第七届IEEE能源互联网与能源系统集成会议(EI22023)清华大学电机系/清华四川能源互联网研究院/DepartmentofElectricalEngineering,SichuanEnergyInternetResearchInstitute,TsinghuaUniversity鲁宗相/ZongxiangLu2023年12月16日汇报提纲一、“水光充储”接入的配电网低碳规划技术发展现状Currentsituationoflow-carbonplanningofdistributionnetworkwith"hydro-PV-charging-Outlinesstorage"(HPCS)二、面向分布式水、光资源的电力交通网络供需特性与协调运行模拟技术Simulationtechnologyofsupplyanddemandcharacteristicsandcoordinatedoperationofelectrictransportationnetworkfordistributedwaterandlightresources三、考虑充电设施空间布局与适应“水光充储”协同的配电网结构形态Thespatiallayoutofchargingfacilitiesandthestructureofdistributionnetworkthatadaptstothecoordinationof“hydro-PV-charging-storage"areconsidered四、考虑碳流分布的“水光充储”配电网联合规划方法Ajointplanningmethodfordistributionnetworkof“hydropowerphotovoltaicchargingandstorage"consideringcarbonflowdistribution五、面向“电-碳”市场耦合的电力交通网灵活性资源聚合效应挖掘与商业运营模式Flexibleresourceaggregationeffectminingandbusinessoperationmodelofelectrictransportationnetworkfor"electric-carbon"marketcoupling六、结论Conclusion2一、“水光充储”接入的配电网低碳规划技术发展现状Currentsituationoflow-carbonplanningofdistributionnetworkintegratedwith"hydro-PV-charging-storage"(HPCS)3“水光充储”形态背景Morphologicalbackgroundof"hydro-PV-charging-storage“(HPCS)国家“双碳”和新型电力系统建设背景下,国网公司发布“碳达峰、碳中和”行动方案,以分布式光伏、小水电为代表的分布式清洁能源将迎来快速发展。Withthebackgroundofthenational"dualcarbon"andnewpowersystemconstruction,theStateGridCorporationissuedthe"carbonpeak,carbonneutral"actionplan,anddistributedcleanenergyrepresentedbydistributedphotovoltaicandsmallhydropowerwillusherinrapiddevelopment.480008006000.25470006005000.2460004004000.15Distributedphotovoltaicandhydropower45000demonstrationprojects300分2000.1440002000.05100布04300000式2016201720182019202020212022201120122013201420152016201720182019农村水电站保有量当年新投产新能源车销量渗透率光四川梯级水光蓄互补发联合发电项目农村小水电保有量大,保持增长新能车增长迅速,渗透率快速攀升伏SichuancascadewaterandlightstorageandTheamountofsmallhydropowerinruralareasislargeElectricvehiclesaregrowingrapidlyandpenetrationis水complementarypowergenerationproject150andhaskeptgrowingclimbingrapidly100电示50范0项201720182019202020212022“水光充储”配电网形态初步具备!分布式光伏装机容量分布式光伏新增容量目“交通+能源”融合分布式光储项目光照资源丰富,分布式光伏持续增长"Transportation+energy"integratedSolarresourcesareabundant,anddistributedPVcontinuestogrow.高速充电桩分布High-speedchargingpiledistributiondistributedlightstorageproject4HPCSdistributionnetworkformisinitiallyavailable!传统规划存在的问题Challengestotraditionalplanning新型“水光充储”配电网结构下,传统配电网规划方式已经无法适应。ThetraditionaldistributionnetworkplanningmethodhasbeenunabletoadapttheHPCSdistributionnetworkstructure.Problemsexistingintraditionalplanning1、光伏“强随机波动”和充电负荷“短时大容量”特征改变原始源荷特性传Thecharacteristicsofphotovoltaic"strongrandomfluctuation"andchargingload"shorttimelargecapacity"研究分布式清洁能源与电力交通网融changetheoriginalsourcechargecharacteristics合的“水光充储”配电网联合规划技术统2、短时尖峰负荷增大区域电网投资容量,电网利用率及平均负载率极低Short-timepeakloadincreasestheinvestmentcapacityofregionalpowergrid,andtheutilizationrateandThejointplanningtechnologyofHPCSdistributionnetworkbasedontheintegrationofaverageloadrateofpowergridareverylowdistributedcleanenergyandelectric规3、配网容量无法满足电动汽车接入,严重制约电动汽车产业发展transportationnetworkisstudied划Thecapacityofthedistributionnetworkcannotmeettheneedsofelectricvehicleaccess,whichseriouslyrestrictsthedevelopmentoftheelectricvehicleindustry存4、源-荷-储时间不匹配导致配电网局部出现电压越限等安全问题提出电力-交通网络灵活性资源的配Themismatchofsource-charge-storagetimeleadstosafetyproblemssuchasvoltageover-limitinlocal电网规划综合解决方案在distributionnetworkAcomprehensivesolutionofdistributionnetworkplanningforpower-transportation5、规划阶段未考虑“水光充储”协同优化运行以平抑新能源、负荷波动networkflexibilityresourcesisproposed问Theplanningstagedidnotconsiderthecoordinatedoptimizationoperationof"waterandlightchargingandstorage"tosmoothoutnewenergyandloadfluctuations5题6、现有规划无法发挥最大的减碳效益,不能体现灵活调节资源减碳价值Theexistingplanningcannotmaximizethebenefitsofcarbonreduction,andcannotreflecttheflexibleadjustmentofthecarbonreductionvalueofresources国内外研究现状Researchstatusathomeandabroad国内外学者在考虑电力网-交通网融合的配电网规划方面展开了大量研究,但在电力交通网协调运行、配电网结构形态、规划方法、灵活性资源聚合与商业模式等方面仍有一定不足。Domesticandforeignscholarshavecarriedoutalotofresearchondistributionnetworkplanningconsideringtheintegrationofpowernetworkandtransportationnetwork,buttherearestillsomeshortcomingsinthecoordinatedoperationofelectrictransportationnetwork,distributionnetworkstructure,planningmethod,flexibleresourceaggregationandbusinessmodel.理论类型国内外研究现状现有研究不足TheoryResearchstatusathomeandabroadShortage电力交通网络协⚫主要集中在分布式水电参与调度优化、接入⚫缺乏对充电负荷与分布式光伏、分布式水电的时空耦合关系及调运行与消纳、经济性分析方面其关键影响因素研究Coordinated⚫Itmainlyfocusesondistributedhydropower⚫Thereisalackofresearchonthespatio-temporalcouplingoperationofparticipationindispatchingoptimization,relationshipbetweenchargingloadanddistributedphotovoltaicaccessandconsumption,andeconomicanddistributedhydropoweranditskeyinfluencingfactorselectricanalysistransportationnetwork6国内外研究现状Researchstatusathomeandabroad理论类型国内外研究现状现有研究不足TheoryResearchstatusathomeandabroadShortage配电网结构形⚫充电站布局优化侧重于光伏、充/换电站和储能之间⚫车流-路况及充电灵活需求与交通网流量相结合的研究较少;态研究的协同配置规划;配网形态主要针对典型拓扑接线⚫未充分考虑水电、光伏、充电站以及储能共同接入的场景进行Researchon⚫Therearefewstudiesonthecombinationoftrafficflow-roaddistribution⚫Theoptimizationofchargingstationlayoutfocusesonconditionandflexiblechargingdemandwithtrafficnetworkflow.networkthecollaborativeconfigurationplanningamongPV,⚫Scenariosinwhichhydropower,photovoltaic,chargingstationsandstructureformenergystoragearejointlyconnectedarenotfullyconsidered.charging/changingstationandenergystorage.The⚫缺乏对光伏和储能充电站带来的环境效益、节能效益等综合configurationofthedistributionnetworkismainly效益潜力的分析basedonthetypicaltopologyconnection⚫Thereisalackofanalysisonthepotentialofcomprehensivebenefitssuchasenvironmentalbenefitsandenergysavingbenefits联合规划方法⚫对于充电站内电源规划的研究大多从经济性角度出broughtbyphotovoltaicandenergystoragechargingstations研究发⚫较少结合国情研究电碳市场耦合;Researchon⚫Mostoftheresearchonpowerplanningincharging⚫缺乏灵活资源减碳价值及降碳贡献评估的理论;⚫几乎没有源网荷储一体化灵活性资源商业模式研究jointplanningstationsisfromtheeconomicview⚫Lesscombinedwithnationalconditionstostudythecouplingofmethodselectriccarbonmarket;灵活性资源聚⚫针对国外碳市场的研究较多;⚫Lackofflexibleresourcecarbonreductionvalueandcarbon合与商业模式⚫目前对商业模式的研究多集中在储能领域。reductioncontributionassessmenttheory;Flexible⚫Therearemanyresearchesonforeigncarbonmarket.⚫Thereisalmostnoresearchontheflexibleresourcebusinessmod7elresource⚫Mostofthecurrentresearchonbusinessmodelsaggregationandoftheintegrationofsourcenetwork,loadandstoragebusinessmodelsfocusesonthefieldofenergystorage二、面向分布式水、光资源的电力交通网络供需特性与协调运行模拟技术Simulationtechnologyofsupplyanddemandcharacteristicsandcoordinatedoperationofelectrictransportationnetworkfordistributedwaterandlightresources8光伏中长期出力预测技术PVmedium-longtermoutputforecastingtechnology分析影响分布式光伏发电功率的资源、气象、环境因素;引入集成学习中的XGBoost算法利用光照强度、温度、湿度等因素构建了光伏出力的确定性预测模型;基于确定性预测的误差,应用Copula模型构建光伏出力时间相关性上的条件概率分布,进一步提出了光伏出力的概率预测模型,从而实现了长时间尺度下光伏出力的合理全面估计。Analyzetheresource,meteorologicalandenvironmentalfactorsthataffectthepowerofdistributedPVpowergeneration;XGBoostalgorithmbasedonensemblelearningwasintroducedtoconstructadeterministicpredictionmodelofPVoutputbyusinglightintensity,temperature,humidityandotherfactors.Basedontheerrorofdeterministicprediction,theCopulamodelisusedtoconstructtheconditionalprobabilitydistributionofPVoutputtimecorrelation,andtheprobabilisticpredictionmodelofPVoutputisfurtherproposed,soastoachieveareasonableandcomprehensiveestimationofPVoutputoveralongtimescale.光伏发电功率影响因素分析确定性预测模型结果示例AnalysisofinfluencingfactorsofPVDeterministicforecastingmodelResultexamplepowergeneration(xgboostmodel)𝑃𝑃𝑉𝑡=𝑃𝑃𝑉,𝑟×𝑓𝑃𝑉×𝐼𝑇𝑡概率预测模型结果示例𝐼𝑇,𝑆𝑇𝐶ProbabilisticpredictionmodelResultexample×[1+𝜇×(𝑇𝑃𝑉(𝑡)−𝑇𝑃𝑉,𝑆𝑇𝐶)](copulaprobabilisticmodel)光伏出力概率预测模型算法框架Photovoltaicoutputprobabilitypredictionmodelalgorithmframework9光伏中长期出力预测技术PVmedium-longtermoutputforecastingtechnology应用四川攀枝花华电新能源有限公司2022-2023年的光伏出力数据结合相关地区天气、光照等数据对所提出模型分别在月统计尺度(12个月)和小时统计尺度(8760小时)进行了验证。其中,在小时统计尺度下,确定性预测指标MAPE为15.3%,概率预测指标50%置信区间的PICP和CPDI分别为0.9532和0.9032,相关结果体现了本课题所提出光伏预测模型的有效性和良好的预测性能。ThePVoutputdataofPanzhihuaHuadianNewEnergyCo.,Ltd.from2022to2023combinedwithweatherandlightdataofrelevantregionswereusedtoverifytheproposedmodelinmonthlystatisticalscale(12months)andhourlystatisticalscale(8760hours),respectively.Where,atthehourlystatisticalscale,theMAPEofthedeterministicpredictionindexis15.3%,andthePICPandCPDIofthe50%confidenceintervaloftheprobabilitypredictionindexare0.9532and0.9032,respectively.Therelevantresultsreflecttheeffectivenessandgoodpredictionperformanceofthephotovoltaicpredictionmodelproposedinthistopic.光伏区间预测全年结果(月尺度)光伏预测全年结果(小时尺度)PVRangeForecastAnnualResults(Monthlyscale)PVForecastAnnualResults(Hour-scale)10PromotionalArticleaddedbytheECE,notincludedintheoriginalslidesEnergyConversionandEconomicsReceived:29November2022Revised:24February2023Accepted:28March2023DOI:10.1049/enc2.12088REVIEWAnanalysisofdistributionplanningunderaregulatoryregime:AnintegratedframeworkAprajayVermaKShantiSwarupDepartmentofElectricalEngineering,IndianAbstractInstituteofTechnologyMadras,Chennai,Distributionsystemplanningisamultifacetedtopicinvolvingfinancial,regulatory,andTamilnadu,Indiasystemlevelanalysis.Thewidenatureofthetopicwarrantsaholisticstudyconsideringallaspectsofanalysis.Thedistributionutilityisanaturalmonopolythatissubjectedtoutilityregulation.Theregulatorcanimpactcustomerexperiencebystrategicallyinfluencingtheplanningdecisionsoftheutility.Hence,thispaperreviewstheexistingutilityregulationmethodsinthecontextofthedistributionsystemandtheirefficacyinimprovingcertainreliabilityandefficiencyobjectives.Atwo-bussystemisusedtodemonstratetheimpactofclassicalmodelsinalleviatingreliabilityandefficiencyissuesthroughdemandresponse.Further,areviewisconductedondistributionsystemplanningmodelswithoutaregulatoryregime,andsuitablemodelsforholisticanalysisareidentified.Atwo-personcompleteinformationregulatorandutilitygamewithacomprehensivedistributionsystemmodelatthelowerlevelisproposed.AframeworkbasedontheMixedIntegerBilevelLinearProgram(MIBLP)isdiscussedtofindtheequilibriumpointoftheproposedgame.KEYWORDSenergyeconomics,investmentandplanning,operationandoptimization水电中长期出力预测技术Hydropowermedium-longtermoutputforecastingtechnology分析影响分布式水利发电功率的资源、气象、环境因素;引入深度学习算法LSTM利用降雨量和水电出力时间序列构建了水电出力的上时间尺度预测模型。应用四川省攀枝花市米易县普威金盈电站的数据对模型进行了验证,结果显示本课题提出的基于LSTM的水电出力预测模型预测MAPE为13.4%。Theresource,meteorologicalandenvironmentalfactorsaffectingthepowerofdistributedhydropowergenerationareanalyzed.AdeeplearningalgorithmLSTMisintroducedtoconstructapredictionmodelofhydropoweroutputonuppertimescalebyusingrainfallandhydropoweroutputtimeseries.ThemodelwasverifiedbyusingthedataofPuweiJinyingPowerStationinMiyiCounty,PanzhihuaCity,SichuanProvince.TheresultsshowthatthehydropoweroutputpredictionmodelbasedonLSTMproposedinthisprojectpredictstheMAPEof13.4%.预测模型predictionmodel(LSTMmodel)预测结果Predictingresults(四川省攀枝花市米易县普威金盈电站的数据)径流量对分布式水电出力影响分析(DataofPuweiJinyingpowerStation,MiyiCounty,PanzhihuaCity,SichuanProvince)Analysisoftheinfluenceofrunoffontheoutputofdistributedhydropower分布式水电出力物理模型h(t)=(Zu(t)+Pu(t)+αuVu2)−(Zd(t)+Pd(t)+αdVd2)−ΔhPhysicalmodelofdistributedρg2gρg2g11hydropoweroutput“车-站-网”时空耦合分析技术Spatio-temporalcouplinganalysistechniqueof"vehicle-station-network"基于交通网和配电网拓扑的抽象和构建的基础上,分别研究了电动汽车充电的时间和空间分布特性,研究了从充电需求估计-充电负荷估算-充电负荷与配电网耦合完整的作用机理和建模方法,通过算例仿真分析了不同场景下电动汽车接入配电网对电网负荷时空分布的影响。所提出模型可以在同时考虑交通流和能量流的情况下完成“车-站-网”时空概率分布特性的合理分析。Basedontheabstractionandconstructionoftrafficnetworkanddistributionnetworktopology,thetimeandspacedistributioncharacteristicsofEVchargingarestudiedrespectively,andtheintegratedactionmechanismandmodelingmethodfromchargingdemandestimation-chargingloadestimation-chargingloadcouplingwithdistributionnetworkarestudied.TheeffectsofEVsconnectedtothedistributionnetworkonthetemporalandspatialdistributionofpowergridloadindifferentscenariosareanalyzedbysimulationexamples.Theproposedmodelcanreasonablyanalyzethespatio-temporalprobabilitydistributioncharacteristicsofvehicle-station-networkconsideringbothtrafficandenergyflow.电网与交通网关系拓扑充电行为时间分布特性RelationshiptopologybetweenpowergridTimedistributioncharacteristicsofchargingbehaviorandtransportationnetworkSpatial充电行为空间分布特性behavior充电需求与配电网的耦合方法distributioncharacteristicsofchargingCouplingmethodofchargingdemandanddistributionnetwork不同场景下电动汽车接入配电网对电网负荷时空分布的影响仿真分析Simulationanalysisoftheinfluenceofelectricvehiclesconnected充电需求耦合12tothedistributionnetworkonthetemporalandspatialChargingdemand𝑞𝑟𝑒𝑎𝑙=𝐷𝑤(𝜇𝐸𝑉,𝑤)=𝑞𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑒𝑥𝑝(−𝜃𝜇𝐸𝑉,𝑤)couplingdistributionofpowergridloadunderdifferentscenarios负荷特性耦合𝑑𝑖𝑚,𝑗𝑛,𝑘,𝑛𝑐=𝑑𝑖𝑚,𝑗𝑛+𝑑𝑖𝑚,𝑘𝑛+𝑑𝑘𝑚,𝑗𝑛Loadcharacteristiccoupling“水-光-充“协同运行策略“Hydro-PV-charging"cooperativeoperationstrategy分别提取了分布式水电,分布式光伏和充电站的典型和概率出力/负荷特性。通过对所获取特性进行缩放和组合,获取了不同水-光-充协同运行的出力特性,不但可以体现不同规模三类电源/负荷特性协同运行的趋势特性,同时展示了不确定性(主要为光伏和充电负荷)对协同出力特性的影响。Thetypicalandprobabilisticoutput/loadcharacteristicsofdistributedhydropower,distributedphotovoltaicandchargingstationsareextractedrespectively.Byscalingandcombiningtheobtainedcharacteristics,theoutputcharacteristicsofdifferentwater-light-chargecooperativeoperationareobtained,whichcannotonlyreflectthetrendcharacteristicsofthecollaborativeoperationofthreetypesofpowersupply/loadcharacteristicsofdifferentscales,butalsoshowtheinfluenceofuncertainties(mainlyphotovoltaicandchargingload)onthecollaborativeoutputcharacteristics.光伏出力分布PVpowerdistribution水电出力分布水光协同出力分布不确定性对水-光-充协同出力特性的影响分析HydropoweroutputHydro-PVcooperativedistributionoutputdistributionAnalysisoftheinfluenceofuncertaintyonHydro-PV-chargeco-outputcharacteristics13三、考虑充电设施空间布局与适应“水光充储”协同的配电网结构形态Thestructureofdistributionnetworkconsideringspatiallayoutofchargingfacilitiesandadaptingtothecoordinationof“hydro-PV-charging-storage”14电动汽车充电设施需求分布预测方法Themethodforforecastingthedistributionofelectricvehiclecharginginfrastructuredemands构建了电动汽车充电需求时空分布预测模型,主要包括行程链模拟模块、充电行为决策模块和充电过程仿真模块,各个模块的输入输出互相承接、串联,该模型应用蒙特卡洛方法模拟任意规模充电汽车的充电需求分布。Aspatial-temporaldistributionforecastingmodelforelectricvehiclechargingdemandhasbeenconstructed.Itprimarilyconsistsofatripchainsimulationmodule,achargingbehaviordecisionmodule,andachargingprocesssimulationmodule.Theinputsandoutputsofeachmoduleareinterconnectedandlinked.ThemodelappliesMonteCarlomethodstosimulatethechargingdemanddistributionforelectricvehiclesofanyscale.变电站商场超市办公场所居民小区183322232491011192561781220213425302926151413313228271617基于配电网拓扑的充电需求空间划分充电需求时空分布仿真结果15充电需求预测方法ChargingdemandspatialpartitioningSimulationresultsofspatiotemporalChargingdemandforecastingmethodbasedondistributiongridtopologydistributionofchargingdemand充电设施站址布局方法Chargingfacilitysitelayoutmethod采用动态规划设计充电站选取决策算法,结合充电需求估计,以充电距离成本和充电站建设成本的综合成本最小为目标函数,考虑配网潮流、排队等待等实际约束条件,构建充电设施站址布局优化模型。Utilizingdynamicprogrammingtodesignachargingstationselectiondecisionalgorithm,integratingwithchargingdemandestimation.Theobjectivefunctionminimizesthecomprehensivecost,encompassingchargingdistancecostandchargingstationconstructioncost.Themodeltakesintoaccountpracticalconstraintssuchasdistributionnetworkflowandqueuing,aimingtooptimizethelayoutofchargingfacilitylocations.基于Dijkstra最短ObjectivefunctionConstraint路径ChargingQueuingwaiting构建距离矩阵distancecostconstraintConstructingadistancematrixCharging16constructioncostbasedonDijkstra'sshortest充电设施站址布局模型ChargingFacilitySiteLayoutModelpath33节点电动汽车充电需求ElectricVehicleChargingDemandat33Nodes充电设施站址布局方法Chargingfacilitysitelayoutmethod选取计算用例,分析了是否考虑配网约束及充电负荷与分布式光伏、分布式水电和储能协同运行等六个场景下充电站选址算法的优化结果,并对优化结果进行了对比分析。Selectingcomputationalcases,weanalyzedtheoptimizationresultsofchargingstationsitingalgorithmsinsixscenarios,consideringfactorssuchasdistributionnetworkconstraints,chargingload,andthecoordinatedoperationofdistributedphotovoltaics,distributedhydropower,andenergystorage.Subsequently,acomparativeanalysiswasconductedontheoptimizationoutcomes.方案设置ProgramConfiguration优化结果OptimizationResults不考虑配网约束时(方案1),主要在节点1、2、4、7、13、19、26、28、32节点投建充电站;而考虑水电、光伏、储能运行特性后,为促进水电和光伏的消纳,充电站易在光伏和水电节点投建,如方案EV充电站光伏电站小水电储能算例3、4、5、6考虑光伏运行特性后,光伏节点20均投建充电站;算例5、6考虑水电运行特性后,水电节点24均投建充电站。