2023印尼能源转型和煤炭淘汰的健康效益研究报告(英文版)-CREAVIP专享VIP免费

Health benefits of Just Energy Transition
and coal phase-out in Indonesia
1
IESR
Manfaat Kesehatan dari
Transisi Energi Berkeadilan
dan Penghentian Bertahap
Batubara di Indonesia





IESR




Health benefits of Just Energy Transition
and coal phase-out in Indonesia
i
About CREA
The Centre for Research on Energy and Clean Air (CREA) is an independent research organisation focused on revealing
the trends, causes, and health impacts, as well as the solutions to air pollution. CREA uses scientific data, research, and
evidence to support the eorts of governments, companies, and campaigning organisations worldwide in their eorts to
move towards clean energy and clean air, believing that eective research and communication are the keys to successful
policies, investment decisions, and advocacy eorts. CREA was founded in Helsinki and has sta in several Asian and
European countries.
Authors
Lauri Myllyvirta
Jamie Kelly
Erika Uusivuori
Katherine Hasan
Vera Tattari
Contributors
Raden Raditya Yudha Wiranegara
Deon Arinaldo
Acknowledgements
We gratefully acknowledge the support, feedback, and insight we received from the following organisations and
individuals: Raden Raditya Yudha Wiranegara and Deon Arinaldo from Institute for Essential Services Reform (IESR). The
views expressed in this report are those of the authors and should not be attributed to any of the aforementioned.
Health benefits of Just Energy Transition
and coal phase-out in Indonesia
ii
Health Benefits of Just Energy
Transition and Coal Phase-out
in Indonesia
Key findings
• Air pollutant emissions from coal power plants increased by 110% in Indonesia over the past decade. If all planned
coal power plants, including captive power plants, are completed and put into operation, a further 70% increase is
expected under the current policies scenario by 2030.
• Detailed air quality and health impact modelling carried out for this report indicate that air pollutant emissions from
coal-fired power plants in Indonesia in 2022 were responsible for 10,500 deaths from air pollution (95% CI: 6,500–
16,400) and health costs of USD 7.4 billion (IDR 109.9 trillion; 95% CI: USD 4.6–11.5 billion, IDR 67.6–170.3 trillion).
• Current policies would increase Indonesia’s current coal-fired capacity of 45 GW to 63 GW, before peaking in 2028. This
would result in deaths linked to air pollution from coal power rising to 16,600 per year (95% CI: 10,300–25,900) and
health costs to USD 11.8 billion per year (IDR 175.2 trillion; 95% CI: USD 7.2–18.2 billion, IDR 106.9–270.3 trillion).
• Under current policies, cumulative health impacts from 2024 until the end of life of all coal power plants would result in
303,000 air-pollution-related deaths (95% CI: 189,000–468,000) and health costs of USD 210 billion (IDR 3.2 quadrillion;
95% CI: USD 130–330 billion, IDR 2.0–4.9 quadrillion).
• A faster coal phase-out by 2040, in line with the 1.5 degrees target of the Paris Agreement, would avoid a cumulative
total of 182,000 air pollution-related deaths (95% CI: 114,000–280,000) and health costs of USD 130 billion (IDR 1,900
trillion; 95% CI: USD 80–200 billion IDR 1,200–2,900 trillion), from 2024 until the end-of-life of all plants.
• Mandatory air pollution controls installation would avoid 8,300 air pollution-related deaths in 2035 in the current
policies scenario (95% confidence interval: 5,200–12,600), as well as health costs of USD 5.8 billion (IDR 86.5 trillion;
95% CI: USD 3.6–8.9 billion, IDR 54.1–131.5 trillion).
• Cumulative avoided health costs would reach USD 90 billion (IDR 1.3 quadrillion; 95% CI: USD 60–140 billion, IDR
0.8–2.0 quadrillion), yielding a net economic benefit of USD 70 billion (IDR 290 trillion) to the society, considering the
investment and operating costs of the air pollution controls, making the investments highly profitable from a social
point of view.
• Responsible for one-fih of all health impacts of coal-fired plants in Indonesia, it is crucial to include captive coal power
plants in the Energy Transition Mechanism (ETM) and Just Energy Transition Partnership (JETP) to make meaningful
progress. Excluding them from the 2040 coal phase-out policy could cause an additional health burden of 27,000 air
pollution deaths. (95% CI: 16,000–42,000) and health costs of USD 20 billion (IDR 330 trillion; 95% CI: USD 10–30 billion,
IDR 200–520 trillion).
HealthbenefitsofJustEnergyTransitionIESRandcoalphase-outinIndonesiaManfaatKesehatandariTransisiEnergiBerkeadilandanPenghentianBertahapBatubaradiIndonesia1HealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesiaAboutCREATheCentreforResearchonEnergyandCleanAir(CREA)isanindependentresearchorganisationfocusedonrevealingthetrends,causes,andhealthimpacts,aswellasthesolutionstoairpollution.CREAusesscientificdata,research,andevidencetosupporttheeffortsofgovernments,companies,andcampaigningorganisationsworldwideintheireffortstomovetowardscleanenergyandcleanair,believingthateffectiveresearchandcommunicationarethekeystosuccessfulpolicies,investmentdecisions,andadvocacyefforts.CREAwasfoundedinHelsinkiandhasstaffinseveralAsianandEuropeancountries.AuthorsLauriMyllyvirtaJamieKellyErikaUusivuoriKatherineHasanVeraTattariContributorsRadenRadityaYudhaWiranegaraDeonArinaldoAcknowledgementsWegratefullyacknowledgethesupport,feedback,andinsightwereceivedfromthefollowingorganisationsandindividuals:RadenRadityaYudhaWiranegaraandDeonArinaldofromInstituteforEssentialServicesReform(IESR).Theviewsexpressedinthisreportarethoseoftheauthorsandshouldnotbeattributedtoanyoftheaforementioned.iHealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesiaHealthBenefitsofJustEnergyTransitionandCoalPhase-outinIndonesiaKeyfindings•Airpollutantemissionsfromcoalpowerplantsincreasedby110%inIndonesiaoverthepastdecade.Ifallplannedcoalpowerplants,includingcaptivepowerplants,arecompletedandputintooperation,afurther70%increaseisexpectedunderthecurrentpoliciesscenarioby2030.•Detailedairqualityandhealthimpactmodellingcarriedoutforthisreportindicatethatairpollutantemissionsfromcoal-firedpowerplantsinIndonesiain2022wereresponsiblefor10,500deathsfromairpollution(95%CI:6,500–16,400)andhealthcostsofUSD7.4billion(IDR109.9trillion;95%CI:USD4.6–11.5billion,IDR67.6–170.3trillion).•CurrentpolicieswouldincreaseIndonesia’scurrentcoal-firedcapacityof45GWto63GW,beforepeakingin2028.Thiswouldresultindeathslinkedtoairpollutionfromcoalpowerrisingto16,600peryear(95%CI:10,300–25,900)andhealthcoststoUSD11.8billionperyear(IDR175.2trillion;95%CI:USD7.2–18.2billion,IDR106.9–270.3trillion).•Undercurrentpolicies,cumulativehealthimpactsfrom2024untiltheendoflifeofallcoalpowerplantswouldresultin303,000air-pollution-relateddeaths(95%CI:189,000–468,000)andhealthcostsofUSD210billion(IDR3.2quadrillion;95%CI:USD130–330billion,IDR2.0–4.9quadrillion).•Afastercoalphase-outby2040,inlinewiththe1.5degreestargetoftheParisAgreement,wouldavoidacumulativetotalof182,000airpollution-relateddeaths(95%CI:114,000–280,000)andhealthcostsofUSD130billion(IDR1,900trillion;95%CI:USD80–200billionIDR1,200–2,900trillion),from2024untiltheend-of-lifeofallplants.•Mandatoryairpollutioncontrolsinstallationwouldavoid8,300airpollution-relateddeathsin2035inthecurrentpoliciesscenario(95%confidenceinterval:5,200–12,600),aswellashealthcostsofUSD5.8billion(IDR86.5trillion;95%CI:USD3.6–8.9billion,IDR54.1–131.5trillion).•CumulativeavoidedhealthcostswouldreachUSD90billion(IDR1.3quadrillion;95%CI:USD60–140billion,IDR0.8–2.0quadrillion),yieldinganeteconomicbenefitofUSD70billion(IDR290trillion)tothesociety,consideringtheinvestmentandoperatingcostsoftheairpollutioncontrols,makingtheinvestmentshighlyprofitablefromasocialpointofview.•Responsibleforone-fifthofallhealthimpactsofcoal-firedplantsinIndonesia,itiscrucialtoincludecaptivecoalpowerplantsintheEnergyTransitionMechanism(ETM)andJustEnergyTransitionPartnership(JETP)tomakemeaningfulprogress.Excludingthemfromthe2040coalphase-outpolicycouldcauseanadditionalhealthburdenof27,000airpollutiondeaths.(95%CI:16,000–42,000)andhealthcostsofUSD20billion(IDR330trillion;95%CI:USD10–30billion,IDR200–520trillion).iiHealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesia•Wealsoassessedtheimpactsofcurrentandplannedbiomassco-firingonairpollutionfromcoalpowerplants.Raisingtheshareofco-firingtoaminimumof20%atallPLN(PeraturanListrikNegara,Indonesia’sstate-ownedelectricityprovider)powerplants—asignificantchallengeintermsoftheavailabilityofbiomassandpotentiallyalsoatechnicalchallenge—wouldmerelyreducetheemissionsofairpollutantsfromIndonesia’scoalpowerplantsby1.5–2.4%dependingonthepollutant.•Reductionofairpollutionfromcoalpowerplantscanonlybeeffectivelyachievedthroughtheproperinstallationofemissioncontroltechnology.CREA’sanalysisshowsthathavingairpollutioncontrolinstalledinalloperatingcoalpowerplantsbeyond2035wouldreducetheemissionsofSOxby73%,NOxby64%,dustby86%,andmercuryby71%.Ammoniaco-firingwouldworsenairqualityimpactsduetofugitiveammoniaemissions.Source:CentreforResearchonEnergyandCleanAir(CREA)analysisbasedonUniversityofMarylandandGlobalEnergyMonitor(GEM)data.KF1.Operatingcoal-firedcapacitybyscenarioiiiHealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesiaSource:CentreforResearchonEnergyandCleanAir(CREA).KF2.AnnualmeanPM2.5concentrationfromallcoalpowerplantsinIndonesiaivHealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesiaSource:CentreforResearchonEnergyandCleanAir(CREA).KF3.Airpollution-relatedannualcostsbyscenarioSource:CentreforResearchonEnergyandCleanAir(CREA).KF4.Airpollution-relatedannualdeathsbyscenariovHealthbenefitsofJustEnergyTransitioniiandcoalphase-outinIndonesiaviviiContents12Keyfindings23Contents45Abbreviations810Executivesummary11Backgroundandmethodology13Currentimpactsofcoalpoweremissions14Futureimpactsunderdifferentretirementpathways16Benefitsofhealth-basedcoalpowerplantretirement1821Introduction22Stateofcoal-firedelectricitygeneration24Nationaleffortsandinternationalsupport29Pollutioncontrolandemissionregulation2931Methodology33Emissionsinventory37Atmosphericmodelling41Healthandeconomicimpactsassessment44Costofairpollutioncontrols4653Evaluationofdifferentphase-outtimelinesImplicationsonairpollutionviHealthimpactsandcostimplicationsAnnualimpactsCumulativeimpactsBenefitsofprioritisingplantswithworsthealthimpactsEvaluationofairpollutioncontrolimplementationEvaluationofco-firingimplementationConclusionReferencesAppendixHealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesiaAbbreviations1.5degreesTargetthresholdlimitof1.5°Cabovepre-industriallevelsagreedinthe2015ParisAgreementACTAcceleratingCoalTransitionADBAsianDevelopmentBankAPCAirPollutionControlAQLIAirQualityLifeIndexASEANAssociationofSoutheastAsianNationsCCSCarbonCaptureandStorageCEMSContinuousEmissionMonitoringSystemCFPPCoal-firedPowerPlantCIConfidenceIntervalCIFClimateInvestmentFundsCOCarbonMonoxideCO2CarbonDioxideEEAEuropeanEnvironmentAgencyEIAEnvironmentalImpactAssessmentETMEnergyTransitionMechanismFGCFlueGasConcentrationGCPTGlobalCoalPlantTrackerGDPGrossDomesticProductGEMGlobalEnergyMonitorGNIPPPGrossNationalIncomeinPurchasingPowerParityGWGigawattGtCO2-eqGigatonnesofcarbondioxideequivalentH2O2HydrogenPeroxideIEAInternationalEnergyAgencyIEEFAInstituteforEnergyEconomicsandFinancialAnalysisIESRInstituteforEssentialServicesReformIHMEInstituteforHealthMetricsandEvaluationint.USDInternationalDollar,equivalenttothepurchasingpowerof1USDIPPIndependentPowerProducerJETPJustEnergyTransitionPartnershipLCCPLowCarbonScenarioCompatiblewithParisAgreementLHVLowerHeatingValueLTS-LCCR2050Long-TermStrategyforLowCarbonandClimateResilience2050MEMRMinistryofEnergyandMineralResourcesμg/Nm3Microgrampernormalcubicmetre(at101.325kPa,273.15K)viiHealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesiamg/Nm3Milligrampernormalcubicmetre(at101.325kPa,273.15K)MtCO2-eqMilliontonnesofcarbondioxideequivalentMWMegawattNDCNationallyDeterminedContributionNH3AmmoniaNm3/GJNormalcubicmetreperGigaJoule(at101.325kPa,273.15K)NO2NitrogenDioxideNOXNitrogenOxidesO3Ozone,ground-levelOECDOrganisationforEconomicCo-operationandDevelopmentPERPRESPeraturanPresidenNo.112Tahun2022tentangPercepatanPengembanganEnergiTerbarukan112/2022untukPenyediaanTenagaListrik,PresidentialRegulationNo.112Year2022ontheAccelerationoftheDevelopmentofRenewableEnergyfortheProvisionofElectricPowerPLNPerusahaanListrikNegara,Indonesia’sState-ownedElectricityProviderPMParticulateMatterPM2.5ParticulateMatterwithparticlesthatare2.5micronsorlessindiameterPM10ParticulateMatterwithparticlesthatare10micronsorlessindiameterPPAPowerPurchaseAgreementRUPTLRencanaUmumUsahaPenyediaanTenagaListrik,PLN’s10-yearbusinessplanSO2SulphurDioxideUNEPUnitedNationsEnvironmentProgrammeUNFCCCUnitedNationsFrameworkConventiononClimateChangeUSDTheUnitedStatesDollarWRFWeatherResearchForecastingviiiExecutiveSummary1HealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesiaBackgroundandmethodologyIndonesiareliesoncoal-firedpowerfor62.5%ofitselectricitygeneration(PLN,2022).Thisreliancecomeswithsignificantimpactsonthecountry’sairqualityandpublichealth,aswellasamajorcontributiontothegrowthingreenhousegasemissionsoverthepastdecade.Thecoalphase-outandnet-zeropathwayscurrentlybeingpreparedareamajoropportunitytocleanupIndonesia’spowersystem.Thisstudyassessesthecurrentairqualityanditshealthimpacts,andtheassociatedexternaleconomiccostsofcoalpowerplantsinIndonesia.Thestudyalsoincludestheimpactofvariouspolicypathwaysintothefuture.Wepresentthefirsthealth-basedphase-outpathwaysthataredesignedtomaximisepublichealthbenefitsofretiringcoalpowerplants.Byusingtheimpactpathwayapproach,thisstudyquantifiesthehealthimpactsofairpollutantemissionsfromcoalpowergenerationinIndonesia.Thisapproachisthemostcommonwaytostudythehealthimpactsofairpollutantsources.Thisapproachincludesfollowingthechainofcausationfromemissions,toatmosphericdispersionandchemicaltransformation,populationexposure,resultinghealthimpacts,andtheeconomiccostofthosehealthimpacts.Theimpactsarequantifiedforthepathwayimpliedbytheregulationcurrentlyinplace,forthe1.5-degree-alignedpathwayforutilitypowerplants,andforthe1.5-degree-alignedpathwayforbothcaptiveandutilitypowerplants.Thestudyalsoquantifiestheimpactofmorestringentairpollutantemissioncontrolsanddifferentlevelsofbiomassco-firing.Theanalysisisdonebydevelopingaplant-by-plantinventoryofemissions,estimatingplant-levelpollutiondispersionthroughatmosphericmodelling,quantifyinghealthimpactsresultingfromchangesinambientconcentration,andvaluinghealthimpactsinmonetarytermsusingeconomiccostspercaseofdifferenthealthoutcomescompiledfromliteraturesandtransferredtoIndonesia’slevelofincomeandGDPpercapita.Theemissioninventoryisbasedondisclosuresbyplantoperatorsasfaraspossible,withtheplant-specificdatacompiledforasmanyplantsaspossibleandgeneralisedtootherplantsofthesametype.Weassumethatallpowerplantsmeetthenationalemissionsstandards,providingconservativeestimatesofimpacts.Futurehealthandeconomicimpactsareprojectedtakingintoaccountpopulationgrowth,economicgrowth,andprojectedchangesindemographics.CurrentimpactsofcoalpoweremissionsBasedontheestimationsoftheAirQualityLifeIndex(AQLI),91%ofIndonesia’spopulationisexposedtoairpollutionlevelsworsethanWHOguidelines.Inthemostpollutedprovince,WestJava,airpollutionreducesthelifeexpectancyofits48millionresidentsby4.1years.Comparably,theresidentsoftheJakartaMetropolitanArea,Jabodetabek,areexposedtohighlevelsofparticulatepollution,andlifeexpectancyis5.5to6.4yearsshorterthanthoselivinginregionswhereWHOguidelinesaremet(AQLI,2022).Accordingtoa2015studyconductedbytheAtmosphericChemistryModelingGroupofHarvardUniversityandGreenpeaceSoutheastAsia,airpollutionemittedbycoal-firedpowerplants(CFPP)wasestimatedtoberesponsiblefor6,500prematuredeathsannuallyin2011(Koplitzetal.,2017).Foreachnewadditionofa1,000MWpowerplant,anaverageof600Indonesianadultsandchildrenwouldbeseverelyimpactedbyacuteandchronicrespiratorydiseasesduetoexposuretofineparticulatematterandgaseouspollutants(GreenpeaceIndonesia,2015).AirpollutantemissionsfromcoalpowerinIndonesiahaveincreasedbyanestimated110%overthepastdecade.Underthecurrentpolicy,theemissionsareexpectedtofurtherincreaseby70%by2030.In2022,emissionsfromcoalplantswereresponsiblefor10,500deaths(95%CI:6,500–16,400)andhealthcostsofUSD7.4billion(IDR109.9trillion;95%CI:USD4.6–11.5billion,IDR67.6–170.3trillion).However,underthecurrentpolicy,thedeathslinkedtoemissionsfromcoal-firedpowerplantsareestimatedtoriseto16,600ayear(10,300–25,900),whilethehealthcostswouldaccordinglyrisetoUSD11.8billionperyearbytheendofthedecade(IDR175.2trillion;95%CI:USD7.2–18.2billion,IDR106.9–270.3trillion).2HealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesiaFutureimpactsunderdifferentretirementpathwaysAfterevaluatingtheairqualityandhealthimpactsofallcoalpowerplantsinIndonesia,weprojectedfutureemissionsandhealthimpactsfordifferentpathways.Our“currentpolicies”pathwayisbasedonPERPRES112/2022,whichrequiresallPLNandIPPpowerplantsandnewcaptivepowerplantstoretireby2050.Inaddition,weassumethatallexistingcaptivepowerplantswouldretireafter30yearsofoperationwhileemissionstandardsforallplantsremainunchangedatthecurrentlevel.Underthisscenario,startingfrom2024untiltheend-of-lifeofallcoal-firedpowerplantsinIndonesia,coalpoweremissionswouldleadtothecumulativeamountof303,000air-pollution-relateddeaths(95%CI:189,000–468,000)andhealthcostsofUSD210billion(IDR3.2quadrillion;95%CI:USD130–330billion,IDR2.0–4.9quadrillion).Asanalternative,weevaluatethe1.5degreespathway,alignedwiththegoalsoftheParisAgreementandtheInternationalEnergyAgency’srecommendationtophaseoutcoalpowerplantsby2040.Comparedwithcurrentpolicies,thisfastercoalphase-outwouldavoidacumulativetotalof182,000airpollution-relateddeaths(95%confidenceinterval:114,000–280,000)andhealthcostsofUSD130billion(IDR1,900trillion;95%CI:USD80–200billionIDR1,200–2,900trillion),from2024untiltheend-of-lifeofallplants.Indonesia’scurrentairpollutantemissionsstandardsforcoal-firedpowerplantsarefarbehindbestinternationalpracticesandbestavailabletechnology.Thisisclearfromcomparisonswithe.g.China,SouthKorea,andtheEuropeanUnion.We,therefore,modelapathwayinwhichallpowerplantsthatareexpectedtooperatebeyond2035aremandatedtoinstallefficientemissioncontroldevicesby2030.Inthispathway,8,300airpollution-relatedannualdeathscouldbeavoidedin2035inthecurrentpoliciesscenario(95%confidenceinterval:5,200–12,600),aswellashealthcostsofUSD5.8billion(IDR86.5trillion;95%CI:USD3.6–8.9billion,IDR54.1–131.5trillion).ThecumulativeavoidedhealthcostswouldreachUSD90billion(IDR1.3quadrillion;95%CI:USD60–140billion,IDR0.8–2.0quadrillion),yieldinganeteconomicbenefitofUSD70billion(IDR290trillion)tosociety,consideringtheinvestmentandoperatingcostsoftheairpollutioncontrols,makingtheinvestmentshighlyprofitablefromasocialpointofview.Fromthegreenhousegasandpublichealthperspective,itisessentialtoincludecaptivepowerplantsinIndonesia’scoalphase-outpoliciesastheseplantsareresponsibleforapproximately20%ofthetotalhealthimpactsofcoal-firedpowerinthecountry.Excludingcaptivepowerplantsfroma2040coalphase-outpolicycouldcauseanadditionalhealthburdenof27,000airpollution-relateddeaths(95%confidenceinterval:16,000–42,000)andhealthcostsofUSD20billion(IDR330trillion;95%CI:USD10–30billion,IDR200–520trillion).Evenasthecoalphase-outbegins,somepowerplantsareexpectedtooperatewellintoorbeyondthe2030s.Investinginimprovedairpollutioncontrolsinthosepowerplantswoulddeliversubstantialhealthandeconomicbenefits.PLN’splansformeetingrenewableenergytargetssetfor2025and2030relyheavilyonbiomassco-firing.Ourevaluationofco-firingonairpollutantemissionsandhealthimpactsfromcoalpowerrevealedittobeverymodest.Raisingtheshareofthisco-firingtoaminimumof20%atallPLNpowerplantswouldreducetheseemissionsby1.5to2.4%,dependingonthepollutant.Incontrast,requiringefficientemissioncontroltechnologyatallpowerplantsoperatingbeyond2035wouldreduceemissionsofSOxbyanestimated73%,NOxby64%,dustby86%,andmercuryby71%.Therearealsotentativeplansforco-firingammoniaatsomecoalpowerplants.Besidesthelikelypracticalandeconomicunviabilityoftheidea,itcouldworsenairqualityimpacts,duetofugitiveammoniaemissionsfromthetransportationandhandlingofammoniaandfromthepowerplantitself.3HealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesiaBenefitsofhealth-basedcoalpowerplantretirementPowerplantslocatedneardenselypopulatedareashavethehighestpublichealthcosts.Theimpactonthepopulationisexacerbatedbyseveralfactors,includingunfavourablewindpatternsandpooremissioncontrolmeasures.ClearexamplesofthiscorrelationincludePLNMuaraKarangandLontarpowerplantslocatedinJakartaandTangerang,aswellasthecaptivecoalpowerplantslocatedinBekasi,Karawang,Purwakarta,andBandung.Thehealthbenefitsandcost-effectivenessofthecoalphase-outaremaximisedbyprioritisingtheplantswiththehighesthealthimpactsintheorderofretirement.Ifwefollowedthesimplelogicofretiringtheoldestplantsfirst,thenumberofairpollution-relateddeathsinthecurrentpoliciesscenariowouldbe36,000caseshigher.Simultaneously,thehealthcostswouldincreasebyUSD24billion(IDR360trillion)—byasmuchas12%.Underthe1.5degreesscenario,implementinganage-basedretirementschedulewouldcauseadditionalcumulativeairpollution-relatedcostburdensofUSD12billion(IDR180trillion).4Introduction5HealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesiaIndonesiaisthelargestemergingeconomyinSoutheastAsia—havingthe4thlargestpopulationintheworldandmaintaininganaverageGDPgrowthrateof5.3%inthe2011-2019periodbeforetheCOVID-19pandemichitin2020(WorldBankOpenData,2023a).Thefinalenergyconsumptiongrewatanaveragerateof3.0%overthesameperiod.Indonesiaexperiencedareductioninenergyconsumptionin2020and2021asaresultofthepandemicbutquicklyreboundedin2022aseconomicactivitiesresumed(MEMR,2023a).Exporting494milliontonnesofcoal,orabout70%ofitsnationalproduction,Indonesiacontributes21%ofglobalcoalexportsbymonetaryvalue(MEMR,2023b;Workman,2022).Indonesia’scoalresourcesandreservesaremainlymedium-qualitycoaldistributedoverEastKalimantanandlow-qualitycoaloverCentralandSouthSumatra(IESR,2019).Despitethepresenceofrecoverableoilandnaturalgasreservesof25billionbarrelsofoilequivalent,Indonesiaisfacedwithchallengesinmaintainingdomesticoutputlevelsandmeetingrisingdemand.Indonesiaisalreadyanetimporterofoilandisprojectedtobecomeanetimporterofnaturalgasby2030(McKinsey&Company,2020).Indonesiahasbeenrelyingonfossilfuelsforthenation’senergyneeds,wherecoal,oil,andgasmadeupnearly88%ofthenationalprimaryenergysupplyin2022—at42%,32%,and14%,respectively.Renewableenergy,witha12%share,hasremainedvastlyuntapped(MEMR,2023a).Astheurbanisationratesignificantlyincreasesparalleltoeconomicdevelopment—reaching57%in2021(WorldBankOpenData,2023b),Indonesia’smajormetropolitanareasarefacedwithnegativeenvironmentalconsequencesdrivenbyurbanconsumptionpatterns.Higherenergyconsumptionforelectricity,transportation,andcookinginurbanareasdirectlyresultsinhigherpollutionreleasetoair,water,andsoil,duetothehighrelianceonfossilfuelsandbiomass.Indonesiaisalsoamongthecountriesmostvulnerabletotheimpactsofclimatechange,classifiedinthetop-thirdriskgrouping(48outof191)inthe2023INFORMRiskIndexmainlyduetohighexposurerisktofloods,earthquakes,anddroughts(EuropeanCommission,2023).Toexpressitsnationalcommitmenttotacklingclimatechange,IndonesiaratifiedtheParisAgreementin2016,throughtheNationallyDeterminedContributionpledgedfor2020–2030.Inthelateststrengthenedcommitmentpublishedin2022,IndonesiasubmittedtheEnhancedNDCtotheUnitedNationsFrameworkConventiononClimateChange(UNFCCC)Secretariat,inwhichtheemissionreductiontargetisincreasedfrom29%to31.89%unconditionallywiththecountry’sowneffort,andfrom41%to43.20%conditionallywithinternationalsupport(UNFCCC,2022).TheEnhancedNDCisaimedtobealignedwiththeLong-TermStrategyforLowCarbonandClimateResilience2050(LTS-LCCR2050)(UNFCCC,2021),tohelpthecountrytransitiontowardstheSecondNDCandrealiseNetZeroEmissionsby2060orsooner.TheLTS-LCCR2050isdesignedtostrengthenIndonesia’sOneHundredYearsVision,”VisiIndonesia2045”(KementerianPPN/Bappenas,2019),inwhichambitioustargetsforhumanresourcedevelopment,sustainableeconomy,equitabledevelopment,andconsolidationofnationalresilienceandgovernancearedefined.UndertheLowCarbonScenarioCompatiblewithParisAgreement(LCCP)scenarioincludedinLTS-LCCR2050settobeinlinewiththe1.5degreestarget,nationalemissionsareprojectedtoreachtheirpeakin2030at1.24GtCO2-eq.Post2030,emissionsareprojectedtograduallydeclineatarateofaround30.7MtCO2-eqannually,toreach0.54GtCO2-eqin2050orequivalentto1.61tonofCO2-eqpercapita.Toachievethesetargets,IndonesiamustachieveanetsinkinForestryandOtherLandUses(FOLU)by2030,whilealsofocusingontheenergysectordevelopmentandtransformation.Particularlyforpowergeneration,theLCCPscenarioprojectsshiftsawayfromcoal,enhancementofrenewablesshare,andintegrationofbiomass-coalco-firingpowerplantsareconnectedtoCCS.Aconcretetransitionstrategyisessential,notonlytomitigateclimaterisksbutmostimportantlytoanticipatetheconsequencesofdevelopmentandindustrialgrowth.Energygeneration‑relatedairpollutionhassevereimpactsonhealth.Airpollutiondisproportionatelyimpactslow-andmiddle-incomecountries,withSoutheastAsiaandWesternPacificcountriesfacingthegreatestburden,accordingtoWHO(WHO,2021).Indonesiafacesgrowingissuesofpollutionandenvironmentaldegradationaseconomicactivitieshavesignificantlyincreasedoverthepastdecades.6HealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesiaAirQualityLifeIndex(AQLI)estimatesthat91%ofIndonesia’spopulationisexposedtoairpollutionlevelsabovetheWHOguidelines.AirpollutioninWestJava,rankedasthemostpollutedprovince,reducesthelifeexpectancyofits48millionresidentsby4.1years.TheresidentsoftheJakartaMetropolitanArea,Jabodetabek,areexposedtohighlevelsofparticulatepollution,andlifeexpectancyis5.5to6.4yearsshorterthanthoselivinginregionswhereWHOguidelinesaremet(AQLI,2022).Source:IQAir.Figure1.PM2.5ConcentrationDistributionMapoverIndonesia(IQAir,2022)ThedistributionofPM2.5levelsacrossthemonitoredmajorcitiesinIndonesiaisvisualisedinIQAir’s2022WorldAirQualityreport,whereIndonesiaranksworstintheSoutheastAsianregionandJakartaisshowntohavetheworstannualaverageofPM2.5concentrationof36.2μg/m3(IQAir,2022).NotingmostareasintheislandofJava,where56%ofIndonesia’spopulationresides,showannualexposureexceedingthreetoseventimestheWHO’sguidelineforannualPM2.5concentrationthresholdof5μg/m3(BPS,2023).Coal-firedpowerplantsareoneofthemajorsourcesofairpollutantemissions,andasignificantcauseofgrowthinemissions.AccordingtoastudyconductedbytheAtmosphericChemistryModelingGroupofHarvardUniversityandGreenpeaceSoutheastAsiain2015,airpollutionemittedbycoal-firedpowerplants(CFPP)wasestimatedtoberesponsiblefor6,500prematuredeathsannuallyin2011(Koplitzetal.,2017).Foreachnewadditionofa1,000MWpowerplant,anaverageof600Indonesianadultsandchildrenwouldbeseverelyimpactedbyacuteandchronicrespiratorydiseasesduetoexposuretofineparticulatematterandgaseouspollutants(GreenpeaceIndonesia,2015).AcommentaryreleasedbySatyaWidyaYudha,amemberoftheNationalEnergyCouncil,highlightsairpollutionimpactsofforestfiresandpeatlanddegradation,coal-firedpowerplants,andvehicleemissions,andemphasisestheneedforlegalreformstomitigatethehumancostofairpollution,namelyincreasedcasesofupperrespiratoryinfectionsandprematuredeaths(NBR,2018).Indonesiahastoprioritisetheadoptionofcutting-edgeenergy-efficiencyandcleanenergysolutionstoavoidtheserisks,byphasingouttheoldestandmajorCFPPemitters.7HealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesiaStateofcoal-firedelectricitygenerationInIndonesia,electricityproductionanddistributionishandledbythenationalgovernmentthroughthestate-ownedPTPerusahaanListrikNegara(PLN)anditssubsidiaries,withIndependentPowerProducers(IPP)responsibleforasignificantshareofgeneration.Thetotalinstalledcapacityinthecountryis69,040MW,ofwhichPLNoperates6,314unitswithacombinedcapacityof44,940MW,orabout65%.Theremaining24,100MW(35%)isoperatedbyIPPs,accordingtoPLN's2022StatisticalReport(PLN,2022).Indonesiahasbeenreliantonfossilfuels,particularlycoalforpowergeneration.Coalistheprimaryfuelsourceforpowergenerationat62.5%sharein2022,followedbynaturalgasat22.2%andoilat5.6%,andtheremaining9.7%fromrenewables(PLN,2022).Figure2belowprovidesthelocationsoftheCFPPsacrossthecountry,showingPLNandIPPpowerplantsforthenationalelectricitysupply,andcaptivepowerplantsdedicatedtoenergy-intensiveindustrialparkslocatedinEastandCentralJava,NorthSumatra,Sulawesi,andMaluku.Source:CentreforResearchonEnergyandCleanAir(CREA),GlobalEnergyMonitor(GEM).Figure2.Indonesia’scoalpowercapacitydistribution(CREA,2023;GEM,2022)InOctober2021,PLNreleasedthecompany’s10-yearbusinessplan,RencanaUmumUsahaPenyediaanTenagaListrik(RUPTL)2021–2030.Thedocumentoutlinesaplantoaddatotalof40,575MWpowergenerationcapacityby2030,where51.6%comesfromrenewables,and48.5%comesfromfossilfuels(MEMR,2021;OECD,2021).ThebreakdownisillustratedinFigure3.8HealthbenefitsofJustEnergyTransitionEnergiterbarukan20,9GW(51,6%)andcoalphase-outinIndonesiaTotalpenambahankapasitasdaya,2021-2030Total:40,57GWTermal/Fosil19,7GW(48,4%)Source:RUPTL2021-2030.Thiscategoryincludespowergeneratedfromnewandrenewableenergysourcestosupplybaseloadandpeakloaddemand.TheRUPTLindicatesthatbaseloadpowerplantsunderthiscategorycouldcoverhybridrenewableandgaspowerplantswhosegenerationcostsarelowerthanthatofcoalprojects.Figure3.SharesofAdditionalPowerCapacityAdditionperRUPTL2021-2030(OECD,2021)Despitethecommitmenttoachieve23%renewablesshareintheenergymixby2025,RUPTL2021–2030stillshowshighrelianceonfossilfuelsforthenextdecade,particularlycoal.AsofJanuary2023,thereare88CFPPsoperatingacrossthecountrytotaling40.6GWofinstalledcapacity.Anadditional18.9GWofcapacityisunderconstruction,4.7GWinthepre-permitandpermitphase,and2.8GWannounced(GEM,2022).Inthepasttwodecades,Indonesiahasmaintainedsteadyadditionsofcapacitytokeepupwithprojecteddemandgrowth.Theseadditionsweremadepossiblethroughaseriesoffast-trackedcapacityexpansionprogramsforCFPPs,withtheaimofadding42.5GWcapacityby2024(AntaraNews,2019).Therealiseddemandgrowthhasbeenconsistentlyoverestimated,resultinginexcesscapacities.Twoofthelargestgridsinthecountry,Java-BaliandSumatra,areexpectedtohaveareservedmarginofupto60%and56%by2030,respectively,accordingtoPLNforecasts.Inessence,thenationalgridisfacinganoversupplyoverthenextdecade(IEEFA,2021a).TheplanningdocumenthasindicatedthatPLNwillretireitsCFPPfleet,hencealigningwiththegovernmentcommitmentinachievingthecarbonneutraltargetin2060.Startingin2030,theretirementwillbedoneinstagesandinaccordancewithPowerPurchaseAgreements(PPA)andeconomiclife-cycleconsiderations.TheplanproposesthefirstphaseofCFPPretirementof1.1GWofsubcriticalunitsthathaveadequatelyreachedtheendoftheirdesignedlifetimes.TheunitslocatedinMuaraKarang,TanjungPriok,TambakLorok,danGresikhavebeenoperatingfor50–60years,andareconsideredtoberetiredin2030inRUPTL2021-2030(MEMR,2021).However,PLNmaydecidetoprolongtheoperationallifetimeofitsplantsbyupto20yearsthroughrefurbishment,retrofitorlifeextensionforcertainCFPPsthatarestillconsideredassets,ascitedinRUPTL2021-23(MEMR,2021,p.V-66).Thiswoulddisrupteffortstoreachemissionreductiontargets.9HealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesiaNationaleffortsandinternationalsupportBasedonthehistoricalelectricityconsumptiontrend,itisclearthatthecountryshouldreduceordelaycapacityexpansionandpursueearlyretirementofthelessefficient,olderCFPPs,whileloadgrowthresumes.TheMinistryofEnergyandMineralResourcesstartedtoworkwithPLNtodevelopastagedretirementplan,designedtomeetIndonesia’sNetZeroEmissions2060roadmap.Asthepreliminaryinitialplan,PLNannouncedthetargetstoretire1GWofCFPPsbefore2030andimplementphasedretirementsupto2055whenthelastunabatedCFPPisexpectedtoberetired(FiscalPolicyAgency,2022).InOctober2022,PresidentialRegulationNo.112Year2022ontheAccelerationofRenewableEnergyDevelopmentfortheProvisionofElectricitywasissued.Theregulationshowcasesthecountry’scommitmenttoprioritisingnewandrenewablepowerplantsandtransitioningawayfromfossilfuels.TheregulationdetailsthatIndonesiawillnotallowadditionalCFPPstobebuiltafteritsissuanceandset2050asthemaximumlimitoftheoperationalyear.NewCFPPsareonlypermittedforthosethathavebeenincludedinRUPTLandIndonesia’sNationalStrategicProjectduetotheexpectedcontributiontojobcreationandeconomicgrowth.Theregulationalsoincludesthatexceptionsmayapplytocoalpowerplantoperationsthatareabletofulfilthecommitmenttoreducegreenhousegasemissionsbyatleast35%within10yearssincethestartofoperation,throughtechnologyimplementation,carbonoffsets,and/orrenewablesenergymix.TheemissionsbaselinewouldbetheaverageemissionofPLTUinIndonesiain2021(MEMR,2022a).TheGovernmentofIndonesiaandtheAsianDevelopmentBank(ADB)officiallyintroducedtheEnergyTransitionMechanism(ETM)CountryPlatformtopursuethecountry’s2060NetZeroEmissionstarget(MEMR,2022b)attheG20SummitinNovember2022.ToachievethisandtoreduceIndonesia’scarbonemissionsby32%by2030,thecountryaimstospeeduptheretirementof33coalpowerplantswhichamounttoatotalcapacityof16.8GW.TheETMCountryPlatformtargetsaccelerationofrenewablesandlow-emissionstechnologydevelopment,andultimatelydeploying700GWofrenewableenergyplants.ThetotalrequiredinvestmentamountwillbeuptoUSD1trillion(IDR15quadrillion)by2060withthesupportofinternationalpartnerssuchasADB,IslamicDevelopmentBank,andWorldBank(ADB,2022;MEMR,2022b).TheinitialretirementplanhasbeendevelopedbyIndonesiaundertheADBETMinitiative,listingprioritypowerplantsthatarebestsuitedforretirementbeforeandafter2030.TheannualcapacitieslistedinthisinitialplanareillustratedinFigure4below.AnnualRetirements(MW),2035-2035bygrid3.0002.000MW1.0000202620272028202920302031203220332034Java-Bali(PLN)Java-Bali(IPP)Sumatra(PLN)Source:GEM.(2022).GlobalCoalPlantTracker.Indonesia.Figure4.AnnualfutureretirementplanofthecoalplantsforJavaBali(PLN),JavaBali(IPP),andSumatra(PLN)developedundertheADBETMinitiative(GEM,2022;FiscalPolicyAgency,2022).10HealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesiaAtthesameG20Summitevent,theUnitedStates,EuropeanUnion,Canada,Japan,andtheUKannouncedtheJustEnergyTransitionPartnership(JETP)withIndonesiatofinanciallysupportthecountryinitsclimatetargetsandenergytransition,andtokeepinlinewiththe1.5degreestarget.ThetargetswillbeachievedthroughUSD20billioninpublicandprivatefundingoverthreetofiveyears(EuropeanCommission,2022a).ThepartnershipismeanttohelpIndonesiareachNetZeroEmissionsby2060orsoonerbyacceleratingthedecarbonizationofIndonesia’spowersector.Thisincludesearlyretirementofsomecoalplants,whileincreasingtheshareofrenewables.Theagreementrequiresthecountrytocapitspowersectoremissionsat290milliontons(CO2)in2030,downfromthebaselinevaluefor2030of357milliontons(CO2)(EuropeanCommission,2022b).Theshareofrenewableenergyintheelectricitysectoristobeincreasedfrom23%to34%by2030.Theagreementalsoincludesthetargetofachievingnetzeroemissionsinthepowersectorby2050.Inaddition,theearlyretirementofcoal-firedpowerplantswillbeprioritisedaswellashaltingthepipelineofplannedon-gridCFPPsincludedintheRUPTL(Ember,2023).AnotherformofinternationalsupportforIndonesia’senergytransitionistheClimateInvestmentFunds(CIF)programAcceleratingCoalTransition(ACT),aninitiativetoaidcoal-dependentcountriesreducetheirdependenceoncoalpowerandbeontracktomeetglobalcommitmentsmadeinthe2016ParisAgreementcommitment(CIF,2023).TheACTplandevelopedtogetherwiththeADBandWorldBank,comprisesthreekeyelements:AcceleratedCFPPRetirement;Governance,JustTransitionandRepurposing;andScaleUpofRenewableEnergyandStorage.PollutioncontrolandemissionregulationTheairpollutantsofgreatestconcernemittedbycoal-firedpowerplantsarefineparticulatematterofPM2.5,sulphurdioxide(SO2),nitrogendioxide(NOx),mercury,andotherheavymetals.Duetorelativelylaxairpollutantemissionsstandards,themajorityofIndonesia’scoal-firedpowerplantslackairpollutantcontroltechnologiesforSO2andNOx.ThesepollutantsmakeasignificantcontributiontoPM2.5pollutionthroughtheformationandreleaseofsulphateandnitrateaerosols,aformofPM2.5,intheatmosphere.Inrecentyears,numerousnewCFPPshavebeenbuilttomeettheincreasingelectricityneedsofIndonesia(GEM,2023).TheshareofCFPPsintotalpowergenerationhasincreasedsubstantiallyintheSoutheastAsianregion,particularlyinIndonesia,nearlydoublingfromabout25%in1995to52%in2014,reaching67%in2022(MEMR,2023b).Indonesiaalsohasthehighestshareofcoal-firedpowerinitsgenerationmixamongASEANcountries(ERIA,2017).AshighlightedbytheEconomicResearchInstituteforASEANandEastAsia(ERIA),coalcanbeconsideredoneofthecheapestfuelsourcesforpowergenerationintermsofdirectcostbutcomesatasignificantcostofpublichealth.Whileraisingemissionsstandardsgenerallyleadstoanelectricitytariffincrease,thiswouldbethemostdesirableandsustainableoutcomeforthecountrytoallowproperinstallationandcontinuedoperationofAirPollutionControl(APC)equipmentinalloperationalCFPPs.Onceemissionstandardsareimplemented,thecountryhastheresponsibilitytoensurepropermanagementofAPCandprovidedisclosureofmonitoringrecords.Openaccesstotheserecordsservesasevidenceforregulatorycompliance,whilesimultaneouslygainingpublicsupport,especiallyforthoselivingclosetoCFPPs.ERIAhighlightsthatthemonitoringsystemshouldbehighlytransparent,monitoringlevelsattheplantlevelandthelocalregions.IndonesiahasimplementedtwokeyregulationsoncontrollingemissionsfromCFPPs:theMinisterialDecreeoftheMinistryofEnvironmentandForestryNo21.Year2008onStaticEmissionSourcesQualityStandardforBusinessand/orActivitiesofaThermalPowerPlant,andtheMinisterialDecreeoftheMinistryofEnvironmentandForestryNo.P.15/MENLHK/SETJEN/KUM.1/4/2019onEmissionsQualityStandardofThermalPowerPlant(MinistryofEnvironmentandForestry,2023).11HealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesiaThelatterintroducedstandardsfor“new”coalpowerplantsthatarebetteralignedwithstandardsenforcedinothermajorcoal-consumingcountries.However,alreadypermittedandunder-constructionpowerplantsarenotconsidered“new”bythegovernmentwhenenforcingthestandards,allowingthemtofollowthelaxstandardsfor“existing”powerplants.CFPPswithacapacityof25MWandhigher,aswellasCFPPswithacapacityoflessthan25MWthatoperatecontinuouslyandusecoalwithasulphurcontentlargerthan2%,aremandatedtomeasuretheiremissionsusingaContinuousEmissionMonitoringSystem(CEMS).ThesummaryofthemaximumlevelsofpollutantsatcoalplantsisprovidedinTable1below.Table1.SummaryofIndonesia’sCFPPmaximumemissionlimitsRegulationOperationSO2NOx(NO2)PMOpacityMercuryyear(mg/Nm³)(mg/Nm³)(mg/Nm³)(mg/Nm³)PermenLHKNo21Tahun2008(prior)Before0175085015020%Dec.2008PermenLHKNo.75075010020%P.15/MENLHK/After01Dec.SETJEN/20085505501000.03KUM.1/4/2019(in-force)Before23200200500.03April2019After23April2019Athree-yearproject,“TransparentPollutionControlinIndonesia”thatrunsfromMarch2021untilFebruary2024,aimstosupportIndonesiainreachinginternationalgoalsofenergytransition.IndonesiareceivesfinancialsupportfromtheEUtoimproveindustrialpollutionmonitoring,throughtheimplementationofthePollutantReleaseandTransferRegister(PRTR).TheprojectalsoaimstoestablishastrongerciviladvocacynetworkinIndonesia,toengagewiththenationalstakeholdersandpushforanimmediateresponse(EEAS,2021;Simon,2023).Nexus3Foundationhighlightstheurgentneedtocontrolairpollution,citingthe2019CitizenLawsuitsubmittedby32citizenswhichisaddressedtoPresidentJokoWidodo,theMinisterofEnvironmentandForestry,MinisterofHealth,andMinisterofInternalAffairs,aswellastheGovernorofWestJavaandtheGovernorofBanten.AirpollutioninJakartaismainlyassociatedwithsixcoal-firedpowerplantslocatedinthenearbythreeprovinces,emissionsfrommillionsofvehicles,andindustrialactivities.Highlevelsofpollutionhavebeenaresultofunenforcedemissionstestingandalackofnationalandsubnationaleffortstoreducepollutantrelease(Nexus3Foundation,2021).12Methodology13HealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesiaThisstudyquantifiesthehealthimpactsofairpollutantemissionsfromcoalpowergenerationinIndonesiausingtheimpactpathwayapproach.Thisapproachisthemostcommonwaytostudythehealthimpactsofairpollutantsources,followingthechainofcausationfromemissions,toatmosphericdispersionandchemicaltransformation,populationexposure,resultinghealthimpacts,andtheeconomiccostofthosehealthimpacts.Theimpactsarequantifiedforarangeoffuturepathways,fromthepathwayimpliedbythecurrentregulations,aswellasapathwaythatisalignedwith1.5degreestargetforutilitypowerplantsandapathwaythatisalignedwith1.5degreestargetforbothcaptiveandutilitypowerplants.Thestudyalsoquantifiesthelong-termimpactsofmandatingmorestringentairpollutantemissioncontrolsanddifferentlevelsofbiomassco-firing.Theanalysiscarriedoutinthisworkisdoneby:(1)Developingaplant-by-plantinventoryofemissions;(2)EstimatingpollutiondispersionfromCFPPsthroughatmosphericmodelling;(3)Quantifyingairpollutionhealthimpactsresultingfromchangesinambientconcentration;and(4)Valuinghealthimpactsinmonetarytermsusingacostofillnessmethod.Theanalysiswascarriedoutinaspatialgridwitha5x5kmresolution,withhealthimpactscalculatedforeachgridcell.Alldatasetswereaggregatedorinterpolatedtothisresolutionasrequired.EmissionsinventoryCREAcompiledaplant-levelemissionsinventoryofalloperationalCFPPsinIndonesia,tobeusedasinputstoairqualitymodelling.Theinventoryincludesplant-specificinformationoncombustionandgenerationtechnologies,powergenerationcapacityandplantlocation,pollutantfluegasconcentrations.Italsoincludesstackinformation,namelystackheightanddiameter,fluegasreleasevelocity,andtemperature.Thestackcharacteristicsareusedtomodelplumereleaseheightandthethermalriseofpollutants.Thefirstcompilationonexisting,underconstruction,andplannedcoalpowerplantsweretakenfromtheGlobalEnergyMonitor(GEM)GlobalCoalPlantTracker(GCPT)(GEM,2023).Basicinformationincludesplantcoordinates,generatingcapacity,startyearofoperation,andstatus(operating,underconstruction,permitted,pre-permit,announced).Theinitialinventoryisthencross-verifiedandcomplementedwithinformationcompiledfromlocalpartners.Furtherdatacompilationwasconductedtoobtainavailabledataonplant-specificemissionsdatafromofficialreports,voluntaryoperatorreports,EnvironmentalImpactAssessment(EIA)documents,nationalemissionsstandardsandotherrelevantregulations..Sincetheemissionvolumesofcoal-firedpowerplantsarenotdisclosedpubliclyinIndonesia,emissionsmassrate(E)ofthemainairpollutants(SO2,NOx,PM)werecalculatedusingtheformula:E=CAPXCFxSFGVxFGCEFFwhereCAPisthegrosselectricgenerationcapacityoftheplantunit(MW),EFFisthethermalefficiency(gross,onLowerHeatingValue(LHV)basis,inMJ/kg),CFisthecapacityfactor,SFGVisthespecificfluegasvolumeofthecoal(Nm3/GJ)andFGCisthefluegasconcentrationofthepollutant(mg/Nm3).14HealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesiaMercuryemissionswerecalculatedas:E=CAPXCFx1xCx(1-C)EFFCALHgWhereCAListhecalorificvalueofthecoal,CHgisthemercurycontentincoalandCEisthemercurycontrolefficiency.•InformationonFGCwascollectedfromawiderangeofsourcesincludingtheplantoperator'swebsite,theirCSRandfinancialreportsaswellasdatafromenvironmentalimpactassessments.Wealsosourcedacademicstudiesthathadplant-specificdata.Theinformationwasthengeneralisedtootherpowerplants,creatingseparatecategoriesforsmallplants(<100MW),newplants(commissionedsince2015),andforSO2andNOx,plantsequippedwithemissioncontroldevicesforthesepollutants.•Whenplantthermalefficiencywasnotavailable,grossefficiencyof44%onanLHVbasiswasassumedforultra-supercriticalplants,42%forsupercriticalplants,38%forsubcriticalplantsbuiltsince2010,and35%forplantsbuiltearlier.Theseareassumptionsgeneralisedfromavailabledataforplantsofdifferenttypes.Forsmallunitswithlessthan100MWcapacity,30%wasassumed.•Specificfluegasvolumeof379Nm3/GJ(correctedat7%oxygen)wasused,calculatedastheaverageofIndonesiancoalsamplesintheUSGSWorldCoalQualityInventory(USGS,2019).•Coalpowercapacityandgenerationinthecurrentpoliciesand1.5degreesscenariosweretakenfromtheGCAMsimulations(Cuietal.,2022).Captivepowerplantswereassumedtooperateat80%utilisation,whileutilitypowerplantsfollowedtheutilisationprojectedbyGCAM.•Mercurycontentincoalusedasfuelsourcesin47CFPPsinIndonesiawasobtainedfromasurveyonnationalmercuryemissionsfromCFPPsinIndonesia(BCRC-SEA,2017).MercurycontrolefficiencywasbasedonvaluesspecifictocoaltypeandairpollutantcontroltechnologyinUNEP(2017)MercuryToolkit.