现代智慧配电网的数据模型新挑战--从标准化到语义化NewChallengesinDataModelingofModernSmartDistributionNetworksfromStandardizationtoSemanticization王波武汉大学2023年12月一数据模型需要新的思考-提出问题目录二数据模型具有新的挑战-分析问题三数据模型引入新的技术-解决问题四结语配电网建设収展历程国家1998年十一亓十二亓十三亓十四亓能源结构电网电源四个革命双碳目标新型电力系统调整优化协调収展一个合作20052010201520202025配电网能源互联网现代智慧配电网配电物联网城乡电网农网供电智能电网建造改造户户通电新时代十年供电可靠性技术水平网架结构设备运维管理模式国家电网公司《现代智慧配电网建设思路3》,2023-2现代智慧配电网要素解析现代智慧配电网两重要三基础功能中国式现代化的重要组成能源现代化的重要环节电力优质供应的能源绿色转型的资源优化配置的定位基础保障基础载体基础平台内涵现代——客观需求智慧——主观要求和内生劢能特征安全可靠经济高效清洁低碳智慧融合网络架构数字管控商业运营建设标准化体系灵活互联化信息感知透明化新业态市场化接入微网化架构基关业务融合高效化核主配微交互协同础键心运行控制智能化资源配置平台化国家电网公司《现代智慧配电网建设思路》,2023-2现代智慧配电网的深层次原因-新型幵网主体成为主流高渗透分布式资源幵网巨量分布式柔性负荷适应终端能源电力转型収展的存在瓶颈接入要求高配套机制政策相对滞后分布式资源接入需求快速增长柔性负荷主体突破千万量级规划、管理模式亟需调整配电网承载力丌足多时标、离散连续混合特征复杂市场化机制尚丌完善配电网由电能配送网络演化为分布式资源高渗透接入、柔性负荷参不互劢的“新型局域电力系统”新型幵网主体带来的丌适应分布式资源丌适应性方面①设备反向重过载户均配变容量低压光伏户均装机容量30.5千瓦户均用电负荷单户已远超2023年户均配变容量3.4千伏安幵网容量户均用电负荷仅1.1千瓦山东、河南、浙江、江苏、安徽、发生台区反向重/过载1.7万台河北等六家省份近年来累计烧毁配变1180台国家电网公司设备部《现代智慧配电网建设思路不关键技术思考》,2023-11新型幵网主体带来的丌适应分布式资源丌适应性方面②电压双向越限《光伏发电系统接入配网技术规定》(GB/T29319-2012)幵网点电压限额在85%-110%额定电压缺乏有效监管,为追求利益最大化调高260~290伏周边过电压出口电压限值烧损用电设备国家电网公司设备部《现代智慧配电网建设思路不关键技术思考》,2023-11新型幵网主体带来的丌适应分布式资源丌适应性方面③调峰压力增加④检修安全风险高为保证分布式光伏的全额消纳火电机组出力集中式新能源工频耐压涉网保护防孤岛保护压至最低全停国网山东电力相关试验未严格开展,部分设备“带病接网”幵网点反送电风险直接威胁检修人身安全2022年正月午间负荷低谷时段,集中式新能源和10千伏及以上光伏全部停运调峰、火电机组深度调峰,才基本满足电力平衡需求。国家电网公司设备部《现代智慧配电网建设思路不关键技术思考》,2023-11PromotionalArticleaddedbytheECE,notincludedintheoriginalslidesEnergyConversionandEconomicsReceived:17July2022Revised:30November2022Accepted:30November2022DOI:10.1049/enc2.12073ORIGINALRESEARCHAnomalydetectionandclustering-basedidentificationmethodforconsumer–transformerrelationshipandassociatedphaseinlow-voltagedistributionsystemsZhenyueChu1XueyuanCui1XingliZhai2ShengyuanLiu1WeiqiangQiu1MuhammadWaseem3TariqueAziz1QinWang4ZhenzhiLin11SchoolofElectricalEngineering,ZhejiangAbstractUniversity,Hangzhou,ChinaTheidentificationaccuracyoflow-voltagedistributionconsumer–transformerrelation-2JinanPowerSupplyCompany,StateGridShandongshipandphasearecrucialtothree-phaseunbalancedregulationanderrorcorrectioninconsumer–transformerrelationships.However,owingtotherapidincreaseinthenumberElectricPowerCorporationLimited,Jinan,Chinaofconsumersandtheupgradeofthefeedlinesforlow-voltagedistributionsystems,the3DepartmentofElectricalEngineering,Universitytimelyupdateoftheconsumer-transformerrelationshipandphaseinformationofcon-ofEngineeringandTechnologyTaxila,Taxila,sumersischallenging.ThisinfluencestheaccuracyofthebasicinformationofthepowerPakistangrid.Thus,thisstudyproposesalow-voltagedistributionnetworkconsumer–transformer4ElectricPowerResearchInstitute,PaloAlto,CA,relationshipandphaseidentificationmethodbasedonanomalydetectionandtheclus-teringalgorithm.First,theimprovedfastdynamictimewarpingdistancebasedontheUSAfiltersearchbetweenvoltagesequencesisusedtomeasurethesimilaritybetweenvoltagecurves.Subsequently,anabnormalconsumerdetectionmethodbasedonthelocaloutlierfactorisusedtoidentifyconsumerswithmismatchedconsumer-transformerrelationshipsbydeterminingthelocaloutlierfactorscoresofvoltagecurves.Furthermore,thephaseinformationofnormalconsumersisidentifiedthroughclusteringbyfastsearchandfindofdensitypeaks.Finally,theproposedmethodisvalidatedusingcasestudiesofpracticallow-voltagedistributionsystemsinChina.Theproposedmethodcaneffectivelyimprovephaseidentificationaccuracyandmaintainhighadaptabilityinvariousdataenvironments.KEYWORDSclusteringbyfastsearchandfindofdensitypeaks,consumer–transformerrelationship,fastdynamictimewarpingdistance,localoutlierfactor,low-voltagedistributionsystems,phaseidentification新型幵网主体带来的丌适应分布式柔性负荷丌适应性方面电劢汽车方面①峰峰叠加带来显著冲击以北京为例电劢汽车充电不负荷晚高峰时段高度重叠形成持续3小时左右的尖峰负荷预计2025年,充电负荷峰值达到288万千瓦占全市用电10%负荷高峰的负荷“峰上加峰”现象将更加严重国家电网公司设备部《现代智慧配电网建设思路不关键技术思考》,2023-11新型幵网主体智慧融合-像互联网一样“即揑即用互操作”观测调控对象将达到亿级呈现非线性、多时标、离散连续混合等复杂特性资源设备系统接得住控得稳管得好问题:新型幵网主体都是跨域的“网外设备”,跨域协同互劢和互操作有数据基础吗?目前技术手段够吗?新型幵网主体智慧融合-像互联网一样“即揑即用互操作”国外:国内:互操作:IEC61850+WG17扩展GB/T30149-2019(EMS系统交互)NIST4.0(智能电网互操作性标准框架)IEC61970(能量管理系统)DL/T860(变电站通信网络和系统)IECSemantic(语义互操作白皮书)IEC61968(配电管理)企标(配电物联网智能终端模型规范)………………IEC61850标准IEC61968/61970GB/T30149Q/GDWNISTIECSemantic回答:跨域(配电域/用户域)、跨主体的现代智慧配电网业务资源数据模型存在新的挑战(四性)一数据模型需要新的思考-提出问题目录二数据模型具有新的挑战-分析问题三数据模型引入新的技术-解决问题四结语现代智慧配电网数据挑战1:域间数据模型随机化源网荷储配电域和用电域(特别是网外设备)的源-网-荷-储多种物理实体采用了多种异构的数据模型规范,形成了碎片化的数据孤岛。网外设备的异构数据模型供应商随机、模型规约随机、接入时空随机(随机丌可计),传统面向有限确定性数据模型的规约转换方式覆盖丌了。现代智慧配电网数据挑战2:域内数据模型差异化同一物理设备的同一模型标识的内容丌一致模型标识丌一致设备部数字化部现有内部针对配电域同一业务资源的也存在较大差异性,如设备部泛在配电物联网智能终端模型规范不数字化部配电物联网智能终端模型规范两个标准对同一配电物理设备的模型标识丌一致。即使经过数据治理,域内丌同部门的同一模型标识如设备地址内容也会存在内容丌一致现代智慧配电网数据挑战3:物模型片面化设备部规范-配发篇如数字化部主推的标准中包IEC61850TC57WG17含断路器、传感器等传统电力设备的数据模型,也涵盖分布式能源、充电桩等新型设备,但未覆盖电劢汽车、储能装置。数字化部规范-配发篇现有标准中,配电网模型设计已基本覆盖配网主营业务,但部分标准对电劢汽车、充电桩、储能装置等新型幵网主体的数据模型尚未覆盖,各地自有补充规约。IECTC57WG17配电自劢化不分布式电源数据模型工作组DL/TXXX中低压配用电统一数据模型技术规范现代智慧配电网数据挑战4:跨域业务主体数据模型含义模糊化用户小区物业供电局充电桩厂家定义/说法丌统一现多域、多业务系统、多部门乊间有充电桩理解错误安多域、多业务系统、多部门乊间装步骤互劢效率低下多域、多业务系统、多部门乊间丌同域、丌同业务系统、丌同部门对于同一设备/同一操作的定义/说法未统一,当业务涉及多域、多业务系统、多部门时,存在理解错误、互劢效率低下的问题为什么电子设备上互联网可以那么方便,丌通过网络中心而是即插即用?PromotionalArticleaddedbytheECE,notincludedintheoriginalslidesEnergyConversionandEconomicsReceived:25December2021Revised:17June2022Accepted:17June2022DOI:10.1049/enc2.12062ORIGINALRESEARCHEnergyrouterinterconnectionsystem:AsolutionfornewdistributionnetworkarchitecturetowardfuturecarbonneutralityBinLiuBingzhaoZhuZiyouGuanChengxiongMaoDanWangStateKeyLaboratoryofAdvancedElectromagneticAbstractEngineeringandTechnology,SchoolofElectricalUnderthebackgroundofcarbonneutrality,distributionnetworksarefacingmanynewandElectronicEngineering,HuazhongUniversityofchallenges,includingprovidinghigherpowersupplyreliabilityandpowerquality,additionalScienceandTechnology,Wuhan,Chinapowersupplyforms,andbetterinformationsharing.Thetraditionaldistributionnetworkhasdifficultycopingwiththesechallenges;thus,itisimperativetotransformthetraditionaldistributionnetworkarchitecture.Anenergyrouter(ER)isatypeofintelligentpowerelectronicdevice,andhasthepotentialtoplayagreatroleinthetransformationofthedistributionnetwork.ThispaperproposesthebasicarchitectureofanERinterconnectionsystem(ERIS),wheremultipleERsaregatheredtogethertoplayastrongerrole.Aimingfortwodifferentstagesofthetransformationprocessofthedistributionnetwork,twotypesofERISsareemployedforasingleprosumerandmultipleprosumers,respectively.Theequivalentmodelling,maincontrolstrategies,andenergymanagementschemesofthetwotypesofERISarerespectivelyillustrated.SeveralERISsimulationcasesareinvesti-gated,andtheresultsverifytheadvantagesandsatisfactoryperformanceoftheERIS.TheproposedERISprovidesaneffectivesolutionforbuildinganewdistributionnetworktoadapttothenewchallengesinafuturecarbonneutralera.KEYWORDScarbonneutrality,distributionnetwork,energyrouter(ER),equivalentmodelling,interconnectionsystem一数据模型需要新的思考-提出问题目录二数据模型具有新的挑战-分析问题三数据模型引入新的技术-解决问题四结语现代智慧配电网需要什么样的数据模型结构?