Withoutconsideringdistributionnetworkconstraints(Scenario1),charging1(EV)×(不考虑配网约束)×××2(EV_G)√(考虑配网约束)×××stationsaremainlydeployedatnodes1,2,4,7,13,19,26,28,and32.However,whenconsideringtheoperationalcharacteristicsofhydropower,photovoltaics,andenergystoragetofacilitatetheintegrationof3(EV_PV)√√××hydropowerandphotovoltaics,chargingstationsareeasilydeployedatnodeswithphotovoltaicandhydropowerresources.Forexample,incases3,4,5,and6,wherethephotovoltaicoperational4(EV_PV_STO)√√×√characteristicsareconsidered,chargingstationsaredeployedatnode20,whichhasphotovoltaicresources.5(EV_PV_H)√√√×6(EV_PV_H_STO)√√√√Incases5and6,consideringtheoperationalcharacteristicsofhydropower,chargingstationsaredeployedatnode24,whichhashydropowerresources.优化结果的经济性分析EconomicAnalysisofOptimizationResults算例2~6规划方案成本对比如下表所示,对比分析可知,方案3、5考虑光伏和分布式小水电后,购方案充电站投资年排队等待充电路途损耗网损成本购电成本弃光成本弃水成本总成本电成本明显减少,但弃光、弃水惩罚成本较高;方案4、6考虑储能运行特性后,弃光、弃水惩罚成本(万元)成本(万元)成本(万元)(万元)(万元)(万元)(万元)(万元)成本明显减少,储能有效提高了可再生能源的消纳能力。Thecostcomparisonofplanningscenarios2(EV_G)5.220.0018.006.60134.00//163.82forcases2to6isshowninthetablebelow.Throughcomparativeanalysis,itisevidentthatscenarios3and5,whichconsiderphotovoltaicsanddistributedsmallhydropower,exhibitasignificantreductionin3(EV_PV)5.310.0011.004.6021.4073.20/115.51purchasedelectricitycosts.However,thecostsassociatedwithcurtailmentofsolarandhydropowerare4(EV_PV_STO)5.220.005.664.600.0051.00/66.48relativelyhigh.Ontheotherhand,scenarios4and6,whichconsidertheoperationalcharacteristicsofenergystorage,showasignificantreductioninthecostsassociatedwithcurtailmentofsolarand5(EV_PV_H)5.220.0015.004.405.6087.4016.40134.00hydropower.Energystorageeffectivelyenhancestherenewableenergyabsorptioncapacity.6(EV_PV_H_STO)5.220.6213.004.000.0067.6015.00105.4417“水光充储”灵活性供需平衡方法“hydro-PV-charging-storage”FlexibilitySupply-DemandBalancingMethod确定“水光充储”系统中的灵活性资源特性,研究“水光充储”协同运行机理及时空耦合特性,构建系统灵活性资源供需平衡仿真计算模型,实现对“水光充储”不同场景下供需平衡的自动匹配和校验。Identifytheflexibilityresourcecharacteristicsinthe"Hydro-OptoChargingandStorage"system,investigatethecooperativeoperationmechanismandspatiotemporalcouplingcharacteristicsofthe"Hydro-OptoChargingandStorage,"constructasimulationmodelforbalancingflexibilityresourcesupplyanddemand,andachieveautomaticmatchingandverificationofsupply-demandbalanceindifferentscenariosof"Hydro-OptoChargingandStorage."充电站Chargingstation空间供需耦合特性SpatialSupply-EnteratypicalsceneDemandCouplingCharacteristics分布式光伏DistributedEntertheobjectivefunctionPhotovoltaicsoftheapplicationscenario分布式风电DistributedPWV(t)+Pess(t)=Pcs(t)+Pl(t)InputapplicationWindPowerscenarioconstraints储能EnergyStorageknc协同运行Coordinated时间供需平衡模型TimeSupply-ComputeOperationDemandBalanceModelHydro-PV-charging-灵活性供需平衡模型FlexibilitySupply-storageflexiblesupplyandDemandBalanceModeldemandbalancestrategy灵活性供需平衡应用流程ApplicationProcessof18FlexibilitySupply-DemandBalancing高渗透率快充电站与分布式光伏、水电、储能协同配置High-PenetrationFastChargingStationsCoordinatedwithDistributedPhotovoltaics,Hydropower,andEnergyStorageConfiguration以最小化配网最大负荷和最大化配网运营经济性为目标,建立“水光充储”配电网优化规划模型,提出高渗透率快充电站与分布式光伏、分布式水电、储能协同的配电网规划方案。并在不同规模充电汽车场景下对所提出模型进行了应用,分别计算得到了最优的匹配方案。Withtheobjectivesofminimizingdistributiongridpeakloadandmaximizingoperationalcost-effectiveness,establishanoptimizationplanningmodelforthe"Hydro-OptoChargingandStorage"distributiongrid.Proposeadistributiongridplanningschemethatinvolveshigh-penetrationfastchargingstationscoordinatedwithdistributedphotovoltaics,distributedhydropower,andenergystorage.Applytheproposedmodeltovariousscalesofelectricvehiclechargingscenarios,calculatingoptimalmatchingsolutionsforeach.minPnlmin(CINV+CO&M−CREV+CNV)pPtV+pt+pt+pntl=pcts+pt,tTHydBdisload0pi,tPi,iIHyd,tTHydHydIHydpt=pi,t,tTHydHydi=1pttSOCt+1=SOCt−Bdisb,tTEb0pi,tPPiV,tT电动汽车规模光伏容量水电容量(MW)储能容量(MW)总经济成本PV(MW)(亿元)01538931.1IHyd13291539231.3103321542033.4pPtV=pi,t,tT203551545435.9PV381i=1“水光充储”配电网优化规划模型"Hydro-OptoChargingandStorage"DistributionGrid传统负荷和高渗透率快充接入下的规划结果Planningresultsunder19OptimizationPlanningModeltraditionalloadandhigh-penetrationfastchargingintegrationPromotionalArticleaddedbytheECE,notincludedintheoriginalslidesEnergyConversionandEconomicsReceived:5May2022Revised:28January2023Accepted:28January2023DOI:10.1049/enc2.12080ORIGINALRESEARCHOptimizedplanningofchargersforelectricvehiclesindistributiongridsincludingPVself-consumptionandcooperativevehicleownersBiswarupMukherjee1FabrizioSossan1,21MINESParis-PSL,CentrePERSEE,SophiaAbstractAntipolis,FranceThispaperpresentsamathematicalmodeltositeandsizethecharginginfrastructurefor2HES-SOValais-Walliselectricvehicles(EVs)inadistributiongridtominimizetherequiredcapitalinvestmentsandmaximizeself-consumptionoflocalPVgenerationjointly.Theformulationaccountsfortheoperationalconstraintsofthedistributiongrid(nodalvoltages,linecurrents,andtransformers’ratings)andtherechargingtimesoftheEVs.ItexplicitlymodelstheEVowners’flexibilityinpluggingandunpluggingtheirvehiclestoandfromachargertoenableoptimalutilizationofthecharginginfrastructureandimproveself-consumption(cooper-ativeEVowners).Theproblemisformulatedasamixed-integerlinearprogram(MILP),wherenonlineargridconstraintsareapproximatedwithlinearizedgridmodels.KEYWORDSchargingstations,electricvehicles,PVself-consumption,siting四、考虑碳流分布的“水光充储”配电网联合规划方法Ajointplanningmethodfordistributionnetworkof“hydropowerphotovoltaicchargingandstorage"consideringcarbonflowdistribution20电动汽车负荷碳排放强度评估模型Carbonemissionintensityassessmentmodelforelectricvehicleload基于电力系统潮流计算理论和碳排放流理论,考虑源荷时空分布特性,建立电动汽车负荷的碳排放强度评估模型,实现配电网潮流分布和碳流分布的协同计算,为碳流分布的分析与优化奠定了基础。Basedonthepowersystempowerflowcalculationtheoryandcarbonemissionflowtheory,thecarbonemissionintensityevaluationmodelofelectricvehicleloadisestablishedconsideringthetime-spacedistributioncharacteristicsofsource-load,andthecollaborativecalculationofpowerflowdistributionandcarbonflowdistributionisrealized,whichlaysafoundationfortheanalysisandoptimizationofcarbonflowdistribution.()()支路潮流分布矩阵Branchpowerflowdistributionmatrix:PB=PBijNNfPi=Pis−UiUjGijcosij+Bijsinij=0ji()()机组注入分布矩阵Unitinjectiondistributionmatrix:PG=PGijKNf=Q−UUGsin−Bcos=0()负荷分布矩阵Loaddistributionmatrix:QiisijijijijijPL=PLjimjMNT()节点有功通量矩阵Nodeactivefluxmatrix:PN=diagN+KPZ,其中PZ=PBPG()发电机组碳排放强度向量Carbonemissionintensityvectorofgeneratorset:E=GEG1k1K()节点碳势矩阵Nodecarbonpotentialmatrix:E=P−PT−1PTENNBfpGGfp−1fp=U支路碳流率分布矩阵DistributionmatrixoffqfqU()branchcarbonflowrate:fqRB=PBdiagENU负荷碳流率向量Loadcarbonflowratevector:RL=PLEN潮流分布与碳排放流分布协同计算原理Powerflowdistributionisbasedonthecooperativecalculationprincipleofcarbonemissionflowdistribution21电动汽车负荷碳排放强度评估模型Carbonemissionintensityassessmentmodelforelectricvehicleload基于所建立的潮流分布于碳排放流分布协同计算模型,应用某实际配电网拓扑及电源负荷分布数据,计算了配电网节点碳势及碳排放量的时空分布。Basedontheestablishedcollaborativecalculationmodelofpowerflowdistributionandcarbonemissionflowdistribution,thespatialandtemporaldistributionofcarbonpotentialandcarbonemissionofdistributionnetworknodesarecalculatedbyapplyingthetopologyandpowerloaddistributiondataofarealdistributionnetwork.算例网络拓扑及节点配置Examplenetwork碳排放强度评估结果Carbonintensityassessmentresults22topologyandnodeconfiguration电力交通网络的“电-碳”时空分布特性Space-timedistributioncharacteristicsof"electric-carbon"inelectrictransportationnetwork考虑电动汽车出行时空分布特征和充电负荷空间分布特性,基于碳排放强度计算模型研究不同场景下电动汽车充电负荷造成的碳排放分布,分析电动汽车充电行为与充电网络碳排放的耦合关系。ConsideringthespatialandtemporaldistributioncharacteristicsofEVtravelandthespatialdistributioncharacteristicsofchargingload,thecarbonemissiondistributioncausedbyEVchargingloadunderdifferentscenariosisstudiedbasedonthecarbonemissionintensitycalculationmodel,andthecouplingrelationshipbetweenEVchargingbehaviorandcarbonemissionofchargingnetworkisanalyzed.输入电动汽车充电负荷时空分布数据Inputthespatial-temporaldistributiondataofelectricvehiclechargingload输入光伏,水电发电功率,储能数据Inputphotovoltaic,hydropowerpower,energystoragedata输入节点负荷数据Enternodeloaddata“电-碳”时空分布特性分析算例拓扑图Topologydiagramof"electric-carbon"space-timedistributioncharacteristicsanalysisexample电力系统碳排放模型Carbonemissionmodelofpowersystem电力交通网络充电负荷“电-碳”时空分布特性分布图时空分布图SpatialandSpatialandtemporaldistributionof“电-碳”时空分布Space-timedistributionof"electric-carbon"temporaldistributionof"electric-carbon"“电-碳”时空分布特性分析方法流程chargingloadinelectric"Electric-carbon"space-timedistributiontransportationnetworkcharacteristicsanalysismethodflow23“水光充储”一体化容量配置"Hydropowerphotovoltaicchargingandstorage"integratedcapacityconfiguration基于电力交通网络的“电-碳”潮流时空分布特性,分析在低碳目标下电力交通网络的“电-碳”潮流时空分布运行策略;考虑系统年收益最大和光伏供给负荷占比等优化目标,建立计及新能源碳排放利用的“水光充储”一体化容量配置模型和碳排放分析模型。Basedonthespatio-temporaldistributioncharacteristicsof"electric-carbon"powerflowinelectrictransportationnetwork,thepaperanalyzesthespatio-temporaldistributionoperationstrategyof"electric-carbon"powerflowinelectrictransportationnetworkunderthelow-carbongoal.Consideringtheoptimizationobjectivessuchasthemaximumannualrevenueofthesystemandtheproportionofphotovoltaicsupplyload,anintegratedcapacityallocationmodelof"Hydropowerphotovoltaicchargingandstorage"andacarbonemissionanalysismodelwereestablishedtakingintoaccountthecarbonemissionutilizationofnewenergy.()fPi=Pis−UiUjGijcosij+Bijsinij=0ji()fQi=Qis−UiUjGijsinij−Bijcosij=0jifpfp−1“水光充储”一体化容量配置"Hydropowerfp=Uphotovoltaicchargingandstorage"integratedfqfqUcapacityconfigurationfqU水电光伏出力分布图Hydropowerphotovoltaicoutputdistributionmap(t)=Fes(t)scEes(t)R(t)=(t)P(t)disscdis()()()TTFchdiscbRtdtt=Rtdt−i=0tch,ichi=0tdis,idis碳排放分析模型Carbonemissionanalysismodel碳排放分析模型算例分析图Carbonemission24analysismodelexampleanalysisdiagram“水光充储”一体化容量配置"Hydropowerphotovoltaicchargingandstorage"integratedcapacityconfiguration考虑系统年收益最大和光伏供给负荷占比等优化目标,选取计算用例,分析了不同规模分布式光伏、分布式水电和储能协同运行等方案下的碳排放结果,并对结果进行了对比分析。ConsideringtheoptimizationobjectivessuchasmaximumannualrevenueofthesystemandtheproportionofPVsupplyload,thecarbonemissionresultsofdifferentscaledistributedPV,distributedhydropowerandenergystoragecollaborativeoperationschemeswereanalyzedbyselectingcalculationcases,andtheresultswerecomparedandanalyzed.1.0200050012001800经济性最优0.81600Economicoptimization10001400目标函数400Objectivefunction800光伏本地消纳最大化300MaximizePVlocalaccomadation600200400光伏容量(MW)0.61200储能容量(MWh)高碳机组发电占比1000碳排放量(t)0.4800水光储充配网联600合优化规划模型0.2400Hydropowerphotovoltaic100200charginganddistribution200networkjointoptimization000.0方案2方案30方案2方案3planningmodel方案1方案1方案1方案光伏容量方案2方案3储能容量方案高碳机组方发案电占比The方案水电容量方案水光储匹配容量Matchingproportionofhigh-carbon方案碳排放量Schemecarbonemissioncapacityofwaterandlightstoragegeneratingunitsinthescheme随着光伏容量的增加,所需配置的储能容量随方案光伏容量Photovoltaic水电容量Hydropower储能容量Energystorage碳排放量Carbon之增加,高碳机组的发电占比和碳排放量随之schemecapacity(MW)capacity(MW)capacity(MWh)emission(t)减少。Withtheincreaseofphotovoltaiccapacity,therequiredconfigurationofenergy1420157961206storagecapacitywillincrease,andthe2329153891611proportionofpowergenerationandcarbonemissionsofhigh-carbonunitswilldecrease.3505151176843模型优化结果Modeloptimizationresult25五、面向“电-碳”市场耦合的电力交通网灵活性资源聚合效应挖掘与商业运营模式Flexibleresourceaggregationeffectminingandbusinessoperationmodelofelectrictransportationnetworkfor"electric-carbon"marketcoupling26电-碳市场的耦合机制Couplingmechanismofelectric-carbonmarket研究电力市场与碳市场耦合关系,分析电力市场电能成本随碳排放价格的变化趋势,分析从电力需求到电力供给的市场主体逻辑关系和相互影响关系机理,获取了碳市场对电力市场影响的科学描述。Thispaperstudiesthecouplingrelationshipbetweenelectricitymarketandcarbonmarket,analyzesthechangetrendofelectricitycostwithcarbonemissionpriceinelectricitymarket,analyzesthelogicalrelationshipandmutualinfluencerelationshipmechanismofmarketplayersfromelectricitydemandtoelectricitysupply,andobtainsascientificdescriptionoftheinfluenceofcarbonmarketonelectricitymarket.电力市场与碳市场耦合关系电力市场电能成本随碳排放价格变化分析碳市场与电力市场的交互影响CouplingrelationshipbetweenAnalysisofchangesofelectricitycostInteractionofcarbonmarketandelectricitymarketelectricityandcarbonmarketwithcarbonemissionpriceinelectricity➢传统化石能源发电量越多,碳配额需求越大,碳价升高;CarbonVolumeofmarketThemoretraditionalfossilenergygeneration,thegreaterthepricetransactiondemandforcarbonallowances,carbonpricesriseCarbon➢发电企业碳成本增加,进而拉低企业总体利润水平,企market业装机投建趋于收缩、发电量减少、碳配额需求减少,Electricitymarket最终达到动态均衡。TheincreaseofcarboncostwilllowertheoverallprofitelectrovalencePowersupplylevelofenterprises,andtheinstalledcapacityinvestmentandstructureconstructionofenterpriseswilltendtoshrink,thepowergenerationwilldecrease,thedemandforcarbonquotaswilldecrease,andfinallyreachadynamicequilibrium.碳市场模式下灵活性资源调节能力评估方法Assessmentmethodofflexibleresourceregulationcapacityundercarbonmarketmodel提出电力交通网内灵活性资源的调节能力评估方法:分析价格型需求响应,得到需求响应后的负荷曲线;引入碳交易机制,并将碳交易机制下的碳交易成本作为目标函数的组成部分;最后在满足约束条件下求解出碳交易机制下的灵活性资源调节能力。Thispaperputsforwardamethodtoevaluatetheadjustmentcapacityofflexibleresourcesinelectrictransportationnetwork:analyzingthepricedemandresponseandobtainingtheloadcurveafterthedemandresponse;Introducethecarbontradingmechanism,andtakethecarbontradingcostunderthecarbontradingmechanismasacomponentoftheobjectivefunction;Finally,theflexibleresourceadjustmentcapacityunderthecarbontradingmechanismissolvedundertheconstraintconditions.PowerpurchasecostFlexibilityof负荷平衡约束Pe−Pe+Pe−PeresourceLoadbalanceb,ts,tWT,tHP,tCarbontradingcostregulationunderconstraintConsidertheloadOperationandcarbonmarket+PCeHP,t+Pe,dis−Pe,chcurveafterthemechanism水光出力约束ES,tES,tPricebasedmaintenancecostWaterandlightdemandresponsedemandresponseObjective碳市场机制下outputconstraints=Pe0+PCeL,t+Lrt,eInitialloadfunction的灵活性资源L,t调节能力PePWeT,F;PPeV,tPPeV,FWT,t()可削减负荷ej−0je024储能充放电约束变化量PCL,t=PCL,tECLt,jConstraintsonchargingandLoadReductionAvailablej=10jdischargingenergystorageConstraint()可转移负荷ee024j−0jconditionPSL,t=PSL,tESLt,jinPEinSoutPout变化量j=10jSES,t+1=SES,t+ES,t,t+ES,tES,tTransferableloadPromotionalArticleaddedbytheECE,notincludedintheoriginalslidesEnergyConversionandEconomicsReceived:1August2022Revised:30November2022Accepted:30November2022DOI:10.1049/enc2.12074REVIEWOverviewofcollaborativeresponsebetweenthepowerdistributionnetworkandurbantransportationnetworkcoupledbyelectricvehicleclusterunderunconventionaleventsYingWangYinXuJinghanHeSeungJaeLeeSchoolofElectricalEngineering,BeijingJiaotongAbstractUniversity,HaidianDistrict,Beijing,ChinaWiththerapiddevelopmentofelectricvehicles,theyhavebecomeanimportantpartofurbandistributionandtransportationnetworks.Thepowerdistributionnetworkandtrans-portationnetworkarecoupledbyelectricvehicleclustersandintegratedthroughstronginteractions,creatingacoupledsystem.Thispaperpresentsthestudyontheircollaborativeresponsesisessentialtoreducelossesandimproveurbanresilienceduringunconven-tionalevents.First,themultidimensionalanddeep-leveltime-varyingclosed-loopcouplingeffectsofthepowerdistributionnetworkandurbantransportationnetworkcoupledbyelectricvehicleclustersareanalysedunderunconventionalevents.Second,basedonthedifferentscalesofunconventionalevents,asummaryofrelevantstudiesismadeonthecollaborativeresponsestrategiesofthecoupledsystemtourbanlocalpoweroutagesandlarge-scaleblackoutsfollowingunconventionalevents.Finally,futureresearchdirectionsarediscussed.KEYWORDSelectricvehicles,extrmeevents,interdependency,powerdistributionnetwork,resilience,urbantransportationnetwork碳市场模式下灵活性资源调节能力评估方法Assessmentmethodofflexibleresourceregulationcapacityundercarbonmarketmodel以供需平衡为目标,建立灵活性资源的调节能力评估模型。应用分时电价算例计算需求响应下灵活性资源对系统负荷调节的贡献,验证了所提出灵活性资源调节能力评估方法的有效性。Aimingatthebalanceofsupplyanddemand,amodelforassessingtheadjustmentcapacityofflexibleresourcesisestablished.AnexampleofTOUisusedtocalculatethecontributionofflexibleresourcestosystemloadregulationunderdemandresponse,andtheeffectivenessoftheproposedmethodisverified.in+out1ES,tES,tPoutoutPoutPoutoutES,tES,tES,minES,tES,max功率容量约束inPin模型输入ModelinputPowercapacityconstraintES,tES,minPininPinES,tES,tES,maxinPEinSPoutoutSES,t+1=SES,t+ES,t−ESES,tSES,minSES,tSES,maxSES,0=SES,1供需平衡约束Pe−Pe+Pe−Pe+Pe+Pe,dis−Pe,chb,ts,tWT,tHP,tCHP,tES,tES,tSupplyandPe0PCeL,tLrt,edemandbalance=L,t++constraint灵活性资源的约束灵活性资源调节能力评估结果ConstraintsonflexibleresourcesResultsoftheassessmentoftheabilitytoadjustflexibleresources碳市场模式下降碳贡献评估Carbonmarketmodeldeclinescarboncontributionassessment提出基于全生命周期评估的降碳分析方法。通过对比不同灵活性资源参与调节的情景和煤电情景间对应碳排放的差额来评估一个典型日内的降碳贡献,提出降碳效益计算方法。Acarbonreductionanalysismethodbasedonthewholelifecycleassessmentisproposed.Thecarbonreductioncontributionofatypicaldaywasevaluatedbycomparingthecarbonemissiondifferencebetweenthescenarioswithdifferentflexibleresourcesandthescenarioswithcoalpower,andthecalculationmethodofcarbonreductionbenefitwasproposed.