STATEOFCLIMATEACTION2023AbouttheAuthorsLeadAuthors:SophieBoehm,LouiseJeffery,JuditHecke,CleaSchumer,JoelJaeger,ClaireFyson,andKellyLevinChapterAuthors:•Methodology:JoelJaeger,SophieBoehm,JuditHecke,CleaSchumer,andLouiseJeffery•Power:JasonCollis,Marie-CharlotteGeffray,CleaSchumer,JoelJaeger,andClaireFyson•Buildings:EmilyDalyandLouiseJeffery•Industry:AnnaNilsson,NeelamSingh,andMaeveMasterson•Transport:StephenNaimoli,SebastianCastellanos,JuditHecke,MichaelPetroni,andJoelJaeger•ForestsandLand:SophieBoehm,MichelleSims,andEmmaGrier•FoodandAgriculture:RichardWaite,RaychelSanto,andMulubrhanBalehegn•TechnologicalCarbonRemoval:KatieLeblingandClaireFyson•Finance:JoeThwaitesandAndersonLeeGHGEmissionsDataset:WilliamLambSUGGESTEDCITATIONBoehm,S.,L.Jeffery,J.Hecke,C.Schumer,J.Jaeger,C.Fyson,K.Levin,A.Nilsson,S.Naimoli,E.Daly,J.Thwaites,K.Lebling,R.Waite,J.Collis,M.Sims,N.Singh,E.Grier,W.Lamb,S.Castellanos,A.Lee,M.Geffray,R.Santo,M.Balehegn,M.Petroni,andM.Masterson.2023.StateofClimateAction2023.BerlinandCologne,Germany,SanFrancisco,CA,andWashington,DC:BezosEarthFund,ClimateActionTracker,ClimateAnalytics,ClimateWorksFoundation,NewClimateInstitute,theUnitedNationsClimateChangeHigh-LevelChampions,andWorldResourcesInstitute.https://doi.org/10.46830/wrirpt.23.00010.DESIGNJennaParkSTATEOFCLIMATEACTION2023iiAcknowledgmentsThisreportwasmadepossiblebythegenerousfinancialcontributionsandthoughtleadershipfromtheBezosEarthFund,theCenterforGlobalCommons,ClimateWorksFoundation,theGlobalCommonsAlliance,andtheGlobalEnvironmentFacility.PublishedunderSystemsChangeLab,thisreportisajointeffortbetweentheBezosEarthFund,ClimateActionTracker,ClimateAnalytics,ClimateWorksFoundation,NewClimateInstitute,theUnitedNationsClimateChangeHigh-LevelChampions,andWorldResourcesInstitute.Theauthorswouldliketoacknowledgethefollowingfortheirguidance,criticalreviews,andresearchsupport:•ThereportbenefitednotonlyfromClimateWorksFoundation’sfinancialsupportbutalsofromtheworkoftheFoundation’sGlobalIntelligenceteam,particularlyDanPlechatyandSurabiMenon,whoplayedpivotalrolesinconceivingtheideafortheanalysisandprovidingtechnicalsupportthroughouttheresearch,writing,andpeerreviewprocess.•BillHarefromClimateAnalytics,NiklasHöhne,HannaFekete,andTakeshiKuramochifromNewClimateInstitute,andLauraMalaguzziValeri,TarynFransen,andRachelJetelfromWRIallprovidedvaluableconceptualinputs,review,andstrategicguidance.•MembersoftheUnitedNationsClimateChangeHigh-LevelChampionsteam,includingFrancesWay,JenAustin,andEmmanuellePinaultprovidedcriticalthoughtleadershipandinsights.•NigelTopping,YukeKirana,SarahCassius,ThetHenTun,ChrisMalins,andLizGoldmanallmadesubstantivecontri-butionstothereport.Wewouldalsoliketothankthereport’sreviewerswhohavesharedtheirtime,expertise,andinsights:AkiKachi,AlessiaMortara,AlexPerera,AndrewSteer,AndyJarvis,AnjaliMahendra,AnkitaGangotra,AnnaStratton,AriefWijaya,ArijitSen,ÅsaEkdahl,AudreyNugent,BaysaNaran,BeatrizGranziera,BenjaminWagenvoort,BradfordWillis,CaitlinSwalec,CarolinaHerrera,CatherineMcfarlane,ChhaviMaggu,ChristaAnderson,ClaraCho,ClareBroadbent,ClaudiaAdriazola-Steil,ClaudioLubis,ClayNesler,DanLashof,DanPlechaty,DanielFirth,DanielMoser,DanielRath,DaveJones,DavidGibbs,DedeSulaeman,DeepakKrishnan,EileenTorres,EkinBirol,EmmanuellePinault,FrancesWay,FrancescoPavan,FranziskaSchreiber,FranziskaTanneberger,FredStolle,FredericHans,FridolinKrausmann,GaiaLarsen,GunchaMunjal,HaldaneDodd,HannaFekete,IgnaceBeguinBillecocq,IlmiGranoff,JacobTeter,JenniferSkene,STATEOFCLIMATEACTION2023iiiAcknowledgments(CONTINUED)JinleiFeng,JonBaines,JorenVerschaeve,JoshMiller,KaranKochhar,KarlHausker,KateMackenzie,KatharinePalmer,KatieO’Gara,KatieReytar,KellyCarlin,KemenAustin,LaurenUrbanek,LaurensSpeelman,LenaBrook,LeonardoCollina,LindseySloat,LoriBird,LucianoCaratori,LuisMartinez,MatthewBlack,MattIves,MaxÅhman,MelanieBrusseler,MikaelaWeisse,MohamedHegazy,NandiniDas,NataliaAlayza,NataliePelekh,NathandeArriba-Sellier,NickMurray,NicoleIseppi,NigelTopping,NikolaMedimorec,NoëlBakhtian,OlafErenstein,OliviaWessendorff,PaigeLanger,PaulBodnar,PaulineGuerecheau,PeteBunting,PrashanthGururaja,RebeccaBrooks,RexDeighton-Smith,RobinChase,SagarikaChatterjee,SameenKhan,ShivakumarKuppuswamy,SiddharthJoshi,SoojinKim,StephenRichardson,SwatiHegde,TakeshiKuramochi,TarynFransen,TeodylNkuintchua,TristanSmith,ValentinVogl,VéroniqueFeypell,WillWild,WilliamLamb,YukiNumata,ZacharyByrum,andZarrarKhan.TheauthorsaregratefultoWRIcolleaguesfortheirsupportintheproductionofthereport,includingadministrativeassistance,editing,graphicdesign,andlayout:RomainWarnault,CathlineNagel,MaryLevine,ReneePineda,andKathySchalch.IreneBerman-Vaporis,BrynneWilcox,RhysGerholdt,VictoriaFischdick,CindyBaxter,PaulMay,ClairePfitzinger,RocíoLower,StaciePaxtonCobos,AliciaCypress,SaraStaedicke,SarahParsons,AlisonCinnamond,NateShelter,CaseySkeens,TimLau,andFabioScaffidi-Argentinaalsoprovidedinvaluablecommunicationsandoutreachsupport.WRIisalsopleasedtoacknowledgetheinstitutionalstrategicpartners,whoprovidecorefundingtotheInstitute:theNetherlandsMinistryofForeignAffairs,theRoyalDanishMinistryofForeignAffairs,andtheSwedishInternationalDevelopmentCooperationAgency.STATEOFCLIMATEACTION2023ivContentsACKNOWLEDGMENTS..............................................iiiFOREWORD.......................................................viEXECUTIVESUMMARY..............................................11.METHODOLOGYFORASSESSINGPROGRESS........................182.POWER........................................................263.BUILDINGS.....................................................414.INDUSTRY.....................................................585.TRANSPORT....................................................756.FORESTSANDLAND............................................997.FOODANDAGRICULTURE.......................................1228.TECHNOLOGICALCARBONREMOVAL.............................1419.FINANCE......................................................15010.CONCLUSION.................................................171APPENDICES.....................................................175ENDNOTES......................................................190REFERENCES.....................................................197STATEOFCLIMATEACTION2023vForewordWefacetwoseeminglyirreconcilabletruthsThisyear’sreportseekstoanswerthreequestions.Whatintoday’sbattleagainstclimatechange.doesthelatestclimatescienceindicateisrequiredforeachsectoroftheeconomy?Howisourcollectiveperfor-First,wearedeepintheclimateemergency.Thismancestackingupagainstthese1.5°C-alignedtargets?year’sStateofClimateActionfindsthatonlyoneoftheAndwhereareweseeingpositiveexponentialchangethat42indicatorsofsectoralclimateactionassessed—thewecanbuildon?shareofelectricvehiclesinpassengercarsales—isontracktomeetits2030target.ProgressfallswoefullyThesefindingsontheStateofClimateActioncomeatshortacrosstheboard.Forexample,coalneedstobeapivotalmoment.Thisyear,asthefirstGlobalStocktakephasedoutofelectricitygenerationseventimesfasterundertheParisAgreementculminatesatCOP28,worldthanrecentrates,andtheannualrateofdeforestationleadersmustrecognizetheinsufficientprogresstodate–equivalentto15footballfieldsperminutein2022-andchartapathforwardthatbuildsonthesuccessesneedstobereducedfourtimesfaster.It’snosurprisewe’reseeing.ThismomentshouldserveasaspringboardthatJuly’sglobaltemperaturewasthehighestmonthlyforacceleratedactionstomitigateclimatechange,temperaturein120,000yearsasaresult.Orthatwildfires,includingforequitablyphasingoutfossilfuelsandscalingtorrentialrainandmarineheatwavesarebecomingrenewableenergy,transformingfoodsystemswhilehaltingmorevisible,withvulnerablecommunitiesandGlobalandreversingdeforestation,enhancingadaptationandSouthcountriesdisproportionatelyaffected.Overall,therespondingtolossesanddamages,andscalingandclimateimpactsandtrendswe’vewitnessedin2023shiftingfinance.havebeenawake-upcall—evenmorealarmingthanmanyclimatescientistspreviouslyforecasted.AndTransformationalchangecantakeoffbutwillnotearlyindicationsarethatcarbondioxidelevelsin2023happenautomatically,especiallyincountriesandwillbeatrecordlevels,attheverytimetheyshouldbecommunitiesthatlackenoughresourcesandtechnicalsteeplydeclining.capacity.Suchtransitionsmustbenurturedbyleadership,smartpoliciesandincentives,innovation,stronginstitu-Second,weareseeingspectaculargainsthataresur-tions,andchangesinbehaviorandvalues.Whiledifficult,prisingevenoptimists.Justinthelasttwelvemonths,newacceleratingthesechanges—anddoingsoequitably—isdevelopmentshavebeenoutstrippingtheexpectationsnotimpossible.Andalthoughtheclimatecrisiscontinuesofexpertsfromevenafewyearsago.Today,utility-scaletointensify,thefuturewillbedecidedbyus.solarphotovoltaicsandonshorewindarethecheapestoptionsforelectricitygenerationinthelargemajorityofIt’snottoolate.countries.Andglobalrenewablecapacityadditionsarelikelytoincreasebyathirdthisyear–thelargestannualH.E.RazanAlMubarakincreaseever.ElectriccarmarketsareseeingexponentialUNClimateChangeHigh-LevelChampionfromthegrowth,comprising10%ofallnewcarssoldbeingin2022,COP28Presidencyupfrom1.6%in2018.PreliminarysatellitedatafromBrazil’snationalspaceagencyindicatethatdeforestationfellAniDasguptabyover30percentduringPresidentLula’sfirstsixmonthsPresidentandCEO,WorldResourcesInstituteinoffice.Globalsalesofheatpumpswitnessedanotheryearofdouble-digitgrowth,withsalesinEuropegrowingBillHarebyalmost40%.AndthankstothepassageoftheInfla-CEO,ClimateAnalyticstionReductionActintheUnitedStates,companiesareannouncinghundredsofcleanenergymanufacturingNiklasHöhnefacilities,turbochargingbatteryandelectricvehiclepro-NewClimateInstituteductionandcreatingtensofthousandsofnewjobs.TheseexamplesshowthatrapidchangetoaddressclimateRachelJetelchangeispossible.Co-Director,SystemsChangeLab,WorldResourcesInstituteWemustfacetheseseeminglyinconsistenttruthstogether.BothrealitiesexplainwhypeoplecanfindKellyLevinthemselvesfeelingradicallyoptimisticorpessimistic.ButCo-Director,SystemsChangeLab,BezosEarthFundwemustembraceboth:ourcollectivefailuretoaddressclimatechangethusfar,aswellasourexponentialMahmoudMohieldinprogressinsomesectors.ThewindowtoreachourclimateUNClimateChangeHigh-LevelChampionfromthegoalsisrapidlyclosing,butwehavelearnedthatmanyofCOP27Presidencythesolutionsweneedcanspreadevenmorequicklythanwepreviouslyimagined.Ofcourse,thisisonlytrueifweHelenMountfordfullydedicateourselvestothechallengeathand.PresidentandCEO,ClimateWorksFoundationAndrewSteerPresidentandCEO,BezosEarthFundSTATEOFCLIMATEACTION2023viiExecutiveSummaryAtthe28thConferenceoftheParties(COP28),Highlightstheworldcanjump-startanurgentlyneededcoursecorrectiononclimatechangeasParties•TosupporttheGlobalStocktake,thisreporttrans-respondtofindingsfromthefirstGlobalStocktake.AsthecruxoftheParisAgreement’smechanismforlatestheParisAgreement’stemperaturelimitintoratchetingupambition,thisprocessoffersleaders1.5°C-alignedtargetsacrosssectorsandoffersafrankacrossgovernment,civilsociety,andtheprivatesectorassessmentofrecentprogresstowardthem.thechancenotonlytoissueareportcardonimplemen-tationoftheParisAgreementthusfar,includingprogress•Thissectoralreportcardshowsthattransformationsmadeinlimitingglobalwarmingto1.5°C,butalsotoprovidearoadmapforcombattingthiscrisis.Thesearenotoccurringattherequiredpaceandscale.sameleaderscanthenresponddecisivelytotheGlobalOnly1of42indicatorsassessed—theshareofelectricStocktake’sfindingsbymakingconcretecommitmentsvehiclesinpassengercarsales—isontracktoreachatCOP28that,together,serveasapowerfulspringboardits2030target.Andwhilechangeisheadingintheforgreaterambitionandmoreimmediateclimaterightdirectionfornearlythree-quartersoftheindica-action.Governments,forexample,canstartbynegotiat-tors,thepaceremainspromisingbutinsufficientforingadecisionthatprioritizescriticalmitigationactions6andatwellbelowtherequiredspeedforanotherthisdecade,suchasphasingoutunabatedfossilfuelsin24.For6,recenttrendsareheadinginthewrongelectricitygeneration,haltingdeforestationanddeg-directionentirely,anddataareinsufficienttoevaluateradation,andshiftingtozero-carbontransportation.Atheremaining5.successfulStocktakeshouldalsoinformthenextroundofnationallydeterminedcontributions(NDCs)in2025,•Butevenwhenchangeisheadingintherightdirec-promptingcountriestostrengthenexistingeconomy-wideandsector-specifictargetsfor2030,aswellassettion,gettingontrackfor2030willrequireanenormousnewonesfor2035andbeyond.accelerationineffort.Coal-firedpower,forexample,needstobephasedoutseventimesfaster.Defor-Failuretoseizethismomentanddramaticallyaccel-estationratesmustdeclinefourtimesfaster.Anderateambitiousclimateactionacrossallsectorswillincreasesintheratioofinvestmentinlow-carbonexactahighprice,withfar-reachingconsequencesfortofossilfuelenergysupplyneedtooccurmorethanalllifeonEarth.Inmodeledpathwaysthatlimitglobaltentimesfaster.temperatureriseto1.5°Cwithnoorlimitedovershoot,greenhousegas(GHG)emissionspeakimmediately•Progressmadeinadoptingzero-carbontechnolo-andby2025atthelatest,andthendeclinebyamedianof43percentby2030and60percentby2035,relativegies—solarandwindpower,heatpumps,andelectricto2019.Carbondioxide(CO2)emissions,specifically,vehicles,forexample—showsthat,fortunately,rapid,reachnetzerobymidcentury(IPCC2022b,2023).Yet,nonlinearchangeisnotonlypossiblebutalreadyinpractice,human-causedGHGemissionscontinueunderwayinsomesectors.Andthisassessmenttorise,increasingnearly10percentrelativeto2010andaccountsforsuchchange.50percentrelativeto1990(Minxetal.2021;EuropeanCommissionandJRC2022).In2019,theyreachedan•Nearlyhalfwaythroughthisdecisivedecade,leadersall-timehigh,withtheconsumptionpatternsoftheworld’shighest-earninghouseholdsaccountingformustpickupthepaceandshiftintoemergencyadisproportionatelylargeshareofemissions(IPCCmode.Theymustnurturerapid,nonlineargrowth,2022b).Andwiththecurrent1.1°Cofglobaltemperatureaccelerateprogress,andexpandmuch-neededrise,climatechangeisalreadywreakinghavocacrosssupporttoallsectors,especiallythoselaggingtheplanet—drivingtemperaturestoextremes,rapidlyfurthestbehind.meltingglaciersandicesheets,fuelingrecord-breakingwarmingintheocean,andsuperchargingdroughts,Changingcoursetolimitwarmingto1.5°Cwillrequirefloods,wildfires,andcyclones.Thesechangeshavetheworldtoovercomebarriersthatstillstandinbroughtdevastatingimpactstocommunitiesaroundthewayoftransitioningtoanet-zerofutureamidatheworld,oftenundermininghard-wondevelopmentrapidlychanginggeopoliticallandscape.Powerfulgains,andeveryfractionofadegreeofwarmingwillvestedinterests—fromfossilfuelindustrylobbyiststointensifythesethreats,particularlytothemorethanmultinationalagriculturalcorporations—stilldefend3billionpeoplelivinginhighlyvulnerablecountries.theemissions-intensivestatusquo.InvestmentsinEventemporarilyovershootingtheParisAgreement’stheresearchanddevelopmentofmorenascent1.5°Climit,forexample,willleadtomuchmoresevere,zero-carbontechnologiesremainfartoolow.Andmanyoftentimesirreversible,impacts(IPCC2022a).countrieshaveyettoadoptthesupportivepoliciesneededtoacceleratesectoraltransformations(BoehmExecutiveSummarySTATEOFCLIMATEACTION20232etal.2022).Atthesametime,Russia’sinvasionofUkraineglobally,withworldwideinvestmentsinlow-carboncontinuestochallengediplomacy,reshapegeopolitics,energysupplyexceedingthoseinfossilfuelsforthefirstandcomplicatemultilateraleffortstomitigateclimatetimein2022(IEA2023m).2change(IEA2023p).ThewarhasalsointensifiedtheglobalfoodcrisisbydisruptingagriculturalproductionAgrowingbodyofevidencealsoshowsthat,withacrosstheworld’sbreadbasket,Ukrainiangrainexports,supportivepolicies,rapid,nonlinearchangeisalreadyandfertilizertrade.Subsequentrisesinfoodpriceshaveoccurringinsomesectorsandregions.Overthelasthithardestthoselivinginpoverty,particularlyinlow-fiveyears,theshareofelectricvehicles(EVs)inlight-dutyandmiddle-incomecountries(GlauberandLabordevehiclesaleshasgrownexponentiallyatanaverage2023).CoupledwiththeburdenofacostlyCOVID-19annualrateof65percent—upfrom1.6percentofsalesrecovery,thiscataclysmofrecenteventsposessignif-in2018to10percentofsalesin2022(IEA2023e).Intheicantobstaclestoclimateaction,effectivelysappingpastdecade,powergenerationcostshavedeclined80governmentspendingandsaddlingmanycountriespercentforsolarphotovoltaics(PV)and65percentforwithrecord-highdebt,inflation,andinterestratesonshorewind(IRENA2023b),makingthesetechnologies(Wheatley2023).thecheapestsourcesofnew-buildelectricitygener-ationforatleasttwo-thirdsoftheglobalpopulationFortunately,theseobstaclesaresurmountable,and(BloombergNEF2020).Andthepriceofbatterystorage,recentyearshavewitnessedsignificantaction,partic-atechnologythatenablesgreateradoptionofmanyularlyamongmajoremitters.Althoughsomecountriesrenewablepowersources,alsodroppedby89percenthavereopenedfossilfuelplantsfollowingRussia’sinva-between2010and2021(BloombergNEF2022a).ThesesionofUkraine,othershaveusedthisexogenousshockbrightspotsshowthat,undertherightconditions,asajustificationtoincreaseinvestmentsinzero-carbonchangecantakeoff.Expandingsuchprogresstoalltechnologiesinpursuitofenergy-independentfutures.1sectorswillrequireleaderstoprioritizesupportiveTheEuropeanUnion,forexample,installedrecordregulationsandincentives,investmentsininnovationamountsofwindandsolarin2022andacceleratedandinscalingexistingsolutions,courageousleadership,efficiencyimprovementsandheatpumpinstallations,institutionalstrengthening,andbehaviorchangeandallofwhichhavecontributedtorapiddeclinesinfossilshiftsinsocialnorms.fueldemand(EwenandBrown2023;Zeniewskietal.2023).ChinaispoisedtomeetitsrenewableenergyAlthoughthewindowofopportunitytolimitwarmingcapacitytargetsfor2030,asmuchasfiveyearsearlyto1.5°Cisnarrowing,achievingthisParisAgreement(GEM2023c);in2022,itspentnearlyUS$550billionongoalisstilltechnicallyfeasible—andthebenefitszero-andlow-carbontechnologies—almostasmuchasofsecuringthisfutureareenormous.CuttingGHGthecombinedinvestmentsmadebyallothercountriesemissionscanserveasafirstlineofdefensebyhelp-inthatsameyear(BloombergNEF2023b).AndtheUnitedingtoreducethefrequencyandseverityofimpactsStatesrecentlypassedtheInflationReductionAct,whichtowhichvulnerablecommunitiesaroundtheworldwillprovidemorethan$370billion(andupto$1.2trillion,mustadapt,aswellasminimizingsome(thoughnotwiththerangedrivenbyuncertaintyoverhowmuchall)lossesanddamages.Mitigatingclimatechange,ataxcreditswillbeclaimed)over10yearstoprojectsthatdirectdriverofbiodiversityloss,canalsolowertheriskofreduceGHGemissionsandenhancecarbonremoval—irreversibleecosystemlossanddegradation.Andwhenthelargestinvestmentinclimateandenergyintheimplementedappropriately,thesesamemeasurescountry’shistory(WhiteHouse2023;Jiangetal.2022;cangenerateawiderangeofbenefitstosustainableGoldmanSachs2023).Suchmomentumisalsogrowingdevelopment,suchasimprovedairquality,increasedExecutiveSummarySTATEOFCLIMATEACTION20233accesstocleanenergy,diversifiedlivelihoods,andlivelihoods,intensifyfoodinsecurity,andundermineenhancedfoodsecurity(IPCC2022b).Whenconsideringeffortstoeliminatepovertyifimplementedinappro-thealternative,thesebenefitsofclimateactioncannotpriately.Andsomeclimatepolicies,suchascarbonbeoverstated.taxes,canberegressiveiftheydon’tincludeprovisionstooffsetincreasedcostsforlow-incomecommunities.JusticeandequitymusttakecenterstageinglobalFortunately,manymeasuresexisttosupportajusteffortstoacceleratesectoraltransformations.Thetransitionandhelpensurethatnooneisleftbehindasbenefitsreapedfromlimitingwarmingto1.5°Cmusttheworldmovestowardafutureofnet-zeroemissions.besharedequitably,andachievingthisgoal,inlargepart,willrequirethatthoseimpactedbythesechangesAboutthisreporthavethepowertoshapedecision-makingprocesses.Itwillalsodependontherapidscale-upofclimateTosupporttheGlobalStocktakeprocess,theStateoffinance,particularlyfundingfordevelopingcountries.ClimateActionseriestranslatestheParisAgreement’sWithoutadditional,accessible,andhigh-qualityfinance,1.5°Ctemperaturelimitintosectoraltargetsandthesecountrieswilllikelystruggletoimplementmiti-providesaroadmapthatleaderscanfollowtohelpgationmeasuresandsecurethebenefits—bothlocalclosetheGHGemissionsgap.BuildingonCAT(2020a,andglobal—oflimitingwarmingto1.5°C.Yetwealthy2020b,2023a),Leblingetal.(2020),Boehmetal.(2021,countries’deliveryoninternationalclimatefinancecom-2022),andClimateAnalytics(2023),thisfourthinstall-mitmentsremainsfarbehind(OECD2022a;Songweetal.mentfeatures1.5°C-alignedtargetsprimarilyfor20302022).Effortstomitigateclimatechangewillalsocreateand2050,aswellasassociatedindicators,forpower,newchallenges(IPCC2022b).Retiringcoal-firedpowerbuildings,industry,transport,forestsandland,andfoodplants,forexample,risksdisplacingworkers,disruptingandagriculturethattheliteraturesuggestsareamonglocaleconomies,andreconfiguringthesocialfabricofthebestavailabletomonitorsectoralclimatemitiga-communities.ReforestationeffortsmayalsoharmlocalFIGUREES-1GlobalnetanthropogenicGHGemissionsbysectorin2021ElectricityandheatOilandgas14.4fugitiveemissions2.5Other1.6Coalminingfugitiveemissions1.5EnergyPetroleumrefining20.70.7Non-CO2(allbuildings)WasteLanduse,0.04land-use2.4change,Nonresidentialandforestry0.8GlobalGHGAgriculture,Emissionsforestry,4.0Rail56.8GtCO2eandother0.1ResidentialBuildingslandusesEnteric2.33.2fermentationInlandshipping10.40.2Transport3.0Managed8.1DomesticaviationManagedsoilsand0.3soilsandpasturepastureInternational1.4aviation1.40.4Industry12.0Other0.5RoadOtherRicecultivationTransport4.41.0Internationalshipping5.9Manuremanagement0.70.4ChemicalsMetals2.63.4Syntheticfertilizerapplication0.4Cement1.6Biomassburning0.1Notes:CO2=carbondioxide;GHG=greenhousegas;GtCO2e=gigatonnesofcarbondioxideequivalent.Notethatsectorsingreyareexcludedfromthisreport.Sources:Minxetal.(2021);EuropeanCommissionandJRC(2022).ExecutiveSummarySTATEOFCLIMATEACTION20234tionpathways.Together,thesesectorsaccountedforFinally,wealsohighlightrecentdevelopments—fromroughly85percentofnetanthropogenicGHGemissionsadoptingnewpoliciestoinvestinginthedevelopmentgloballyin2021(FigureES-1),withwasteandupstreamofmorenascentzero-carbontechnologiestodisburs-energyemissions,suchasfugitiveemissionsfromfossilingfinancialpledges—thathaveoccurredprimarilyfuelextractionandpetroleumrefining,accountingsincethe26thConferenceoftheParties(COP26)infortheremaining15percent.Additionally,thisreportGlasgow.Formanyofour42indicators,itcantaketimeincludestargetsandindicatorstotrackprogressmadeforactionsundertakenbygovernments,civilsociety,inscalingupcarbonremovaltechnologiesandclimateandtheprivatesectortospurglobalchange.Yetthesefinance,bothofwhichwillbeneededtoachievetheadvancesstillrepresentmeaningfulprogressmadeinParisAgreement’s1.5°Climitonglobaltemperaturerise.thereal-worldeconomy,andtheycanofferinsightsintoWhileasimilareffortiswarrantedforadaptation,thiswheremomentumforpositivechangemaybegainingreport’sscopeislimitedtomitigation,thoughachiev-traction,aswellaswhereconsiderablymoreeffortwillingsometargetswoulddeliverconsiderablebenefitsbeneededthisdecadetoachieve1.5°C-alignedtargets.toadaptation.Thus,foreachsector,wehighlightrecentdevelop-mentsacrossenablingconditionsoutlinedinBoehmTheseriesalsoprovidesareportcardoncollectiveetal.(2022)—innovationsintechnologies,supportiveeffortstomitigateclimatechangebyevaluatingpolicies,institutionalstrengthening,leadership,andrecentprogressmadetoward(orawayfrom)2030shiftsinbehaviorandsocialnorms—toprovideamoretargets.Toassessglobalprogressformostindicators,comprehensivesnapshotofclimateaction.Wefocusweusedthepast5yearsofhistoricaldata(or10yearsprimarilyonthosethatareglobalinscope,thoughforforestsandlandindicatorswherepossible)toprojectwealsoincludethosethatareeitherfromparticularlyalineartrendlinefromthemostrecentyearofdatatoimportantgeographiesorthatrepresentpromising(or2030andthencomparedthistrendlinetotherateofworrying)developments.changeneededtoreach1.5°C-alignedtargetsforthesameyear.Withthesedata,wecalculatedaccelerationKeyfindingsacrossfactorstoquantifyhowmuchthepaceofrecentchangesectorsneedstoincreaseoverthisdecadeandthenusedtheseaccelerationfactorstoclassifyindicatorsintooneoffiveHeadingintothefirstGlobalStocktake,theworldmustcategories:headingintherightdirectionandontrack,facethehardtruththat,whilemeaningfulprogressheadingintherightdirectionbutofftrack,headinghasbeenmadeacrosssomesectors,collectiveeffortsintherightdirectionbutwellofftrack,headinginthetofirstpeakandthennearlyhalveGHGemissionswrongdirectionentirely,orinsufficientdata.Butforathisdecadestillfallwoefullyshort.Recentratesofhandfulofindicators,namelythosethatdirectlytrackchangefor41ofthe42indicatorsacrosspower,build-theadoptionofinnovativetechnologies,futurechangeings,industrytransport,forestsandland,foodandwilllikelyfollowanS-curveratherthanapurelylinearagriculture,technologicalcarbonremoval,andclimatetrajectory.Toaccountforthisrapid,nonlineargrowth,financearenotontracktoreachtheir1.5°C-alignedwefirstconsideredthelikelihoodthatfuturechangeintargetsfor2030(FigureES-2).Worryingly,24ofthoseindicatorswillfollowanS-curveandclassifiedindicatorsindicatorsarewellofftrack,suchthatatleastatwofoldasS-curveunlikely,S-curvepossible,andS-curvelikely.accelerationinrecentratesofchangewillberequiredFor“S-curvelikely”indicators,weadjustedourmeth-toachievetheir2030targets.Another6indicatorsodsforassessingprogressmadetowardnear-termareheadinginthewrongdirectionentirely.Withinthistargets.Morespecifically,weconsideredmultiplelinessubsetoflaggingindicators,themostrecentyearofofevidence,includingtheshapeandstageofeachdatarepresentsaconcerningworseningrelativetoindicator’sS-curve,areviewoftheliterature,andcon-recenttrendsfor3indicators,withsignificantsetbackssultationswithsectoralexperts.WealsofittedS-curvesineffortstoeliminatepublicfinancingforfossilfuels,tohistoricaldata,whereappropriate.Ininstanceswheredramaticallyreducedeforestation,andexpandcarbonwefoundcompellingevidenceofS-curvedynamics,pricingsystems.In2021,forexample,publicfinancingforweupgradedourassessmentofprogressfromwhatfossilfuelsincreasedsharply,withgovernmentsubsidies,itwouldhavebeenbasedonapurelylineartrend-specifically,nearlydoublingfrom2020toreachtheline.Inthisinstallment,forexample,weupgradedthehighestlevelsseeninalmostadecade(OECDandIISDshareofEVsinlight-dutysalesfrom“wellofftrack”2023).Andin2022,deforestationincreasedslightlyto(theresultsofapurelylinearassessment)to“ontrack,”5.8millionhectares(Mha)worldwide,losinganareaofgivenongoingexponentialgrowthandprojectionsofforestsgreaterthanthesizeofCroatiainasingleyear.near-termchange.Approximately60percentofthesepermanentlossesoccurredacrosshumidtropicalprimaryforests,amongtheworld’smostimportantlandscapesforcarbonExecutiveSummarySTATEOFCLIMATEACTION20235sequestrationandstorage,aswellasbiodiversity(Han-•Dramaticallyincreasegrowthinsolarandwindsenetal.2013;Curtisetal.2018;Turubanovaetal.2018;Tyukavinaetal.2022).power—theshareofthesetwotechnologiesinelectricitygenerationhasbeengrowingbyanannualAmidthisbadnews,therearebrightspotsthataverageof14percentinrecentyears,butthisneedsunderscorethepossibilityofrapidchange.Therecenttoreach24percenttogetontrackfor2030.rateofchangeforoneindicator—theshareofEVsinlight-dutyvehiclesales—isontracktoachieveits2030•Phaseoutcoalinelectricitygenerationseventimestarget.BecauseEVsemitmuchlessthanfossil-fueledvehiclesevenwhenpoweredbydirtygrids,achievingfaster—whichisequivalenttoretiringroughly240thistargetcouldgoalongwaytowarddecarbonizingaverage-sizedcoal-firedpowerplantseachyearroadtransport,whichcurrentlyaccountsfor11percentofthrough2030.Andascountriescontinuetobuildcoal-globalGHGemissions.Foranothersixindicators,globalfiredpowerplants,thenumberthatmustberetiredeffortsareheadingintherightdirectionatapromising,eachyearwillrise.yetstillinsufficientpace.Butwithappropriatesupportandconcertedactions,someoftheseindicatorscould•Increasethecoverageofrapidtransitsixtimesfaster,experiencerapid,nonlinearchangeinthecomingyears.Finally,ofallindicatorsheadingintherightdirection,withthetop50highest-emittingcitiescollectivelysixindicators’mostrecentyearofdatarepresentsaaddingabout1,300kilometersofmetrorails,light-railmeaningfulimprovementovertheprevioushistoricaltraintracks,and/orbuslanesperyearthrough-trendline,withthegreatestgainsseenineffortstoman-outthisdecade.datecorporateclimateriskdisclosure,increaseuptakeofelectrictrucks,andexpandtheadoptionoflight-duty•Reducetheannualrateofdeforestation—equivalentelectricvehicles.todeforesting15football(soccer)fieldsperminuteinStill,anenormousaccelerationineffortwillbe2022—fourtimesfaster.requiredacrossallsectorstogetontrackfor2030.Ashiftfrombusiness-as-usual,incrementalchangeinto•Shifttohealthier,moresustainabledietseighttimesemergencymodeisnowneededtodeliverthislevelofrequiredacceleration.Theworld,forexample,needstofasterbyloweringpercapitaconsumptionofrumi-takethefollowingsteps:nantmeat(e.g.,beef)toapproximatelytwoservingsperweekacrosshigh-consumingregions(Europe,theAmericas,andOceania).Thisshiftdoesnotrequirereducingconsumptionforpopulationswhoalreadyconsumebelowthistargetlevel,especiallyinlow-incomecountrieswheremodestincreasesinconsumptioncanboostnutrition.•Scaleupglobalclimatefinancebynearly$500billionperyearthroughouttheremainderofthisdecade.FIGUREES-2Assessmentofglobalprogresstoward2030targetsOneindicatorassessedexhibitsarecenthistoricalrateofchangethatisatorabovethepacerequiredtoachieveits2030target.For6indicators,therateofchangeisheadingintherightdirectionatapromisingbutinsufficientpacetobeontrackfortheir2030targets.For24indicators,therateofchangeisheadingintherightdirectionataratewellbelowtherequiredpacetoachievetheir2030targets.For6indicators,therateofchangeisheadinginthewrongdirectionentirely.For5indicators,dataareinsufficienttoassesstherateofchangerelativetotherequiredaction.ExecutiveSummarySTATEOFCLIMATEACTION20236FIGUREES-2Assessmentofglobalprogresstoward2030targets(continued)LIKELIHOODOFFOLLOWINGANS-CURVEACCELERATIONFACTORaN/AS-curveLikely5xS-curveUnlikely5xS-curvePossibleTheseindicatorstracktechnologyadoptionTheseindicatorsarenotcloselyrelatedtoTheseindicatorsindirectlyorpartiallytrackdirectly.TheyareeitherfollowinganS-curvetechnologyadoptionsoareunlikelytofollowantechnologyadoptionsocouldexperiencenon-linearorarelikelytodosointhefuture.ForthoseS-curve.Ourassessmentofprogressreliesonchange,althoughlikelyinadifferentformthananinearlystagesofanS-curve,ameaningfulaccelerationfactors—calculationsofhowmuchS-curve.Ourassessmentofprogressreliesonincreasemaynotoccurimmediately.Ourrecentratesofchange(asestimatedbylinearaccelerationfactors—calculationsofhowmuchassessmentreliesonauthorjudgementoftrendlines)needtoacceleratetoachievetherecentratesofchange(asestimatedbylinearmultiplelinesofevidence.2030targets.trendlines)needtoacceleratetoachievethe2030targets.Changemayoccurfasterthanexpected.RIGHTDIRECTION,ONTRACKTRANSPORTN/AbIncreasetheshareofEVsto75–95%oftotalannualLDVsales.75–95100%HISTORICAL102030DATA20222010RIGHTDIRECTION,OFFTRACKPOWERN/AbTRANSPORTN/AbTRANSPORTN/AbIncreasetheshareofzero-carbonExpandtheshareofEVstoaccountIncreasetheshareofEVsto85%for20–40%oftotalLDVfleet.oftotalannualtwo-andthree-sourcesinelectricitygenerationtowheelersales.88-91%.100%88–91100%100%853920–4049HISTORICAL20222030HISTORICAL1.520302010HISTORICAL2030DATADATADATA2022201020102022FORESTSANDLAND1.5xFOODANDAGRICULTURE1.2xFINANCE1.5xReforest100Mha.IncreaseruminantmeatIncreasetheshareofGHGemissionsproductivityperhectareby27%,subjecttomandatorycorporaterelativeto2017.climateriskdisclosuresto75%.500totalMha45kg/ha100%753329130100HISTORICAL2020–2030HISTORICAL20212030HISTORICAL202030DATADATADATA20222000–202020102010ExecutiveSummarySTATEOFCLIMATEACTION20237FIGUREES-2Assessmentofglobalprogresstoward2030targets(continued)RIGHTDIRECTION,WELLOFFTRACKPOWER7xPOWER>10xPOWER9xLowertheshareofcoalinelectricityLowertheshareofunabatedfossilReducethecarbonintensityofgenerationto4%.gasinelectricitygenerationtoelectricitygenerationto48-805-7%.gCO2/kWh.45%25%23600gCO2/kWh36440HISTORICAL4HISTORICAL5–7HISTORICAL48–80DATADATADATA202220302022203020222030201020102010BUILDINGS3xBUILDINGS4xINDUSTRY4xDecreasetheenergyintensityofReducethecarbonintensityofIncreasetheshareofelectricityinbuildingoperationsto85-120buildingoperationsto13-16theindustrysector'sfinalenergykWh/m2.kgCO2/m2.demandto35-43%.180kWh/m250kgCO2/m280%1403835–432985–120HISTORICAL20222030HISTORICAL202213–16HISTORICAL20212030DATADATADATA2030201020102010INDUSTRY>10xINDUSTRYN/AbTRANSPORT6xLowerthecarbonintensityofglobalIncreasegreenhydrogenDoublethecoverageofpubliccementproductionto360–70productioncapacityto58Mt.transportinfrastructureacrosskgCO2/tcementby2030.urbanareas,relativeto2020.700kgCO2/tcement100Mt40km/1Minhabitants3866058192010HISTORICAL360–370HISTORICAL0.0272030HISTORICAL20202030DATADATADATA20302021202020102010ExecutiveSummarySTATEOFCLIMATEACTION20238FIGUREES-2Assessmentofglobalprogresstoward2030targets(continued)RIGHTDIRECTION,WELLOFFTRACKTRANSPORT>10xTRANSPORTN/AbTRANSPORTN/AbReach2kmofhigh-qualitybikeIncreasetheshareofBEVsandIncreasetheshareofsustainablelanesper1,000inhabitantsacrossFCEVsto30%oftotalannualMHDVaviationfuelsinglobalaviationfuelurbanareas.sales.supplyto13%.2.5km/1,000inhabitants50%25%230130.0044HISTORICAL2.7HISTORICAL0.1DATADATA201020202030202220302022203020102010TRANSPORTN/AbFORESTSANDLAND4xFORESTSANDLAND>10xIncreasetheshareofzero-ReducetheannualrateofgrossRestore240,000haofmangroves.emissionsfuelinmaritimeshippingdeforestationto1.9Mha/yr.fuelsupplyto5%.8Mha/yr300,000totalha10%5.85240,000HISTORICAL0HISTORICAL1.9HISTORICALDATADATADATA201820302010201015,000203020221999–20192020–2030FOODANDAGRICULTURE3xFOODANDAGRICULTURE>10xFOODANDAGRICULTURE8xReducetheGHGemissionsintensityIncreasecropyieldsby18%,relativeReduceruminantmeatofagriculturalproductionby31%,to2017.consumptioninhigh-consumingrelativeto2017.regionsto79kcal/capita/day.1000gCO2e/1,000kcal12t/ha120kcal/capita/day700917.86.679HISTORICAL2020500HISTORICAL20212030HISTORICAL20202030DATADATADATA2030201020102010ExecutiveSummarySTATEOFCLIMATEACTION20239RIGHTDIRECTION,WELLOFFTRACKTECHNOLOGICAL>10xFINANCE8xFINANCE8xCARBONREMOVALScaleuptheannualrateofIncreaseglobalclimatefinanceIncreaseglobalpublicclimatetechnologicalcarbonremovaltoflowstoUS$5.2trillion/yr.financeflowsto$1.31–2.61trillion/yr.30-690MtCO2/yr.$6trillion/yr5.2$3trillion/yr1.31–2.611500MtCO2/yr30–6900.85HISTORICAL0.332DATAHISTORICAL0.57HISTORICALDATADATA202220102030201020212030201020202030FINANCE>10xFINANCE>10xFINANCE>10xIncreaseglobalprivateclimateIncreasetheratioofinvestmentinRaisetheweightedaveragecarbonfinanceflowsto$2.61–3.92trillion/yr.low-carbontofossilfuelenergypriceto$170-290/tCO2e.supplyto7:1.$4.5trillion/yr2.61–3.92$600/tCO2e12:1ratio7:1170–290HISTORICAL0.333HISTORICAL1:1HISTORICAL23DATADATADATA202320232010201020102020203020302030WRONGDIRECTION,U-TURNNEEDEDINDUSTRYU-turnneededTRANSPORTU-turnneededTRANSPORTU-turnneededbLowerthecarbonintensityofglobalReducethepercentageoftripsIncreasetheshareofBEVsandsteelproductionto1,340–50madeinpassengercarsto35-43%.FCEVsto60%oftotalannualbuskgCO2/tcrudesteel.sales.2,500kgCO2/tcrudesteel60%ofpassenger-km100%1,89045601,340–5035–43HISTORICAL202020302010HISTORICAL2030HISTORICAL3.82030DATADATADATA2022201020192010ExecutiveSummarySTATEOFCLIMATEACTION202310WRONGDIRECTION,U-TURNNEEDEDFORESTSANDU-turnneededFOODANDU-turnneededFINANCEU-turnneededLANDAGRICULTUREReducetheannualrateofgrossReducetheshareoffoodproductionPhaseoutpublicfinancingforfossilmangrovelossto4,900ha/yr.lostby50%,relativeto2016.fuels,includingsubsidies.45,500ha/yr16%13$1400billion/yr1,10032,000HISTORICAL4,900HISTORICAL6.5HISTORICAL0DATADATADATA20302030203020102017-192010202120102021ANNUALAVERAGEINSUFFICIENTDATABUILDINGSIns.dataBUILDINGSIns.dataFORESTSANDLANDIns.dataIncreasetheannualretrofittingrateEnsureallnewbuildingsareReducetheannualrateofpeatlandofbuildingsto2.5-3.5%/yr.zero-carboninoperation.degradationto0Mha/yr.4%/yr2.5–3.5100%1000.07Mha/yrHISTORICAL0.06DATA<1HISTORICALHISTORICAL50DATA20302010201920302010DATA2020203020101993-2018ANNUALAVERAGEFORESTSANDLANDIns.dataFOODANDAGRICULTUREIns.dataRestore15MhaofdegradedReducepercapitafoodwastebypeatlands.50%,relativeto2019.35totalMha140kg/capita120HISTORICALDATA1561HISTORICAL2020–2030201020192030DATA0ASOF2015ExecutiveSummarySTATEOFCLIMATEACTION202311Notes:BEV=batteryelectricvehicle;EV=electricvehicle;FCEV=fuelcellelectricvehicle;gCO2/kWh=gramsofcarbondioxideperkilowatt-hour;gCO2e/1,000kcal=gramsofcarbondioxideequivalentper1,000kilocalories;GHG=greenhousegas;ha/yr=hectaresperyear;kcal/capita/day=kilocaloriespercapitaperday;kg/capita=kilogramspercapita;kgCO2/m2=kilogramofcarbondioxidepersquaremeter;kgCO2/t=kilogramsofcarbondioxidepertonne;kg/ha=kilogramsperhectare;km/1Minhabitants=kilometersper1millioninhabitants;km/1,000inhab-itants=kilometersper1,000inhabitants;kWh/m2=kilowatt-hourpersquaremeter;LDV=light-dutyvehicle;Mha/yr=millionhectaresperyear;MHDV=medium-andheavy-dutycommericalvehicle;Mt=milliontonnes;MtCO2/yr=milliontonnesofcarbondioxideperyear;passenger-km=passenger-kilometers;tCO2e=tonneofcarbondioxideequivalent;t/ha=tonnesperhectare;yr=year.Formoreinformationonindicators’definitions,deviationsfromourmethodologytoassessprogress,anddatalimitations,seecorrespondingindicatorfiguresineachsection.aForaccelerationfactorsbetween1and2,weroundtothe10thplace(e.g.,1.2times);foraccelerationfactorsbetween2and3,weroundtothenearesthalfnumber(e.g.,2.5times);foraccelerationfactorsbetween3and10,weroundtothenearestwholenumber(e.g.,7times);andacceler-ationfactorshigherthan10,wenoteas>10.SeedataunderlyingthesecalculationsinAppendixA.bForindicatorscategorizedasS-curvelikely,accelerationfactorscalculatedusingalineartrendlinearenotpresented,astheywouldnotaccu-ratelyreflectanS-curvetrajectory.Thecategoryofprogresswasdeterminedbasedonauthorjudgment,usingmultiplelinesofevidence.Seecorrespondingindicatorfiguresineachsection,AppendixC,andJaegeretal.(2023)formoreinformation.Source:Authors’analysisbasedondatasourceslistedineachsection.Keyfindingsbysectorgrowthinadoptionofthesetechnologies,withstrongevidenceofongoingexponentialgrowthforsolar.InPower2022,forexample,growthinwindandsolargeneration(+560TWh)alonemet80percentofallglobalelec-Shareofzero-carbonsourcesinelectricitygeneration(%)tricitydemandgrowth(+690TWh)(Wiatros-Motykaetal.2023).SomeofthefastestgrowthintheshareofShareofcoalinelectricitygeneration(%)renewablepowergenerationhasbeenseenindevel-opingcountriessuchasNamibia,Uruguay,Palestine,Shareofunabatedfossilgasinelectricitygeneration(%)andJordan,wherewindandsolarscale-upisalsohelpingtoincreaseenergysecurityandaccess(JaegerCarbonintensityofelectricitygeneration(gCO2/kWh)2023).However,achievingsuchsuccessesacrossallcountries,andparticularlylower-incomenations,willIn2022,CO2emissionsfromelectricitygenerationrequireadramaticscale-upinfinance,asinvestmentsreachedarecordhigh,butrapidgrowthinbothinzero-carbonpowerlagfarbehindneeds.renewableenergyinstallationandgenerationsuggeststhatpowersectoremissionsmayhaveDecarbonizingpowerwillalsorequirerapiddeclinesinpeaked(Wiatros-Motykaetal.2023).Theserecentfossilfuelgeneration.Ascountriesdebatewhethertochangessuggestthatthetransformationalchangesphasecoal“down”or“out,”roughly2,100GWofcoal-neededtodecarbonizethepowersectorglobally—firedpowerstationsareinoperation,andapproximatelyincludingshiftingtozero-carbonpowersources,aswell560GWofnewcoal-firedpowerstationsareinthepipe-asphasingoutcoalandunabatedfossilgasinline,withmostnewcoalprojectsplannedfordevelopingelectricitygeneration—aretakingoff.Still,thisprogresscountrieslikeChina,India,Indonesia,andBangladeshmustaccelerateevenfastertokeeptheParis(GEM2023a;2023b).TheseplantswillneedtoberetiredAgreement’s1.5°Climitwithinreach,asnoneoftheearlytophaseoutcoalgloballyby2040,withaphase-powersectorindicatorsareyetontracktoachievetheiroutofunabatedfossilgasfollowingverysoonafterward2030targets.toavoidlockingtheworldintohighGHGemissionsfordecades.Whileprogressislagging,promisingexam-Recenteffortsmadeinscalinguprenewablepowerplesdemonstratethepotentialtodrasticallyreducesourceshaveprogressedfarfasterthanthosededi-fossilfuelpowerusage.In2012,about40percentofthecatedtophasingoutfossilfuelelectricitygeneration.electricitygeneratedintheUnitedKingdomcamefromZero-carbontechnologies,suchassolarandwindcoal.Today,thatfigureisjust2percent(Ember2023).Aspower,arewidelymatureandcommercialized,withcountriesfollowsuitandworktoweanthemselvesfrommanufacturingcapacityincreasingasthecostofcoal,aswellasfromfossilgas,retrainingandcompen-renewableenergyandcomplementaryenergystoragesatingworkerswillprovecriticaltoensuringamorejusttechnologiescontinuetoplummetatunprecedentedandequitabletransition(WorldBankn.d.).rates.Solarphotovoltaicsandonshorewindarenowthecheapestsourcesofnew-buildgenerationforatleasttwo-thirdsoftheglobalpopulation(BloombergNEF2020),andrecentyearshavewitnessedrecord-breakingExecutiveSummarySTATEOFCLIMATEACTION202312BuildingsIndustryEnergyintensityofbuildingoperations(kWh/m2)Shareofelectricityintheindustrysector’sfinalenergydemand(%)Carbonintensityofbuildingoperations(kgCO2/m2)CarbonintensityofglobalcementproductionRetrofittingrateofbuildings(%/yr)(kgCO2/tcement)Shareofnewbuildingsthatarezero-carboninoperation(%)Greenhydrogenproduction(Mt)Afterrisingsteadilyoverthepastthreedecades,Carbonintensityofglobalsteelproductionglobalemissionsfrombuildingshaveroughlystabi-(kgCO2/tcrudesteel)lizedsince2018(IEA2023j).FurtherdecarbonizationofthebuildingssectorgloballywillrequireamultiprongedSince2000,totalGHGemissionsfromindustryhavestrategyfocusedonimprovingtheenergyefficiencyincreasedfasterthaninanyothersector(Minxetal.withinbuildings,decarbonizingtheremainingenergy2021).Buttransformingtheglobalindustrialsystemfromused,retrofittingtheexistingbuildingstock,andensuringonewhereemissionsarestillgrowingtoonealignedthatnewbuildingsareconstructedtobezero-carboninwithlimitingwarmingto1.5°Cwithnoorlimitedover-operation.Additionally,emissionsgeneratedduringtheshootispossible.Suchatransitionwillfirstrequireconstructionofbuildingsneedtoberapidlyreducedreducingtheneedfornewindustrialproductsbyandtheuseoffluorinatedgaseswithhighglobalincreasingcircularityandloweringconsumption.warmingpotentialforcoolingsystems,whichhasbeenImprovingenergyefficiencyacrossindustrialprocesses,increasing,needstoreversecourseentirely(UNEPandaswellaselectrifyingthosethatrelyonlow-andIEA2020;Veldersetal.2022).medium-temperatureheat,willalsoproveinstrumentaltodecarbonizingthesector.Yetnotallindustrialpro-Althoughpubliclyavailabledataindicatetheworldiscessescanbeeasilyelectrified,andnewsolutionswillnotyetontracktodeliveranyofthesemuch-neededlikelybeneededtoreduceGHGemissionsfromchemi-changesby2030,arecentuptickinbuildingregula-calreactionsandhigh-heatindustrialprocesses,tions,especiallyintheEuropeanUnion,suggeststhatparticularlyforsteelandcement.Additionally,combin-someprogressisunderway.Regulationremainsaningconventionaltechnologieswithcarboncaptureandeffectivetoolforaligningthebuildingssectorwiththeutilization(CCU)andcarboncaptureandstorage(CCS)ParisAgreement’s1.5°Ctemperaturelimit(Boehmetal.willalsoplayasmallroleinbalancingremaining2022;IEA2021d;Economidouetal.2020),andinsomeprocessandhigh-temperatureheatemissionscountriestheongoingenergycrisishaspromptedmorefromthesector.robustregulationsaimedatphasingoutfossilfuelcon-sumptioninthebuildingssector.Thisyear,forexample,Whilenoneoftheindustryindicatorsareontrack,theEuropeanUnionproposedupdatestoitsEnergyrecentdevelopments—fromincreasedinvestmentinPerformanceofBuildingsDirective,whichincludeban-industrialdecarbonizationtonewsupportivepoliciesningtheuseoffossilfuelsforheatinginnewbuildingstorecentlyannouncedprojects—inviteoptimism.Forandthoseundergoingrenovation,aswellasrequiringexample,in2022,theInternationalFinanceCorporation,acompletephaseoutofthesefossilfuelsforheatingthelargestglobaldevelopmentinstitutionfocusedby2035(EuropeanParliament2023a).Thoughnotyetontheprivatesectorinemergingmarkets,madeitsadopted,thisproposalrepresentsasignificantstepfirstgreenloanformaterialmanufacturinginAfricatoforward,asitisraisingtheambitionofmitigationintheSenegal’sleadingcementmanufacturer(IFC2023a),buildingssectorinakeygeography.Similarly,salesofandIndia,hometooneoftheworld’sfastest-growingheatpumps—atechnologythatenablesthedecarbon-industrysectors,announcedtheestablishmentofaizationofheatinginbuildings—continuedtoincrease,carbonmarketschemeforaluminumandcementman-risingby120percentinPoland,38percentinEurope,ufacturers,petroleumrefineries,andsteel(Munjal2022;and11percentgloballyin2022(RosenowandGibb2023;IEA2021e),whichcanhelpacceleratedecarbonizationMonschaueretal.2023).Suchprogressnowneedsofthoseindustries.Recentyearshavealsowitnessedtospreadglobally,withmorenationalgovernments,theglobalsteelcapacitypipelineshiftfromproductioncities,andbusinessessettingtargetsfordecarbonizingtechnologiesthatrelyoncoaltolessemissions-inten-buildingsandestablishingrobustimplementationplanssiveplants,with28newgreenhydrogen–relateddirectthatputthosetargetsingoodstead.reducedironsteelprojectsannouncedbetween2021and2022alone(authors’calculationsbasedondatafromtheGreenSteelTracker2023).AndaccordingtotheInternationalEnergyAgency(IEA2022h),globalinstalledelectrolyzercapacitygrewby23percentfrom2021toExecutiveSummarySTATEOFCLIMATEACTION2023132022,reachingroughly690megawatts(MW).Thesetheseindicators.Butshiftingtomoresustainablemodespromisingdevelopmentsnowneedtobesignificantlyoftransitanddecarbonizinglonger-haultransportscaledandacceleratedaroundtheglobetomeetliketrucking,shipping,andaviationhaveprovenmoreindustrialdecarbonizationtargetsthisdecade.difficult,withallindicatorseitherwellofftrackorheadinginthewrongdirectionentirely.TransportInonebrightspotthisyear,theshareofelectricvehi-Shareofelectricvehiclesinlight-dutyvehiclesales(%)clesinlight-dutyvehiclesalesisontrackforthefirsttime.The2030targetiswellinsightasthesevehiclesShareofelectricvehiclesinthelight-dutyvehiclefleet(%)becomecheaper,rangesimprove,andcharginginfra-structureisbuiltout.InadditiontocontinuedtechnologyShareofelectricvehiclesintwo-andthree-wheelersales(%)costdeclines,majorpolicyupdates,includingtheInflationReductionActintheUnitedStatesandupdatesNumberofkilometersofrapidtransitper1milliontotheEuropeanUnionGreenDeal,areaimedathelpinginhabitants(km/1Minhabitants)pushEVsalesintooverdrive.ThisgrowthislargelylimitedtoChina,Europe,andtheUnitedStates,withadditionalNumberofkilometersofhigh-qualitybikelanesper1,000effortsneededtoextendthisopportunitytodevel-inhabitants(km/1,000inhabitants)opingcountries.ShareofbatteryelectricvehiclesandfuelcellelectricRecentprogressmadeinscalinguptwo-andvehiclesinmedium-andheavy-dutycommercialthree-wheelers,bicycles,andmaritimeshippingvehiclesales(%)alsosuggeststhattransformationalchangesbeyondcarsalesmaybeonthehorizon.TheshareofelectricShareofsustainableaviationfuelsinglobalaviationvehiclesintwo-andthree-wheelersalesincreasedfromfuelsupply(%)34percentin2015to49percentin2022(BloombergNEF2023a)—thanksinlargeparttosubsidiesanddemandShareofzero-emissionsfuelsinmaritimeshippingincentivesforthree-wheelersinIndia(IEA2023e)—andfuelsupply(%)thatglobalsharecouldhit85percentin2030ifmoregrowthoccursoutsideofChinaandIndia.Somejurisdic-Shareofkilometerstraveledbypassengercars(%tionsarealsoscalingeffortstoavoidmotorizedtravel.ofpassenger-km)Bogotá,Colombia,forexample,added84kilometersofnew,permanentbikelanesduringtheCOVID-19pan-Shareofbatteryelectricvehiclesandfuelcellelectricdemictoitsmorethan547existingkilometerstoprovidevehiclesinbussales(%)safeandnonpollutingwaystogetaroundthecity(Ramírez2021).And,attheInternationalMaritimeOrga-Afterindustry,transport—includingroad,rail,sea,andnization,countriesagreedtoanewGHGstrategythatairtravel—remainstheworld’ssecond-fastest-grow-aimstocutemissionsfrommaritimeshippingby20–30ingsourceofGHGemissions(Minxetal.2021;Europeanpercentin2030and70–80percentin2040(SmithandCommissionandJRC2022;IEA2022i).TransformingShaw2023).Thisincludesatargettoreach5percentthissectortomitigateclimatechangewillrequirea“zeroornearzeroGHGemissiontechnologies”by2030,anumberofinterconnectedshifts.First,bringingjobs,targettrackedinthisreport(IMO2023).services,andgoodsclosertowherepeoplelivecanhelpavoidsomemotorizedtravelaltogether.Atthesametime,theworldmustshiftawayfromvehicletripstoshared,collective,oractivetransportmodesincludingpublictransportation,walking,andcycling.Crucially,electricvehiclesmustquicklyreplacetheinternalcombustionengine,andforthosemodesoftransportthatcannoteasilybeelectrified,suchasshippingandaviation,meetingParis-alignedtargetsrequiresthescale-upofzero-emissionsfuelswheremodalshiftsarenotpossible.Yetprogressinacceleratingthesetransformationalchangesremainsuneven.Globaleffortstoelectrifycommonmodesofroadtransport,suchaslight-dutyvehiclesandtwo-andthree-wheelers,areheadingintherightdirection,withrecentratesofchangeunfoldingeitheratthepacerequiredtoachievenear-termtargetsoratapromising,thoughstill,insufficientspeedforExecutiveSummarySTATEOFCLIMATEACTION202314Forestsandlanddegrading,andthattheworld’sshorelineshavelost560,000hectaresofmangrovessince1999(Hansenetal.Reforestation(totalMha)2013;Curtisetal.2018;Turubanovaetal.2018;Tyukavinaetal.2022;UNEP2022b;Murrayetal.2022).Deforestation(Mha/yr)Limitingglobalwarmingto1.5°CwillalsorequireMangroverestoration(totalha)large-scalerestoration,but,heretoo,globaleffortsmustacceleratesignificantly.GettingontrackforMangroveloss(ha/yr)2030willrequiretheworldtoreforestanother100Mha,aswellasrestore15MhaofdegradedpeatlandsandPeatlanddegradation(Mha/yr)240,000hectaresofmangroves.Critically,appropriatelyimplementedrestorationcancomplement,butnotPeatlandrestoration(totalMha)replace,effortstoprotecttheworld’sremainingforests,peatlands,andmangroves.3NotonlyisrecoveringtheseAccountingfornearlyafifthofnetanthropogenicGHGecosystemsoftenmorecostlythansafeguardingthem,emissionsgloballyin2021,agriculture,forestry,andbutitmayalsotakedecades(ifnotlonger)fortheseotherlandusesistheonlysectorthatservesasbothecosystemstoregainspeciesdiversity,ecosystemasourceandasinkofGHGs(Minxetal.2021;Europeanstructure,andecologicalfunctions,allofwhichmayCommissionandJRC2022).ThelossanddegradationimpactcarboncyclingandGHGfluxeswithintheseofecosystems—particularlyforests,peatlands,andecosystems(Sasmitoetal.2019;Poorteretal.2021;mangroves—releaseGHGsintotheatmosphere,whileKreylingetal.2021;Suetal.2021;Cook-Pattonetal.2021;protecting,restoring,andsustainablymanagingtheseLoiselandGallego-Sala2022).Restoringecosystems,sameecosystemscanlowerGHGemissions,enhancewhileneededtomitigateclimatechange,doesnotoffercarbonsequestration,andbuildresiliencetoclimateaone-to-onetradewithprotectingthem.impacts(IPCC2019,2022b).Ifimplementedappropri-ately,theseland-basedmitigationmeasurescannotHowever,aslateofrecentdevelopments—fromnewonlyhelplimitwarmingto1.5°C(Roeetal.2019,2021)butmultilateralcommitmentsonconservingecosystemsalsodeliversubstantialbenefitstosustainabledevel-tomajorpolicyshiftsinkeycountries—offerssomeopment,adaptation,andbiodiversity—fromregulatinggoodnews,particularlyfortheworld’sforests.SincewaterqualitytoprovisioningfoodtosustainingcleanairCOP26,forexample,morethan140countrieshave(IPCC2019,2022b;IPBES2019;UNCCD2017).Butdespitepledgedtohaltandreverseforestlossanddegradationtheclearbenefitsofaction,globaleffortstoscaleupundertheGlasgowLeaders’DeclarationonForestsandland-basedmitigationmeasuresfallwellshortoftheLandUse;nearly190PartiesadoptedtheKunming-Mon-requiredambitionfor2030and2050.trealBiodiversityFramework,whichcommitssignatoriestoprotecting30percentoftheplanetandrestoringProtectingthesehigh-carbonecosystemscandeliveranother30percentofdegradedecosystemsby2030;thelion’sshareofmitigationacrossland-basedmea-withindaysofhisinauguration,PresidentLuizInáciosures,butcollectiveprogressmadeinvirtuallyhaltingLuladaSilvaundertookarangeofactionstocombatlossanddegradationremainsfarfrompromising.deforestationacrosstheBrazilianAmazon;inlightofTogether,theworld’sforests,peatlands,andmangrovesIndonesia’ssuccessinmaintaininghistoricallylowholdwellover1,000GtC(Panetal.2011;Temminketal.levelsofdeforestation,theSoutheastAsiannationand2022),andbyoneestimate,roughlyathirdorlessofNorwaysignedanotherREDD+deal;andtheEuropeanthesecarbonstocks(~340GtC)arevulnerabletohumanUnionrecentlyadoptedanewregulationtocombatdisturbances,suchthattheywouldbereleasedintothedeforestationandforestdegradationassociatedwithatmospherefollowingconversionordegradation(Noonforestcommodities.Whilethesesignalsofchangeareetal.2021).Someofthesecarbonlossescanoccurquitepromising,historymustnotrepeatitself.Interimtargetsrapidly,andifreleased,muchofthiscarbonwouldbemadeundercommitmentstoprotectandrestorethedifficultforecosystemstorecoverontimescalesrele-world’shigh-carbonecosystems,suchastheNewYorkvanttoreachingnet-zeroCO2emissionsbymidcenturyDeclarationonForestsandtheBonnChallenge,have(Goldsteinetal.2020;Cook-Pattonetal.2021;Noonetal.beenmissed,whilepromisedfunds,includinginterna-2021).Instead,fullyrebuildinglostcarbonstockswouldtionalREDD+finance,haveyettofullymaterialize.take6to10decadesforforests,welloveracenturyformangroves,andcenturiestomillenniaforpeatlands(Goldsteinetal.2020;Temminketal.2022).Itisalarm-ing,then,thatdeforestationhasoccurredacross48Mhasince2015,that57MhaofpeatlandsarecurrentlyExecutiveSummarySTATEOFCLIMATEACTION202315FoodandagriculturepasturelandscontinuetoexpandintotropicalforestsandpeatlandsandGHGemissionsfromfoodproduc-Ruminantmeatproductivity(kg/ha)tioncontinuetogrow,theglobalgoalsofeliminatingdeforestationandpeatlanddegradation,restoringGHGemissionsintensityofagriculturalproductionhundredsofmillionsofhectaresofdeforestedand(gCO2e/1,000kcal)degradedlands,andlimitingglobalwarmingto1.5°Cwillbecomeevenhardertoreach.TheworldurgentlyneedsCropyields(t/ha)toaccelerateeffortstocreateasustainablefoodfuture.Ruminantmeatconsumption(kcal/capita/day)AlthougheffortstomitigateGHGemissionsacrossthefoodandagriculturesectorarewellbehindtheShareoffoodproductionlost(%)paceandscaleneededtokeepwarmingbelow1.5°C,therearesignsofpositivechangesonboththesupplyFoodwaste(kg/capita)anddemandsides.Forexample,dozensofcountrieshavecommittedtoacceleratingagriculturalinno-GHGemissionsfromagriculturalproductionacrossvationthroughtheAgricultureInnovationMissionforbothcroplandsandpasturesremainasignificant,Climate,citieshavecommittedtosupportingdietarystill-growingcontributortoglobalGHGemissionsshiftsandreductionsinfoodlossandwastethrough(Minxetal.2021;EuropeanCommissionandJRC2022).avarietyofinitiativesliketheC40Cities’GoodFoodAstheworld’spopulationclimbsfromroughly8bil-CitiesAccelerator,andmajorfoodserviceproviderslionin2023tonearly10billionby2050(UNDESA2022),havemademeasurableprogressservingmorecli-feedingmorepeoplemorenutritiously,whileadvancingmate-friendlymealsthroughtheCoolfoodPledge.socioeconomicdevelopment,conservingnaturalSimultaneously,theBreakthroughAgenda,theGlasgowecosystems,andreducingagriculturalemissionswillLeaders’DeclarationonForestsandLandUse,andtheproveenormouslydifficult.Transformingtheworld’sfoodGlobalMethanePledge—allannouncedatCOP26—andandagriculturesectortoaddressthesechallengeswilltheKunming-MontrealGlobalBiodiversityFrameworkrequireacombinationofsupply-anddemand-sideadoptedinDecember2022reflectgrowingpoliticalshifts.Halvingfoodlossandwasteinallregions,aswellattentiontothecrucialrolethatthefoodandagricultureasreducingconsumptionofruminantmeat(e.g.,beef)sectorhastoplayincombattingtheclimatecrisis.Butinhigh-consumingregions,canhelpcurbGHGemis-theresourcesandenablingconditionsneededtofollowsionsfrombothagriculturalproductionandassociatedthroughontheseglobalpledges,fromfinancetopolicyland-usechangeslikedeforestation.Shiftsinon-farmtotechnologies,haveyettofullymaterialize.practices,aswellastheresearch,development,anddeploymentofnewfoodandagriculturetechnologies,Technologicalcarbonwillalsobeneededtosustainablyproducemorefoodremovalonexistingagriculturallands—therebyhaltingfarms’expansionintohigh-carbon,biodiverseecosystemsTechnologicalcarbonremoval(MtCO2/yr)likeforestsandpeatlands—andtoensurelong-termproductivityaswell.Thesechangestoagriculturalpro-InadditiontodeepandrapidGHGemissionsreduc-ductionmustsimultaneouslylowertheamountofGHGstions,allpathwaysthatlimitwarmingto1.5°Calsorelyemittedperkilocalorieoffood,safeguardsoilandwateroncarbondioxideremoval(IPCC2022b).Referredtoasresources,andbuildresiliencetoclimatechange.“carbonremoval”inthisreport,thisincludesbothland-basedapproaches(ForestsandLandIndicators4–6)Globaleffortstoreduceemissionsfromfoodproduc-andtechnologicalapproaches.Buteffortstorapidlytionandconsumption,whiletacklingfoodinsecurity,scaleupthesecarbonremovaltechnologiesremainmalnutrition,andhunger,haveyettoprogressatawellofftrack,withlessthan1milliontonnesofcarbonpaceandscalecommensuratewiththesechallenges.dioxide(MtCO2)removedandpermanentlystoredeachWiththemostrecentyearofCOVID-eradataavailableyear.Thisisequivalenttolessthan1percentofthe(2020or2021dependingontheindicator),theoverallamountoftechnologicalcarbonremovallikelyneededglobalpictureshowsthatprogressinthefoodandannuallyby2030.agriculturesectorremainsfartooslow.ImprovementsinagriculturalGHGemissionsintensity,livestockproduc-Overthelastfiveyears,technologicalcarbonremovaltionefficiency,andcropyields—whileencouraging—areapproacheshaveshiftedfromanicheconcepttonotyetkeepingpacewithcontinuedglobalgrowthinacommoncomponentofclimateactionportfolios,demandforfood.Theglobalrateoffoodlossslightlysupportedbybillionsofdollarsinpublicandprivatedecreasedbetween2020and2021butremainshigherfunding(Frontier2023;U.S.Congress2021).IntheUnitedthanthebaselineyearof2016(FAOSTAT2023).AndStates,forexample,the2021BipartisanInfrastructureLawdemand-sidechangestoconsumptionpatterns,par-provided$3.5billiontobuildfourdirectaircapture(DAC)ticularlyamongthehighest-consumingregions,needtoaccelerateaswell.IfthefootprintofcroplandsandExecutiveSummarySTATEOFCLIMATEACTION202316hubseachwithcapacitytoremove1MtCO2/year,andtheParisAgreement’sgoals.Suchalignmentincludesthe2022InflationReductionActmorethantripledthetaxensuringamuchhigherratioofinvestmentinlow-car-creditthatDACreceives(U.S.Congress2021;U.S.Senatebonenergycomparedtofossilfuels;moretransparently2022b).In2022,theEuropeanCommissionlauncheditsmeasuring,reporting,andmanagingclimaterisks;proposalforaCarbonRemovalCertificationFramework,accountingforthefullclimatecostsofGHGemissionsthefirstpublicsectorvoluntarycertificationframeworkthroughcarbonpricingmechanisms;andendingpublicforhigh-qualitycarbonremoval.Momentumisalsofinancingforfossilfuels.buildingintheprivatesectortoscaleupdevelopmentanddeploymentoftechnologicalcarbonremoval.AEffortstodramaticallyincreaseclimateinvestmentcoalitionofcompanies,includingStripeandShopify,remainfartooslow,withtheneedforincreasedlaunchedFrontierin2022,acommitmenttobuy$925fundingparticularlyacuteindevelopingcountries.millionworthofcarbonpermanentlycapturedandGlobalclimatefinanceflowsreachedanall-timehighinremovedfromtheatmospherebetween2022and2030.2021of$850billionto$940billion,representingatleastIn2023,morecompaniesjoinedthecommitment,bring-a27percentincreasefrom2020(Naranetal.2022).Butingthetotaltomorethan$1billioninpledgedfuturegrowthinclimateinvestmentremainswellofftrackfromcarbonremovalpurchases(Frontier2023).reachingthe$5.2trillionperyearneededgloballyby2030.Afterthisreportwentthroughpeerreview,Buch-But,alongsidethismomentum,challengesinscal-neretal.(2023)publisheddatathatshowsignificantinguptechnologicalremovalapproachesrapidlyincreasesintotalglobalclimatefinance.Flowsreachedandresponsiblyremain.Morepublicfundingfor$1.1trillionin2021and$1.4trillionin2022.Butevenwithresearch,development,anddemonstrationisneededthesegains,substantialincreaseswillberequiredbytohelpdevelopabroadportfolioofcarbonremoval2030.Fordevelopingcountries,specifically(excludingapproachestobalancetherisksandtrade-offsofeach;China),theIndependentHigh-LevelExpertGroupongreaterdeploymentsupportisneeded;greaterdemandClimateFinanceestimatesthattheyneed$2trilliontofromcarbonremovalpurchasersisneededtospur$2.8trillionininvestmentinmitigationandadaptationmarketgrowth;attentiontomeasurement,reporting,peryearby2030,andthat$1trillionofthiswouldneedtoandverificationisneededtoensurecredibilityandcon-comefromexternalsources(Songweetal.2022).Yetatsistencyintrackingremovals;andgovernancegapsatpresent,climateinvestmentindevelopingcountriesisalllevelsneedtobeaddressedtoensurethatscale-uparounda10thofthis(Naranetal.2022;OECD2022a).happenssustainablyandequitably.FailuretosimultaneouslyphaseoutinvestmentsinFinancehigh-emissionsactivitieswilllikelyplacethe1.5°Climitoutofreach—and,heretoo,progressremainsShareofglobalGHGemissionsundermandatorycorporateinadequate.Whilethecleanenergyeconomyisbegin-climateriskdisclosure(%)ningtoreplacethefossileconomy,thistransitionisnotoccurringrapidlyenough.ThewarinUkrainehascausedGlobaltotalclimatefinance(trillion$/yr)oilandgaspricestospike,andinresponsefossilfuelconsumptionsubsidiesreached$1trillionin2022—theGlobalpublicclimatefinance(trillion$/yr)highestlevelever(IEA2023c).Effortstoexpandcarbonpricingsystemsalsoappearstalled,withnosignificantGlobalprivateclimatefinance(trillion$/yr)increaseinglobalGHGemissionscoveredsince2021(WorldBank2023d).ThepoliticalbacklashintheUnitedRatioofinvestmentinlow-carbontofossilfuelenergyStatesagainstsustainablefinanceandtheallocationofsupplyinvestmentsbasedonclimateconsiderationsposesathreattoaligningprivateclimatefinancewiththeParisWeightedaveragecarbonpriceinjurisdictionswithAgreement’sgoals.Nonetheless,onebrightspotistheemissionspricingsystems(2015$/tCO2e)growingtrendofgovernmentsmandatingcorporatedisclosureofclimaterisks,withcountriesrepresentingTotalpublicfinancingforfossilfuels(billion$/yr)about20percentofglobalGHGemissionshavingdonesoasof2022(TCFD2022;WuandUddin2022;Naik2021).Financeisavitalenablerofclimateaction,butcurrentArecentmajordevelopmentwastheapprovaloftheinvestmentpatternsarehinderingthepaceandscaleEuropeanUnion’sCorporateSustainabilityReportingofthetransitiontonet-zeroeconomies.TransformingDirectivethatwillrequirereportingonawiderangeoftheglobalfinancialsystemtosupportambitiousclimatesustainabilitydisclosures(EuropeanParliament2022).actionwillrequirescalingupclimatefinanceinallcoun-Failuretoalignfinancewithclimategoalsrisksdelayingtriesandfrombothpublicandprivateactors,aswellactionacrossallothersectors.asensuringthatallfinancialflowsareconsistentwithExecutiveSummarySTATEOFCLIMATEACTION202317SECTION1MethodologyforAssessingProgressThissectionprovidesasummaryofthisreport’sForeachshiftfeaturedinthisreport,weestablishedmethodology.PleaseseeJaegeretal.(2023),theglobalnear-termandlong-termtargets—typicallyaccompanyingtechnicalnote,foramoredetailedfor2030and2050,respectively—thatarealignedwithexplanationofourselectionofsectors,targets,indica-pathwayslimitingglobaltemperatureriseto1.5°Cwithtors,anddatasets,aswellasourmethodsforassessingnoorlimitedovershoot.Wealsoidentifiedinterimtargetsprogresstoward1.5°C-alignedtargets.for2035and2040wherepossible.AlthoughwedonotsystematicallyconsiderequityorbiodiversityimpactsSelectionofsectors,inourtargetselection,7wedoapplyadditionalcriteriatargets,andindicatorswhereverfeasibleandappropriate,suchascost-effec-tivenessorenvironmentalandsocialsafeguards.ForInmodeledpathwaysthatlimitglobaltemperatureeachsetofnear-termandlong-termtargets,wethenriseto1.5°Cabovepreindustriallevelswithnoorlimitedselectedcorrespondingindicatorswithhistoricaldataovershoot,4greenhousegas(GHG)emissionspeaktoassessglobalprogressmadetowardthesesectoralimmediatelyorbefore2025atthelatest,andthenfallbymitigationgoals.Anexampleofanear-termtargetamedianof43percentby2030and60percentby2035,wouldbehalvingfoodwasteby2030,relativeto2019,relativeto2019(IPCC2022b,2023).Byaroundmidcentury,whileitscorrespondingindicatorwouldbekilogramsofcarbondioxide(CO2)emissionsreachnetzerointhesefoodwastepercapitaperyear.Methodsforselectingallpathways.AchievingsuchdeepGHGemissionsreduc-indicatorsandtargetsaredescribedfurtherinJaegertions,theIntergovernmentalPanelonClimateChangeetal.