•Theeffectofbiomassco-firingonemissionswasprojectedusingrelationshipsderivedfromEUemissionsdata(EEA,2023).Thisdatacontainsannualfuelinputandairpollutantemissionsforhundredsoflargecombustionplants,allowingustoquantifytheeffectofvariationsinthesharesofbiomassandcoalyear-to-yearatthesamefacility(Figure5).•WeassumedtheapplicationofCCSreducesSO2,NOx,andPMemissionsby85%,29%,and6%,respectively,basedonresearchbytheEuropeanEnvironmentAgency(EEA,2011).Whereinformationonaplant’semissionsvalueswaslackingorunavailable,itwasgeneralisedusingaveragevaluesforprojectswithsimilarcapacityandcombustiontechnology.Weassumedthatsuchplantswereincompliancewiththecountry’semissionsstandardsandfullyoperatingtheiremissioncontroldevices.Informationoninstalledemissioncontrolswasalsocollectedfromtheseprimarydocuments,aswellastheS&P(2020)WorldElectricPowerPlantsdatabase.Toassessthelife-cycleemissionsofplantsthatarecurrentlyunderconstructionandwithoutaknowndateofoperation,theseplantsareassumedtocomeonlinein2025.Asforprojectsthatarenotyetunderconstructionandwithoutaknownoperatingdate,thepowerplantsareassumedtocomeonlineby2028.Fordelayedprojects,i.e.underconstructionplantsthathadatargetedoperatingdateinthepast,theoperatingdatewasassumedtobe2023.Similarly,fornewprojectsnotyetunderconstruction,itwasassumedthatprojectscurrentlypermittedwouldcomeonlinein2026attheearliest,projectsinthe"pre-permit"stagein2027,and"announced"projectsin2028.15HealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesiaIntheAirPollutionControl(APC)scenarios,retrofittedplantswereassumedtomeetthemorelenientendoftheEUBestAvailableTechnologyreferencelevels:130mg/Nm3forSO2,150mg/Nm3forNOxand10mg/Nm3forPM1(EuropeanCommission,2021).Formercury,mercury-specificcontrolswith75%controlefficiencywereassumed,basedonUNEP's(2017)MercuryToolkit.Source:CentreforResearchonEnergyandCleanAir(CREA)analysisbasedonEuropeanEnvironmentAgency(EEA)data.Figure5.Effectofbiomassco-firingonemissionsofmajorairpollutants,derivedfromEuropeanUnionIndustrialReportingDatabase(EEA,2023)AtmosphericmodellingCREAsimulatedairpollutantconcentrationsusingtheCALPUFFairdispersionmodel,version7(Exponent,2015).CALPUFFisawidely-usedindustrystandardmodelforlong-rangeairqualityimpactsofpointsources.ThemodelhasbeenevaluatedextensivelybytheUSEnvironmentalProtectionAgency,isopen-source,andfullydocumented.CALPUFFcalculatestheatmospherictransport,dispersion,chemicaltransformation,depositionofthepollutants,andtheresultingincrementalground-levelconcentrationsattributedtothestudiedemissionssources.ChemicaltransformationsofNOtoNO2aswellasSO2andNO2toPM2.5arecalculatedusingtheISORROPIAchemistrymoduleinCALPUFF.Backgroundconcentrationsofoxidants(ozone,ammonia,hydrogenperoxide)aretakenfromsimulationsusingtheGeos-ChemglobalatmosphericmodelwithanestedgridforSoutheastAsia(Koplitzetal.,2017).Meteorologicalinputdatafortheyear2021aregeneratedfromtheWeatherResearchForecasting(WRF)model(Skamarocketal.,2008),version4.2.2.WRFwassetupwith33verticallevelsandtwonestedgrids.TheseareshowninFigure6.1ThelevelsforSO2andNOxareobtainedfromtheyearlyaveragehigherendof300MWandlargercoal-firedPCboilersforexistingplants;andthelevelforPMistheyearlyaveragehigherendof300-1,000MWforexistingplants.16HealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesiaSource:CentreforResearchonEnergyandCleanAir(CREA).Figure6.MapsofmotherandinnernestsinWRFmeteorologicalmodelThemothernesthasagridresolutionof60kmandspansapproximately12,000kmintheeast-westdirectionand4,600kminthenorth-southdirection.Theinnernesthasagridresolutionof12km,spanningroughly4,000kmintheeast-westand2,000kminthenorth-southdirection.Land-usedatawereobtainedfromtheEuropeanSpaceAgency(2018),andterrainelevationdatawereobtainedfromNASAShuttleRadarTopographyMission(SRTM)high-resolutiondatasets(Farretal.,2007).Motherandinnerdomainsuseatwo-waynestingtechniquewhichensuresdynamicinteractionbetweenthem.WRFsimulationsuseinitialandlateralboundaryconditionsfromtheNationalCentersforEnvironmentalPrediction’s(NCEP)ClimateForecastSystemReanalysis(CFSR)dataset(Sahaetal.,2014)oftheNationalOceanicandAtmosphericAdministration(NOAA),producingthree-dimensional,hourlymeteorologicaldatacoveringthefullcalendaryearof2021.Forassessmentofannualaveragepollutantconcentrations,emissionsareassumedtobeconstantthroughouttheyear.Thepowerplantunitsweremodelledasbuoyantpointsources,takingintoaccountthestackheightandthermalplumerisefromthestacks.Thisrequiresinputdataonthestackcharacteristics:stackheight,stackinnerdiameter,fluegasexitvelocity,andtemperature.Informationonthesecharacteristicswascollectedmanuallyfromawiderangeofpublicsourcesforasmanypowerplantsaspossibleandgeneralisedtotheotherplantsbybuildingalinearregressionmodelpredictingeachofthestackcharacteristicsbasedonthepropertiesoftheplant.Thepredictorsusedinthemodelwereplantcapacity,commissioningyear,andinthecaseoffluegastemperature,thepresenceofanSO2scrubber,whichlowersthetemperature.Thepowerplantsweregroupedintoclusters,withunitswithin1kmofeachotherandwithsimilarstackcharacteristicsgroupedtogetherasonepointsource,tomakethecomputingrequirementsmanageable.Thisresultedinatotalof145modelledclusters,asillustratedinFigure2.Separatemodelsimulationswereperformedforeachcluster.17HealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesiaHealthandeconomicimpactsassessmentWeusedCREA’sdetailedandgloballyimplementablehealthimpactassessmentframeworkbasedonthelatestsciencetoestimatetheimpactsofairpollutiononpublichealth.Thisframeworkincludesascompleteasetofhealthoutcomesaspossiblewithoutobviousoverlaps.Theemphasisisonoutcomesforwhichincidencedataareavailableatthenationallevelfromglobaldatasetsandoutcomesthathavehighrelevanceforhealthcarecostsandlabourproductivity.Thesehealthendpointswereselectedandquantifiedinawaythatenableseconomicvaluation,adjustedbylevelsofeconomicoutputandincomeindifferentjurisdictions.Foreachevaluatedhealthoutcome,wehaveselectedaconcentration-responserelationshipthathasalreadybeenusedtoquantifythehealthburdenofairpollutionatthegloballevelinpeer-reviewedliterature.Thisindicatestheevidenceismatureenoughtobeappliedacrossgeographiesandexposurelevels.Thecalculationofhealthimpactsfollowsastandardepidemiologicalcalculation:∆cases=Popx∑FracagexIncidenceagexRRconc,age-1ageRRconc,age,wherePopisthetotalpopulationinthegridlocation,ageistheanalysedagegroup(inthecaseofage-dependentconcentration-responsefunctions,a5-yearagesegment;inothercases,thetotalagerangetowhichthefunctionisapplicable),Fracageisthefractionofthepopulationbelongingtotheanalysedagegroup,Incidenceageisthebaselineincidenceoftheanalysedhealthcondition,andconcisthepollutantconcentration,withconcbasereferringtothebaselineconcentration(currentambientconcentration).RR(conc,age)isthefunctiongivingtheriskratiooftheanalysedhealthoutcomeatthegivenconcentrationforthegivenagegroupcomparedwithcleanair.Inthecaseofalog-linear,non-age-specificconcentration-responsefunction,theRRfunctionbecomes:RR(c)=[RR0xc]-[c0x∆c0],ketikac>c0RR(c)=1otherwise,whereRR0istheriskratiofoundinepidemiologicalresearch,∆c0istheconcentrationchangethatRR0,andc0istheassumedno-harmconcentration(ingeneral,thelowestconcentrationfoundinstudydata).DataontotalpopulationandpopulationagestructureweretakenfromGlobalBurdenofDiseaseresultsfor2019(GlobalBurdenofDisease,2020),distributedbytheInstituteforHealthMetricsandEvaluation(IHME)(IHME,2020).Thespatialdistributionofpopulationwithineachcityandcountry,asprojectedfor2020,wasbasedontheGriddedPopulationoftheWorldv4fromtheCenterforInternationalEarthScienceInformationNetwork(CIESIN,2018).FollowingtheupdateoftheWHOAirQualityGuidelines(WHO,2021),whichnowrecognizeshealthharmfromNO2atlowconcentrations,weusethemortalityriskfunctionforNO2basedonthefindingsofHuangfuandAtkinson(2020),andincludeimpactsdownto4.5µg/m3,thelowestconcentrationlevelinstudiesthatfoundincreasedmortalityrisk,tabulatedinTable2.AdultdeathswereestimatedusingtheriskfunctionsdevelopedbyBurnettetal.(2018),asappliedbyLelieveldetal.(2019).DeathsofchildrenundertheageoffivefromlowerrespiratoryinfectionslinkedtoPM2.5pollutionwereassessedusingtheGlobalBurdenofDiseaseriskfunctionforlowerrespiratorydiseases(IHME,2020).Forallmortalityresults,cause-specificdataweretakenfromthe2019GlobalBurdenofDiseaseprojectresults(IHME,2020).18HealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesiaHealthimpactmodellingprojectstheeffectsofpollutantexposureduringthestudyyear.Somehealthimpactsareimmediate,suchasexacerbationofasthmasymptomsandlostworkingdays,whereasotherchronicimpactsmayhavealatencyofseveralyears.Concentration-responserelationshipsforemergencyroomvisitsforasthmaandworkabsenceswerebasedonstudiesthatevaluateddailyvariationsinpollutantconcentrationsandhealthoutcomes.Theserelationshipswereappliedtochangesinannualaverageconcentrations.TheannualaveragebaselineconcentrationsofPM2.5andNO2weretakenfromvanDonkelaaretal.(2021)andLarkinetal.(2017),respectively.Sincetheno-harmconcentrationforSO2isverylowandtheriskfunctionislinearwithrespecttothebackgroundconcentration,therewasnoneedfordataonSO2backgroundconcentrations.Tounderstandthehealthimpactsinthefuture,thestudytookintoaccounttheprojectedchangesinpopulation,populationagestructure,andmortalitybyagegroup,basedontheUNDP(2019)WorldPopulationProspectsMediumVariant.Thisfactorsintheexpectedreductioninbaselineinfantmortalityandincreaseinprematuredeathsfromchronicdiseasesinolderadultsasapartofthepopulationandepidemiologicaltransitionsandimprovementsinhealthcare.In2022,CREAprovidedtheInstituteforEssentialServicesReformandtheUniversityofMarylandhealthimpactassessments,whichestimated8,700deathscausedbyemissionsfromcoal-firedpowerplantseveryyear.ThisreportincorporatesfarmoredetailedairpollutantdispersionmodellingandrefinedemissionsinventoriesandtakesintoaccountthehealthimpactsofexposuretoSO2andNO2,inadditiontoPM2.5.Table2.InputparametersanddatausedinestimatingphysicalhealthimpactsAgeEffectPollutantConcentrationConcentrationNo-riskReferenceIncidencegroupresponsechangethresholddatafunction1–18NewasthmacasesNO21.2610ppb2ppbKhreisetAchakulwisutal.(2017)etal.(2019)(1.10–1.37)Asthmaemergency1.025ZhengetAnenberget0–17roomvisitsPM2.5(1.013–1.037)10µg/m36µg/m3al.(2015)al.(2018)18–99Asthmaemergency1.02310µg/m36µg/m3ZhengetAnenbergetPM2.5(1.015–1.031)10µg/m3al.(2015)al.(2018)roomvisits10µg/m3NewbornPretermbirthPM2.51,158.8µg/m3SapkotaetChawan(1.07–1.16)al.(2012)Paiboonetal.(2018)20–65WorkabsencePM2.51.046N/AWHOEEA(2014)0–4(1.039–1.053)(2013)25–99DeathsfromIHME(2020)lowerrespiratoryPM2.5IHME(2020)5.8µg/m3IHME(2020)infectionsBurnettetal.Deathsfrom(2018)noncommunicablediseases,2.4µg/m3Burnettetal.(2018)disaggregatedbyPM2.5IHME(2020)cause,andfromlowerrespiratoryinfections19HealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesiaDisabilitycaused25–99bydiabetes,PM2.5IHME(2020)2.4µg/m3BurnettetIHME(2020)strokeandchronical.(2018)respiratorydisease25–99PrematuredeathsNO21.0210µg/m34.5µg/m3Huangfu&IHME(2020)5ppbAtkinsonIHME(2020)(1.01–1.04)(2020);NRTdariStiebetal.(2021)25–99PrematuredeathsSO21.020.02ppbKrewskiet(1.01–1.03)al.(2009)Note:Numericvaluesinthecolumn“Concentration-responsefunction”refertooddsratiocorrespondingtotheincreaseinconcentrationsgiveninthecolumn“concentrationchange.”Literaturereferencesindicatetheuseofanon-linearconcentration-responsefunction.No-harmthresholdreferstoaconcentrationbelowwhichthehealthimpactisnotquantified,generallybecausethestudiesonwhichthefunctionisbaseddidnotincludepeoplewithlowerexposurelevels.Dataonconcentration-responserelationshipsdonotexistforallgeographies,soaglobalriskmodelisappliedtoallcities.Incidencedataaregenerallyunavailableatthecitylevelsonationalaverageshavetobeapplied.Airpollutionincreasestheriskofdevelopingrespiratoryandcardiovasculardiseasesandcomplicationsrelatedtothem,significantlyloweringthequalityoflifeandeconomicproductivityofpeopleaffectedwhileincreasinghealthcarecosts.EconomiclossesasaresultofairpollutionwerecalculatedusingthemethodsoutlinedinMyllyvirta(2020).ThevaluationofdeathswasupdatedtothevaluesderivedbyViscusiandMasterman(2017)whicharebasedonlabourmarketdata,andpayparticularattentiontoapplicabilityinmiddle-andlow-incomecountries.TheGlobalBurdenofDiseaseprojecthasquantifiedthedegreeofdisabilitycausedbyeachdiseaseintoa“disabilityweight”thatcanbeusedtocomparethecostsofdifferentillnesses.Theeconomiccostofdisabilityandreducedqualityoflifecausedbythesediseasesanddisabilitiesareassessedbasedondisabilityweights,combinedwiththeeconomicvaluationofdisabilityusedbytheUKenvironmentalregulatorDepartmentforEnvironmentFoodandRuralAffairs(Birchbyetal.,2019),andadjustedbyGNIPPPforIndonesia.Thedeathsofyoungchildrenarevaluedattwicethevaluationofadultdeaths,followingOECD’srecommendations(2012).Thevaluationoffuturehealthimpactsisbasedonthepremisethatthelong-termsocialdiscountrateisequaltothelong-termGDPgrowthrate,andtheeconomiclossassociatedwithdifferenthealthimpactsisproportionaltotheGDP,resultinginaconstantpresentvalueofhealthimpactsovertime.20HealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesiaTable3.InputparametersanddatausedtoestimateeconomiccostsofhealthimpactsOutcomeValuationatworldValuationinIndonesiaReferenceWorkabsence(sickleavedays)averageGDP/GNI(currentUSD)(currentUSD)percapita(2017int.USD)8522335,300EEA(2014)Numberofchildrensuffering1,0772744,228,000Brandtetal.(2012)fromasthmaduetopollution663,900exposure(increasedprevalence)Deaths2,637,00010,260,000,000Viscusi&Masterman(2017)Deathsofchildrenunder55,273,0001,328,00020,510,000,000OECD(2012)Asthmaemergencyroomvisits23259911,800Brandtetal.(2012)Pretermbirths107,70027,370422,800,000Trasandeetal.(2016)Yearslivedwithdisability28,4807,171110,800,000Birchbyetal.