降碳效益=电网电量边际碳排放因子的平均值-灵活性资源的碳排放总量/总发电量CarbonreductionAveragevalueofmarginalcarbonTotalcarbonemissionsTotalgenerationbenefitemissionfactorofpowergridfromflexibleresources电量边际排放因子250000totalMarginaldischargefactorofelectricity2000001500002019年0.8587tCO2/MWh100000105772.372018年0.8770tCO2/MWhkgCO250000PVhydro37745.8502017年0.9014tCO2/MWh91237.57storage105772.3791237.572016年0.9229tCO2/MWh光伏37745.852015年0.9515储能水电总计tCO2/MWh灵活性资源降碳效益评估结果水光出力曲线2015-2019年四川省电网电量边际排放因子表AssessmentresultsofcarbonreductionbenefitsofflexibleresourcesWaterandlightoutputcurveTableofmarginalemissionfactorsofpowergridinSichuanProvincefrom2015to2019六、结语Conclusion31结语与展望Conclusion➢引入了深度学习算法LSTM利用降雨量和水电出力时间序列构建了水电出力的上时间尺度预测模型,算例表明所提出的基于LSTM的水电出力预测模型预测MAPE为13.4%。ThedeeplearningalgorithmLSTMwasintroducedtoconstructthehydropoweroutputpredictionmodelontheuppertimescalebyusingtherainfallandhydropoweroutputtimeseries.TheresultsshowedthatthehydropoweroutputpredictionmodelbasedonLSTMproposedinthisprojectpredictedtheMAPEof13.4%.➢考虑光伏和分布式小水电后,购电成本明显减少,但弃光、弃水惩罚成本较高;考虑储能运行特性后,弃光、弃水惩罚成本明显减少,储能有效提高了可再生能源的消纳能力。Consideringphotovoltaicanddistributedsmallhydropower,thecostofelectricitypurchaseissignificantlyreduced,butthepenaltycostofabandoninglightandwaterishigher;Afterconsideringtheoperationcharacteristicsofenergystorage,thepenaltycostofabandoninglightandwaterissignificantlyreduced,andenergystorageeffectivelyimprovestheabsorptioncapacityofrenewableenergy.➢在电力系统节点上增加可再生能源有助于降低电力系统的碳排放,使得电力系统的能源结构更为多样化,有助于降低对传统能源的过度依赖,对气候变化产生积极影响。Theadditionofrenewableenergyatthenodesofthepowersystemcanhelpreducethecarbonemissionsofthepowersystem,maketheenergystructureofthepowersystemmorediversified,helpreducetheover-dependenceontraditionalenergysources,andhaveapositiveimpactonclimatechange.➢提出基于全生命周期评估的降碳分析方法。通过对比不同灵活性资源参与调节的情景和煤电情景间对应碳排放的差额来评估一个典型日内的降碳贡献,提出降碳效益计算方法。Acarbonreductionanalysismethodbasedonthewholelifecycleassessmentisproposed.Thecarbonreductioncontributionofatypicaldaywasevaluatedbycomparingthecarbonemissiondifferencebetweenthescenarioswithdifferentflexibleresourcesandthescenarioswithcoalpower,andthecalculationmethodofcarbonreductionbenefitwasproposed.3233Received:29November2022Revised:24February2023Accepted:28March2023EnergyConversionandEconomicsDOI:10.1049/enc2.12088REVIEWAnanalysisofdistributionplanningunderaregulatoryregime:AnintegratedframeworkAprajayVermaKShantiSwarupDepartmentofElectricalEngineering,IndianAbstractInstituteofTechnologyMadras,Chennai,Distributionsystemplanningisamultifacetedtopicinvolvingfinancial,regulatory,andTamilnadu,Indiasystemlevelanalysis.Thewidenatureofthetopicwarrantsaholisticstudyconsideringallaspectsofanalysis.ThedistributionutilityisanaturalmonopolythatissubjectedtoutilityCorrespondenceregulation.TheregulatorcanimpactcustomerexperiencebystrategicallyinfluencingtheAprajayVerma,DepartmentofElectricalplanningdecisionsoftheutility.Hence,thispaperreviewstheexistingutilityregulationEngineering,IndianInstituteofTechnologyMadras,methodsinthecontextofthedistributionsystemandtheirefficacyinimprovingcertainChennai,Tamilnadu,India.reliabilityandefficiencyobjectives.Atwo-bussystemisusedtodemonstratetheimpactEmail:ee16d210@smail.iitm.acinofclassicalmodelsinalleviatingreliabilityandefficiencyissuesthroughdemandresponse.Further,areviewisconductedondistributionsystemplanningmodelswithoutaregulatoryregime,andsuitablemodelsforholisticanalysisareidentified.Atwo-personcompleteinformationregulatorandutilitygamewithacomprehensivedistributionsystemmodelatthelowerlevelisproposed.AframeworkbasedontheMixedIntegerBilevelLinearProgram(MIBLP)isdiscussedtofindtheequilibriumpointoftheproposedgame.KEYWORDSenergyeconomics,investmentandplanning,operationandoptimization1INTRODUCTIONtricity;therefore,theutilityhastoconductnetworkexpansionplanningtocatertofuturedemand.TheutilitycanadoptnewThedistributionsystemistheweakestlinktoapowersystemtechnologywhileservicingtherequireddemandtomaximizeastheyareamajorsourceofcustomerserviceinterruptions;profit.However,theregulatorexercisessomecontrolovertheaccordingto[1],92%ofconsumerinterruptionsintheUSrevenueofDNO.Theamountofrevenuethattheregulatorcancanbetracedbacktoafailureinthedistributionsystem.Theallowtheutilitytocollectdependsontheutility’sinvestmentconsumersconnectedwithMVandLVareusuallysmallscaleplan.Iftheregulator’sbehavioristransparent,theutilitycanconsumerswho,ontheirown,don’thaveanymarketpower.manageitsnetworkinvestmentbasedonthepredictedregu-Sincethefixedcostinvestmentinthedistributionnetworkislator’sreactiontotheinvestment.Beforearatehearingutilityhigh,andtheaveragecostdecreaseswitheachcustomer,theproposesitsinvestmentplan,basedonwhichtheregulatorsetsdistributionnetworkisoperatedasaregulatedmonopoly.DNOtherateforthenextregulatoryhearing.Hence,theregulatorcanmisuseitspositionofmonopolyonsuchconsumers.Henceandutilitymodelsmustinculcateeachother’sreactionswhileappropriateregulationmechanismsarerequiredtoarbitratedecidingrespectiveactions,formingaregulator-utilitygame.onbehalfofconsumerswhilebeingfairtoDNO.IncasestheThistwo-persongameistermedintegrateddistributionplan-retailhasbeenderegulated,thephysicalnetworkisstillownedning.Theframeworkforintegrateddistributionplanningcanbyasingleentity[2].Usually,theregulatorobligatestheDNObeseeninFigure1.Suchastudywouldhelpstrengthenthetoincreaseitsconsumerbasetoensuretheaccessibilityofelec-distributionsystemtoadaptnewtechnologies.ThisisanopenaccessarticleunderthetermsoftheCreativeCommonsAttribution-NonCommercial-NoDerivsLicense,whichpermitsuseanddistributioninanymedium,providedtheoriginalworkisproperlycited,theuseisnon-commercialandnomodificationsoradaptationsaremade.©2023TheAuthors.EnergyConversionandEconomicspublishedbyJohnWiley&SonsLtdonbehalfofTheInstitutionofEngineeringandTechnologyandtheStateGridEconomic&TechnologicalResearchInstituteCo.,Ltd.EnergyConvers.Econ.2023;4:179–201.wileyonlinelibrary.com/iet-ece179180VERMAANDSWARUPDecisionVariablesInformationVariablesThemaincontributionofpaperare:Network/CustomersRegulatorWillingness1.ThepaperreviewstheexistingliteratureonutilityregulationtoPayReliabilityinthecontextofdistributionsystem.MaximizesTotalTechnicalEfficiencySurplusPerformance2.TheroleofeachregulatorymodelisdemonstratingformetricsimprovingreliabilityandenergyefficiencybytakingatwoPriceInvestmentbussystem;timevaryingfailureratesoflineandtransformerDecisionCostwereconsideredtomodeltheimpactofaging.StructureUtility3.Toconductaholisticanalysis,theregulatoranddistribu-PerformancetionutilitymodelsmustbeshuntedtogetherasaMIBLPMaximizesmetricsframeworkwasdiscussedtosolvesuchagame.ProfitPrice4.AbranchandboundmethodisdiscussedtosolvetheMIBLPmodel.FIGURE1Frameworkforintegrateddistributionplanning.1.2UtilityregulationacrosstheworldTABLE1RegulatorymodelsusedbyEuropeancountries.TheregulatoryexperiencevariesacrossdifferentregionsacrossSnoRegulatorymodelsCountrytheworld.Theregimemayvarybasedoneconomicconditions.TheutilityregulationinNorthAmericafollowsahierarchical1CostplusBelgiumstructure[7],acentralauthorityoverseestheinterstateelec-tricitytransferandlargescalegeneration.Inmostcases,the2IncentivebasedCzechRepublic,France,Germany,statehaspreemptiveauthorityoverlocalgovernments.TheUSTheNetherlandselectricitymarketstructuredoesnotfollowaunifiedapproach.Duetothediscretionarypowerofeachsinglestatelegisla-3Revenue/price-/incomecapPoland,Romania,Slovakia,tor,thereisawidespectrumofregulatorymodels.AsimilarhierarchicalstructureisimplementedinIndia,whereaCERCSweden,TurkeyandaSERCareresponsibleforsettingratesandensuringeffi-cientelectricitymarketoperations.Thedistributionsectorin4CombinationofmodelsFinland,Greece,Italy,Spain,Indiahasbeenanachillesheelofthepowersector,consis-Switzerland,TheUKtentlymakingsignificantlosses(estimatedatRs90,000cr.forFY21)[8,9],institutionalsmartnesslikehigh-qualityregu-1.1Motivationlationmayalleviatesomeoftheweaknessinoperationandinfrastructure.Inliterature,hitherto,theregulatorymodelsanddistributionplanningmodelsaredevelopedindependently,therecontin-InLatinAmerica,usually,acentralregulatorcontrolstheuestobedisconnectbetweenregulatorymechanisms,whichrate-settingaspects.Asophisticatedregulatorytoollikeincen-aredesignedbyeconomistsandnetworkengineersfocusedtiveregulationwerefirstimplementedinChile[10].Theutility’sonphysicalcomplexitiesofelectricpowersystem[3].Hence,profitsincreasedtoasmuchas35%duetotheconsumersanintegratedstudyisrequiredtocapturetheimpactsofnotbeingproperlyinformedofthelowercostofelectricityregulatorypoliciesondistributionnetworkstoquantifytheprocurementduetomarketefficiencyinthewholesalemar-impactofpoliciesoncustomerexperience.Thispaperpro-ket.ThecostofpurchasingelectricityfromGENCOSandvidesamathematicalframeworkcombiningexistingregulatorythevalueaddedofdistributionarethetwomainfactorsthatanddistributionplanningmodels.[4]proposesaframeworkmakeupthepriceofelectricity(VAD).TheVADistypicallytoconductsuchananalysisforrevenuecapregulationandestablishedtoattainaspecifiedrateofreturnforadistributionPBR,whereas[5]proposesaframeworktoconductdistribu-companythatisseentobeconceptuallyefficient.Thepricetionplanningconsideringyardstickregulation.However,thecapapproach,sometimescalledRPI-X,limitstariffincreasesliteraturedoesnotconsideranextensivedistributionmodelbyusingacapthatchangesfollowingpriceinflationlessanXatlowerlevel.Theintegrationofmodernopenaccessbasedfactorthatrepresentsanex-anteestimateoffutureefficiencyconceptsliketransactiveenergyrequireupgradationoftheincreases.communicationandphysicallayerofthedistributionnetwork.ThecurrentframeworkcanbeusedtolayablueprintforaInEurope,theCEERcoordinatesbetweeninter-countryutilityandregulatortoaddmorefeaturesandenablemod-transmissionlinesandregulatesvariousindependentregulatorsernpeer-to-peertransactionsinthedistributionnetworktoforeachcountry.Table1depictstheregulatorymodelsusedbysupportthepenetrationofEVandrenewableenergyoveraeachcountry.fixedtimehorizon[6].Hence,thispaperprovidesanextensivemathematicalformulationofalltheregulatormodelsconsider-Regulatorsallacrosstheglobearefocusedoncreatingingextensivedistributionplanningformulationinlowerlevel.avenuesforutilitiestoinnovateandimplementlatesttechnolo-ThepaperalsoprovidesanMIBLPbasedframeworktosolvegies,bymimickingcompetitiontocreateadistributionsmartthebi-levelmodelwithintegervariablesinboththelevels.gridthatcanmeetsustainabilitygoals.Theproposedframeworkcantestthemodernincentivebasedregulatoryfortheirefficacyinmeetingdesiredcommunitygoals.VERMAANDSWARUP181TABLE2Transformercharacteristicsofvariousalternatives.TABLE3Linecharacteristicsofvariousalternatives.SnoParameterAlternative1Alternative2Alternative3SnoParameterAlternative1Alternative2Alternative31Resistance(p.u.)0.000670.000350.000431Resistance(p.u.)0.00220.00160.00180.00060.00070.00160.00182Reactance(p.u.)0.001215122Reactance(p.u.)0.002210109500007000000.450.323Rating(MVA)7.50.050.023Rating(MVA)10203218021029870191404Investmentcost($)500000224Failurerate(Kl0)(occ/year)0.411151510105Failurerate(Kt0r)0.15Repairtime(𝜏rlep)(min)306Repairtime(𝜏rtrep)(min)2406Investmentcost($)150207Gamma(𝛾tr)27Gamma(𝛾l)18Life(years)(𝛽tr)158Life(years)(𝛽l)101.3CriteriaofselectionforliteratureFIGURE2Failureratewithage.GoogleScholarwastheprimarysurveytool;papersfromIEEE,FIGURE3Twobussystem.JSTOR,Elsevier,Springer,Wiley,andTaylorandFranciswereselected.Literatureondistributionsystemregulationwascol-lineandtransformerwereassumedtobedependentonageaslectedandcategorizedintoempiricalandtheoreticalworks;showninFigure2andFigure3.moreover,sometechnicalreportsofwellknownutilitiesandregulatoryauthoritieswerealsoincludedtocoverimplementa-2.1.2Systemcharacteristicstions.Theclassicalpapersdefiningthetheorybehindregulatorymodelsareincluded,andempiricalevidenceisdrawnfromThesystemcharacteristicsareshowninTable4,whereastheworksinthe21stcentury;empiricalanalysesbeforethe21stdemandresponseandcostvariationduringthedayisassumedcenturywererejected.DistributionsystemplanningliteraturetofollowcurvesinFigures4and5,respectively.wassearched,andliteraturepertainingtooptimalplacementsofcomponentsinthenetworkwasalsoincluded.Theclassical2.2Costofserviceregulationpapersregardingdistributionplanningarecited,andrecentcasestudiesbasedonpapersdoneaftertheyear2000areincluded.ThecostofserviceregulationistheoldestformofutilityTherestofthepaperisdividedasfollows:Section2discussesregulation.Theregulationlimitstheutility’sprofittoafixedclassicalregulatorymodels,andabilevelmodelisconstructedpercentageofservicecost(ratebase).Themodelwasanalyzedfortwobussystemforeachmodelusingsampledata.Section3in[11],andthemodelsolvedforthequantityaregulatedfirmdiscussestheliteratureonthedistributionplanningmodelinwouldproduceunderCOSRconstraints.detail.Section4proposestheframeworkofintegrateddistribu-tionplanning,andliteraturepertainingtoalgorithmsforsolvingMIBLPisdiscussed.2REGULATORYMODELSTheregulatorymodelsfallintofollowingcategories:-1.CostofServiceRegulation(COSR)2.PriceCapRegulation(RPI-X)3.RevenueSharingandProfitSharing4.ServiceQualityRegulation2.1Datausedforillustration2.1.1LineandtransformercharacteristicsThelinecharacteristicsareshowninTable3,andtransformercharacteristicsareshowninTable2.Thefailurerateofthe182VERMAANDSWARUPFIGURE6Consumersurpluswithaninversedemandcurve.TABLE4Systemparameters.SnoParametersValue1Cost(Cbase)($/MWh)2662Activeload(MW)3.620003Reactiveload(MVar)74(Valueoflostload)VOLL10($/Mw-min)7Alternative15Ageofline(𝜒l)(years)Alternative36.5-p6Ageoftransformer(𝜒tr)52(years)e7Regulatoryperiod(years)(h)2e8Currentline7000009Currenttransformer1.814e(990.7)∗20000−1.24∗10−4∗I210DemandcurveQ(p)(MW)70000011DSMinvestment($)12DSMpeakshaving(MW)13DSMrecovery($)14VOLLinvestment($)15DSMinvestmentcap($)(e)FIGURE7MinimumInvestmenttomaintainfirmprofitabilityincomparisontoadjustmentfactor.utility’sprofitbys%ofrevenue.∞maximizeU=∫Q(p′)dp′+(pQ(p)−c2Q(p)−I),(1a)FIGURE4Demandusedforillustration.pFIGURE5Costofpurchasingelectricityusedforillustration.p2.2.1Mathematicalmodels.t.pQ(p)−c2Q(p)−I≤spQ(p),(1b)Theregulatormaximizessocialwelfare,whichisthesumofcon-p≥0.(1c)sumersurplusasshowninFigure6andFigure7andutility’sprofitandisrepresentedin(1a).Theconstraint(1b)limitstheTheutilitymaximizesitprofit,whichisevaluatedasdiffer-encebetweentotalutilityrevenueandinvestmentandfollows(2a)–(2c).maximize(pQ(p)−c2Q(p)−I),I(2a)s.t.I≤K,(2b)I≥0.(2c)Asmentionedearlier,themodelingoftheregulatorisknowntotheutility,andthefinancingandinvestmentdecisionsoftheutilityareknowntotheregulator.Hence,bothagentswouldmaximizetheirownutilityfunctiongiventhebehaviorofanotheragent.ThisphenomenoncanberepresentedasaVERMAANDSWARUP183two-personStackelberggame,whichcanbeformulatedasaTABLE5Profitandpricefordifferentinvestmentlevels.bileveloptimization(3a)–(3e).Sno1Investment($)Profit($)Price($)230.7∞500,000952927.7632.30950,000998182.83maximizeQ(p′)dp′+(pQ(p)−c2Q(p)−I),(3a)∫pps.t.pQ(p)−c2Q(p)−I≤spQ(p),(3b)transformersfromyearswithconstantandexponentialfailurerates.maximizepQ(p)−c2Q(p)−I,I(3c)𝜏′=∑h−𝜒lI≤K∶𝜇,(3d)𝜏average=(𝛽l−𝜒l)∗K0l∗𝜏rlep+𝜏′=1K0le𝜏′𝛾l𝜏rlep+I≥0∶𝜇.(3e)(𝛽tr−𝜒tr)∗K0tr∗𝜏rtrep+𝜏′=∑h−𝜒trK0tre𝜏′𝛾tr𝜏rtrep,(5)(∑𝜏=4𝜏′=1)Since,thelowerlevelproblemislinearinI,wecanreplaceitby𝜏average=3∗0.4∗30+0.4e𝜏∗30+5∗0.1∗240+equivalentKKTconditions.𝜏=1∞(∑𝜏=2)maximize∫Q(p′)dp′+(pQ(p)−c2Q(p)−I),(4a)0.1∗e2𝜏∗240(6)p,𝜇,I𝜏=1ps.t.pQ(p)−c2Q(p)−I≤spQ(p),(4b)𝜏average=2660minTheaveragefailuredurationinthesystemwhentheutility(pQ(p)−c2Q(p)−I)=𝜇K,(4c)decidestoreplacethetransformerwithinvestmentalternative1attheendoflifefortheincumbentis(7).𝜇≥0,(4d)(∑𝜏=4)𝜏aKverage=3∗0.4∗30+0.4∗e𝜏∗30+7∗0.1∗240p≥0,(4e)𝜏=1(7)I≤K,(4f)𝜏akv1erage=1200min𝜇≥0.