李祖毅:微电网发展的挑战与机遇VIP专享VIP免费

微电网发展的挑战与机遇
李祖
浙江大学求是讲席教
浙大能源互联网研究中心执行主任
2023 年 12 月 16
第三届“能源转换与经济”年度论坛实施方案
IIT Grainger 讲席教授,国家高层次人才计划入选
兼任加尔文电力创新中心、智能电网技术应用中心主任
浙江大学电气工程学院能源互联网研究中心执行主
求是讲席教授
正教授 (Professor)
副教 (Associate Professor)
助理教授 (Assistant
Professor)
气工
硕士 电力系统及其自动化
学士 电力系统及其自动
2022.11 至今
2014.082022.10
2009.082014.07
2004.082009.07
浙江大
伊利诺伊理工大
伊利诺伊理工大
伊利诺伊理工大
伊利诺伊理工大
清华大
上海交通大学
1999.08 2002.07
1995.09 1998.07
1991.09 1995.07
学习经历
工作经历
其它兼职
2
交流提纲
一个微电网的故
微电网面临的挑
微电网发展的机
结束语:不忘初
3
第三届“能源转换与经济”年度论坛实施方案微电网发展的挑战与机遇李祖毅浙江大学求是讲席教授浙大能源互联网研究中心执行主任2023年12月16日自我介绍学习经历1999.08–2002.07伊利诺伊理工大学博士电气工程1995.09–1998.07清华大学硕士电力系统及其自动化1991.09–1995.07上海交通大学学士电力系统及其自动化工作经历2022.11–至今浙江大学求是讲席教授其它兼职2014.08–2022.10伊利诺伊理工大学正教授(Professor)2009.08–2014.07伊利诺伊理工大学副教授(AssociateProfessor)2004.08–2009.07伊利诺伊理工大学助理教授(AssistantProfessor)IITGrainger讲席教授,国家高层次人才计划入选者兼任加尔文电力创新中心、智能电网技术应用中心主任浙江大学电气工程学院能源互联网研究中心执行主任2交流提纲•一个微电网的故事•微电网面临的挑战•微电网发展的机遇•结束语:不忘初心3一个微电网的故事IIT校园微电网:背景、起源、现状4背景:从智能电网说起•欧洲最早做智能电网;美国奥巴马政府的经济复苏计划•智能电网最初的争议:何为智能?SmartGridvs.DumbGrid•美国发展智能电网重点在配电和用电侧,推动可再生能源发展,注重商业模式的创新和用户服务的提升。•中国的智能电网是以特高压电网为骨干网架、各电压等级电网协调发展的坚强电网为基础。中国的智能电网正在包含越来越多的配电网络成分。5IIT微电网:起源•微电网是指“在明确定义的电气边界内的一组相互连接的负荷和分布式能源,作为相对于电网的单个可控实体”。微电网可以和电网连接,也可以从电网断开,从而使其能够在并网或孤岛模式下运行。•IIT微电网:2003年美国东北部大停电•IIT微电网:与Motorola的渊源(RobertW.Galvin)•IIT微电网:一个几乎不可能完成的任务•Aproposalsubmittedonehourbeforethedeadline•APerfectPowerSystematIIT•IIT微电网:世界上第一个10MW级的校园微电网6IIT微电网:今天7IIT微电网示意图8飞轮储能系统保障移动数据中心9风-光-储一体化照明10PromotionalArticleaddedbytheECE,notincludedintheoriginalslidesEnergyConversionandEconomicsReceived:25December2021Revised:17June2022Accepted:17June2022DOI:10.1049/enc2.12062ORIGINALRESEARCHEnergyrouterinterconnectionsystem:AsolutionfornewdistributionnetworkarchitecturetowardfuturecarbonneutralityBinLiuBingzhaoZhuZiyouGuanChengxiongMaoDanWangStateKeyLaboratoryofAdvancedElectromagneticAbstractEngineeringandTechnology,SchoolofElectricalUnderthebackgroundofcarbonneutrality,distributionnetworksarefacingmanyandElectronicEngineering,HuazhongUniversityofnewchallenges,includingprovidinghigherpowersupplyreliabilityandpowerquality,ScienceandTechnology,Wuhan,Chinaadditionalpowersupplyforms,andbetterinformationsharing.Thetraditionaldistributionnetworkhasdifficultycopingwiththesechallenges;thus,itisimperativetotransformthetraditionaldistributionnetworkarchitecture.Anenergyrouter(ER)isatypeofintelligentpowerelectronicdevice,andhasthepotentialtoplayagreatroleinthetransformationofthedistributionnetwork.ThispaperproposesthebasicarchitectureofanERinterconnectionsystem(ERIS),wheremultipleERsaregatheredtogethertoplayastrongerrole.Aimingfortwodifferentstagesofthetransformationprocessofthedistributionnetwork,twotypesofERISsareemployedforasingleprosumerandmultipleprosumers,respectively.Theequivalentmodelling,maincontrolstrategies,andenergymanagementschemesofthetwotypesofERISarerespectivelyillustrated.SeveralERISsimulationcasesareinvesti-gated,andtheresultsverifytheadvantagesandsatisfactoryperformanceoftheERIS.TheproposedERISprovidesaneffectivesolutionforbuildinganewdistributionnetworktoadapttothenewchallengesinafuturecarbonneutralera.KEYWORDScarbonneutrality,distributionnetwork,energyrouter(ER),equivalentmodelling,interconnectionsystemIIT微电网:心得•IIT微电网是学校最好的一笔投资•展示学校发展的旗舰项目(FlagshipProject)•传播知识的鲜活的平台(LivingLaboratory)•6000万美元的科研项目(DOE,NSF,Industry)•微电网最初的发展是历史的选择•微电网的发展充满了挑战和机遇11微电网面临的挑战关键词:成本、技术;韧性、经济性、可持续性12微电网面临的挑战•成本挑战•微电网的建设成本高,技术复杂,维护困难。•针对成本上的挑战,我们提出功能性微电网的概念。•技术挑战-高比例高不确定性分布式新能源•相对于微电网较小的规模,高比例高不确定性分布式新能源的影响巨大。•针对高不确定性的挑战,我们提出非保守鲁棒优化的概念。•技术挑战-极端条件•微电网还可能受到自然灾害和网络攻击等极端条件的影响导致部分甚至全部通信中断。•针对极端条件带来的挑战,我们提出完全分散式的控制策略。13功能性微电网FunctionalMicrogrids•功能性微电网是有特定功能目标的微电网结构形式。•功能性微电网可以是提升新能源消纳的楼宇级微电网•提升供电可靠性的园区级微电网•提升供电韧性的物理互联微电网•提升负荷灵活性的逻辑互联微电网。•功能性微电网通过对电力配电网络进行物理结构和逻辑控制的改造,可以就地解决分布式能源大量接入配电网的挑战。https://www.energy.gov/oe/activities/technology-development/grid-modernization-and-smart-grid/role-microgrids-helping14互联微电网NetworkedMicrogrids•互联微电网是相邻微电网的集群,它们在物理上相互连接、在功能上相互协调,以进一步利用拥有各种分布式能源的微电网的潜力。多个微电网可以通过公共耦合节点(PCC)连接到配电网,从而保证在并网、孤岛和集群模式下的运行。在极端条件下,一个微电网可以为其他互联的微电网供电,以确保关键负荷的持续供电。15BCM-ICM微电网集群MunicipalBoundariesMicrogridsElectricalBoundaries16BCM-ICM微电网集群One-linediagramoftheICM-BCMcluster17BCM-ICM微电网集群18纳微电网Nanogrid•纳微电网是一个更小且自给自足的系统,部署起来更快、更容易,成本上更容易接受。•纳微电网可以连接到更大规模的电网,在外部电网停电时也可以独立运行。•纳微电网旨在满足非常具体的目标,其实施遇到的技术挑战比微电网更少。•纳微电网和微电网之间没有明确的界限。实际上,区分两者的主要因素是面积和容量大小。纳微电网一般针对单个楼宇,而微电网通常涵盖多个楼宇。19PromotionalArticleaddedbytheECE,notincludedintheoriginalslidesEconomicsReceived:1August2022Revised:30November2022Accepted:30November2022EnergyConversionandDOI:10.1049/enc2.12074REVIEWOverviewofcollaborativeresponsebetweenthepowerdistributionnetworkandurbantransportationnetworkcoupledbyelectricvehicleclusterunderunconventionaleventsYingWangYinXuJinghanHeSeungJaeLeeSchoolofElectricalEngineering,BeijingJiaotongAbstractUniversity,HaidianDistrict,Beijing,ChinaWiththerapiddevelopmentofelectricvehicles,theyhavebecomeanimportantpartofurbandistributionandtransportationnetworks.Thepowerdistributionnetworkandtrans-portationnetworkarecoupledbyelectricvehicleclustersandintegratedthroughstronginteractions,creatingacoupledsystem.Thispaperpresentsthestudyontheircollaborativeresponsesisessentialtoreducelossesandimproveurbanresilienceduringunconven-tionalevents.First,themultidimensionalanddeep-leveltime-varyingclosed-loopcouplingeffectsofthepowerdistributionnetworkandurbantransportationnetworkcoupledbyelectricvehicleclustersareanalysedunderunconventionalevents.Second,basedonthedifferentscalesofunconventionalevents,asummaryofrelevantstudiesismadeonthecollaborativeresponsestrategiesofthecoupledsystemtourbanlocalpoweroutagesandlarge-scaleblackoutsfollowingunconventionalevents.Finally,futureresearchdirectionsarediscussed.KEYWORDSelectricvehicles,extrmeevents,interdependency,powerdistributionnetwork,resilience,urbantransportationnetworkKeating纳微电网交直流混联的纳微电网KeatingNanogridPVArrayRooftopPVSystemPVArrayDC/DCDC/ACConverterDCSubsystemInverterDCloadBatteryDCBus(48Vdc)BCidAoirnCev/cDetirCotenralACSubsystemBatteryTheRestoftheBidirectionalIITMicrogridAC/DCConverterACloadACBus(208Y/120Vac)20Stuart纳微电网21Crown纳微电网22未来配电系统的架构LeiYan,MehrdadSheikholeslami,WenlongGong,MohammadShahidehpour,andZuyiLi,"Architecture,Control,andImplementationofNetworkedMicrogridsforFuturePowerDistributionSystems,"23JournalofModernPowerSystemsandCleanEnergy,vol.10,no.2,pp.286-299,March2022.微电网发展的机遇关键词:DER、特殊应用场景、新商业模式24微电网发展的机遇•2015年7月,国家能源局发布《关于推进新能源微电网示范项目建设指导意见》•2021年3月,国家发改委、国家能源局发布《关于推进电力源网荷储一体化和多能互补发展的指导意见》•双碳目标的提出•集中式与分布式结合,大电网与微电网结合•分布式新能源的快速发展•海量分布式新能源,Behindthemeter•新的商业模式的出现•虚拟电厂VPP,综合能源系统IES,能量枢纽EnergyHub25江西南昌南矶山国家自然保护区零碳微电网示范区地理位置南矶山国家自然保护区地处南昌市新建区东北部,为鄱阳湖内一岛乡,保护区总面积300平方公里,供电用户1502户,下辖2个社区、3个行政村,总人口6230人,常住人口1000余人。每年汛期(6月至10月),进岛公路被水淹没,形成南山、矶山两个地理孤岛。岛内面积约4.1平方公里(其中南山2.6平方公里、矶山1.5平方公里)。26江西南昌南矶山国家自然保护区零碳微电网建设思路以南矶山自然保护区用能问题为导向,依托现有配网供电架构,通过增加分布式光伏、构网型储能、微网群调群控等建设,突破大电网延伸困难、微电网并离网切换、黑启动等关键技术,实现岛内供用能等效零碳,满足示范区用户多元用能需求,提高区域能源运行效率。•单线单变供电模式可靠性低解决思路•建设分布式光伏(实现岛内长周期电力碳中和)•生态保护区廊道资源审批几•岛上发展清洁可靠电源无可能•以台区为单位实现微网自治•配微协同提高供用电协同运•打造微网群调群控模式行效率问题导向建设内容27肇庆大旺高新区源网荷储数字孪生•近年来,肇庆高新区先后引入小鹏汽车、宁德时代等新能源产业龙头企业,重点发展理士电源、合林立业、铭利达科技、天铭新能源、百汇达新材料等20多家新能源电池及配套生产制造企业,储能电池产业集聚区建设加速。•助推肇庆全面构建“新能源+新型储能”绿色产业发展体系,抢抓新能源产业发展的战略机遇期,加快构建现代能源体系,建设粤港澳大湾区(肇庆)绿色能源基地。28肇庆大旺高新区源网荷储数字孪生•基于数字孪生的源网荷储一体化示范•机理与数据双驱动的新型电力系统数字孪生建模•计及源网荷储协同的多场景配电网分布式储能及共享储能优化配置•基于双驱动模型的源网荷储多时段协同优化运行•基于双驱动数字孪生模型的配电网智能测距与诊断分析29PromotionalArticleaddedbytheECE,notincludedintheoriginalslidesEconomicsReceived:17July2022Revised:30November2022Accepted:30November2022EnergyConversionandDOI:10.1049/enc2.12073ORIGINALRESEARCHAnomalydetectionandclustering-basedidentificationmethodforconsumer–transformerrelationshipandassociatedphaseinlow-voltagedistributionsystemsZhenyueChu1XueyuanCui1XingliZhai2ShengyuanLiu1WeiqiangQiu1ZhenzhiLin1MuhammadWaseem3TariqueAziz1QinWang41SchoolofElectricalEngineering,ZhejiangAbstractUniversity,Hangzhou,ChinaTheidentificationaccuracyoflow-voltagedistributionconsumer–transformerrelation-shipandphasearecrucialtothree-phaseunbalancedregulationanderror2JinanPowerSupplyCompany,StateGridShandongcorrectioninconsumer–transformerrelationships.However,owingtotherapidincreaseElectricPowerCorporationLimited,Jinan,Chinainthenumberofconsumersandtheupgradeofthefeedlinesforlow-voltagedistributionsystems,thetimelyupdateoftheconsumer-transformerrelationshipand3DepartmentofElectricalEngineering,Universityphaseinformationofcon-sumersischallenging.ThisinfluencestheaccuracyoftheofEngineeringandTechnologyTaxila,Taxila,basicinformationofthepowergrid.Thus,thisstudyproposesalow-voltagedistributionPakistannetworkconsumer–transformerrelationshipandphaseidentificationmethodbasedonanomalydetectionandtheclus-teringalgorithm.First,theimprovedfastdynamic4ElectricPowerResearchInstitute,PaloAlto,CA,timewarpingdistancebasedonthefiltersearchbetweenvoltagesequencesisusedUSAtomeasurethesimilaritybetweenvoltagecurves.Subsequently,anabnormalconsumerdetectionmethodbasedonthelocaloutlierfactorisusedtoidentifyconsumerswithmismatchedconsumer-transformerrelationshipsbydeterminingthelocaloutlierfactorscoresofvoltagecurves.Furthermore,thephaseinformationofnormalconsumersisidentifiedthroughclusteringbyfastsearchandfindofdensitypeaks.Finally,theproposedmethodisvalidatedusingcasestudiesofpracticallow-voltagedistributionsystemsinChina.Theproposedmethodcaneffectivelyimprovephaseidentificationaccuracyandmaintainhighadaptabilityinvariousdataenvironments.KEYWORDSclusteringbyfastsearchandfindofdensitypeaks,consumer–transformerrelationship,fastdynamictimewarpingdistance,localoutlierfactor,low-voltagedistributionsystems,phaseidentification浙江洞头海岛微电网集群.