国际贸易与绿氢:支持全球向低碳经济转型-英-60页VIP专享VIP免费

International trade
and green hydrogen
Supporting the global transition
to a low-carbon economy
DISCLAIMER
This publication and the material herein have been prepared under
the responsibility of the WTO Secretariat and of the International
Renewable Energy Agency and are provided “as is”. All reasonable
precautions have been taken by the WTO and IRENA to verify the
reliability of the material in this publication. However, neither the
WTO nor IRENA, nor any of their officials, agents, data or other
third-party content providers provides a warranty of any kind,
either expressed or implied, and they accept no responsibility or
liability for any consequence of use of the publication or material
herein.
The information contained herein does not necessarily reflect
the positions or opinions of WTO members, nor of the members
of IRENA. It is without prejudice to the rights and obligations
of WTO members under the WTO agreements. The opinions
expressed and arguments employed are not intended to provide
any authoritative or legal interpretation of provisions of the WTO
agreements, and shall in no way be read or understood to have
any legal implications.
The mention of specific companies or certain projects or products
does not imply that they are endorsed or recommended by
either the WTO or IRENA in preference to others of a similar
nature that are not mentioned. The designations employed and
the presentation of material herein do not imply the expression
of any opinion on the part of the WTO or IRENA concerning
the legal status of any region, country, territory, city or area or
of its authorities, or concerning the delimitation of frontiers or
boundaries.
INTERNATIONAL TRADE AND GREEN HYDROGEN • 1
Contents
Acknowledgements and Abbreviations 2
Executive summary and Five actions for consideration by policymakers 3
1 Introduction 6
1.1 The role of green hydrogen in a global low-carbon economy 7
1.2 Prospects for green hydrogen production 10
1.3 How could global hydrogen trade play out in the future 13
2 Mapping supply chain issues from a trade perspective 16
2.1 Trade in hydrogen and hydrogen derivatives 20
2.2 Electrolysers as a key technology for the green hydrogen supply chain 24
3 Trade-related policies along the hydrogen value chain 26
3.1 Taris and other taxes 29
3.2 Quality infrastructure – standards, certification and beyond 30
3.3 Subsidies 34
3.4 Sustainable government procurement 37
4 Considerations for development 40
5 The role of international cooperation 44
Five actions for consideration by policymakers 48
Annex 51
Bibliography 54
InternationaltradeandgreenhydrogenSupportingtheglobaltransitiontoalow-carboneconomyDISCLAIMERThispublicationandthematerialhereinhavebeenpreparedundertheresponsibilityoftheWTOSecretariatandoftheInternationalRenewableEnergyAgencyandareprovided“asis”.AllreasonableprecautionshavebeentakenbytheWTOandIRENAtoverifythereliabilityofthematerialinthispublication.However,neithertheWTOnorIRENA,noranyoftheirofficials,agents,dataorotherthird-partycontentprovidersprovidesawarrantyofanykind,eitherexpressedorimplied,andtheyacceptnoresponsibilityorliabilityforanyconsequenceofuseofthepublicationormaterialherein.TheinformationcontainedhereindoesnotnecessarilyreflectthepositionsoropinionsofWTOmembers,norofthemembersofIRENA.ItiswithoutprejudicetotherightsandobligationsofWTOmembersundertheWTOagreements.TheopinionsexpressedandargumentsemployedarenotintendedtoprovideanyauthoritativeorlegalinterpretationofprovisionsoftheWTOagreements,andshallinnowaybereadorunderstoodtohaveanylegalimplications.ThementionofspecificcompaniesorcertainprojectsorproductsdoesnotimplythattheyareendorsedorrecommendedbyeithertheWTOorIRENAinpreferencetoothersofasimilarnaturethatarenotmentioned.ThedesignationsemployedandthepresentationofmaterialhereindonotimplytheexpressionofanyopiniononthepartoftheWTOorIRENAconcerningthelegalstatusofanyregion,country,territory,cityorareaorofitsauthorities,orconcerningthedelimitationoffrontiersorboundaries.INTERNATIONALTRADEANDGREENHYDROGEN•1ContentsAcknowledgementsandAbbreviations2ExecutivesummaryandFiveactionsforconsiderationbypolicymakers31Introduction61.1Theroleofgreenhydrogeninagloballow-carboneconomy71.2Prospectsforgreenhydrogenproduction101.3Howcouldglobalhydrogentradeplayoutinthefuture132Mappingsupplychainissuesfromatradeperspective162.1Tradeinhydrogenandhydrogenderivatives202.2Electrolysersasakeytechnologyforthegreenhydrogensupplychain243Trade-relatedpoliciesalongthehydrogenvaluechain263.1Tariffsandothertaxes293.2Qualityinfrastructure–standards,certificationandbeyond303.3Subsidies343.4Sustainablegovernmentprocurement374Considerationsfordevelopment405Theroleofinternationalcooperation44Fiveactionsforconsiderationbypolicymakers48Annex51Bibliography54ACKNOWLEDGEMENTSThispublicationhasbeenpreparedundertheoverallguidanceofAikHoeLimoftheWorldTradeOrganization(WTO)andRolandRoeschoftheInternationalRenewableEnergyAgency(IRENA).ThecoreteamwascomposedofFranciscoBoshell,LuisJaneiro,AnnKathrinLipponerandJaidevDhavleofIRENAandSvetlanaChobanova,MateoFerreroandRainerLanzoftheWTO.ValuablecommentsandinputswerealsoprovidedbyZafarSamadov,EmanueleBianco,RaulMiranda,PaulKomorandDeeptiAshokSiddhanti(IRENA),MoniaSnoussi-Mimouni,AnkaiXu,JoseLuisMonteiro,SerefCoskun,RuosiZhang,MichaelRoberts,VishvaSubramaniamandPhilippePelletier(WTO),andChrisAgius(IEC).ABBREVIATIONSCO2carbondioxideCTECommitteeonTradeandEnvironmentGDPgrossdomesticproductGH2greenhydrogenGHGgreenhousegasGPAAgreementonGovernmentProcurementGWgigawattH2dihydrogen(i.e.,hydrogeninastablegaseousform)IEAInternationalEnergyAgencyIECInternationalElectrotechnicalCommissionIECREIECSystemforCertificationtoStandardsRelatingtoEquipmentforUseinRenewableEnergyApplicationsIECExInternationalElectrotechnicalCommissionSystemforCertificationtoStandardsRelatingtoEquipmentforUseinExplosiveAtmospheresIISDInternationalInstituteforSustainableDevelopmentIPHEInternationalPartnershipforHydrogenandFuelCellsintheEconomyIRENAInternationalRenewableEnergyAgencyISOInternationalOrganizationforStandardizationLDCleast-developedcountryLH2liquidhydrogenLOHCliquidorganichydrogencarrierMt/ymilliontonsperyearMtCO2megatonsofcarbondioxideMtH2/yearmegatonsofhydrogenperyearNH3ammoniaOECDOrganisationforEconomicCo-operationandDevelopmentPJpetajoulePVphotovoltaicQIqualityinfrastructureR&DresearchanddevelopmentSCMsubsidiesandcountervailingmeasuresTBTtechnicalbarrierstotradeUNIDOUnitedNationsIndustrialDevelopmentOrganizationWEFWorldEconomicForumWTOWorldTradeOrganizationINTERNATIONALTRADEANDGREENHYDROGEN•3EXECUTIVESUMMARYTheroleofgreenhydrogentradeinthetransitiontoalow-carboneconomyGreenhydrogen,producedelectricityisnecessarytoproducequarterofthetotalglobalhydrogenexclusivelyfromrenewableenergy,greenhydrogen,deliveringonsuchdemandcouldbesatisfiedthroughisrapidlygainingimportanceasaascenariowill,inparallel,requireinternationaltrade.potentialfactorinthetransitiontoamassiveexpansioninrenewableanet-zeroglobaleconomy.Itofferspowergeneration.Currentlyhydrogenislargelyasolutiontodecarbonizeenergyproducedusingnaturalgas,withapplicationswherethedirectuseofTheInternationalRenewableEnergytradeflowsintheorderofrenewableelectricityorfuelsisnotaAgency(IRENA)estimatesthatUS$150-200millionperyear.Thetechnicallyviableortheglobaltechnicalpotentialtotradeofcommoditiesthatcanbecost-effectivesolution,suchasheavyproducegreenhydrogenisasderivedfrom(green)hydrogen,industry,shipping,aviationandmuchastwentytimeswhatthenotablyammoniaandmethanolseasonalenergystorage.totalglobalprimaryenergydemand–ismoresignificant.Thesewerewillbein2050.Accesstohigh-respectivelyworthUS$17.5billionGreenhydrogencouldplayakeyqualityabundantrenewablepowerandUS$14.1billionin2022.roleinachievingthegoalsofthegenerationwillbeacrucialcostParisAgreement1bymid-century,factor,asthiswillbeakeydriverThetradedynamicsforgreeni.e.,topursueeffortstolimittheoftherelativecompetitivenesshydrogenandderivativesinaincreaseintheglobalaverageofcertainregionsinproducingnet-zeroscenariowillbeverytemperatureto1.5°C,andtowellhydrogenorinproducingtradabledifferentfromthoseoftoday’sbelow2°C,abovepre-industrialcommoditiesusinghydrogen.internationalfossilfuelmarkets.Thelevels.HydrogenproductionisgeographicaldistributionofgreencurrentlyamajornetcontributorGreenhydrogenandderivativehydrogenproductionpotentialistoclimatechange,ratherthantocommodities,suchasgreenwidespread–asitislinkedtosolardecarbonization,becausecurrentammonia,makeitpossibletoandwindpowersupply–andtheremethodsofproducinghydrogenproducerenewableenergyinareasarefewmajorpotentialimporters.arecarbon-intensive.Thus,toarrivewithsubstantialrenewableenergyBycontrast,intoday’soilandgasatanet-zeroworld,thelandscapepotential,andtotransportittomarkets,ahandfulofplayerscontrolofhydrogenproductionandregionswithsignificanthydrogenalargeproportionoftheglobalconsumptionwillneedtochangedemandbutaninsufficientormoresupply,foramuchlargernumberofdramatically.costlyrenewableenergysupply.importers.ToachievethegoalsoftheParisInternationaltradecouldplayaThephysicalcharacteristicsofAgreement,thecurrentusesservedsignificantroleinmatchingsupplyhydrogenrenderittechnicallydifficultbyhydrogen(e.g.,toproduceanddemandforgreenhydrogenandandeconomicallycostlytotransportfertilizersorotherchemicals)willitsderivatives,becausethedomesticoverlongdistances.needtobesuppliedbycleanproductionpotentialofsomehydrogen.Inaddition,thesupplyeconomiesandregionsmaynotGreenhydrogencouldofhydrogenoverallwillneedtobeenoughtosatisfytheirdomesticplayakeyroleinachievingexpandmorethanfive-foldbydemand,anditmaybecheaperforthegoalsoftheParis2050,tomorethan500MT/y,ifitsomeeconomiestoimportgreenAgreementbymid-century.istoserveabroaderrangeofuseshydrogenfromlocationswithloweranddecarbonizecarbon-intensiveproductioncosts.AnalysisbyIRENAsectors.Giventhatrenewablesuggeststhatby2050aboutoneForthisreason,greenhydrogenThisreportoutlinesfiveactionsforInternationaltradecouldtradewilllikelymaterializetoagreatconsiderationbypolicymakers:playasignificantroleinextentastradeincommoditiesmatchingsupplyandproducedthroughtheuseof1.Addressingtradebarriersdemandforgreenhydrogenhydrogen,suchasammonia,alongthegreenhydrogenanditsderivatives.methanol,syntheticfuelsoriron.Thesupplychaintopromoteprospectofcost-competitivegreenthedevelopmentofgreenhydrogenproductioninregionswithhydrogenbyloweringcostsabundant,high-qualityrenewableandfosteringtechnologyenergycouldpotentiallydrivetheaccess.relocationofsomeenergy-intensiveindustriesandtheemergenceof2.Developingsoundqualitynewcommoditytradeflows.infrastructuretoguaranteetheenvironmentalintegrityofAswellasincreasingtradegreenhydrogenproductionofhydrogenanditsderivativeandprovideinformationoncommodities,scalingupgreentheproductionprocessandhydrogenforthepurposeofemissionsfootprintalongthedecarbonizationwillresultinavaluechain.significantincreaseintradeflowsofthetechnologiesandservices3.Implementingsupportpoliciesrequiredforitsproduction,suchastohelpsustainmarketgrowth,electrolysers(whichuseelectricitypromotecostefficienciesandtosplitwaterintohydrogenandnarrowthecostdifferentialoxygen),compressors,pipesandbetweentheproductioncostsvalves.ofgreenandoffossil-basedhydrogen.Atpresent,morethan30economiesaroundtheglobealready4.Usingsustainablegovernmenthavenationalstrategiesforlow-procurementtofosteralargecarbonhydrogen.Therefore,itisandstabledemandforgreenalreadycriticaltobeginanticipatinghydrogen,itsderivativesandtheenablingconditionstofacilitaterelatedtechnologies.thistrade,intermsofinfrastructuredevelopment,marketdesignand5.Increasinginternationalregulations,andconducivetradecooperationinsupportofgreenpolicies.hydrogentradetoensurealignmentandconsistencyAnumberofpathwayscouldhelpindefinitionsandstandardstorendertradepoliciesmoreopen,foremissionscertificationpredictable,coherentandinclusive,schemesandcontributetotoadvancetheirroleinfosteringandbringingaboutsocialandshapingthedevelopmentofgreeneconomicbenefits.hydrogensupplychains.Endnotes1Seehttps://www.un.org/en/climatechange/paris-agreement.INTERNATIONALTRADEANDGREENHYDROGEN•5FIVEACTIONSFORCONSIDERATIONBYPOLICYMAKERSAsetoffiveactionsforeconomies1.Addresstrade•Promotetradeingoodsandservicestoconsiderinordertoscalebarriersalongrelatedtorenewableenergyproduction.upandfacilitateglobaltradethegreenhydrogenofgreenhydrogen.supplychain•Reducetariffsandnon-tariffbarriersongreenhydrogen,electrolysers,derivativesandotherproductsalongthesupplychain.•Adoptnationalmeasuresbasedon2.Developsoundinternationalstandardsandengageinqualityinfrastructureinternationalstandardization.forgreenhydrogen•Fosterinternationaldialogueoncarbontrademeasurementmethodologies,definitionsoflow-carbonhydrogenandverification3.Implementsupport•Implementtargetedandnon-discriminatoryprocedures.policiesforgreenenvironmentalsubsidiestohelpsustainhydrogengrowthinelectrolysercapacityandgreen•Informcustomersvialabellingrequirementshydrogenproduction.basedonqualityinfrastructure.•Closetheeconomicgapbetweenfossil•Implementsustainablegovernmentfuelsandgreenhydrogenbyphasingoutprocurementpoliciesbypurchasingfossilfuelsubsidies.low-carbongoodsandservicesandstimulatinginnovativesolutions.4.Usesustainablegovernment•Considercoordinateddemand-creatingpoliciesandcollaborationtoachieveprocurementtoeconomiesofscaleandacceleratecostfostergreenreductions.hydrogendemand5.Increase•Encouragetechnologydevelopmentinternationalandinnovationthroughdialogue.cooperationongreenhydrogentrade•Engageincooperationforaongreenhydrogen.•Increasetechnicalassistanceandcapacity-building.