(4g)Theaveragedurationoffailureinthesystemwhentheutilitydecidestoreplacethetransformerwithinvestmentalternative2attheendoflifeis(8).Byusingcomplementaryconditionsatlowerlevel0≤𝜇⟂∑𝜏=4(I−K)≥0,itcanbeprovedthroughenumerationthatI=K𝜏akv1erage=4∗0.4∗30+0.4∗30∗e𝜏+5∗0.1∗240attheoptimumpoint.Hence,theutilitywillinvestthemaximumamount,irrespectiveofcustomerrequirements.Thisregulation𝜏=1wasmostpopularduringthe1980s,asitincentivizedutilitytoincreaseitscustomerbase,introducingelectricalsupplytomore+2∗0.05∗180(8)areas.However,thisregulationalsopromoteswastefulexpendi-turesandinflatesthepriceofelectricity,asdemonstratedinthe𝜏akv2erage=1181mintwobusexamplesforanincreaseinreliability.However,whenthemodel(4a)–(4g)issolvedforK=500,000$2.2.2Increaseinreliabilityand950,000$asshowninTable5,thepriceofelectricityforcustomersishigherforrelativelymarginalimprovementinqual-Theaveragedurationoffailureinthesystemisgivenby(5)asityofsupplyduetoutility’sproclivitytowardscostlyfixedcostshownin[12].Thefirstsummandof(6)representsthecontri-investmentcorroboratingwiththeclaimthatCOSRpromotesbutionoffailuresofthelinefromyearswherethefailureratewastefulexpendituresfromtheutility.wasconstantasinFigure2.Thesecondsummandrepresentsthecontributionoffailuresofthelinefromyearswherethefail-2.2.3Demandresponseurerateincreasedexponentiallywithtime.Similarly,thethirdandfourthsummandsrepresentthecontributionoffailuresofIftheutilitywantstoreducethecostofpurchasingelectric-ityfromthegridbyreducingthepeakload,thenthedemandresponsecanbeimplementedbyinvestinginsmartmeters.The184VERMAANDSWARUPinvestmentinsmartmetersiscappedate.ThebilevelmodelOnlysolutionthatispossibleis𝜇=0.854.Fromthecomple-(9a)–(9f)modelsratepricesetting,asshownbyTable4,theinvestmentindemandresponseereducedthecostofsupplymentaryconditione=0.□by0.854e.Hence,irrespectiveofpricep,e=0.Theratebaseofthe⎛∞⎞utilityisdecreasedbyimplementingenergyefficiencyschemes.⎜Q(p′)dp′⎟Sinceprofitisproportionaltotheratebase,theutilitywillnotmaximize⎜∫⎟+pQ(p)−c2Q(p)+0.854e(9a)investindemandresponse.Thecritiqueofcostofservicereg-ulationhasbeenwelldocumentedintheliterature[13].Incasesp⎝p⎠theutilityraisescapitalthroughdebt,thecostofservicereg-ulationisindirectlyimplementedifthecosttothecustomers.t.forutilitybankruptcyishigh.Theregulator,inthiscase,wouldhavetoensurethatutilityprofitsremainhigherthantheface(1−s)pQ(p)−c2Q(p)+0.854e≤0,(9b)valueofdebts.Hencecapitalcostisreflectedasdebt[14].More-over,theratesettingprocesscanberepresentedasaNashp≤p,(9c)equilibriumproblembetweencustomersandclaimholders.ThepricemarkupfrommarginalcostinCOSRisinverselypropor-maximizepQ(p)−c2Q(p)+0.854e,e(9d)tionaltodemandelasticity.Thisisalsocalledthesecondbestprice,orRameseypricing[15].Iftheregulatorisnothavinge≤e∶𝜇,(9e)completeinformationonthecostofthepowerprocurementfromtheutility,thenthestackelberggametransformsintoae≥0∶𝜇.(9f)Bayesiangameasin[16].TheBayesianincentivesareimprac-ticaltowardsdirectimplementation;however,theinsightsfromReplacinglowerlevelproblemwithKKTconditions,primaltheirpropertiescanbecombinedwithapracticalnon-Bayesianfeasibilityanddualfeasibilityconstraints.mechanismfortransmissionpricing[17].Therecanbeanincen-tivefortheutilitytodistortforecastedrevenuetomaximize⎛∞⎞theprofit.Toalleviatethisissue,IQIwasusedintroducedby⎜Q(p′)dp′⎟OFGEM.InformationQualityIncentivesisamechanismformaximize⎜∫⎟+pQ(p)−c2Q(p)+0.854e,(10a)settingpricecontrolallowancesusedbyOFGEMthatpro-videsex-anteincentivesforDNOstosubmitaccurateforecastsp⎝p⎠oftheirexpectedexpenditureandprovidesincentivesforeffi-ciencyimprovementsoncethepricecontrolhasbeenset.Thiss.t.(1−s)pQ(p)−c2Q(p)+0.854e≤0,(10b)encouragesutilitiestoproducehighqualityandwelljustifiedbusinessplans[18].p≤p,(10c)pQ(p)−c2Q(p)+0.854e=𝜇∗e,(10d)𝜇−𝜇+0.854=0,(10e)e≤e,(10f)2.3Pricecapregulatione≥0,(10g)AsopposedtotheCOSR,thepricecapregulationcontrolstheupperlimitofthepriceutilitycanchargetocustomers.Athe-𝜇≥0,(10h)oreticalmodelofpricecapregulationwasproposedin[19].Theregulatorsetsanupperlimitonthepricethattheutility𝜇≥0.(10i)canchargethecustomer.Thereforeutilitycanappropriatecostsavingsuntilthenextratecase.2.3.1MathematicalmodelLemma1.Inmodel(9a)–(9f),e=0∀pinfeasibilitysetProof.Duetocomplementaryconditiononlyoneofthe𝜇,𝜇LetautilitywithmarginalcostC(0)reduceitsmarginalcostcanbenonzero.Fromequation10d,10hand10i.byinvestingeandwithmarginalcostC(e).AssumingΔisthe𝜇−𝜇+0.854=0,(11)lagbetweentheinvestmenttimeandwhenthecostreduction𝜇≥0,(12)occurs.TheregulatorsetsaninitialpricecapP0,andanadjust-mentxtakesplaceattimeΔ,withthepricecapatΔbeingP0−x.Iftheutilityprofitisnegative,theutilitymaydemandaratecase,andtheregulatorwillhavetosetaratesuchthattheutilitymakeszeroprofit.Thepricesetbytheregulatoris(14).𝜇≥0.(13)B(P0−x,C)=max{C,P0−x}.(14)VERMAANDSWARUP185Theratesettingprocesscanbedescribedas(15a)–(15g),thex≥x,(16c)(15a)–(15b)isregulator’smodeland(15d)–(15g)utility’sprofit.(16d)The(15a)includesVOLLaswell,whichisafunctionofI.max𝜋(e)=−[P∗]∗(6.5−P∗)∗61320+P∗maxixmize∫Q(p′)dp′+VOLL(I)+P∗∗Q(P∗)e52−∞(P∗)−C(e)∗Q(P∗)−e(15a)1594320∗6.5−52+I−0.815e,e≤e∶𝜇e,(16e)s.t.(15b)−e≤0∶𝜇,(16f)x≥x,(16g)emax𝜋(P∗,e)=[B(P∗,C(e))]Q(B(P∗,C(e)))−e,(15c)(15d)I≤I∶𝜇I,P∗,eI≥0∶𝜇,(16h)P∗≤P0−x,e≤e,(15e)P∗≤P0−x∶𝛽,(16i)−e≤0,(15f)P∗≥0∶𝛽.(16j)P∗≥0.(15g)ThelowerlevelproblemcanbereplacedbyitsequivalentKKTconditions;thelowerlevelformulationisquadratic,andstrongTakingtwobusexamples,assumingP0−xisbinding.dualitywillresultinnon-convexequality.Hence,thelowerlevelisreplacedbycomplementarityconditions,whichcanbesolvedeitherbybranchandboundmethod[20],orbyFortunyMccarlmethod[21].2.3.2InvestmentinreliabilityanddemandP∗(p′)responseConsideringthevalueoflostloadreliabilityinthecon-maxixmize∫6.5−∗61320dp′−(990.7∗20000sumersurplus,thebilevelmodelconsideringreliabilityand52demandresponseinvestmentis(16a)–(16j).Themodelrepre-sentstheRPI-Xforatwo-bussystemwithdatasubstitutedfrom−∞Tables2–4.Theregulatordecidestheadjustmentfactorx,thatallowsthesavingsmadeduetoinvestmenttobepassedonto−1.24∗10−4∗I2)+(P∗)∗(6.5−P∗)∗61320−customeraswell.52(P∗)1594320∗6.5−52−I+0.815e,(17a)P∗(p′)maxixmize∫6.5−∗61320dp′−(990.7∗20000−s.t.52[P∗]∗(6.5−P∗)∗61320−1594320∗(6.5−P∗)−I+−∞1.24∗10−4∗I2)+(P∗)∗(6.5−P∗)∗613205252520.815e≥0,(17b)(P∗)−1594320∗6.5−52−I+0.815e,(16a)x≥x,(17c)s.t.2P∗∗61320−1594320+𝛽−𝛽−6.5∗61320=0,(17d)(P∗)∗(6.5−P∗)∗61320−1594320∗(6.5−P∗)−I52525252+0.815e≥0,(16b)1+𝜇I−𝜇I=0,(17e)186VERMAANDSWARUP−0.815+𝜇e−𝜇e=0,(17f)TABLE6ClassificationofmethodsforbenchmarkingofXfactor.0≤𝜇I⟂(I−I)≤0,(17g)0≤𝛽⟂(P∗−P0+x)≤0,(17h)SnoBenchmarkingMethodLiterature1Dataenvelopmentanalysis(DEA)[38–47]2Stochasticfrontieranalysis(SFA)[28,31,35,41,43,47–50]3Conditionalordinarylinearsquares(COLS)[43,51]0≤𝜇⟂(−I)≤0,(17i)2.4RevenuesharingI0≤𝛽⟂(−P∗)≤0,(17j)Revenuesharingisanotherformofyardstickregulation;theutilityhastoshareaportionofrevenueasaconsumerdivi-0≤𝜇e⟂(e−e)≤0,(17k)dendbeyondaparticularbenchmarkrevenue.Asutilityisstillallowedtokeepsomepartofexcessrevenue,ithasanincentive0≤𝜇⟂(−e)≤0.(17l)toreducethecostofsupplybyinvestinginthenetwork.More-eover,theutilitiesmightbelessinterestedinlobbyingforhigherpricesasshownthroughmodel(18a)–(18g)whichisbasedonIfthemodelissolvedforP0suchthatutilityprofitissetat[25].The𝜋andRisbenchmarkprofitandrevenue,the(18e)10%ofitstotalrevenue,theoptimalinvestmentinreliabilityincludestermsminimizingtheexcessrevenuetheutilityhastois0,evenwithxas0.Itexposesthedrawbackofthisregu-sharewithcustomer.latorymethodasreliabilityimprovementsforcustomersmightnottranslatetohigherreturnsforutility.∞(p′)Ifthetransformedmodel(17a)–(17l)solved.Itisdemon-Maximize∫6.5−∗61320dp′−stratedthatthehighertheadjustmentfactor,themore52investmenttheutilityisforcedtomaketheirventureprofitable.pHowever,iftheadjustmentfactoristoohigh,theutilitywillnotmakeanyinvestment.Thiseffectissimilartotheproofin[19].pThepricecapregulationiscalledRPI-Xregulation,where(990.7∗20000−1.24∗10−4I2)+Xistheefficiency/adjustmentparameter.Theefficiencyfactorusuallyimpliesthatautility’saveragepriceforabasketofits(p)(p)outputsisassumedtodependonthecostofitsownactivity[22].TheanalysesfortheUKgovernmentdivulgedthatRPI-X[6.5−52∗p∗61320−1594320∗6.5−52−islessvulnerablethancostplusregulationinacontextofinef-ficiencyandover-capitalization[22].AconsequentstudywasI+0.854∗IDSM−𝜋],(18a)doneonItalyaswell[23].ATornquistindexasameasureofhistoricalproductivitygrowthofthesectororentireeconomy(p)(p)insettingtheefficiencyfactorXwasreportedin[24].Thedraw-backofpricecapregulationwasfoundin[25].Itwasproved6.5−52∗p∗61320−1594320∗6.5−52thatthepricecapregulationwithdownwardpriceflexibilitypro-videsweakincentivestoacquireinformationaboutcosts.The−I≥𝜋,(18b)regulationstyleincorporatingbenchmarkingcomesundertheumbrellaofyardstickregulation.Underyardstickregulationit(p)isalwaysoptimalforlowperformingutilitiestoinvestincostreductiontechnologiesuntiltheoperationalcostbecomesequal61320∗p∗6.5−≥R,(18c)toanaveragecostofsimilarutilities[26].Unlike,(16a)–(16e),52theX-factorisevaluatedthroughbenchmarking.Sincetheutil-(p)(p)itieshavealotofheterogeneityamongstthemselves,evaluatingafairbenchmarkisachallengingproblem[27,28].Maximize6.5−∗p∗61320−1594320∗6.5−,I5252ThebenchmarkingtechniquescanbecategorizedintoDEA,SFAandCOLSasshownintheTable6.Usually,forcost(18d)efficiencyTFPisquantifiedasMalmquistIndex[29,30]and−I+0.854∗IDSM−(1−𝛼𝜋)∗(p∗(6.5−p)∗61320−TornqvuistIndex[30,31].Apartfromtheliteraturementionedhitherto,theimplementationofRPI-Xregulationwasalsostud-52iedforBrazil[32],Ukraine[33],Sweden[34],Japan[35,36],andIndia[37].(p)1594320∗6.5−52−I−𝜋)−(1−𝛼R)∗((6.5−p)∗p∗61320−R),(18e)52I≤K∶𝜇,(18f)IDSM≤KDSM∶𝜇DSM.(18g)ThemodelcanbesolvedbyreplacinglowerlevelproblembyKKTconditionssimilarto(17a)–(17l).Theresultoftherevenuesharingisshownforπ=10000$andR=1594320$inFigure8fordifferent𝛼𝜋and𝛼R.Thelower𝛼Rpushestheregulatedpriceupasutilityisnotallowedtoappropriateexcessrevenue.Thisalsodemonstratesthatforappropriatevaluesof𝛼R,theVERMAANDSWARUP187TABLE7ProfitandInvestmentdecisionforpenaltyfactorinSQRdemonstration.SnoPenaltyfactor($/min)InvestmentDecisionProfit($)10None1.24∗106Linealternative11.20∗1062100Linealternative20.9∗106Transformeralternative11.1∗10631000Transformeralternative32.2∗1064200059900FIGURE8Regulatedpricefordifferent𝛼𝜋and𝛼R.dependingupontheutility’sperformanceintheregulatoryperiod.utilitywon’tbeincentivizedtolobbyforhigherpricesandcanalsotakesomeportionofcostsavings.Theinvestmentinrelia-(p)(p)bilityisI=0,andthedemandresponseisIDSM=KDSM.Therevenuecapregulation,likepricecapregulation,doesnotincen-maximizep6.5−∗52560−1366560∗6.5−tivizeimprovingqualityandsecurityofsupplybecauseallthexd5252extracostreducesprofit.ThiseffectwasobservedforFinnishutilitiesin[52].−I+RP,(19a)Modelingtherevenuesharingregulationforthetelecommu-RP=a∗(SAIDI−SAIDI),(19b)nicationindustrywasdone,anditwasclaimedthatearningsharingplansareemployedin(Colorado,Connecticut,Florida,I∑(19c)Georgia,Kentucky,Tennessee,andTexas)[53].ModelingtheSAIDI=Idxd,(19d)profitsharingschemeasthedynamicgamebetweenafran-(19e)chiseholderandowner,thedrawbackofrevenueregulationwasd∈Ωdstatedasprofitsharingprescriptionswouldrequireauditedcostinformationtocalculateallowableprofitlevels,whichareusu-∑allydifficultforaregulatortocollect[54].ADEAmodelwas=SAIDIdxd,usedtoevaluatetheRevenuecapfor123distributionfirmsinNorway[55].Thestudyofqualityregulationofelectricitydis-d∈ΩdtributionintheNetherlandsinferredthatarevenuecaphastheadvantageofallowingnetworkoperatorstosetindividualtariffs∑[56].xd≤1,2.5ServicequalityregulationdSincetheclassicalmethodsdiscussedhithertocannotencour-xd∈{0,1}∀d∈Ωd.(19f)ageutilitiestoimprovereliabilityeffectively,powerqualityfactorssuchasreliabilityaredirectlycoupledwiththeutil-Assumingthepricewassetapriorias30$/MWh,andSAIDIisityprofitsalongwithclassicalmodelsmorphingtheclassicalmodelintoSQR.ThePBRisthemostcommonimplementa-usedasanindex,thebenchmarkvalue,SAIDI,waskeptat1400tionofSQR[57].InPBR,theutilityispenalizedorrewardedmin.Theimpactofpenaltyfactor,a,intheutilitydecisionwasbasedonameasurableperformancemetric.TheservicequalityshowninTables7and8.Thehighvalueofthepenaltyfactorregulationalsocomesundertheumbrellaofyardstickregula-mayleadtohigherinvestmentand,consequently,betterreliabil-tion[58]sincetheservicequalityisbenchmarkedastechnicality.However,afinanciallystressedutilitywithlittlepurchasingefficiency.Hence,thepricecapregulationcanbedirectlycapacitycangetstressedevenfurther,leadingtofinancialinsol-extendedintoSQRasRPI+X+Z,whereZisthequal-vency.Ifthepenaltiesarerelaxed,therewardhastobepaidityfactordeterminedbytechnicalefficiency,andXisacostasalumpsumppaymentassubsidiesareexogenousofthefactordeterminedbycostefficiency.(19a)–(19f)modelsutilitycustomer-utilityinteraction.Hence,theregulatormustrestrictprofitmaximizationunderPBR,theRPisthereward/penaltyitspenaltyfactorthatishighenoughtonudgeutilitytoimprovewhichisdependentonSAIDI(19b).Itwasassumedthatreliabilitybutnottoohightocausemajorfinancialdistress.thepaymentcorrespondingtoZwouldbemadeex-ante,InUSPBRmaymakeuseofaslidingscalemethodwherethereisadead-bandaroundatargetrateofreturn.There-fore,theslidingscalemethodcanbeviewedasaformofaveragebenchmarking[59].[22]evaluatesthetechnicaleffi-ciencyoftheUKpowernetwork.Ex-antepaymentforqualityregulationisusedinGermany[46].Distributionplanningcon-sideringreliabilityevaluationandPBRisconductedin[60–62].Thequalityofnetworkandqualityoftheconsumedservicesaretypicallyimportantforconsumers,butnotnecessarilytothesameextent.ItwasconcludedthatregulatorsshouldsethigherincentiveratesforhigherreliabilitylevelsinsteadofafixedincentiveforastudydoneforChina[63].AfrontierbasedmethodforevaluatingNPAMforSwedishutilitieswasstudied188VERMAANDSWARUPTABLE8Comparisonofdifferentregulatorymodels.SnoAttributesCOSRPriceCapRegulationRevenueSharingServiceQualityRegulation1MainpremiseTheregulationentailslimitingTheregulatorsetsanupperTheutilityisstillallowedtoPowerqualityfactorssuchasprofitoftheutilitytoafixedlimitofpricethatutilitycankeepsomepartofexcessreliabilityaredirectlycoupledpercentageofcostofchargecustomer,thereforerevenue,ithastheincentivewithutilityprofitsandclassicalprovidingservice(rateutilitycanappropriatecosttoreducethecostofsupplymodels.base).savingsuntilthenextratebyinvestinginthenetwork.case.2AdvantagesEasiesttoimplementPromotesinvestmentinenergyAsutilityisstillallowedtoPBRhaveaddedadvantage,astheefficiencykeepsomepartofexcessperformancemetriccanberevenue,ithastheincentivechosenaprioribytheregulatortoreducethecostofsupplytonudgeutilitiesinthedirectioninvestinginthenetwork.ofsocialissues.3DrawbacksPromoteswastefulPricecapregulationwithTherevenuecapregulationRelativelyhardtoimplement.expendituresandinflatesdownwardpriceflexibilitylikepricecapregulationdothepriceofelectricity.providesweakincentivestonotincentivizeforacquireinformationaboutimprovingqualityandcosts.securityofsupplybecauseallextracostreducedprofit.4ImplementationsEarliestformofregulation,TheRPI-XwasimplementedRevenuesharingisTechnicalefficiencyoftheUKbuthavebeenphasedout.inBrazil[32],Ukraine[33],implementedin(Colorado,powernetwork,ex-anteSweden[34],Japan[35,36],Connecticut,Florida,paymentforqualityregulationisandIndia[37].Georgia,Kentucky,usedinGermany[46],afixedTennesseeandTexas)[53],incentivestudywasdoneforinNorway[55]andtheChina.AfrontierbasedmodelNetherlands[56].forevaluatingNetworkPerformanceAssessmentModel(NPAM)forSwedishutilitieswasstudiedin[64].in[64],andareferencenetworkwascreatedinthecontextofthemodel.Therearesomeotherexogenousfactorswhichcanincentiveregulation.beincorporatedintwo-persongame:-Theutilitieshaveaddedresponsibilityformaintainingenergy1.BiasedRegulator:-Theregulator’sbiastowardsthecon-efficiencyandincludingrenewableenergy.PBRhasaddedsumer’swelfareandutilitywelfarecanbemodeledbyaddingadvantage,astheperformancemetriccanbechosenaprioribyaweightingfactor.theregulatortonudgeutilitiesinthedirectionofsocialissues.However,modelingthePBRtoselectappropriateparameters𝛾∗ConsumerSurplus+(1−𝛾)∗UtilityProfit,(20)ischallengingsinceitrequiresextensivemodelingdistributionsystemplanningandreliabilityevaluation.Hence,thefollowing0≤𝛾≤1.