互联网OSI七层、TCP/IP亓层模型配用电数据模型的“结构映射”应用层充电桩幵网、分布式电源发送电、综合能源协语义层同、配网故障检修……会话层MQTT面向业务的语义解析统一物模型独立物模型模型注册、会话、注销物理实体注册报文、服务接口……模型发现、互译、兼容、映射……101、103、104、IEC6185090-X、IEC61808-X、SG-CIM、GB/T27000……源、网、荷、储物理实体台区融合终端、低压智能开关……01-配用电统一物模型技术域内数据如何补充和扩展?域间数据如何交互和兼容?可接叐的跨域统一物模型统一物模型域间数据如何兼容及配用电物模型标域内数据如何补充及交互?准化的核心问题扩展?兼容存量数据模型(CIM配网自劢化、0102IEC61850发电站+现场设备、配电物联网)•面向配电网存量数据模型•基于面向对象的业务拓扑抽象映射物联网化兼容;关系表达;(MQTT、OPCUA等)模型足够自描述•基于抽象映射和设备自描•基于逻辑节点映射的业务模型需要强调一致述的服务抽象化。资源数据建模方法。性测试02-新型幵网主体主劢感知技术配电系统是否有新的幵网主体(自収现)?新的幵网主体是什么(自识别)?随机新型幵网主体主劢感知目标:实现配电网中海量随机新从信息流角度出収,智能解析异构难点:丌固定的模型协议怎么解析?型幵网主体的可测,保障设备碎片化的数据模型,幵提叏自描述注册序列怎么一致性校验?“控的稳”注册序列是较为合适路线过程1过程2幵网前幵网后PV幵网后直流链路电容电压波形功率特性谐波特性基于能量频谱的随机性幵网设备识别技术路线03-新型幵网主体协议互译技术(自注册)随机幵网主体协议怎么最小调试量的转换(互译)?幵网主体如何边-端注册、登记、随机新型幵网传输、校验(自注册)?主体即揑即用目标:实现配电网中海量随机新从信息流角度出収,智能解析异构难点:丌固定的模型协议怎么解析?型幵网主体的可观,保障系统碎片化的数据模型,幵提叏自描述注册序列怎么一致性校验?“接得住”注册序列是较为合适路线収起注册注册报文包括:终端ID、文件版本号、文件修改版本号边缘侧多模态剪枝量化知识蒸馏幵登录、文件特征码以及终端IP。大模型轻量化稀疏化混合精度示教模型建立注册智能融合终端不注册设备乊间建立注册通道,注册设备作压缩方法规则约束存储精度有监督通道为客户端,智能融合终端作为服务端。权重剪枝多值量化子模型多模态链接传输配置链接通道后,智能融合终端向注册设备主劢召唤模型大模型参数多模态数据集微调多模态大模型报文文件,幵通过HPLC、微功率无线等通道下装至注册设备。模型裁剪微调方法配网量测数据电气量编码器校验注册进行文件格式及内容校验,通过则自劢加载幵复位链路,稳态运行数据低秩分解查询变换器接入失败则记录失败原因,待延时重新发起注册连接,对已注册多模态数据的大语言模型设备进行一致性校验,丌一致则等待配置确认,一致则注册跨模态对齐方法运维文本匹配学习过程完成,完成终端接入。……冻结多模态预训练模型对比学习幵网设备自注册过程及轻量化互译技术路线04-配用电跨域业务语义解析技术配电域和用电域的具体业务源-网-荷-储多场景业务如何自劢化生成?智慧化互操作目标:实现配电网中多业务主体从信息物理融合角度出収,“真正”难点:业务流程如何通用化语义理的协同可控,保障系统“管得好”梳理配用电业务场景步骤流程和业务解?业务流程如何贯通?资源,理解业务流程的数据语义,交叉应用数字化技术是较为合适路线场景描述业务需求贯通充电桩报装幵网申请下周三武汉大学电气学2023年6月30日/院门口安装慢充武汉大学工学部与变#1/用户投诉用电问题今天下午至傍晚武汉大学工武汉大学电气学院/学部三教临时停电充电桩幵网配电设备故障诊断2#配电变压器综合监控模块2023年6月24日/损坏武汉大学工学部与变#1/武汉大学电气学院/临时停电2#配电变压器/综合监测模块/损坏05-配用电端-边/边-边协同技术及智能终端从云-边协同如何分层分群边-边/边-边?如何研収自主可控具备软件定义能力的智能智慧化互操作终端?目标:实现配用电跨域的资源共从终端智能化芯片化角度出収,软难点:边边如何互连互通?如何真享和业务功能灵活部署,保障系硬件资源协同挖掘,业务功能IP核正自主国产?统“管得好”化,是较为合适路线国重版台区智能终端采用全国产芯片的核心板采用国产CPU、自主内核操作系统的台区智能终端一数据模型需要新的思考-提出问题目录二数据模型具有新的挑战-分析问题三数据模型引入新的技术-解决问题四结语PromotionalArticleaddedbytheECE,notincludedintheoriginalslidesEnergyConversionandEconomicsReceived:29November2022Revised:24February2023Accepted:28March2023DOI:10.1049/enc2.12088REVIEWAnanalysisofdistributionplanningunderaregulatoryregime:AnintegratedframeworkAprajayVermaKShantiSwarupDepartmentofElectricalEngineering,IndianAbstractInstituteofTechnologyMadras,Chennai,Distributionsystemplanningisamultifacetedtopicinvolvingfinancial,regulatory,andTamilnadu,Indiasystemlevelanalysis.Thewidenatureofthetopicwarrantsaholisticstudyconsideringallaspectsofanalysis.Thedistributionutilityisanaturalmonopolythatissubjectedtoutilityregulation.Theregulatorcanimpactcustomerexperiencebystrategicallyinfluencingtheplanningdecisionsoftheutility.Hence,thispaperreviewstheexistingutilityregulationmethodsinthecontextofthedistributionsystemandtheirefficacyinimprovingcertainreliabilityandefficiencyobjectives.Atwo-bussystemisusedtodemonstratetheimpactofclassicalmodelsinalleviatingreliabilityandefficiencyissuesthroughdemandresponse.Further,areviewisconductedondistributionsystemplanningmodelswithoutaregulatoryregime,andsuitablemodelsforholisticanalysisareidentified.Atwo-personcompleteinformationregulatorandutilitygamewithacomprehensivedistributionsystemmodelatthelowerlevelisproposed.AframeworkbasedontheMixedIntegerBilevelLinearProgram(MIBLP)isdiscussedtofindtheequilibriumpointoftheproposedgame.KEYWORDSenergyeconomics,investmentandplanning,operationandoptimization结语现代智慧配电网—新型幵网主体的智慧融合数基石収展应用支持新型幵网主体即揑即支撑跨域协同互操作的面据模兼容幵物联网化的标准用的语义化模型向业务语义贯通型“统一”物模型配用电系统+信息物理融合+现代化収展能否借鉴互联网某些思路,依托多领域的技术和管理创新不集成,开放共赢,以满足新型幵网主体和现代化社会的互劢要求。谢谢!感谢国家重点研収计划“配电网业务资源协同及互操作关键技术”盛万兴、赵景涛、尚宇炜、文艳、姜丹丹、张嘉鑫等团队成员电话:15972976215邮箱:whwdwb@whu.edu.cnReceived:17July2022Revised:30November2022Accepted:30November2022EnergyConversionandEconomicsDOI:10.1049/enc2.12073ORIGINALRESEARCHAnomalydetectionandclustering-basedidentificationmethodforconsumer–transformerrelationshipandassociatedphaseinlow-voltagedistributionsystemsZhenyueChu1XueyuanCui1XingliZhai2ShengyuanLiu1WeiqiangQiu1MuhammadWaseem3TariqueAziz1QinWang4ZhenzhiLin11SchoolofElectricalEngineering,ZhejiangAbstractUniversity,Hangzhou,ChinaTheidentificationaccuracyoflow-voltagedistributionconsumer–transformerrelation-shipandphasearecrucialtothree-phaseunbalancedregulationanderrorcorrectionin2JinanPowerSupplyCompany,StateGridShandongconsumer–transformerrelationships.However,owingtotherapidincreaseinthenumberElectricPowerCorporationLimited,Jinan,Chinaofconsumersandtheupgradeofthefeedlinesforlow-voltagedistributionsystems,thetimelyupdateoftheconsumer-transformerrelationshipandphaseinformationofcon-3DepartmentofElectricalEngineering,Universitysumersischallenging.ThisinfluencestheaccuracyofthebasicinformationofthepowerofEngineeringandTechnologyTaxila,Taxila,grid.Thus,thisstudyproposesalow-voltagedistributionnetworkconsumer–transformerPakistanrelationshipandphaseidentificationmethodbasedonanomalydetectionandtheclus-teringalgorithm.First,theimprovedfastdynamictimewarpingdistancebasedonthe4ElectricPowerResearchInstitute,PaloAlto,CA,filtersearchbetweenvoltagesequencesisusedtomeasurethesimilaritybetweenvoltageUSAcurves.Subsequently,anabnormalconsumerdetectionmethodbasedonthelocaloutlierfactorisusedtoidentifyconsumerswithmismatchedconsumer-transformerrelationshipsCorrespondencebydeterminingthelocaloutlierfactorscoresofvoltagecurves.Furthermore,thephaseZhenzhiLin,SchoolofElectricalEngineering,informationofnormalconsumersisidentifiedthroughclusteringbyfastsearchandfindZhejiangUniversity,Hangzhou310027,Chinaofdensitypeaks.Finally,theproposedmethodisvalidatedusingcasestudiesofpracticalEmail:linzhenzhi@zju.edu.cnlow-voltagedistributionsystemsinChina.Theproposedmethodcaneffectivelyimprovephaseidentificationaccuracyandmaintainhighadaptabilityinvariousdataenvironments.FundinginformationJointFundofNationalNaturalScienceFoundationKEYWORDSofChina,Grant/AwardNumber:U2166206clusteringbyfastsearchandfindofdensitypeaks,consumer–transformerrelationship,fastdynamictimewarpingdistance,localoutlierfactor,low-voltagedistributionsystems,phaseidentification1INTRODUCTIONadvanceaccordingtotheconsumer–transformerrelationshipsofthelow-voltagedistributionsystemssuchthatconsumerscanAccurateconsumer–transformerrelationshipandphaseinfor-bepreparedbeforethepoweroutageandunnecessarylossesmationofconsumersarekeystoensuringthesecureandstablecanbeavoided.However,withtherapiddevelopmentoftheoperationofelectricaldistributionsystemsandarecrucialforpowergrid,thefilesoflow-voltagedistributionsystemshavetheleanmanagementoflow-voltagedistributionsystems,suchnotbeenupdatedintimeandarenotcompletelyconsistentastheanalysisofthelinelossofdistributionnetworks,three-withtheactuallineinformationbecauseofthelinerecon-phaseimbalanceregulation,andelectricitytheftdetection[1].Instructionofvariousoldcommunitiesandthechangeinthethecaseofmandatorypoweroutagescausedbymaintenanceorlinesofnewconsumerswithoutconsent.Therefore,opera-faults,eachconsumerintheconcernedareacanbenotifiedintionandmaintenancepersonnelmustadjustthephaseoftheThisisanopenaccessarticleunderthetermsoftheCreativeCommonsAttribution-NonCommercial-NoDerivsLicense,whichpermitsuseanddistributioninanymedium,providedtheoriginalworkisproperlycited,theuseisnon-commercialandnomodificationsoradaptationsaremade.©2022TheAuthors.EnergyConversionandEconomicspublishedbyJohnWiley&SonsLtdonbehalfofTheInstitutionofEngineeringandTechnologyandtheStateGridEconomic&TechnologicalResearchInstituteCo.,Ltd.392wileyonlinelibrary.com/iet-eceEnergyConvers.Econ.2022;3:392–402.CHUETAL.393loadtobalancethethree-phaseloadinlow-voltagedistributioninthesamedistributionarea.However,theabilitytomeasuresystems[2].thesimilarityofvoltagesequencesandidentifyconsumerswithwrongconsumer–transformerrelationshipsisrelativelypoor,Generally,consumerfilerecordsareincompleteinthedecreasingthephaseidentificationaccuracy.actualadjustmentprocess.Previously,thestaffmustswitchoffconsumers’electricitytojudgetheconsumer–transformerThecorrectconsumer-transformerrelationshipistherelationshipandphaseinformationusingelectronictestequip-premiseforimprovingthephaseidentificationaccuracy[9–11].ment,whichrenderedthemaintenanceofthepowersupplyThevoltagedataoftheend-userareassumedasinputs.challenging,influencedtheconsumers’powerconsumptionThus,thisstudyproposesalow-voltagedistributionnetworkexperience,andreducedthepowersupplyreliabilityandeco-consumer-transformerrelationshipandphaseidentificationfornomicbenefitsofpowerutilitycompanies.Theconstructionlow-voltagedistributionsystemsbasedonfiltersearchandlocalandmaintenanceofmedium-andhigh-voltagedistributionandoutlierfactorclusteringbyfastsearchandfindofdensitypeakstransmissionnetworksinChinahaverelativelydevelopedcom-(LOF-CFSFDP)algorithm.First,animprovedfastdynamicparedtolow-voltagedistributionsystems,whichisaweaktimewarping(IFDTW)distancebasedonfiltersearchispro-linkinthemanagementofpowercompanies.Withtherapidposedtodeterminethesimilarityofthevoltagedata.Next,developmentofsmartgridsinrecentyears,smartmetershavethelocaloutlierfactor(LOF)algorithmbasedonIFDTWdis-achievedfullcoverage.Astheterminaldeviceoftheelec-tanceispresentedtodetectabnormalconsumerswithincorrecttricityconsumptioninformationcollectionsystem,bulkyandconsumer-transformerrelationships.Subsequently,thepropo-high-dimensionalelectricityconsumptioninformation(suchassitionofaphaseidentificationmethodforconsumersinelectricalenergy,activepower,voltage,andcurrent)ofcon-low-voltagedistributionsbasedontheclusteringbyfastsearchsumersarecollectedinparticulartimeintervals(suchas15andfindofdensitypeaks(CFSFDP)algorithmisproposed.and30min).ThisprovidescomprehensivepowerconsumptionFinally,thehighaccuracyoftheproposedmethodisvalidatedmeasurementdatatoreliablyoperatethedistributionsystemthroughpracticalcasestudiesinChina.andenhancetheobservabilityofthelow-voltagedistributionsystem.Thecontributionsofthisstudyarethreefold.Basedonthemeasureddataofsmartmeters,scholarshave(i)TheIFDTWdistancebasedonfiltersearchisproposedconductedextensivestudiesontheproblemoftheconsumer-toaddressthecomprehensivesimilarityamongthevolt-transformerrelationshipandphaseidentificationinlow-voltageagedata,whichimprovestheaccuracyofthevoltagecurvedistributionsystems.Aphaseidentificationmethodforsingle-similaritymeasurement.phaseconsumersbasedontheadaptivepiecewisecloudmodelwasproposedin[3].ThedigitalfeaturesoftheGaussiancloud(ii)TheLOF-basedabnormalconsumerdetectionmethodismodelwereusedtomeasurethesimilaritybetweenthevoltageemployedtodetectelectricalconsumerswithanincor-curvesofdifferentconsumersandtodeterminetherelationshiprectconsumer-transformerrelationship,whichimprovesbetweenconsumersandtransformersinlow-voltagedistribu-theaccuracyofsubsequentphaseidentification.tionsystems.AnoptimisationmodelbasedonKirchhoff’scurrentlawwasestablishedin[4]toidentifythefeeder-(iii)Comparedwiththedensity-basedspatialclusteringofconsumerconnectivityinalow-voltagedistributionnetwork,applicationswithnoise(DBSCAN)algorithm,ourpro-whichwastransformedintoaquadraticprogrammingprob-posedCFSFDP-basedphaseidentificationmethodcanlem.Amulti-objectiveoptimisationmodelconsideringbothachievehigherphaseidentificationaccuracyandrobustnesspowerbalanceandvoltagetime-serieswaveformclassificationindifferentdataenvironments.wasproposedin[5],andthevoltagedataafterdimensionreduc-tionusingt-distributedstochasticneighbourembeddingwere2SIMILARITYMEASUREMENTSOFusedtoidentifyconsumers’phaseinformation.AtopologyVOLTAGECURVESOFCONSUMERSINvalidationmethodforlow-voltagedistributionnetworksbasedLOW-VOLTAGEDISTRIBUTIONSYSTEMSonthePearsoncorrelationcoefficientandk-nearestneigh-bour(KNN)algorithmwasproposedin[6].TheformerwasLow-voltagedistributionsystemshavemanyconsumers(mostlyusedtodeterminetheconsumerswithincorrectconsumer-single-phaseconsumers).Becausethedailyfluctuationsinthetransformerrelationships,whereaswasusedtoidentifytheloadineachphaseareregular,theconsumervoltagealsoshowscorrectdistributionareatowhichtheconsumerwiththewrongaregularfluctuationstate[12–15].Accordingtothedistributionconsumer-transformerrelationshipbelongs.Aderivative-basednetworktheory,consumerswithacloseelectricaldistancehavedynamictimewarpingalgorithmwasproposedin[7]toreducesimilarvoltagedistributions.Therefore,thesimilaritybetweentheinfluenceofclusteringalgorithmparametersonthecluster-thevoltagecurvesofconsumersinthesamedistributionareaingresults.Thedensity-basedspatialclusteringofapplicationsishigherthanthesimilaritybetweenthevoltagecurvesofcon-withnoisewasusedtoidentifytherelationshipbetweencon-sumersindifferentdistributionareas.Inthesamedistributionsumersandtransformers.Thevoltagetimeseriesdataarearea,thesimilaritybetweenthevoltagecurvesofconsumersinclusteredbasedonaGaussianmixturemodeltoidentifythethesamephaseishigherthanthatbetweenthevoltagecurvesofconnectionrelationshipbetweenthetransformersandcus-consumersindifferentphases.Thus,theconsumer-transformertomers[8].Theaforementionedmethodsareallbasedontherelationshipandphaseinformationofconsumerscanbeiden-principleofthehighsimilarityofconsumervoltagesequencestifiedbasedonthesimilarityprincipleoftheconsumervoltagecurves.394CHUETAL.2.1ThefastdynamictimewarpingdistanceofvoltagecurvesNumerousmethods,includingtheMinkowskidistance[16],FIGURE1TheFDTWpathandDTWpathsofvoltagesequencesAandcorrelationcoefficient[16],andKullback–LeiblerdivergenceB[17],canbeusedtomeasurethesimilarityoftimeseries,suchasvoltagecurvesandpowerloadcurves.However,theMinkowskiTheelementR(NA,NB)ofthecumulativedistancematrixdistanceandcorrelationcoefficientaresensitivetotheoffsetofRistheDTWdistancecalculatedaccordingtothefluctua-thetimescaleorvoltagevalue.TheKullback–Leiblerdivergenceisanasymmetricmetricdistancebetweentwoprobabilitydistri-tiontrendofthevoltagesequences,whichcanbeexpressedasbutionfunctions,whichisinsensitivetotheoffsetonthetimescaleorvoltagevalue;however,informationlossoccursinthefollows:fittingprocessofprobabilitydistributionfunctions.Thisstudyusedthefiltersearchmethodofthefastdynamictimewarp-R(NA,NB)=DDTW(AA,XB)(3)ing(FDTW)distancetomeasurethesimilaritybetweenvoltagecurvessoastopreventtheinfluenceofcurvedifferencecausedSearchspacereductionwasadoptedfortheFDTWdistance.bytheasynchronousacquisitiontime.DynamictimewarpingThemostwidelyusedglobalconstraintmethodsaretheSakoe–(DTW)obtainsanoptimalwarpingpathbyadjustingtherela-ChibabandandItakura–Parallelogramconstraints.ThesearchtionshipbetweenthecorrespondingelementsatdifferenttimepathoftheItakura–Parallelogramconstraintatthestartandpointsofthevoltagesequencetominimisethedistancebetweenendsistoonarrow.Thiscancauseinaccurateregularisationatthetwovoltagesequencesalongthepath[18,19].FDTWisanthesepoints.ComparedwiththeItakura–Parallelogramcon-improvedDTWmethodthatadoptsthestrategyofreducingstraint,theSakoe–Chibabandconstraintissuitablefortimethesearchspace.TheDTWandFDTWdistancessuitableforseriesmatchinginwhichtheoffsetmayoccuratanyloca-measuringthesimilarityofthevoltagecurvesareintroducedastion.Owingtotheuncertaintyoftheoffsetinthevoltagefollows:curves,theoffsetperiodcannotbedetermined.Therefore,thisstudyadoptstheSakoe–Chibabandconstraint,andtheFDTWSupposetwovoltagesequencesXA={a1,a2,…,aNA}anddistancebetweenthevoltagesequencesXAandXBcanbeXB={b1,b2,…,bNB}exist,whereNAandNBrepresenttheexpressedasfollows:lengthsofvoltagesequencesXAandXB,respectively.DTWobtainstheminimumdistancemetricv=DDTW(XA,XB)bydetermininganoptimalwarpingpathbetweenthetwovoltagesequences.Anypaththatsatisfiestheboundaryconditions,continu-ity,andmonotonicitycanbeexpressedasW={w1,w2,…,wt},wheretrepresentsthetotalnumberofelementsinthepathandwtisthecoordinate(i,j)ofthetthpointonthepath.Thewarpingpathwascontinuousandmonotonicallyextendedfromthestarttotheendcell.d(wt)representstheEuclideandistancebetweenaiandbj,whichisthewarpingcostbetweenaiandbj.MultiplewarpingpathsWexist,andanoptimalpaththatmin-imisesthetotalwarpingcostexists,whichcanbeexpressedasfollows:∑TDDTW(XA,XB)=mind(wt)Wt=1(1)Tosolve(1),acumulativedistancematrixRcanbecon-⎧∑Tstructedusingdynamicprogramming,whichcanbeexpressed⎪asfollows:⎪DF(XA,XB)=mind(wt)⎪Wt=1⎧⎪R(i,j−1)⎨s.t.wt=(i,j)(4)⎪⎪⎪⎩S≥i−NNABj⎪R(i,j)=d(i,j)+min⎨R(i−1,j−1)(2)⎪⎪⎩R(i−1,j)whereSistheSakoe–Chibabandsize.wherei=1,2,…,NA,j=1,2,…,NB,R(0,0)=0,andR(i,0)=R(0,j)=+∞.UndertheSakoe–Chibabandconstraint,theFDTWandDTWpathsofsequencesXAandXBareshowninFigure1.Excessivewarpingofthevoltagecurvesisavoided,andtheCHUETAL.395searchspaceisreducedusingtheconstraint,improvingtheTherefore,thelowerboundoftheIFDTWdistancecanbecomputationalefficiencyoftheDTW.expressedasfollows:2.2TheimprovedfastdynamictimeDL(Xi,Xj)=DLB_Keogh(Xi,Xj)(7)warpingdistancecalculationmethodbasedonthefiltersearchTheupperboundoftheIFDTWdistanceistheEuclideandistance,expressedasfollows:TheIFDTWdistancecalculationmethodbasedonthefil-tersearchwasusedinthisstudytoimprovetheaccuracy∑Mandcomputationalefficiencyofthevoltagecurvesimilar-DU(Xi,Xj)=(Xi(t)−Xj(t))2itymeasurement[20].Theupperandlowerboundsofthe(8)IFDTWdistancewereselectedtofilteroutthevoltagesequencesthatdonotsatisfythesimilarityrequirementsandt=1abandonthecalculationofDTWwithhighcalculationcom-plexity,thusfurtherimprovingthecalculationefficiencyoftheThesimilaritymatrixDofthevoltagecurvesforclusteringcanFDTWdistance.ThecalculationprocessoftheIFDTWdis-beobtainedthroughtheIFDTWdistancecalculationmethodtanceofthevoltagecurvesbasedonthefiltersearchisasbasedonfiltersearchasfollows:follows:If(5)issatisfied,Step1:ThematricesoftheupperandlowerbounddistanceDUandDL,whichsatisfyDL(Xi,Xj)<DF(Xi,Xj)<DU(Xi,Xj)are()calculated.forthevoltagedatasetXN×M={X1,X2,…,XN},DXi,Xj=DU(Xi,Xj)(9)whereNisthenumberofconsumersandMisthenumberofdatapointsofonevoltagecurve.Otherwise,Step2:ThedistancematrixDiscalculatedafterthefilter()()search.Thecriterionforthefilteringsearchisasfollows:DXi,Xj=DFXi,Xj(10)DF(Xi(1∶k),Xj(1∶k))+TheIFDTWdistancecalculationmethodbasedonfiltersearch(5)canimprovethemeasurementaccuracyofthemorphologicalsimilaritybetweenvoltagecurvesandthecomputationaleffi-DL(Xi(k+1∶M),Xj(k+1∶M))>𝜀ciencyofFDTW,thusprovidingreliabledataforaccuratephaseidentificationofconsumers.where𝜀isthesimilaritythresholdandkisthefilteringtime.Thelowerandupperbounddistancefunctions,withlow3LOW-VOLTAGEDISTRIBUTIONNETWORKCONSUMER-TRANSFORMERcomputationalcomplexityandcanaccuratelyestimatetheRELATIONSHIPANDPHASEFDTWdistancerange,arecrucialinimprovingtheefficiencyofIDENTIFICATIONMETHODBASEDONtheIFDTWdistancecalculation.TheLB_KeoghlowerboundLOFANDCFSFDPALGORITHMisthebest-knownlowerboundfunction[20];therefore,itisusedinthisstudyasthelowerboundfunctionofIFDTWto3.1LOF-basedabnormalconsumerreducethecomputationalcost.TheLB_Keoghlowerboundisdetectionmethoddefinedasfollows:ThesimilaritybetweenthevoltagecurvesofconsumersintheFortwovoltagesequencesXA={a1,a2,…,aNA}andXBsamedistributionareaismuchhigherthanthatofconsumers={b1,b2,…,bNB},theupperenvelopeofXAisdefinedasindifferentdistributionareas.Therefore,abnormalconsumersU={U1,U2,…,UNA},whereUi=max(ai-S,…ai,…,ai+S).Thewithanincorrectconsumer-transformerrelationshipcanbelowerenvelopeofXAisdefinedasL={L1,L2,…,LNA},whereidentifiedbeforephaseidentification[21–23].Li=min(ai-S,…ai,…,ai+S).SistheSakoe–Chibabandsizethatensurestheconsistencyoftheconstraintspace.Hence,theLOFisadensity-basedlocaloutlierdetectionalgorithmthatLB_KeoghlowerboundDLB_Keoghcanbeexpressedasfollows:utilisestherelativedensityofadatapointanditsKNNdatatocharacterisetheoutlierdegreeofthedata.Itdoesnotdirectly√√determinewhetherthedataisanoutlierpoint,butusestheLOF√√√√√∑NA⎧⎪⎪(bi−Ui)2bi>UiscoreasanindicatortojudgethedegreeofabnormalityofeachDLB_Keogh(XA,XB)=√√⎨(bi−Li)2bi<Li(6)datapointrelativetothelocalneighbourhood.Intheproblem√√i=1⎪investigatedinthisstudy,theelectricaldistanceofconsumersinthesamedistributionareaisclose;therefore,thesimilarityof⎪⎩0theirvoltagecurvesishigh,theelectricaldistanceofconsumersindifferentdistributionareasislarge,andthesimilarityoftheir396CHUETAL.datapoints.Alargelocalreachabledensityimpliesthedatapointsinthek-distanceneighbourhoodofvoltagecurveXiaredense.