Evolving wastewater infrastructure paradigm to enhance harmony with natureVIP专享VIP免费

Wang et al., Sci. Adv. 2018; 4 : eaaq0210 1 August 2018
SCIENCE ADVANCES | RESEARCH ARTICLE
1 of 10
ENVIRONMENTAL STUDIES
Evolving wastewater infrastructure paradigm
to enhance harmony with nature
Xu Wang1,2,3*, Glen Daigger4, Duu-Jong Lee5,6, Junxin Liu1,
Nan-Qi Ren7, Jiuhui Qu1,8, Gang Liu9, David Butler2
Restoring and improving harmony between human activities and nature are essential to human well-being and
survival. The role of wastewater infrastructure is evolving toward resource recovery to address this challenge. Yet,
existing design approaches for wastewater systems focus merely on technological aspects of these systems. If
system design could take advantage of natural ecological processes, it could ensure infrastructure development
within ecological constraints and maximize other benefits. To test this hypothesis, we illustrate a data-driven, systems-
level approach that couples natural ecosystems and the services they deliver to explore how sustainability princi-
ples could be embedded into the life phases of wastewater systems. We show that our design could produce
outcomes vastly superior to those of conventional paradigms that focus on technologies alone, by enabling
high-level recovery of both energy and materials and providing substantial benefits to offset a host of unintended
environmental effects. This integrative study advances our understanding and suggests approaches for regaining
a balance between satisfying human demands and maintaining ecosystems.
INTRODUCTION
Satisfying the ever-growing demands of humans while maintaining
ecosystems is a long-standing challenge (1). Upgrading urban waste-
water infrastructure is a case in point, as nearly 70% of the world
population is expected to live in cities by 2050 (2) and, as cities con-
tinue to grow, the pressure on and unwanted effects of expanding
wastewater service systems will increase significantly. Since the early
20th century, wastewater treatment has been implemented, improved,
and subsequently optimized to ensure the safety of the aquatic sys-
tems and to minimize risks to human health (3). However, increas-
ingly over the past decades, concerns have been raised over the
unintended effects of historical approaches to wastewater service
facilities. Natural resources, particularly fossil fuels, are consumed in
the process of removing waterborne pollutants, and associated green-
house gases (GHGs) are emitted. In the United States alone, nearly
3.4% of the generated electricity (15 GW) is used by wastewater
treatment plants (WWTPs), representing the third largest consumer
of electricity in that country (4). In a typical U.S. city, wastewater
treatment can account for up to 24% of total energy usage by public
utilities (5). Moreover, in the United States, CO2 emission of 0.6 giga-
tonnes (Gt) year−1 can be attributed to degradation of sewage organ-
ic matter over the period of 2010–2015. This amount is equivalent
to ~1.5% of global emission and is projected to reach 1.0 Gt year−1
by 2050 (6, 7).
Yet, in an evolving socioeconomic environment, the same water-
borne and airborne contaminants could be considered valuable
recycling resources. For example, organics could be used to produce
sufficient energy to operate a WWTP (8). Roughly 3 million metric
tons year−1 of phosphorus is lost as human waste, while ~20% of the
global demand for phosphate can be satisfied by recovering phos-
phorus from this waste (9). Further, N2O is a common energy source
in numerous applications, including automobile-related industries,
where CO2 can be captured and synthesized for biomass production.
Wastewater resource management has attracted more attention
and is included in a number of the United Nations (UN) Sustain-
able Development Goals (SDGs) (10). Despite ample opportunities,
the transition of wastewater systems from a sole emphasis on pol-
lutant removal to a focus on resource recovery is not easy to realize.
This is partly because emerging concepts and methods are compo-
nents of a complex integrated system intended to deliver broader
benefits, including water reuse, nutrient recycling, and energy pro-
duction, among others (11), while existing infrastructure paradigms
have not been designed with these multiple purposes in mind. More-
over, wastewater service systems often function in isolation, relying
only on technology to resolve problems and failing to address those
factors beyond the traditional scope of engineering.
Currently, the enormous rise in urbanization and economic ac-
tivity has compelled urban areas to increase their wastewater ser-
vices. Since many wastewater infrastructure elements have service
lives of 50 to 100 years, or even longer, the decisions made today
have long-lasting implications and, consequently, must be based on
future rather than current or past scenarios. To realize the potential
for enhanced sustainability (12), the industry needs a fundamental
change in its approach to and assumptions on managing wastewater
resources, including creation of much-needed new-build wastewater
systems (13). Accordingly, we illustrate a refined approach to inte-
grate multiple options to reuse pollutants from used water as re-
sources (referred to as REPURE infrastructure), with the following main
features: (i) repurposing waterborne material (organic matter, nitro-
gen, and phosphorus, among other substances) to enable pollution
control, resource capture, and end use of the harvested products;
1Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences,
Beijing 100085, China. 2Centre for Water Systems, College of Engineering, Mathe-
matics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK. 3State Key
Joint Laboratory of Environmental Simulation and Pollution Control, Research Center
for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085,
China. 4Department of Civil and Environmental Engineering, University of Michigan,
Ann Arbor, MI 48109, USA. 5Department of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 10607, Taiwan. 6Department of Chem-
ical Engineering, National Taiwan University, Taipei 10617, Taiwan. 7State Key Lab-
oratory of Urban Water Resource and Environment, School of Environment, Harbin
Institute of Technology, Harbin 150090, China. 8School of Environment, Tsinghua
University, Beijing 100084, China. 9Sanitary Engineering, Department of Water Man-
agement, Faculty of Civil Engineering and Geosciences, Delft University of Tech-
nology, 2600 GA, Delft, Netherlands.
*Corresponding author. Email: xuwang@rcees.ac.cn; x.wang@exeter.ac.uk
Copyright © 2018
The Authors, some
rights reserved;
exclusive licensee
American Association
for the Advancement
of Science. No claim to
original U.S. Government
Works. Distributed
under a Creative
Commons Attribution
License 4.0 (CC BY).
Downloaded from https://www.science.org on October 18, 2021
Wang et al., Sci. Adv. 2018; 4 : eaaq0210 1 August 2018
SCIENCE ADVANCES | RESEARCH ARTICLE
2 of 10
(ii) applying a sustainability philosophy to replace the traditional
engineering method that focuses only on the technical aspect of sys-
tem design; (iii) taking ecosystems into account to leverage the capa-
bilities of the natural systems at the systems level.
To test the viability of this approach, we applied the REPURE
concept to repurpose carbon (C), nitrogen (N), and phosphorus (P)
in wastewater to attain higher resource efficiency (Fig.1), building
upon conventional and emerging concepts and methods in waste-
water resource recovery. Next, we applied a rigorous dynamic pro-
cess modeling (DPM) method to build the system characteristics of
a sample REPURE scenario, and then tested the technical feasibility of
the process configuration, taking into account the variations and un-
certainties of multilevel parameters. Further, we used a substance
flow analysis (SFA) tool to acquire aggregated data and to visualize
the resource harvesting patterns and losses from the entire system.
Finally, we used a probabilistic life cycle assessment (LCA) method
to trace and assess the sustainability of the selected scenario and to
outline an avenue for future wastewater service protocols in real-
world contexts.
MATERIALS AND METHODS
Overall approach
A tailored process configuration was established to examine and
evaluate the REPURE approach. As illustrated in Fig.2, the process
configuration of the REPURE approach consisted of three main tech-
nological components—SRS, PTS, and RHS—to handle an example
influent flow of 1 × 105 m3 day−1, with a chemical oxygen demand
(COD) of 400 mg liter−1, total nitrogen (TN) of 40 mg N liter−1, and
total phosphorus (TP) of 7 mg P liter−1. Each of the three system
components used a different set of reactors to provide the required
functions. The key design factors for the system, along with the waste-
water characteristics and environmental factors, among others, for
the subsequent modeling and simulation, are provided in tables S1 to
S3. Dynamic simulations were addressed in this work to satisfy a set
of sample effluent quality requirements for a pollutant removal–
oriented system (COD < 30 mg liter−1, TN < 15 mg N liter−1, NH4+- N <
5 mg N liter−1, and TP < 0.5 mg liter−1; these are stringent effluent
limits in China) (14), although the effluent was considered a resource
for recycling. Synergy between technological and ecological systems
was included in the REPURE example, and two soil-mediated eco-
system services (carbon capture and nutrient retention) were charac-
terized. Calculations are presented in tables S4 to S11.
Inventory data and process models
The background inventory data on chemical, energy, and materials
production are available in the literature (4, 7, 12, 15) and the Eco-
invent libraries (16). The inventory data for the system elements,
including system operation, were computed using model- based simu-
lations. The DPM software BioWin version 5.0 (EnviroSim Associates
Ltd.) was used to construct and simulate the physical, chemical, and
biological processes involved in the selected configuration. The model
factors were fixed initially, and a set of real-life dynamic influent
data for a megacity in China was incorporated for the simulation
(relevant statistic factors are provided in table S1). Considering the
seasonal variations and slow dynamics of anaerobic processes, the
evaluation period was extended to nearly 600 days (17). The details on
determining the embodied and harvested energy and the GHG emis-
sions, among others, are presented in the Supplementary Materials.
Static SFA
A static SFA produces a systems-level overview of interlinked pro-
cess and substance flows to design and assess the management op-
tions (18). Here, we quantified the C, N, and P fluxes by modeling
Carbon recovery
system (CRS)
Carbon conversion
system (CCS) Resources harvesting system (RHS)
Partial treatment system (PTS)
(C, N, P)
(N, P)
HAc-rich liquid
C-rich sludge
P-containing sludge
C → HAc-rich SCFAs
(P)
Used water
Irrigation
C: Liquid → microbes
SCFAs-containing sludge
C → CH
4
(+N
2
O → Power) or C → PHA
N, P → Struvite (fertilizer)
Biosolids for
incineration
and residues
to agriculture
N: NH
4+
→ N
2
O
Water line Sludge line
P: Liquid → microbes
Fig. 1. Overview of inputs, internal flows, and outputs of the REPURE approach. Most of the influent carbon substrates (C) are concentrated in the carbon recovery
system (CRS), whereas the resulting C-rich biomass is fermented partly to acetic acid (HAc)–dominant short-chain fatty acids (SCFAs) in the subsequent carbon conversion
system (CCS). The HAc-rich liquid serves as a promising carbon source in the partial treatment system (PTS) for nutrient removal. The resulting sludge from CCS and PTS
is transformed to various products in the resources harvesting system (RHS). Most of the sludge C is converted to CH4, whereas the remainder is used for polyhydroxy-
alkanoate (PHA) synthesis. The wastewater N is converted to N2O, which is used for combustion with CH4 for power generation. The sludge P can be recovered as struvite.
Downloaded from https://www.science.org on October 18, 2021
Wang et al., Sci. Adv. 2018; 4 : eaaq0210 1 August 2018
SCIENCE ADVANCES | RESEARCH ARTICLE
3 of 10
the partitioning factors to water, air, and sludge for each process step
in the water, sludge, and product pathways by using and aggregating
input and output data derived from the process models. The SFA re-
sults were presented as a Sankey diagram prepared with the graphical
software program Adobe Illustrator CS6 (Adobe Systems). Specifi-
cally, the width of each horizontal line on the figure was proportional
to the flow of the substance. The mean values for the 600-day simu-
lations were used to construct the diagram.