(2023).(IPCC)finds,willrequirerapidtransformationsacrossallmajorsectors—power,buildings,industry,transport,Assessmentofglobalforestsandland,andfoodandagriculture5—aswellprogressastheimmediatescale-upofclimatefinanceandofcarbonremovaltechnologiestocompensatefortheWeprovideasnapshotofglobalprogressmadetowardresidualGHGemissionsthatwilllikelyprovedifficulttolimitingwarmingto1.5°Cbyassessingwhethereacheliminate(IPCC2022b).indicatorisontracktoreachitsnear-termtarget.Todoso,wecollectedhistoricaldataforeachindicator,relyingIntheStateofClimateActionseries,wetranslatetheondatasetsthatareopen,independentofbias,reliable,far-reachingtransformationsneededtoachievetheandconsistent.Westrovetousethemostrecentdata,ParisAgreement’s1.5°Cglobaltemperaturelimitintobutthereisoftenatimelagbeforedatabecomeavail-amoremanageablesetofshiftsforeachsectorthat,able(betweenoneandthreeyearsformostindicators,takentogether,canhelpovercomethedeep-seatedbutroughlyfiveyearsforsome).Asaresult,theyearcarbonlock-incommontothemall(Setoetal.2016).ofmostrecentdatavariesamongindicators.InsomeWealsoidentifychangesthatmustoccurtosupporttherapidscale-upofcarbonremovaltechnologiesandclimatefinance.Theglobalfoodandagriculturesector,forexample,needstotransformfromitscurrentstateintoonethatcannutritiouslyfeednearly10billionpeoplewhileloweringGHGemissions,safeguardingbiodiversity,andhaltingtheexpansionofagriculturalproduction,particularlyacrosshigh-carbonecosystems.Toachievethissectoraltransformation,multipleshiftsmustoccur—theworldmustachievesignificantgainsincroplandandlivestockproductivity,dramaticallyreducefoodlossandwaste,limittheoverconsumptionofruminantmeat,andacceleratedeclinesintheGHGemissionsintensityofagriculturalproductionprocesses,suchasricecultivation,entericfermentation,andchemicalfertilizerapplication.Almostalloftheseshiftsmusthappensimultaneouslytosecureasustainablefoodfuture.However,thesectoralshiftsweidentifyinthisreport,includingthosebeyondthefoodandagriculturalsector,donotprovideacomprehensiveroadmaptolim-itingwarmingto1.5°C;rather,theyformasetofpriorityactionsneededtoachievethistemperaturegoal.6MethodologyforAssessingProgressSTATEOFCLIMATEACTION202319FIGURE1IllustrationofanS-curve%100EmergenceBreakthroughDiffusionReconfiguration806040Annualgrowthrate20S-curveofTimetechnologyadoption0ExponentialgrowthExponentialgrowthLogarithmicgrowthtransitioningintoExponentialgrowthTheS-curvelogarithmicgrowthGrowthratesgraduallybecomesevident.approachzerountiltheAlthoughannualgrowthTheabsoluteAbsolutegrowthS-curveonceagainratesarehigh,theamountofgrowthincreases,andtheappearsflat.S-curveappearsflateachyearincreases,S-curvereachesitssinceitsstartingpointforbutthegrowthratemaximumsteepness.technologyadoptionisstartstodecay.Thegrowthratesolow.continuestodecay.Source:Authors.cases,datalimitationspreventedusfromevaluatingthebeginstodecay.Finally,associetyreconfiguresaroundcurrentlevelofeffortmadetowardaparticulartarget,thenewtechnology,adoptionreachesasaturationpointandwenotethisaccordingly.andgrowthratesapproachzero.Theexactshapeofsuchacurveishighlyuncertain,andtechnologiesmayAssessingthegapbetweenrecentprogressandfutureencounterobstaclesthatmayalterorlimittheirgrowth.actionneededtomeet1.5°C-compatibletargetsButgiventherightconditions(e.g.,supportivepoliciesrequiresprojectingatrajectoryoffuturechangeforandinvestments),adoptionofnewtechnologiescaneachindicator.Thesimplestapproachistoassumethatreachpositivetippingpoints,afterwhichself-amplifyinggrowthcontinuesatitscurrentrateofchangefollowingfeedbackskickintospurrapid,far-reachingchangesapurelylineartrajectory,and,indeed,thiswasaneffec-thatcancascadefromonesystemtoanotherorfromtivemethodformanyindicators.However,itisunlikelyonegeographytoanother(Box1).thatallindicatorswillfollowalinearpath.Forexample,theadoptionofnewtechnologieshasoftenfollowedanItisalsoimportanttonotethat,inadditiontotechnologyS-curvetrajectory(Figure1).Attheemergencestageofadoption,socialandpoliticalforcescanalsocontributeanS-curve,annualgrowthratesarehighaspromisingtoorhindernonlinearchange(Mooreetal.2022).Ourresearch,development,anddemonstrationprojectsareassessmentofrecentprogressmadetowardnear-termunderway,butadoptionofthenewtechnologyremainstargetsdoesnotconsiderthesefactorsfully,givenquitelow.Then,inthebreakthroughstage,adoptionofthechallengesofmodelingtheseeffectsanddatathetechnologybendsupward,withsustainedexponen-limitations.However,abodyofresearchisemergingtialgrowthrates.Oncethetechnologybeginstodiffuseonthistopic,andfurtherconsiderationiswarrantedinmorewidely,therateofadoptionofthetechnologyfutureresearch.reachesitssteepestslopeandexponentialgrowthMethodologyforAssessingProgressSTATEOFCLIMATEACTION202320BOX1Tippingpointsandself-amplifyingfeedbacksThepointatwhichanS-curvereachesthebreak-available,theycanboostfunctionalityandacceleratethroughstagecanalsobeconceptualizedasatippinguptakeofnewinnovations(e.g.,electricvehicles)point—definedbroadlyasacriticalthresholdbeyond(SharpeandLenton2021).Thesegainsallowcompanieswhichasystemreorganizesoftenabruptlyorirreversiblythatadoptnewtechnologiestoexpandtheirmarket(IPCC2022b).Inthiscontext,tippingpointsgenerallyshares,deepentheirpoliticalinfluence,andamasstheoccurwhenthecostofanewtechnologyfallsbelowresourcesneededtopetitionformorefavorablepoli-thatoftheincumbent,suchthatthevalueofswitchingcies.Moresupportivepolicies,inturn,canreshapethetothenewtechnologyisgreaterthanitscost.Factorsfinanciallandscapeinwaysthatincentivizeinvestorstobeyondmonetarycost,suchasanimprovementinthechannelmorecapitalintothesenewtechnologies(But-technologyoranincreaseinthevalueofthetechnol-ler-Slossetal.2021).aSuchreinforcingfeedbacks,then,ogyasmorepeopleadoptit,canalsopushtechnologycanspuradoptionandhelpnewinnovationssupplantadoptionpastatippingpoint.Oftentimes,seeminglyexistingtechnologies(Victoretal.2019).smallchangesinthesefactorscantriggerthesedisproportionatelylargeresponseswithinsystemsthatWidespreadadoptionofnewtechnologies,inturn,cancatalyzethetransitiontoadifferentstate(Lentonetal.alsohavecascadingeffects,requiringthedevelopment2008;Lenton2020).ofcomplementaryinnovations,theconstructionofsupportiveinfrastructure,theadoptionofnewpolicies,Crossingtippingpointscantriggerself-amplifyingandthecreationofregulatoryinstitutions.Itcanalsofeedbacksthathelpacceleratethediffusionofnewpromptchangesinbusinessmodels,jobavailability,technologiesbypushingdowncosts,enhancingbehaviors,andsocialnorms,therebycreatinganewperformance,andincreasingsocialacceptance(Arthurcommunityofpeoplewhosupport(orsometimes1989;Lenton2020;Lentonetal.2008).Learningbydoingoppose)furtherchanges(Victoretal.2019).Meanwhile,inmanufacturing,forexample,cangenerateprogres-incumbenttechnologiesmaybecomecaughtinasiveadvancesthatleadtomoreefficientproductionviciousspiral,asdecreasesindemandcauseoverca-processes,whilereachingeconomiesofscalecanpacityandleadtolowerutilizationrates.Theselowerprogressivelylowerunitcosts.Similarly,ascomplemen-utilizationrates,inturn,canincreaseunitcostsandleadtarytechnologies(e.g.,batteries)becomeincreasinglytostrandedassets.Note:aWhilediscussedinthecontextoflow-carbontechnologies,thisself-amplifyingfeedbackloopisnotinherentlypositive.Privatesectorinstitutionsthatexpandtheirmarketshare,deepentheirpoliticalinfluence,andamasstheresourcesneededtopetitionformoresupportivepoliciesdonotalwaysusetheirpowerforthepublicgood.Somemayleveragetheirinfluencetoadvancetheirownintereststhatareatoddswithsocietalgoals(e.g.,hamperinginnovationofotherlow-carbontechnologies,advocatingforlessrestrictiveregulationsacrossotherenvironmentalharms,petitioningforpoliciesthatprotecttheirprofitmargins).Critically,governmentshavearoletoplayineffectivelyregulatingtheprivatesectoronbehalfofthepublicandinservicetosocietalgoals.Toassessglobalprogressmadetoward1.5°C-compat-technologydiffusion,giventhattheydonotdirectlytrackibletargets,wefirstevaluatedthelikelihoodthateachtechnologyadoption.TheseoccurredprimarilywithinindicatorwillfollowanS-curveinthefuture,placingthesectionsonForestsandLand,FoodandAgriculture,themintooneofthreecategoriesbasedonourunder-andFinance(e.g.,reforestation,reducingfoodwaste,standingoftheliteratureandconsultationswithexperts:andincreasingclimatefinance).“S-curvelikely,”“S-curvepossible,”and“S-curveunlikely.”WethenemployeddifferentmethodstoassessprogressForthose“S-curveunlikely”indicatorswithsufficientmadeforeachclassofindicators.historicaldata,wecalculatedalineartrendlinebasedonthemostrecent5yearsofhistoricaldata.Forseveral“S-curveunlikely”indicators,mostnotablythoseintheforestsandlandindicators:Assessmentofsector,weconstructedalineartrendlinebasedon10progressbasedonlinearyearsofhistoricaldatatoaccountfornaturalinter-trendlineannualvariability,wherepossible.8Wethenextendedthistrendlineoutto2030andcomparedthisprojectedWeclassifiedmorethanhalfofourindicatorsasvaluetotheindicator’stargetforthesameyear.Doing“S-curveunlikely.”Morespecifically,wedonotexpectsoenabledustoassesswhetherrecentprogressmadetheseindicatorstofollowtheS-curvedynamicsseenintowardthetargetwasontrack.MethodologyforAssessingProgressSTATEOFCLIMATEACTION202321Next,wecalculatedan“accelerationfactor”foreachciency.Thus,althoughtheseindicatorshavegenerallyindicatorwithsufficienthistoricaldatabydividingtheexperiencedlinearchangeinthepast,theycouldexpe-averageannualrateofchangeneededtoachievetheriencesomeunknownformofrapid,nonlinearchangeindicator’s2030target9bytheaverageannualrateofinthecomingdecadesifthenonlinearaspectsbegintochangederivedfromthehistorical5-year(or10-year)outweighthelinearones.Forexample,reducingcarbontrendline(AppendixA).Theseaccelerationfactorsquan-intensityinthepowersectorisdependentonmultipletifythegapinglobalactionbetweencurrenteffortstrends:anincreaseintheefficiencyoffossilfuelpower,andthoserequiredtolimitglobalwarmingto1.5°C.whichislinear;switchesbetweenhigher-emittingandTheyindicatewhetherrecenthistoricalratesofchangelower-emittingfossilfuelpowersources,whicharegen-needtoincrease2-fold,5-fold,or10-fold,forexample,erallynonlinear;andaswitchfromalltypesoffossilfueltomeet2030targets(AppendixB).10Wethenusedthesepowertozero-carbonpower,whichisexpectedtobeaccelerationfactorstoassignourindicatorsoneoffivenonlinear.Ifthenonlineargrowthinzero-carbonpowercategoriesofprogress:overtakesthelineargrowthinefficiency,thetrajectoryofcarbonintensitycouldfollowaninvertedS-curve.Rightdirection,ontrack.Thehistoricalrateofchangeisequaltoorabovetherateofchangeneeded.Forthese“S-curvepossible”indicators,wefollowedtheIndicatorswithaccelerationfactorsbetween0and1samemethodsasaboveandusedalineartrendlinetofallintothiscategory.However,wedonotpresentthesecalculateaccelerationfactorsandcategorizeprogress,accelerationfactorssincetheindicatorsareontrack.asrecenthistoricaldatafortheseindicatorshavebeenfollowingroughlylineartrajectories(AppendixA).Rightdirection,offtrack.ThehistoricalrateofHowever,wenotedinouranalysisthat,shouldnonlinearchangeisheadingintherightdirectionatapromisingchangebegin,progresscouldunfoldatsignificantlyyetinsufficientpace.Extendingthehistoricallinearfasterratesthanexpected,andthegapbetweenthetrendlinewouldgettheindicatorsmorethanhalfwaytoexistingrateofchangeandrequiredactionwouldshrink.theirnear-termtargets,andsoindicatorswithaccelera-tionfactorsbetween1and2fallintothiscategory.“S-curvelikely”indicators:AssessmentofRightdirection,wellofftrack.Thehistoricalrateofprogressaccountingforchangeisheadingintherightdirectionbutwellbelownonlinearchangethepacerequiredtoachievethe2030target.ExtendingthehistoricallineartrendlinewouldgetthemlessthanWeclassifiedtheremainingnineindicatorsas“S-curvehalfwaytotheirnear-termtargets,andsoindicatorslikely,”asweconsideredthosethatdirectlytrackthewithaccelerationfactorsofgreaterthanorequalto2adoptionofspecifictechnologies—or,insomeinstances,fallintothiscategory.11asetofcloselyrelatedtechnologies(e.g.,solarandwindpower)—tobeprimecandidatesforexperiencingWrongdirection,U-turnneeded.ThehistoricalrateS-curvedynamicsinthefuture.Thesetechnologiesareofchangeisheadinginthewrongdirectionentirely.innovative,oftendisplacingincumbenttechnologiesIndicatorswithnegativeaccelerationfactorsfallintothis(e.g.,renewableenergy,electricvehicles,greenhydro-category.However,wedonotpresenttheseaccelerationgen).Critically,categorizinganindicatoras“S-curvefactorssinceareversalinthecurrenttrend,ratherthanlikely”doesnotguaranteethatitwillexperiencerapid,anaccelerationofrecentchange,isneededforindica-nonlinearchangeoverthecomingyears;rather,ittorsinthiscategory.signifiesthat,ifandwhenadoptionratesofthesetechnologiesbegintoincrease,suchgrowthwilllikelyInsufficientdata.LimiteddatamakeitdifficulttofollowanS-curve.estimatethehistoricalrateofchangerelativetotherequiredaction.Still,forsuchtechnologiesitisunrealistictoassumethatfutureuptakewillfollowalineartrajectory(Abramczyket“S-curvepossible”al.2017;Mersmannetal.2014;Trancik2014);and,conse-indicators:Assessmentofquently,itisinappropriatetorelyonaccelerationfactorsprogressbasedonlineartoevaluatemitigationefforts.Instead,webasedourtrendlineassessmentofprogressonmultiplelinesofevidence,includingliteraturereviews,expertconsultations,andWeclassifiedanothernineindicatorsas“S-curvepos-fittingS-curvestothehistoricaldatawhereappropriatesible,”whichdonotfallneatlywithineithertheS-curve(AppendixC).Inassessingprogress,akeystepwaslikelyortheS-curveunlikelyclasses.Theseindicatorstoidentifywhichofthefollowingstagesofadoptiondonottrackzero-orlow-emissiontechnologyadoptionappliestoeachtechnology:directly,butadoptionofnewtechnologieswilllikelyhavesomeimpactontheirfuturetrajectories,alongsidemanyotherfactors,suchasincreasesinresourceeffi-MethodologyforAssessingProgressSTATEOFCLIMATEACTION202322•Emergence.Withinthisstage,theindicator’scurrentdata,andwethenconsideredthisfittedS-curveasonelineofevidenceinourassessmentofrecentvalueislessthan5percentofitssaturationlevel,progress(Box2).whichweassumedtobethemoreambitiousboundoftheindicator’slong-termtarget.FittinganS-curve•Reconfiguration.Inthisfinalstage,theindicator’stohistoricaldataishighlyuncertaininsuchanearlystage(KucharavyandDeGuio2011;Crozier2020;currentvalueisgreaterthan50percentofitssatu-Cherpetal.2021).So,fortheseindicators,wepresentrationlevel,andalogarithmictrendlineisthebestanillustrativeS-curveextrapolatingthecurrenttrend,fitforthepastfiveyearsofdata.Adoptionratesbutwedefaultedto“wellofftrack”inourassessmentwilllikelystabilizeandgrowthrateswilldeclineasitoftheseindicators’recentprogress.Ifwefoundapproachesthesaturationpoint.WefitanS-curvetocompellingevidencethatabreakthroughisnear,wethehistoricaldata,andwethenconsideredthisfittedupgradedtheindicatortoahighercategory.S-curveasonelineofevidenceinourassessmentofrecentprogress(Box2).•Breakthrough.DuringthisstageofanS-curve,theWealsodeterminedinstancesinwhichanindicatorisindicator’scurrentvalueisbetween5and50percentnotfollowingasmoothS-curve,becausenoneoftheseofitssaturationlevel,andanexponentialtrendlinecriteriaweremet.Manytechnologiesrunintoobstaclesisthebestfitforthepastfiveyearsofdata.Expo-orbarriers,whichcouldpreventthemfromfollowinganentialgrowthwilllikelycontinueinthenearfuture,smoothS-curve.and,accordingly,wefitanS-curvetothehistoricaldata.WethenconsideredthisfittedS-curveasonelineofevidenceinourassessmentofrecentprogress(Box2).•Diffusion.Technologieseventuallybegintodiffusewidelyacrosssociety,andatthisstage,theindica-tor’scurrentvalueisbetween5and80percentofitssaturationlevel.Itsadoptionrateismovingupward,andalineartrendlineisthebestfitforthepastfiveyearsofdata.Futureuptakewilllikelycontinueonaroughlylineartrajectoryinthenearfuturebeforeeventuallydeclining.WefitanS-curvetothehistoricalBOX2MethodsforfittinganS-curvetohistoricaldataTofitanS-curvetothehistoricaldata,weuseda“wellofftrack.”ForthefewindicatorsforwhichthisstandardlogisticS-curvefunction,whichisbasedanalysisisappropriate,wepresentthefullresultsonthreemaininputs:thesaturationlevel,whichoftheS-curvefittinginAppendixC.weassumedtobethemoreambitiousboundoftheindicator’slong-termtarget;themaximumGiventheuncertaintyofS-curveprojections,thisgrowthrate;andthemidpointoftheS-curve.Wecurvefittingrepresentsjustonelineofevidencethenadjustedthegrowthrateandthemidpointthatweconsidered,alongsidealiteraturereviewofthefunctionuntiltheS-curvemostcloselyfitallandconsultationwithexperts.Ifwefoundrelativehistoricaldata.consensusamongthisS-curvefittingexercise,theliterature,andconsultationwithexperts,thenWethencomparedtheS-curve’sprojectedvaluedeterminingtheindicator’scategoryofprogressfor2030toournear-termtargetforeachindicator.wasstraightforward.IfwefounddisagreementAnS-curveextrapolationabovethetargetsug-amongtheselinesofevidence,wehadtomakegeststhattheindicatoris“ontrack.”AnS-curveajudgmentcallbyidentifyingthemostcom-thatgetsmorethanhalfofthewayfromthepellinglinesofevidence.Wediscusstheselinescurrentvaluetothe2030targetindicatesthattheofevidenceinthisreportinAppendixC.Moreindicatorislikelytobe“offtrack,”andiftheextrap-informationonourmethodsforassessingprogressolationislessthanhalfofthewayfromthecurrentcanbefoundinJaegeretal.(2023),thetechnicalvaluetothe2030target,theindicatorislikelytobenotethataccompaniesthisreport.MethodologyforAssessingProgressSTATEOFCLIMATEACTION202323Analysisofmostrecentimprovementrelativetothehistoricaltrendline.Butifthedatapointmostrecentdatapointfallsmorethan5percentbelowtheprojectedvalueontheextendedhistoricaltrendlineInadditiontoassessingprogressmadetoward2030forthesameindicator,wenotedthatthemostrecenttargets,wealsoanalyzedwhetheranindicator’smostyearofdataforthisindicatorrepresentsaworseningrecentdatapointrepresentsameaningfulimprovementrelativetothehistoricaltrendline.Determiningtheextentorworsening,relativetoitshistoricaltrendlineifsufficienttowhichanimprovementorworseningiseithertempo-dataareavailable.Essentially,weextendedthehistoricalraryorpartofalonger-termtrend,however,willonlybetrendlinefromtheprevious5yearsofdata(or10yearspossibleinfutureyears.forforestsandlandindicatorswherepossible)toprojectadatapointforthemostrecentyearforwhichwehaveSelectionofrecentdata(Figure2).Forexample,ifourmostrecentdatadevelopmentspointis2022,weuseddatafrom2017to2021toconstructahistoricaltrendlineandthenextendedthattrendlinetoForeachsector,wealsohighlightrecentdevelop-projectadatapointfor2022.ments—fromadoptingnewpoliciestoinvestinginthedevelopmentofmorenascenttechnologiestodisburs-Wethencomparedourmostrecentdatapointtothisingfinancialpledges—thathaveoccurredprimarilyprojecteddatapointontheextendedhistoricaltrend-sincethe26thConferenceoftheParties(COP26)inline.Ifthemostrecentdatapoint,forexample,wasGlasgow.Formanyofourindicators,itcantaketimemorethan5percenthigherthantheprojectedvalueforactionsundertakenbygovernments,civilsociety,ontheextendedtrendlineforanindicatorthatneedstoincreasetoachieveits2030target,wenotedthatthemostrecentyearofdataforthisindicatorrepresentsanFIGURE2MethodsforcomparingmostrecentyearofdatatoextendedhistoricaltrendlineHypotheticalIndicatorValue1008060402002019202220252016Mostrecenthistoricaldatapoint(e.g.,2022)Currenttrajectorybasedonfiveyearsofdatapriortothemostrecenthistoricaldatapoint(e.g.,2017-21)Historicaldatafromfiveyearspriortothemostrecentdatapoint(e.g.,2017-21)Source:Authors.MethodologyforAssessingProgressSTATEOFCLIMATEACTION202324andtheprivatesectortospurglobalchange.YettheseinBoehmetal.(2022)whenidentifyingrecentdevelop-advancesstillrepresentimportantshiftsmadeinthements.Finally,wefocusedprimarilyondevelopmentsreal-worldeconomy.Accordingly,amorecomprehen-thatareglobalinscope,thoughwealsoincludedthosesivesnapshotofthestateofclimateactionrequiresthatarefromparticularlyimportantgeographies(e.g.,bothanalysisofprogressmadetowardoursectoralmajoremitters,largeeconomiesthatcanshapeglobal1.5°C-alignedtargets,andasummaryofthemeasurestrends,countriesthatcontaindisproportionateamountsthatmaysupport(orhinder)achievingthemby2030.ofhigh-carbonecosystems,primaryproducersofanemissions-intensivegood,countriesthathaveyettoToidentifytherecentdevelopmentsmostrelevanttoadoptaparticularzero-carbontechnology,etc.).eachsector,werestrictedoursearchtothosethatfallintooneofthecategoriesofenablingconditionsout-Morespecifically,weprimarilyreliedonsearchesofgraylinedinBoehmetal.(2022)—innovationsintechnologies,literature,newsletters,andpolicytrackersfromleadingsupportivepolicies,institutionalstrengthening,leader-organizationswithinthesesectors(e.g.,theInternationalship,andshiftsinbehaviorandsocialnorms.NotethatEnergyAgency,InternationalRenewableEnergyAgency,thesignificanceofenablingconditionsdiffersbysector.C40,WorldGreenBuildingCouncil,MissionPossibleInpower,forexample,manyofthetechnologiesneededPartnership,WorldSteelAssociation,BloombergNewtodecarbonizethesectorarematureandcommer-EnergyFinance,InstituteforTransportationandDevelop-cialized,whileinindustryorfoodandagriculture,thesementPolicy,InternationalTransportForum,Internationalinnovationsremainfarmorenascent,suchthatachiev-CouncilonCleanTransportation,NewYorkDeclarationingthesesectoraltargetswilllikelyrequireconsiderableonForests,FoodandAgricultureOrganizationoftheinvestmentinresearch,development,anddeployment.UnitedNations,andClimatePolicyInitiative),newspaperSimilarly,whilemanycountrieshavesettargetsandarticlesfrommajoroutlets(e.g.,Reuters,theAssociatedannouncednationalstrategiesfocusedonelectrifyingPress,theNewYorkTimes,theGuardian),andnationallytransportorconservingecosystems,farfewerhaveputdeterminedcontributions(NDCs).WerestrictedourinplacesimilargoalsorplanstodecarbonizebuildingssearchestotheperiodfromNovember2021toAugustorshiftconsumptionpatterns.Thus,wehewedcloselyto2023,thoughweincludedsomerecentdevelopmentsthespecificenablingconditionsoutlinedforeachsectorthatpredatedthisperiodwhererelevant.MethodologyforAssessingProgressSTATEOFCLIMATEACTION202325SECTION2PowerAroundtheworld,accesstoaffordableandin2020duetoresponsestotheCOVID-19pandemicreliablepowerunderpinsmodernsociety(UNSD(e.g.,reductionofindustrialandcommercialelectricity2023),enablingpeopletowork,cook,learn,takedemand[Bertrametal.2021]),theyreboundedtoacareofeachother,andmore.Yetnearly10percentofrecordhighofabout15gigatonnesofcarbondioxidetheworld’spopulation—some680millionpeople—doequivalent(GtCO2e)in2022(IEA2023o).nothaveaccesstoelectricity,withmanystillusingfirewoodfortheirmostbasicenergyneeds(IEA2023p).Tomeettheselargegapsinaccesstoelectricityandimprovelivingstandards,demandforpowerisrisingrapidly(IEA2022t).Today’sgrowingpowersectorishighlyemissions-inten-sive.Becausesomuchelectricitycomesfromburningcoalandfossilgas,electricitygenerationaccountedforaround25percentofglobalgreenhousegas(GHG)emissionsin2021(Figure3)andhaslongremainedthesingle-largestsourceofcarbondioxide(CO2)emissionsglobally(Figure4).Indeed,overthelasttwodecades,CO2emissionsfromelectricityproductionhaveincreasedby0.25gigatonnes(billionmetrictons)ofcarbondioxide(GtCO2)eachyear(IEA2021f,2022g).And,whiletheseemissionscontractedbyaround3.5percentFIGURE3Power’scontributiontoglobalnetanthropogenicGHGemissionsin2021ElectricityandheatOilandgas14.4fugitiveemissions2.5Other1.6Coalminingfugitiveemissions1.5EnergyPetroleumrefining20.70.7Non-CO2(allbuildings)WasteLanduse,0.04land-use2.4change,Nonresidentialandforestry0.8GlobalGHGAgriculture,Emissionsforestry,4.0Rail56.8GtCO2eandother0.1ResidentialBuildingslandusesEnteric2.33.2fermentationInlandshipping10.40.2Transport3.0Managed8.1soilsandDomesticaviationManagedpasture0.3soilsandIndustrypastureInternational12.0aviation1.40.4RoadOtherRicecultivationOtherTransport4.41.00.55.9ManuremanagementInternational0.4shippingChemicalsMetals0.72.63.4Syntheticfertilizerapplication0.4Cement1.6Biomassburning0.1Notes:CO2=carbondioxide;GHG=greenhousegas;GtCO2e=gigatonnesofcarbondioxideequivalent.AlthoughthisfigurehighlightsGHGemissionsfromelectricityandheat,thischapteronpowerfocusesprimarilyonelectricitygeneration,whichaccountsformorethan90%ofCO2emissionsfromthepowersector.The“heat”componentofthissectoraccountsforGHGemissionsfromtheburningoffossilfuelstoprovideheattoindustrialprocesses,suchassteelproduction.Sources:Minxetal.(2021);EuropeanCommissionandJRC(2022).PowerSTATEOFCLIMATEACTION202327FIGURE4GlobalCO2emissionsfrompowerbyThegrowingdemandforpower,andourcurrentrelianceonfossilfuelstocreateit,makestransformingtoday’send-usesectorsglobalpowersectorurgentforlimitingglobaltempera-tureriseto1.5°C.DecarbonizingthepowersectorisalsoGtCO2/yrTransportvitalbecausedecarbonizationpathwaysacrossother14majorsectors(e.g.,buildings,industry,andtransport)willbecontingentonadecarbonizedpowersector’sability12toprovideabundantaccesstozero-carbonelectricityformanyenduses.1210Fortunately,thereareencouragingsignsthattheIndustrystructuraltransformationsneededacrosstheglobal8powersectorhavealreadybegun.Cleanpowertech-nologieslikesolarandwindarewidelymature,andthe6costofrenewableenergyandstoragetechnologiesBuildingshascontinuedtoplummetatratesunprecedentedintheenergysector,leadingtorecord-breakinggrowth4inadoptionin2022(IRENA2023b).Solarphotovoltaics(PV)andonshorewindarenowthecheapestsources2ofnew-buildgenerationforatleasttwo-thirdsoftheglobalpopulation(BloombergNEF2020),and,between0Otherelectricity2015and2022,solarandwindincreasedfrom5percent1990ofglobalelectricitygenerationto12percentofglobal200020102020electricitygeneration(Ember2023).In2022,thenetgrowthofwindandsolargenerationalone(+560TWh)Notes:CO2=carbondioxide;GtCO2/yr=gigatonnesofcarbonmet80percentofallglobalelectricitydemandgrowthdioxideperyear.CO2emissionspresentedinthistimeseriesare(+690TWh)(Wiatros-Motykaetal.2023)(seeFigure5).Infromelectricityonlyanddonotcovertheheatcomponentofpowerfact,someexpertspredictthat2022representsthepeakemissionsshowninFigure3.Also,todisaggregateCO2emissionsbyoftotalemissionsinthepowersector(Wiatros-Motykaetend-usesectors,werelyonadifferentdatasourcethanMinxetal.al.2023),positioningtheglobaleconomytoenteranew(2021)andEuropeanCommissionandJRC(2022).Thesedisaggre-eraoffallingpowersectoremissions.gateddataareavailablethrough2020only.Source:IEA(2023l).FIGURE5Roleofzero-carbonversusfossilpowersourcesinmeetingriseinelectricitydemandin2022TWh739GasNuclear80086OtherRES–12600108Hydro694–129Otherfossil245Coal80%ofdemandrise400312Solar2000DemandWindNotes:RES=renewableenergysources;TWh=terawatthours.Source:Wiatros-Motykaetal.(2023).PowerSTATEOFCLIMATEACTION202328Russia’sinvasionofUkrainehaspushedtheworldtonuclearpowerfromsomecountries,with270GWinacriticaljunctureinthistransformation.Ascountriesthepipeline,comparedto410GWcurrentlyoperatingseektosecuretheirenergyfutureinaworldwithout(IEA2022u;GEM2023b).ContinuedinvestmentintheseRussian-suppliedoilandgas,theyfaceastarkchoicezero-carbonpowersources,particularlyinlightofthebetweendoublingdownonfossilfuelsorrapidlyRussian-causedenergycrisis,willberequiredforaccel-expandingzero-carbonpower.And,whilesomeeratingthetransformationtoadecarbonizedpowercountrieshaveindeedreopenedshutteredfossilfuelsectorforall.infrastructureduringthistimeofcrisis,investmentsinzero-carbonenergytechnologies(almostallofwhichGlobalassessmentofproduceoruseelectricity)surpassed$1trillionin2022,progressforpowermatchinginvestmentinfossilfuelsforthefirsttimeinhistory(Wiatros-Motykaetal.2023).ThecrisishasalsoElectricitygenerationmustbedecarbonized,primarilydrivennewinvestmentsinimprovingenergyefficiency,throughshiftingtozero-carbonpowerandphasingoneofthelargestuntappedresourcesfordecarbonizingoutfossilfuelslikecoalandgas.Simultaneously,wewillthesector(Bondetal.2023).needtoclosegapsinenergyaccess,useenergymoreefficiently,expandgridcapacity,andprioritizeenergyParticularlypromisingsignsofthistransformationstorageandflexibility.13Theseshiftswillbekeytoensur-areinthebuildupofsolarandwindpower.Currently,ingthatglobalwarmingislimitedto1.5°C.moresolarandwindpowerisintheglobalpipeline(1,200GWand1,800GW,respectively)thanallsolarThesechangesmustoccurinamannerthatisequitableandwindpowercurrentlyoperating(1,000GWandandsustainable.Historically,ahandfulofcountriesinthe900GW,respectively)(GEM2023b;IRENA2023a).Whiledevelopedworldhavebeenresponsibleforgeneratingthisprogressiscompelling,italsohighlightstheslowavastproportionofemissions.Thesenationswillneedpermittingandconstructiontimesinmanycountries,toleadthewayindeliveringcleanenergytransitionswhichoftenimpedeanddelayconstructionofplannedbyphasingoutfossilfuelsanddemonstratinghowtoprojects.Streamliningtheseprocesseswouldallowconstructlarge-scalezero-carbonpowergenerationforfasterdeploymentofzero-carbonpowersolutions.TherehasadditionallybeenarenewedincreaseinTABLE1SummaryofglobalprogresstowardpowertargetsINDICATORMOSTRECENT203020352050LIKELIHOODACCELERATIONSTATUSDATAPOINTTARGETTARGETTARGETOFFACTORShareofzero-carbon(YEAR)FOLLOWINGsourcesinelectricityANS-CURVEgeneration(%)aShareofcoalin3988–9198–9999–100N/A;electricitygeneration(%)(2022)(2040)authorjudgmentbShareofunabated3640–107xfossilgasinelectricitygeneration(%)(2022)(2040)Carbonintensityofelectricity235–710>10xgeneration(gCO2/kWh)(2022)(2040)44048–802–6<0c9x(2022)(2040)Notes:gCO2/kWh=gramsofcarbondioxideperkilowatt-hour.SeeJaegeretal.(2023)formoreinformationonmethodsforselectingtargets,indicators,anddatasets,aswellasourapproachforassessingprogress.aZero-carbonsourcesincludesolar,wind,hydropower,geothermal,nuclear,marine,andbiomasstechnologies.bForindicatorscategorizedasS-curvelikely,accelerationfactorscalculatedusingalineartrendlinearenotpresented,astheywouldnotaccuratelyreflectanS-curvetrajectory.Thecategoryofprogresswasdeterminedbasedonauthorjudgment,usingmultiplelinesofevidence.SeeAppendixCandJaegeretal.(2023)formoreinformation.cAchievingbelowzero–carbonintensityimpliesbiomasspowergenerationwithcarboncaptureandstorage.Thesetargetslimitbioenergywithcarboncaptureandstorageuseto5GtCO2peryearin2050.SeeJaegeretal.(2023)formoreinformationaboutthesustainabilitycriteriausedintarget-setting.Sources:HistoricaldatafromEmber(2023);targetsfromCAT(2023a).PowerSTATEOFCLIMATEACTION202329capabilitydomestically,14whilesimultaneouslyhelpingPOWERINDICATOR1:developingcountriestodecarbonizetheirpowersectorsandofferingneweconomicdevelopmentopportunities.Shareofzero-carbonsourcesinelectricitygeneration(%)Thissectionexaminestheprogressoftheglobalpowertransitionbyanalyzingfourindicatorsrelated•Targets:Theshareofzero-carbonsourcesinelectric-toelectricitygeneration:shareofzero-carbonsourcesinelectricitygeneration;shareofcoalinelectricityitygenerationreaches88–91percentby2030,98–99generation;shareofunabatedfossilgasinelectricitypercentby2040,and99–100percentby2050.generation;andcarbonintensityofelectricitygenera-tion(Table1).AllindicatorsshowthatchangeisheadedTheshareofzero-carbonsourcesinglobalelectricityintherightdirection,butataninsufficientrate.grewslightlyin2022toreach39percent,acontinuationofrecenttrends.However,theworldneedstoincreaseShifttozero-carbonpowertheshareofzero-carbonsourcesinglobalelectricityto88–91percentby2030(atargetthathelpsaligntheScalingupzero-carbonpowertechnologieswillhelppowersectorwith1.5°C-compatiblepathways).Differentdecarbonizethepowersector(IPCC2022b).Thesezero-carbontechnologiesareondifferenttrajectories.technologies,whichgeneratelittletonoCO2duringtheirSolarpowerisinthebreakthroughstageofanS-curve,operationalcycles,includesolar,wind,hydropower,bio-growingexponentiallyoverthepastfiveyears,whilemass,nuclear,geothermal,andmarinetechnologies.15windpowerisinthediffusionstageofanS-curve,havingByprovidingzero-carbonpower,suchtechnologiescangrownexponentiallyinthepastbutgrowinglinearlyhelpmeetglobalenergyneedswithoutincreasingGHGoverthelastfiveyears(seeBox3).Nuclearpower,emissionsandlocalairpollutants.Outofallzero-carbonhydropower,andotherzero-carbonpowersourceslikepowersources,hydropowercontributedthelargestbioenergyhavebeenchanginglinearly(orplateauinginshareofglobalelectricitygeneration,at15percentthecaseofnuclear).Ifthetrajectoriesofeachofthese(4,300TWh)in2022(Ember2023).Nuclearpoweroutput,technologiesareextrapolated,theshareofzero-carbondespitehavingplateauedsince2006(WNA2022),powersourcesinelectricitygenerationismakingprom-maintainsitsplaceasthesecond-largestzero-carbonisingprogress,but,thoughheadingintherightdirection,contributortototalgenerationataround9percentrecentratesofchangeremainofftrack.(2,600TWh).Solarandwindarethefastest-growingsourcesofelectricitygeneration(IRENA2022a;IEA2023n)andtogetheraccountedfor12percentoftotalgeneration(3,400TWh)in2022.Meanwhile,allotherzero-carbonsources,includingbioenergy,accountedfor3percentoftotalgeneration(780TWh)in2022(Ember2023).Itisimportanttonotethatmorethan90percentofinvestmentinzero-carbonenergyhasoccurredinadvancedeconomiesandChina(IEA2023m).Asgrowthofthesepowersourcescontinues,itwillbeimportanttoensuremoreeveninvestmentsinzero-carbonenergy;indeed,mobilizinggreaterfinancingforemerginganddevelopingeconomiesiscriticaltoavoidcleanenergyimbalancesbetweendevelopedanddevel-opingcountries.Despitefastandcontinuedgrowthinzero-carbonpowertechnologydeployment,theshareofzero-car-bonpowersourcesinelectricitygenerationshowedonlyslowgrowthbetween2000(36percent)and2022(39percent)(Figure6).Thisisbecausethegrowthinzero-carbonpowerhasproceededinlinewithtotalpowergenerationduetoincreasedelectrificationandimprovedenergyaccess.Accordingly,toclearlytracktheshifttozero-carbonpowerthatisrequiredforkeeping1.5°Cinsight,wetracktheshareofzero-carbonsourcesintotalglobalelectricitygeneration,ratherthangrowthoftechnologydeploymentalone.PowerSTATEOFCLIMATEACTION202330FIGURE6Historicalprogresstoward2030,2040,and2050targetsforshareofzero-carbonsourcesinelectricitygenerationRightDirection,OffTrackS-CurveLikely%HistoricalCurrentPaceneededtodatatrendreachtargets10098–9999–1002040target2050target8088–912030target602022data3940200201020202030204020502000Note:Zero-carbonsourcesincludesolar,wind,hydropower,geothermal,nuclear,marine,andbiomasstechnologies.ForindicatorscategorizedasS-curvelikely,accelerationfactorscalculatedusingalineartrendlinearenotpresented,astheywouldnotaccuratelyreflectanS-curvetrajec-tory.ThiscurrenttrendarrowisextrapolatedbasedonanS-curvetrendlineforsolarandforwindandalineartrendlinefortheothertechnologies.Thecategoryofprogresswasdeterminedbasedonauthorjudgment,usingmultiplelinesofevidence.SeeAppendixCandJaegeretal.(2023)formoreinformationonmethodsforselectingtargets,indicators,anddatasets,aswellasourapproachforassessingprogress.Sources:HistoricaldatafromEmber(2023);targetsfromCAT(2023a).PowerSTATEOFCLIMATEACTION202331BOX3ShareofwindandsolarsourcesinelectricitygenerationSolarandwindpowerhavebeenthemaincontributorsreach57–78percentby2030,and79–96percentbytogrowthintheoverallshareofzero-carbonsources2050.aThesetargetsarecalculatedusingmethodsfrominelectricitygenerationinrecentyears.HydropowerCAT(2023a),whicharedescribedfurtherinthisreport’sandnuclearhavetraditionallybeenthelargestsourcesaccompanyingtechnicalnote(Jaegeretal.2023).ofzero-carbonelectricity,buttheyhavebeenslowlydeclininginrecentyears(Ember2023).CostsofsolarTheshareofelectricityproducedfromsolarandwindandwindhavebeenfalling,withadditionaldeploymenthasbeengrowing14percentperyearonaverageforspurringadditionalcostdeclines.thepastfiveyears,animpressiverateofgrowth.How-ever,itwouldhavetoincreaseby24percentperyearinToachievetargetsforzero-carbonpoweralignedwiththefuturetomeetthe2030target,requiringcontinuedtrajectoriesthatlimitwarmingto1.5°C,theshareofwindaccelerationthroughthisdecade(FigureB3.1).andsolarsourcesinelectricitygenerationwillneedtoFIGUREB3.1Historicalprogresstoward2030,2040,and2050targetsforshareofwindandsolarsourcesinelectricitygeneration%HistoricalCurrentPaceneededtodatatrendreachtargets1002030target57–788075–9179–962050target2040target60402022data20120201020202030204020502000Note:ThecurrenttrendarrowisextrapolatedbasedonanS-curvetrendlineforeachtechnology.Sources:HistoricaldatafromEmber(2023);targetsfromCAT(2023a).Note:aOtheranalysisfromRMIfindsthatifsolarandwindfollowafastS-curve,theywouldreach33percentofelectricitygenerationin2030;iftheyfollowpureexponentialgrowth,theywouldreach39percentofelectricitygenerationin2030(Bondetal.2023).ThisiswithinstrikingdistanceoftheIEA’sNetZeroEmissions(NZE)Scenario(IEA2022t),whichshowsa41percentshareofsolarandwindinelectricitygenerationby2030,butwellbelowthisreport’stargetof53–78percentin2030.Thescenariosandliteraturethatunderpinthisreport’stargetsshowahighershareoftotalzero-carbonpowerandahighershareofwindandsolarwithinzero-carbonpowerthantheIEA’sNZE.ThisisbecausetheIEANZEshowsstronggrowthinnuclear,fossilgaswithcarboncaptureandstorage,biomass,andhydropowergeneration.Additionally,theNZEhasahigheroverallcarbonintensityofpowergenerationthantheaverage1.5°C-compatiblescenariosusedinthisreport,whichmeansthatothersectorsdecarbonizefasterintheNZE.PowerSTATEOFCLIMATEACTION202332ManybrightspotsinviteoptimismaboutrealprogressFIGURE7Weightedaveragelevelizedcostoftowardthe2030targetforshareofzero-carbonpowerinelectricitygeneration.Between2019and2022,powerelectricityforselectedrenewablegenerationfromzero-carbontechnologiesgrewsig-energytechnologiesandfossilnificantly:mostnotablysolarby600TWh(+86percent)fuelcomparisonandwindby680TWh(+48percent)(Ember2023).Inrecentyears,severalcountrieshavescaledupwindandUS$/kWhsolarpoweratrapidrates(formoreinformationabout0.50national-levelprogress,seeBox4).Indeed,solarmanu-facturingthroughput(theamountthatgetsproducedby0.40manufacturingplants)forsolarPVmodulesgrewfrom190GWin2021to260GWin2022,thelatterrepresenting0.30about40percentoftotalmanufacturingcapacity(IEA2023i).Betweennowand2030,newannouncedcapacity0.20impliesanadditional1.1TWofthroughputin2030ifitisallultimatelybuilt.FossilfuelOffshorecostrangewindMeanwhile,thecostsofthesetechnologieshavecontinuedtoplummetbeyondexpectations.Overthe0.10pastdecade,costshaveplunged80percentforsolar,54percentforoffshorewind,and65percentforonshore0201220142016SolarPVwind(Figure7).Thepriceofbatterystorage—atechnol-2010Onshoreogythatenablesvariablerenewables—hasalsofallenwindsubstantially,byaround89percentbetween2010and2021(BloombergNEF2022a).16Itisimportanttonotehere,201820202022however,thatsupply-chainissuesforselectzero-carbonpowertechnologies(e.g.,batterysupplyshortagesNotes:$/kWh=dollarsperkilowatt-hour;PV=photovoltaics.causedbylithiumshortages)canslowgrowth.Source:IRENA(2023b).BOX4Wherearethemostrapidratesofchange?Windandsolarpowerhaveemergedasprimarydriversachieveditsrapidgrowthaheadofmostothercoun-ofthetransitiontorenewableenergy,offeringclean,tries.From1999,itsgovernmentintroducedafeed-inabundant,andcost-effectiverenewablepowerwithtariff,aguaranteedpaymentforsurplusrenewablesmallerenvironmentaldrawbacksthanthoseassoci-electricitythathomeownersandothergeneratorsatedwithbiomassorhydropower.Whilemanycountriesproduce.Thegovernmentalsoprovidedusereplace-areinvestinginrenewableenergy,thepaceofthistran-mentcertificatestoencourageupgradesforwindsitionvarieswidely.Acloserlookatcountriesleadingturbines(CookandLinLawell2020).BecauseDenmarkthechargerevealshowtheyareprogressingalongtheirwasinvestinginrenewablesinatimeperiodbeforetransitionsandwhatlessonsothercountriescanlearncostshadfallensubstantially,bottom-upmodelsshowandapply.FigureB4.1listscountriesthathavescaledthatDenmark’srapidshifttomorewindandsolarupsolarandwind’sshareoftotalpowergenerationthepowergenerationstemmeddirectlyfromthesepolicyfastest.Thejurisdictionsarequitegeographicallyvariedchanges,ratherthanfromtechnologicaladvancesanddemonstratethataquickscale-upispossiblein(CookandLinLawell2020).Uruguayhashadsimilarmostregionsoftheworld.successwithfeed-intariffs,andalsoimplementedareverse-auctionsystemtoencouragewindpowerThesejurisdictionshavereliedonavarietyofpoliciesinvestment(WestphalandThwaites2016).aHowever,itisandregulationstoachievetheirsuccess.Forexam-imperativetoensurethatfeed-intariffsdecreaseastheple,Denmark,whichmostlydependsonwindpower,costofthetechnologiesdrop,toavoidoverspending.PowerSTATEOFCLIMATEACTION202333BOX4Wherearethemostrapidratesofchange?(continued)FIGUREB4.1Thefastestfive-yearperiodsofgrowthofsolaranetenergyimportertoanetexporter.ElSalvadorandwindasashareoftotalelectricitygenerationisalsohopingtoswitchfromimportedfossilfuelstohome-grownrenewables(IRENA2022b),building%ofelectricitygenerationonalong-term2010–24energysectorplan,which70incentivizesrenewableenergyprojects.Inducementsincludeincometaxexemptionsforthefirst5–10years60Denmarkofaproject’slifeandduty-freeimportsonelectricitygenerationequipment(IRENA2020).InPalestine,the50LithuaniaincreaseinsolarPVenergyhascomefromaneedforenergyself-sufficiency;electricityisimportedfrom40Israelandisheavilycontrolled(Khatibetal.2021).Small-scalePVallowshouseholdsandbusinessesUruguaytousetheelectricitytheygeneratedirectlyanddecreasesrelianceongrid-suppliedpower.PalestineNetherlandshasalsointroducedincentivesintheformofreduced30incometaxesforutility-scalePV,whicharesettoincreasewithtime(Khatibetal.2021).NamibiaPalestineAswellasbuildingupwindandsolarcapacity,improvinggridinfrastructureandefficiencyisrequired20tomakebestuseofvariablerenewables.Manyofthesejurisdictionshavefolloweduptheirbuildupof10windandsolarwithlargeinvestmentsingridinfra-structureandexpansion;forinstance,Uruguayhas02006201120172022investedUS$1billion,whileDenmarkhasinvestedjust2000over€1,30million(EuropaWirePR2023;UruguayXXI2022).Itisalsoimportanttonotethatassomecoun-Fastestfive-yearperiodsofgrowthtrieshavescaleduprenewableenergy,theyhavehadtorelyonimportingenergyduringsomeperiodsoflowSource:Jaeger(2023).generation,andbeenabletoexportitatothertimes.Therefore,gridinterconnectivityishighlyimportantasNamibiahasbuiltupanimpressiveshareofsolarrenewablescontinuetoscaleup.powerbyenactinglong-terminfrastructureandeconomicplans,suchasdirectinvestmentinsolarWhiletheabovejurisdictionshavethehighestratesplants(WorldEconomicForum2021;NamibiaMinistryofsolarandwindscale-upasashareoftotalpowerofMinesandEnergy2017).Italsoopenedupthegeneration,creditshouldalsobegiventocountrieselectricitymarketin2015toallownonstatepartiestoinstallingthelargesttotalamountsofwindandsolar,purchaseelectricitydirectlyfromindependentpowerincludingChina,theUnitedStates,Germany,andIndiaproducers,encouragingprivateforeigninvestment(togethermakingup54percentofglobalpowersectorinbothenduseandgeneration(GIZ2022).Thispolicygeneration).Thelargecapacitiesinstalledbytheseisintendedtohelpthecountryswitchfrombeingcountriesalsohelptodrivedownpricesworldwideasthetechnologycontinuestoscale.Note:aInareverse-auctionsystem,sellersordevelopersbidforpricesatwhichtheycanselltheirgoodsorservices,asopposedtoaregularauctionwherebuyersbidatincreasingcostsforasoldgoodorservice(Chen2022)..PowerSTATEOFCLIMATEACTION202334PhaseoutfossilfueluseininallregionsexceptEuropesince2011(Ember2023).Fos-powergenerationsilgasusageispredictedtocontinuegrowingstronglyinthenearfutureundercurrentpolicies,especiallyinAcrosstheworld,coaliscurrentlyresponsibleforalmostemergingeconomies(BloombergNEF2022c).70percentoftotalpowersectorCO2emissions,andgasmakesuparound25percent(Ember2023).PhasingoutInadditiontotheirclimateimpacts,fineparticulatethesepowersources,then,willdirectlydecreaseoverallmatter(PM2.5)andotherpollutants,suchassulfurpowersectoremissionsandemissionsintensity,andisdioxideandnitrogenoxides,emittedbyfossilfuel–firedcrucialforlimitingglobaltemperatureriseto1.5°C.powerplants(particularlycoal)alsohaveadirectimpactoncommunityhealth.SuchpollutantscanEmissionsfrombothcoalandgasarescatteredaroundexacerbaterespiratoryconditionssuchasasthmaandtheworld,thoughmostareconcentratedinseveralincreasetheriskofheartdiseaseandlungcancer(U.S.largeeconomies.Chinawasresponsibleforaround53EPA2011).Coal-firedpowerplants,inparticular,alsogen-percentofcoalusagein2022,withIndia(14percent)eratelargeamountsofwastewater,whichcancontainandtheUnitedStates(8percent)beingthesecond-andheavymetals,toxicchemicals,andotherpollutantsthird-biggestusers,respectively(Figure8)(Ember2023).andcontaminatelocalwatersources,damageaquaticAlthoughtheshareofcoalasapowersourcehasbeenecosystems,andharmhumanhealth.CommunitiesedgingdownwardinChina,totalcoalusageforpowerlivingnearfossilfuel–firedpowerplantsareoftensocio-hasbeensteadilyrising.CoalusageinIndiahasalsoeconomicallydisadvantaged(Kopasetal.2020),whichincreasedsubstantiallyinthelastdecade(BP2022).furtherexacerbatesvulnerabilitytothesehealthrisks.AlthoughemissionsfromburningfossilgasdroppedAddressingthehealthimpactsoffossilfuel–firedpowerslightlyin2020duetotheCOVID-19pandemic,theyplantsandprotectingpublichealththusrequiresurgentreboundedin2021(IEA2022t).Fossilgasusageforpoweractiontoregulateandphaseouttheseenergysources.generationislargestintheUnitedStates,whichburns26percentoftheworld’sgasusedforpowergeneration,POWERINDICATOR2:followedbytheEuropeanUnion(20percent),andRussia(8percent),althoughgasusagehasincreasedsteadilyShareofcoalinelectricitygeneration(%)FIGURE8ShareofglobalcoalconsumptionforTargets:TheshareofcoalinelectricitygenerationfallspowergenerationinChina,Unitedto4percentby2030,0–1percentby2040,andthento0States,India,andtherestoftheworldpercentby2050.17%oftotalconsumptionThepercentageofpowergeneratedfromcoal100increaseduntil2007.Itthenslowlybegandeclining,fallingby4percentduringtheCOVID-19pandemic,butRestoftheworldthenreboundedby3percentin2021beforemarginally80decreasingin2022incontinuationofrecenttrends(BP2022;Ember2023).WhilerecentratesofchangehaveIndiathusbeenheadingintherightdirection,progressstill60fallsshortofthe2030target(Figure9),andtheindicatoriswellofftrack.ToreducetheshareofcoalinelectricityUnitedStatesgenerationto4percentby2030,therecentspeedofdeclinemustacceleratebyseventimes.However,with40therapidbuildupofrenewablesandtheirdecreasingcosts,itispossiblethattheshareofcoalinpowergen-Chinaerationcoulddecreaserapidlyandnonlinearly.20Wealthiercountriesthathavehistoricallygenerated0200720152022themostemissionsandhavethegreatestcapacityto2000cutthemsharplyneedtodemonstratetotherestoftheworldhowtophaseoutcoal-firedpower,includingSource:Ember(2023).byphasingoutfossilfuelsubsidies.Thesecountriesalsobeararesponsibilitytomobilizesignificantlymoreclimatefinancetosupportothercountries’transitionsandtoreducemisalignedfinanceflows(e.g.,financingforfossilfuelprojectsabroadandfossilfuelsubsidies).However,cleanenergyfinancefromdevelopedcoun-triestodevelopingcountrieswaslowerin2021thaninPowerSTATEOFCLIMATEACTION202335FIGURE9Historicalprogresstoward2030,2040,and2050targetsforshareofcoalinelectricitygenerationRightDirection,WellOffTrackS-CurvePossible%HistoricalCurrentPaceneededtodatatrendreachtargets452022data403635Acceleration30requiredtoreach2030target7x252015102030target2040target2050target540–100200020102020203020402050Notes:SeeJaegeretal.(2023)formoreinformationonmethodsforselectingtargets,indicators,anddatasets,aswellasourapproachforassessingprogress.Sources:HistoricaldatafromEmber(2023);targetsfromCAT(2023a).2010($10.8billionin2021comparedto$12billionin2010employment,andcontributetothedevelopmentof(IEA2023p).In2022,theG7ministersofclimate,energy,asustainableenergyfuture,whilecompensationcanandtheenvironmentagreedtoendgovernmentfinanc-alsobeofferedtoworkersaffectedbythetransition.ingforinternationalcoal-firedpowergeneration(G7Therearemanyexamplesofthisinpractice;SlovakiaGermany2022).Butthispromisedoesnotaffectthetypehasprovidededucation,retraining,andcoachingofpowergenerationthatcountriesfinancedomestically.tocoalindustryworkersintheUpperNitraregion,CommitmentsmustsimultaneouslybemadetophasewhileformercoalminessuchasAnselminCzechiaoutdomesticcoalandgasuse.Indeed,around$1trillionhavebeenconvertedintomuseumsthatdrawtour-isstillbeinginvestedannuallyinfossilfuelexploration,ists,preservingthetown’scharacterandeconomicextraction,andtransport(LazarusandVanAsselt2018),development(Szőke2022).Currently,about8.4millionwiththemajorityofinvestmentscomingfromdevel-peopleworldwideworkinthecoalvaluechain,afigureopedcountries.expectedtodroptoabout6.1millionby2030(IEA2022x).However,renewableenergyjobshitaround13millioninAscoalpowerisphasedout,itisimportanttoretrain2022,andareexpectedtogrowfurther(IRENA2022c),orcompensatecoalplantworkersandtoincreasethedemonstratingopportunitiestoretraintraditionallyresilienceoflocalcommunities’economicactivitiestocoal-focusedworkforces.ensureajusttransition(Box5).Retrainingprogramscanhelptheseworkersacquirenewskills,findnewqualityPowerSTATEOFCLIMATEACTION202336FIGURE10ShareofcoalinelectricitygenerationBOX5DefiningajusttransitionfortheUnitedKingdomandtheworldAtitscore,ajusttransitionelevatesconcernsaboutsocialjusticeinthetransitiontonet-zero%ofelectricitygenerationGHGemissionsinpursuitofasustainableecon-45omyandsociety.Althoughcountriesandregionsconceptualizetheirownvisionsanddefinitions,40atitsbroadestlevel,ajusttransitionaimstoGlobalensurethatimpactedgroups(oftentimeswithlimitedresources)areprotectedandempowered,35socialandeconomicopportunitiesaremaxi-mized,andanychallengesareminimizedand30managed(ILOn.d.).TheInternationalTradeUnionConfederation(ITUC)definesthejusttransition25asaneconomy-wideprocessthatproducestheplans,policies,andinvestmentsthatleadtoaUnitedfuturewherealljobsaregreenanddecent,GHGKingdomemissionsareatnetzero,povertyiseradicated,20andcommunitiesarethrivingandresilient.TheITUCpresentsajusttransitionasbeinginformed15bysocialdialoguebetweenworkersandtheirunions,employers,andoftengovernments(ITUC102017).TheSharmel-SheikhImplementationPlan(UNFCCC2022a)reiterates“thatsustainableandWhat’sjustsolutionstotheclimatecrisismustbefoundedneededonmeaningfulandeffectivesocialdialogueand5participationofallstakeholders.”02007201520232030Note:GHG=greenhousegas.200023percent.Unabatedfossilgas’ssharemustbebroughtSources:HistoricaldatafromEmber(2023);targetsfromCAT(2023a).downto5–7percentby2030toalignwith1.5°C-com-patiblepathways,whichrequiresanaccelerationmoreFortunately,recentencouragingsignsofprogressinvitethan10timesfasterthanthecurrentslightlydecreasingoptimismthatchangeispossible.India,forexample,haslineartrend(Figure11).18Butwiththerapidbuildupofannouncedplanstohaltnewcoalplantconstructionrenewables,theshareoffossilgasinpowergenerationforfiveyearsfrom2024,withmanyotherSouthAsiancoulddecreaserapidlyandnonlinearly.countriesfollowingsuitandannouncingcoalphase-outdatesormoratoriums(Abrasu2023).Meanwhile,theTophaseoutfossilgaspowerattheneededpace,19UnitedKingdomreduceditsshareofcoalforelectricityzero-carbonenergysourcesneedtobebuiltupquickly,generationfromahighofabout40percentin2012towhiletheconstructionofnewfossilgaspowerplantsjust2percentin2021(Ember2023),thefastestfallofneedstobehalted.Currently,over73percentofpoweranycountry(Figure10).Denmark,theNetherlands,andgenerationfromfossilgasisfromthedevelopedworld.GreecehavealsoachievedreductionsincoaluseatThisrapidreductioninfossilgaspowergenerationshouldspeedsalmostasfastastheUnitedKingdom(Wiatros-thenbedrivenparticularlybyphasingoutfossilgasinMotykaetal.2023).Fromnowto2030,therestofthedevelopedcountries.Aswiththecoalphase-out,gasworldneedstophasedowncoalelectricitygenerationplantworkersshouldberetrainedorcompensatedtonearlyasfast.makesuretheenergytransitionisfairandjust(seeBox5).POWERINDICATOR3:Shareofunabatedfossilgasinelectricitygeneration(%)•Targets:Theshareofunabatedfossilgasinelectricitygenerationfallsto5–7percentby2030,1percentby2040,andthento0percentby2050.Theshareoffossilgasgrewfrom18tojustover23percentoftotalelectricitygenerationfrom2000to2019(Ember2023).However,ithasslightlydecreasedeachyearsincethen,includingadecreasein2022toreachPowerSTATEOFCLIMATEACTION202337FIGURE11Historicalprogresstoward2030,2040,and2050targetsforshareofunabatedfossilgasinelectricitygenerationRightDirection,WellOffTrackS-CurvePossible%HistoricalCurrentPaceneededtodatatrendreachtargets252022data2320Accelerationrequiredtoreach>10x152030target102030target5–752010202020302040target2050target010200020402050Note:SeeJaegeretal.(2023)formoreinformationonmethodsforselectingtargets,indicators,anddatasets,aswellasourapproachforassessingprogress.Sources:HistoricaldatafromEmber(2023);targetsfromCAT(2023a).Decarbonizeelectricitysuchasaddedcapacityorvaryingdemand.20Inordergenerationtoreducethecarbonintensityofelectricitygeneration,topprioritiesshouldbethephase-outofcoalandgasThecarbonintensityofglobalpowergenerationpowergenerationandthesimultaneousbuildupofprovidesanoverallmeasureofprogressondecarbon-zero-carbonpower,particularlysolarandwind,allofizationofthesectorbydescribingtheemissionsperwhicharetrackedbythepriorindicators.Simultaneously,unitofelectricitygenerated,unaffectedbychangesenergywillneedtobeusedmoreefficientlyandenergystoragesolutionsscaledup,particularlyasthedemandforelectricityincreasesasaresultofincreasingelectrifi-cationinothersectors.POWERINDICATOR4:Carbonintensityofelectricitygeneration(gCO2/kWh)•Targets:Thecarbonintensityofelectricitygenerationgloballyfallsto48–80gramsofcarbondioxideperkilowatt-hour(gCO2/kWh)by2030,2–6gCO2/kWhby2040,andthentobelowzeroby2050.PowerSTATEOFCLIMATEACTION202338From2000to2010,thecarbonintensityofglobalpowerITA2022).Thecountry’ssuccesscanbeattributedtogenerationgraduallyincreasedfrom470gCO2/kWhseveralfactors,includingstrongpoliticalcommitment,to480gCO2/kWh.Althoughithasstartedtodecreaseasupportiveframeworkoflawsandregulations,andslightlysincethen,reaching440gCO2/kWhin2022,favorableconditionsforrenewables,includingregu-recenttrendshaveroughlycontinued.Therecentratelatoryreformssuchasacompetitivereverse-auctionofdecreaseneedstoberoughlyninetimesasfastifthesystemforlarge-scaledevelopment,afeed-intarifffor2030target(48–80gCO2/kWh)istobemet.Recentratessmall-scaleprojects,21andincreasedjobtrainingandofchangearethuswellofftrack(Figure12).However,itisuniversitycoursesinrenewableenergy(WestphalandpossiblethatprogressonthisindicatorcoulddecreaseThwaites2016;Elliottetal.2023).Havinghydropowernonlinearlyaszero-carbonpowersourcesdropevenreservesalsohelpedUruguaytomeetelectricityfurtherincostandcontinuetogainmomentum.demandduringperiodsoflowwindpowerasfossilfuelswerephasedout.ThesemeasureshaveresultedinaSomecountrieshaveachievedsignificantreductionsin32percentreductioninUruguay’selectricitypricefromcarbonintensityofelectricitygeneration.Oneexample2010to2021(CEICDatan.d.).WhileUruguayisarelativelyisUruguay,whichproducesover80percentofitselec-smallcountry,itssuccessandhowitwasachievedtricityfromrenewablesources(Ember2023),increasingcouldbereplicatedinothercountrieswithsimilartheshareofwindgenerationinthenationalgridfromrenewableenergypotential.1percentin2013to33percentby2022(Ember2023;FIGURE12Historicalprogresstoward2030,2040,and2050targetsforcarbonintensityofelectricitygenerationRightDirection,WellOffTrackS-CurvePossiblegCO2/kWhHistoricalCurrentPaceneededtodatatrendreachtargets6002022data500440400Accelerationrequiredtoreach2030target9x3002001002030target2040target2050target048–802–6<0200020102020203020402050Notes:gCO2/kWh=gramsofcarbondioxideperkilowatt-hour.Achievingbelowzero-carbonintensityimpliesbiomasspowergenerationwithcar-boncaptureandstorage.Thesetargetslimitbioenergywithcarboncaptureandstorageuseto5GtCO2peryearin2050.SeeJaegeretal.(2023)formoreinformationonmethodsforselectingtargets(includingoursustainabilitycriteria),indicators,anddatasets,aswellasourapproachforassessingprogress.Sources:HistoricaldatafromEmber(2023);targetsfromCAT(2023a).PowerSTATEOFCLIMATEACTION202339Thelastseveralyearshavealsoseenimportantcountriescombined(Schonhardt2023).Additionally,developmentsinenergystorage,whereadvancesareIndiahasallocatedmorethan$8billionforcleanenergyrequiredtocontinuetolowerthecarbonintensityofin2023–24(CAT2023b).Thoughthesebrightspotsareelectricitygeneration.Thecostoflithium-ionbatteriessignificant,moreconcertedactionisneededtomeetneededforstoragehasplummetedinrecentyearstargetsforzero-carbonpoweruptake.(BloombergNEF2022a),asdescribedabove.Mean-while,ChinaandtheUnitedStatesareleadingtheAtthesametime,approximately560GWofnewcoal-installationofpumpedhydropowerstoragesolutionsfiredpowerstationsareinthepipeline,withmost(IEA2022y,2022v),22andanumberofothercountriesplannedindevelopingcountrieslikeChina,Indonesia,areimplementingtargets,researchanddevelopmentandBangladesh(GEM2023a;2023b).Policymakersin(R&D)support,andregulatoryreformsforenergytheseregionsmustprioritizedevelopmentofzero-car-storage.Spainisaimingfor20GWofenergystoragebybonpowerovernewfossilfuelpowerplants,halting2030,andGermanyisincentivizingthecombinationofapprovalsfornewconstruction.Appropriatefundingrenewablesandstorage(IEA2022v).Theseinstallationsshouldbesuppliedfromdevelopedcountriestosupportandtargetshavedrivenglobalinvestmentsinbatterythistransition.Fortunately,recentencouragingsignsstoragetogrowbyanaverageof67percentperyearsuggestthattrendsmaybeshifting.since2019,reaching$37billionin2023(IEA2023m).Meanwhile,between2019and2021,morethan8,000Russia’sinvasionofUkrainehasgreatlyimpactedgaspatentapplicationsforenergystoragetechnologiesmarkets,particularlyinEurope,whichnowreliesmoreweresubmittedacrosstheglobe—aneightfoldincreaseheavilyongasimportsfromtheUnitedStatesandfrom2000andapromisingsignalofinnovationintheMiddleEast,butalsogloballyasrichcountriesbuygassector(IEA2022w).Despitetheseencouragingadvances,reservesthatotherwisewouldhavebeenpurchasedatonly16GWofstoragearecurrentlydeployedongridsalowerpricebycountriessuchasPakistan,India,andaroundtheworld(IEA2022v).ModelresultsfromtheIEABrazil(Ahmed2022).Thishascausedthesecountriestosuggestthatanover10,000percentincreaseinbatteryswitchtoburningmorecoalforpowergeneration(BPstoragecapacityisneededbymidcentury(IEA2021b).2022),whichleadstoevenworsehealthandclimateAdditionally,toallowthegridtohandlelargeloadsofimpactsthangas.Ithasalsocontributedtopowervariablerenewables,mostcountrieswillhavetosignifi-rationingandoutagesduetouncertaintyandfluctua-cantlyexpandtransmissionanddistribution,aswellastionsincoalsupply(Singh2022).Itisimportanttonotedemand-responseprograms.thatifaccesstonaturalgasislimitedduetohigherprices,coalmightbeperceivedasamoreaccessibleRecentdevelopmentsoptiontomeetenergyneedsincountriesgrapplingwithacrosspowerenergyaccesschallenges.SafeguardsmustbebuilttopreventthisandencouragecountriestomeetaccessAcrosstheglobalpowersector,thispastyearhasgapsbyscalingzero-carbonalternatives.witnessedmanydevelopmentsaimedatboostingzero-carbonpowergenerationandphasingoutfossilAszero-carbonpowerisscaledupandfossilfuelusagefuelstoultimatelydrivedecarbonizationofelectricityisphasedout,innovativecoalitionsestablishedoverthegeneration.Amajorexampleisthe2022InflationReduc-lastyearwillbecriticalfordrivingcontinueddeclinesintionAct,thelargestinvestmentinclimateandenergyinthecarbonintensityofpowergeneration.In2022,theU.S.history(U.S.DOE2022b).Itauthorizesover$390billionUnitedNationsestablishedtheEnergyCompactActioninsupportforprojectsthatavoidGHGemissions,suchNetworktomatchgovernmentsseekingsupportforasconstructionofzero-carbonpowerorenergystoragereachingtheircleanenergygoalswithgovernmentsandsystems.Theannouncementofthispolicyhashadbusinessesthathavepledgedtoofferfinancingofoverdramaticknock-oneffects,withothercountriesfeeling$600billionbytheendofthedecade,alongwithinfor-pressuretomatchU.S.incentivesorrisklosinggreenmationandcapacitysharing(UnitedNations2022).LaterinvestmentstotheUnitedStates(EuropeanInvestmentintheyear,atCOP27,theEgyptianPresidencylaunchedBank2023).InFebruary2023,theEuropeanUniontheAfricaJustandAffordableEnergyTransitionInitiative,announceditsunofficialanswertotheInflationReduc-whichaimstoprovideatleast300millionpeoplewithtionAct,the“GreenDealIndustrialPlan,”whichaimstomoreaccesstoaffordableenergytechnologiesandreduceredtapeandincreasetradeandfundingforincreaseAfrica’srenewableelectricitygeneration.Insustainabletechnologiessuchaswind,solar,hydrogen,2022,too,philanthropicfundersandtheU.S.governmentandenergystorage.ChinaisalsomassivelyincreasingpartneredtolaunchtheEnergyTransitionAcceleratoritsgreeninvestments,spendingnearly$550billionintomobilizeprivatecapitalforcleanenergytransitions2022onlow-carbontechnologies,morethanallotherindevelopingcountries(McGinnetal.2022).Meanwhile,theAsianCleanEnergyCoalitionwaslaunchedtomobilizeprivateinvestmentandsupportforstrongerrenewableenergypoliciesinAsia.PowerSTATEOFCLIMATEACTION202340SECTION3BuildingsBuildingsarethespaceswheremanycarryoutincarbondioxide(CO2)emissionsfrombuildingsintheactivitiesofdailylife,buttheseactivities,2020comparedwiththeyearbefore,lessthanthe10andthebuildingsthemselves,oftenrelyonfossilpercentdropinitiallyestimated(IEA2021d;UNEP2021a;fuelsandareasignificantsourceofGHGemissions.IEA2023d).CO2emissionsfrombuildingoperationshaveDirectGHGemissionsfromburningfuelforcookingandsincereboundedtoprepandemiclevels(IEA2022c).Inheatingon-siteaccountedforanestimated6percent2022,globalenergy-relatedCO2emissionsrosealmostofGHGsgloballyin2021(Figure13).Whenconsidering1percentcomparedtothepreviousyearbut,otherindirectGHGemissionsreleasedoff-sitefromthepro-than2020,operationalemissionsfrombuildingshaveductionofelectricityandheatthatisusedforheating,remainedsimilaroverthelastfiveyears(IEA2023o).cooling,cooking,lighting,electronics,andotheractivi-Underlyingthispatternare,however,geographicaltiesinbuildings,theseGHGemissionsroughlytriplefromdifferences.In2022,buildings-relatedemissionsgrewabout3GtCO2to9GtCO2(Figure14)(IEA2022c).Con-significantlyinAsiaandNorthAmerica,partlydrivenstructingandfurnishingbuildingsgeneratesadditionalbyhightemperaturesdrivingincreaseddemandforemissions,knownasembodiedemissions(IPCC2022b).coolingaswellasrelianceongasandcoal.InEurope,emissionsdroppedin2022becauseofacombinationOperationalemissionsfrombuildingshaverisensteadilyofwarmwinterweatherandtheresponsetofossilfuelsince1990,drivenpredominantlybyelectricitycon-supplydisruptionscausedbyRussia’sillegalinvasionsumptionandfloorareagrowth(Figure14)(IEA2022c).ofUkraine.EuropeangovernmentsarenowprioritizingChangingbehaviorsduringtheCOVID-19pandemic—ashifttowardrenewableenergyandothercleanfuels,namely,teleworkingfollowingofficesclosingduringespeciallyforheating(IEA2023o).lockdowns,aswellasthedeclineinhoteloccupancyandrestaurantdining—ledtoadropofabout3percentFIGURE13Buildings’contributiontoglobalnetanthropogenicGHGemissionsin2021ElectricityandheatOilandgas14.4fugitiveemissions2.5Other1.6Coalminingfugitiveemissions1.5EnergyPetroleumrefining20.70.7Non-CO2(allbuildings)WasteLanduse,0.04land-use2.4change,Nonresidentialandforestry0.8GlobalGHGAgriculture,Emissionsforestry,4.0Rail56.8GtCO2eandother0.1ResidentialBuildingslandusesEnteric2.33.2fermentationInlandshipping10.40.2Transport3.0Managed8.1soilsandDomesticaviationManagedpasture0.3soilsandIndustrypastureInternational12.0aviation1.40.4RoadOtherRicecultivationOtherTransport4.41.00.55.9ManuremanagementInternational0.4shippingChemicalsMetals0.72.63.4Syntheticfertilizerapplication0.4Cement1.6Biomassburning0.1Notes:CO2=carbondioxide;GHG=greenhousegas;GtCO2e=gigatonnesofcarbondioxideequivalent.Sources:Minxetal.(2021);EuropeanCommissionandJRC(2022).BuildingsSTATEOFCLIMATEACTION202342FIGURE14GlobaldirectandindirectCO2FIGURE15GlobalfloorareagrowthprojectionsemissionsfrombuildingsfromselectedmodelsfromtheIPCCAR6scenariosdatabaseGtCO2/yr10Billionm2700Indirect8nonresidential600Maximumemissions5006400IndirectMinimumresidentialemissions3004Directnonresidentialemissions200IEAnetzero2by2050scenarioDirectresidential100emissions0201020142018202202010Notes:CO2=carbondioxide;GtCO2/yr=gigatonnesofcarbon204020702100dioxideperyear.Minxetal.