𝜌(X)=∑Nk(Xi)(13)kidk(Xi,Xj)Xj∈Nk(Xi)5.TheLOFscoreLkofvoltagecurveXiiscalculated,whichcomparestheaveragelocalreachabledensityofallvoltagecurvesinthek-distanceneighbourhoodofvoltagecurveXiwiththelocalreachabilitydensityofvoltagecurveXi.∑𝜌k(Xj)L(X)=Xj∈Nk(Xi)𝜌k(Xi)(14)kiNk(Xi)FIGURE2k-distanceneighbourhoodofvoltagecurveXiTheLOFscoresofthevoltagecurvesarecloseto1whenconsumersbelongtothesamedistributionarea.Agreatervoltagecurvesislow.ThisisinlinewiththeideaoftheLOFdistancebetweentheconsumer’svoltagecurveXiandotheralgorithm.Therefore,theabnormaldegreeofthevoltagecurvevoltagecurvesrepresentsasmallerlocalreachabilitydensityinthedatasetcanbedeterminedbycalculatingthedensityratioandahigherLOFscore.Thisdenotesahigherlikelihoodofbetweeneachvoltagecurveanditsadjacentvoltagecurves.Theawrongtransformer-consumerrelationship.Therefore,con-LOFalgorithmisusedtoidentifyabnormalconsumerswithansumersconnectedtothewrongdistributionareacanbefilteredincorrectconsumer-transformerrelationship.GivenavoltageaccordingtotheLOFscores.Inthisstudy,whentheLOFdatasetX,whereXiisavoltagecurveinX,theidentificationscoreoftheconsumer’svoltagecurveisgreaterthantheprocessisasfollows.threshold,theconsumerisconsideredtobeconnectedtothewrongdistributionarea.Consideringtheactualrequirements1.Thek-distancedk(Xi)ofthevoltagecurveXi,definedofconsumer–transformerrelationshipidentification,throughasthedistancesatisfyingthefollowingtwoconditionsisnumeroussimulationexperiments,abnormalconsumerscanbecalculated:betterdetectedwhenthethresholdissetto2andkissettoa.AtleastkvoltagecurvesexistXj∈X\{Xi},suchthat20accordingto[24].Therefore,whentheLOFscoreoftheD(Xi,Xj)≤dk(Xi).consumer’svoltagecurveisgreaterthan2,theconsumerisb.Atmostk-1voltagecurvesexistXj∈X\{Xi},suchthatconnectedtothewrongdistributionarea.D(Xi,Xj)<dk(Xi).Forexample,whenk=5,anillustrationofdk(Xi)=3.2CFSFDP-basedphaseidentificationD(Xi,Xj5)isshowninFigure2.methodforconsumersinlow-voltagedistributions2.Thek-distanceneighbourhoodofthevoltagecurveXiiscalculated.ElectricityconsumersinthesamedistributionBasedontheCFSFDPalgorithm,theclustercentreissur-systemasconsumerXiaremorelikelytobeincludedintheroundedbyneighbouringpointswithalowerlocaldensityandk-distanceneighbourhoodofconsumerXi.isrelativelyfarfromotherpointswithahigherlocaldensity[25–27].Theprinciplesofsimilarityofvoltagecurvescon-Nk(Xi)={p′∈X∖{Xi}D(Xi,Xj)≤dk(Xi)}(11)formtothealgorithmicassumptionsofCFSFDP;therefore,theCFSFDPalgorithmcanbeusedtoidentifythecorrespondingwhereNk(Xi)isthesetofallvoltagecurveswhoseIFDTWphaseofeachconsumer.Thenumberofclustersandtheselec-tovoltagecurveXiislessthanthek-distanceofvoltagetionofinitialclustercentressignificantlyinfluencetheaccuracycurveXi.oftheCFSFDPalgorithm[28,29].Owingtotheparticularity3.Thek-reachable-distancedk-reachiscalculatedfromvoltageofphaseidentification,thenumberofclustersandtheinitialcurveXitovoltagecurveXj.Whenthek-reachable-distanceclustercentrecanbeselectedinadvanceaccordingtotheactualincreases,thesimilaritybetweenconsumerXjandconsumeroperationstatetoimprovetheaccuracyofthealgorithm.Addi-Xiislow,andtheyarelesslikelytobeinthesamedistributiontionally,thesimilaritymeasureofthevoltagedataiscrucialforsystem.consumerphaseidentificationbasedontheCFSFDP.InsteadoftheconventionalEuclideandistance,acommonlyusedindexdk−reach(Xi,Xj)=max{dk(Xi),D(Xi,Xj)}(12)inCFSFDP,thisstudyusedIFDTWtomeasurethesimilarityofthevoltagecurvesbecauseitensuresclusteringaccuracyand4.ThelocalreachabledensityρkofvoltagecurveXiiscal-improvesclusteringefficiency.Insummary,themainprocessofculated,whichreflectsthedegreeofaggregationofvoltageCHUETAL.397theCFSFDP-basedphaseidentificationmethodforconsumersinlow-voltagedistributionsisasfollows:Step1:Thelocaldensityandrelativedistanceofthevoltagecurvesaredetermined.GiventhevoltagedatasetX={X1,X2,…,XN},thelocaldensityofXi∈X(1≤i≤N)isdefinedasfollows:∑𝜌i=𝜒(D(Xi,Xj)−dc)(15)j≠iwheredcisthecut-offdistanceand𝜒(x)isthecut-offdistanceFIGURE3Theρ–δdistributionofthevoltagecurvesfunction.Whenx<0,𝜒(x)=1,andx≥0,𝜒(x)=0.𝜒(x)canbeusedtodeterminewhetherothervoltagedataareintheneighbourhoodofvoltagedataXi.IntheCFSFDPalgorithm,thelocaldensityofXiisthenumberofvoltagedatapointsintheneighbourhoodofXideterminedusingtheparameterdc.Thevalueofdcshouldbesetsuchthatthenumberofneighbourhoodsinthevolt-agedatasetaccountsfor1%–2%oftheentiredataset.AlargelocaldensityindicatesdensevoltagedataaroundvoltagedataXi,implyingvoltagedataXiismorelikelytobetheclustercentre.TherelativedistanceofXiisdefinedastheminimumvalueofthedistancefromXitoallothervoltagedatawithahigherdensitythanXi,whichcanbeexpressedas:𝛿i=min(D(Xi,Xj))(16)j∶𝜌j>𝜌iThevoltagedatawiththeglobalmaximumdensitydonothaveneighbourswithhigherdensities;therefore,itsrelativedistancecanbedefinedasthemaximumdistancebetweenitandallothervoltagedata.Hence,Equation(16)canbetransformedinto:⎧⎪⎨𝛿i=j∶m𝜌ji>n𝜌i(D(Xi,Xj)),𝜌i<max{𝜌j}(17)FIGURE4Theindicatoroftheclustercentresindescendingorder⎪𝛿i=max(D(Xi,Xj)),𝜌i=max{𝜌j}⎩jTheclustercentresaresurroundedbyneighbourswithlowlocalγitoselecttheclusteringcentreisdefinedas:densities,andthedistancesbetweentheclustercentresandthevoltagedatawithhigherlocaldensitiesarerelativelylarge.𝛾i=𝜌i⋅𝛿i(18)Therefore,alargerrelativedistanceofXimeansXiismorelikelytobetheclustercentre.Alargervalueofγimeansthepointismorelikelytobetheclustercentre;therefore,theindicatoroftheclustercentreγi(1Step2:Adecisiondiagramisgeneratedbasedonthelocal≤i≤N)issortedindescendingorder,asshowninFigure4.densityandrelativedistanceofthevoltagecurves.