LCA metrics
Twelve main LCA metrics were traced and assessed using the Hier-
archist ReCiPe (H) midpoint method version 1.12, which is based
on common policy principles, including the time frame (19). Spe-
cifically, midpoint methods relate the inventory results directly to
environmental impacts, such as the climate change potential (20).
As most of the recovered products were diverted to land use, terres-
trial ecotoxicity was an interesting effect category to consider. As the
ReCiPe method complies with all the critical aspects of human toxic-
ity and includes terrestrial ecotoxicity, we selected it for use in our
study. Slight modifications were made to fit the method closely
with the goal of this work. Both climate change and ozone depletion
included a characterization factor for N2O (298 kg CO2-eq kg−1
and 0.018 kg CFC11-eq kg−1, respectively), as N2O reportedly
affected wastewater treatment and management alternatives in the
wastewater industry (21). The adjusted ReCiPe approach was accessed
subsequently in the LCA platform SimaPro (PRé Sustainability) to
determine the LCA metrics.
Hybrid DPM-SFA-LCA protocol
For integrative analyses, a hybrid DPM-SFA-LCA data integration
approach was constructed by establishing interfaces to interconnect
the three platforms using Python scripts from the literature (22). Py-
thon scripts integrated the results from BioWin over the simulation
period to further aggregate the input and output data for SFA visu-
alization in Adobe Illustrator C6. The integrated findings were trans-
formed subsequently to a SimaPro-compatible input file for both
foreground and background processes. The LCA metrics were calcu-
lated subsequently with SimaPro using the Ecoinvent databases. This
final step measured the inventory results by adding the contribution
of the background and foreground processes and subsequently deter-
mined the final LCA metrics using the modified ReCiPe method.
Uncertainty accounting
It is essential for proper interpretation to model the attendant un-
certainty with variations in several parameters, including inflow rate,
influent characteristics, and environmental conditions. Here, we in-
corporated these variables using a probability-based method (12).
Briefly, these direct inputs were fully integrated with the appropriate
distributed uncertainty ranges for all the indirect inputs and emis-
sions built for the processes. A Monte Carlo simulation analysis with
100,000 runs was also conducted in SimaPro to account for the effects
of these parameter distributions on the overall LCA results. All the
ranges and factor values are provided in the Supplementary Materials.
RESULTS
Repurposing water pollutants: What is the idea?
To enable the evolution of wastewater systems from a single focus
on pollutant removal to the proposed recovery of resources, the
leverage point is to redesign and realign the process configurations,
aiming at repurposing the system inputs and diverting matter and
energy flow from catabolism to anabolism. Building upon this the-
oretical basis and recovery technologies for wastewater resources,
Fig.1 shows the schematic flow of our REPURE design. Here, raw
wastewater is fed initially into a CRS to concentrate the influent car-
bon substrates for further reallocation. This approach helps to ad-
dress the major drawback of traditional activated sludge treatment
processes, where wastewater organic matters are usually mineral-
ized and their chemical energy potential [~1.9 kilowatt-hour (kWh)
m−3] is typically consumed by energy-intensive aeration (0.3 to
0.7 kWh m−3) (23). Subsequently, C-rich biosolids are fermented
into SCFAs in a CCS. This step provides triple benefits: (i) SCFAs
Sludge pipeline
Water pipeline
Carbon conversion
reactor (CCR)
Carbon recovery
reactor (CRR)
Second clarifier
First clarifier
Third clarifier
Effluent
Residual biosolids
Resources harvesting system (RHS)
Alkalinity adjustment
Thickener
Waste-to-resource reactor (WRR)
Dewatering
Anoxic reactor
(AnoR)
Anaerobic reactor
(AnaR) Aerobic reactor
(AeR)
Partial treatment system (PTS)
Substrate reallocation system (SRS)
Fig. 2. Schematic of a tailored process configuration for the REPURE approach. This configuration is constructed by three interlinked technological components (SRS,
PTS, and RHS) to enable smooth operation and maintenance.
Downloaded from https://www.science.org on October 18, 2021
Wangetal.,Sci.Adv.2018;4:eaaq02101August2018SCIENCEADVANCESRESEARCHARTICLE1of10ENVIRONMENTALSTUDIESEvolvingwastewaterinfrastructureparadigmtoenhanceharmonywithnatureXuWang1,2,3,GlenDaigger4,Duu-JongLee5,6,JunxinLiu1,Nan-QiRen7,JiuhuiQu1,8,GangLiu9,DavidButler2Restoringandimprovingharmonybetweenhumanactivitiesandnatureareessentialtohumanwell-beingandsurvival.Theroleofwastewaterinfrastructureisevolvingtowardresourcerecoverytoaddressthischallenge.Yet,existingdesignapproachesforwastewatersystemsfocusmerelyontechnologicalaspectsofthesesystems.Ifsystemdesigncouldtakeadvantageofnaturalecologicalprocesses,itcouldensureinfrastructuredevelopmentwithinecologicalconstraintsandmaximizeotherbenefits.Totestthishypothesis,weillustrateadata-driven,systems-­levelapproachthatcouplesnaturalecosystemsandtheservicestheydelivertoexplorehowsustainabilityprinci-plescouldbeembeddedintothelifephasesofwastewatersystems.Weshowthatourdesigncouldproduceoutcomesvastlysuperiortothoseofconventionalparadigmsthatfocusontechnologiesalone,byenablinghigh-levelrecoveryofbothenergyandmaterialsandprovidingsubstantialbenefitstooffsetahostofunintendedenvironmentaleffects.Thisintegrativestudyadvancesourunderstandingandsuggestsapproachesforregainingabalancebetweensatisfyinghumandemandsandmaintainingecosystems.INTRODUCTIONSatisfyingtheever-growingdemandsofhumanswhilemaintainingecosystemsisalong-standingchallenge(1).Upgradingurbanwaste-waterinfrastructureisacaseinpoint,asnearly70%oftheworldpopulationisexpectedtoliveincitiesby2050(2)and,ascitiescon-tinuetogrow,thepressureonandunwantedeffectsofexpandingwastewaterservicesystemswillincreasesignificantly.Sincetheearly20thcentury,wastewatertreatmenthasbeenimplemented,improved,andsubsequentlyoptimizedtoensurethesafetyoftheaquaticsys-temsandtominimizeriskstohumanhealth(3).However,increas-inglyoverthepastdecades,concernshavebeenraisedovertheunintendedeffectsofhistoricalapproachestowastewaterservicefacilities.Naturalresources,particularlyfossilfuels,areconsumedintheprocessofremovingwaterbornepollutants,andassociatedgreen-housegases(GHGs)areemitted.IntheUnitedStatesalone,nearly3.4%ofthegeneratedelectricity(15GW)isusedbywastewatertreatmentplants(WWTPs),representingthethirdlargestconsumerofelectricityinthatcountry(4).InatypicalU.S.city,wastewatertreatmentcanaccountforupto24%oftotalenergyusagebypublicutilities(5).Moreover,intheUnitedStates,CO2emissionof0.6giga-tonnes(Gt)year−1canbeattributedtodegradationofsewageorgan-icmatterovertheperiodof2010–2015.Thisamountisequivalentto~1.5%ofglobalemissionandisprojectedtoreach1.0Gtyear−1by2050(6,7).Yet,inanevolvingsocioeconomicenvironment,thesamewater­borneandairbornecontaminantscouldbeconsideredvaluablerecyclingresources.Forexample,organicscouldbeusedtoproducesufficientenergytooperateaWWTP(8).Roughly3millionmetrictonsyear−1ofphosphorusislostashumanwaste,while~20%oftheglobaldemandforphosphatecanbesatisfiedbyrecoveringphos-phorusfromthiswaste(9).Further,N2Oisacommonenergysourceinnumerousapplications,includingautomobile-relatedindustries,whereCO2canbecapturedandsynthesizedforbiomassproduction.WastewaterresourcemanagementhasattractedmoreattentionandisincludedinanumberoftheUnitedNations(UN)Sustain-ableDevelopmentGoals(SDGs)(10).Despiteampleopportunities,thetransitionofwastewatersystemsfromasoleemphasisonpol-lutantremovaltoafocusonresourcerecoveryisnoteasytorealize.Thisispartlybecauseemergingconceptsandmethodsarecompo-nentsofacomplexintegratedsystemintendedtodeliverbroaderbenefits,includingwaterreuse,nutrientrecycling,andenergypro-duction,amongothers(11),whileexistinginfrastructureparadigmshavenotbeendesignedwiththesemultiplepurposesinmind.More-over,wastewaterservicesystemsoftenfunctioninisolation,relyingonlyontechnologytoresolveproblemsandfailingtoaddressthosefactorsbeyondthetraditionalscopeofengineering.Currently,theenormousriseinurbanizationandeconomicac-tivityhascompelledurbanareastoincreasetheirwastewaterser-vices.Sincemanywastewaterinfrastructureelementshaveservicelivesof50to100years,orevenlonger,thedecisionsmadetodayhavelong-lastingimplicationsand,consequently,mustbebasedonfutureratherthancurrentorpastscenarios.Torealizethepotentialforenhancedsustainability(12),theindustryneedsafundamentalchangeinitsapproachtoandassumptionsonmanagingwastewaterresources,includingcreationofmuch-needednew-buildwastewatersystems(13).Accordingly,weillustratearefinedapproachtointe-gratemultipleoptionstoreusepollutantsfromusedwaterasre-sources(referredtoasREPUREinfrastructure),withthefollowingmainfeatures:(i)repurposingwaterbornematerial(organicmatter,nitro-gen,andphosphorus,amongothersubstances)toenablepollutioncontrol,resourcecapture,andenduseoftheharvestedproducts;1ResearchCenterforEco-EnvironmentalSciences,ChineseAcademyofSciences,Beijing100085,China.2CentreforWaterSystems,CollegeofEngineering,Mathe-maticsandPhysicalSciences,UniversityofExeter,ExeterEX44QF,UK.3StateKeyJointLaboratoryofEnvironmentalSimulationandPollutionControl,ResearchCenterforEco-EnvironmentalSciences,ChineseAcademyofSciences,Beijing100085,China.4DepartmentofCivilandEnvironmentalEngineering,UniversityofMichigan,AnnArbor,MI48109,USA.5DepartmentofChemicalEngineering,NationalTaiwanUniversityofScienceandTechnology,Taipei10607,Taiwan.6DepartmentofChem-icalEngineering,NationalTaiwanUniversity,Taipei10617,Taiwan.7StateKeyLab-oratoryofUrbanWaterResourceandEnvironment,SchoolofEnvironment,HarbinInstituteofTechnology,Harbin150090,China.8SchoolofEnvironment,TsinghuaUniversity,Beijing100084,China.9SanitaryEngineering,DepartmentofWaterMan-agement,FacultyofCivilEngineeringandGeosciences,DelftUniversityofTech-nology,2600GA,Delft,Netherlands.Correspondingauthor.Email:xuwang@rcees.ac.cn;x.wang@exeter.ac.ukCopyright©2018TheAuthors,somerightsreserved;exclusivelicenseeAmericanAssociationfortheAdvancementofScience.NoclaimtooriginalU.S.GovernmentWorks.DistributedunderaCreativeCommonsAttributionLicense4.0(CCBY).Downloadedfromhttps://www.science.orgonOctober18,2021Wangetal.,Sci.Adv.2018;4:eaaq02101August2018SCIENCEADVANCESRESEARCHARTICLE2of10(ii)applyingasustainabilityphilosophytoreplacethetraditionalengineeringmethodthatfocusesonlyonthetechnicalaspectofsys-temdesign;(iii)takingecosystemsintoaccounttoleveragethecapa-bilitiesofthenaturalsystemsatthesystemslevel.Totesttheviabilityofthisapproach,weappliedtheREPUREconcepttorepurposecarbon(C),nitrogen(N),andphosphorus(P)inwastewatertoattainhigherresourceefficiency(Fig.1),buildinguponconventionalandemergingconceptsandmethodsinwaste­waterresourcerecovery.Next,weappliedarigorousdynamicpro-cessmodeling(DPM)methodtobuildthesystemcharacteristicsofasampleREPUREscenario,andthentestedthetechnicalfeasibilityoftheprocessconfiguration,takingintoaccountthevariationsandun-certaintiesofmultilevelparameters.Further,weusedasubstanceflowanalysis(SFA)tooltoacquireaggregateddataandtovisualizetheresourceharvestingpatternsandlossesfromtheentiresystem.Finally,weusedaprobabilisticlifecycleassessment(LCA)methodtotraceandassessthesustainabilityoftheselectedscenarioandtooutlineanavenueforfuturewastewaterserviceprotocolsinreal-­worldcontexts.MATERIALSANDMETHODSOverallapproachAtailoredprocessconfigurationwasestablishedtoexamineandevaluatetheREPUREapproach.AsillustratedinFig.2,theprocessconfigurationoftheREPUREapproachconsistedofthreemaintech-nologicalcomponents—SRS,PTS,andRHS—tohandleanexampleinfluentflowof1×105m3day−1,withachemicaloxygendemand(COD)of400mgliter−1,totalnitrogen(TN)of40mgNliter−1,andtotalphosphorus(TP)of7mgPliter−1.Eachofthethreesystemcomponentsusedadifferentsetofreactorstoprovidetherequiredfunctions.Thekeydesignfactorsforthesystem,alongwiththewaste-watercharacteristicsandenvironmentalfactors,amongothers,forthesubsequentmodelingandsimulation,areprovidedintablesS1toS3.Dynamicsimulationswereaddressedinthisworktosatisfyasetofsampleeffluentqualityrequirementsforapollutantremoval–­orientedsystem(COD<30mgliter−1,TN<15mgNliter−1,NH4+-­N<5mgNliter−1,andTP<0.5mgliter−1;thesearestringenteffluentlimitsinChina)(14),althoughtheeffluentwasconsideredaresourceforrecycling.SynergybetweentechnologicalandecologicalsystemswasincludedintheREPUREexample,andtwosoil-mediatedeco-systemservices(carboncaptureandnutrientretention)werecharac-terized.CalculationsarepresentedintablesS4toS11.InventorydataandprocessmodelsThebackgroundinventorydataonchemical,energy,andmaterialsproductionareavailableintheliterature(4,7,12,15)andtheEco-inventlibraries(16).Theinventorydataforthesystemelements,includingsystemoperation,werecomputedusingmodel-­basedsimu-lations.TheDPMsoftwareBioWinversion5.0(EnviroSimAssociatesLtd.)wasusedtoconstructandsimulatethephysical,chemical,andbiologicalprocessesinvolvedintheselectedconfiguration.Themodelfactorswerefixedinitially,andasetofreal-lifedynamicinfluentdataforamegacityinChinawasincorporatedforthesimulation(relevantstatisticfactorsareprovidedintableS1).Consideringtheseasonalvariationsandslowdynamicsofanaerobicprocesses,theevaluationperiodwasextendedtonearly600days(17).ThedetailsondeterminingtheembodiedandharvestedenergyandtheGHGemis-sions,amongothers,arepresentedintheSupplementaryMaterials.StaticSFAAstaticSFAproducesasystems-leveloverviewofinterlinkedpro-cessandsubstanceflowstodesignandassessthemanagementop-tions(18).Here,wequantifiedtheC,N,andPfluxesbymodelingCarbonrecoverysystem(CRS)Carbonconversionsystem(CCS)Resourcesharvestingsystem(RHS)Partialtreatmentsystem(PTS)(C,N,P)(N,P)HAc-richliquidC-richsludgeP-containingsludgeC→HAc-richSCFAs(P)UsedwaterIrrigationC:Liquid→microbesSCFAs-containingsludgeC→CH4(+N2O→Power)orC→PHAN,P→Struvite(fertilizer)BiosolidsforincinerationandresiduestoagricultureN:NH4+→N2OWaterlineSludgelineP:Liquid→microbesFig.1.Overviewofinputs,internalflows,andoutputsoftheREPUREapproach.Mostoftheinfluentcarbonsubstrates(C)areconcentratedinthecarbonrecoverysystem(CRS),whereastheresultingC-richbiomassisfermentedpartlytoaceticacid(HAc)–dominantshort-chainfattyacids(SCFAs)inthesubsequentcarbonconversionsystem(CCS).TheHAc-richliquidservesasapromisingcarbonsourceinthepartialtreatmentsystem(PTS)fornutrientremoval.TheresultingsludgefromCCSandPTSistransformedtovariousproductsintheresourcesharvestingsystem(RHS).MostofthesludgeCisconvertedtoCH4,whereastheremainderisusedforpolyhydroxy-alkanoate(PHA)synthesis.ThewastewaterNisconvertedtoN2O,whichisusedforcombustionwithCH4forpowergeneration.ThesludgePcanberecoveredasstruvite.Downloadedfromhttps://www.science.orgonOctober18,2021Wangetal.,Sci.Adv.2018;4:eaaq02101August2018SCIENCEADVANCESRESEARCHARTICLE3of10thepartitioningfactorstowater,air,andsludgeforeachprocessstepinthewater,sludge,andproductpathwaysbyusingandaggregatinginputandoutputdataderivedfromtheprocessmodels.TheSFAre-sultswerepresentedasaSankeydiagrampreparedwiththegraphicalsoftwareprogramAdobeIllustratorCS6(AdobeSystems).Specifi-cally,thewidthofeachhorizontallineonthefigurewasproportionaltotheflowofthesubstance.Themeanvaluesforthe600-daysimu-lationswereusedtoconstructthediagram.LCAmetricsTwelvemainLCAmetricsweretracedandassessedusingtheHier-archistReCiPe(H)midpointmethodversion1.12,whichisbasedoncommonpolicyprinciples,includingthetimeframe(19).Spe-cifically,midpointmethodsrelatetheinventoryresultsdirectlytoenvironmentalimpacts,suchastheclimatechangepotential(20).Asmostoftherecoveredproductsweredivertedtolanduse,terres-trialecotoxicitywasaninterestingeffectcategorytoconsider.AstheReCiPemethodcomplieswithallthecriticalaspectsofhumantoxic-ityandincludesterrestrialecotoxicity,weselecteditforuseinourstudy.Slightmodificationsweremadetofitthemethodcloselywiththegoalofthiswork.BothclimatechangeandozonedepletionincludedacharacterizationfactorforN2O(298kgCO2-eqkg−1and0.018kgCFC11-eqkg−1,respectively),asN2Oreportedlyaffectedwastewatertreatmentandmanagementalternativesinthewastewaterindustry(21).TheadjustedReCiPeapproachwasaccessedsubsequentlyintheLCAplatformSimaPro(PRéSustainability)todeterminetheLCAmetrics.HybridDPM-SFA-LCAprotocolForintegrativeanalyses,ahybridDPM-SFA-LCAdataintegrationapproachwasconstructedbyestablishinginterfacestointerconnectthethreeplatformsusingPythonscriptsfromtheliterature(22).Py-thonscriptsintegratedtheresultsfromBioWinoverthesimulationperiodtofurtheraggregatetheinputandoutputdataforSFAvisu-alizationinAdobeIllustratorC6.Theintegratedfindingsweretrans-formedsubsequentlytoaSimaPro-compatibleinputfileforbothforegroundandbackgroundprocesses.TheLCAmetricswerecalcu-latedsubsequentlywithSimaProusingtheEcoinventdatabases.Thisfinalstepmeasuredtheinventoryresultsbyaddingthecontributionofthebackgroundandforegroundprocessesandsubsequentlydeter-minedthefinalLCAmetricsusingthemodifiedReCiPemethod.UncertaintyaccountingItisessentialforproperinterpretationtomodeltheattendantun-certaintywithvariationsinseveralparameters,includinginflowrate,influentcharacteristics,andenvironmentalconditions.Here,wein-corporatedthesevariablesusingaprobability-basedmethod(12).Briefly,thesedirectinputswerefullyintegratedwiththeappropriatedistributeduncertaintyrangesforalltheindirectinputsandemis-sionsbuiltfortheprocesses.AMonteCarlosimulationanalysiswith100,000runswasalsoconductedinSimaProtoaccountfortheeffectsoftheseparameterdistributionsontheoverallLCAresults.AlltherangesandfactorvaluesareprovidedintheSupplementaryMaterials.RESULTSRepurposingwaterpollutants:Whatistheidea?Toenabletheevolutionofwastewatersystemsfromasinglefocusonpollutantremovaltotheproposedrecoveryofresources,theleveragepointistoredesignandrealigntheprocessconfigurations,aimingatrepurposingthesysteminputsanddivertingmatterandenergyflowfromcatabolismtoanabolism.Buildinguponthisthe-oreticalbasisandrecoverytechnologiesforwastewaterresources,Fig.1showstheschematicflowofourREPUREdesign.Here,rawwastewaterisfedinitiallyintoaCRStoconcentratetheinfluentcar-bonsubstratesforfurtherreallocation.Thisapproachhelpstoad-dressthemajordrawbackoftraditionalactivatedsludgetreatmentprocesses,wherewastewaterorganicmattersareusuallymineral-izedandtheirchemicalenergypotential[~1.9kilowatt-hour(kWh)m−3]istypicallyconsumedbyenergy-intensiveaeration(0.3to0.7kWhm−3)(23).Subsequently,C-richbiosolidsarefermentedintoSCFAsinaCCS.Thisstepprovidestriplebenefits:(i)SCFAsSludgepipelineWaterpipelineCarbonconversionreactor(CCR)Carbonrecoveryreactor(CRR)SecondclarifierFirstclarifierThirdclarifierEffluentResidualbiosolidsResourcesharvestingsystem(RHS)AlkalinityadjustmentThickenerWaste-to-resourcereactor(WRR)DewateringAnoxicreactor(AnoR)Anaerobicreactor(AnaR)Aerobicreactor(AeR)Partialtreatmentsystem(PTS)Substratereallocationsystem(SRS)Fig.2.SchematicofatailoredprocessconfigurationfortheREPUREapproach.Thisconfigurationisconstructedbythreeinterlinkedtechnologicalcomponents(SRS,PTS,andRHS)toenablesmoothoperationandmaintenance.Downloadedfromhttps://www.science.orgonOctober18,2021Wangetal.,Sci.Adv.2018;4:eaaq02101August2018SCIENCEADVANCESRESEARCHARTICLE4of10areexceptionallypromisingsubstratesfornutrient-removingmicrobes(24),(ii)SCFAsserveasfeedstocksforbioenergyandbiochemicalproduction(25),and(iii)wastewatersystemsfedwithHAc-dominantSCFAscouldachieveenergyneutralityandenableanegativecarbonfootprint(26).Subsequently,thecombinedstreamfromtheCCSandCRSistreatedtoreducethenutrientloads.Wastewaternitrogeniscommonlyremovedbyaerobicnitrificationandsubsequentanoxicdenitrification,whichrequiresenergyfromthemineralizationoforganicmattersthatcouldbeusedotherwisetoproduceenergycarriers(forexample,methane).AnotherchallengeisthegenerationofN2Ointhesemicro-bialprocesses(27).N2OisacriticalGHGthatis310timesmorepowerfulthanCO2.Yet,N2Oisalsoacommonsourceofenergyinnumerousapplications.Therefore,thePTSentailstwoessentialsteps:(i)conversionofNH4+toN2Ousingecologicalshortcircuitstoreducetheoxygensupplyandcarbonaceousdegradation(28)and(ii)conversionofN2OtoN2,throughwhichpowercanbegeneratedbyusingN2Oasanoxidantinmethanecombustion(29).Further,thefermentationliquidoffersafeasiblecarbonsource(HAc)toenablephosphorusaccumulationinthewaste-activatedsludgebypolyphosphate-accumulatingorganisms(PAOs)(30).Thetreatedeffluentcouldbeusedforvariousnonpotablepur-poses,includingagriculture(31),whereastheresultingbiosolidswillbeprocessedintheRHSandconvertedintousefulproducts.Inpar-ticular,mostorganicmattersinbiosolidscanbefermentedintomethaneandcombustedwiththeN2Oforenergygeneration,whilethePAOsintheRHSwilltakeuptheremainingSCFAsandstorethemintracellularlyasPHA(32),whichisafeasiblesubstituteforpetroleum-basedplastics(33).Struvite(NH4MgPO4·6H2O)ishar-vestedfromthesupernatantforuseasaslow-releasefertilizer(34).Thedigestedbiosolidsarecombustedtorecoverenergy,andtheresi-duesarerecycledtotheland.Thesoilsystemreceivingtheseproductsprovidescarboncaptureandnutrientretentionservices(35,36).CanaREPUREexamplebeformulatedfromconcepttoreality?Totesttheabove-mentionedconcept,wedevelopedatailoredREPUREconfiguration(Fig.2)andassesseditbyapplyingaprocessmodelingapproach.Theexperimentaldifferenceswerenotconsid-eredinthisstudy.TheremovalefficienciesofCOD,TN,andTPwere92,81,and93%,respectively,duringa600-dayevaluationpe-riodinthesimulationmodel(tableS12).Inparticular,theresultingwaterhad29±4mgCODliter−1,7.8±1.4mgNliter−1,and0.47±0.11mgPliter−1(Fig.3,AandB),withaneffluentconcentrationofNH4+-Nof1.7±0.5mgNliter−1.ThisREPUREexamplecomplieswiththeacceptedeffluentlimitswhileavoidingthecommonchemicals(ironandmethanol)usedinthetraditionaltreatmentprocesses(37).IntheSRS,theCRRfirstlyaccumulatedmostoftheorganicsintheinfluentwastestreamtosynthesizestructuralmoleculesandbio-massviaanabolism.Therequiredmetabolicenergyisprovidedbytheaerobicmineralizationoftheremainingorganicmattersandisrelativelylow.ThisisshownbytheminornumbersofheterotrophsthatusedsolublebiodegradableCODandexhibitedlowoxygencon-sumption(fig.S1).Next,theCCRconvertedtheC-richbiosolidsintoHAc-richsubstrates.Ingeneral,theremovalof1mgofNand1mgofPconsumes6to8mgand7to10mgofCOD,respectively(30).BecauseofthehighcarboncontentintheCCR,theinfluentCODintothePTSwasobviouslyinsufficienttosatisfybiologicalnutrientremoval.However,thereallocationofthecarbonsubstratesandcomplementaryadditionofWRRfermentationliquidincreasedtheHAc-basedCOD(tableS13),whichisoneofthemainreasonsfortheenhancednutrientremoval.TheexpectedshorteningofthenitrificationprocesswasachievedinthePTS,asillustratedbythelowNO3−production(tableS14)andcorrespondingweakmetabolicactivityofthenitrite-oxidizingbacteria(NOB)(tableS15).SubstantialN2Oproductionisseen,withanaver-ageemissionrateof1.0m3min−1(Fig.3C,goldencurve),equivalenttoaharvestingrateof2.6metrictonsNday−1.TherearetypicallythreemainpathwaysinvolvedinN2Oformation:(i)NH2OHoxida-tion,(ii)nitrifierdenitrification,and(iii)heterotrophicdenitri-fication,mediatedbytheammonia-oxidizingbacteria(AOB)andheterotrophs(fig.S2).TheAOB-relatedN2Oproductionpathwayswerepredominant,asshownbythehighestN2Oproductionduringautotrophicnitrification(4.4mgNliter−1hour−1;tableS14).Themeta-bolicdataonAOBfurtherdemonstratedthatNH2OHoxidation,ratherthanAOBdenitrification,wasthedominantpathwayforgeneratingN2Ointhesimulations(fig.S3).Thefluxesofmethane,struvite,andPHAarepresentedinFig.3(CandD),indicatingstableyieldratesof4.8m3min−1,1.8metrictonsday−1,and0.68metrictonCODday−1,respectively.ThisfindingindicatesthefeasibilityoftheHRS.SFAvisualization:Howmanyresourcescanbecaptured?TheresultoftheSFA(Fig.4)indicatesthatmostwastewaterele-mentswereconsumedforenergyproductionandweretransformedintousefulmaterials,witharelativelyminorproportionofCandNlosttotheatmosphere(28and18%,respectively,asbioticCO2andN2).AnexaminationofthefateofC(Fig.4,blueseries)indicatesthat58%oftheCloadwasconvertedintoenergyresources,with33%convertedtomethane,andanadditionalfractionof25%accu-mulatedinthebiosolids.Nearly7%oftheincomingCremainedintheeffluent,andaminorfractionoftheCloadwasconvertedintoPHA(2%).RegardingN(Fig.4,orange-redseries),22,15,and3%remainedintheeffluent,biosolids,andstruvite,respectively.Thisimpliesthat40%oftheREPURE-basedNfluxescanberecycledforlanduse.Thisisanadvantageoverthetraditionalbiologicalnutrientremovalsystems,wheremostoftheN2isemittedtotheatmosphere.Anothermajorbenefitisthattheremaining42%oftheincomingNwasconvertedintoN2Oasapowerfuloxidantthatcouldincreasetheenergyharvestingefficiencybyco-combustionwithmethane.Nearly35%ofthePloadwasusedinstruviteformation,whereas58%oftheincomingPaccumulatedinthebiosolidsforrecyclinginagri-culture.Asmallerproportion(7%)remainedintheeffluent(Fig.4,greenseries).ThisREPUREapproachprovidessynergy,avoidingwasteofbio-massmaterialswhileenablingenergyself-sufficiency.Emphasizingtheaccumulativeenergybalanceforthisconfiguration,Fig.5sum-marizestheenergyembodied(leftgrayarea)andexploited(rightwhitearea)acrossthesubsystems.Theembodiedenergyforsystemoperationandmaintenancewasapproximately1.4kWhm−3,whereasenergygainedfrommethaneexploitationandresidueincinerationcompletelysatisfiedtheenergyintakeoftheentiresystem,withanetpowerof0.40kWhm−3.Environmentalsustainability:Whataretheeffects?Hitherto,wehaveaddressedthetechnologicalfeasibilityandresourceefficiencyofthisparticularREPUREscenario.However,anassess-mentofthelifecycleenvironmentaleffectsisrequired.Theproba-bilisticLCAresultsinFig.6showthattheREPUREapproachprovidesDownloadedfromhttps://www.science.orgonOctober18,2021Wangetal.,Sci.Adv.2018;4:eaaq02101August2018SCIENCEADVANCESRESEARCHARTICLE5of10environmentalbenefitsbyredirectingtheusedwaterresources.Asregardtheevaluatedeffects,theentiresystemcontributesoffsetstoclimatechange(−2.3kgofCO2-eq),fossilfueldepletion(−0.86kgofoil-eq),freshwaterecotoxicity(−4.6×10−2kgof1,4-DB–eq),humantoxicity(−0.28kgof1,4-DB–eq),marineecotoxicity(−4.3×10−2kgof1,4-DB–eq),marineeutrophication(−5.3×10−2kgofN-eq),particulateformation(−7.9×10−3kgofPM10-eq),photo-chemicaloxidantformation[−13×10−3kg-NMVOC(nonmethanevolatileorganiccompound)]andterrestrialacidification(−1.8×10−2kgofSO2-eq),expressedpercubicmeterofwastewatertreated.ThisREPUREcaserealized100%energyself-sufficiencybydi-vertingwastewaterorganicsforenergygeneration.Furthermore,thecontributionofthesystemtoclimatechangeandfossilfueldepletionwasreduced,althoughCO2wasstillreleasedfromthegenerationofbioenergy(fig.S4).Furthermore,diversionoftheexcessenergycapturedfromthesystemtootherurbansectorscouldassistinlimit-ingtheuseoffossilfuel,therebyhelpingtoreducetheattendantGHGemissions(0.10kgoil-eqm−3and0.42kgCO2-eqm−3).Theexploitationofbioenergyplaysanessentialroleinreducingthenega-tiveconsequencesassociatedtypicallywithfossilfuelexploitation,suchasparticulateformation,photochemicaloxidantformation,andterrestrialacidification.Further,usingtheremainingbiosolidsforagriculturecouldhelpreducethemostnegativeeffectsbyrestrictingtheproductionandutilizationofcommercialfertilizers,exceptforozonedepletion,fresh-watereutrophication,andterrestrialecotoxicity.Inparticular,thegaseousemissionsofCH4andN2Ofromlanduseincreasetheozonedepletionpotential.Byapplyingtheproductstolanduse,theissueofnutrientdischargewillbetransferredfromtheaquaticecosystemstotheenvironmentatthesiteofapplication.While95%ofPinbio-solidscouldbeabsorbedbysoils(seetheSupplementaryMaterials),theremainingPisunavailabletothelandandwillrunoff,present-ingafreshwatereutrophicationpotentialof1.6×10−2kgP-eqm−3.Inaddition,recyclingthebiosolidsforlanduseposestheriskofpo-tentialterrestrialecotoxicity,owingtothemetalsinthebiosolidsratherthantheorganicpollutants,asmostofthelatterwillbede-gradedduringincineration.ConsideringtherelativelyloweryieldsofbothPHAandstruvite,itisnotsurprisingthattheireffectsarenegligible.Thisanalysisassumedthattheeffluentwasusedasanalternativeirrigationsource.Hence,itmitigatedthepotentialsforclimatechangeandfossilfueldepletion.Further,divertingtheeffluentfromthereceivingwaterbodiestolandusewouldbenefittheaquaticecosystems,consider-ingitsnegligibleeutrophicationpotential.Inaddition,thedissolvedammoniawasreleasedwiththeeffluentirrigation,resultinginanetterrestrialacidificationpotentialof0.41kgSO2-eqm−3.Moreover,effluentirrigationaddedmetalsandorganiccontaminantstosoils,causingnetpotentialterrestrialecotoxicity(1.4×10−3kg1,4-DB–eqm−3)andhumantoxicity(0.40kg1,4-DB–eqm−3).Nevertheless,otherusesforthereclaimedwatercouldsimilarlyreducetheapplicationoftraditionalwaterresourcesandproduceothernetbenefits.DISCUSSIONThe17SDGsunderAgenda2030oftheUNhavemappedacoherentpathandreachedconsensusonachievingglobalsustainability.0.00.20.40.60.81.001020304050ABCD0150300450600EffluentTP(mgliter)EffluentCOD(mgliter)Time(days)CODTP0.01.53.04.56.003691215180150300450600Effluentammonia(mgliter)EffluentTN(mgliter)Time(days)TNAmmonia0.40.50.60.70.81.21.41.61.82.20150300450600PHAgeneration(metrictonCODday)Struviteformation(metrictonday)Time(days)StruvitePHA0.02.55.07.50.00.40.81.21.60150300450600Methanecollected()Nitrousoxidecollected(m3min)Time(days)NitrousoxideMethane2030400.20.50.83.05.07.00.51.01.51.41.72.00.500.650.80591301.53.02.0Fig.3.Long-termperformanceoftheREPUREprocessconfiguration.DynamicprofilesofeffluentCODandTP(A),effluentammoniaandTN(B),emittednitrousoxideandmethane(C),andformationsofstruviteandPHA(D)intheexemplifiedREPUREconfiguration.Thesmallboxplotsineachchartdepictthestatisticalinformationofthedynamicprofiles,thecentrallinesrepresentmedianvalues,theboxesrepresentthe25thto75thpercentiles,andthebarsdepictthe5thto95thpercentilesofthedistributionsresultingfromthe600-daysimulation.Downloadedfromhttps://www.science.orgonOctober18,2021Wangetal.,Sci.Adv.2018;4:eaaq02101August2018SCIENCEADVANCESRESEARCHARTICLE6of10ReusingwastewaterhasbecomeanessentialtargetacrossseveralSDGs,particularlyinCleanWaterandSanitation(Goal6).Giventhetimeframeoflessthan13years,progresstowardachievingtheSDGsre-quirestheeffectiveconversionofevolvingknowledgeintopracticalsolutions.Manycountrieshaveoutlinedarangeofprogramsandactionstotransformtheexistingwastewatertreatmentinfrastruc-tureintoresourcerecoveryfacilities(38).Ourfindingsindicatedthatasystemsintegrationapproachtodevelopcompletesystemsallowedthisongoingrevolutiontoproducesignificantlysuperioroutcomesinareal-worldcontext.Thisisincontrasttoamoretraditionalap-proachbasedonthequalitativeassumptionthat“moreisbetter,”inwhichsimplyaddingmanyalternativeoptionsisbelievedtoleadtoasustainablewastewatertreatmentsystem.Combiningvarioustechnologicalcomponentsintoacompletesystemandassessingthesesystemssystematicallyfacilitatethedevelopmentandselectionofwaste-watersystemsthatprovidesuperiornetresourcesustainability.Furthermore,thesesystemscanreducethenegativeconsequencesofandoffsetclimatechange,fossilfueldepletion,aquaticecotox-icity,andadditionalbroadereffects.Althoughdivertingreclaimedwaterandbiosolidstoproductiveusescancreatebenefits,itcouldalsoshiftseeminglyunrelatedeffectsacrosssystemsandscales.Toovercometheseobstacles,anapproachthatismuchmorequantita-tivelyrigorousandecologicallyinclusiveshouldbeconsideredintheplanninganddesignofwastewaterinfrastructure,fromconceptiontoconfigurationandanalysisatthesystemslevel.SuchanidealapproachispresentedbythecurrentmethodillustratedthroughtheREPUREexample.Globalsustainabilitychallengesarecloselylinkedyetoftencon-sideredanddealtwithseparately(39).Thepotentialofwastewaterresourceinfrastructureforeffectivecouplingwithnaturalecosys-temsshouldbeexploredbyconsideringboththeemissionsandtherecoveredproducts.Aholisticmethodologytostudythecouplingoftechnicalandecologicalsystemsisneededtoadvanceourunderstand-ingandmethodsofcreatingtrulysustainablewastewatermanagementprotocols.Here,weincludedthetwomostcommonecosystemservices(carboncaptureandnutrientretention)providedbysoils,astheywerefoundtohelpreduceenvironmentaleffectsduringlanduseoftheWastewaterelementsPNCProcessingviaREPURE35%7%58%3%22%42%15%18%33%7%5%25%2%28%ProductsStruviteBiomassCH4CO2N2H2N2OBy-producedPHATreatedwater(forirrigation)Residualbiosolids(forfurtherrecycling)PowergenerationAirbornesubstances(releasetotheatmosphere)Fig.4.SankeydiagramtracingtheintersystemicflowsofC,N,andPfromin-fluentwastewater(fromREPUREprocessingtothedeliveryofrecoveredproducts).Thelinewidthisproportionaltothemassflux.Theaveragevaluesofthe600-daysimulationswereusedtopreparethisfigure.2.01.51.00.500.51.01.52.0SRSpartPTSpartRHSpartWholesystem(REPURE)Accumulativeenergybalance(kWhperm3wastewatertreated)AerationReactormixingLiquidpumpingSludgepumpingReactorheatingSludgethickeningSludgedewateringEnergycaptureviaCH4andN2OcombustionEnergycaptureviaCH4andO2combustionEnergycaptureviasludgeincinerationNetgain:0.40Fig.5.EnergybalanceanddistributionintheREPUREprocessconfiguration.Theleftgrayareainthechartindicatestheenergyrequiredforsystemmaintenance,whereastherightwhiteareapresentstheenergyproducedfrommethanecombustionandbiosolidincineration.Theblackboxpresentsthenetenergygainrelativetothesystemboundaryconsidered,andtheaveragevaluesofthemodelingresultsareshown.Downloadedfromhttps://www.science.orgonOctober18,2021Wangetal.,Sci.Adv.2018;4:eaaq02101August2018SCIENCEADVANCESRESEARCHARTICLE7of10biosolidsandreclaimedwater.Thisapproachcouldbepromotedformanysites,assoilisamajorcomponentoftheplanetandexistsinnearlyeverycountry.Althoughonlytwoecosystemservicesprovidedbysoilswereincludedatthesystemslevel,usingsimplecalculationparameters,theresultsshowedthatcouplingtechnicalsystemsandecosystemsprovidedthepotentialtopinpointnovelandmutuallybeneficialsolutionsthatmightnotbediscoveredbyatraditionaltechnocentricapproach.Nevertheless,expansionofthisapproachisnotonlypossiblebutalsonecessary.Forinstance,thecouplingoftechnologiesandecosystemsshouldconsiderlocalandlargerscalesandincludeadditionalecosystems,suchastrees,toclosemorere-sourceloopstomanagewastewatertreatmentinfrastructureinasus-tainablemanner.Advancedalgorithmstodescribe,simulate,andpredictecosystemservicebenefitsshouldalsobeintegratedinfu-turestudies.TheexpectedproductsgeneratedbytheREPUREsystemmainlyincludeenergycarriers,biosolids,andreclaimedwater.Exploitationoftherenewableenergycarriers(suchasCH4)forpoweristhemostcommonaction,particularlyastheharvestedenergyisusedimme-diatelyonsiteforplantoperations.Further,biosolidsfromwastewaterfacilitieshavebeencommonlyusedworldwidefortherecyclingoforganicmattersandnutrientsinagriculturalfields,eitherdirectlyvialandspreadorthroughcomposting.Inaddition,reclaimedwaterisin-creasinglyappliedforavarietyofnonpotablepurposes,includinglandirrigation,asassumedinthisstudy.AnothertwoREPUREpro­ducts,struviteandbiopolymer,arestillintheirinfancy,withrealizationbeing32101.0SystemoperationEffluenttoirrigationResiduestoagricultureStruvitetoagriculturePHAformationEnergyrecoveryAvoidedresourceEmissiontoenvironmentTransportNet1.00.500.51.0SystemoperationEffluenttoirrigationResiduestoagricultureStruvitetoagriculturePHAformationEnergyrecovery64202SystemoperationEffluenttoirrigationResiduestoagricultureStruvitetoagriculturePHAformationEnergyrecovery0.50.30.10.1432101210.21.010123Climatechange(kgCO2eq)Fossilfueldepletion(kgoileq)432101Freshwaterecotoxicity(10−2kg1,4-DBeq)0.500.51.01.52.0Freshwatereutrophication(10−2kgPeq)Humantoxicity(kg1,4-DBeq)Marineecotoxicity(10−2kg1,4-DBeq)864202Marineeutrophication(10−2kgNeq)0.20.6Ozonedepletion(10−4kgCFC1eq)Particulateformation(10−3kgPM10eq)864202Photochemicaloxidantformation(10−3kgNMVOC)10Terrestrialacidification(10−2kgSO2eq)Terrestrialecotoxicity(10−3kg1,4-DBeq)Mean:2.3SD:0.5Mean:0.86SD:0.08Mean:4.6SD:0.6Mean:1.4SD:0.3Mean:0.28SD:0.5Mean:4.3SD:0.6Mean:5.3SD:1.1Mean:0.63SD:0.3Mean:7.9SD:1.2Mean:13SD:1.2Mean:1.8SD:0.5Mean:2.5SD:1.2Fig.6.Netchangeinandprocessescontributingto12midpointLCAeffects,expressedpercubicmeterofwastewaterprocessedover50yearsofoperationoftheREPUREconfiguration.Anegativevaluerepresentsanenvironmentalbenefit,whereaspositivevaluesindicateanincreaseintheenvironmentalburden.Therela-tivesize,ortheapparentabsence,ofeachcolorreflectsthecontributionoftheprocesstoeacheffect.Theerrorbarspresentthebestandworstcasesofthepathwayanalyzed.Thegreenorredtextindicatesstatisticallythenetcontributionofthesystemtoeacheffectresultingfrommorethan100,000MonteCarlosimulationruns,andthegreenmeansanetbenefitfortheenvironment.Downloadedfromhttps://www.science.orgonOctober18,2021Wangetal.,Sci.Adv.2018;4:eaaq02101August2018SCIENCEADVANCESRESEARCHARTICLE8of10hamperedpartlybyeconomicortechnicalconstraints.However,thisstudyhasgeneratedacompleteandgeneralizedexampleofanapproachtorecoversubstantialamountsofwastewaterenergyandma-terials.Itshouldbenotedthatourscenariocanbeupgradedaccordingtoactualneedsandtechnologydevelopment.Forexample,inthissimulation,approximately28%ofwastewaterorganicswasconvertedtobioticCO2.Additionalapproaches,suchasmicroalgalsystems,couldbeintegratedwiththecurrentscenariotoenhanceenergyba­l­ancesandsubstantiallyreduceonsitecarbonemissions,asalgaecul-tivationisabletocaptureCO2andproducealgaebiofuels.Here,theintegratedanalysisoftheemergingapproachreliesonthehybridmodels.Suchacomputer-basedanalysisconductedatanearlystageofanysubstantialpracticecouldhelppinpointpromisingavenuesforwastewaterresourcerecoveryfacilities.Inaddition,itcandirecttimelyinfrastructureinvestmentsthatwouldbeadequateforfuturescenarios.However,ourmodelscouldberefinedfurtheroncemoredataaremadeavailable.Here,themajorsourceofuncertaintyderivedfromtheuseoftheReCiPemodelitself,whichisthebasisfortheimpactcharacterizationconductedintheLCAanalysis.Althoughthetoxicitymodelsincludemetals(40),manyemergingcontami-nantsarestillexcludedfromcurrentmodels.RecentadvancesintheReCiPemodelfeaturecharacterizationfactorsformoreorganiccontaminants,althoughthismodelstillincorporatedonly55%ofthe110organiccontaminantsinbiosolidsidentifiedfromtheliterature.Inaddition,nearly30%ofupto300organicpollutantswereidenti-fiedingraywaterortreatedwater.Althoughmanyorganiccontam-inantswerestillexcluded,previousresultssuggestedthat,onthebasisoftheexistingtoxicitymodels,theinclusionofadditionalorganicpollutantswouldprobablynotalterthehumantoxicitypotentialofanycasestudy(41).Yet,theterrestrialandfreshwaterecotoxicitypotentialsofbiosolidusecouldbesensitivetotheinclusionofotherorganicpollutants.Therefore,furtherresearchisrequired.AlthoughtheREPUREapproachhassignificantpotentialtosus-tainwastewaterinfrastructuretransformation,subsequentstudiesareneededtoverifythisapproachatapilotscale.AnidealpilotREPUREfacilitymustbefullyintegratedandshouldbeabletoas-sessthewholesystemwhilehavingsufficientflexibilitytoexplorealternativeconfigurationsandtotestoptionsforimprovedsystemintegrationandrecyclingoftheelementstreams(includingC,N,andP).Suchapilotfacilitycouldbeoperatedinaspecificlocation,butitsproductscanbeusedelsewhereacrossregionsorevennations.Therefore,suchalargecoupledsystem,includingbothresourcerecoveryandutilization,mustbepilotedinitiallywithspecificlocalconditionstofacilitateeasytesting.OurREPUREsystemproducedrenewableenergyduringwastewaterhandlinganddivertedthetreatedwaterfromdischargetolanduse.Wefoundthataquatic-eutrophicregionsusuallycollocatedwithlargeenergyconsumers,suchasfoodprocessingplants,pulpandpaperplants,refineries,andagriculture.SitingnearenergyconsumersanideallocationforthepilotREPUREfacility,asitreusesthetreatedeffluentandalleviatesthelocaleutro-phicationpressure.Further,italsoprovidesrenewableenergyfortheenergy-intensiveindustrieslocatednearbytosavemoreappliedpower,whiletheneighboringplantscanhelptoaddresstheenduseofthematerialsproducedfromtheREPUREfacility.Inthisanalysis,weusedbroadsiteparameterswithawiderangeofvariablesinordertoexploretheapplicabilityofourapproachtoabroadrangeofsituations.Accordingly,itcanbeexpectedthatthere-sultspresented,particularlythoserelatedsignificantlytotheprocessperformanceandresourceefficiencyoftheapproach,wouldlikelynotbealteredwhentheapproachisimplementedunderdifferentspatialconditions.Nevertheless,furtherstudyshouldconcentrateonscenarioanalysisofthisapproachataglobalscale,aspotentiallyvaluableinsightscouldbegainedfromathoroughexploration,withspatialvariations,ofthisnew-buildapproach.Forexample,differ-encesmightbeencounteredintheLCAfindings,especiallythosewithcloserelevancetotheassumptionsofbothcarbonsequestra-tionandnutrientretention.Suchdifferencescouldarisebecausethecapabilitiesofsoilstoprovidethesetwoecosystemservicescouldvaryacrossregions.Notwithstandingthepotentialbenefits,suchanenter-priseisdata-intensive,makinghighdemandsonboththeamountandqualityoftheunderlyingdata(42).Furtherexplorationofourapproachataglobalscalerequiresspatiallyexplicitinputdataofextremelydiversetypesandfrommanydifferentsources,includinglocalclimate,demographics,socioeconomicfactors,waterquality,soilcharacteristics,andsystemperformance,amongothers(43).TheincreasedavailabilityofmanifolddatainEuropeorNorthAmericaallowsthereliabilityandgeneralityofourapproachtobeverifiedexplicitlyataspatialscale.However,slowadvancesinanalytics,sensing,monitoring,andcomputinganddatamanagementstillexistinmanyplacesaroundtheworld(44,45),particularlyinIndiaandsub-­SaharanAfrica,makingdataacquisitionrudimentaryandtedious.Appropriateprotocolsareneededintheseplacestoaddressdatacollection,use,andsharing,whichwouldprovidemoreextensiveandmorereliabledatatofacilitateinfrastructuretransformationintheglobalwatersector.Overall,large-scaleapplicationoftheREPUREapproachneedsthefollowing:(i)aggregationofmorereliabledatafromdiversecondi-tions,coupledmodelsfromwastewaterengineering,LCA,andeco-logicalmodeling;(ii)advancesintraditionaldisciplines,forexample,theeconomicfeasibilityoftotallynewmethodsforwaterresourcerecoveryshouldbeanalyzedcarefullyincomparisonwiththosemethodsaimedtoretrofitexistingfacilities,asconversioncostisacriticalconstraintofinfrastructuretransformation;and(iii)multidis-ciplinarycollaborationandindustryengagement.Manyopportuni-tiesexistfortheoreticalandappliedstudiestodevelopsustainablewastewatermanagementprotocols.Ourpresentstudyprovideses-sentialinformationtoabroadmultidisciplinaryaudiencetobuildeffectivesolutionstoimprovetheharmonybetweenhumansandna-ture,withthegoalofregainingthebalancebetweensatisfyinghu-manneedsandprotectingecosystems.SUPPLEMENTARYMATERIALSSupplementarymaterialforthisarticleisavailableathttp://advances.sciencemag.org/cgi/content/full/4/8/eaaq0210/DC1SupplementaryTextFig.S1.ProfilesofoxygenconsumptionandactivemicrobesinCRR.Fig.S2.SimplifiedillustrationofthethreekeyN2OproductionpathwaysbyAOBandheterotrophicdenitrifiers.Fig.S3.GrowthanddecayratesofAOBinthePTSreactors.Fig.S4.CarbonfootprintduringoperationoftheREPUREprocessconfiguration.TableS1.Environmentalparametersandmaincharacteristicsofinfluentforprocessdesignandmodeling.TableS2.Designparametersforthedevelopedtechnologicalconfiguration.TableS3.ConstructioninventorydatafortheREPUREprocessconfiguration.TableS4.Defaultassumptionsforgaseousemissionsandattendantvariabilityforuncertaintyanalysis.TableS5.Heavymetalcontaminantsinbiosolids.TableS6.Metalcontaminantsinstruvite.TableS7.Heavymetalconcentrationsintreatedeffluent.TableS8.Organiccontaminantsinbiosolids.Downloadedfromhttps://www.science.orgonOctober18,2021Wangetal.,Sci.Adv.2018;4:eaaq02101August2018SCIENCEADVANCESRESEARCHARTICLE9of10TableS9.Organiccontaminantsintreatedeffluent.TableS10.Assumedavailabilityofnutrientsinrecoveredfertilizersasafractionofcommercialfertilizeravailability.TableS11.Transportassumptionanddistancesforrecoveredandcommercialfertilizers.TableS12.RemovalefficienciesofeffluentCOD,TN,andTPfortheREPUREsystem.TableS13.ComparisonoftheaverageconcentrationofthemajorcarbonsubstancesintheoutflowfromCRR,CCR,andRHSwithinfluentwastewater.TableS14.AverageremovalandproductionratesofdifferentnitrogenspeciesinthePTSreactors.TableS15.MetabolismofNOBinthethreePTSreactors.References(46–93)REFERENCESANDNOTES1.T.A.Larsen,S.Hoffmann,C.Luthi,B.Truffer,M.Maurer,Emergingsolutionstothewaterchallengesofanurbanizingworld.Science352,928–933(2016).2.WorldUrbanizationProspects:The2014Revision(UnitedNations,2014).3.G.T.Daigger,S.Murthy,N.G.Love,J.Sandino,Transformingenvironmentalengineeringandscienceeducation,research,andpractice.Environ.Eng.Sci.34,42–50(2017).4.X.Wang,J.Liu,N.