(2021)andEuropeanCommissionandJRC(2022)provideanestimateofdirectandindirectGHGemissionsNote:AR6=SixthAssessmentReport;IEA=InternationalEnergyfrombuildingsthrough2020.DataonindirectGHGemissionsfromAgency;IPCC=IntergovernmentPanelonClimateChange;buildings,specifically,arenotyetavailablefor2021.Butbecausetheym2=squaremeter.ThedataaretakenfromtheIPCCAR6scenariorepresentsuchasignificantshareofthissector’stotalemissionsdatabase,usingscenariosthatarecompatiblewith1.5°Candfit(67%in2020),thisfigurereliesonadifferentdatasetthanFigure13.additionalsustainabilitycriteria(CAT2023a),aswellasmodelsthatThisIEA(2023d)datasetincludesdataonbothindirectanddirectspecificallyfocusonthebuildingssector;floorareadatafromtheemissionsfrom2010to2022butexcludesnon-CO2emissions.MoreIEANZE2050scenarioarealsoincluded(IEA2021b).Thisfigureshowsspecifically,thesedataexcludeF-gasemissionsfromtherefrigerantstherangeoffloorareapredictionsfromtheselectedAR6scenariosusedforrefrigerationorinairconditionersandheatpumps.RecentalongwiththefloorareavaluesfromtheIEANetZeroby2050dataarenotavailable,butemissionsofF-gasesfromtheseactivitiesscenario,thelatterofwhichtracksthelowerboundoftherangefromareestimatedatjustover500MtCO2ein2016(GreenCoolingtheAR6scenarios.Eventhoughitisnowhistoric,2020hasmultipleInitiative2023a).estimatesoffloorarea.Thisisbecausethemodelrunswereinitiatedinearlieryearsandmakepredictionsfor2020usingasetofinputsSource:IEA(2023d).andassumptions(relatingtotechnologyavailability,energysupply,climateconditions,andpolicydecisions,tonameafew)(EvansandUndercurrenttrajectories,emissionsfrombuildingswillHausfather2018).continuetogrow.TotalfloorareaisaprimarydriverofemissionsandisexpectedtokeepexpandingintheSources:DatafromIPCCAR6scenariosdatabase(Byersetal.2022)comingdecades(Figure15).By2060,floorareacouldbeandIEANZE2050(IEA2021b).doublewhatitwasin2020(UNEP2017;IEA2017a).Spaceheatingandcoolingaremajorcomponentsofbuildingcomfort(UNEP2022a).Substantialimprovementsacrossenergyconsumptionandemissions,andthemorefloorbuildingsareneededtomeettheParisAgreement’sareathereis,themoreheatingandcoolingisneeded.goaloflimitingtheriseinglobaltemperatureto1.5°C.Asbuildingsgrowinnumberandsize,theywillalsoThedatathatarepubliclyavailableindicatethatnoneproducehigherembodiedemissionsduetothegreateroftheindicatorsassessedareontrack.volumeofconstructionmaterialsused.TheamountoffloorareaandenergyusedpercapitadiffersvastlyGlobalassessmentofamongandwithincountries,oftendependingontheprogressforbuildingscountry’slevelofwealthanditsclimaticzone.MuchofthegrowthinfloorareaisexpectedtooccurinAsiaandBecausebuildingsvarysomuchacrosstheglobeandAfricaasstandardsoflivingimprove.Stepscanbetakendependingontheirintendeduse,pathwaysfordecar-nowtoensurethatnewbuildingconstructiongoeshandbonizationandthetechnologiesandstrategiesusedinhandwithminimizingCO2emissionsfromconstruc-willdiffersignificantlybygeographyandbuildingtype.tionandwithmeetingadditionaldemandforthermalDifferentclimaticzones,forexample,requiredifferentapproachestomeetheatingandcoolingneeds.BuildingsSTATEOFCLIMATEACTION202343TABLE2SummaryofglobalprogresstowardbuildingstargetsINDICATORMOSTRECENT203020352050LIKELIHOODACCELERATIONSTATUSDATAPOINTTARGETTARGETTARGETOFFACTOR(YEAR)FOLLOWINGANS-CURVEEnergyintensityofbuilding14085–120N/A55–803xoperations(kWh/m2)(2022)4xInsufficientdataCarbonintensityofbuilding3813–16N/A0–2Insufficientdataoperations(kgCO2/m2)(2022)2.5–3.53.5N/ARetrofittingrateof<1buildings(%/yr)(2019)(2040)Shareofnewbuildings5100100100thatarezero-carbon(2020)inoperation(%)Notes:kgCO2/m2=kilogramofcarbondioxidepersquaremeter;kWh/m2=kilowatt-hourpersquaremeter;yr=year.SeeJaegeretal.(2023)formoreinformationonmethodsselectingfortargets,indicators,anddatasets,aswellasourapproachforassessingprogress.Sources:HistoricaldatafromIEA(2020c,2021c,2021b,2023g,2023d);targetsfromCAT(2020b,2023a).Mitigationstrategiescandependonthetypeofbuildingzero-carboninoperation.Giventheurgencyofreducing(residentialorcommercial),whetheritexistsorisyetemissions,allnewbuildingsshouldbezero-carbonintobebuilt,whatinfrastructure(suchasgasconnec-operation(energyefficientandnotreliantonfossilfuel–tions)areavailable,andwhattypeoffuelsareusedpoweredtechnology)whileminimizingemissionsfromtopowerit.Still,acrossthesecontexts,decarbonizingconstructionandfurnishing(WorldGBC2019).Decarbon-thebuildingssectoratthegloballevelwillrequirefourizingexistingbuildingswillrequireahighannualrateofinterrelatedshifts(Table2):improvingtheefficiencydeepretrofitsofbuildingenvelopesusingmaterialswithofenergyuseinbuildings,decarbonizingenergyuse,lowembodiedcarbonandheatingsystemsthatdrasti-retrofittingtheexistingbuildingstock,andensuringthatcallyimproveenergyefficiencyandreplaceequipmentnewbuildingsareconstructedtobezero-carboninwithzero-carbonoptions.operation.Newbuildingsneedtobedesignednotonlytooperatewithzerocarbonemissionsbutalsotomini-Whilethisreportfocusesonmitigation,buildingsalsomizetheirembodiedcarbon;forexample,byswitchingplayafundamentalroleinadaptationtoclimatetolow-andzero-carbonmaterialsandconstructionchange,whereaffordableandresilienthousingwillprocesses,andrecyclingmaterialsafterdemolition.Anhelpcommunitiesfacingtheimpactsofclimateindicatortotrackembodiedemissionsisnotincludedchange(WorldGBC2023d).Additionally,thissectioninthisreportduetoalackofdata,buteffortstocollectdoesnotaddressurbanplanningandthewiderbuiltmoredataonembodiedcarbonwillhelpmaketrackingenvironment,thoughchangesinthesecontextsimpactthisfundamentaltransitioneasierinthefuture.buildings,suchascreatingmoregreenspaces,whichloweroveralltemperaturesincitiesandreducetheUnderpinningalloftheseshiftsissufficiency,usedbyneedforactivecooling.theIPCCtomeanreducingdemandalongsidechang-ingthewayweuseexistingspace(e.g.,byensuringImproveenergyefficiencymoreevenlydistributedfloorareapercapita,usingemptybuildingsfornewpurposes,andmakingbuild-Reducingtheenergyintensityofbuildings,definedastheingsmultifunctionaltoincreasebuildingoccupancyamountofenergyusedpersquaremeter(m2)offlooranduseovertime)andprioritizingretrofittingandrepur-area,helpstominimizeoverallenergydemandfromtheposingoverconstructingnewspacewhereverpossiblesectorand,asaresult,makesiteasiertodecarbonize(IPCC2022b).Achievingsufficiencywillmakeiteasiertheenergysupplybymeetingremainingenergyneedstodecarbonizethebuildingssector(Bernhardt2023).Inwithrenewables.Theseaimscanbeachievedthroughkeepingwiththis,improvingbuildings’energyefficiencyefficiencyimprovements,includingchangingusepat-anddecarbonizingenergyusearetwoofthemainterns,alteringthebuildingenvelope(suchasbyaddingmitigationgoalstodrivedecarbonizationofbuildinginsulation)toreduceactiveheatingandcoolingneeds,operations;thesewillneedtobeachievedbyretrofittingandupgradingtomoreefficienttechnologies(suchasexistingbuildingsandconstructingnewbuildingstobeelectricalappliancesandlighting)(IPCC2022b).BuildingsSTATEOFCLIMATEACTION202344AdoptingstrategiestoimproveenergyefficiencyhastheBUILDINGSINDICATOR1:potentialtodelivera42percentemissionsreductioninthebuildingssector,whilealsosupportingdecarbonizationEnergyintensityofbuildingduetodecreasedenergydemandperunitoffloorareaoperations(kWh/m2)orenduse;sufficiency,whichincludesreducingenergyandmaterialdemand,candelivera10percentemissions•Targets:Theenergyintensityofbuildingoperationsreduction(IPCC2022c).Theenergyintensityindicatorthatwetrackincludesenergyefficiencyaswellasotherdropsto85–120kilowatt-hourspersquaremeter(kWh/improvements,suchasbehavioralchangearoundm2)by2030andto55–80kWh/m2by2050.energyuse(e.g.,comforttemperaturesandratiooffloorareapercapita).Thezero-carbonandenergy-efficientGlobally,theenergyintensityofbuildingoperationstechnologiesneededalreadyexistandarefairlymaturedeclinedby20percentfrom2000to2015,butthisprogress(IEA2019;Ürge-Vorsatzetal.2020),thoughadoptionofhasrecentlyslowedandremainswellofftrack(IEA2020a).theseinnovationsneedstobetailoredtoeachbuildingThesectorsawonlyanadditional2.5percentdeclineanditslocation.Suchreadilyavailablemeasuresincludeinenergyintensityfrom2015to2019,butoverallenergyimprovingthermalefficiencybyinstallingdouble-ordemandgrowthslowedoverthelastthreeyearsofavail-triple-glazedwindows,upgradingroofandwallinsulation,abledata(2020–22),whichtranslatesintoanimprovedorientingnewbuildingstomaximizeshadeandreduceenergyintensity(IEA2022c).Multiplecompetingfactorsthermalheatgain,installingshuttersandblinds,puttingaredrivingthesetrends,includingtherecentCOVID-19incoolorgreenroofs,andventilatingproperly.Digitalandenergycrises,interannualvariabilityinweatherpat-sensorsandcontrolscanfurtheroptimizeenergyusebyternschangingheatingandcoolingneeds,andchangingmonitoringandregulatingtemperature(IEA2019).behaviors,suchasincreaseduptakeofdigitaldevices.Toachievethe2030target,gainsmadefrom2018to2022wouldneedtoacceleratebyafactorof3(Figure16).FIGURE16Historicalprogresstoward2030and2050targetsforenergyintensityofbuildingoperationsRightDirection,WellOffTrackS-CurveUnlikelykWh/m2HistoricalCurrentPaceneededtodatatrendreachtargets1801602022data2050target14012014055–8010080Acceleration60requiredtoreach2030target3x85–1202030target4020020202030204020502010Note:kWh/m2=kilowatt-hourpersquaremeter.SeeJaegeretal.(2023)formoreinformationonmethodsforselectingtargets,indicators,anddatasets,aswellasourapproachforassessingprogress.Sources:HistoricaldatafromIEA(2023g);targetsfromCAT(2023a).BuildingsSTATEOFCLIMATEACTION202345EnergyintensitiesinEurope,NorthAmerica,andotherenergyefficiencyimprovementsarebroadlyaccessible.developedregionsareimprovingataratesimilartotheItisimportanttosetupguidanceandfinancialsupportglobalaveragetrend.SomedevelopingAsiancountriesforbetterenergyefficiencyimprovements,energyareloweringenergyintensitymorequickly,whilemosttransitions,anddecarbonizationtomeetenergyneedsotherregions,includingChina,havemanagedonlywithcleanfuelsbutwithoutfurtherburdeningvulner-smallimprovements(IEA2020a).Spaceandwaterablehouseholds.heatingdominateenergydemandfrombuildingsatthegloballevel,togetheraccountingforclosetohalfofDecarbonizebuildingdemandin2022(IEA2023i).However,energydemandoperationshasgrownmorequicklyforotherendusesinbuildingssince1990,especiallyconnectedandsmallappliancesEffectivelyimplementedandwidespreadenergy(up280percent),cooking(up89percent),andcoolingefficiencyimprovementscangreatlyreduceenergy(up75percent)(IPCC2022b).demandandglobalemissionsfrombuildings(IPCC2022b,2022c).However,energyefficiencyimprovementsSomefutureincreasesinenergyusefromthebuild-alonewillnotachievetheParisAgreementlimitandingssectorwillbedrivenbyimprovementsinenergyneedtobeaccompaniedbyglobaleffortstodecarbon-access.SustainableDevelopmentGoal7(SDG7)callsizetheremainingenergyusedinbuildings.Energyusefor“ensuringaccesstoaffordable,reliable,sustainablecanbedecarbonizedbyswitchingtheenergysourceandmodernenergyforall”by2030.Itaimsforuniversalforheatingandcookingequipment(i.e.,fromfossilfuelsenergyaccessthroughwidespreadelectrification,toelectricpower)anddecarbonizingthepowersupplypoweredasmuchaspossiblebyzero-carbonenergy(seethePowersection).Electrificationisanimportantsourcesandcleanfuelsourcesforcooking(UNDESAn.d.;steptodecarbonizeenergyuseinbuildings(BernhardtIPCC2022b).Asitstands,680millionpeopleglobally(the2023),anddecarbonizationofthepowersectorwillbemajorityofthemlivinginAfrica)donothaveelectricitynecessaryfordecarbonizationinbuildings.Incorpo-(downfrom733millionin2020),and2.4billionpeopleratingrenewableenergyinfrastructureinbuildingswillarenotusingcleanfuelsforcooking(IEAetal.2022b;IEAadditionallyhelptoprovidecleanpowerandenergy;2023p;UNEP2022a).Between2018and2020,57millionthisincludessolarpanelsforon-sitepowergenerationpeoplegainedaccesstoelectricity,butprogressneedsandsolarthermalcollectorsthatcanbeusedtoheattoacceleratesubstantiallyinordertoreachuniversalwater(IPCC2022b,2022c;IEA2022e).access(SystemsChangeLab2022).AddressingequityinenergyaccessgoeshandinhandwithensuringthatBuildingsSTATEOFCLIMATEACTION202346BUILDINGSINDICATOR2:recentdeclinesincarbonintensityremainwellofftrackandhavebeenmorethanoffsetbyincreasesCarbonintensityofbuildinginfloorarea,whichroseonaverageby2percentperoperations(kgCO2/m2)yearbetween2010and2020.Asaresult,CO2emissionsfrombuildingshaveremainedrelativelylevelsince2010•Targets:Thecarbonintensityofbuildingoper-(Figure14)(IEA2023d,2023j).Toachievethe2030target,gainsmadefrom2018to2022wouldneedtoaccelerateationsfallsto13–16kilogramsofcarbondioxidebyafactorofroughly4.persquaremeter(kgCO2/m2)by2030andto0–2kgCO2/m2by2050.Currently,spaceheatingisthegreatestcontributortoemissionsintensityfrombuildings,butspacecoolingThecarbonintensityofbuildingsiscalculatedbyneedsarequicklygrowinginmanyplacesaspeopledividingtotalCO2emittedfromenergyuse,includinggainaccesstocoolingserviceswhodidnothaveelectricity,byglobaltotalfloorarea.Thisindicatordiffersthempreviously.Astemperaturesrise,spacecoolingfromtheenergyintensityofbuildingsinthatitreflectswilllikelycontributeagreatershareofemissionsinthenotjusthowmuchenergytheyuse,relativetotheirsize,future(IEA2019,2022k,2022r).Greaterelectrificationofbutalsowherethatenergycomesfromandhowmuchbuildingenergyenduses,especiallyheatingsystems,iscarbonisemittedfromproducingandconsumingthatapromisingdevelopment,butthesourceofelectricityenergy.Forallbuildings(residentialandcommercialalsoneedstobedecarbonizedtoreduceemissions.floorareacombined),averageglobalcarbonintensityhassteadilydecreasedsince2000(Figure17).However,FIGURE17Historicalprogresstoward2030and2050targetsforcarbonintensityofbuildingoperationsRightDirection,WellOffTrackHistoricalCurrentS-CurvePossibledatatrendPaceneededtokgCO2/m2reachtargets502022data4038Accelerationrequiredtoreach2030target4x302030target2013–16102050target0–2020202030204020502010Note:kgCO2/m2=kilogramofcarbondioxidepersquaremeter.SeeJaegeretal.(2023)formoreinformationonmethodsforselectingtargets,indicators,anddatasets,aswellasourapproachforassessingprogress.Sources:HistoricaldatafromIEA(2023g,2023d);targetsfromCAT(2023a).BuildingsSTATEOFCLIMATEACTION202347Retrofitexistingbuildingsin2050hasalreadybeenbuilt—asisthecaseinAustra-lia,Canada,Europe,theUnitedStates,andincreasinglyReducingexistingbuildings’energyandemissionsChina(Liuetal.2020;IEA2019).Around85–95percentintensitywillrequiredeepretrofits.RetrofittingincludesofEurope’sbuildingstockfor2050alreadyexiststodayenergyefficiencyimprovements,suchastheinstallation(EuropeanCommission2020).ofdouble-glazedwindowstoimproveheatretention,orupgradinginsulation,anddecarbonizationmeasures,BUILDINGSINDICATOR3:suchasreplacingfossilfuel–basedheatingsystemswithelectricsystems,primarilyheatpumps.ItalsoRetrofittingrateofbuildingsmeansupgradingenergy-consumingdevicessuchas(%/yr)appliancestomoreefficientversionsandswitchingtolight-emittingdiode(LED)lightingsystems(IEA2022a,•Targets:Theannualglobaldeepretrofittingrateof2022n).Alteringthebuildingenvelope(meaningitsstructuralelements,suchaswallsandwindows)andbuildingsreaches2.5–3.5percentby2030and3.5upgradingsystems(suchasheatingorcooling)havepercentby2040;allbuildingsarewellinsulatedandhighup-frontcoststhatareoftenabarriertotheirfittedwithzero-carbontechnologiesby2050.implementation.However,makingthesechangestotheenvelopeofbuildingshasalarge,directimpactontheMeetingthe1.5°Ctemperaturelimitmeansthatallenergyefficiencyandemissionsofbuildings,conse-buildingstockwillneedtobenet-zerocarboninopera-quentlyreducingutilitybills,andcanmakeretrofittingtionby2050atthelatest,whichmeansthatallexistingprojectsworththeinitialinvestment(LETI2021;IEA2022p;buildingsthatarenotnetzeroneedtoundergoadeepWorldGBC2022a).Retrofittingwillbemostapplicableinretrofittothatstandardbeforethen.Doingsorequirescountrieswheremostofthebuildingstockthatwillexistaretrofittingrateof2.5–3.5percentofexistingbuildingseachyear,withhigherratesrequiredindevelopedcountrieswithsubstantialexistingstock(CAT2020b).FIGURE18Historicalprogresstoward2030and2040targetsforretrofittingrateofbuildingsInsufficientDataS-CurveUnlikely%/yrHistoricalPaceneededtodatareachtargets42030target2.5–3.53.532040target22019data<11020202030204020502010Note:yr=year.SeeJaegeretal.(2023)formoreinformationonmethodsforselectingtargets,indicators,anddatasets,aswellasourapproachforassessingprogress.Sources:HistoricaldatafromIEA(2020c,2021c);targetsfromCAT(2020b).BuildingsSTATEOFCLIMATEACTION202348Currently,accordingtotheIEA,lessthan1percentofbuildingsareretrofittedeveryyear(EuropeanCommis-sion2022c;IEA2020c,2021c),whichiswellbelowwhatisrequiredtomeetthetargetsfordeepretrofitting(Figure18).Dataondeepretrofittingratesdonotexistformanycountries,and,wheredataareavailable,theinforma-tionisusuallyforsingleyears(EuropeanCommission2022c).Duetoinsufficientdata,itisnotpossibletogiveaquantitativeestimateofhowmuchdeepretrofittingneedstoacceleratetomeetthe2030target,butitisclearthatthepaceneedstoincreasedrasticallyinthecomingdecade.Constructzero-carbonnewbuildingsNewbuildingscanhelpmitigateemissions,becausedecisionsmadeduringthedesignprocesswillimpactabuilding’semissionsoveritslifetime.Emissionsreleasedduringtheprocessofmakingabuilding,replacingcomponentsandretrofitting,anddemolishingabuildingattheendofitslifetimeareknownasembodiedemissions(seeBox6).Constructingnewbuildingsisemissions-intensivebecauseoftheenergyneededforconstruction,includingtransportationofmaterials,poweringofconstructionmachinery,productionofthematerialsused,andgenerationofwasteduringtheconstructionprocess.Mostoftheemissionsfromconstructioncomefromonlysixmaterialsbutcanmakeupalmost50percentoftheentirelife-cycleemissionsofabuilding(WBCSD2021).Accesstoadequatehousingisafundamentalhumanright(UNOHCHR2014)butremainsachallengeformany,withclimatechangeimpactsposinggrowingthreatstothisright.Itisnecessarytobuildnew,zero-carbonhousingthatisalsosafe,affordable,andresilienttotheimpactsofclimatechange,particularlyforthemostvulnerablecommunities,suchasthosewholiveininformalhousing.CampaignssuchasRoofoverOurHeads,whichwaslaunchedatCOP27withsupportfromtheHigh-LevelChampions(2022a)oftheUNFrameworkConventiononClimateChange(UNFCCC),seekstohelppeoplelivingininformalhousing,involvingwomenandlocalcommunitiesfromthestartinshapingthestrategyanditsimplementation.BuildingsSTATEOFCLIMATEACTION202349BOX6TacklingembodiedemissionsWealreadypossesstheknowledgeandtechnologiesin2040isexpectedtobeconstructedinthecomingtwoneededtoconstructbuildingsthatoperatewithzerodecades(UNEP2022a).Thisrapidgrowthindevelopingemissions,whereasembodiedemissionsfromconstruct-countrieswillrequireparticularattentiontothedesigningthosebuildingscanbemorechallengingtoeliminate.andconstructionofnewbuildings,includingtheirchoiceTheprincipleof“Avoid,Shift,Improve”canbeappliedtoofmaterials,materialefficiency,andreuseofmaterialstoembodiedemissions,whereAvoidmeansbuildlessandminimizeembodiedcarbon(WorldGBC2020).Onefactorbetter;Shiftmeansusingalternativebuildingmaterials;thatwilldriveconstructionindevelopingcountriesisanandImprovemeansdecarbonizingconventionalmate-acuteneedforadequatehousing.rials(PEEB2021).AvoidingemissionsthroughbuildinglessandbettermeansrepurposingexistingbuildingsItiscurrentlydifficulttotrackprogressinreducingwhereverpossible,adheringtosufficiencyprinciples,andembodiedemissionsatthegloballevelbecausefewdatadesigningbuildingsinamaterial-efficientmanner,suchhavebeencollated,evenforindividualbuildings(UNEPasrectangulargeometriesinsteadofcircles(WBCSDand2022a).Morerecently,initiatives,regions,andcompaniesArup2023).Manyalternativeconstructionmaterialshavearestartingtotrackwhole-lifecarbonemissions—mean-alreadyexistedforalongtime(forexample,wood,bam-ingtheemissionsfromabuilding’sentirelifecycle,boo,orclay),whileothersarebeingnewly(re)developedincludingconstruction,operation,anddemolition—andformodernbuildings(forexample,straw,hemp,recycledmoreinformationisbecomingavailableforindividualplastic,orevenfungi).Manyofthesematerialsarebio-buildingsorneighborhoods(WBCSD2021;UNEP2022a).basedandnotonlyhaveloweremissionsthantraditionalImprovingdataavailabilityforbuildings,andharmonizingconstructionmaterialsbutmayevenactasanetcarbonapproachestobuildinglife-cycleassessments,wouldsinkoverthebuilding’slifetime(Churkinaetal.2020).bothhelpinformandimprovebestpracticesanddecar-However,afulllife-cycleanalysisisneededtoensurebonizationstrategiesandenableprogresstrackinginthethattheuseofbio-basedmaterials,particularlytimber,future;moreover,itisavitalsteppingstonetowardpolicydoesnotactuallyleadtonetemissionsorhaveotherandregulationofwholelife-cyclecarbon(WorldGBCnegativeenvironmentalconsequences,suchaslossof2022d;Astleetal.2023).AnewinitiativeinEuropeispilotingbiodiversity(Searchingeretal.2023).Finally,theemissionsapproachesthatbringindustry,researchers,andlaw-intensityofconventionalconstructionmaterialscanbemakerstogethertocodevelopnationalbenchmarksforimproved.Twoofthesecorebuildingmaterials—cementpolicymakingonwholelife-cyclecarbonwherethesedoandsteel—arecoveredintheIndustrysection.Applyingnotyetexist(SmithInnovation2022).Buildingpassports—“circulareconomy”principlescanalsohelpreducerepositoriesthatcontainalllife-cycledataofindividualembodiedemissions.Thismeansplanning,constructing,buildings—areanotherwaytobuildknowledgeonwholeandfurnishingbuildingstoallowthemtoberepurposedlife-cyclecarbonandexamplesofsuccess(Tonks2023;fordifferentusesatalaterdate,orensuringthattheirGlobalABCetal.2021).Theyareatooltocollectandstorematerialscanberecycledorreusedattheendoftheirinformationfromandforavarietyofstakeholdersaboutlifetimes(UNEP2022a;Naden2020).abuildingfromitswholelifecycle,meaningthroughouttheconstructionandoperationphases(GlobalABCetMuchwillhingeonhownewbuildingsindevelopingcoun-al.2021).Theyareusefulfordevelopingunderstanding,triesareconstructed.Inmanyofthesecountries,floorincreasingtransparency,andsupportingstakeholders’areapercapitaisstilllow,butrapidurbanization,risingdecision-makingaboutagivenbuilding.Despitedatapopulations,economicgrowth,andaccesstoadequategaps,therisingproductionofsteelandcementtobuildhousingwillfueldemandfornewfloorspace(Figure15)additionalfloorareacontinuestodriveemissions,and(UNDESA2022).Eightypercentoffloorareagrowthto2030manyoftheprinciplesoflow-carbondesignremaintoisanticipatedinemergingmarketanddevelopingecon-bemandatedorbecomecommonpracticeinmanyomies,withbuildingboomsexpectedinAsia,Africa,andcountries.MuchthereforeremainstobedoneinreducingLatinAmerica(IPCC2022b;UNEP2022a;IEA2023j).InAfrica,embodiedemissionsinbuildings.anestimated70percentofthebuildingstockthatwillexistBuildingsSTATEOFCLIMATEACTION202350BUILDINGSINDICATOR4:Medellíntocollectinformationonfloorarea,emissions,andbuildingprojects,alongsidepoliciesonsustainableShareofnewbuildingsthatconstructionandretrofitting(C402022).arezero-carboninoperation(%)However,manynewbuildings,includingthosebeingconstructedindevelopedcountries,arestillbuiltwith•Targets:Allnewbuildingsarezero-carboninfossilfuel–basedheatingsystems,suchasgasboilers,andlackon-siterenewables,suchassolarpanels.Foroperationby2030,withtheworldsustainingthisexample,inGermany,wheretheshareoffossilfueltargetthrough2050.23heatinginnewbuildingsisdecreasing,16percentofnewresidentialbuildingsapprovedinearly2022stillhadgasTolimitwarmingto1.5°C,allnewbuildingsmustbeastheprimaryheatingsource(FederalStatisticalOfficenet-zerocarboninoperation—eitherfromthestartor2022).Insufficientdatameansitisnotpossibletoassessfollowingdecarbonizationofthepowersector(IEA2021b;whetherornotthisindicatorisontrack.However,givenUNEP2022a;CAT2020b).Buildingtozero-carbonspecifi-theavailableevidencethatfossilfuel–basedheatingcationsismuchlessexpensivethanretrofittingovertheinstallationscontinue,itisclearthatsubstantialchangenexttwotothreedecades(Currie&BrownandAECOMandprogressisneededtomeetthe2030and20502019;IEA2020c).Nodatasetiscurrentlyavailablefortargets(Figure19).trackingtheshareofnewbuildingsthatarezerocarboninoperation.Progressindatacollectionhasbeenmade,though.Forexample,asustainableconstructiondatabasewasestablishedintheColombiancityofFIGURE19Historicalprogresstoward2030,2035,and2050targetsforshareofnewbuildingsthatarezero-carboninoperationInsufficientDataS-CurvePossible%2030targetHistoricalPaceneededtodatareachtargets1001001001002035target2050target806040202020data5020202030204020502010Note:SeeJaegeretal.(2023)formoreinformationonmethodsforselectingtargets,indicators,anddatasets,aswellasourapproachforassessingprogress.Sources:HistoricaldatafromIEA(2021b);targetsfromCAT(2020b).BuildingsSTATEOFCLIMATEACTION202351Recentdevelopmentstext-specificregulationisneededatthenationallevel,acrossbuildingsinternationalstandardssetglobal,commonprinciples.ThesecanformabasisfordesigningpoliciesandThoughprogressonindicatorsinthebuildingsectorstrategies.Theyofferawaytoassessboththecurrenthasbeenslow,somepositivesignalsareemerging.Instatusofbuildingpractices,policiesandregulations,particular,somerecentdevelopmentsareoverarchingandprogresstowardimplementingmoresustainableacrossalloftheneededshifts,invitingoptimismaboutstandards(Naden2020).progressonall.ChangewillhingeonachievingtheenablingfactorsoutlinedinStateofClimateActionAdequatefinancingisalsoneededtoovercome2022(Boehmetal.2022),whichdescribethekindseconomicbarrierstodecarbonizingthebuildingssectorofactionsneededtoimproveenergyefficiencyandandimplementingroadmaps(Oheneetal.2022).In2021,decarbonizebuildingoperationacrossexistingandnewinvestmentsinbuildingefficiencyjumped21percentasbuildings.Theseenablingconditionsrelatetotech-theconstructionsectorreboundedfromtheCOVID-19nologyandotherinnovations,increasedregulationtopandemic,afteryearsofslowfinancingmobilizationdeliverongoalsandhelpbridgegapsbetweenactors,(IEA2022c).However,asconstructionmarketsgrowinstrengthenedinstitutions,andstrongleadershipindifferentpartsoftheworld,continuedhighratesofmakingchange.investmentinzero-carbonoptionswillbeimportant.TheIPCChighlightsthatinvestmentsinenergyefficiencyDecarbonizationroadmapsareanessentialtoolandrenewableheattotaling$711billionwillberequiredfordevelopingandimplementingcontext-specificannuallyfrom2026to2030todecarbonizethebuildingsstrategiestodecarbonizethebuildingssector.Whilesector,comparedto$250billioninvestedin2022(IPCCdecarbonizationroadmapsarenotspecifictothe2022c;IEA2023j).Acceleratingthetransitionwillalsobuildingssector,theyareespeciallyimportantforbuild-requireinvestmentsindevelopinginstitutionalcapacity.ingsinbothsignifyingandspurringgreateractiononSomeprogresshasbeenmadeinthisregard.TheBuild-mitigation.RoadmapsareincreasinglybeingdevelopedingEfficiencyAccelerator(BEA2023),launchedin2015atcity,regional(theGlobalABChasregionalroadmapsbyWorldResourcesInstitute,seekstobuildinstitutionalforAfrica,Asia,andLatinAmerica),andnationallevelscapacityatthelocalandregionallevelinpartnercities(WorldGBC’s2023AdvancingNetZeroStatusReportaroundtheworld,tacklinginstitutionalandeconomicmapstheexistingwholelife-cyclecarbonroadmapsbarriersthatpreventthescale-upofenergyefficiencyaroundtheworld)(GlobalABC,IEA,andUNEP2020;improvements.TheprogramdoesthisbysupportingWorldGBC2023a).Thesestrategiestacklebothspecificpublic-privatepartnerships.WorldResourcesInstituteandsector-widechallengesindecarbonizingbuildings,establishedtheZeroCarbonBuildingAccelerator(ZCBA)bothintermsofembodiedandoperationalemissions,inTurkeyandColombiain2021tofollowontheworkfromthatarevitalfortransformingthissector.TheyidentifytheBEAandprovideaplatformforknowledge-sharingpossiblepathways,guidepolicymakers,andlocatetodriveroadmapdevelopmentandpolicyimplementa-synergiesbetweendifferentactors(UNEP2022a).InJunetiontailoredtolocalcontexts(Rakes2022a).2022,ColombiareleaseditsNationalRoadmapforNetZeroCarbonBuildings,whichexplainsspecificactionsWhiletherehasnotbeenmuchvisibleprogressonthearangeofactorsneedtotaketoachievethecountry’shigh-levelindicatorsfordecarbonizingthebuildingsgoalofensuringthatby2030allnewbuildings,andbysectortrackedinthisreport,buildingsarebecominga2050allbuildings,arenetzero–alignedinbothformalgreaterpartoftheconversationonsectoralmitigationandinformalconstruction(Rakes2022b).Throughoutatthegloballevel.The2022GlobalStatusReportfor2021and2022,10GreenBuildingCouncilsinEuropeBuildingsandConstructionfromtheGlobalAllianceforlaunchedsimilarnet-zerowholelife-cyclecarbonBuildingsandConstructionhighlightedthatthenumberroadmaps(WorldGBC2022c).However,theexistenceoftimescountriesmentionbuildingsintheirNDCsshotofaroadmapdoesnotalwaysmeanthatithasbeenupfrom88in2015to158,whichisabout80percentoftranslatedintoactionablepoliciesthatcanbemoni-countries,in2021(UNEP2022a).WhileNDCsmaynotbetoredandenforced(Mataetal.2020).thebestmeasureofactiontaken,andtheirlevelofdetailvaries,theyareawayforgovernmentstodemonstrateOnewaytoensurethatstrategiestranslateintoactiontheirintentionsandcommitments,andtheyalsoserveistoestablishstrongregulatoryframeworks,suchasasaguideforlocalgovernmentonnationalpriorities.Atthoseregulatingwholelife-cyclecarboninDenmark,COP26in2021,theUnitedNationsClimateChangeHigh-France,Finland,theNetherlands,andNorway(WorldGBCLevelChampionslaunchedthe2030Breakthroughs,2019).Legislativebarriers,includinglackofregulationaninitiativethatpresentssectoraltargetstoalignandorsupportfromgovernments,aresomeofthebiggestraisebothambitionandactionofnonstateactors.Ahurdlestoovercome(Oheneetal.2022).Whilecon-“BuildingsBreakthrough”issettobelaunchedaheadofBuildingsSTATEOFCLIMATEACTION202352COP28thisyearandwillformanewpartoftheexistingthefollowingparagraphs(IEA2022k).Recentprogress“BreakthroughAgenda,”alsoinitiatedatCOP26.Thetowardthephase-outoffossilfuelsforheatinghasBuildingsBreakthrough,ledbyFranceandMorocco,mostlyoccurredintheUnitedStatesandEurope(IEAwillprovideaplatformforinternationalcollaboration2022k).IntheEuropeanUnion,theEnergyPerformancebetweennationalgovernmentstounlockactionintheofBuildingsDirective(EPBD)ispartofasuiteofpoliciessector.Boththe2030BreakthroughsandtheBuildingsaimedatreducingemissionsintheEuropeanUnionandBreakthroughindicatetheraisingofbuildings’profiletransitioningthebloctowardasustainablefuture.Theontheglobalagenda,whichisfundamentaltoensurelatestproposedchangestotheEPBD,whicharenotyetthatthesectorreceivesappropriateattentiontodrivefinalizedbutcouldbesignificantifpassed,wouldbanforwardmitigationaction.theuseoffossilfuelsforheatinginnewbuildingsandrenovationprojectsimmediatelyandalsorequireaRecentdevelopmentscompletephase-outoffossilfuelsforheatingby2035inimprovingenergy(EuropeanParliament2023d).Regulationaimedatphas-efficiencyingoutfossilfuelsgoeshandinhandwithpromotionofalternativetechnologies.TheREPowerEUplansetsoutRegulationisafundamentaltoolforreducingbuildings’apathtowardenergyindependenceandthetransitionenergyintensityandpushingthesectortowardalign-toacleanenergysystem.ItsetsthegoalofinstallingmentwiththeParisAgreementlimitof1.5°C(Boehmet10millionheatpumpsoverfiveyears,whichwouldal.2022;IEA2021d;Economidouetal.2020),andbuild-meanadoublingintherateofheatpumpinstallationsingenergycodesandMinimumEnergyPerformance(EuropeanCommission2022b).TheREPowerEUplanStandardsareimportantregulatoryinstrumentstodrivewasintroducedfollowingRussia’sinvasionofUkrainechangesinenergyuse.Currently,79countries,whichandaimstodecreasedependenceonfossilfuelsfromarehometo60percentoftheworld’spopulation,haveRussiaandtosupportthedevelopmentofrenewableadoptedtheseenergycodes,thoughonly26percentenergyinEurope.Alongsidesupportingheatingdecar-ofthesecodesincludemandatoryregulations,andnotbonization,REPowerEUincludesaroutetoensureajustalloftheseregulationsarestronglyenforced.Recenttransitionforthoseworkinginthesector.Underits“Pactprogressinexpandingcoverageremainsslow,withonlyforSkills,”theplancontainsrequirementsforjobcre-sixadditionalcountriesimplementingthesestandardsation,withafocusonretraining,forexamplebyreskillingsince2018(CAT2022c;UNEP2022a,2020a).Toolkits,peoplewhoperformgasboilerinstallationssotheycanlikethosehostedbytheGettingtoZeroForum(2023),continuetobeemployedinstallingheatpumpsandcanhelprelevantactorsdevelopcodesbyprovidingotherrenewableenergytechnologies(DGEnergy2023).guidelinesandexamples,aswellasbyconnectinguserswithresourcesandorganizationsthatcansupportthisThesekindsofgovernmentpoliciesandprogramsprocess.TheWorldGBC’s“GlobalPolicyPrinciplesforahavealreadyencouragedanuptakeinadoptionofSustainableBuiltEnvironment”outlineshowregulationsnewtechnologies.Inthepastyearalone,salesofheatcanbesupportedbyinformationandincentivestonotpumpsrose38percentinEuropeand11percentgloballyonlymeetclimatetargetsbutsimultaneouslyaddress(RosenowandGibb2023;Monschaueretal.2023).Onesustainabledevelopmentgoalsbyfocusingonsevencountrywheretheimpactofregulationsisalreadycoreprinciples,includingcarbon,health,resilience,beingseenisPoland,whichhasexperiencedamassiveandbiodiversity(WorldGBC2023c).Developingandscale-upofsolarPVandheatpumpinstallationsinimplementingregulationsrequiresinstitutionalcapacityrecentyears(seeBox7).Heatpumpsareafundamental(CAT2022c).IntheUnitedStates,theInflationReductiontechnologyforenablingthedecarbonizationofheating,Actincludes$90millioninfundingforaNationalEnergyaswellascooling,inthebuildingssector.TheyareanCodesCollaborativetosupportjurisdictionsindevelop-efficient,electric-poweredtechnologythatcapturesingup-to-datebuildingenergycodes(U.S.DOE2023).existingheatfromtheair,water,orgroundtoheatabuildingwhentheweatheriscold.ThegrowthofheatRecentdevelopmentsinpumps,whichwouldlikelyfollowanS-curve,couldhelpdecarbonizingbuildingthecarbonintensityofbuildingoperationsdecreaseinoperationsanonlinearfashion.Someheatpumpsystemscanworkinreverseandpumpheatoutwhenitishot;however,Asheatingandcoolingaremajordriversofemissions,thisisnotpossiblewithallmodels(IEA2022j;Energyandthereforecarbonintensity,fromthebuildingsSavingTrust2022).sector,thesecomponentswillbethemainfocusofBuildingsSTATEOFCLIMATEACTION202353BOX7Rapidscale-upofsolarPVandheatpumpinstallationsinPoland’sresidentialsectorIn2020,77percentofthecoalburnedforheatinghouseholdswithsubsidiestoreplacetheirheatinginEuropewasusedinPoland(Kuzminskietal.2023;systemswithmoreefficienttechnologiestohelptackleCAT2022b).Heatingaccountsforthelargestshareofairpollution;itadditionallyincludesoptionalprovi-Poland’senergydemand,butthecountryisworkingsionsforbuildingefficiencyimprovements,suchastowardtransitioningfromacoal-dominatedsystemtoupgradinginsulation.Theamountofmoneygrantedonethatispoweredbyrenewables.Atthesametime,tohouseholdsisproportionaltohouseholdincometoitisreducingenergyneedsbyimprovingtheefficiencyensurethatlower-incomehouseholdsreceiveade-ofbuildings(IEA2022o).Recentyearshavewitnessedquatesupport,andtheprogramhelpsreduceenergyrapidprogresstowarddecarbonizingheating,thankspoverty.Thisprogramisagoodfirststep,butitcouldtoaconstellationofgovernmentprogramsthatbestrengthened.Currently,householdscanusethesubsidizetechnologyinstallationsforgeneratingmoneytoinstallawiderangeofheatingtechnologies,renewableenergyandhelpconsumersreplacetheirincludingfossil-poweredheatingsystems,suchasgashomeheatingsystemswithnewertechnology,suchboilersiftheyaremoreefficientthantheirexistingsys-asheatpumps.Polandwashighlydependentoncoaltems.PhasingoutcoalandgasboilersandsubsidizingfromRussia,soRussia’sinvasionofUkrainehasaddedonlynonfossilfuel–basedheatingwillbenecessarymomentumtothetransitiontoalternativeheatingfordecarbonization.Theprogramcouldalsorequiresystems(IEA2022o).In2022,heatpumpsalesinPolandstepstoimprovethermalefficiencythatarenowonlyincreasedby120percentfrom2021(FigureB7.1),whichoptionalbyrequiringthatpoorlyinsulatedhousingalthoughfromasmallstartingpointwasthegreat-stockberetrofittedwithinsulation.estincreaseseenofcountriesassessed(RosenowandGibb2023).Polandisalsoboostingtheprovisionofrenewableelectricitythroughanotherkeymechanism—the“MyThefirstPolishgovernmentprogramtoinitiatetheseElectricity”program—inwhichthePolishgovernmentchangesistheCleanAirProgramme,runningfromsubsidizesthecostofinstallingsolarphotovoltaics(PV)2018to2029(IEA2022o).Since2019,theprogramoffersinhomesbyprovidinghouseholdswithpaymentstohouseholdsataxdeductiontoincentivizeimprove-coverupto50percentofthecosts(MinistryofClimatementstotheirhomes’thermalefficiency.ItprovidesandEnvironment2019).Ithashelpedpropela25-foldFIGUREB7.1IncreaseinheatpumpsalesinEurope,showinga120percentincreaseinPolandfrom2021to2022Italy+37%France+30%Germany+58%Sweden+61%Poland+120%Finland+52%Norway+25%Netherlands+52%Denmark+20%CzechRepublic+99%UnitedKingdom+40%Austria+59%Switzerland+23%Portugal+17%Belgium+100%Slovakia+88%050100150200250300350400450500Totalsalesfor2021and2022(thousands)Source:RosenowandGibb(2023).BuildingsSTATEOFCLIMATEACTION202354BOX7Rapidscale-upofsolarPVandheatpumpinstallationsinPoland’sresidentialsector(continued)FIGUREB7.2Annualincreaseinthenumberofmicro-in-increaseintheinstalledcapacityofsolarPVfromstallations,includingsolarPV,andinstalledpowercapacity2017to2021(FigureB7.2)(Olczaketal.2021).StartedininPolandfrom2016to20232019,theschemeisnowinitsfifthiteration,integratingadditionalprovisionsforheatpumpsandenergyNumberofinstallations(thousands)GWstorageduringthistime(Santos2022).Italsoincludes140010anetbillingcomponent:producerswhosellelectricityCapacitytothegridgettheirelectricbillreducedthefollowing1200Installationsmonth(Kuzminskietal.2023;Kulpaetal.2021).Combin-ingheatingsystemsthatarepoweredusingelectricity10008(heatpumps)withon-siterenewableelectricitygenerationtechnologies(solarPV)isakeystrategyfor6decarbonizingbuildingoperationsandcanreduce800bothgasandheatingcosts(SolarPowerEurope2023).However,theMyElectricityprogramdoesfacesome600obstacles.Mostofthoseinstallingthesesystemshave4beenattheupperendoftheincomescale,because,evenwiththegrant,theup-frontcostofinstallation400remainsrelativelyhigh(Kuzminskietal.2023;Zdonek2etal.2022).Additionally,thisprogramiscurrentlysettoendin2025,meaningthatalonger-termsolutionis200needed(Zdoneketal.2022).020182020020162023Notes:GW=gigawatt;PV=photovoltaics.ThedataaretakenfromPTPiREE,whichtracksthenumberofmicroinstallationsthatareconnectedtopowernetworksandtheirinstalledcapacity.SolarPVinstallationsformthemajorityofthesemicroinstallations.Source:DatafromPTPiREE(2023).Positivesignalsrelatedtoheatingdecarbonizationareincreasepeakelectricityload,whichneedstobemetalsoemerginginothergeographies.Forexample,inbydispatchableenergysources.AlternativerefrigerantstheUnitedStates,localgovernments(thoseofcitieswithloworzeroglobalwarmingpotentialareavailableandcounties)aredrivingthephase-outoffossilfuelsonthemarketbutcurrentlyfacefinancialandtechnicalfromheating,with106oftheseintroducingpoliciesthatchallengestorapiduptake(GreenCoolingInitiativeencourage,ifnotmandate,suchatransition(Lou-2023b).Emissionsfromcoolingcanalsobereducedbyis-PrescottandGolden2022).reducingactivecoolingneeds,andconsequentlyemis-sions,throughchangingbuildingdesignandretrofittingAstheworldcontinuestoexperiencehighertempera-existingstructures;forexample,byaddingshadingtotures,activecoolingisbecomingincreasinglynecessary,windows,improvingsealings,andincreasingventilationmakingup20percentofelectricityconsumptionby(UNEP2021c).TheProgrammeforEnergyEfficiencyinbuildingglobally(IEA2022r,2018).Increasedaircondi-Buildings(PEEB)wasestablishedatCOP22tohelpdelivertionerusewilldriveupcarbonemissionstotheextentontheGlobalAllianceforBuildingsandConstruction’stowhichtheelectricityforitisprovidedbyfossilfuels.“TowardsLowGHGandResilientBuildings”roadmap.TheIncreasingcoolingisalsocurrentlydrivinganincreasePEEBCoolprojectaimstoimprovetheenergyefficiencyinthereleaseofhydrofluorocarbons(HFCs)withahighandresiliencyofbuildingsinAfrican,Asian,Easternglobalwarmingpotential,asHFCsarecommonlyusedEuropean,andSouthAmericanpartnercountrieswhereasarefrigerant(UNEPandIEA2020;Veldersetal.2022).energyuseforspacecoolingislikelytoincreaseintheDecarbonizingtheelectricitysupplyisparticularlycomingdecades.Itwillhelpbothbyprovidingfinancechallengingforairconditioning,ascoolingtendstoBuildingsSTATEOFCLIMATEACTION202355andofferingtechnicalassistanceindevelopingregula-(EuropeanCommissionn.d.c,2020).Thisnewpushtions(PEEB2022);ifsuccessful,itcouldprovideamodelwasintroducedundertheEuropeanUnion’s“Renova-forfuturepartnerships.tionWave”strategyin2020aspartoftheEuropeanGreenDeal,asuiteofpoliciestoachieveajust,greenLikeheatingandcooling,cooking,whichaccountedfortransitiontonetzeroinEuropeandsupporteconomicalmost8percentoffinalenergydemandfrombuildingsrecoveryfollowingtheCOVID-19pandemic(Europeanin2020,contributestoGHGemissions,andthereforeCommission2023a,2019).Additionally,theEuropeancarbonintensity,fromthebuildingssector,particularlyUnion’sEnergyPerformanceofBuildingsDirectiveisinAfricaandAsia(IEA2020c,2021b).Cookingusingcurrentlyundergoingrevisions,withproposedmeasuresbiomassasfuelbothcontributestobuildingsemissionstoincreaseretrofittingrates,requireminimumenergyandcreatesairpollutionthatcanposeserioushealthperformance,andencouragewidespreadsolartech-risks(IPCC2022b).Ensuringaccesstobettercookingnologyinstallation,amongotherprovisions(EuropeantechnologiesandcleanfuelsourcesisakeypartofParliament2023d;CAT2022b).SDG7(UNDESAn.d.)andwillbeparticularlyimportantinsub-SaharanAfrica,wherethestructureofenergyOthercountriesarealsoseeingincreasedattentiondemandinbuildingsdifferssubstantiallyfromothertoretrofitting.IntheUnitedStates,therecentInflationregionsduetohighrelianceontraditionalbiomassforReductionActtargetsincreasingretrofittingthroughcookingandheating(IEA2022q).Fossilgasisoftenusedtaxcreditsanddeductionsthatwillhelphomeownersasabridgefuelinreplacingtraditionalbiomass,whichupgradeandelectrifytheirappliances,installheatcancreatenewlock-in;therefore,itisimportantthatinpumpsandon-siterenewables,andreplaceinsulation,thelongtermthetransitionbemadetocleancookingdoors,andwindows(WhiteHouse2023).Thereisalsoatechnologiesusingrenewables(NewClimateandEEDAdvisory2021).TheWorldBankhasmobilizedfundingtosupportcleancooking,mostrecentlyseekingtohelp100millionpeoplegainaccesstocleancookingtechnolo-giesthisdecadethroughtheCleanCookingFund(WorldBank2023f;ESMAP2022).RecentdevelopmentsinretrofittingexistingbuildingsTherearepositiveexamplesofretrofittingpolicymovingintherightdirectioninsomeregionsandcountries,includingEurope,theUnitedStates,andChina.Becausethehighcostsandlogisticschallengesofretrofittingprojectsarebarrierstotakingthemon,moreincentivesareneededtoincreaseretrofittingrates.Theseincluderegulationsmandatingminimumretrofittingrequire-mentsorperformancestandardsforexistingbuildings(IEA2022p)butalsofinancialsupportforimplemen-tation.Financialsupportisparticularlyimportantforlow-incomehouseholdstoensureadecentqualityofhousingandaffordableenergycosts.Thereisariskoflower-incomehouseholdslosingoutfurtherinthetechnologytransitionandbeingleftwithhigh-costfossilheatingandcookinginlow-efficiencyhomes.Despitelong-standinglegislationonenergyefficiencyinthebuildingssector,retrofittingratesintheEuropeanUnionhaveremainedataround1percentperyear(CAT2022b).However,theEuropeanUnionnowseekstodou-bletherateofrenovationsby2030withdeepretrofitsfor35millionresidentialandcommercialbuildings,withafocusonpublicbuildings,worst-performingbuildings,andheatingandcoolingdecarbonization,thatwillalsohelpdeliveronmultiplegoalsofjobcreation,improve-mentstolivingconditions,andemissionsreductionsBuildingsSTATEOFCLIMATEACTION202356specificfundtosupportlow-incomehouseholdstocarryCommitmentstoconstructnet-zerocarbonbuildingsoutretrofitstoimproveenergyefficiency.Chinahasbothhavemultipliedinrecentyears.Forexample,partici-alargeexistingbuildingstockandneedfornewcon-pationhasincreasedindeclarationslikethe“NetZerostruction.Its14thFive-YearPlan,coveringtheyearsfromCarbonBuildingsDeclaration”fromC40Cities(which2021to2025,seekstoretrofit350millionsquaremetersofhas29signatorycities)andthe“NetZeroCarbonexistingbuildingsaspartofitsinvestmentininfrastruc-BuildingsCommitment”fromtheWorldGreenBuildingtureandgreenconstruction,covering0.15percentofCouncil(with172signatoriesfrombusinesses,cities,gov-currentglobalfloorarea(ITA2023).ernments,andotherorganizations).OtherincreasinglyprominentinitiativesdirectedtowardnonstateactorsRecentdevelopmentsinandlocalgovernmentsincludeRacetoZero,CitiesRaceconstructingzero-carbontoZero,andCitiesRacetoResilience(C402018,2023a;newbuildingsWorldGBC2021,2023b).Publiccommitmentssuchastheseareimportant,butensuringimplementationwillEmissionsfromtheprocessofconstructingbuildingsbeneededtogetthesectorontrack,meaningthathavebeengarneringgrowingattentionrecently,greateractionisrequiredtoensurethatdecarbonizationincludinginregionsprojectedtoexperiencelarge-scalegoalsaremet(WorldGBC2023b).development.OneexampleisC40Cities’announce-ment,atCOP27,oftheCleanConstructionAccelerator,Ensuringimplementationinthebuildingssectorimplieswhichincludestargetsforachievingadecarbonizedaneedforclear,enforcedregulationthroughupdatedconstructionsector(C402023b).COP27alsosawthebuildingcodes.AneffectivebuildingcodeneedstohavepublicationoftheAfricaManifestoforSustainableCitiesaclearcycleofstrengtheningtowardahighlyenergyandtheBuiltEnvironment,acollaborationbyGreenefficient,zero-carbonstandardovertime.Perfor-BuildingCouncilsfrom15Africancountries,callingformance-basedbuildingcodesfocusontheoutcomeincreasedaccesstowaterandenergy,implementationandaremoreadaptabletolocalcircumstances.Toofregulationssuchasbuildingcodes,andapplicationdate,manybuildingcodesfocusonoperationalemis-ofcirculareconomypracticestobuildingmaterials,tosionsonlybutwillneedtoaddressbothoperationalandensuresustainable,net-zerocompatibledevelopmentembodiedemissionsfornewbuildings.InFrance,thethatmeetspeople’sneeds(AfricaRegionalNetworkRE2020regulationsseektoreduceembodiedemissionsofGBCs2022;WorldGBC2022b).Local,sustainablethroughabuilding’swholelifecyclethroughacapmaterialsandconstructionmethodsareakeypartonemissionsthatdecreasesovertime(AgoraEner-ofcommunities’culturalheritagewhilealsobeinggiewende2022).Inadditionaltonationalregulations,low-emission(UNEP2022a).subnationalauthoritiessuchascityandlocaljurisdic-tionsarewell-positionedtomandatewholelife-cyclecarbonassessmentsinpolicies.BuildingsSTATEOFCLIMATEACTION202357SECTION4IndustryIndustry—asectorthatencompassestheproductionrisingincome,populationgrowth,urbanization,andofgoodsandmaterialslikecement,steel,andchem-infrastructuredevelopment,hasfueledsignificanticals,aswellastheconstructionofbuildings,roads,growthintheextractionandproductionofmateri-bridges,andotherinfrastructure—representsamajoralsaroundtheworld.Indeed,industrialexpansionandgrowingsourceofGHGemissions.Thisencom-accountedforabout45percentofworldwidegrowthpassesbothdirectGHGemissionsfromfuelcombustioninGHGemissionsoverthelasttwodecades(Lambetandindustrialprocesses(e.g.,thechemicalreactionsal.2021;IPCC2022b).AnnualgrowthinindustrialGHGinvolvedincreatingcement)acrosstheindustrialemissionshasmirroredperiodsofglobaleconomicsubsectors,aswellasindirectGHGemissionsfromtheexpansion(until2008)andrecessionandrecovery(Minxgenerationofpowerandheatthatarepurchasedtoetal.2021).Itslowedfrom4percentbetween2000anddrivetheseprocesses.DirectGHGemissionsreached2010to1.8percentbetween2011and2020.Moreover,12GtCO2ein2021,representingroughlyafifthofglobalin2020,CO2emissionsfromtheindustrysectorfellbyemissions(Figure20)(Minxetal.2021;EuropeanCom-another179milliontonnesasgovernmentsaroundmissionandJRC2022).WhenaccountingforindirecttheworldadoptedmeasurestoreducethespreadofGHGemissions,thisfigurerisesfromroughly12GtCO2etoCOVID-19(Sikarwaretal.2021).Newdataindicatethat17GtCO2e(Figure21)(Minxetal.2021;EuropeanCommis-industryemissionshaverebounded,increasingby5.7sionandJRC2022;IEA2022i).percentin2021,withgrowthslowingtoabout1.1percentin2022(Liuetal.2023).Decarbonizingindustry,then,Together,bothdirectandindirectGHGemissionsfrommustplayaroleinlimitingwarmingto1.5°C.industryhavegrownquicklysince2000(Figure21).Increasingdemandforindustrialproducts,drivenbyFIGURE20Industry’scontributiontoglobalnetanthropogenicGHGemissionsin2021ElectricityandheatOilandgas14.4fugitiveemissions2.5Other1.6Coalminingfugitiveemissions1.5EnergyPetroleumrefining20.70.7Non-CO2(allbuildings)WasteLanduse,0.04land-use2.4change,Nonresidentialandforestry0.8GlobalGHGAgriculture,Emissionsforestry,4.0Rail56.8GtCO2eandother0.1ResidentialBuildingslandusesEnteric2.33.2fermentationInlandshipping10.40.2Transport3.0Managed8.1soilsandDomesticaviationManagedpasture0.3soilsandIndustrypastureInternational12.0aviation1.40.4RoadOtherRicecultivationOtherTransport4.41.00.55.9ManuremanagementInternational0.4shippingChemicalsMetals0.72.63.4Syntheticfertilizerapplication0.4Cement1.6Biomassburning0.1Notes:CO2=carbondioxide;GHG=greenhousegas;GtCO2e=gigatonnesofcarbondioxideequivalent.Sources:Minxetal.(2021);EuropeanCommissionandJRC(2022).IndustrySTATEOFCLIMATEACTION202359FIGURE21GlobaldirectandindirectGHGtheotherharmfulimpactstopeopleandtheenviron-mentcausedbyindustrialproducts,suchashazardousemissionsfromindustrychemicalsandplastics.ImprovingenergyefficiencycanhelpreduceGHGemissionsbycuttingoverallenergyGtCO2e/yruse.Itcanalsoreducethetotalamountofenergythatotherwisewouldneedtobedecarbonizedthroughother20means.Electrificationwithazero-carbonpowersupplyoffersanotherstrategyforcurbingreleasesofGHGs,18Indirectemissionsparticularlyforlow-andmedium-heatprocessesthatcurrentlyrelyonfossilfuels.However,notallindustrial16processescanbeeasilyelectrified.Decarbonizingindustrywillrequireadditionalsolutions,suchas14switchingtonewzero-carbonfuelstodeliverhighheat,developingtechnologiesthatdonotdependonhigh12heatorcanachieveitthroughelectrification,andelimi-natingorcapturingprocessemissions—thoseemissions10Directemissionsfromchemicalreactionsinherenttoproductionpro-cesses,notfromfossilfuelcombustion—tothegreatestOtherextentpossible.Combiningconventionaltechnologieswithcarboncapture,utilization,and/orstorage(CCU/S)8willthereforealsoplayacriticalroleinthedecarboniza-tionofindustry.6CementAlternativestogeneratingheatfromfossilfuelstorun4Chemicalsindustrialprocessesarebeginningtoemerge.Monitor-ingtheshareofelectricityinindustry,specifically,helps220002010Metalstrackprogresstowardindependencefromfossilfuelsasthesourceofheatforindustrialprocesses.Changes02020inthecarbonintensityofcementandsteelproduction1990overtimereflectsimprovementsinenergyefficiency,progressinelectrification,andadoptionoflow-carbonNotes:GHG=greenhousegas;GtCO2e/yr=gigatonnesofcarbontechnologiesforprocessesthatcannotbeelectrified.24dioxideequivalentperyear.ThedataexcludeGHGemissionsfromThedevelopmentanddeploymentofnewtechnologieswastemanagement(exceptfromcircularitysuchasproductionofiskeygiventheinherentprocessemissionsinconven-scrapinsteelmaking).“Other”includesarangeofmanufacturingtionalcement-makingandthesignificantrelianceonprocesses,suchasthoseforpulpandpaper,foodandtobacco,coke—amaterialderivedfromcoal—duringsteelmanu-andglassandceramics.Finally,Minxetal.(2021)andEuropeanfacturing.Together,cementandsteelareresponsibleforCommissionandJRC(2022)provideanestimateofdirectandabout40percentofdirectGHGemissionsfromindustry,indirectGHGemissionsfromindustrythrough2020.DataonindirectandthedecarbonizationofthesesectorsisbeginningGHGemissionsfromindustry,specifically,arenotyetavailablefortogetmoreattention(Deloitte2021).Productionofgreen2021.Butbecausetheyrepresentsuchasignificantshareofthishydrogenisalsotrackedinthisreport,asitiscriticaltosector’stotalemissions(34%in2020),thisfigureincludesindirectthedecarbonizationofsteelandotherindustries.TheGHGemissionsandexcludesdatafrom2021.needforandstatusoftheseeffortsaredetailedbelowandsummarizedinTable3.Itisimportanttonotethat,Sources:Minxetal.(2021);EuropeanCommissionandJRCwhileotherindustriessuchasfoodandbeverages,(2022);IEA(2022i).glass,andaluminumarenottrackedinthisreport,addressingemissionsfromthoseindustriesisneededtoGlobalassessmentoffullydecarbonizethesector.progressforindustryTransformingindustrytoachievethesedeepGHGemis-sionsreductionsispossible,butitwillrequiresignificantinterventions,aswellastheparticipationofawiderangeofactors,acrossthesector.Reducingdemandforindustrialproductsthroughavoidingoverconsumption,materialsubstitution,materialefficiency,andincreasedcircularitywillbeessentialtomakenet-zeroemissionsmoreattainableintheindustrysector.SucheffortscanalsohelpminimizeIndustrySTATEOFCLIMATEACTION202360TABLE3SummaryofglobalprogresstowardindustrytargetsINDICATORMOSTRECENT203020352050LIKELIHOODACCELERATIONSTATUSDATAPOINTTARGETTARGETTARGETOFFACTORShareofelectricityinthe(YEAR)FOLLOWINGindustrysector’sfinalANS-CURVEenergydemand(%)Carbonintensityofglobal2935–4351–5460–694xcementproduction(kgCO2/tcement)(2021)a(2040)Carbonintensityofglobalsteelproduction660360–70bN/A55–90b>10x(kgCO2/tcrudesteel)cGreenhydrogen(2020)bproduction(Mt)1,8901,340–50bN/A0–130bN/A;(2020)b,dU-turnneeded0.02758eN/A330eN/A;(2021)authorjudgmentfNotes:kgCO2/t=kilogramsofcarbondioxidepertonne;Mt=milliontonnes.SeeJaegeretal.(2023)formoreinformationonmethodsforselectingtargets,indicators,anddatasets,aswellasourapproachforassessingprogress.aHistoricaldatafromIEA(2023l)accessedwithapaidlicensetotheIEA’sdatasets.bTargetsandhistoricalemissionsdataincludedirectandindirectGHGemissions.cThecarbonintensityofsteelproductionaccountsforbothprimaryandsecondarysteel.dThe2021datapointfromtheWorldSteelAssociationisexcludedduetoachangeinthemethodologytoderivethedata.eThetargetsrefertowhatisneededforthewholeeconomytodecarbonizeandthusnotonlyfortheindustrysector.fForindicatorscategorizedasS-curvelikely,accelerationfactorscalculatedusingalineartrendlinearenotpresented,astheywouldnotaccuratelyreflectanS-curvetrajectory.Thecategoryofprogresswasdeterminedbasedonauthorjudgment,usingmultiplelinesofevidence.SeeAppendixCandJaegeretal.(2023)formoreinformation.Sources:HistoricaldatafromIEA(2023l);GCCA(2023);WSA(2022);andIEA(2022l);targetsfromCAT(2020b,2023a);andIEA(2022t).ElectrifyindustryBellevratandWest2018).Differentindustrialprocessesrequireheatatdifferenttemperatures,andabouthalfTheindustrialsectorconsumes37percentofallfinalofindustrialheatdemandisforhigh-temperatureheat,energyuse(i.e.,energyconsumedbyend-usesectorsat400°Corabove.Theotherhalfisevenlysplitbetweensuchasindustry,transport,andbuildings),withheatmedium-temperatureheat(100–400°C),neededtoaccountingfortwo-thirdsofindustrialenergydemandmanufactureitemslikeplastics,textiles,andpaper,(IEA2022m;BellevratandWest2018).Besidesusingandlow-temperatureheat(below100°C),neededforenergytoprovideheat,industryusesittooperatefoodandbeverageprocessingandmining(IEA2017b).motorsandmachinery,andasindustrialfeedstockManytechnologiesthatcanincreaseelectrificationof(carbon-basedrawmaterialusedtomakeproducts).low-andmedium-heatprocessesarealreadycommer-Electrifyingindustrymeansusingelectricity,ratherthancializedandreadilyavailableforadoption(Roelofsencarbon-intensivefossilfuels,torunmotorsandmachin-etal.2020;BellevratandWest2018).However,barrierstoeryandtoprovideheat.Replacingfossilfuelswithindustrialelectrificationincludethehighcapitalcosts,zero-carbonelectricitytogenerateheatwillthusreducethepriceofelectricityrelativetothatofheatingfuels,theemissionsintensityofindustrialproduction.process-andtemperature-specificsynergiesandcustomizationsthatlimittheabilitytomassproduceHistorically,industrialcompanieshavefocusedonelec-equipmentforelectrification,alackofpolicysupport,trifyingindustrialoperationsthatdonotinvolveheat,andthelonglifetimeofexistingcapitalinvestmentsincludingmachinerylikepumps,roboticarms,andcon-relyingonheatfromfossilfuels(ThielandStark2021;IEAveyorbelts.Theseeffortshavehelpedtheglobalrateof2022s;BellevratandWest2018).electrificationtogrowatasteadypaceinrecentyears,butthereisroomtoelectrifyawiderrangeofindustrialprocessesinvolvingheatinthenearterm(e.g.,drying,evaporation,distillation,etc.)(Roelofsenetal.2020;IndustrySTATEOFCLIMATEACTION202361INDUSTRYINDICATOR1:decliningpricesofelectricitywillsupportelectrification(seebelow),thediverserangeofindustrialprocessesShareofelectricityintheandproductsacrossseveralsubsectors,withtheirindustrysector’sfinalenergyspecificrequirementsfortemperatures,willrequiredemand(%)customizedtechnologicalsolutions(Deasonetal.2018).Policysupportisneededfordirectelectrificationusing•Targets:Theshareofelectricityintheindustrytechnologiessuchasindustrialheatpumps—whichextractandtransferheatfromthepump’ssurroundingssector’sfinalenergydemandincreasesto35–43ratherthangeneratingitandaresignificantlymorepercentby2030,51–54percentby2040,and60–69efficientthancombustiontechnologies—toprovidepercentby2050.low-temperatureheatinindustriessuchaspaper,food,andchemicals.Theshareofelectricityintheindustrysectorrosefromabout28percentofthesector’sfinalenergydemandtoEffortstoelectrifyindustrycanbringnewbenefitsto29percentfrom2017to2021.Itsaverageannualgrowthcommunities.Replacingfossilfuelcombustioninindus-rateduringthisperiodwas1.6percent.Althoughthistrialplantswithelectricitycanreducelocalairpollutionrateofchangeisheadingintherightdirection,itiswellandassociatedhealthimpacts.Industrialelectrificationofftrackandneedstoacceleratefourfoldtoreachthepoliciesshouldensurethatfacilitieslocatedinminority1.5°C-alignednear-termtargetfor2030.andlow-incomecommunities—whichareoftendis-proportionatelyaffectedbyindustrialactivities—areNarrowingthedifferenceinoperationalcostsbetweenprioritizedforelectrificationwhilealsoaddressingotherprovidingheatwithelectricityandwithfossilfuels—harmfulimpacts.Thiswillensurethatimprovedairthroughtaxexemptionsandcrosssubsidies—iscriticalqualityandhealthbenefitsareequallyrealizedacrosstomakingtheelectrificationofheateconomical.communities(Hasanbeigietal.2023).WhilebroadersolutionssuchascarbonpricingandFIGURE22Historicalprogresstoward2030,2040,and2050targetsforshareofelectricityintheindustrysector’sfinalenergydemandRightDirection,WellOffTrackS-CurvePossible%HistoricalCurrentPaceneededtodatatrendreachtargets802040target6051–542030target2050target35–4360–69402021data29Accelerationrequiredtoreach202030target4x0201020202030204020502000Notes:SeeJaegeretal.(2023)formoreinformationonmethodsforselectingtargets,indicators,anddatasets,aswellasourapproachforassessingprogress.Sources:HistoricaldatafromIEA(2023l),accessedwithapaidlicensetotheIEA’sdatasets;targetsfromCAT(2023a).IndustrySTATEOFCLIMATEACTION202362IndustrieswillneedqualifiedpersonneltoimplementINDUSTRYINDICATOR2:electrificationtechnologies(IEA2022s).ThisrequiresgreaterinvestmentineducationandworkforceCarbonintensityofglobalcertificationandtrainingprograms—suchasoninstal-cementproduction(kgCO2/tlation,operation,andmaintenanceofindustrialheatcement)pumps—aswellastrainingopportunitiesaccessibletolow-incomeandunderservedcommunities(HasanbeigiTargets:Thecarbonintensityofglobalcementproduc-etal.2023;IEA2022s).Overtime,apoolofskilledprofes-tiondeclinesto360–70kilogramsofcarbondioxidepersionalscanbedevelopedasnewjobsarecreatedtotonne(kgCO2/t)ofcementby2030and55–90kgCO2/tofintegrateelectrificationtechnologiesinindustry.cementby2050,withanaspirationaltargettoachieve0kgCO2/tofcementby2050.25Toreduceemissions,industrialprocessesmustbeelec-trifiedwithzero-carbonelectricity,eithergridoroff-grid.Notably,whiletotalCO2emissionsfromglobalcementAsindustrialdemandforzero-carbonelectricitygrows,productionincreasedinrecentdecades,itscarbonpoliciesmustfacilitateadditionaldeploymentofcleanintensitydecreased,dueprimarilytoefficiencyimprove-electricitytomeetthegrowingneedsofbothindustryments.However,thesedeclineshaveleveledoffinandpopulationsalreadystrugglingwithfrequentblack-recentyearsastheenergyefficiencyimprovementsoutsandrisingelectricitycosts(TobiasandMakomahavenearedthelimitofwhatistechnologicallypossible.2023).Further,planningdecisionsrelatedtothelocationReductionsintheclinker-to-cementratio,withclinkerofnewpowerplantsandtransmissionanddistributionbeingthe“glue”thatbindstherawmaterialsofcementlinesshouldconsidertheirimpactoncommunities(seetogether,canlowertheemissionsintensityintheshortPowersection)(Hasanbeigietal.2023).term.Usingnovelmaterialsandmethods,about40–50percentofcementemissionscouldbeavoidedthroughCommercializenewclinkersubstitution(IPCC2022b).Inthelast10years,thesolutionsforcementandglobalaverageclinker-to-cementratiohasfluctuatedsteelbetween75and78percent,andisoneofthemaindriversofchangeincementemissionsintensity(GCCAForhigh-temperatureprocessesthatcannotbeelectri-2023).Whiletheaveragetrendoverthelastfiveyearsfied,zero-carbonfuelsorshiftstonewtechnologiesthatisdecreasing,therateofchangeiswellofftracktodonotrequirehightemperatureswillberequired,aswillmeetthe2030target(Figure23).Tomeetthetarget,thedevelopingnewtechnologiesandzero-carbonfeed-currentrateofchangeneedstoacceleratebyafactorstockstoreduceindustry’snonenergy-relatedemissionsofmorethan10.fromchemicalprocesses(i.e.,processemissions).Forexample,shiftingprimarysteelproductionfromblastfurnacestogreenhydrogen–basedsteelproductioncaneliminateprocessemissionsfromtheconsumptionofcoal,andreducetheneedforhightemperatures.Acceleratingthisshiftacrossindustriessuchascementandsteelwillproveespeciallycritical,notbecausethetechnologiesdonotexistbutratherbecausethedecarbonizationoftheindustrysectorstartedsignifi-cantlylaterthanothersectors.Majorbarrierstothecommercializationofnewsolutionsforreducingprocessemissionsandemissionsfromhigh-temperatureheatincludealackofdemandfornear-zerocarbonindustrialproducts;inadequatepolicyandregulations,researchanddevelopment,andaccesstofinance;andhighupfrontcapitalcosts(Boehmetal.2022).IndustrySTATEOFCLIMATEACTION202363FIGURE23Historicalprogresstoward2030and2050targetsforcarbonintensityofglobalcementproductionRightDirection,WellOffTrackS-CurvePossiblekgCO2/tcementHistoricalCurrentPaceneededtodatatrendreachtargets700660Acceleration600requiredtoreach2020data2030target>10x5002030target400360–3703002002050target55–901000201020202030204020502000Note:kgCO2/t=kilogramsofcarbondioxidepertonne.Targetsandhistoricalemissionsdataincludedirectandindirectemissions.SeeJaegeretal.(2023)formoreinformationonmethodsforselectingtargets,indicators,anddatasets,aswellasourapproachforassessingprogress.Sources:HistoricaldataderivedbyauthorsusingdatafromGCCA(2023);targetsfromCAT(2020b).INDUSTRYINDICATOR3:andreliesonthesamedataasthe2022report(WSA2022).ThestatusoftheindicatoristhusnotupdatedandCarbonintensityofglobalisgoinginthewrongdirection.steelproduction(kgCO2/tcrudesteel)Primarysteelmakinginvolvesthereductionofironoreintopigiron,whichisfurtherprocessedintosteel,•Targets:Thecarbonintensityofglobalsteelproduc-whilesecondarysteelmakinginvolvesrecyclingandprocessingofscrapsteel,whichisdoneinanelectrictiondeclinesto1,340–50kilogramsofcarbondioxidearcfurnace(EAF)thatrunsonelectricity.Changingthepertonne(kgCO2/t)ofcrudesteelby2030and0–130trajectoryofsteelsectoremissionsintensitywillrequirekgCO2/tofcrudesteelby2050.26anincreaseinsecondarysteelproduction,andafargreatershareofprimarysteelproductionwillneedOverall,thecarbonintensityofglobalsteelproductiontorelyonnewtechnologies.Theseincludethegreenhasremainedlargelystableoverthepastdecade,27hydrogen–baseddirectreducedirontoelectricarcalthoughthelastfiveyearshavewitnessedaslightfurnace(H2DRI-EAF),usingDRIwiththesubmergedarcincrease,meaningthattheindicatorismovinginthefurnace(SAF)toreplacetheblastfurnaceandusingwrongdirectiontomeetthe2030and2050targetsexistingthebasicoxygenfurnace(DRI-SAF-BOF),iron(Figure24).28Sincelastyear’sreport,theWorldSteeloreelectrolysis,andcarboncaptureandusageorAssociation(WSA)hasupdateditsmethodologytostorage(CCU/S)(IEA2021b;NicholasandBasirat2022).29calculatethecarbonintensityofsteelproduction,whichItisimportanttonotethatnotallofthesetechnologiesresultsinslightlyhigherfigures(WSA2023).Toavoidarenear-zerocompatible.Carboncaptureonblastmixingdataresultingfromdifferentmethodologies,thisyear’sreportdoesnotprovideanyupdatedinformationIndustrySTATEOFCLIMATEACTION202364FIGURE24Historicalprogresstoward2030and2050targetsforcarbonintensityofglobalsteelproductionWrongDirection,U-turnNeededHistoricalCurrentS-CurvePossibledatatrendPaceneededtokgCO2/tcrudesteelreachtargets2,5002020data1,8902,0001,5002030target1,340–501,0005002050target0–1300201020202030204020502000Note:kgCO2/t=kilogramsofcarbondioxidepertonne.TargetsandhistoricalemissionsdataincludedirectandindirectGHGemissions,andthecarbonintensityofsteelproductionaccountsforbothprimaryandsecondarysteel.The2021datapointfromtheWorldSteelAssociationisexcludedduetoachangeinthemethodologytoderivethedata.SeeJaegeretal.