γiofthenon-clusteringcentreisrelativelysmooth,andanTheoriginalvoltagedatasetismappedtoa2Dspacecom-obviousjumpinthetransitionfromthenon-clusteringcentretoprisingthelocaldensityρandtherelativedistancepointδbycalculatingthelocaldensityandrelativedistanceofallvoltagetheclusteringcentrecanbeobserved,whichcanassistintestingdata.Thus,theclustercentredecisiondiagramofthevoltagedatawasgenerated,asshowninFigure3.therationalityoftheselectionoftheclusteringcentre.ThreedatapointswithlargeρandδvalueswereselectedasStep3:Theremainingvoltagedatapointsareassignedtoatheclustercentresowingtotheparticularityofphaseidenti-ficationinlow-voltagedistributionsystems.Todeterminethecorrespondingphase.appropriateclustercentreofthevoltagedatasetX,theindicatorThevoltagedatapointsofnon-clustercentresareassignedbytheCFSFDPalgorithmtotheclustertowhichthenear-estneighbourswithhigherdensitypointsbelong,whichcanbe398CHUETAL.expressedasfollow:ifD(Xi,Xj)=𝛿ithen(19)Phase(Xi)=Phase(Xj)wherePhase(Xi)isthephaseofconsumeri;3.3ThephaseidentificationevaluationindexThisstudyusedtheDavies-Bouldinindex(DBI)andadjustedrandindex(ARI)toevaluatetheaccuracyofthephaseidentification[30–32].AssumingtheclusteringresultofthevoltagecurvesisC={C1,C2,…,CK},theDBIcanbeexpressedasfollows:1∑Kdavg(Ci)+davg(Cj)rDBI=Ki=1mi≠ajxdcen(Ci,Cj)(20)wheredavg(C)istheaveragedistanceofthevoltagecurvesinclusterCtotheclustercentreofCanddcen(Ci,Cj)isthedistancebetweentheclustercentresofclustersCiandCj.AsmallerDBIrepresentsbetterclusteringperformance.ARIisderivedfromtherandindex(RI),whichcomputesasimilaritymeasurebetweentwoclustersbyconsideringallpairsofsamplesandcountingpairsthatareassignedinthesameordifferentclustersinthepredictedandtrueclusters.TheARIcanbeexpressedas:r=rRI−E(rRI)(21)ARImax(rRI)−E(rRI)whererRI,E(rRI),andmax(rRI)arereal,expected,andmaximumRIvalues,respectively.AlargerARIindicatesbetterclusteringperformance.3.4Theprocessoflow-voltagedistributionFIGURE5Low-voltagedistributionnetworkconsumer-transformernetworkconsumer-transformerrelationshipandrelationshipandphaseidentificationprocessphaseidentificationbasedonthefiltersearchandLOF-CFSFDPalgorithmbasedonthelocaldensityandrelativedistanceofthenormalconsumerdatasetinthedistributionarea.Finally,theclusterAfteridentifyingtheabnormalconsumersinthedistributioncentresweredeterminedaccordingtothedecisiondiagram,andareausingtheanomalydetectionmethodintroducedinSec-thephaseidentificationresultsofthenormalconsumersinthetion3.1,theIFDTWdistancematrixofthenormalconsumerdistributionareawereobtained.voltagedatasetwasusedastheinputoftheCFSFDPalgo-rithmtoidentifythephaseofconsumers.Theflowchartofthe4CASESTUDYlow-voltagedistributionnetworkconsumer-transformerrela-tionshipandphaseidentificationbasedonthefiltersearchandGenerally,100–300single-phaseconsumersexistinlow-voltageLOF-CFSFDPalgorithmisshowninFigure5.First,theorig-distributionsystems[1,33].Inthisstudy,practicallow-voltageinalconsumervoltagedatainthedistributionareawereuseddistributionsystems(YL,MH,TQ1,TQ2,TQ3)inChinaasinput,theIFDTWdistancematrixwasformed,andtheLOFwereusedasexamplestoidentifytheconsumer-transformerscoresofconsumersweredeterminedtoidentifyabnormalcon-sumers.Thus,adecisiondiagramofconsumerdatawasdrawnCHUETAL.399FIGURE6DistributionoftherelationshipbetweenconsumersandtransformersFIGURE8LOFscoresofvoltagecurvesofconsumersTABLE1Accuracycomparisonofdifferentanomalydetectionmodelsforidentificationofconsumer-transformerrelationshipMethodAccuracy/%TP%TN%Proposedmethod100100100K-nearestneighbour[6]93.1892.9994.74DBSCAN[7]97.7397.45100Gaussianmixturemodel[8]95.4510057.89FIGURE7Voltageprofilesof162consumersintheYLandMHTheLOFscoresofallconsumervoltagecurvesaredeter-distributionareasmined,asshowninFigure8,andabnormalconsumersthatdonotbelongtothedistributionsystemcanbeidentified.relationshipandphaseofconsumers.TheYLdistributionsys-temhas157consumers.Basedontheon-the-spotinvestigation,AsshowninFigure8,19consumershadLOFscoresgreateralltheconsumersaresingle-phaseusersandbelongtotheYLthan2.Aftermanualvalidation,the19abnormalconsumersdistributionsystem,ofwhich60areconsumersofphaseA,belongedtothefourdistributionsystemsthathadbeenpre-39areconsumersofphaseB,and58areconsumersofphaseviouslymixedintotheYLdistributionsystem.Thus,itcanbeC.19consumersinfourdistributionsystemsadjacenttotheprovedthattheLOFalgorithmhashighaccuracyandthecon-YLdistributionsystemwererandomlyselectedandmixedwithsumerswithwrongconsumer-transformerrelationshipcanbeconsumersoftheYLdistributionsystemtovalidatethevalidityaccuratelydetected.oftheproposedmethod.Subsequently,thevoltagedataof176consumerswereobtained.ThedistributionoftherelationshipTheLOF-basedabnormalconsumerdetectionmethodbetweentheconsumersandtransformersisshowninFigure6.proposedinthisstudybelongstotheoutlierclassificationalgo-rithm.Therefore,ourproposedmethodiscomparedwiththeThesamplingfrequencyoftheconsumervoltagedatawasoutlierclassificationalgorithmsthatarewidelyusedinengineer-15min,andthesamplingdurationwas1day.Therefore,theing,suchasK-nearestneighbour[6],DBSCAN[7]andGMMdatadimensionsare96.Thevoltageprofilesof157consumers[8].Theaccuracy,thetruepositiverate(TP)andthetruenega-fromYLdistributionsystemand5consumersfromMHdis-tiverate(TN)ofdifferentanomalydetectionmodelsareshowntributionsystemonMarch25,2018areshowninFigure7toinTable1.TPandTNgivetheproportionofcorrectpre-illustratethesimilaritybetweenthevoltagecurvesofconsumers.dictionsinpredictionsofpositiveclassandtheproportionofAsshowninFigure7,theelectricaldistanceofconsumersincorrectpredictionsinpredictionsofnegativeclassrespectively.differentdistributionareasismuchgreaterthanthatofcon-sumersinthesamedistributionarea,whichissuitablefortheAsshowninTable1,comparedwithotheroutlierdetectionLOFalgorithmtoidentifyabnormalconsumerswithawrongalgorithms,thealgorithmproposedinthisstudyhasthehighestconsumer-transformerrelationship.accuracyinlow-voltagedistributionsystems.LocalandglobalpropertiesofthevoltagedatasetareconsideredwithLOF-basedabnormalconsumerdetectionmethod,andnoticeablediffer-encesinthedensityofthevoltagedataclustersindifferentdistributionsystemsexist.Therefore,theproposedmethodcan400CHUETAL.TABLE2TheinfluenceofsimilaritymeasurementontheaccuracyofphaseidentificationofconsumersinthedistributionsystemCalculationTheaccuracyofphaseidentification/%time/s91.8MethodPhaseAPhaseBPhaseCOverall211.7636.1IFDTW+LOF-CFSFDP10090.7010097.530.3FDTW+LOF-CFSFDP[34]10090.7010097.53DTW+LOF-CFSFDP[7]10090.7010097.53Euclideandistance+LOF-CFSFDP74.3610092.8685.80TABLE3ThecomparisonofevaluationindicatorsofphaseidentificationTABLE4PhaseidentificationresultsofDBSCANwithdifferentwithdifferentmethodsproportionsofabnormalconsumersMethodAP/%DBARITheproportionofAccuracyofphaseidentificationwithabnormalconsumersDBSCAN/%IFDTW+LOF-CFSFDP97.531.2420.933(%)Spectralclusteringalgorithm[19]59.880.7780.482PhaseAPhaseBPhaseCOverallDBSCANalgorithm[7]96.911.3380.9271.8810010092.0696.863.0910010092.0696.914.2710010092.0696.955.4210092.8689.2393.98effectivelysatisfytherequirementsofconsumer-transformer6.7986.2781.2587.9386.30relationshipidentification.racyofphaseidentificationishigherthanthatofthespectralThisstudyimplementedphaseidentificationwithdifferentclusteringmethod.However,theDBSCANalgorithmissensi-similaritymeasurementmethodstoillustratetheinfluenceoftivetoinputparametersandperformspoorlyondatasetswithsimilaritymeasurementsontheaccuracyofphaseidentificationhigherdimensions.However,themethodproposedinthisworkinalow-voltagedistributionsystem.ThephaseidentificationhasstrongadaptabilitytodataandabetterclusteringeffectbyresultsarepresentedinTable2.identifyingabnormalconsumersinthedistributionsysteminadvanceandclusteringthevoltagedataofnormalconsumers.AsshowninTable2,thephaseidentificationaccuracyTheARIandDBIofthemethodproposedinthisworkarewithEuclideandistanceis85.80%.Incontrast,theaccu-0.933and1.242,respectively,whichisbetterthanthatoftheracyofphaseidentificationusingIFDTWwas97.53%.TheDBSCANalgorithm.ItcanbeseenthattheproposedmethodcalculationspeedoftheEuclideandistancewasthefastest;canimprovetheaccuracyofphaseidentificationbyabetterhowever,theEuclideandistancecannotaccuratelymeasuresimilaritymeasureforthevoltagecurves.thesimilarityofthevoltagecurves,resultinginlowerphaseidentificationaccuracy.ThesearchspaceofFDTWpathsTheaccuraciesofthephaseidentificationofDBSCANandwaslimitedowingtotheSakoe–Chibaconstraints;there-IFDTW+LOF-CFSFDPwithdifferentproportionsofabnor-fore,thecomputationalefficiencyishigherthanthatofthemalconsumersarelistedinTables3and4tovalidatetheDTWalgorithm.FiltersearchwasusedinIFDTWtofurtherstabilityofthemethodproposed.improvethecalculationefficiencyofFDTW,achievingabalancebetweenthecalculationefficiencyandthephaseidentificationThephaseidentificationaccuracyshowsthepercentageofaccuracy.correctassignmentsineachcluster,andtheoverallaccuracyshowstheoverallaccuracyofthephaseidentificationalgo-Tofurthervalidatetheeffectivenessoftheproposedmethod,rithm.AsshowninTables3and4,theaccuracyofthespectralclustering[19]andDBSCANalgorithmswereusedDBSCANmethoddecreasedwhentheproportionofabnor-forcomparison.Theaccuracyofthephaseidentification(AP),malconsumersincreasedfrom4.27%to5.42%.AccordingtoDBI,andARIwereusedtoevaluatethephaseidentificationthephaseidentificationresults,fiveconsumersofphaseAwereresults,whicharelistedinTable3.misidentifiedasphaseCwhentheproportionofabnormalcon-sumerswas1.88%,3.09%,and4.27%.SevenconsumersofAsshowninTable3,forthevoltagedataoftheYLdistribu-phaseAweremisidentifiedasphaseCandthreeconsumerstionsystem,ourproposedmethodhasthehighestidentificationofphaseAweremisidentifiedasphaseBwhenthepropor-accuracyrate.Theidentificationaccuraciesofthespectraltionofabnormalconsumerswas5.42%.SevenconsumersofclusteringandDBSCANalgorithmsare59.88%and96.91%,phaseAweremisidentifiedasphaseC,nineconsumersofrespectively.ThisisbecausetheeffectivenessofthespectralphaseAweremisidentifiedasphaseB,andsevenconsumersclusteringalgorithmdependsontheclusteringmethodandtheofphaseCweremisidentifiedasphaseAwhentheproportionsimilaritymatrix,andtheidentificationofoutliersusingthespectralclusteringalgorithmischallenging;therefore,theiden-tificationaccuracyisrelativelylow.TheDBSCANalgorithmcanidentifyoutliersandhasbetterrobustness;therefore,theaccu-CHUETAL.401TABLE5PhaseidentificationresultsofIFDTW+LOF-CFSFDPwithmethodbasedonfiltersearchandtheLOF-CFSFDPalgorithmdifferentproportionsofabnormalconsumerstorectifytheerrorsoftheconsumer-transformerrelationshipandphaseinformationcausedbyuntimelyupdatingorineffi-TheproportionAccuracyofphaseidentificationwithOverallcientchecking.TheFDTWdistancebasedonthefiltersearchofabnormalIFDTW+LOF-CFSFDP/%wasemployedtomeasurethesimilarityofthevoltagecurvesconsumers(%)moreaccurately.Next,consumerswithincorrectconsumer-PhaseAPhaseBPhaseCtransformerrelationshipswereaccuratelyidentifiedusingtheIFDTWdistanceandLOF-basedabnormalconsumerdetection1.8810090.7010097.50method.Thus,theCFSFDP-basedphaseidentificationmethodwasproposedtoidentifythephaseinformationofelectrical3.0910090.7010097.53consumerswithacorrectconsumer-transformerrelationshipinlow-voltagedistributionsystems.Finally,practicalcasesin4.2710090.7010097.56Chinawerepresented.Theproposedmethodcouldachievehigheraccuracyandrobustnesscomparedwithotheralgorithms5.4210090.7010097.59indifferentdataenvironments.Itisnoticeablethatthecon-sumersofthelow-voltagedistributionsystemsinthisstudy6.7910090.7010097.63aresingle-phaseusers.Undoubtedly,thephaseidentificationoflow-voltagedistributionsystems,includingthree-phaseusersisTABLE6Comparisonofthephaseidentificationaccuracywithdifferentcrucialforfutureresearch.samplingfrequenciesAP/%SamplingSamplingDataDBSCANIFDTW+LOF-ACKNOWLEDGEMENTSfrequencytimedimensionCFSFDPThisstudywassupportedbytheJointFundoftheNational96.91NaturalScienceFoundationofChina(No.U2166206).15min1day9689.5197.5330min1day4882.7297.531h1day2466.0597.531day31days3167.52CONFLICTOFINTERESTTheauthordeclaresnoconflictofinterest.ofabnormalconsumerswas6.79%.ComparedwiththeDATAAVAILABILITYSTATEMENTDBSCANmethod,theaccuracyoftheproposedmethodisThedatathatsupportthefindingsofthisstudyareavailable97.56%withdifferentproportionsofabnormalconsumers,fromthecorrespondingauthoruponreasonablerequest.whichishigherthanthatofDBSCAN.Accordingtothephaseidentificationresults,fourconsumersofphaseAwereORCIDhttps://orcid.org/0000-0001-5403-2137misidentifiedasphaseB,withallproportionsofabnormalcon-ZhenyueChuhttps://orcid.org/0000-0003-2125-9604sumers.AsshowninTable5,thephaseidentificationresultsZhenzhiLinwithIFDTW+LOF-CFSFDPachievedanoverallaccuracyofatleast97%.Therefore,theproposedmethodcanachievegoodREFERENCESeffectivenessandpracticability.1.Pappu,S.,Bhatt,N.,Pasumarthy,R.,etal.:IdentifyingtopologyoflowTheeffectsofdifferentsamplingfrequenciesontheaccuracyvoltagedistributionnetworksbasedonsmartmeterdata.IEEETrans.ofphaseidentificationassumingafixednumberofabnormalSmartGrid.9(5),5113–5122(2018)consumers(fiveabnormalconsumers)arelistedinTable6.2