(21)sectiondiscussestheliteraturefordistributionsystemplanning,andlateraframeworktointegratePBRregulatorymodelwithHowever,therearenoempiricalmethodsquantifying𝛾thatplanningmodelsisproposed.Theinformationabouttherev-reflectsthebias.enueforecastoftheutilitycanchangethepricethataregulator2.BayesianGame:-Incasesthetransparencybetweenutil-allowsautilitytochargethecustomer.Therate-settingprocessityandregulatorisnotthere,theycanmodeleachotherhasbeenmodeledinliteratureasatwo-persongameextensivelybyinformationsetsandaprobabilitydistributionover[65].SincethemodernregulationincludesPBRinthesurplusthosesets.However[17]mentionedBayesianincentivesareformulationofaregulator,theutilityhastoincludethedis-impracticalfordirectimplementation,theinsightsfromtheirtributionplanningandoperationmodelinitsformulationtopropertiescanbecombinedwithpracticalnon-bayesianevaluatethevalueofrelevantperformancemetrics.Compari-mechanisms.sonofdifferentregulatorymodelsisprovidedinTable8.Theauthorsagreethereareotherstakeholdersengagedinthisdis-3DISTRIBUTIONSYSTEMPLANNINGtributionplanningprocess.Theequilibriumpointsobtainedbythetwo-playergamecanbeusedtotestvariousregulatorypol-Theclassificationofliteraturefordistributionplanningisshownicyhypotheses;eventhoughtheactualquantitiesmaychangeinFigure9.fromtheoneusedinthemodel,thequalitativeresultregardingtheregulatorypolicywillstillremaintrue.Forexample,COSRmodel(3a)–(3e)willdemonstratethepropensityofpolicytopromotewastefulexpenditureirrespectiveofquantitiesusedinVERMAANDSWARUP189[98][130][141][185][147,134][72][98][141][121][178][233][232][141][178][78][104][234][131][158][93][231][81][174][177][139][202][160][131]73[104][78][230][91][235][132][181][87][105][171][97][168][101][169][141][142]FIGURE9Classificationofliteratureindistributionsystemplanning.3.1Classificationaccordingtouncertaintymentcostcanbemanagedbychance-constrainedoptimization,handlingallowingtheconstraintstobeviolatedwithsometoleranceprobability.Sincethevariablessuchasloadgrowth,solarirradiationandwind-speedcanbeperceivedasrandomvariablesandhenceare3.2Classificationaccordingtoformulationtoberepresentedbyvariousuncertaintymodelingtechniques,structurethesetechniquesaredividedintotwoparts:1)UncertaintySet2)Scenarioformation.Theuncertaintysetmodelsrandomvari-Thestructureofanoptimizationproblemoftendecidestheablesastherangeofvalues,andtheoptimizationproblemsolverandguaranteesoptimality.Intheliterature,thesolutionisusuallysolvedfortheworstpossibleresult.Thistechniquemethodologyisclassifiedandorderedaccordingtotheeaseofgettingtheworstpossibleresultisalsoknownasrobustofsolvingasfollows:i)LP,ii)MILP,iii)MISOCP,andiv)optimization.Thismethoddoesnotrequiretheprobabilitydis-MINLP.LPisthemostsoughtafterformulationasithasthetributionfunctionofaninputvariable.Thescenariosrepresentmostreliablesolvers.However,thedistributionsystemplanningthespecificpointsoftherandomvariable,witheachpointhav-problemusuallyhasACOPF,whichisanon-linearproblem.ingaprobabilityassignedtoit.ThismethodalsoincorporatesHence,anapproximationorrelaxationisrequiredtoconvertIPF[66]thatusesaffinearithmetictosolvepowerflowequa-theproblemintoLP.First,suchapproximationwasproposedtions.Thescenarioscanbecreatedbythefollowingmethods:1)in[71]tosolvetheoptimalplacementofthecapacitor.How-HMM[67];2)2mPEM[68];3)FuzzyC-Means[69];4)k-meansever,sinceequipmentplacementisitselfanintegervariable,[70];and5)PDFDiscretization.TheHeuristicMomentMatch-linearprogrammingcansolveonlythesizingpartoftheprob-ing,orHMM,generatesscenariosbydecomposingthejointlem.TheMILPcanmodeltheplacementofequipmentbydistributionintomultivariateproblemsintounivariateones.anintegerproblem.TheMILPdoesnotguaranteeoptimal-The2mPEMgenerates2mpointsandtheirweightstogen-ity;however,commerciallyavailablesolverslikeCPLEXcaneratethemomentsoftheoutputvariable.The2mPEMcangivereliablesolutions.Thenon-convexpartofACOPFcanalsobeusedtogenerateacompleteprobabilitydistributionbelinearizedbyasimilarmethodin[72]andcansufferfromoftherandomvariable.FuzzyC-meansandk-meansareboththesameflawsofapproximation.However,adifferentdis-clusteringtechniquesusedtofindthemosttypicalpointdenot-cretizationbasedapproximationwithintegervariablescanbeingascenariowiththeirprobability.ThePDFdiscretizationconstructedasin[73],whichistighterthanlinearprogramming.involvescalculatingtheareaunderacontinuousprobabilitydis-TheMISOCPusestherelaxationproposedin[74,75],thenon-tributioncurvetoevaluatetheprobabilityofvariousintervalsconvexpartofACOPFisrelaxedbyasecondorderconebyofarandomvariable.Inextremescenarios,thehighinvest-190VERMAANDSWARUPrelaxingpowerflowinbranchconstraint,theplacementisstillrequiredtosupplyfutureloads.Inthecaseofmulti-stageopti-modeledasanintegervariable.Insomecases,duetoadditionalmization,theinvestmentsaremadeacrossdifferentstages,timeconstraints,noneoftherelaxations/approximationsmentionedstepsinplanninghorizonstocompareamongvariousinvest-hithertosuffices.Inthosecases,metaheuristicalgorithmslikementoptionsandtoweighthefutureoperationcosts;reliabilityGA[76–86],PSO[87–94],orothernon-linearsolverslikecosts;andoperationandmaintenancecosts,theNPVisusedinIPOPTcanbeusedtosolvetheproblem.Thelevelofdetail[5,76,78–80,91,95,102–112].TheNPVtakesthedifferenceandtightnessofthemodelusuallyfollowsanoppositepatternbetweenthepresentvalueofcashflows,andthepresentvalueofeaseofsolving.ofcashoutflowsin(23).3.3Inclusionbasedonreliabilityconstraints∑Cti∑CtoNPV=(1+r)t−(1+r)t.(23)Sinceindistributionplanning,theDISCOMShavetomain-tainacertainreliabilitystandard.Theproblemofreplacingttobsoletefeedersandtransformerswithnewequipmentcanalsoberationalizedasadecisioninpursuitofobtainingbet-TheNetPresentvaluewasfurtherclassifiedintothefollow-terreliabilityforthesystem.Thereliabilityevaluationisdoneingcategoriesi)TheNetpresentvalueofexpansion(TPV)ii)bysolvingtheunderlyingfinitestateMarkovchain.Anempir-Netpresentvalueofmaintenance(MPV)iii)NetpresentvalueicalformulaforSAIDIisproposedin[95].However,Supposeofoperation(OPV)iv)LoadSheddingPresentValue(LSPV).thedistributionsystemisbeingoperatedradiallywithasin-glesupplypoint.Inthatcase,theaveragefailureprobabilityIRRwasmaximizedin[104].IRRistherateofreturnwhenoffeederscanbeevaluatedbyjustsummingtheaveragefail-NPVbecomeszero.TheIRRisusediftheinvestorshavetoureprobabilityofallupstreamcomponents[96,97],thereforeestablishiftherateofreturnismorethantheMARR.Hence,representingreliabilitymetricsasalinearequation.However,theutilitycandiscardanexpansionplanifIRR<MARR.aMILPbasedformulationtoevaluateEENSandSAIFI’sreliabilityindicesinbi-directionalpowerflowisproposedAnothermetric,BCRwasusedin[96,113].Thebenefitcostin[98,99].ratiogivestheratioofpresentvaluesofcashoutflowsandinvestmentdecisions.3.4Inclusionbasedonradialityconstraints3.6ClassificationbasedondevicesThedistributionsystemusuallyoperatesinradialmode;sinceinThedistributionsystemplanningcansolveinvestmentdecisionsdistributionsystemplanning,thenetworktopologyisconstantlyofanycomponentthatcanalleviatetheincreasingdemand.Pre-evolving,andnewfeedersareaddedtotheplanninghorizon,itdominantly,thedevicesarecategorizedintothefollowingparts:becomesimperativetoimposetheradialityconstraintsinthe(i)FeederAddition/Replacement,(ii)SubstationPlanning,(iii)optimizationproblem.TheradialtopologycorrespondstotheDistributedGeneration,(iv)EnergyStorage(v)ElectricVehi-tree.NecessaryandsufficientconditionforagraphGwithnbcles.TheliteraturediscussinganyoneofthecategoriesisgivenverticesandneedgesisinTable10.TheincreaseininterestinplanningdistributedGeneration,energystorage,andelectricvehiclescanbeseenne=nb−1,(22)overtime.Aplanningproblemcantakeintoaccountmul-tipledevices.ThecorrelationisgiveninTable9.SincetheandgraphGisconnected.Inthecontextofdistributionsystemfeederaddition/upgradationisrequiredtokeepthelinelim-planning,the(22)canbetestedbyintroducingbinaryvariablesitsincheck,thesubstationplanningisrequiredtoaddnewcorrespondingtoeachbranch,whereastheconnectedconditiontransformerstomanagethesystemcapacity.TheDistributedforasinglesubstationcanbetestedbyimplementingKCLasGeneration(DG),ifcoupledwithfeederplanning,candeferin[98].Inordertotestformultiplesubstationsanddistributedtheinvestmentinnetworkinfrastructure.Thistypeofplanninggeneration,[100]proposedconditionsforradialitybyusingdualisknownas“planningwithNon-WiresAlternative(NWA)”graphs,the[101]solvestheproblembyexploitingtheproperty[211].Theco-planningofenergystoragewithdistributedGen-thatatreecanbeobtainedbytakinganyoneofthesubstationerationisusuallystudiedtoreducethedependenciesofthenodesastherootnode.distributionsystemfromimportingpowerfromthewholesalemarketbymanagingtheintermittenciesofdistributedGener-3.5Classificationbasedonfinancialmetricsation.[212]proposedaGISbasedenergystorageplanning.ItwasestablishedthatenergystorageistheeconomicallyandThefundamentalmotivationforinvestmentbyaDISCOMortechnicallymostprudentoptiontomitigatethevariablepowerDGENCOistomaximizetheanticipatedprofitthatcanbedemandcausedbyplug-inelectricvehicles.Hencerelativelymadeasaresultoftheinvestment;thiscanminimizethecosthighercorrelationcanbeseenbetweenEVswithenergystor-age.ApartfromthedevicesgiveninTable10,reactivepowermanagementdevicessuchasdistributioncapacitor[82,86,140,150,213–217],voltageregulator[81,130,185,218,219],andVERMAANDSWARUP191TABLE9Correlationininclusionofsimultaneousplacementofdevicesforplanning.EV7.5%FeederAddi-SubstationDistrib-utedEner-gy5.5%tion/ReplacementPlanningGenerationStorage2.7%15.38%FeederAddition/Replacement100%39.6%30.3%9.4%100%SubstationPlanning58.3%100%27.7%5.5%DistributedGeneration27.5%17.2%100%5.7%EnergyStorage29.4%15.38%23.07%100%ElectricVehicles66.6%33%33%33%TABLE10Theclassificationofliteratureaccordingtodevices.<20002000-20102010-presentFeederaddition/replacement/upgradation[114–118][119–123][73,76,78,79,81,82,91,95,103–105,124–149,150–155]Substationplanning[117,118,156][84,119,120,123][78,79,82,89,91,98,104,107,110,125–128,130–132,135,139,140,Distributedgeneration[117][164]144,146,157–163][72,77,79,83,87,89,90,92,96–99,102,103,107,110,112,124,126,EnergystorageElectricvehicles129,132,133,138,141,142,145,147,148,150,159,160,162,165–196][80,88,93,97,101,127,131,134,170,180,181,189,193,197–205][76,82,131,154,181,206–210]StaticVarCompensators(SVC)[82,86,90,174,202,219]arethistransformationdoesnotaddanyadditionalcomplexityalsostudied.intheformulationstructure.Iftheupperlevelproblemhasnon-linearities,itcanbediscretized.Thistransformationis4INTEGRATEDDISTRIBUTIONrelevantforintegrateddistributionplanningduetotheavail-PLANNINGabilityofmultiplealgorithmstosolvebilevelmixedintegerproblems.Intheillustrationforimplementingregulatorypolicies,a2bussystemwaschosenbecausetheplacementofequipmenttobe4.1Mixedintegerbilevellinearproblemreplacedorinstalledisnotadecisionvariableina2busnetwork.(MIBLP)This,ingeneral,isnottrue.Inaregulatoryperiod,iftheutilityoperatingunderaservicequalityregulationwantstoinstallatieMIBLPproblemsarewidelyencounteredinmultipledomainslineorreplaceanexistingline,withanyoneofthealternatives,[220].Thegeneralstructureofthebilevelproblemisgivenasinthenetwork,withanobjectivetoachievemaximumreduc-(24)-(26).TheMIBLPisacomputationallychallengingprob-tioninSAIDI,theutilitywouldhavetoincorporatedistributionlemsincethecomputationalcomplexityisintheclassofΣ2pplanningmodelwithreliabilityasexplainedinSection3.3inthehard.ThealgorithmstosolveMIBLPwheretheupperlevellowerlevel,iftheregulatoristestingthepolicyparameterstoproblemisanintegerislimited.Thefoundationforprovid-observeanimpactoncustomers,ithastocreateabilevelmodelingalgorithmsforsuchproblemwaslaidbyBM[221].Thewithdistributionplanninginlowerlevel.Thebilevelmodelisalgorithmwasbasedonenumerationandheuristics.TheBMtermedintegrateddistributionplanning.algorithmcan’tsolvetheproblemswheretheupperlevelprob-lem’sfeasibilitysetdependsonthelowerlevelvariables.ThisThedistributionsystemplanningcontainsanoperationprob-limitationisnotconducivetointegrateddistributionplanninglemembeddedinit.Theoperationproblemusuallycomprisesastheregulatorusuallymodelsthepositiveprofitconstraintoptimalpowerflowequations,whicharenon-convex.More-asshownin(16j).TheBMalgorithmwasimprovedandover,theplanningvariablesareintegers.Hence,thelowerlevelgeneralizedby[222][223]proposesanexactalgorithmthatcannotbereplacedbyitsKKTconditions.AsmentionedinalleviatessomeissuesofBMalgorithmandprovestotermi-Section3.2,thenon-convexpartcanberelaxedintocon-natecorrectlyinfiniteiterations.The[224]proposedabendersvexform.However,solvingintegerconvexatlowerlevelisdecompositionbasedalgorithmthatrepresentsthelowerlevelstillachallengingproblem.Thenon-linearityinlowerlevelprobleminfunctionalform.Thebendersdecompositionbasedcanbetransformedbystate-spacediscretizationintoMILP.methodalsohasaddedadvantageofdecomposabilityandparal-Sincetheplanningproblemalreadyhasanintegerproblem,192VERMAANDSWARUPandH𝛼besettherespectivebounds.Theadditionofcutstoimproveboundsdivulgesanewmethodproposedinliterature.Since,themodels(4a)–(4g)havebilinearterms,theyhavecanbelinearizedbyintroducingauxiliaryvariables,whichcanbecontinuousordiscretetobesolvedinMIBLPframework.FIGURE10BranchandBoundapproachforBilevelMixedInteger4.1.1ConvergenceLinearProgram.Toprovideconvergenceconditions,followingsetshavetobelelprocessing.Thebilevelproblemingeneralcanbedescribeddefined:-as1.Feasibleset,𝛾zIBLP=max{c1x+d1y∣x∈PU(y);y∈𝛾={(x,y)∶x∈PU(y)≤b1,y∈argmin{dTy∶y∈PL(x)}}.argmax{d2y∣y∈PL(x)}},(24)(27)PU(y)={x∈ℝn1−r1xℤr1∣A1x≤b1−G1y},(25)2.Highpointfeasibilityset,ΩPL(x)={y∈ℝn2−r2xℤr2∣G2y≤b2−A2x}.(26)Ω={(x,y)∶A1x+G1y≤b1;A2x+G2y≤b2}.(28)ThePL(x)isthelowerlevelfeasibilityconstraintsforafixedx,andPU(y)istheupperlevelfeasibilityconstraintsforafixed3.TheupperlevelvariablesforwhichA2≠0arecalledxL.y.Theconstraintofproblem(24)containsanoptimizationproblemembeddedinit.TheconvergenceoftheMIBLPmodeltoanoptimalpointisgivenby[225]:-Branchandboundstrategyisusuallyusedtosolvesuchaproblem.Anupperboundcanbeachievedbydropping1.xL∈ℤL.thelowerleveloptimizationconstrainty∈argmax{d2y∣y∈2.𝛾isbounded.PL(x)}.ThisrelaxedproblemiscalledtheHPP.Relevantcuts3.Ω≠𝜙areaddeduntilintegralityconditionsaresatisfied,theintegerupper-levelvariablesareusedasinputtolower-levelproblemsThefirstconditionisgenerallynottrueinthemodelstogetafeasiblesolutiontothebilevelproblem.Thefeasibledescribedabove.Hence,someupperlevelvariableshavetobesolutionoflowerlevelproblemgivesthelowerboundofthediscretized.Thenonlinearmodelscanbediscretizedintolinearproblem.Thefeasiblespaceispruned,andprocessisrepeatedmodelsusingthefollowingtechniques.untilconvergenceisachieved.ThebranchandboundmethodisshowninFigure10,wherevariable𝛼andH𝛼canbeincluded4.1.2LinearizationmethodassetofvariableswhicharerestrictedbybranchandboundThelinearizationofbilineartermscanbeclassifiedintothefollowingmethods[226]1.PiecewiseLinear:-Thepiecewiselinearapproximationofnonlineartermscanbedonebyseparableprogramming[227].Thenonlineartermisdecomposedbyfinitedif-ferencemethods.However,ifthefunctionis,non-convexseparabilityconditionsmustbeimposed.Theseparabilityconditionrequiresmodificationofthesimplexalgorithm.Inthecontextofdistributionplanning,therearenonconvextermsinbothbranchflowandbusinjectionformula-tion[228].Hence,thismethodologycannotbeappliedtointegrateddistributionplanning.However,piecewiselinearapproximationusingintegervariablesremovesthesepara-bilityconditionbyuniquenessequation.Thisallowstheprogramtobesolvedbyoff-theshelfsolversbutincreasescomputationalcomplexity.McCormickrelaxationsalsousesbinaryvariablestoconvexnonlineartermsintoconvexhullbypolyhedralsets.VERMAANDSWARUP193ThepQ(p)andothernon-lineartermsappearinginthemod-elscanbeapproximatedtopiecewiselinearfunctionsbyaddingbinaryvariables.FIGURE11Discretizationoffunction.5FUTUREWORK2.Approximationbasedmethod:-TheapproximationbasedIncludingPBRinutilityregulationtunedtomeetlargerclimatemethodinvolveslinearizingthenonlineartermaboutasin-andsocietalgoalsisachallengingproblem.Apotentialtopictoglepointbytaylorseries.Theaccuracyoflinearizationisconsideristofindquantifiableperformancemetricsthatincludeaffectedforvaluesthatdeviatefromthereferencepoint.Thebroadercommunitygoals.Themodernregulationsystemmusterrorvariesbyafactorofsquareofdistanceandmaynotpromotetheupgradationofadistributionsysteminawaythatprovideanyboundonanon-convexfunctions.couldsupportdecentralizedsystems,promotingtheintegra-tionofrenewableenergysources,electricvehicles,andflexible4.2LinearizationofnonlineartermswithloadsinLVnetworks.Whiletheeconomiesofdevelopingcoun-singlevariabletriesgrowtocreateasubstantialcustomerbaseparticipatingindecentralizedmarketsliketransactiveenergy.Moderndistribu-ThenonlineartermswithsinglevariablelikepQ(p)canbetiongridsandsustainableenergyadvancementscanberealizedinfutureregulatoryregimestomeetimmediateclimategoals.linearizedbyintroducingbinaryvalues,andpartitioningtheTheincreaseinautomationofsubstationshasmadepowergridsdomainintoNbinswithsizeΔxasshowninFigure11.Assum-morepronetocyberattacks.Hence,regulatoryauthoritiesmustincentivizeutilitiestogalvanizethesystemfromsuchattacks.ingxLandxHbethelowerandupperlimitofthedomain.TheHowever,differentiatingifanoutageiscausedbyacyberattackΔxcanbegivenasorafaultisachallengingproblem.Regulationtoimprovetheresiliencyofthesystemisalsoanupcomingtopic.ResiliencyΔx=xL−xH.