,N.G.Love,J.Sandino,Transformingenvironmentalengineeringandscienceeducation,research,andpractice.Environ.Eng.Sci.34,42–50(2017).4.X.Wang,J.Liu,N.-Q.Ren,H.-Q.Yu,D.-J.Lee,X.Guo,Assessmentofmultiplesustainabilitydemandsforwastewatertreatmentalternatives:Arefinedevaluationschemeandcasestudy.Environ.Sci.Technol.46,5542–5549(2012).5.P.K.Cornejo,Q.Zhang,J.R.Mihelcic,Howdoesscaleofimplementationimpacttheenvironmentalsustainabilityofwastewatertreatmentintegratedwithresourcerecovery?Environ.Sci.Technol.50,6680–6689(2016).6.L.Lu,Z.Huang,G.H.Rau,Z.J.Ren,Microbialelectrolyticcarboncaptureforcarbonnegativeandenergypositivewastewatertreatment.Environ.Sci.Technol.49,8193–8201(2015).7.P.L.McCarty,J.Bae,J.Kim,Domesticwastewatertreatmentasanetenergyproducer—Canthisbeachieved?Environ.Sci.Technol.45,7100–7106(2011).8.B.E.Logan,M.Elimelech,Membrane-basedprocessesforsustainablepowergenerationusingwater.Nature488,313–319(2012).9.D.Cordell,J.-O.Drangert,S.White,Thestoryofphosphorus:Globalfoodsecurityandfoodforthought.GlobalEnviron.Chang.19,292–305(2009).10.SustainableDevelopmentGoalsReport2017(UnitedNations,2017).11.J.G.Hering,T.D.Waite,R.G.Luthy,J.E.Drewes,D.L.Sedlak,AChangingframeworkforurbanwatersystems.Environ.Sci.Technol.47,10721–10726(2013).12.X.Wang,P.L.McCarty,J.X.Liu,N.-Q.Ren,D.-J.Lee,H.-Q.Yu,Y.Qian,J.H.Qu,Probabilisticevaluationofintegratingresourcerecoveryintowastewatertreatmenttoimproveenvironmentalsustainability.Proc.Natl.Acad.Sci.U.S.A.112,1630–1635(2015).13.S.R.W.Alwi,Z.A.Manan,J.J.Klemeš,D.Huisingh,Sustainabilityengineeringforthefuture.J.Clean.Prod.71,1–10(2014).14.DischargeStandardofPollutantsforMunicipalWastewaterTreatmentPlant(GB18918–2002,ChinaEnvironmentPress,2002).15.Y.D.Scherson,C.S.Criddle,Recoveryoffreshwaterfromwastewater:Upgradingprocessconfigurationstomaximizeenergyrecoveryandminimizeresiduals.Environ.Sci.Technol.48,8420–8432(2014).16.EcoinventDatav3.0(EcoinventreportsNo.1–25,EcoinventCentre,2010).17.U.Jeppsson,C.Rosen,J.Alex,J.Copp,K.V.Gernaey,M.-N.Pons,P.A.Vanrolleghem,Towardsabenchmarksimulationmodelforplant-widecontrolstrategyperformanceevaluationofWWTPs.WaterSci.Technol.53,287–295(2006).18.C.-L.Huang,J.Vause,H.-W.Ma,C.-P.Yu,Usingmaterial/substanceflowanalysistosupportsustainabledevelopmentassessment:Aliteraturereviewandoutlook.Resour.Conserv.Recycl.68,104–116(2012).19.ReCiPe2008:ALifeCycleImpactAssessmentMethodwhichComprisesHarmonisedCategoryIndicatorsattheMidpointandtheEndpointLevel(PréConsultants,CMLUniversityofLeiden,RadboundUniversity,RIVMBilthoven,2012).20.S.Hellweg,L.MilàiCanals,Emergingapproaches,challengesandopportunitiesinlifecycleassessment.Science344,1109–1113(2014).21.J.Lane,P.Lant,IncludingN2OinozonedepletionmodelsforLCA.Int.J.LifeCycleAssess.17,252–257(2012).22.A.B.B.deFaria,M.Spéandio,A.Ahmadi,L.Tiruta-Bama,