(2023)formoreinformationonmethodsforselectingtargets,indicators,anddatasets,aswellasourapproachforassessingprogress.Sources:HistoricaldatafromWSA(2022);targetsfromCAT(2020b).furnaces,forinstance,isnotcompatiblewithnear-zero,Secondarysteelmakingistheleastenergy-intensivewaywhilesomeoptionsforcarboncaptureonDRIcouldbe.toproducesteelandcanbedecarbonizedbyensuringAchievingnet-zeroemissionsthroughcarboncapturethatthepowersupplyiszero-carbon.Whilesecondaryonblastfurnaceswillrequireaddressingresidualsteelmakingcouldberampedup,therewillnotbeemissions,asitdoesnotcapture100percentofCO2enoughscrapsteeltosatisfythefulldemandforsteelinemissions.Thesuitabilityofcarboncaptureandstoragetheforeseeablefuture.Therefore,primarysteelmaking(CCS)alsodependsontheavailabilityofsuitablesitesinwillstillbeneeded,andmethodstodecarbonizeitwillproximitytoCO2storagelocations.Forcarboncaptureneedtobedeveloped.Today,mostprimarysteelispro-andutilization(CCU)tobeconsideredcarbon-neutral,ducedusingblastfurnaces(BF),whichinherentlyrelyonthecapturedcarbonmustbeusedinmaterialswherecoal.Theonlywaytosignificantlyreduceemissionsfromthecarbonisnotreleasedintotheatmosphere.TherolethisproductionrouteisthroughCCU/S,whichhasnotyetofthesedifferenttechnologiesvariesacrossdifferentbeenprovenatscale.Incontrast,theDRIroutecanusestudies,butthereisanincreasingconsensusonthehydrogeninsteadoffossilfuelsandisthusnotreliantonlimitedrolecarboncapturewillhaveinaParis-com-CCU/Sastheonlydecarbonizationalternative.30patiblescenarioforthesteelsector,whiletheroleforgreenhydrogen–basedsteelhasstronglyincreasedcomparedtothatinolderstudies(AgoraIndustryandWuppertalInstitute2023;MPP2022b).IndustrySTATEOFCLIMATEACTION202365INDUSTRYINDICATOR4:petrochemicals,carboncapturedfromtheatmosphereusingdirectaircaptureisneededinadditiontogreenGreenhydrogenproductionhydrogen.Thesedecarbonizedfeedstockshavetheir(Mt)ownsuiteofhealthandenvironmentalrisksandshouldonlybeusedtotransitiontoproductsthatarenottoxic.•Targets:Greenhydrogenproductioncapac-Inadditiontoanincreaseddemandforgreenhydrogenresultingfromtheapplicationofnewtechnologiessuchityreaches58milliontonnes(Mt)by2030andashydrogen-basedDRIsteelmaking,existinghydrogen330Mtby2050.productionfromfossilfuelsalsoneedstobereplacedwithgreenandzero-carbonhydrogen.Thephase-outElectrifyinghigh-temperatureprocessesischallenging,offossilfuelproduction,suchasoilrefiningthatusesandmanyindustriesalsorelyoncarbon-basedfeed-methanol,willalsoreducetheexistingdemandforstocks.Directelectrificationcoupledwithzero-carbonhydrogen.Asanemergingtechnology,greenhydrogenelectricitycannotovercomeallofthesechallenges.cannotyetmeetglobaldemandforhydrogen,31par-Instead,greenhydrogen—producedwithzero-carbonticularlyinindustry.Greenhydrogenaccountedforjustelectricitybysplittingwaterintohydrogenandoxygen0.03percent(0.027Mt)ofhydrogenproductionin2021byanelectrolyzer—canbeusedbothtogeneratebasedondatafromtheIEA’sHydrogenProjectsData-high-temperatureheatandasafeedstockdirectly,base(IEA2022l).oritcanproducefeedstocksusedinindustry.Fortheproductionofcleanfeedstocks,suchassyntheticFIGURE25Historicalprogresstoward2030and2050targetsforgreenhydrogenproductionRightDirection,WellOffTrackS-CurveLikelyPaceneededtoMtHistoricalCurrentreachtargetsdatatrend35033020210.032050target300HISTORICALDATA250200020151501002030target585020102021data20302040205000.02720002020Note:Mt=milliontonnes.Thetargetsrefertowhatisneededforthewholeeconomytodecarbonizeandthusnotonlyfortheindustrysector.Also,forindicatorscategorizedasS-curvelikely,accelerationfactorscalculatedusingalineartrendlinearenotpresented,astheywouldnotaccuratelyreflectanS-curvetrajectory.Thecategoryofprogresswasdeterminedbasedonauthorjudgment,usingmultiplelinesofevidence.Morespecifically,thisindicatoriscategorizedaswellofftrack,becauseitisanewtechnologythatisstillintheemergencestageofanS-curve.ThecurrenttrendarrowassumesthatthecurrentrateofexponentialgrowthingreenhydrogencontinuesalonganS-curve,butbecausegreenhydrogenproductionisatsuchalowstartingpointtoday,evenexponentialgrowthappearsflat.SeeAppendixCandJaegeretal.(2023)formoreinformationonmethodsforselectingtargets,indicators,anddatasets,aswellasourapproachforassessingprogress.Sources:HistoricaldatafromIEA(2022l);targetsfromIEA(2022t).IndustrySTATEOFCLIMATEACTION202366Transitioningtoa1.5°Cpathwaywillrequiregreenhydro-genusetogrowrapidly,reaching58Mtin2030and329Mtin2050(Figure25).Withsupportivepolicies,suchascarbonpricingorpublicprocurementoflow-carbonindustrialproducts,greenhydrogencapacitycouldincreaserapidlyandnonlinearly,withadoptionratesfollowinganS-curvetrajectoryofchange.However,thistechnologyisrelativelynascentandremainsintheemergencephaseofanS-curve,soglobalprogresstowardthisnear-termtargetremainswellofftrack.Greenhydrogenproductionincreased38percentperyearonaverageoverthepastfiveyears,butitisstartingfromsuchalowlevelthatevenifexponentialgrowthcontinuesatthisrate,productionstillwouldnotreacheven1Mtby2030.RecentdevelopmentswithlowerconcentrationsofCO2intheexhaustgas,asacrossindustryisthecaseinmanyindustrialprocesses.However,theactalsoincludesmeasuresthatcouldfurtherdelaySeveraladvanceshavebeenmadeinthepastyearwithindustrialdecarbonization.Forinstance,itprovides$60regardstopolicy-,technology-,andinvestment-relatedpertonneofcapturedCO2forenhancedoilrecovery,enablerstocommercializeindustrialdecarbonization.whichusescapturedcarbontoproduceadditionaloil.CarbonpricingcanbeanimportantandpowerfulToensurethatlegislationliketheInflationReductioninstrumenttoincentivizetheadoptionofnovellow-car-Actisefficientlyappliedandtrulysupportsindustrialbontechnologies.Thoughtherewasnosignificantdecarbonization,itisalsoimportantthatrobustmoni-increaseinglobalGHGemissionscoveredbycarbontoring,reporting,andverificationsystemsforemissionspricingsystemssince2021,India,withoneoftheworld’sbycompaniesreceivingthesubsidiesbeinplace.fastest-growingindustrialsectors,releasedthedraftframeworkforacarbonmarketschemeinMarch2023LegislationliketheInflationReductionActcanhave(Ghosh2023;WorldBank2023d).Thiscarbonmarketacascadingeffect,asothercountriesandregionswilllikelytarget11sectors,includingpower,aluminum,bumpuptheirownsupportforalow-carbonindustrytocement,petroleumrefineries,andsteel(Singh2023b).Inavoidlosingtheircompetitiveedgeinglobalmarkets.May2023,theEuropeanUnion’sCarbonBorderAdjust-Forexample,theEuropeanCommission(EC)releasedmentMechanism(CBAM)wasofficiallyadopted,anditsNet-ZeroIndustryActasaresponsetotheInflationitstransitionalapplicationwillstartinOctober2023.TheReductionActinMarch2023.TheECactsetstargetsformechanismaimstoavoidcarbonleakagebysettingspecifictechnologiesconsideredessentialfordecar-apriceoncarbonforimportedindustrialproductsandbonizingtheEuropeanUnion’seconomyandaimstowillbealignedwiththephase-outoffreeallowancesdomesticallyproducecleantechnology(suchasCCU/SundertheEUemissionstradingscheme(Europeanandelectrolyzers)tomeet40percentofthedemandinCommissionn.d.a).2030(diSario2023).Italsosetsa2030targetfor50MtofcapturedCO2tobeinjectedintopermanentstorageNewpolicypackageswereannouncedin2022tosites(EuropeanCommission2023f).Tomeetthetarget,itcommercializedeepemissionreductiontechnologiesasksEU-basedoilandgasproducerstocontributetothebyincentivizingnewinvestmentsandfacilitatingaccessdevelopmentofcapturedCO2storagesitesproportionaltofinance.TheU.S.governmentpassedtheInflationtotheiroilandgasproduction(EuropeanCommissionReductionActinAugust2022,whichincludeda$6billion2023f).Thiswillcontributetothedecarbonizationofgrantprogramaimedattechnologydevelopers,indus-theindustrysector,asCCU/Sisoneofthemeasurestotryactors,universities,andotherstodecarbonizeheavyachievethat(ConleyandBotwright2023).industry(Gardner2023;U.S.Government2022).Theactalsoincludesgreenhydrogen–relatedmeasuresthatWhilesubsidiescanadvancethelow-carbontransitioncouldbenefitindustrialdecarbonizationefforts.Italsoinindustry,theyalsoriskdisruptinginternationaltradeincreasedthesubsidypertonneofcapturedCO2fromflowsandleavingbehinddevelopingandemerging$50to$85aspartofanupdatetotheexistingtaxcrediteconomiesthatcannotaffordlargesubsidyprogramsthatincentivizesindustries,investors,anddevelopersto(ConleyandBotwright2023).InternationalclimatesupportCCS(CATF2022b).SuchanincreasecanmakeitfinanciallyviabletocapturecarbonfromprocessesIndustrySTATEOFCLIMATEACTION202367financeandtechnologytransfersupportingcleanalsoincreasinglypopularintheEuropeanUnionastheyindustriesindevelopingcountrieshasanimportantrolebecomemorecost-competitiveduetorisingnaturalgastoplayinensuringajusttransition(seefurtherdiscus-pricesinthewakeofRussia’sinvasionofUkraine(Hock-sionofequityandjusttransitionsinBox8).InDecemberenos2023).Europe’sNet-ZeroIndustryActalsoincludes2022,theG7initiatedtheClimateClubtoacceleratetheheatpumps,amongothertechnologies,thatshouldimplementationoftheParisAgreementandhelpresolvebepromoted(HPTMagazine2023).In2023,GermanychallengesarisingfrominstrumentssuchasCBAMandstartedaprogramtocatalyzeinvestmentsinlow-car-theInflationReductionAct(EuropeanParliament2023c).bonproductiontechnologiesthroughtargetedsubsidiesAvailabilityoffinancialsupportcanfurtherincentivizeestimatedtobearound$50billion(Segal2023).countriesfromtheGlobalSouthtojointheclubandfacilitatecooperationwiththeGlobalNorth(UngerandForhigh-temperatureprocesses,suchassteelandThielges2023).cementproduction,thatrequiretemperaturesofmorethan1,000°C,electrificationistechnicallypossibleRecentdevelopmentsinbutrequiresfurtherR&D,pilots,anddemonstrationtoelectrifyingindustrybecomeeconomicallyfeasible.32Somerecentpromisingdevelopmentsforelectrifyinghigh-temperaturepro-KeyrecentpositivedevelopmentsrelatedtoelectrifyingcessesincluderesearchersatMassachusettsInstituteindustryincludepoliciestoincentivizetheadoptionofofTechnology(MIT)carryingoutpilotdemonstrationstoavailabletechnologyforelectrifyinglow-temperatureproducecementusingelectricityatlowtemperatures;heat.Forexample,theU.S.InflationReductionActapatentawardedtoSaltXinMarch2023forelectricarcauthorizedover$15billiontohelpmanufacturersswitchcalcinertechnology,whichuseszero-carbonelectric-toheatpumpsandothercleanindustrialheatingitytoproducecementbutatveryhightemperature,technology(Rissman2022).Industrialheatpumpsarewithademonstrationplantexpectedtobebuiltthisyear;andBostonMetal’sdevelopmentofmoltenoxideBOX8EquityandjusttransitionintheindustrysectorThedecarbonizationoftheindustrysectorwillbonizeorrequiregreenhydrogentoareasrichincomewithchallengesrelatedtoequityandjustrenewableenergyresourcescanhelpensurethattransitions.Theproductionofmanyindustrialtheywillbeeconomicallyviable.Relocationcanproductsrequiresminingofrawmaterialssuchintroducearangeofjustice-relatedimplications.asironoreforsteelmakingandlimestoneforItcanburdensomeregionsdisproportionately,cement-making.Anincreaseddemandforironstrandassets,causeunemployment,haveenvi-oretomeetrisingprimarysteeldemandrisksronmentalimplicationsrelatedtotheavailabilityofincreasingthehumanandenvironmentalbur-freshwaterandland-userequirements,andrequireden.Environmentalandhumanrightsabusesrelocationofjobsandfamilies,reskillingofworkers,havebeenreportedinregionsandcommunitiesandre-sitingofotherinfrastructure(Vogletal.surroundinglargeironoreminingoperations(e.g.,2019;Swennenhuisetal.2022).Inthesteelsector,miners’exposuretounsafeandunhealthyworkingsplittingironmakingfromsteelmakingandmovingconditions,laborandagrarianconflicts,localandtheenergy-intensiveironmakingtolocationsIndigenouscommunitieslosingtheirhomes,live-withrichrenewableresourceswhileretainingthelihoods,andaccesstocleanairandwater)(FIDHsteelmakingattheoriginallocationcouldlimitthe2022).Althoughironoreminingactivitiesmayslownumberofjoblosses(AgoraIndustryandWupper-downwithhigherratesofsecondarysteelmakingtalInstitute2023).andreduceddemandforsteel,miningactivitiesleaveanirreversibleimpactonlocaleconomiesTransitioningfromonekindofindustrytoanotherandcommunitiesiftheseactivitiesdonotfollowcanalsoputatriskworkers’gainsbuiltthroughthroughwithduecompensationorenvironmentalyearsofactivismbyunionsinsomeindustriesrehabilitation.Itiscriticaltoensurethatenviron-andneedtobesafeguarded.TheU.S.Inflationmentalhazardsarefullyidentified,prevented,andReductionAct,forexample,includesaprogramtoremedied,andthataffectedworkersandfamiliessupportfairlypaidjobsandprotectunionworkers’receivejustcompensationforresettlementcosts.gainsinenergyconstructionjobs,butitdoesnotextendsimilarprotectiontojobsinmanufacturingLocatingorrelocatingindustrialplantsthatrequireindustries(Swalec2023).largeamountsofzero-carbonenergytodecar-IndustrySTATEOFCLIMATEACTION202368electrolysistechnologytoproducemoltenironusingmodelsetsabenchmarkformaximumcarbonintensityelectricity,whichhasattractedinvestmentfromIFCofmaterialsrequiredinpubliclyfundedprojects.TheandArcelorMittal,thesecond-largeststeelproducerNewJerseylawhasanadditionaltaxcreditforcon-lookingtodecarbonizeitsproduction(Crownhart2023;creteproducersthatisevenlowerthanthemaximumSaltXTechnology2023;Cemnet2023a;Gleeson2022;IFCcarbonintensitybenchmarksetbytheBuyClean2023b;ArcelorMittal2023).model(Neidl2023).RecentdevelopmentsInadditiontopublicprocurement,theprivatesectorcaninloweringthecarbonalsosupportsecuringademandforlow-carboncementintensityofcementthroughinitiativessuchasConcreteZeroandtheFirstMoversCoalition.TheIndustrialDeepDecarbonizationThereareseveralwaystoreducethecarbonintensityofInitiative,ledbytheUNIndustrialDevelopmentOrgani-cementproduction(e.g.,loweringtheclinker-to-cementzation,isanotherleadingprogramfordemandcreation,ratiobyusingsupplementarycementitiousmaterialswhichnowincludesthecementsectorasannouncedat[SCMs],switchingtoalternativematerialstoproduceCOP27(High-LevelChampions2022b).cementaltogether,andapplyingCCU/S),withsomepromisingdevelopmentsinrecentyears.AchievingCementdecarbonizationtechnologiesalsorequireade-deepdecarbonizationwillrequirefurtherdevelopmentquateaccesstofinancetocounterhighupfrontcosts,andcommercializationofnewtechnologies,enabledbyparticularlyindevelopingcountries,whichfacegrowingpolicieslinkedtoimprovedincentivestructuresandthedemandforinfrastructuredevelopmentbuthaveavailabilityoffinance.limitedfinancialresourcesforlow-carboninvestments.InFebruary2023,theInternationalFinanceCorporationCreatingdemandforlow-carboncementthroughmea-(IFC)andSococimIndustries,Senegal’sleadingcementsuressuchaspublicprocurementandprivatesectormanufacturer,announcedanalmost$264million(€242purchasecommitmentscanhelpderiskinvestmentsinmillion)financingpackagetodecarbonizeSococim’snewtechnologies(Lewisetal.2023;TorresMoralesetal.cementproduction(IFC2023a).33ItisIFC’sfirstgreen2023).CanadaandtheUnitedStateshavebeenleadersloanformaterialmanufacturinginAfricaandwillbeinthisspace.InDecember2022,CanadaannouncedusedtoimproveenergyefficiencyandincreasethetwostandardsunderitsGreenProcurementpolicyforshareofalternativefuels.WhilecementproductionembodiedcarboninconcreteandcarbondisclosureinAfricatodayonlymakesupasmallshareofglobalandreductionrequirements,thusimposingspecificproduction,thedemandisprojectedtoincreaseobligationsoncontractingauthoritiesandvendorsrapidlywithgreaterdevelopmentandindustrialization(O’Brienetal.2023).IntheUnitedStates,anationalgreen(Chenetal.2022).procurementinitiativewaslaunched,withseveralstatespassingtheirowngreenprocurementpolicies(Gan-Thisyear,theU.S.DepartmentofEnergy(DOE)awardedgotraetal.2023).Earlythisyear,theU.S.stateofNew$3.2milliontotheSolarMEADproject,whichaimstofullyJerseyadoptedapublicprocurementlawforconcrete.replacefossilfuel–basedheatgenerationforcementThelawbuildsontheBuyCleanmodelspearheadedinproductionwithconcentratedsolarthermalheatCaliforniaandnowadoptedbyseveralotherstates.The(RenewableEnergyWorld2023).Thiscouldeliminateabout40percentofdirectemissionsfromthestandardcementproductionprocess(CAT2023a).Thetechnologywassuccessfullypilotedatlaboratoryscalein2022byCEMEXandSynhelion,andthefundingwillhelpadvancethistoanindustrial-scaleplant.Anotherimportantmitigationoptioninthecementindustryisthereductionoftheclinker-to-cementratio,sinceclinkerproductionisresponsibleforabout90–95percentofcementemissions.Clinkercanbepartlyreplacedwithsupplementarycementitiousmaterials,suchasindustrialwastesandclays,buttheavailabilityofindustrialwastesthatcanbeusedasSCMsisdeclin-ing.UsingcalcinedclayasanSCMispromisingbecauseitcanreduceprocessemissionsbyabout50percentinthenearterm(ScrivenerandShell2023).34Interestincalcinedclayispickingupglobally,withAfricanprojectsclearlyinthelead.CalcinedclayprojectshavebeenannouncedinseveralAfricancountries,includingGhana,Malawi,Cameroon,Côted’Ivoire,andEgypt.LikelyreasonscouldbetheavailabilityofrawIndustrySTATEOFCLIMATEACTION202369FIGURE26Cumulativenumberofannouncedcommerical-scaleCCU/Splantsoperationalby2030increasinglychallenging(MPP2022c).AccordingtotheCCUSprojectsintheglobalcurrentpipeline,only13full-scaleplantsareplannedtobecomeoperationalbythen(Loreaetal.2022).Further,cementsectorthefactthattheGlobalNorthisleadingthedevelop-mentofCCU/Sinthecementindustry,whilethemajorityNumberofCCUSprojectsAsiaofexistingcementcapacityisinAsiaandnewcement40AustraliacapacityisexpectedtobebuiltinAsiaandAfrica,thiscreatesamismatchbetweenwherethemitigation30NorthtechnologyisbeingdevelopedandwhereitisneededAmerica(Chenetal.2022).However,somerecentpositivedevel-opmentshavebeenobservedinChina—responsiblefor20morethanhalfoftheworld’sannualcementproduc-tion—wherethelargestcementCCU/SplanttodatewasEuropeannouncedinJuly2023(Cemnet2023b).10Recentdevelopments0201720192022inloweringthecarbon2015intensityofsteelNote:CCUS=carboncaptureutilizationandstorage.Decarbonizingprimarysteelmakingwillinvolveacom-Source:Loreaetal.(2022).binationofdecarbonizationtechnologies,allatdifferentstagesofcommercialization.Theunderstandingofmaterials,populationgrowth,increasedindustrializationhowprimarysteelproductioncanbedecarbonizedandurbanization,andthechancetorelylessoncostlyhasadvanceddramaticallyinrecentyears,andsteelimportedclinker(Cemnet2022;ScrivenerandShell2023;companiesareincreasinglypublishingdecarboniza-Perilli2022).ThefirstEuropeanplantlaunchedopera-tiontargetsandengaginginpilotanddemonstrationtionsinearly2023inFrance(Cemnet2022;Perilli2023).projects.BasedondatafromtheGreenSteelTracker,thetotalnumberoflow-carbonsteelprojectsisincreasing,35Amajorbarriertowideradoptionofalternativecementalbeitatasignificantlylowerratethanin2021(Figurematerialsisslowdevelopmentandadoptionofupdated27).36AccordingtoMissionPossiblePartnership,aboutcementandconcretestandards.Manycementand70low-carbonsteelplantsneedtobeoperationalbyconcretestandardstodayareprescriptiveratherthan2030inordertostayona1.5°C-compatiblepathwayperformance-basedandthusdonotallowforthe(MPP2022c).TheGreenSteelTrackerdatashowthat29introductionofnewmaterials.InMay2023,theAlliancefull-scaleplantsareplannedtobeoperationalbythen,forLowCarbonCementandConcretewaslaunched,signalingastrongneedforaccelerateddeploymentoffocusingonlow-carboncementdevelopmentandlow-carbonsteelprojects.37Ofallannouncedprojects,callingonpolicymakerstoimprovestandards,amongthree-fourthsareinEurope,NorthAmerica,andAustralia,otherthings(GlobalCement2023).withEuropeaccountingforalmost60percentofthem(Figure27).WhileAsiahasthesecond-largestshareofWhilechallengesrelatedtothedevelopmentandprojectsatroughly20percent,SouthAmericaandAfricadeploymentofcarboncapturetechnologyraisedinthisaccountforjust3percentand2percent,respectively.38reportarealsorelevantforcement,itisoneofthefewThisfurtherhighlightsaneedforincreasedtechnologysectorswhereachievingnear-zeroemissionsislikelytotransfer(Batailleetal.2023).requireasubstantialbuild-outofCCU/S.ThisisreflectedinthenumberofannouncedcarboncaptureprojectsAmonglow-carbonsteelprojects,theleadingchoiceinthecementsector—39bytheendof2022—comparedhasbeengreenhydrogen–basedDRI-EAFsteelproduc-to4projectsinthesteelsector(Figure26).TheNorcemtion.In2021,thefirstsuccessfulshipmentofsuchsteel,plantinNorway,expectedtobethefirstCCU/SplantproducedbytheHYBRITprojectpilotplantinSweden,tobecomeoperationalinthecementindustryin2024,wasdeliveredtoVolvoAB,whichwillbethefirstmanu-wasfirstshortlistedforanindustrial-scaletrialin2018facturertoproducevehiclesfromfossil-freesteel(Vetter(HeidelbergMaterials2023).Thetimerequiredtobring2019).Suchcommitments,fromboththeprivateandaplantfromtheinitialplanningstagetofullcommer-publicsectors,helptoensuredemandforlow-carboncialoperationmakesthetimewindowtoachievethesteel.Between2021and2022,28newgreenhydrogen–MissionPossiblePartnership’sgoalofmorethan20IndustrySTATEOFCLIMATEACTION202370FIGURE27NumberofcumulativegreenhydrogenDRI-EAFproductionroute.Recently,Thys-senKrupp,amajorsteelcompanyglobally,announcedannouncedlow-carbonsteelreplacingblastfurnaceswithhydrogen-basedDRI-EAFasitsmajorcarbon-neutralstrategy(Batailleetal.projectsbycontinent2023;Maddy2023;ThyssenKruppn.d.).Baowu,China’slargeststeelmaker,hassetacarbonneutralitytargetforNumberoflow-carbonsteelprojectsAfrica2050—10yearsaheadofthenationalcarbonneutrality60Australiatarget(BloombergNEF2021ba).In2023,Baowuand50FortescueenteredamemorandumofunderstandingAsiatoexplorelow-carbonsteelmaking,includinggreen40hydrogen–basedsteelmaking(Xin2023).Thefocusonhydrogen-basedsteelmakingiscurrentlystrongestin30Europe,NorthAmerica,anddevelopedAsia,whileotherregionsaremorelikelytouseothertechnologies,suchasEuropeBFwithCCU/S.ArcelorMittal,thesecond-biggeststeelpro-20ducerglobally,hassetatargetofnetzeroby2050andisalsoplanningtoshiftfromblastfurnacestogreenhydro-10Northgen–basedDRI-EAFinitsEuropeanandNorthAmericanoperations.However,thecompanyplanstosignificantly0AmericaexpanditsblastfurnacecapacityinIndia,whichisnow2010thenumberonecountryindevelopingnewcoal-basedSouthsteelproductionglobally(NicholasandBasirat2023;ZhiandAn2023).ThisrevealstwosubstantiallydifferentAmericaapproachesindifferentgeographies.Consideringthelongeconomiclifetimeofsteelplants(about40years),2013201620192022buildingmoreblastfurnacesaswellasretrofittingexistingonesheightenscarbonlock-inrisks(seeBox9).IncreasingNote:Low-carbonsteeltechnologiesincludelow-carbonhydrogen–GHG-producingassetsinoneregionwhileinvestinginbaseddirectreducediron,scrap-basedelectricarcfurnace,carboncleanassetsinothersalsoraisesquestionsofenviron-captureandusageorstorage,moltenoxideelectrolysis,biomass-mentalinjustice.Avoidingthisrequiresastrongerroleforbasedsteelproduction,andsmeltingreduction.globalstandardsacrossareasofoperations.Source:Authors’analysisofdatafromGreenSteelTracker(2023).Whilelessadvancedthanhydrogen-basedDRI,directelectrificationofsteelmakingisalsoattractinggrow-relatedsteelprojectswereannounced,39accountingforingattention.Inearly2023,twonewprojectswereover70percentofthetotalnumberoflow-carbonsteelprojectannouncementsduringthisperiod(authors’cal-culationsbasedondatafromGreenSteelTracker2023).Thisemphasisonhydrogenappearslikelytocontinue.SeveralmajorsteelmakershaveunveiledemissionreductionordecarbonizationplanslargelybasedontheIndustrySTATEOFCLIMATEACTION202371BOX9NewresearchshowshighrisksofstrandedassetsresultingfromnewblastfurnacedevelopmentsDespitepledgestoloweremissionsandinsomerespectivelyin2022,accordingtotheGlobalplacestoexplorenewhydrogenandelectricityEnergyMonitor(SwalecandGrigsby-Schulte2023).technologies,thebuild-outofcoal-reliantblastButthisprogressisfarfromsufficientandstayingfurnacescontinuesglobally.SinceblastfurnacesalignedwiththeParisAgreementwouldrequireareinherentlyreliantoncoal,theirdecarbonizationabout347MtperyearofblastfurnacecapacitywillrequireCCU/S.Butitisbecomingclearerthat,toberetiredorcancelledby2050;thatis,alreadywhilepossiblysuitableandneededforalimitedexistingblastfurnacecapacityneedstoberetiredshareofglobalsteelmaking,CCU/Swillnotbeaandplannedcapacitycancelled.viablesolutionforthemajorityoftheindustry.Inrecentyears,studieshavehighlightedthelackThecountriesmostexposedtostrandedassetofCCU/Sprojectscomparedtootherdecarbon-risksarealsothecountrieswiththelargestblastizationtechnologies,especiallyconsideringthatfurnacesteelcapacitypipeline.Agoraestimatesnewblastfurnacecapacitiesarestillbeingaddedthat315Mtofadditionalcoal-basedblastfurnace(deVillafrancaCasasetal.2022).AccordingtocapacityiscurrentlyinthepipelineinemergingtheIEA’sCCU/Sprojectsdatabase,onlyoneneweconomies,correspondingtoabout13percentcarboncaptureprojectforsteelwasannouncedinofcurrentinstalledsteelcapacity(primaryand2022(IEA2023a).Similarly,Agorafindsthatonlyasecondary)(AgoraIndustryandWuppertalsingleCCSprojectforcoal-basedsteelproductionInstitute2023).Indiacurrentlyhasthelargestisplannedtocomeonlinebefore2030(Agorapipelinewithabout113Mt,followedbyASEAN26IndustryandWuppertalInstitute2023).Inadditionwith99Mt,andChinawith94Mt(AgoraIndustrytoitsslowcommercialization,CCU/StechnologyandWuppertalInstitute2023).About97percentforsteelmakingcomeswithotherexternalities,ofthecurrentblastfurnacepipelinethusisledbysuchasonlypartialcaptureofCO2emissions,theemerginganddevelopingcountriesinAsia,wherecontinuedreleaseofmethaneemissionsfromcoaldemandforprimarysteelisrapidlygrowing.Alongmining,andmore,whichisfurtherdiscussedinwiththis,existingblastfurnacecapacityneedstoJaegeretal.(2023).besignificantlyphaseddown.China,accountingformorethanhalfofglobalsteelproduction,outArecentParis-compatiblescenarioanalysisbyofwhichmorethan70percentisblastfurnace–Agoraevensuggeststhatallblastfurnacecapac-based,ishometoamajorpartofthat.Asaresultitycanbephasedoutby2050,thuseliminatingtheoftheChinesecapacityswapmechanism,whichneedforCCU/Sforthattechnology(Witeckaetal.requiresnewsteelplantstobesmallerthanthe2023).Overall,thebalancebetweennewBF-basedplantbeingreplaced,moreblastfurnacecapacityandDRI-basedprojectsinthepipelinehashasbeenretiredcomparedtonewblastfurnacechangedinapositivedirectiononlyinthelastyear.capacitythathasbeenbuiltinrecentyearsintheAnestimated43percentofplannedprojectswerecountry(AgoraIndustryandWuppertalInstituteDRI-basedand57percentwereblastfurnace–2023;Ranjan2023).basedin2023,comparedto33and67percentNotes:BF=blastfurnace;CCS=carboncaptureandstorage;CCU/S=carboncapture,utilization,and/orstorage;DRI=directreducediron;Mt=milliontonnes.announcedinAustraliaandsimilarprojectsexistinotherRecentdevelopmentsincountries(e.g.,BostonMetalsandSiderwinprojectsingreenhydrogentheUnitedStatesandFrance,respectively)(Hart2023;Vorrath2023).DirectelectrificationcouldeliminateGreenhydrogenisproducedbysplittingwaterintotheneedforhydrogenand,whilenotyetproven,mayhydrogenandoxygenusinganelectrolyzer.Dataonbecomemoreenergyefficient.plannednewelectrolyzercapacitycanthereforegiveanindicationofthepotentialincreaseingreenhydro-genproductioninthenearfuture.AccordingtotheIEA,whileglobalinstalledelectrolyzercapacitygrewby23percentfrom2021to2022,reaching690MW,thatlevelIndustrySTATEOFCLIMATEACTION202372FIGURE28GloballyinstalledelectrolyzerNationalGreenHydrogenMissionandallocated$36millionforthefirstyear,withatotalof$2.3billionovercapacityforhydrogenproductionsevenyears(Kumar2023;GovernmentofIndia2023).Throughthe2022InflationReductionActandthe2021MW560,000Infrastructure,Investment,andJobsAct,theUnitedStateshaschanneled$9.5billioninfundingforhydrogen600,0002030benchmark(over80percentbeingforhydrogenhubs)andhasintroducedproductiontaxcreditsforcleanhydrogen500,000(KrupnickandBergman2022).ItalsoreleaseditsdraftNationalCleanHydrogenStrategyandRoadmapin2022400,000(U.S.DOE2022a).Australiaplanstosupportdomesticmanufacturingandboostinvestmentinhydrogen800MWelectrolyzersthroughtheNationalReconstructionFundpassedin2023(Singh2023a).China,whichproduces30300,000HISTORICALpercentofglobalhydrogensupply,releasedaHydrogenDATAIndustryDevelopmentPlanin2022andsetshort-termtargets(IEA2022h).41Chile,whichpublisheditsnational200,00002022:687MWgreenhydrogenstrategyin2020,recentlysecureda100,0002021:559MW$150millionWorldBankloantopromoteinvestmentindomesticgreenhydrogenprojectsaimingtosupport0Endoflocalcommunities(WorldBank2023b).EndofEndof203020212022TheRussianinvasionofUkraineinFebruary2022isdrivingcountries—particularlythoseinEuropedepen-Note:MW=megawatt.dentonRussiangas—tobecomemoreambitiouswithSource:IEA(2022h).regardtogreenhydrogendevelopmentandusage.Anincreasingnumberofcountriesalsoseektoachieveisstillinsufficienttopoweramedium-sizedDRIsteelgreaterenergysecurity,partlythroughthedevelopmentplant(Vogletal.2018;Bhaskaretal.2020;IEA2023b)ofdomesticgreenhydrogenproduction.TheEuropean(Figure28).Themajorityofthe70percentincreaseCommission’sREPowerEUplanpublishedinMay2022between2020and2021camefromoneprojectinChina,(aftertheEUhydrogenstrategy)aimstoeliminatetheand,asoflate2022,about40percentand30percentEuropeanUnion’sdependenceonRussianfossilfuelsofplannedcapacityexpansionwasinChinaandbefore2030.ItincludeshydrogentargetsthataremoreEurope,respectively.ambitiousthanthoseintheEUhydrogenstrategy,aswellasanonbindingtargettoimport10milliontonnesLookingahead,plannedprojectsinthepipelinewouldofgreenhydrogenby2030.TheEuropeanHydrogenamountto134GWin2030,correspondingtoanannualBankwasalsoestablishedtoboostrenewablehydrogenhydrogenproductioncapacityofabout10Mt/year.40productionandimports(EuropeanCommission2023e).Thatisanincreaseofalmost150percentcomparedtothecorrespondingestimatebasedontheprojectpipe-TheEuropeanUnionhasalsobeenparticularlyactivelinein2021;however,itisstillfarfromsufficienttomeetinestablishinginternationalpartnershipsforgreenthe2030target.Oftheplannedelectrolyzercapacity,32hydrogenimports.Forexample,anagreementbetweenpercentwillbeinEurope,28percentinAustralia,and12theEuropeanUnionandEgyptwassignedin2022forpercentinLatinAmerica(IEA2022h).Electrolyzerman-astrategicgreenhydrogenpartnership(EuropeanCom-ufacturingcapacitygrewfrom8GWin2021to11GWinmission2022d).TheAfricanGreenHydrogenAlliance,2022,andabout125GWofadditionalcapacitycouldbecurrentlymadeupofEgypt,Kenya,Mauritania,Morocco,inthepipelinethrough2030(IEA2023i).Namibia,andSouthAfrica,wasalsolaunchedin2022todevelopgreenhydrogen–relatedprojectsinAfricaThegreenhydrogensectorcontinuestoreceivepolitical(GreenHydrogenOrganisationandRacetoZeron.d.).attentionglobally,providingapositivesignaltotheOthersimilaralliancesincludeH2LAC,withafocusonprivatesector.BetweenOctober2021andSeptemberLatinAmericaandtheCaribbean;theIndiaHydrogen2022,9countriesreleasednationalhydrogenstrat-Alliance;theJapanHydrogenAssociation;andtheMid-egies,bringingthetotalto25nations,aswellasthedleEastNorthAfricaHydrogenAlliance.TowhatextentEuropeanUnion(IEA2022h).In2023,Indiarolledoutitssuchpartnershipscontributepositivelytoexportingcountries’developmentandsupporttheirdecarboniza-tiontoowilldependonthedesignofthepartnershipsandthelocalcircumstances(Box10).IndustrySTATEOFCLIMATEACTION202373BOX10PotentialrisksandbenefitsofaglobalgreenhydrogentradetosustainabledevelopmentintheGlobalSouthIndustriessuchassteelmayneedtorelocateamongmanysub-Saharanpopulations.Intoregionswhereitischeapertoproducegreencountrieswithanelectricitysupplydeficit,greenhydrogentoavoidimportinghydrogenfortheirhydrogentradeandmechanismsforexportingdecarbonizationgoals,sincehydrogenisexpen-cleanenergyshouldalsobenefitlocalcommu-sivetotransport.Butpoliticalorstrategicreasonsnitiesthroughimprovedaccesstoelectricity.InmaydictatethatsteelindustryandassociatedNamibia,witha56percentelectricityaccessjobsareretaineddomesticallyandhydrogenratein2020,thegovernmentisdevelopingwithaneedsaremetthroughimports.However,theGermanventureagreenhydrogenexportprojecthydrogen-exportingcountrymayriskjeopardizingexpectedtogenerateexcesselectricitythatcandomesticdecarbonizationunlessadequatesafe-beusedtoimprovedomesticaccesstoelectricityguardsareensured.Whilescalinguprenewable(WorldBank2021b;Elston2022).Standardsshouldenergycapacityforproducinggreenhydrogenbedevelopedtoholdinvestorsandgovernmentscoulddrivelocalknowledge,marketdevelopment,accountableinthisregard.PowerShiftAfrica,aanduptakeofrenewableenergyelsewhereintheKenya-basedthinktank,hassuggestedasetofcountry,thereisalsoariskthateffortstobuildsuchstandardstoensurethatenergyforgreenrenewablesremainlimitedtogreenhydrogenhydrogenprojectsisadditional(Adowetal.2022).plantsmeantforexport,orevenpullresourcesawayfromdecarbonizingthedomesticenergyWithadequatesafeguardsinplace,greenhydro-system(FeketeandOutlaw2023).gendevelopmentcanbenefitlocalcommunitiesbyenhancinglocalvaluechainsandspurringUncertaintiesindeterminingthelong-termgloballocalrenewableenergydeployment.Supportingneedforgreenhydrogenmeanthatinvestmentsthedevelopmentofupstreamanddownstreaminitslarge-scaleproductioncarrysignificantcomponentsalongthegreenhydrogenproductionfinancialrisks.ForcountriesintheGlobalSouth,valuechainlocallycangeneratejobsdomesticallyborrowingmoneyforcapital-intensiveinvestmentsandbettersupportlocalcommunities.Includingcouldincreasedebt.Buttheseinvestmentscouldstakeholdersfromallpartsofsociety(theprivatebeusedtodrivedownthecostofwindandsolar,sector,investors,academia,civilsociety,andlocaldecarbonizepowergeneration,andsupportlocalcommunities)inplanninganddecision-mak-valuecreationthroughhydrogenexportindus-ingcanbringsuchissuestotheforeandhelptry—atrendalreadyemerginginOman(MiningnegotiateoutcomesthatdonotshortchangeTechnology2022;Klevstrand2023).localcommunities.Greenhydrogenexportprojectsshouldprioritize.countries’basicdevelopmentneeds.Forinstance,universalaccesstoelectricityremainsunachievedDefiningwhatqualifiesasgreenhydrogenisanDemandforgreenhydrogencanincentivizenewinvest-importantaspectofhydrogenstrategydevelopment,mentsinexpandedproductioncapacity.Inadditiontotargetsetting,trade,andpolicydevelopment.Inearlyincreasingdemandfromthesteelsector(see“Recent2023,theEuropeanParliamentadoptedadefinitiondevelopmentsinloweringthecarbonintensityofsteel”forrenewablehydrogenthatcouldserveasastartingabove),greenammoniaproduction—aderivativeofpointfordevelopingconsistentnationalorinternationalgreenhydrogenthatcanbeusedasazero-carbonstandards(Day2023).Itincludesawiderangeofrulesfeedstockinchemicalsproduction—isgainingmomen-linkedtodifferentlow-carbonhydrogentechnologies,tum,withover60greenammoniaplants,withcombinedsuchasnaturalgaswithCCS,nuclear-basedelectricityproductionof34.1Mt/yearby2030,announcedasofandelectrolysis,andrenewable-basedelectrolysis.ItMay2022(Sayginetal.2023).Companiesinalmostalsohasrenewableenergyadditionalityrulestoensureallpartsoftheworldareinvestingingreenammoniathatexistingcapacitiesarenotusedtoproducegreenplants(StateofGreen2022;HydrogenCentral2023b;PRhydrogeninsteadofdecarbonizingthegrid(EuropeanNewswire2023;Collins2022a;Outlook2023;Prisco2022;Parliament2023b).HydrogenCentral2023a;Sayginetal.2023).IndustrySTATEOFCLIMATEACTION202374SECTION5TransportTransportationnetworksconnectpeopletoonecontributed11percentofemissions,whileaviationfol-another,aswellastoeverythingtheyneedtolowedat9percent.Railonlycontributedabout1percentleadfulfillinglives:education,jobs,goods,andofemissions,andtheremaining6percentareattrib-services.Yetmostcurrenttransportparadigmsremainutabletomiscellaneoustransportemissions.Althoughinaccessibletomany,whilealsocontributingsignifi-indirectemissionsarenotavailablefor2021,historicallycantcarbonpollutiontotheatmosphere.Since1990,theyhaverepresentednomorethan0.2GtCO2eeachforexample,increasedcarownershipandtraveldueyear(IEA2022i).torisingincomeshasdrivensteadyincreasesinGHGemissionsfromtransport(IEA2020b).Theglobalmotor-Emissionsincreasedsteadilyinrecentyearssaveforaizationrategrewfrom243vehiclesper1,000peopleinbriefdipin2020duringearlylockdownscausedbythe2015to277vehiclesper1,000peoplein2020,42althoughCOVIDpandemic(Figure30)(Minxetal.2021;EuropeanthisdiffersgreatlybetweendevelopedanddevelopingCommissionandJRC2022;IEA2022i).Directandindirectcountries.Additionally,vehiclesarebecomingbiggerGHGemissionsreachedapproximately8.9GtCO2eininplaceswherecardependencyishigh,suchasthe2019andtemporarilyfellto7.6GtCO2ein2020(FigureUnitedStates(Meyer2023).Infact,emissionsaresetto30).Althoughindirectemissionsarenotavailableforatbeststagnatethrough2050iffurtheractionisnot2021,directemissionsexceededthecombineddirecttaken,duetoincreasingtransportdemand(ITF2023a).andindirectemissionsin2020.TransportexperiencedSystemwide,transportemittedapproximately8.1GtCO2ethegreatestemissionsdeclinefrom2019to2020andin2021,accountingforabout14percentofdirectglobalthestrongestreboundofanysectorin2021(CardamaetGHGemissions(Figure29)(Minxetal.2021;Europeanal.2023).Andoverthissameperiod,therisingubiquityCommissionandJRC2022).Roadtransportisthelargestanddominanceofpersonalcarsandtheirinfrastruc-sourceofdirectemissionsinthesector,makingup73turehavedramaticallyreducedtheabilityofpeoplepercentoftransportemissionsin2021(Minxetal.2021;withoutdriver’slicensesorhighincomestomovesafelyEuropeanCommissionandJRC2022).Marineshippingandaffordably.FIGURE29Transport’scontributiontoglobalnetanthropogenicGHGemissionsin2021ElectricityandheatOilandgas14.4fugitiveemissions2.5Other1.6Coalminingfugitiveemissions1.5EnergyPetroleumrefining20.70.7Non-CO2(allbuildings)WasteLanduse,0.04land-use2.4change,Nonresidentialandforestry0.8GlobalGHGAgriculture,Emissionsforestry,4.0Rail56.8GtCO2eandother0.1ResidentialBuildingslandusesEnteric2.33.2fermentationInlandshipping10.40.2Transport3.0Managed8.1DomesticaviationManagedsoilsand0.3soilsandpasturepastureInternational1.4aviation1.40.4Industry12.0Other0.5RoadOtherRicecultivationTransport4.41.0Internationalshipping5.9Manuremanagement0.70.4ChemicalsMetals2.63.4Syntheticfertilizerapplication0.4Cement1.6Biomassburning0.1Notes:CO2=carbondioxide;GHG=greenhousegas;GtCO2e=gigatonnesofcarbondioxideequivalent.Sources:Minxetal.(2021);EuropeanCommissionandJRC(2022).TransportSTATEOFCLIMATEACTION202376FIGURE30GlobaldirectGHGemissionsGlobalassessmentofprogressfortransportfromtransportTransformingtheglobaltransportationsectorwillrequireGtCO2e/yrOtherfair,equitable,andrapidchangeontheroads,inthe10sea,andintheair.Ontheroads,fossil-fueledvehicleswillneedtobeelectrified,andfossil-fueledcarswill9needbetobereplaced,right-sized,anddiminishedinnumber.Manymorepeoplewillneedtouseactive8modes(includingwalkingandbicycling)andsharedpublictransport.Theywillneedtoreduceboththeirreli-7anceoncarsandtheirdistancestraveled,particularlyinregionswherecardependencyishigh.CitieswillneedtoRoadbuildmorerapidtransit,bikelanes,andfacilitiesforsafe,6comfortablewalking,aswellasimplementmeasurestorestrictpollutingmotorvehicles.Beyondroadtransport,5shippingandaviationmustdecarbonizethroughacombinationofdemand-reductionstrategiesandclean4fuels.Regionsandcountrieswillneedtoidentifysuitableapproachesandpathwaysbasedontheirdemographic3Railbackground,economicdynamics,andfinancialandinstitutionalcapacity.Accesstomobilitymustbe2Shippingincreasedwhereitislow,whereactivemodesorpublictransitarenotavailableduetopoorinfrastructureor120002010Aviationinsufficientsafety,andwheredevelopmentpatterns02021requirecardependency(Table4).1990Notes:GHG=greenhousegas;GtCO2e/yr=gigatonnesofcarbondioxideequivalentperyear.Minxetal.(2021)andEuropeanCommis-sionandJRC(2022)provideanestimateofdirectandindirectGHGemissionsfromtransportthrough2020.DataonindirectGHGemis-sionsfromtransport,specifically,arenotyetavailablefor2021.Butbecausetheyrepresentarelativelysmallshareofthissector’stotalemissions(2.7%in2020),thisfigureexcludesindirectGHGemissionsandincludesdatafrom2021.Sources:Minxetal.(2021);EuropeanCommissionandJRC(2022);IEA(2022i).TABLE4SummaryofglobalprogresstowardtransporttargetsINDICATORMOST203020352050LIKELIHOODACCELERATIONSTATUSRECENTTARGETTARGETTARGETOFFACTORDATAPOINTFOLLOWING(YEAR)ANS-CURVENumberofkilometersofrapid1938N/AN/A6xatransitper1millioninhabitants(2020)(km/1Minhabitants)>10xaNumberofkilometersof0.00442N/AN/AN/A;high-qualitybikelanes(2020)U-turnneededaper1,000inhabitants(km/1,000inhabitants)N/A;authorjudgmentdShareofkilometerstraveledby4535–43N/AN/AN/A;passengercars(2019)authorjudgmentd(%ofpassenger-km)bShareofelectricvehiclesin1075–95100N/Alight-dutyvehiclesales(%)(2022)c85–100Shareofelectricvehiclesinthe1.520–40N/Alight-dutyvehiclefleet(%)(2022)cTransportSTATEOFCLIMATEACTION202377TABLE4Summaryofglobalprogresstowardtransporttargets(continued)INDICATORMOST203020352050LIKELIHOODACCELERATIONSTATUSRECENTTARGETTARGETTARGETOFFACTORShareofelectricvehiclesDATAPOINTFOLLOWINGintwo-andthree-(YEAR)ANS-CURVEwheelersales(%)Shareofbatteryelectric4985N/A100N/A;vehiclesandfuelcellelectric(2022)eauthorjudgmentdvehiclesinbussales(%)3.860N/A100N/A;(2022)fU-turnneededdShareofbatteryelectric2.730N/A99N/A;authorjudgmentdvehiclesandfuelcellelectric(2022)fN/A;vehiclesinmedium-andauthorjudgmentdheavy-dutycommercialN/A;authorjudgmentdvehiclesales(%)Shareofsustainableaviation0.113N/A100fuelsinglobalaviation(2022)fuelsupply(%)Shareofzero-emissions05N/A93fuelsinmaritimeshipping(2018)fuelsupply(%)Notes:km/1Minhabitants=kilometersper1millioninhabitants;km/1,000inhabitants=kilometersper1,000inhabitants;passenger-km=passen-ger-kilometers.SeeJaegeretal.(2023)formoreinformationonmethodsforselectingtargets,indicators,anddatasets,aswellasourapproachforassessingprogress.aDuetodatalimitations,anaccelerationfactorwascalculatedforthisindicatorusingmethodsfromBoehmetal.(2021).bWecalculatedthisnumberusingtheshareofpassenger-kilometerstraveledinlight-dutyvehicles.cThesedatadifferfromthoseinpreviousinstallmentsoftheStateofClimateActioninthattheyshowonlybatteryelectricvehiclesandexcludeplug-inhybridvehiclestoalignhistoricaldatawiththe2030,2035,and2050targets.WenowusedatafromIEA(2023e).dForindicatorscategorizedasS-curvelikely,accelerationfactorscalculatedusingalineartrendlinearenotpresented,astheywouldnotaccu-ratelyreflectanS-curvetrajectory.Thecategoryofprogresswasdeterminedbasedonauthorjudgment,usingmultiplelinesofevidence.SeeAppendixCandJaegeretal.(2023)formoreinformation.eHistoricaldatafromBloombergNEF(2023),accessedwithpermissionfromBloombergNewEnergyFinance.fThesedatadifferfromthoseinpreviousinstallmentsoftheStateofClimateAction.WenowusedatafromIEA(2023e)toalignhistoricaldatawiththe2030and2050targets.Sources:Historicaldatafromauthors’analysisofITDP(2021);authors’analysisofOpenStreetMapcontributors(2021);ITF(2023a);IEA(2023e);BloombergNEF(2023);AirTransportActionGroup(2021);Mistry(2022);IATA(2022);andIMO(2020).TargetsfromTeskeetal.(2021);Moranetal.(2018);ITDP(2021);UnitedNations(2019);MoserandWagner(2021);Muelleretal.(2018);BloombergNEF(2021b);CAT(2020b);IEA(2021b);MPP(2022d);andUMAS(2021).Theconsensusintheliterature(e.g.,BloombergNEFAvoidtheneedfor2022a;ICCT2020;andIEA2021b)pointstoamixofmotorizedtravelsupportivepolicymeasurestotransformthetransportsector.ItindicatestheneedtoavoidmotorizedtravelAvoidingmotorizedtravel(includingairtravel)isoneofbyplanningcitiesinsuchawaythatmotorizedtravelthemostimportantwaystoreduceCO2emissions.Theisnotneeded,andshiftingtowardmorespace-andCOVID-19pandemicofferedaglimpseintothetypesfuel-efficient,lesscarbon-intensivemodes,suchasoftripsthatcouldbeavoidedbyusingtechnologytopublictransport(TransportIndicator1)andwalkingandworkfromhome.Itrevealedhowmanydesktopjobscycling(TransportIndicator2).Italsostressestheneedandevenservicessuchasdoctor’sappointmentscouldtoimprovethespace-,material-,andfuel-efficiencybeheldvirtually.Betterlanduseplanningisanotherofvehiclesifwearetoreducethecarbonintensityofpowerfultoolforcuttingdownontransportemissions.carbon-intensivetravel(TransportIndicators4–10).Makingdestinationsclosertowherepeopleliveby,forTransportSTATEOFCLIMATEACTION202378example,changingplanningandzoningregulationstomotorizedtraveltootherright-sizedorshared-passen-allowfordenser,mixed-useareas,canenablepeoplegermodescanhelpusstaywithinourCO2budgettotowalkorcycle,ratherthandrive.Unfortunately,thereremainbelow1.5°C.arenotargetsthatwecanrefertoforthisindicatorandwehavethereforenotincludeditinthisreport,buttheMakingthischangehasprovendifficult,partlybecauseinternationalcommunitywouldbenefitfromindicatorsgovernmentshaveprioritizedinvestmentsininfrastruc-andtargetsfordeclininghouseholdcardependenceor,tureandotherpolicydecisionsforprivateautomobiles,inareaswherepersonalcarownershipishigh,decliningmakingdriving,whichgeneratesmultipleexternalities,carownership.aneasychoice(Santosetal.2010).Multiplesupply-and-demand-sidemeasuresareneededtoreduceThishighlightsaninfluentialdata-policyfeedbackloop:dependenceonanduseofcars.TheliteratureshowsTheabsenceofpubliclyavailable,standardized,andthat“softer”demand-sidemeasures,suchasprovidingcomparabledataimpedestheformulationofeffectivebetterinformationabouttransportexternalitiesandtargets,indicators,andpolicies,whichinturnstiflestherunningcampaignstotrytochangebehavior,haveresourcesnecessaryforthegenerationoffurtherdata.yieldedmodestresults(HreljaandRye2022).TheseThiscyclicaldynamicunderscorestheurgentneedthereforeneedtobecomplementedbybothsup-forcomprehensivedatacollectionandtransparency,ply-sidemeasuresthatimprovethesafetyandqualityfundamentalforeffectivetargetsetting,policydevelop-ofnonpersonal-cartravelalternatives—improvingment,andtrackingofthetravelavoidancerequired.transitfrequency,installingseparatedcycleinfrastruc-ture,improvingsidewalksandcrosswalks—and“push”Shifttoshared,collective,measuresthatmakedrivingprivateautomobilesmoreoractivetransport43expensiveorlessconvenient,andthathaveproventobemoreeffective.ThesemeasurescanincludeCars,whetherpaid-per-use(e.g.,taxisorridehailing)orcongestionpricing,fuelandvehicletaxation(whichprivatelyused,emitmoreCO2perpassenger-kilometercanalsosupport“improve”measures),reallocatingtraveledthanallotherurbanlandtransportmodesurbanspaceawayfromcarstowardothermodes,and(CazzolaandCrist2020).Therefore,shiftinglargerreducingtheavailabilityofstreetparking(HreljaandRye2022;ITF2023b).TransportSTATEOFCLIMATEACTION202379TRANSPORTINDICATOR1:lanes,removingfuelsubsidies,orlevyingtaxestoraisefuelprices(Battyetal.2015).Busesandtrains(includingNumberofkilometersofmetrosystems)areparticularlycrucialfordecarbonizingrapidtransitper1millionthetransportsector.Theyreleaseaslittleasafifthofinhabitants(km/1Mtheemissionsofride-hailing,andaboutathirdoftheinhabitants)emissionsofprivatevehiclesperpassenger-kilometertraveled(ITF2020).Thenumberofkilometersofrapid•Target:Acrosstheworld’s50highest-emittingtransitinfrastructureper1millioninhabitantsinthetop50emittingcitieshasincreasedovertime,from16in2010cities,rapidtransitinfrastructure,specificallymetro,to19in2020(Figure31).Europeoutpacestherestofthelight-rail,andbusrapidtransitasmeasuredinworldintermsofitsrapid-transit-to-residentratio,withkilometersper1millioninhabitants,doublesby2030,Chile,Ecuador,SouthKorea,andTunisiafollowing(ITDPrelativeto2020.2021).44Duetotheslowgrowth,theindicatorisheadingintherightdirectionbutwellofftrack.AnaccelerationofMakinghigh-qualitytransitavailableinurbanareassixtimestherateofrecentchangeisneeded.isaneffectivetooltopropelmodal-shift,andagoodcomplementtootherpolicyandtaxationmeasuressuchasreducingfreeparkingavailability,reducingcarNFIuGUmREb31erHoistfokricilaolmproegtreesrsstoowfarrda2p03id0ttarrgaentfsoirtn(ummbeetrroofk,illoigmhette-rsraofilraapniddtrabnusitsprearpidtransit)1pmeilrlio1Mninihnahbiatabntista(tonpts50(einmittthinegctiotieps)50emittingcities)RightDirection,WellOffTrackS-CurveUnlikelykm/1MinhabitantsHistoricalCurrentPaceneededtodatatrendreachtargets4038352030target30252020Data19Accelerationrequiredtoreach202030target6x15105020202030204020502010Notes:km/1Minhabitants=kilometersper1millioninhabitants.Duetodatalimitations,anaccelerationfactorwascalculatedforthisindicatorusingmethodsfromBoehmetal.(2021).SeeJaegeretal.(2023)formoreinformationonmethodsforselectingtargets,indicators,anddatasets,aswellasourapproachforassessingprogress.Sources:Historicaldatafromauthors’analysisofITDP(2021).TargetderivedfromTeskeetal.(2021);Moranetal.(2018);ITDP(2021);andUnitedNations(2019).TransportSTATEOFCLIMATEACTION202380TRANSPORTINDICATOR2:othertransportinfrastructuresuchasmasstransit,makingbikenetworksahighlycost-effectivepolicytoNumberofkilometersofmitigateCO2emissions(Reichetal.2022).high-qualitybikelanesper1,000inhabitants(km/1,000In2020,therewereapproximately0.0044kilometersofinhabitants)high-qualitybikelanesper1,000inhabitantsinthetop50emittingcities.45BikeusesurgedduringtheCOVID-•Target:Acrosstheworld’s50highest-emittingcities,19pandemic.Forexample,Bogotá(althoughnotoneofthetop-50emittingcities)expandeditsnetworkofurbanareascontaintwokilometersofhigh-quality,bikelanesduringthepandemictoencouragesocialsafebikelanesper1,000inhabitantsby2030.distancingwhiletraveling(Box11).EuropeancountrieslikeDenmark,theNetherlands,andGermanyareleadinginCreatinghigh-qualitybikenetworkshelpsreducecreatingsafe,convenient,andaccessiblecyclingcon-CO2emissionsbymakingitpossibletoavoidcartripsditionswithbikenetworksthatextendthroughoutcities(PrasaraandBridhikitti2022).Cyclinginfrastructurehasandacrosstheirentirecountries.CitieslikeParis(atop-beenshowntosignificantlyincreaseuptakeofcycling,50emittingcity)havesetboldaspirationstoconstructbecauseitpromotesactualandperceivedsafetysafebikinginfrastructurethatprovidesaccessbybicycle(Reynoldsetal.2009).Cyclinginfrastructurehasalsotoallareasofthecityandhavealsoreducedthenum-beenshowntoimprovehealthoutcomesthroughlowerberofon-streetparkingspacesandlanesavailabletoratesofdiseaseandfewerinjuries(Maizlishetal.2017).cartravel,aswellasthepostedspeedlimit(CityofParisFurthermore,bikinginfrastructurecostsmuchlessthan2021;PucherandBuehler2008),ParisnowhasmorethanNFIuGUmREb32erHoisftokriicloalmproegtreesrsstoowfahrdig20h30-qtaurgaetliftoyrnbumikbee-rloafknileomsepteersro1f,0hi0gh0-qinuahliatybbiiktealnantess(inthetopepr15,0000einmhaibtittianngts(ctoitpie50se)mittingcities)RightDirection,WellOffTrackS-CurveUnlikelykm/1,000inhabitantsHistoricalCurrentPaceneededtodatatrendreachtargets2.52030target221.510.52020DataAcceleration20402050requiredtoreach00.004420102030target2020>10x2030Notes:km/1,000inhabitants=kilometersper1,000inhabitants.Duetodatalimitations,anaccelerationfactorwascalculatedforthisindicatorusingmethodsfromBoehmetal.(2021).SeeJaegeretal.(2023)formoreinformationonmethodsforselectingtargets,indicators,anddatasets,aswellasourapproachforassessingprogress.Sources:Historicaldatafromauthors’analysisofOpenStreetMapcontributors(2021).TargetderivedfromMoserandWagner(2021);Muelleretal.(2018);andMoranetal.(2018).TransportSTATEOFCLIMATEACTION202381150kilometersofbikelanes,with52oftheseaddedsincemakingiteasiertogetaroundwithoutacarwouldthepandemic;amongothermeasures,thishashelpedbemoreequitablethanmicrotargetingsubsidiesforleadtoa60percentreductionincartripswithintheelectriccarssince,intheUnitedStates,theseincentivescitybetween2011and2018(AtelierParisiend’Urbanismehavebeenshowntoberegressive,disproportionately2021).Anotherimportantdevelopmentmakingcyclingbenefitinghigher-incomehouseholds(CongressionalmoreaccessibletomanyisthegrowingavailabilityofResearchService2019).Inexistingurbandevelopments,affordableelectricbikes(seeIndicator6).theadditionofbikelanescanreplaceon-streetparkingorcarlanes,makingcaruselessconvenient.BikelanesTherecentrateofchangeremainswellofftrackandcanalsoavoidconflictsbetweencyclistsandbothwillneedtoincreasemorethan10-foldby2030tobemotorizedvehiclesandpedestrians(and,inparticular,alignedwitha1.5°Cpathway(Figure32).Walkingandpeoplewithdisabilitieswhoneedunencumberedbicyclingaresignificantlylessexpensivethanbuyingasidewalks)(ShomanandImine2023).neworusedmotorizedpassengervehicle(ITDP2022).Arguably,investinginactivetransportationmodesandBOX11LessonslearnedfrombikelanesinBogotáTheColombiancapital,Bogotá,representsanimpres-streetsfortheenjoymentof1.5millionpedestriansandsivestoryinpopularizingcycling.Startinginthe1970s,cyclists,withmultipleeventsalongtheroutesuchaspushedbycyclingadvocates,thecityestablisheditsZumbaclasses,foodvendors,andentertainment.openstreetsevent(Ciclovía),currentlythelargestandmostfrequenteventofthistypeintheworld.EveryInadditiontothisevent,startinginthe1990s,thecitySunday,thecityopens128kilometers(80miles)ofhasbeenbuildingbikelanesandmakingiteasiertogetaroundbybicycle,constructing550kilometers(342miles)ofdedicatedbikelanesby2019.In2020,FIGUREB11.1MapoftheoriginalandnewtemporarybikelanesCalle161Av.Carrera7Carrera11Calle94Carrera7Calle92Carrera9Calle85Carrera9Calle147Carrera5Calle140Calle116Carrera15Carrera7Av.delosCerrosCarrera5Carrera3Carrera8Carrera10Carrera13Carrera7Calle11SurCalle183Calle170Carrera19Carrera15CanalR.ArzoCalle163aAutopistaNorteCarrera20CbispoCalle76AutopistaNorteCalle100Carrera24Calle68Calle57Calle39Carrera14Carrera10Carrera6Carrera7Av.Calle68Calle28Carrera24Carrera24Carrera50Carrera53Av.CalleCalle19Carrera1980XAv.Calle13Calle175Av.CórdobaCalle80NQSCentralCalleAv.AmNQSCentralCalle6Av.NQSCalle170a26éricasXNQSCalle8SurAv.PrimerodeMayoCalle167Calle127CalleCallecasCarrera36Av.PCarrera5Calle15368Av.Boyacá25rimeroCalle138CalleAv.AmérideMCarrerCalle134Carrera58Calle24ayoa14Av.Suba63Calle27SurAv.BoyacáAv.BoyacálSalitreAv.Calle80XCarrera60Calle53aracaCanaCarrera68Av.CCarrera76Av.68Av.SubaTranilSurCarrera27CarrerrocarrsversCalle72Av.feCarresal94ra30Carrera90Calle139Av.SubaAv.Calle80XAv.Av.BoyacáCarrera56Av.delasAméricasAv.AméricasCarXreraA50v.50NQSSurra24CanalTunjuelitoCarrera92Av.Calle132Carrera68dCarrera52Carrera91Calle90Av.CiudadCarrera77aCarreraCalleCarrera60Calle80deCali26Calle153Boyacá70Carrera68ra19cra52CarreCarreAv.CiudaddeCaliCalleAv.Calle63bAv.Prim52aSurCarrera11580Calle53ra69erodeCarreraCarreMayooyacánal86aCalle72Av.Calle72Av.BDiagoCarrera51Av.BoyacáCanalSTv.93alitreAv.AméricasXAv.BoyacáCalle24Calle83aCalle63CarreraCalle26SurCarreraAutopistaSurvicencioCalle26100Av.Call73Av.Villae13Av.CiuNQSSurCalle57bSurCarrera111cdaddeCarrera78kCaliCarrera79AutopCalle22nal16istaMCalle17DiagoedellínCalleCalle6446SurAv.Calle17rvenir2aSurCarrera13Av.AElPoalle4gobeedaCrtoMAlamejíaAv.BosaCPiecrlmorarunteanstSurpbeicrmycalinnegnltaensesNQSCToemrrepdoorarersydeCaliCbiicclyocvlíiansgtleamnepsoralesddeiudaAv.Cra89bCarre54SurCalle63SurCalleSource:Ramírez(2021).TransportSTATEOFCLIMATEACTION202382BOX11LessonslearnedfrombikelanesinBogotá(continued)followingtravelpatternchangesduetotheCOVID-helpedgrowthedailytripsto650,000byDecember19pandemic,andtogivepeoplealternativestothe2020(Ramírez2021).Thisshowsthattheconstantcrowdedpublictransportsystem,themayorstartedinvestmentincreatingandexpandingthebikenetworkaddinganother49kilometers(30miles)oftemporaryhashaditsintendedeffect,givingBogotanosmore(or“pop-up”)bikelanes,laterexpandedto84kilometerschoicestoaccesstheirdailyneedsinasustainableand(52miles).Initially,thesetemporarybikelanesconsistedhealthymanner.ofnothingmorethantrafficconesorplasticbollardsalongmajortrafficcorridorsthatgavepeopleasafeThistransformationhasbeenmadepossiblebyamixwaytotravelbetweendestinations(FigureB11.1).Afteroffactors.Thecityhasactiveadvocacygroupsthatthehealthemergencyhadended,thecitykeptsomeofhavepushedforpro-biketransformationsatleastsincethetemporarybikelanesandmadethempermanent,the1970s.Thiswasthelikelyresultofanalreadyestab-bringingitstotalnetworkto593kilometers(368miles)—lishedbikecultureinthecountrysincethe1950s(Welchorapproximately0.08km/1,000inhabitants.2021).Theseempoweredactivistcircles,supportedbyBogotá’smayorsinthe1990s,pushedforthecreationThesystematicconstructionofbikelanesthatstartedofover70percentofthenetworkweseetoday.Otherinthe1990shaspaidoff.In1996,only0.68percentofcontributingfactorsincludepoliciessuchastheannualdailytripsinthecityweredonebybicycle(Cervero“car-free”day,whichdemonstratethatthecitycanetal.2009).Justbeforethepandemic,bicycletripsinfunctionwithoutcars,thecity’sextensivebusnetwork,thecitytotaledover800,000trips(or6.6percentofallitslicenseplate-baseddecongestionpricing,andtripsdoneinthecity).WhiletheCOVID-19pandemicrestrictionsonwhatdaysandhourscarscancirculate.lockdownmadeadentinthegrowth,astripsinAprilThesepoliciesarenowbeingcomplementedbythe2020morethanhalvedto360,000dailybiketrips,therecentlyinauguratedpublicbikesharenetwork.city’squickthinkingwiththetemporarybikelanesTRANSPORTINDICATOR3:carsincreasedfrom39percentin2015to45percentin2019(themostrecentdatapoint),indicatingthatchangeShareofkilometerstraveledisheadinginthewrongdirectionentirely(Figure33)(ITFbypassengercars(%of2023a).Thecauseofthisincreaseisunderstandable:passenger-kilometers)aspopulationandgrossdomesticproduct(GDP)havegrown,sohasthenumberofpeoplewhoowncars,and•Target:Peoplearoundtheworldreducetheper-thereforetheshareoftripsmadebyprivatelyownedcars(WorldBank2014).Furthermore,theCOVID-19pan-centageoftripsmadeinpassengercarsto35–43demicledtoadropindemandforpublictransportandpercentby2030.therateofrecoveryofthedemandforthesesystemspost-COVIDhasvariedwidely,withsomesystemsseeingWhileextensivehistoricaldataarenotavailableonthepatronagereturntoprepandemiclevelsorabove,whileshareofpassenger-kilometerstraveledinpassengerothershavenot.Thetrendincarownershipisexpectedcars,thedatathatdoexistshowaworryingtrend.Theshareofpassenger-kilometerstraveledinpassengerTransportSTATEOFCLIMATEACTION202383Numberofkilometersofhigh-qualitybike-lanesper1,000inhabitants(FiInGUtRhEe33toHpisto5ri0caelpmroigtrteisnsgtowcaitrdie2s0)30targetforshareofkilometerstraveledbypassengercarsWrongDirection,U-turnNeededS-CurveUnlikely%ofpassenger-kmHistoricalCurrentPaceneededtodatatrendreachtargets602019data50452030target35–4340302010020202030204020502010Notes:passenger-km=passenger-kilometers.Wecalculatedthisnumberusingtheshareofpassenger-kilometerstraveledinlight-dutyvehicles.Duetodatalimitations,anaccelerationfactorwascalculatedforthisindicatorusingmethodsfromBoehmetal.(2021).SeeJaegeretal.(2023)formoreinformationonmethodsforselectingtargets,indicators,anddatasets,aswellasourapproachforassessingprogress.Sources:HistoricaldatafromITF(2023a);2030targetderivedfromauthors’analysisofBloombergNEF(2021b),accessedwithpermissionfromBloombergNewEnergyFinance.tobeexacerbatedmostlybyincreasesindevelopingefficiencyisnotenoughtotrulytransformthesector,countriesasGDPcontinuestogrow.Inwealthycountriesandalternativesareemergingthatmakeitpossiblewithsignificantpersonalcaruse,thegoalshouldbetotoprovideasimilarexperiencewithoutcontributingreducecardependency.Incountrieswithlowperson-planet-warminggasestotheatmosphere.Electrical-carownership,thegoalshouldbetoslowdowntheversionsofroadvehicleshaveproliferatedasbatteryembraceofcarownership.InAsia,forexample,privatepriceshavefallenandelectricvehicleshavebecomeautomobilesmakeup33percentofpassenger-kilome-cheapertoownandoperate.46Light-dutyvehiclesandterstraveled,whereasintheUnitedStatesandCanadatwo-andthree-wheelershavebeenelectrifyingthetheirshareis77percent(ITF2021).fastest,butmedium-andheavy-dutyvehiclesandbusesarebeginningtoemergeinmajormarkets.AcrossImprovecarbon-intensiveallvehiclesegments,charginginfrastructure—bothmodesoftransportprivateandpublic—willbekeytoincreasinguptakeofelectricvehicles.Solutionsforaviationandmarineship-Roadtransport,aviation,andmaritimeshippinghaveping,includingthosepoweredbyzero-emissionsliquidlongbeenpoweredbycars,trucks,planes,andshipsfuelsorevenelectricity,areindevelopmentbutareonlythatrunonfossilfuels.Regulationstoincreasetherecentlybeginningtobedeployed.Asthesesolutionsfuelefficiencyofthesevehicleshavebeeneffectiveatbegintocometomarket,itwillbecomeclearerwhatmixreducingtheirGHGemissions—intheUnitedStates,theyoftechnologieswillultimatelywinoutandsucceedathaveprevented14gigatonnesofCO2frombeingemitteddecarbonizingthesector.since1975(Greeneetal.2020).ButsimplyincreasingTransportSTATEOFCLIMATEACTION202384TRANSPORTINDICATOR4:EVsalesareinthebreakthroughstageofanS-curveandwilllikelycontinuetoaccelerateinthecomingyears.ShareofelectricvehiclesinGiventhehighlikelihoodforcontinuedrapidexponentiallight-dutyvehiclesales(%)changeduetofavorablelong-termcosttrendsandimprovementsinrangeandtheavailabilityofcharging•Targets:Electricvehicles(EVs)accountfor75–95infrastructure,progressmadetowardreachingthisnear-termtargetiscategorizedasontrack(BloombergNEFpercentofthetotalannuallight-dutyvehicle(LDV)salesby2030and100percentby2035.47TheshareofbatteryEVsinglobalLDVsaleshasbeguntotakeoffrecently,reaching10percentin2022(Figure34)(IEA2023e).Thisrepresentsover7millionelectriccarssold.Overthepastfiveyears,light-dutyEVsaleshavegrownatanaverageof65percentperyear.In2022,theshareofelectricvehiclesinlight-dutyvehiclesalesincreased63percent—ameaningfulimprovementrela-tivetorecenttrends.Muchmoreprogresswillbeneededtoreach75–95percentoflight-dutyvehiclesalesby2030,especiallyindevelopingeconomies,wheresalesaresignificantlylowerthanindevelopedcountries,butFIGURE34Historicalprogresstoward2030and2035targetsforshareofelectricvehiclesinlight-dutyvehiclesalesRightDirection,OnTrackS-CurveLikely%HistoricalCurrentPaceneededtodatatrendreachtargets100101002035target80HISTORICAL75–95DATA2030target6002015202240202022data10020202030204020502010Note:ThesedatadifferfromthoseincludedinpreviousinstallmentsoftheStateofClimateActioninthattheyshowonlybatteryelectricvehiclesandexcludeplug-inhybridvehiclestoalignhistoricaldatawiththe2030and2035targets.WenowusedatafromIEA(2023e).ForindicatorscategorizedasS-curvelikely,accelerationfactorscalculatedusingalineartrendlinearenotpresented,astheywouldnotaccuratelyreflectanS-curvetrajectory.Thecategoryofprogresswasdeterminedbasedonauthorjudgment,usingmultiplelinesofevidence.Morespecifically,giventhatthisindicatorisinthebreakthroughstageofanS-curve,ourcurrenttrendarrowisanS-curvefittothehistoricaldata.Ourassessmentofprogresswasmadebasedonthisextrapolation,aswellasareviewoftheliteratureandconsultationswithexperts.SeeAppendixCandJaegeretal.(2023)formoreinformationonmethodsforselectingtargets,indicators,anddatasets,aswellasourapproachforassessingprogress.Sources:HistoricaldatafromIEA(2023e);targetsfromCAT(2020b).TransportSTATEOFCLIMATEACTION2023852022a;Grubbetal.2021;IEA2023e).Batterymanufac-FIGURE35Shareofelectricvehiclesinlight-dutyturingthroughput(theamountthatgetsproducedbymanufacturingplants)almostdoubledfrom340GWhinvehiclesalesinNorwayandtheworld2021to660GWhin2022,with90percentofnewmanu-facturingcapacitydedicatedtoEVbatteries(IEA2023i).