(29)isdifferentfromreliabilityasresiliencyexclusivelyinvolvestheNperformanceofutilitiesinextremeweatherevents.ChoosingaresiliencymetricreflectingoverallconsumerwelfareisalsoanThenforkthbinupcomingproblem.xL(k)=xL+(k−1)∗Δx,∀k={1,…,n−1},,(30)Duetothehighproliferationofrenewableenergysources,distributionplanningmustincorporatemoresophisticatedxH(k)=xL+(k)∗Δx,∀k={1,…,n}(31)uncertaintyhandlingtechniques.Theclassicalsampleaverageapproximationdoesnothaveagoodfinitesampleguaran-LetfkLbetheevaluationoff(x)atxL(k),andfkHbetheevalua-teeandarepronetounderestimaterisk[229],whereasthetionoff(x)atxH(k).Thenpiecewiselinearapproximation̂f(x)isrobustoptimizationistooconservative;alternativetechniques,givenbysuchasdatadrivenDROcanbridgethegapbetweenstochas-ticoptimizationandrobustoptimization.Aconvextractablêf(x)=∑k=n∗f(k)+fH(k)−fL(k)∗(x−u(k)x(k))(32)DROformulationforanoptimizationproblemwithSOCPu(k)constraintsondecisionvariablesisafutureresearchdirectionk=1LxH(k)−xL(k)Lthatcanincludestate-of-the-artuncertaintytechniquesindistri-butionplanningmodels.Moreover,theadditionofupcomingu(k)∗xL(k)≤x≤u(k)∗xH(k)∀k∈{1,…n}(33)energysourceslikehydrogencombustionbasedsystemsandcouplingsuchsystemswithconventionalelectricpowerrequires∑k=nu(k)=1extensivemodelingoftheconversionprocesses.Decomposi-tionbasedstrategiessuchasADMMcanassistinmodeling(34)interconnectedbutseparatelyownedenergysystems.Consid-eringasignificantportionofenergytransactionsbetweenutilityk=1andwholesalemarketsarestilldonethroughlongtermbilat-eralcontracts,thisarrangementdiscouragesopenaccessatu(k)∈{0,1}∀k∈{1,…n}(35)thedistributionlevelsincetheutilitycan’thandleuncertaintyduetointermittentpenetration.Hence,regulatoryauthoritiesmustconstructmechanismstoincentivizeutilitiestopro-curepowerfromshorttermandspotmarket.Theregulationpoliciesandratesettingprocessaresusceptibletochangesinthepoliticalclimateofthejurisdiction.Henceprudenceofanymodelforthewelfarefunctionoftheregulatorisephemeral.194VERMAANDSWARUPTheillustrationsdemonstratethattheregulatorymodelsdoeMaximuminvestmentinDSM($)notconsiderelectricityprocurementbydistributedgeneration.xMinimumadjustmentinPriceCapRegulationModelingsuchanarrangementintroducesanotherlevelthatΩdSetofdevicesmodelstheinteractionofDISCOMwithDGENCO,model-SAIDIdSystemAverageInterruptionDurationIndexwheningtheprocurementofpowerthroughPPAs.ImplementingdevicedisusedMIBLPischallengingproblem,andfurtherworkisrequiredtoDSMDemandSideManagementbuildlibrariestosolvesuchmodels.DNODistributionNetworkOperatorMediumVoltage6CONCLUSIONMVLowVoltageLVKarushKuhnTuckerThedistributionsystemisusuallyoperatedasamonopoly,KKTPowerPurchaseAgreementrestrictedbyaregulatoryregime.ThebehavioroftheregulatorPPAValueofLostLoadcanimpactthedistributionsystem’splanningdecisions;hence,aVOLLHighPointProblemcomprehensivesurveyofbothregulatorypoliciesanddistribu-HPPElectricVehiclestionplanningalgorithmswasdoneinthispaper.A2bussystemEVCentralElectricityRegulatoryCommissionwasusedtodemonstratethecharacteristicsofeachregulatoryCERCStateElectricityRegulatoryCommissionpolicyandcomplementedtheneedforbilevelformulation.SERCCentralEuropeanEnergyRegulatorCEERCostofServiceRegulationThepaucityofalgorithmsinsolvingIntegerBilevelproblemsCOSRPerformanceBasedRatesposesachallengeinconductingintegrateddistributionplanning.PBRServiceQualityRegulationTheformulationstructureoflowerleveldistributionplanningSQRSystemAverageInterruptionDurationIndexmodelhastoberestrictedtoMILP.SAIDIDataEnvelopmentAnalysisDEAStochasticFrontierAnalysisThemodelingforthecostofserviceregulationrevealeditsSFACorrectedOrdinatyLeastSquaresdrawbackofpromotingwastefulexpendituresanditsinabilitytoCOLSTotalFactorProductivitypromoteefficiency.Ontheotherhand,pricecapregulationandTFPOfficeofGasandElectricityMarketsrevenue-sharingmechanismsareabletopromotecostreduc-OFGEMInformationQualityIncentivetionbutareunabletoincentivizeutilitytoimprovereliability.IQIMaximumrateofreturnServiceQualityregulationincorporatestheimprovementofreli-IntervalPowerFlowabilityandefficiencybutishardertomodelandimplement.AllsHeuristicMomentMatchingthemodelsassumedutilityprovidescorrectinformationaboutIPFPointEstimateMethodcostandprojectedrevenue.Inpractice,thismaynotbetrue.HMMProbabiltyDistributionFunctionHence,theIQImechanismmaybeincludedinmodeldesignPEMLinearProgramfuturework.PDFSecondOrderConeProgramLPAlternatingDirectionMethodofMultiplierTheliteratureondistributionplanningwasclassifiedbasedSOCPMixedIntegerLinearProgramonoptimization,uncertainty,andasinglestageormulti-stageADMMMixedIntegerSecondOrderConeProgrammodelwasused.Theinclusionofreliabilityandradialitycon-MILPGeneticAlgorithmstraintswasalsodiscussed.AcorrelationinliteratureforMISOCPParticleSwarmOptimizationmodelingofdifferentdeviceswasreported.GAMixedIntegerNonLinearProgramPSOExpectedEnergyNotSuppliedAMIBLPbasedframeworkwasestablishedtosolvetheMINLPDistributionallyRobustOptimizationgenericregulatoryanddistributionplanninggame.Implement-EENSBard&MooreingtheMIBLPframeworkischallengingduetothelackofaDRONetPresentValuestandardofftheshelfsolverandisenvisionedasfuturework.BM:NetPresentvalueofexpansionState-of-the-artalgorithmstosolveproblemsofsuchstructureNPVInternalRateofReturnwerediscussed.ThepaperlaysthefoundationofamoreholisticTPVMinimumacceptableRateofReturnframeworktododistributionplanning,withutilityoperatingasIRRBenefitCostRatioaregulatedmonopoly.MARRGeographicalInformationSurveyBCRKirchoff’sCurrentLawNOMENCLATUREGISMaximumallowedrevenue($)KCLBinaryInvestmentDecisionValueforInvestmentpPricechargedtocustomer($/MW)Penalty/Rewardforinterruptionduration($/hr)Q(p)Demandcurveofcustomer(MW)pxdBudgetconstraintofutility($)c2Operationalcostofpower($/MW)ProfitutilityisallowedtokeepentirelyIFixedcostinvestmentinreliability($)a:-RevenueutilityisallowedtokeepentirelyeFixedcostinvestmentinDSM($)P0Pricecapsetbyregulator($)I𝜋RVERMAANDSWARUP195𝛼𝜋PercentageofexcessprofitthatisrequiredtobeRegulationandItsReform:WhatHaveWeLearned?pp.291–344.sharedtocustomersUniversityofChicagoPress,Chicago(2014)𝛼RPercentageofexcessrevenuethatisrequiredtobe4.Ajodhia,V.,Hakvoort,R.:Economicregulationofqualityinelectricitysharedtocustomersdistributionnetworks.UtilitiesPolicy13(3),211–221(2005)c1Coefficientofxinupperlevelobjectiveforbilevel5.Huang,Y.,Söder,L.:Evaluationofeconomicregulationindistributionproblemsystemswithdistributedgeneration.Energy126,192–201(2017)d1Coefficientofyinupperlevelobjectiveforbilevel6.TheroleofintegrateddistributionsystemplanninginmaximizingproblemresiliencyintheAPECregion.Tech.Rep.(2022)d2Coefficientofyinlowerlevelobjectiveforbilevel7.FloresEspino,F.,Tian,T.,Chernyakhovskiy,I.,Mercer,M.,Miller,M.:problemCompetitiveelectricitymarketregulationintheunitedstates:Aprimer.PU(y)UpperlevelfeasibilitysetsTech.Rep.,NationalRenewableEnergyLab.(NREL),Golden,COPL(x)Lowerlevelfeasibilitysets(2016)Coefficientofxinupperlevelinequality8.Regy,P.V.,Sarwal,R.,Stranger,C.,Fitzgerald,G.,Ningthoujam,J.,Gupta,A1CoefficientofyinupperlevelinequalityA.,etal.:Turningaroundthepowerdistributionsector:LearningsandG1Coefficientofxinlowerlevelinequalitybestpracticesfromreforms(2021)A2Coefficientofyinlowerlevelinequality9.OrganizationforEconomicCooperation&Development(OECD):G2UpperlevelconstantRegulatorypolicy:Towardsanewagenda.Tech.Rep.,OECD,Parisb1Lowerlevelconstant(2010)b2Failurerateoftransformertr10.Fischer,R.,Serra,P.,Joskow,P.L.,Hogan,W.W.:Regulatingtheelec-K0trAverageRepairtimeoftransformertricitysectorinlatinamerica[withcomments].Economia1(1),155–218𝜏rtrep(2000)𝛾trExponentialgrowthrateoffailureforendoflifeof11.Averch,H.,Johnson,L.L.:Behaviorofthefirmunderregulatorytransformertrconstraint.TheAmericanEconomicReview52(5),1052–1069(1962)𝛽trLifeoftransformertr12.Billinton,R.,Pan,Z.:Historicperformance-baseddistributionsystemriskK0lFailurerateoflinelassessment.IEEETrans.PowerDelivery19(4),1759–1765(2004)𝜏rlep13.Kuosmanen,T.,Nguyen,T.:CapitalbiasintheNordicrevenuecapreg-𝛾lRepairtimeoflinelulation:Averch-Johnsoncritiquerevisited.EnergyPolicy139,111355(2020)𝛽lExponentialgrowthrateoffailureforendoflifeof14.Spiegel,Y.:Thecapitalstructureandinvestmentofregulatedfirmsunder𝜒llinelalternativeregulatoryregimes.J.Reg.Econ.6(3),297–319(1994)𝜒trLifeoflinel15.Ramesey,F.P.:AContributiontotheTheoryofTaxation.Econ.J.hAgeoflinel37(145),47–61(1927)Ageoftransformertr16.Baron,D.P.,Myerson,R.B.:Regulatingamonopolistwithunknowncosts.xRegulatoryperiod(Years)Econometrica50(4),911(1982)xAdjustmenttakesplaceattimeΔ17.Cambini,C.,Rondi,L.:Incentiveregulationandinvestment:EvidenceIDSMLowerlimitofadjustmentfactorfromEuropeanenergyutilities.J.Regul.Econ.38(1),1–26(2010)NPAMInvesmentCostforDSM18.OFGEM:Financialmodelmanual–Distributionpricecontrolreview5NetworkPerformanceAssessmentModel(DPCR5).Tech.Rep.,OFGEM(2009)19.Cabral,L.M.B.,Riordan,M.H.:IncentivesforcostreductionCONFLICTOFINTERESTSTATEMENTunderpricecapregulation.In:PriceCapsandIncentiveRegu-Theauthorshavedeclarednoconflictofinterest.lationinTelecommunications,pp.155–165.Springer,NewYork(1991)DATAAVAILABILITYSTATEMENT20.Bard,J.F.,Moore,J.T.:AbranchandboundalgorithmforthebilevelDatasharingnotapplicable-nonewdatagenerated,ortheprogrammingproblem.SIAMJ.Sci.Stat.Comput.11(2),281–292(1990)articledescribesentirelytheoreticalresearch.21.Fortuny-Amat,J.,McCarl,B.:Arepresentationandeconomicinterpre-tationofatwo-levelprogrammingproblem.J.Oper.Res.Soc.32(9),ORCID783–792(1981)AprajayVermahttps://orcid.org/0000-0002-2299-431222.Weyman-Jones,T.G.:RPI—Xpricecapregulation:ThepricecontrolsusedinUKelectricity.UtilitiesPolicy1(1),65–77(1990)REFERENCES23.Ajodhia,V.,Lo.Schiavo,L.,Malaman,R.:QualityregulationofelectricitydistributioninItaly:Anevaluationstudy.EnergyPolicy34(13),1478–1.Eto,J.H.,LaCommare,K.H.,Caswell,H.C.,Till,D.:Distributionsys-1486(2006)temversusbulkpowersystem:identifyingthesourceofelectricservice24.Cullmann,A.,Nieswand,M.:Regulationandinvestmentincentivesinterruptionsintheus.IETGener.Transm.Distrib.13(5),717–723inelectricitydistribution:Anempiricalassessment.EnergyEcon.57,(2019)192–203(2016)25.Iossa,E.,Stroffolini,F.:Pricecapregulation,revenuesharingand2.Lazar,J.:ElectricityRegulationintheUS:AGuide.Tech.Rep.,informationacquisition.Inf.Econ.Policy17,217–230(2005)RegulatoryAffairsPolicy(2016)26.Shleifer,A.:Atheoryofyardstickcompetition.RANDJ.Econ.16(3),319–327(1985)3.Joskow,P.L.:Incentiveregulationintheoryandpractice:electricitydis-27.Filippini,M.,Wild,J.:Regionaldifferencesinelectricitydistributioncoststributionandtransmissionnetworks.In:Rose,N.L.(ed.)Economicandtheirconsequencesforyardstickregulationofaccessprices.EnergyEcon.23(4),477–488(2001)28.Filippini,M.,Hrovatin,N.:EfficiencyandregulationoftheSlovenianelectricitydistributioncompanies.EnergyPolicy32(3),335–344(2004)29.Mirza,F.M.,Rizvi,S.B.U.H.,Bergland,O.:Servicequality,technicaleffi-ciencyandtotalfactorproductivitygrowthinPakistan’spost-reformelectricitydistributioncompanies.UtilitiesPolicy68,101156(2021)196VERMAANDSWARUP30.Zakaria,M.,Noureen,R.:Benchmarkingandregulationofpowerdistri-tricitydistributionnetworks.InnovativeSolutionsforSustainabilitybutioncompaniesinPakistan.Renew.Sustain.EnergyRev.58,1095–1099(2010)(2016)53.Donald,S.G.,Sappington,D.E.M.:Explainingthechoiceamongregula-toryplansintheU.S.Telecommunicationsindustry.J.Econ.Manag.Strat.31.Filippini,M.,Farsi,M.,Fetz,A.:Benchmarkinganalysisinelectricitydis-4(2),237–265(1995)tribution.In:EuropeanRegulationForumonElectricityReforms,pp.54.Moretto,M.,Valbonesi,P.:Firmregulationandprofitsharing:Areal3–4.HarvardElectricityPolicyGroup,Cambridge,MA(2005)optionapproach.BEJ.Econ.Anal.Policy7(1),(2007)55.Bjørndal,E.,Bjørndal,M.,Cullmann,A.,Nieswand,M.:Findingthe32.Muller,R.B.,Rego,E.E.:PrivatizationofelectricitydistributioninBrazil:rightyardstick:RegulationofelectricitynetworksunderheterogeneousLong-termeffectsonservicequalityandfinancialindicators.Energyenvironments.Eur.J.Oper.Res.265(2),710–722(2018)Policy159,112602(2021)56.Hesseling,D.,Sari,M.:Theintroductionofqualityregulationofelectricitydistributioninthenetherlands.NMadocument,EuropeanEnergyLaw33.Berg,S.,Lin,C.,Tsaplin,V.:Regulationofstate-ownedandprivatizedutil-ReportIII(2006)ities:Ukraineelectricitydistributioncompanyperformance.J.Reg.Econ.57.Bell,M.:Performance-basedregulation:aviewfromtheothersideofthe28(3),259–287(2005)pond.Electr.J.15(1),66–73(2002)58.Kumbhakar,S.C.,Hjalmarsson,L.:Relativeperformanceofpublic34.Jamasb,T.,Söderberg,M.:YardstickandEx-PostUtilityRegulationbyandprivateownershipunderyardstickcompetition:ElectricityretailNormModel:EmpiricalEquivalence,PricingEffect,andPerformancedistribution.Eur.Econ.Rev.42(1),97–122(1998)inSweden(2009)59.Jamasb,T.,Pollitt,M.:Benchmarkingandregulation:Internationalelectricityexperience.UtilitiesPolicy9(3),107–130(2000)35.Li,H.Z.,Kopsakangas-Savolainen,M.,Xiao,X.Z.,Lau,S.Y.:Haveregu-60.Verma,A.,Swarup,K.S.:Optimaltielineplacementofdistributionsys-latoryreformsimprovedtheefficiencylevelsoftheJapaneseelectricitytemincorporatingperformancebasedrates.In:20177thInternationaldistributionsector?Acostmetafrontier-basedanalysis.EnergyPolicyConferenceonPowerSystems(ICPS),pp.591–595.IEEE,Piscataway108,606–616(2017)(2017)61.Verma,A.,Swarup,K.S.:OptimalplacementofDGinactivedistribu-36.Hattori,T.,Jamasb,T.,Pollitt,M.G.:RelativeperformanceofUKandtionsystemincorporatingperformancebasedrates.In:2018Clemsonjapaneseelectricitydistributionsystems1985-1998:LessonsforincentiveUniversityPowerSystemsConference(PSC),pp.1–6.IEEE,Piscatawayregulation.Tech.Rep.,FacultyofEconomics(2004)(2018)62.Billinton,R.,Pan,Z.:Incorporatingreliabilityindexprobabilitydistri-37.Nandan,A.,Mallick,H.:Doesregulationinducecostefficiencyinelec-butionsinfinancialriskassessmentwithperformancebasedregulation.tricitydistributionutilities?useofstochasticcostfrontieranalysisfortheElectr.PowerCompon.Syst.33(6),685–697(2005)indianstates.CompetitionReg.Netw.Ind.22(2),127–159(2021)63.Yuan,P.,Pu,Y.,Liu,C.:ImprovingelectricitysupplyreliabilityinChina:Costandincentiveregulation.Energy237,121558(2021)38.Agrell,P.J.,Bogetoft,P.,Tind,J.:DEAanddynamicyardstickcompetition64.Jamasb,T.,Pollitt,M.:Referencemodelsandincentiveregulationofinscandinavianelectricitydistribution.JournalofProductivityAnalysiselectricitydistributionnetworks:AnevaluationofSweden’sNetworkPer-23(2),173–201(2005)formanceAssessmentModel(NPAM).EnergyPolicy36(5),1788–1801(2008)39.Tanure,J.E.P.S.,Tahan,C.M.V.,Lima,J.W.M.:Establishingqualityper-65.Osborne,M.J.,Rubinstein,A.:BargainingandMarkets.AcademicPress,formanceofdistributioncompaniesbasedonyardstickregulation.IEEESanDiego(1990)Trans.PowerSyst.21(3),1148–1153(2006)66.Seta,F.D.S.,deOliveira,L.W.,deOliveira,E.J.:Comprehensiveapproachfordistributionsystemplanningwithuncertainties.IETGener.Transm.40.Giannakis,D.,Jamasb,T.,Pollitt,M.:Benchmarkingandincentiveregula-Distrib.13(24),5467–5477(2019)tionofqualityofservice:AnapplicationtotheUKelectricitydistribution67.Høyland,K.,Kaut,M.,Wallace,S.W.:Aheuristicformoment-matchingnetworks.EnergyPolicy33(17),2256–2271(2005)scenariogeneration.Comput.Optim.Appl.24(2),169–185(2003)68.Hong,H.:Anefficientpointestimatemethodforprobabilisticanalysis.41.Farsi,M.,Filippini,M.:Regulationandmeasuringcost-efficiencywithReliab.Eng.Syst.Saf.59(3),261–267(1998)paneldatamodels:Applicationtoelectricitydistributionutilities.Rev.Ind.69.Bezdek,J.C.,Ehrlich,R.,Full,W.:Fcm:Thefuzzyc-meansclusteringOrg.25(1),1–19(2004)algorithm.Comput.Geosci.10(2-3),191–203(1984)70.Ralambondrainy,H.:Aconceptualversionofthek-meansalgorithm.42.Yatchew,A.:IncentiveregulationofdistributingutilitiesusingyardstickPatternRecognit.Lett.16(11),1147–1157(1995)competition.Electr.J.14(1),56–60(2001)71.Baran,M.E.,Wu,F.F.:Optimalcapacitorplacementonradialdistributionsystems.IEEETrans.PowerDelivery4(1),725–734(1989)43.Jamasb,T.,Pollitt,M.:Internationalbenchmarkingandregulation:An72.Rider,M.J.,López.Lezama,J.M.,Contreras,J.,Padilha.Feltrin,A.:BilevelapplicationtoEuropeanelectricitydistributionutilities.EnergyPolicyapproachforoptimallocationandcontractpricingofdistributed31(15),1609–1622(2003)generationinradialdistributionsystemsusingmixed-integerlinearprogramming.IETGener.Transm.Distrib.7(7),724–734(2013)44.Miguéis,V.L.,Camanho,A.S.,Bjørndal,E.,Bjørndal,M.:Productivity73.Muñoz.Delgado,G.,Contreras,J.,Arroyo,J.M.:JointexpansionplanningchangeandinnovationinNorwegianelectricitydistributioncompanies.ofdistributedgenerationanddistributionnetworks.IEEETrans.PowerJ.Oper.Res.Soc.63(7),982–990(2012)Syst.30(5),2579–2590(2014)74.Low,S.H.:Convexrelaxationofoptimalpowerflow-partI:Formulations45.Honkapuro,S.,Lassila,J.,Viljainen,S.,Tahvanainen,K.,Partanen,J.:andequivalence.IEEETrans.ControlNetworkSyst.1(1),15–27(2014)Regulatoryeffectsontheinvestmentstrategiesofelectricitydistribu-75.Low,S.H.:Convexrelaxationofoptimalpowerflow-partII:Exactness.tioncompanies.In:CIRED2005-18thInternationalConferenceandIEEETrans.ControlNetworkSyst.1(2),177–189(2014)ExhibitiononElectricityDistribution,pp.1–5.IET,Stevenage(2005)76.Wang,X.,Nie,Y.,Cheng,K.E.:DistributionsystemplanningconsideringstochasticEVpenetrationandV2Gbehavior.IEEETrans.Intell.Transp.46.VonHirschhausen,C.,Cullmann,A.,Kappeler,A.:EfficiencyanalysisofSyst.21(1),149–158(2020)Germanelectricitydistributionutilities–non-parametricandparametric77.Patel,D.K.,Singh,D.,Singh,B.:Geneticalgorithm-basedmulti-objectivetests.Appl.Econ.38(21),2553–2566(2006)optimizationfordistributedgenerationsplanningindistributionsystems47.Núñez,F.,Arcos-Vargas,A.,Villa,G.:EfficiencybenchmarkingandremunerationofSpanishelectricitydistributioncompanies.UtilitiesPolicy67,101127(2020)48.Weyman-Jones,T.:YardstickandincentiveissuesinUKelectricitydistributionpricecontrols.FiscalStudies22(2),233–247(2001)49.Hattori,T.:RelativeperformanceofU.S.andjapaneseelectricitydistri-bution:anapplicationofstochasticfrontieranalysis.J.Prod.Anal.18(3),269–284(2002)50.Kopsakangas-Savolainen,M.,Svento,R.:Estimationofcost-effectivenessoftheFinnishelectricitydistributionutilities.EnergyEcon.30(2),212–229(2008)51.Zakaria,M.,Noureen,R.:Benchmarkingandregulationofpowerdistri-butioncompaniesinPakistan.Renew.Sustain.EnergyRev.58,1095–1099(2016)52.Vanhanen,J.,Vehviläinen,I.,Virtanen,E.,Oy,G.C.,Agrell,P.,Bogetoft,P.,etal.:Scientificreviewonregulationmodelsforelec-VERMAANDSWARUP197withconstantimpedance,constantcurrent,constantpowerloadmodels.97.Moradijoz,M.,Moghaddam,M.P.,Haghifam,M.R.:AflexibleactiveInt.Trans.Electr.EnergySyst.30(11),e12576(2020)distributionsystemexpansionplanningmodel:Arisk-basedapproach.78.Heidari,S.,Fotuhi.Firuzabad,M.:IntegratedplanningfordistributionEnergy145,442–457(2018)automationandnetworkcapacityexpansion.IEEETrans.SmartGrid10(4),4279–4288(2019)98.Jooshaki,M.,Abbaspour,A.,Fotuhi.Firuzabad,M.,Moeini.Aghtaie,M.,79.Zeng,B.,Feng,J.,Zhang,J.,Liu,Z.:Anoptimalintegratedplan-Lehtonen,M.:MILPmodelofelectricitydistributionsystemexpansionningmethodforsupportinggrowingpenetrationofelectricvehiclesinplanningconsideringincentivereliabilityregulations.IEEETrans.Powerdistributionsystems.Energy126,273–284(2017)Syst.34(6),4300–4316(2019)80.Sardi,J.,Mithulananthan,N.,Gallagher,M.,Hung,D.Q.:Multiplecommunityenergystorageplanningindistributionnetworksusinga99.Jooshaki,M.,Abbaspour,A.,Fotuhi.Firuzabad,M.,Farzin,H.,cost-benefitanalysis.Appl.Energy190,453–463(2017)Moeini.Aghtaie,M.,Lehtonen,M.:AMILPmodelforincorporatingreli-81.Koutsoukis,N.C.,Georgilakis,P.S.,Hatziargyriou,N.D.:Multistagecoor-abilityindicesindistributionsystemexpansionplanning.IEEETrans.dinatedplanningofactivedistributionnetworks.IEEETrans.PowerSyst.PowerSyst.34(3),2453–2456(2019)33(1),32–44(2017)82.Yao,W.,Chung,C.Y.,Wen,F.,Qin,M.,Xue,Y.:Scenario-basedcom-100.Ahmadi,H.,Martí,J.R.:Mathematicalrepresentationofradialitycon-prehensiveexpansionplanningfordistributionsystemsconsideringstraintindistributionsystemreconfigurationproblem.Int.J.Electr.integrationofplug-inelectricvehicles.IEEETrans.PowerSyst.31(1),PowerEnergySyst.64,293–299(2015)317–328(2016)83.Martins,V.F.,Borges,C.L.:Activedistributionnetworkintegrated101.Ravadanegh,S.N.,Jahanyari,N.,Amini,A.,Taghizadeghan,N.:Smartplanningincorporatingdistributedgenerationandloadresponseuncer-distributiongridmultistageexpansionplanningunderloadforecastingtainties.IEEETrans.PowerSyst.26(4),2164–2172(2011)uncertainty.IETGener.Transm.Distrib.10(5),1136–1144(2016)84.Najafi,S.,Hosseinian,S.H.,Abedi,M.,Vahidnia,A.,Abachezadeh,S.:Aframeworkforoptimalplanninginlargedistributionnetworks.IEEE102.Zeng,B.,Shaojie,O.,Junqiang,W.,Jinghui,S.,Zhang,J.,Zhang,Y.,etal.:Trans.PowerSyst.24(2),1019–1028(2009)Abilevelplanningmethodofactivedistributionsystemforrenewable85.Li,K.,Chen,G.,Chung,T.,Tang,G.:Distributionplanningusingarule-energyharvestinginaderegulatedenvironment.In:2015IEEEPowerbasedexpertsystemapproach.In:2004IEEEInternationalConferenceEnergySocietyGeneralMeeting,pp.1–5.IEEE,Piscataway(2015)onElectricUtilityDeregulation,RestructuringandPowerTechnologies,Proceedings,vol.2,pp.814–819.IEEE,Piscataway(2004)103.Jooshaki,M.,Farzin,H.,Abbaspour,A.,Fotuhi.Firuzabad,M.,ehtonen,86.Chen,L.,Zhong,J.,Gan,D.:Reactivepowerplanninganditscostalloca-M.:Amodelforstochasticplanningofdistributionnetworkandtionfordistributionsystemswithdistributedgeneration.In:2006IEEEautonomousDGunits.IEEETrans.Ind.Inf.16(6),3685–3696(2020)PowerEngineeringSocietyGeneralMeeting,pp.6–pp.IEEE,Piscataway(2006)104.Alotaibi,M.A.,Salama,M.M.A.:Anincentive-basedmultistageexpansion87.Elkadeem,M.R.,Elaziz,M.A.,Ullah,Z.,Wang,S.,Sharshir,S.W.:Optimalplanningmodelforsmartdistributionsystems.IEEETrans.PowerSyst.planningofrenewableenergy-integrateddistributionsystemconsidering33(5),5469–5485(2018)uncertainties.IEEEAccess7,164887–164907(2019)88.Li,R.,Wang,W.,Xia,M.:Cooperativeplanningofactivedistributionsys-105.Ghadiri,A.,Haghifam,M.R.,Larimi,S.M.M.:Comprehensiveapproachtemwithrenewableenergysourcesandenergystoragesystems.IEEEforhybridAC/DCdistributionnetworkplanningusinggeneticalgo-Access6,5916–5926(2018)rithm.IETGener.Transm.Distrib.11(16),3892–3902(2017)89.Kumar,D.,Singh,A.,Mishra,S.K.,Jha,R.C.,Samantaray,S.R.:Acoordinatedplanningframeworkofelectricpowerdistributionsystem:106.Ehsan,A.,Cheng,M.,Yang,Q.:Scenario-basedplanningofactiveIntelligentreconfiguration.Int.Trans.Electr.EnergySyst.28(6),e2543distributionsystemsunderuncertaintiesofrenewablegenerationand(2018)electricitydemand.CSEEJ.PowerEnergySyst.5(1),56–62(2019)90.Hasanvand,S.,Nayeripour,M.,Khooban,M.H.,Fal-lahzadeh.Abarghouei,H.,Doostizadeh,M.:Powersystemdistribution107.Kiani.Rad,H.,Moravej,Z.:CoordinatedtransmissionsubstationsandplanningconsideringreliabilityandDGowner’sprofit.J.Renew.Sustain.sub-transmissionnetworksexpansionplanningincorporatingdistributedEnergy9(6),065508(2017)generation.Energy120,996–1011(2017)91.Arasteh,H.,Sepasian,M.S.,Vahidinasab,V.:Anaggregatedmodelforcoordinatedplanningandreconfigurationofelectricdistribution108.Carvallo,J.P.,Taneja,J.,Callaway,D.,Kammen,D.M.:Distributednetworks.Energy94,786–798(2016)resourcesshiftparadigmsonpowersystemdesign,planning,andoper-92.Sannigrahi,S.,Ghatak,S.R.,Acharjee,P.:Multi-objectiveoptimisation-ation:Anapplicationofthegapmodel.Proc.IEEE107(9),1906–1922basedactivedistributionsystemplanningwithreconfiguration,inter-(2019)mittentRES,andDSTATCOM.IETRenew.PowerGener.13(13),2418–2429(2019)109.Bin.Humayd,A.:Distributionsystemplanningwithdistributedgenera-93.LI,R.,WANG,W.,CHEN,Z.,WU,X.:Optimalplanningofenergystor-tion:Optimalversusheuristicapproach.Master’sThesis,Universityofagesysteminactivedistributionsystembasedonfuzzymulti-objectiveWaterloo(2011)bi-leveloptimization.J.Mod.PowerSyst.CleanEnergy6(2),342–355(2018)110.Linn,C.,Abbey,C.,Gil,H.,Kahrobaee,S.:Enhancingdistributionsys-94.Kumari,M.,Ranjan,R.,Singh,V.R.,Swapnil,S.:Optimalpowerdistribu-temhostingcapacitythroughactivenetworkmanagement.In:2018IEEEtionplanningusingimprovedparticleswarmoptimization.Int.J.Intell.ConferenceonTechnologiesforSustainability(SusTech),pp.1–6.IEEE,Syst.Appl.Eng.6(3),170–177(2018)Piscataway(2018)95.Masteri,K.,Venkatesh,B.,Freitas,W.:Afeederinvestmentmodelfordis-tributionsystemplanningincludingbatteryenergystorage.Can.J.Electr.111.Yazdaninejadi,A.,Hamidi,A.,Golshannavaz,S.,Aminifar,F.,Comput.Eng.41(4),162–171(2018)Teimourzadeh,S.:Impactofinverter-basedDERsintegrationonpro-96.Ghatak,S.R.,Sannigrahi,S.,Acharjee,P.:Optimaldeploymentofrenew-tection,control,operation,andplanningofelectricaldistributiongrids.ableDGandbatterystoragesystemindistributionsystemconsideringElectr.J.32(6),43–56(2019)techno-economic,environmentandreliabilityaspects.In:2018Interna-tionalConferenceonPower,Instrumentation,ControlandComputing112.Klyapovskiy,S.,You,S.,Michiorri,A.,Kariniotakis,G.,Bindner,H.W.:(PICC),pp.1–6.IEEE,Piscataway(2018)Incorporatingflexibilityoptionsintodistributiongridreinforcementplanning:Atechno-economicframeworkapproach.Appl.Energy254,113662(2019)113.Wong,S.,Bhattacharya,K.,Fuller,J.D.:Comprehensiveframeworkforlong-termdistributionsystemplanning.In:2007IEEEPowerEngineeringSocietyGeneralMeeting,pp.1–7.IEEE,Piscataway(2007)114.Khator,S.K.,Leung,L.C.:Powerdistributionplanning:Areviewofmodelsandissues.IEEETrans.PowerSyst.12(3),1151–1159(1997)115.Sharif,S.:Optimalmodelforfutureexpansionofradialdistributionnetworksusingmixedintegerprogramming.In:1994ProceedingsofCanadianConferenceonElectricalandComputerEngineering,pp.152–155.IEEE,Piscataway(1994)116.Yeh,E.C.,Venkata,S.S.,Sumic,Z.:Improveddistributionsystemplan-ningusingcomputationalevolution.IEEETrans.PowerSyst.11(2),668–674(1996)198VERMAANDSWARUP117.Jonnavithula,S.,Billinton,R.:Minimumcostanalysisoffeederroutingintainty:Growthratewithconnectionofnewloads.In:2017Internationaldistributionsystemplanning.IEEETrans.PowerDelivery11(4),1935–ElectricalEngineeringCongress(iEECON),pp.1–4.IEEE,Piscataway1940(1996)(2017)137.Bin.Humayd,A.S.,Bhattacharya,K.:Distributionsystemplanningto118.Lin,W.M.,Su,Y.S.,Tsay,M.T.:GeneticalgorithmforoptimaldistributionaccommodatedistributedenergyresourcesandPEVs.Electr.PowerSyst.systemplanning.In:POWERCON’98,1998InternationalConferenceonRes.145,1–11(2017)PowerSystemTechnology,Proceedings(Cat.No.98EX151),vol.1,pp.138.Bhadoria,V.S.,Pal,N.S.,Shrivastava,V.,Jaiswal,S.P.:Reliability241–245.IEEE,Piscataway(1998)improvementofdistributionsystembyoptimalsittingandsizingofdispersegeneration.Int.J.Reliab.Qual.Saf.Eng.24(06),1740006119.Skok,M.,Skrlec,D.,Krajcar,S.:GeneticalgorithmandGISenhanced(2017)longtermplanningoflargelinkstructureddistributionsystems.In:139.Wu,Z.,Liu,Y.,Gu,W.,Zhou,J.,Li,J.,Liu,P.:DecompositionmethodforLESCOPE’02,2002LargeEngineeringSystemsConferenceonPowercoordinatedplanningofdistributedgenerationanddistributionnetwork.Engineering,ConferenceProceedings,pp.55–60.IEEE,PiscatawayIETGener.Transm.Distrib.12(20),4482–4491(2018)(2002)140.Haghighat,H.,Zeng,B.:Stochasticandchance-constrainedconicdistri-butionsystemexpansionplanningusingbilinearbendersdecomposition.120.Parada,V.,Ferland,J.A.,Arias,M.,Daniels,K.:Optimizationofelectri-IEEETrans.PowerSyst.33(3),2696–2705(2018)caldistributionfeedersusingsimulatedannealing.IEEETrans.Power141.Muñoz.Delgado,G.,Contreras,J.,Arroyo,J.M.:DistributionnetworkDelivery19(3),1135–1141(2004)expansionplanningwithanexplicitformulationforreliabilityassessment.IEEETrans.PowerSyst.33(3),2583–2596(2018)121.Paiva,P.C.,Khodr,H.M.,Domínguez.Navarro,J.A.,Yusta,J.M.,142.Tan,Z.,Xie,B.,Zhao,Y.,Dou,J.,Yan,T.,Liu,B.,etal.:Anadequacy-Urdaneta,A.J.:Integralplanningofprimary-secondarydistributionsys-constrainedintegratedplanningmethodforeffectiveaccommodationoftemsusingmixedintegerlinearprogramming.IEEETrans.PowerSyst.DGandelectricvehiclesinsmartdistributionsystems.AIPConf.Proc.20(2),1134–1143(2005)1971(1),040009(2018)143.Masteri,K.,Venkatesh,B.,Freitas,W.:Afuzzyoptimizationmodelfor122.Ramírez.Rosado,I.J.,Domínguez.Navarro,J.A.:Newmultiobjectivetabudistributionsystemassetplanningwithenergystorage.IEEETrans.searchalgorithmforfuzzyoptimalplanningofpowerdistributionPowerSyst.33(5),5114–5123(2018)systems.IEEETrans.PowerSyst.21(1),224–233(2006)144.Trpovski,A.,Recalde,D.,Hamacher,T.:Syntheticdistributiongridgen-erationusingpowersystemplanning:casestudyofsingapore.In:2018123.Rezaee,N.,Nayeripour,M.,Roosta,A.,Niknam,T.:RoleofGISindis-53rdInternationalUniversitiesPowerEngineeringConference(UPEC),tributionpowersystems.WorldAcademyofScience,Engineeringandpp.1–6.IEEE,Piscataway(2018)Technology13,902–906(2009)145.Quevedo,P.M.d.,Muñoz.Delgado,G.,Contreras,J.:Impactofelectricvehiclesontheexpansionplanningofdistributionsystemsconsidering124.Ouyang,W.,Cheng,H.,Zhang,X.,Yao,L.:Distributionnetworkplan-renewableenergy,storage,andchargingstations.IEEETrans.SmartGridningmethodconsideringdistributedgenerationforpeakcutting.Energy10(1),794–804(2019)Conver.Manage.51(12),2394–2401(2010)146.Hincapie.I.,R.A.,Gallego.R.,R.A.,Mantovani,J.R.S.:Adecompositionapproachforintegratedplanningofprimaryandsecondarydistribution125.Lotero,R.C.,Contreras,J.:Distributionsystemplanningwithreliability.networksconsideringdistributedgeneration.Int.J.Electr.PowerEnergyIEEETrans.PowerDelivery26(4),2552–2562(2011)Syst.106,146–157(2019)147.Ugranlı,F.:Analysisofrenewablegeneration’sintegrationusingmulti-126.Naderi,E.,Seifi,H.,Sepasian,M.S.:Adynamicapproachfordistributionobjectivefashionformultistagedistributionnetworkexpansionplanning.systemplanningconsideringdistributedgeneration.IEEETrans.PowerInt.J.Electr.PowerEnergySyst.106,301–310(2019)Delivery27(3),1313–1322(2012)148.Heidari,J.,Badri,A.,Moghaddam,M.P.,Haghifam,M.R.,Moradijoz,M.:Amultistagedistributionsystemplanningmethodconsideringrenewable127.Yao,W.,Zhao,J.,Wen,F.,Dong,Z.,Xue,Y.,Xu,Y.,etal.:Amulti-energy:Amixedintegerlinearprogrammingapproach.In:201924thobjectivecollaborativeplanningstrategyforintegratedpowerdistributionElectricalPowerDistributionConference(EPDC),pp.16–21.IEEE,andelectricvehiclechargingsystems.IEEETrans.PowerSyst.29(4),Piscataway(2019)1811–1821(2014)149.Žarkovic´,S.D.,Stankovic´,S.,Shayesteh,E.,Hilber,P.:Reliabilityimprove-mentofdistributionsystemthroughdistributionsystemplanning:MILP128.Montoya.Bueno,S.,Muoz,J.I.,Contreras,J.:Astochasticinvestmentvs.GA.In:2019IEEEMilanPowerTech,pp.1–6.IEEE,Piscatawaymodelforrenewablegenerationindistributionsystems.IEEETrans.