Evaluationofnewalternativesinwastewatertreatmentplantsbasedondynamicmodellingandlifecycleassessment(DM-LCA).WaterRes.84,99–111(2015).23.I.Metcalf,H.Eddy,WastewaterEngineering:TreatmentandReuse(McGraw-Hill,2003).24.J.Tong,Y.Chen,Enhancedbiologicalphosphorusremovaldrivenbyshort-chainfattyacidsproducedfromwasteactivatedsludgealkalinefermentation.Environ.Sci.Technol.41,7126–7130(2007).25.W.S.Lee,A.S.M.Chua,H.K.Yeoh,G.C.Ngoh,Areviewoftheproductionandapplicationsofwaste-derivedvolatilefattyacids.Chem.Eng.J.235,83–99(2014).26.Y.Li,X.Wang,D.Butler,J.Liu,J.Qu,Energyuseandcarbonfootprintsdifferdramaticallyfordiversewastewater-derivedcarbonaceoussubstrates:Anintegratedexplorationofbiokineticsandlife-cycleassessment.Sci.Rep.7,243(2017).27.Y.Law,L.Ye,Y.Pan,Z.Yuan,Nitrousoxideemissionsfromwastewatertreatmentprocesses.Philos.Trans.R.Soc.Lond.BBiol.Sci.367,1265–1277(2012).28.I.Schmidt,O.Sliekers,M.Schmid,E.Bock,J.Fuerst,J.G.Kuenen,M.S.M.Jetten,M.Strous,Newconceptsofmicrobialtreatmentprocessesforthenitrogenremovalinwastewater.FEMSMicrobiol.Rev.27,481–492(2003).29.Y.D.Scherson,G.F.Wells,S.-G.Woo,J.Lee,J.Park,B.J.Cantwell,C.S.Criddle,NitrogenremovalwithenergyrecoverythroughN2Odecomposition.Energ.Environ.Sci.6,241–248(2013).30.X.Li,H.Chen,L.Hu,L.Yu,Y.Chen,G.Gu,Pilot-scalewasteactivatedsludgealkalinefermentation,fermentationliquidseparation,andapplicationoffermentationliquidtoimprovebiologicalnutrientremoval.Environ.Sci.Technol.45,1834–1839(2011).31.F.Pedrero,I.Kalavrouziotis,J.J.Alarcón,P.Koukoulakis,T.Asano,Useoftreatedmunicipalwastewaterinirrigatedagriculture—ReviewofsomepracticesinSpainandGreece.Agric.WaterManag.97,1233–1241(2010).32.A.Oehmen,P.C.Lemos,G.Carvalho,Z.Yuan,J.Keller,L.L.Blackall,M.A.M.Reis,Advancesinenhancedbiologicalphosphorusremoval:Frommicrotomacroscale.WaterRes.41,2271–2300(2007).33.K.H.Rostkowski,C.S.Criddle,M.D.Lepech,Cradle-to-gatelifecycleassessmentforacradle-to-cradlecycle:Biogas-to-bioplastic(andback).Environ.Sci.Technol.46,9822–9829(2012).34.K.S.LeCorre,E.Valsami-Jones,P.Hobbs,S.A.Parsons,Phosphorusrecoveryfromwastewaterbystruvitecrystallization:Areview.Crit.Rev.Environ.Sci.Technol.39,433–477(2009).35.B.L.Keeler,S.Polasky,K.A.Brauman,K.A.Johnson,J.C.Finlay,A.O’Neill,K.Kovacs,B.Dalzell,Linkingwaterqualityandwell-beingforimprovedassessmentandvaluationofecosystemservices.Proc.Natl.Acad.Sci.U.S.A.109,18619–18624(2012).36.G.C.Daily,P.A.Matson,Ecosystemservices:Fromtheorytoimplementation.Proc.Natl.Acad.Sci.U.S.A.105,9455–9456(2008).37.X.Wang,J.Liu,N.