%oflight-dutyvehiclesalesWhenitcomestodeliveringcompletedvehicles,how-100ever,itwillbeimportanttowatchwhetherautomakersincreasetheirpledgestoproduceenoughEVstokeep80upwithsales.Asofearly2023,automakers’pledgesforfuturemanufacturingwerenotenoughtomeetEVsalesWhat’stargets(Punte2023).needed60Salesarenotevenacrossallgeographies.EVsalesinChinareached22percentoftotalnewcarsalesin2022,40whiletheEuropeanUnionsawa12percentshareandNorwaytheUnitedStatessawan6percentshare(IEA2023f).Inothercountries,salesremainlow.Toavoidatwo-tiered20globalmarket,itisimportantthatdevelopedmarketsanddevelopmentbanksprovideassistancetodevel-GlobalopingcountriestogrowtheirEVmarketsandcharginginfrastructure.Historically,Chinahasdrivenmuchof02015202020252030thegrowthofEVs,dueinparttoitsgeneroussubsidy2010providedbybothnationalandlocalgovernmentsforthepurchaseofelectriccars.Atitspeak,thesubsidyNote:Thesedataonlyincludebatteryelectricvehicles.couldbeashighas10,000yuan(theequivalentofabout$11,000in2023U.S.dollars)(GIZ2014),dependingSources:HistoricalglobaldatafromIEA(2023e);targetsonrangeanddrivetrain.BusescouldreceiveasmuchfromCAT(2020b).as500,000yuan(theequivalentofabout$90,000in2023U.S.dollars).Thesubsidyhasexpiredasof2023top10percentofhouseholdsfilingtaxesclaimed60(althoughthereisstillapurchasetaxexemptionforpercentofplug-inEVtaxcredits(BorensteinandDavisEVs),anditappearsthatEVsarecontinuingtosellwell2016;MuehleggerandRapson2019).Itisfairtoassumewithoutthesubsidy(LiandKim2023).Othercountriesthatasthesevehiclesageandaresoldonthesecond-haveseensignificantgrowthaswell.Norwayhasbeenhandmarket,theprofileofthepurchaserswillchange.attheforefrontofpromotingEVs.In2009,EVsmadeAdditionally,morerecentanalysisintheUnitedStatesup0.3percentofitsnewcarregistrations(Europeanhasfoundthatbecauselow-incomehouseholdsspendCommission2023c).ThenNorwayimplementedaraftalargershareoftheirincomeondrivingcosts,EVswillofincentives,includingexemptionsfrompurchaseandprovidegreatercostsavingsasashareofincometovalue-addedtaxesandaccesstobuslanes(Richardsonlow-incomehouseholdsby2030(Baueretal.2021).2020).EVs’shareofnewcarregistrationsinNorwaysoaredto80percentin2022(IEA2023f).NorwaybeganAdditionally,itisimportanttonotethatincreasingscalingbackitsEVincentivessomewhatin2022andlithiumminingforEVbatteriescouldfurtherharmthehasbeenencouragingashiftawayfromdrivingtowardenvironmentswhereitismined,withthepotentialtoothermodesoftransportation(Mossalgue2022).Whilecontaminategroundwaterandworsenlocalairpollutiondifferencesinpercapitaincomeandotherfactorsifminingprocessesarenotimproved(PennandLiptonmaymakeithardertoreplicateNorway’sstrategy2021).EffortssuchastheInitiativeforResponsibleMiningeverywhere,itssuccessshowsthatrapidchangeisAssurance—whichbringstogetherminingcompanies,possibleandthatthesepoliciescanhelpdriverapidmineralpurchasers,humanrightsgroups,laborgroups,transformation.Fromnowto2030,theworldneedstoandothercivilsocietyorganizations—areattemptingtoscaleupelectricvehiclesatthesamepaceasNorwayfindconsensusonimprovingtheseprocesses(IRMAn.d.).did(Figure35).ImprovementsinalternativebatterychemistriesthatusedifferentcombinationsofmineralscouldalsohelpTherelativelyhigherpurchasepriceofEVsraisesalleviatesomeofthesesupplychainconstraints.concernsoverhowaccessibleEVsaretolower-incomeconsumers(Caulfieldetal.2022).IntheUnitedStates,56percentofEVsboughtbetween2011and2015wenttopurchasersmakingover$100,000peryear,andtheTransportSTATEOFCLIMATEACTION202386TRANSPORTINDICATOR5:majormarketsrisingfromalittleunder1millionontheroadin2016,to16millionontheroadby2022(IEA2023e).ShareofelectricvehiclesStill,theactualshareofEVsisquitelow:1.5percentininthelight-dutyvehicle2022(Figure36),whichaddsupto18millionelectriccarsfleet(%)onroadsaroundtheworld(IEA2023e).Continuedexpo-nentialchangewillbeneededtoreach20–40percent•Targets:Electricvehicles(EVs)accountfor20–40by2030.Aswithlight-dutyEVsales,theshareofEVsinthelight-dutyfleetwilllikelyfollowanS-curve,especiallypercentofthetotallight-dutyvehicle(LDV)fleetbyastheeconomicsandrangeofEVsimproveandas2030and85–100percentby2050.chargingbecomesmoreavailable.ButbecausenewcarsalesdonotnecessarilycorrespondwithequalremovalExponentialchangeisoccurringinthedeploymentofofoldcarsfromthemarket,theshareofEVsontheroadbatteryelectriclight-dutyvehiclesontheroad.48Overmaylagwellbehindincreasesinsales(Keithetal.2019).thelastfiveyearstheshareofEVsintheglobalLDVfleetAsofnowtheindicatorremainsintheemergencephaserosebyanaverageof54percentperyear.Between2021ofanS-curve,anditisdifficulttodeterminethetrajec-and2022italmostdoubled—ameaningfulimprovementtoryofchangeatsuchanearlypoint.Globalprogressrelativetorecenttrends.Rapidlygrowingsalesvolumesmadetowardthisnear-termtargetisofftrackbasedoninthekeymarketsofChina,theEuropeanUnion,andourassessmentoftheliteratureandconsultationswithnowtheUnitedStates,haveledtogreateroverallEVexperts(seeMethodssectionandAppendixC).numbers,withcombinedtotalEVnumbersinthesethreeFIGURE36Historicalprogresstoward2030and2050targetsforshareofelectricvehiclesinthelight-dutyvehiclefleetRightDirection,OffTrackS-CurveLikely%HistoricalCurrentPaceneededtodatatrendreachtargets1001.68085–100HISTORICAL2050targetDATA600201520224020–402030target202022data1.5020202030204020502010Notes:ThesedatadifferfromthoseincludedinpreviousinstallmentsoftheStateofClimateActioninthattheyshowonlybatteryelectricvehiclesandexcludeplug-inhybridvehiclestoalignhistoricaldatawiththe2030and2050targets.WenowusedatafromIEA(2023e).ForindicatorscategorizedasS-curvelikely,accelerationfactorscalculatedusingalineartrendlinearenotpresented,astheywouldnotaccuratelyreflectanS-curvetrajectory.Thecategoryofprogresswasdeterminedbasedonauthorjudgment,usingmultiplelinesofevidence.Morespecifically,ourcurrenttrendarrowisbasedonanS-curvefittothehistoricaldata,butsuchanextrapolationishighlyuncertainwhenanindicatorisintheemergencestageofanS-curveandisincludedforillustrativepurposesonly.Ourcategorizationofprogressforthisindicatorisbasedonareviewoftheliteratureandconsultationswithexperts.SeeAppendixCandJaegeretal.(2023)formoreinformationonmethodsforselectingtargets,indicators,anddatasets,aswellasourapproachforassessingprogress.Sources:HistoricaldatafromIEA(2023e);targetsfromCAT(2020b).TransportSTATEOFCLIMATEACTION202387AnequityconcernemergingasEVfleetsgrowisthepicture.Althoughjobsmaydecreaseinmanufacturingcontrastbetweendevelopedcountries,wherenewcarcars,manynewopportunitiesmayariseinprovidingsalesarecommon,anddevelopingcountries,whereelectricityand/orhydrogenforzero-emissionsvehiclesusedcarsarefrequentlyimportedfromdevelopedaswellasEVchargingandbatterymanufacturing.countries.From2015to2020,theEuropeanUnion,Japan,Forexample,inEurope,whichmanufacturedabout22SouthKorea,andtheUnitedStatesexported23millionpercentoftheworld’spassengercarsin2022(OICAusedlight-dutyvehicles(LDVs)(UNEP2021g).Ofexported2023),onerecentstudyestimatesthattighteningfuelLDVs,70percentwenttodevelopingcountries,mostofeconomystandardswoulddriveanetincreaseof43,000whichdonothavestrongemissionsstandards.Asaautosectorjobsby2030(CambridgeEconometricsandresult,developedeconomiesareexportinghigh-emit-ElementEnergy2018).Thoseemploymentgainswouldtingandunsafesecondhandvehiclestodevelopingsubsideafter2035aslesscomplexbatteryelectriccountries,shiftingthetransitionburdentothem.Strongvehicleswouldincreasinglytakemarketshare.But,atexportstandardsinexportingcountriescanhelpreducethesametime,jobswouldsoarinelectricalequipmenttheburdenonimportingcountries,butimportstandardsandhydrogenforelectricandhydrogenvehiclesinthiscanalsohelppreventmajoremittersfromexportingscenario.IntheUnitedStates,whichproduced3percentdirtycarstolow-incomecountriesthatneedgreateroftheworld’spassengercarsin2022,anotherstudyaccesstomobility.Theimplicationofthesestandardsestimatesthatnewjobsinthecountryinelectricitywithoutotherdomesticmarketchanges,however,wouldinfrastructurebuild-outandsteadyemploymentinautobeaslowerrateofmotorization,whichisnotnecessarilymanufacturingemploymentwouldoffsetjoblossesinpositiveforsocialwelfare,socaremustbetakentovehiclerepairduetoEVsbeingcheaperandeasiertobalancetheseconcerns.maintain.Thus,itenvisionsatransitiontoEVsleadingtoanetincreaseofabout300,000newjobsinelectricityInadditiontoshiftingsomeofthetransitionburdentoandfuelsupplyby2035(GoldmanSchoolofPubliclow-incomecountries,thegrowthoftheEVmarketcouldPolicy2021).Regardless,transitioningworkersfromautochangethelaborlandscapeintheautomotiveindustry.manufacturingandcomponentmanufacturingjobstoThereisevidencethatelectrificationwilldrivechangesopportunitiesingrowthsectorslikeelectricalequipmentinmanufacturing—especiallyofcomponents,sinceandhydrogenwouldrequireretrainingandeconomicelectricdrivetrainsrequirefewerofthese(Fraunhofersupportforworkers.IAO2020).However,lookingattheentiremanufacturinganddeploymentprocessprovidesamorecomplicatedTransportSTATEOFCLIMATEACTION202388TRANSPORTINDICATOR6:numbers,moretwo-andthree-wheelersaresoldeachyearthanotherpassengerandcommercialvehiclesShareofelectricvehiclescombined,withmarketsinChinamakingupmorethanintwo-andthree-wheelerhalfofglobalsales,andsubstantialsharesalsocomingsales(%)fromIndiaandSoutheastAsia,particularlyVietnam(BloombergNEF2022a).•Targets:Electricvehicles(EVs)accountfor85percentAlthoughtheycontributedlessthan5percentofCO2ofthetotalannualtwo-andthree-wheelersalesbyemissionsfromroadtransportinthelastdecade2030and100percentby2050.(BloombergNEF2022d),two-andthree-wheelersmakeup25percentofthetotaldistancetraveledbyvehi-In2022,acombined1.2billiontwo-andthree-wheelersclesontheroad(BloombergNEF2022a).Therefore,to(motorizedvehicleswithtwoandthreewheelssuchavoidrisingemissions,regionsdominatedbytwo-andasmotorcycles,rickshaws,tricycles,etc.)wereonthethree-wheelerswillneedtopromotezero-carbonroad.Thisrivalsthenumberofpassengercarsandversions.Thiswouldcutdownonpollutionandfossilfueltrucks(1.26billion).Incertainregions,suchasSoutheastconsumptionaswell.Two-andthree-wheelersaccountAsiaandIndia,motorcyclesandmotorizedscootersforaroundhalfofgasolineconsumptioninIndiaandarethedominantmodeoftransport,accountingforsomeSoutheastAsianregions(IEA2022f).83percentand80percent,respectively,ofvehicle-ki-lometerstraveled(BloombergNEF2022a).InabsoluteFIGURE37Historicalprogresstoward2030and2050targetsforshareofelectricvehiclesintwo-andthree-wheelersalesRightDirection,OffTrackS-CurveLikely%HistoricalCurrentPaceneededtodatatrendreachtargets1001002050target80852030target602022data494020020202030204020502010Note:ForindicatorscategorizedasS-curvelikely,accelerationfactorscalculatedusingalineartrendlinearenotpresented,astheywouldnotaccuratelyreflectanS-curvetrajectory.Thecategoryofprogresswasdeterminedbasedonauthorjudgment,usingmultiplelinesofevidence.Morespecifically,wedonothavesufficienthistoricaldatatofitanS-curvetothedata,soourcurrenttrendisbasedonthelineartrendlinefromthepastfiveyears.Thisisappropriatebecausetwo-andthree-wheelersalesareinthediffusionstageofanS-curve,duringwhichgrowthusuallyfollowsanapproximatelylinearpath.OurassessmentofprogressisbasedonthestageoftheS-curve,areviewoftheliterature,andexpertjudgment.SeeAppendixCandJaegeretal.(2023)formoreinformationonmethodsforselectingtargets,indicators,anddatasets,aswellasourapproachforassessingprogress.Sources:HistoricaldatafromBloombergNEF(2023),accessedwithpermissionfromBloombergNewEnergyFinance;targetsfromIEA(2021b).TransportSTATEOFCLIMATEACTION202389Electrificationofthesevehiclesisalreadyunderway,andsharesofelectrictwo-andthree-wheelersaresub-stantiallyhigherthansharesofzero-carboncars,vans,andtrucks.Theshareofelectricvehiclesintwo-andthree-wheelersalesincreasedfrom36percentin2019to49percentin2022(Figure37).InChina,two-thirdsofnewtwo-wheelersand80percentofthree-wheelerswerealreadyelectricin2021(BloombergNEF2022a).49Inmanyplaces,electrictwo-andthree-wheelershavealreadyreachedcostparitywiththeirfossil-fueledcounterparts.Theyareinfactsometimescheaper—inIndia,byasmuchas70percent(IEA2023e,2022f),andregionswithhighsharessuchasIndiaandIndonesiahavepurchaseincentivesinplace(IEA2023e;Rokadiya2021).Onerea-sonformorerapiduptakeofEVtwo-andthree-wheelersisthelackofrangeanxiety—theconcernthatanelectricvehiclewillrunoutofchargeduringalongjourney,whichisasmallerproblemfortwo-andthree-wheelers,astheyaregenerallyusedforshort,dailycommutes.Givenregionaldevelopmentsandtheadvantagesthatelectrictwo-andthree-wheelershaveaccrued,thereisahighlikelihoodofcontinueddiffusionincountriesinadditiontoIndiaandChina(IEA2023e).Electrictwo-andthree-wheelersarethetypesofinnovativetechnologiesthatgenerallyfollowanS-curve.Butunlikemostoftheotherindicatorsinthisreportthatareclassifiedas“S-curvelikely,”salesofelectrictwo-andthree-wheelersareinalaterstageofanS-curve,duringwhichfurtheraccelerationislesslikely.InthediffusionstageofanS-curve,accelerationhasalreadyoccurred,sotheslopeofthecurvegenerallyproceedsinalinearfashionbeforeeventuallyslowingdown.Indeed,thebestfitforthepastfiveyearsofdataforthisindicatorisalineartrendline.Forthisreason,weassessprogresstakingintoaccountthelineartrendline,whichshowsthattheindicatorismakingpromisingprogressbutofftrack.ThisassessmentiscorroboratedbyBNEF’sassessmentofprogress,whichfindsthatelectrictwo-andthree-wheelersarealmostbutnotyetontrackforanet-zeroemissionstrajectory(BloombergNEF2023a).TRANSPORTINDICATOR7:Shareofbatteryelectricvehiclesandfuelcellelectricvehiclesinbussales(%)•Targets:Batteryelectricvehicles(BEVs)andfuelcellelectricvehicles(FCEVs)accountfor60per-centofthetotalannualbussalesby2030and100percentby2050.Theglobalshareofzero-carbonbussaleshasfluctu-ated,upfromjust0.11percentin2010to3.8percentin2022.ThiswasalmostentirelyduetoChinesedemand,whichmadeup80percentofzero-carbonbussalesin2022(Figure38)(IEA2023e).However,thisisdownfrom95percentin2010duetoincreasingsalesinEuropeandTransportSTATEOFCLIMATEACTION202390FIGURE38Historicalprogresstoward2030and2050targetsforshareofbatteryelectricvehiclesandfuelcellelectricvehiclesinbussalesWrongDirection,U-turnNeededHistoricalCurrentS-CurveLikely%datatrendPaceneededto100reachtargets2030target8010060602050target40202022data3.8020202030204020502010Note:ThesedatadifferfromthoseincludedinpreviousinstallmentsoftheStateofClimateAction.WenowusedatafromIEA(2023e)toalignhistoricaldatawiththe2030and2050targets.ForindicatorscategorizedasS-curvelikely,accelerationfactorscalculatedusingalineartrendlinearenotpresented,astheywouldnotaccuratelyreflectanS-curvetrajectory.Thecategoryofprogresswasdeterminedbasedonauthorjudg-ment,usingmultiplelinesofevidence.Morespecifically,thisindicatorappearedtoapproachthebreakthroughstageofanS-curvein2015,butithassincebeentrendinginthewrongdirection.So,werevertedtousingalineartrendlineforthecurrenttrendarrow.SeeAppendixCandJaegeretal.(2023)formoreinformationonmethodsforselectingtargets,indicators,anddatasets,aswellasourapproachforassessingprogress.Sources:HistoricaldatafromIEA(2023e);targetsfromIEA(2021b).theUnitedStates.Globally,totalsalesrocketedfrombuseselsewhere.Additionally,increasingelectricbus2,000in2010to63,000in2022.Therewasadipfrom2018salesinChinain2022despitedecreasingsubsidiesto2021duetodecreasedsalesinChinabeforeprogressoverthepastfewyearsshowsthatelectricbusesarepickedupagainin2022.Beforethisdip,thetotalglobalnolongerentirelydependentonsubsidies(IEA2023e).fleetincreasedmorethan10-foldbetween2014andSomeothercountrieshaveseenlargeelectricbussales2018duetostrongChinesedemandstimulatedbyearlyshares—includingFinland,where75percentofbussalesandcontinuedsupport,includingsubstantialpurchas-in2022wereelectric(IEA2023e).Therefore,althoughingandoperationsubsidies(GIZ2020).In2022salestheshareofbussalesisheadedinthewrongdirectionsawmeaningfulimprovementrelativetotherecentbasedontheaveragerateofchangeoverthelastfivedip.Butconsiderablymoreprogresswillbeneededyears,50itispossibleconcertedeffortscouldturnthistoreach60percentofbussalesby2030tomeetthetrendaroundandaccelerateprogresstomeetthe20301.5°Climit.PastexponentialgrowthinChina,along-goalof60percent.sideincreasingsalesinEuropeandtheUnitedStates,suggeststhatrapidprogressispossibleforzero-carbonTransportSTATEOFCLIMATEACTION202391TRANSPORTINDICATOR8:energy.Largerbatteriesareheavier,however,andthereisatrade-offbetweentheweightofthebatteryandtheShareofbatteryelectricweightthetruckcanhaul(Gross2020).Inaddition,long-vehiclesandfuelcellelectrichaultruckshavedifferentrequirementsforrangeandvehiclesinmedium-andchargingspeedthanpassengercars.Increasingbatteryheavy-dutycommercialdensityisexpectedtoalleviatesomeoftheseissuesvehiclesales(%)(McKerracher2021),andfuelcellsarealsoconsideredtoelectrifyheavy-dutytransportduetotheirhigher•Targets:BEVsandFCEVsaccountfor30percentoftheenergydensities.However,duetotheseobstaclestoelectrification,globalGHGemissionsfromtheHDVfleettotalannualmedium-andheavy-dutycommercialareprojectedtobelargerthanthoseofthelight-dutyvehicle(MHDV)salesby2030and99percentby2050.vehiclefleetby2025(KhanandYang2022).GHGemissionsfromheavy-dutyvehicles(HDVs)areGlobalsalesofzero-carbonmedium-andheavy-dutyexpectedtotaperoffmoreslowlythanthosefromvehicles(MHDVs)haverisento2.7percentoftotalsaleslight-dutyvehicles(LDVs).Thisismainlybecausemostin2022—morethandoubletheamountofcombinedbigtruckscontinuetousedieselfuelaselectrifyingHDVssalesin2021andameaningfulimprovementrelativeismoredifficultthanelectrifyingLDVs.Movinglargetorecenttrends(Figure39).Butstill,theyremainlowvehiclesrequiresmuchmoreenergythansmallvehicles,relativetoothercategories.Oftotalelectricheavy-dutyandbatteriesmustthereforebelargertosupplythisFIGURE39Historicalprogresstoward2030and2050targetsforshareofbatteryelectricvehiclesandfuelcellelectricvehiclesinmedium-andheavy-dutycommercialvehiclesalesRightDirection,WellOffTrackS-CurveLikely%HistoricalCurrentPaceneededtodatatrendreachtargets1009932050target80HISTORICALDATA060201520222030target4030202022data2.7020202030204020502010Note:ThesedatadifferfromthoseincludedinpreviousinstallmentsoftheStateofClimateAction.WenowusedatafromIEA(2023e)toalignhistoricaldatawiththe2030and2050targets.ForindicatorscategorizedasS-curvelikely,accelerationfactorscalculatedusingalineartrendlinearenotpresented,astheywouldnotaccuratelyreflectanS-curvetrajectory.Thecategoryofprogresswasdeterminedbasedonauthorjudg-ment,usingmultiplelinesofevidence.Morespecifically,thisindicatoriscategorizedaswellofftrack,becauseitisanewtechnologythatisstillintheemergencestageofanS-curve.ThecurrenttrendarrowisbasedonanS-curvefittothehistoricaldata,butsuchanextrapolationishighlyuncertainwhenanindicatorisinthisearlystageandisincludedforillustrativepurposesonly.Ourcategorizationofprogressforthisindicatorisbasedonareviewoftheliteratureandconsultationswithexperts.SeeAppendixCandJaegeretal.(2023)formoreinformationonmethodsforselectingtargets,indicators,anddatasets,aswellasourapproachforassessingprogress.Sources:HistoricaldatafromIEA(2023e);targetsfromIEA(2021b).TransportSTATEOFCLIMATEACTION202392vehiclesales,85percenthappenedinChinaaloneaspublicprocurementofmunicipalMHDVsandsales(IEA2023e).However,Europeansalesincreasedbyamandatesformanufacturers,theshareofzero-carbonremarkable80percentfrom2021to2022(EAFO2023),asMHDVscouldreachabreakthroughandincreaserapidlyautomakersbeganrollingoutnewmodelsandmajorandnonlinearly,withadoptionratesfollowinganS-curvelogisticscompaniesbeganpurchasingelectricheavy-trajectoryofchange,especiallygivenincreasingmodeldutytrucks.Europenowaccountsfor25percentofavailabilityandthesignsofexponentialgrowthinotherglobalsales(IEA2023e).EVclassesandacrossvariouscountriesandregions(BloombergNEF2021b).Europeisdrivingthetransitionbypassingmorestrin-gentheavy-dutyvehiclestandards.Earlierin2023,forTRANSPORTINDICATOR9:example,theEuropeanCommissionproposedarevisionofitsregulationonemissionsstandardsforHDVs.ItaimsShareofsustainableaviationtostrengthenthestandardsfor2030froma30percentfuelsinglobalaviationfuelreductionofemissionstoa45percentreduction(fromsupply(%)2019levels)andwouldintroducenewemissionsstan-dardsforlateryears,culminatingatareductionby2040•Targets:Sustainableaviationfuels(SAFs)comprise13ofupto95percentfrom2019levels(EuropeanCommis-sion2023d).Whilethisisaremarkablestepintherightpercentofglobalaviationfuelsupplyby2030and100direction,leadingtoanestimated550,000electrictruckpercentby2050.fleetinEuropeby2030(Krug2023),evenitfallsshortofwhatisneeded.BecauseemissionshavesurgedsharplyAviationisresponsiblefor2percentofglobalGHGemis-since1990,bringingthemdown95percentfrom2019sions(Minxetal.2021;EuropeanCommissionandJRClevelsimpliesonlya56percentreductionfrom1990to2022;IEA2022i),andthisshareisprojectedtogrowover2050,farshortofthe100percentrequired(Transportandthenextdecadeunderthecurrentglobalpolicyframe-Environment2023).Effortsinotherregionsshowsimilarwork(IEA2022b).Decarbonizingaviationwillbeheavilytrendsintherightdirection—California,forexample,dependentonatransitiontosustainableaviationfuelsrecentlydeclareditwouldendallsalesofinternalcom-(SAFs),whichincludepower-to-liquidsyntheticfuelsandbustionenginetrucksby2036(StateofCalifornia2023b).biofuels(CAT2022d;MPP2022a).InadditiontocuttingGHGemissions,switchingtoSAFscanalsoenableTheshareofzero-carbonvehiclesinMHDVsaleshasreductionofairpollutantssuchassulfuremissionsandbeengrowingerratically,includingadecreasefromparticulatematter.Alternativestodrop-infuels,suchas2017to2019,buttheoverallshapeofchangeoverthepoweringplaneswithbatteriesorhydrogen,mayalsopastdecadehasbeenroughlyexponential.Growthinplaysomepartindecarbonizingaviation.Thequality2022wasameaningfulaccelerationrelativetorecentofSAFswillbeimportant,especiallywhenconsideringtrends.Futuregrowthwilllikelybenonlinearaswell.Butindirectimpacts.Inparticular,itisimportanttonoteconsiderablymoreprogresswillbeneededtoreach30thatbiofuels(particularlycrop-derivedfuels)canbepercentin2030.ThistechnologyisrelativelynascentandunsustainablebecausetheycancompetewithfoodremainsintheemergencephaseofanS-curve.Globalproductionforwaterandland,leadtofurtherchal-progressmadetowardthisnear-termtargetiscate-lengesaroundfoodsecurityandalterlocalecosystemsgorizedaswellofftrack.Withsupportivepolicies,suchassociatedwithhighriskofland-usechangethrough,TransportSTATEOFCLIMATEACTION202393forexample,deforestation(Searchingeretal.2019).areneededtoprovidetheenergyneededtomoveBecauseofthis,biofuelsareunlikelytoplayalargeroleaplanelongdistances(Grayetal.2021).OverthoseasSAFs.Alongtheselines,advancedbiofuelsproducedshortdistances,thesustainablealternativemaybefromnonfoodornonfeedalternatives,suchasnonfoodtravelingbytrainwherethisinfrastructureexists(Graveralgaeororganicwastesandresidues,donotcompeteetal.2022).Forexample,inChina,thegrowthofhigh-withfoodproductionand,ifdevelopedsustainably,speedrailenabledamodalshiftawayfromshort-haulcouldcontributetothetransitiontolow-carbonaviation.domesticflights,resultinginan18percentreductioninFindingaroleforadvancedbiofuelsindecarbonizationCO2emissionsinrecentyears(Straussetal.2021).Thewillrequiresignificant,ongoinginvestmentinresearchshareofSAFsintheaviationindustryremainedlowinanddevelopmenttoreducetheircost,bringthemto2022,accountingfor0.1percentofthetotalaviationscale,andensurethattheyareproducedresponsiblyfuelconsumption(Figure40).Whiletherearenoguar-andsustainably(IRENA2019).Comparatively,syntheticantees,therateofchangewilllikelybenonlinearinthefuelshaveahigherscaling-uppotentialandgreaterfuture.Globalprogressmadetowardthisnear-termsustainabilitywhenproducedwithrenewableenergytargetiswellofftrack.Thetechnologyisnascentandsources(Michelietal.2022).remainsintheemergencestageofanS-curve,sothesharewouldhavetodoubleeveryyearinordertomeetBatteryelectricplanesarealsoindevelopment,butthe2030target.batteriesarecurrentlyonlysuitableforveryshort-haulflightsbecausetheyareheavyandmanybatteriesFIGURE40Historicalprogresstoward2030and2050targetsforshareofsustainableaviationfuelsinglobalaviationfuelsupplyRightDirection,WellOffTrackS-CurveLikely%HistoricalCurrentPaceneededtodatatrendreachtargets1001000.122050target80HISTORICALDATA6002020202240202022data2030target2040205000.113201020202030Note:ForindicatorscategorizedasS-curvelikely,accelerationfactorscalculatedusingalineartrendlinearenotpresented,astheywouldnotaccuratelyreflectanS-curvetrajectory.Thecategoryofprogresswasdeterminedbasedonauthorjudgment,usingmultiplelinesofevidence,includingareviewoftheliteratureandconsultationswithexperts.Morespecifically,thisindicatoriscategorizedaswellofftrackbecauseitisanewtechnologythatisstillintheemergencestageofanS-curve.WedonothavesufficienthistoricaldatatofitanS-curvetothedatatocreatethecurrenttrendline,sowerevertedtoalineartrendline.Duetodatalimitations,thelineartrendlinewasestimatedusingdatapointsfromonlythreeyears.Thiscurrenttrendlineislikelytooconservative,giventhatitdoesnotaccountforthepossibilityofnonlineargrowth.SeeAppendixCandJaegeretal.(2023)formoreinformationonmethodsforselectingtargets,indicators,anddatasets,aswellasourapproachforassessingprogress.Sources:HistoricaldatafromAirTransportActionGroup(2021);Mistry(2022);andIATA(2022).TargetsfromMPP(2022d).TransportSTATEOFCLIMATEACTION202394BarrierscurrentlylimitingtheuptakeofSAFsinvolvebiofuels),and70percentby2050.Additionally,thereisproduction,infrastructure,policy,andtheavailabilityamandatethatpower-to-liquidande-fuelsmakeupofdifferentfueltechnologiesonaircraft.Thecostsof1.2percentoffueluseby2030and35percentby2050developingandproducingSAFsarehighintheearly(EASA2022;IATA2023).Whilethisisastepintherightstages,whichcanbethreetosixtimesmoreexpen-direction,strongercommitmentsarestillneeded.sivethanconventionaljetfuel(IRENA2021a).MajorinvestmentswillneedtobemadeininfrastructureandTRANSPORTINDICATOR10:trainingtohandleandstorethesenewfuels.Atthesametime,policymechanismsareneededtofurtherShareofzero-emissionsfuelsaidinremovingbarrierstoSAFscale-up.Market-basedinmaritimeshippingfuelmeasureswouldbeanimportanttooltomakeSAFssupply(%)cost-competitivewithconventionalhigh-emissionjetfuelsifthepriceofcarbonisappropriatelyset.Whilethe•Targets:Theshareofzero-emissionsfuels(ZEFs)inEuropeanUnionhasalreadyintroducedaviationinitsemissionstradingschemesince2012,thishasdonelittlemaritimeshippingfuelsupplyreaches5percentbytocutemissionsbecauseofpoordesignthatallowed2030and93percentby2050.freeallocationofcarboncreditsandmadecreditscheapforairlinecompaniestopurchase(TransportandInternationalanddomesticmaritimeshippingEnvironmentn.d.).accountsfor2percentofglobalGHGemissions,roughlyequivalenttoGermany’stotalemissions(Minxetal.Fromthepolicyside,acentralchallengeisthatavi-2021;EuropeanCommissionandJRC2022;IEA2022i).ationislargelyaninternationalindustrywithnooneTransitioningtheglobalmaritimesectorwillrequiregovernmentabletoinfluencetheentiresector.Instead,newzero-emissionsfuels,aswellasotherinvestmentsgovernmentsmustbuildconsensusthroughthebeyondthefuelsthemselves,includingnewtechnol-InternationalCivilAviationOrganization(ICAO).ThisisogiestoretrofitvesselstorunonZEFs.Alsoneededwillalengthyandslowprocess,whichtodatehasfailedbeeffortstomaximizeenergyefficiency,adaptporttosetconcreteSAFtargetsandpoliciestopromoteinfrastructuretosupplyZEFstofleets,anddevelopnewdemandforSAFsininternationalaviation.Inadditiontopolicymeasurestosupportthisshift(GMF2022).increasingtheshareofSAFsinthefuelmix,governmentsshouldreduceshort-haulflightsandfacilitateashifttoZEFsincludegreenammonia,greenhydrogen,e-meth-othermodesoftransport,suchaslow-orzero-emis-anol,andsynthetice-fuelsproducedfromrenewablesionshigh-speedrail.Whilethismayalsoincreaseroadsourcesofenergy.51E-methanolandsyntheticfuelstransport,thistransitionmusthappenalongsidethemadewithrenewableelectricitystillreleasesomeCO2electrificationofvehiclefleets(CAT2022d).Theemissionwhencombusted,so,toproducenet-zeroemissions,intensityperpassenger-kilometer(pkm)ofrailtravelsomeCO2usedtosynthesizethesefuelswillalsoneedis22.35g/CO2e/pkm,almostsixtimeslowerthanthetobecapturedfromtheatmosphere(GMF2022).While123gCO2e/pkmemittedbyplanetravel(IEA2023h).batteriesarealsoazero-emissionsoption,theirrela-tivelylowenergydensitymakesthemunsuitableforLately,privateaviation,anditsuncontrolledemissions,long-distanceshippingbutcancontributetodecarbon-hasbeengarneringmoreattention.Perpassenger,izingshorterdomesticvoyages(Kerseyetal.2022).Theprivatejetsare14timesmorepollutingthancommercialtransitionoftheshippingsectorwillrelyheavilyontheplanes,andshortflightsarelessfuelefficient.Yetasmallgroupofindividualscontinuetotravelshortdistancesbyprivatejetwhenlower-carbonoptionsareeasilyavailable(Saner2023).Theincreaseduseofhigh-emis-sionprivateaviationwillmakedecarbonizationmoredifficultandbringequityandfairnessconcernsintosharperrelief.Inorder,thelargestshareofaviation-relatedemissions(basedondepartingpassengerflights)comefromtheUnitedStates,theEuropeanUnion,China,andtheUnitedKingdom(Graveretal.2020).ApartfromChina,allofthesetopfouremittershavepledgedtoreducetheiraviationemissions.TheUnitedKingdom,forexample,hascommittedtoaquotaof10percentSAFby2030,whiletheEuropeanUnion’snewReFuelEUregulationsetsapreliminarytargetof6percentby2030(inwhichbiofuelsareincludedwithlimitationsoncrop-basedTransportSTATEOFCLIMATEACTION202395FIGURE41Historicalprogresstoward2030and2050targetsforshareofzero-emissionsfuelsinmaritimeshippingfuelsupplyRightDirection,WellOffTrackS-CurveLikely%HistoricalCurrentPaceneededtodatatrendreachtargets10093802050target6040202018data2030target20402050005201020202030Note:ForindicatorscategorizedasS-curvelikely,accelerationfactorscalculatedusingalineartrendlinearenotpresented,astheywouldnotaccuratelyreflectanS-curvetrajectory.Thecategoryofprogresswasdeterminedbasedonauthorjudgment,usingmultiplelinesofevidence.Morespecifically,thisindicatoriscategorizedaswellofftrack,becauseitisanewtechnologythatisstillintheemergencestageofanS-curve.Ourcategorizationofprogressforthisindicatorisbasedonareviewoftheliteratureandconsultationswithexperts.SeeAppendixCandJaegeretal.(2023)formoreinformationonmethodsforselectingtargets,indicators,anddatasets,aswellasourapproachforassessingprogress.Sources:HistoricaldatafromIMO(2020);targetsfromUMAS(2021).progressmadeinothersectors—primarilythescalingupmarket-basedmeasurethatputsapriceonGHGemis-ofrenewableenergythatwilldrivetheuptakeofgreensionsfrominternationalshipping,itwouldbebeneficialhydrogenandammonia(Camesetal.2021).todistributerevenuestovulnerableanddisproportion-atelyimpactedcountriestosupportaglobalequitableTheinitialhighcostofalternativefuelscoulddispro-transition(Baresicetal.2022;Psaraftisetal.2021).portionatelyaffectlower-incomedevelopingcountrieswithhighclimaterisk.ManycountriesthatfacefoodAsof2021theglobalshareofZEFsinshippingremainedinsecurity,sealevelrise,andextremeweathereventscloseto0percent.Theuptakeofgreenammoniaandalsodependonshippingforkeyimports.Andmanyofgreenhydrogen,andconstructionofzero-emissionsthemlackthefinancesandcapacitytotransitiontheirshipscapableofrunningonsuchfuels,remainedininfrastructure,fuelsupply,logistics,andlaborforcefortheirinfancy(Figure41).Currently,ammoniaenginesnewzero-emissionsfuels.Ensuringajustandequitableareexpectedtobecommerciallyreadyby2025,whiletransitioninthemaritimespacewillrevolvearoundhydrogenenginesalreadyexistandotherdemonstra-internationalcooperationonfinanceandcapacitytionprojectsareunderway,withanoticeableuptickbuilding.Ajusttransitioninshippingwouldsupportofthelatterappearingontoday’sorderbooksfornewseafarerswiththenecessaryskills,employment,andships.Tokeeptheworldinlinewitha1.5-degreesce-safetyaroundnewzero-emissionsfuelsandtechnolo-nario,theshareofthesefuelsshouldreach5percentgies,whileanequitabletransitionwouldensurethattheby2030.Itshouldbenotedthatthe5percenttargetburdenofclimateimpactsandcostsofdecarbonizing(UMAS2021)considersonlyZEFsandnotbiofuels(foratheshippingsectorwerenotdisproportionallyexacer-discussionofthesustainabilityofbiofuels,seeIndicatorbatedforvulnerablecountries.Withaglobalmaritime9).Toputthe5percentZEFtargetincontext,5percentofTransportSTATEOFCLIMATEACTION202396thefuelmixcouldbeequivalenttoavolumeof29.8MttheaverageEVcostcloserto$40,000(Slowiketal.2022).ofammoniaor28.1MtofmethanolderivedfromgreenOncethedeclineinbatterypricesresumes,EVcostshydrogensources(DNV2022).shouldalsofallfurther,reachingpurchasepriceparitywithgasoline-poweredcounterpartsaround2030–35Withsupportivepolicies,suchascarbonpricingor(Slowiketal.2022).ZEFusemandates,ZEFs’shareinshippingfuelscouldincreaserapidlyandnonlinearly,withadoptionratesIntheUnitedStates,theInflationReductionActprovidesfollowinganS-curvetrajectoryofchange.Butbecauserevampedsubsidiesforlight-dutyelectricvehiclesinhydrogenandammoniatechnologyarenascentandwaysthatexcludeluxuryEVsandthehighest-incomeremainatnearlyzero,globalprogressmadetowardearners.Thelawprovideda$7,500taxcreditforthepur-thisnear-termtargetremainswellofftrack.ItshouldbechaseofnewEVs(cars,vans,andsportutilityvehicles)notedthattherearesignsthatthemarketforthesefuelsand$4,000forusedEVs(Hawkins2022).Togetthiscredit,isdeveloping,includingordersforshipstorunoncar-thevehiclemustbeassembledinNorthAmerica,thebon-neutralmethanolandpartnershipstodesignshipsmineralsforthebatterymusthavebeenatleastpar-thatrunonammonia(High-LevelChampions2023).tiallyextractedinNorthAmerica,thebatterymusthavebeenatleastpartiallyassembledinNorthAmerica,theTheInternationalMaritimeOrganization(IMO)isthevehiclemustcostlessthan$80,000,andthepurchaserregulatorybodythatwouldneedtocreatethepol-mustmakelessthan$150,000–$300,000dependingonicyframeworkfordecarbonizingmaritimeshipping.howtheyfiletheirtaxes(IRS2023;U.S.DepartmentofHistorically,thepaceatwhichtheIMOhasbeenmovingTreasury2022).Becauseoftheserules,only33ofthetowardaglobalconsensusoneffectivedecarbonization73availablebatteryelectricvehicleorplug-inhybridhasbeenfarslowerthanneededtoachievea1.5°CelectricvehiclemodelsavailableintheUnitedStatesscenario.However,arecentdecisionfromthebodyhasqualifyforatleastpartialcredit(EVAdoption2023;U.S.significantlyacceleratedprogress(seemorein“RecentDOEandU.S.EPA2023).developmentsacrossthetransportsector”below).Toaccomplishthatgoal,countrieswillneedtoestablishaAtCOP27in2022,10countries(Aruba,Belgium,Croatia,global,market-basedmechanismforimposingapriceCuraçao,DominicanRepublic,Ireland,Liechtenstein,onconventionalcarbon-intensivefossilfuelsandmakeLithuania,Ukraine,andtheUnitedStates)signedaZEFscost-competitivewiththem(DominioniandEnglertnonbindingagreementthattheywouldaimtosellonly2022;Psaraftisetal.2021;Smithetal.2022).zero-emissionsmedium-andheavy-dutyvehiclesby2040(DrivetoZero2022).Morerecently,theUnitedStatesRecentdevelopmentsproposedstringentnewemissionsstandardsforcarsacrosstransportandtrucksthataredesignedtoensurethattwo-thirdsofpassengercarsalesandaquarterofheavy-dutyTherehavenotbeenanylarge-scalerecentdevel-trucksalesintheUnitedStatesareelectricby2032opmentsinshiftingtoshared,collective,oractive(Davenport2023).transport.Becauseofthesmallgeographicscaleatwhichinvestmentsinshared,collective,oractiveInadditiontoEVs,therehasbeenrecentprogressintransportaretypicallymade(e.g.,atthecitylevel),anyeffortstodecarbonizeaviation.InOctober2022,atitsrecentdevelopmentsidentifiedhavelargelybeenlocal41stAssembly,theInternationalCivilAviationOrganiza-inscale(see,forexample,thebuild-outofbikelanesintionadoptedalong-termaspirationalgoalofreachingBogotáinBox11).Therehave,however,beenquiteafewnet-zerocarbonemissionsby2050.Thisdoesnot,how-recentdevelopmentsinelectriclight-andheavy-dutyever,subjectstatestoanylegallybindingcommitmentsvehicles,aswellasnewpolicytoolstodecarbonize(ICAO2023).Additionally,ICAO’sscenariosdonotreachaviationandshipping.net-zeroemissionsin2050anddonotcoveraviation’scrucialnon-CO2emissions(Cardamaetal.2023).AtIn2022,thepriceofthelithium-ionbatterythataregionallevel(EASA2022),theEuropeanUnionhasmakesup30–60percentofanEV’sprice(Jones2022)concludednegotiatingtheReFuelEUregulation,whichincreasedforthefirsttimesince2010(BloombergNEFsetsapreliminarytargetof6percentby2030(inwhich2022b).Thisincreaseisexpectedtobeshort-lived.Itwasbiofuelsareincludedwithlimitationsoncrop-basedduetosupplychainconstraints,especiallyinlithium,biofuels),and70percentby2050.Additionally,itsetswhichareexpectedtoeasein2024(BloombergNEFafuelmandateof1.2percentby2030and35percent2022b).CheaperbatteriesaremakingEVsmoreafford-by2050forpowertoliquidande-fuels(EASA2022;IATAable:asof2022,aconventionalgasoline-poweredcar2023).Whilethisisastepintherightdirection,strongerintheUnitedStatescostapproximately$30,000,whilecommitmentsarestillneeded.TransportSTATEOFCLIMATEACTION202397IntheUnitedStates,therecentadoptionoftheInflationsupportiveconditionsforzero-emissionsshipping.ReductionActintroducedtaxcreditsforSAFproducersMorethan20initiativesareunderwaytodevelopthesetoincentivizemoreproduction.Unfortunately,thesetaxcorridors(GMF2022).creditsrewardfuelswith50percentemissionreduc-tionsagainstconventionaljetfuels,whichfallsshortofIn2023,theEuropeanUnionunveiledseveralsweepingthekindsoftransformativefuelsultimatelyneededtoproposalstoincludemaritimeshippinginitsEmissionsdecarbonizeaviation(Sullivan2023).TradingSystemandputinplaceregulationscalledFuelEUMaritimeandtheRevisedRenewableEnergySeveralairlineshaveannouncednewSAFpurchaseDirectivetoacceleratetheuptakeof“zero-andlow-car-agreementsandsettargetstouseSAFsby2030andbon”fuels.Unfortunately,theseregulationsallowforbeyond.In2022,42SAFofftakeagreementsweresigned,biofuels(fromunsustainablefeedstocks)andLNG,amountingtoalmost22,000millionlitersperyear(ICAOwhichwillmakeclimatetargetsmoredifficulttoreach.2022).Becausethesearefuturecommitments,thesePolicymakersandindustrystakeholdershavesoughtvolumesarenotyetreflectedinthehistoricaldata.theincrementalapproachofencouragingfuelsthatarelower-carbonbutstillcarbon-intensive,suchasLNG,asFinally,inmaritimeshipping,amajorpolicydevelopmentpartofthetransitionawayfromoilproducts.However,hasthepotentialtoaccelerateprogress.InJuly2023,thiswouldrepresentamajorlock-inofinvestmentinatthe80thsessionoftheIMO’sMarineEnvironmentfossilfuels(UMAS2021).ProtectionCommittee,membergovernmentsagreedtoarevisedGHGreductionstrategythatupdatedthebody’stargets,includinganet-zerotarget“byoraround”2050.IthasexpandedthecoverageofemissionstoallGHGs(notonlyCO2)andcoversthefulllife-cycle(“welltowake”)emissions.ItalsosetsanewSAFshareman-dateof5percentwhilestrivingfor10percentzero-or“near-zero-”emissionsfuelsandtechnologyby2030.Whilethisisastepintherightdirectionandinlinewithwhatbenchmarksstatedinthisreportrequire,the“near-zero”emissionsfuelscanincludeliquefiednaturalgas(LNG),whichisstillafossilfuelthatcouldpersistinthefuelmixbeyond2050(SmithandShaw2023).Giventhelonglifespanofvessels(approximately30years),widespreadLNGuseasashippingfuelwouldtakemarketshareforacarbon-emittingfuelanddelaythepenetrationofzero-emissionsfuels.Avoidingcontinuedinvestments,policies,andplanningaroundtheuptakeoffossilfuels,especiallyavoidingLNGandalternativefuelsnotsourcedfromrenewableenergyand/orcapturedCO2,willbecrucialinthisdecade.TheIMO’sEnergyEfficiencyExistingShipIndexandCarbonIntensityIndexalsocameintoforceonJanuary1,2023.TheseIMOmeasureswillaimtotrackandrateenergyefficiencyandcarbonintensity,respectively,andrequirethemtoimproveovertime.Anotherstepforwardwouldbetosetupgreenshippingcorridors,internationalprojectsinwhichseveralstake-holdersfromindustryandgovernmentworktogetheracrosscontinentstodevelopspecificrouteswiththeTransportSTATEOFCLIMATEACTION202398SECTION6ForestsandLandNaturecontributesvital,sometimesirreplace-40–45percentofallnetanthropogenicGHGemissionsableservicestohumanitythatrangewidely,fromAFOLUduringthisdecade,54whilemethane(CH4)fromregulatingwaterqualitytoprovisioningandnitrousoxide(N2O)emissions,drivenpredominatelyfoodtosustainingcleanair(IPCC2019,2022b;IPBES2019;byagriculture,comprisedtheremaining55–60percentUNCCD2017).52Yethowpeopleinteractwiththenaturalofthesesectoralemissions(Minxetal.2021;Europeanworldalsoinfluencestheclimatesystem.ThelossCommissionandJRC2022).anddegradationofecosystems—particularlyforests,peatlands,coastalwetlands,andgrasslands—releaseDeterminingspecifictrendsinnetanthropogenicCO2GHGsintotheatmosphere,whileprotecting,restoring,emissionsfromlanduse,land-use,change,andforestryandsustainablymanagingthesesamehigh-carbonwithconfidence,however,remainschallengingdueecosystemscanlowerGHGemissions,enhancecarbontolimitationsinnationallyreporteddata,incompletesequestration,andbuildresiliencetoclimateimpactsrepresentationsoflandmanagementpracticesacross(IPCC2019,2022b).globalmodels,anddifferencesinhowmethodscon-ceptualizethe“anthropogenic”CO2fluxoccurringacrossAgriculture,forestry,andotherlanduses(AFOLU)land.Untilrecently,someapproaches,suchastheaccountedfornearlyone-fifthofnetanthropogenicaveragefromthreeglobalbookkeepingmodelsusedinGHGemissionsgloballyin2021(Figure42),53withthesethe“GlobalCarbonBudget,”indicatedaslightincreaseemissionsremainingrelativelyconstantatanaverageinnetCO2emissionssince2000,whileothersthatrelyonofabout11GtCO2eperyearoverthispastdecade(Minxnationallyreporteddata,suchasNationalGreenhouseetal.2021;EuropeanCommissionandJRC2022).NetGasInventoriesandFAOSTAT,suggestedtheoppositeCO2emissions,whichprimarilystemfromlanduse,trend(IPCC2022b).Butfollowingsignificantupdatesland-usechange,andforestry,accountedforroughlytothedataunderpinningtheseglobalbookkeepingFIGURE42AFOLU’scontributiontoglobalnetanthropogenicGHGemissionsin2021ElectricityandheatOilandgas14.4fugitiveemissions2.5Other1.6Coalminingfugitiveemissions1.5Petroleumrefining0.7EnergyNetCO2GrossCO220.7emissionsemissionsNon-CO2(allbuildings)WasteLanduse,4.07.70.042.4land-usechange,GrossCO2NonresidentialResidentialBuildingsGlobalGHGAgriculture,andforestryremovals0.82.33.2Emissionsforestry,56.8GtCO2eandother4.0-3.7Raillanduses0.1Enteric10.4fermentationInlandshipping0.23.0DomesticaviationTransportManaged0.38.1soilsandInternationalIndustryaviation12.0pasture0.41.4OtherRoadOtherRicecultivation0.5Transport4.41.0International5.9Manuremanagementshipping0.40.7ChemicalsMetals2.63.4Syntheticfertilizerapplication0.4Cement1.6Biomassburning0.1Notes:AFOLU=agriculture,forestry,andotherlanduses;CO2=carbondioxide;GHG=greenhousegas;GtCO2e=gigatonnesofcarbondioxideequivalent.Sources:Minxetal.(2021);EuropeanCommissionandJRC(2022),usingCO2emissionsdataforlanduse,land-usechange,andforestryfromthethreebookkeepingmodelsinthe“GlobalCarbonBudget2022”(Friedlingsteinetal.2022b).ForestsandLandSTATEOFCLIMATEACTION2023100FIGURE43GlobalnetanthropogenicCO2models,whichoccurredaftertheliteraturecut-offdateofIPCC(2022b),the“GlobalCarbonBudget”reviseditsemissionsfromlanduse,land-useestimatesofnetanthropogenicCO2emissionsfromlandchange,andforestryuse,land-usechange,andforestrydownward(Friedling-steinetal.2022a),andallthreeglobalbookkeepingGtCO2/yrmodelsnowshowsmalldecreasesinnetanthropogenic9CO2emissionsfromlanduse,land-usechange,andfor-estrysincethe1990s(Friedlingsteinetal.2022b)(Figure843).Althoughnearlyallapproaches—globalbookkeep-7ingmodels,NationalGreenhouseGasInventories,andFAOSTAT—nowsuggestadeclineinthesenetanthropo-6genicCO2emissionsinrecentdecades,uncertaintyinboththemagnitudeofthistrendandthetotaldecreaseBlueinCO2emissionsremains.5Butwhenconsideringbothanthropogenicandnonan-OscarthropogenicCO2fluxesfromland,includingthoseassociatedwithdirect,human-causedchange(e.g.,4Meandeforestation),indirect,human-causedchange(e.g.,climatechange),andnaturaleffects(e.g.,climatevari-3abilityassociatedwithElNiñoandLaNiña),thescienceisHoughtonmuchclearer—landremainsacarbonsinkglobally(IPCC2022b),sequesteringanet7GtCO2peryearandagross211GtCO2peryeargloballyfrom2012to2021(Friedling-steinetal.2022b).Andsince1850,thelandsink,which1iscomprisedprimarilyofstandingforests,hashelpedslowclimatechangebysequesteringroughlyone-third020002021ofCO2emissionsfromallhumanactivities(Friedling-1990steinetal.2022b).Theeffectivenessofthesecarbonsinksandstores,however,maydeclinewithadditionalNotes:CO2=carbondioxide;GtCO2/yr=gigatonnesofcarbonwarming(Box12).dioxideperyear.Blue,Houghton,andOscararethreeseparatebook-keepingmodelsthathavebeenaveragedtoprovideaglobalmeanestimate.Sources:Minxetal.(2021);andEuropeanCommissionandJRC(2022),usingCO2emissionsdataforlanduse,land-usechange,andforestryfromthethreebookkeepingmodelsinthe“GlobalCarbonBudget2022”(Friedlingsteinetal.2022b).BOX12ThevulnerabilityofnaturalcarbonsinksandstorestoclimatechangeOverthepastsixdecades,theworld’soceanandlongeddroughtsmaylimitcarbonuptake(IPCClandsinkshaveslowedgrowthinatmospheric2022a),withseveralobservationalstudiesofintactconcentrationsofCO2byabsorbingincreasingtropicalforestplotsalreadyindicatingaweaken-absoluteamountsoftheseemissionseveryyear.ingofthelandsinkacrosstheAmazonfromtheScientistslargelyattributethisrecentstrength-mid-1980stotheearly2010s(Brienenetal.2015;eningofthegloballandsink,specifically,toCO2Hubauetal.2020).Hubauetal.(2020),specifically,fertilization—definedastheincreaseinplantattributethesedeclinestogreatertreemortalityphotosynthesisandwater-useefficiencyinfromrisingtemperaturesanddrought,whichresponsetorisingatmosphericconcentrationsoffsetgainsinproductivityfromCO2fertilizationofCO2.Whilethisglobaltrendwilllikelycontinueduringthisperiod.through2100,theproportionofCO2emissionsthattheworld’slandsinktakesupwilllikelydeclineGlobaltemperaturerisethreatensnotonlytounderahigh-emissionspathway(IPCC2021),anddampenthestrengthofsomelandsinksbutfuturedisturbances,includingclimateimpacts,alsotoincreasecarbonlossesfromecosystems,mayalsoreducesomelands’capacitytoseques-withrecurrent,moreintensewildfires,enhancedterandstorecarbon(IPCC2022a).Acrossforeststreemortalityfromdroughtandpestoutbreaks,andpeatlands,forexample,risingtemperaturespermafrostthaw,andpeatlanddryingprojectedcoupledwithmorefrequent,severe,andpro-todrivefuturedeclinesinterrestrialcarbonstocksForestsandLandSTATEOFCLIMATEACTION2023101BOX12Thevulnerabilityofnaturalcarbonsinksandstorestoclimatechange(continued)(IPCC2022a).Underscenarioswithmoderateabruptlyandsometimesirreversibly(IPCC2021).tohighlevelsofwarming,forexample,regionalAnumberofstudiessuggestthatsuchanabruptclimatesacrossEuropeandWesternSiberiacouldchangecouldoccurwithintheAmazon(e.g.,becomeunsuitablywarmformaintainingalmostLentonetal.2008;Steffenetal.2018;Lovejoyandallpermafrostpeatlands,whichcontainnearly40Nobre2019;Lentonetal.2019),andasynthesisofGtC,bythe2090s,withconsiderablelossesbegin-recentlypublishedpapersfindsthatinitialprojec-ningdecadesearlier(Fewsteretal.2022).Similarly,tionsindicatedthatthishumidtropicalprimaryintheAmazonbasin,thecombinedeffectsofanforestcouldhavetwotippingpoints—either3–4°Cintensifyingdryseasonanddeforestationhaveofwarmingordeforestingroughly40percentalreadyincreasedCO2emissions,withthesouth-oftheAmazon—that,ifreached,couldcauseeasternregionoftheforestreleasingmorecarbonsubstantialforestdieback(McKayetal.2022).Butthanitsequesteredoverthispastdecade(Gattietwhenaccountingforinteractionsbetweenclimateal.2021).Shouldcarbonlossesfromtheseeco-changeandpermanentforestloss,thesethresh-systemsincrease,sowilltheriskofexacerbatingoldslikelyfalltolowerlevels(McKayetal.2022).self-reinforcingfeedbacks—complexprocessesCrossingtheglobalwarmingtippingpoint(nowthat,essentially,spurrisesinatmosphericcon-estimatedat3.5°C),specifically,riskstriggeringcentrationsofCO2thatwouldfurtheramplifyacascadeofeventsthatcouldleadtodiebackglobalwarmingandintensifythesameclimateacrossroughly40percentofworld’slargesthumidimpactstowhichtheseecosystems’carbonstockstropicalprimaryforestandreleaseabout110GtCO2arevulnerable(IPCC2022a).However,boththe(McKayetal.2022).Althoughscientistshavemademagnitudeandtimingofthesefeedbacksremainadvancesinclimatemodeling,paleoclimatology,highlyuncertain(IPCC2021,2022a).andobservationalanalysisofnonlinearchangeintheclimatesystem,confidenceinthesethresh-Inadditiontospurringlossesofterrestrialcarbonolds,aswellastheseverityofsubsequentimpacts,stocks,continuedwarmingmayalsopushsomeislowtomedium,giventhecomplexinteractionsecosystemsclosertotippingpoints—thresholdsbetweenclimatechange,land-usechange,andthat,oncecrossed,triggerthereorganizationofotherfactors(IPCC2021,2022b;McKayetal.2022).ecosystemsintoqualitativelydifferentones,oftenNotes:CO2=carbondioxide;GtC=gigatonnesofcarbon.Globalassessmentofinlinewithpathwaysthatlimitwarmingto1.5°C(Roeprogressforforestsetal.2019).55Whenimplementedappropriately,theseandlandsamestrategiescanalsodeliversubstantialbenefitstoadaptation,sustainabledevelopment,andbiodiver-DeliveringtheParisAgreement’smitigationgoalssity(Figure44)(Roeetal.2021).Yetrecentprogressinrequiresimmediateactiontoprotecttheworld’sdeployingland-basedmitigationremainsinadequate.terrestrialcarbonsinksandstores,aswellasarapidNoneoftheindicatorsassessedforforests,peatlands,scale-upineffortstorestoreandsustainablymanageandmangroves,56specifically,areontracktoachievetheseecosystems.Overthenextthreedecades,thesetheir2030targets(Table5).Andduetodatalimitations,land-basedmeasuresacrossforests,peatlands,coastalthisglobalassessmentexcludestargetsandindicatorswetlands,andgrasslandscollectivelycanmitigateforimprovedforestmanagementpracticesthatcanbetween4.2GtCO2eand7.3GtCO2eannuallyatuptohelpreducedegradationandgrasslandfireman-$100/tCO2e(IPCC2022b)—arangethatisalsoroughlyagementpractices.ForestsandLandSTATEOFCLIMATEACTION2023102TABLE5SummaryofglobalprogresstowardforestsandlandtargetsINDICATORMOSTRECENT203020352050LIKELIHOODACCELERATIONSTATUSDATAPOINTTARGETTARGETTARGETOFFACTOR(YEAR)FOLLOWINGANS-CURVEDeforestation(Mha/yr)5.81.9N/A0.314xb(2022)aPeatland0.06000Insufficientdatadegradation(Mha/yr)(annualaverage,1993–2018)Mangroveloss(ha/yr)32,0004,900N/AN/AN/A;U-turnneededdReforestation(totalMha)(annualaverage,1.5xfPeatland2017–19)cInsufficientdatarestoration(totalMha)130100150300(totalgain,(2020–30)e(2020–35)e(2020–50)e2000–2020)015N/A20–29(asof2015)g(2020–50)e(2020–30)eMangrove15,000240,000N/AN/A>10xirestoration(totalha)(totaldirectgain,(2020–30)e1999–2019)hNotes:ha/yr=hectaresperyear;Mha/yr=millionhectaresperyear.Historicaldataforforestsandlandindicatorswereestimatedusingmapsderivedfromremotelysenseddata,andaccordingly,theycontainadegreeofuncertainty.SeeJaegeretal.(2023)formoreinformationonmethodsforselectingtargets,indicators(includingtheknownlimitationsofeach),anddatasets,aswellasourapproachforassessingprogress.aSeeJaegeretal.(2023)andBox5inBoehmetal.(2022)foradescriptionofmethodsusedtoestimatedeforestation.bIndicatorsforforestsandlandexperiencehighinterannualvariabilityinhistoricaldataduetobothanthropogenicandnaturalcauses.Accord-ingly,10yearsinsteadof5yearswasusedtocalculatethelineartrendlinewherepossible.Forthisindicator,however,an8-yeartrendlinewascalculated,usingdatafrom2015to2022duetotemporalinconsistenciesinthedatabeforeandafter2015(WeisseandPotapov2021).cHistoricaldatafromMurrayetal.(2022),whichestimatedgrossmangrovearealostfrom1999to2019,wasbrokenintothree-yearepochs.Lossforeachepochwasdividedbythenumberofyearsintheepochtodeterminetheaverageannuallossrate.dIndicatorsforforestsandlandexperiencehighinterannualvariabilityinhistoricaldataduetobothanthropogenicandnaturalcauses.Accord-ingly,10yearsinsteadof5yearswasusedtocalculatethelineartrendlinewherepossible.Forthisindicator,however,a12-yeartrendlinewascalculated,usingdatafrom2008to2019toaccountforthefullrangeofyearsincludedinfour3-yearepochsfromMurrayetal.(2022).Toestimatetheaverageannuallossratefrom2008to2019,grosslosswasdividedbythenumberofyearsineachepoch.eReforestation,peatlandrestoration,andmangroverestorationtargetsareadditionaltoanyreforestationandrestorationthatoccurredpriorto2020,andthesetargetsarecumulativefromeither2020to2030or2020to2050.fFollowingBoehmetal.(2021)andduetodatalimitations,theaverageannualrateofchangeacrossthemostrecentlyavailabletimeperiod(2000–2020)wasusedtoestimatethehistoricalrateofchange,ratherthanalineartrendline.gPeatlandrestorationtargetswereadaptedfromHumpenöderetal.(2020)andRoeetal.(2021),whichassumethat0Mhaofpeatlandsgloballywererewettedasof2015.Thisassumption,however,doesnotsuggestthatpeatlandrestorationhasnotoccurred,asthereisevidenceofrewetting,forexample,inCanada,Indonesia,andRussia(UNEP2022b;Sirin2022;BRGM2023),butratherspeakstothelackofglobaldataonpeatlandrestoration.hMurrayetal.(2022)estimatedthatagrossareaof180,000ha(95percentconfidenceintervalof0.09to0.30Mha)ofmangrovegainoccurredfrom1999to2019,only8percentofwhichcanbeattributedtodirecthumanactivities,suchasmangroverestorationorplanting.Weestimatedthemostrecentdatapointformangroverestorationbytaking8percentofthetotalmangrovegainfrom1999to2019(15,000ha).SeeJaegeretal.(2023)formoreinformation.iFollowingBoehmetal.(2021)andduetodatalimitations,theaverageannualrateofchangeacrossthemostrecentlyavailabletimeperiod(1999–2019)wasusedtoestimatethehistoricalrateofchange,ratherthanalineartrendline.Sources:HistoricaldatafromGlobalForestWatch,usingdatasetsupdatedto2022(Hansenetal.2013;Curtisetal.2018;Turubanovaetal.2018;Tyukavinaetal.2022),aswellasPotapovetal.(2022a);ConcheddaandTubiello(2020);Murrayetal.(2022);andHumpenöderetal.(2020);targetsderivedfromRoeetal.(2019,2021);Humpenöderetal.(2020);andGriscometal.(2017).ForestsandLandSTATEOFCLIMATEACTION2023103Protectforests,peatlands,mitigationpotentialavailableatupto$100/tCO2efromandmangrovesland-basedactivitiesacrossecosystems(Figure44)(Roeetal.2021).Protectingforests,peatlands,andmangrovescangeneratemultipleclimatebenefitsbypreventingtheNotonlycanprotectingthesethreeecosystemsdeliverreleaseoftheirlargecarbonstoresintotheatmosphererelativelyhighcost-effectivemitigationbenefitsperandbymaintainingtheirabilitytocontinuesequesteringhectare(Figure44),buttheseland-basedmeasurescarbon(IPCC2022b).Safeguardingtropicalforests,alsowillprovecriticaltonear-termclimateactioninparticular,candeliveradditionalcontributionsto(Cook-Pattonetal.2021).Together,theworld’sforests,mitigationthatextendfarbeyondcarbon,asthesepeatlands,andmangrovesholdwellover1,000GtCinecosystemssustainarangeofbiophysicalmechanisms,theirabovegroundbiomassandsoils(Panetal.2011;suchasevapotranspiration,thatcoolEarth’ssurfaceTemminketal.2022),and,byoneestimate,roughlyandnear-surfaceair(Lawrenceetal.2022).Byoneathirdorlessofthesecarbonstocks(~340GtC)areestimate,accountingforthiscoolingeffectfrombio-vulnerabletohumandisturbances,suchthattheywouldphysicalprocesseswouldincreasetheclimatebenefitsbereleasedintotheatmospherefollowingconversionofavoidingtropicaldeforestationby50percent,relativeordegradationoftheseecosystems(Noonetal.2021).tothemitigationpotentialofreducingCO2emissionsSomeoftheselossesincarboncanoccurquiterapidly,alone(Seymouretal.2022).Accordingly,virtuallyhaltingsuchaswhenlarge-scalecommodityproducerscleardeforestation,peatlanddegradation,andmangroveforestedpeatlandswithfire;iflost,muchofthiscarbonlosscancontributethelion’sshareofland-basedwouldbedifficultforecosystemstorecoverontime-mitigationneededtolimitwarmingto1.5°C.Evenwhenscalesrelevanttoreachingnet-zeroCO2emissionsbyaccountingforGHGemissionsreductions,alone,thesemidcentury,effectivelycreatingapermanentdeficitinmeasurescontributemorethanhalfofthecost-effectivetheworld’sremainingcarbonbudgetfor1.5°C(Goldsteinetal.2020;Cook-Pattonetal.2021;Noonetal.2021).MoreFIGURE44Globalcost-effectivemitigationpotentialsforland-basedmeasuresacrossforests,peatlands,mangroves,andgrasslandsfrom2020to2050MitigationdensityCost-effectivemitigationpotential(GtCO2e/yr)(tCO2e/ha)01.02.03.04.0316ReduceddeforestationPROTECT1,232ReducedpeatlanddegradationRegions1,505ReducedmangrovelossAfricaandMiddleEastRESTOREAsiaanddevelopingPacific166AfforestationandreforestationDevelopedcountriesMANAGE857PeatlandrestorationEasternEuropeand704MangroverestorationWest-CentralAsiaLatinAmericaandCaribbean29Improvedforestmanagement10GrasslandandsavannaCo-benefitsBiodiversityfiremanagementSoilLivelihoodsWaterResilienceFoodsecurityAirqualityNotes:GtCO2e/yr=gigatonnesofcarbondioxideequivalentperyear;tCO2e/ha=tonnesofcarbondioxideequivalentperhectare.FollowingRoeetal.(2021),cost-effectivemitigationpotentialincludesreductionsinGHGemissionsandenhancedcarbonsequestrationavailableatcarbonpricesofupto$100/tCO2e.Source:Roeetal.(2021).ForestsandLandSTATEOFCLIMATEACTION2023104BOX13Howdoweestimatedeforestation?specifically,fullyrebuildingtheselostcarbonstocksToestimatehistoricaltrendsindeforestation,couldtake6to10decadesforforests,welloveracenturyweusedacombinationoffourdatasetsformangroves,andcenturiestomillenniaforpeatlandsavailableonGlobalForestWatch:annualtree(Goldsteinetal.2020;Temminketal.2022).Butdespitecoverloss(Hansenetal.2013)updatedto2022,thissignificantrolethatprotectingtheseecosystemstreecoverlossbydominantdriver(Curtisetal.canplayinavoidingGHGemissions,collectiveefforts2018)updatedto2022,humidtropicalprimarytovirtuallyhaltdeforestationremainwellofftrack,and,forestextent(Turubanovaetal.2018),andwhileglobaldataareinsufficienttoassessprogress,annualtreecoverlossduetofire(Tyukavinaavailableevidencesuggeststhatpeatlanddegradationetal.2022)updatedto2022.Theseestimatescontinuestooccur.Worsestill,thoughmangrovelossesincludetreecoverlossthatlikelyrepresentsremainsubstantiallylowerthanthoseobservedinthedeforestation,definedasthepermanentcon-late20thcentury,theyareonceagaintickingupward,versionofforestcovertonew,nonforestlandsuchthatastep-changeinactionisneeded.uses(WRI2023e).Consequently,theyincludealltreecoverloss(Hansenetal.2013)withinFORESTSANDLANDINDICATOR1:areaswhosedominantdriver,asdefinedbyCurtisetal.(2018),wasclassifiedascommod-Deforestation(Mha/yr)ity-drivendeforestationandurbanization,aswellashumidtropicalprimaryforestloss•Targets:Theannualrateofgrossdeforestation(Turubanovaetal.2018)duetotheexpansionofshiftingagriculture.Wealsoexcludedallgloballydeclinesto1.9millionhectaresperyear(Mha/treecoverlossduetofire(Tyukavinaetal.yr)by2030andto0.31Mha/yrby2050.2022),whichislikelytobemoretemporaryinnature,57tobetterestimatetrendsinperma-Althoughtheworld’sforestsremainanetcarbonsinknentforestconversionwithouttheinterannual(Harrisetal.2021;Friedlingsteinetal.2022b),deforesta-variabilitylinkedtoextremeweatherevents.tion—driven,inlargepart,byagriculturalexpansionFinally,weremovedanyareasofoverlapwith(Curtisetal.2018;Pendrilletal.2022)—remainsthedataonmangroveloss(Murrayetal.2022)toprimarydriverofemissionsfromlanduse,landuseavoiddouble-counting.SeeBox5inBoehmetchange,andforestry(Friedlingsteinetal.2022b).Limitingal.(2022)formoreinformation.globaltemperatureriseto1.5°C,then,willrequiredramaticdeclinesinpermanentforestlossoverthenextButglobaleffortstoachievethisnear-termtargetthreedecades.Morespecifically,annualdeforestationremainwellofftrack.From2015to2022,forexample,therates,aswellasassociatedGHGemissions,needtofallworldpermanentlylostatotalof48millionhectares70percentby2030and95percentby2050,relativeto(Mha)offorests,withgrossGHGemissionsfromdefor-2018levels(Roeetal.2019),tohelpachievethisParisestationamountingto28GtCO2eoverthistimeperiodAgreementtemperaturelimit.(seeBox13forhowweestimatedeforestation)(Hansenetal.2013;Curtisetal.2018;Turubanovaetal.2018;Tyu-kavinaetal.2022;Harrisetal.2021).Andwhiletheannualrateofdeforestationdeclinedfromarecenthighof7.2Mhain2016to5.4Mhain2021,itincreasedto5.8Mhain2022(Hansenetal.2013;Curtisetal.2018;Turubanovaetal.2018;Tyukavinaetal.2022)—aslightworseningrelativetorecenttrends.GrossGHGemissionsfrompermanentforestlossalsorosemarginallyfrom3.3in2021to3.6GtCO2ein2022(Harrisetal.2021)—roughlyequivalenttoIndia’sandSouthAfrica’scombinedGHGemissionsin2020(ClimateWatch2023).ButgettingontrackforForestsandLandSTATEOFCLIMATEACTION2023105FIGURE45Historicalprogresstoward2030and2050targetsfordeforestationRightDirection,WellOffTrackS-CurveUnlikelyPaceneededtoMha/yrHistoricalCurrentreachtargetsdatatrend872022data5.865Accelerationrequiredtoreach2030target44x32030target1.922050target10.310201020202030204020502000Notes:Mha/yr=millionhectaresperyear.Indicatorsforforestsandlandexperiencehighinterannualvariabilityinhistoricaldataduetobothanthropogenicandnaturalcauses.Accordingly,10yearsinsteadof5yearswasusedtocalculatethelineartrendlinewherepossible.Forthisindi-cator,however,an8-yeartrendlinewascalculated,usingdatafrom2015to2022duetotemporalinconsistenciesinthedatabeforeandafter2015(WeisseandPotapov2021).Also,historicaldataforforestsandlandindicatorswereestimatedusingmapsderivedfromremotelysenseddata,andaccordingly,theycontainadegreeofuncertainty.SeeJaegeretal.(2023)formoreinformationonmethodsforselectingtargets,indicators(includingtheknownlimitationsofeach),anddatasets,aswellasourapproachforassessingprogress.Sources:HistoricaldatafromGlobalForestWatch,calculatedfromdatasetsupdatedto2022.DataupdatesarebasedonmethodspublishedinHansenetal.(2013);Curtisetal.(2018);Turubanovaetal.(2018);andTyukavinaetal.(2022);targetsderivedfromRoeetal.(2019).SeeJaegeretal.(2023)andBox5inBoehmetal.(2022)foradescriptionofmethodsusedtoestimatedeforestation.2030willrequireannualdeforestationratestodeclineetal.2022).Elsewhereinthetropics,however,ahandfulmuchmorerapidly—roughlyfourtimesfasteroverthisofcountrieshavesucceededinprotectingtheirforests,decade(Figure45).maintainingdeforestationratesthatfallwellbelowthoseobservedforIndonesia,Brazil,andtheDemocraticNearly97percentofdeforestationfrom2001to2022RepublicoftheCongo(Box14).occurredinthetropics(WRI2023c),andsince2015justthreecountries—Indonesia,Brazil,andtheDemocraticImportantly,thisassessmentofprogressexcludesforestRepublicoftheCongo—haveaccountedforoverhalfdegradation,whichcanreduceforests’capacitytoofalldeforestationglobally.Trendswithinthesetrop-sequesterandstorecarbon,amongotherlife-sustainingicalcountries,however,varyconsiderably.Indonesia,ecosystemservices,withoutachangeinlandcoverorforexample,haswitnessedsubstantialdecreasesinuse.Butwhiledegradationmaynotleadtothecompletepermanentforestlosses,withtheannualrateofdefor-lossofforest,itremainsasignificantsourceofGHGestationdecliningbyanaverageof6percentperyearemissions.Byoneestimate,logging,drought,edgefrom2015to2022.ButinBrazil,deforestationrateshaveeffectsfromdeforestation,andfires,together,spurredincreasedbyanaverageof10percentperyearoverthisdegradationacrossnearly40percentoftheAmazonsameperiod,reversingdeclinesobservedintheprevi-from2001to2018,withannualcarbonlossesfromthisousdecade,andsimilarly,theDemocraticRepublicofdegradationcomparabletothoseassociatedwiththeCongosawaverageratesofpermanentforestlossesdeforestationacrossthebasinduringthesameperiodrisebyanaverageof7percentperyear(Hansenetal.(Lapolaetal.2023).Consequently,preventingforest2013;Curtisetal.2018;Turubanovaetal.2018;TyukavinaForestsandLandSTATEOFCLIMATEACTION2023106BOX14SpotlightonGabon:ProtectinghumidtropicalprimaryforestsintheCongoBasinGabonisoneofthemostforestedcountriesintheniesnotonlytosubmit30-yearforestmanagementworld,withhumidtropicalprimaryforestsstretchingplansfortheirconcessionsbutalsotoadoptmoreacrossmorethan85percentofitsland(Hansenetsustainablepracticeswithintheseforests,includingal.2013;Turubanovaetal.2018).Theseforestsremainlow-impactharvestingtechniquesandaharvestacarbonsink,sequesteringanannualaverageofrotationperiodofatleast20yearstoenableregrowthnet66MtCO2from2001to2022(Harrisetal.2021),and(ForestTrends2021;GaboneseRepublic2021).Justsixtheyalsoprovidehabitattomanyspecies,includingyearslater,Gabonestablished13nationalparksacrossapproximatelyhalfoftheremainingforestelephant3Mha,andprotectedterrestrialareasnowcoverpopulationinAfrica(Maiselsetal.2013).Fortunately,justover20percentofthecountry’sland(GaboneseGabonhasmaintainedthelowestrateofprimaryRepublic2021).Andin2018,then-presidentAliBongoforestloss(measuredasaproportionofcountries’Ondimbaannouncedthat,by2022(lateradjustedtoprimaryforestarea)intheCongoBasin,losingatotal2025),allforestconcessionsmustbecertifiedbytheofjust0.27MhaofhumidtropicalprimaryforestfromForestStewardshipCouncil(FSC2020;Collins2022b).2002to2022(Hansenetal.2013;Turubanovaetal.Additionaleffortsfromthegovernmenttoimprove2018)(FigureB14.1).Withthishistoricallylowleveloftraceabilityacrosstimbersupplychains—forexample,primaryforestloss,Gabonisamongtheworld’s“HighbydevelopingamonitoringsystemthatreliesonbarForest,LowDeforestation”(HFLD)countries,andin2021,codestotrackindividuallogs—mayalsohelpsupportitwasthefirstAfricannationtoreceivearesults-basedconservationandreduceillegallogging(Collins2022b;paymentforreducingemissionsfromdeforestationSearcey2022;Moballa-Mbunetal.2023).andforestdegradation(REDD+),withtheinitialtrancheof$17millioncomingfromNorwayaspartofits$150CivilsocietyhasalsohelpedprotectGabon’sforests.millioncommitmenttoGabonundertheCentralNongovernmentalorganizationslikeConservationAfricanForestInitiative(Tan2021).JusticeandBrainforest,forexample,havebeenconductingindependentforestmonitoring,aswellasTheGabonesegovernmenthastakenseveralstepsinvestigatinganddocumentingillegalactivities,fortoprotectitsforests,includingtherecentadoptionofalmostadecade.Notonlyhasthisworkledtomultiplealegislativeframeworkthatdemonstratesastrongarrests,butalsosomeoftheseorganizationshavepoliticalwilltoprioritizeforestprotection(Searceyhelpedprovidelegalassistancetocommunitiessuf-2022;Tan2021).In2001,forexample,Gabonreviseditsferingfromtheharmfulimpactsoflarge-scaleforestForestCode(Law016/2001)torequireloggingcompa-exploitation(NyirendaandMbzibain2020;Valléeetal.2022).Localcommunities,too,haveledeffortstocon-FIGUREB14.1PrimaryforestlossinGabonrelativeservethecountry’sforests.GabonrecentlywitnessedthefirstcaseofacommunityinitsnortheasternregiontootherCongoBasincountriesfrom2002to2022successfullyrequestingthegovernmenttodeclassifyaloggingconcessionontheirterritory,withtheformerDemocraticRepublicoftheCongoministerofwater,forests,thesea,andtheenvironmentCameroonorderingtheloggingcompanytoleave.TheMassaha,thelocalcommunitythatrequestedthisdeclassifi-EquatorialGuineacation,hassinceformallyaskedthegovernmenttoCentralAfricanRepublicestablishaprotectedareaacrosstheconcession,RepublicofCongowhichtheywouldmanage(Evine-Binet2022).GabonButdespitethisstrongregulatoryframeworkand01234567civilsociety’sefforts,challengespersist.WhileGabonrecentlyreceiveditsfirstresults-basedREDD+pay-Percentloss(%)ment,accessingclimatefinancehasproventobeespeciallydifficultforHFLDcountries(SchweikartetNote:Primaryforestlossfrom2002to2022isexpressedastheal.2022),andGabonwillneedconsiderablymorepercentageofeachcountry’s2001primaryforestarea.financialsupporttomaintainlowdeforestationrates(RepublicofGabon2022).Relatedly,effectiveenforce-Sources:HistoricaldatafromGlobalForestWatch,usingdatasetsmentalsoremainsdifficult,and,whileillegalloggingupdatedto2022(Hansenetal.2013;Turubanovaetal.2018).hasdeclined,itcontinuestothreatenGabon’sforestsForestsandLandSTATEOFCLIMATEACTION2023107BOX14SpotlightonGabon:ProtectinghumidtropicalprimaryforestsintheCongoBasin(ForestTrends2021;Searcey2022).Moreover,therehaspoverty(WorldBank2023c).Assub-SaharanAfrica’sbeencriticismthatGabon’sForestCodeandstrictpro-fourth-largestoilproducer,thecountry’seconomytectionstatusofnationalparksdoesnotadequatelyreliesheavilyonthisfossilfuel.In2020,forexample,considerlocalcommunities’rightsand,insomeoilproductionaccountedforalmost40percentofcases,threatensrurallivelihoods(YoboandIto2016;Gabon’sGDPandjustover70percentofitsexportsWily2012;Pyhäläetal.2016;WRM2020).Development(WorldBank2023e).Todiversifyitseconomyandsafe-andenvironmentalprojectshavestartedtodedicateguarditfromshocks,Gabonhaspledgedtoexpandfundingtosupportforest-dependentcommunities’otherindustries,includingtimberandpalmoilpro-income,livelihoods,andwell-being.Atthe2023Oneduction,sustainably.Thegovernment,forexample,hasForestSummit,forexample,50businessleaderscom-allocateddegradedlandstoindustrialpalmoilplan-mittedtocreating10millionjobsinsustainableforesttations,establishedrulesmandatingreduced-impactmanagementtobenefitlocalcommunitiesacrossloggingpractices,andbannedrawtimberexportstothetropics,includinginGabon(GEF2022;James2021;encourageproductionofmorevaluablewoodprod-OnePlanetSummit2023).WhilethesedevelopmentsuctsinGabon(Searcey2022;Prentice2021;Tan2021).representwelcomechanges,continuedconserva-WhileitisfartoosoontoevaluatetheenvironmentaltionofGabon’sforestswillrequiremoresystematicandclimateimpactsofthisstrategy,Gabondoesofferapproachestoaddressingthesechallenges.alitmustestforsynergizingeconomicdevelopmentandforestconservation.However,followingthemilitaryBeyondthesebarrierstoimplementation,Gabon’scoupinAugust2023,itremainsunclearifthenewgov-abilitytomaintaintheselowratesofdeforestationernmentwillcontinueimplementingformerpresidentmayalsoprovechallengingastheworldtransitionsAliBongo’sforestpolicies.awayfromfossilfuels,andthegovernmenttriestoliftroughlyathirdoftheGabonesepopulationoutofNotes:GDP=grossdomesticproduct;Mha=millionhectares;MtCO2=milliontonnesofcarbondioxide;REDD+=reducingemissionsfromdeforestationandforestdegradation.degradationrepresentsanimportantland-basedmiti-lateovermillennia.Butwhentheseecosystems’watergationmeasure,despitethechallengesassociatedwithtablesfall,oxygenenterstheupperlayersofpeat,spur-definingandmonitoringsuchdegradation(WRI2023a).ringdecompositionandsubsequentlossesofstoredcarbonandnitrogen(FAO2020;UNEP2022b).TheseFORESTSANDLANDINDICATOR2:degradedpeatlandscanemitCO2andN2OfordecadestocenturiesuntilallpeatisfullylostortheirsoilsarePeatlanddegradationrewetted(Wilsonetal.2016;LeifeldandMenichetti2018;(Mha/yr)FAO2020).Drainingpeatlands,inparticular,increasestheriskofpeatfires,whichcanleadtoadditionalGHG•Targets:Theannualrateofpeatlanddegradationemissions(FAO2020;UNEP2022b).globallydeclinesto0millionhectaresperyearAnestimated57Mha—nearly12percentoftheworld’s(Mha/yr)by2030,withnoadditionaldegradationpeatlands—aredegrading,suchthattheyarenolongerfrom2030to2050.activelyformingpeat,andpeataccumulatedovercenturiestomillenniaisnowdisappearing(UNEP2022b).Coveringjust3.8percentoftheplanet’sland(UNEPWhilewidespreadlandconversion,peatextraction,and2022b),peatlands—alsoknownasmires,bogs,fens,peatlanddrainagehistoricallyoccurredacrossborealandswampforests—areglobalhotspotsforcarbonandtemperateregions,peatlanddegradationisnowsequestrationandlong-termstorage.Theseecosystemsconcentratedprimarilywithinthetropics(Leifeldetal.containatleastafifthofsoilorganiccarbonstocks2019;Fluet-Chouinardetal.2023),wheretheexpansionglobally(Yuetal.2010;Pageetal.2011;Scharlemannetal.ofbothsmall-scalefarmingandlarge-scalecommodity2014;Dargieetal.2017)andstoreanorderofmagnitudeproductionincreasinglythreatenstheseecosystemsmorecarbonperhectarethanterrestrialforests(Tem-(Dohongetal.2017;Pageetal.2022).Morespecifically,minketal.2022).58Peatlandsalsoholdlargestoresoforganicnitrogen(LeifeldandMenichetti2018;Hugeliusetal.2020),astheirwaterloggedsoilsslowdecompositionandallowcarbon-andnitrogen-richpeattoaccumu-ForestsandLandSTATEOFCLIMATEACTION2023108justunder5percentoftheworld’sborealpeatlandsareofthecost-effectivemitigationpotentialisconcentrateddegrading,butinthetropicsthisfigurejumpstomoreamongjustthreenations:Canada,Indonesia,andthan40percent(LeifeldandMenichetti2018).theRepublicofCongo.ButdespiterecentadvancesinmappingpeatlandswithinsomeofthesecountriesCollectively,thesedegradedpeatlandsemitabout1.9andglobally,significantdatagaps,suchasincompleteGtCO2eeachyear(LeifeldandMenichetti2018;UNEPcoverage,inconsistentquality,andoutdateddata(UNEP2022b)—roughlyequivalenttoRussia’sGHGemissions2022b),inhibiteffortstomonitorprogresstowardthisin2020(ClimateWatch2023).Thisestimate,however,target.DataestimatingtheareaoforganicsoilsdrainedexcludesGHGemissionsfrompeatfiresthat,whilehighlyforagriculture,includingcropcultivationandgrazingvariableanddifficulttomeasure,likelyoccuronan(ConcheddaandTubiello2020),provideabestavail-orderofmagnitudefrom0.5to1.0GtCO2eannually(UNEPable,thoughstillimperfect,proxy(e.g.,someorganic2022b).Absentconcertedactiontoprotectpeatlands,soilsarenotpeat).59Thesedatashowthat,worldwide,theseGHGemissionscouldrisesignificantly,withrecent1.6Mhaoforganicsoilsweredrainedforagriculturalstudiesprojectingpeatlanddegradationacrossanotheractivitiesfrom1993to2018,withanaveragerateof0.0610to12Mha—areasroughlythesizeofSouthKoreaandMha/yroverthistimeperiod(ConcheddaandTubielloMalawi,respectively—by2100inbusiness-as-usual2020).Althoughtheseproxydataareinsufficienttoscenarios(Leifeldetal.2019;Humpenöderetal.2020).assessrecentprogresstowardthisnear-termtarget,theyindicatethatdegradationoftheworld’speatlandsHaltingworldwidepeatlanddegradationby2030,then,continues(Figure46).canhelplimitglobaltemperatureriseto1.5°C(Griscometal.2017).While177countriescontainpeatlands(UNEP2022b),Roeetal.(2021)estimatethatroughly90percentFIGURE46Historicalprogresstoward2030,2035,and2050targetsforpeatlanddegradationInsufficientDataS-CurveUnlikelyMha/yrHistoricalCurrentPaceneededtodatatrendreachtargets.07Annualaverage.06from1993-20180.06.05.04.03.02.012030target2035target2050target0000200020102020203020402050Notes:Mha/yr=millionhectaresperyear.Historicaldataforforestsandlandindicatorswereestimatedusingmapsderivedfromremotelysenseddata,andaccordingly,theycontainadegreeofuncertainty.SeeJaegeretal.(2023)formoreinformationonmethodsforselectingtargets,indicators(includingtheknownlimitationsofeach),anddatasets,aswellasourapproachforassessingprogress.Sources:HistoricaldatafromConcheddaandTubiello(2020);targetsderivedfromGriscometal.(2017).ForestsandLandSTATEOFCLIMATEACTION2023109Theseproxydata,however,mayunderestimatepeatFORESTSANDLANDINDICATOR3:degradationforseveralreasons.Thedatafocusondrainageoforganicsoilssolelyforagriculturalactivities,Mangroveloss(ha/yr)andalthoughagricultureremainsaprimarydriverofpeatlanddegradationglobally,othercausesofdegra-•Target:Theannualrateofgrossmangrovelossdation—includingroadandinfrastructuredevelopment,forestry,oilsandsmining,andpeatextraction,amonggloballydeclinesto4,900hectaresperyearothers—arenotincludedintheestimates(Conchedda(ha/yr)by2030.60andTubiello2020;UNEP2022b).Moreover,thethresh-oldofpeatdepthusedtodefinepeatlandsvariesbyStretchingacrossnearly15Mhaofshorelinegloballycountry.Innationswherethisthresholdislowerthan(Buntingetal.2022),mangroveforestsareamongthethedepthoforganicmaterialusedtodefineorganicworld’smostcarbon-denseecosystems(Alongi2014;soilinConcheddaandTubiello(2020),peatlanddeg-SpaldingandLeal2021),holdingatleasttwiceasmuchradationmaynotbeincludedintheseestimatesofcarbonperhectareasboreal,temperate,andtropicaldrainedorganicsoils.Asaresult,theglobalextentofforests(Goldsteinetal.2020;Temminketal.2022).61organicsoilsissignificantlylowerthanthemostrecentGlobally,mangrovesforestsstoreapproximately6.2toestimatesforpeatlandarea(Xuetal.2018;UNEP2022b),15.2GtC,withover80percentofthiscarboncontainedinandestimatesoftheareaoforganicsoilsdrainedfortheirsoils(Goldsteinetal.2020;LealandSpalding2022;agriculturalactivities(25Mha)aresubstantiallylowerTemminketal.2022).62Accumulationofcarboninthesethanthemostrecentestimateoftheglobalareaofcoastalwetlandsoilsoccursgraduallyoverhundredstodegradedpeatland(57Mha)(ConcheddaandTubiellothousandsofyears,asmangroverootstrapsuspended2020;UNEP2022b).organicmatterduringtidalfloodingandasdeadbio-massslowlydecomposesintheirwaterloggedsoils(LealandSpalding2022).Duetotheseecosystems’carbonFIGURE47Historicalprogresstoward2030targetformangrovelossWrongDirection,U-turnNeededS-CurveUnlikelyPaceneededtoha/yrHistoricalCurrentreachtargetsdatatrend45,50040,00035,00032,00030,00025,000Annualaveragefrom2017-1920,0002030target15,00010,0004,9005,0000201020202030204020502000Notes:ha/yr=hectaresperyear.Indicatorsforforestsandlandexperiencehighinterannualvariabilityinhistoricaldataduetobothanthropo-genicandnaturalcauses.Accordingly,10yearsinsteadof5yearswasusedtocalculatethelineartrendlinewherepossible.Forthisindicator,however,a12-yeartrendlinewascalculated,usingdatafrom2008to2019toaccountforthefullrangeofyearsincludedinfour3-yearepochsfromMurrayetal.(2022).Toestimatetheaverageannuallossratefrom2008to2019,grosslosswasdividedbythenumberofyearsineachepoch.Also,historicaldataforforestsandlandindicatorswereestimatedusingmapsderivedfromremotelysenseddata,and,accordingly,theycontainadegreeofuncertainty.SeeJaegeretal.(2023)formoreinformationonmethodsforselectingtargets,indicators(includingtheknownlimitationsofeach),anddatasets,aswellasourapproachforassessingprogress.Sources:HistoricaldatafromMurrayetal.(2022);2030targetderivedfromRoeetal.(2021).ForestsandLandSTATEOFCLIMATEACTION2023110density,thelossofevenasmallareaofmangroves,par-Restoreforests,peatlands,ticularlywhentheirsoilsaredisturbedordredged,canandmangrovesreleaseanoutsizedamountofGHGemissions,relativetootherecosystems.Limitingglobalwarmingto1.5°Cwillalsorequirelarge-scalerestorationofhigh-carbonecosystems(RoeetAlthoughaverageannualratesofglobalgrossman-al.2019).Reestablishingforests,peatlands,andman-grovelosshavesloweddramaticallysincethelate20thgroves,specifically,candeliveralmost30percentofcentury(Friessetal.2019),theyappeartoonceagainthecost-effectivemitigationpotentialfromland-basedbetickingupward.63From1999to2019,forexample,measuresacrossecosystems(Figure44)(Roeetal.2021).theworldlostanestimated560,000hectares(ha)ofAppropriatelyimplementedrestorationcancomple-mangroveforests,64withgrosslossesofthesecoastalment,butnotreplace,effortstoprotecttheworld’swetlandsincreasingbyanaverageofnearly950remainingforests,peatlands,andmangroves.65Notonlyhectaresperyear(ha/yr)since2008(Murrayetal.2022).isrecoveringtheseecosystemsoftenmorecostlythanAccordingly,globaleffortstovirtuallyhaltconversionsafeguardingthem,butitmayalsotakedecades(ifnotofmangroveforestshavefallenshort,suchthatrecentlonger)fortheseecosystemstoregainspeciesdiversity,ratesofchangeareheadinginthewrongdirectionecosystemstructure,andecologicalfunctions,allofentirely,andasharpreversalinactionisneededtowhichmayimpactcarboncyclingandGHGfluxeswithinreducetheselossestonomorethan4,900ha/yrby2030theseecosystems(Sasmitoetal.2019;Poorteretal.2021;tohelplimitwarmingto1.5°C(Figure47)(Roeetal.2021).Kreylingetal.2021;Suetal.2021;Cook-Pattonetal.2021;LoiselandGallego-Sala2022).Reforestation,aswellAsiahasexperiencedthelargestmangrovelossesoveraspeatlandandmangroverestoration,then,cannotthepastfewdecades(Buntingetal.2022;Murrayetal.cancelouttheimpactsoflosingtheseecosystems—they2022).Hometoroughly20percentoftheworld’sman-donotofferaone-to-onetrade.groveforests(Buntingetal.2022),IndonesialostmoreofthesecoastalwetlandsthananyothercountrybetweenFORESTSANDLANDINDICATOR4:1999and2019,accountingforroughlyathirdofman-grovelossesglobally(Murrayetal.2022).However,thereReforestation(totalMha)aresomesignsofprogressacrossthisSoutheastAsiannation.Annualratesofmangroveloss,forexample,•Targets:Reforestationoccursacrossatotalof300declinedfromanaverageofapproximately15,000ha/yrfrom2014to2016toanaverageof10,000ha/yrfrommillionhectares(Mha)between2020and2050,2017to2019.Still,thesemostrecentratesoflossremainreaching100Mhaby2030and150Mhaby2035.66wellabovethosefrom2005to2013,indicatingtheneedformorerapiddeclines(Murrayetal.2022).MyanmarAllmodeledpathwayslimitingglobaltemperatureandBrazilhavealsoexperiencedrelativelyhighratesriseto1.5°Cwithnoorlimitedovershootrelyoncar-ofmangroveloss;togetherwithIndonesia,thesethreebonremoval,andreforestationrepresentsarelativelycountriesaccountedforapproximatelyhalfofglobalcost-effective,readilyavailableapproachthat,whenmangrovelossesfrom1999to2019(Murrayetal.2022).Theseestimatesofmangrovelossincludethosedirectlyattributabletohumanactivities,suchasconversiontoaquacultureponds,ricepaddies,orpalmoilplan-tations,aswellasthoseduetoindirectanthropogeniccauseslikesealevelriseandmorenaturalprocesseslikecoastalerosionortropicalstorms(Murrayetal.2022).Globally,lossesstemmingfromthelatteraccount50percentofmangrovelosses,thoughthissharecanvarysignificantlybyregion.InAsia,forexample,man-grovelossesthataredirectlyattributabletohumanactivitiesaccountfor75percentoflosses(Murrayetal.2022).Ongoingchanges,includinglosses,then,canbeexpectedduetotheseecosystems’dynamicnature,andwhenconsideringbothlossesandgains—orthenetchangeinmangroveextent—globalestimatesindicatethattheannualrateofnetlosseshasdecreasedoverthepasttwodecades(Buntingetal.2022).ForestsandLandSTATEOFCLIMATEACTION2023111implementedappropriately(i.e.,byfocusingonrecov-100Mhaby2030(Roeetal.2021),however,willrequireaeringforests’ecologicalfunctions,ratherthansolelyon1.5-foldaccelerationintheaverageannualrateoftreereestablishingtrees),cangenerateadditionalbenefitstocovergainfrom2000to2020(6.5Mha/yr)(Figure48).adaptation,sustainabledevelopment,andbiodiversity(Figure44)(IPCC2022b).Yetdatalimitationsposesig-Althoughglobalprogressmadetowardthisnear-nificantchallengestomonitoringreforestationglobally,term,1.5°C-alignedtargetremainsofftrack,somewithremotelysenseddataonthegrossareaoftreecountrieshavereestablishedtreecoveratorabovecovergainofferingabestavailableproxy.67However,thepacerequiredtofulfilltheirnationalcontributionsthesedatamayincludetreecovergainsthat,althoughtoreforesting100Mhagloballyby2030.68Forexample,potentiallybeneficialtoclimatemitigation,donotmeetshouldRussia,theUnitedStates,andChina—countriescommondefinitionsofreforestationandwouldnotthatcollectivelyaccountforjustover15percentoftheconstituteprogresstowardthese2030and2050targets,cost-effectivemitigationpotentialforreforestationsuchasafforestationacrosshistoricallynonforestedestimatedbyRoeetal.(2021)—sustaintheirrecentrateslandsorregrowthafterharvestingwithinalreadyestab-oftreecovergainwithinhistoricallyforestedareaslishedplantations(WRI2023b).Also,increasesintreeandoutsideofcurrenttreeplantations,theywould,coveroccurgraduallyastheseplantsgrowand,there-together,increasetheirforestcoverbynearly30Mhabyfore,aremorechallengingtoreliablyestimateusing2030(Potapovetal.2022a).Another50countrieshavesatelliteremotesensingmethodsonshorttimescales.witnessedtreecovergainratesthat,ifmaintainedoverStill,historicalcumulativedatasuggestthat,worldwide,thisdecade,wouldalsoputthemontracktofulfilltheiratotalof130Mhaexperiencedtreecovergainfrom2000nationalcontributionstothisglobalreforestationtargetto2020(Potapovetal.2022a).Reforestinganadditional(Roeetal.2019,2021;Potapovetal.2022a).Thesegains,FIGURE48Historicalprogresstoward2030,2035,and2050targetsforreforestationRightDirection,OffTrackS-CurveUnlikelytotalMhaCumulativeCurrentCumulativefuturedataandhistoricaldatatrendpaceneededtoreachtargets500400Accelerationrequiredtoreach2050target3002030target3001.5xTotalgainfrom2035targetNEEDEDPACEFORTARGET1502002000-20202030target130NEEDEDPACE100NEEDEDPACEFORTARGETFORTARGET100HISTORICALDATA02020-20302020-20352020-20502000–2020Notes:Mha=millionhectares.Reforestationtargetsareadditionaltoanyreforestationthatoccurredpriorto2020,andthesetargetsarecumu-lativefrom2020to2050.FollowingBoehmetal.(2021)andduetodatalimitations,theaverageannualrateofchangeacrossthemostrecentlyavailabletimeperiod(2000–2020)wasusedtoestimatethehistoricalrateofchange,ratherthanalineartrendline.Also,historicaldataforforestsandlandindicatorswereestimatedusingmapsderivedfromremotelysenseddata,andaccordingly,theycontainadegreeofuncertainty.SeeJaegeretal.(2023)formoreinformationonmethodsforselectingtargets,indicators(includingtheknownlimitationsofeach),anddatasets,aswellasourapproachforassessingprogress.Sources:HistoricaldatafromPotapovetal.(2022a);2030and2050targetsadaptedfromRoeetal.(2021).ForestsandLandSTATEOFCLIMATEACTION2023112however,wouldtotaljust7Mhaand,therefore,wouldnotimmediateandcontinueuntilthesoilisrewetteddeliversmallerclimatebenefitsrelativetoRussia,theorallpeatislost(FAO2020;Temminketal.2022).TheUnitedStates,andChina.efficacyofrestoringpeatlandstoavoidtheseGHGemissions,however,willdepend,inpart,onwhatformFORESTSANDLANDINDICATOR5:ofdegradationthesewetlandecosystemsexperienced(e.g.,drainage,burning,orcutting).RewettingpeatlandsPeatlandrestoration(totaldrainedbyagriculture,forexample,cansignificantlyMha)reduceorevenhaltcarbonlosses,aswellasenablecarbonsequestration(Güntheretal.2020;Mrotzeketal.•Targets:Peatlandrestorationoccursacrossatotalof2020;Darusmanetal.2023).70Becausedrainedpeat-landswillemitCO2andN2Ofordecadestocenturies,20–29millionhectares(Mha)ofdegradedpeatlandsrestoringtheseecosystems’watertablesshouldoccurbetween2020and2050,reaching15Mhaby2030.69asquicklyaspossibletomaximizeavoidedGHGemis-sions(Güntheretal.2020;Temminketal.2022).PeatlandEvenifpeatlanddegradationendedtoday,degradedrewettingcanalsolowertheriskofpeatfires(FAO2020),peatlandscouldcontinueemittingroughly1.9GtCO2ewithonestudyestimatingthat,byrestoring2.5Mhaofperyearfordecadestocenturies(LeifeldandMenichettipeatlands,Indonesiacouldreducefireriskbyupto302018;UNEP2022b)because,unlikeforests,peatlandspercent(Tanetal.2022).storecarbonprimarilywithintheirwaterloggedsoilsratherthaninabovegroundvegetation.Carbonandnitrogenlossesfollowingland-usechanges,then,areFIGURE49Historicalprogresstoward2030and2050targetsforpeatlandrestorationInsufficientDataS-CurveUnlikelytotalMhaHistoricalCumulativefuturedataanddatapaceneededtoreachtargets352050target3020-2925202030target1515NEEDEDPACEFORTARGET10NEEDEDPACEDataasofFORTARGET520150020152020–20302020–2050Notes:Mha=millionhectares.Peatlandrestorationtargetsareadditionaltoanyrestorationthatoccurredpriorto2020,andthesetargetsarecumulativefrom2020to2050.PeatlandrestorationtargetswereadaptedfromHumpenöderetal.(2020)andRoeetal.(2021),whoassumethat0Mhaofpeatlandsgloballywererewettedasof2015.Thisassumption,however,doesnotsuggestthatpeatlandrestorationisnotoccurring,asthereisevidenceofrewetting,forexample,inCanada,Indonesia,andRussia(UNEP2022b;Sirin2022;BRGM2023),butratherspeakstothelackofglobaldataonpeatlandrestoration.SeeJaegeretal.(2023)formoreinformationonmethodsforselectingtargets,indicators(includingtheknownlimitationsofeach),anddatasets,aswellasourapproachforassessingprogress.Sources:HistoricaldatafromHumpenöderetal.(2020);targetsadaptedfromHumpenöderetal.(2020)andRoeetal.(2021),usingrecentestimatesofdegradedpeatlandsfromUNEP(2022b).ForestsandLandSTATEOFCLIMATEACTION2023113Restoring15Mhaofpeatland—morethanaquarterofallwatersheds,suchasincreasedsedimentation,orexac-degradedpeatlandsworldwide—by2030,then,canhelperbatedbyclimatechangeimpacts,suchasincreasinglimitingwarmingto1.5°C(Humpenöderetal.2020;Roetemperaturesandsealevelrise(Murrayetal.2022;etal.2021;UNEP2022b).AlthoughdataareinsufficientBuntingetal.2022;SpaldingandLeal2021).toassessprogresstowardthisglobaltarget(Figure49),availableevidencesuggeststhatcurrenteffortsStill,availableglobalestimatesindicatethattheworldtorestorepeatlandsareoccurring,butlikelynotatthegainedapproximately180,000hectaresofmangrovepaceandscalerequired(Stracketal.2022;UNEP2022b).forestsfrom1999to2019(Murrayetal.2022).73AsmallFrom2010to2013,forexample,theRussiangovern-percentage—8percentor15,000hectares—ofthismentimplementedoneofthelargest-scalepeatlandgrossgainareacanbeattributedtodirecthumanrewettingprojectsintheNorthernHemisphereacrossinterventions,suchasmangroveplantingorrestorationmorethan73,000hectaresnearMoscow(Sirin2022);activities,andalloccurredinAsiaandAfrica(Murrayetduringtheearly2000s,Germanyrewettedmorethanal.2022).Thevastmajorityofincreasesareinsteaddue20,000hectaresofpeatlandsinoneofitsnortheasterntoindirectdrivers,suchasthecolonizationofnewsedi-states(Zerbeetal.2013).Whilebothinitiativesrepresentmentsorinlandmigration(Murrayetal.2022).Althoughstepsforward,theserestoredareasaccountforasmallmangrovegainduetodirecthumaninterventionsdoesfractionofthedegradedpeatlandswithinRussiaandnotindicatewhetherestablishmentofthesemangrovesGermany(UNEP2022b).Indonesia,incontrast,hasmaderestoredtheecologicalfunctionoftheseecosystems,morerecentandsignificantprogressinrestoringitsitdoesprovidethebestavailableproxyformangrovedegradedpeatlands,withthegovernmentreportingrestoration.Thesedataindicatethatglobaleffortstothatitrestoredjustover300,000hectaresin2021andrestore240,000hectaresofmangroveforestsby2030morethan240,000hectaresin2022(BRGM2021,2023).remainwellofftrackandwillrequiregreaterthanaShouldIndonesiacontinuerestoringdegradedpeat-10-foldincreaseintheaverageannualrateofdirectlandsatthisrate,itwouldrestoremorethan2.4Mhamangrovegains(750ha/yrfrom1999to2019)(Figure50).by2030and,therefore,fulfillitsnationalcontributiontorestoring15Mhapeatlandgloballybytheendofthisdecade(Humpenöderetal.2020;Roeetal.2021).71FORESTSANDLANDINDICATOR6:Mangroverestoration(totalha)•Target:Mangroverestorationoccursacrossatotalof240,000hectaresby2030.72RestoringmangroveforestsnotonlyenhancestheirabilitytosequesterandstorecarbonbutmayalsoreduceGHGemissionsthatwouldhaveotherwisecontinuedfordecadesaftercertaindisturbances,suchasthelossofsoilorganiccarbonfollowingdrainageforaquacultureponds(Temminketal.2022).Monitoringmangroverestoration,however,remainschallenging.Aswithforests,mangrovesgrowgradually,andthere-forerestorationmaybemorechallengingtomonitoronshortertimescales,asgainmaynotbedetecteduntilmangrovetreesreachacertainlevelofmaturity.Moreover,theestablishmentofmangrovetreesdoesnotalwaysindicaterestorationoftheecologicalfunctionsoftheseecosystems,andinsomecases,thisadditionofmangrovescanleadtonegativeconsequences(e.g.,thelossofothercoastalecosystems)orshort-livedgainsiftree-plantingisnotimplementedappropriately(Leeetal.2019).Additionally,thesecoastalwetlandsarenaturallydynamicecosystems,withchangesalsooccurringduetolarge-scaleprocessesthatcanbeinfluencedindirectlybyhumanactivitiesinadjacentForestsandLandSTATEOFCLIMATEACTION2023114FIGURE50Historicalprogresstoward2030targetformangroverestorationRightDirection,WellOffTrackS-CurveUnlikelytotalhaCumulativeCumulativefuturedataandhistoricaldatapaceneededtoreachtargets300,000250,000Acceleration2030target200,000requiredtoreach150,000240,000100,0002030targetNEEDEDPACE50,000>10xFORTARGETTotaldirectgainfrom1999-201915,00001999-20192020-2030Notes:ha=hectares.Mangroverestorationtargetsareadditionaltoanyrestorationthatoccurredpriorto2020.Murrayetal.(2022)estimatedthatagrossareaof180,000ha(95percentconfidenceintervalof0.09to0.30Mha)ofmangrovegainoccurredfrom1999to2019,only8percentofwhichhasbeenattributedtodirecthumanactivities,suchasmangroveplantingandrestoration.Weestimatedthemostrecentdatapointformangroverestorationbytaking8percentofthetotalgrossmangroveareagainedfrom1999to2019(15,000ha).FollowingBoehmetal.(2021)andduetodatalimitations,theaverageannualrateofchangeacrossthemostrecentlyavailabletimeperiod(1999–2019)wasusedtoestimatethehistoricalrateofchange,ratherthanalineartrendline.Also,historicaldataforforestsandlandindicatorswereestimatedusingmapsderivedfromremotelysenseddataandaccordinglycontainadegreeofuncertainty.SeeJaegeretal.(2023)formoreinformationonmethodsforselect-ingtargets,indicators(includingtheknownlimitationsofeach),anddatasets,aswellasourapproachforassessingprogress.Sources:HistoricaldatafromMurrayetal.(2022);2030targetfromRoeetal.(2021).Notethatthistargetisconservativeasitexcludesmangroveforestslostbefore1996,andpreviousstudiessuggestthatmangrovelossesinthe1980sand1990sweresignificant(Friessetal.2019),somuchsothat,byoneestimate,theworldmayhavelostasmuchas35percentofmangroveforestsgloballyduringthesetwodecades(Valielaetal.2001).Thistarget,therefore,likelyrepresentstheareaofmangrovesthat,ataminimum,needstoberestoredtoachieveclimatemitigationgoals.Thosedesignedtobuildresiliencewouldlikelycallformoreambitiousmangroverestoration(LealandSpalding2022),suchasthenearly410,000hatargetsetundertheMangroveBreakthrough(GlobalMangroveAllianceandHigh-LevelChampions2023).SustainablymanageforestsGriscometal.2020).Countriesintemperateandborealandgrasslandsregions,whereforestryactivitiesdrivethemajorityoftreecoverlosses(Curtisetal.2018),canmakeapartic-ImprovingecosystemmanagementcanalsohelpularlyimportantcontributiontomitigationbyimprovingreduceGHGemissionsandenhancecarbonsequestra-forestmanagement(Roeetal.2021).Ingrasslands,thesetion,thoughmanagementpracticesthatoptimizethesepracticesmayfocusonimprovingfiremanagement,mitigationbenefitswillvarybyecosystemandlocationforexample,byprescribingearlydryseasonburns(IPCC2019,2022b).Formanagednaturalorplantedthatcanhelpminimizemoreextensiveandsevereforests,suchpracticesgenerallyincludeimplementingfireslaterinthedryseason(Lipsett-Mooreetal.2018;reduced-impactlogging(e.g.,narrowerroadstohaulGriscometal.2020).timberandfellingstrategiesthatminimizewasteandavoiddamagetonearbytrees),extendingharvestCollectively,suchmanagementpracticesaccountforrotationstoincreasetheageatwhichtreesarefelled,justunder15percentofthecost-effectivemitigationandsettingasideareasprotectedfromloggingtohelppotentialassociatedwiththeseland-basedmeasuresconservebiodiversity(Ellisetal.2019;Austinetal.2020;acrossecosystems(Figure44)(Roeetal.2021).AndwhiletheirglobalcontributiontomitigationissmallrelativetoForestsandLandSTATEOFCLIMATEACTION2023115protectingandrestoringhigh-carbonecosystems,suchPartiestotheConventiononBiologicalDiversityadoptedactivitiesmayprovelesschallengingtoimplement,astheKunming-MontrealGlobalBiodiversityFramework,theyoftenentailfewerchangesinlanduseorinexistingwhichcommitssignatoriesbothtoprotectingatleastoperationalsystems(Ellisetal.2019;Cook-Pattonet30percentoftheplanetandtorestoringanother30al.2021).Butdespiterecentadvancesinmappingthepercentofdegradedecosystemsby2030(CBD2022a).spatialdistributionofforestmanagementglobally(LesivThoughthesenewpledgesreflectsustainedpoliticaletal.2022),detailedinformationonforestmanagementfocusonprotecting,restoring,andsustainablymanag-practicesataglobalscaleisnotavailable.Similarly,noingecosystems,theydonotguaranteeaction.Previoussuchdataexistsforgrasslands,thoughglobalmappingeffortstofollowthroughonsimilarcommitmentsandmonitoringeffortsareunderway.Duetothesedatahaveoftenfallenshort,withgovernments,companies,limitations,thisassessmentofglobalprogressexcludesandfinancialinstitutionscollectivelymissinginterimtargetsandindicatorsforimprovedmanagementofgoalsundertheBonnChallengeandtheNewYorkforestsandgrasslandsfromRoeetal.(2021).74DeclarationonForests(IUCN2020;NYDFAssessmentPartners2019,2022a).RecentdevelopmentsacrossforestsandlandAchievingthesemultilateralcommitmentswillrequireallcountriestostrengthentheirconservationWhileglobalprogressmadeinacceleratingland-policies.Toavoidadditionallosses,countriescanbasedmitigationmeasuresacrossforests,peatlands,consider,forexample,placingmoratoriaonconver-andmangrovescontinuestofallwoefullyshortofthesion,establishingandexpandingprotectedareas,75changesrequiredtohelplimitwarmingto1.5°C,mul-financiallyincentivizingconservation(e.g.,throughtilateralcommitmentstoconservetheseecosystemspayment-for-ecosystem-servicesschemes),encour-abound.AtCOP26,forexample,morethan140nationsagingcommunityforestmanagement,andlegallysignedtheGlasgowLeaders’DeclarationonForestsrecognizingIndigenousPeoples’landrights(Box15),andLandUse,agreeingtohaltandreverseforestlossamongothermeasures(Chaturvedietal.2019;NYDFandlanddegradationwithinthenextdecade(PrimeAssessmentPartners2021;Wolfetal.2021;IPCC2022b).Minister’sOffice2021a),andinDecember2022,nearly190Similarly,restorationeffortscanbenefitfromarangeofsupportivepolicies,fromincreasingpublicfinancefortheseprojects(e.g.,byintegratingrestorationcostsintoBOX15SecuringIndigenousPeoplesandlocalcommunities’landrightsunderpinseffectiveland-basedmitigationStrengtheningIndigenousPeoples’tenuresecuritypercentofthisland.Whilethetotalareaoflandlegallyoffersonehighlyeffective,relativelylow-coststrategydesignatedforandownedbythesegroupsincreasedtoprotecttheworld’sremainingintactforests(Stevensbyjustover100Mhafrom2015to2020,nearly1,400etal.2014;Dingetal.2016),atleast36percentofwhichMha—anarearoughlythesizeofAntarctica—hasnotstretchacrossthesecommunities’territories(Faetal.yetbeenrecognizedundernationallawsandregula-2020).Severalstudiesfindthat,inthetropics,defor-tions(RRI2023).estationacrossIndigenouslandsissignificantlylowerthaninnearbyforests,and,insomecases,compara-Clarifying,strengthening,andupholdinglandrightsbletoorlessthanlosseswithinstrictlyprotectedareasalsoplaysanessentialroleinenablingrestoration.(Nolteetal.2013;Schleicheretal.2017;Walkeretal.Communitiesneedassurancesthattheywillaccrue2020;Szeetal.2022).IntheAmazonbasin,forexample,thebenefitsofreestablishingtrees,rewettingpeat-forestsmanagedbyIndigenousPeoplesremovedlands,orrestoringmangroves.Withoutrightstoanet340MtCO2peryearfrom2001to2021,whilerestoredlands,theymayhavelittleincentivetodevoteforestsoutsideIndigenouslandswerecollectivelyatheirtime,labor,andresourcestosuchprojectsnetcarbonsourceduetosubstantiallossesinforest(Gregersenetal.2011;Hansonetal.2015;Barrowetal.cover(Veitetal.2023)(FigureB15.1).Yetananalysisof2016;Chazdonetal.2017;Djenontinetal.2018;Evanslegalframeworksinmorethan70countriescovering2018;Legesseetal.2018;LovelockandBrown2019;85percentofEarth’slandfindsthat,despiteholdingWainainaetal.2021;IPCC2022b).Yettenureinsecurityandusingatleasthalfoftheworld’sland,Indigenousremainsstubbornlyhigh.Nearly1billionpeoplebelievePeoplesandlocalcommunitieslegallyownjust11theycouldlosepartoftheirlandortherighttouseitForestsandLandSTATEOFCLIMATEACTION2023116BOX15SecuringIndigenousPeoplesandlocalcommunities’landrightsunderpinseffectiveland-basedmitigationFIGUREB15.1AnnualaverageCO2fluxinsideandoutsidetailoredtolocalcontexts;avoidexacerbatingIndigenouslandsacrossnineAmazoniancountriesinequalities(e.g.,byprovidingalternativelivelihoodsfrom2001to2021whereneeded);anddeliverimportantbenefitstocommunities(e.g.,improvinghealthoutcomesorMtCO2/yrAnnualgrossCO2emissionsprotectingculturallysignificantsites).Theseprocesses,1400AnnualgrossCO2removalsinturn,canboostlocalsupportforrestorationandwillingnesstocareforecosystemsafterprojectsend1200(Hansonetal.2015;Lazos-Chaveroetal.2016;Wylie1000etal.2016;LovelockandBrown2019;DiSaccoetal.2021;Indrajayaetal.2022;Phametal.2022).Inthelate8001970s,forexample,theNepalesegovernmentbegandevolvingforestmanagementtolocalcommunities600and,in1993,passedlegislationthatlegallyrecognizedcommunityforestusergroupsasindependent,400self-governinginstitutionsresponsibleforprotectingNetsourceandmanagingnationalforestlands.Indoingso,thegovernmentgrantedthesegroupsrights(i.e.,access,200use,exclusion,andmanagement)totheselands,enablinglocalcommunitiesnotonlytomakedecisions0abouttheseforestsbutalsotobenefitfromthem.Thesecommunityforestusergroupsnowmanageover-200Netsink1.2MhaofforestedlandsacrossNepal(Buckingham-400andEllersick2015);insomeareas,communityforestryprogramsrestoredforestsatanaveragerateof2-600percentperyearfrom1990to2010(Niraulaetal.2013).-800Indigenousandlocalcommunitiesarenotmonoliths,however,anddecision-makingprocessesshould-1000accountforexistinginequitiesbetweenandwithinthem.Women,forinstance,oftenencounterobstacles-1200toinfluencinglandgovernancethatrangefromgendereddivisionsoflaborthatassignmuchoftheForestsinsideForestsoutsideunpaid,caregivingresponsibilitiestothem,therebyIndigenouslandsIndigenouslandslimitingthetimetheycandevotetodecision-makingprocesses,toculturalnormsthateitherexcludeNote:CO2=carbondioxide;MtCO2/yr=milliontonnesofcarbonwomenfromtheseforumsentirelyorlimittheirdioxideperyear.activeparticipation(Salcedo-LaViñaandGiovarelli2021).Similarly,inNepal,socialnormsacrosssomeSources:Veitetal.(2023).communityforestusergroupsfavoredlocalelitesindecision-makingprocessesandexcludedthosefromwithinfiveyears(Feyertagetal.2020),withperceivedlow-incomehouseholdsorhistoricallymarginalizedtenureinsecurityabovetheglobalaverageincoun-castes,effectivelylimitingtheirabilitytoinfluence,astriesaccountingforjustoverhalfofthecost-effectivewellasbenefitfrom,forestrestoration(Buckinghammitigationpotentialforrestoration(Roeetal.2021;andEllersick2015).Feyertagetal.2020).MeaningfullyengagingIndigenousPeoplesandlocalcommunitiesasfullpartnersinthedesign,implementation,andmonitoringofrestorationalsounderpinssuccessfulprojects(Höhletal.2020).Donewell,inclusive,participatorydecision-makingprocessesenablecommunitieslivingwithinornearbyhigh-carbonecosystemstodeterminerestorationprojects’goals,ensuringthattheyareappropriatelyNotes:Mha=millionhectares;MtCO2=milliontonnesofcarbondioxide.ForestsandLandSTATEOFCLIMATEACTION2023117FIGURE51Globaldistributionofcost-effectivemitigationpotentialforforests,peatlands,mangroves,andgrasslandsbycountryTotalcost-effectivemitigationpotential(GtCO2e/yr)00.050.10.51Notes:GtCO2e/yr=gigatonnesofcarbondioxideequivalentperyear.Following(Roeetal.2021),cost-effectivemitigationpotentialincludesreductionsinGHGemissionsandenhancedcarbonsequestrationavailableatacarbonpriceofupto$100/tCO2e.Source:Roeetal.(2021).thebudgetsofwell-fundedministriesorissuinggreenortoalleviatepovertyandencouragesustainablelandbluebonds)andde-riskingprivatesectorinvestmentsinmanagement(Budimanetal.2021;Mursyidetal.2021;restoration(e.g.,first-losscapitalstructures)tosecur-WRI2023d).Together,theseactionshavecontributedtoinglandtenureandimplementingcomplementary,significantreductionsinprimaryforestloss,aswellasland-sparingstrategies(e.g.,thosethatsustainablytherestorationofover33,000hectaresofmangrovesboostagriculturalyieldstohelprelievecompetingin2021andmorethan240,000hectaresofpeatlandspressuresonecosystemsandfreefarmlandforresto-in2022(BRGM2022,2023;Weisseetal.2023).Followingration)(Hansonetal.2015;Dingetal.2017;Chaturvedietthissuccessinreducingdeforestation,Norwayandal.2019;LöfqvistandGhazoul2019;IPCC2022b).RecentIndonesiaannouncedaREDD+dealaheadofCOP27—aeffortstoadoptandimplementthesepolicies,however,breakthroughafterIndonesiaendedtheirinitialREDD+remainuneven.ThisisespeciallytrueacrossBrazil,theagreementin2021,citinga“lackofconcreteprogress”DemocraticRepublicoftheCongo,andIndonesia—threecountriesthat,together,candelivernearly40percentofcost-effectivemitigationpotentialassociatedwithland-basedmitigationmeasuresacrossecosystems(Figure51)(Roeetal.2021).Followingdevastatingfiresin2015,Indonesiahasadoptedseveralpoliciestoconserveitshigh-carbonecosystems.Theseeffortsincludedstrengtheningregulationstolimitpeatlanddrainageacrosscommer-cialplantations,issuingamoratoriumonnewpalmoilconcessions(thoughthisexpiredinSeptember2021),andmakingpermanentanothernationwidemoratoriumonnewconcessionsinprimaryforestsandpeatlands(Budimanetal.2021;NYDFAssessmentPartners2021;WRI2023d;MuntheandUngku2021).Thegovernmentalsoestablishedanagencydedicatedtorestoringpeat-landsandmangroves,aswellaspassedsocialreformsForestsandLandSTATEOFCLIMATEACTION2023118inreceivingpaymentsforresultsachievedin2016andtryofIndigenousPeoples,signingadecreetorejuvenate2017(NYDFAssessmentPartners2021).UnderthisnewtheAmazonFund,revokingalawthatallowedminingdeal,Norwayagreedtopay$56millionforverifiedinprotectedareasandonIndigenousPeoples’lands,GHGemissionsreductionsfrom2016to2017,aswellasandlaunchinganti-deforestationraids(MaisonnaveissuesubsequentpaymentsunderIndonesia’sexistingandJeantet2023;Spring2023).Healsorecentlyunveiledmeasurement,reporting,andverificationprotocol(Jonganewphaseofthe“ActionPlanforthePreventionand2022).In2022,IndonesiaalsoreceiveditsfirstREDD+ControlofDeforestationintheAmazon,”whichsetsoutpaymentofroughly$21millionfromtheWorldBank’safour-yearroadmapforhaltingillegaldeforestationForestCarbonPartnershipfacilityforreducingdefor-by2030,andannouncedthathisgovernmentwouldestation,forestdegradation,andrelatedGHGemissionsupdateBrazil’sNDCinlinewithpreviouspledgestointheEastKalimantanprovince(WorldBank2022b).reduceGHGemissions43percentby2030(AssociatedSustainingthesesuccessesoverthecomingdecadesPress2023).Together,thesemeasuresrepresentprom-willprovecriticaltodeliveringtheland-basedmitigationisingsignalsofchange—already,preliminarysatelliteneededtohelplimitwarmingto1.5°C.datafromBrazil’snationalspaceagencyindicatethatdeforestationfellbyover30percentduringPresidentInBrazil,theelectionofPresidentLuizInácioLuladaSilvaLula’sfirstsixmonthsinoffice(Maisonnave2023).signalsadramaticshiftineffortstoprotecttheAmazon,whichexperienceda15-yearhighinclear-cutdefor-ButintheDemocraticRepublicoftheCongo(DRC),theestationunderthepreviousadministration(Roy2022).government’srecenteffortstoconservehigh-carbonCelebratedforapoliticaltrackrecordthatcontributedecosystemshavebeenmixed.InJuly2022,justmonthstoa70percentdeclineindeforestationbetween2005beforePresidentFélixAntoineTshisekedisignedintolawand2013(Nepstadetal.2014),PresidentLulapledgedtoahistoricbillrecognizingIndigenousPeoples’customaryhaltillegaldeforestation,land-grabbingandotherenvi-forestandlandrights(Gauthier2022;RRIandDGPAronmentalcrimesacrosstheAmazon,aswellasprotect2022),theDRCplacedoilandgasblocksacrossthetherightsofIndigenousPeoplesandlocalcommunitiescountry’shumidtropicalprimaryforestsandpeatlands(FundaçãoPerseuAbramo2022).Yethefacesanuphillupforauction(Dummett2022).Ifsold,thesepermitsbattle.NotonlydidformerpresidentJairBolsonarowouldallowdrillinginVirungaNationalPark,oneofeffectivelyweakenecologicalprotections,defundenvi-Africa’smostbiodiverselandscapesandasanctuaryronmentalagenciesandlawenforcement,andsupportforendangeredmountaingorillas(NyembaandRosslegislationtodismantleIndigenousPeoples’rightsand2022).Theywouldalsoenablefossilfuelextractionlegalizeland-grabbing(Roy2022),butalsohisright-wingacrossatleast1Mhaofpeatlands(Dummett2022)politicalalliescurrentlycontrolmanyofthestategov-withinthecentralCongobasin,aregionthat,intotal,ernmentsinAmazonia,aswellasasignificantnumbercontainsanestimated29GtC(Crezeeetal.2022).IntheofseatsinbothchambersofBrazil’sCongress(Maison-faceofpressurefromtheinternationalcommunity,thenaveandJeantet2023;Boadle2022).Still,Lulahastakenministerofhydrocarbonsrecentlydelayedthedeadlinestepsforwardtoundothisenvironmentalbackslidingforcompaniestosubmitapplicationsfortheoilblocksbyappointingwell-respectedenvironmentalistsandtobetweenAprilandOctober2023(Lo2023),buttheyIndigenousPeopletoleadershiproles,creatingaMinis-remainforsale.ForestsandLandSTATEOFCLIMATEACTION2023119Althoughjustahandfulofcountries,includingIndonesia,likelydependontheextenttowhichtheyareadoptedBrazil,andtheDemocraticRepublicoftheCongo,canacrossconsumercountrygovernments,particularlydeliverthemajorityoftheworld’scost-effective,land-inChina,theUnitedStates,andIndia—countriesthat,basedmitigationpotential(Roeetal.2021),muchofthealongsidetheEuropeanUnionandtheUnitedKingdom,demandtoproducecommoditiesthatdriveecosystemcollectivelyaccountedforover70percentofdeforesta-loss,spurdegradation,andimpederestorationorig-tionemissionsembodiedininternationaltradeflowsoninatesintheworld’swealthiestcountries.Between29averagebetween2010and2014(Pendrilletal.2019b).and39percentofGHGemissionsfromtropicaldefor-Complementarypoliciesfocusedonreducingdomesticestation,forexample,wereembodiedininternationallydemandforthesecommoditiesmayalsobeneeded,astradedcommoditiesfrom2010to2014(Pendrilletal.consumptionofbeef,soy,andpalmoilremainshighina2019b),withdevelopedcountriesandemergingecono-numberofproducercountries(Pendrilletal.2019a).mies,specifically,importinganincreasinglylargeshareofdeforestationembodiedincommodities(PendrillInadditiontoreducingdemandforcommoditieswhose2019a).Somegovernmentsarebeginningtoregulateproductiondrivesecosystemlossanddegradation,theseimportedcommodities.TheEuropeanUnion,forincreasingdedicatedfinancialflowstoland-basedexample,recentlyadoptedalandmarkregulationthatmitigationisvitaltoacceleratingthetransformationalmandatesallcompaniestoconductduediligencechangesrequiredforlimitingwarmingto1.5°C.Butonpalmoil,cattle,soy,coffee,cocoa,timber,rubber,despiteAFOLU’ssignificantpotentialtohelplimitwarm-charcoal,andwood,aswellasongoodsderivedfromingto1.5°C,aswellasthelowcostsandclearbenefitsthesecommodities(e.g.,chocolate,leather,orfurniture),ofaction,mitigationeffortsacrossthissectorattractedthattheysellwithinorexportfromtheEuropeanUniondisproportionatelyfewerinvestmentsthannearlyalltoensurethattheseproductsareproducedwithoutothersectorsoverthelastdecade(Figure52).PublicdeforestingordegradingforestsafterDecember31,andprivatefundsforland-basedmeasurescontinue2020.Thislawencompassesbothlegalandillegaldefor-tolagfarbehindestimatedneeds,whichtheIPCCestation,aswellasforestdegradation,andwillrequire(2022b)estimateswillreachnearly$100billionto$300companiestotracethesecommoditiesbacktowherebillionperyearby2030andover$400billionperyearbytheywerefirstproduced(EuropeanCommission2022e;2050.ButwhiletotaltrackedclimatemitigationfinanceEuropeanParliament2023e).earmarkedforAFOLUroughlydoubledoverthisdecade,itwasjustunder$10billionin2020(Buchneretal.2021).AhandfulofothercountrieshavealsopassedorareLimitingglobalwarmingtowellbelow2°Cwillrequireconsideringsimilarregulations.TheUnitedKingdom,fortheserecentmitigationinvestmentstoincreasemuchexample,recentlyadoptedtheEnvironmentAct2021,fasterthisdecade—byafactorof10to31by2030(seewhichincludesaprovisionrequiringcompaniesthatsellFinanceIndicators1–3)(IPCC2022b).forest-riskcommoditiestoensurethattheirproductsarefreefromillegaldeforestationbyconductingdueWorsestill,effortstoalignbroaderfinancialflowsacrossdiligence.However,enforcementcannotbeginuntilAFOLUwith1.5°Cpathwaysremaininadequate(NYDFtheBritishparliamentpassesadditionallegislationAssessmentPartners2022b).Forexample,just6percentthatclarifiesthescopeof“forest-riskcommodities(U.K.ofagriculturalsubsidiesacrossOrganisationforEco-Government2021;DEFRA2022).”In2021,abipartisannomicCo-operationandDevelopment(OECD)countriesgroupofpolicymakersintroducedasimilarpieceofand11majordevelopingnations,valuedatroughlylegislationintheUnitedStates,theFosteringOverseas$600billionperyearfrom2019to2021,supportclimateRuleofLawandEnvironmentallySoundTrade(FOREST)orconservationobjectives(Searchingeretal.2020;Act,thoughitneedstobereintroducedinthissessionOECD2022c),andmanystillincentivizeenvironmentallyofCongress(Schatz2021b).Eveniffullyadoptedandharmfulactions(e.g.,theEuropeanUnion’spaymentstoimplemented,bothpiecesoflegislationwouldapplytodrainage-basedpeatlandagriculture)(Tannebergeretillegaldeforestationonly(Neslen2023;U.K.Governmental.2021).Additionally,theworld’sleadingfinancialinstitu-2021;Schatz2021a)—adecisionthatnotonlymakestionschanneledsome$6.1trillionto350companieswiththeseproposedregulationslesscomprehensivethanthehighestexposuretotropicaldeforestationriskswithintheEuropeanUnion’sdirectivebutalsoincreasesthetheirsupplychainsin2022—upfrom$5.5trillionin2021difficultyofenforcement,asdefinitionsonthelegalityof(Forest5002022,2023).deforestationvarysignificantlybycountry.AtCOP26,manygovernments,companies,andfinan-Moreover,evidenceassessingtheimpactsofthesecialinstitutionsvowedtochangecourse.Morethanrelativelynewdeforestationpoliciesremainslimited,30financialinstitutionsmanagingassetsvaluedatwithonerecentanalysisfindingthatrestrictionsonover$8.7trillioncommittedtoeliminatingagriculturalpalmoilimports,alone,maynotsignificantlyreducecommodity-drivendeforestationrisksfromtheirlendingdeforestationduetoleakage(Buschetal.2022).Theandinvestmentportfoliosby2025(RacetoZero2021).efficacyofthesedemand-sideregulations,then,willGovernmentsalsopledged$12billioninsupportoftheForestsandLandSTATEOFCLIMATEACTION2023120FIGURE52TotaltrackedclimatefinanceformitigationbysolutionRenewableenergyBillionUS$generation600500400300200Low-carbontransportEnergyefficiencyOther/cross-sectoral100AFOLU0OtherGHGemissionsreductions2011Wasteandwater201220132014201520162017201820192020Notes:AFOLU=agriculture,forestry,andotherlanduses;GHG=greenhousegas.Source:Naranetal.(2022).GlasgowLeaders’DeclarationonForestsandLandUse,underthelandmarkKunming-MontrealGlobalBiodi-whileprivatesectorleaderspromisedtodeliveranotherversityFramework(CBD2022b).Althoughpromising,$7.2billion(PrimeMinister’sOffice2021b).Referencingthisparticularlythefinancialcommitmentmadeunderthedeclaration,governmentsandphilanthropiescommit-ConventiononBiologicalDiversity,thisrecentwaveofted$1.7billiontohelpsecuretheforesttenurerightsofpledgesmustmaterializequicklyandadditionalpledgesIndigenousPeoplesandlocalcommunities(“COP26IPLCwillbeneededafterthisdecadetodeliverthemorethanForestTenureJointDonorStatement”2021).$400billionneededperyearby2050(IPCC2022b).Oneyearlater,atCOP27inSharmel-Sheikh,26coun-triesandtheEuropeanUnionlaunchedtheForestsandClimateLeaders’PartnershipinsupportoftheGlasgowLeaders’DeclarationofForests.Theyreportedthatgovernmentshaddisbursednearly$2.7billionofthe$12billionpledgedatCOP26,aswellasannouncedcom-mitmentstochannelanother$4.5billioninpublicandprivatefundingtowardhaltingandreversingforestloss(CabinetOfficeandtheRtHonRishiSunakMP2022).AsofNovember2022,donorshadalsocontributedjustover$320milliontowardthe$1.7billionpledgedinsupportofIndigenousPeoplesandlocalcommunities,thoughjust7percentofthisfundingwentdirectlytoinstitutionsheadedbyIndigenousPeoplesandlocalcommunities(ForestTenureFundersGroup2022).AndjustweeksafterCOP27,nearly190countriesagreedtomobilizeatleast$200billionperyearby2030tosafeguardbiodiversity,includingwithinforests,peatlands,andmangroves,ForestsandLandSTATEOFCLIMATEACTION2023121SECTION7FoodandAgricultureAstheworld’spopulationclimbsfromroughly8foodpersist,growthinpercapitameatconsumption,billionin2023tonearly10billionby2050(UNDESAaswellastheexpansionofbioenergyproduction,add2022),feedingmorepeople,morenutritiously,toagriculture’salready-growinglanddemandsandwhileadvancingsocioeconomicdevelopmentandGHGemissions.reducingGHGemissionsfromagricultureandfoodsystemswillbeamajorchallenge.Worldwide,morethanTakentogether,recentresearchshowsthatachiev-one-quarterofemployedpeopleworkedinagricultureingglobalfoodandnutritionsecurityinthecomingin2019(WorldBank2021a).Becausesomanypeople’sdecades,whilelimitingwarmingto1.5°C,willonlybelivelihoodsdependonagriculture,andbecausethepossiblewithsignificantchangesinfoodproductionsectorisparticularlyvulnerabletoclimatechange,andconsumption(Clarketal.2020).Shiftingdemandforachievingajusttransitiontolower-emittingandmorefoodandagriculturalproducts,sustainablyincreasingresilientfoodsystemswillbecritical(Viglione2021).productivity,andchangingon-farmpracticesandGlobalfooddemandisontracktoriseby45percenttechnologies,combined,arenecessarytoreducetheormorebetween2017and2050basedonestimatesofsector’sglobalemissionsandlandfootprint.Ifimple-populationandincomegrowth,alongwithchangingmentedappropriately,thesechangesshouldalsohavedietarypatterns(Falconetal.2022;Searchingeretal.importantpositiveeffectsonbiodiversity,soilhealth,2021).Yet,asof2022,between691and783millionpeoplewaterquantityandquality,airquality,publichealth,wereaffectedbyhunger,anincreaseofmorethan100equity,andagriculturallivelihoods(Willettetal.2019;millionpeoplesincetheonsetofCOVID-19(FAO2023).IPCC2022b).Tofullyaddresshungerandfoodinsecurity,Furthermore,in2022,3.1billionpeoplecouldnotaffordchangestofoodproductionandconsumptionmustalsoahealthydiet,112millionmorepeoplethanin2019(FAObepairedwithbroaderinterventionstoaddresspoverty,2023).Whiletheseinequalitiesinpeople’saccesstogenderdisparities,andpoliticalinstabilities(FAO2023).FIGURE53AFOLU’scontributiontoglobalnetanthropogenicGHGemissionsin2021ElectricityandheatOilandgas14.4fugitiveemissions2.5Other1.6Coalminingfugitiveemissions1.5EnergyPetroleumrefining20.70.7Non-CO2(allbuildings)WasteLanduse,0.04land-use2.4change,Nonresidentialandforestry0.8GlobalGHGAgriculture,Emissionsforestry,4.0Rail56.8GtCO2eandother0.1ResidentialBuildingslandusesEnteric2.33.2fermentationInlandshipping10.40.2Transport3.0Managed8.1soilsandDomesticaviationManagedpasture0.3soilsandIndustrypastureInternational12.0aviation1.40.4RoadOtherRicecultivationOtherTransport4.41.00.55.9ManuremanagementInternational0.4shippingChemicalsMetals0.72.63.4Syntheticfertilizerapplication0.4Cement1.6Biomassburning0.1Notes:AFOLU=agriculture,forestry,andotherlanduses;CO2=carbondioxide;GHG=greenhousegas;GtCO2e=gigatonnesofcarbondioxideequivalent.Sources:Minxetal.(2021);EuropeanCommissionandJRC(2022),usingCO2emissionsdataforlanduse,land-usechange,andforestryfromthethreebookkeepingmodelsinthe“GlobalCarbonBudget2022”(Friedlingsteinetal.2022b).FoodandAgricultureSTATEOFCLIMATEACTION2023123FIGURE54GlobalGHGemissionsfromGlobalassessmentofprogressforfoodandagricultureagricultureGtCO2e/yrSavannafiresTransformingtheworld’sfoodandagriculturesys-7Burning—cropresiduestemstofeedagrowingpopulationsustainablyandnutritiously,whilelimitingglobalwarmingto1.5°Cand6Cropresiduesendingecosystemlossesanddegradation,willrequireseveralinterconnectedshifts.First,theworldwillneed5Synthetictoproducemorefoodandfeedonexistingagriculturalfertilizerslands,whilereducingagriculturalproductionemissions4andotherenvironmentalimpacts.ThisincludesbothRicecultivationloweringtheemissionsintensityofagriculturalproduc-3tionandsustainablyboostingcropyieldsandlivestockManuremanagementManureleftproductivity—allwhilesafeguardingsoilandwateronpastureresourcesandbuildingresiliencetoclimatechange.At2thesametime,reducingprojectedgrowthindemandManureappliedforland-intensivegoods,particularlybyhigh-incometosoilsconsumers,isalsoapriority.Thisincludesreducingfoodlossandwaste,aswellasreducingpercapitaruminant1meat(e.g.,beef)consumptioninhigh-consumingEntericfermentationregionsandavoidingbioenergyexpansion.Theseshiftsinfoodproductionandconsumption,inturn,canhelp0200020102020reducetheamountoflanddedicatedtoagricultureand1990therebyenabletheprotectionoftheworld’sremainingnaturalecosystemsfromagriculturalconversion,asNotes:GHG=greenhousegas;GtCO2e/yr=gigatonnesofcarbonwellastherestorationofdegradedecosystemsintodioxideequivalentperyear.ThisfigureonlyincludesGHGemissionsproductiveagricultureor(whereimprovementpotentialfromagriculturalproduction.islimited)backtonature.EcosystemprotectionandrestorationarecoveredinmoredepthinSection6,Source:FAOSTAT(2023).ForestsandLand.GHGemissionsfromagriculturalproduction,includingMajorchangesinpractices,technologies,andpoliciesthosefromcroplandandpastures,contributesig-willbeneededinthissectorbothtoadapttoclimatenificantlytoglobalGHGemissions,andin2021theychangeandtolimitwarmingto1.5ºC.ToensurethataccountedformorethanhalfofGHGemissionsfromfarmers,ranchers,andfarmworkersdonothavetoagriculture,forestry,andotherlanduses(AFOLU)(Figurebearthebruntofthesechanges,theymusthavethe53)(EuropeanCommissionandJRC2022;Minxetal.chancetomeaningfullyparticipateinthedesign,2021).Theseemissionshavebeengrowingatanaver-implementation,andgovernanceofadaptationandageannualrateof0.7percentsince2000(Figure54),76mitigationstrategies.Thisisespeciallytrueofsmallhold-reachingroughly6GtCO2ein2020(FAOSTAT2023).Anders,IndigenousPeople,women,andothervulnerablewhentheseproduction-relatedemissionsarecom-groups.ThisapproachisinlinewiththeParisAgreement,binedwiththosefromland-usechange,energy-relatedwhichencouragesnationalplansonclimatechangetoemissionsacrossfoodsupplychains(fromtheener-includejusttransitionmeasuresthatprioritizedecentgy-relatedsectorsinFigure53),andmethaneemittedworkandqualityjobs(UNFCCC2020).fromfoodwasteinlandfills(fromthewastesectorinFigure53),totalfoodsystememissionsaccountedforProgressinthefoodandagriculturesectorremainsabout16GtCO2eperyear—oralmost30percentofchallenging.EfficiencyimprovementsinagricultureandglobalGHGemissions(Tubielloetal.2022).77thewiderfoodsystem—whileencouraging—arenotyetkeepingpacewithcontinuedgrowthinglobaldemandforfoodandagriculturalproducts.Thisyear’ssnapshotFoodandAgricultureSTATEOFCLIMATEACTION2023124TABLE6SummaryofglobalprogresstowardfoodandagriculturetargetsINDICATORMOSTRECENT203020352050LIKELIHOODACCELERATIONSTATUSDATAPOINTTARGETTARGETTARGETOFFACTORGHGemissionsintensity(YEAR)FOLLOWINGofagriculturalproductionANS-CURVE(gCO2e/1,000kcal)Cropyields(t/ha)7005004503203x(2020)6.67.88.29.6>10x(2021)Ruminantmeat293335421.2xproductivity(kg/ha)(2021)6.56.56.5N/A;Shareoffood13U-turnneededbproductionlost(%)a(2021)616161InsufficientdataFoodwaste(kg/capita)c1207974608x(2019)Ruminantmeatconsumption91(kcal/capita/day)d(2020)eNotes:gCO2e/1,000kcal=gramsofcarbondioxideequivalentper1,000kilocalories;GHG=greenhousegas;kcal/capita/day=kilocaloriespercapitaperday;kg/capita=kilogramspercapita;kg/ha=kilogramsperhectare;t/ha=tonnesperhectare.SeeJaegeretal.(2023)formoreinformationonmethodsforselectingtargets,indicators,anddatasets,aswellasourapproachforassessingprogress.aFoodlossoccursbeforefoodgetstomarket.bDuetodatalimitations,anaccelerationfactorwascalculatedforthisindicatorusingalineartrendlineestimatedwiththreedatapointsacrosssixyears.cFoodwasteoccursattheretaillevelandinhomesandrestaurants,amongotherlocations.dThisdietshiftappliesspecificallytothehigh-consumingregions(Americas,Europe,andOceania).ItdoesnotapplytopopulationswithintheAmericas,Europe,andOceaniathatalreadyconsumelessthan60kcal/capita/day,havemicronutrientdeficiencies,and/ordonothaveaccesstoaffordableandhealthyalternativestoruminantmeat.eConsumptiondataaregiveninavailability,whichisthepercapitaamountofruminantmeatavailableattheretaillevelandisaproxyforconsumption.Sources:HistoricaldatafromFAOSTAT(2023)andUNEP(2021e).TargetsderivedfromSearchingeretal.(2019,2021);andUnitedNations(2015).reflectsanotheryearofCOVID-eradata(from2020toGoldmanetal.2020).Ifthesetrendscontinue,global2021)andslowerprogressinthefoodandagriculturegoalstoeliminatedeforestationandpeatlanddegrada-sectorthannotedinStateofClimateAction2022.Astion(ForestsandLandIndicators1–3),achievehundredsshowninTable6,theaccelerationfactorsinthecate-ofmillionsofhectaresofecosystemrestoration(Forestsgoriesofagriculturalemissionsintensity,ruminantmeatandLandIndicators4–6),andlimitglobalwarmingtoconsumption,andcropyieldsactuallygrewlargersince1.5°Cwillbecomeincreasinglydifficulttoachieve.Boehmetal.(2022)andremainwellofftrack,indicatingthat2030targetsareslippingfurtheroutofreach.NewReduceGHGemissionsdataontherateoffoodlossbetween2016and2021fromagriculturalshowatrendmovinginthewrongdirectionattheglobalproductionlevel,althoughprogressacrossdifferentregionsismixed.OfalltheglobalfoodandagricultureindicatorsEmissionsfromagriculturalproductionareprimarilyinTable6,onlyruminantmeatproductivityhasaslightlyofmethaneandnitrousoxide,twopotentgreenhouselowerrateofchangeneeded(i.e.,accelerationfactor)gases(Figures53and54).Althoughglobalemissionsthaninlastyear’sreport,andeventhisindicatorremainsfrommethaneandnitrousoxide—includingthosefromofftrackfor2030.Furthermore,totalglobalemissionsagriculturalproduction—needtobegreatlyreducedfromfoodproductioncontinuetogrow,andcroplandstolimitwarmingto1.5°C,bothmodeledpathwaysfromandpasturecontinuetoexpandintonaturalecosystemsintegratedassessmentmodelsandthosefrombot-liketropicalforests(FAOSTAT2023;Potapovetal.2022b;FoodandAgricultureSTATEOFCLIMATEACTION2023125TABLE7ProjectedagriculturalproductionGHGemissionsbymajorsourceina1.5°C-alignedpathwayEMISSIONSSOURCERECENTCHANGE2030ABSOLUTE2035ABSOLUTE2050ABSOLUTEINABSOLUTEEMISSIONSEMISSIONSEMISSIONSEMISSIONSREDUCTIONFORREDUCTIONFORREDUCTIONFOR(2016–20)(%)1.5°CPATHWAY,1.5°CPATHWAY,1.5°CPATHWAY,RELATIVETO2017RELATIVETO2017RELATIVETO2017Entericfermentation+3(%)(%)(%)Manuremanagement+2-17-20-29Manureonpasture+5-21-26-39Soilfertilization+5-14-15-20Ricecultivation+1-23-27-39Total+3-23-29-45-22-26-39Note:GHG=greenhousegas.Sources:HistoricaldatafromFAOSTAT(2023);2030,2035,and20501.5°CpathwayestimatesderivedfromSearchingeretal.(2019).tom-up,sectoralstudiesindicatethattheydonotfalltopracticesisuncertain(FOLU2023;Hendersonetal.2015;zerobymidcenturythewaycarbondioxideemissionsPoultonetal.2018).Betterdatawillalsobeneededtodo.Methaneandnitrousoxideemissionsremainpositivetrackchangesinglobalagriculturalsoilcarbonstocksinallpathwaysthatlimitwarmingbelow2°Candevenovertime(IEAetal.2022a).below1.5°C(IPCC2022b).Thisreport’s1.5°C-alignedtargetforagriculturalproductionemissionsisa39per-FOODANDAGRICULTUREINDICATOR1:centabsolutereductionby2050relativeto2017(Table7).78BecauseglobalpopulationandfooddemandareGHGemissionsintensityofprojectedtocontinuegrowingthroughatleasttheyearagriculturalproduction2050,theemissionsintensityofagriculturalproduction(gCO2e/1,000kcal)percalorieoffoodproducedwillneedtofallevenfasterthanthis39percentabsolutetarget.•Targets:GlobalGHGemissionsintensityofagriculturalThereiscurrentlymuchinterestinthepotentialtoproductiondeclines31percentby2030,38percentbymitigateclimatechangeandreducenetagricultural2035,and56percentby2050,relativeto2017.emissionsthroughsoilcarbonsequestrationonworkingagricultural(cropandpasture)lands.SuchpracticesTheemissionsintensityofagriculturalproduction,asareoftencalled“regenerative”andincludeagroforestry,measuredingramsofCO2eper1,000kilocalories(kcal)silvopasture,rotationalgrazing,covercropping,cropintheglobalfoodsupply,hasbeenfallingfordecades,diversification,andno-tillorminimaltillage.Thesedrivenlargelybysteadygainsintheefficiencyofcroppractices,ingeneral,willbehelpfultoimprovesoilhealthandlivestockproduction.79Between2016and2020,forandwaterinfiltration,increaseon-farmbiodiversity,example,GHGemissionsintensitydeclinedby3percentreducesoilerosion,reducerelianceonchemicalinputs(FAOSTAT2023)(Figure55).Thatsaid,totalabsoluteandtheirassociatedemissions,improveresilience,agriculturalemissionshaveyettopeakglobally,increas-andmaintainagriculturalproductivityinachangingingbyabout3percentbetween2016and2020(FAOSTATclimate.Thesepracticeswillbeespeciallyimportantin2023).Buttofeedagrowingworldpopulationwhileresource-limitedproductionsystems,wheretheycanachievingnecessaryreductionsinabsoluteagriculturalsustainablyimproveproductivitywhileenhancingadap-emissionsby2030,agriculturalemissionsintensitywouldtivecapacity.Thatsaid,althoughthesepracticeshaveneedtodeclinethreetimesfasterthanitdidbetweenbeenshowntobuildcarbonatthefieldlevel(Minasny2016and2020.Changestofoodproductionpractices,etal.2017),andsomeresearchersextrapolatesuchaswellastoconsumptionpatterns(e.g.,amountofestimatesovermanyhectarestoestimatesubstantialfoodlossandwaste,shareofanimal-basedfoodspotentialreductionsinnetglobalagriculturalemissionsindiets,andshareofagriculturalproductsusedasthroughsoilcarbonsequestration(Roeetal.2021),othersbioenergy),willalsobenecessarytohelpachievethisarguethatthetrueglobalmitigationpotentialoftheserequireddeclineinemissionsintensity.Inparticular,a“proteintransition”isneededthatincludesbothshiftingFoodandAgricultureSTATEOFCLIMATEACTION2023126FIGURE55Historicalprogresstoward2030,2035,and2050targetsforGHGemissionsintensityofagriculturalproductionRightDirection,WellOffTrackS-CurveUnlikelygCO2e/1,000kcalHistoricalCurrentPaceneededtodatatrendreachtargets10002020data8007002030target6005002035target450Acceleration2050targetrequiredtoreach4002030target3203x2000201020202030204020502000Note:gCO2e/1,000kcal=gramsofcarbondioxideequivalentper1,000kilocalories;GHG=greenhousegas.SeeJaegeretal.(2023)formoreinformationonmethodsforselectingtargets,indicators,anddatasets,aswellasourapproachforassessingprogress.Sources:HistoricaldatafromFAOSTAT(2023);targetsderivedfromSearchingeretal.(2019).towardmoresustainablyproducedlivestockproducts,said,theneedtofeedagrowingpopulation—whileaswellasincreasedconsumptionofplantproteinsfinallyhaltingagriculturalexpansionintoforestsandandalternativeproteinswithlowerenvironmentalallowingsomeagriculturalareastoberestoredintoimpacts;strategiesrelyingonlyonproduction-sideornaturalecosystems—meansthatyieldgainswillneedconsumption-sidemeasuresarelikelytobeinsufficienttoaccelerateinthecomingdecadesrelativetorecent(Searchingeretal.2019;Roeetal.2019;IPCC2022b).years(Searchingeretal.2019).SustainablyincreasecropThischallengeiscompoundedbythefactthatfoodandlivestockproductivityproductionishighlyvulnerabletoclimatechange.onexistingagriculturallandTheIPCC’sSixthAssessmentReportfindsthatclimatechangeisalreadystressingagriculture,fisheries,andAgriculturalresearchhastraditionallyfocusedonaquaculture.Heatextremes,droughts,floods,andotherenhancingproductivity,and,asaresult,yieldsofclimate-relatedhazardshavereducedagriculturalbothcropsandlivestockproducts(meatandmilk)productivity,disruptingfoodsuppliesandlivelihoods.perhectarehaverisensteadilyfordecades.BoostingSince1961,productivitygrowthinAfricanagriculturehasproductivityallowsmorefoodtobeproducedonabeenone-thirdlowerthanitwouldhavebeenwithoutsmallerlandarea,whichcanavoidGHGemissionsfromclimatechange(Ortiz-Bobeaetal.2021),andcropyieldsland-usechange(e.g.,deforestation)and/orenableinAfricaremainfarbelowtheglobalaverage(FAOSTATcarbonremovalthroughecosystemrestoration.That2023).Risksandvulnerabilitiesinthesector—includinglossofincomeorlivelihoods,andrisingcompetitionoverFoodandAgricultureSTATEOFCLIMATEACTION2023127resources—areverylikelytoworseninawarmerclimate,Globalcropyields,expressedintonnesofcropspro-andarelikelytomostheavilyaffectvulnerablepopu-ducedperhectareofcropland,80remainedflatbetweenlationssuchaswomen,youth,small-scaleproducers,2020and2021andbelowahistoricalpeakin2019.In2021,farmworkers,low-incomehouseholds,andIndigenousyieldswereonly0.7percentabove2017levels(FAOSTATandothermarginalizedgroups(IPCC2022a).2023)(Figure56),representingaworryingcontinuationofrecenttrends.Becauseofthisrecentslowgrowth,Productivityincreaseswillneedtooccurinachangingcropyieldgrowthneedstoacceleratemorethan10-foldclimate;thus,itwillbenecessarytorelyonapproachestoreachthe2030target,meaningthatglobalprogressthatincreaseresilience,safeguardsoils,protectremainswellofftrack.freshwaterresources,minimizepollution,andavoida“reboundeffect.”ThiseffectcanoccurwheregainsinTheCOVID-19pandemicexacerbatedglobalfoodcroporlivestockproductivityleadtoincreasedprofitsinsecurityin2020and2021.Foodpricesrose,supplyfromfarming,fuelingadditionalexpansionofagriculturechainsweredisrupted,andsocialprotectionmeasuresintonaturalecosystems.Toavoidthisreboundeffect,wereinadequate(FAO2022b).Foodproductionitselfincentivesforproductivityimprovementswillneedtowashampered,aslockdownsandtravelbanslimitedbelinkedtonaturalecosystemprotection,equity,andaccesstofarminputs,inputcostsrose,andfarmersrestoration(Searchingeretal.2019).facedlaborshortages(Sridharetal.2023).Thatsaid,FAOSTATdatapaintalessclear-cutpictureoftheeffectsFOODANDAGRICULTUREINDICATOR2:ofCOVID-19oncropproduction.Forexample,despitetheseenormousdifficulties,globalcerealcropproduc-Cropyields(t/ha)tionreachedarecordhighin2020andagainin2021,at3.1billiontonnes.In2021,globalcerealyieldsreached•Targets:Cropyieldsincreaseby18percentbyarecordhighof4.15tonnes/ha/yr,afteraone-yeardeclinebetween2019and2020(FAOSTAT2023).The2030,25percentby2035,and45percentby2050,relativeto2017.FIGURE56Historicalprogresstoward2030,2035,and2050targetsforcropyieldsRightDirection,WellOffTrackS-CurveUnlikelyt/haHistoricalCurrentPaceneededtodatatrendreachtargets12102050target869.642021data2035target2030target6.68.27.8Accelerationrequiredtoreach2030target>10x20201020202030204020502000Note:t/ha=tonnesperhectare.SeeJaegeretal.