-Q.Ren,H.-Q.Yu,D.-J.Lee,X.Guo,Assessmentofmultiplesustainabilitydemandsforwastewatertreatmentalternatives:Arefinedevaluationschemeandcasestudy.Environ.Sci.Technol.46,5542–5549(2012).5.P.K.Cornejo,Q.Zhang,J.R.Mihelcic,Howdoesscaleofimplementationimpacttheenvironmentalsustainabilityofwastewatertreatmentintegratedwithresourcerecovery?Environ.Sci.Technol.50,6680–6689(2016).6.L.Lu,Z.Huang,G.H.Rau,Z.J.Ren,Microbialelectrolyticcarboncaptureforcarbonnegativeandenergypositivewastewatertreatment.Environ.Sci.Technol.49,8193–8201(2015).7.P.L.McCarty,J.Bae,J.Kim,Domesticwastewatertreatmentasanetenergyproducer—Canthisbeachieved?Environ.Sci.Technol.45,7100–7106(2011).8.B.E.Logan,M.Elimelech,Membrane-basedprocessesforsustainablepowergenerationusingwater.Nature488,313–319(2012).9.D.Cordell,J.-O.Drangert,S.White,Thestoryofphosphorus:Globalfoodsecurityandfoodforthought.GlobalEnviron.Chang.19,292–305(2009).10.SustainableDevelopmentGoalsReport2017(UnitedNations,2017).11.J.G.Hering,T.D.Waite,R.G.Luthy,J.E.Drewes,D.L.Sedlak,AChangingframeworkforurbanwatersystems.Environ.Sci.Technol.47,10721–10726(2013).12.X.Wang,P.L.McCarty,J.X.Liu,N.-Q.Ren,D.-J.Lee,H.-Q.Yu,Y.Qian,J.H.Qu,Probabilisticevaluationofintegratingresourcerecoveryintowastewatertreatmenttoimproveenvironmentalsustainability.Proc.Natl.Acad.Sci.U.S.A.112,1630–1635(2015).13.S.R.W.Alwi,Z.A.Manan,J.J.Klemeš,D.Huisingh,Sustainabilityengineeringforthefuture.J.Clean.Prod.71,1–10(2014).14.DischargeStandardofPollutantsforMunicipalWastewaterTreatmentPlant(GB18918–2002,ChinaEnvironmentPress,2002).15.Y.D.Scherson,C.S.Criddle,Recoveryoffreshwaterfromwastewater:Upgradingprocessconfigurationstomaximizeenergyrecoveryandminimizeresiduals.Environ.Sci.Technol.48,8420–8432(2014).16.EcoinventDatav3.0(EcoinventreportsNo.1–25,EcoinventCentre,2010).17.U.Jeppsson,C.Rosen,J.Alex,J.Copp,K.V.Gernaey,M.-N.Pons,P.A.Vanrolleghem,Towardsabenchmarksimulationmodelforplant-widecontrolstrategyperformanceevaluationofWWTPs.WaterSci.Technol.53,287–295(2006).18.C.-L.Huang,J.Vause,H.-W.Ma,C.-P.Yu,Usingmaterial/substanceflowanalysistosupportsustainabledevelopmentassessment:Aliteraturereviewandoutlook.Resour.Conserv.Recycl.68,104–116(2012).19.ReCiPe2008:ALifeCycleImpactAssessmentMethodwhichComprisesHarmonisedCategoryIndicatorsattheMidpointandtheEndpointLevel(PréConsultants,CMLUniversityofLeiden,RadboundUniversity,RIVMBilthoven,2012).20.S.Hellweg,L.MilàiCanals,Emergingapproaches,challengesandopportunitiesinlifecycleassessment.Science344,1109–1113(2014).21.J.Lane,P.Lant,IncludingN2OinozonedepletionmodelsforLCA.Int.J.LifeCycleAssess.17,252–257(2012).22.A.B.B.deFaria,M.Spéandio,A.Ahmadi,L.Tiruta-Bama,Evaluationofnewalternativesinwastewatertreatmentplantsbasedondynamicmodellingandlifecycleassessment(DM-LCA).WaterRes.84,99–111(2015).23.I.Metcalf,H.Eddy,WastewaterEngineering:TreatmentandReuse(McGraw-Hill,2003).24.J.Tong,Y.Chen,Enhancedbiologicalphosphorusremovaldrivenbyshort-chainfattyacidsproducedfromwasteactivatedsludgealkalinefermentation.Environ.Sci.Technol.41,7126–7130(2007).25.W.S.Lee,A.S.M.Chua,H.K.Yeoh,G.C.Ngoh,Areviewoftheproductionandapplicationsofwaste-derivedvolatilefattyacids.Chem.Eng.J.235,83–99(2014).26.Y.Li,X.Wang,D.Butler,J.Liu,J.Qu,Energyuseandcarbonfootprintsdifferdramaticallyfordiversewastewater-derivedcarbonaceoussubstrates:Anintegratedexplorationofbiokineticsandlife-cycleassessment.Sci.Rep.7,243(2017).27.Y.Law,L.Ye,Y.Pan,Z.Yuan,Nitrousoxideemissionsfromwastewatertreatmentprocesses.Philos.Trans.R.Soc.Lond.BBiol.Sci.367,1265–1277(2012).28.I.Schmidt,O.Sliekers,M.Schmid,E.Bock,J.Fuerst,J.G.Kuenen,M.S.M.Jetten,M.Strous,Newconceptsofmicrobialtreatmentprocessesforthenitrogenremovalinwastewater.FEMSMicrobiol.Rev.27,481–492(2003).29.Y.D.Scherson,G.F.Wells,S.-G.Woo,J.Lee,J.Park,B.J.Cantwell,C.S.Criddle,NitrogenremovalwithenergyrecoverythroughN2Odecomposition.Energ.Environ.Sci.6,241–248(2013).30.X.Li,H.Chen,L.Hu,L.Yu,Y.Chen,G.Gu,Pilot-scalewasteactivatedsludgealkalinefermentation,fermentationliquidseparation,andapplicationoffermentationliquidtoimprovebiologicalnutrientremoval.Environ.Sci.Technol.45,1834–1839(2011).31.F.Pedrero,I.Kalavrouziotis,J.J.Alarcón,P.Koukoulakis,T.Asano,Useoftreatedmunicipalwastewaterinirrigatedagriculture—ReviewofsomepracticesinSpainandGreece.Agric.WaterManag.97,1233–1241(2010).32.A.Oehmen,P.C.Lemos,G.Carvalho,Z.Yuan,J.Keller,L.L.Blackall,M.A.M.Reis,Advancesinenhancedbiologicalphosphorusremoval:Frommicrotomacroscale.WaterRes.41,2271–2300(2007).33.K.H.Rostkowski,C.S.Criddle,M.D.Lepech,Cradle-to-gatelifecycleassessmentforacradle-to-cradlecycle:Biogas-to-bioplastic(andback).Environ.Sci.Technol.46,9822–9829(2012).34.K.S.LeCorre,E.Valsami-Jones,P.Hobbs,S.A.Parsons,Phosphorusrecoveryfromwastewaterbystruvitecrystallization:Areview.Crit.Rev.Environ.Sci.Technol.39,433–477(2009).35.B.L.Keeler,S.Polasky,K.A.Brauman,K.A.Johnson,J.C.Finlay,A.O’Neill,K.Kovacs,B.Dalzell,Linkingwaterqualityandwell-beingforimprovedassessmentandvaluationofecosystemservices.Proc.Natl.Acad.Sci.U.S.A.109,18619–18624(2012).36.G.C.Daily,P.A.Matson,Ecosystemservices:Fromtheorytoimplementation.Proc.Natl.Acad.Sci.U.S.A.105,9455–9456(2008).37.X.Wang,J.Liu,N.-Q.Ren,Z.S.Duan,Environmentalprofileoftypicalanaerobic/anoxic/oxicwastewatertreatmentsystemsmeetingincreasinglystringenttreatmentstandardsfromalifecycleperspective.Bioresour.Technol.126,31–40(2012).38.WorldWaterDevelopmentReport2017:Wastewater—TheUntappedResource(UnitedNations,2017).39.J.Liu,H.Mooney,V.Hull,S.J.Davis,J.Gaskell,T.Hertel,J.Lubchenco,K.C.Seto,P.Gleick,C.Kremen,S.Li,Systemsintegrationforglobalsustainability.Science347,1258832(2015).40.M.Pizzol,P.Christensen,J.Schmidt,M.Thomsen,Impactsof"metals"onhumanhealth:AcomparisonbetweenninedifferentmethodologiesforLifeCycleImpactAssessment(LCIA).J.Clean.Prod.19,646–656(2011).41.Z.Bradford-Hartke,J.Lane,P.Lant,G.Leslie,Environmentalbenefitsandburdensofphosphorusrecoveryfrommunicipalwastewater.Environ.Sci.Technol.49,8611–8622(2015).42.S.Eggimann,L.Mutzner,O.Wani,M.Y.Schneider,D.Spuhler,M.M.deVitry,P.Beutler,M.Maurer,Thepotentialofknowingmore:Areviewofdata-drivenurbanwatermanagement.Environ.Sci.Technol.51,2538–2553(2017).43.P.M.Bach,A.Deletic,C.Urich,D.T.McCarthy,Modellingcharacteristicsoftheurbanformtosupportwatersystemsplanning.Environ.Model.Software104,249–269(2018).44.WorldWaterDevelopmentReport2015:WaterforaSustainableWorld(UnitedNations,2015).45.I.Development:WithintheContextofAfrica’sCooperationwithNewandEmergingDevelopmentPartners(UnitedNations,2015).46.B.K.Mayer,L.A.Baker,T.H.Boyer,P.Drechsel,M.Gifford,M.A.Hanjra,P.Parameswaran,J.Stoltzfus,P.Westerhoff,B.E.Rittmann,Totalvalueofphosphorusrecovery.Environ.Sci.Technol.50,6606–6620(2016).47.I.Akanyeti,H.Temmink,M.Remy,A.Zwijnenburg,Feasibilityofbioflocculationinahigh-loadedmembranebioreactorforimprovedenergyrecoveryfromsewage.WaterSci.Technol.61,1433–1439(2010).48.R.Khiewwijit,H.Temmink,A.Labanda,H.Rijnaarts,K.J.Keesman,Productionofvolatilefattyacidsfromsewageorganicmatterbycombinedbioflocculationandalkalinefermentation.Bioresour.Technol.197,295–301(2015).49.F.A.Meerburg,N.Boon,T.VanWinckel,J.A.R.Vercamer,I.Nopens,S.E.Vlaeminck,Towardenergy-neutralwastewatertreatment:Ahigh-ratecontactstabilizationprocesstomaximallyrecoversewageorganics.Bioresour.Technol.179,373–381(2015).50.W.Cai,W.Huang,H.Li,B.Sun,H.Xiao,Z.Zhang,Z.Lei,Acetatefavorsmorephosphorusaccumulationintoaerobicgranularsludgethanpropionateduringthetreatmentofsyntheticfermentationliquor.Bioresour.Technol.214,596–603(2016).51.X.Wang,J.Liu,B.Qu,N.-Q.Ren,J.Qu,Roleofcarbonsubstratesinfacilitatingenergyreductionandresourcerecoveryinatraditionalactivatedsludgeprocess:Investigationfromabiokineticsmodelingperspective.Bioresour.Technol.140,312–318(2013).Downloadedfromhttps://www.science.orgonOctober18,2021Wangetal.,Sci.Adv.2018;4:eaaq02101August2018SCIENCEADVANCESRESEARCHARTICLE10of1052.Q.Tran,K.A.Schwabe,D.Jassby,Wastewaterreuseforagriculture:Developmentofaregionalwaterreusedecision-supportmodel(RWRM)forcost-effectiveirrigationsources.Environ.Sci.Technol.50,9390–9399(2016).53.D.Mu,M.Min,B.Krohn,K.Mullins,R.Ruan,J.Hill,Lifecycleenvironmentalimpactsofwastewater-basedalgalbiofuels.Environ.Sci.Technol.48,11696–11704(2014).54.M.Lundin,M.Bengtsson,S.Molander,Lifecycleassessmentofwastewatersystems:Influenceofsystemboundariesandscaleoncalculatedenvironmentalloads.Environ.Sci.Technol.34,180–186(2000).55.W.Bonilla-Blancas,M.Mora,S.Revah,J.A.Baeza,J.Lafuente,X.Gamisans,D.Gabriel,A.González-Sánchez,ApplicationofanovelrespirometricmethodologytocharacterizemasstransferandactivityofH2S-oxidizingbiofilmsinbiotricklingfilterbeds.Biochem.Eng.J.99,24–34(2015).56.D.deHaas,J.Foley,P.Lant,“Energyandgreenhousefootprintsofwastewatertreatmentplantsinsouth-eastQueensland”(TechnicalReport,OzWater,2009).57.J.Stokes,A.Horvath,Lifecycleenergyassessmentofalternativewatersupplysystems.Int.J.LifeCycleAssess.11,335–343(2006).58.P.Wunderlin,M.F.Lehmann,H.Siegrist,B.Tuzson,A.Joss,L.Emmenegger,J.Mohn,IsotopesignaturesofN2Oinamixedmicrobialpopulationsystem:ConstraintsonN2Oproducingpathwaysinwastewatertreatment.Environ.Sci.Technol.47,1339–1348(2013).59.P.Wunderlin,J.Mohn,A.Joss,L.Emmenegger,H.Siegrist,MechanismsofN2Oproductioninbiologicalwastewatertreatmentundernitrifyinganddenitrifyingconditions.WaterRes.46,1027–1037(2012).60.J.Foley,D.deHaas,K.Hartley,P.Lant,Comprehensivelifecycleinventoriesofalternativewastewatertreatmentsystems.WaterRes.44,1654–1666(2010).61.J.Foley,P.Lant,FugitiveGreenhouseGasEmissionsfromWastewaterSystems(ReportforWaterServiceAssociationofAustralia,2007).62.UseofEffluentbyIrrigation(DepartmentofEnvironmentandConservation,2003).63.D.S.Mavinic,F.A.Koch,H.Huang,K.V.Lo,Phosphorusrecoveryfromanaerobicdigestersupernatantsusingapilot-scalestruvitecrystallizationprocess.J.Environ.Eng.Sci.6,561–571(2007).64.S.Antonini,M.A.Arias,T.Eichert,J.Clemens,Greenhouseevaluationandenvironmentalimpactassessmentofdifferenturine-derivedstruvitefertilizersasphosphorussourcesforplants.Chemosphere89,1202–1210(2012).65.Y.Ueno,inPhosphorusinEnvironmentalTechnologies:PrinciplesandApplications,E.Valsami-Jones,Ed.(IWAPublishing,2004),pp.496–427.66.Y.Jaffer,P.Pearce,inPhosphorusinEnvironmentalTechnologies:PrinciplesandApplications,E.Valsami-Jones,Ed.(IWAPublishing,2004),pp.402–427.67.D.Montag,K.Gethke,J.Pinnekamp,MovingForwardWastewaterBiosolidsSustainability:Technical,Managerial,andPublicSynergy(Moncton,2007).68.E.V.Münch,K.Barr,Controlledstruvitecrystallisationforremovingphosphorusfromanaerobicdigestersidestreams.WaterRes.35,151–159(2001).69.R.J.Law,C.R.Allchin,J.deBoer,A.Covaci,D.Herzke,P.Lepom,S.Morris,J.Tronczynski,C.A.deWit,LevelsandtrendsofbrominatedflameretardantsintheEuropeanenvironment.Chemosphere64,187–208(2006).70.Y.Matsumiya,T.Yamasita,Y.Nawamurra,Phosphorousremovalfromsidestreamsbycrystallisationofmagnesium-ammonium-phosphateusingseawater.WaterEnviron.J.14,291–296(2000).71.G.Tjandraatmadja,C.Daiaper,Y.Gozukara,L.Burch,C.Sheedy,G.Price,“SourcesofCriticalContaminantsinDomesticWastewater:ContaminantContributionfromHouseholdProducts”(ReportfortheCSIRO:WaterforaHealthyCountryNationalResearchFlagship,2008).72.E.Benetto,D.Nguyen,T.Lohmann,B.Schmitt,P.Schosseler,Lifecycleassessmentofecologicalsanitationsystemforsmall-scalewastewatertreatment.Sci.TotalEnviron.407,1506–1516(2009).73.D.A.Bright,N.Healey,Contaminantrisksfrombiosolidslandapplication:ContemporaryorganiccontaminantlevelsindigestedsewagesludgefromfivetreatmentplantsinGreaterVancouver,BritishColumbia.Environ.Pollut.126,39–49(2003).74.X.Li,Z.Ke,J.Dong,PCDDsandPCDFsinsewagesludgesfromtwowastewatertreatmentplantsinBeijing,China.Chemosphere82,635–638(2011).75.B.O.Clarke,S.R.Smith,Reviewof’emerging’organiccontaminantsinbiosolidsandassessmentofinternationalresearchprioritiesfortheagriculturaluseofbiosolids.Environ.Int.37,226–247(2011).76.K.A.Langdon,M.S.J.Warne,R.J.Smernik,A.Shareef,R.S.Kookana,Selectedpersonalcareproductsandendocrinedisruptorsinbiosolids:AnAustralia-widesurvey.Sci.TotalEnviron.409,1075–1081(2011).77.N.Lozano,C.P.Rice,M.Ramirez,A.Torrents,FateofTriclosanandMethyltriclosaninsoilfrombiosolidsapplication.Environ.Pollut.160,103–108(2012).78.B.O.Clarke,thesis,RMITUniversity(2008).79.H.-B.Lee,T.E.Peart,OrganiccontaminantsinCanadianmunicipalsewagesludge.PartI.Toxicorendocrine-disruptingphenoliccompounds.WaterQual.Res.J.Ca.37,681–696(2002).80.E.Z.Harrison,S.R.Oakes,M.Hysell,A.Hay,Organicchemicalsinsewagesludges.Sci.TotalEnviron.367,481–497(2006).81.A.Arulrajah,M.M.Disfani,V.Suthagaran,M.Imteaz,Selectchemicalandengineeringpropertiesofwastewaterbiosolids.WasteManag.31,2522–2526(2011).82.J.H.Christensen,B.S.Groth,J.Vikelsøe,K.Vorkamp,“PolybrominatedDiphenylEthers(Pbdes)inSewageSludgeandWastewater:MethodDevelopmentandValidation”(TechnicalReportNo.481,NationalEnvironmentalResearchInstitute,MinistryoftheEnvironment,Denmark,2003).83.E.Ejarrat,G.Marsh,A.Labandeira,D.Barceló,Effectofsewagesludgescontaminatedwithpolybrominateddiphenylethersonagriculturalsoils.Chemosphere71,1079–1086(2008).84.C.Yang,X.-Z.Meng,L.Chen,S.Xia,PolybrominateddiphenylethersinsewagesludgefromShanghai,China:Possibleecologicalriskappliedtoagriculturalland.Chemosphere85,418–423(2011).85.S.O.Petersen,K.Henriksen,G.K.Mortensen,P.H.Krogh,K.K.Brandt,J.Sørensen,T.Madsen,J.Petersen,C.Grøn,Recyclingofsewagesludgeandhouseholdcomposttoarableland:Fateandeffectsoforganiccontaminants,andimpactonsoilfertility.SoilTillageRes.72,139–152(2003).86.E.Eriksson,K.Auffarth,A.-M.Eilersen,M.Henze,A.Ledin,Householdchemicalsandpersonalcareproductsassourcesforxenobioticorganiccompoundsingreywastewater.WaterSA29,135–146(2003).87.H.Palmquist,J.Hanæus,Hazardoussubstancesinseparatelycollectedgrey-andblackwaterfromordinarySwedishhouseholds.Sci.TotalEnviron.348,151–163(2005).88.H.Almqvist,J.Hanæus,OrganichazardoussubstancesingreywaterfromSwedishhouseholds.J.Environ.Eng.132,901–908(2006).89.E.Donner,E.Eriksson,D.M.Revitt,L.Scholes,H.-C.H.Lützhøft,A.Ledin,Presenceandfateofprioritysubstancesindomesticgreywatertreatmentandreusesystems.Sci.TotalEnviron.408,2444–2451(2010).90.M.Miller,G.A.O’Connor,Thelonger-termphytoavailabilityofbiosolids-phosphorus.Agron.J.101,889–896(2008).91.G.M.Peters,H.V.Rowley,Environmentalcomparisonofbiosolidsmanagementsystemsusinglifecycleassessment.Environ.Sci.Technol.43,2674–2679(2009).92.K.Johansson,M.Perzon,M.Froling,A.Mossakowska,M.Svanstrom,Sewagesludgehandlingwithphosphorusutilization—Lifecycleassessmentoffouralternatives.J.Clean.Prod.16,135–151(2008).93.A.E.Johnston,I.R.Richards,Effectivenessofdifferentprecipitatedphosphatesasphosphorussourcesforplants.SoilUseManage.19,45–49(2003).AcknowledgmentsFunding:WearegratefulforthesupportfromtheBeijingNovaProgram(Z171100001117078),NationalNaturalScienceFoundationofChina(51408589),BeijingTalentsFoundation(2017000021223ZK07),YouthInnovationPromotionAssociationoftheChineseAcademyofSciences(2016041),andK.C.WongEducationFoundationforsponsoringtheRoyalSocietyNewtonInternationalFellowship(NF160404).Authorcontributions:X.W.,G.D.,D.B.,andJ.L.conceivedtheresearch;X.W.conductedtheresearch;X.W.,G.D.,andD.B.analyzedthedata;G.L.providedsomeinformaticsfacilitiesfordatamining;X.W.wrotethepaper;andX.W.,G.D.,D.-J.L.,J.L.,N.-Q.R.,J.Q.,andD.B.contributedsubstantiallybycommentingonandrevisingthepaper.Competinginterests:Theauthorsdeclarethattheyhavenocompetinginterests.Dataandmaterialsavailability:Alldataneededtoevaluatetheconclusionsinthepaperarepresentinthepaperand/ortheSupplementaryMaterials.Additionaldatarelatedtothispapermayberequestedfromtheauthors.Submitted6October2017Accepted20June2018Published1August201810.1126/sciadv.aaq0210Citation:X.Wang,G.Daigger,D.-J.Lee,J.Liu,N.-Q.Ren,J.Qu,G.Liu,D.Butler,Evolvingwastewaterinfrastructureparadigmtoenhanceharmonywithnature.Sci.Adv.4,eaaq0210(2018).Downloadedfromhttps://www.science.orgonOctober18,2021UseofthinkarticleissubjecttotheTermsofserviceScienceAdvances(ISSN2375-2548)ispublishedbytheAmericanAssociationfortheAdvancementofScience.1200NewYorkAvenueNW,Washington,DC20005.ThetitleScienceAdvancesisaregisteredtrademarkofAAAS.Copyright©2018TheAuthors,somerightsreserved;exclusivelicenseeAmericanAssociationfortheAdvancementofScience.NoclaimtooriginalU.S.GovernmentWorks.DistributedunderaCreativeCommonsAttributionLicense4.0(CCBY).EvolvingwastewaterinfrastructureparadigmtoenhanceharmonywithnatureXuWangGlenDaiggerDuu-JongLeeJunxinLiuNan-QiRenJiuhuiQuGangLiuDavidButlerSci.Adv.,4(8),eaaq0210.•DOI:10.1126/sciadv.aaq0210Viewthearticleonlinehttps://www.science.org/doi/10.1126/sciadv.aaq0210Permissionshttps://www.science.org/help/reprints-and-permissionsDownloadedfromhttps://www.science.orgonOctober18,2021

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