•SupporttheneedsofdevelopingeconomiesthroughAidforTrade.1INTRODUCTIONINTERNATIONALTRADEANDGREENHYDROGEN•71.1Theroleofgreenhydrogeninagloballow-carboneconomyTomeetthegoalsoftheParisHowever,notallenergyusescanAgreementbymid-century,thebeelectrified.Insomecases,aglobalenergysystemwillneedtoberenewablemoleculeisneededdeeplytransformedwithinthenextaspartoftheprocess,eitherastwoandahalfdecades.Accordingfeedstock–suchashydrogentothescenarioproposedintheforammoniaproduction–orasaInternationalRenewableEnergychemicalagent–suchashydrogenAgency’s(IRENA)WorldEnergyforprimarysteelproduction.InTransitionsOutlook2023:1.5°Cothercases,electrificationisnotPathway(IRENA,2023a),moretechnicallyfeasibleatpresentduetothantwo-thirdsofthecarbondioxidetheenergydensityrequirementsof(CO2)emissionreductionstowardsthefuel,suchasintheaviationandanet-zeroenergysystemcanbeshippingsectors.Therefore,thereachievedthroughanincreasedisaneedforsolutionstoclosethesupplyofrenewableenergy,thedecarbonizationgapforapplicationselectrificationofenergyservicesinwhichthedirectuseofrenewablecurrentlysuppliedwithfossilfuels,electricityorfuelsisnotatechnicallyandtheimprovementofenergyviableorcost-effectivesolution.efficiency.Inthisscenarioforadecarbonizedworld,electricitywouldRenewable–green–hydrogencanbecomethecentralenergycarrier,actasthelinkbetweenrenewableaccountingformorethanhalfoftheelectricitygenerationandhard-to-worlds’finalenergyconsumption,upabate(i.e.,forwhichthetransitiontofromaboutonefifthtoday.netzeroisdifficulteitherintermsoftechnologyorcost)sectors14%Hydrogenanditsderivativescouldsatisfy14%offinalenergydemandin2050.orapplications(IRENA,2022a).Today,theglobalproductionofDeliveringonthisscenariowillRenewableelectricitycanbehydrogen–around95megatonsofrequireamassiveexpansioninconvertedtogreenhydrogenviahydrogenperyear(MtH2/year)–isrenewablepowersupply,astheelectrolysis,broadeningthescopeofalmostexclusivelyderivedfromfossilelectricityneededforthatpurposerenewableenergyutilization.Greenfuelswithoutassociatedcarboniscomparabletotoday’stotalglobalhydrogenisakeycomplementtocaptureandstorage.Thisfossil-electricityconsumption.1Itwillrenewableelectrification,offeringbasedhydrogenispredominantlyalsorequireanunprecedentedasolutiontodecarbonizesomeutilizedinindustriessuchasoilscale-upanddeploymentofapplications,forexampleinheavyrefining,fertilizerproduction,andelectrolysercapacity,fromaindustry(includingthosewheredownstreamchemicalprocesses.negligibleinstalledbasetodaytofossilhydrogenisusedtoday),Currentproductionofhydrogenmorethan5,700gigawatts(GW)shippingandaviation,andseasonalemitstheequivalentof1,100-by2050(seeFigure2).energystorage.1,300megatonsofCO2(MtCO2)globally(IEA,IRENAandUNThisexpansionofhydrogenGreenhydrogenisakeyClimateChangeHigh-LevelproductionwillrequiretheChampions,2023).Thus,atpresent,developmentofnewsupplycomplementtorenewablehydrogenproductionisamajornetchains.This,inturn,willhavetradecontributortoclimatechange,ratherimplications,bothintermsoftheelectrification.thanavectorfordecarbonization.tradeofrenewablehydrogenitself(ortradablecommoditiesproducedConsideringalltheseapplications,Inanet-zeroworld,thecurrentwithit,suchasammonia,methanolIRENAestimatesthathydrogenlandscapeofhydrogenproductionandreducediron)2aswellastradeinanditsderivativeswouldsatisfyaandconsumptionwillneedtohavetherequiredequipmentandservicessizeablefraction(14percent)ofchangeddramatically.First,existingtoproducethehydrogen,transportfinalenergydemandin2050inhydrogenusesneedtotransitiontoit,storeitanddeliverittotheascenarioinwhichrisingglobalacleanhydrogensupply.Second,consumersattheendofthechain.temperaturesresultingfromhydrogensupplyoverallneedstoemissionsarelimitedtonotmoreexpandtoserveabroaderrangeofInanet-zeroworld,thethan1.5°C(seeFigure1).Thebulkapplicationsinhard-to-decarbonizeofthishydrogenandofitsderivativessectors.IRENAestimatesthattotalcurrentlandscapeofshouldberenewableinordertohydrogenproductionwillneedtoreachclimateneutralityintheenergygrowmorethanfive-foldfromnowhydrogenproductionsystemoverall(IRENA,2023a).until2050(IRENA,2023a).andconsumptionwillneedtochange.INTERNATIONALTRADEANDGREENHYDROGEN•9FIGURE1BreakdownoftotalfinalenergyconsumptionbyenergycarrierunderIRENA’s1.5°CscenarioSource:IRENA(2023a).20202050(1.5°CScenario)374EJTotalfinalenergyconsumption353EJTotalfinalenergyconsumptionTFEC(%)Renewableshareinhydrogen4%Others94%6%5%14%TraditionalModernHydrogenusesofbiomassbiomassuses(directuse16%ande-fuels)7%ModernbiomassusesOthers63%22%Fossilfuels51%FossilfuelsElectricity12%Electricity(direct)(direct)28%91%RenewableshareinelectricityRenewableshareinelectricityFIGURE2Globalcleanhydrogensupplyin2020,2030and2050inIRENA’s1.5°CscenarioSource:IRENA(2023a).Note:1.5-S=1.5°Cscenario;GW=gigawatt;PJ=petajoule.1.2ProspectsforgreenhydrogenproductionAmajorbarriertothedeploymentThecostofrenewablepowergenerationinmanyregionsoftheofgreenhydrogentodatehasgenerationisfallingveryquicklyworld,andcostshavethepotentialbeenthehighercostsofproduction(seeFigure3).Forinstance,overtocontinuetodeclineasthecomparedtounabated(i.e.,whichthelast12years,thecostofsolartechnologycontinuestoimprove.causeshighcarbonemissions)photovoltaic(PV)powerhasfossil-basedhydrogen.Thedroppedbyalmost90percent.TheTherecouldpotentiallybeasimilarprospectsforcheapergreencostsofonshoreandoffshorewindcostreductionphenomenonwithhydrogeninthefuturearedrivengenerationhavealsodroppedveryelectrolyserstoproducegreenbytwokeyfactors:thecostofsubstantially,by69percentandhydrogenfromrenewableelectricity.renewableelectricityandthecostof59percentrespectively(IRENA,IRENA’sanalysissuggeststhat,ifelectrolysers.2023b).Today,solarandwindaretechnologydeploymentvolumesthecheapestformsofnewpowerweretobeinlinewithwhatisFIGURE3Globallevelizedcostofelectricityfromnewlycommissionedutility-scalerenewablepowertechnologiesSource:IRENA(2023b).SolarConcentratingOffshoreOnshoreBiomassGeothermalHydropowerphotovoltaicsolarpowerwindwind0.50.38095thpercentile0.4450.42022US$/kWh0.35thpercentileFossilfuelcostrange0.1970.20.1180.1070.10.0820.0560.0420.0610.0610.0810.0490.0330.053020102022201020222010202220102022201020222010202220102022Note:kWh=Kilowatt-hour,i.e.,ameasureofthequantityofenergydeliveredbyonekilowattofpowerforadurationofonehour.Thelevelizedcostofelectricityistheratiooflifetimecoststolifetimeelectricityproductionofapowergenerator,bothofwhicharediscountedbacktoacommonyearusingadiscountratethatreflectsthecostofcapital.INTERNATIONALTRADEANDGREENHYDROGEN•11FIGURE4Greenhydrogencostestimationsbasedondeploymentlevels,powersupplyandelectrolysercostSource:IRENA(2020a).6ElectrolyserpriceUS$65/MWhElectrolysercostin2020:ElectrolyserpriceUS$1,000/kWUS$20/MWh5Electrolysercostin2050:US$307/kW@1TWInstalledcapacityHydrogencost(US$/kgH2)4Electrolysercostin2050:Electrolysercostin2020:US$130/kW@5TWinstalledcapacityUSD650/kWElectrolysercostin2020:Fossilfuelrange3US$1,000/kWElectrolysercostin2050:US$307/kW@1TWInstalledcapacity2Electrolysercostin2050:1Electrolysercostin2020:US$130/kW@5TWinstalledcapacityUS$650/kW02025203020352040204520502020needed3tomeetthegoalsoftheabouttwentytimesthetotalglobalwillbeakeydriveroftherelativeParisAgreementby2050,theprimaryenergydemandin2050competitivenessofcertainregionseffectsoflearningbydoingand(seeFigure5.1).comparedtootherstoproduceeconomiesofscalewouldtriggerhydrogenortradablecommoditiessubstantialreductionsinthecostIncontrasttofossilfuels,whereaproducedwithhydrogen.Therefore,ofelectrolysers(IRENA,2020a).handfulofcountriescontrolalargetheproductionofgreenhydrogenisSuchreductionsintheinstalledfractionoftheglobalresource,inlikelytoscaleupinregionswithcostsofelectrolysers,pairedwiththecaseofgreenhydrogen,thehighpotentialforrenewableenergy.furthercostreductionsinrenewablepotentialforgreenhydrogenismuchpowergeneration,couldmakemoregeographicallydistributedinAsidefromrenewableresourcegreenhydrogencompetitivewithnature,asitreliesmostlyonsolarconditions,thecostofcapitalplaysfossil-basedhydrogenalreadybyandwindresources,whichareakeyroleintheoverallcostofgreenthesecondhalfofthisdecadeinavailablethroughouttheworldhydrogen–asthecoststructureislocationswithfavourablerenewable(seeFigure5.2).dominatedbycapitalexpendituresresourceconditions(seeFigure4).–andwillbeanotherkeyThisgreenhydrogenpotential,competitivenessfactor.AdditionalTheoverallavailabilityofrenewablehowever,willbeavailableatveryfactorstoconsiderincludelandenergywillnotbealimitationtodifferentcostsacrossdifferentavailability,wateraccessandthescalinguphydrogenproductionregions.Hydrogencanbeproducedinfrastructureoptionsnecessaryinthefuture.Renewablesourcesmostcost-efficientlyinlocationswithfortransportingandpotentiallycandeliverallthegreenhydrogenthebestrenewableenergyresourcesexportingenergytomeettheneedsthattheworldneedsforanet-zeroandlowprojectdevelopmentcostsofsignificantdemandcentresenergysystem:IRENAestimates(IRENA,2019).Accesstohigh-(IRENA,2022a).(IRENA,2022c)theglobalgreenquality,abundantrenewablepowerhydrogentechnicalpotentialatgenerationwillbecrucial,asthisFIGURE5.1Greenhydrogenpotentialversusglobalprimaryenergydemandin2050Source:IRENA(2022c).Levelizedcostofhydrogen(US$/kgH2)4Globalhydrogendemandin2050:74EJ3.5Globalprimaryenergysupplyin2050:614EJ32,0004,0006,0008,00010,0002.521.510.500Hydrogentechnicalpotential(EJ/yr)ArgentinaAustraliaBrazilCanadaChinaMENAregionRestoftheworldRussianFederationSaudiArabiaSub-SaharanAfricaUnitedStatesFIGURE5.2Levelizedcostofhydrogenin2050Source:IRENA(2022c).Noteligible0.611.522.533.544.55LCOH>5US$/kgH2INTERNATIONALTRADEANDGREENHYDROGEN•131.3HowglobalhydrogentradecouldplayoutinthefutureWhilethereismorethanenoughimportingregiontocompensateforGreenhydrogenanditsgreenhydrogenpotentialtomeetthetransportcost(IRENA,2022a).5derivativesofferopportunitiestheexpectedglobaldemand,thereforproducing,storingandareeconomiesorregionsinwhichTounderstandhowtheseglobaltransportingrenewableenergy.thedomesticproductionpotentialtradeflowscouldpotentiallyplaymightnotbeenoughtosatisfytheoutinafullydecarbonizedglobalBy2050,internationaltradecouldsatisfydomesticdemand.Furthermore,inenergysystem,in2022IRENAabout¼ofthetotalglobalhydrogensomecases,itmaybecheaperforcarriedoutatradeanalysisbaseddemandinIRENA’s1.5°Cscenario.certaineconomiestoimportfromonaglobalcost-optimizationlocationswithlowerproductionmodel.Theanalysisfocusesontwo55%ofthishydrogenwouldcosts.Thismeansthatinternationalcommodities–greenhydrogenandbetradedviapipelines.tradecouldplayasignificantroleingreenammonia.matchingsupplyanddemand.45%ofthishydrogenwouldbeTheanalysisshowsthatby2050,shipped,predominantlyasGreenhydrogenandderivativeaboutaquarterofthetotalglobalammonia.commodities,suchasrenewablehydrogendemandinIRENA’s1.5°Cammonia,offeropportunitiesforscenariocouldbesatisfiedthroughproducing,storingandtransportinginternationaltrade.Theotherthree-renewableenergyfromareaswithquarterswouldbedomesticallysubstantialrenewableenergyproducedandconsumed.potentialtoregionswithsignificanthydrogendemandbutinsufficientorOfthehydrogenthatwouldbemorecostlyrenewableenergysupplyinternationallytradedby2050in(IRENA,2022a).the1.5°Cscenario,around55percentwouldbetradedviapipelines.HydrogencanpotentiallybeTheremaining45percentofthetradedinmultipleforms.Itcanbeinternationallytradedhydrogentransportedoverlongdistancesaswouldbeshipped,predominantlyagasthroughpipelines,oritcanbeasammonia,whichwouldmostlyshippedinliquidform.beusedwithoutbeingreconvertedtohydrogen,asaninputfortheHydrogencanalsobefurtherfertilizerindustryorassyntheticfueltransformedintoanothercommodity,forinternationalshipping(IRENA,suchasammoniaormethanol,2022a)(seeFigure6).andtransportedinliquidform.ThisadditionalprocessingresultsTheresultssummarizedaboveareinsignificantenergylosses,andbasedentirelyoncost-optimizationthereforeanincreaseinthecostpermodellinganddonottakeintounitofenergydelivered.accountotherinvestmentdecisionTable1presentsabriefoverviewoffactors,suchasenergysecurity,hydrogentransportalternativeswithpoliticalstabilityoreconomickeyadvantagesanddisadvantages.4development,whichmayalsosubstantiallyimpactthefutureTomaketradecost-effective,thelandscapeofhydrogenproduction.costofproducinggreenhydrogenHowever,theresultsareindicativeofmustbesufficientlycheaperinthepotentialmajortradeflowsandtheexportingregioncomparedtothepredominanttransportmodes.TABLE1OverviewofadvantagesanddisadvantagesofhydrogentransportalternativesSource:IRENA(2022b).AmmoniaAdvantagesDisadvantages•Alreadyproducedonalargescale.•Toxicandcorrosive.•Alreadygloballytraded.•Highenergyconsumptionforammonia•Lowtransportlosses.•Highenergydensityandhydrogensynthesis.•Highenergyconsumptionforreconversioncontent.•Carbon-freecarrier.(importingregion)withhightemperature•Canbeuseddirectlyinsomerequirement(upto900°Cbutmorecommonlyinthe500-550°Crange).applications(e.g.,fertilizers,•Shipenginesusingammoniaasfuelneedmaritimefuel).tobedemonstrated.•Caneasilybeliquefied.Liquidhydrogen•Limitedenergyconsumptionfor•Verylowvolumetricenergydensity.regasification(mostoftheenergyis•Highenergylossesforliquefaction.consumedintheexportingregion,which•Boil-offlossesduringshippingandisexpectedtohavelowrenewableenergycosts).storage.•Cryogenictemperaturesleadtohigh•Noneedforapurificationsystematthedestination.equipmentcost.•Easiertransportattheimportingterminal.•Lowenergyconsumptiontoincreasepressureofhydrogendelivered.•Liquefactionisalreadyacommercialtechnology.Liquidorganichydrogencarrier•Canbetransportedusingexisting•Highenergyconsumptionfor(LOHC)infrastructure,makingitsuitablefordehydrogenation(importingregion).multi-modaltransport.•Requiresfurtherpurificationofthe•Lowcapitalcostforallsteps.hydrogenproduced.•Canbeeasilystored.•Only4-7%oftheweightofthecarrierishydrogen.•Allthepossiblecarrierscurrentlyhaveahighcost.•Mostofthepossiblecarriersrequirescalingupmultipletimesfromcurrentglobalproduction.Gas(pipelines)•Transportandstorageareprovenata•Storageinspecifictypesofreservoirscancommercialscale.leadtolossesandcontamination.•Existingnetworkcanpotentiallybe•Notallthepipelinematerialsaresuitablerepurposedtohydrogen.forhydrogen.•Carbon-freecarrier.•Notallregionshaveanexistinggas•Becomesmoreattractiveasthevolumenetwork.increases.•Costincreasessignificantlyforoffshorepipelines.•Energyconsumptionfortransportishigherthanfornaturalgas.PROINSTPEERCNTASTIFOONRAGLRTERAEDNEHAYNDDROGGREENENPRHOYDDURCOTGIOEN•15FIGURE6Globalhydrogentradeflowsunderoptimistictechnologyassumptionsin2050Source:IRENA(2022a).UnitedEurope23821606RepublicofStates136PJPJPJKoreaLatin4771JapanAmericaPJ1094PJChinaNorthMiddleAfricaEastIndiaSouthEastAsiaSouthAfricaAustraliaNH3Flow(PJ)H2Flow(PJ)LH2Flow(PJ)LOHCFlow(PJ)0–1000–1000–10038101–300301–800101–600101–600601–900601–900ExporterImporter/ImporterPJH2FlowPJNH3FlowExporterwithinregionwithinregionBeyondthetradeofhydrogenitself,Whiletransportinghydrogenoverattractive(IRENA,2022a).Thistheprospectofcost-competitivelongdistancesistechnologicallypresentsanopportunityforcountrieshydrogenproductioninregionscomplexandcostly(bothwithabundantrenewablestowithabundantandhigh-qualityeconomicallyandintermsofenergy),indirectlyexporttheirdomesticrenewableenergycouldpotentiallythetransportoftheseprocessedenergyresourceintheformofhigherdrivetherelocationofsomekeycommoditiesrepresentsasmallvalue-addedindustrialproducts.energy-intensiveindustriesandfractionoftheoverallproductiontheemergenceofnewcommoditycost.Therefore,relativelysmalltradeflows.Majorgreenhydrogen-differencesinthecostofhydrogenconsumingindustrieswouldproductionacrossgeographiesincludeammonia,methanolorcouldpotentiallymaketherelocationironproduction.ofindustrialfacilitieseconomicallyNote:NH3=ammonia;PJ=petajoule;H2=dihydrogen(hydrogeninastablegaseousform);LH2=liquidhydrogen;LOHC=liquidorganichydrogencarrier.Optimisticcapitalexpenditureassumptionsfor2050:photovoltaic(PV):US$225-455/kW;onshorewind:US$700-1,070/kW;offshorewind:US$1,275-1,745/kW;electrolyser:US$130/kW.Weightedaveragecostofcapital:per2020valueswithouttechnologyrisksacrossregions.GreenhydrogentechnicalpotentialisbasedonassessinglandavailabilityforsolarPVandwind.Demandisinlinewitha1.5°CscenariofromIRENA(2023a).Disclaimer:Thismapisprovidedforillustrationpurposesonly.BoundariesandnamesshownonthismapdonotimplytheexpressionofanyopiniononthepartofIRENAorWTOconcerningthestatusofanyregion,country,territory,cityorareaorofitsauthorities,orconcerningthedelimitationoffrontiersorboundaries.Endnotes1IRENA’s1.5°Cscenarioconsidersa94percentrenewableshareintheglobalproductionofhydrogenandderivativesin2050.2Reducedironissolidironoreorotheriron-bearingmaterialsfromwhichoxygenhasbeenremovedwithoutmeltingit,bymeansofreducingagents,i.e.,carbonmonoxideandhydrogen.See,forexample,https://www.metallics.org/dri-production.html.3UnderstoodastheannualdeploymentsofelectrolysercapacityinlinewithIRENA(2023a).4Formoreinformationabouttechno-economicconsiderationsforkeyhydrogencarriers,seeIRENA(2022c).5IRENAisworkingonanextensionofthisanalysistoincludetradeflowsrelatedtomethanolandironproducedwithgreenhydrogen.2MAPPINGSUPPLYCHAINISSUESFROMATRADEPERSPECTIVEINTERNATIONALTRADEANDGREENHYDROGEN•17Greenhydrogenhasanumberofuses.Itcanbeuseddirectlyasanenergycarrierandchemicalinputinmultipleend-useapplications.Itcanalsobecombinedwithasustainablecarbonsourceorwithnitrogen,toproducederivativecompoundssuchasmethanolorammonia,whichcanbeusedasfeedstockforchemicalproduction(e.g.,plasticsandfertilizers)orassustainablefuels.Figure7showsasimplifiedillustrationofthevaluechainofgreenhydrogen,fromtheproductionofrenewablepower,throughtransformationandtransportandtoend-usepossibleapplications.Theprogressiveadoptionofgreenhydrogenasakeybuildingblockoftheenergytransitionwillhavetradeimplicationsatdifferentlevels.First,greenhydrogencanbetradedeitherasagas(incompressedtanks,orviapipelines)orasaliquidTheadoptionofgreenhydrogenasabuildingblockoftheenergytransitionwillhavetradeimplicationsatdifferentlevels.FIGURE7Greenhydrogenproduction,conversionandendusesacrosstheenergysystemSource:IRENA(2022b).ProductionTranFUsRfoTHrmERationTransportEndUseRenewablePROCESSING2INDUSTRYenergyNOTRANSFORMATIONSteelindustry2ChemicalindustryRefineriesElectrolysis2NH3TRANSPORTSustainableCO2CO2capture2ShippingShippingTrucksN2TRANSFORMATIONPipelineAviationSyntheticCarsfuelsRail2TrucksBusesGreenStorage2HEATING2ammoniaNH3POWER2GENERATIONNote:Theterm“syntheticfuels”refersheretoarangeofhydrogen-basedfuelsproducedthroughchemicalprocesseswithacarbonsource(carbonmonoxide(CO)andCO2capturedfromemissionstreams,biogenicsourcesordirectlyfromtheair).Theyincludemethanol,jetfuels,methaneandotherhydrocarbons.Themainadvantageofthesefuelsisthattheycanbeusedtoreplacetheirfossilfuel-basedcounterpartsandcan,inmanycases,beusedasdirectreplacements–thatis,asdrop-infuels.Syntheticfuelsproducecarbonemissionswhencombusted,butiftheirproductionprocessconsumesthesameamountofcarbon,inprinciplethisallowsthemtohavenet-zerocarbonemissions.