Agents与基础应用白皮书(英文版)VIP专享

AgentsAuthors:JuliaWiesinger,PatrickMarlowandVladimirVuskovicAgents2September2024AcknowledgementsReviewersandContributorsEvanHuangEmilyXueOlcanSercinogluSebastianRiedelSatinderBavejaAntonioGulliAnantNawalgariaCuratorsandEditorsAntonioGulliAnantNawalgariaGraceMollisonTechnicalWriterJoeyHaymakerDesignerMichaelLanningIntroduction4Whatisanagent?5Themodel6Thetools7Theorchestrationlayer7Agentsvs.models8Cognitivearchitectures:Howagentsoperate8Tools:Ourkeystotheoutsideworld12Extensions13SampleExtensions15Functions18Usecases21Functionsamplecode24Datastores27Implementationandapplication28Toolsrecap32Enhancingmodelperformancewithtargetedlearning33AgentquickstartwithLangChain35ProductionapplicationswithVertexAIagents38Summary40Endnotes42TableofcontentsAgents4September2024IntroductionHumansarefantasticatmessypatternrecognitiontasks.However,theyoftenrelyontools-likebooks,GoogleSearch,oracalculator-tosupplementtheirpriorknowledgebeforearrivingataconclusion.Justlikehumans,GenerativeAImodelscanbetrainedtousetoolstoaccessreal-timeinformationorsuggestareal-worldaction.Forexample,amodelcanleverageadatabaseretrievaltooltoaccessspecificinformation,likeacustomer'spurchasehistory,soitcangeneratetailoredshoppingrecommendations.Alternatively,basedonauser'squery,amodelcanmakevariousAPIcallstosendanemailresponsetoacolleagueorcompleteafinancialtransactiononyourbehalf.Todoso,themodelmustnotonlyhaveaccesstoasetofexternaltools,itneedstheabilitytoplanandexecuteanytaskinaself-directedfashion.Thiscombinationofreasoning,logic,andaccesstoexternalinformationthatareallconnectedtoaGenerativeAImodelinvokestheconceptofanagent,oraprogramthatextendsbeyondthestandalonecapabilitiesofaGenerativeAImodel.Thiswhitepaperdivesintoalltheseandassociatedaspectsinmoredetail.Thiscombinationofreasoning,logic,andaccesstoexternalinformationthatareallconnectedtoaGenerativeAImodelinvokestheconceptofanagent.Agents5September2024Whatisanagent?Initsmostfundamentalform,aGenerativeAIagentcanbedefinedasanapplicationthatattemptstoachieveagoalbyobservingtheworldandactinguponitusingthetoolsthatithasatitsdisposal.Agentsareautonomousandcanactindependentlyofhumanintervention,especiallywhenprovidedwithpropergoalsorobjectivestheyaremeanttoachieve.Agentscanalsobeproactiveintheirapproachtoreachingtheirgoals.Evenintheabsenceofexplicitinstructionsetsfromahuman,anagentcanreasonaboutwhatitshoulddonexttoachieveitsultimategoal.WhilethenotionofagentsinAIisquitegeneralandpowerful,thiswhitepaperfocusesonthespecifictypesofagentsthatGenerativeAImodelsarecapableofbuildingatthetimeofpublication.Inordertounderstandtheinnerworkingsofanagent,let’sfirstintroducethefoundationalcomponentsthatdrivetheagent’sbehavior,actions,anddecisionmaking.Thecombinationofthesecomponentscanbedescribedasacognitivearchitecture,andtherearemanysucharchitecturesthatcanbeachievedbythemixingandmatchingofthesecomponents.Focusingonthecorefunctionalities,therearethreeessentialcomponentsinanagent’scognitivearchitectureasshowninFigure1.Agents6September2024Figure1.GeneralagentarchitectureandcomponentsThemodelInthescopeofanagent,amodelreferstothelanguagemodel(LM)thatwillbeutilizedasthecentralizeddecisionmakerforagentprocesses.ThemodelusedbyanagentcanbeoneormultipleLM’sofanysize(small/large)thatarecapableoffollowinginstructionbasedreasoningandlogicframeworks,likeReAct,Chain-of-Thought,orTree-...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