(2019)CostofairpollutioncontrolsInstallationandoperatingcostsforairpollutioncontrols(APC)werecompiledfromarangeofsources,showninTableA4intheAppendix.WetransferredthesecoststoIndonesiancostlevelsbyfirstconvertingthereportedcoststocurrentpricesinU.S.dollars,andthenusingthecross-countryestimatesoftherelativecostsoffluegasdesulfurization(FGD)andselectivecatalyticreduction(SCR)(Ferrarietal.,2019)tocalculatetheaveragetransferredcosts,showninTableA4intheAppendix.SinceFerrarietal.didnotestimatedustcontrolcosts,weusedthesumofFGDandSCRcostsasanindicatoroftherelativecostsofdustcontrols,astherelativecostsofthedifferentcontrolsystemsarelikelytobecloselycorrelated.TableA5intheAppendixshowstheestimatedaveragecostsofthedifferentAPCtechnologiesinIndonesia.WeusedthisdatatoprojecttheadditionalcostsfrommeetingthemorestringentemissionstandardsassumedintheAPCscenario,comparedwiththecurrentAPCcostsplantshavetoincuralreadytomeetcurrentnationalstandards.Thismeansthatexistingplantsalreadyhaveparticulatemattercontrolstooperate.Thisstudyassumestheinclusionofinvestmentinarebuiltdustcontrolsystemtomeetmorestringentstandards,withoutanincreaseinoperatingcosts.SO2andNOxcontrolsneedtobeadded,withtheirfullcapitalandoperatingcostsincludedasanadditionalcost.Unlikeexistingplants,newplantsinIndonesiaarealreadymandatedtoinstallFGD,andSNCRanddustcontrolstocomplywithnationalemissionstandards.Weassumedthattheadditionalcapitalandoperatingcostsofahigher-performanceFGDanddustcontrolare50%ofthefullcostshowninTableA5,aconservativeassumption.ForNOxcontrol,weassumedthattheplantsinstalledSCRinsteadofSNCR,andassignedthedifferenceasanadditionalcost.Forfutureprojections,weassumedthatthecostescalationoftheAPCtechnologiesisequaltothelong-termaverageGDPgrowthrate.21Evaluationofdifferentphase-outtimelines22HealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesiaCREAhasdevelopedandmodelledthreedistinctscenariopathwaysbasedonCFPPretirementschedulesapplicabletothenationalelectricityprovidernamelyPLNandtheIPPs,CFPPretirementscheduleapplicabletocaptivepowerplants,implementationofco-firinginCFPPoperation,andinstallationofAirPollutionControl(APC)technologies.AsummaryofthescenariosconsideredinthisstudyistabulatedinTable4.Table4.ScenariomatrixofIndonesia’spathwaystoaJustEnergyTransitionScenarioPLN&IPPCaptivePowerBiomassAirPollutionControlCo-firingRetrofitRetirementScheduleRetirementSchedulePERPRES112/202214GWofPLN&IPPAllcaptivepowerPhasedincreaseAPCsareinstalledto-referredtoaspowerplantsareplantsareretiredafterofco-firingshare,followthecurrentcurrentpoliciesinretiredby2035,while30yearsofoperationreaching20%atPLNnationalemissionthisstudytheremainingarepowerplantsby2030limitsuntilend-of-liferetiredby20501.5degrees,excludingcaptiveRetirementscheduleRetirementscheduleCo-firingmaintainedAPCsareinstalledtopowerplantsalignedwithIESR-alignedwithIESR-atcurrentlyfollowthecurrentUMDoptimisedUMDoptimisedcommittedlevels,nationalemission1.5degreespathwaypathwayi.e.5%atmostPLNlimitsuntilend-of-lifepowerplantsItshouldbenotedthatthestudyconsiderstheretirementscheduledefinedinthePresidentialRegulation(PeraturanPresiden,Perpres)No.112Year2022asthebaselinescenario.UnderPERPRES112/2022scenario,atotalcapacityof14GWofPLNandIPPcoalplantsistoberetiredby2035,whiletheremainingplantsretireby2050.Captiveplantsareassumedtoretireafter30yearsofoperation.Furthermore,biomassco-firingisincreasedtoaminimumof20%by2030atPLNpowerplantstocontributetowardsthe34%renewableenergytargetby2030setinJETP.APCtechnologyisinstalledandfollowscurrentemissionlimitsuntiltheend-of-lifefortheplants.ThepathwayforretiringIndonesia'scoal-firedplantsinordertomeettheglobalcommitmenttolimitaverageglobaltemperatureriseto1.5degreesby2030isderivedfromthereport"FinancingIndonesia'sCoalPhase-out"byIESRandtheUniversityofMaryland(Cuietal.,2022).The1.5degreesscenariosdevelopedinthisstudymaximisethehealthbenefitsofthecoalphase-out.Underthisconsideration,theplantswiththehighesthealthcostsperunitofpowergeneratedareretiredfirstwithineachelectricgrid.The1.5degreesscenarioexcludingcaptivepowerplantsassumesthemtoberetiredafter30yearsofoperation.Withtheinclusionofcaptivepowerplants,thescenarioassumestheirretirementtobealignedwithIESR-UMD’soptimisedpathway.ThispathwaysuggeststhatIndonesia’scoalpowergenerationwoulddecreaseby11%in2030,byover90%in2040,andwouldbecompletelyphasedoutby2045.Inabsolutenumbers,18plantswouldretirebytheendofthedecade,39between2031and2040.Theremaining15ofthe72non-captivecoalplantswouldbeoperatedatlowutilisationlevelsbeyond2040,andretiredby2045.23HealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesiaImplicationsonairpollutionCoal-basedpowerplantsemitlargeamountsofpollutants,namelySOX,NOx,andPM,andalsoheavymetals.ThisstudyestimatesthatalloperatingcoalplantsinIndonesiaemitted399kilotons(kt)ofSOx,349ktofNOx,and73ktofPMin2022.Furthermore,anestimated7,100kgofmercurywasemittedinthesameperiod.Notonlydothesepowerplantemissionsaffectpopulationsinthevicinityoftheplants,pollutantsarealsocarriedbywindandotheratmosphericconditionstofartherlocationsresultinginnation-wideconsequences.Figure7showsthemaximum1-hourand24-hourconcentrationsofNO2,SO2,andPM2.5attributedtocoalpowerin2022,anditshowshighconcentrationlevelsofallpollutantsthroughoutIndonesia.Wechosebetween1-hourand24-hourmaximumplotsforeachpollutantbasedonthemetricusedintheWHO2005AirQualityGuidelineswhicharethebasisforIndonesia’snationalstandards.ThemajorhotspotsofcoalpowerplantpollutioninIndonesiaareBanten,CentralSulawesi,CentralJava,Riau,Maluku,andNorthMaluku.EmissionsinBantenaredominatedbyPLNpowerplants,ofwhichmorethanhalfarerelativelyold(commissionedbefore2010).InallthelistedprovincesoutsideofJava,captivepowerplantscommissionedafter2010dominatetheemissions.InCentralJava,relativelynewIPPpowerplantsarethemainsource.Figures8,9,and10visualisetheannualmeanconcentrationsofeachpollutanttypein2035byscenario.TheyarethePERPRES112/2022scenario,the1.5degreesscenarioexcludingcaptivepower,andthe1.5degreesscenario.By2035,therewouldbelargeimprovementsinairqualitybyfollowingacoalpowerretirementpathwaythatisalignedwiththe1.5degreestarget,asshowninthebottomimages.Also,forallofthepollutants,therearemajorchangesinairqualitybetweenthe1.5degreesscenariothatincludescaptivepowerplantsretirementandthe1.5degreesscenariothatexcludescaptiveretirement,asshowninthemiddleandbottomimagesrespectively,especiallyinEasternIndonesiawheremostofthecaptivepowerplantfleetislocated.24HealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesiaModeledsourcesModeledsourcesSource:CentreforResearchonEnergyandCleanAir(CREA).Figure7.Maximum1-hourand24-hourconcentrationsfromallcoalpowerplantsinIndonesiabypollutantin202225HealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesiaModeledsourcesSource:CentreforResearchonEnergyandCleanAir(CREA).Figure8.VisualiseddistributionofcoalpowerplantsandmeanNO2concentrationsinIndonesiabyscenarioin203526HealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesiaModeledsourcesSource:CentreforResearchonEnergyandCleanAir(CREA).Figure9.VisualiseddistributionofcoalpowerplantsandmeanPM2.5concentrationsinIndonesiabyscenarioin203527HealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesiaModeledsourcesSource:CentreforResearchonEnergyandCleanAir(CREA).Figure10.VisualiseddistributionofcoalpowerplantsandmeanSO2concentrationsinIndonesiabyscenarioin203528HealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesiaHealthimpactsandcostimplicationsAnnualimpactsUnderthecurrentpolicymeasure,PERPRES112/2022,airpollutionfromcoal-firedpowerplantswasaccountableforanestimated10,500(95%CI:6,500–16,400)deathsin2022(asillustratedinFigure11)andhealthcostsamountedtoUSD7.4billion(IDR109.9trillion;95%CI:USD4.6–11.5billion,IDR67.6–170.3trillion).Airpollution-relateddeathsareontherise,andareexpectedtopeakin2028,withnearly16,600deathsannually-nearlya60%increaseinjustsixyears.Source:CentreforResearchonEnergyandCleanAir(CREA).Figure11.Airpollution-relateddeathsbyyearandbyscenarioCorrespondingwiththeslowphase-outofpowerplants,deathsareexpectedtoreduceslowlyafterpeakinginthelate2020s.Airpollutionwouldcontinuetoburdensocietybeyond2050ifIndonesiacontinueswithitscurrentpolicies.Withanopportunitytoacceleratecoalphase-outby2040,thecountryshouldprioritisecancellationofthecoalpowerplantsthatareplannedbutnotyetunderconstructionandreplacecoalcapacityneedswithrenewablesources.Thesemeasureswouldkick-startnationaleffortsinaJustTransition.AsillustratedinFigure11,airpollution-relateddeathsandcostswouldreachanearlierpeakin2026,followedbyarapiddeclinetoreachzeroinbothdeathsandeconomiccostsby2041underthe1.5degreesscenario.ThemagnitudeofdeathslinkedtoairpollutionfromcoalpowerplantsattheprovinciallevelisillustratedinFigure12.WestJava(JawaBarat)isthemostaffectedprovincebycoal-firedpoweremissionswithannualdeathsexceeding4,000(95%CI:2,566–6,438).WestJavaisfollowedbyBantenwith2,000(95%CI:1,308–3,406)deathsperyear,andCentralJava(JawaTengah)with1,700(95%CI:1,090–2,749)annualdeaths.29HealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesiaSource:CentreforResearchonEnergyandCleanAir(CREA).Figure12.Top10provincesmostaffectedbycoalpoweremissionsFigure13showstheestimatesofairpollutiondeathsattributedtotheprovinceswherethecoalpowerplantsarelocated.ProvinceswhoseemissionsareresponsibleforthegreatestofannualdeathsareBanten,CentralJava(JawaTengah),andWestJava(JawaBarat).Banten’sCFPPscanbelinkedtoanestimated3,800deaths,whileairpollutantemissionsfromCFPPslocatedinCentralJavaandWestJavacauseanestimated3,000and2,500annualdeaths,respectively.ThesemajorprovinceslocatedontheislandofJava,havethelargestcapacity-wiseandthehighestcountofcoal-firedpowerplantsinallofIndonesia.Source:CentreforResearchonEnergyandCleanAir(CREA).Figure13.Top10provincesresponsibleforthelargestnumberofdeathsperyear30HealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesiaCumulativeimpactsAsillustratedinFigure14,thecumulativedeathswouldreachnearly303,000deathsfrom2024tillallplantsreachtheendoftheirlife(95%CI:188,700–498,000)underthecurrentpolicies.AllhealthcostswouldamounttoUSD212billion(IDR3.2quadrillion;95%CI:USD132.5–327.9billion,IDR2.0–4.9quadrillion).The1.5degreesscenariothatexcludescaptiveplantswouldleadtosignificantlylowerdeathsandhealthcosts,withcumulativedeathshalvedat148,000(95%CI:91,400–231,000).TheeconomicburdentosocietywouldalsohalveatUSD104billion(IDR1.5quadrillion;95%CI:USD63.7–161.2billion,IDR0.9–2.4quadrillion).Ifcaptivepowerplantsweretoberetiredearlyby2040,greaternationalbenefitscanbeachieved.Approximately180,000airpollution-relateddeathsandUSD127billion(IDR1.9trillion)inhealthcostscanbeavoided.Source:CentreforResearchonEnergyandCleanAir(CREA).Figure14.Cumulativedeathsandhealthcostsfrom2024onwardsbyscenarioAirpollutionhasaparticularlyprofoundimpactonnewborns,causinglowbirthweight,prematurebirthsandasthmatonameafew.Inadults,healthimpactsincludediabetes,strokeandchronicobstructivepulmonarydisease.Thesegiverisetoworkabsencesduetotheneedtotakesickleaveorcareforsomeoneelsewhoissickandthisburdensanyeconomy.Theestimatedcumulativehealthimpactsaresignificantunderthecurrentpolicy.Alargeextentcouldbeavoidedthroughbetteralignmentwiththe1.5degreestarget.AsshowninTable5,the1.5degreesscenariowouldavoidoverhalfthenumberofsickleavedays,newcasesofasthmainchildren,totalcasesofchildrensufferingfromasthmaduetopollutionexposure,asthmaemergencyroomvisits,lowbirthweightbirths,andpretermbirthscomparedtothePERPRES112/2022scenario.Forinstance,thenumberofchildrensufferingfromasthmaduetopollutionexposurewoulddecreasefrom240,323to107,494.Meanwhile,the1.5degreesscenariothatexcludescaptivecoalplantsfromtheretirementassumptionwouldstillbringsignificantreductionto120,091,lessthanhalfofthenumberofcasesestimatedinthePERPRES112/2022scenario.Similarly,thecalculatedyearsofliveslostduetoNO2andSO2exposurearesignificantlyreducedinthe1.5degreesscenarioscomparedtothePERPRES112/2022scenario.ThegreatestimprovementswouldbeintheyearsofliveslostfromSO2exposure,asthe1.5degreescenariowouldreduceyearsofliveslostby59%.ThereductionintheyearsofliveslostduetoNO2exposurewouldalsobesignificant,at58%.Excludingcaptiveplantsfromthe1.5degreesscenariowouldleadtoabout10%smallerreductions.31HealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesiaWhenitcomestotheyearslivedwithdisabilities,thescenariosaligningwiththe1.5degreestarget—includingoptimisedcaptivepowerplantretirement—wouldreducethoseyearsbyasmuchas60–70%.Theyearslivedwithchronicobstructivepulmonarydisease,diabetes,orstrokewouldreducebymorethanahalfinthe1.5degreesexcludingcaptivescenario,butthereductionwouldbeevenhigherinthe1.5degreesscenario.Table5.CentralestimateofcumulativehealthimpactsbyscenarioOutcome1.5Degrees1.5degreesPERPRES112/2022excludingcaptiveWorkabsenceCountsofsickleavedaysNewcasesofasthmainchildrenTotalcasesofasthmainchildren48,831,08355,968,109114,352,550AsthmaemergencyroomvisitsLowbirthweightbirthsNumberofcasesPretermbirths70,68982,869146,902AllcausesfromNO2exposureAllcausesfromSO2exposure302,495354,636628,652Chronicobstructivepulmonarydisease107,494120,091240,323DiabetesStroke34,27338,39673,53950,51455,753107,180Yearsofliveslost645,845795,7561,521,544403,125501,943974,158Yearslivedwithdisability41,16948,772103,93327,34140,47982,49187,160101,923217,92632HealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesiaBenefitsofprioritisingplantswithworsthealthimpactsThereiswidevariationinhealthimpactsperunitofelectricitygeneratedbetweendifferentcoal-firedpowerplantsinIndonesia,owingtodifferencesinplantlocationandemissionintensityoftheplants.Figure15illustratesthevarianceinhealthcostsdistributionacrosstheregionofJava-Bali-Sumatra,Kalimantan,Sulawesi,andothersbasedonCFPPownershipcategories,namelyPLN,IPP,combinationofPLNandIPP,andcaptive.AcrossJava-Bali-Sumatra,impactsarenearlyexclusivelyattributedtoPLNandIPP.Intheremainingregions,particularlySulawesiandotherregions,captivepowerplantswouldbetheprimarycontributorstoairpollutionfromcoalpower.AsforKalimantan,considerablecontributionsareapparentfrombothcaptiveandPLN-ownedpowerplants.Source:CentreforResearchonEnergyandCleanAir(CREA).Figure15.DistributionofhealthcostsbyplantindifferentregionsTheplantswiththehighesthealthcostsareoneslocatedinorneardenselypopulatedareas,withmeteorologicalconditionsthatleadtohighexposureofthepopulationtotheplantemissions,e.g.duetoprevailingwinddirections,andpooremissioncontrolperformance.ClearexamplesarethePLNMuaraKarangandLontarpowerplantslocatedinJakartaandTangerang,aswellasthecaptivecoalpowerplantslocatedinBekasi,Karawang,Purwakarta,andBandung.AfulllistofCFPPsisprovidedinTable6belowwherethecoalpowerplantsarerankedfromthehighesttothelowesthealthcostperunitofelectricitygeneratedineachregion.33HealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesiaTable6.Coalpowerplantsrankedfromthehighestestimatedhealthcostsperunitofelectricitygeneratedineachgridregion,separatedintoutilityandcaptivepowerplantsCoalPowerPlantCoalProvincePlantRegionOwnerCapacity(MW)MuaraKarangJakartaRayaJava-Bali-SumatraPLN400LontarPLN1,260CirebonBantenJava-Bali-SumatraIPP660Jawa-1/Cirebon-2IPP924CilacapJawaBaratJava-Bali-SumatraIPP2,260AtambuaPLN24ParitBaruExpansionJawaBaratJava-Bali-SumatraPLN100PantaiKura-KuraPLN55EmbalutJawaTengahJava-Bali-SumatraIPP100Asam-AsamPLN460SumbawaBaratNusaTenggaraTimurOthersPLN14RoteNdaoPLN6BimaKalimantanBaratKalimantanPLN20AlorPLN6RopaKalimantanBaratKalimantanPLN14NiiTanasaPLN30PunagayaKalimantanTimurKalimantanPLN220SulselBarruPLN200JenepontoKalimantanSelatanKalimantanIPP450TalaudPLN6FAJARpowerstationNusaTenggaraBaratOtherscaptive55Pindo-Deli-Iipowerstationcaptive50CikarangBabelanpowerNusaTenggaraTimurOtherscaptive280stationNusaTenggaraBaratOthersNusaTenggaraTimurOthersNusaTenggaraTimurOthersSulawesiTenggaraSulawesiSulawesiSelatanSulawesiSulawesiSelatanSulawesiSulawesiSelatanSulawesiSulawesiUtaraSulawesiJawaBaratJava-Bali-SumatraJawaBaratJava-Bali-SumatraJawaBaratJava-Bali-Sumatra34HealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesiaIndoBharatRayonpowerJawaBaratJava-Bali-Sumatracaptive36.6stationJawaBaratJava-Bali-Sumatracaptive30BandungIndosyntecpowerKalimantancaptive100stationKalimantancaptive55Kalimantancaptive60BengkayangPowerStationKalimantanBaratKalimantancaptive220Kalimantancaptive2,200KalimantanCementWorksKalimantanSelatanOtherscaptive124powerstationcaptive90captive195TabalongWisesapowerstationKalimantanSelatancaptive114captive114KetapangSmelterpowerKalimantanBaratcaptive70stationKalimantanTimurcaptive60AdaroAluminumSmeltercaptive4,665powerstationcaptive390captive130BatuHijaupowerstationNusaTenggaraBaratEastHalmaherapowerstationMalukuUtaraOthersAmamaparePortpowerstationPapuaOthersMSPPulauObipowerstationMalukuUtaraOthersMalukuUtaraOthersXinxingDuctileIronPipesCoSulawesiSelatanSulawesiCaptivepowerstationSulawesiTenggaraSulawesiTonasaCementPlantpowerstationPomalaaNickelpowerstationDelongNickelSulawesiTengahSulawesiSulawesiTengahSulawesiQingdaoZhongshengcaptiveSulawesiTengahSulawesipowerstationWanxiangNickelIndonesiapowerstationRetirementpathwaysdevelopedinthe1.5degreesscenariosprioritisetheplantswiththehighesthealthimpacts.Thisgreatlyincreasesthehealthbenefitsandcost-effectivenessofthecoalphase-out.Ifthelogicofretiringtheoldestplantsfirstweretoapply,thenumberofairpollution-relateddeathsinthecurrentpoliciesscenariowouldincreaseby36,000cases.HealthcosttrendsareshowninFigure16,wherethedashedlinesrepresentthehighercoststhatcanbeattributedtoage-basedretirementinboththe1.5degreesscenarioandthePERPRES112/2022scenario.CumulativehealthcostswouldincreasebyUSD12billion(IDR180trillion)higherfromtheoptimisedhealth-basedretirementscheduledevelopedforthe1.5degreesscenario,andbyUSD24billion(IDR360trillion)higherfromthePERPRES112/2022scenario.35HealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesiaSource:CentreforResearchonEnergyandCleanAir(CREA).Figure16.Airpollution-relatedcostsbyscenariowithage-basedretirement.36Evaluationofairpollutioncontrolimplementation37HealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesiaIncontrasttotheminorbenefitsofco-firing,airpollutioncontrolcanhavealargeimpactontheeconomy,publichealth,resilience,sustainability,andaboveall,theairqualityofIndonesiaanditspopulation.FurtherconcreteactionsareneededtosustainthemomentumstartedintheTransparentPollutionControlproject(EEAS,2021)andbestalignnationaleffortsandinternationalsupportforthebenefitofallIndonesianpeople.Thecountryneedstoenforcestrongerandactionablenationalplanningtobetteraddressongoingairpollutionissuesbyshiftingawayfromtheuseofcoalasanenergysource.AsreportedbyIQAir,residentsofmanymajorcitiesinJavaandotherhighlypollutedmetropolitanareasofIndonesiaareexposedtounhealthylevelswellabovetheWHOthresholdsthroughouttheyear(IQAir,2023).Whileimmediaterestrictingactionsoncoalenergygenerationatthenationallevelwouldbringsignificantreductionincoalpoweremissions,theconsiderationforproperinstallationofairpollutioncontroltechnologyisessentialduringthecomingdecades.Betweennowand2030,trajectoriesofpowergenerationcapacityandtheassociatedhealthimpactsareexpectedtostillmoveupwardbeforereachingthepeakanddecreasing.Basedonthisconsideration,weincludedanadditionalanalysistothemainthreescenariospresentedinthepreviouschapter.WequantifiedthehealthandeconomicimpactsofthecurrentPERPRES112/2022scenariowithairpollutioncontroltechnologyandthe1.5degreesscenariowithairpollutioncontrolsimplemented.ThetabulationoftheassumptionsisprovidedinTable7.Inthescenarioswhereairpollutioncontrolisimplemented,newcoalpowerplantsareassumedtobeequippedwithefficientairpollutioncontroltechnologyby2026andexistingplantsby2030.Thisassumptionwasnotappliedtothoseexistingplantsthatarescheduledtoretireby2035.Table7.ScenariomatrixofAPCassumptionsinthetwomainscenarios-PERPRES112/2022and1.5degreesScenarioPLN&IPPCaptivePowerBiomassAirPollutionControlCo-firingRetrofitRetirementScheduleRetirementSchedulePERPRES112/202214GWofPLN&IPPAllcaptivepowerPhasedincreaseAPCsareinstalledto-referredtoaspowerplantsareplantsareretiredafterofco-firingshare,followthecurrentcurrentpoliciesinretiredby2035,while30yearsofoperationreaching20%atPLNnationalemissionthisstudytheremainingarepowerplantsby2030limitsuntilend-of-liferetiredby2050RetirementschedulePERPRES112/2022,alignedwithIESR-Co-firingmaintainedNewplantsarewithAPCRetirementscheduleUMDoptimisedatcurrentlyrequiredtoinstallalignedwithIESR-pathwaycommittedlevels,efficientSO2,NOxand1.5degreesUMDoptimisedi.e.5%atmostPLNdustcontrolsby2026pathwaypowerplantsandexistingplants1.5degrees,withby2030,unlesstheyAPCretireby2035APCsareinstalledtofollowthecurrentnationalemissionlimitsuntilend-of-lifeNewplantsarerequiredtoinstallefficientSO2,NOxanddustcontrolsby2026andexistingplantsby2030,unlesstheyretireby203538HealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesiaWereferredtotheEuropeanUnionBestAvailableTechniqueReferenceDocument(BREF)asthebenchmarkforefficientairpollutioncontrols(EuropeanCommission,2017).Thisdocumentspecifiesarangeofemissionlevelsthatareconsistentwiththeuseofbestavailableairpollutioncontroltechniques.Weappliedthehigher(morelenient)endoftheranges,whichisthelevelthatallpowerplantsintheEUarelegallyrequiredtomeet.Therefore,thereisalotofexperienceofretrofittingexistingcoal-firedpowerplantstomeetthestandards.InthecaseoftheEU,existingpowerplantsaregenerallymucholderthanthoseinIndonesia.Table8.AirPollutionControlinstallationcostsinthe“currentpolicieswithAPC”scenarioDescriptionValueUnitCapacityretrofitwithAPC43,440MWNewbuildcapacitywithAPC5,450MWTotalinvestmentcost6,936102,997mlnUSDblnIDRTotaloperatingcost,peryear(2035)68410,150mlnUSDblnIDRTotaloperatingcost,frominstallationyeartoend-of-life13,569201,491mlnUSDblnIDRHealthcostavoidedin2035Totalhealthcostsavoided,frominstallation5,82886,546mlnUSDblnIDRyeartoend-of-lifeNeteconomicbenefit90,4411,343,037mlnUSDblnIDR69,9371,038,549mlnUSDblnIDRApproximately8,000deathsin2035alonecouldbeavoidedifthecurrentpoliciesscenariowouldincludetheinstallationofproperAPC,aswellasUSD5.8billion(IDR86.5trillion)inairpollution-relatedhealthcosts.Incumulativeterms,atotalof129,000deathsandhealthcostsofUSD90billion(IDR1.3quadrillion)couldbeavoidedifcoalpowerplantswererequiredtoinstallefficientdust,NOx,andSO2controls.InstallingAPCishighlyprofitablefromthepointofviewofthewholesociety.Healthcoststhataresavedsignificantlyoutweightheimplementationcostsofairpollutioncontrol.WeprojectneteconomicsavingstothesocietyofUSD70billion(IDR1.1quadrillion)inthecurrentpoliciesscenariowithAPCinstallation,comparedwithcurrentpolicieswithnoimprovementsinAPCrequirements.TheanalysishastakenintoaccounttheinvestmentandoperatingcostsoftheAPC.FurtherdetailsonthecostsfortheAPCtechnologiesconsideredinthisstudyareprovidedinTablesA4andA5intheAppendix.39HealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesiaComparedtothemoresignificantimpactsthatwouldresultfromdelayedcoalphase-outinthePERPRES112/2022scenario,theavoideddeathsandcostsbetweenthe1.5degreesscenarioandthe1.5degreesscenariowithAPCinstallationarerelativelysmall.Thisismainlyduetothefactthatmostcoalpowerplantswereassumedtoretireby2035inthe1.5degreespathway,andthereforenotrequiredtofurtherimprovetheirAPCunderourassumptions.Furthermore,ouranalysisshowsthattherequiredinvestmentandoperatingcostsoftheAPCremainlow,andtheinstallationofimprovedAPCisbeneficialfromacost-benefitperspective.The1.5degreesscenariowithAPChasbyfarthelowestairpollution-relateddeaths,aswellascostsandotherhealthimpacts.TabulationofhealthimpactsandcostsisprovidedinTablesA1andA2intheAppendix.Table9.Deathsandcostsin2035indifferentscenarios2035ScenarioDeathsCosts,USDmlnPERPRES112/202212,2168,586PERPRES112/2022w/APC3,9312,7581.5degrees1,7921,2851.5degreesw/APC1,119808Table10.Cumulativedeathsandcostsfrom2024onwardsindifferentscenariosCumulativeScenarioDeathsCosts,USDmlnPERPRES112/2022302,800212,500PERPRES112/2022w/APC174,200112,1001.5degrees121,00085,0001.5degreesw/APC115,80081,40040Evaluationofco-firingimplementation41HealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesiaWhileco-firingbiomasscanreduceemissionsofairpollutantstoadegree,itisnosolutiontoIndonesia’sairpollutionchallenge.Weprojectthatraisingtheshareofco-firingtoaminimumof20%atallPLNpowerplants—amajorchallengeintermsoftheavailabilityofbiomassandpotentiallyalsoatechnicalchallenge—haslittletovirtuallynoimpactontheemissionsofairpollutantsfromcoalpowerplants.Figure17belowshowstheeffectofdifferentbiomasssharesonPM,NOx,andSO2emissions.Whilepollutantemissionsshownoticeablereductionsathigherbiomassshares,PLN'scurrenttargetof10%biomasssharewoulddeliveronlya9%emissionreductioninparticulatematter,about7%inNOxand10%inSO2atpowerplantswhereitisapplied.Theeffectonemissionsisderivedfromalargedatasetcomprisinghundredsofcombustionplants,makingitrepresentativeoftheaggregateeffect,evenconsideringvariationbetweenindividualplants.Source:CentreforResearchonEnergyandCleanAir(CREA)analysisbasedonEuropeanEnvironmentAgency(EEA)data.Figure17.Correlationbetweenbiomassshareandemissionsfordust,NOx,andSO2CREA’sanalysisshowsthatmerely1.5–2.4%reduction,dependingonthepollutant,canbeexpectedinIndonesia’stotalcoalpowerplantemissionsasaresultofco-firing,whenco-firingislimitedtoPLNpowerplants.Incontrast,requiringefficientemissioncontroltechnologyinstallationsinallplantsoperatingbeyond2035wouldeffectivelyreduceemissionsofSOxbyanestimated73%,NOxby64%,dustby86%,andmercuryby71%.AspartofPLN’sGreenBoosterprogram,biomassco-firingisexpectedtoaccountforabout3.6%outofthe23%renewablessharein2023asdefinedinRUPTL2021–2030(OECD,2021).PLNestimatesanaverageof10.2milliontonnesofbiomasstobesuppliedannuallytosubstitute12%ofcoaluse(PLN,2023).In2022,PLNwasabletorealise0.455milliontonnes42HealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesiaofbiomasssupply,fromsawdust(90%),woodchips(3%),palmshells(5%),andotherbiomassfeedstock(2%).Supplytargetswillrampupto2.2milliontonnesin2023,2.83milliontonnesin2024,andwillreach10.2milliontonnesby2025(IESR,2022b).TheIndonesianBiomassEnergySociety(MasyarakatEnergiBiomassaIndonesia)statedthatPLN’sachievementofimplementingbiomassco-firingin36CFPPsisencouraging.However,questionsmustberaisedaboutthesourcesforthelong-termsupplyofbiomass.Inaddition,globalpricesofbiomassfeedstock,particularlywoodpellets,aregettinghigher.Themarketforexportsaswellasnon-energydomesticuseincreasinglybecomesmoreattractivefordomesticsuppliers.Currently,thesalespriceforco-firingfeedstockiscappedatUSD70(IDR1million)pertonne,whilethepricecouldreachUSD240(IDR3.6million)pertonneifsoldtoJapanorKorea(MEBI,2023;IESR,2022b).PLNclaimsthatbiomassco-firingwouldreduceupto11milliontonsofCO2andothergreenhousegases(PLN,2023).However,PLNhasnotconsideredunaccountedimpactsonemissionsthatmayariseduetotechnicalandeconomicbarriersassociatedwiththebiomassfeedstocksupplychain.Theimplementationofbiomassco-firingwillnotsubstantiallyreduceGHGemissionsifcoalremainsthemajorfuelsourceforIndonesia’scoalfleet.Furthermore,inadditiontofinancialrisksassociatedwithpoorfueleconomyandoperationalconstraints,therearerisksofderatingtheasset.AsnotedbyInstituteforEnergyEconomicsandFinancialAnalysis(IEEFA),Indonesiamusttakeprudentstepstoensurethefeasibilityofco-firingadoption,particularlyconsideringthepredominanceofpulverisedcoalboilersinPLN’scoalfleet,whichhaveaconsiderablynarrowtolerancerangeinfuelproperties(IEEFA,2021b).Inordertomeettheeconomicequivalentofcoal,optionsforfeedstocksourcesarelimitedbydistance,namely360kmforJava,300kmforSumatra,Kalimantan,andSulawesi,and187kmforMalukuandPapua.Eventhoughtransportationcostsarelimitedto11%ofthecappedprice,supplyrisksmaybegreaterthananticipated.IESRalsonotedthattheactualcostrequiredtoimplementbiomassco-firingislikelyhighersincecostsassociatedwithboilerfoulingandequipmentupgradeand/oradjustmentneedsareexcluded(IESR,2022b).Whilebiomassco-firingisalreadybeingimplementedinmanyPLNpowerplants,therearealsofutureaspirationsforco-firingammonia.Therearemultipleobstaclestosourcingthisammonia—aboveallthecostandgreenhousegasemissionbenefitsthatarequestionableevenatbest(Kennedyetal.,2023;BloombergNEF,2022).Inaddition,recentCREAresearchhasfoundthatammoniaco-firingatcoal-firedpowerplantscouldleadtoverysignificantfugitiveammoniaemissionsbothfromtheshipstransportingammoniaandfromthepowerplantstacks(MyllyvirtaandKelly,2023).AmmoniareactswithSO2andNO2intheatmospheretoformPM2.5aerosols.Therefore,ammoniaco-firingcould,infact,maketheairqualityimpactsofcoal-firedpowerplantsworsethantheycurrentlyare.Inthisstudy,CREAassumestwovariationsofthebiomassco-firingscheme;(1)phasedincreaseofco-firingshare,reaching20%atPLNpowerplantsby2030forPERPRES112/2022scenario,(2)currentlyachievedshareof5%biomassco-firingformostPLNCFPPstobemaintainedandnotincreasedforthe1.5degreesscenario.Suchconsiderationwasmadebasedontheconclusionthatbiomassco-firingisnotaneffectivestrategythatwouldbringmeaningfullong-termcontributionstoIndonesia’stargetstorealisetheclimatecommitmentsandachieveaninclusiveandjusttransition(Prasetiyoetal.,2023).43HealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesiaConclusionIndonesiahasstartedtolaydownthegroundworkfortheretirementofitsCFPPsasdefinedinPresidentialRegulationNo.112Year2022ontheAccelerationofRenewableEnergyDevelopmentfortheProvisionofElectricity.WiththenationalgovernmentcommittingtofinalisetheroadmapwithinsixmonthssincetheformationoftheJETPSecretariatinFebruary2023,Indonesiaisnowenteringacriticalperiodwherecommitmentsareturnedintoactionstogetontracktowardsthe1.5degreespath.ThehighlyanticipatedroadmapdetailedintheComprehensiveInvestmentPlanandPolicy(CIPP)marksthebeginningofcleanenergyinvestmentmobilisationinIndonesia.Inthisanalysis,CREAseizedtheopportunityforthefirstassessmentoftheconsequencesofthestipulatedcoalphase-outtimelines,thepresenceofAirPollutionControlsystemsincoalpowerplantoperations,andtheimplementationofbiomassco-firingaspartofPLN’sgreentransitionstrategy.CREAhasdevelopedacomprehensivehealthimpactassessmentthatoutlinestheimplicationsofIndonesia’sdecisionsoncoalpowergenerationplans.Scenariopathwayswerebuiltbasedonthebestdataavailable,centeredaroundtheaimforaJustEnergyTransitionthatprioritisesthelivesandlivelihoodsoftheaffectedcommunitiesthroughoutthejourney.Indonesiawouldbeabletominimisehealthimpactsontheaffectedpopulationbyprioritisingearlyretirementofcoalpowerplantsanddeployingrenewablesinsteadofpursuingsolutionsthatprolongcoalpowerplantoperations,particularlyco-firingwithbiomassandammonia.WhilethecurrentburdenofairpollutionfromcoalpowerplantsonthehealthofIndonesiansandontheeconomyisoverlookedandundercounted,CREAprojectstheplannedexpansionupto2030tosharplyincreasethisexistingburden.Theanalysisshowsasignificantincreaseof110%inairpollutantemissionsoverthepastdecade,solelyfromcoalpowergeneration.CREAestimatesthatcoalpoweremissionsin2022wereresponsiblefor10,500deathsfromairpollutionandUSD7.4billion(IDR109.9trillion)ofeconomicburdenfromtheassociatedhealthimpacts.Undertheimplementationofcurrentpoliciesby2030andthefulloperationofallCFPPscurrentlyplanned,Indonesianpeoplewillbeexposedto70%higherairpollutantemissions.AsIndonesiaincreasesitscoalgenerationcapacityfrom45GWcurrentlyto63GWbeforepeakingin2028,annualdeathslinkedtoairpollutionfromcoalpowerwillriseto16,600peryearandthehealtheconomicburdenwillreachUSD11.8billion(IDR175.2trillion)peryear.Cancellationofnewcoalpowerprojectsandaccelerationoftheschedulesoftheretirementofexistingplantswouldavoidsignificanteconomiccoststhatcancovertheinvestmentcostsneededtodeploycleanandrenewableenergy.Afastercoalphase-outby2040,inlinewiththe1.5degreestargetoftheParisAgreement,wouldavoidacumulativetotalof182,000airpollution-relateddeathsandrelievehealtheconomicburdenofUSD130billion(IDR1.9quadrillion)upto2060.AshighlightedbyIESRandUMD,theinvestmentforrenewableenergyandenergyefficiencymustreachUSD135billion(IDR2quadrillion)totalinvestmentby2030,additionalUSD455billion(IDR6.8quadrillion)by2040,andadditionalUSD633billion(IDR9.4quadrillion)by2050tofacilitatetheretirementpathwaythatisalignedwiththe1.5degreescommitment(Cuietal.,2022).Indonesia’sretirementscheduleforcoalphase-outshouldincludeanationwideevaluationofplant-levelhealthimpactsfortheamountofelectricitytheplantgenerates.ThebasisforthisconsiderationistoensureequitableenergytransitionandmitigateimpactsontheimmediatelyaffectedcommunitieslivingincloseproximityandallcitizensofIndonesia.CREAhasgeneratedalistofpowerplantsthatshouldbeprioritised,rankedfromhighesthealthcostsforbeinglocatedinorneardenselypopulatedareas,withthesurroundingmeteorologicalconditionsthatraiseexposure,andforplantsassumedtobeoperatedwithpooremissioncontrol.ClearexamplesofsuchunitsincludethePLN’sMuaraKarangandLontarpowerplantslocatedinJakartaandTangerang,aswellasseveralcaptivecoalpowerplantslocatedinBekasi,Karawang,Purwakarta,andBandung.44HealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesiaFullinclusionofthelargefleetofcaptivepowerplantsinIndonesia’scoalphase-outpoliciesiscrucialfrombothgreenhousegasandpublichealthperspective.Captivepowerplantsareshowntoberesponsibleforapproximately20%ofthetotalhealthimpactsofcoalpowergenerationinIndonesia.Anyroomforambiguityintheregulatoryframeworkmayleavecaptivepowerplantsoutsidethe2040coalphase-outpolicy.CREAapproximatesanadditionalannualhealthburdenof27,000airpollution-relateddeathsandhealthcostsofUSD20billion(IDR300trillion)tobeattributedtocaptiveplantsalone.Evenascoalpowerplantsbegintoretire,investinginimprovedairpollutioncontrolsinthosepowerplantsthatplantooperatewellintoandbeyond2030woulddeliversubstantialbenefits.Thecountrycanavoid8,300deathsandUSD5.8billion(IDR86trillion)inhealthcostsin2035withtheproperinstallationofAPCs,ouranalysisshows.TakingintoaccounttheinvestmentsandoperationalcostsassociatedwithAPCfacilities,thecountrywouldstillgainaneteconomicbenefitofUSD70billion(IDR1quadrillion)bymitigatingpublichealthrisksfromcoalpoweremissions.45HealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesiaReferencesAchakulwisut,P.,Brauer,M.,Hystad,P.andAnenberg,S.C.(2019).Global,National,andUrbanBurdensofPaediatricAsthmaIncidenceAttributabletoAmbientNO2Pollution:EstimatesfromGlobalDatasets.Lancet,3(4):E166-E178.https://doi.org/10.1016/S2542-5196(19)30046-4Anenberg,S.C.,Henze,D.K.,Tinney,V.,Kinney,P.L.,Raich,W.,Fann,N.,Malley,C.S.,Roman,H.,Lamsal,L.,Duncan,B.,Martin,R.V.,vanDonkelaar,A.,Brauer,M.,Doherty,R.,Jonson,J.E.,Davila,Y.,Sudo,K.andKuylenstiernamJ.C.I.(2018).EstimatesoftheGlobalBurdenofAmbientPM2.5,Ozone,andNO2onAsthmaIncidenceandEmergencyRoomVisits.EnvironmentalHealthPerspectives,126(10).https://doi.org/10.1289/EHP3766AntaraNews.(2019).EmpatcapaianterbesarsektorenergieraJokowi.Antaranews.com.(PublishedonOctober17,2019).https://www.antaranews.com/berita/1117904/empat-capaian-terbesar-sektor-energi-era-jokowiAirQualityLifeIndex(AQLI).(2022).Indonesia.(PublishedonJune13,2022).https://aqli.epic.uchicago.edu/country-spotlight/indonesia/AsianDevelopmentBank(ADB).(2022).DBandIndonesiaPartnersSignLandmarkMOUonEarlyRetirementPlanforFirstCoalPowerPlantUnderEnergyTransitionMechanism.NewsRelease.(Publishedon14November,2022).https://www.adb.org/news/adb-and-indonesia-partners-sign-landmark-mou-early-retirement-plan-first-coal-power-plantBaselandStockholmConventionsRegionalCentreforSoutheastAsia(BCRC-SEA).(2017).FinalReportonMercuryEmissionsfromCoal-FiredPowerPlantsinIndonesia.(PublishedinDecember2017).https://www.unep.org/globalmercurypartnership/resources/report/mercury-emissions-coal-fired-power-plants-indonesiaBirchby,D.,Stedman,J.,Whiting,S.andVedrenne,M.(2019).AirQualityDamageCostUpdate2019.2019.Ricardo/ED59323/IssueNumber2.0.https://uk-air.defra.gov.uk/assets/documents/reports/cat09/1902271109_Damage_cost_update_2018_FINAL_Issue_2_publication.pdfBloombergNewEnergyFinance(BloombergNEF).(2022).Japan’sCostlyAmmoniaCoalCo-FiringStrategy.https://assets.bbhub.io/professional/sites/24/BNEF-Japans-Costly-Ammonia-Coal-Co-Firing-Strategy_FINAL.pdfBrandt,S.J.,Perez,L.,Künzli,N.,Lurmann,F.andMcConnell,R.(2012).Costsofchildhoodasthmaduetotraffic-relatedpollutionintwoCaliforniacommunities.EuropeanRespiratoryJournal,Aug.2012,40(2):363-370.https://doi.org/10.1183/09031936.00157811Burnett,R.,Chen,H.,Szyszkowicz,M.,Fann,N.,Hubbell,B.,etal.(2018).GlobalEstimatesofMortalityAssociatedwithLong-TermExposuretoOutdoorFineParticulateMatter.ProceedingoftheNationalAcademiesofScience,115(38):9592-9597).https://doi.org/10.1073/pnas.1803222115CentralBureauofStatistics.BadanPusatStatistik(BPS).(2023).TotalPopulationbyProvinceinIndonesia(ThousandPeople),2020-2022.https://sulut.bps.go.id/indicator/12/958/1/jumlah-penduduk-menurut-provinsi-di-indonesia.htmlCenterforInternationalEarthScienceInformationNetwork(CIESIN).(2018).GriddedPopulationoftheWorld,Version4(GPWv4):PopulationDensityAdjustedtoMatch2015RevisionUNWPPCountryTotals,Revision11.Palisades,NY:NASASocioeconomicDataandApplicationsCenter(SEDAC),2018.https://doi.org/10.7927/H4F47M65ClimateInvestmentFunds(CIF).(2023).AcceleratingCoalTransition.Coal-To-Clean-Transition.[Lastaccessed15May,2023]https://www.cif.org/topics/accelerating-coal-transition46HealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesiaCropper,M.,Guttikunda,S.,Jawahar,P.,Lazri,Z.,Malik,K.,Song,X.andYao,X.(2019).ApplyingBenefit-CostAnalysistoAirPollutionControlintheIndianPowerSector.JournalofBenefit-CostAnalysis,10(S1):185-205.https://doi.org/10.1017/bca.2018.27Cui,R.,Tumiwa,F.,Zhao,A.,Arinaldo,D.,Wiranegara,R.,Cui,D.,Dahl,C.,Myllyvirta,L.,Squire,C.,Simamora,P.andHultman,N.(2022).“FinancingIndonesia'scoalphase-out:Ajustandacceleratedretirementpathwaytonetzero.”CenterforGlobalSustainability,UniversityofMaryland,CollegePark,USA;InstituteforEssentialServicesReform,Jakarta.(PublishedinAugust2022).https://cgs.umd.edu/research-impact/publications/financing-indonesias-coal-phase-out-just-and-accelerated-retirementEconomicResearchInstituteforASEANandEastAsia(ERIA).(2017).ERIAResearchProjectFY2016No.02-Improvingemissionregulationforcoal-firedpowerplantsinASEAN.https://www.eria.org/research/improving-emission-regulation-for-coal-fired-power-plants-in-asean/Ember.(2023).JETP:areflectionofIndonesia’scommitmenttotransformitspowersector.https://ember-climate.org/insights/commentary/jetp-indonesia/EuropeanEnvironmentAgency(EEA).(2011).Airpollutionimpactsfromcarboncaptureandstorage(CCS).https://www.eea.europa.eu/publications/carbon-capture-and-storage/fileEuropeanEnvironmentAgency(EEA).(2014).CostsofAirPollutionfromEuropeanIndustrialFacilities2008–2012—anupdatedassessment.EEATechnicalreport.No.20/2014.https://www.eea.europa.eu/publications/costs-of-air-pollution-2008-2012EuropeanEnvironmentAgency(EEA).(2023).IndustrialReportingundertheIndustrialEmissionsDirective2010/75/EUandEuropeanPollutantReleaseandTransferRegisterRegulation(EC)No166/2006.Databasever.8.0.https://www.eea.europa.eu/data-and-maps/data/industrial-reporting-under-the-industrial-7EuropeanCommission-EuropeanIPPCBureau.(2017,December).BestAvailableTechniques(BAT)ReferenceDocumentforLargeCombustionPlants.IndustrialEmissionsDirective2010/75/EU(IntegratedPollutionPreventionandControl).EuropeanIntegratedPollutionPreventionandControlBureau(EIPPCB).https://eippcb.jrc.ec.europa.eu/sites/default/files/2019-11/JRC_107769_LCPBref_2017.pdfEuropeanCommission.(2021).CommissionImplementingDecision(EU)2021/2326of30November2021establishingbestavailabletechniques(BAT)conclusions,underDirective2010/75/EUoftheEuropeanParliamentandoftheCouncil,forlargecombustionplants(notifiedunderdocumentC(2021)8580)(TextwithEEArelevance).OfficialJournaloftheEuropeanUnion.L469/1.https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32021D2326EuropeanCommission.(2022a).TheEUandInternationalPartnerslaunchground-breakingJustEnergyTransitionPartnershipwithIndonesia.Pressrelease.15November2022.https://ec.europa.eu/commission/presscorner/detail/en/ip_22_6926EuropeanCommission.(2022b).JointStatementbytheGovernmentoftheRepublicofIndonesiaandInternationalPartnersGroupmembersontheIndonesiaJustEnergyTransitionPlan.Statement.15November2022.https://ec.europa.eu/commission/presscorner/detail/en/statement_22_6892EuropeanCommission.(2023).CountryRiskProfile.DRMKC-INFORM.https://drmkc.jrc.ec.europa.eu/inform-index/INFORM-Risk/Country-Risk-ProfileEuropeanExternalActionService(EEAS).(2021).DelegationoftheEuropeanUniontoIndonesiaandBruneiDarussalam.TransparentpollutioncontrolforIndonesia:“Wewanttoseeblueskiesagain”.(PublishedonApril14,2021).https://www.eeas.europa.eu/delegations/indonesia/transparent-pollution-control-indonesia-%E2%80%9Cwe-47HealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesiawant-see-blue-skies-again%E2%80%9D%E2%80%A8%E2%80%A8_en?s=168Farr,T.G.,Rosen,P.A.,Caro,E.,Crippen,R.,Duren,R.,Hensley,S.,Kobrick,M.,Paller,M.,Rodriguez,E.,Roth,L.,Seal,D.,Shaffer,S.,Shimada,J.,Umland,J.,Werner,M.,Oskin,M.,Burbank,D.andAlsdorf,D.(2007).TheShuttleRadarTopographyMission.ReviewsofGeophysics4(2),RG2004.https://doi.org/10.1029/2005RG000183Ferrari,N.,Mancuso,L.Burnard,K.andConsonni,F.(2019).EffectsofplantlocationoncostofCO2capture.InternationalJournalofGreenhouseGasControl,Volume90.2019.https://doi.org/10.1016/j.ijggc.2019.102783.FiscalPolicyAgency,MinistryofFinance,RepublicofIndonesia.(2022).CIFAcceleratingCoalTransition(ACT):IndonesiaCountryInvestmentPlan(IP).DRAFTFORPUBLICCONSULTATIONbytheGovernmentofIndonesia.MinistryofFinance,RepublicofIndonesia.(PublishedonOctober3,2022).https://fiskal.kemenkeu.go.id/docs/CIF-INDONESIA_ACT_IP-Proposal.pdfGlobalBurdenofDisease(2020).GlobalBurdenof87RiskFactorsin204CountriesandTerritories,1990–2019:ASystematicAnalysisfortheGlobalBurdenofDiseaseStudy2019.Lancet,396(10258):P1223-1249.https://doi.org/10.1016/S0140-6736(20)30752-2GlobalEnergyMonitor(GEM).(2022).Dashboard.(PublishedonFebruary8,2022).https://globalenergymonitor.org/projects/global-coal-plant-tracker/dashboard/GlobalEnergyMonitor(GEM).(2023).GlobalCoalPlantTracker.https://globalenergymonitor.org/projects/global-coal-plant-tracker/GreenpeaceIndonesia.(2015).HumanCostofCoalPower.https://www.greenpeace.org/static/planet4-indonesia-stateless/2019/02/676f10e5-676f10e5-full-report-human-cost-of-coal-power.pdfHuangfu,P.andAtkinson,R.(2020).Long-TermExposuretoNO2andO3andAll-CauseandRespiratoryMortality:ASystematicReviewandMeta-Analysis.EnvironmentInternational,144,2020,105998.https://doi.org/10.1016/j.envint.2020.105998InternationalEnergyAgency(IEA).(2022).AgeandtechnologyofexistingcoalpowerfleetinIndonesiaandFIDs–Charts–Data&statistics.(PublishedonOctober26,2022).https://www.iea.org/data-and-statistics/charts/age-and-technology-of-existing-coal-power-fleet-in-indonesia-and-fidsInstituteforEnergyEconomicsandFinancialAnalysis(IEEFA).(2021a).IndonesiawantstogogreenerbutPLNisstuckwithexcesscapacityfromcoal-firedpowerplants.(PublishedonNovember1,2021).https://ieefa.org/resources/indonesia-wants-go-greener-pln-stuck-excess-capacity-coal-fired-power-plantsInstituteforEnergyEconomicsandFinancialAnalysis(IEEFA).(2021b).Indonesia’sbiomasscofiringbet:Bewareofimplementationrisks.(PublishedonFebruary8,2021).https://ieefa.org/resources/indonesias-biomass-cofiring-bet-beware-implementation-risksInstituteforEnergyEconomicsandFinancialAnalysis(IEEFA).(2018).DecisionTimeatPoland’sPGE;WhyaHigh-Risk,Fossil-HeavyStrategyDoesn’tAddUp.(PublishedinJune,2018).https://ieefa.org/wp-content/uploads/2018/06/Decision-Time-at-Polands-PGE_June-2018.pdfInstituteforEssentialServicesReform(IESR).(2022a).FinancingIndonesia’scoalphase-out.(PublishedinAugust2022).https://iesr.or.id/en/pustaka/financing-indonesias-coal-phase-outInstituteforEssentialServicesReform(IESR).(2022b).IndonesiaEnergyTransitionOutlook2023:TrackingProgressofEnergyTransitioninIndonesia:PursuingEnergySecurityintheTimeofTransition.(PublishedinDecember,2022).48HealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesiahttps://iesr.or.id/wp-content/uploads/2022/12/Indonesia-Energy-Transition-Outlook_2023.pdfInstituteforEssentialServicesReform(IESR).(2019).Coalexportsbycountry2021.Medium-qualitycoalwithcalorificvalueof5,100-6,100kcal/kg,low-qualitycoalwithcalorificvalue<5,100kcal/kg.Indonesia’sCoalDynamics:TowardAJustEnergyTransition.https://iesr.or.id/wp-content/uploads/2019/08/Indonesias-Coal-Dynamics_Toward-a-Just-Energy-Transition.pdfInstituteforHealthMetricsandEvaluation(IHME)(2020).GBDResults.http://ghdx.healthdata.org/gbd-results-toolIQAir.(2023).AirQualityinIndonesia.https://www.iqair.com/indonesiaIQAir.(2022).WorldAirQuality.IQAir.https://www.iqair.com/world-air-quality-reportKementerianPPN/Bappenas.(2019).VisiIndondesia2045.RingkasanEksekutif.https://perpustakaan.bappenas.go.id/e-library/file_upload/koleksi/migrasi-data-publikasi/file/Policy_Paper/Ringkasan%20Eksekutif%20Visi%20Indonesia%202045_Final.pdfKennedy,S.,Tao,J.andLee,J.(2023).Japan’stoxicnarrativeonammonia.TransitionZero.(PublishedonApril13,2023).https://www.transitionzero.org/insights/japans-toxic-narrative-on-ammonia-cofiringKhreis,H.,Kelly,C.,Tate,J.,Parslow,R.,Lucas,K.andNieuwenhuijsen,M.