(inships).Second,greenhydrogenTheadoptionofgreenhydrogen,canbetradedintheformofchemicalaswellasthetradeofhydrogenderivatives,suchasmethanol,anditsderivatives,willalsohaveammonia,methaneandjetfuel.Third,implicationsforthetradeofgoodsgreenhydrogencanenablethetradeandservicesrequiredalongtheofotherlow-carboncommodities,valuechain.Figure8providesansuchasmetalliciron,whichcanillustrativesummaryofsuchgoodsbeproducedusinghydrogenasaandservices.reductant.INTERNATIONALTRADEANDGREENHYDROGEN•19FIGURE8OverviewoftradablegoodsandservicesalongthegreenhydrogenandderivativessupplychainSource:IRENAandWTO.RenewableenergyHydrogen&hydrogenTransport,storageUseproductionderivativesproductionandreconversion•Renewableenergy•Electrolysers•Pipingandstorage•Ammonia,methanol,generationequipment,•Compressors,valves,systems.productionplants.e.g.,solarpanels,windturbines,etc.flowcontrol,metering•Compressors,valves,•Directreductionandrelatedequipment.flowcontrol,meteringfurnacesforiron•Electricequipment.•Ammonia,methanol,andrelatedequipment.production.directreducedironEquipmentproductionplants.•Hydrogen,•Fuelcellsystems.ammonia,methanol,•Hydrogen-readyhotbriquettedirontransportvessels.(industrial)boilers•Hydrogen-readygasturbinesforpowergeneration.•Ammonia,methanolandhydrogenstorageequipment.•Design•Transportationand•Wholesaleandretail•Engineeringstorageservices(e.g.,hydrogenstations)•Relatedconstruction•Operationandmanagement•Relatedconstruction•Marketing(e.g.,portterminals)ServicesR&D,technicaltestingandanalysis,consultingandtraining,variousprofessionalandbusinessservicesTradeinawiderangeofgoodsBeyondthe“hardware”ofthegreenAtthesametime,ateachstageofrelatedtohydrogenproductioncouldhydrogensupplychain,avarietyofthesupplychain,someservicesbesubjecttochange,includingdomesticandtradedserviceswillmaybemoreimportantthanothers.energygenerationequipment,beneeded.AnumberofservicesForinstance,design,engineering,electrolysersforhydrogenarecommonacrossthedifferentoperationandconstructionservicesproduction,compressors,pipes,stagesofthesupplychain,suchasareparticularlyrelevantforthegasmanagementsystems,transportresearchanddevelopment(R&D),productionstagesofrenewablevesselsandstoragetanks.Thistechnicaltestingandanalysis,energyandhydrogen,whilemayalsobethecasewithend-useconsulting,trainingandvariousothertransportationandstorage,andtechnologies,suchaschemicalprofessionalandbusinessservices.wholesaleandretailservicesareproductionplants,iron-makingamongthosethataremorerelevantfacilities,fuelcellsandgasturbines.furtherdownstreaminthechain.2.1TradeinhydrogenandhydrogenderivativesThevalueofglobalhydrogenimportsgas,whichisthedominantsourceinTheleadingimportersof(ofallcolours,butmostlythosethatcurrenthydrogenproduction.hydrogenaretheUnitedStatesarefossil-fuel-based)amountedtoandtheNetherlandsandthearoundUS$300millionin2022.GlobaltradeinhydrogenistwolargestexportersareWhilehydrogentradehasseenverysmallcomparedtothatinCanadaandBelgium.relativelymodestfluctuationsovercommoditiesthatcanbeproducedmostofthepastdecade,itsawaasderivatives.Forexample,sharpincreaseof71percentinglobalimportsofammoniaand2022comparedto2021,mostlymethanolhaveregisteredstrongreflectinganincreaseinthevalueofgrowthoverthepasttwoyears,hydrogenimportsbytheNetherlandsreachingUS$17.5billionandfromBelgium(i.e.,oneofthelargestUS$14.1billionin2022(seeglobalhydrogenexportersandoneFigure9).Asdescribedabove,ofthetopmarkets).Itislikelythattheexpansionofgreenhydrogenthisincreaseand,morebroadly,productionisexpectedtoleadtoanthevalueofhydrogentradehaveincreaseinhydrogentradefromthebeendriventoasignificantextentcurrentlowlevels.byfluctuationsinthepriceofnaturalFIGURE9Globalimportsinhydrogenandderivatives(ammoniaandmethanol)Source:WTOSecretariatAnalyticalDatabasebasedondataoriginallysourcedfromWTOIntegratedDatabase,UNComtradeandTradeDataMonitor.30018,00025016,00020014,00015012,00010010,000508,00006,000201220132014201520162017201820192020202120224,000Hydrogen2,000US$millionUS$million020122013201420152016201720182019202020212022AmmoniaMethanolNote:Tradedatadonotallowforthedifferentiationofhydrogenbasedontheenergyusedinproduction.INTERNATIONALTRADEANDGREENHYDROGEN•21Tradeinhydrogeniscurrentlycloseto90percentofglobalhydrogenareCanadaandBelgium,concentratedinafeweconomies.hydrogentrade.Inparticular,whicharethedominantsuppliersInvalueterms,theUnitedStatesimportsofhydrogenamountedtoforthetwotopmarkets,theUnitedandtheNetherlandsaretheleadingUS$56.8million(142millionm3StatesandtheNetherlands,importersofhydrogen,accountinginvolumeterms)intheUnitedrespectively.BilateraltradeineachforaroundathirdofglobalStates,andtoUS$52millionhydrogenislargelyregional(seehydrogenimportsin2021,whilethe(167millionm3)intheNetherlands.Table2).top10importmarketsrepresentedThetwolargestexportersofTABLE2Topimportmarketsforhydrogenandtopthreesuppliers,2021Source:WTOSecretariatAnalyticalDatabasebasedondataoriginallysourcedfromtheWTOIntegratedDatabase,UNComtradeandtheTradeDataMonitor.ImporterUS$millionSuppliers(percentageshareinimportmarket)UnitedStates56.8Canada(99),France(0),NewZealand(0)Netherlands52.3Belgium(96),Germany(3),Hungary(0)Singapore18.2ChineseTaipei(85),UnitedStates(13),Malaysia(1)Germany5.9Netherlands(65),France(19),Belgium(6)Canada4.1UnitedStates(96),France(3),Japan(0)France4.1Germany(36),Netherlands(36),Belgium(13)Mexico3.6UnitedStates(100)UnitedKingdom3.1Netherlands(88),France(4),Germany(2)Austria2.9Germany(76),SlovakRepublic(20),Switzerland(1)Malaysia2.4UnitedStates(53),ChineseTaipei(19),China(17)CzechRepublic2.4Poland(86),SlovakRepublic(8),Hungary(1)Ireland2.3UnitedKingdom(56),Netherlands(43),UnitedStates(0)Belgium2.0Netherlands(79),Germany(19),France(0)Switzerland1.1EuropeanUnion(96),Qatar(3),UnitedKingdom(0)Poland1.0CzechRepublic(63),Germany(20),SlovakRepublic(4)Note:TheHSsubheadingcodeforhydrogen(280410)doesnotdistinguishbetweengaseousandliquidhydrogen,andtradestatisticsdonotreadilyshedlightonthemodeoftransport,e.g.,pipelinesorships.Ammoniaisproducedbycombiningcoolingtobeliquefied,hasahigherThecurrenttradelandscapeforhydrogenwithnitrogenextractedvolumetricenergydensitythanammonialooksmoreglobalandlessfromambientair.Ammoniahydrogen,andcanrelytoanextentregionalizedcomparedtohydrogen,isusedinnitrogenfertilizeronestablishedtransportandstoragereflectingitsimportanceasaglobalproductionandotherapplicationsinfrastructures.Ammoniathatiscommodity.Indiawasthetopsuchasrefrigeration,mining,producedfromgreenhydrogenisdestinationmarketforammoniainpharmaceuticals,watertreatment,expectedtodominatenewinstalled2021,followedbytheUnitedStatesplasticsandfibres,andabatementorcapacityadditionsforammoniaandMorocco.Thetopfivesuppliersremovalofnitrogenoxides.productionafter2025andcouldforammoniain2021wereTrinidadbecomethemaincommodityforandTobago,Russia,Indonesia,theAmmoniacanalsoactasanenergytransportingrenewableenergyKingdomofSaudiArabiaandAlgeriacarrierforhydrogen,asithasthebetweencontinents(IRENAand(Table3).advantagethatitrequireslessAEA,2022).TABLE3Topimportmarketsforammoniaandtopthreesuppliers,2021Source:WTOSecretariatAnalyticalDatabasebasedondataoriginallysourcedfromtheWTOIntegratedDatabase,UNComtradeandtheTradeDataMonitor.ImporterUS$millionSuppliers(percentageshareinimportmarket)India1,577.5SaudiArabia,Kingdomof(23),Qatar(22),Ukraine(13)UnitedStates1,352.2Canada(48),TrinidadandTobago(47),Algeria(1)Morocco769.6RussianFederation(50),TrinidadandTobago(36),Algeria(6)Korea,Republicof746.7Indonesia(40),SaudiArabia,Kingdomof(19),TrinidadandTobago(12)Belgium521.0RussianFederation(33),TrinidadandTobago(24),Algeria(20)Türkiye453.1RussianFederation(60),Libya(8),Algeria(8)China416.3Indonesia(45),SaudiArabia,Kingdomof(15),Malaysia(13)Norway368.6RussianFederation(66),TrinidadandTobago(10),UnitedKingdom(7)ChineseTaipei363.3Indonesia(43),SaudiArabia,Kingdomof(25),Iran(13)France340.5TrinidadandTobago(38),Algeria(14),Germany(13)Thailand248.4Malaysia(60),Australia(21),Indonesia(12)Spain241.5Algeria(80),RussianFederation(17),Portugal(1)Brazil230.6TrinidadandTobago(97),Algeria(1),Colombia(1)Germany229.1Netherlands(45),RussianFederation(19),Belgium(12)Chile215.0TrinidadandTobago(44),UnitedStatesofAmerica(26),Brazil(13)INTERNATIONALTRADEANDGREENHYDROGEN•23Methanolisakeyproductinlimited–particularlyasafeedstock,Netherlands,theUnitedStates,thethechemicalindustryusedforormaterialinputtoaproductionRepublicofKoreaandJapan,areproducingotherchemicalssuchprocess,inthechemicalindustrysimilarinsizeandaccountedfor5-7asformaldehyde,aceticacidandorasafuelinmaritimetransportpercentofglobalimportsin2021.plastics.Renewablemethanolcan(IRENA,2021).Themainsuppliersofmethanolarebeproducedusingdifferentroutes,producersofnaturalgas,suchasincludingthroughacatalyticreactionChinaisthetopmarketbysomeTrinidadandTobago,theKingdombetweenCO2andgreenhydrogen.distanceformethanol,accountingofSaudiArabia,Oman,theUnitedRenewablemethanolcouldplayaforaquarter(25percent)ofglobalArabEmirates,theUnitedStateslargerroleindecarbonizingcertainmethanolimports.OthermajorandRussia(Table4).sectorswhereoptionsarecurrentlyimportmarkets,suchasIndia,theTABLE4Topimportmarketsformethanolandtopthreesuppliers,2021Source:WTOSecretariatAnalyticalDatabasebasedondataoriginallysourcedfromtheWTOIntegratedDatabase,UNComtradeandtheTradeDataMonitor.ImporterUS$millionSuppliers(percentageshareinimportmarket)China3,367.0UnitedArabEmirates(39),Oman(25),SaudiArabia,Kingdomof(11)India996.1SaudiArabia,Kingdomof(31),Qatar(19),Oman(15)Netherlands929.7TrinidadandTobago(20),EquatorialGuinea(19),UnitedStates(13)UnitedStates863.4TrinidadandTobago(55),Canada(20),EquatorialGuinea(10)Korea,Republicof791.7UnitedStatesofAmerica(38),TrinidadandTobago(25),Oman(16)Japan689.0SaudiArabia,Kingdomof(50),TrinidadandTobago(14),UnitedStates(14)Germany592.3Netherlands(33),Belgium(18),Norway(10)ChineseTaipei590.1Oman(25),SaudiArabia,Kingdomof(21),UnitedStates(15)Brazil558.7Chile(39),TrinidadandTobago(38),Venezuela,BolivarianRepublicof(13)Indonesia392.1Malaysia(38),Oman(19),SaudiArabia,Kingdomof(14)Belgium380.3TrinidadandTobago(41),Netherlands(30),UnitedStates(16)Thailand320.7SaudiArabia,Kingdomof(42),Malaysia(18),Bahrain,Kingdomof(17)Poland262.0RussianFederation(67),Germany(13),Finland(7)Singapore252.0SaudiArabia,Kingdomof(47),Malaysia(33),Oman(12)Türkiye235.2Egypt(65),Azerbaijan(24),SaudiArabia,Kingdomof(4)2.2ElectrolysersasakeytechnologyforthegreenhydrogensupplychainAkeytechnologyfortheproductionGlobalelectrolysermanufacturingWhileelectrolysersarealreadyofgreenhydrogeniselectrolysis,incapacitycurrentlystandsataroundwidelyusedinthechlor-alkalinewhichanelectrolyseruseselectricity19GWperyearandisexpectedtoindustry,installedelectrolyserfromrenewableenergysourcestoreach100GWby2030basedoncapacitydedicatedtotheproductionsplitwaterintohydrogenandoxygen.announcedprojects.ChinacurrentlyofhydrogencouldreachalmostAselectrolyserscancurrentlyaccountsforaround40percent3GWbytheendof2023,amoreaccountfor30-40percentoftheofglobalmanufacturingcapacity,thanfour-foldincreasecomparedfinalcostofhydrogenproduction,andanumberofeconomies,to2022(IEA,2023).FurtherstrongcreatingscaleeconomiesinincludingIndia,theEuropeangrowthwillberequiredtoreachanelectrolysermanufacturingandUnionandtheUnitedStates,installedcapacityofmorethanenhancingtheperformanceofhavelaunchedpoliciesaimedat5,700GWby2050toachieveaelectrolyserswillbeessentialtosupportingmanufacturingcapacityscenariolimitingglobalwarmingtoachievecostcompetitivenessofforelectrolysers(IEA,2023;Rystadnotmorethan1.5°C,inwhichcleanhydrogen(IRENA,2022).Energy,2023).14percentoffinalenergydemandissuppliedbyhydrogenoritsderivatives(IRENA,2023a).FIGURE10:Topfiveimportersandexportersofelectrolysers(US$million)Source:WTOSecretariatAnalyticalDatabasebasedondataoriginallysourcedfromtheWTOIntegratedDatabase,UNComtradeandtheTradeDataMonitor.400Importers3GW300IndonesiaUnitedStatesChineseTaipeiMalaysia200Between2022andend-2023,installed100electrolysercapacityforproducing0hydrogencouldmorethanquadrupletoreachalmost3GW.ChinaExporters400JapanGermanyUnitedStatesRepublicNote:Electrolysersareincludedunder300ofKoreaHarmonizedSystem(HS)subheading200854330:Machinesandapparatusfor100electroplating,electrolysisorelectrophoresis.0ItshouldbenotedthatthereportedvaluesrepresenttradeinelectrolysersandotherChinamachinesforelectroplatingandelectrophoresis.202020212022INTERNATIONALTRADEANDGREENHYDROGEN•25Internationaltradeinelectrolyserssubheading,amountedtoaroundChinawasboththelargestimporterwillplayakeyroleinfosteringUS$1.62billionin2022,followingandsupplierofelectrolysersin2022.innovation,scaleeconomiesandtwoyearsofstronggrowth–ariseThetopfiveimportersofcostreductions,andinbringingof32percentin2021andof9perelectrolysersaccountedfor64perelectrolysersfromwheretheyarecentin2022.centofglobalimportsin2022,whilemanufacturedtowheretheyarethetopfivesuppliersaccountedforinstalledtoproducecleanhydrogen.Keydriversofthisgrowthweremorethanthree-quarters(76perChina,Indonesia,andtheUnitedcent)ofglobalimportsin2022Globalimportsofelectrolysers,Statesontheimportside,and(seeFigure10andTable5).togetherwithcertainothermachinesChina,theUnitedStatesandtheincludedunderthesameHSRepublicofKoreaontheexportside.TABLE5Topimportmarketsforelectrolysersandtopthreesuppliers,2022Source:WTOSecretariatAnalyticalDatabasebasedondataoriginallysourcedfromtheWTOIntegratedDatabase,UNComtradeandtheTradeDataMonitor.ImporterUS$millionSuppliers(percentageshareinimportmarket)China384.9Japan(36),Korea,Republicof(20),ChineseTaipei(12)Indonesia226.8China(89),Japan(7),Singapore(1)UnitedStates191.6China(47),Japan(17),Germany(9)ChineseTaipei121.5UnitedStates(37),Japan(27),China(14)Malaysia114.5Korea,Republicof(52),Japan(26),China(12)VietNam(2021)52.2China(37),Japan(25),Korea,Republicof(16)India49.6Japan(36),China(30),Germany(21)DemocraticRepublicoftheCongo(2021)45.8China(97),India(2),UnitedStates(0)Japan40.6China(46),Korea,Republicof(31),Malaysia(9)Korea,Republicof33.8Japan(55),Germany(15),China(15)HongKong,China30.3China(97),ChineseTaipei(2),UnitedKingdom(0)Türkiye26.4China(31),Germany(27),Italy(24)Brazil24.8Italy(35),Netherlands(23),Portugal(17)Canada22.9Japan(29),China(25),UnitedStates(20)Australia22.3UnitedStates(40),China(37),Japan(6)Note:ElectrolysersareincludedunderHarmonizedSystem(HS)subheading854330:Machinesandapparatusforelectroplating,electrolysisorelectrophoresis.Itshouldbenotedthatthereportedvaluesrepresenttradeinelectrolysersandothermachinesforelectroplatingandelectrophoresis.3TRADE-RELATEDPOLICIESALONGTHEHYDROGENVALUECHAININTERNATIONALTRADEANDGREENHYDROGEN•27Thedeploymentofgreenhydrogenincludingongreenhydrogen,andaisstillatanearlystage.Aswithotherforumfordialogueandexperience-cleanenergytechnologies,progresssharing.ItenhancesstabilityandmustbetrackedeffectivelyinorderpredictabilityofpolicyframeworkstoassesswhetherhydrogenmarketsthroughdifferenttransparencyandareevolvingwithapaceandinamonitoringmechanismssuchasdirectionallowingthemtoplaytheirnotificationrequirementsunderroleinenhancingenergysecuritydifferentWTOagreementsandandfacilitatingthecleanenergyperiodicreviewsofWTOmembers’transition(IEA,2022).tradepolicies.Open,predictableandcoherentAreviewofenvironment-relatedtradepolicieswillplayanimportantnotificationsincludedintheroleinfosteringandshapingtheWTOEnvironmentalDatabasedevelopmentofgreenhydrogenrevealsthatWTOmembersnotifiedsupplychains.Tariffsandnon-tariff44hydrogen-relatedpoliciesmeasures–suchastechnicalbetween2009and2021.Mostregulationsandconformityhydrogen-relatedpoliciestaketheassessmentprocedures,subsidies,formofsupportmeasures,suchasantidumpingandcountervailingduties,trade-relatedinvestmentAtpresentmorethan30measures,governmentprocurement,andpoliciesonservicesandcountriesaroundtheglobeintellectualproperty–affecttradealongthesupplychain.havenationalstrategiesforTheWTOprovidesarules-basedlow-carbonhydrogen.frameworkfortrade-relatedpolicies,FIGURE11:Hydrogen-relatedmeasuresinmembers’notificationsbyWTOagreementSource:WTOEnvironmentalDatabase.108Numberofmeasures64202009201020112012201320142015201620172018201920202021SubsidiesandCountervailingMeasuresTechnicalBarrierstoTradegrants,loansortaxconcessions,notifiedundertheTBTAgreementMissiontoencourageelectrolyserincludedin34notificationsunderincludeChina’snationalstandardmanufacturing.SeveralAfricantheAgreementonSubsidiesandonenergyconsumptionandenergycountries,includingNamibiaandCountervailingMeasures(SCM),efficiencyforhydrogenproductionSouthAfrica,haveestablishedwhile10notificationsontechnicalthroughwaterelectrolysis,andnationalhydrogenstrategies.JapanregulationsweremadeunderthetechnicalregulationsbytheKingdomhasanambitiousnationalstrategyAgreementonTechnicalBarrierstoofSaudiArabiaandtheUnitedArabtolocallyproduceandimportTrade(TBT)(seeFigure11).1Emiratesonhydrogenandfuelcelllow-carbonhydrogen,andChinavehicles.3continuestoleadinelectrolyserRecentsupportmeasurestargetcapacityadditions.thetechnologyandproductionofAtpresentmorethan30countriesrenewableenergyandhydrogenaroundtheglobehavenationalBetween2009and2021,37aswellasofhydrogenfuelcells.strategiesforlow-carbonhydrogen.4policiesandmeasuresaimedatExamplesofsupportprogrammesForexample,in2023theEuropeandevelopinghydrogenprojectswerenotifiedundertherulesoftheUnionadoptedtwodelegatedmentionedinthetradepolicyreviewsSCMAgreementin2021includeaactsdefiningrenewablehydrogen,ofseveralWTOmembers,includingRenewableEnergyandHydrogenandithasimplementedfundingArgentina’stemporaryimporttariffJobsFund(Queensland,Australia),mechanismsviathe“Importantreductiononaquotaof6,000asubsidyfundforthehydrogenProjectsofCommonEuropeanhybrid,electricandhydrogenfuelfuelcellindustry(JiangsuProvince,Interest”5andthehydrogenauctioncellmotorvehicles,NewZealand’sChina),supportforhydrogenfuelfromtheEuropeanHydrogenHydrogenVision,theUnitedArabcellvehicledistribution(RepublicofBank.TheUnitedStateshasEmirates’HydrogenLeadershipKorea)andtheMassachusettsCleanimportantincentivesforlow-carbonRoadmap,andsupportprogrammesEnergyCenter–InvestmentsinthehydrogeninitsInflationReductionofdifferentmembers.AdvancementofTechnology(UnitedAct.In2023,IndiaadoptedStates).2ExamplesofpoliciesitsNationalGreenHydrogenINTERNATIONALTRADEANDGREENHYDROGEN•293.1TariffsandothertaxesTradecostsareanimportanthydrogen,suchasammoniaorOpentradeinproductsalongthedeterminantoftheviabilityofdirect-reducediron,maybesubjectsupplychaincanfosteraccesssupplyinggreenhydrogenacrosstotaxesbasedontheircarbontotechnology,lowercostsandbordersforenduse,suchasincontent.Forexample,underthepromotegreenhydrogenproduction.industryandtransport.TheaverageEuropeanUnion’sCarbonBorderUpstreaminthechain,promotingappliedtariffrateonhydrogen(greenAdjustmentMechanism(CBAM),goodsandservicesrelatedtoandotherforms)isaround5.3perimportersofhydrogen,ammonia,renewableenergyproductioncentin153WTOmembers,highersteelarerequiredtoreportthecanhelptoreducethecostsofthanforammonia(4.4percent)greenhousegas(GHG)emissionsenergyusedintheproductionandmethanol(5.0percent).Somecausedintheirproduction,and,ofgreenhydrogen.Forexample,39membersapplyratesbetween5startingin2026,mayfaceanthesignificantfallinthecostsofand10percentonhydrogenadjustmenttoalignthepriceofsolarPVenergydescribedaboveimports,whilesevenmembersapplyembeddedcarbonwiththecarbonwassupportedbyanopenandrateshigherthan10percent(seepriceontheEUmarket.ThismeanstransparenttraderegimewhichhasFigure12).thatgreenhydrogen,andammoniaenabledtheemergenceofagloballyorironproducedwithgreenintegratedsolarPVmarket(WTOInadditiontotariffs,hydrogenhydrogen,mayfacelowercostsandIRENA,2021).andcommoditiesproducedwithbasedontheircarboncontent.FIGURE12:Averageappliedmost-favoured-nationtariffs(inparentheses)andnumberofmembersbytariffrange(bars)Source:WTOIntegratedDatabase.HydrogenandHydrogen(5.3%)38693943derivativesAmmonia(4.4%)47722833Methanol(5.0%)53845533Electrolysers(4.5%)63473535Compressors(6.7%)37625536520Generators(4.2%)18652543ProductsDirectreducediron(4.1%)39682433alongthe30valuechainFuelcells(9.8%)583432ProductsAluminiumcontainers(8.9%)324239931relatedtoSteelcontainers(8.6%)235432transportofPipelines(5.5%)532222hydrogen483589Dutyfree>0and<=5>5and<=10>10and<=15>15Note:Tariffsfor153reporters,withthemostrecentyearselectedbetween2020and2023.TheEuropeanUnioncountsasasinglemember.Theremightbescopetofurtherprovideduty-freeaccesstotheirmembersapplytariffsofmorethanreducetariffsonproductsalongmarkets.However,in43members10percent.Tariffsarehighestonthegreenhydrogensupplychain.theappliedtariffrateishigherthan5otherprimarycellsandbatteries,Besidesrenewableenergy,percent.whichincludehydrogenfuelcells;electrolysersareanotherkeycosttheaveragerateis9.8percent,andfactorforgreenhydrogen.TheForcompressors,whichareusedmorethan60WTOmembersapplyaveragetariffonelectrolysersistocompresshydrogenpriororrateshigherthan10percent.relativelylow,at4.5percent,andduringtransport,averagetariffsaremorethan60WTOmembershigher,at6.7percent,and43WTO3.2Qualityinfrastructure–standards,certificationandbeyondInordertoincreaseglobaltrademeasurements,aswellasofthecertainapplications–includingingreenhydrogen,aneffectiveunderlyingcarbonquantificationthoseinwhichfossilfuel-basedsystemwillneedtobedevelopedsystems.Forinstance,anaccreditedhydrogenisusedtoday–inheavytoensurethesafety,performancethirdpartymayberequiredtoverifyindustry,shipping,aviationandandsustainabilityattributesofthethecarboncontentofhydrogenseasonalstorage,amongothers.productsandservicestobetraded.beforeitisimportedtoaneconomyGreenhydrogencouldthusactQualityinfrastructure(QI)isthethatappliesatrade-relatedclimateasthelinkbetweenrenewablenationalsystemoforganizations,policy.Inthissituation,theimportingelectricitygenerationandpolicies,legalframeworksandeconomyapplyingthepolicywillhard-to-abatesectorsorapplicationspracticesrequiredtoassuretheneedtobeabletotrustthetechnical(IRENA,2022a).quality,safetyandsustainabilityofcompetencyofthebodiesandproductsandservices.systemsunderpinningthecarbonAtpresent,thereisawidevarietyquantificationsystemsintheofmethodstoproducehydrogen,QIcomprisesmetrology(i.e.,theexportingcountry(WTO,2022a).whichdifferaccordingtotheirscientificstudyofmeasurement),productionprocessesandthestandardization,accreditationandAsindicatedinSection1.1,theGHGemissionsreleasedduringconformityassessment,includingglobalproductionofhydrogenisproduction.Thethreemosttesting,certificationandinspection.currentlyalmostexclusivelyderivedcommonlyusedoptionsare“greyHavingarobustandinternationallyfromfossilfuelswithoutassociatedhydrogen”(fossil-fuel-based),harmonizedQIsystemcreatesthecarboncaptureandstorage,“bluehydrogen”(fossil-fuel-basedtechnicalbasisforthedevelopmentmeaningthatitisamajornetproductionwithcarboncapture,ofthegreenhydrogensector,asitcontributortoclimatechange,ratherutilizationandstorage)and“greenhelpstoreducethesafety,financialthanavectorfordecarbonization.hydrogen”(renewables-based)andreputationalrisksinthesector,Thisfossil-fuel-basedhydrogenis(IRENA,2019).Othercolourswhilesupportingtheachievementofpredominantlyutilizedinindustry,ofhydrogenalsoexist,suchastheintendedpositivesustainabilityforexampleforoilrefining,fertilizer“turquoisehydrogen”(producedimpactsofinvestments.production,anddownstreamthroughaprocesscalledmethanechemicalprocesses.pyrolysis)and“pinkhydrogen”Qualityinfrastructure(producedthroughelectrolysistoensuresustainabilityArrivingatanet-zeroworldwillofwater,butwiththeelectrolysisnecessitateatransitionawayfrompoweredbynuclearpowerinsteadExportersmayneedtodemonstratefossil-basedhydrogentoagreenofrenewables).thetrustworthinessoftheirownhydrogensupply,asgreenhydrogenprocessesandcarboncouldofferasolutiontodecarbonizeINTINETRENRANTAIOTINOANLATLRTARDAEDAENINDGREENHYDROGEN•31Sinceitisnotpossibleto“see”theChampions,2023).Thisnewservices,suchasmeasurementofcarboncontentortheprocessusedstandard,ISO19870,7willprovideveryhighpressuresandachievingforproducinghydrogen,theroleapproachesthatmaybeappliedsmallmeasurementuncertainties,ofstandards,technicalregulationstodeterminethegreenhousewhicharerequiredfortestsofandverificationprocedureswillbegasemissionsassociatedwithequipmentdurabilityandforthecrucialfortheestablishmentofatheproduction,conditioninganddetectionofleaksduringthewell-functioninginternationalgreentransportationofhydrogentowheregeneration,distributionandstoragehydrogenmarket.Astheworlditisconsumed,inlinewithISOofhydrogen.seekstotransitiontotheproduction14067(i.e.,“Greenhousegases;ofpredominantlygreenhydrogenCarbonfootprintofproducts:Technicalstandardsoverthenextfewdecades,theRequirementsandguidelinesfordevelopmentofarobustsystemquantification”).8Thereisaneedforstandardsofstandards,technicalregulationsintheareasofthedistribution,andcertificationalongthegreenQualityinfrastructuretoensurestorageandtransferofhydrogenhydrogensupplychain,includingsafetyandperformancetotheend-user.MoreQIinsightsforderivativessuchasammonia,(especiallystandards)arerequiredwillbenecessarytoguaranteetheThekeyQIservicesthatsupportwithregardtotransportofhydrogenenvironmentalintegrityofgreenthegreenhydrogensectorareasthroughexistinggaspipelines.Inhydrogenproductionandprovidefollows:thecontextofIRENA’songoinginformationontheproductionprojectonqualityinfrastructureforprocessandemissionsfootprintMetrologygreenhydrogen,expertsnotedthatalongthevaluechain.6ActorsthereisaseriousthreatofhydrogeninvolvedinthehydrogenmarketStandardsandmethodsrelatedtodamage,particularlyforoldergasneedastableregulatoryframework.metrologyshouldallowtraceablepipelineswithcorrosionandotherHowever,inthisnascentindustry,validationandperformancemechanicaldamages,withlong-termmaintainingadynamicregulatoryevaluationofgasquality,aswellblendedor100percenthydrogenapproachisimportanttoencourageasmethodsforevaluatingtheservice.Expertsengagedintheinvestments(IEA,2022).uncertaintyofthemeasurementsprojectsuggestpromotingtheappliedalongtheentiregreenimplementationofstandardsfortheGiventhewidevarietyofproductionhydrogenvaluechain.Economiesdesignandconstructionofhydrogenmethodsthatcanbeusedtowithadvancedmetrologicalsystemspipelines(suchastheASMEproducehydrogen,internationalalreadyhavemostoftheservicesB31.12StandardonHydrogenstandardsestablishingagreednecessarytocatertothegreenPipingandPipelines)toguardmethodologiestoevaluateitshydrogenindustry.However,theyagainsthydrogenembrittlementenvironmentalattributes–markedlyneedtodevelopandprovidetailoredbyincreasingthewallthicknessofitscarbonfootprint–willplayanimportantroleinacceleratingtheuptakeofgreenhydrogenproductionfacilitiesandinavoidingobstaclestotradeingreenhydrogen.Ideally,approachesformeasuringthecarbonfootprintofhydrogenshouldbebasedoninternationalstandardsagreedbyconsensus.TheInternationalOrganizationforStandardization(ISO)isdevelopinganinternationalstandard,basedonpreviousworkfromtheInternationalPartnershipforHydrogenandFuelCellsintheEconomy(IPHE),tomeasurethecarboncontentofhydrogenwithalifecycleapproach(IEA,IRENAandUNHighLevelpipelines.9ThereisalsoastrongcallthatsupportthegreenhydrogenroleinthedevelopmentofrelevantbypipelineexpertstoacceleratethesectorcanbefoundintheAnnex.internationalstandardsrelatingtodevelopmentandstandardizationofgreenhydrogenproduction.Forhigh-pressuregaseoushydrogen-Principlestodevelopaqualityinstance,observingtheseprincipleschargingtestmethodsandcodesinfrastructurealignedwithwouldensure,amongothers,thatforinvestigationofthehydrogentradepoliciesrelevantinformationcouldbemadeembrittlementsusceptibilityofavailabletoallinterestedparties,thatpipelinesteels.Asgovernmentsaroundtheworldsufficientopportunitiesforwrittenstartregulatinghydrogenproductioncommentscouldbeprovided,thatCertificationandaccreditationandconsumption,WTOdisciplinesconflictinginternationalstandardscanprovideusefulguidanceforthiswouldnotbeadopted,and,Attheinternationallevel,thenascentindustry.First,undertheTBTimportantly,thatconstraintsfacingInternationalElectrotechnicalAgreement,technicalregulationsdevelopingeconomiescouldbeCommission(IEC)hasestablishedshallnotcreateunnecessaryconsidered.13twocertificationschemesrelevantobstaclestointernationaltrade.togreenhydrogen:theIECSystemArecentreportbyIRENAandRMIforCertificationtoStandardsMoreover,theWTOTBTanalysedexistingvoluntaryandRelatingtoEquipmentforUseinAgreementstronglyencouragesmandatoryschemestomeasureRenewableEnergyApplicationstheuseofrelevantinternationaland/orcertifythecarbonintensityof(IECRE),whichisconcernedwithstandardswhenenactinghydrogen(IRENAandRMI,2023).renewableenergytechnologies;andtechnicalregulations.TechnicalTheanalysisconcludedthatthetheInternationalElectrotechnicalregulations10inaccordancewithcurrentlandscapeofschemesisstillCommissionSystemforCertificationrelevantinternationalstandardsinadequatetoenableinternationaltoStandardsRelatingtoEquipmentare,apriori,considerednottotrade,asexistingapproachesvaryforUseinExplosiveAtmospherescreateunnecessaryobstaclestosubstantiallyintermsofemissions(IECEx).EconomieswithadvancedinternationaltradeundertheTBTthresholds,boundariesofanalysisQIsystemshaveinternationallyAgreement.Inandofitself,thisandacceptableproductionpathwaysrecognizedaccreditationpresumptionofconformitycanbeaandenergysources,amongothers.bodies,whichmustexpandtheirstrongincentivetouseinternationalaccreditationscopetofulfilthestandardswhenregulatinggreenButwhatistobedoneinthenewlydevelopingrequirements.hydrogenproduction.11absenceofconvergencearoundExamplesincludenewcertificationThewayinternationalstandardsaninternationalstandard?Suchschemesthathavebeenspecificallyforgreenhydrogenproductionsituationsmayarise,amongotherestablishedforthegreenhydrogenaresetwillhaveadecisiveimpactreasons,becausecountrieshavesector.Furthermore,thesebodiesontheextenttowhichthosedifferentlevelsofdevelopmentandshouldinvestinenhancingthestandardsareactuallyused.nationalcapabilitiestoimplementtechnicalcompetenceoftheInthisregard,theWTOTBTstandards,orbecausearelevantassessorstoadequatelyassesstheCommitteehasdevelopedsixinternationalstandarddoesnotexistcomplianceofserviceprovidersto“PrinciplesfortheDevelopmentofforanemergingtechnology,likefulfilthesenewrequirements,suchInternationalStandards,Guidesandgreenhydrogen.aslaboratoriesperformingspecificRecommendations”.12Theguidancesafetytestsbasedonnewstandardsprovidedthroughthese“SixInsuchsituations,dialogueandforhydrogenstorageinfrastructure.Principles”couldplayasignificantcooperationtoavoidunnecessaryAfurtherlookintokeyQIservicesINTERNATIONALTRADEANDGREENHYDROGEN•33negativetradeimpactswillbeMoreover,theTBTAgreementOnekeychallengeisensuringparticularlyimportant.RegulatorypromotesdialoguebyencouragingthatlabellingrequirementsarecooperationbetweenWTOmemberstoaccept,wheneverclearandcredibleandachievethemembersmaybeaneffectivemeanspossible,theresultsofconformitydesiredpolicyobjectiveswithoutofbuildingtrustbetweenregulators,assessmentproceduresperformedcreatingunnecessaryobstaclestoasitallowsthemtolearnabouteachbyothermembers,evenwhenthoseinternationaltrade.Theinformationother’ssystems.Sharingexperiencesproceduresdifferfromtheirown.14conveyedtoconsumersthroughinregionalandmultilateralsettingsTheTBTCommitteehasprovidedlabelsshouldnotcreateconsumercanhelptobringapproachescloser,guidanceinthisareabydevelopingconfusion.Thedesignofthelabelsandeventuallyenablethemtoan“IndicativeListofApproachesshouldensurethatanyclaimstheyconvergethroughthedevelopmenttoFacilitatetheAcceptanceofthemakearetrustworthy.ofinternationalguidance(WTO,ResultsofConformityAssessment”152022a).coveringarangeofapproachesLabellingmeasuresarecoveredbythatgovernmentsmightchoosethedefinitionsofboth“standards”Giventhewidevarietyofverificationtofacilitaterecognition.16WTOand“technicalregulations”intheproceduresthatmembersmaydisciplinesalsogovernthetypeofTBTAgreement.18Assuch,labellingadopttoensurecompliancewithconformityassessmentproceduremeasuresshouldbebasedontrade-relatedclimatechangethatmembersmaychoosetointernationalguidancewhereitexists.measures,convergencearoundensurecompliancewithtechnicalTheyshouldnotbediscriminatory,methodologiesiscrucialtoreduceregulationsorstandards.Forshouldnotcreateunnecessarytradebarriers.WTOdisciplinesexample,theselectedconformitybarrierstotrade,andmayneedtopromoteharmonizationbasedonassessmentprocedureshouldbenotifiedtotheWTO.Ultimately,relevantguidesorrecommendationsnotbestricter,orbeappliedmorewell-designedlabellingmeasuresissuedbyinternationalstandardizingstrictly,thanisnecessarytogivecouldalsofacilitateflowsofgreenbodiesasameansofavoidingtheimportingmemberadequatehydrogenanditsderivatives.unnecessaryobstaclestotrade.ThisconfidencethatproductsconformisimportantbecauseharmonizedwiththeapplicabletechnicalAsgovernmentsaroundtheproceduresminimizedifferencesinregulationsorstandards.17termsoftheverifiers’competencesworldstartregulatinghydrogenandverificationapproaches,whichAsitisgenerallynotpossibleincreasestheoverallqualityoftodeterminehowhydrogenisproductionandconsumption,verification.producedmerelybylookingattheproduct,communicationofWTOdisciplinescanprovidethisinformationtoauthoritiesandalongthevaluechainisessential.usefulguidance.Suchcommunicationmighttaketheformeitherofaphysicalorofadigitallabelordocument,suchasadeclarationorclaimattheendoftheverificationprocess,conveyingthattheconformityassessmenthasbeencompletedsuccessfully.3.3SubsidiesCurrently,greenhydrogenismoreTheenergycrisisonlystrengthenedhydrogen,whileunveilingtherealcostlytoproducethanfossil-basedthistrendin2022.priceoffossilfuels(IRENA,2020b).hydrogenwithoutcarboncaptureandstorage.IRENAestimatesthatIncreasedfossilfuelusecontributesThephasing-outoffossilfueltoachieveanet-zeropathwaybynotonlytoclimatechangebutalsosubsidiesalsoaffectsthecarbon2050withassociatedmidstreamexacerbatesair,waterandplasticprice(i.e.,thecostappliedtoandend-useinvestments,averagepollution,worsenslanddegradation,carbonemissionstoincentivizetotalannualinvestmentsofandlockseconomiesintohigh-reduction).BecausefossilfuelUS$136billionwillbenecessarycarbonproductioncycles.Fossilfuelsubsidiesessentiallyfunctionasaacrossthehydrogenvaluechainsubsidiesgenerateinefficienciesinnegativecarbonprice,removingbetween2023and2050.Therefore,theproductionanduseofenergythesesubsidiesresultsinanalthoughinvestmentofeconomy-wide,andskewlong-termincreaseinthepriceofcarbon-US$160billioninprojectshasbeencapitalinvestmenttowardsfossilfuelbasedfuels.Potentialreformofannounced,asignificantinvestmentproducersorfossil-fuel-intensivefossilfuelsubsidiesthereforegapofUS$790billion,whichindustries,thusenhancingtheriskofenablestheincorporationofcostsofshouldbefilledby2030,remainslockingeconomiesintousinghigh-environmentalexternalitiesthatareacrossthehydrogenvaluechaincarboninfrastructureandassetsnotreflectedunderthesubsidized(IRENA,2023a).(OECDandIEA,2021).prices,andtherebyincentivizesadecreaseduseoffossilfuels(WTO,PhasingoutfossilfuelsubsidiesTheInternationalInstitutefor2022b).This,inturn,couldincreaseandredirectingfundingtowardsSustainableDevelopment(IISD)thecompetitivenessofgreenrenewableenergyandgreenestimatesthatifasetof32alternatives,suchasgreenhydrogenhydrogenproductionhasastrongmajordeveloped,emerging,andanditsderivativegreencommodities.potentialtostimulatethistransition.developingeconomiesreformedfossilfuelsubsidiesby2025,thisBoostingsupportforgreenPhasingoutfossilfuelsubsidieswouldreduceCO2emissionsbyanhydrogenanditsderivativesaverageof6percentby2030,andUnderpricingfossilfuelsunderminesinthecaseofsomeeconomies,byAchievingthescale-upanddomesticandglobalenvironmentalupto35percent.Thereinvestmentassociatedimprovementincostobjectives.Inaddition,itisahighlyofjustathirdofthesavingscomingcompetitivenessofgreenhydrogeninefficientpolicyforhelpinglow-fromsuchreformintoenergyanditsderivativesrequiressignificantincomehouseholds,andhasaefficiencyandrenewableenergyinvestment.Fundingoftheeconomicsizeablefiscalcostforgovernments.(a“subsidyswap”)wouldreducegapisrequireduntilabreak-evenCO2emissionsbyanadditional3pointisreached,i.e.,aninvestmentGovernmentsupportforfossilfuelspercentby2030(IISD,2022).BytooffsettheinitiallyhighercostsalmostdoubledtoUS$697.2billionphasingoutfossilfuelsubsidies,ofhydrogenandofhydrogenin2021,upfromUS$362.4billionpolicymakerscanspecificallyhelptoequipmentcomparedtoalternativesin2020(OECDandIEA,2022).closetheeconomicgapwithgreen(HydrogenCouncil,2020).INTERNATIONALTRADEANDGREENHYDROGEN•35Agrowingnumberofeconomiesproductsfromanotheroriginintheguaranteedgridaccessandlong-usesubsidieseithertoencourageabsenceofalegitimatereasonfortermcontractswithelectricgridproducerstoinvent,adoptandthedifferentiation.utilities.Finally,subsidiescanbedeploylow-carbontechnologies,providedtoconsumerstoencourageortoencourageconsumersDomesticsupportschemesusedfortheadoptionoflow-carbonproductstopurchaseenvironmentallysolarphotovoltaicandwindpowerandtechnologies,forexamplesustainableproductsandservices.haveensuredcostcompetitivenessLEDlightingorelectricvehiclesIftheyarewell-targetedandnon-withfossilfuelalternatives.For(WTO,2022b).discriminatory,environmentalexample,R&DsubsidiescanlowersubsidiescanplayapositiveroleincostsandimprovetheperformanceSimilarly,governmentalsupportscalingupnewtechnologiesandoflow-carbontechnologies,aswellpoliciescanhelpsustaingrowthmakingclimate-friendlyproductsasfosterinnovationinenvironmentalinelectrolysercapacityandgreenmoreaffordable(WTO,2022b).Intechnologies.Subsidiescanalsohydrogenproductionbypromotingotherwords,subsidiesshouldaimbegiventoproducersofrenewablecostefficienciesandnarrowingthetoboostinnovationwheresupportenergy.Feed-intariffsandcontractscostdifferentialbetweenthecostsismostneeded,e.g.,forcleantechfordifferences,forinstance,allowofproducinggreenandfossil-basedstartups,andshouldnotplacerenewableenergyproducerstohydrogen(IRENA,2020b),suchasimportedproductsatacompetitivereceiveaguaranteedpriceforinthefollowingways:disadvantagevis-à-vissimilareachunitofelectricitygenerated,Settingtargetsforelectrolysercapacity,similartothoseforrenewableenergy,cansignaleconomies’commitmentstotheprivatesector,therebyattractingmoreinvestment.Utilizingfinancialinstruments,suchasgovernmentloans,equityinvestment,riskmitigationtools,creditguarantees,etc.,canstrengthenthebusinesscasefortheinstallationofelectrolysers.Modulatingthetaxstructure,especiallyonelectricityconsumedbyelectrolysers,canmakegreenhydrogenproductionmorecost-effective.Inaddition,revisingcorporate,businessandsalestaxesrelatedtogreenhydrogencanimproverevenuesandtherateofreturnonprojects.Settingambitioustargetsforrenewableenergycapacitycanensureasteadysupplyofrenewableelectricity,cateringtoboththedirectelectrificationneedsandhydrogenproductionasthemarketforgreenhydrogenexpands.IncreasingsupportforR&Dcanleadtoimprovementsinelectrolyserefficiencyandthedevelopmentofstandardized,cost-effectivedesignsforlarge-scaleelectrolysers.Mitigatingcountry-relatedinvestmentriskscancontributetoreducingthecostofproductionofgreenhydrogenbyreducingthecostofcapital.SimilarsupportmeasurescanberightstotheuseofresearchFurthermore,transparencyandthetailoredtoaddresschallengesoutputbydomesticfirmsorthatneedforimprovedrulestoaddressrelatedtotransportandstorageofareprovidedtoshielddomesticcertaintypesofsubsidieshavelonggreenhydrogen(e.g.,byfinancingproducersfromforeigncompetition,beenontheagendaofvariousWTOinfrastructuredevelopment),toorstrategicallyforindustrialpolicybodies,suchastheGeneralCouncil,usegreenhydrogeninindustrialpurposes.Forinstance,subsidiestheCommitteeonSubsidiesandprocesses(e.g.,bymakingavailablewithlocalcontentrequirementsCountervailingMeasures(SCMloansandspecializedfundstocanspurinvestmentinhomegrownCommittee),andtheCommitteerenderinvestmentingreenpathwaysclimate-friendlyinfrastructureandonAgriculture(CoA).TheWTOfinanciallymoreattractive),ortotechnology,butatthesametimebeorganizestechnicalassistanceusegreenhydrogentoproducetrade-restricting(WTO,2022b).activitiesatboththenationalandsyntheticjetfuelsandformaritimeregionallevels,oftenwithaspecificshipping(e.g.,byprovidingfinancialSubsidyreformsmustthereforebefocusonnotificationobligations.mechanismsorfiscaladjustmentstodesignedwithbotheconomicandIncollaborationwithrequestingminimizethecostgapbetweenfossilsocialconsiderationsinmindandmembers,individualizedtechnicalfuelsandenvironmentally-friendlymustprioritizeajustandequitableassistancethatalsoaddressesalternatives)(IRENA,2020b).transition.GreatertransparencyandsubsidyanalysisanddesignadeeperunderstandingoftheflowscanbeprovidedbyinternationalThesetrendsarealreadyvisible.ofsubsidiesareprerequisitestoorganizationstomeetneedsofSupportforlow-carbonhydrogenensuringeffectiveandaccountabledevelopingmemberswithcapacityhasquadrupledoverthelasttworeform.Thiswillpavethewayforconstraints(IMF,OECD,WorldyearstomorethanUS$280billion.acarefulassessmentofthemostBankandWTO,2022).TheUnitedStatesleadsthelist,withenvironmentallyharmfulsubsidies.supportofUS$137billionexpectedEnhancedmultilateraltoflowtoselectedprojectsoverInaddition,enhancedmultilateralthenext10years,makingcleancooperationanddialoguecouldcooperationanddialoguehydrogencheaperforthewholeplayapositiveroleinpreventingworld(Bhashyam,2023).aninefficientracetosubsidizecouldplayapositiveroleinenvironmentallypositive,or“green”,Importanceoftransparency,technology,whichcouldcausepreventinganinefficientdialogueandcooperationavoidabletradetensions,distortinternationalcompetitionandracetosubsidize“green”Sometypesofsupportmeasuresdisproportionatelyharmsmaller,cancreatetradetensions,suchfiscallyconstraineddevelopingtechnologyasthosethatattributeexclusiveeconomies(seeBox1).Box1:WTOenvironmentalinitiativesTwonewenvironmentalinitiativesParticipatingmembershaveputa–spanningtrade,economy,attheWTOspecificallyaddressfocusonsharingtheirexperiencessocietyandenvironment–oftheenvironmentaleffectsandandconsiderationsregardingtheaddressingfossilfuelsubsidiespotentialreformofsubsidies.Indesignofsubsidiesrelatedtotheandreallocatinggovernmenttheworkinggrouponsubsidiestransitiontoalow-carboneconomy,fundstowardsgreen,climate-oftheTradeandEnvironmentalincludingsupportmeasurestoresilientprojects.DiscussionshaveSustainabilityStructuredfosterinvestmentincleanenergyhighlightedtheneedtoenhanceDiscussions(TESSD),participatingandhydrogen.thetransparencyoffossilfuelWTOmembershavebeensubsidiesandtoconsiderthediscussingtheenvironmentalandTheFossilFuelSubsidyReformdevelopmentalandsocialissuestradeeffectsofsubsidies,aswell(FFSR)initiativebuildsuponinvolvedintheirreform.ashowtoenhancetransparency.thecomprehensivebenefitsINTERNATIONALTRADEANDGREENHYDROGEN•373.4SustainablegovernmentprocurementGovernment(public)procurementrepresent,sustainablegovernmentverificationandlabellingsystemisofgreateconomicimportance,procurementcancreatealargeandtoguaranteethesustainabilityofaccountingfor10-15percentofstabledemandfornewlow-carbontheproducts(IRENAandWEF,nationalGDP,onaverage,andsolutionsbeforeacommercial2022).Indoingso,governmentsabout13percentofworldGDPmarketisviable(WTO,2022b).shouldgiveastrongpreferenceto(aroundUS$13trillionperyear).GovernmentprocurementcantheprocurementofgreenhydrogenGovernmentprocurementisbealignedwithGHGemissionsforthosesectorswheredirectestimatedtobedirectlyorindirectlytargetsbyintroducingrequirementselectrificationwithrenewablesisnotresponsiblefor15percentofglobalorpreferentialtreatmentsforlow-aviabledecarbonizationoption.GHGemissions.19AccordingtocarbonemissionsforproductsandtheWorldEconomicForum(WEF),services(AustralianIndustryETI,Governmentprocurementtargetsabatingemissionsfromgovernment2023).couldfocusontheindustrialuseofprocurementwouldleadtoahydrogentoprovideanindicativeUS$4trillionboosttothegreenWhilemostofthetechnologiesleveloffuturegreenhydrogeneconomyandcreatearound3millionneededfortheglobalenergyconsumptionand,therefore,offuturenewjobs(WEF,2022).transitionareavailable,someofthemprocurementneeds.Forexample,areatearlierstagesofdevelopmentinSpain’shydrogenstrategy,theHighcoalandgaspricesin2021andneedsupporttoaccelerategovernmentincludeda25perand2022haveaffectedthetheirrapidcommercialization.centminimumcontributionofcompetitivenessoffossilfuelsSuchtechnologiescouldbegreenhydrogentototalhydrogentemporarily.Therecoveryfromtheparticularlyimportantfordevelopingconsumptionin2030byallCOVID-19crisisandtheresponseadditionalgreenhydrogenindustries,bothasafeedstocktotheglobalenergycrisishavecapacity.Sustainablegovernmentandasanenergycarrier(IRENA,alsoprovidedasignificantboostprocurementcanacceleratethe2022d).tocleanenergyinvestment(IEA,deploymentofgreenhydrogen,of2023).Atthesametime,investmentitsderivativesandofrelatedclimate-Anothersolutionthatgovernmentsdecisionsarestillimpededbyafriendlytechnologiesbycreatingacanprovideisacentralizedauctiongeneraluncertaintysurroundingthestabledemandforthoseproductsatschemetopromotehydrogenlong-termdevelopmentofenergylowercostsandreducinghydrogenpurchaseandconsumption,withthepricesaswellastheoverallenergyuptakeuncertainty(IRENAandcostdifferentialpaidforbyapublicpolicytargetsandsupportingWEF,2022).Todothis,governmentbody.Apublicbodywouldactaspolicies.Policiestocreatedemandprocurementpoliciesandpracticescentralauctioneerandwouldsignforlow-emissionhydrogen,includingmustfocusongivingastronglong-termpurchaseagreementsforrequirementsingovernmentpreferencetorenewableenergyandelectrolysersandsaleagreementsprocurement,arethereforeimportantgreenhydrogenandonspurringthewithindustrialplayers.Ifauctionsaretoboostmarketdemand(IEA,useofgreenhydrogeninthesectorssuccessfulinreducingthecostof2022).thatarehardesttoelectrify(Greengreenhydrogen,ashasbeendoneHydrogenOrganisation,2022).forsolarPVandwindenergy,thisThroughsustainablegovernmentwouldsignificantlyimprovegreenprocurementpolicies,governmentsSustainablegovernmenthydrogen’sbusinesscaseinvariouscaninfluenceprivate-sectorprocurementstrategiesindustries.Thiskindofschemeisproducersbypurchasinglow-currentlybeingdesignedinGermanycarbongoodsandservicesandcanKeyactionscouldincludeundertheH2GlobalStiftung–acreatemarketsfornewentrantsintroducingminimumrequirementsfoundationthatpromotestheandstimulateinnovativesolutionsforgreenproductsinpublicnationalandinternationalproductiontoclimatechangeproblemsbyauthorities’procurementprocesses,anduseofclimate-neutralenergyawardingpublicR&Dcontracts.introducinggreenmaterialcarriers,suchasgreenhydrogenGiventhesheervolumeofdemandrequirementsinpolicies,suchas(IRENA,2022d).forgoodsandservicesthatinauctionsforrenewableenergy,governmentprocurementcanandensuringthepresenceofaExtendingsustainablegovernmentandaviation,wherecompetitiongovernancepractices.Byopeningprocurementbeyondgreencouldhinderdecarbonizationefforts.domesticprocurementmarketshydrogenanditsderivativesCoordinateddemand-creatingtoforeigncompetition,theGPAtoothergreengoodsinthepoliciescansendastrongersignal2012canalsohelpgovernmentshydrogensupplychainscanalsotomobilizeinvestmentinlow-carbontoobtainbettervalueformoneyforhavebeneficialeffectsondrivingandgreenhydrogenproduction,climate-friendlygoodsandservices,demand.Forinstance,governmentswhilecollaborationallowsactorstoincludingofhydrogen,itsderivativescouldinstitutionalizepreferentialshareexperiencesofestablishingandrelatedtechnologies.Itcanpurchasingofsteelorotherproductsmoresecure,diversifieddemandfordosobyincreasingthenumberofmadesustainablythroughtheusehydrogenovertime.Botharecrucialbidders,includingforeignbidders,ofgreenhydrogen,orthatrequiretoachievingeconomiesofscaleandandbyfacilitatingaccesstoclimate-theinclusionofahighershareofacceleratingcostreductionsonthefriendlytechnologiesthatmaythoseproductsintheoverallmaterialsupplyside.nototherwisebeavailableinthemix(IRENA,2020b).Sincesteeldomesticmarket.Inparticular,theandchemicalindustriesareveryVariousinitiativesareinplacetoAgreementallowspartiestoapplycapital-intensive,economiesofscalefacilitatecoordinationbetweentechnicalspecificationsaimedandlowrawmaterialandenergycountriesandprivatesectoratpromotingnaturalresourcepricesarecrucialtoprofitability.stakeholders.Forinstance,theconservationorprotectingtheFurthermore,giventheneedtoMissionInnovationHydrogenValleyenvironment,aswellastouseexperimentwithdifferentproductionPlatform2.0,whichshowcasestheenvironmentalcharacteristicstechnologies,anysuchinvestmenthydrogenvalleyprojects(i.e.,aofagoodorserviceasanawardcouldbetoogreatforasinglefirmgeographicalareacombiningseveralcriterioninevaluatingtenders(WTO,intheabsenceofcleardemandforhydrogenapplicationsintoan2022b).TheGPAparties,mindfulgreenmaterialsorgoods(IRENA,integratedecosystem)20aroundtheoftheimportanceofgovernment2022d).world,wasrelaunchedinMay2023.procurementasastrategictooltoBasedonextensivecollectionofpromoteenvironmentalsustainability,Sustainablegovernmentprimarydata,theplatformprovidesamongotherthings,initiatedaprocurementcouldhaveainsightsintothemostambitiousWorkProgrammeonSustainableparticularlylargeimpactonthehydrogenvalleysaroundtheglobe.Procurementin2014.creationofagreensteelmarket,Ifallofthe83valleysshowcasedgiventhatsteelisusedtoconstructontheplatformarerealised,theyTheWTOcanhelpbyprovidingbuildings,bridges,railwaysandwillunlocksignificantdemandforexamplesofwhatmembersaretransportfleets.Arecentexampleisrenewableandlow-carbonhydrogenalreadydoingintermsofgovernmenttheBuyCleanCaliforniaAct,which(IEA,IRENAandUNClimateprocurement,includingbyprovidingimposesamaximumacceptableChangeHigh-LevelChampions,dedicatedforaforpolicylearningandglobalwarmingpotentiallimiton2023).exchange,suchastheCommitteeselectedconstructionmaterials.onTradeandEnvironmentorIttargets,amongothermaterials,TheplurilateralWTOAgreementtheCommitteeonGovernmentcarbonemissionsassociatedwithonGovernmentProcurementProcurement,andbyprovidingtheproductionofstructuralsteeland(GPA2012),togetherwithtechnicalassistancetothoseconcretereinforcingsteel(IRENA,otherWTOrules,canplayanseekingtoexplorethisoptionfurther.2022d).importantroleinensuringthatopenTheWTOSecretariat’stechnicalgovernmentprocurementmarketsassistanceandrelatedprogrammesImportanceofinternationalareleveragedtosupportgreenconcerninggovernmentprocurementcooperationhydrogenmarkets.TheGPAhelpspolicyandtheGPAcanalsoservegovernmentstoovercomeahomeasavaluabletooltofacilitateinformalInternationalcooperationisvitalbiasingovernmentprocurementdiscussionsonrelatedissuesamongtocreatedemandforgreenbyensuringthatsustainableinterestedofficialsfromeconomiesandlow-carbonhydrogenuse,governmentprocurementpracticesaroundtheglobe.particularlyinprioritysectorslikearenon-discriminatory,basedonheavyindustry,maritimeshippingopenmarkets,andinlinewithgoodINTERNATIONALTRADEANDGREENHYDROGEN•39Endnotes1TheSCMAgreementrequiresthatWTOmemberssubmitanewandfullnotificationofallspecificsubsidieseverythreeyears,withupdatednotificationsdueintheinterveningyears.Thenotificationobligationextendstoallspecificsubsidiesrelatedtogoods,inanysector,andprovidedbyanylevelofgovernment(i.e.,national,regional,state/provincialorlocal).UndertheTBTAgreement,WTOmembersareobligedtonotifydrafttechnicalregulationsandconformityassessmentproceduresthatarenotinaccordancewithrelevantinternationalstandardsorrecommendationsissuedbyinternationalstandardizingbodies(orsuchstandardsandrecommendationsdonotexist)andtoindicatewhetherthetechnicalregulationorconformityassessmentproceduremayhaveasignificantimpactontrade.2TheWTOofficialdocumentnumbersfortheserespectivenotificationsareG/SCM/N/372/AUS,G/SCM/N/372/USA,G/SCM/N/372/CHNandG/SCM/N/372/KOR.Officialdocumentscanbeviewedathttps://docs.wto.org/.3TheWTOofficialdocumentnumbersfortheserespectivenotificationsareG/TBT/N/SAU/1225,G/TBT/N/ARE/461,G/TBT/N/CHN/1131.Officialdocumentscanbeviewedathttps://docs.wto.org/.4SeePoliciesforgreenhydrogen(irena.org).5Seehttps://commission.europa.eu/projects/hydrogen-projects-within-framework-ipceis_en.6Foradiscussionontheroleofstandardsandverificationmethodsintheareaofclimate-relatedpolicies,seeWTO(2022a).7Seehttps://www.iso.org/standard/65628.html.8Seehttps://www.iso.org/standard/71206.html.9Seehttps://www.asme.org/codes-standards/find-codes-standards/b31-12-hydrogen-piping-pipelines/2019/drm-enabled-pdf.10TBTAgreement,Article2.4(“Preparation,AdoptionandApplicationofTechnicalRegulationsbyCentralGovernmentBodies”).Seehttps://www.wto.org/english/docs_e/legal_e/17-tbt_e.htm.11TBTAgreement,Article2.5(“Preparation,AdoptionandApplicationofTechnicalRegulationsbyCentralGovernmentBodies”).Seehttps://www.wto.org/english/docs_e/legal_e/17-tbt_e.htm.12Seehttps://www.wto.org/english/tratop_e/tbt_e/principles_standards_tbt_e.htm.13Essentially,the“SixPrinciples”areintendedtohelpinternationalstandardsbetterfacilitateglobaltradeandtoprovideguidanceintheareasof“transparency”,“openness”,“impartialityandconsensus”,“effectivenessandrelevance”,“coherence”and“developmentdimension”.14TBTAgreement,Article6.1(“RecognitionofConformityAssessmentbyCentralGovernmentBodies”).Seehttps://www.wto.org/english/docs_e/legal_e/17-tbt_e.htm#articleVI.15SeeWTOofficialdocumentnumberG/TBT/1/Rev.15,pp.66-67.Officialdocumentscanbeviewedathttps://docs.wto.org/.16Theapproachesthatgovernmentsmightchoosetofacilitaterecognitionincludethefollowingoptions:(i)mutualrecognitionagreementsforconformityassessmenttospecificregulations;(ii)cooperative(voluntary)arrangementsbetweendomesticandforeignconformityassessmentbodies;(iii)theuseofaccreditationtoqualify(orrecognize)conformityassessmentbodies;and(iv)thedesignationbygovernmentsofspecificconformityassessmentbodies,includingbodieslocatedoutsidetheirterritories,toundertakeconformityassessment.17TBTAgreement,Article5.1.2(“ProceduresforAssessmentofConformitybyCentralGovernmentBodies”).Seehttps://www.wto.org/english/docs_e/legal_e/17-tbt_e.htm#articleV.18TBTAgreement,Annex1,Paragraphs1and2(“TermsandtheirDefinitionsforthePurposeofthisAgreement”).Seehttps://www.wto.org/english/docs_e/legal_e/17-tbt_e.htm#annexI.19Thisfootprintisexplainedbythemixofgoodsandservicesthatgovernmentspurchase,whichnotablycomprisesgoodsorservicesoftheconstruction,transport,defence,utilities,wastemanagementandotherindustries.20Seehttps://www.clean-hydrogen.europa.eu/get-involved/mission-innovation-hydrogen-valleys-platform_en.4CONSIDERATIONSFORDEVELOPMENTRecentprojectsshowtheimportantexportinggreenfertilizerswithinthetolow-costandstablerenewablerolethatgreenhydrogenproductionregion.1InitsHydrogenRoadmap,electricity,suchasthatfromsolarcanplayinacceleratingdevelopingalsolaunchedin2023,MalaysiaPV-orwind-poweredelectricity,economies’transitiontonetzerosharesitsintenttoincreasethetogetherwithwateravailability,isanandtheirinclusioningreenvalueshareofcleanenergyinthecountry’simportantprerequisiteforinvestorschains.Forinstance,Kenya’s2023energymixbypromotingtheuseselectinglarge-scaleprojectHydrogenRoadmaplaysoutinitialofhydrogeninenergystorageandlocations.Anothercriterionistheplansforreaching100MWofasafuel.Malaysiafurtherintendsexistenceoflandandinfrastructure,installedelectrolysercapacitybytoinvestinhydrogentechnologieswhiletheavailabilityofpower2027andsupportingproductionofinordertoaddressdomestictransmissionlines,inboundand100,000tonsperyearofnitrogenconsumption,energysecurity,outboundlogisticsinfrastructuresfertilizers,whichwouldreplacesustainabilityofinternationalenergyanddeep-seaharbours,especiallyaround20percentofthecountry’stradinganddecarbonization.2forexportsofammonia,steelorfertilizerimports.Inasecondstage,syntheticfuels,provedecisiveforby2032,KenyawouldtargetFactorsfosteringgreensomeprojects(Cordonnierandbetween150-250MWofinstalledhydrogenproductioninSaygin,2022).electrolysercapacity,increasingdevelopingcountriesdomesticfertilizerproductiontoExistingandmaturehydrogenupto400,000tonsperyearintheInanemergingmarketsuchasthemarketscanincreaseanhopeofexploringopportunitiesforgreenhydrogenmarket,accesseconomy’spotentialforgreenINTERNATIONALTRADEANDGREENHYDROGEN•41hydrogenproductionbecauseofgreenhydrogenmarkets.AnotherManydevelopingcountriessectoralknowledgeandskills,crucialelementisthedevelopingofareendowedwithabundantenablinginfrastructure,aswellassolidpolicyandlegalframeworkslow-costrenewableenergynetworksandpracticesthatofferbasedoninternationalstandards.3resources,thusmakingthemacompetitiveadvantagehavemajorpotentialproducersofalreadybeenestablished(EickeThedevelopmentofgreenhydrogengreenhydrogen.andDeBlasio,2022).Finally,anproductioncanbringaboutenablingenvironmentinagivenimportantsocialandeconomiceconomy,definedbyeconomicbenefitsfordevelopingeconomies,stability,easeofdoingbusinessandincludingimprovedenergysecurityregulatorytransparency,isessentialandaffordablecleanenergyaccess(CordonnierandSaygin,2022).forremoteregions.Inlargergrids,greenhydrogencouldsupportManydevelopingcountriesaretheintegrationofrenewables,limitendowedwithabundantlow-costpowersupplyinterruptionsandrenewableenergyresources,providelong-termenergystoragethusmakingthemmajorpotential(CordonnierandSaygin,2022).producersofgreenhydrogen.Atthesametime,financialsupportisGreenhydrogencouldalsohelptonecessaryforthesuccessfuluptakeusherinadomesticcleanenergyIn2020,51%ofallAidfortransitionbyprovidingcleanerhydrogenproduction.ThiscouldTradecommitmentsincludedalternativestohard-to-abatesectors.supportandbuildcapacitiesinclimate-relatedobjectives.Developingahydrogensectordevelopingcountriesbyputtingcouldalsohelptoimproveexportinplacerobustcertificationanddiversificationpotential,ashydrogenverificationframeworksinlinewith(orhydrogen-derivedcommodities)existinginternationalstandards,createdthroughdomesticallytherebycreatingopportunitiestoavailablerenewablesourcescouldintegrateeffectivelyintogreenglobalthenbeinternationallytraded.valuechains.FinancialassistancecanfurthermobilizebothpublicEconomiessuchasChina,andprivatesupport,whichareIndonesia,thePhilippinesandessentialtopropelinnovationintheSouthAfricahavestartedtotakeproduction,transportanduseofadvantageoftheseopportunitiesgreenhydrogen,andwhichsupportandaregainingexperienceinusingthegreentransition,jobcreationandammonia-basedandmethanol-improvedresilience.Forinstance,basedfuelcellsystemsfortheirthroughitsGlobalGatewaytelecommunicationssectors.Largeinitiative,4theEuropeanUnionhashydrogenorfuelcellprojectsforbuiltpartnershipswithanumberofstationarypowersolutionsarebeingeconomies,includingBrazil,Chile,builtinArgentina,Mali,MartiniqueKenya,Morocco,Namibia,SouthandUganda.LeveragingtheAfricaandTunisia,establishingjointfullpotentialofgreenhydrogen,researchandinvestmentprojects,however,requiresbuildinglocalleveragingpublicandprivatecapacityandincreasingaccesstoinvestments,andbuildingcapacity.expertisethat,atthegloballevel,remainslimited(ESMAP,2020).In2020,morethanhalf(51percent)ofallAidforTradecommitmentsImportanceoftechnicalincludedclimate-relatedobjectivesassistanceandfinancingwithalargemajority(69percent)focusingonclimatechangeTechnicalassistancecanhelpmitigation.Thereisalsoanemergingdevelopingeconomiestotaketrendtoallocatemoreandmoreadvantageoftheircomparativesupporttorenewableenergiesadvantagesinthecontextof(OECD,2022).EnhancingandrenewableenergyproductionbettertailoringAidforTradetotheinordertocreateanenablingneedsofdevelopingeconomiesandenvironmentforlarge-scalegreenleast-developedcountries(LDCs)INTERNATIONALTRADEANDGREENHYDROGEN•43cansupporttheirparticipationinindevelopingeconomies.ToInvestmentsingreenhydrogenvaluechainsbyfosteringbeginwith,demandforgreenhydrogencanspurthesustainableextractionofthehydrogenwouldfurtherincreaseindustrialdevelopmentinmineralsandmetalsnecessarytodemandforrenewableenergyanddevelopingeconomies.produceelectrolysersandexpandattractadditionalinvestmentsinsupply-sidemanufacturingcapacity.solarandwindfarms,geothermalandhydropowerprojects.ItwillAidforTradecanalsofacilitatealsoattractinvestmentsinothertechnologytransferpartnershipsconversiontechnologiessincethatcanhelptoexpanddomestichydrogenneedstobeconvertedintomanufacturingcapacityindevelopinghigherenergydensityproducts,sucheconomies.Forexample,in2021,asmethanolorammonia,foreasiertogetherwithpartnereconomies,storageandtransportation.UNIDOlauncheditsGlobalProgrammeforHydrogeninFurthermore,economiesproducingIndustry.5Theinitiativestimulatestherenewableenergyandgreenaccelerateduptakeanddeploymenthydrogenplusderivativesatofgreenhydrogeninindustryincompetitivecostswillbecomedevelopingeconomiesandaimstomoreattractivealsoforenergy-buildcooperationandpartnershipsintensiveindustriessuchastheforknowledgeandtechnologysteelandchemicalindustries.transfer(UNIDO,2022).They,inturn,provideinputstoAidforTradecanalsohelptomanydownstreamindustries,fromenhancemarketaccessandcreateautomotivetopharmaceuticalandadequateregulatoryconditionsforfertilizerindustries.Therefore,asacross-borderhydrogentrade.Thisdecarbonizationeffortsintensify,ispartoftherationalebehindthetheavailabilityofrenewablesandcreationbytheWorldBankGroupgreenhydrogenmaybecomeaanditspartnersoftheHydrogenforkeyconsiderationfortherelocationDevelopmentPartnership(H4D),ofindustries.Finally,thereisawhichhassupportedeconomiesgrowingmarketforhydrogen-basedsuchasBrazil,Mauritania,Morocco,technologyexportsthatTunisiaandUzbekistanindevelopingcanbetappedintoincludingpoliciestoboosttheirgreenmarketsforfuelcelltechnology,hydrogenofferanddemand.hydrogen-basedsteelmakingtechnologiesandsyntheticfuels6Investmentsingreenhydrogencan(UNIDOIAP,2022).inturnspurindustrialdevelopmentEndnotes1Seehttps://www.argusmedia.com/en/news/2486143-kenya-eyes-green-hydrogen-production-for-food-security.2See:https://www.skrine.com/insights/alerts/october-2023/malaysia-launches-hydrogen-economy-technology-road.3Seehttps://iap.unido.org/articles/green-hydrogen-energy-opportunity-decarbonization-and-developing-countries.4Seehttps://commission.europa.eu/strategy-and-policy/priorities-2019-2024/stronger-europe-world/global-gateway_en.5Seehttps://www.unido.org/hydrogen.6Seehttps://iap.unido.org/articles/green-hydrogen-fuelling-industrial-development-clean-and-sustainable-future.5THEROLEOFINTERNATIONALCOOPERATIONINTERNATIONALTRADEANDGREENHYDROGEN•45InternationaltradeThepreviouschaptershaveofbuildingtrustbetweenregulators,cooperationisimportantdemonstratedtheimportanceandcouldserveasanincubatorfortoensuresustainableoftradepoliciesfortherapiddiscussionsatthemultilaterallevelmarketgrowthandandefficientscaling-upofgreenonemergingregulations.encouragetechnologyhydrogenmarkets.Thedevelopmentdevelopmentandinnovation.ofaninternationalmarketforlow-SeveralWTObodiescanserveasemissionhydrogenwillstronglyforumsfortransparencyanddialoguedependoneffectiveinternationalonmembers’greenhydrogencooperation(IEA,2022).Incontrast,policies.TheWTOCommitteeontheproliferationofdivergenttradeTradeandEnvironment(CTE)ispolicies,suchastariffs,regulationsacentralforumformemberstoandsupportprogrammes,coupledexchangebestpractices,andtowithvariousprivatestandards,presentandcommentonrecentcanraisecostsforfirms,createregulatoryproposalsrelatingtotheunnecessarybarriersandredtape,climatechangemitigation,includingandultimatelystallprogress.renewableenergypoliciesandsustainablesupplychains.InrecentCross-bordercoordinationanddiscussions,membershavesharedcollaborationtoensurealignmentexperiencesofdecarbonizationandconsistencyindefinitions,policiesappliedtotransportandstandardsfortheemissionsintensityindustry,withsomeexpressingofgreenhydrogenproductionandstrongcommitmenttotheproductiontransport,certificationschemestoandexportofgreenhydrogen,andensureinteroperability,andimporthavehighlightedtheimportancetariffsforhydrogenanditspotentialofinternationalcooperation.1carriers,willhelptoaddresspotentialInternationalorganizations,suchhydrogen-relatedtradepolicyissuesastheInternationalSolarAlliance,(IPHE,2022).havealsosharedgreen-hydrogen-relatedinitiatives.BriefingsattheTheBreakthroughAgendaReport,CTEhavespecificallyhighlightedproducedbyIEA,IRENAandthetheimportanceofgreenhydrogenUNClimateChangeHigh-LeveltechnologytransferfordevelopingChampions,measuresinternationaleconomies.2collaborationinseveralkeyareasofimportanceforthescaling-upoftheTheworkoftheTBTCommitteeinproductionanduseoflow-carbondiscussingspecifictradeconcernsandgreenhydrogen.Theseincludehelpstoprovideclarificationstandardsandcertification,demandonproposedmeasuresandtocreation,technologydemonstrationenhancealignmentwithinternationalandfinance.However,the2023standards.TheCommitteealsoReport(IEA,IRENAandUNClimateservesasaninterfacebetweenChangeHigh-LevelChampions,membergovernmentsandstandard-2023)findsthatprogressisstillsettingorganizations(whichmodesttominimal(seeTable6).haveastatusofobserverstotheCommittee)toidentifyneedsandInternationaltradecooperationgapsinstandardsdevelopmentfromisimportantnotonlytoensureatradeandregulatorypointofview.sustainablemarketgrowth,butalsotoencouragetechnologyTheTBTCommittee’sworkwithdevelopmentandinnovation.standard-settingorganizationsRegulatorycooperationamonghashelpedtoaddresspotentialWTOmembersandwithothertradefrictionsandimplementationstakeholdersonasector-by-sectorchallengesformembersatdifferentbasiscouldbeaneffectivemeanslevelsofdevelopment,andprovidesTABLE6:ThestateofinternationalcollaborationongreenhydrogenSource:AdaptedfromIEA,IRENAandUNClimateChangeHigh-LevelChampions(2023).AreaProgressmadeRecommendationsforgovernmentsand2023StandardscompaniesModestand•TheIPHEisleadingmajorcertificationeffortsonmethodologiesfor•Prepareawell-articulatedplanthatdefinesfinancialmeasuringhydrogenemissions,andhumanresourceneedsforthedevelopmentofaDemandinpartnershipwithISO,withcomprehensiveportfolioofnationalandinternationalcreationtheaimofdevelopingcommonstandards.globalstandardsandassociatedcertificationschemes.