背景鹿西岛风电.2014年,国家863课题-鹿西微网鹿西岛光伏并网型微电网示范工程.新能源装机800MW.全绿色用能、零碳海上花园.末端电网、支撑能力不足、结构薄弱.大瞿、南策离岛微电网.云边协同高可靠性海岛微电网、一键复电新华网发国网温州市洞头区供电公司供图30浙江洞头海岛微电网集群鹿西岛航拍.基于实时仿真与数字孪生的电网防汛防台演练微电网集群韧性提升(洞头区供电公.基于实时仿真与数字孪生技术的微电网与微电网集群规划.微电网与微网集群多场景实时运行控制及韧性提升技术.考虑微电网与微电网集群韧性的鲁棒优化经济调度技术.基于实时仿真与数字孪生的分布式微电网集群韧性提升仿真系统开发与示范应用新华网发国网温州市洞头区供电公司供图31结束语不忘初心、迎接挑战、拥抱机遇32结束语•微电网为消纳分布式新能源助力双碳目标的实现提供了一种有效的解决方案。•微电网目前的发展并不尽如人意,遭遇了非常多的挑战:•微电网的建设成本高,技术复杂,维护困难。为此,我们提出功能性微电网的概念。•相对于微电网较小的规模,高比例高不确定性的分布式新能源的影响巨大。为此,我们提出非保守鲁棒优化的概念。•微电网还可能受到自然灾害和网络攻击等极端条件的影响导致部分甚至全部通信中断。为此,我们提出完全分散式的控制策略。•这些新的概念和策略在实践和实时仿真中得到了初步验证,有助于提升供电的韧性、经济性、和可持续性,为微电网的发展提供了很好的机遇。33联系方式:lizuyi@zju.edu.cn34EconomicsReceived:25December2021Revised:17June2022Accepted:17June2022EnergyConversionandDOI:10.1049/enc2.12062ORIGINALRESEARCHEnergyrouterinterconnectionsystem:AsolutionfornewdistributionnetworkarchitecturetowardfuturecarbonneutralityBinLiuBingzhaoZhuZiyouGuanChengxiongMaoDanWangStateKeyLaboratoryofAdvancedElectromagneticAbstractEngineeringandTechnology,SchoolofElectricalandElectronicEngineering,HuazhongUniversityofUnderthebackgroundofcarbonneutrality,distributionnetworksarefacingmanyScienceandTechnology,Wuhan,Chinanewchallenges,includingprovidinghigherpowersupplyreliabilityandpowerquality,additionalpowersupplyforms,andbetterinformationsharing.ThetraditionalCorrespondencedistributionnetworkhasdifficultycopingwiththesechallenges;thus,itisimperativetoDanWang,StateKeyLaboratoryofAdvancedtransformthetraditionaldistributionnetworkarchitecture.Anenergyrouter(ER)isaElectromagneticEngineeringandTechnology,typeofintelligentpowerelectronicdevice,andhasthepotentialtoplayagreatroleSchoolofElectricalandElectronicEngineering,inthetransformationofthedistributionnetwork.ThispaperproposesthebasicHuazhongUniversityofScienceandTechnology,architectureofanERinterconnectionsystem(ERIS),wheremultipleERsaregathered1037LuoyuRoad,Wuhan,China.togethertoplayastrongerrole.AimingfortwodifferentstagesofthetransformationEmail:wangdan@mail.hust.edu.cnprocessofthedistributionnetwork,twotypesofERISsareemployedforasingleprosumerandmultipleprosumers,respectively.Theequivalentmodelling,maincontrolstrategies,andenergymanagementschemesofthetwotypesofERISarerespectivelyillustrated.SeveralERISsimulationcasesareinvesti-gated,andtheresultsverifytheadvantagesandsatisfactoryperformanceoftheERIS.TheproposedERISprovidesaneffectivesolutionforbuildinganewdistributionnetworktoadapttothenewchallengesinafuturecarbonneutralera.KEYWORDScarbonneutrality,distributionnetwork,energyrouter(ER),equivalentmodelling,interconnectionsystem1INTRODUCTIONareoffsetbyanthropogenicremovalofcarbondioxidewithinaspecifiedperiod[5].ThedevelopmentofrenewableWithshortagesoffossilfuelenergyandanincreasinglyenergysources(RESs)isaninevitabletrendtoachieveseri-ousgreenhouseeffect,environmentalandenergyissuescarbonneu-trality.Oneoftheurgentissuesforthefuturehaveattractedsignificantattention.The‘ParisAgreement’wascarbon-neutraleraconcernsthepromotionofthewidesignedin2015,andstipulatedthattheworldshouldachieveutilisationofRESsonthedemandside.Consideringthenetzerogreenhousegasemissionsinthesecondhalfofthefluctuation,intermit-tence,anddispersionofRESs,large-21stcen-turytoreducetheecologicalrisksbroughtbyscaledecentralisedRESsaccessingadistributionnetworkwillclimatechangetotheearthandcorrespondingsurvivalhavemanyadverseeffects,suchasabnormalpowerflows,crisisforhumankind[1].In2020,Chinaproposedagoalofdegradationsofpowerquality,andmisoperationorrejectionstrivingtoreachpeakcarbondioxideemissionsby2030ofrelayprotection[6].Avoidingtheseadverseimpactsisaandcarbonneutralityby2060[2].AfterChinaannouncedkeyproblemfordistributionnet-works[7].Meanwhile,itscarbonneutralityplantotheworld,low-carboneconomicowingtotheutilisationofdistributedenergyresourcesdevelopmentplansattractedabroaderresponse[3,4].(DERs),poweruserswillnolongerbeenergyconsumersinManycountrieshaveincorporatedcarbonneutralisationintothetraditionalsense,butwillbecomeenergyprosumers[8theirnationallaws,indicatingthatacarbon-neutralerais].Guidingprosumerstoactivelyparticipateinenergycoming.Theconceptofcarbonneu-tralitymeansthatmanagementonthedemandsidewillbeanotherkeyanthropogenicemissionsofcarbondioxideproblemforthedistributionnetwork.Furthermore,withtheThereisNomenclatureattheendofthearticle.developmentofsociety,powerusershaveputforwardhigherrequirementsforpowersupplyonthedemandside,ThisisanopenaccessarticleunderthetermsoftheCreativeCommonsAttribution-NonComminerccilaulLdicinengse,whichpermitsuse,distributionandreproductioninanymedium,providedtheoriginalworkisproperlycitedandisnotusedforcommercialpurposes.©2022TheAuthors.EnergyConversionandEconomicspublishedbyJohnWiley&SonsLtdonbehalfofTheInstitutionofEngineeringandTechnologyandtheStateGridEconomic&TechnologicalResearchInstituteCo.,Ltd.EnergyConvers.Econ.2022;3:181–200.wileyonlinelibrary.com/iet-ece181182LIUETAL.FIGURE1BasicarchitectureofenergyInternet(EI)obtainedbyanalogywiththebasicarchitectureoftheInternethigherpowersupplyreliability,higherpowerquality,anddiverseTherelevantEIissueshavebeenthefocusoftheac/dchybridpowersupplies.Itisdifficulttosolveliterature.Forexample,[12]pointedoutthatthemaintheseproblemsusingtraditionaldistributionnetworks.differencebetweenanEIandsmartgridarethat,comparedwiththesmartgrid,theinformationandenergyflowsofTheemergenceoftheenergyInternet(EI)hasprovidedtheEIarehighlycou-pled,andthatDERscanbeasolutiontotheseproblems.TheEIisanewformofaccommodatedinvariousforms.Anotherstudy[13]energyindustrydevelopmentbasedonthesmartgrid,andpresentedafive-tierstructuresystemforanEI,andanalysedcombinesitwithenergyproduction,transmission,storage,somechallengesinbuildingEIs.Yetanotherstudy[14]consumption,andelectricitymarkets[9].AnEIcanmeetthearguedthatanintegratedenergysystemisanimpor-tantneedsoflarge-scaleDERsintegratedintoapowersystem,physicalcarrierofanEI,andproposedatopologyforanandisaneffectivemeasureforimprovingtheabsorptionintegratedenergyinterconnectionsystem.Anotherstudy[capacityofDERs.ThebasicarchitectureoftheEIcanbe15]summarisedthetechnologiesinvolvedinEIs,includingobtainedbyanalogywiththebasicarchitectureoftheadvancedenergystoragetechnologies,solidstateinternet,asshowninFigure1.Generally,anEIexhibitsthetransformer(SST)technologies,reliablecommunicationfollowingcharacteristics[10,11].technologies,andplug-and-playtechnologies,andintroducedfuturedevelopmentdirectionsforEIs.Manycountrieshave1.Openness:TheEIprovidesaconvenientplatformforopendevotedsignificantenergytopromotingthedevelopmentofaccesstovarioustypesofenergy.DERsandenergyEIs.InAmerica,earlyresearchonEIswasconductedinthefuturerenewableelectricenergydeliveryandmanagementstoragedevicescanrealiselocalcollectionanduseinEI,(FREEDM)systemproject;theFREEDMprojectwasaimedandboththeenergymarketsandtradingplatformsintheattakingthekeytechnologies(suchasintelligentenergyEIareopen.managementandfaultmanagementtechnologies)andkeydevices(includingSSTsandfaultisola-tiondevices)asthe2.Interconnectedness:TheEItakeselectricenergyasthecharacteristicsofEIs[16,17].InGermany,the‘E-energy’coreformofenergybutalsointegratesotherformsofprojectmainlyfocusedontheintegrationofinformationenergy,suchaschemicalandthermalenergy.Differentandcommunicationtechnologiestoconstructadigitalenergysub-netscanbeinterconnectedintheEItoenergyinterconnectionsystem[18].InJapan,the‘digi-taldiversifyenergyconsumption.powergrid’projectwasproposed;itsmaincharacteristicwastodividelargepowersystemsintomultiplelocalpower3.Distributivity:TheDERsandenergystoragedevicesinthegridsconnectedwitheachother,andcouldachieveEIareintegratedintothedemandsideinalarge-scaleautonomyviarouters[19].InChina,theconceptofadecen-tralisedmanner.Torealiseintelligentenergy‘globalEI’hasbeenproposed,withtheaimofconstructingamanagementinthiscase,higherrequirementsareglobalEIwithapowersystemasthecore[20].Toachieveproposedforthedis-tributedcontrolandoptimalthis,theGlobalEnergyInter-netDevelopmentCooperationmanagementtechnologiesintheEI.Organisationwasestablishedin2015topromoteandencouragesustainabledevelopmentoftheglobalEI.4.Equivalence:TheEIchangesthetraditionalstructureofpowergrids,includingtheirgeneration,transmission,Insummary,anEIistheproductofacombinationofdis-tribution,andelectricityutilisation.ThereisnoenergytechnologyandInternetinformationtechnology.boundarybetweentheenergyproducersandconsumersThisisnotonlyaninevitablechoicefortherecyclingofinanEI,astheenergyproductionandconsumptionareenergy,butalsoamajorreforminthecurrentenergybidirectionalormultilateral.developmentmode,andonethatismoreconducivetothesustainabledevelopmentoftheenvironment.BuildingEIin5.Sharing:AnEIadoptsanadvancedcommunicationtechnol-anall-aroundmannerwillbeogytoensurethatinformationflowsintheEIarehighlyandaccuratelysharedinrealtime.Informationsuchasenergyparameters,portparameters,andpowerflowdistributionscanallbesharedintheEI.LIUETAL.183FIGURE2Basicarchitectureofenergyrouter(ER)wasproposedinref.