.Lisowski,M.,Masnicki,R.,Mindykowski,J.:PLC-enabledlowvoltagedis-AsshowninTable6,whenthesamplingfrequencyisreducedtributionnetworktopologymonitoring.IEEETrans.SmartGrid.10(6),to1day,thephaseidentificationaccuracyoftheDBSCANalgo-6436–6448(2019)rithmandtheproposedmethoddropssignificantly,indicatingthattheconsumers’dailyvoltagevariationcharacteristicswere3.Liu,S.,Huang,C.,Li,K.,etal.:Phaseidentificationmethodforsingle-moresuitablefortheanalysisofphaseidentification.Whenphaseuserbasedonadaptivepiecewisecloudmodel.Autom.Electr.Powertheconsumervoltagesamplingfrequencywashigh(e.g.15Syst.46(3),42–49(2022)min,30min,or1h),thephaseidentificationaccuracyoftheproposedmethodreached97.53%,whichwasrelativelyhigh4.Tang,J.,Cai,Y.,Zhou,L.,etal.:Data-drivenbasedidentificationmethodofandrobust,whereasthatoftheDBSCANalgorithmexhibitedfeeder-consumerconnectivityinlow-voltagedistributionnetwork.Autom.adescendingtrend.Thus,theproposedmethodcanachieveElectr.PowerSyst.44(11),127–134(2020)higherrobustnesscomparedwiththeDBSCANalgorithmatdifferentsamplingfrequencies.5.Luo,J.,Zhang,J.,Yao,L.,etal.:Modelingandapplicationofphaseidentifi-cationoptimizationforlow-voltagecustomerbasedonvoltageandpower5CONCLUSIONdata.Autom.Electr.PowerSyst.45(7),123–131(2021)Thisstudyproposedalow-voltagedistributionnetwork6.Xiao,Y.,Zhao,Y.,Tu,Y.,etal.:Topologycheckingmethodforlowvoltageconsumer-transformerrelationshipandphaseidentificationdistributionnetworkbasedonimprovedPearsoncorrelationcoefficient.PowerSyst.Prot.Control47(11),7(2019)7.Liu,S.,Huang,C.,Hou,S.,etal.:Identificationmethodforhousehold-transformerrelationshipbasedonderivativedynamictimewarpingdistanceanddensity-basedspatialclusteringofapplicationwithnoisealgorithm.Autom.Electr.PowerSyst.45(18),71–77(2021)8.Xu,M.,Zhao,J.,Wang,X.,etal.:Transformer-customeridentifica-tionmethodforalow-voltagedistributionnetworkbasedonvoltage402CHUETAL.clusteringandincidenceconvolution.PowerSyst.Prot.Control50(4),EnergySocietyGeneralMeeting,Vancouver,BritishColombia,Canada,92–102(2022)pp.1–5(2013)9.Lian,Z.,Yao,L.,Liu,S.,etal.:Phaseandmeterboxidentificationfor24.Breunig,M.,Kriegel,H.,Ng,R.,etal.:LOF:identifyingdensity-basedlocalsingle-phaseusersbasedont-SNEdimensionreductionandBIRCHoutliers.In:Proceedingsofthe2000ACMSIGMODInternationalConferenceonclustering.Autom.Electr.PowerSyst.44(8),176–184(2020)ManagementofData,Dallas,TX,USA,pp.93–104(2000)10.Luan,W.,Peng,J.,Maras,M.,etal.:Smartmeterdataanalyticsfordistri-25.Chicco,Gianfranco,Ionel,etal.:Electricalloadpatterngroupingbasedonbutionnetworkconnectivityverification.IEEETrans.SmartGrid.6(4),centroidmodelwithantcolonyclustering.IEEETrans.PowerSyst.28(2),1964–1971(2015)1706–1715(2013)11.Short,T.:Advancedmeteringforphaseidentification,transformeridenti-26.Wang,Y.,Chen,Q.,Kang,C.,etal.:Clusteringofelectricityconsumptionfication,andsecondarymodeling.IEEETrans.SmartGrid.4(2),651–658behaviordynamicstowardbigdataapplications.IEEETrans.SmartGrid(2013)7(5),2437–2447(2016)12.Zheng,K.,Chen,Q.,Wang,Y.,etal.:Anovelcombineddata-driven27.Rodriguez,A.,Laio,A.:Clusteringbyfastsearchandfindofdensitypeaks.approachforelectricitytheftdetection.IEEETrans.Ind.Inf.15(3),Science344(6191),1492–1496(2014)1809–1819(2018)28.Su,S.,Li,K.,Yan,Y.,etal.:Classificationmodelofresidentialpowercon-13.Lu,S.,Lin,G.,Liu,H.,etal.:AweeklyloaddataminingapproachbasedsumptionmodebasedonDBSCANandgravitationalsearchalgorithm.onhiddenMarkovmodel.IEEEAccess7,34609—34619(2019)Electr.PowerAutom.Equip.38(1),129–136(2018)14.Zhang,L.,Zhao,Y.,Xiao,Y.,etal.:Theelectricalprinciplesofverification29.Lin,Z.,Wen,F.,Ding,Y.,etal.:Data-drivencoherencyidentificationforofthetopologicalstructureofalowvoltagedistributionnetwork,basedongeneratorsbasedonspectralclustering.IEEETrans.Ind.Inf.14(3),1275–voltagefromanadvancedmeteringinfrastructure.J.Eng.2019(11),8218–1285(2017)8824(2019)30.Xu,B.,Wang,C.,Wen,F.,etal.:Faultdiagnosisandidentificationofmal-15.Shahnia,F.,Wolfs,P.,Ghosh,A.:Voltageunbalancereductioninlowvolt-functioningprotectiondevicesinapowersystemviatimeseriessimilarityagefeedersbydynamicswitchingofresidentialcustomersamongthreematching.EnergyConvers.Econ.1(2),81–92(2020)phases.IEEETrans.SmartGrid.5(3),1318(2014)31.Liu,S.,You,S.,Lin,Z.,etal.:Data-drivenEventIdentificationintheU.S.16.Fan,Y.,Liu,S.,Qin,L.,etal.:Anovelonlineestimationschemeforstaticpowersystemsbasedon2D-OLPPandRUSBoostingtrees.IEEETrans.voltagestabilitymarginbasedonrelationshipsexplorationinalargedataPowerSyst.37(1),94–105(2022).set.IEEETrans.PowerSyst.30(3),1380–1393(2015)32.Musa,M.:Faulted-phaseidentificationschemeforseries-compensated17.Jamei,M.,Ramakrishna,R.,Tesfay,T.,etal.:Phasormeasurementunitstransmissionlinesduringthepowerswing.EnergyConvers.Econ.3(2),optimalplacementandperformancelimitsforfaultlocalization.IEEEJ.94–107(2022)Sel.AreasCommun.38(1),180–192(2020)33.Therrien,F.,Blakely,L.,Reno,M.J.:Assessmentofmeasurement-based18.Hino,H.,Shen,H.,Murata,N.,etal.:Aversatileclusteringmethodforphaseidentificationmethods.IEEEOpenAccessJ.PowerEnergy8,128–electricityconsumptionpatternanalysisinhouseholds.IEEETrans.Smart137(2021)Grid.4(2),1048–1057(2013)34.Ratanamahatana,C.,Keogh,E.:Makingtime-seriesclassificationmore19.Lee,M.,Lee,S.,Choi,M.J.,etal.:HybridFTW:Hybridcomputationofaccurateusinglearnedconstraints.In:ProceedingsoftheFourthSIAMInter-dynamictimewarpingdistances.IEEEAccess,2018,6,2085–2096nationalConferenceonDataMining,LakeBuenaVista,FL,USA,pp.11–2220.Rakthanmanon,T.,Campana,B.,Mueen,A.,etal.:Searchingandmining(2004)trillionsoftimeseriessubsequencesunderdynamictimewarping.In:AcmSigkddInternationalConferenceonKnowledgeDiscovery&DataMining,Beijing,Howtocitethisarticle:Chu,Z.,Cui,X.,Zhai,X.,China,pp.262–270(2012)Liu,S.,Qiu,W.,Waseem,M.,Aziz,T.,Wang,Q.,Lin,Z.:21.Liu,S.,Zhang,T.,Lin,Z.,etal.:Controlledislandingstrategyconsider-Anomalydetectionandclustering-basedidentificationinguncertaintyofrenewableenergysourcesbasedonchance-constrainedmethodforconsumer–transformerrelationshipandmodel.J.Mod.PowerSyst.CleanEnergy10(2),471–481(2022)associatedphaseinlow-voltagedistributionsystems.22.Mahapatra,K.,Chaudhuri,N.,Kavasseri,R.:Onlinebaddataoutlierdetec-EnergyConvers.Econ.3,392–402(2022).tioninPMUmeasurementsusingPCAfeature-drivenANNclassifier.In:https://doi.org/10.1049/enc2.120732017IEEEPower&EnergySocietyGeneralMeeting,Chicago,ILUSA,pp.1–5(2017)23.Luan,W.,Peng,J.,Maras,M.,etal.:Distributionnetworktopologyerrorcorrectionusingsmartmeterdataanalytics.In:2013IEEEPower&