•Provideappropriateresourcesnecessarytoundertaketherelevantworkonstandardsdevelopment.•TheIEA’sHydrogenTechnologyCollaborationProgramme(TCP)•Worktowardstheadoptionofacommonhassetagroupofexpertstomethodologytocalculatethecarbonfootprintoftheworkontechnicalmattersofhydrogenvaluechaintofacilitatemutualrecognitionharmonizationofcertification.andinteroperabilityofcertificationsystems.•IRENAandRMI,theEuropean•WorkthroughexistingforumstoensurethattheCleanHydrogenAllianceandthemethodologiesusedtodefineregulatoryframeworksHydrogenCouncilarecurrentlyareinteroperable.engaginginotherassessmentsandrelevantwork.•Anticipatebuildingtechnicalcapacityofnationalsystemstoverifycompliancewithinternationalhydrogenstandards.•Therehavebeennotable•IncreasethestrengthofthedemandsignalbymovingMinimalgovernment-leddemand-creatingfromcommitmentsandpledgesfortheuseoflow-initiatives,butalsoalackofcarbonandrenewablehydrogentocontractsandinternationalcoordinationonnear-policies.termcommitmentsandpolicies.•Improvethecoordinationofeffortsbetween•TheIRENACollaborativeeconomiesandcompaniestoincreasecommitmentsFrameworkongreenhydrogeninsectorswherehydrogenisalreadyusedtohasestablishedaworkstreamoncollectivelysendastrongdemandsignalandmobilizeunderstandinghowtocoordinateinvestmentinproduction.demandandsupplyglobally.•Sharelearningtoaccelerateearlydeploymentinnewpriorityapplicationsectors,inamannerthatensuresalevelplayingfieldininternationaltrade.Researchand•TheMissionInnovationClean•IncreasethenumberandgeographicaldistributionMinimalinnovationHydrogenMission(CHM)hasofhydrogendemonstrationprojectsandensurethatcommittedtoestablishingatheseappropriatelycovereachofhydrogen’shigh-conceptualframeworktoexchangevalueend-usesectors,includingmaritimeshipping,bestpractices,identifygapsandheavyindustryandlong-durationenergystorage.accesssupport,includingforR&D,byCOP28.•Increaseeffortstoestablishproactiveknowledge-sharingplatformsandprocessesbetweenlead•TheHydrogenValleyPlatformhadprojects.identified83projectsfrom33countriesbyJuly2023.Financeand•UNIDO,WorldBankandIRENA•WorkwithinternationalfinancialinstitutionstoModestinvestmentaremappingexistingfinancialidentifyprojectsthatarebeingdelayedbyhighandtechnicalassistancesupportcostsofcapitalandotherobstaclestoinvestment,towardshydrogenprojectsinthenidentifybestpracticestosupporttargetedanddevelopingeconomies,withaviewtailoredtechnicalassistanceforpolicydesign.tosupportinganimprovedoffer.•Thisshouldbesupportedbyappropriatetechnical•TheHydrogenforDevelopmentassistanceprogrammestoassistgovernmentswithPartnershipwaslaunchedbypolicydesignforthefurtherscale-upofprojects.theWorldBanktohelpcatalysefundingforprojectsindevelopingeconomiesbyprovidingimprovedin-countrysupport.INTERNATIONALTRADEANDGREENHYDROGEN•47feedbackwhichstrengthensenergydevelopment,includingenergytransformation.Thestandardsreviewanddevelopment.greenhydrogen.Inthisregard,oneCollaborativeFrameworkleveragesThismakestheTBTCommitteespecificsuggestionhasbeenmadeIRENA’sworkongreenhydrogen,avaluableforumfortechnicalthatcollaborationamongmembersthewealthofknowledgeanddiscussionsatthemultilateralleveltoformulatetraderulesensuringtheexpertisethatexistswithinIRENA’sontrade-relatedaspectsofcarboninteroperabilityofguarantee-of-originmembership,andthebenefitsthatmeasurementmethodologiesandcertificationscouldfacilitatethemaybereapedthroughwiderglobalverificationprocedures,aswelldevelopmentofrenewableandlow-cooperationwithotherentities.asonwaystosupportdevelopingcarbonenergymarkets,suchasaParticipationintheCollaborativecountriesinthisarea.globallow-carbonhydrogentradingFrameworkisopentotheprivatemarket.sectorandotherinternationalOtherongoinginitiativesattheorganizations.WTOcouldfurthersupporttrade-FurtheravenuesforinternationalrelatedsolutionsinsupportofcooperationongreenhydrogenIRENAalsosupportstheglobalgreenhydrogen.In2020,thepoliciescouldbebuiltattheWTOAllianceforIndustryDecarbonizationparticipantsintheTradeandamongitsmembers,standards-(AFID)whichisamulti-stakeholderEnvironmentalSustainabilitysettingbodiesandotherrelevantplatformofmorethan60membersStructuredDiscussions(TESSD)stakeholders.Multilateralinitiativesandecosystemknowledgepartnerslaunchedworktowardsconcreteandprojectscanpromotetofosteractionfordecarbonizationactionstoexpandopportunitiesknowledge-sharing,developofindustrialvaluechains,promoteforsustainabletrade.Discussionstechnologyandbestpracticestounderstandingofrenewables-basedhavecoveredexperience-sharingreducecosts,andconnectawidersolutionsandtheiradoptionbyonthedesignofsubsidiesrelatedgroupofstakeholders.Inthisway,industrywithaviewtocontributingtoalow-carbontransition,includingtheycanhelptodevelopfuturetocountry-specificnet-zerogoals.oncleanenergyandhydrogen,asinternationalhydrogensupplychainsIn2023amongjointinitiativesthewellasonidentifyingandcompiling(IPHE,2022).AFIDaddressedtechno-economicprinciplesandmemberpracticeschallengesandsolutionsonsafetyinthedevelopmentoftrade-IRENA’sCollaborativeFrameworkstandardsforgeneration,transportrelatedclimatemeasures.AfurtheronGreenHydrogenservesasandstorage,andregulatoryaspectsimportantpartofTESSD’sworkaneffectivevehiclefordialogue,tofast-trackgreenhydrogenincludesidentifyingopportunitiesandcooperationandcoordinatedactionprojects.approachestopromoteandfacilitatetoacceleratethedevelopmentandtradeinenvironmentalgoodsanddeploymentofgreenhydrogenandservicesinsupportofrenewableitsderivativesforaglobalrenewableEndnotes1SeeWTOofficialdocumentnumberWT/CTE/M/78.Officialdocumentscanbeviewedathttps://docs.wto.org/.2SeeWTOofficialdocumentnumbersWT/CTE/M/78,WT/CTE/M/77,WT/CTE/M/76,WT/CTE/M/75andWT/CTE/M/74.Officialdocumentscanbeviewedathttps://docs.wto.org/.FIVEACTIONSFORCONSIDERATIONBYPOLICYMAKERSFromtheaboveanalysis,theWTOandIRENAproposeasetoffiveconcreteactionsforeconomiestoconsiderinordertoscaleupandfacilitateglobaltradeofgreenhydrogen.1.AddresstradebarriersalongthegreenhydrogensupplychainOpentradealongthesupplychaincanpromotethedevelopmentofgreenhydrogenbyloweringcostsandfosteringtechnologyaccessanddevelopment.Promotingtradeingoodsandservicesrelatedtorenewableenergyproductioncouldhelpreducethecostsofenergyusedintheproductionofgreenhydrogen,whileloweringtradecostsonelectrolyserscouldfurthersupportthescale-upandefficiencyofmanufacturingcapacity.Tradeingoodsandservicesalongthegreenhydrogensupplychainisaffectedbyvariousbarrierstotrade,includingtariffsandnon-tariffmeasures.Forexample,thereisscopetofurtherreducetariffsasanumberofWTOmembershavesettariffshigherthan5percentforhydrogenasacommodity(46members),forderivativessuchasammonia(34)andmethanol(45)andforproductsalongthesupplychain,suchaselectrolysers(43),compressors(63),generators(32)andfuelcells(96).2.DevelopasoundqualityinfrastructureforgreenhydrogentradeQualityinfrastructure(QI)isthesystemthatensuresthatproductsandservicesaresustainable,safeanddurable,andthattheymeettheexpectationsofallstakeholders.QIincludesstandards,testing,certification,metrology,inspectionandaccreditation.Sinceitisnotpossibleto“see”thecarboncontentortheprocessusedforproducinghydrogen,soundQIwillbecrucialtoguaranteetheenvironmentalintegrityofgreenhydrogenproductionandprovideinformationontheproductionprocessandemissionsfootprintalongthevaluechain.a.EngageininternationalstandardizationforgreenhydrogenStandardsareakeyelementofaQI.Adoptednationalstandardsshouldbebasedoninternationalstandardsdevelopedinlinewiththesix“PrinciplesfortheDevelopmentofInternationalStandards,GuidesandRecommendations”(i.e.,transparency,openness,impartialityandconsensus,effectivenessandrelevance,coherence,anddevelopmentdimension),agreeduponbytheWTOCommitteeonTechnicalBarrierstoTrade(TBT)in2000.1EconomiesshouldactivelyengageinthetechnicalcommitteesininternationalbodiesliketheInternationalOrganizationforStandardization(ISO)andtheInternationalElectrotechnicalCommission(IEC)toensurethattheirnationalcontextisproperlyreflectedininternationalstandards.b.Fosterinternationaldialogueoncarbonmeasurementmethodologies,definitionsoflow-carbonhydrogenandverificationproceduresWherethereisnoconvergencearoundinternationalstandards,proceduresorguidesconcerningcarbonmeasurementmethodologies,definitionsoflow-carbonhydrogenorverification,dialogueiscrucial.RegulatorycooperationcanpreventunnecessarynegativeINTERNATIONALTRADEANDGREENHYDROGEN•49tradeimpactsandcouldbeaneffectivemeansofbuildingtrustamongregulators.TheWTOTBTCommitteehasprovidedguidanceintheareaofverificationproceduresbydevelopingan“IndicativeListofApproachestoFacilitatetheAcceptanceoftheResultsofConformityAssessment”2c.InformcustomersvialabellingrequirementsbasedonqualityinfrastructureCommunicationofinformationabouthowhydrogenisproduced–bothtoresponsibleauthoritiesandalongthevaluechain–isessential.Labelsinparticularshouldconveyinformationtocustomersaboutgreenhydrogenproductionprocessesinaclear,crediblemanner,withaviewtoachievingthedesiredpolicyobjectiveswithoutcreatingunnecessaryobstaclestointernationaltrade.3.ImplementsupportpoliciesforgreenhydrogenMidstreamandend-useinvestmentswillberequiredinordertoachieveaglobalnet-zeroemissionspathwayby2050,withaveragetotalannualinvestmentsinthehydrogenvaluechainofUS$136billionneededbetween2023and2050.Phasingoutfossilfuelsubsidiesandredirectingfundingtowardsrenewableenergyandgreenhydrogenproductionhasstrongpotentialtostimulatethistransition.a.Implementtargetedandnon-discriminatoryenvironmentalsubsidiesGovernmentalsupportpoliciescanhelptosustaingrowthinelectrolysercapacityandgreenhydrogenproduction,promotingcostefficienciesandnarrowingthecostdifferentialbetweentheproductioncostsofgreenandoffossil-basedhydrogen.Policiesshouldbetargetedtoboostinnovationincleantechstartups,andshouldnotplaceimportedproductsatacompetitivedisadvantagevis-à-visdomesticonesunjustifiably.b.ClosetheeconomicgapbetweenfossilfuelsandgreenhydrogenPhasingoutandredirectingfossilfuelsubsidieswouldmakeitpossibletoincorporatecostsofenvironmentalexternalitiesnotreflectedundersubsidizedprices,whichwouldrendergreenhydrogenmorecompetitive.Subsidyreformsmustbemindfulofthevariouseconomicandsocialforcesatwork,aswellastheimperativeforajustandequitabletransition.4.UsesustainablegovernmentprocurementtofostergreenhydrogendemandGovernmentprocurementisofgreateconomicimportance,accountingforbetween10and15percentofnationalGDP,onaverage,andabout13percentofworldGDP.Throughsustainablegovernmentprocurementpolicies,governmentscaninfluenceprivate-sectorproducersbypurchasinglow-carbongoodsandservices,creatingmarketsfornewentrantsandstimulatinginnovativesolutions.a.ImplementsustainablegovernmentprocurementpoliciesGovernmentscanleveragesustainableprocurementpoliciestocreatealargeandstabledemandforgreenhydrogenandderivativecommodities,contributingtoloweringcostsandreducinghydrogenuptakeuncertainty.Thiscouldincludeactionssuchasintroducingminimumrequirementsforgreenproducts(e.g.,greensteel)inpublicauthorities’procurementprocesses,introducinggreenmaterialrequirementsinpolicies,andensuringthepresenceofaverificationandlabellingsystemtoguaranteethesustainabilityofgreenproducts.Indoingso,governmentsshouldgiveastrongpreferencetotheprocurementofgreenhydrogenforthosesectorswheredirectelectrificationwithrenewablesisnotaviabledecarbonizationoption.b.ConsiderinternationalcollaborationCoordinateddemand-creatingpoliciescansendastrongsignaltomobilizeinvestment,whilecollaborationcansupporttheestablishmentofmoresecureanddiversifieddemandovertime.Botharecrucialtoachievingeconomiesofscaleandacceleratingsupply-sidecostreductions.5.IncreaseinternationalcooperationongreenhydrogentradeCross-bordercoordinationandcollaborationtoensure,forexample,alignmentandconsistencyindefinitionsandstandardsforemissionscertificationschemes,wouldhelptoaddresspotentialhydrogen-relatedtradepolicyissues.Supportingdevelopingeconomieswouldcontributetobringingaboutimportantsocialandeconomicbenefits,includingimprovedenergysecurityandaffordablecleanenergyaccess.a.EncouragetechnologydevelopmentandinnovationthroughdialogueRegulatorycooperationbetweenWTOmembersandotherstakeholdersonasector-by-sectorbasiscouldbeaneffectivemeansofbuildingtrustbetweenregulators,andcouldserveasanincubatorfordiscussionsonemergingregulations.Throughitsbodies,includingtheCommitteeonTradeandEnvironment(CTE)andtheTBTCommittee,aswellasongoingenvironmentalinitiatives,theWTOcanactasafocalpointfortransparencyanddialogueonmembers’greenhydrogenpolicies.b.EngageincooperationforaongreenhydrogenForinstance,IRENA’sCollaborativeFrameworkonGreenHydrogen3servesasaneffectivevehiclefordialogue,cooperationandcoordinatedactiontoacceleratethedevelopmentanddeploymentofgreenhydrogenanditsderivativesfortheglobalrenewableenergytransformation.IRENAalsosupportstheAllianceforIndustryDecarbonizationthataimstousegreenhydrogenandothersolutionstodecarbonizeindustrialvaluechainsandacceleratenet-zeroambitionsinaccordancewiththeParisAgreement.c.Increasetechnicalassistanceandcapacity-buildingAdvancedeconomiescouldprovidetechnicalassistanceandcapacity-buildingtodevelopingeconomieswithcomparativeadvantagesinrenewableenergyproduction,tohelpthemcreateanenablingenvironmentforgreenhydrogenproductionatscale.Forinstance,IRENAwithitsglobalmembershipandnetworkofpartnerorganisations,supportsbuildingcapacitiesindevelopingcountriestoputinplacerobustcertificationandverificationframeworks,inlinewithexistinginternationalstandards.d.SupporttheneedsofdevelopingeconomiesthroughAidforTradeTheWTO-ledAidforTradeinitiativehelpsdevelopingeconomies,andparticularlyleast-developedcountries(LDCs),totrade.Itcanfacilitatetechnologytransferpartnershipsthatcanhelptoexpanddomesticmanufacturingcapacity,aswellashelpenhancemarketaccessandcreateadequateregulatoryconditionsforacross-borderhydrogentrade.Endnotes1Seehttps://www.wto.org/english/tratop_e/tbt_e/principles_standards_tbt_e.htm.2TheIndicativeListofApproachestoFacilitatetheAcceptanceoftheResultsofConformityAssessmentcanbefoundinAnnex1ofWTOofficialdocumentnumberG/TBT/1/Rev.13(page52)(https://docs.wto.org/dol2fe/Pages/SS/directdoc.aspx?filename=q:/G/TBT/1R13.pdf&Open=True).3Seehttps://www.irena.org/How-we-work/Collaborative-frameworks/Green-Hydrogen.INTERNATIONALTRADEANDGREENHYDROGEN•51ANNEXThisannexprovidesacomprehensive,butnon-exhaustive,listofqualityinfrastructureelementsforgreenhydrogen(GH2)thatshouldbeimplemented,accordingtoanExpertSurveyforIRENA’songoingproject“QualityInfrastructureforGreenHydrogen:technicalstandardsandqualitycontrolfortheproductionandtradeofrenewablehydrogen”.Standards:•ISO19880series-Gaseoushydrogen–FuellingThefollowingstandardsprovideoverallguidanceacrossstationsthehydrogenvaluechain:•ISO19882Gaseoushydrogen–ThermallyactivatedDesign:pressurereliefdevicesforcompressedhydrogen•ISO22734-1Hydrogengeneratorsusingwatervehiclefuelcontainerselectrolysis–Industrial,commercial,andresidential•ISO26142Hydrogendetectionapparatus–applications–Part1:Generalrequirements,testStationaryapplicationsprotocolsandsafetyrequirements.