[31]tosolveaproblemconcerningvari-ousportattributes,andamathematicalmodelwasoneofthecrucialdevelopmentgoalsforpowersystemsforestablishedtoanalysetherelationshipbetweenitsvoltagethefuturecarbon-neutralera.andswitchingstate.AnERtopologywithatransformerbasedonafractional-ratedback-to-backconverterforcontrollingtheAsshowninFigure1,theenergyrouter(ER)servesaspowerflowwasproposedinref.[32].AframeworkforathecrucialnodeintheEI,andisalsocalledapowerroutersingle-phaseERwaspresentedinref.[33],andanovelcontrol[21]orenergyhub[22].TheERisatypeofmulti-portstrategywasproposedtoachieveaseamlesstransitionintelligentpowerelectronicdevicewithcontrolandbetweenanislandmodeandgrid-connectedmode.Anovelcommunicationfunc-tions[23–25].TheearlyconceptofthetopologyandcontrolstrategyforaDCERbasedonaERwasdevelopedfromanelectronicpowertransformercascadedhigh-frequencytransformerwasproposedinref.[(EPT)[26],alsoknownasapowerelectronictransformer[34],providingtheadvantagesoflowcost,asmallvolume,27]andSST[28].Inadditiontothefunctionsoftheandhighefficiency.Amodule-basedDCmicro-gridclusterconventionaltransformer,themostpromi-nentfeatureoftheERcomposedofanAC/DCconverterandisolateddoubleEPTisitsexcellentperformanceforpowerflowcontrolandactivebridgeconverterwasproposedinref.[35],andaDCpowerqualityregulation[29].Basedontheconceptofthevoltageregulationstrategywasdesignedtoexpandtheoper-EPT,theERfurtheremphasisestheintegra-tionofationrangeoftheER,therebyimprovingadeficiencyphysicalandinformationsystems.Figure2illustratestheregardingtheoperationrange.AreferencevoltageandbasicarchitectureofanER.AsshowninFigure2,anERcurrentcompen-sationstrategyforamainconverterwascanbedividedintotwodifferenthierarchies:aphysicalproposedinref.[36]toflexiblyandsmoothlyadjustthehier-archyandinformationhierarchy[30].TheformerisworkingmodeswitchingofanER,andanenergyusedtorealisepowerconversionandtransmission,andmainlymanagementstrategybasedonfuzzylogiccontrolwasincludesthepowerelectronicsmodule,detectionanddesignedtooptimisetheoperationoftheenergystoragesensingmodule,andaccessunitmodule.ThelattermainlysystemoftheER.Amicrogridcommunitycom-posedofprocessesandtrans-mitstheinformation,formulatesmultiplemicrogridsandanERwasinvestigatedinref.[37],appropriatecontrolstrategies,andgeneratescorrespondingandafullydistributedcontrolstrategy,includingtransac-tioncontrolsignalstorealisethenor-maloperationoftheER.andelectricitypricestimulationmechanisms,wasproposedforTheERhasattractivefunctions,includingpowerqualitythemicrogridcommunity.Parallelmanagementandfuzzyregulation,AC/DChybriddistribution,multi-formenergycontrolstrategiesforanERwereproposedinref.[38],conversion,reactivepowercompensation,andpowerflowallow-ingtheERtoperformload-matching.Anenergycontrol,providingtheERwiththepotentialtoplayamanagementstrategyforanERbasedonLyapunovsignificantroleinthedevelopmentandconstructionofEIs.optimisationwaspro-posedinref.[39],wheretheenergystoragedeviceandflexiblepowerloadweremodelledasManystudieshaveinvestigatedtopicsrelatedtoERs,suchrandomprocesses,andthecon-straintswererelaxedbyaspracticaltopologies[31–34],controlandenergyconstructingvirtualqueues.Anovelmanagementstrategies[35–41],powerroutingalgorithms[42–44],andtestprototypes[45–47].AnERtopologywithavariabletopology184LIUETAL.andflexiblemicrogridinterconnectionframeworkandcorre-andismoresuitableforStageI,whereastheMPERISspondingenergymanagementstrategywerepresentedincon-cernsmultipleprosumersandismoresuitableforref.[40]tomaintaintheenergybalanceandoperationalStageII.Then,thebasicarchitectures,operationmodestabilityofapowersystemthroughthepowerclassifications,andadvantagesoftheSPERISandMPERIScomplementaritybetweenERs.Animprovedmulti-objectivearepresented.Sub-sequently,equivalentmodelsareparticleswarmoptimisation(PSO)algorithmandfuzzyestablishedfortheSPERISandMPERIS,basedonwhichmembershipfunctionalgorithmwereproposedinref.[41]thecontrolandenergyman-agementschemesofthetosolveamulti-objectivecapacityallocationmodelforSPERISandMPERISaredesigned.Finally,short-andlong-independentmultipleERswhileconsid-eringtheuncertaintytermsimulationcasestudiesarecon-ductedtoverifytheinelectricity,heat,andhydrogenenergy.Acontinuous-timeadvantagesoftheERISinenhancingpowersupplyMarkovchainmodeldescribingasystemarchi-tecturebasedreliabilityandpowerquality,increasingtheecon-omyoftheonanERwasproposedinref.[42],andprovidedaformalprosumer,andimprovingtheself-consumptionrate(SCR)ofverificationsolutionforenergyroutingschedulinganddistributedgenerations(DGs)andself-sufficiencyrate(SSR)transactionsbasedontheER.Aminimumcostroutingofprosumers.Themaincontributionsofthisstudyarealgo-rithmsuitableforanenergylocalareanetworkwassummarisedasfollows.designedinref.[43],andapowerselectionandroutingdesignalgorithmsuitableforheavyloadswasalsopresented.1.ThebasicarchitecturesofthetwotypesofERISareInref.[44],theopti-malpowertransactionbetweenpowerpre-sentedforthetwostagesofthetransformationusersintheERsofaDCmicrogridwasdefinedasanoptimalprocessofthedistributionnetwork.TheproposedERISroutingproblem.Adiscreteoffsetminimumconsensusprovidesaneffectivesolutionforconstructinganewalgorithmwasproposedtosolvetheshortestpathproblem,distributionnetworktohelpthedistributionnetworkprovidingareferenceforthistypeofcomplexdecision-adapttonewchallengesinthefuturecarbon-neutralera.makingproblem.AnAC/DChybridsys-temcomposedofmultiportERswaspresentedinref.[45],andthedesignand2.AuniversalequivalentcircuitmodelisestablishedforimplementationoftwotypicalERprototypesweretheERIS,andcontrolandenergymanagementschemesintroducedindetail.AmultiportAC/DChybridERwithfivesuitableformultipleapplicationscenariosaredesigned.portswasinvestigatedinref.[46],andaseamlessswitch-Thesecanprovidetheoreticalguidanceforthepracticalingstrategyandfuzzylogic-basedenergymanagementapplicationofERISsinthefuture.schemewerepresentedfortheER.AninnovativedistributionnetworkstructureandrelatedfunctionsbasedonTheremainderofthispaperisorganisedasfollows.theERwerepresentedinref.[47].Sec-tion2presentstheconceptandbasicarchitectureoftheERIS,andsummarisesitsadvantages.Section3establishesAlthoughasingleERhasalreadyprovidedsatisfactoryfunc-theuni-versalequivalentcircuitmodelfortheERISandtions,theinterconnectionofmultipleERscanallowtheERexplainsitsmaincontrolscheme.Section4presentsthetoplayabiggerroleinfutureEIs.Afewstudieshavedesignedenergy-managementschemessuitableforERISsinfocusedontheinterconnectionofmultipleERs.Formultipleapplicationscenarios.Section5presentsthesimulationexample,ref.[45]presentedanER-basedinterconnectionresultsfortheERIS.Finally,Section6concludesthepaper.systemarchitec-tureconstructedwithanAC/DC-typeERandDC-typeER.Anotherstudy[48]discussedthe2CONCEPTOFENERGYROUTERfeasibilityofforminganACnetworkwithmultipleERs,andINTERCONNECTIONSYSTEM(ERIS)mainlyanalysedseriesandpar-allelcombinationsofERs.Stillanotherstudy[49]proposedanoptimisationstrategyBeforeintroducingtheconceptoftheERIS,itisnecessarytoforanEIbasedonERs,designedaninterconnectionbrieflyexplainthenewchallengesthatatraditionalstructurebetweenmultipleERs,andpresentedamatchingdistributionnetworkwillfaceintheupcomingcarbon-neutraltrade-offcompetitionmechanismtoformpowertransactionera,includingthefollowingaspects.pairs.Nevertheless,aclearconceptandbasicarchi-tectureofaninterconnectionsystemcomprisingmultipleERshave1.Althoughtheprobabilityofpowerfailureinthecurrentnotbeenillustratedinthepreviousliterature.dis-tributionnetworkisrelativelylow,powerfailureeventsstilloccur.Whenautilitygridfails,mostpowerAtpresent,thedevelopmentofERsremainsinthepilotusersloseelec-tricity,astheyhavenobackupsupply.Higherpowersupplyreliabilityisrequiredfortheapplicationstage,andmuchmoreworkisrequiredtodistributionnetwork.realisetheirpopularisation.Topromotethepopularisationof2.Powerqualityproblemsmayoccurattheterminalsofadis-tributionnetwork,especiallyinremoteareas.OnceaERs,itisnecessarytoproposeagenericsystemarchitecturepowerqualityproblemoccursintheutilitygrid,itdirectlyaffectsthepowersupplyofthepowerusers.Ahigherfortheinter-connectionofmultipleERstoexpandtheirpowerqualityisrequiredforadistributionnetwork.functionsandfullytaptheapplicationpotentialofERs.3.TheaccesstoDGstotheutilitygridusuallyrequirestwo-stageoreventhree-stageconverters,andtheHowever,researchinthisareaisalmostnon-existent,andcontrolandthisstudyaimedtofillthisgap.ThisstudyinvestigatedanERinterconnectionsystem(ERIS)formedbymultipleERs.Thetransformationprocessofthedis-tributionnetworkisdividedintotwodifferentstages:StageIandStageII,andaccordingly,twotypesofERISsarepresented:thesingleprosumer’sERIS(SPERIS)andmultipleprosumers’ERIS(MPERIS).TheSPERISconcernsasingleprosumerLIUETAL.185dependenceontheutilitygrid.TheconstructionofanERISaimstofacilitatetheinterconnectionoperationofvarioustypesofERs,expandtheflexibilityandapplicationscopesofERs,andpromotetheirwideapplication.ThepopularisationoftheERIScaneffectivelyhelpdistributionnetworksadapttonewchallengesinthefuture.2.1TwotypesofERISFIGURE3TypicalarchitectureofER-basedenergysubnetToachievecarbonneutrality,thedistributionnetworkmustbeupgradedtopromotethelocalconsumptionofDGs,andstructureoftheconvertersarecomplex.MoretoreducethepowerdemandsfrompoweruserstotheutilityconvenientaccesstoDGsisrequiredforthedistributiongrid.Consideringtheobjectivelawofthedevelopmentofnetwork.things,theremustbealongdevelopmentprocesstorealisethetrans-formationprocessofthedistributionnetwork.Thus,4.OnlythepowerfrequencyACcanbeobtaineddirectlyfromwedividedthetransformationprocessofthedistributionatraditionaldistributionnetwork;otherformsofpowernetworkintotwostages:StageIandStageII.sup-plycannotbeconvenientlyobtained,suchas110-VACvoltagesforspecifichouseholdappliances,48-VInStageIofthetransformationprocessoftheDCvolt-agesforcommunicationdevices,and400-VDCdistributionnetwork,thefollowingcharacteristicsvoltagesforelectricvehicles.Thus,additionalformsofarepresented.powersupplyarerequiredfordistributionnetworks.1.DGswillnotbepopularisedontheuserside,and5.Powerusersintraditionaldistributionnetworkscanneithermostpoweruserswillstillbepowerconsumersintheobtainreal-timeinformationnorparticipateintraditionalsense,ratherthanprosumers.demand-sidemanagement(atleastconveniently).Betterinformationsharinganddemand-sidemanagementare2.Thedistributionnetworkwillstillnotsupportdirectrequiredfordistributionnetworks.energyexchangesamongmultipleprosumerswithoutpassingthroughtheutilitygrid.Tohelpthetraditionaldistributionnetworkcopewiththesenewchallenges,theER-basedenergysubnetisconsidered3.Mosthardwarefacilitiesofthedistributionnetworkaneffectivesolution.ItcanberegardedasatypeofAC/DC(suchasdistributiontransformers,relayprotectionmicro-gridconstructedbyanER[46,50].Asshownindevices,andelectricitymeters)willremainunsupportedFigure3,thetypicalarchitectureofanER-basedenergyforbidirectionalpowerflows.subnetincludesautilitygrid,energystoragebatteries(ESBs),DGs,AC/DCloads,andanER.TheERisInStageIIofthetransformationprocessoftheuniformlyresponsiblefortasksincludingsystemgrid-distributionnetwork,thefollowingcharacteristicsconnectedtrackingandcontrol,busvolt-agecontrol,energyarepresented[51,52].management,andinformationinteractions.Forbrevity,onlyoneDCbusandoneACbusareshowninFigure3;1.DGswillhavebeenwidelyusedontheuserside,andhowever,itshouldbenotedthattheERcanprovidemostpoweruserswillhavebecomeprosumers.additionalAC/DCbuseswithmultiplevoltagelevelsaccordingtotheactualrequirements.2.Directenergyexchangesamongmultipleprosumerswithoutpassingthroughtheutilitygridwillbeallowed.Insummary,theER-basedenergysubnethasthefollow-ingadvantages[45]:(1)highpowersupplyreliability3.Almostallofthehardwarefacilitiesofthedistributionandpowerquality,(2)plug-and-playaccessforDGs,suchasnetworkwillsupportbidirectionalpowerflows.photovoltaic(PV)andwindgeneration,(3)diversityinAC/DChybridpowersupplies,and(4)excellentreal-timeinformationTotransformthedistributionnetworkfromStageItoStagesharing.IIassoonaspossible,themeasurestobetakenmainlyinclude:(1)promotingthewideuseofDGsontheuserside,Nevertheless,becausetheER-basedenergysubnetrelies(2)trans-formingthearchitectureofthedistributiononlyonasingleERforunifiedcontrolandmanagement,thenetworktoallowdirectenergyexchangesamongmultiplepoten-tialoftheERhasnotbeenfullytappedinthisway.prosumerswithoutpassingthroughtheutilitygrid,and(3)Infact,ifvarioustypesofERscanbefurthergatheredtoformacceleratingthetrans-formationofhardwarefacilitiesoftheanERIS,itwillprovidemoreadvantages,includinghigherdistributionnetworktosupporttwo-waypowerflows.powersupplyreliability,improvedDGutilisationontheuserside,andreducedCorrespondingtoStagesIandIIofthetransformationprocessofthedistributionnetwork,theERIScanbedividedintotwotypes:theSPERISandMPERIS.Asthetermssug-gest,theSPERISandMPERISareorientedtowardasingleprosumerandmultipleprosumers,respectively.DuringStageIofthetransformationprocessofthedistributionnetwork,theSPERISisthemostsuitable,astheconditionsofthe186LIUETAL.FIGURE4Illustrationforsingleprosumer’sERinterconnectionsystemotherERsintheSPERISareregardedasnon-grid-(SPERIS).(a)ArchitectureofSPERIS,(b)ArchitectureoftheSPERIS-basedconnectedERs,anddonotneedtoconsidergrid-distributionnetworkconnectedtrackingandcontrolproblemsormaintainingCDBstability.Agrid-connectedERmustbeequippedwithadistributionnetworkarenotsufficientlymatureforthemainESB,whereaseachnon-grid-connectedERcanbeinter-connectionofmultipleprosumersatthisstage.AfterequippedwithabackupESB.Notably,alloftheERsintheenteringStageIIofthetransformationprocessoftheSPERISareownedbyasingledistributionnet-work,theMPERISismoresuitable,asithasprosumer.moreadvantagesthantheSPERIS.ThearchitectureoftheSPERISshowninFigure4ahas2.2BasicarchitectureofERISthefollowingfeatures.2.2.1Singleprosumer’sERIS(SPERIS)1.IftheSPERISincludesmAC/DCERsandnDCERs,m≥Figure4aillustratesthebasicarchitectureoftheSPERIS.1andn≥0shouldbesatisfied.ThesimplestformofAsshowninFigure4a,theSPERIScomprisesautilitygrid,theSPERISiswhenm=1andn=0;thatis,anenergyvari-ousformsofERs,DGs,AC/DCloads,andESBs.Allsub-netcomposedofonesingleAC/DCERalsobelongsoftheERsintheSPERISareinterconnectedviaacommontothescopeoftheSPERIS.DCbus(CDB).Accordingtothedifferentformsofpower2.EachERintheSPERISmayhaveadifferenttopologyandsupply,theERsintheSPERIScanbedividedintoancanprovidedifferentformsofports,butshouldincludeAC/DCERandDCER[45].TheformerrealisesanacommonDCportthroughwhichitcanbeconnectedenergyroutingfunctionthroughanAC/DC,DC/AC,andtotheCDB.EachERcanexchangepowerwithotherDC/DCconverter,provid-ingbothACandDCpowerERsinSPERISviatheCDB.supplies,whereasthelatterrealisesanenergyroutingfunctiononlythroughaDC/DCconverter,providingonly3.AlloftheERsintheSPERISarecomplementary,andareDCpowersupplies.Thereshouldbeatleastaimedatprovidingmultipleformsofpowersupplytotheprosumer.Forbrevity,onlyafewAC/DCbusesareoneAC/DCERintheSPERIS,asitisregardedasashowninFigure4a,butitshouldbenotedthatadditionalgrid-connectedERresponsibleforthegrid-connectedAC/DCbuseswithdifferentvoltagelevelscanbetrackingandcontrolproblemandmaintainingthestabilityofprovidedbyERsbasedontheactualrequirementsofthetheCDB.Theprosumer.4.TheSPERISismainlyusedinStageIofthetransformationprocessofthedistributionnetwork.Thus,ifsurpluspowerexistsintheSPERIS,itshouldbedissipatedbydumploadsorstoredbyESBs.Ananti-countercurrentdevicecanbeusedtoensurethatnopowerisreturnedfromtheSPERIStotheutilitygrid.IfthetransformationprocessofthedistributionnetworkisstillinStageI,itwillbepossibletoconstructanewdistributionnetworkbasedontheSPERIS.Figure4billustratesthearchi-tectureoftheSPERIS-baseddistributionnetwork,inwhichNSPERISsareincluded.2.2.2Multipleprosumers’ERIS(MPERIS)Figure5aillustratesthearchitectureoftheMPERIS.AsshowninFigure5a,theMPERISadoptsatwo-layerarchitecture.ThefirstlayerofMPERIScomprisesautilitygrid,publicER,andpublicESB.ThesecondlayerofMPERISconsistsofmulti-pleprosumers,andeachprosumerhasitsownER.Notably,theprosumerERisanequivalentconcept;thatis,eachpro-sumerintheMPERISmayhavemultipleAC/DCERsandDCERs,whichareuniformlymodelledasaprosumerER.Eachprosumer’sERshouldbeequippedwithanESB.ThepublicERandallprosumerERsareinterconnectedviatheCDB,andonlythepublicERisresponsibleforthegrid-connectedtrack-ingandcontrolproblemandmaintainingthestabilityoftheCDB.ThearchitectureoftheMPERISshowninFigure5ahasthefollowingfeatures.LIUETAL.187FIGURE5Illustrationformultipleprosumers’ERinterconnectionsystem(MPERIS).(a)ArchitectureofMPERIS,(b)ArchitectureoftheMPERIS-baseddistributionnetwork1.IftheMPERISincludeskprosumers,thenk≥2shouldthearchitectureofanMPERIS-baseddistributionnetwork,inbesatisfied.TheseprosumersintheMPERISarewhichMPERISsareincluded.independent2.3ModeclassificationofERISandadjacenttoeachother.TheSPERIShasthreeoperationmodes:grid-connected,2.EachprosumerERmayhaveadifferenttopologyandoff-grid,andislanded.Iftheutilitygridisnormal,thenthecanprovidedifferentpowerports,thenumberandSPERISwillbeingrid-connectedmode.Theutilitygridformofwhichdependingontheactualneedsofthewillbethepowerbalancesourceoftheentiresystem,andownerpro-sumer.EachprosumerERcanexchangethemainESBcanparticipateinenergymanagementtopowerwithotherprosumerERsinMPERISviatheCDB.regulatethepowerflowsintheSPERIS.IftheutilitygridfailsandthemainESBhasasufficientstateofcharge3.ToeffectivelymanagetheenergytradingintheMPERIS,(SoC),thentheSPERISenterstheoff-gridmode,inwhichanentitycalledanenergy-tradingmanager(EM)isthemainESBreplacestheutilitygridasthepowerbalanceintro-duced,forexample,anindependentthird-partysourceoftheentiresystem.Iftheutilitygridfailsandthecompany[53].NoneoftheprosumersintheMPERISmainESBisinalowSoC,theSPERISenterstheislandedtradedirectlywiththeutilitygrid.Instead,theEMactsasmode.Intheislandedmode,themainESBmaintainsthetheagentofallprosumersintheMPERIStotradewithstabilityoftheCDBbutnolongersuppliespowertotheloads,theutilitygrid.andeachnon-grid-connectedERisseparatedfromtheCDB.Notably,itisonlynecessarytoconfigureabackupESBfor4.TheMPERISismainlyusedinStageIIofthetransforma-anon-grid-connectedERiftheERneedstoconnecttionprocessofthedistributionnetwork.Thus,ifessentialloads.ThebackupESBworksonlywhentheSPERISsurpluspowerexistsintheMPERIS,itcanbesentbacktoistheutilitygridtoearnincome.IfthetransformationprocessofthedistributionnetworkhasenteredStageII,itwillbepossibletoconstructanewdistri-butionnetworkbasedontheMPERIS.Figure5billustrates188LIUETAL.inislandedmode,andservesasthelastpowersupplyComparedwiththeSPERIS,theMPERISprovidesthefollowingadditionaladvantages.guaranteeforessentialloads.1.AsthepublicERprovidesthecommonDCbusintheSimilarly,therearethreeoperationmodesintheMPERIS,eachprosumerERcanbedirectlyMPERIS:grid-connected,off-grid,andislanded.IftheutilityconnectedtothecommonDCbuswithoutgridisnor-mal,thentheMPERISwillbeingrid-connectedconsideringthegrid-connectionproblemwiththemode,inwhichtheutilitygridwillbethepowerbalanceutilitygrid.Inotherwords,theexistenceofapublicsourceforthewholesystem,andthepublicESBwillnotERintheMPERIScanhelpeachprosumersaveawork.IftheutilitygridfailsandthepublicESBhasagrid-connectedAC/DCconverter,sothestructureofthesufficientSoC,thentheMPERISwillentertheoff-gridprosumerERscanbesimplified,andconversionpowermode,inwhichthepublicESBwillreplacetheutilitygridlossescanbereduced.asthepowerbalancesourcefortheentiresystem.Inboththegrid-connectedandoff-gridmodes,eachprosumerESBcan2.ThepublicESBprovidesanadditionallayerofpowerparticipateinenergymanagementtoreg-ulatethepowersupply.Forexample,ifaprosumerERisnotequippedwithflowsintheMPERIS.IftheutilitygridfailsandthepublicanESB,oncetheutilitygridfails,theprosumerERcanstillESBhasalowSoC,theMPERISwillentertheislandedmaintainnormaloperationintheMPERISaslongasthemode,inwhichthepublicERwillstillmaintainthestabilitypublicESBhasasufficientSoC.Thus,theMPERIShasoftheCDB,butallprosumerERswillbesepa-ratedfromhigherpowersupplyreliabilitythantheSPERIS.theCDB.EachprosumerERintheislandedmodecanmaintainitsownpowerbalanceusingitsownprosumer3.TheintroductionoftheEMintheMPERIScanavoidESB.directenergyexchangesbetweentheprosumerandutilitygrid,therebyreducingthedependenceofthe2.4AdvantagesofERISprosumerontheutilitygrid.Insummary,boththeSPERISandMPERIShavethefollowing4.Consideringthedifferencesinthepowerconsumptionhabitsofdifferentprosumers,prosumerswhoneedtopur-advantages.chasepowerandprosumerswhoneedtosellpowercanformacomplementaryrelationshipintheMPERIS,1.ByadoptinganinterconnectionstructureofmultipletherebyenhancingthelocalconsumptionrateoftheDGsERs,theSPERISandMPERIScanprovidemultipleandreduc-ingpowerusers’demandsforenergyfromtheAC/DChybridpowersupplieswithdifferentvoltagelevelsdistributionnetwork.Thiscanfurthersupportthetosatisfytherequirementsofprosumers.TheERsowneddistributionnetworkinachievingcarbonneutrality.byonepro-sumercancomplementeachother,forexample,inregardstoporttypeandcapacity;therefore,5.Ifanappropriateinternalprice-tradingmechanismthedevicevolumeandstructureofasingleERcanbeisadoptedintheMPERIS,eachprosumer’spowersimplified.consump-tionandgenerationbehaviourscanbestimulatedtofurtherimprovetheself-sufficiencyrateof2.TheexistenceoftheCDBcanensurethatthefaultsandtheERIS.Meanwhile,eachprosumercanpurchasedis-turbancesontheutilitygridsideandusersidearepoweratalowerpriceorsellpoweratahigherpriceisolatedfromeachother,andeachERcanprovidepowerintheMPERIS;thus,eachprosumer’sprofitcanbesupplieswithhighpowerquality.improved.3.TheDGisconnectedtotheCDBviaitsconverter3MODELLINGANDCONTROLratherthandirectlytotheutilitygridviaitsconverter,OFERISwhichcansaveoneDC/ACconversion;thus,thestructureoftheDGconvertercanbesimplified,andthe3.1Equivalentcircuitmodellingconversionpowerlossescanbereduced.ForeachERintheERIS,theexternalpartsofitsports4.Thegrid-connectedtrackingandcontrolproblemandcanbedividedintofourtypes:utilitygrid,DG,load,andsta-bilityoftheCDBonlyconcernthegrid-connectedorESB.AtimeslothisdefinedasasufficientlysmalltimepublicERs,sothecontrolandstructuresoftheotherERsperiodinDhwhDihchNthheGahctiDvheLphowerofEheachportoftheERcanbesimplified.canberegardedasinvariant.ForeachERintheERIS,assumethat5.TheexistenceofESBsensuresthattheERIScanstillCDC,uC,iC,P,P,P,P,andPrepresentthesupplyelectricitytopoweruserseveniftheutilitygridfails,supportmeaningthattheERIShasahigherpowersupplyreliabilitythanthetraditionaldistributionnetwork.capacitanceofthecommonDCport,voltageofCDBintimesloth,currentfromERtoCDBintimesloth,net6.ESBscanparticipateinpowerflowmanagementexchangeactivepowerfromERtoCDBintimesloth,inanERIS;therefore,theERIShastheabilitytoactivelyexchangeactivepowerfromutilitygridtoERintimesloth,regulatepowerflows.ByutilisingESBstoabsorbexcesstotalactivepowerofallDGportsintimesloth,totalactiveDGpowerandreleaseitwhentheloadsareheavy,theSSRpowerofallloadportsintimesloth,andcharge-dischargeoftheERIScanbeimprovedtosupportthedistributionpowerofallESBportsintimesloth,respectively.networktoachievecarbonneutrality.LIUETAL.189parametersCDC,DuhC,DihC,NPhG,hiD,hiL,hi,andEhioftheequiv-aDlehntciDrhcuitmNhodelGhforDahsinLhgleEREahredenotedasCDC-0,hhhhDDNLuC-0,iC-0,P-0,i-0,i-0,i-0,andhi-0foragrid-connectedAER,andasCDC-i,uC-i,iC-i,P-i,0,0,i-i,and0fortheithnon-grid-connectedER.ThepowerdissipatedbythedumploadsinthetimeslothisdenotedasPC.Themodelparam-uhC-ihC-0DDetersinFigure6bshouldsatisfyEquation(2).Here,μ0andμirepresenttheoperationnalefficiencycoefficientsoftheμER0ihithΣnon-giirDihd-conn0ectedgrid-connectedi=1ER,DaCndrespectively.Ct(1μhhGDiiLh0−DihC0iLCiFIGURE6Equivalentcircuitmodelling.(a)SingleERinERGhGhhinterconnectionsystem(ERIS),(b)SPERIS,(c)MPERISAhhDEI〈u≠2∶〈CDC-0hh0Basedonthesubstitutiontheorem,fourequivalentcurrentGi-0+isourceswithcurrentvaluesGih,Dih,Lih,andEhicanbeELemployedtoreplaceutilitygridpart,DGpart,loadpart,andESBpartsofthisER,respectively.Then,eachERintheERIS-0canthenbeuniformlyrepresentedbytheequivalentcircuitEihhhhhhhmodelofasingleER,asshowninFigure6a,inwhichtheDDNGDLmodelparametersshouldsatisfyEquation(1).Here,μGh---EhIhhh-hrepresentsanoperationalefficiencycoefficientforthegrid-〈DCDDC-Nh=Ghhh-Ehh(2h)connectedrectifierintheER.II(u-0iD-0+PDC≥0NDLEhhhliD=PD∕uDCIhhh=i-0+i-0IiEPED=2∶CDC-0=∕uChhhIiLPLD=∕uC(1)CDC-i=i-i−i-i〈hhhGGDIii=P∕uChChhhC=Ph∕uDDIDNDTheequivalentcircuitmodeloftheMPERISisshowninhhhhhFigure6c.AssumethattherearenprosumerERsintheGDELDhhmodelDDI(CDC=μGi+i+i−i−iCofMPERIS,asindexedbyi.CDC,uC,iC,hP,i,i,i,BasedontheequivalentcircuitmodelofasingleERandGshowninFigure6a,equivalentcircuitmodelscanbeestablishedfortheSPERISandMPERIS.TheparameterαisioftheequivalentcircuitmodelofashingleEhRareEDusedtodistinguishbetweentheoperationmodesofthedenotedERIS.WhentheERISisinthegrid-connected,off-grid,andhhasCDC-0,uC-0,iC-0,P-0,i-0E,0,0,Dandi-0fortheislandedmodes,thevaluesofαare0,1,and2,respectively.pub-TheequivalentcircuitmodeloftheSPERISisshownhC-iinFigure6bbasedontheassumptionthattherearennon-grid-connectedERsintheSPERISmodel,as−L-i−indexedbyi.IntheequivalentcircuitmodelofthelicER,andasCDC-i,uC-i,iC-i,P-i,0,i-i,i-i,andSPERIS,thehhi-iDCiEiiDhiLifortheithprosumerERintheequivalentcircuitmodeloftheMPERIS.ThemodelparametersinFigure6cshouldsat-isfyEquation(3).Here,μ0andμirepresenttheoperationalefficiencycoefficientsofthepublicERandithprosumerER,respectively.190LIUETAL.FIGURE7TypicalmaincircuitofSPERISFIGURE8TypicalmaincircuitofMPERIS3.2.1SPERIS3.21MaincontrolofERISAtypicalmaincircuitofaSPERISisshowninFigure7.AsshowninFigure7,athree-phasehalf-bridgevoltageFigures7and8showtypicalmaincircuitsoftheSPERISsourceandMPERIS,respectively.LIUETAL.191FIGURE9MaincontrolstrategiesofSPERISconverterwithpulse-widthmodulationisselectedastheFIGURE10MaincontrolstrategiesofMPERISgrid-connectedrectifier,andabidirectionalDC/DCconverterisselectedastheESBconverter.Ananti-settlementbasedonthepowerinformationobtainedbycountercurrentdeviceanddumploadsareinstalledthesesmartmeters.betweentheutilitygridandSPERIStopreventreversetransmissionofpowerfromtheSPERIStotheutilitygrid.BasedonFigure8,Figure10illustratesthemaincontrolstrategiesoftheMPERIS.WhentheMPERISisBasedonFigure7,Figure9illustratesthemaincontrolingrid-connectedmode,thegrid-connectedrectifierofthestrate-giesfortheSPERIS.WhentheSPERISisinthegrid-publicERcontrolsthevoltageoftheCDBstablyattheconnectedmode,thegrid-connectedrectifierofthegrid-reDhferencevalueconnectedERcontrolsthevoltageoftheCDBstablyatthereDhferencevalueuCandachievessinusoidalinputcurrents,whereasthepublicuCandachievessinusoidalinputcurrents.ThemainESBESBdoesnotwork.WhentheMPERISisinoff-gridmode,canthegrid-connectedrectifierofthepublicERisclosed,andparticipateintheenergymanagementofSPERISbyregulatingthepubDlhicESBreplacesthegrid-connectedrectifierofthetheESBcharge-dischargepower,ofwhichthereferencepub-licERtokeepthevoltageoftheCDBstableatthevaluecanbegivenbyanappropriateenergymanagementreferencescheme.WhentheSPERISisinoff-gridmode,thegrid-valueuC.Wheneverinthegrid-connectedmodeoroff-connectedrec-tifierofthegrid-connectedERisclosed,gridandtheDhmainESBreplacesthegrid-connectedrectifierofmode,eachprosumerERcanuseitsprosumerESBtothegrid-connectedERtostablymaintainthevoltageofthepartic-ipateintheenergymanagementoftheMPERISbyCDBatthereferenceregulatingtheESBcharge-dischargepower;thereferencevalueuC.WhentheSPERISisintheislandedmode,vaDhluethereforcanbegivenbyanappropriateenergyeachmanagementscheme.WhentheMPERISisinislandednon-grid-connectedEDRhisseparatedfromtheCDB.Ifthemode,eachprosumerERisseparatedfromtheCDB,andtheithnon-grid-connectedERisequippedwithabackupESBforvoltageofthesupportcapaci-tanceofitscommonDCportispar-ticularlyessentialloads,thenitsbackupESBwillstablymaintainedatareferencevaluemaintainthevoltageofthesupportcapacitanceofitsuCbyitsprosumerESB.commonDCportatthereferencevalueuC;otherwise,thisERwillstopNotably,thecommunicationamongtheERsinanERIShasworking.noreal-timeorhigh-qualitydemands,soitcanbeimplementedusingcommoncommunicationmethods.3.2.2MPERIS41ENERGYMANAGEMENTOFERISAtypicalmaincircuitofaMPERISisshowninFigure8,wherethetopologiesofthegrid-connectedrectifierandInthemaincontrolstrategiesoftheERIS,whentheESBcon-verteraresimilartothoseinFigure7.AsshownmainESBorprosumerESBparticipatesintheinFigure8,smartmetersareinstalledbetweenthepublicER192LIUETAL.schemeshouldbeselected.Inthisstudy,energymanagementschemesaredesignedforERIS,inviewoftwosituationsinwhichtheforecastdataoftheDGpowerandloadpowercanbeobtainedaccuratelyandcannotbeobtained,respectively.4.1OptimalschedulingenergymanagementschemeWhentheforecastdataoftheDGpowerandloadpowerFIGURE11Flowchartofparticleswarmoptimisation(PSO)forareavailable,anoptimisationmodelcanbeaccuratelyobtainingtheoptimalsolutionofPEestablishedfortheenergymanagementschemefortheERIS.Thus,anoptimalschedulingenergymanagementTheoptimisationmodelfortheoptimalschedulingschemeisdesignedfortheERISforsituationsinwhichenergymanagementschemecanbeexpressedasfollows:accurateforecastdatacanbeobtained.AssumingthattheforecastdataoftheDGpowerandloadpowerchangeonceeveryhour,oneschedulingslotisselectedasonehour.Theschedulingcycleisselectedasoneday,meaningthatthereare24schedulingslotsinaschedul-ingcycle;theseareindexedbyj.TheoptimalschedulingenergymanagementschemeisusedtoobtaintheoptimalschedulingreferencesfortheESBcharge-dischargepowerineachschedul-ingslot.ForoneprosumerintheERIS,assumethatPD,PL,PE,andPNarefourorderedsetsminC(PE)=−EP×h−j,∀PN−hj<0of24elements,representingtheaveragevaluesofDGpower,loadpower,ESBcharge-dischargepower,andnetPNexchangepowerinthe24schedulingslots,respectively.PD,ll−Pcha-max≤EhP−j≤Pdis-maxPL,PEandPNlcPaDn=be{Phe−xp1r,ePhss−e2d,a…s,fPohll−o2w4}s:DDDljPh−iτ(5)llPL={Ph−1,Ph−2,…,Ph−24}s.t.