(2023)formoreinformationonmethodsforselectingtargets,indicators,anddatasets,aswellasourapproachforassessingprogress.Sources:HistoricaldatafromFAOSTAT(2023);targetsderivedfromSearchingeretal.(2019,2021).FoodandAgricultureSTATEOFCLIMATEACTION2023128Ukraine-Russiawarhasalsoaffectedtwomajorcerealproducecrops,thecontinuedglobalgrowthinmeatandoilseedproducersandexporterssince2022,andtheandmilkdemandwillincreasepressuresontheworld’swar’simpactisnotyetreflectedintheglobalFAOSTATremainingnaturalecosystems.Meatproductionisdata.However,national-scaleestimatesarestark:cerealparticularlyresource-intensive.Therefore,sustainablyandoilseedcropproductionprojectionsforUkraine’sincreasingruminantmeatproductivity,reducingGHG2022–23growingseasonare30–40percentbelowtheemissionsfromitsproduction,andmoderatingrumi-2021–22level(Martyshevetal.2023).nantmeatconsumptioninhigh-consumingregionsaspartofa“proteintransition”willallbeessentialtoYieldsinAfricacontinuetostagnateatalowlevelasreduceemissionsfromlivestockwhilefeedingmoretheyhavefordecades;forexample,in2021,yieldsofpeople(Searchingeretal.2019).ThesechangescancerealcropsinAfrica,whichunderpinfoodsecurity,alsosupporteffortstoconservebiodiversity(Semen-wereonly42percentoftheworldaverageand30chuketal.2022).percentofcerealyieldsintheAmericas(FAOSTAT2023).ImprovingcropyieldsonsmallfarmsinAfricaisalsoRuminantmeatproductivitydescribestheamountofakeyleverforreducingpoverty(IFPRI2022).Improvedmeatfromruminantlivestockproducedperhectareseeds,soilfertilityimprovement,watermanagement,ofpastureland.In2021,ruminantmeatproductivityperextensionservices,accesstomarketsandcredit,andhectarewas6percenthigherthanin2017(Figure57),aimprovedweatherforecastingareallcriticallyimportantnewhistoricalhighandacontinuationofrecenttrends.tosustainablyboostingsmallholders’yieldsacrosstheThebasicmechanismsfortheseproductivitygainshaveAfricancontinent(JamaandPizarro2008)—thisinturnbeenimprovementsinfeedefficiency(e.g.,throughusewillbeimportantforlimitingagriculturalexpansionintoofmoredigestiblefeeds);plantingandfertilizingpas-naturalecosystems.tureswithimprovedgrasses,legumes,trees,andshrubs(Box16);moreintensivegrazingmanagement(e.g.,Recentsatellite-basedevidenceofongoingcroplandactivelyrotatingcattleherdsacrosspasturesinsteadexpansion(Potapovetal.2022b)suggeststhatyieldoflettingthemroamfreely);andincreasesinmeatgrowthhasnotkeptpacewithcropdemandgrowthproductionperanimal(e.g.,throughimprovedbreedsorinthe21stcentury,as102Mhaoflandwereconvertedbetterveterinarycare)(Searchingeretal.2019).Achiev-toannualcropsbetween2003and2019.MostoftheingtheseproductivitygainsdoesnotrequireashiftcroplandexpansionoccurredinAfrica(53Mha)andtofeedlotsystems,whichcanreduceGHGemissionsSouthAmerica(34Mha)(Potapovetal.2022b),drivenbyintensityperkilogramofbeefversusproductionsystemsgrowthinbothlocalfooddemandandglobaldemandwherecattlespendtheirentirelivesongrassbutalsoforcropcommoditiesgrowninthoseregions.Whilecomewithconcernsregardingimpactsonworkerandcommodity-drivenexpansion—suchasland-clearingforcommunityhealth(Chamanaraetal.2021),airandsoybeanproduction—isdominantinSouthAmerica,inwaterpollution(Chamanaraetal.2021),antimicrobialAfricacultivationofcropsfordomesticuseseemstoberesistance(CameronandMcAllister2016),andanimalthebiggestcontributortoexpansion(Curtisetal.2018).welfare(Salvinetal.2020).FOODANDAGRICULTUREINDICATOR3:Ruminantmeatproductivity(kg/ha)•Targets:Ruminantmeatproductivityperhectarerises27percentby2030,35percentby2035,and58percentby2050,relativeto2017.Thewaythatmeatandmilkfromruminantlivestock(e.g.,cattle,sheep,goats)areproducedandconsumedhasamajorbearingonthelandusedemandsandGHGemissionsofglobalagriculture.Ruminantlivestockusemorethantwo-thirdsofagriculturallandandaccountforabouthalfofagriculturalGHGemissions,evenwhenexcludingemissionsfromfeedproduction(FAOSTAT2023)(Figure54).Andwhileruminantlivestockproductionplaysakeyroleintheruraleconomiesandculturesofdevelopingcountries,provideslivelihoodsandhigh-qualityproteintomillionsofpastoralists,andmakesuseofaridlandsthatcouldnototherwiseFoodandAgricultureSTATEOFCLIMATEACTION2022129BOX16SilvopastoralsystemsinEthiopiaboostproductivityandresilienceMuchresearchanddevelopmentonsilvopastoralothermultipurposebenefitsandqualitiessuchassystems—whichintegratetreesandshrubswithdroughttolerance,hascontributedtoyear-roundgrazinglivestock—hasfocusedontheuseoffodderavailabilityandimprovedanimalhealth,thesesystemsforclimatechangeadaptation.leadingtoincreasedmilkproductionandlive-Inresource-limitedareaswithahighlevelofstockweightgain,andpositivelyimpactinglocallanddegradation,suchsystemscanprovideafarmers’livelihoods(Balehegn2017).co-benefitofclimatechangemitigation,boththroughincreasedoutputofmeatandmilkperInadditiontothedirectbenefitstolivelihoodshectare(whichcanavoidadditionallandclearingandlivestock,theFicusthonningiisilvopasturesasdemandforlivestockproductsgrows)aswellplayanimportantroleinsoilconservationandasanincreaseincarbonstocksinplantsandecosystemrestoration.Studiesondegradedsoils.Theproductivityandenvironmentalbenefitspasturelandsandcroplandsindicateda40andtrade-offsofshiftingtosilvopastoralsystems,percentincreaseinsoilcarboncontentinareashowever,dependonspecificfactors,includingthewiththeintegrationofFicusthonningii,contrib-currentresourceavailability,thelevelofintensifi-utingtoenhancedsoilfertilityandreducedsoilcation,and/ortheproductionsystemused.erosion(Berheetal.2013),whilehabitatcreatedbytreesondegradedpasturelandsenabledResearchandextensionworkdevelopingalocalthereturnofbirdspecieshithertolocallyextincttreespecies–basedsilvopastoralsystemusinginnorthernEthiopia(Balehegnetal.2016).TheFicusthonningiihasproducedcompellingresultsmultipleadaptationandlivelihoodbenefitshaveintermsofproductivity,livelihoods,climateresultedinwidespreadadoptionwithinEthiopiachangeadaptation,andenvironmentalresil-andrecognitionoftheFicusthonningii–basedienceinEthiopia.IntroductionofFicusthonningiisilvopastoralsystem.Morethan25,000house-silvopasturesintodegradedpasturelandsinholdsinnorthernEthiopiaadoptedthispracticenorthernEthiopiahasenabledsmallholderbetween2010and2017,incorporatingFicusfarmerstoproduce500percentmorefodderperthonningiitreesintodegradedpasturelandsandhectareofland,reducecostsincurredforexpen-farmlands.Thepracticehasbeenidentifiedasasiveconcentratefeedsby50percent(BalehegnsuccessfulinnovationbytheFoodandAgricultureetal.2015,2012;MekuriawandAsmare2018),andOrganizationoftheUnitedNations,theEuropeanreducewateruserequiredforforageproductionCommission,andothers(AFSA2018;LD4D2021;by83percent(Balehegn2017,2012).TheficusFAO2021;MadsenandWezel2021).tree’sabilitytoprovideshadeandfodder,andTomeetthe2030target,ruminantmeatproductivityBecausemuchoftheworld’spasturelandisdry,sloped,mustimprovebyanother15percent,whichwillrequireorhashighlyvariablerainfall—whichalllimitproduc-recentgrowthratestoaccelerateby1.2times.So,whiletivity—achievingtheglobal2030productivitygoalwillprogressisheadingintherightdirection,itremainsoffrequireparticularattentiontoimprovementsonsuitabletrack.Satellite-basedevidenceofdeforestation(Gold-hectaresofwetterpastureland,especiallyinthetropics,manetal.2020)alsoshowsthat45Mhaofforestwerewhereproductivityisrelativelylow(Searchingeretal.replacedbypasturelandforcattlegrazingbetween20012019;Herreroetal.2013).ThereareranchesinBraziland2015,mainlyinSouthAmerica,suggestingthatgrossthatexemplifythetypesofproductivityimprovementspastureexpansiontomeetgrowingglobaldemandfordiscussedabove—includingincreasesinmeatproduc-ruminantmeathasyettostop.Andtotalglobalruminanttionperhectareof30to270percent(zuErmgassenetal.meatproductiondoescontinuetogrow;accordingto2018).Significantbarriers,suchasfinance,standintheFAOSTAT(2023),afterahistoricalhighin2019therewasawayofachievingsimilarlyhigh-productivityimprove-one-yeardipinproductionin2020,andthenanewhis-mentselsewhere(Grunwald2023).toricalhighin2021of93.1milliontonnesofbeef,buffalo,sheep,andgoatmeat.FoodandAgricultureSTATEOFCLIMATEACTION2023130FIGURE57Historicalprogresstoward2030,2035,and2050targetsforruminantmeatproductivityRightDirection,OffTrackS-CurveUnlikelykg/haHistoricalCurrentPaceneededtodatatrendreachtargets45402021data2035target423530292030target352050target253320Accelerationrequiredtoreach2030target1.2x151050201020202030204020502000Notes:kg/ha=kilogramsperhectare.SeeJaegeretal.(2023)formoreinformationonmethodsforselectingtargets,indicators,anddatasets,aswellasourapproachforassessingprogress.Sources:HistoricaldatafromFAOSTAT(2023);targetsderivedfromSearchingeretal.(2019).ReducegrowthinFOODANDAGRICULTUREINDICATOR4:demandforfoodShareoffoodproductionBeyondimprovementstoagriculture,keepingwarminglost(%)below1.5°Cwillrequirereducingtheprojectedgrowthindemandforland-intensivegoodsthroughboth•Targets:Theshareoffoodproductionlostdeclines50reducedfoodlossandwasteanddietaryshifts.Allcountriesshouldreducefoodlossandwaste,althoughpercentby2030,relativeto2016,andthesereductionsthemagnitudeandtypesofchangesrequiredvaryaremaintainedthrough2050.acrosscountries.Dietaryshiftsawayfromruminantmeatandotheranimal-basedfoodsandtowardplant-FOODANDAGRICULTUREINDICATOR5:basedfoods,incontrast,shouldbeconcentratedwithinhigh-consumingregionslikeNorthandSouthAmerica,Foodwaste(kg/capita)Europe,andOceania,wheresuchshiftsinconsumption(andtheirassociatedimpactsonglobalsupplychains)•Targets:Worldwidepercapitafoodwasteisreducedcanhavethelargestimpactsonreducingbothagricul-turallanddemandsandGHGemissions.by50percentby2030,relativeto2019,andthesereductionsaremaintainedthrough2050.Globally,aboutone-thirdoffoodislostorwastedbetweenthefarmandthefork(FAO2011).Foodlossoccursbeforefoodgetstomarket,duringharvest,81storage,andtransporttomarket;whereasfoodwasteoccursatretailmarkets,restaurants,orinhomes.Foodlossandwasteresultinhigheconomiclosses,contributetofoodinsecurityinlower-incomecountries,FoodandAgricultureSTATEOFCLIMATEACTION2023131andrepresenta“waste”ofagriculturalland,water,andthefoodsupplychainin2021(FAOSTAT2023)(Figuresotheragriculturalinputs.Notsurprisingly,thishighlevel58and59),andthat17percentoffoodattheretailofwasteresultsinsignificantGHGemissions.TheIPCClevel(or121kilogramsperpersonperyear)waswasted(2019)includedanestimatethatfoodlossandwasteinhouseholds,foodservice,andretailin2019(UNEPaccountedfor8–10percentofglobalhuman-caused2021e)(Figure60).emissionsin2011,includingGHGemissionsfromagricul-turalproduction,land-usechange,energyuseacrossAsforfoodlosses,thankstoanupdateinJuly2023,foodsupplychains,andwasteinlandfills.AndwhilefruitsFAOSTATnowreportsthreeyearsofdataontheshareofandvegetablesmakeupthelargestshareofglobalfoodproductionlost(2016,2020,and2021),providingthefoodlossandwastebyweight,animal-basedfoodsopportunitytobeginseeingtrends.Globally,therateofaccountforabouthalfoftheGHGemissionsassociatedfoodlossroseslightlyfrom13.0to13.3percentbetweenwithfoodlossandwaste(Guoetal.2020).Modelshave2016and2020andthendeclinedslightlyto13.2percentdemonstratedhowhalvingglobalfoodlossandwastein2021,meaningthatglobaltrendsarestillmovingintherateshassubstantialmitigationpotentialandcanhelpwrongdirectionforthistarget.bringfoodsystem–relatedGHGemissionsinlinewithpathwaysthatlimitwarmingto1.5°C(Clarketal.2020;IPCC2022b),inadditiontobeingalignedwithSustain-ableDevelopmentGoalTarget12.3(UnitedNations2015).GlobaltrenddatathroughtheFoodLossIndex(FAO2019)andFoodWasteIndex(UNEP2021e)arejuststartingtobecomeavailable.Themostrecentglobalestimatesarethat13.2percentofglobalfoodproductionwaslostbetweenthefarmgateandprocessingstagesofFIGURE58Historicalprogresstoward2030,2035,and2050targetsforshareoffoodproductionlostWrongDirection,U-turnNeededS-CurveUnlikely%HistoricalCurrentPaceneededtodatatrendreachtargets162021data141312102030target2050target86.56.566.52035target420201020202030204020502000Notes:Foodlossoccursbeforefoodgetstomarket.Also,duetodatalimitations,anaccelerationfactorwascalculatedforthisindicatorusingalineartrendlineestimatedwiththreedatapointsacrosssixyears.SeeJaegeretal.(2023)formoreinformationonmethodsforselectingtargets,indicators,anddatasets,aswellasourapproachforassessingprogress.Sources:HistoricaldatafromFAOSTAT(2023);targetsfromUnitedNations(2015).FoodandAgricultureSTATEOFCLIMATEACTION2023132Therateoffoodlossdiffersacrosssubregions(Figure59).Onapositivenote,subregionswithinsub-SaharanAfricahaveallmadeprogressinreducingfoodlossesbetween2016and2021.Bycontrast,NorthernAfrica,allsubregionsinEurope,andmostsubregionsintheAmer-icas(exceptNorthAmerica)sawincreasesintheshareoffoodproductionlostbetween2016and2021.Whiletheresultsacrossworldregionsaremixed,overall,adra-maticstepchangeisneededtomoveglobaltrendsinfoodlossesintherightdirectiontohalvethemby2030.Asfortrendsinfoodwaste,because2019isthefirstandonlyyearforwhichfoodwasteestimatesareavailableatthegloballevel,dataareinsufficienttomeasureprogresstowardthisindicator.Increasingtheavail-abilityofdatatomeasurefoodwasteatretail,foodservice,andhouseholdlevelsisalsonecessarytobetterdisaggregatedifferencesatregionalandcountrylevels.Availableevidence,however,suggeststhatsubstantialchangeswillbeneededtomeetthetargetofhalvingfoodwaste.Forexample,intheUnitedStates,althoughthefederalgovernmentsetagoalin2015toreducefoodlossandwasteby50percentby2030andseveralU.S.stateshaveadoptedlegislationaimedatreducingfoodwaste,U.S.percapitafoodwasteactuallyincreasedby6percentbetween2016and2019,from149to158kilogramsperpersonperyear.ThelatestU.S.governmentstatusreport(U.S.EPA2023a)notesthatsomeoftherecentstatefoodwastelawshaveyettobefullyimplemented.FIGURE59Shareoffoodproductionlostbysubregionin20215.0%–9.9%10.0%–14.9%15.0%–19.9%20.0%–25.0%Source:FAOSTAT2023.FoodandAgricultureSTATEOFCLIMATEACTION2023133FIGURE60Historicalprogresstoward2030,2035,and2050targetsforfoodwasteInsufficientDataS-CurveUnlikelykg/capitaHistoricalCurrentPaceneededtodatatrendreachtargets1402019data120120100802030target2050target61616061402035target200201020202030204020502000Note:kg/capita=kilogramspercapita.Foodwasteoccursattheretaillevelandinhomesandrestaurants,amongotherlocations.SeeJaegeretal.(2023)formoreinformationonmethodsforselectingtargets,indicators,anddatasets,aswellasourapproachforassessingprogress.Sources:HistoricaldatafromUNEP(2021e);targetsfromUnitedNations(2015).FOODANDAGRICULTUREINDICATOR6:production(e.g.,lambandgoat)isalsoroughlyseventimesasland-andGHG-intensiveaspoultryandporkRuminantmeatconsumptionproduction(Ranganathanetal.2016).(kcal/capita/day)Animal-basedfoodsareanimportantsourceof•Targets:Acrosshigh-consumingregionsofthehigh-quality,bioavailableproteinandmicronutrients,especiallyduringpregnancyandlactation,infancyandAmericas,Europe,andOceania,82dailypercapitaearlychildhood,andinsomecasesadolescenceandconsumptionofruminantmeats,includingbeef,aging(Bealetal.2023).Modestincreasesincon-lamb,andgoat,83decreasesto79kilocaloriesby2030,sumptionofanimal-basedfoodscanboostnutrition74kilocaloriesby2035,and60kilocaloriesby2050.inlow-incomecountrieswhilelimitingthegrowthofenvironmentalimpacts(Kimetal.2020;Willettetal.Asincomesriseandpeoplemovetocities,dietstendto2019).However,inhigh-incomecountries,whereproteinbecomemorevariedandhigherinresource-intensiveconsumptioniswellabovedietaryrequirementsandfoodslikemeatanddairy.Forthisreason,consumptionsubstitutesforanimalproteinarewidelyavailable,ofanimal-basedfoodsisprojectedtogrowbynearlyshiftingdietstowardplant-basedfoodsandespecially70percentbetween2010and2050(Searchingeretal.awayfromruminantmeatscanreduceagriculturalland2019),anestimateroughlyinlinewiththosefromseveraldemandandGHGemissions(Sunetal.2022).otherresearchers(e.g.,Springmannetal.2016;TilmanandClark2014;Willettetal.2019).ThisprojectedgrowthAfterdecliningforseveraldecades,percapitaruminantmakesachievingecosystemprotectionandclimatemeatconsumptionacrosshigh-consumingregions(themitigationgoalsmorechallenging:forinstance,beefAmericas,Europe,andOceania)84plateauedaroundrequires20timesmoreland,andleadsto20times2016,fallingbyonly0.8percentbetween2016and2020moreGHGemissionspergramofprotein,thanbeansandhoveringaround91kilocaloriesperdayduringthat(Ranganathanetal.2016).BeefandotherruminantmeatFoodandAgricultureSTATEOFCLIMATEACTION2023134FIGURE61Historicalprogresstoward2030,2035,and2050targetsforruminantmeatconsumptionRightDirection,WellOffTrackS-CurveUnlikelykcal/capita/dayHistoricalCurrentPaceneededtodatatrendreachtargets1202020data100912030target792035target74802050targetAcceleration60requiredtoreach602030target8x40200201020202030204020502000Notes:kcal/capita/day=kilocaloriespercapitaperday.Consumptiondataaregiveninavailability,whichisthepercapitaamountofruminantmeatavailableattheretaillevelandisaproxyforconsumption.Also,thisdietshiftappliesspecificallytothehigh-consumingregions(Americas,Europe,andOceania).ItdoesnotapplytopopulationswithintheAmericas,Europe,andOceaniathatalreadyconsumelessthan60kcal/capita/day,havemicronutrientdeficiencies,and/ordonothaveaccesstoaffordableandhealthyalternativestoruminantmeat.SeeJaegeretal.(2023)formoreinformationonmethodsforselectingtargets,indicators,anddatasets,aswellasourapproachforassessingprogress.Sources:HistoricaldatafromFAOSTAT(2023);targetsfromSearchingeretal.(2019).timeperiod(FAOSTAT2023).Thisveryslowrateofdeclineconsumptionistwiceashighinurbanareasasinruralwouldneedtoaccelerateeightfoldtohitthe2030targetareasandthatrisingincomesgenerallyleadtohigherof79kilocaloriesperday(theequivalentofabouttwodemandforalltypesofmeat(Maoetal.2016).Incasesservingsperpersonperweek),onthewaytothe2050wherepercapitaruminantmeatconsumptionisontargetof60kilocaloriesperday(about1.5servingspertherise,itwouldbeadvisabletotrytopeakitearlysopersonperweek)(Figure61).85asnottobreachthethreshold,andinsteadaimtoshiftdemandtolessGHG-intensiveproteinsources.Evenwithinthehigh-consumingregionsforwhichthistargetapplies,thereisconsiderabledifferenceinperRecentdevelopmentscapitaruminantmeatconsumption.Percapitacon-acrossfoodandsumptioninAustraliaandNewZealand(179kcalperagricultureday)andSouthAmerica(135kcalperday)weredoubletherateofconsumptioninEurope(67kcalperday)inRecentyearshavewitnessedawaveofnewmultilat-2020.LargerreductionswillalsobenecessaryinNortheralcommitmentsfocusedontransformingthefoodAmerica,whichstoodat107kcalperdayin2020.andagriculturalsectortomitigateclimatechange,safeguardbiodiversity,andensurefoodsecurityforWhileotherregionsremainedfarbelowthe60-kilocal-allinachangingclimate—apromisingsignthattheoriethresholdforruminantmeatconsumptionin2020,world’sleadersarestartingtorecognizethesignificantincludingAfricaat39andAsiaat37,certaincountriescontributionsthissectorcanandmustplayinaddress-(e.g.,China)areexperiencingsignificantincreasesandwilllikelyreachthe60-kilocaloriethresholdbetweennowand2050.DatafromChinashowthatbeefandlambFoodandAgricultureSTATEOFCLIMATEACTION2023135ingtheseglobalcrises.AtCOP26,forexample,over40Thefirstinvolvesdevelopingfeedadditivesthatreducecountriescommittedtomakingcleantechnologiestheemissionsbyinterferingintheprocessesthatgeneratemostaffordable,accessible,andattractiveoptionsbymethane,andthesecondaimstoselectivelybreedani-2030undertheBreakthroughAgenda,andahandfulofmalsthatgeneratelessmethaneduringtheirdigestion.thesenationsspecificallypledgedtomakeclimate-re-Manyadditivesarecurrentlybeingtested,astheprimarysilient,sustainableagriculturethemostattractiveandchallengeisthat,whilesomedeliverproductivityben-widelyadoptedoptionforfarmerseverywherebytheefits,othershavepotentialsideeffects(e.g.,onanimalendofthisdecade(IEAetal.2022a).Over140countrieshealth).ThemostapprovedandcommerciallyavailablealsosignedtheGlasgowLeaders’DeclarationonForestsadditiveis3-Nitrooxypropanol(3-NOP),whichprovidesandLandUse,pledgingtoimplementand,ifnecessary,averagereductionsofentericmethanereductionuptoredesignagriculturalpoliciesandprogramstoincen-30percentdependingonanimaltype,diet,anddosetivizesustainableagriculture,promotefoodsecurity,(Yuetal.2021;Mulhollem2023).In2021theEuropeanandbenefittheenvironment,amongothergoals(PrimeUnionapproveditforcommercialuseaspartofitsMinister’sOffice2021a).And150countriesjoinedtheFarmtoForkstrategy,joiningAustralia,Brazil,andChileGlobalMethanePledge,underwhichtheyagreedto(DSM2022).Whileitisnotyetapprovedforcommercialreducemethaneemissions30percentby2030—agoaluseintheUnitedStates,U.S.lawmakersintroducedthethatwillrequiresignificantchangesacrosstheagri-bipartisanInnovativeFeedEnhancementandEconomicculturalsector,whichcurrentlyaccountsfor40percentDevelopment(FEED)Actin2023,whichwouldcreateofhuman-causedmethaneemissions(UNEP2021h).anewfederalapprovalpathwayfornovelfeedaddi-Notably,however,somelargeagriculturaleconomiesliketivessuchas3-NOP(Reus2023).Additionallong-termIndiaandChinahaveyettosignthismethanepledge.researchisneededtofullyunderstandsideeffects,suit-Inaddition,inDecember2022,nearly190Partiestotheabilityfordifferentproductionsystems,andlong-termConventiononBiologicalDiversityadoptedtheKun-trade-offsinand/orco-benefitstolivestockproductivityming-MontrealGlobalBiodiversityFramework,agreeingbeforetheycanbewidelyutilized(Beaucheminetal.toseveraltargetsfocusedonreducingthefoodand2022;Hegartyetal.2021;Readfearn2023).Breedingagriculturesector’simpactsonbiodiversity(CBD2022a).animalsforreducedentericmethaneemissionshasWhilethisincreasingpoliticalattentiononfoodandalsoreceivedconsiderableresearchattentioninrecentagriculturerepresentsawelcomechange,immediateyears,butlow-emittingbreedswithequalorbetteractions,aswellassubstantialresources,willbeneededproductivityandresiliencethancurrentbreedsareyettodeliveronthesecommitmentsintime.tobedevelopedatscale.InNewZealand,forexample,researchershavebredlower-methanesheepthatemitRecentdevelopmentsinabout12percentlessmethanethantheirhigh-emittingsustainablyincreasingcounterparts,withnosignificantimpactonproductivityagriculturalproductivity(Roweetal.2019),andthefirstbreedingmaterialwithawhilereducingGHGlow-methanegenetictraitwentonthemarketin2023emissionsfromagricultural(Nickel2023).Ongoingresearchinitiativesarecollect-productioningandanalyzinggeneticdatarelatedtohigh-andlow-emittingcowstofacilitatefuturebreedingeffortsNosingletechnologyorpracticecanboostproductivity(Stepanchenkoetal.2023).whilereducingGHGemissionsacrossallagriculturallandscapes,whichproducearangeofcropsandlivestockproductsacrossdiversesocial,economic,andbiophysicalenvironments.Thisdiversitychallengeseffortstodevelopinnovationsforwide-scaleadoption.Newtechnologiesthatcouldplayanimportantroleinsustainablydeliveringtheproductivitygainsneeded,whileloweringGHGemissionsandminimizingotherenvironmentalharms,remainunderdevelopment.Considerableinvestmentsinresearch,development,anddeployment,then,areneededbothtobringnewtechnologiestomarketandtotransferagriculturalprac-ticesthathavebeensuccessfulinonecontexttoothers.Scientistsarecurrentlyexploringtwolinesofinnovationforreducingmethaneemissionsfromthedigestiveprocessofruminantanimals(e.g.,cattle,sheep,goats)—aprocessreferredtoas“entericfermentation.”FoodandAgricultureSTATEOFCLIMATEACTION2023136Mostmitigationpotentialfromriceproductionrestsinalternativeproteins,amongothers,eachwithbudgetsAsia,where90percentofglobalriceproductionoccursofbetween$1millionand$500million(AIMforClimate(FAOSTAT2023).Ricemethaneemissionsoccurinflooded2023).Anotherexamplegloballyrelevanttotheprivatericefieldswherewaterlimitsoxygenpenetrationintosectoristhe2022releaseofguidancebytheSciencethesoil,allowingmicroorganismscalledarchaeathatBasedTargetsinitiative(SBTi)detailinghowcompaniesproducemethanetothrive.Boostingriceyieldspershouldsetmitigationtargetstoreduceemissionsfromhectare(whichminimizestheneedtofloodadditionaltheforest,land,andagriculture(FLAG)sectors.Land-in-areas)andoptimizingwatermanagement(whichtensivecompaniesworkingwithSBTiwererequiredtoreducestheamountoftimeafieldisflooded)canbothstartsettingFLAGtargetsinlinewitha1.5°Cpathwayreduceemissions.Researchinthisareaisongoing;forbeginningin2023(Andersonetal.2022).Finally,totrulyexample,studiesinIndonesiafrom2020to2022foundscaleRD&D,finance,knowledge,andtechnologytransferthatimprovedwatermanagementwasabletoreducewillbeneeded.TheFoodandAgricultureforSustain-methaneemissionsby70percent,whileboostingableTransformationInitiative,launchedatCOP27andriceyieldsandreducingpesticideandfertilizerrunofffacilitatedbyFAO,aimstoincreasecountries’accessto(Turrell2023).climatefinanceandinvestmentrelatedtoagricultureandfoodsystems,improveknowledgeandcapacityNitrousoxideemissionsrelatedtosoilfertilizationrelatedtoclimate-smartfoodsystems,andstrengthen(includingbothnitrogenfertilizerandmanureapplica-theinclusionofagricultureandfoodsystemsacrosstion)canbesignificantlyreducedinmanyplacesbyclimatechangepolicies(FAO2022a).increasingnitrogen-useefficiencyandreducingoveruseofchemicalfertilizer.DoingsocanalsoreducewaterLinkingyieldimprovementswithecosystemprotectionpollution,sincelessnitrogenleachesintothewater(Gaoisaneffectivestrategytomaximizeland-basedcarbonandCabreraSerrenho2023),andcanalsoboostyields.stockswhilemeetinggrowingdemandforland-basedInnovationstoaddressthisincludeprecisionapplicationproducts(Williamsetal.2018).Theselinkscanbeinoffertilizers,whichusesfieldproductivitydatafromtheformofland-useplanningandzoning,financialdronesorsatellites.AnotherinnovationforreducingN2Oinstruments(e.g.,agriculturalloansorsubsidiesthatareemissionsiscontrolled-releasefertilizers,whichslowlyconditionedonachievingenvironmentalorconserva-releasenutrientsovertime.Thesefertilizershavebeentiongoals),andinitiativesorpolicieswhereagriculturalcommercializedbutcurrentlyrepresentonlyasmallcommoditypurchasersandtraderscommittosourcingshareofsyntheticfertilizersales.Recentinnovationsinproductsthataredeforestation-andconversion-freecontrolled-releasesystems,suchastheuseoflow-(Searchingeretal.2019).Onerecentexampleofsuchacostcoatings,demonstratethepotentialtoreducethepolicyistheEUregulationondeforestation-freeproductsenvironmentalimpactofconventionalfertilizersandthatenteredintoforceinJune2023(EuropeanCom-enhancenutrientuseefficiency.Thefindingsunderscoremissionn.d.b.).Whiledemand-sidedeforestation-freereducedenvironmentalharmandimprovednutrientcommitmentshavehadonlylimitedeffectivenessutilization,cropyields,andcost-effectiveness(Man-sofar,theyhaveledtoincreasedmonitoringandsourietal.2023;Liangetal.2023b).Uncertaintyamongtransparencyinsupplychains(LambinandFurumofarmersaboutthesefertilizers’benefits—whichcanvary2023).Tobesuccessful,avarietyofcomplementarydependingonproductformulation,soil,temperature,supply-anddemand-sideapproachesareneededandotherconditions—andlackofresearchintoscaling(LambinandFurumo2023),accompaniedbystrongupuseofthesefertilizersmaybeconstrainingfactorsgovernanceandenforcementofforestprotectionlaws(Searchingeretal.2019;Fergusonetal.2019).(Garrettetal.2019).Newinitiativesareaimingtoacceleratereductionofagriculturalproductionemissionsandbuildsustainableproductivitygains.Forexample,theAgricultureInno-vationMissionforClimate(AIMforClimate)isseekingtoincreaseinvestmentinresearch,development,anddemonstration(RD&D)toaccelerateinnovationthroughmanyofthepotentialmitigationpracticesdescribedaboveandhasgrowntobecomeacoalitionofover400partners,including47countries.Launchedbythegov-ernmentsoftheUnitedStatesandUnitedArabEmiratesatCOP26in2021,itsmembershaveraisedmorethan$8billionasofearly2023andhaveannounced30“innova-tionsprints.”These“sprints”focusonentericmethane,boostingproductivityandresilienceoncroplandandpastures,optimizationofnitrogenuse,smallholdersoilfertilitymanagement,agroforestry,riceproduction,andFoodandAgricultureSTATEOFCLIMATEACTION2022137Recentdevelopmentsinsuchactionshasincreasedsubstantially,fromcountriesreducingfoodlossandrepresenting14percentoftheglobalpopulationatthewasteendof2018tocountriesrepresenting35percentoftheglobalpopulationbytheendof2021.AnencouragingThe“Target-Measure-Act”approachcanhelpguiderecentexampleofcountry-levelactionisinChina,whereeffortstoreducefoodlossandwaste.Despitebeingthegovernmentpassedawide-ranginglawin2021tohalfwaythroughtheimplementationoftheSustainablereducefoodwasteattheconsumerlevel,includingfinesDevelopmentGoalslaunchedin2015,withgoalssetforforfoodserviceestablishmentswithexcessivefood2030,progressislaggingontheadoptionoftarget-set-preparation,joiningthefewcountrieswithmeasurestinginboththepublicandprivatesector.Between2019toenforcefoodwastereduction(Shenetal.2023).Inand2021,justonenewcountry(Argentina)settargetsJuly2023,theEuropeanCommissionalsoproposedinlinewiththeSDGTarget12.3,meaningthatabout55legallybindingtargetsformemberstatestoachieveapercentoftheworld’spopulationisnowrepresentedby10percentreductioninfoodlossesinprocessingandgovernmentswithfoodlossandwastetargets(Lipinskimanufacturingand30percentpercapitareductionin2022).Anadditionalsevenoftheworld’s50largestfoodretailandhouseholdwasteby2030(EuropeanCom-companiessetfoodlossandwastetargetsduringthatmission2023g).AlthoughtheEuropeanCommission’speriod,bringingthetotalnumberofcompanieswithproposedtargetsarestillundernegotiationandarelessfoodlossandwastetargetsto39(includingalloftheambitiousthanSDGTarget12.3,theyillustrateprogressretailerswithinthe50largestcompanies)(Lipinski2022).towardlegallyrequiringfoodlossandwastereductions.CompanieshavealsobeenscalingupactionstoreduceWhilesettingtargetscanhelpestablishambitionandfoodlossandwaste,withthenumberofcompaniesguidesubsequentpoliciesandactions,measuringfoodwithestablishedfoodlossandwasteprogramshavinglossandwasteisnotonlycriticaltomonitorprogressgrownfrom11attheendof2018to29bytheendof2021.towardthesetargetsbutalsotohelpunderstandwhereNotably,IngkaGroup(IKEA’slargestretailer)wastheactionsareprovingeffective(ornot)inreducingfoodfirstcompanyintheworldtosuccessfullyhalvefoodlossandwaste.Unfortunately,fewcountriessystem-waste,achievingthisreductionbetween2017and2021aticallymeasurefoodlossandwastethroughoutthe(IngkaGroup2022).supplychainaccordingtothelatestavailabledata.Between2019and2021,onlysevengovernmentsbeganWhileitisencouragingthatbothpublicandprivatemeasuringtheirfoodlossandwaste,bringingthetotalsectordecision-makershavebegunmakingcom-to19countriesrepresenting12percentoftheglobalmitmentsandtakingactiontoreducefoodlossandpopulation(Lipinski2022).Thesecountriesincludedwaste,measurableglobaldecreasesinthenextfewArgentina,Australia,Canada,Colombia,Denmark,yearswillrequirerapidlyincreasingtheadoptionofnewIsrael,Italy,Japan,Finland,Mexico,theNetherlands,technologies,suchasinnovativestoragesystemsandNewZealand,Norway,SaudiArabia,Slovenia,Spain,technologytoslowtheripeningofproduce,andotherSweden,theUnitedKingdom,andtheUnitedStates.Theinterventions,suchaschangestodatelabels,reducedUNagencies’effortstomonitorprogressattheglobalportionsizes,facilitationofthedonationofunsoldfood,levelthroughtheFoodLossIndex(FAO2019)andFoodandfoodwastediversionlaws.IncreasedfinancialWasteIndex(UNEP2021e)providestandardmethodsforservices(e.g.,affordableaccesstocredit)forproducersgovernmentstomeasurefoodlossandwasteinorderintheGlobalSouth,aswellasmodifyingincentivestoincreasecountry-leveldataovertime.Comparedto(e.g.,subsidies)toreducefoodlossandwasteinthegovernments,ahigherproportionoftheworld’slargestGlobalNorth,arepotentialwaystoaccelerateprogresscompanieshavebeenmakingprogressintermsof(Cattaneoetal.2021;WorldBank2020).measuringandreportingtheirfoodlossandwaste;4moreofthe50largestfoodcompaniesbeganmeasur-Recentdevelopmentsiningandreportingbetween2019and2021,bringingtheadvancingdietaryshiftsintotalto19companies,10ofwhichareengagingwiththeirhigh-consumingregionssupplierstoreducewaste(Lipinski2022).TheimportanceofshiftingdietsasaclimatemitigationLastly,whilesettingtargetsandmeasuringprogresssolutionisalsobeginningtoenterinternationalclimateareessential,reducingfoodlossandwasteatamean-policyconversations.FortheirRacetoZeroandRaceingfulscalewillrequirenumerousactionsacrossfoodtoResiliencecampaigns,theUnitedNationsClimatesupplychains(Flanaganetal.2019).GovernmentsChangeHigh-LevelChampionshavesetanevenmoreandcompaniescanleadinmotivatingsuchactions,ambitioustargetthanthisreport,callingfor40percentthoughproducers,citizens,andotheractorswillalsooftheglobalpopulationtoshifttoculturallyappropri-playimportantrolesinadvancingprogress.OnaateversionsofthePlanetaryHealthDietby2030,aspromisingnote,thenumberofcountriesimplementingFoodandAgricultureSTATEOFCLIMATEACTION2023138describedbytheEAT-LancetCommission(Falketal.suchasnationaldietaryguidelines—thatinfluencefood2020;High-LevelChampionsn.d.;Willettetal.2019).productionandconsumptionpatternstomakethemThePlanetaryHealthDietfocusesonnumerouschangesmorecompatiblewithclimateandotherenvironmentaltocurrentdietarypatterns—inadditiontoreducinggoals(Springmannetal.2020).TheDanishgovernment,ruminantmeatconsumption—withagoaltooptimizeforexample,releasedupdateddietaryguidelinesinmultiplehealthandsustainabilityoutcomes(Willettetal.2021thatconsideredtheclimateimpactoffoodsforthe2019).WhiletheUnitedNationsClimateChangeHigh-firsttime;theguidelinesincludedrecommendationsLevelChampionsrepresentnonstatestakeholders,theirtoincreaselegumeandvegetableconsumptionandprioritiessignifyincreasingpressureongovernmentstotoreducemeatconsumption(FoodNationn.d.).Publicaddressthem.Thispressureisimportantgiventhat,asandprivateinstitutionscanalsousetheirpurchasingofSeptember2022,only5outof134countries’updatedpowertoprocurefoodthatisbothhealthierandlowerNDCsincludedmeasuresforshiftingtosustainableandinemissions(SwenssonandTartanac2020).Forexam-healthydiets,comparedto94countriesthatincludedple,acollectionofmorethan60leadingfoodservicemitigationmeasuresforagriculture(WWF2022).providersundertheCoolfoodinitiativehavemadesomepromisingprogressusingacombinationofcollectiveBoththepublicandprivatesectorhaveasignificanttarget-setting,monitoringofprogress,andapplicationpotentialtoshiftfoodconsumptionthroughinfluencingofbehavioralscience“nudges”(Box17).Andwhilepolicytheavailability,affordability,convenience,anddesir-effortsatthenationallevelhavebeenrelativelylimited,abilityofdifferentfoods(HerforthandAhmed2015).Governmentscanimprovepoliciesandregulations—BOX17ShiftingtomoresustainabledietsinfoodserviceTheCoolfoodPledge,launchedin2019,helpslargefoodTABLEB17.1CoolfoodPledgememberprogressbysec-providers(includingrestaurantchains,contractcaterers,torthrough2022citygovernments,universities,andhospitals)measureandreducetheclimateimpactofthefoodtheyserve.SECTORNUMBEROFCHANGEMembersofthepledgecommittocollectivelyreducingMEMBERSINGHGtheirfood-relatedGHGemissionsby25percentby2030.CitySUBMITTINGEMISSIONSEachyear,theyreporttheirannualfoodpurchasestoCompanyDATAPER1,000KCALtrackGHGemissionsovertime,andtheyusebehavioralHealthcareTHROUGH2022sciencetoshifttheirfoodofferingsinamoreplant-for-Restaurant5(%)ward,climate-friendlydirectionwhilemaintainingUniversity10customersatisfaction.MostmembersarebasedintheTotal23-24Americas,Europe,andOceania,wherepercapitameat4consumptionishigh,butseveralarebasedinAsiaas6-4well.Asof2023,theCoolfoodinitiativeincludesmore48than60members.-21TheCoolfoodPledge’searlyadopters,acohortofnearly-750membersincludinglargeorganizationslikeIKEAandservingnearlyabillionmealsperyear,havereduced-19theirfood-relatedGHGemissionsintensityper1,000kcalby10percentthrough2022,relativetoa2015–18baseline-10(ChoandWaite2023)(Table8).86City,university,andhealthcaremembershavereducedemissionsintensityNotes:GHG=greenhousegas;kcal=kilocalorie.Datashownforthefastest,aheadofthepaceneededtohitthe2030memberswhojoinedtheCoolfoodPledgepriorto2022.targetshowninIndicator1.RestaurantsandcorporatecampusesarealsomakingprogressbutataslowerSources:CoolfoodmemberfoodprocurementdatafromChopace.ThisprogresshascomeaboutthroughashiftandWaite(2023).GHGemissionscalculationsbasedonPooreandawayfromruminantmeats,andotheranimal-basedNemecek(2018);andSearchingeretal.(2018).foods,andtowardplant-basedfoods(TableB17.1).FoodandAgricultureSTATEOFCLIMATEACTION2023139BOX17Shiftingtomoresustainabledietsinfoodservice(continued)SeveralenablingconditionshavecontributedtoCool-andplanandtestinterventionsthroughastructuredfood’searlysuccess.Asatarget-settingandactionprocesseachyear.Somemembershaveseensuccessinitiative,Coolfoodreliesonleadershipfromprivateandincorporatinginnovativeplant-basedmeatanddairypublicsectorfoodproviders.Theseleaderscommittoalternativeingredientsintofavoritemeals.SomeCool-anambitiouscollectiveclimatetarget,andsome,likefoodmembers,likeU.S.-basedrestaurantchainPanera,NewYorkCitywitha33percentreductiontargetbyhaveincorporatedecolabelinganddirectconsumer2030,committoevenmoreambitiousindividualtargets.engagementintotheirstrategy,puttingaCoolfoodMembersthenthinkthroughmeasurestohelpshiftbadgesymbolindicatingwhichmealsarelow-carbonconsumerdemandtowardlow-carbonfoodswithintheirdirectlyonmenus,bothinstoresandintheironlinediningestablishments.Theydrawfromrecentbehavioralorderingapp.Overtime,theCoolfoodinitiativeaimstoresearch,suchasthePlaybookforGuidingDinerstowardshiftsocialnormsanddemonstratethatclimateactionPlant-RichDishesinFoodService(Attwoodetal.2020)canandmustbedelicious.Notes:GHG=greenhousegas;kcal=kilocalories.theriseoftheMilanUrbanFoodPolicyPactlaunchedseveralyears.Althoughtheirsaleshavebeengrowing,in2015andnowsignedbymorethan200cities(MUFPPmostremainmoreexpensivethantheiranimal-based2023)andtheC40CitiesGoodFoodCitiesAcceleratorcounterpartsandtheirmarketsharehasremainedlaunchedin2019andnowsignedby16cities(C40Citiesrelativelysmall;forexample,itincreasedfrom1percent2023)havedemonstratedtheleadershiprolethatin2019(GFI2020)to1.3percent2022intheUnitedStatesmunicipalitiescanplayinadvancingmoresustainable(GFI2023c).Cultivatedmeat,whichismeatproducedandclimate-friendlyfoodsystems.Morerecently,thebyinvitroculturesofanimalcells,isnowbeingsoldinFoodforthePlanetcampaignintheUnitedKingdomlimitedquantitiesintwocountries(Singaporeandthelaunchedin2021withatoolkitofsuggestedpolicies,UnitedStates),startingthefirstwaveofcommercial-planning,andotheractionsforlocalcouncilstodriveizedproductsfollowingregulatoryapprovalin2020actiononfood,climate,andnature;sincethen,moreand2023,respectively(GFI2023b;Huling2020).Itisnotthan50localitieshavecompletedactionsrecom-clear,however,howfinanciallyviablecultivatedmeatmendedinthetoolkit(SustainableFoodPlaces2023).willbeforwidespreadadoption.ThecostofproducingAndin2023,theU.S.ConferenceofMayorspassedacultivatedmeatiscurrentlyestimatedatbetweenresolutiontosupportashifttowardmoreplant-based$150and$22,423perkilogram(Vergeeretal.2021),withdietstoaddresschronicdisease,climatechange,anddifferentstudiesprojectingitspotentialtodecreasetofinancialsustainability(U.S.ConferenceofMayors2023).$6.43–$116(Vergeeretal.2021),$17–$35(Negulescuetal.2023),and$63(Garrisonetal.2022)perkilogramatWhilepoliciesandinterventionstoencourageconsum-thecommercialscale,comparedtoawholesalepriceerstoshifttowardmoreplant-richdietsareneededof$8.75perkilogramforconventionalbeefin2022toachieveclimategoalsandimprovehumanhealth,(USDA2023).Moreaffordablecellculturemediaandadvancing—andsustaining—dietarybehaviorchangesbioreactordesignarekeychallengestoovercometoischallenging,withlimitedprogressmadethusfar.achievethesepricereductions(Garrisonetal.2022;Replacingorreducingruminantmeatinpeople’sdietsNegulescuetal.2023).PublicspendingtosupportR&Dwithalternativeproteinsthatprovideasimilarexperi-andcommercializationforalternativeproteinshasencetomeatanddairybutaresourcedfromplants,beensteadilyincreasing—morethandoublingtoreachfungi,orthroughtissueculturerepresentonepromising$635millionin2022alone(GFI2023a).Atthesametime,routetoloweringruminantmeatconsumptionwhiletheseinvestmentswillneedtoscaleupsubstantiallyforreducingthebehavior-changechallenge.Comparedalternativeproteinstoreachtasteandpriceparitywithtoruminantmeat,plant-basedmeatsubstitutes,animal-basedmeatandachievewidespreadconsumerfermentation-derivedmicrobialproteins,and(whenacceptance,withoneanalysisestimatingthatglobalproducedusingrenewableenergy)cultivatedmeatspublicspendingwillneedtoincreaseto$10.1billionpercouldallcontributetosubstantialreductionsinGHGyear(VividEconomics2021).Interventionstoinfluenceemissionsandmostotherharmfulenvironmentalsocialnormsandincreasepositivefeelingsaboutdiffer-impacts(Bryant2022;Humpenöderetal.2022;Santoetentalternativeproteinsmayalsopromoteacceptanceal.2020;Sinkeetal.2023).Plant-basedmeatsubstitutes(Onwezenetal.2021).havebeenonthemarketinhigh-incomecountriesforFoodandAgricultureSTATEOFCLIMATEACTION2023140SECTION8TechnologicalCarbonRemovalAsacomplementtodeepandrapidemissions6,ForestsandLand.Notethat“technological”doesnotreductions,allpathwaysthatlimitwarmingtoperfectlydescribethetypesofcarbonremovalcovered1.5°Calsorelyoncarbondioxideremoval(CDR,inthissection,whichincludeapproachesthatarenovelalsohereafterreferredtoascarbonremoval),87includingandnotyetprovidinglarge-scaleremoval,andinsomenature-basedapproachesandtechnologicalcarboncasesarecombinationsoftechnologicalandbiologicalremovalmethods(IPCC2022b).Theseapproachesareornaturalapproaches.neededtoremoveexcessCO2intheatmospheretostaywithinthecarbonbudgetavailableforlimitingtempera-tureriseto1.5°C.Intheyearsleadinguptothemiddleofthecentury,carbonremovalcancounterbalanceGHGemissionsforwhichabatementtechnologiesdonotbecomeavailable(e.g.,someheavyindustry,non-CO2emissionsfromagriculture).88Inthelongerterm,carbonremovalcanhelpreduceatmosphericCO2concentra-tionsclosertopreindustriallevels(Honeggeretal.2021;BergmanandRinberg2021).Carbonremovalincludesarangeofactivities,fromnature-basedapproacheslikereforestation,peatlandrewetting,andmangroverestorationtomoretechno-logicalapproaches,suchasdirectaircapture(DAC),carbonmineralization,andbiomasscarbonremovalandsequestration(Figure62,Box18).Onlythesenewer,technologicalapproachesarecoveredinthissection,whilenature-basedapproachesarecoveredinSectionFIGURE62RangeofcarbonremovalapproachesonlandandintheoceanREMOVALREMOVALMETHODPROCESSLand-basedbiologicalChemicalGeochemicalOcean-basedbiologicalCARBONAfforestation,SoilcarbonBiomasscarbonDirectairEnhancedPeatlandOceanSeaweedOceanreforestation,sequestrationremovalandstoragecarboncaptureweatheringandcoastalalkalinitycultivationfertilizationImprovedforest(e.g.,biochar,BECCS)enchance-managementandstoragewetland(DACCS)restorationmentIMPLEMENTATIONAgroforestryAgriculturalCroppingandSolidsorbentSilicateRewettingCarbonateSinkingtoIronpracticesforestryresiduesLiquidsolventrocksRevegetationrocksthedeepfertilizationTreeplanting,silviculturePastureUrbanandindustrialSilicateoceanN&PmanagementorganicwasterocksfertilizationOPTIONSTimberinconstructionPurpose-grownbiomasscropsEnhancedBio-basedupwellingproductsEARTHLANDOCEANSYSTEMSSTORAGEBuildingsVegetation,soils,andsedimentsGeologicalformationsMineralsVegetations,soils,MineralsMarinesedimentMEDIUMandsedimentsTIMESCALEOFSTORAGEDecadestoCenturiesto10,000yearscenturiesmillenniaorlongerNotes:BECCS=bioenergywithcarboncaptureandsequestration;N&P=nitrogenandphosphorus.Approachesoutlinedinredareconsideredinthissection.ThosenotoutlinedinredareconsideredinSection6,ForestsandLand.Source:IPCC(2022b).TechnologicalCarbonRemovalSTATEOFCLIMATEACTION2023142Somecarbonremovaltechnologiesarereadyfordeployment,butmanyrequirefurtherdevelopmentordemonstrationtoimproveprocessesandreducecostsand/orresearchtoresolveuncertaintiesandpotentialrisks(Fussetal.2018;Smithetal.2023;NASEM2019).Andtheyallincludetrade-offsthatwillneedtobeevaluatedonacase-by-casebasis,takinglocalimpactsandconcernsintoaccount.Developingarobustportfolioofapproachescanhelpinreducingcosts,minimizingrisks,andbalancingthetrade-offsassociatedwithanyonesolution(Mulliganetal.2020;Ruedaetal.2021).Aportfoliothatincludesonlynature-basedapproaches,forinstance,facesconstraintsonlandareaavailabilityanduncertaintyaroundpermanence(i.e.,treessequesteringcarboncanbecutdownorburninawildfire).Atthesametime,atechnology-onlyportfoliowouldbemorecostlyandlackmanyoftheco-benefitsthatnaturalapproachesBOX18OptionsfortechnologicalcarbonremovalThefollowingtechnologicalcarbonremovalmochemicalorbiochemicalpathways.Scalingupapproachesareincludedinsome,butnotall,biomass-basedpathwaysfacesbarriersandchal-modelscenariosanalyzedbytheIPCC;somelenges,includingaccessingbiomassfeedstocks(e.g.,directaircaptureandbioenergywithcarbonthatavoidnegativeorunintendedimpactsonbio-captureandstorage)mustbecombinedwithper-diversity,agriculturalproduction,andlivelihoodsmanentsequestrationtoresultinremoval,whileandthatresultinoverallnetemissionsreductions.others,suchascarbonmineralization,includeBioenergywithcarboncaptureandsequestra-permanentsequestrationintheircaptureprocess.tion,atypeofBiCRS,showsupmostinclimatemodelscenariosamongtechnologicalcarbonDirectaircapture(DAC):Directaircaptureremovalmethods.Tonnesofbiomass-basedinvolvesmachinesthatusechemicalsthatcarbonremovalhavesoldforlessthan$100/tCO2selectivelyreactwithcarbondioxideintheair;thetomorethan$600/tCO2onvoluntarymarketscarbondioxidecanthenbestoredpermanently.(Höglund2022).AsofJuly2023,thereare27DACplantsglobally;thelargestonetodayremoves0.004MtCO2/yrandCarbonmineralization:CarbonmineralizationisispoweredbygeothermalenergyinIceland(IEAasetofapproachesthatacceleratethenatural2023q).Highcost,inpartduetoenergyneeds,isreactionsbetweensometypesofmineralsandamajorbarriertomorerapidscale-upofdirectcarbondioxide,resultinginsolidcarbonatesthataircapture,butcostisexpectedtodeclineaslockawaycarbon.Furtherresearchwillbeneededmoreprojectsprovidelearningandoptimizationtoidentifyoptimalapplicationparameters(e.g.,opportunities(NASEM2019;LacknerandAzarabadimineraltype,location,particlesize),understand2021).TonnesofCO2removedbyDAChavesoldecologicalandenvironmentalimpacts(especiallyforaround$300/tCO2tomorethan$2,000/tCO2onforocean-basedapproaches),anddeveloprobustvoluntarymarkets(Höglund2022).monitoringandverificationapproaches(Sandalowetal.2021).Tonnesofmineralization-basedcarbonBiomasscarbonremovalandstorage(BiCRS):removalhavesoldfor$75/tCO2uptomorethanBiCRSapproachesusebiomasstocapturecarbon$1,300/tCO2onvoluntarymarkets(Höglund2022).dioxidethroughphotosynthesisandthenstorethatbiomassunderground.Insomecases,thebiomassisconvertedbeforeitissequesteredusingther-Notes:IPCC=IntergovernmentalPanelonClimateChange;MtCO2/yr=milliontonnesofcarbondioxideperyear.TechnologicalCarbonRemovalSTATEOFCLIMATEACTION2023143canprovideforresilienceandbiodiversity.Forexample,Suchscale-upwillneedtobeimplementedinawayDACisenergy-intensivebutusescomparativelylittlethatprioritizesequityanddoesnotreplicatethepastlandand,whencoupledwithgeologicsequestration,harmsthatlarge-scaleinfrastructurebuild-outhasresultsinpermanentstorage;treeplantingprovidesinflictedoncommunities.Forinstance,intheUnitedmanyco-benefitsbutrequirescomparativelymorelandStates,environmentalburdenssuchaspollutionfromandcanbereversable(e.g.,throughwildfires);andsomeindustrialfacilitieshavelongfallendisproportionatelyocean-basedapproacheshavelargetheoreticalpoten-onlow-incomecommunitiesandcommunitiesofcolortialbutmanyecologicalandgovernanceuncertainties(SkeltonandMiller2016).Questionsthatneedtobe(Leblingetal.2022b).answeredincludehowtofairlysharetheresponsibilityofdeployingcarbonremovalamongcountriesandoverTheamountofcarbonremovalultimatelyrequiredtime(Fysonetal.2020;Leblingetal.2023);howtoidentifytoavoidintensifyingclimateimpactsisinverselycarbonremovalprojectsitesandconfigureprojectssoproportionaltothespeedandscaleofemissionsthattheydonotdisproportionatelyburdenvulnerablereduction—themoreemissionsreductionsthereareincommunitiesandcanprovidelocalbenefits;howtothenearterm,thelesscarbonremovalwillbeneededconsistencyandcrediblyquantify,transparentlyshare,toreachglobalclimategoals(Prützetal.2023).Climateandverifyinformationonremovals;andwhetherandmodelingscenariosanalyzedbytheIPCCshowawidehowcarbonremovalprojectscanleverageskillsandrangeofrelianceontechnologicalcarbonremovalexpertiseofjobslostinthefossilfuelsector(e.g.,frommethods(IPCC2018,2022b).However,theIPCC’scoalminingtominingrocksforcarbonmineralization).assessmentincludessomescenariosthatmayuseunsustainableamountsoflandforbiomassfeedstockGlobalassessmentproductionandnotesthatdependenceoncarbonofprogressforremovalcanbesignificantlyreducedwhereresourcetechnologicalcarbonefficiency,sustainabledevelopment,and/orlowfutureremovalenergydemandareprioritized(IPCC2022b).ThetargetslaidoutinthisreportusetheIPCC’sscenariosforhowAkeyindicatorfortrackingprogresstowardthescale-upmuchcarbonremovalisneededtostaybelow1.5°Coftechnologicalcarbonremovalisidentifyinghowwithnoorlowovershoot,withfilteringtoonlyincludemanytonnesofCO2havebeencapturedfromtheairscenariosthatmeetsustainabilityconstraints;namely,bycarbonremovaltechnologiesandsequesteredrestrictedrelianceonbioenergywithcarboncapturepermanently(Table8).Tomeetthisdefinitionoftech-andstorage(BECCS).Thetargetrangeisthensetbasednologicalcarbonremoval,CO2mustbecapturedonthe5thto95thpercentileoftherangeoftechnolog-fromtheatmosphereratherthanatapointsourceicalcarbonremovalneededinthesefilteredscenarios.likeacementplant.89ThenitmustbesequesteredCarbonremovaltechnologiesprovide30–690MtCO2ofpermanently90—forexample,throughstorageindeepremovalperyearby2030;by2050,rangesspanfrom740undergroundgeologicalformationsorthecreationofMtCO2peryearto5,500MtCO2peryear.Achievingevenstablecarbonateminerals—orstoredindurableprod-thelowerendofthe2030targetwouldrequirescalingucts,suchasconcrete.upmorethan65-foldfromtoday’slevelofremoval.TABLE8SummaryofglobalprogresstowardtechnologicalcarbonremovaltargetINDICATORMOSTRECENTDATA203020352050TRAJECTORYACCELERATIONSTATUSPOINT(YEAR)TARGETTARGETTARGETOFCHANGEFACTORTechnologicalcarbonremoval(MtCO2/yr)0.5730–690N/A740–5,500>10x(2022)Notes:MtCO2/yr=milliontonnesofcarbondioxideperyear.SeeJaegeretal.(2023)formoreinformationonmethodsforselectingtargets,indicators,anddatasets,aswellasourapproachforassessingprogress.Sources:HistoricaldatafromU.S.EPA(2023b);Climeworks(2021);andHöglund(2022);targetsderivedfromIPCC(2022c);andFussetal.(2018).TechnologicalCarbonRemovalSTATEOFCLIMATEACTION2023144TECHNOLOGICALCARBONREMOVAL•DACcapacityisaround0.008MtCO2/yr(IEA2022d),INDICATOR1:butonlyaroundhalfofthatcapturedCO2isstoredTechnologicalCarbonpermanently,namelythroughthe0.004MtCO2/yrRemoval(MtCO2/yr)OrcaDACplantinIcelandrunbytheSwisscompany•Targets:TheannualrateoftechnologicalcarbonClimeworks.OthersmallerDACprojectsmayberemovalreaches30–690milliontonnesofcarbonsequesteringCO2aswell,buttheydonotpubliclydioxideperyear(MtCO2/yr)by2030and740–5,500disclosehowmuchtheyhaveremoved.MtCO2/yrby2050.•Forbiomasscarbonremoval,oneethanolfacilitywithAssessingprogressofcarbonremovalscale-upisdifficult,asnocentralizedorcomprehensivedata-carboncaptureandstorage(whichisconsideredbasetracksremovalratesacrosstechnologiesandapproaches,andnotalldataarounddirectpurchasescarbonremovalsincetheCO2wasinitiallycapturedofcarbonremovalcreditsaremadepublic.Consideringfromtheairviaphotosynthesis),locatedintheU.S.progressforeachtechnologyandthenforpurchasesstateofIllinois,sequestered0.44MtCO2in2021,91theofcarbonremovalcreditswithinvoluntarymarketscanlatestyearforwhichdataareavailable(U.S.EPAhelpprovideasense—albeitanincompleteone—ofwheretechnologicalcarbonremovalscale-upstands.2023b).The2021numberisassumedfor2022intheTodaylessthan1MtCO2/yrcomesfromtechnologicalcarbonremoval.absenceofupdateddata.TheonlyotherfacilityofitskindpermanentlysequesteringCO2becameopera-tionalinJuly2022inNorthDakotaandcapturesandsequesters0.18MtCO2/yr(EERC2022).•Otherpurchasesthatweredeliveredthroughvoluntarymarketsadded0.044MtCO2in2022viapurchasesofcreditsfromDAC,mineralization,andbiomass-basedapproaches(Höglund2022).FIGURE63Historicalprogresstoward2030and2050targetsfortechnologicalcarbonremovalRightDirection,WellOffTrackS-CurvePossibleMtCO2/yrHistoricalCurrentPaceneededtodatatrendreachtargets60002050target0.6740–5,50050004000HISTORICAL3000DATA020222018Accelerationrequiredtoreach2030target>10x20002022data2030target2040205010000.5730–6900202020302010Notes:MtCO2/yr=milliontonnesofcarbondioxideperyear.SeeJaegeretal.(2023)formoreinformationonmethodsforselectingtargets,indica-tors,anddatasets,aswellasourapproachforassessingprogress.Sources:HistoricaldatafromU.S.EPA(2023b);Climeworks(2021);andHöglund(2022).TargetsderivedfromIPCC(2022b);andFussetal.(2018).TechnologicalCarbonRemovalSTATEOFCLIMATEACTION2023145DataareincompleteandincludeonlywhatisreportedFIGURE64Totalsalesanddeliveriesofcarbonpublicly.Thiscomestoanestimated0.57MtCO2in2022,and,althoughthistotaldemonstratesameaningfulremovalcreditsimprovementfromrecenttrends,itstillamountstolessthan1percentofthemidpointofthetargetamountMtCO2ofcarbonremovalneededby2030(Figure63).The4historicalrateofchangewouldneedtoacceleratemorethan10-foldtomeetthe2030target.Reachingthelower3.5Totalboundtargetby2030wouldbeequivalenttobuildingmorethan3ofthelargestDACplantsinoperationtodaysales(4,000tCO2/yrscale)everydayuntil2030.Reachingtheupperboundwouldmeanbuilding73ofthisscale3projecteveryday.2.5Ifsomeofthecurrentbarrierstouptakeoftechnolog-icalcarbonremovalareovercome,anS-curvegrowth2trajectoryispossible.Eventhoughthenumberoftonnesremovedtodayissmallandallcarbonremovaltechnol-1.5ogiesremainintheemergencephase—suchthatglobalprogressmadetowardthisnear-termtargetiscatego-1rizedaswellofftrack—themomentumneededtodrivechangeisrapidlyacceleratingintermsofcommitments0.5October2020February2022Totalandinvestment.deliveries0RecentdevelopmentsJune2019April2023acrosstechnologicalcarbonremovalNote:MtCO2=milliontonnesofcarbondioxide.Includespurchasesoftonnesremovedbydirectaircapture,mineralization,Injustthelastfiveorsoyears,carbonremovaltech-electrochemicaloceancarbondioxideremoval(CDR),biomass-nologieshavetransformedfromanicheconcepttobasedCDR(biochar,bio-oilinjection),andmacroalgaecultivation.acommoncomponentofclimateactionportfolios,supportedbybillionsofdollarsinpublicfundingandSource:HöglundandNiparko(2023).hundredsofmillionsofdollarsofprivateinvestment(Frontier2023;U.S.Congress2021).Thetotalsalesof2022;Pontecorvo2023).Andinlate2022,theEuropeantechnologicalcarbonremovalcreditsonthevoluntaryCommissionlauncheditsproposalforaCarbonmarkethavegrownexponentially,providingsomeRemovalCertificationFramework(CRCF),thefirstpublicindicationofwherethesectorasawholeisheaded,andsectorvoluntarycertificationframeworkforhigh-qualityhighlightingthatmanypurchasesinthisnewindustrycarbonremoval.DevelopmentoftheCRCFisjustthefirstarebeingmadeinadvanceofprojectcompletionstepinthisprocess;bylate2023orearly2024itwillbe(Figure64).TheUnitedStates(Box19)andseveralotherdiscussedintheEuropeanParliamentandthentrans-countrieshavebeenearlyleadershere,andinterestformedintolegislationandcertificationmethodologiesisbeginningtobroaden.AccordingtothefirstStateoftailoredtoeachtypeofcarbonremoval.TheaimofthisCarbonDioxideRemovalreport,launchedinearly2023,frameworkistoimprovethecredibilityofCDRprojectspeer-reviewedscientificliteratureoncarbonremovalandhelpdrivescale-upaccordingly.92nowconsistsofnearly30,000English-languagestudies(Smithetal.2023).Eachofthepastseveralyearshasseenaflurryofannouncements,investments,supportivepolicies,andnewCDRcompanieslaunching(Figure65).Forexam-ple,inthespaceofayear,twotradeassociationsforcarbonremovalcompanieswerelaunched—theCarbonBusinessCouncilinmid-2022andtheCarbonRemovalAllianceinFebruary2023.Bothaimtoadvancepoliciestosupporttheplethoraoffast-growingCDRcompaniesindeliveringcarbonremoval(CarbonBusinessCouncilTechnologicalCarbonRemovalSTATEOFCLIMATEACTION2023146FIGURE65SelectedrecentactionssupportingdevelopmentanddeploymentofcarbonremovaltechnologiesActionbypublicandprivateentitiesUKlaunchesCalifornia’sLowMissionU.S.GovernmentCanadiangovernmentNextGenJPMorgan£8.6millionCarbonFuelInnovationaddsappropriates$4.6announcesinvestmentcommitstocommits$200GHGremovalstandardrevisedcarbonremovalbilliontoCO2taxcreditforDAC,buyingmilliontoresearchtoincludecreditmissiontransportandcarbonsequestration200,000tCO2carbonremovalprogramforDACstorage(andcarboncapture)removalprojectsinfrastructureprojectsU.S.GovernmentStripemakesfirst$100millionU.S.Government$925millionUSfirstinvestmentinprivatesectorcarboncarbonremovalappropriatesFrontierFundannouncescarbonremovalremovalinvestmentXPRIZEis$3.5billiontoannouncedfor$1.2billioninresearchofof$1millionannouncedDAChubsadvancedfundingforUS$60millioncarbonremovalDACpurchasesprojects2017201820192020202120222023EngineeringU.S.GovernmentTheWorldU.S.announcesEUproposesbeginsonMtCO2enactsenergybillEconomicForum’s“CarbonNegativeCarbonRemovalperyearscalewithhundredsofFirstMoversShot”todecreasetheCertificationDACplant,usingmillionsformulti-yearCoalitionincludescostofremovaltoFrameworkCarbonCDRprogramsandDACasakey$100pertCO2overEngineering’sincreasesannualtechnologythenextdecadetechnologyspendingonCDRU.S.45QtaxMicrosoftcreatesClimeworks’DACClimeworksU.S.InflationReductionFirstDACU.S.Governmentcreditis$1billionfundforplantinIceland,thereceivesActincreases45Qprototypeinfundingforcarbonincreasedtocarbonremoval,largestintheworld,record$650taxcredittoAfricaunveiled,removalRD&D$35–$50/tCO2reduction,andremoving4,000million$130–$180/tCO2withplanstoreaches$140sequesteredcapturetCO2peryearinvestmentcapturedviaDAC,buildDACmillion;includescomesonlineamongotherplantsby2025creationofpilotenhancementspurchasingfacilityNotes:CDR=carbondioxideremoval;CO2=carbondioxide;DAC=directaircapture;EU=EuropeanUnion;GHG=greenhousegas;MtCO2=milliontonnesofcarbondioxide;RD&D=research,development,anddemonstration;tCO2=tonnesofcarbondioxide;UK=UnitedKingdom;US=UnitedStates.Thisfigureshowsselectedhighlightsofactionsandactivitiestheauthorsidentifiedtobemostimportantinthecarbonremovalspace.Source:Authors.TechnologicalCarbonRemovalSTATEOFCLIMATEACTION2023147BOX19U.S.actiononcarbonremovalAsthelargestcumulativehistoricalGHGemitter,ProcurementofcarbonremovalisalsogainingtheUnitedStateshasaresponsibilitytoleadcar-interest.The2023appropriationsbilldirectedthebonremovaldevelopmentanddeploymenttohelpDepartmentofEnergytodevelopapilotprocure-cleanuptheseemissions(Fysonetal.2020).Thementprogram.AndlegislativeproposalshavealsoLong-TermStrategyoftheUnitedStatesoutlinesbeenintroducedthroughlarger-scaleprocure-theneedforaroundhalfabilliontonnesoftech-mentofanincreasingnumberoftonnesofcarbonnologicalcarbonremovalintheUnitedStatesbyremovalatdecliningpricesatthefederallevel(themidcentury,alongwithdeepdecarbonizationandFederalCDRLeadershipActandtheCRESTAct)andcarbonremovalfromnature-basedapproaches,inthestatesofCaliforniaandMassachusetts(U.S.likereforestation(U.S.DepartmentofState2021).HouseofRepresentatives2022;U.S.Senate2022c;CommonwealthofMassachusetts2023).ThestateU.S.governmentandprivatesectorinterestandofCaliforniahasalsointroducedabillthatwouldactionhasincreasedmassivelytohelpmeetthisrequirecompaniestopurchasecarbonremovaltostrategy.Federalinvestmentinresearchhasgrowncompensateforanincreasingpercentageoftheirfromnearzerobefore2020tomorethan$140remainingemissionsthrough2045,whenthestatemillionin2023(U.S.Senate2022a).Moreover,in2021hasanet-zerogreenhousegasemissionstargetamajorinfrastructurelawprovided$3.5billion—the(StateofCalifornia2023a).Thesepoliciescouldlargest-everinfluxoffundingforcarbonremovalallhelpcreatedemandandgreatercertaintyforanywhere—tobuildfour“DAChubs”thatcaneachsuppliersofcarbonremoval.captureandstoreoruse1MtCO2/yr,plusanaddi-tional$115millionforDACtechnologycompetitionAsmomentumaroundcarbonremovalintheprizes.Inthatsameyear,theDepartmentofEnergyUnitedStatesgrowsrapidly,theprivatesectorisannounceda“CarbonNegativeShot”initiativetoalsodemonstratingincreasedinterestinscalingreducethepriceofcarbonremovalto$100/tCO2upcarbonremovaltechnologies.CompaniesremovedoverthefollowingdecadeforpathwayslikeStripe,Microsoft,andShopifyhaveinvestedthatcanreachgigatonnescale(U.S.DOE2021).Inhundredsofmillionsofdollarsinearlypurchases2022,theInflationReductionActmorethantripledofcarbonremovaltonnesandhavemadeeffortsthelevelofsupportforCO2removalwithDAC,tomaketheirprocessestransparenttoprovidefrom$50/tCO2to$180/tCO2(U.S.Senate2022b).Aslearningforothers(Stripe2021;Microsoft2021).context,pricesforcarbonremovalpertonneofInmid-2022,acoalitionofcompanies,includingCO2varywidelytoday,withpurchasersofcarbonStripeandShopify,launchedFrontier,acom-removaltonnespayingontheorderof$100/tCO2mitmenttopurchase$925millioninpermanentforsomecarbonmineralizationapproachestocarbonremovalbetween2022and2030(Frontiermorethan$2,000/tCO2forsomeDACpurchases2023).Thiscommitmenthelpsprovidethedemand(Höglund2022).signalforcarbonremovalcompaniestomakeinvestmentstoincreasetheirsupply.Notes:DAC=directaircapture;GHG=greenhousegas;tCO2=tonnesofcarbondioxide.Atthesametime,thereissomeconcernandupcarbonpollution,theyalsohavelocalimpacts(e.g.,skepticismaboutthegrowingmomentumbehindland,energy,andwaterusage)thatmustbebettertechnologicalcarbonremoval.Somehighlighttheriskunderstoodandassessedonaproject-by-projectbasis.thatcarbonremovalcandistractfromtheneededfocusonandinvestmentinGHGemissionsreductionsRegulationsandgovernancestructureswillneedtobetoday(Grantetal.2021;Markussonetal.2018;Templecreatedandstrengthenedtoensurethattheindustry2021),whileotherscriticizethelackofactualremovalsisscaledinanequitable—andsustainable—manneraccountedfortodate(Temple2021).Somegroups(Maceetal.2021;Leblingetal.2023).Improvingexist-havealsoexpressedconcernthatwhiletheseproj-inggovernanceframeworkscouldincludearangeofectsprovidethedispersed,publicbenefitofcleaningpublicandprivatesectorinterventionsatmanylevelsTechnologicalCarbonRemovalSTATEOFCLIMATEACTION2023148(e.g.,international,national,state,project),whichcould(Fraser2022).Thirdpartiesthatapproveprivatesectorhelptoincreasepublicacceptanceandsupportforclimatecommitmentscanprovideguidanceonrelativethetechnologies.levelsofemissionsreductionandcarbonremovalwhenmeetingclimategoals.Atthegovernmentalscale,forexample,nationalgovernmentscanincluderequirementsforcommunityForexample,theUNhigh-levelexpertgroupontheengagementandconsiderationofenvironmentalandnet-zeroemissionscommitmentsofnonstateentitiessocialimpactsofcarbonremovalprojectsasprereq-hasrecommendedthatanet-zerotargetbebasedonuisitesforprojectdeveloperstoreceivefederalfundingapathwaytonetzerogroundedinarobustmethod(Allenetal.2022;Leblingetal.2022a).Nationalorstateconsistentwithlimitingwarmingto1.5°C,withemissionsgovernmentscanalsosetlegalminimumlimitsonthefallingasclosetozeroaspossibleandresidualemis-levelofemissionsreductionsinmeetingnationalorstatesionsbalancedbypermanentremovals,verifiedbyaclimategoals(e.g.,80–90percentemissionsreductionscredibleandindependentthirdparty.Thegrouphaswith10–20percentoftheoriginalemissionscounter-alsorecommendedthatregulatorsdevelopregulationsbalancedbycarbonremoval)tohelpavoidrelianceandstandardsfornet-zerotargetstoensuretheircredi-oncarbonremovalinplaceofemissionsreductions,abilityandpreventgreenwashing(UNHLEG2022).concernknownasmitigationdeterrence.Moreclearlydefiningwhatcountsas“hard-to-abate”andeligibletoTherearealsorolesforinternationalorganizationsandbecounterbalancedbycarbonremovalwouldhelpjus-civilsocietyorganizationstoplayinimprovinggover-tifythesedefinitions(Leblingetal.2023).Simultaneously,nanceoftechnologicalcarbonremoval.Forinstance,nationalandsubnationalgovernmentscanensurethatinternationalorganizationscanstrengthenexistingdataexistingzoningandinfrastructureplanningregulationsandinventorysystems,ensurethataccountingrulesaresufficienttoregulatenewcarbonremovalinfra-arerobust,andcreateincentivesforandengagewithstructureandthattheydonotconcentrateanylocallythecarbonremovalresearchcommunity(Maceetal.unwantedlandusesnearmarginalizedcommunities2021).Simultaneously,civilsocietyorganizationscanuse(Leblingetal.2022a).theirplatformsandresourcestoholdgovernmentandprivatesectoractorstoaccount,advocateformargin-Withintheprivatesector,governancestructurescanalizedcommunities,andemphasizetheimportanceofalsobeestablishedtoaiduptake.Privatesectorpur-transparencyindecision-makingprocesses.Ultimately,chasersofcarbonremoval,andplatformsthatcertifygovernments,theprivatesector,andcivilsocietywillallandsellcarbonremovalcreditsforvoluntarymarkets,needtoworktogethertostrengthenthesegovernanceforinstance,canincludesustainability,communityframeworksastheindustrycontinuestogrow.engagement,andotherrelevantstipulationsforcreditstobeboughtorsoldashigh-qualityoptions.Projectdeveloperscanalsousecommunitybenefitagreements(bindingcontractsbetweendevelopersoflarge-scaleprojectsandcommunitiesthatrepresentresidents’interests)orotherlegalinstrumentstoensurethatcom-munitiesreceivedesiredbenefitslikelocalemploymentopportunitiesorothertypesofcommunityinvestmentTechnologicalCarbonRemovalSTATEOFCLIMATEACTION2023149SECTION9FinanceFinanceisavitalenablerofclimateaction,butinvestmentinthezero-carboneconomyneedstobecurrentinvestmentpatternsarehinderingthemanytimesgreaterthanthelevelofinvestmentinfossilspeedandscaleofthetransitiontozero-carbonfuelsandotherhigh-emissionsactivities(IEA2023m).economies.Transformingpower,buildings,industry,Thedecisionspublicandprivateactorsmakeabouttransport,forestsandland,andfoodandagriculture,whattheyinvestinwilldeterminehowfastthetransitionaswellasscalingupcarbonremovaltechnologies,toanet-zeroworldtakesplace.willallrequiresignificantincreasesinclimatefinance,aswellasabroadertransformationofthefinancialGlobalassessmentofsystem(IPCC2022b).Continuedinvestmentinfossilprogressforfinancefuels,commoditiesthatdrivedeforestation,andotherhigh-emissionsactivitiesatcurrentlevelswillputtheTransformingtheglobalfinancialsystemtosupportParisAgreement’s1.5°Ctemperaturelimitoutofreach.ambitiousclimateactionentailsbothscalingupTherefore,atthesametimeasscalingupclimateclimatefinanceandaligningallfinancewiththeParisinvestment,itisessentialtophaseoutinvestmentsinAgreement’sgoals.Scalingupclimatefinanceincludeshigh-emissionsactivities.Doingonewithouttheotherwillbeinsufficienttomeetclimategoals;thelevelofTABLE9SummaryofglobalprogresstowardfinancetargetsINDICATORMOSTRECENT203020352050LIKELIHOODACCELERATIONSTATUSDATAPOINTTARGETTARGETTARGETOFFACTOR(YEAR)FOLLOWINGANS-CURVEGlobaltotalclimatefinance0.855.2N/A5.18x(trillionUS$/yr)a(2021)Globalpublicclimate0.3321.31–2.61N/A1.29–2.578xfinance(trillion$/yr)b(2020)Globalprivateclimate0.3332.61–3.92N/A2.57–3.86>10xfinance(trillion$/yr)b(2020)Ratioofinvestmentin1:17:110:110:1>10xlow-carbontofossil(2023)(2040)fuelenergysupplyShareofglobalGHG2075N/A1001.5xemissionsunder(2022)mandatorycorporateclimateriskdisclosure(%)cWeightedaveragecarbon23170–290N/A430–990>10xpriceinjurisdictions(2023)withemissionspricing000N/A;systems(2015$/tCO2e)1,100U-turnneeded(2021)dTotalpublicfinancingforfossilfuels(billion$/yr)Notes:GHG=greenhousegas;tCO2e=tonneofcarbondioxideequivalent;yr=year.SeeJaegeretal.