(2017).ExposuretoTraffic-RelatedAirPollutionandRiskofDevelopmentofChildhoodAsthma:ASystematicReviewandMeta-Analysis.EnvironmentalInternational,100:1-31.https://doi.org/10.1016/j.envint.2016.11.012Koplitz,S.,Jacob,D.,Sulprizio,M.,Myllyvirta,L.andReid,C.(2017).BurdenofDiseasefromRisingCoal-FiredPowerPlantEmissionsinSoutheastAsia.EnvironmentalScience&Technology.201751(3),1467-147.https://pubs.acs.org/doi/full/10.1021/acs.est.6b03731Larkin,A.,Geddes,J.A.,Martin,R.V.,Xiao,Q.,Liu,Y.,Marshall,J.D.,Brauer,M.andHystad,P.(2017).GlobalLandUseRegressionModelforNitrogenDioxideAirPollution.EnvironmentalScience&Technology,51(12):6957-6964.https://dx.doi.org/10.1021/acs.est.7b01148Lelieveld,J.,Klingmüller,K.,Pozzer,A.,Burnett,R.,Haines,A.andRamanathan,V.(2019).EffectsofFossilFuelandTotalAnthropogenicEmissionRemovalonPublicHealthandClimate.ProceedingsoftheNationalAcademiesofScience,116(15):7192-7197.https://doi.org/10.1073/pnas.1819989116McKinsey&Company.(2020).TenwaystoboostIndonesia’senergysectorinapostpandemicworld.(PublishedonDecember16,2020).https://www.mckinsey.com/industries/oil-and-gas/our-insights/ten-ways-to-boost-indonesias-energy-sector-in-a-postpandemic-worldMasyarakatEnergiBiomassaIndonesia-IndonesianBiomassEnergySociety(MEBI).(2023).PerkembanganCofiringBiomassapadaPLTU.(PublishedonFebruary7,2023).https://mebi.or.id/news/perkembangan-cofiring-biomassa-pada-pltu/MinistryofEnergyandMineralResources(MEMR).(2021).RencanaUsahaPenyediaanTenagaListrik(RUPTL)2021-2030.KeputusanMenteriEnergiDanSumberDayaMineralRepublikIndonesia.Nomor:188.K/HK.02/MEM.L/2021.https://gatrik.esdm.go.id/assets/uploads/download_index/files/38622-ruptl-pln-2021-2030.pdfMinistryofEnergyandMineralResources(MEMR).(2022a).Perpres112Tahun2022Diteken,eraPembangkitListrikRendahEmisiDimulai.(Publishedon23September,2022.)https://www.esdm.go.id/id/media-center/arsip-berita/perpres-112-tahun-2022-diteken-era-pembangkit-listrik-rendah-emisi-dimulai49HealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesiaMinistryofEnergyandMineralResources(MEMR).(2022b).ETMCountryPlatform,UpayaAkselerasiTransisiEnergi.RepublicofIndonesia.SiaranPers,460.Pers/04/SJI/2022.(PublishedonNovember16,2022).https://www.esdm.go.id/en/media-center/news-archives/etm-country-platform-upaya-akselerasi-transisi-energiMinistryofEnergyandMineralResources(MEMR).(2023a).HandbookofEnergy&EconomicStatisticsofIndonesia2022.https://www.esdm.go.id/assets/media/content/content-handbook-of-energy-and-economic-statistics-of-indonesia-2022.pdfMinistryofEnergyandMineralResources.(MEMR).(2023b).CapaianKinerjaESDM2022DanTarget2023.OnlineDriveESDM.https://drive.esdm.go.id/wl/?id=0wkgH9GoznLHQM5AZNfCIF76VygsJ1dyMinistryofEnvironmentandForestry.(2023).WebGISSISPEK.PORTALDIREKTORATPENGENDALIANPENCEMARANUDARADITJENPPKLKLHK.KementerianLingkunganHidupdanKehutanan.(AccessedonMay29,2023).https://ditppu.menlhk.go.id/sispek/displayMyllyvirta,L.andKelly,J.(2023).Airqualityimplicationsofcoal-ammoniaco-firing.https://energyandcleanair.org/wp/wp-content/uploads/2023/05/CREA_Air-quality-implications-of-coal-ammonia-co-firing_Briefing_2023_EN_FINAL.pdfMyllyvirta,L.(2020).QuantifyingtheEconomicCostsofAirPollutionfromFossilFuels.CentreforResearchonEnergyandCleanAir.2020.https://energyandcleanair.org/publications/costs-of-air-pollution-from-fossil-fuels/NationalBureauofAsianResearch(NBR).(2018).AirpollutioninIndonesia.(2018,August12).https://www.nbr.org/publication/air-pollution-in-indonesia/Nexus3Foundation.(2021).NGOs:GovernmentsNeedNewToolsToControlAirPollutionUrgently.(PublishedonJune29,2021).https://www.nexus3foundation.org/2021/06/29/ngos-governments-need-new-tools-to-control-air-pollution-urgently/OrganisationforEconomicCo-operationandDevelopment(OECD).(2012).MortalityRiskValuationinEnvironment,HealthandTransportPolicies.https://doi.org/10.1787/9789264130807-enOrganisationforEconomicCo-operationandDevelopment(OECD).(2021).RUPTL2021-30:PLNstepsupambitionstoacceleratecleanenergyinvestmentsinIndonesia.(PublishedonNovember16,2021)https://www.oecd.org/environment/cc/cefim/indonesia/RUPTL-2021-30-PLN-steps-up-ambitions-to-accelerate-clean-energy-investments-in-Indonesia.pdfPunyawadee,V.,Pothisuwan,R.,Winichaikule,N.,andSatienperakul,K.(2008).CostsandBenefitsofFlueGasDesulfurizationforPollutionControlattheMaeMohPowerPlant,Thailand.ASEANEconomicBulletin,25(1),99–112.http://www.jstor.org/stable/41231498PerusahaanListrikNegara(PLN).(2022).Statistik2021.ListrikuntukKehidupanyangLebihBaik-PTPLN(Persero).(PublishedinJune,2022).https://web.pln.co.id/statics/uploads/2022/08/Statistik-PLN-2021-29-7-22-Final.pdfPerusahaanListrikNegara(PLN).(2023).Peluang&TantanganPengadaanBiomassasebagaiEnergiPrimerPembangkitListrikyangBerkelanjutan.MEBI–MasyarakatEnergiBiomassaIndonesia.(PublishedonFebruary23,2023).https://mebi.or.id/wp-content/uploads/2023/02/Paparan-Webinar-IPB-PLN-EPI_20230225.pdfPrasetiyo,A.,Suarez,I.,Parapat,J.andAmali,Z.(2023).Ambiguitiesversusambition:AreviewofIndonesia’senergytransitionpolicy.CentreforResearchonEnergyandCleanAir;TrendAsia.(PublishedonApril3,2023).https://energyandcleanair.org/publication/ambiguities-versus-ambition-a-review-of-indonesias-energy-transition-policy/50HealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesiaSaha,S.,Moorthi,S.,Wu,X.,Wang,J.,Nadiga,S.,Tripp,P.,Behringer,D.,Hou,Y.,Chuang,H.,Iredell,M.,Ek,M.,Meng,J.,Yang,R.,PeñaMendez,M.,vandenDool,H.,Zhang,Q.,Wang,W.,Chen,M.andBecker,E.(2014).TheNCEPClimateForecastSystemVersion2.JournalofClimate,Vol.27(6):2185-2208.https://doi.org/10.1175/JCLI-D-12-00823.1Sapkota,A.,Chelikowsky,A.,Nachman,K.,Cohen,A.andRitz,B.(2012).ExposuretoParticulateMatterandAdverseBirthOutcomes:AComprehensiveReviewandMeta-Analysis.AirQuality,Atmosphere&Health,5:369-381.https://doi.org/10.1007/s11869-010-0106-3Simon,J.(2023).Despitebillionstogetoffcoal,whyisIndonesiastillbuildingnewcoalplants?Npr,climate.(PublishedonFebruary5,2023).https://www.npr.org/2023/02/05/1152823939/despite-billions-to-get-off-coal-why-is-indonesia-still-building-new-coal-plantsSkamarock,W.C.,Klemp,J.B.,Dudhia,J.,Gill,D.O.,Barker,D.,Duda,M.G.andPowers,J.G.(2008).ADescriptionoftheAdvancedResearchWRFVersion3(No.NCAR/TN-475+STR).UniversityCorporationforAtmosphericResearch.https://opensky.ucar.edu/islandora/object/technotes:500SrinivasanS.,RoshnaN.,GuttikundaS.,KanudiaA.,SaifS.andAsundiJ.(2018).BenefitCostAnalysisofEmissionStandardsforCoal-basedThermalPowerPlantsinIndia.(CSTEP-Report-2018-06).https://shaktifoundation.in/wp-content/uploads/2018/07/Benefit-cost-analysis-of-emission-standards-for-coal-based-thermal-power-plants-in-India-1.pdfSun,J.,Schreifels,J.,Wang,J.,Fu,J.andWang,S.(2014).Costestimateofmulti-pollutantabatementfromthepowersectorintheYangtzeRiverDeltaregionofChina.EnergyPolicy,Volume69,2014.Pages478-488.https://doi.org/10.1016/j.enpol.2014.02.007.Trasande,L.,Malecha,P.andAttina,T.(2016).ParticulateMatterExposureandPretermBirth:EstimatesofU.S.AttributableBurdenandEconomicCosts.EnvironmentalHealthPerspectives,124(12).https://doi.org/10.1289/ehp.1510810UnitedNationsEnvironmentProgramme(UNEP).(2017).ToolkitforIdentificationandQuantificationofMercuryReleases.UNEnvironmentChemicalsBranch,Geneva,Switzerland.https://www.unep.org/globalmercurypartnership/resources/tool/mercury-inventory-toolkitU.S.EnergyInformationAdministration(EIA).(2022).FormEIA-860,AnnualElectricGeneratorReport.(PublishedonSeptember22,2022).Table9.4.https://www.eia.gov/electricity/annual/html/epa_09_04.htmlUnitedStatesEnvironmentalProtectionAgency(EPA).(2017).IPMModel–UpdatestoCostandPerformanceforAPCTechnologiesSNCRCostDevelopmentMethodology.(PublishedinJanuary,2017).https://www.epa.gov/sites/default/files/2018-05/documents/attachment_5-4_sncr_cost_development_methodology.pdfUnitedStatesEnvironmentalProtectionAgency(EPA).(2019).SelectiveCatalyticReduction.https://www.epa.gov/sites/default/files/2017-12/documents/scrcostmanualchapter7thedition_2016revisions2017.pdfUnitedStatesEnvironmentalProtectionAgency(EPA).(2003).AirPollutionControlTechnologyFactSheet.https://www3.epa.gov/ttncatc1/dir1/fwespwpi.pdfU.S.GeologicalSurvey(USGS).(2019).WorldCoalQualityInventory.U.S.DepartmentoftheInterior.https://www.usgs.gov/centers/geology%2C-energy-%26amp%3Bamp%3B-minerals-science-center/science/world-coal-quality-inventoryUnitedNationsFrameworkConventiononClimateChange(UNFCCC).(2021).IndonesiaLong-TermStrategyforLowCarbonandClimateResilience2050.https://unfccc.int/sites/default/files/resource/Indonesia_LTS-LCCR_2021.pdf51HealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesiaUnitedNationsFrameworkConventiononClimateChange(UNFCCC).(2022).EnhancedNationallyDeterminedContributionoftheRepublicofIndonesia.(PublishedonSeptember23,2022).https://unfccc.int/sites/default/files/NDC/2022-09/23.09.2022_Enhanced%20NDC%20Indonesia.pdfVanDonkelaar,A.,Hammer,M.S.,Bindle,L.,Brauer,M.,Brook,J.R.,Garay,M.J.,Hsu,N.C.,Kalashnikova,O.V.,Kahn,R.A.,Lee,C.,Levy,R.C.,Lyapustin,A.,Sayer,A.M.andMartin,R.V.(2021).MonthlyGlobalEstimatesofFineParticulateMatterandTheirUncertainty.EnvironmentalScience&Technology,55(22):15287-15300.https://doi.org/10.1021/acs.est.1c05309Workman,D.(2022).Coalexportsbycountry2021.World'sTopExports—Trademetricsthatinspireglobalthinking.https://www.worldstopexports.com/coal-exports-country/WorldBankOpenData.(2023a).GDPgrowth(annual%)–Indonesia.https://data.worldbank.org/indicator/NY.GDP.MKTP.KD.ZG?end=2021&locations=ID&start=1961&view=chartWorldBankOpenData.(2023b).Urbanpopulation(%oftotalpopulation)–Indonesia.https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS?locations=IDWorldHealthOrganization(WHO).(2021).WHOGlobalAirQualityGuidelines:ParticulateMatter(PM2.5andPM10),Ozone,NitrogenDioxide,SulfurDioxideandCarbonMonoxide.https://apps.who.int/iris/handle/10665/345329Zhang,C.andLiu,M.(2014).CostandBenefitAnalysisofDesulfurizationSysteminPowerPlant.TELKOMNIKA,Vol.12,No.1,March2014,pp.33-46.https://doi.org/10.12928/TELKOMNIKA.v12i1.125952HealthbenefitsofJustEnergyTransitionTableA1.Cumulativedeathsandtotalhealthcostsofeachscenarioandcoalphase-outinIndonesiaDeathsCosts,USDblnCosts,IDRtlnAppendix115,800(71,600–180,700)81.4(50.0–126.5)1,208.2(742.6–1,877.8)Scenario1.5degreesw/APC1.5degrees121,000(74,940–188,400)85.0(52.3–131.9)1,262.6(777.3–1,985.8)1.5degreesexcludingcaptive147,800(91,400–231,000)103.6(63.7–161.2)1,539.1(946.0–2,394.1)1,813.2(1,110.0–2,837.5)PERPRES112/2022w/APC174,200(107,200–122.1(74.7–191.1)3,156.2(1,953.5–4,868.8)273,600)PERPRES112/2022302,800(189,000–468,000)212.5(131.5–327.9)95%confidenceintervalinparenthesesTableA2.CumulativehealthimpactsbyscenarioOutcomeValue1.5degreesw/ScenarioPERPRESPERPRESAPC1.5degrees112/2022112/2022w/1.5degreesexcluding114,352,550APCWorkabsence(sickcentral46,791,82248,831,083captive97,312,02767,204,753leavedays)low39,819,02541,554,4055,968,109131,268,09257,190,074high56,713,477156,054,39647,627,88577,145,98164,247,163146,901Newcasesofasthmacentral68,85770,68933,765101,438inchildrenlow15,82616,24882,869320,03623,316high150,010154,00419,048628,652220,992294,650302,495180,534167,929434,079Numberofchildrencentral78,71180,805354,6361,276,610115,958sufferingfromasthmalow598,326614,26594,736240,323881,452duetopollutionhigh103,638107,494720,132145,096146,453exposure62,30464,635120,091334,55588,209144,532149,89872,263204,080Asthmaemergencycentral167,411roomvisitslowhigh53HealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesiaOutcomeValue1.5degreesw/ScenarioPERPRESPERPRESAPC1.5degrees112/2022112/2022w/1.5degreesexcluding73,539APCcentral32,99734,273captive22,88245,59010,26710,66438,396127,26188,209Lowbirthweightbirthslow57,10359,31011,947107,180204,08048,84150,51466,44652,07267,458high23,72924,54255,753113,77032,77451,84453,62127,08671,607central59,1811,521,544649,202997,891Pretermbirthslow795,7563,501,181425,799295,555974,1582,296,049high1,593,681577,673567,595501,9431,467,413336,588Yearsofliveslost242,012854,973614,736103,933AllcausesfromNO2central628,415645,84537,75958,159exposurelow268,147275,57948,772193,54621,131high1,445,9001,486,03814,51582,491108,302AllcausesfromSO2393,978403,12574,39413,37537,501exposurecentral233,632239,05440,479205,9857,022low593,450607,2354,789217,92689,059high60,28770,272123,320101,923447,04939,763Yearslivedwithdisability27,326854,973173,866Chronicobstructivecentral39,20241,169pulmonarydiseaselow14,24314,957high73,00076,663Diabetes24,40727,341central4,6384,963Strokelow56,57863,993high83,27387,16026,85028,104central170,836178,807lowhigh54HealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesiaTableA3.Top10provincesmostaffectedbycoalpoweremissionsandtop10provincesmostresponsibleforthelargestnumberofdeathsperyearProvinceDeathsintheprovinceCauseddeathsbytheprovinceJawaBarat4,135(2,566–6,438)2,510(1,524–3,987)Banten2,153(1,308–3,406)3,755(2,304–5,905)JawaTengah1,761(1,090–2,749)3,069(1,932–4,698)JakartaRaya1,643(991–2,634)593(360–944)JawaTimur1,013(611–1,642)1,374(842–2,180)Lampung636(408–947)90(52–151)SumateraUtara356(224–537)390(246–588)SumateraSelatan254(163–380)283(179–434)SulawesiTenggara241(159–344)226(149–323)SulawesiSelatan241(158–349)73(48–107)Jambi107(69–159)187(119–284)55HealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesiaTableA4.CostinformationcompiledfordifferentairpollutantcontroltechnologiesCountryControl-ControlCapitalCapitalcost,O&MO&Mcost,ReferenceUSAledpol-techno-cost,transferredtocost,transferredtoEPA(2019)lutantoriginal,original,logyUSD/kWIndonesiaUSD/IndonesiaNOx(2022)MWhUSD/IDR/USD/kWIDR/W(2022)MWhkWh(2022)(2022)(2022)(2022)SCR1481302,193USANOxSNCR26233801.21.017.4EPA(2017)USAPMESP26183800.30.24.2EPA(2003)IndiaIndiaSO2FGD101621,5051.41.021.5Cropperetal.India(2019)ChinaSO2FGD75511,119Srinivasanetal.SO2FGD5336784(2018)Srinivasanetal.(2018)SO2FGD51327602.21.532.2Zhang&Liu(2014)ChinaSO2FGD37215441.51.021.8Sunetal.(2014)USASO2FGD2531333,7642.61.739.1EIA(2022)ThailandSO2FGD49367290.50.57.7Punyawadeeetal.(2008)PolandSO2FGD2031093,021IEEFA(2018)PolandSO2FGD2091123,104IEEFA(2018)IndonesiaSO2FGD87711,299Ferrarietal.(2019)IndonesiaNOxSCR6351933Ferrarietal.(2019)56HealthbenefitsofJustEnergyTransitionandcoalphase-outinIndonesiaTableA5.TotalairpollutantcontrolcostsestimatedforIndonesiaControlControlledCapitalcost,Capitalcost,O&Mcost,USD/O&Mcost,IDR/technologypollutantUSD/kW(2022)IDR/W(2022)MWh(2022)kWh(2022)FGD(limestone)SO2669771.1517.06SCRNOx558190.8312.34SNCRNOx233,3450.8312.34ESPPM182750.213.06Totaladditionalcostofmeetingmorestringentstandardsfornewbuildpowerplantsall731,0810.578.46Totaladditionalcostforretrofitsall1482,2011.9829.4057IESR

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