〈SoCh−j=SoCinit+lLLLoCh−〈lPE=h{P−1h,P−2,…h,PSoCEEE(4)SoCjSoCinit≤SoCmax−24}hhhNNNllhhhhHere,C(PE)isthedailypurchasecostforthepoweruserinNDE{L−1theERIS.Pcha-maxandPdis-maxarethemaximumchargeandPPN=dis-chargepowersoftheESB,respectively.SoCh-jdenotestheIntheabove,PD−hj,PLh−j,PEh−j,andPNh−jaretheDGSoCoftheESBattheendofthejthschedulingslot.power,loadpow,Per−,2E,S…B,Pch−a2r4g}el-(dPisc−hja=rgePpower,andnetSoCmaxandSoCminarethemaximumandminimumexchangepoweroftheprosumerinthejthschedulingallowableSoCvaluesoftheESB,respectively.τdenotestheslot,respectively.lengthoftheschedulingslot.CESBisthemaximumESBcapacity.SoCinitistheinitialSoCoftheESB.Inthisstudy−,jth+ePop−tjim−isPati−ojnobjectiveoftheoptimalFortheoptimisationmodelshowninEquation(5),schedulingenergymanagementschemeistominimisethetheapproximateoptimalsolutioncanbeobtainedusingswarmintelligencealgorithms.Inthisstudy,thePSOwasdailypurchasecostsforpowerusersintheERISbyemployedtoobtaintheoptimalsolutionofPE,andtheschedulingthecharge-dischargepoweroftheESB.ThecorrespondingflowchartisillustratedinFigure11.constraintsincludethefollowing:(1)thecharge-discharge4.2FuzzyenergymanagementschemepoweroftheESBshouldWhentheforecastdataoftheDGpowerandloadpowerareunavailable,itisdifficulttoestablishanaccuratealwaysbebetweenthecharginglimitanddischarginglimits;optimisationmodelfortheenergymanagementschemefor(2)theERIS.Inthesesituations,afuzzylogiccontroller(FLC)theSoCoftheESBshouldalwaysbebetweentheupperandlowerSoClimits;and(3)thefinalSoCoftheESBattheendofthedayshouldreturntotheinitialSoCoftheESBatthebegin-ningoftheday.Inaddition,itisassumedthatthesurplusDGpowerisdissipatedbythedumploads,andthatthepriceoftheelectricitypurchasedbytheprosumerfromtheutilitygridissetasafixedvalue,denotedasEP.LIUETAL.193solutionfordesigninganenergymanagementscheme,asitdoesnotrelyonaprecisemathematicalmodel.Thus,afuzzyenergy-managementschemeisdesignedfortheERISinsituationswherenoforecastdatacanbeobtained.Accordingto[46],twoinputvariablesoftheFLCshouldbeconsidered:theunit-timeelectricitychargeandSoCoftheESBhuhintimesloth,denotedasECnitandSoCh,respectively.uTheECnitcanbeexpressedasPRfoaltleows:−+PLhhPPRDahte)(6)ECunit=EP∗×(Intheabove,EPisthenormalisedvalueofEP.PRateistheratedcapacityofthegrid-connectedERISrectifier.Notably,especiallyfortheSPERIS,becausereversepowertransmissionfromtheSPERIStotheutilitygridisnotallowed,Equation(6)shouldbemodifiedasfollows:hEP∗×FIGURE12MembershipfunctionsandfuzzycontrolrulesoffuzzyenergymanagementschemeforERISunitthismodelasatypicalDG,andthePVcontrolleradoptedEC=(7)amaximumpowertrackingcontroltoobtainthemaximumPVgeneration.Notably,becausethestructureoftheTheoutputvariableoftheFLCisthereferencevalueofMPERISisfurtheroptimisedbasedonthatofSPERIS,thefollowingthecharge-dischargepoweroftheESBintimesloth,short-termsimulationresultsfortheSPERIScanalsobeusedtoverifytheadvantagesoftheMPERIS.dEehno∗tedbyhhE5.1.1CaseIu∗P.TherangesofECnit,SoCh,andPcanbeInCaseI,aharmonicoccurredintheutilitygridat0.05s,anddisappearedat0.1s.Then,theutilitygridvoltageexpressedasdroppedfrom1.0to0.9p.u.at0.15s,roseto1.1p.u.atfollows:uh0.2s,andthenreturnedto1.0p.u.at0.25s.ThesimulationresultsareshowninFigure14,andindicatesthat!IECnit∈[0,1]theHDB,MDB,LDB,andTABcanprovidenormalvoltageswithratedvaluesthatarenotaffectedbythehISoCh∈[SoCmin,SoCmax]fluctuationsoftheutilitygridvoltage.Inaddition,Figure15illustratesaspectrumanalysisdiagramoftheutilitygridE〈(8)voltagesandTABvoltageswhenthesimulationtimeisbetween0.05and0.1s.Itcanbeseenthatthetotalhar-Imonicdistortion(THD)oftheTABvoltagesis1.39%,thatis,muchlessthantheTHDoftheutilitygridvoltagesI(P∗∈[Pcha-max,Pdis-max](14.17%).ThisindicatesthattheprosumercanobtainapowersupplywithhigherpowerqualityusingtheSPERIS.Referringto[46],themembershipfunctionsandTheadvantagesoftheSPERISinprovidingmultipleAC/DCfuzzycontrolrulescanbedesignedasshowninFigure12.hybridpowersup-pliesandimprovingthepowerqualitycanbeverifiedfromthesimulationresultsshowninFigures51SIMULATIONSTUDIES14and15.Severalsimulationcasestudieswereconductedto5.1.2CaseIIdemonstrateInCaseII,theutilitygridwassettofailat0.5sandrecovertheadvantagesoftheERIS.TheperformanceoftheERISat2.5s.Meanwhile,thepowergenerationofthePVvariedwasobservedandanalysedfromtwodifferentperspectives:afrom5.2to4.9kWat1s,andto4.6kWat2s,andtheshort-termsimulationandlong-termsimulation.totalpowerconsumptionoftheloadvariedfrom2.5to6.5kWat1.5s.The5.1Short-termsimulationAsshowninFigure13,asimulationmodeloftheSPERISwasestablishedinMATLAB/SIMULINKtoinvestigateitsshort-termperformance;thetopologywassimilartothatshowninFigure7.Thissimulationmodelincludedtheutilitygrid,AC/DCER,DCER,PVmodule,ESBmodule,andloads.FourtypesofAC/DCbuseswereprovidedbytheERs:a750-Vhigh-voltageDCbus(HDB),400-Vmedium-voltageDCbus(MDB),48-Vlow-voltageDCbus(LDB),and400-V(linevolt-age)three-phaseACbus(TAB).ThePVmodulewasusedin194LIUETAL.FIGURE13SimulationmodelofSPERISinMATLAB/SIMULINKFIGURE14SimulationresultsofCaseIreferencevalueoftheESBcharge-dischargepowerwassetFIGURE15Spectrumanalysisdiagramsoftheutilitygridvoltagesandas0whentheutilitygridwasnormal.Thesimulationresultsthree-phaseACbus(TAB)voltageswhenthesimulationtimeisbetween0.05areshowninFigure16,whereitcanbeseenthatboththeand0.1s.(a)Utilitygridvoltages,(b)TABvoltagesDGsandloadsintheSPERISareunaffectediftheutilitygridhasapowerfailure.TheSPERIScanstillmaintainERIS.Itwasassumedthattheutilitygridremainedinanormalnormalopera-tionbyusingtheESBinoff-gridmode.Thestate,andtheEPwassetas0.7CNY/kWh(EPisequaltoadvantagesoftheSPERISinimprovingthepowersupply1)inthelong-termsimulation.Inthesimulation,itwasreliabilitycanbeverifiedfromthesimulationresultsshowninassumedthatallconvertersintheERISwereideal,andtheFigure16.powerlosseswereignored.5.2Long-termsimulation5.2.1CaseIIIInthelong-termsimulation,threedifferentprosumersInCaseIII,theforecastdataoftheDGpowerandload(pro-sumers1–3)werestudied,andtheycouldformeitherapowerwereassumed,andanoptimalschedulingenergySPERISorMPERIS.Bothdesignedenergymanagementmanagementschemeswereinvestigatedtodemonstratethelong-termperformanceoftheLIUETAL.195TABLE1Simulationparametersinlong-termsimulationProsumer3ParameterProsumer1Prosumer2Areaofphotovoltaic(PV)202416arrays/m26040Capacityofmain5070%70%ESB/kWh90%90%50%50%Initialstateofcharge(SoC)70%55ofmainenergystorage55battery(ESB)SoCmax90%SoCmin50%Pcha-max/kW5Pdis-max/kW5FIGURE18PSOiterationresultsinCaseIIIFIGURE16SimulationresultsofCaseIIFIGURE17Powerprofilesofloadandphotovoltaic(PV)generationinCaseIII.(a)Load,(b)PVgenerationschemewasemployed.Figure17a,billustratesthepowerFIGURE19SimulationresultsofCaseIII.(a–c)Exchangepowerfrompro-filesoftheloadandPVgeneration(perunitarea)onalltheutilitygridtoSPERISofprosumers1–3.(d)Stateofcharge(SoC)ofmaindaysforprosumers1–3inCaseIII;thelengthofthetimeenergystoragebattery(ESB)ofthreeprosumersobservationwindowisonehour.ThesimulationparametersforCaseIIIarelistedinTable1.theSPERIShasthemainESBandwhenithasnomainESB,respectively.Figure19dshowstheSoCvariationcurvesFirst,itwasassumedthatprosumers1–3formedthreeofthemainESBsofthethreeprosumers.FromFigure19,itdif-ferentSPERISs.Byadoptingtheoptimalschedulingcanbeseenthattheoptimalschedulingenergymanagementenergymanagementscheme,theoptimalschedulingfortheschemecanhelpeachprosumerpurchaselesspowerfromcharge-dischargepowerofthemainESBforeachprosumertheutilitygrid.couldbeobtained.Figure18showsthePSOiterationresultsforCaseIII,andFigure19showsthesimulationresultsforCaseIII.AsshowninFigures19a–c,theredandgreenwaveformsrepresenttheexchangepowerfromtheutilitygridtotheSPERISwhen196LIUETAL.TABLE2ElectricitypurchaseexpendituresofthreeprosumersperdayinTABLE5Totalelectricitypurchaseexpenditures,totalsurplusPVCaseIIIgenerationofthreeprosumers,SSR,andSCRofthewholesystemwhenExpenditureProsumer1Prosumer2Prosumer3formingsingleprosumer’senergyrouterinterconnectionsystem(SPERIS)ormultipleprosumers’energyrouterinterconnectionsystem(MPERIS)inCaseWithoutthemain14.568.769.62IIIESB/CNYEvaluationindexSPERISMPERISWiththemainESB/CNY5.7102.39Totalelectricitypurchase8.14.6expenditure/CNYExpendituresavings/CNY8.858.767.237.472.47TotalsurplusPVgeneration/kWh0.81610.8956TABLE3SurplusPVgenerationofthreeprosumersperdayinCaseIIISSRofsystem0.87300.9580SCRofsystemSurplusPVgenerationProsumer1Prosumer2Prosumer3Withoutthemain12.6519.9810.32ESB/kWhWiththemainESB/kWh07.47012.6512.5110.32PVgenerationsavings/kWhTABLE4Self-sufficiencyrate(SSR)andself-consumptionrate(SCR)ofprosumersinCaseIIIEvaluationindexProsumer1Prosumer2Prosumer3SSRwithoutthemainESB0.25050.22060.2806FIGURE20PowerprofilesofloadandPVgenerationinCaseIV.