-Q.Ren,Z.S.Duan,Environmentalprofileoftypicalanaerobic/anoxic/oxicwastewatertreatmentsystemsmeetingincreasinglystringenttreatmentstandardsfromalifecycleperspective.Bioresour.Technol.126,31–40(2012).38.WorldWaterDevelopmentReport2017:Wastewater—TheUntappedResource(UnitedNations,2017).39.J.Liu,H.Mooney,V.Hull,S.J.Davis,J.Gaskell,T.Hertel,J.Lubchenco,K.C.Seto,P.Gleick,C.Kremen,S.Li,Systemsintegrationforglobalsustainability.Science347,1258832(2015).40.M.Pizzol,P.Christensen,J.Schmidt,M.Thomsen,Impactsof"metals"onhumanhealth:AcomparisonbetweenninedifferentmethodologiesforLifeCycleImpactAssessment(LCIA).J.Clean.Prod.19,646–656(2011).41.Z.Bradford-Hartke,J.Lane,P.Lant,G.Leslie,Environmentalbenefitsandburdensofphosphorusrecoveryfrommunicipalwastewater.Environ.Sci.Technol.49,8611–8622(2015).42.S.Eggimann,L.Mutzner,O.Wani,M.Y.Schneider,D.Spuhler,M.M.deVitry,P.Beutler,M.Maurer,Thepotentialofknowingmore:Areviewofdata-drivenurbanwatermanagement.Environ.Sci.Technol.51,2538–2553(2017).43.P.M.Bach,A.Deletic,C.Urich,D.T.McCarthy,Modellingcharacteristicsoftheurbanformtosupportwatersystemsplanning.Environ.Model.Software104,249–269(2018).44.WorldWaterDevelopmentReport2015:WaterforaSustainableWorld(UnitedNations,2015).45.I.Development:WithintheContextofAfrica’sCooperationwithNewandEmergingDevelopmentPartners(UnitedNations,2015).46.B.K.Mayer,L.A.Baker,T.H.Boyer,P.Drechsel,M.Gifford,M.A.Hanjra,P.Parameswaran,J.Stoltzfus,P.Westerhoff,B.E.Rittmann,Totalvalueofphosphorusrecovery.Environ.Sci.Technol.50,6606–6620(2016).47.I.Akanyeti,H.Temmink,M.Remy,A.Zwijnenburg,Feasibilityofbioflocculationinahigh-loadedmembranebioreactorforimprovedenergyrecoveryfromsewage.WaterSci.Technol.61,1433–1439(2010).48.R.Khiewwijit,H.Temmink,A.Labanda,H.Rijnaarts,K.J.Keesman,Productionofvolatilefattyacidsfromsewageorganicmatterbycombinedbioflocculationandalkalinefermentation.Bioresour.Technol.197,295–301(2015).49.F.A.Meerburg,N.Boon,T.VanWinckel,J.A.R.Vercamer,I.Nopens,S.E.Vlaeminck,Towardenergy-neutralwastewatertreatment:Ahigh-ratecontactstabilizationprocesstomaximallyrecoversewageorganics.Bioresour.Technol.179,373–381(2015).50.W.Cai,W.Huang,H.Li,B.Sun,H.Xiao,Z.Zhang,Z.Lei,Acetatefavorsmorephosphorusaccumulationintoaerobicgranularsludgethanpropionateduringthetreatmentofsyntheticfermentationliquor.Bioresour.Technol.214,596–603(2016).51.X.Wang,J.Liu,B.Qu,N.-Q.Ren,J.Qu,Roleofcarbonsubstratesinfacilitatingenergyreductionandresourcerecoveryinatraditionalactivatedsludgeprocess:Investigationfromabiokineticsmodelingperspective.Bioresour.Technol.140,312–318(2013).Downloadedfromhttps://www.science.orgonOctober18,2021Wangetal.,Sci.Adv.2018;4:eaaq02101August2018SCIENCEADVANCESRESEARCHARTICLE10of1052.Q.Tran,K.A.Schwabe,D.Jassby,Wastewaterreuseforagriculture:Developmentofaregionalwaterreusedecision-supportmodel(RWRM)forcost-effectiveirrigationsources.Environ.Sci.Technol.50,9390–9399(2016).53.D.Mu,M.Min,B.Krohn,K.Mullins,R.Ruan,J.Hill,Lifecycleenvironmentalimpactsofwastewater-basedalgalbiofuels.Environ.Sci.Technol.48,11696–11704(2014).54.M.Lundin,M.Bengtsson,S.Molander,Lifecycleassessmentofwastewatersystems:Influenceofsystemboundariesandscaleoncalculatedenvironmentalloads.Environ.Sci.Technol.34,180–186(2000).55.W.Bonilla-Blancas,M.Mora,S.Revah,J.A.Baeza,J.Lafuente,X.Gamisans,D.Gabriel,A.González-Sánchez,ApplicationofanovelrespirometricmethodologytocharacterizemasstransferandactivityofH2S-oxidizingbiofilmsinbiotricklingfilterbeds.Biochem.Eng.J.99,24–34(2015).56.D.deHaas,J.Foley,P.Lant,“Energyandgreenhousefootprintsofwastewatertreatmentplantsinsouth-eastQueensland”(TechnicalReport,OzWater,2009).57.J.Stokes,A.Horvath,Lifecycleenergyassessmentofalternativewatersupplysystems.Int.J.LifeCycleAssess.11,335–343(2006).58.P.Wunderlin,M.F.Lehmann,H.Siegrist,B.Tuzson,A.Joss,L.Emmenegger,J.Mohn,IsotopesignaturesofN2Oinamixedmicrobialpopulationsystem:ConstraintsonN2Oproducingpathwaysinwastewatertreatment.Environ.Sci.Technol.47,1339–1348(2013).59.P.Wunderlin,J.Mohn,A.Joss,L.Emmenegger,H.Siegrist,MechanismsofN2Oproductioninbiologicalwastewatertreatmentundernitrifyinganddenitrifyingconditions.WaterRes.46,1027–1037(2012).60.J.Foley,D.deHaas,K.Hartley,P.Lant,Comprehensivelifecycleinventoriesofalternativewastewatertreatmentsystems.WaterRes.44,1654–1666(2010).61.J.Foley,P.Lant,FugitiveGreenhouseGasEmissionsfromWastewaterSystems(ReportforWaterServiceAssociationofAustralia,2007).62.UseofEffluentbyIrrigation(DepartmentofEnvironmentandConservation,2003).63.D.S.Mavinic,F.A.Koch,H.Huang,K.V.Lo,Phosphorusrecoveryfromanaerobicdigestersupernatantsusingapilot-scalestruvitecrystallizationprocess.J.Environ.Eng.Sci.6,561–571(2007).64.S.Antonini,M.A.Arias,T.Eichert,J.Clemens,Greenhouseevaluationandenvironmentalimpactassessmentofdifferenturine-derivedstruvitefertilizersasphosphorussourcesforplants.Chemosphere89,1202–1210(2012).65.Y.Ueno,inPhosphorusinEnvironmentalTechnologies:PrinciplesandApplications,E.Valsami-Jones,Ed.(IWAPublishing,2004),pp.496–427.66.Y.Jaffer,P.Pearce,inPhosphorusinEnvironmentalTechnologies:PrinciplesandApplications,E.Valsami-Jones,Ed.(IWAPublishing,2004),pp.402–427.67.D.Montag,K.Gethke,J.Pinnekamp,MovingForwardWastewaterBiosolidsSustainability:Technical,Managerial,andPublicSynergy(Moncton,2007).68.E.V.Münch,K.Barr,Controlledstruvitecrystallisationforremovingphosphorusfromanaerobicdigestersidestreams.WaterRes.35,151–159(2001).69.R.J.Law,C.R.Allchin,J.deBoer,A.Covaci,D.Herzke,P.Lepom,S.Morris,J.Tronczynski,C.A.deWit,LevelsandtrendsofbrominatedflameretardantsintheEuropeanenvironment.Chemosphere64,187–208(2006).70.Y.Matsumiya,T.Yamasita,Y.Nawamurra,Phosphorousremovalfromsidestreamsbycrystallisationofmagnesium-ammonium-phosphateusingseawater.WaterEnviron.J.14,291–296(2000).71.G.Tjandraatmadja,C.Daiaper,Y.Gozukara,L.Burch,C.Sheedy,G.Price,“SourcesofCriticalContaminantsinDomesticWastewater:ContaminantContributionfromHouseholdProducts”(ReportfortheCSIRO:WaterforaHealthyCountryNationalResearchFlagship,2008).72.E.Benetto,D.Nguyen,T.Lohmann,B.Schmitt,P.Schosseler,Lifecycleassessmentofecologicalsanitationsystemforsmall-scalewastewatertreatment.Sci.TotalEnviron.407,1506–1516(2009).73.D.A.Bright,N.Healey,Contaminantrisksfrombiosolidslandapplication:ContemporaryorganiccontaminantlevelsindigestedsewagesludgefromfivetreatmentplantsinGreaterVancouver,BritishColumbia.Environ.Pollut.126,39–49(2003).74.X.Li,Z.Ke,J.Dong,PCDDsandPCDFsinsewagesludgesfromtwowastewatertreatmentplantsinBeijing,China.Chemosphere82,635–638(2011).75.B.O.Clarke,S.R.Smith,Reviewof’emerging’organiccontaminantsinbiosolidsandassessmentofinternationalresearchprioritiesfortheagriculturaluseofbiosolids.Environ.Int.37,226–247(2011).76.K.A.Langdon,M.S.J.Warne,R.J.Smernik,A.Shareef,R.S.Kookana,Selectedpersonalcareproductsandendocrinedisruptorsinbiosolids:AnAustralia-widesurvey.Sci.TotalEnviron.409,1075–1081(2011).77.N.Lozano,C.P.Rice,M.Ramirez,A.Torrents,FateofTriclosanandMethyltriclosaninsoilfrombiosolidsapplication.Environ.Pollut.160,103–108(2012).78.B.O.Clarke,thesis,RMITUniversity(2008).79.H.-B.Lee,T.E.Peart,OrganiccontaminantsinCanadianmunicipalsewagesludge.PartI.Toxicorendocrine-disruptingphenoliccompounds.WaterQual.Res.J.Ca.37,681–696(2002).80.E.Z.Harrison,S.R.Oakes,M.Hysell,A.Hay,Organicchemicalsinsewagesludges.Sci.TotalEnviron.367,481–497(2006).81.A.Arulrajah,M.M.Disfani,V.Suthagaran,M.Imteaz,Selectchemicalandengineeringpropertiesofwastewaterbiosolids.WasteManag.31,2522–2526(2011).82.J.H.Christensen,B.S.Groth,J.Vikelsøe,K.Vorkamp,“PolybrominatedDiphenylEthers(Pbdes)inSewageSludgeandWastewater:MethodDevelopmentandValidation”(TechnicalReportNo.481,NationalEnvironmentalResearchInstitute,MinistryoftheEnvironment,Denmark,2003).83.E.Ejarrat,G.Marsh,A.Labandeira,D.Barceló,Effectofsewagesludgescontaminatedwithpolybrominateddiphenylethersonagriculturalsoils.Chemosphere71,1079–1086(2008).84.C.Yang,X.-Z.Meng,L.Chen,S.Xia,PolybrominateddiphenylethersinsewagesludgefromShanghai,China:Possibleecologicalriskappliedtoagriculturalland.Chemosphere85,418–423(2011).85.S.O.Petersen,K.Henriksen,G.K.Mortensen,P.H.Krogh,K.K.Brandt,J.Sørensen,T.Madsen,J.Petersen,C.Grøn,Recyclingofsewagesludgeandhouseholdcomposttoarableland:Fateandeffectsoforganiccontaminants,andimpactonsoilfertility.SoilTillageRes.72,139–152(2003).86.E.Eriksson,K.Auffarth,A.-M.Eilersen,M.Henze,A.Ledin,Householdchemicalsandpersonalcareproductsassourcesforxenobioticorganiccompoundsingreywastewater.WaterSA29,135–146(2003).87.H.Palmquist,J.Hanæus,Hazardoussubstancesinseparatelycollectedgrey-andblackwaterfromordinarySwedishhouseholds.Sci.TotalEnviron.348,151–163(2005).88.H.Almqvist,J.Hanæus,OrganichazardoussubstancesingreywaterfromSwedishhouseholds.J.Environ.Eng.132,901–908(2006).89.E.Donner,E.Eriksson,D.M.Revitt,L.Scholes,H.-C.H.Lützhøft,A.Ledin,Presenceandfateofprioritysubstancesindomesticgreywatertreatmentandreusesystems.Sci.TotalEnviron.408,2444–2451(2010).90.M.Miller,G.A.O’Connor,Thelonger-termphytoavailabilityofbiosolids-phosphorus.Agron.J.101,889–896(2008).91.G.M.Peters,H.V.Rowley,Environmentalcomparisonofbiosolidsmanagementsystemsusinglifecycleassessment.Environ.Sci.Technol.43,2674–2679(2009).92.K.Johansson,M.Perzon,M.Froling,A.Mossakowska,M.Svanstrom,Sewagesludgehandlingwithphosphorusutilization—Lifecycleassessmentoffouralternatives.J.Clean.Prod.16,135–151(2008).93.A.E.Johnston,I.R.Richards,Effectivenessofdifferentprecipitatedphosphatesasphosphorussourcesforplants.SoilUseManage.19,45–49(2003).AcknowledgmentsFunding:WearegratefulforthesupportfromtheBeijingNovaProgram(Z171100001117078),NationalNaturalScienceFoundationofChina(51408589),BeijingTalentsFoundation(2017000021223ZK07),YouthInnovationPromotionAssociationoftheChineseAcademyofSciences(2016041),andK.C.WongEducationFoundationforsponsoringtheRoyalSocietyNewtonInternationalFellowship(NF160404).Authorcontributions:X.W.,G.D.,D.B.,andJ.L.conceivedtheresearch;X.W.conductedtheresearch;X.W.,G.D.,andD.B.analyzedthedata;G.L.providedsomeinformaticsfacilitiesfordatamining;X.W.wrotethepaper;andX.W.,G.D.,D.-J.L.,J.L.,N.-Q.R.,J.Q.,andD.B.contributedsubstantiallybycommentingonandrevisingthepaper.Competinginterests:Theauthorsdeclarethattheyhavenocompetinginterests.Dataandmaterialsavailability:Alldataneededtoevaluatetheconclusionsinthepaperarepresentinthepaperand/ortheSupplementaryMaterials.Additionaldatarelatedtothispapermayberequestedfromtheauthors.Submitted6October2017Accepted20June2018Published1August201810.1126/sciadv.aaq0210Citation:X.Wang,G.Daigger,D.-J.Lee,J.Liu,N.-Q.Ren,J.Qu,G.Liu,D.Butler,Evolvingwastewaterinfrastructureparadigmtoenhanceharmonywithnature.Sci.Adv.4,eaaq0210(2018).Downloadedfromhttps://www.science.orgonOctober18,2021UseofthinkarticleissubjecttotheTermsofserviceScienceAdvances(ISSN2375-2548)ispublishedbytheAmericanAssociationfortheAdvancementofScience.1200NewYorkAvenueNW,Washington,DC20005.ThetitleScienceAdvancesisaregisteredtrademarkofAAAS.Copyright©2018TheAuthors,somerightsreserved;exclusivelicenseeAmericanAssociationfortheAdvancementofScience.NoclaimtooriginalU.S.GovernmentWorks.DistributedunderaCreativeCommonsAttributionLicense4.0(CCBY).EvolvingwastewaterinfrastructureparadigmtoenhanceharmonywithnatureXuWangGlenDaiggerDuu-JongLeeJunxinLiuNan-QiRenJiuhuiQuGangLiuDavidButlerSci.Adv.,4(8),eaaq0210.•DOI:10.1126/sciadv.aaq0210Viewthearticleonlinehttps://www.science.org/doi/10.1126/sciadv.aaq0210Permissionshttps://www.science.org/help/reprints-and-permissionsDownloadedfromhttps://www.science.orgonOctober18,2021