•ISOTR22734-2Hydrogengeneratorsusingwater•IECExCertificationSystemviaIECExOD290electrolysis–Part2:TestingguidanceforperformingStandardisedapproachtoTestingandCertificationofelectricitygridservice.HydrogendispensingEquipmentandSystems•ISO17268GaseoushydrogenlandvehiclerefuellingconnectiondevicesISO19884Gaseoushydrogen–Installationandinfrastructure:Cylindersandtubesforstationarystorage.•ISO19880-xseries–Gaseoushydrogen–Fuelling•ISO16111Transportablegasstoragedevices–Hydrogenabsorbedinreversiblemetalhydride.stations•ISO19880-1Gaseoushydrogen–Fuellingstations–•IEC60079-xseries–GeneralrequirementsforPart1:Generalrequirements•ISO19880-3Gaseoushydrogen–Fuellingstations–construction,testingandmarkingofExEquipmentPart3:ValvesandExComponentsintendedforuseinexplosive•ISO19880-5Gaseoushydrogen–Fuellingstationsatmospheres.–Part5:DispenserhosesandhoseassembliesISO•ISO22734-1Hydrogengeneratorsusingwater19880-6Gaseoushydrogen–Fuellingstations–Partelectrolysis–Industrial,commercial,andresidential6:Fittingsapplications–Part1:Generalrequirements,test•ISO19880-7Gaseoushydrogen–Fuellingstations–protocolsandsafetyrequirements.Part7:O-rings•ISOTR22734-2Hydrogengeneratorsusingwater•ISO19880-8:2019Gaseoushydrogen–Fuellingelectrolysis–Part2:Testingguidanceforperformingstations–Part8:Fuelqualitycontrolelectricitygridservice.•ISO/CD19880-9Gaseoushydrogen–Fuelling•ISO19884Gaseoushydrogen–Cylindersandtubesstations–Part9:Samplingforfuelqualityanalysisforstationarystorage•IEC60079-10seriesonAreaClassification•ISO16111Transportablegasstoragedevices–•IEC60079-14InstallationHydrogenabsorbedinreversiblemetalhydrideISO.•IEC60079-17Inspection•CENStandardEN16325•IEC60079-19RepairandOverhaulofEquipment•ISO/TR15916,BasicSafetyconsiderationsforsafety•ISO/TR15916,BasicSafetyconsiderationsforsafetyofhydrogensystems.ofhydrogensystems.•ISO16110seriesHydrogengenerators•ISO16110seriesHydrogengenerators•ISO17268-Gaseoushydrogenlandvehiclerefuelling•ISO17268-Gaseoushydrogenlandvehiclerefuellingconnectiondevices.connectiondevices.•ISO26142Hydrogendetectionapparatus–Stationaryapplications•IEC80069Operationandmaintenance:•ISO26142Hydrogendetectionapparatus–•ISO19881Gaseoushydrogen–LandvehiclefuelStationaryapplicationscontainers•IEC62282series,Fuelcelltechnologies(currently29•ISO19882Gaseoushydrogen–Thermallyactivatedstandardsintheseries)viaIECTC105pressurereliefdevicesforcompressedhydrogenSafety:vehiclefuelcontainers•ISO/TR19516•ISO19885-1Gaseoushydrogen–Fuellingprotocols•ISO26142forhydrogen-fuelledvehicles–Part1:Designand•IEC60079-29seriesdevelopmentprocessforfuellingprotocols•ISO16110-1Hydrogengeneratorsusingfuel•ISO19885-2Gaseoushydrogen–Fuellingprotocolsforhydrogen-fuelledvehicles–Part2:Definitionofprocessingtechnologies–Part1:Safetycommunicationsbetweenthevehicleanddispenser•ISO/TR15916–Basicconsiderationsforthesafetyofcontrolsystems•ISO19885-3Gaseoushydrogen–Fuellingprotocolshydrogensystemsforhydrogen-fuelledvehicles–Part3:Highflow•ISO/IEC80079hydrogenfuellingprotocolsforheavydutyroadvehicles.Metrology:•ISO19887GaseousHydrogen–FuelsystemThefollowingmetrologicalstandardsprovideoverallcomponentsforhydrogenfuelledvehicles.guidancetothegreenhydrogensector:•ISO21087:2019-Gasanalysis–Analyticalmethods•OIMLR137–GasMetersforhydrogenfuel–Protonexchangemembrane(PEM)•OIMLR139–CompressedGaseousFuelMeasuringfuelcellapplicationsforroadvehicles•IEC60079-10series–Areaclassification(needstoSystemsforVehiclesformpartofroutineinspectionplan)•OIMLR140–MeasuringSystemsforGaseousFuels•IEC60079-17–Inspection•StandardsissuedbyISO/TC193andISO/TC193/•IEC60079-19RepairandOverhaul•IEC62990series–GasdetectorsSC1•IEC60079-29-2Gasdetectors–Selection,•ISO14687–Hydrogenfuelqualityinstallation,useandmaintenanceofdetectorsfor•ISO21087–Analyticalmethodsforhydrogenfuelflammablegasesandoxygen.•IEC60079-29-3Gasdetectors–GuidanceonCertification:functionalsafetyoffixedgasdetectionsystemsTheInternationalElectrotechnicalCommission(IEC)•IEC/IEEE60079-30-1ElectricalresistancetraceConformityAssessmentSystemsallowsmultipleheating–Applicationguidefordesign,installation,andinternationalconformityassessmentbodiestomaintenanceparticipateinthesesystemsbasedonarigorouspeer•IEC60079-32-1Electrostatichazards,guidanceassessmentqualificationprocess.Ideallygreenhydrogen•IEC60079-43Equipmentinadverseserviceisproducedfromenergygeneratedbyrenewableconditionsenergysourcesandverifiedbyharmonizedconformityassessmentprocesses.Countrieswithadvancedqualityinfrastructuresystemshaveinternationallyrecognizedconformityassessmentbodies,alreadyINTERNATIONALTRADEANDGREENHYDROGEN•53activelyparticipatingintheseInternationalIECSystemsTesting:andSchemeswiththosenotalreadyinvolvedbeingThereisalackoftestingprotocolsorlarge-scalehighencouragedtoexpandtheiraccreditationscopetopressureandcryogeniccomponents.Furthermore,itisparticipateintheseIECInternationalSchemes.WhilenecessarytodevelopservicestotrainworkerstohandlenotingthealreadyexistingInternationalSchemesofthenewsafetyconsiderations,andcalibrationservicesandIECcovering:traceabilitytotheInternationalSystemofUnits(SI)isneeded.Withintestingprotocols,thereisanincreasing•CertificationofComponents,equipmentandsystemsfocusondevelopingassociatedproceduresforpressure•CertificationofServicesrangesupto100bars.However,thereisstillalackof•CertificationofPersonalCompetencetestinfrastructureforwideranges(quantitymeasurement•ProjectCertificationH2).Testingforsomespecificapplicationsaddressed,•CarbonFootprintverificationsuchasH2dispensers(refertohttps://www.iecex.com/publications/operational-od/)ordomesticmetersareAnynewcertificationschemesthatarespecificallybecomingavailableincertaineconomies.focusedtowardsthegreenhydrogensectorshouldbeproposedtotheIECandtheInternationalOrganizationofLegalMetrology(OIML).BIBLIOGRAPHYAnderson,R.D.,Salgueiro,A.,Schooner,S.L.andGreenHydrogenOrganisation(2022),“GreenHydrogenSteiner,M.(2023),“DeployingtheWTOAgreementMessagetoCOP27”.Availableathttps://gh2.org/onGovernmentProcurement(GPA)toEnhancesites/default/files/2022-05/Green%20Hydrogen%20SustainabilityandAccelerateClimateChangeMessage%20to%20COP27_design_24%20May%20Mitigation”,32PublicProcurementLawReview2232022.pdf.(2023).Availableathttps://scholarship.law.gwu.edu/cgi/viewcontent.cgi?article=2951&context=faculty_HydrogenCouncil(2020),Pathtohydrogenpublications.competitiveness:Acostperspective,Brussels:HydrogenCouncil,20January2022.AustralianIndustryEnergyTransitionsInitiative(AustralianIndustryETI)(2023),“PathwaystoindustrialInternationalMonetaryFund(IMF),Organisationfordecarbonisation:PositioningAustralianindustrytoEconomicCo-operationandDevelopment(OECD),prosperinanetzeroglobaleconomy”,Phase3report,WorldBankandWorldTradeOrganization(WTO)February2023,AustralianIndustryETI.(2022),Subsidies,trade,andinternationalcooperation,Washington,D.C.,ParisandGeneva:IMF,OECD,Bhashyam,A.(2023),“HydrogenSubsidiesSkyrockettoWorldBankandWTO.$280BillionWithUSintheLead”,BloombergNEF,23August2023.Availableathttps://about.bnef.com/blog/InternationalEnergyAgency(IEA)(2022),Globalhydrogen-subsidies-skyrocket-to-280-billion-with-us-in-HydrogenReview2022,Paris:IEA.the-lead/.InternationalEnergyAgency(IEA)(2023),WorldEnergyCordonnier,J.andD.Saygin(2022),“GreenhydrogenInvestment2023,Paris:IEA.Availableathttps://www.opportunitiesforemerginganddevelopingeconomies:iea.org/reports/world-energy-investment-2023.Identifyingsuccessfactorsformarketdevelopmentandbuildingenablingconditions”,OECDEnvironmentInternationalEnergyAgency(IEA),InternationalWorkingPapers,No.205,Paris:OECDPublishing.RenewableEnergyAgency(IRENA)andUnitedNationsAvailableathttps://doi.org/10.1787/53ad9f22-en.(UN)ClimateChangeHigh-LevelChampions(2023),TheBreakthroughAgendaReport2023:AcceleratingEicke,L.andDeBlasio,N.(2022),“TheFutureofSectorTransitionsThroughStrongerInternationalGreenHydrogenValueChains:GeopoliticalandMarketCollaboration,ParisandAbuDhabi:IEA,IRENAandUNImplicationsintheIndustrialSector”,BelferCenterforClimateChangeHigh-LevelChampions.ScienceandInternationalAffairs,HarvardKennedySchool,5October2022.Availableathttps://www.InternationalInstituteforSustainableDevelopmentbelfercenter.org/publication/future-green-hydrogen-(IISD)(2022),BackgroundNoteonFossilFuelSubsidyvalue-chains-geopolitical-and-market-implications-Reform,Winnipeg:IISD.Availableathttps://www.iisd.industrial.org/system/files/2022-08/background-note-fossil-fuel-subsidy-reform.pdf.EnergySectorManagementAssistanceProgram(ESMAP),WorldBank(2020),“GreenHydrogenInternationalPartnershipforHydrogenandFuelCellsinDevelopingCountries”,Washington,D.C.:WorldintheEconomy(IPHE)(2022),“InternationalTradeBank.https://openknowledge.worldbank.org/server/RulesforHydrogenanditsCarriers:Informationapi/core/bitstreams/4dcabbe3-4f68-51e5-8408-andIssuesforConsideration–ADiscussion5f5b602e5992/content.PaperfortheIPHEHydrogenTradeRulesTaskForce”.Availableathttps://www.aramis.admin.ch/Default?DocumentID=68716&Load=true.INTERNATIONALTRADEANDGREENHYDROGEN•55InternationalRenewableEnergyAgency(IRENA)InternationalRenewableEnergyAgency(IRENA)and(2019),Hydrogen:ARenewableEnergyPerspective,AmmoniaEnergyAssociation(AEA)(2022),InnovationAbuDhabi:IRENA.Outlook:RenewableAmmonia,AbuDhabiandBrooklyn:IRENAandAEA.InternationalRenewableEnergyAgency(IRENA)(2020a),GreenHydrogenCostReduction:ScalingInternationalRenewableEnergyAgency(IRENA)andupElectrolyserstoMeetthe1.5oCClimateGoal,AbuRockyMountainInstitute(RMI)(2023),CreatingaglobalDhabi:IRENA.hydrogenmarket:Certificationtoenabletrade,AbuDhabiandColorado:IRENAandRMI.InternationalRenewableEnergyAgency(IRENA)(2020b),Greenhydrogen:AGuidetoPolicyMaking,InternationalRenewableEnergyAgency(IRENA)AbuDhabi:IRENA.andWorldEconomicForum(WEF)(2022),Enablingmeasuresroadmapforgreenhydrogen,AbuDhabiandInternationalRenewableEnergyAgency(IRENA)Geneva:IRENAandWEF.(2021),InnovationOutlook:RenewableMethanol,AbuDhabi:IRENA.OrganisationforEconomicCo-operationandDevelopment(OECD)(2022),“3.AidforTradeandtheInternationalRenewableEnergyAgency(IRENA)SustainableDevelopmentGoals”,inAidforTradeata(2022a),GlobalHydrogenTradetoMeetthe1.5°CGlance2022:EmpoweringConnected,SustainableClimateGoal.PartI:TradeOutlookfor2050andWayTrade,Paris:OECDandIEA.Availableathttps://doi.Forward,AbuDhabi:IRENA.org/10.1787/9ce2b7ba-en.InternationalRenewableEnergyAgency(IRENA)OrganisationforEconomicCo-operationand(2022b),Globalhydrogentradetomeetthe1.5°CDevelopment(OECD)andInternationalEnergyAgencyclimategoal:PartII–Technologyreviewofhydrogen(IEA)(2021),“Updateonrecentprogressinreformcarriers,AbuDhabi:IRENA.ofinefficientfossilfuelsubsidiesthatencouragewastefulconsumption2021”,Paris:OECDandInternationalRenewableEnergyAgency(IRENA)IEA.Availableathttps://www.oecd.org/fossil-fuels/(2022c),Globalhydrogentradetomeetthe1.5°Cpublicationsandfurtherreading/OECD-IEA-G20-Fossil-climategoal:PartIII–GreenhydrogencostandFuel-Subsidies-Reform-Update-2021.pdf.potential,AbuDhabi:IRENA.OrganisationforEconomicCo-operationandInternationalRenewableEnergyAgency(IRENA)Development(OECD)andInternationalEnergyAgency(2022d),GreenHydrogenforIndustry:AGuideto(IEA)(2022),“SupportforfossilfuelsalmostdoubledPolicyMaking,AbuDhabi:IRENA.in2021,slowingprogresstowardinternationalclimategoals,accordingtonewanalysisfromOECDandIEA”,InternationalRenewableEnergyAgency(IRENA)Paris:OECDandIEA,29August2022.Availableat(2023a),WorldEnergyTransitionsOutlook2023:1.5°Chttps://www.oecd.org/newsroom/support-for-fossil-Pathway,AbuDhabi:IRENA.fuels-almost-doubled-in-2021-slowing-progress-toward-international-climate-goals-according-to-new-InternationalRenewableEnergyAgency(IRENA)analysis-from-oecd-and-iea.htm.(2023b),RenewablePowerGenerationCostsin2022,AbuDhabi:IRENA.RystadEnergy(2023),“TheglobalmarketsforHydrogenandCCUS-wherearethechallengesandopportunities?”,Whitepaper,20September2023.UnitedNationsIndustrialDevelopmentOrganizationWorldTradeOrganization(WTO)(2022b),WorldTrade(UNIDO)(2022),“PromotingGreenHydrogenReport2022:Climatechangeandinternationaltrade,toSupportIndustrialDevelopmentandtheParisGeneva:WTO.Agreement:UNIDO’sProgrammeforGreenHydrogeninIndustryanditsGlobalPartnership”,Vienna:UNIDO.WorldTradeOrganization(WTO)andInternationalAvailableathttps://www.unido.org/sites/default/files/RenewableEnergyAgency(IRENA)(2021),files/2022-05/UNIDO-Hydrogen-Partnership-brochure-TradingintoaBrightEnergyFuture.TheCaseforOpen,Feb22.pdf?_token=927870658.High-QualitySolarPhotovoltaicMarkets,GenevaandAbuDhabi:WTOandIRENA.WorldEconomicForum(WEF)(2022),GreenPublicProcurement:CatalysingtheNet-ZeroEconomy–WhitePaper,January2022,Geneva:WEF,12January2022.WorldTradeOrganization(WTO)(2022a),“TradeandClimateChange:InformationbriefNo.6–Whatyardstickfornet-zero?HowWTOTBTdisciplinescancontributetoeffectivepoliciesoncarbonemissionstandardsandclimatechangemitigation”,Geneva:WTO.WorldTradeOrganization154,ruedeLausanneCH-1211Geneva2SwitzerlandTel:+41(0)227395111www.wto.orgWTOPublications:publications@wto.orgWTOOnlineBookshop:http://onlinebookshop.wto.orgInternationalRenewableEnergyAgencyMasdarCityP.O.Box236AbuDhabiUnitedArabEmirateswww.irena.orgTel:+97124179000Email:info@irena.orgReportdesignedbyTouchline.PrintedbytheWorldTradeOrganization.©WorldTradeOrganizationandInternationalRenewableEnergyAgency,2023.PrintISBN978-92-870-7564-2WebISBN978-92-870-7563-5PublishedbytheWorldTradeOrganizationandInternationalRenewableEnergyAgency.Hydrogenproducedexclusivelyfromrenewablepower–knownasgreenhydrogen–iswidelyrecognisedasakeypillarinreplacingfossilfuelsanddecarbonizingsectorsthatcannoteasilybeelectrified,suchassomeindustrialprocesses,shippingandaviation.Thispublication–jointlyproducedbytheInternationalRenewableEnergyAgency(IRENA)andtheWorldTradeOrganization(WTO)–exploreshowtradepoliciescansupportthedevelopmentofgreenhydrogenmarkets.Thepublicationhighlightsinparticularhowloweringtariffsonkeyproducts,buildingreliableinfrastructure,realigningdomesticsupportprogrammesanddevelopinggreengovernmentprocurementcanfosterthedevelopmentofgreenhydrogensupplychainsandthetransitiontoalow-carboneconomy.Internationaltradecouldalsoplayasignificantroleinmatchingsupplyanddemandforgreenhydrogen,asthepotentialfordomesticproductioninsomeeconomiesmightnotbeenoughtosatisfydomesticdemand.Thepublicationalsoaddressesthechallengesandopportunitiesfordevelopingeconomiesofferedbygreenhydrogenanditsderivatives,suchasgreenmethanolandgreenammonia.Itunderscorestheimportanceofinternationalcooperationandtheneedtoalignregulatoryframeworkstoencouragetechnologydevelopment,enhancedtransparencyandmarketgrowth.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