(a)10.8209Load,(b)PVgenerationSSRwiththemainESB0.70630.15050.34180.68241Inaddition,todemonstratethesuperiorityoftheMPERISSCRwithoutthemainESB0.3546relativetotheSPERIS,Table5providesthequantitativedataofthreeprosumersregardingthetotalelectricitySCRwiththemainESB1purchaseexpenditures,totalsurplusPVgeneration,SSR,andSCRperdaywhenformingtheSPERISorMPERISTables2and3presentthequantitativedataontheinCaseIII.AsshowninTable5,byformingtheMPERIS,electric-itypurchaseexpendituresandsurplusPVtheelectricitypur-chaseexpendituresandsurplusPVgenerationofthethreeprosumersperdayinCaseIII,generationcanbefurtherdecreased,andtheSSRandSCRrespectively.AsshowninTables2and3,eachprosumercanbefurtherimproved.Inaddition,thesurplusPVcanreducetheelectricitypurchaseexpenditureandsurplusgenerationintheMPERIScanbesentbacktotheutilitygridPVgenerationbyformingaSPERIS.Forabetterexplanation,forextraincome,ratherthanbeingdis-sipatedbydumptheformulasfortheSSRandSCRfortheperiodfromtimeloadsasintheSPERIS.Table5demonstratesthatsloth1totimesloth2aregiven,respectively,asfollows:theMPERISperformsbetterthantheSPERISforimprov-ingtheeconomyoftheprosumer,localutilisationoftheDGs,h2andself-sufficiencyofprosumers.SSR=∫EPVE−USEESUR(9)5.2.2CaseIVh1InCaseIV,itwasassumedthattheDGpowerandloadh2powerfluctuatedrandomly,causingtheforecastdataofDGpowerandloadpowertonotbeaccuratelyobtained.Thus,theSCR=∫EPV−ESUR(10)fuzzyenergymanagementschemewasemployedinthisEPVcase.Figure20a,billustratesthepowerprofilesoftheloadh1andPVgeneration(perunitarea)onalldaysforprosumers1–3inCaseIV,andthelengthofthetimeobservationIntheabove,EPV,ESUR,andEUSEarethetotalPVgener-windowisoneminute.Thesim-ulationparametersinCaseatedenergy,surplusPVgeneratedenergy,andtotalenergyusedIVweresimilartothoselistedinTable1.bytheprosumer,respectively.First,itwasassumedthatprosumers1–3formedthreeTable4liststheSSRandSCRvaluesfortheprosumersdiffer-entSPERIS.ByadoptingthefuzzyenergymanagementinCaseIII.ItcanbeseenthattheSSRandSCRvaluesofeachscheme,thecharge-dischargepowerofthemainESBofeachpro-sumercanbeimprovedbyformingtheSPERIS,prosumerdemonstratingtheadvantagesoftheSPERISinimprovingthelocalutilisationofDGsandself-sufficiencyofprosumers.LIUETAL.197TABLE8SSRandSCRofprosumersinCaseIVEvaluationindexProsumer1Prosumer2Prosumer3SSRwithoutthemainESB0.29680.28040.30660.74780.6155SSRwiththemainESB0.54200.21590.41140.57580.8259SCRwithoutthemainESB0.4494SCRwiththemainESB0.8206TABLE9Totalelectricitypurchaseexpenditures,totalsurplusPVgenerationofthreeprosumers,SSR,andSCRofthewholesystemwhenformingSPERISorMPERISinCaseIVEvaluationindexSPERISMPERISFIGURE21SimulationresultsofCaseIV.(a–c)ExchangepowerfromTotalelectricitypurchase18.718.0theutilitygridtoSPERISsofprosumers1–3,(d)SoCofmainESBofthreeexpenditure/CNYprosumers16.5215.54TotalsurplusPVgeneration/kWh0.61860.6326SSRofsystem0.72410.7405SCRofsystemTABLE6ElectricitypurchaseexpendituresofthreeprosumersperdayinTABLE10CarbondioxideemissionreductionperdaybyformingCaseIVSPERISandMPERISinCaseIIIandCaseIVExpenditureProsumer1Prosumer2Prosumer3EvaluationindexSPERISMPERISWithoutthemain14.879.2810.41Carbondioxideemissionsreductionin3068.03500.4CaseIII/g1958.62043.3ESB/CNYCarbondioxideemissionsreductioninWiththemainESB/CNY9.683.255.77CaseIV/gExpendituresavings/CNY5.196.034.64TABLE7SurplusPVgenerationofthreeprosumersperdayinCaseIVprosumersregardingthetotalelectricitypurchaseexpenditures,totalsurplusPVgeneration,SSR,andSCRperSurplusPVgenerationProsumer1Prosumer2Prosumer3daywhenform-ingtheSPERISorMPERISinCaseIV.As10.9918.789.4canbeseen,theconclusionsfromCaseIVarethesameWithoutthemainasthosedrawnfromCaseIII,demonstratingthatwiththeESB/kWh3.5810.162.78designedenergymanage-mentschemes,theERIScangreatly7.418.626.62andeffectivelyimprovetheWiththemainESB/kWheconomyoftheprosumer,promotethelocalutilisationofPVgenerationDGsontheuserside,andreducetheenergydemandsofsavings/kWhprosumersfortheutilitygrid.wasregulatedbythedesignedFLC.Figure21showsthe5.3Discussionsimula-tionresultsforCaseIV.AsshowninFigure21a–c,theredandgreenwaveformsrepresenttheexchangepowerfromItcanbeseenfromtheabovelong-termsimulationsthattheutilitygridtoSPERISwhentheSPERIShasthemainESBbyformingaSPERISand/orMPERIS,theutilisationofDGsandwhentheSPERIShasnomainESB,respectively.Figurecanbegreatlyimproved,andthepowerdemandontheutility21dshowstheSoCvariationcurvesofthemainESBsofgridfrompoweruserscanbegreatlyreduced.Thisisthethreepro-sumers.SimilartotheresultsshowninFigureequivalenttoreducingthecarbondioxideemissionsofpower19,itcanbeseenintuitivelyfromFigure21thatthefuzzyusers.Table10showsthequantitativedataonthecarbonenergy-managementschemecanhelpeachprosumeremissionreductionsperdaywhenusingtheSPERISandpurchaselesspowerfromtheutilitygrid.MPERISintheabovelong-termsimulations,ascalculatedbyconvertingthesavedPVgenerationenergy[54].TheaboveReferringtothepracticeinCaseIII,Tables6and7givedatacanintuitivelyreflectthecontributionoftheERIStothequantitativedataontheelectricitypurchaseexpenditurescarbonneutrality.andsurplusPVgenerationofthreeprosumersperdayinCaseIV,respectively.Table8liststheSSRsandSCRsoftheNevertheless,itshouldbenotedthattheoperationprosumersinCaseIV,andTable9providesthequantitativeefficiencyofanERIScannotbeidealinpracticalapplications.dataofthethreeIfthepower198LIUETAL.lossesoftheERsareconsidered,theadvantagesofERISCDC-0SupportcapacitanceofcommonDCportofgrid-overthetraditionaldistributionnetworkwillbeslightlyuDhC-0connectedERorpublicERweakened.However,theoperationefficiencyofcurrentERsiDhC-0canusuallyreachapproximately95%[26],anditcanbePNh-0VoltageofcommonDCbusofgrid-connectedERpredictedthattheoperationefficiencyoffutureERswillbeorpublicERintimeslothhigherwithdevel-opmentoftherelatedtechnologies.iGh-0Therefore,theoperationalefficiencyissueoftheERwillnotCurrentfromgrid-connectedERorpublicERtoaffectthebrightapplicationprospectsfortheERISintheiDh-0commonDCbusintimeslothfuture.Netexchangeofactivepowerfromgrid-connectedhERorpublicERtocommonDCbusintimesloth61CONCLUSIONexchangeactivepowerfromtheutilitygridLtothegrid-connectedERorpublicERinAgainstthebackgroundofcarbonneutrality,itisurgenttotimeslothreformthetraditionaldistributionnetworkarchitecturetoiEh-0Totalactivepowerofalldistributedgenerationpartsmeetnewchallenges.Thispaperproposesabasicofgrid-connectedERorpublicERintimeslotharchitectureforanERIS,whichcanprovideaneffectivei-Totalactivepowerofallloadpartsofgrid-connectedsolutionforconstructinganewdistributionnetwork.TwoERorpublicERintimeslothtypesofERISsarepresented,andtheirmodeclassifications,hCharge-dischargepowerofallenergystorageadvantagesummaries,andequiv-alentmodelling,control,andbatterypartsofgrid-connectedERorpublicERinenergymanagementschemesarediscussedindetail.Dtimeslot0hThesimulationresultsverifytheadvantagesandSupportcapacitanceofcommonDCportoftheithsatisfactoryperformanceoftheERISinimprovingthehnon-grid-connectedERorprosumerERpowersupplyreli-abilityandpowerquality,economyofVoltageofcommonDCbusoftheithnon-theprosumer,SCRoftheDGs,andSSRofprosumers,Dgrid-connectedERorprosumerERintimeshowingthattheERIScaneffectivelyhelpthedistributionslotnetworkmeetnewchallengesinthecomingcarbon-neutralCDC-ihera.Infuturework,thedevelop-mentofcorrespondingtestN-iCurrentfromtheithnon-grid-connectedERorprototypesandpracticalindustrialapplicationsfortheERISprosumerERtocommonDCbusintimeslothwillbestudied.uC-iNetexchangeactivepowerfromtheithnon-NOMENCLATUREhgrid-connectedERorprosumerERtocommonDCbusintimeslothCDCSupportcapacitanceofcommonDCportDTotalactivepowerofalldistributedgenerationpartsuDhCVoltageofcommonDCbusintimeslothoftheithnon-grid-connectedERorprosumerCurrentfromenergyrouter(ER)tocommonDCiC-iERintimeslothhPLhhTotalactivepowerofallloadpartsoftheithnon-intimeslothgrid-connectedERorprosumerERintimeslothiDChCharge–dischargepowerofallenergystoragebuhsbatterypartsoftheithnon-grid-connectedERorEprosumerERintimeslothNPowerdissipatedbydumploadintimeslothi-iOperationefficiencycoefficientofgrid-connectedPNetexchangeactivepowerfromERtocommonDCERorpublicERhi-iOperationefficiencycoefficientofithnon-grid-busintimeslothconnectedERorprosumerERGhReferencevalueofvoltageofcommonDCbusinPExchangeofactivepowerfromutilitygridtoERiniD-itimeslothhOrderedsetofaveragevaluesofdistributedtimeslothPhgenera-tionpowerin24schedulingslotsDACOrderedsetofaveragevaluesofloadpowerinPTotalactivepowerofalldistributedgenerationparts24schedulingslotshμ0intimeslothOrderedsetofaveragevaluesofenergyLμistoragebatterycharge-dischargepowerin24schedulingslotsOrderedsetofaveragevaluesofPEhThetotalactivepowerofallloadpartsintimeslothuCnetexchangepowerin24schedulingslotsPCharge–dischargepowerofallenergy-storagePDDistributedgenerationpowerofprosumerinthebGahtteryPLjthschedulingslotpartsintimeslothPELoadpowerofprosumerinthejthschedulingslotiDhCurrentvalueofequivalentcurrentsourceofutilityEnergystoragebatterycharge-dischargepowerofhgridpartprosumerinthejthschedulingslotiLCurrentvalueofequivalentcurrentsourceforalldistributedgenerationpartsiEhCurrentvalueofequivalentcurrentsourceforallloadpartsiCurrentvalueoftheequivalentcurrentsourceforallenergystoragebatterypartsμGOperationefficiencycoefficientofgrid-connectedPNrectifierintheERαParametersfordistinguishingtheoperationmodeoftheERinterconnectionsystem(ERIS)LIUETAL.199Ph−jNetexchangepowerofprosumerinthejth8.Rathnayaka,A.J.D.,etal.:Amethodologytofindinfluentialprosumersinschedul-ingslotprosumercommunitygroups.IEEETrans.Ind.Inf.10(1),706–713(2014)NPriceofelectricitypurchasedbyprosumerfrom9.Rifkin,J.:TheThirdIndustrialRevolution:HowLateralPowerisTrans-EPtheutilitygridformingEnergy,theEconomy,andtheWorld.PalgraveMacMillan,NewMaximumchargepowerofenergystoragebatteryYork(2013)Pcha-maxPdis-maxMaximumdischargepowerofenergystorage10.Yang,F.,Bai,C.,Zhang,Y.:ResearchonthevalueandimplementationbatteryStateofchargeofenergystoragebatteryatframeworkofenergyInternet.Proc.CSEE35(14),3495–3502(2015)SoCh-jtheendofthejthschedulingslot11.Wang,K.,etal.:AsurveyonenergyInternet:Architecture,approach,andSoCmaxMaximumallowablevalueofthestateoftheemergingtechnologies.IEEESyst.J.12(3),2403–2416(2018)energystoragebatterySoCmin12.Wang,K.,etal.:AsurveyonenergyInternetcommunicationsforMinimumallowablevalueofthestateofthesustainability.IEEETrans.SustainableComput.2(3),231–254(2017)hτenergystoragebatteryCSEuoSCBhLengthofschedulingslot13.Cao,J.,Yang,M.:EnergyInternet-towardssmartgrid2.0.In:2013FourthInternationalConferenceonNetworkingandDistributedComputingSoCinitMaximumcapacityoftheenergystoragebatteryECnitInitialstateofchargeofenergystoragebattery(ICNDC).LosAngeles,CA,pp.105–110(2013)Unit-timeelectricitychargeintimeslothEPStateofchargeofenergystoragebatteryintimeslot14.Wang,W.,etal.:Reviewofsteady-stateanalysisoftypicalregionalinte-gratedenergysystemunderthebackgroundofenergy.InternetProc.hCSEE36(12),3292–3306(2016)Normalisedvalueofpriceofelectricitypurchased15.Hussain,H.M.,etal.:WhatisenergyInternet?Concepts,technologies,andbyprosumerfromutilitygridfuturedirections.IEEEAccess8,183127–183145(2020)Ratedcapacityofgrid-connectedrectifierofERISTotalphotovoltaicgeneratedenergy16.Huang,A.Q.,Baliga,J.:FREEDMsystem:RoleofpowerelectronicsSurplusphotovoltaicgeneratedenergyandpowersemiconductorsindevelopinganenergyInternet.In:IEEETotalenergyusedbyprosumer21stInternationalSymposiumonPowerSemiconductorDeviceandIC’s.PRateBarcelona,Spain,pp.9–12(2009)EPV17.Huang,A.Q.,etal.:ThefuturerenewableelectricenergydeliveryandESURmanagement(FREEDM)system:TheenergyInternet.Proc.IEEE99(1),COENUFSELICTOFINTEREST133–148(2011)Theauthorshavedeclarednoconflictofinterest.18.Wang,X.,Wang,Y.:IntroductionofGermansmartgridE-Energyprojectpromotion.PowerDSM13(4),75–76(2011)DATAAVAILABILITYSTATEMENT19.Takahashi,R.,Tashiro,K.,Hikihara,T.:Routerforpowerpacketdistri-Thedatathatsupportthefindingsofthisstudyarebutionnetwork:Designandexperimentalverification.IEEETrans.SmartavailablefromthecorrespondingauthoruponreasonableGrid6(2),618–626(2015)request.20.Liu,Z.:GlobalEnergyInternet.ChinaElectricPowerPress,Beijing,ChinaORCID(2013)BinLiuhttps://orcid.org/0000-0001-8691-1355ChengxiongMaohttps://orcid.org/0000-0003-3954-690021.Zhu,Y.,etal.:Partialpowerconversionandhighvoltageride-throughDanWanghttps://orcid.org/0000-0002-8230-6243schemeforaPV-batterybasedmultiportmulti-buspowerrouter.IEEEAccess9,17020–17029(2021)REFERENCES22.Geng,S.,Vrakopoulou,M.,Hiskens,I.A.:Optimalcapacitydesign1.UNFCCC:TheParisAgreement(2022).https://unfccc.int/process-and-andoperationofenergyhubsystems.ProcIEEE108(9),1475–1495meetings/the-paris-agreement/the-paris-agreement(Accessed14June(2020)2022)23.Xu,Y.,etal.:Energyrouter:Architecturesandfunctionalitiestoward2.ChinaDaily:StatementbyH.E.XiJinpingPresidentofthePeople’senergyInternet.In:ProceedingsofIEEEInternationalConferenceonRepublicofChinaAttheGeneralDebateofthe75thSessionofTheUnitedNationsGeneralAssembly(2020).https://www.chinadaily.com.SmartGridCommunications.Brussels,Belgium,pp.31–36(2011)cn/a/202009/24/WS5f6c08aca31024ad0ba7b776.html(Accessed14June2022)24.Miao,J.,etal.:Steady-statepowerflowmodelofenergyrouterembed-dedACnetworkanditsapplicationinoptimizingpowersystemoperation.3.Cheng,Y.,etal.:Low-carbonoperationofmultipleenergysystemsbasedIEEETrans.SmartGrid9(5),4828–4837(2021)onenergy-carbonintegratedprices.IEEETrans.SmartGrid11(2),1307–1318(2018)25.GB/T40097-2021:Functionalspecificationsandtechnicalrequirementsofenergyrouter.20214.Han,X.,etal.:Low-carbonenergypolicyanalysisbasedonpowerenergysystemmodeling.EnergyConvers.Econ.1,34–44(2020)26.Wang,D.,etal.:A10-kV/400-V500-kVAelectronicpowertransformer.IEEETrans.Ind.Electron.63(11),6653–6663(2016)5.IPCC:GlobalWarmingof1.5◦C(2018).https://www.ipcc.ch/sr15/(Accessed14June2022)27.Gu,C.,etal.:Modellingandcontrolofamultiportpowerelectronictransformer(PET)forelectrictractionapplications.IEEETrans.Power6.Chowdhury,S.,Chowdhury,S.P.,Crossley,P.:MicrogridsandActiveDistributionNetworks.TheInstitutionofEngineeringandTechnology,Electron.31(2),915–927(2016)London,UK(2009)28.She,X.,Huang,A.Q.,Burgos,R.:Reviewofsolid-statetransformertech-nologiesandtheirapplicationinpowerdistributionsystems.IEEEJ.7.Pan,E.,etal.:ThestategridcorporationofChina’spracticeandoutlookEmergingSel.Top.PowerElectron.1(3),186–198(2013)forpromotingnewenergydevelopment.EnergyConvers.Econ.1,71–80(2020)29.Mao,C.,etal.:ElectronicPowerTransformer.ChinaElectricPowerPress,Beijing,China(2010)30.Zong,S.,etal.:Overviewofpowerelectronicsbasedelectricenergyrouter.Proc.CSEE35(18),4559–4570(2015)31.Yao,G.,etal.:AnalterablestructurepowerrouterwithgeneralACandDCportformicrogridapplications.Energies12(9),1815(2019)32.Kandula,R.,etal.:Powerrouterformeshedsystemsbasedonafractionallyratedback-to-backconverter.IEEETrans.PowerElectron.29(10),5172–5180(2014)33.Vilhena,N.,etal.:EnergyrouterforSC:GC,SAandtransitionmodecontrols.IETRenewablePowerGener.14(5),914–924(2020)34.Duan,Q.,etal.:Multi-portDCelectricenergyrouterbasedoncascadedhighfrequencytransformer.PowerSyst.Technol.43(8),2934–2941(2019)200LIUETAL.35.Tu,C.,etal.:Analysisandcontrolofanovelmodular-basedenergyrouter48.Takahashi,R.,Kitamori,Y.,Hikihara,T.:ACpowerlocalnetworkwithforDCmicrogridcluster.IEEEJ.EmergingSel.Top.PowerElectron.multiplepowerrouters.Energies6(12),6293–6303(2013)7(1),331–342(2019)49.Guo,H.,etal.:Ahierarchicaloptimizationstrategyoftheenergyrouter-basedenergyInternet.IEEETrans.PowerSyst.34(6),4177–418536.Liu,Y.,etal.:Coordinatedcontroloftheenergyrouter-basedsmarthome(2019)energymanagementsystem.Appl.Sci.7(9),943(2017)50.Duan,Q.,etal.:Researchonenergysubgridforthefutureenergy.Internet37.Liu,B.,etal.:DistributedcontrolstrategyofamicrogridcommunitywithProc.CSEE36(2),388–398(2016)anenergyrouter.IETGener.Transm.Distrib.12(17),4009–4015(2018)51.NEA:Guidelinesonpromotingthedevelopmentof“Internet+”smart38.Liu,Y.,etal.:Enablingthesmartandflexiblemanagementofenergypro-energy(2016).https://www.nea.gov.cn/2016-02/29/c_135141026.htmsumersviatheenergyrouterwithparalleloperationmode.IEEEAccess(Accessed14June2022)8,35038–35047(2020)52.NDRC:Guidingopinionsonacceleratingtheconstructionofa39.Li,P.,etal.:ALyapunovoptimization-basedenergymanagementstrategynationalunifiedpowermarketsystembyNationalDevelopmentandforenergyhubwithenergyrouter.IEEETrans.SmartGrid11(6),4860–ReformCommissionandNationalEnergyAdministration(2022).4870(2020)https://www.ndrc.gov.cn/xxgk/zcfb/tz/202201/t20220128_1313653.40.Liu,Y.,Fang,Y.,Li,J.:Interconnectingmicrogridsviatheenergyrouterhtml?code=&state=123(Accessed14June2022)withsmartenergymanagement.Energies10(9),1297(2017)53.Liu,N.,etal.:Energy-sharingmodelwithprice-baseddemandresponse41.Hou,H.,etal.:Capacityconfigurationoptimizationofstandalonemulti-formicrogridsofpeer-to-peerprosumers.IEEETrans.PowerSyst.32(5),energyhubconsideringelectricity,heatandhydrogenuncertainty.Energy3569–3583(2017)Convers.Econ.2,122–132(2020)54.Mohammad,H.M.,Mohsen,E.,Hemen,S.:Ahybridmethodforsimulta-42.Gao,M.,Wang,K.,He,L.:ProbabilisticmodelcheckingandschedulingneousoptimizationofDGcapacityandoperationalstrategyinmicrogridsimplementationofanenergyroutersysteminenergyInternetforgreenutilizingrenewableenergyresources.Int.J.Electr.PowerEnergySyst.56,cities.IEEETrans.Ind.Inf.14(4),1501–1510(2018)241–258(2014)43.Wang,R.,etal.:AgraphtheorybasedenergyroutingalgorithminenergyHowtocitethisarticle:Liu,B.,Zhu,B.,Guan,Z.,localareanetwork.IEEETrans.Ind.Inf.13(6),3275–3285(2017)Mao,C.,Wang,D.:Energyrouterinterconnectionsystem:Asolutionfornewdistributionnetwork44.Shi,X.,Xu,Y.,Sun,H.:Abiasedmin-consensusbasedapproachforarchitecturetowardfuturecarbonneutrality.Energyoptimalpowertransactioninmulti-energy-routersystems.IEEETrans.Convers.Econ.3,181–200(2022).SustainableEnergy11(1),217–228(2020)https://doi.org/10.1049/enc2.1206245.Liu,B.,etal.:DesignandimplementationofmultiportenergyrouterstowardfutureenergyInternet.IEEETrans.Ind.Appl.57(3),1945–1957(2021)46.Liu,B.,etal.:AnAC-DChybridmulti-portenergyrouterwithcoor-dinatedcontrolandenergymanagementstrategies.IEEEAccess7,109069–109082(2019)47.Rodriguez-Bernuz,J.,etal.:Experimentalvalidationofasinglephaseintelligentpowerrouter.SustainableEnergyGridsNetworks4,1–15(2015)

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