(2019)SustainableEnergy6(4),1466–1474(2015)150.Jeddi,B.,Vahidinasab,V.,Ramezanpour,P.,Aghaei,J.,Shafie-khah,M.,Catalão,J.P.S.:Robustoptimizationframeworkfordynamicdistributed129.Zeng,B.,Wen,J.,Shi,J.,Zhang,J.,Zhang,Y.:Amulti-levelenergyresourcesplanningindistributionnetworks.Int.J.Electr.PowerapproachtoactivedistributionsystemplanningforefficientrenewableEnergySyst.110,419–433(2019)energyharvestinginaderegulatedenvironment.Energy96,614–624151.Bolacell,G.S.,Calado,D.E.D.,Venturini,L.F.,Issicaba,D.,Rosa,M.A.D.:(2016)Distributionsystemplanningconsideringpowerquality,loadabilityandeconomicaspects.In:2020InternationalConferenceonProbabilistic130.Tabares,A.,Franco,J.F.,Lavorato,M.,Rider,M.J.:Multistagelong-MethodsAppliedtoPowerSystems(PMAPS),pp.1–6.IEEE,Piscatawaytermexpansionplanningofelectricaldistributionsystemsconsider-(2020)ingmultiplealternatives.IEEETrans.PowerSyst.31(3),1900–1914152.Singh,J.,Tiwari,R.:CostbenefitanalysisforV2Gimplementationof(2016)electricvehiclesindistributionsystem.IEEETrans.Ind.Appl.56(5),5963–5973(2020)131.deQuevedo,P.M.,Munoz-Delgado,G.,Contreras,J.:Impactofelectric153.Räisänen,O.,Haapaniemi,J.,Tikka,V.,Haakana,J.,Lassila,J.,Partanen,J.:vehiclesontheexpansionplanningofdistributionsystemsconsideringOpendatainthedevelopmentoffutureelectricitydistributionsystems.renewableenergy,storage,andchargingstations.IEEETrans.SmartGridIn:2020IEEEPESInnovativeSmartGridTechnologiesEurope(ISGT-10(1),794–804(2017)Europe),pp.655–659.IEEE,Piscataway(2020)154.Pirouzi,S.,Latify,M.A.,Yousefi,G.R.:Conjugateactiveandreactive132.Rupolo,D.,Pereira,B.R.,Contreras,J.,Mantovani,J.R.S.:Medium-powermanagementinasmartdistributionnetworkthroughelectricandlow-voltageplanningofradialelectricpowerdistributionsystemsconsideringreliability.IETGener.Transm.Distrib.11(9),2212–2221(2017)133.Wang,H.,Shi,L.,Ni,Y.:Distributionsystemplanningincorporatingdistributedgenerationandcybersystemvulnerability.J.Eng.2017(13),2198–2202(2017)134.Shen,X.,Shahidehpour,M.,Han,Y.,Zhu,S.,Zheng,J.:Expansionplanningofactivedistributionnetworkswithcentralizedanddistributedenergystoragesystems.IEEETrans.SustainableEnergy8(1),126–134(2017)135.Esmaeeli,M.,Kazemi,A.,Shayanfar,H.,Chicco,G.,Siano,P.:Risk-basedplanningofthedistributionnetworkstructureconsideringuncertaintiesindemandandcostofenergy.Energy119,578–587(2017)136.Vai,V.,Gladkikh,E.,Alvarez-Herault,M.,Raison,B.,Vai,V.,Bun,L.:Low-voltagedistributionsystemplanningunderloaddemanduncer-VERMAANDSWARUP199vehicles:Amixedinteger-linearprogrammingmodel.Sustain.Energytionuncertainties.Int.J.Electr.PowerEnergySyst.36(1),107–116GridsNetw.22,100344(2020)(2012)155.Wu,R.,Sansavini,G.:Activedistributionnetworksormicrogrids?Opti-174.Ding,T.,Li,C.,Yang,Y.,Jiang,J.,Bie,Z.,Blaabjerg,F.:Atwo-stagerobustmaldesignofresilientandflexibledistributiongridswithenergyserviceoptimizationforcentralized-optimaldispatchofphotovoltaicinvertersinprovision.Sustain.EnergyGridsNetw.26,100461(2021)activedistributionnetworks.IEEETrans.SustainableEnergy8(2),744–156.Hongwei,D.,Yixin,Y.,Chunhua,H.,Chengshan,W.,Shaoyun,G.,Jim,754(2016)X.,etal.:Optimalplanningofdistributionsubstationlocationsandsizes-175.Liu,Y.,Yang,N.,Dong,B.,Wu,L.,Yan,J.,Shen,X.,etal.:Multi-lateralmodelandalgorithm.Int.J.Electr.PowerEnergySyst.18(6),353–357participantsdecision-making:Adistributionsystemplanningapproach(1996)withincompleteinformationgame.IEEEAccess8,88933–88950(2020)157.Munoz.Delgado,G.,Contreras,J.,Arroyo,J.M.:Multistagegeneration176.Jabr,R.A.,Singh,R.,Pal,B.C.:Minimumlossnetworkreconfigura-andnetworkexpansionplanningindistributionsystemsconsideringtionusingmixed-integerconvexprogramming.IEEETrans.PowerSyst.uncertaintyandreliability.IEEETrans.PowerSyst.31(5),3715–372827(2),1106–1115(2012)(2016)177.Luo,L.,Gu,W.,Wu,Z.,Zhou,S.:Jointplanningofdistributedgenera-158.Ortiz,J.M.H.,Pourakbari.Kasmaei,M.,López,J.,Mantovani,J.R.S.:Ationandelectricvehiclechargingstationsconsideringreal-timechargingstochasticmixed-integerconicprogrammingmodelfordistributionsys-navigation.Appl.Energy242,1274–1284(2019)temexpansionplanningconsideringwindgeneration.EnergySyst.9(3),178.Shahbazi,A.,Aghaei,J.,Pirouzi,S.,Shafie.khah,M.,Catalão,J.P.S.:Hybrid551–571(2018)stochastic/robustoptimizationmodelforresilientarchitectureofdistri-159.Hosseini.Mola,J.,Barforoshi,T.,Adabi.Firouzjaee,J.:Distributedgener-butionnetworksagainstextremeweatherconditions.Int.J.Electr.Powerationexpansionplanningconsideringloadgrowthuncertainty:anovelEnergySyst.126,106576(2021)multi-periodstochasticmodel.Int.J.Eng.31(3),405–414(2018)179.Emmanuel,M.,Rayudu,R.,Welch,I.:Gridcapacityreleasedanalysis160.Zare,A.,Chung,C.Y.,Zhan,J.,Faried,S.O.:Adistributionallyrobustandincrementaladditioncomputationfordistributionsystemplanning.chance-constrainedMILPmodelformultistagedistributionsystemplan-Electr.PowerSyst.Res.152,105–121(2017)ningwithuncertainrenewablesandloads.IEEETrans.PowerSyst.33(5),180.Uddin,S.,Krause,O.,Martin,D.:Energymanagementfordistribution5248–5262(2018)networksthroughcapacityconstrainedstateoptimization.IEEEAccess161.Lin,W.,Zhu,J.,Yuan,Y.,Wu,H.:Robustoptimizationforislandpartition5,21743–21752(2017)ofdistributionsystemconsideringloadforecastingerror.IEEEAccess7,181.Bin.Humayd,A.S.,Bhattacharya,K.:Distributionsystemplanningto64247–64255(2019)accommodatedistributedenergyresourcesandPEVs.Electr.PowerSyst.162.Seta,F.d.S.,Oliveira,L.W.d.,Oliveira,E.J.d.:ComprehensiveapproachRes.145,1–11(2017)fordistributionsystemplanningwithuncertainties.IETGener.Transm.182.Muñoz.Delgado,G.,Contreras,J.,Arroyo,J.M.:DistributionsystemDistrib.13(24),5467–5477(2019)expansionplanningconsideringnon-utility-ownedDGandaninde-163.Shahidehpour,M.,Ding,T.,Ming,Q.,Huang,C.,Wang,Z.,Du,P.:Multi-pendentdistributionsystemoperator.IEEETrans.PowerSyst.34(4),periodactivedistributionnetworkplanningusingmulti-stagestochastic2588–2597(2019)programmingandnesteddecompositionbySDDIP.IEEETrans.Power183.Lin,Z.,Hu,Z.,Song,Y.:DistributionnetworkexpansionplanningSyst.36(3),2281–2292(2020)consideringN-1criterion.IEEETrans.PowerSyst.34(3),2476–2478164.Piccolo,A.,Siano,P.:Evaluatingtheimpactofnetworkinvestmentdefer-(2019)ralondistributedgenerationexpansion.IEEETrans.PowerSyst.24(3),184.Wu,Z.,Liu,Y.,Gu,W.,Zhou,J.,Li,J.,Liu,P.:Decompositionmethodfor1559–1567(2009)coordinatedplanningofdistributedgenerationanddistributionnetwork.165.Zhang,Y.,Xu,Y.,Yang,H.,Dong,Z.Y.:Voltageregulation-orientedIETGener.Transm.Distrib.12(20),4482–4491(2018)co-planningofdistributedgenerationandbatterystorageinactive185.Mejia,M.A.,Macedo,L.H.,Muñoz-Delgado,G.,Contreras,J.,Padilha-distributionnetworks.Int.J.Electr.PowerEnergySyst.105,79–88Feltrin,A.:Astochasticmodelformedium-termdistributionsystem(2019)planningconsideringCO2emissions.In:2020InternationalConference166.Street,A.,Barroso,L.A.,Flach,B.,Pereira,M.V.,Granville,S.:RiskonSmartEnergySystemsandTechnologies(SEST),pp.1–6.IEEE,constrainedportfolioselectionofrenewablesourcesinhydrothermalPiscataway(2020)electricitymarkets.IEEETrans.PowerSyst.24(3),1136–1144(2009)186.Home.Ortiz,J.M.,Pourakbari.Kasmaei,M.,Lehtonen,M.,Mantovani,167.Kaabi,S.S.A.,Zeineldin,H.H.,Khadkikar,V.:PlanningactivedistributionJ.R.S.:Amixedintegerconicmodelfordistributionexpansionplanning:networksconsideringmulti-dgconfigurations.IEEETrans.PowerSyst.Matheuristicapproach.IEEETrans.SmartGrid11(5),3932–3943(2020)29(2),785–793(2014)187.Salyani,P.,Salehi,J.:Acustomerorientedapproachfordistribution168.V-Thang,V.,Ha,T.,1ThainguyenUniversityofTechnology(TNUT),systemreliabilityimprovementusingoptimaldistributedgenerationThaiNguyen,Vietnam,2SchoolofElectricPower,SouthChinaUni-andswitchplacement.J.Oper.Autom.PowerEng.7(2),246–260versityofTechnology,Guangzhou,China:Optimalsitingandsizingof(2019)renewablesourcesindistributionsystemplanningbasedonlifecyclecost188.Celli,G.,Pilo,F.,Pisano,G.,Ruggeri,S.,Soma,G.G.:Risk-orientedandconsideringuncertainties.AIMSEnergy7(2),211–226(2019)planningforflexibility-baseddistributionsystemdevelopment.Sustain.169.Atwa,Y.M.,El-Saadany,E.F.,Salama,M.M.A.,Seethapathy,R.:Opti-EnergyGridsNetw.30,100594(2022)malrenewableresourcesmixfordistributionsystemenergyloss189.García-Muñoz,F.,Díaz-González,F.,Corchero,C.:Anovelalgorithmminimization.IEEETrans.PowerSyst.25(1),360–370(2010)basedonthecombinationofAC-OPFandGAfortheoptimalsizing170.Nick,M.,Cherkaoui,R.,Paolone,M.:OptimalplanningofdistributedandlocationofDERsintodistributionnetworks.Sustain.EnergyGridsenergystoragesystemsinactivedistributionnetworksembeddinggridNetw.27,100497(2021)reconfiguration.IEEETrans.PowerSyst.33(2),1577–1590(2018)190.Ghayoor,F.,Ghannadpour,S.F.,Imani,D.M.:Bi-objectiverobustopti-171.Arulraj,R.,Kumarappan,N.:Optimaleconomic-drivenplanningofmul-mizationforreliability-orientedpowernetworkplanningbyconsideringtipleDGandcapacitorindistributionnetworkconsideringdifferentdistributedgenerationeffects:AcasestudyinIran.Sustain.EnergyGridscompensationcoefficientsinfeeder’sfailurerateevaluation.Eng.Sci.Netw.26,100455(2021)Technol.Int.J.22(1),67–77(2019)191.Joshi,K.,Pindoriya,N.:Advancesindistributionsystemanalysiswithdis-172.Muñoz-Delgado,G.,Contreras,J.,Arroyo,J.M.:Distributionsystemtributedresources:surveywithacasestudy.Sustain.EnergyGridsNetw.expansionplanning.In:ElectricDistributionNetworkPlanningPower15,86–100(2018)Systems,pp.1–39.Springer,Singapore(2018)192.Karimi,H.,Jadid,S.:Two-stageeconomic,reliability,andenvironmental173.Borges,C.L.T.,Martins,V.F.:Multistageexpansionplanningforschedulingofmulti-microgridsystemsandfaircostallocation.Sustain.activedistributionnetworksunderdemandandDistributedGenera-EnergyGridsNetw.28,100546(2021)200VERMAANDSWARUP193.Martinot,E.,Kristov,L.,Erickson,J.D.:Distributionsystemplanningand212.Nagarajan,A.,Ghosh,S.,Jain,A.K.,Akar,S.,Bryce,R.,Emmanuel,M.,innovationfordistributedenergyfutures.Curr.Sustain./Renew.Energyetal.:Preparingdistributionutilitiesforutility-scalestorageandelectricRep.2(2),47–54(2015)vehicles:Anovelanalyticalframework.Tech.Rep.,NationalRenewableEnergyLab.(NREL),Golden,CO(2020)194.Masoumi-Amiri,S.M.,Shahabi,M.,Barforoushi,T.:Interactiveframe-workdevelopmentformicrogridexpansionstrategyanddistribution213.Carpinelli,G.,Noce,C.,Proto,D.,Varilone,P.:Voltageregulatorsandnetworkexpansionplanning.Sustain.EnergyGridsNetw.27,100512capacitorplacementinthree-phasedistributionsystemswithnon-linear(2021)andunbalancedloads.Int.J.EmergingElectr.PowerSyst.7(4),1353(2006)195.Mejia,M.A.,Macedo,L.H.,Muñoz-Delgado,G.,Contreras,J.,Padilha-Feltrin,A.:Astochasticmodelformedium-termdistributionsystem214.Arasteh,H.,Sepasian,M.S.,Vahidinasab,V.,Siano,P.:SoS-basedmulti-planningconsideringCO2emissions.In:2020InternationalConferenceobjectivedistributionsystemexpansionplanning.Electr.PowerSyst.Res.onSmartEnergySystemsandTechnologies(SEST),pp.1–6.IEEE,141,392–406(2016)Piscataway(2020)215.daCunha.Paiva,R.R.,Rueda.Medina,A.C.,Mantovani,J.R.S.:Short-term196.Ugranlı,F.:Probabilisticdistributionplanning:Includingtheinteractionselectricaldistributionsystemsplanningconsideringdistributedgenera-betweenchanceconstraintsandrenewableenergy.Sustain.EnergyGridstionandreliability.Int.J.ControlAutom.Electr.Syst.28(4),552–566Netw.23,100372(2020)(2017)197.Nazir,N.,Racherla,P.,Almassalkhi,M.:Optimalmulti-perioddispatch216.Saint,B.:Ruraldistributionsystemplanningusingsmartgridtechnolo-ofdistributedenergyresourcesinunbalanceddistributionfeeders.IEEEgies.In:2009IEEERuralElectricPowerConference,pp.B3–B3.IEEE,Trans.PowerSyst.35(4),2683–2692(2020)Piscataway(2009)198.Celli,G.,Chowdhury,N.,Pilo,F.,Soma,G.G.,Troncia,M.,Gianinoni,217.Haesen,E.,Driesen,J.,Belmans,R.:RobustplanningmethodologyforI.M.:Multi-criteriaanalysisfordecisionmakingappliedtoactivedis-integrationofstochasticgeneratorsindistributiongrids.IETRenew.tributionnetworkplanning.Electr.PowerSyst.Res.164,103–111PowerGener.1(1),25–32(2007)(2018)218.Franco,J.F.,Rider,M.J.,Lavorato,M.,Romero,R.:Amixed-integerLP199.Klyapovskiy,S.,You,S.,Cai,H.,Bindner,H.W.:Incorporateflexibilitymodelfortheoptimalallocationofvoltageregulatorsandcapacitorsinindistributiongridplanningthroughaframeworksolution.Int.J.Electr.radialdistributionsystems.Int.J.Electr.PowerEnergySyst.48,123–130PowerEnergySyst.111,66–78(2019)(2013)200.AbuElrub,A.,Al-Masri,H.M.K.,Singh,C.:Hybridwind-solargrid-219.Hasanvand,S.,Nayeripour,M.,Waffenschmidt,E.,Fal-connectedsystemplanningusingscenarioaggregationmethod.Int.lahzadeh.Abarghouei,H.:AnewapproachtotransformanexistingTrans.Electr.EnergySyst.30(9),e12519(2020)distributionnetworkintoasetofmicro-gridsforenhancingreliabilityandsustainability.Appl.SoftComput.52,120–134(2017)201.Ehsan,A.,Yang,Q.:Coordinatedinvestmentplanningofdistributedmulti-typestochasticgenerationandbatterystorageinactivedistri-220.Kleinert,T.,Labbé,M.,Ljubic´,I.,Schmidt,M.:Asurveyonmixed-integerbutionnetworks.IEEETrans.SustainableEnergy10(4),1813–1822programmingtechniquesinbileveloptimization.EUROJ.Comput.(2019)Optim.9,100007(2021)202.Wu,M.,Kou,L.,Hou,X.,Ji,Y.,Xu,B.,Gao,H.:Abi-levelrobust221.Moore,J.T.,Bard,J.F.:Themixedintegerlinearbilevelprogrammingplanningmodelforactivedistributionnetworksconsideringuncertain-problem.Oper.Res.38(5),911–921(1990)tiesofrenewableenergies.Int.J.Electr.PowerEnergySyst.105,814–822(2019)222.DeNegre,S.T.,Ralphs,T.K.:Abranch-and-cutalgorithmforinte-gerbilevellinearprograms.In:OperationsResearchandCyber-203.Das,C.K.,Bass,O.,Kothapalli,G.,Mahmoud,T.S.,Habibi,D.:OverviewInfrastructure,pp.65–78.Springer,Cham(2009)ofenergystoragesystemsindistributionnetworks:Placement,sizing,operation,andpowerquality.Renew.Sustain.EnergyRev.91,1205–1230223.Xu,P.,Wang,L.:Anexactalgorithmforthebilevelmixedintegerlin-(2018)earprogrammingproblemunderthreesimplifyingassumptions.Comput.Oper.Res.41,309–318(2014)204.Nazari,A.,Keypour,R.:AcooperativeexpansionprogramforDiscoandindependentmicrogridsbasedonabargainingframework.Sustain.224.Bolusani,S.,Ralphs,T.K.:AframeworkforgeneralizedBenders’decom-EnergyGridsNetw.20,100278(2019)positionanditsapplicationtomultileveloptimization.Math.Program.196,389–426(2022)205.Thomsen,J.,Saad.Hussein,N.,Senkpiel,C.,Hartmann,N.,Schlegl,T.:Anoptimizedenergysystemplanningandoperationondistributiongrid225.Vicente,L.,Savard,G.,Judice,J.:Discretelinearbilevelprogramminglevel—TheDecentralizedMarketAgentasanovelapproach.Sustain.problem.J.Optim.Theory.Appl.89,597–614(1996)EnergyGridsNetw.12,40–56(2017)226.Asghari,M.,Fathollahi.Fard,A.M.,MirzapourAl-ehashem,S.,206.Hazazi,K.M.,Mehmood,K.K.,Kim,C.H.:Optimalplanningofdis-Dulebenets,M.A.:TransformationandlinearizationtechniquesintributedgeneratorsforintegrationofelectricvehiclesinaKoreanoptimization:Astate-of-the-artsurvey.Mathematics10(2),283distributionsystem.J.KoreanInst.IlluminatingElectr.Install.Eng.32(3),(2022)108–118(2018)227.Mangasarian,O.L.:Linearandnonlinearseparationofpatternsbylinear207.Moradijoz,M.,Heidari,J.,Moghaddam,M.P.,Haghifam,M.R.:Electricprogramming.Oper.Res.13(3),444–452(1965)vehicleparkinglotsasacapacityexpansionoptionindistributionsystems:amixed-integerlinearprograming-basedmodel.IETElectr.Syst.Transp.228.Low,S.H.:Convexrelaxationofoptimalpowerflow-PartII:Exactness.10(1),13–22(2019)IEEETrans.ControlNetworkSyst.1(2),177–189(2014)208.Roos,M.H.,Geldtmeijer,D.A.M.,Nguyen,H.P.,Morren,J.,Slootweg,229.Chen,Z.,Kuhn,D.,Wiesemann,W.:Data-drivenchanceconstrainedJ.G.:OptimizingthetechnicalandeconomicvalueofenergystorageprogramsoverWassersteinballs.Oper.Res.(2022)systemsinLVnetworksforDNOapplications.Sustain.EnergyGridsNetworks16,207–216(2018)230.Liu,Y.:Atwo-stagescenario-basedapproachforlow-carbondistri-butionsystemplanning.In:2017IEEETransportationElectrification209.Baherifard,M.A.,Kazemzadeh,R.,Yazdankhah,A.S.,Marzband,M.:ConferenceandExpo,Asia-Pacific(ITECAsia-Pacific),pp.1-6(2017)Intelligentchargingplanningforelectricvehiclecommercialparkinglotsanditsimpactondistributionnetwork’simbalanceindices.Sustain.231.Wang,C.,Song,G.,Li,P.,Ji,H.,Zhao,J.,Wu,J.:Optimalsitingandsiz-EnergyGridsNetw.30,100620(2022)ingofsoftopenpointsinactiveelectricaldistributionnetworks.Appl.Energy.189,301–309(2017)210.Mirzaei,M.J.,Kazemi,A.:Adynamicapproachtooptimalplanningofelectricvehicleparkinglots.Sustain.EnergyGridsNetw.24,100404232.Samani,E.,Aminifar,F.:Tri-levelrobustinvestmentplanningofDERsin(2020)distributionnetworkswithACconstraints.IEEETrans.PowerSyst.34,3749–3757(2019)211.John-Chevretter,J.J.:Smartutilitiesreport.Tech.Rep.,2020BlackandVeatchStrategicDirections(2020)233.Martin,B.,Feron,B.,DeJaeger,E.,Glineur,F.,Monti,A.:Peakshaving:Aplanningalternativetoreduceinvestmentcostsindistributionsystems?EnergySyst.10,871–887(2019)VERMAANDSWARUP201234.Ehsan,A.,Yang,Q.:RobustdistributionsystemplanningconsideringtheHowtocitethisarticle:Verma,A.,Swarup,K.S.:Anuncertaintiesofrenewabledistributedgenerationandelectricitydemand.analysisofdistributionplanningunderaregulatoryIn:2017IEEEConferenceonEnergyInternetandEnergySystemregime:Anintegratedframework.EnergyConvers.Integration(EI2),pp.1–6(2017)Econ.4,179–201(2023).https://doi.org/10.1049/enc2.12088235.Atwa,Y.M.,El-Saadany,E.F.:Probabilisticapproachforoptimalallo-cationofwind-baseddistributedgenerationindistributionsystems.IETRenew.PowerGener.5,79–88(2011).