(2023)formoreinformationonmethodsforselectingtargets,indicators,anddatasets,aswellasourapproachforassessingprogress.aThisindicatorincludespublicandprivate,aswellasdomesticandinternational,flows.bTheseindicatorsincludedomesticandinternationalflows.cJurisdictionsincludedin2022areBrazil,Egypt,India,Japan,NewZealand,Singapore,Switzerland,theUnitedKingdom,andtheEuropeanUnion.Disclosurerequirementsarenotuniformamongcountriesandapplytodifferentorselecttypesoffirms(e.g.,financialinstitutionsorpubliclytradedfirms)withdiverseimplementationtimelines.Weconsiderjurisdictionsthatimplementedanyformofmandatoryrequirementduringtheyearitwasapproved,evenifitentersintoforceinphaseswithdifferenttimelines.Thisapproachcanresultinanoverestimationasimplementa-tiontimelinesareenforcedovertheyearsindifferentstages.dDataareacompilationofproductionandconsumptionsubsidies,G20state-ownedentityfossilfuelcapitalexpenditure,andinternationalpublicfossilfuelfinancefrommultilateraldevelopmentbanksandG20countries’developmentfinanceinstitutionsandexportcreditagencies.Sources:HistoricaldatafromNaranetal.(2022);IEA(2023m);TCFD(2022);WuandUddin(2022);Naik(2021);ClimateWatch(2023);WorldBank(2023a);OECDandIISD(2023);Laanetal.(2023);andOCI(2023).TargetsfromIPCC(2018,2022b);IEA(2021b);OECD(2017);UNEP(2021b,2021f);Lubisetal.(2022);ClimateAnalyticsandWorldResourcesInstitute(2021);G7(2016);G20(2009);andUNFCCC(2022a).FinanceSTATEOFCLIMATEACTION2023151rampingupfundinginallcountries,frombothpublictoworkinenablingthenet-zerotransformation.Gov-andprivateactors.AligningfinancewiththeParisernmentshavealarge,well-tested,andeffectivetoolkitAgreementincludesensuringthatamuchhigherratioforshiftingprivateinvestments.Thisincludestraditionalofinvestmentgoestolow-carbonenergycomparedsectoralenvironmentalregulationsthatcanforcetofossilfuels;measuring,reporting,andmanagingcompaniestoinvestincleanertechnologies,aswellasclimaterisks;accountingforthefullclimatecostsofGHGfinance-specificpolicies,suchasfinancialregulation,emissionsthroughcarbonpricingmechanisms;andfiscal,andmonetarypolicy(Whitleyetal.2018).Muchofendingpublicfinancingforfossilfuels.Whilerecentratesthediscussionaroundmobilizingprivateclimateinvest-ofchangeacrossallbutoneoftheseshiftsareheadingmenthasfocusedon“de-risking”incentivesintheformintherightdirection,theyremainwellbelowthepaceofsubsidiestoprivateactors.Theseproverbial“carrots”required(Table9).canplayanimportantrole,especiallywhendirectedatgettingfinancetoflowtounderservedcountries,com-Scaleupclimatefinancemunities,andpromisingnewtechnologies.Alongsidethis,governmentscanuse“sticks,”includingregulationAsignificantincreaseinclimateinvestmentwillbeandtaxation,toprovidemarketswithpolicycertaintyneededtosuccessfullylimitglobaltemperaturerisetothatthetransitiontonet-zeroeconomiesisinevitable1.5°C.Whileestimatesvary,manyconvergearound$4andirreversible,andtodirectprivatefinancewhereitistrillionto$5trillionperyeargloballybetween2030andneededtoenablethistransition(Gabor2021).2050toinvestintransformingenergy,transport,agricul-ture,andlandusetobenetzero(OECD2017;IEA2021b;AnydiscussionoffinancemustalsoconsiderissuesofNaranetal.2022;IPCC2022b).Thisfigure,$5trillionperequityandjustice(Robins2020).Bothgreenhousegasyear,amountstoaround5percentofglobalGDP(Naranemissionsandclimateresiliencearecloselyconnectedetal.2022),andbothpublicandprivateclimatefinancetowealth.Thepoorestcountriesandcommunitieswillneedtoincreasetomeetthesegoals.havedonelittletocausetheclimatecrisisbutaremostvulnerabletoitsimpacts(seeFigure66).ThisisadoubleScalinguppublicfinance,bothdomesticandinterna-injustice.Theincreasedcostsofdealingwithimpactsoftional,isvitaltoensuringarapidtransitiontonet-zeroclimatechangereducestheresourcesthepooresthaveandresilientsocieties.Thisisespeciallytrueforareastoinvestinmitigation.Providingadequatefinancingwheretheprivatesectorisnotwellsuitedtomeetingforthepoorestandmostvulnerablecommunities,andobjectivesatthespeedandscalenecessary.Thismakingsuretheyhaveasayinhowfinanceisused,isincludesfundingpublicservicesandinfrastructurethereforeimperativeforensuringanequitableandjust(e.g.,transportationandenergynetworks);research,transition.Theseequityprinciplesapplybothbetweendevelopment,anddeploymentofnewtechnologies;andwithincountries.jobtraining;andecosystemprotectionandrestoration.Publicfinancealsoplaysapivotalroleinsupporting,Lookingatequitybetweencountries,lower-incomecreating,andshapingmarkets,includingthroughpublicstatesfacegreaterbarrierstoclimateinvestmentthanprocurement,aswellasincatalyzingprivateinvestmentrichnations.Inlower-incomecountries,smallertaxinnewtechnologiesandregions(OECDetal.2018).Lastly,baseslimittheirfiscalpolicy,lackofforeignexchangepublicfinanceisimportantforensuringequitableout-reserveslimittheirmonetarypolicy,andthehighercostcomesandajusttransition.Itcanhelpensureaccesstoofcapitallimitstheirabilitytoborrowfrominternationalfinanceforindividualsandgovernmentswhomaynotcapitalmarkets.Theythereforeneedinternationalotherwisebeabletoraiseresourcesforclimateaction.Politicians,especiallyinrichercountries,frequentlyclaimthatinsufficientpublicfundsareavailable(Chemnick2022).Yetthelastfewyearshaveshownclearlythatgovernmentspendingbymajoreconomiesinthetrillionsofdollarsispossibletoaddressothercrises.G20governmentsmobilized$14trillioninfiscalspendingin2020–21todealwiththeCOVIDpandemic(Nahmetal.2022).Governmentmilitaryspendinghasexceeded$2.2trillionperyearsince2019(Liangetal.2023a).Itisclear,therefore,thatpublicspendingatthescaleoftrillionsofdollarsiseconomicallypossible.Itisjustnotyethap-peningforclimate.Itisalsovitaltoscaleupclimatefinancefromtheprivatesector.Assetoutabove,privatefinanceisnotasubstituteforpublicinvestment,butthevastamountofcapitalunderprivatecontrolcanandshouldbeputFinanceSTATEOFCLIMATEACTION2023152FIGURE66PercapitaandabsoluteCO2consumptionemissionsbyfourglobalincomegroupsin2015tCO2percapitain2015TotalCO2emissionspergroupin201580Emissions7%Emissions15%60PopulationPopulationbottom50%top1%incomeearnerincomeearner40Totalglobalemissions20Population35.5GtCO2top10%incomeearnerEmissions48%02.1tCO2Emissions44%Top1%Top10%MiddleBottomGlobalaveragePopulationpercapitabottom40%incomeincome40%50%consumptionincomeearneremissionstargetearnerearnerincomeincomeby2030for1.5°CearnerearnerNotes:CO2=carbondioxide;GtCO2=gigatonnesofcarbondioxide;tCO2=tonnesofcarbondioxide.PercapitaCO2consumptionemissions,andabsoluteCO2consumptionemissionsbyfourglobalincomegroupsin2015,comparedwithemissions-reductiontargetsfor2030forlimitingwarmingto1.5ºC.Incomethresholdsin2015areaccordingtoUS$purchasingpowerparityin2011:1percent>$109,000;10percent>$38,000;middle40percent>$6,000;poorest50percent<$6,000.Source:UNEP(2020b).supporttoenablethemtoequitablytransitiontoandadaptationinthepoorestcountries,whichhavenet-zeroeconomiesatthespeedandscalerequiredtohistoricallyemittedless,arehitfirstandworstbyclimatereachglobalnetzerobymidcentury.Inthepastcouplechange,andhavetheleastcapacitytorecoverfromofyears,variousassessmentshaveattemptedtobreakcrises.Tothisend,developedcountrieshavetakenondownhowmuchoftheexternalfinancingsupportdevel-obligationsundertheUNFCCCandtheParisAgreementopingcountriesneed.TheIPCCestimatesdevelopingtoprovideclimatefinancefordevelopingcountriescountrieswouldneed$1.4trillionto$2.8trillionperyear(UNFCCC1992,2015),buttheyhavenotyetfulfilledupuntil2030justtofinanceinvestmentsinmitigation,theircommitments.comparedtodevelopedcountries,whichneed$0.9tril-lionto$1.7trillionperyear(IPCC2022b).TheIndependentRegardingequitywithincountries,equityprinciplesHigh-LevelExpertGrouponClimateFinance,convenedsuggesttheeffortofraisingpublicfinanceshouldbebytheEgyptianPresidencyofCOP27,theUKPresidencysharedfairly,withtherichestindividualsandcompaniesofCOP26,andtheUnitedNationsClimateChangecontributingmoreintaxrevenues,andthebenefitsofHigh-LevelChampionsforCOP26andCOP27,estimatedclimateinvestmentsdirectedtowardthosemostinneed.thatinvestmentneedsforclimateaction(bothadapta-Thisisamatternotmerelyofmoralitybutalsoofeffec-tionandmitigation)indevelopingcountries,excludingtiveness:alarge-scalesurveyof40,000respondentsChina,wouldbebetween$2trillionto$2.8trillionperin20countriesfoundthatclimatepoliciesfinancedyearby2030,andthat$1trillionofthiswouldneedtothroughprogressivetaxationandwithprogressiveusecomefromexternalsources(Songweetal.2022).ofrevenuesgarnergreatersupport(Dechezleprêtreetal.2022).AnexampleofprogressivetaxationiswindfallGiventhis,governmentsagreedacoreprincipleofthetaxesonrecordprofitsbyfossilfuelcompanies,whichUNclimateconventionthatgovernstheinternationalhavebeenimplementedbytheEuropeanUnionandresponsetotheclimatecrisisof“commonbutdifferen-manyindividualEuropeangovernmentsduringthetiatedresponsibilitiesandrespectivecapabilities.”Thisenergycrisis(Reuters2022).Severalgovernmentsarerecognizesthatwhileallcountrieshavearesponsibilityalsomakingincreasedeffortstoensurethattheout-toaddressclimatechange,somecountrieshaveacomesofpublicclimateinvestmentsaddresstheneedslargerresponsibilityduetogreaterGHGemissionsandofcommunitiesthathavehistoricallybornethebruntmorecapabilitytoinvestinclimateaction.Furthermore,richercountriesshouldhelpsupportdecarbonizationFinanceSTATEOFCLIMATEACTION2023153ofpollutingactivities,andworkersinsectorsthatwillFINANCEINDICATOR1:beparticularlyaffectedbydecarbonization.Forexam-ple,theEuropeanUnion’sJustTransitionMechanismGlobaltotalclimatefinanceprovidesdedicatedfinancialresourcestoregionswith(trillion$/yr)theleastresourcesandfacingthegreatestchallengesinphasingouthigh-emissionsactivities(WRI2021),while•Targets:Globalclimatefinanceflows(publicandtheU.S.Justice40Initiativesetsagoalthat40percentofthebenefitsfromfederalinvestmentsinclimateandprivate,domesticandinternational)reach$5.2trillioncleanenergyflowtodisadvantagedcommunities(Whiteperyearby2030and$5.1trillionperyearby2050.House2021).Privateclimateinvestments,ataminimum,shouldaimtoavoidcausingharmtocommunitiesandQuantitativemeasuresofclimatefinanceflowsaretoredressanynegativeimpactsthatdooccur.Ideally,difficulttocaptureandestimategivenavailabledatatheseinvestmentsshouldalsoprioritizetheneedsofanddefinitionalchallenges.93ClimatePolicyInitiativethepoorestandmostvulnerablecommunitiesand(CPI)estimatesthatinthefiveyearspreceding2021,givethemasayinwherefinanceisdirectedandhowclimatefinanceincreasedbyanaverageof$61.6billionitisused.Governmentregulationandoversightwillbeperyear.94In2021,CPIestimatedthattotalglobalflowsofimportanttoensurethatpublicandprivateclimateclimatefinance,includingpublicandprivate,domesticinvestmentsrespecthumanrightsandenvironmentalandinternationalflows,reached$850billionto$940bil-standardsandthattheyarefocusedondeliveringalion,anall-timehigh(Naranetal.2022).Bycomparison,justtransition.thatsameyear,totalglobalinvestmentinfossilfuelswasestimatedat$915billion(IEA2023m).Climatefinancejumpedconsiderablybetween2020and2021—byatFIGURE67Historicalprogresstoward2030and2050targetsforglobaltotalclimatefinanceRightDirection,WellOffTrackS-CurveUnlikelytrillionUS$/yrHistoricalCurrentPaceneededtodatatrendreachtargets655.25.12030target2050target4322021dataAcceleration0.858xrequiredtoreach12030target020202030204020502010Note:yr=year.Thisindicatorincludespublicandprivate,aswellasdomesticandinternational,flows.SeeJaegeretal.(2023)formoreinforma-tiononmethodsforselectingtargets,indicators,anddatasets,aswellasourapproachforassessingprogress.Sources:HistoricaldatafromNaranetal.(2022).TargetsderivedfromIPCC(2018,2022b);IEA(2021b);OECD(2017);andUNEP(2021b,2021f).FinanceSTATEOFCLIMATEACTION2023154least$185billion,or27percent—ameaningfulimprove-excludingChina,by2030(Songweetal.2022).Ofclimatementrelativetorecenttrends,butprogressremainsfinanceinnon-OECDcountriesin2020,$171billion(44wellofftrack.Globalclimatefinancestillneedstomorepercent)wasinternationalclimatefinanceflows,andthanquintupletoreachthetargetof$5.2trillionperyearnearlyafifthoftheseinternationalflows,$31billion,by2030.Thisequatestoanaverageincreaseof$490camefromothernon-OECDcountries(Naranetal.2022).billionperyear—roughlyeighttimesfasterthanrecentincreases(Figure67).AfterthisreportwentthroughpeerFINANCEINDICATOR2:review,Buchneretal.(2023)publishednewdatathatindicatesignificantincreasesintrackedtotalglobalGlobalpublicclimatefinanceclimatefinance.Flowsreached$1.1trillionin2021and$1.4(trillion$/yr)trillionin2022.TheseincreaseswereconcentratedinChina,theUnitedStates,Europe,Brazil,Japan,andIndia,•Targets:Globalpublicclimatefinanceflows(domes-aswellasintherenewableenergyandtransportsec-tors.Butevenwhenconsideringthesegains,substantialticandinternational)reach$1.31trillionto$2.61trillionincreaseswillberequiredby2030.peryearby2030,and$1.29trillionto$2.57trillionperyearby2050.Theneedforsignificantlyincreasedclimateinvestmentisparticularlyacuteindevelopingcountries.In2020,Globalpublicclimatefinanceflowsamountedto$332totalclimatefinanceinnon-OECDcountrieswasjustbillionin2020,increasingby$19.2billionperyear,on$392billion,witharoundhalfofthisinChinaaloneaverage,between2016and2020.However,public(Naranetal.2022;Choietal.2021).Thisisthereforelessclimatefinancefellslightlyin2020fromanall-timehighthana10thoftheatleast$2trillionperyearinestimatedof$337billionin2019(Naranetal.2022)—aworseningclimateinvestmentneededindevelopingcountries,relativetorecenttrends.Basedonavailabledata,95recentincreasesinpublicclimatefinanceremainwellofftrack—totalfundswouldneedtoincreasemorethanFIGURE68Historicalprogresstoward2030and2050targetsforglobalpublicclimatefinanceRightDirection,WellOffTrackS-CurveUnlikelytrillionUS$/yrHistoricalCurrentPaceneededtodatatrendreachtargets32030target2050target2.51.31–2.611.29–2.572Accelerationrequiredtoreach1.52030target8x12020data0.50.332020202030204020502010Note:yr=year.Thisindicatorincludesdomesticandinternationalflows.SeeJaegeretal.(2023)formoreinformationonmethodsforselectingtargets,indicators,anddatasets,aswellasourapproachforassessingprogress.Sources:HistoricaldatafromNaranetal.(2022).TargetsderivedfromIPCC(2018,2022b);IEA(2021b);OECD(2017);andUNEP(2021b,2021f).FinanceSTATEOFCLIMATEACTION2023155sixfoldtoreachthe$2trillionperyearmidpointofthenationalsources)inabsolutetermswereinvestedinEasttargetrangeby2030.ThisrequiresanaveragegrowthAsiaandthePacific($180billion).Proportionately,publicof$162billionperyearbetween2020and2030—roughlyclimatefinanceisthemostimportantsourceoffinanceeighttimesfasterthanrecentincreases(Figure68).Newinsub-SaharanAfrica,makingupnearly90percent($17datafromBuchneretal.(2023),whichwerepublishedbillion)oftheregion’stotal(Buchneretal.2021).Climateafterthisreportwentthroughpeerreview,indicatefinanceisnotallocatedequitablyeitheramongorwithinsignificantincreasesinglobalpublicclimatefinance.regions,withsomecountriesreceivingfargreatersumsFlowsreached$549billionin2021and$730billioninthanothers(seeFigure69).Inadditiontoscalingup2022.Butevenwiththesegains,substantialincreaseswilloverallfinance,thereisaneedtoaddresstheinequityinberequiredby2030.wherefinanceflows.Onaveragebetween2019and2020,73percent($233FINANCEINDICATOR3:billion)ofglobalpublicclimatefinancewasprojectfinancing(54percentasmarketratedebt,15percentGlobalprivateclimatefinancelow-costdebt,and4percentequity),15percent($48(trillion$/yr)billion)wasbalancesheetfinancing(11percentasdebt,4percentequity),and11percent($35billion)wasgrants.•Targets:Globalprivateclimatefinanceflows(domes-Developmentfinanceinstitutions(DFIs)providedthemajorityofpublicfinancein2019–20(69percent,$220ticandinternational)reach$2.61trillionto$3.92trillionbillion),with$120billioncomingfromnationalDFIs,$65peryearby2030,and$2.57trillionto$3.86trillionbillionfrommultilateralDFIs,and$35billionfrombilat-peryearby2050.eralDFIs.Duringthesametimeperiod,anestimated37percentofpublicclimatefinanceflowedinternationally.Globalprivateclimatefinanceallocationsfromfinan-Publicfinancewasthelargestsourceofinternationalcialinstitutions,institutionalinvestors,corporations,climatefinance,accountingfor79percentoftotalandhouseholdsamountedto$333billionin2020,96aclimatefinanceflowingacrossborders.Thelargestflowscontinuationofrecenttrendsofanaverage$26.5billionofpublicclimatefinance(frombothdomesticandinter-growthperyearbetween2016and2020(Naranetal.2022).Althoughheadingintherightdirection,currentFIGURE69Destinationregionofclimatefinance,bypublicandprivatesources(billionU.S.dollars),2019–20annualaverageEasternEuropeandCentralAsiaWesternEurope$33bnUSandCanada$105bn$20bn$83bn$43bn$13bn$62bnPublic$4bnEastAsiaandPacificPrivate$79bnMiddleEastandNorthAfrica$292bnSouthAsia$16bn$180bn$113bn$9bn$30bn$7bn$19bn$11bnLatinAmericaandtheCaribbeanTransregional$35bnSub-SaharanAfricaOtherOceania$11bn$18bn$19bn$9bn$17bn$11bn$17bn$1bn$2bn$8bnNote:bn=billion;US=UnitedStates.Source:Buchneretal.(2021).FinanceSTATEOFCLIMATEACTION2023156effortsremainwellofftrackfromthe2030and2050tar-privatesources.Onaveragebetween2019and2020,68gets.Totalprivateclimatefinancewillneedtoincreasepercent($212billion)ofglobalprivateclimatefinancemorethan10-foldby2030toreach$3.3trillionperyearwasbalancesheetfinancing(46percentasdebtand22(midpointforthetargetrangefor2030).Thisrequiresanpercentequity),and31percent($97billion)wasprojectaveragegrowthof$293billionmoreeachyearbetweenfinance(19percentasmarket-ratedebtand12percent2020and2030,over10timesfasterthanhistoricalgrowthequity)(Buchneretal.2021).rates(Figure70).NewdatafromBuchneretal.(2023),whichwerepublishedafterthisreportwentthroughAlargemajorityofclimatefinanceintheUnitedStatespeerreview,indicatesignificantincreasesinglobalandCanada(95percent)andOceania(88percent)privateclimatefinance.Flowsreached$565billionincamefromprivatesources(Figure71).InWesternEurope,2021and$685billionin2022.Butevenwiththesegains,privatesourcesaccountedfor60percent.Conversely,insubstantialincreaseswillberequiredby2030.sub-SaharanAfrica,privatefinanceaccountedforjust12percentoftheregion’stotalclimatefinance(BuchneretCorporationsaccountedforthelargestshareofprivateal.2021).Privateclimatefinanceindevelopingcountriesclimatefinancein2019–20,with$124billioninvested.Theymobilizedbydevelopedcountries’publicinterventionswerecloselyfollowedbycommercialfinancialinstitu-was$13.1billionin2020(OECD2022a),97accountingfortions,whichfinanced$122billionin2019–20—upfrom$48just3.9percentofglobalprivateclimatefinanceflows.billionin2017–18,representingthelargestgrowthamongFIGURE70Historicalprogresstoward2030and2050targetsforglobalprivateclimatefinanceRightDirection,WellOffTrackS-CurveUnlikelytrillionUS$/yrHistoricalCurrentPaceneededtodatatrendreachtargets4.52030target2050target42.61–3.922.57–3.863.532.5Accelerationrequiredtoreach22030target>10x1.512020data0.50.333020202030204020502010Notes:yr=year.Thisindicatorincludesdomesticandinternationalflows.SeeJaegeretal.(2023)formoreinformationonmethodsforselectingtargets,indicators,anddatasets,aswellasourapproachforassessingprogress.Sources:HistoricaldatafromNaranetal.(2022).TargetsderivedfromIPCC(2018,2022b);IEA(2021b);OECD(2017);andUNEP(2021b,2021f).FinanceSTATEOFCLIMATEACTION2023157FIGURE71Shareofclimatefinanceoriginatingneeds(UnitedNations2023).Avarietyofpoliciesandregulationscanalsohelpcurbfinancingforfossilfuelsfromprivatesources,annualandotheractivitiesincompatiblewitha1.5°Cpathway,average2019–20includingbetterclimateriskintegrationformarketpar-ticipantsthroughclimatedisclosures,policiestopriceinUnitedStatesandCanadathefullcostofgreenhousegasemissions,andanendtoOceaniasubsidiesandotherpublicfinancingforfossilfuels.WesternEuropeDisclosureofclimate-relatedriskscanhelpalignprivateLatinAmericaandtheCarribeansectorfinancialflowswith1.5°CpathwaysbyenablingMiddleEastandNorthAfricacorporations,investors,andregulatorstocorrectlyEasternEuropeandCentralAsiaassessandmanagethoserisks,factoringthemintoEastAsiaandPacifictheircapitalallocationandtransitionplans.ThegrowingSouthAsiaawarenessofclimate-relatedrisksintheprivatesectorSub-SaharanAfricaisalreadydrivingbusinessestoadoptnet-zerotransi-tionplansandadapttheirbusinesses.Butmandatory020406080100disclosurerequirementswillbeneededtostandardizeandmeasureriskacrosstheentireeconomy.RegulatorsPercent(%)alsoneedtoensurethatriskintegrationdoesnotleadtoinequitableoutcomessuchasreducingfinancingtoSource:Buchneretal.(2021).vulnerablecommunitiesaffectedbyclimateimpacts.AlignfinancewiththeParisClimatechangehasbeencalled“thegreatestandwid-Agreementest-rangingmarketfailureeverseen”(Stern2006),witheconomistsarguingthatmarketpricesdonotproperlyInadditiontoscalingupclimatefinance,thereisalsoaccountforthedamagesthatrisingGHGemissionsaneedtocurbfinancingofhigh-emissionsactivitiesinflictoncommunitiesandecosystems.Puttingasuf-thatareincompatiblewiththeParisAgreement’sgoals.ficientlyhighpriceoncarbon—throughexplicitcarbonIncreasingclimatefinancewithoutsimultaneouslypricingorpolicymeasuresthatimposeanimplicitpricephasingoutinvestmentsinhigh-emissionsactivities,onemissions—cansendamarketsignalthatcanhelpsuchasfossilfuelextraction,willnotreduceemissionsshiftinvestmentandconsumptiondecisionssotheyrapidlyenoughtolimittemperatureriseto1.5°C.Scalingcontributetoreducingemissionstoalevelcompat-upclimatefinanceandphasingoutinvestmentsintheiblewitha1.5°Cpathway(IPCC2018).Carbonpricingfossileconomyandotherhigh-emissionsactivitiesareprovided$95billioninrevenuesin2022(WorldBankthereforetwosidesofthesamecoin.2023d),andwideradoptionofcarbonpricinghasthepotentialtoincreasegovernmentrevenues,whichcanThereissomeprogresshere:investmentincleanenergybechanneledintopublicclimatefinance.nowexceedsthatoffossilfuels(IEA2023m).Thisreflectsnotonlythegrowingcommitmentofpublicandpri-Fossilfuelsarethebiggestsourceofgreenhousegasvateinstitutionstofinancethetransitionbutalsotheemissionsdrivingtheclimatecrisis.Phasingoutfossilacceleratingeconomicattractivenessofthezero-car-fuelsubsidiesandotherpublicfinancingforfossilfuelsboneconomyastechnologiesmovealongS-curvesnotonlyreducesadirectsourceoffundingbutalsoandoutcompetetheincumbentfossileconomy.Theprovidesasignaltoprivateinvestors,whomustalsocleanenergyeconomyhasbeguntoreplacethefossileventuallyphaseoutinvestmentinfossilfuels.Govern-economy,butitisnothappeningrapidlyenough.Globalmentsubsidiesreducethecostoffossilfuelsbelowtheinvestmentinfossilfuelsin2023isstillprojectedtoreachmarketprice,effectivelyactingasanegativecarbonover$1trillion(IEA2023m).Notonlyisthephase-downprice,counteractingtheeffectsofcarbonpricingoffossilfuelinvestmentsandretirementoffossilfueledmechanisms.Manyfossilfuelprojectsrelyongovern-assetsnecessaryforreducingemissions,butsomementsupporttobeeconomicallyviable—forexample,ofthesavingsfromdoingsocanbereallocatedtointheUnitedStates,itisestimatedthatproductionincreasingclimatefinance.subsidiesbringnearlyhalfofnew,yet-to-be-developedoilinvestmentsintoprofitability(Ericksonetal.2017)—soCatalyzingafasterfinancialtransitionrequiresreformevenwherepublicfundingconstitutesasmallportionoftheglobalfinancialarchitecturetomakeitmoreoftotalcosts,removingthissupportcaninfluencefarequitableandresponsivetoclimateanddevelopmentgreateramountsofprivateinvestment.TheIPCCfindsthatremovingfossilfuelsubsidiescouldreduceglobalemissionsbetween1percentand10percentby2030whileimprovingpublicrevenues(IPCC2022b).Govern-FinanceSTATEOFCLIMATEACTION2023158mentinvestmentsinfossilfuelsrepresentasignificantFINANCEINDICATOR4:opportunitycost,sincesuchpublicfundingcouldbedirectedtoclimateinvestmentsthatcouldensureRatioofinvestmentinlow-energyaccess,reduceemissions,andhelpsocietiescarbontofossilfuelenergyadapttoclimateimpacts.Inaddition,thereisevidencesupplythatrecentinflationisprimarilydrivenbyrisingfuelcosts,whichraisesthepriceofproductionandtranspor-•Targets:Theratioofinvestmentsinlow-carbontationofgoods,heatingandcooling,andtransportation.Climateinvestmentsthathelptransitiontocleanenergytofossilfuelenergysupplyincreasesto7:1byandreducedemandforfuelcanreduceinflationary2030andto10:1by2040,withthis10:1ratiosus-pressure(MelodiaandKarlsson2022).Whilenotcoveredtainedthrough2050.hereduetolackofcomprehensivedata,phasingoutsubsidiesforotherhigh-emissionsactivities,includingShiftingallinvestmentfromfossilfuelstolow-carbondeforestation,forestdegradation,andotherharmfulenergysupplyiscriticaltoholdingglobaltemperaturelandimpactsandrelatedcommoditiescouldalsoriseto1.5°C.BasedonananalysisofIPCC,IEA,andreduceemissionswhilepromotingnaturegoalsunderNetworkforGreeningtheFinancialSystemscenariosoftheKunming-MontrealGlobalBiodiversityFramework.long-terminvestmentrequirementsfor1.5°C-alignedpathways,BloombergNewEnergyFinance(BNEF)derivedtargetratiosforinvestmentinlow-carbontofossilenergysupplyof4:1for2021–30(range2:1to6:1),6:1for2031–40(rangeof5:1to9:1),and10:1for2041–50(rangeof6:1to16:1).Forthe2030target,weusethe7:1ratioBNEFcalculatedbasedonalineargrowthtrajectoryfromthecurrentratiotomeetthedecadalaveragetargets(Lubisetal.2022).FIGURE72Historicalprogresstoward2030,2040,and2050targetsforratioofinvestmentinlow-carbontofossilfuelenergysupplyRightDirection,WellOffTrackS-CurveUnlikelyratioHistoricalCurrentPaceneededtodatatrendreachtargets12:12040target2050target10:110:110:12030target8:17:16:14:1Acceleration2023datarequiredtoreach2030target>10x2:11:1020202030204020502010Note:SeeJaegeretal.(2023)formoreinformationonmethodsforselectingtargets,indicators,anddatasets,aswellasourapproachforassessingprogress.Sources:HistoricaldatafromIEA(2023m);targetsfromLubisetal.(2022).FinanceSTATEOFCLIMATEACTION2023159Thisyear,2023,markedthefirsttimeeverthatandinconsistentqualitythatisnotfullyalignedwiththeinvestmentsinlow-carbonenergysupplyexceededTCFD’srecommendeddisclosures.Thishindersmobi-investmentsinfossilfuelenergysupply:98$1.1trilliontolizationofsufficientcapitalonanaggregatelevelto$1.05trillion(IEA2023m).Althoughinvestmentinlow-car-drivethesystemictransitionneeded(TCFD2022;Binglerbonenergysupplyhasbeenrisinginrecentyears,itetal.2022).Theframeworkhasalsofacedcriticismforisnotrisingfastenough,norisfossilfuelinvestmentitsnarrowfocusonfinancialrisksandopportunitiesdecliningrapidlyenoughtobeconsistentwithholdingthatconcernfinancialreturnswithoutconsideringtemperatureincreaseto1.5°C.Basedoncurrenttrends,otherstakeholdersandnonfinancialimpactsthatmaytheratioofinvestmentinlow-carbonenergysupplytoleadcorporationstoprioritizeriskreductioninsteadoffossilfuelsupply,currently1:1,wouldbeonly1.5:1by2030,buildingresilienceacrossmostvulnerablecommuni-wellofftrackfromthe7:1rationeededfor2030(Figuretiesandactivelycontributingtotheclimatetransition.72).Inadditiontoscalingupinvestmentinlow-carbonGovernmentscanplayacrucialroleinmandatingenergysupply,thereisalsoaneedtoelectrifyendstandardizedandhigh-qualitydisclosuressothereisusessuchastransportationandheatingthatcurrentlyuniversalcoverageanduniformityinreportingaswellasrequirefossilfuels.movingbeyondtheperspectiveoffinancialmateriality.GiventhattheseratiosarebasedonboththelevelofRegulatorsinmostoftheworld’slargesteconomiesandcleanenergyinvestmentincreasingandthelevelofcapitalmarketshavebeenconsideringmandatingsuchfossilfuelinvestmentdecreasing,thestateofplayanddisclosuresandincorporatingthemintothesupervi-driversofchangearesimilartothosesetoutforFinancesionofthecorporateandfinancialsector.In2022,theIndicators1,2,3,and7,namelypoliciesandmeasurestonumberofcountrieswithmandatoryclimate-relatedincreasepublicclimatefinanceandincentivizeprivatedisclosuresgrewto35,includingBrazil,Egypt,India,investmentincleanenergy,andtoreducepublicsup-Japan,NewZealand,Singapore,Switzerland,theUnitedportforfossilfuels.WhatthisindicatorcapturesthatisKingdom,andtheEuropeanUnioncountries(TCFD2022;notincludedinothersisglobaltotalinvestmentinfossilWuandUddin2022;Naik2021).99Theycorrespondtofuels,fromprivatesources,inadditiontopublicfinanceabout20percentofglobalemissions,ameaningfulcapturedinIndicator6.improvementcomparedtorecenttrendsandthepre-viousyear(about3percentin2021)thankstoregulatoryFINANCEINDICATOR5:requirementsinhigh-emittingnationssuchasIndia,Japan,andtheEUcountries.ShareofglobalGHGemissionsundermandatorycorporateAmajorreasonfortheincreaseincoveragewastheclimateriskdisclosure(%)approvaloftheEuropeanUnion’sCorporateSustain-abilityReportingDirective(CSRD),whichwillrequire•Targets:Shareofglobalgreenhousegas(GHG)reportingonawiderangeofsustainabilitydisclosures,includingclimate-relatedrisks,pollution,andtheemissionssubjecttomandatorydisclosuresofcirculareconomy(EuropeanParliament2022).ItwillcorporateclimaterisksalignedwiththeTaskForcealsoexpandthescopeofreportingtoabout50,000onClimate-RelatedFinancialDisclosures(TCFD)entities,includingmorethan10,000non-EUfirms,therebyrecommendationsreach75percentin2030and100effectivelyextendingitsrequirementsbeyondEUborderspercentin2050.(Holger2023).Disclosureofclimate-relatedriskscanhelpcorpora-AlthoughitbuildsontheTCFDframework,theCSRDtionsassesstherisksandopportunitiestheyfacewithgoesbeyonditbyincorporatingthe“doublemateriality”thetransitiontoazero-carboneconomyanddecideconcept,wherecorporationshavetodisclosenotonlywheretotargetinvestmentstoadapttheirbusinesses.howtheenvironmentimpactsthemfinancially(i.e.,Itisoneofthefirststepstheycantakeastheydevelopsinglemateriality)butalsothematerialimpactsoftheirtheirnet-zerotargetsandtransitionplans.Similarly,businessesontheclimateandsociety,includinginreliable,standardized,andcomparabledisclosuresnonfinancialaspects(Täger2021).Thisapproachaimstowillalsoallowfinancialinstitutionsandgovernmentsmakecorporatedisclosuresserveawidergoalofcorpo-todeploycapitalefficientlyandmonitorandmanagerateresponsibilitytosocietyat-largebeyondthenarrowrisksataportfolioandsystemiclevel,complementingfinancialperspective.AstheInternationalSustainabilityothertoolstoalignthemovementofcapitalwitha1.5°CStandardsBoard(ISSB)hasruledoutthedoublemate-pathway.Mostclimateriskdisclosureshavebeenbasedrialityapproachinitsframework,itisuptoregulatoryontheTaskForceonClimate-RelatedFinancialDisclo-bodiestoincludeitintheirmandatoryrequirements(desuresframework,whichhasbeenwidelyadoptedandArriba-Sellier2023;AlexanderandEnsign-Barstow2022).becomethestandardframeworkforclimate-relatedfinancialdisclosures(TCFD2022;KrönerandNewmanDespitetherecentpositivedevelopments,effortsremain2021).However,disclosureonclimaterisksisstillmostlyofftrackandprogresswillneedtooccurabout1.5timesdoneonavoluntarybasis,withincompleteinformationfastertoreachthethree-quarterstargetfor2030.ThereFinanceSTATEOFCLIMATEACTION2023160isalsoaneedtoensurethatthesedisclosurepoliciesincludeland-basedemissions.Ifafewlarge-emittingcountriesfollowtheexampleofothersinadoptingmandatorydisclosures,coverageofglobalemissionswouldexperiencerapid,nonlinearprogressandrisedra-matically(Figure73).Forexample,ChinaandtheUnitedStatesrepresentabout40percentofglobalemissionscombined(ClimateWatch2023),andbothcountriesarecontemplatingmandatorydisclosurerules,whichwouldgetcoverageontracktothetarget.Additionally,ifmajorcountrymembersoftheInternationalOrganiza-tionofSecuritiesCommissionsfollowtheorganization’sendorsementoftheISSBandcallforitsadoption,thencoveragewouldgrowsignificantlyandaccelerateadoptionacrosstherestoftheworld(IOSCO2023).FIGURE73Historicalprogresstoward2030and2050targetsforshareofglobalGHGemissionsundermandatorycorporateclimateriskdisclosureRightDirection,OffTrackS-CurveUnlikely%HistoricalCurrentPaceneededtodatatrendreachtargets1001002030target2050target80756040Accelerationrequiredtoreach2030target2022data1.5x2020020202030204020502010Notes:GHG=greenhousegas.Jurisdictionsincludedin2022areBrazil,Egypt,India,Japan,NewZealand,Singapore,Switzerland,theUnitedKingdom,andtheEuropeanUnion.Disclosurerequirementsarenotuniformamongcountriesandapplytodifferentorselecttypesoffirms(e.g.,financialinstitutionsorpubliclytradedfirms)withdiverseimplementationtimelines.Weconsiderjurisdictionsthatimplementedanyformofmandatoryrequirementduringtheyearitwasapproved,evenifitentersintoforceinphaseswithdifferenttimelines.Thisapproachcanresultinanoverestimation,asimplementationtimelinesareenforcedovertheyearsindifferentstages.SeeJaegeretal.(2023)formoreinformationonmethodsforselectingtargets,indicators,anddatasets,aswellasourapproachforassessingprogress.Sources:HistoricaldatafromTCFD(2022);WuandUddin(2022);Naik(2021);ClimateWatch(2023);andauthors’calculations.TargetsderivedfromClimateAnalyticsandWorldResourcesInstitute(2021).FinanceSTATEOFCLIMATEACTION2023161FINANCEINDICATOR6:mumendofthetargetrangeof$170/tCO2erequiredby2030tobeconsistentwitha1.5°Cpathway(IPCC2022b;WeightedaveragecarbonWorldBank2023d).Mostjurisdictionswithpricingatorpriceinjurisdictionswithabovethe$40–$80/tCO2erangeareinEurope,joinedemissionspricingsystemsbyonlyUruguayoutsidethecontinent.OnlyUruguay,(2015$/tCO2e)Liechtenstein,Switzerland,andSwedencurrentlyhavecarbonpricingabove$100/tCO2e.Uruguayisnotableas•Targets:Theweightedaveragecarbonpriceintheonlydevelopingcountrywithcarbonpricesabove$40/tCO2e(WorldBank2023a).jurisdictionswithpricingsystemsinplacereaches$170–$290pertonneofcarbondioxideequivalentTheaveragecarbonpriceglobally,weightedbyshareof(tCO2e)in2030and$430–$990/tCO2ein2050.100emissionsinterritoriescoveredbycarbonpricing,was$23.23/tCO2ein2023.AveragecarbonpriceincreasedWell-designedcarbonpricingsystemscouldplayaroleby$2.35peryearonaveragebetween2019and2023inhelpingaligneconomieswitha1.5°Ctrajectory.Butin(WorldBank2023a),andatthisrateofchange,globaljurisdictionswithcarbonpricingsystemsinplace,pricesaveragecarbonpriceswillbe$39.69/tCO2ein2030,areinsufficient—sometimesduetodesignissuessuchfarshortofthetargetrangeof$170–290/tCO2e.Globalasoverallocationofpermitsorinadequatecoverageprogressmadeinincreasingcarbonpricingandofhigh-emittingsectors—tofullyaccountforthecostscoveragethereforeremainswellofftrack,withthemostassociatedwithrisingGHGemissionsortosendastrongrecentyearofdatarepresentingworseningrelativetoenoughsignaltodriveshiftsinbehaviorandinvest-recenttrends.Instead,theaveragepricewouldneedmentsinlinewith1.5°C.Lessthan5percentofglobaltoincreaseby$29.54peryear—morethan10timestheemissionshavecarbonpricingatorabovethe$40–$80/historicalgrowthrate(seeFigure74).AsofApril2023,39tCO2erangethatisestimatedtobeconsistentwitha2°Cpathway,andnoareasarepricingcarbonatthemini-FIGURE74Historicalprogresstoward2030and2050targetsforweightedaveragecarbonpriceinjurisdictionswithemissionspricingsystemsRightDirection,OffTrackS-CurveUnlikely2015US$/tCO2eHistoricalCurrentPaceneededtodatatrendreachtargets12002050target1000430–990800600Accelerationrequiredtoreach2030target>10x2030target400170–2902002023data23020202030204020502010Notes:2015$/tCO2e=2015dollarspertonneofcarbondioxideequivalent.SeeJaegeretal.(2023)formoreinformationonmethodsforselectingtargets,indicators,anddatasets,aswellasourapproachforassessingprogress.Sources:HistoricaldataadaptedfromWorldBank(2023a);targetsfromIPCC(2022b).FinanceSTATEOFCLIMATEACTION2023162countriesand33subnationaljurisdictionshavecarbonpricingthroughacarbontaxoranemissionstrad-ingsystem(ETS).Thereareequityconcernswithcarbonpricing,par-ticularlythatbusinesseswillpassthecostsontoconsumers,makingenergyandtransportationmoreexpensive.Althoughthepoorestemittheleast,theymayfeelagreaterburdenfromcarbonpricingandsubsidyremoval,astheyhavetheleastabilitytopay.Policiestoredistributetherevenuesraisedbycarbonpricingsystemsmoreequitably,suchasrebatesorearmarkedspendingonclimateinvestments,canhelpincreaseacceptabilityandminimizeregressiveimpacts(IPCC2022b).Wheregovernmentscontinuetoprovidefossilfuelsubsidies,thiscounteractsthepricesignalprovidedbycarbonpricingsystems,reducingtheeffectivecarbonprice;carbonpricingismosteffectivewhenpairedwithfossilfuelsubsidyreforms(UNDP2021).FINANCEINDICATOR7:Totalpublicfinancingforfossilfuels(billion$/yr)•Targets:Publicfinancingforfossilfuels,includingsubsidies,isphasedoutby2030,withGroupofSeven(G7)countriesandinternationalfinancialinstitutionsachievingthisby2025.Totalpublicfinancingforfossilfuelsisestimatedatover$1trillionin2021.Ofthistotal,themajority,$732billion,wasproductionandconsumptionsubsidies.101In2021thesesubsidiesincreasedforthefirsttimesince2018,nearlydoublingfrom2020levelsandreachingthehigh-estlevelseensince2014(OECDandIISD2023).Ofthisfossilfuelinvestment,$323billionwasbystate-ownedentitiesofG20countries,an8.5percentincreasefrom2019levels(Laanetal.2023).Anestimated$33billionininternationalpublicfinancingforfossilfuelprojectscamefrommultilateraldevelopmentbanks(MDBs),G20countries’exportcreditagencies,anddevelopmentfinanceinstitutions(DFIs)(OCI2023).Fossilfuelproduc-tionandconsumptionsubsidydataareonlyavailableforareducedsetof82economiesin2021,comparedto192economies(i.e.,near-globalcoverage)in2020andprioryears(OECDandIISD2023).Thefactthatsubsidiesnearlydoubled,evenwithdataavailablefromfewercountries,highlightshowprogresshasstoppedandgoneintoreverse.Thesharpincreasesinfossilfuelsubsidiesin2021alonehavemeantthatglobalpublicfinancingforfossilfuelsoverthelastfiveyearshasincreasedbyanaverageof$5.3billionperyear—acon-cerningworseningrelativetorecenttrends.Itneedstodecreasebyanaverageof$85billionperyearbetween2022and2030tomeetthe2030phaseouttargetdate.Asaresult,progresstowardphasingoutpublicfinancingFinanceSTATEOFCLIMATEACTION2023163offossilfuelsgloballyby2030haschangedfrombeingproductionsubsidiesawayfromfossilfuelsandtowardwellofftrackin2020tomovinginthewrongdirectioninrenewableenergycanstimulategreaterjobcreation.2021(Figure75).Box20looksinmoredetailatprogressAnanalysisof12studiesaroundtheworldfoundthatforinshiftinginternationalpublicfinanceforenergyoutofevery$1millionspent,1.2to2.8timesasmanyfull-timefossilfuelsandintocleanenergy.equivalent,near-termjobscouldbecreatedifinvestedintherenewableenergyorenergyefficiencysectorsThereareequityconcernsthatendingsubsidiescouldcomparedtothesamelevelofinvestmentinthefossilhurtthepoorestbyincreasingenergycosts.Consump-fuelsector(Jaegeretal.2021).tionsubsidyreformsneedtobewellmanagedandaddressconcernsaboutimpactsonthepoor.Studiesacrossmanycountrieshaveshownthattherichesthouseholdscapturemostofthebenefitsoffossilfuelconsumptionsubsidiesandhavethereforesuggestedthatdirectcashassistancetothepooresthouseholdswouldbeamoreeffectivewayofensuringenergyaccess(Coadyetal.2017).Endingsubsidiescanalsocarrysignificantpoliticalimplications,astheyaresome-timesusedtoshielddomesticconsumersfromexternalpriceshocks.Drasticdomesticenergypriceincreasescanleadtopriceinstabilitythatincreasesthelikeli-hoodofpopularunrestandprotests(McCullochetal.2022;Thöneetal.2010).ModelingsuggeststhatshiftingFIGURE75Historicalprogresstoward2030,2035,and2050targetsfortotalpublicfinancingforfossilfuelsWrongDirection,U-turnNeededS-CurveUnlikelybillionUS$/yrHistoricalCurrentPaceneededtodatatrendreachtargets14002021data12001,10010008006004002002030target2035target2050target000020102020203020402050Notes:yr=year.Thesedataareacompilationofproductionandconsumptionsubsidies,G20state-ownedentityfossilfuelcapitalexpenditure,andinternationalpublicfossilfuelfinancefrommultilateraldevelopmentbanksandG20countries’developmentfinanceinstitutionsandexportcreditagencies.Productionandconsumptionsubsidiesdatawereonlyavailablefor82economiesin2021,comparedto192economiesin2020andprioryears.SeeJaegeretal.(2023)formoreinformationonmethodsforselectingtargets,indicators,anddatasets,aswellasourapproachforassessingprogress.Sources:HistoricaldatafromOECDandIISD(2023);Laanetal.(2023);andOCI(2023).TargetsderivedfromG7(2016);G20(2009);UNFCCC(2022a);IEA(2021b);andIPCC(2022b).FinanceSTATEOFCLIMATEACTION2023164BOX20ShiftinginternationalpublicenergyfinanceawayfromfossilfuelsandintocleanenergyToday,785millionpeoplelackaccesstoelectricity,energy,meaningtheoveralllevelofinternationalpublicand2.6billionpeopledonothaveaccesstocleanenergyfinanceshouldatminimumbemaintainedcooking(IEA2021a).SustainableDevelopmentGoal7,ifnotincreased.“Ensureaccesstoaffordable,reliable,sustainableandmodernenergyforall”(UNGeneralAssembly2015),ThecountriesandinstitutionsthatsignedtheGlasgowiscurrentlynotontracktobemet.Fossilfuel–basedpledgecurrentlyprovideanestimated$19.5billionapproachesarefailingtodeliverenergyaccessinaperyearininternationalpublicfossilfuelfinancetimelyorcost-effectiveway,withtheUnitedNations’(McGibbon2023).InMay2022,G7climate,energy,SustainableEnergyforAllconcludingthat“financingandenvironmentministersadoptedanear-identicaloffossilfuelprojectsasameansofclosingtheenergycommitment(G72022),whichbringsJapan,theonlyaccessgapshouldbeterminated”(SEforAllandCPIG7memberthathadnotsignedtheCOP26commit-2020).Toprovideuniversalenergyaccessandtoreachment,onboard.Japaneseinternationalfossilfuelnet-zeroemissionsby2050,developingcountriesneedfinanceisestimatedatafurther$11billionperyearover$1trillionperyearincleanenergyinvestment(Dufouretal.2022).by2030,102asevenfoldincreasefromthe$150billionaveragebetween2015and2020(IEA2021a).PublicAsoftheendof2022,thedeadlineformeetingthefinancecanhelpcatalyzecleanenergyinvestment,Glasgowpledge,8ofthe16signatorieswithsignificantbothbyallocatingsignificantsumsoffinanceitselfinternationalpublicfinanceforenergyhadputpoliciesandbyprovidingmarketsignalsforprivateinvestors,inplacethatwerepubliclyavailableandalignedwithwhooftenrelyonpublicfinancingtomakeprojectsintheGlasgowcommitment(Canada,Denmark,thedevelopingcountriesviable.EuropeanInvestmentBank,France,Finland,NewZea-land,Sweden,andtheUnitedKingdom).ThesepoliciesAtCOP26inGlasgow,34countriesand5financialareestimatedtoshift$5.7billionperyearoutoffossilinstitutionspledgedtoendnewpublicsupportforfuelsandintocleanenergy.Overalldataoninterna-internationalunabatedfossilfuelenergybytheendtionalpublicenergyfinancehasshownaconcertedof2022andtoprioritizesupportforthecleanenergydeclineinfossilfuelfinancing,andafterseveralyearstransition(COP26Presidency2021).Thecommitmentofparity,internationalcleanenergyfinanceisnowthewasdesignedwithequityconcernsinmind:ratherlargestshare(FigureB20.1).thansimplycommittingtoendfossilfuelfinancing,whichcouldleavecountrieswithoutfundingforenergyPreviously,actionstoshiftpublicfinancingfromaccess,theprovisiontoshiftfossilfundingintocleanfossilfuelsintocleanenergyweredisjointedanddidnotreceivethemediaattentionthathelpsensureaccountability.GovernmentsraisedconcernsthatFinanceSTATEOFCLIMATEACTION2023165BOX20Shiftinginternationalpublicenergyfinanceawayfromfossilfuelsandintocleanenergy(continued)unilateralactionwouldputtheirbusinessesataFIGUREB20.1InternationalpublicenergyfinancefromdisadvantagecomparedtoothercountriesthatwouldMDBsandG20countries’exportcreditagenciesandcontinuesubsidizingtheirfossilfuelindustries,partic-developmentfinanceinstitutionsularlythroughexportcreditagencies.ThecoordinatedpublicnatureoftheGlasgowdeclarationhasbeenkeyBillionUS$forgettingaction:governmentsfeltmorecomfortable120actingtogether,civilsocietyhashadacleardeclara-tiontoholdthemaccountableto,andthehigh-profile100collectivecommitmentsentastrongermarketsignaltoprivateinvestorsthangovernmentsactingalone.80NotallsignatoriestotheGlasgowdeclarationhave60implementedtheirpledges.Fourcountries(Germany,NonfossilItaly,Portugal,andtheUnitedStates)havefailedtofuelpublishpoliciesoncompliancewiththeGlasgowcommitment.Theymaybeshiftingwhattheyfinance,40butwithoutclearpoliciesitisdifficulttotellorholdFossilfuelthemaccountable.Fourcountrieshavepublishedpoliciesfallingshortofthecommitment(Belgium,the20Netherlands,Spain,andSwitzerland).Ifthesecountriesweretofulfillthecommitment,afurther$13.7billionper02015201720192021yearwouldbeshiftedfromfossilfuelstocleanenergy2013(McGibbon2023).IfallGlasgowpledgesignatoriesupholdtheircommitment,itwouldclosethegaptoNote:G20=GroupofTwenty;MDB=multilateraldevelopmentbank.meetingthe$100billionperyearclimatefinancegoal,Source:OCI(2023).whichstoodat$17billionasof2020(OECD2022a).RecentdevelopmentsefforttocatchupafterCongresspassedtheInflationacrossfinanceReductionAct.Whileitsheadlinespendinglevel,asassessedbytheCongressionalBudgetOffice,isaroundThelastfewyearshaveseenanumberofmajordevel-$400billion,manyofthetaxcreditsareuncapped,opmentsintheglobaleconomyandpoliticsthathavemeaningoverallspendingcouldbemuchhigher,withhadbothpositiveandnegativeeffectsonthescale-upfinancialanalystsatmajorbanksestimatingtotalofclimatefinanceflowsandalignmentoffinancewithfederalspendingcouldbedoubletotriplethisamountclimategoals.Recentdevelopmentsrelevanttoboth(Jiangetal.2022;GoldmanSachs2023).Theseinvest-shiftsareexploredhere,inturn.mentshavepromptedtheEuropeanUniontoconsiderfurtherpublicclimatespendingofitsown,suggestingRecentdevelopmentsinthepotentialforaracetothetopamongmajorpow-scalingupclimatefinanceersinclimate-focusedindustrialpolicy(HensleyandLappetelainen2023).DomesticclimateinvestmentsRecentdevelopmentsinmajoreconomieshavethebymajoreconomiescanhelpdrivedownthecostofpotentialtoboostclimatefinanceconsiderably.Chinacleanenergyglobally,ashasbeenthecasewithsolarhaslongledtheworldininvestmentinrenewableandwindinvestmentsbyGermanyandChina(Kavlakenergy(IEA2023m),withannualpublicgreenfinancingetal.2018;LacerdaandVanDenBergh2014),helpingestimatedatRMB1.1trillion($162billion)in2017–18(Choietspuremissionsreductionsbeyondthecountrywhereal.2021).TheEuropeanUnionhasatargetfor30percentinvestmenttakesplace(Larsenetal.2023).ofits2021–27budget,anestimated€578billion(around$633billion)togotoclimate(EuropeanCommissionHowever,thepicturefordevelopingcountriesisless2022a).In2022,theUnitedStatesshowedsignsofanpositive.Squeezedbymultiplerecentcrisesincludingtheongoingeffectsofthepandemic,foodandenergyFinanceSTATEOFCLIMATEACTION2023166pricespikesfollowingtheRussianinvasionofUkraine,Unlockinggreaterlevelsofclimatefinance,includingbroaderinflation,andunsustainabledebtburdens,throughreformingfinancialsystems,canenablemanydevelopingcountrygovernmentslackthefiscaldevelopingcountriestoinvestinclimateactionatthespacetoinvestinclimate(Songweetal.2022).Thecostscaleneeded,breakingoutoftheclimateinvestmentofcapitalfordevelopingcountriesishigher,withsometrap(Amelietal.2021).Supportingdevelopingcountries’facinginterestratesmorethandoublethoseofdevel-abilitytodothisyieldsbenefitsnotjustforrecipientsbutopedcountries,duetoinvestorsperceivingahigherriskalsoforrichercountries—firstandforemostbyhelpingoflending.Thisisaparticularchallengeforrenewableaccelerateactiontoaddresstheclimatecrisis(actionenergydevelopmentsinceithashigherupfrontcapitalthatbringsglobalbenefits),butalsobyboostingecon-costs(butloweroperatingcosts)comparedtofossilomies,developingexportmarkets,shoringupsupplyfuelgeneration(HirthandSteckel2016).Thisleadstochains,andaddressingtherootcausesofpoliticala“climateinvestmenttrap”(seeFigure76);thehigherinstabilityandconflict(Thwaites2017).borrowingcostsmakeithardertodevelopeconomi-callyviableprojects,leavingcountriesunabletoinvestYetrichercountriesarenotmeetingeventheirmodestintransitioningtheirenergysystemsorinresilience.commitmentstoprovideandmobilizeinternationalBeinglockedintotheexpensiveandinefficientfossilfuelclimatefinance.In2009atCOP15inCopenhagen,economyandleftvulnerabletoclimateimpactsleadsdevelopedcountriescommittedtomobilize$100billiontoincreasedcostsofdisasters,higherunemployment,peryearannuallyfordevelopingcountriesby2020,fromandgreaterpoliticalinstability,whichraisesperceivedawidevarietyofsources,publicandprivate,bilateralriskandborrowingcostsevenfurther(Amelietal.2021).andmultilateral(UNFCCC2009).In2015atCOP21inParis,Overthepastdecade,increasedclimatevulnerabilityisgovernmentsagreedtoextendthismobilizationgoalestimatedtohaveraisedtheaveragecostofsovereignthrough2025,andsetanewcollectivequantifiedgoaldebtforClimateVulnerableForumcountriesby117basisfromafloorof$100billionperyear(UNFCCC2015).Thepoints,equivalentto$40billioninadditionalinterestOECDestimatedthattotalclimatefinancefromdevel-paymentsongovernmentdebt(Buhretal.2018).opedtodevelopingcountriesreached$83.3billioninFIGURE76TheclimateinvestmenttrapatthemacroeconomiclevelHighcostofcapitalHighriskpremiumsLowinvestmentinlow-carbontechnologies•UnderdevelopedfinanicalmarketLowreduction•HighdomesticrisksinCO2emissions•LowproductionIntensified•Highunemploymentclimateimpacts•HighinstabilityNote:CO2=carbondioxide.Source:Amelietal.(2021).FinanceSTATEOFCLIMATEACTION20231672020(OECD2022a).Giventhis,anumberofdevelopingcountriesandcivilsocietyorganizationshavecalledfordevelopedcountriestoensurethattheirclimatefinancemobilizationinsubsequentyearsmakesupforanyshortfallinmeetingthe$100billioncommitmentfrom2020onward,suchthatthetotalprovisionaverages$100billionperyearbetween2020and2025,whichwouldbeinthespiritoftheCopenhagenandPariscommitments(V202021;Farand2021).Developed-coun-trygovernmentsprojectthattheywilldeliverthe$100billionin2023(Figure77),andthattheirclimatefinancemobilizationfordevelopingcountrieswillaverage$100billionperyearovertheperiod2021–25(CanadaandGermany2021).Doingsowillrequiregovernmentstocontinuetoscaleuptheirclimatefinanceinlinewiththeirpledges.Whilethe$100billionwasacollectivegoalbydevelopedcountries,notallcountrieshavebeenmakingcomparableeffortstomeetit.TheUnitedStates,forexample,hasbyfarthebiggestshortfall,over$20billionperyear,betweenwhatithasprovidedinclimatefinanceandassessmentsofitsfairshareoftheeffortbasedonobjectiveindicators,suchassizeofeconomy,cumulativeGHGemissions,andpopulation(BosandThwaites2021).FIGURE77Annualreportedclimatefinance(2013–20)andprojections(2021–25)towardthe$100billiongoalBillionUS$120100$100billionclimatefinancegoal80No60privatefinancedata402002013201420152016201720182019202020212022202320242025MobilizedprivatefinancePROJECTIONSExportcreditsMultilateralclimatefinanceProjectionscenario1BilateralclimatefinanceProjectionscenario2Note:Scenario1assumesthatdevelopedcountriesandinternationalfinancialinstitutionsfullydeliverontheirpublicclimatefinancecommit-mentsontime,andprojectsthatprivatefinanceismobilizedatthesameratiotopublicdollarsaswasobservedbetween2016and2019.Scenario2ismoreconservative,assumingdelaysinmeetingpublicclimatefinancecommitmentsandalowerratioofprivatefinancemobilizationthanin2016–19.Sources:OECD(2022a,2021a).FinanceSTATEOFCLIMATEACTION2023168RecentdevelopmentsinFIGURE78GlobalinvestmentincleanenergyaligningfinancewiththeParisAgreementandfossilfuelsupplyWhileinvestmentincleanenergyhasbeenrisingBillionUS$steadilyoverthelastdecade,investmentinfossilfuels1,400hadbeenonthedeclineuptoandincluding2020,butithasrisensteadilysincethen,ascountriesrecovered1,200CleanfromthepandemicandtheRussianinvasionofUkraine1,000energyledcountriestoinvestinincreasedoilandgassupply800supplyalongsidecontinuedeffortstobuildoutcleanenergy(seeFigure78).TheIEAprojectsinvestmentinunabatedFossilfossilfuelsupplyislikelytorisebymorethan6percentfuelin2023,withcurrentfossilfuelinvestmentsmorethansupplydoublethelevelintheIEA’sNetZeroby2050scenario.Investmentincleanenergysupplyisprojectedtorise600by9percentin2023,andcleanenergywillaccountfornearly90percentofallinvestmentinelectricitygener-400ation,yet,inamirrorimageoffossilfueloverinvestment,thisisstilllessthanhalfofcleanenergyinvestment200neededintheIEA’sNetZero2050scenario(IEA2023m).02017201920212023Amajordevelopmentin2023inclimateriskdisclosure2015wasthelaunchoftheInternationalSustainabilityStan-dardsBoardinauguralstandardsonsustainabilityandSource:IEA(2023m).climatedisclosures(IFRS2023).ThesestandardsbuildupontheTCFDrecommendations,withtherequirementFIGURE79ShareofglobalemissionscoveredtodiscloseScope3GHGemissionsconstitutinganimportantimprovement.TheISSBisexpectedtosetthebyacarbonpriceglobalbaselineforcorporateclimatedisclosuresasmajorcountriesandinternationalbodiessuchasthe%ofglobalemissionsInternationalOrganizationofSecuritiesCommissions100haveendorsedit(Toplensky2023;IOSCO2023).Startingin2024,itwillalsotakeoverthemonitoringresponsibil-80itiesfromtheTCFD,whichwillbedisbanded(FSB2023).TheISSBclimatestandardsarebroadlyalignedwiththe60proposedU.S.ruleofmandatoryclimateriskdisclosures,whichisexpectedtobefinalizeddespitesignificant40politicalopposition(Gensler2022).20Onlyonenewjurisdiction,Indonesia,hasimplementedacarbonpricingsystemsinceApril2022,withgrowth0200020102023incarbonpricingcomingthroughotherjurisdictions1990expandingcoverageorstrengtheningprices(WorldBank2023d).Carbonpricingsystemscovered23percentSource:Historicaldataadaptedfrom(WorldBank2023a).ofglobalGHGemissions,lessthana1percentincreaseincoveragefrom2022(Figure79).Growthintheshareofglobalemissionscoveredbycarbonpricinghasbeenlargelystagnantsince2021,whenChinalaunchedanationalETSthatcoversitspowerindustry,bringing4.5GtCO2e(8.8percentofglobalemissions)underapricingregime(WorldBank2022a).WhileglobalcarbonpricingcoverageexpandedduetoprogressinChina,theaveragecarbonpriceinthecountryremainsaround$8/tCO2e,exertingasignificantdownwardpressureontheglobalweightedaverageprice.Nonetheless,China’snewdevelopmentrepresentsanimportantsteptowardestablishingafoundationtoraisecarbonpricesovertime.FinanceSTATEOFCLIMATEACTION2023169RecentglobaleventshaveresultedinwideswingsinCOVID-19fiscalspendinginthe50largesteconomiesfossilfuelsubsidylevels.Thepandemicandsubsequenthasbeenlow-carbon,or31.2percentof$3.1trillioninoilpricecrashcausedfossilfuelconsumptionsubsidiesspecificrecoveryspending(OxfordUniversityEconomictodropby40percentin2020,butin2021theyincreasedRecoveryProject2022).BetweenJanuary2020andtoexceed2019levelsaseconomiesreboundedfromAugust2022,the38largesteconomiesand8multilateralthepandemicandoilpricesroseagain(OECD2022b).developmentbankshavecommitted$515billioninnewProductionsubsidieswerealreadyincreasingbeforethefinancingtofossilfuel–intensivesectors,comparedtopandemic,largelyduetodirectgovernmentspending$488billiontocleanenergysectors(IISD2022).Pro-byOECDcountriesonfossilfuelinfrastructureandductionsubsidiesrosein2021asgovernmentssoughtcorporatedebtrelief(OECD2021b).COVID-19stimulustoboostsupplytomeetrisingdemandaseconomiesandrecoveryspendinghasexacerbatedthesetrends,emergedfrompandemicslowdowns(OECD2022b).withmultipleanalysesfindingthatgreateramountsofpublicfundingaregoingtofossilfuelsandotherComprehensiveproductionandconsumptionfossilhigh-carbonsectorsthantolow-carbondevelopmentfuelsubsidydataarenotyetavailablefor2022,but(UNEP2021d).Just5.3percentofthe$18.2trillionintotalpreliminarydatafromtheIEAshowthatconsumptionsubsidiesroseabove$1trillionforthefirsttime,almostFIGURE80Breakdownofsourcesofpublicdoubletheiralreadyelevated2021levels,astheRussianinvasionofUkrainedisruptedenergymarkets,causingfinancingforfossilfuelspricestoincreaseandgovernmentstoraisespendinginanefforttoprotectconsumers(IEA2023c).ProductionBillionUS$subsidiesarealsoexpectedtoincreaseasgovernments1,400seekalternativesourcesofsupplytoRussianoilandgas.ThisrunscountertocommitmentsbytheG7,G20,1,200andalltheworld’sgovernmentsatCOP26tophaseoutfossilfuelsubsidies(G72016;G202009;UNFCCC2022a).1,000Datafor2022forG20state-ownedentities(SOEs)showtheircapitalexpenditureonfossilfuelshasremainedat800thesameelevatedpostpandemiclevelsas2021($322.6billion,downfrom$323.2billion).Nationaloilcompanies600ofG20countrieshaveannouncedplanstouserecord2022profitstoincreaseinvestmentsinupstreamoiland400gasin2023(Laanetal.2023).ThisisatoddswiththeIEA’snet-zeroroadmaptoachieve1.5ºC,whichfoundthat,200beyondprojectsalreadycommittedtoin2021,nonewinvestmentinfossilfuelsupplyisrequiredtomeetglobal02015201720192021energyneeds,afindingechoedbytheIPCC’sSixth2013AssessmentReport(IEA2021b;IPCC2022b).State-ownedentityfossilfuelUnlikedomesticsubsidiesandSOEinvestment,interna-capitalexpenditure,G20countries(IISD)tionalpublicfinancingforfossilfuelsbyMDBsandG20countries’internationalfinancialinstitutionshasshownPublicfossilfuelfinancefromMDBsaconsistentdecliningtrend,fallingbynearly60percentandG20countries'ECAsandDFIs(OCI)inthepastfiveyears(OCI2023).Ifthehistoricalrateofdeclineininternationalpublicfinancingforfossilfuelsbetween2017and2021continues,itcouldreachzerobythemiddleofthedecade(Figure80).Productionandconsumptionsubsidies,192economies2013-2020,82economiesin2021(IEA+OECD)Notes:DFI=developmentfinanceinstitution;ECA=exportcreditagency;G20=GroupofTwenty;IEA=InternationalEnergyAgency;IISD=InternationalInstituteforSustainableDevelopment;MDB=multilateraldevelopmentbank;OCI=OilChangeInternational;OECD=OrganisationforEconomicCo-operationandDevelopment.Thesedataareacompilationofproductionandconsumptionsubsidies,G20state-ownedentityfossilfuelcapitalexpenditure,andpublicfossilfuelfinancefrommultilateraldevelopmentbanksandG20countries’developmentfinanceinstitutionsandexportcreditagencies.Productionandconsumptionsubsidiesdatawereonlyavailablefor82economiesin2021,comparedto192economiesin2020andprioryears.Sources:OECDandIISD(2021);Laanet.al(2023);OCI(2023).FinanceSTATEOFCLIMATEACTION2023170SECTION10ConclusionThewindowtoavoidincreasinglydevastating,ments—theU.S.InflationReductionAct,India’supcomingoftentimesirreversibleclimateimpactsisrapidlynationalcarbonmarketscheme,Canada’sGreenclosing,withimmediateandambitiousactionnowProcurementpolicy,theEuropeanUnion’sDeforestationneededtolimitwarmingto1.5°C.TonearlyhalveGHGRegulation,andtheKunming-MontrealGlobalBiodiver-emissionsby2030andreachnet-zeroCO2emissionsbysityFramework,forexample—alsorepresentbrightspotsmidcentury,transformationalchangesmustaccelerateacrossthesectorsthatmusttransform.Ifsuccessful,theacrosstheworld’shighest-emittingsectors—power,upcomingGlobalStocktakeatCOP28canamplifythisbuildings,industry,transport,forestsandland,andfoodmomentumandserveasapowerfulspringboardforandagriculture.Therapidscale-upofcarbonremovalgreaterclimateactionby,forexample,informingecono-technologiesandclimatefinancewillalsoprovecriticalmy-wideandsectoraltargetscommunicatedwithinthetocombattingtheclimatecrisis.nextroundofNDCsandpromptinggovernmentstotakemuch-neededstepstowardphasingoutunabatedfossilRecentyearshavewitnessedmanygovernments,fuelsinelectricitygeneration,haltingdeforestationandcompanies,financialinstitutions,andcivilsocietyorga-degradation,andshiftingtozero-carbontransportation.nizationsshiftingintogeartocatalyzeanddeepenthesetransitions.ButwhilerecentratesofchangeareheadingHowever,allsectorsrequirefurtheractiontoaccelerateintherightdirectiontowardmosttargetsacrossthesetransformationalchange.Inparticular,afewindicatorsemission-intensivesectors,theworldisontracktohaveshownaconcerningslowdownofprogressorachievejust1of42targets—theshareofelectricvehiclesworseningoftrends,suchasinthecaseofdramaticallyinpassengercarsales.Changeisheadingintherightreducingdeforestation,eliminatingfossilfuelsubsidies,directionatapromisingbutstillinsufficientspeedfor6andincreasingpublicclimatefinance.Forexample,theindicators,and,foranother24indicators,itremainswelllevelofglobalcoalandgasuseisstillincompatiblewithbelowthepacerequiredtoachievenear-termtargets.a1.5°Cwarmingpathwayand,in2021,publicfinancingWorsestill,changefor6indicatorsisheadingintheforfossilfuelsincreasedsharply,withgovernmentsub-wrongdirectionentirely.Dataareinsufficienttoassesssidies,specifically,nearlydoublingfrom2020toreachprogressacrosstheremaining5indicatorswithconfi-thehighestlevelsseeninalmostadecade.Acceleratingdence(Figure81).progressandreversingtheseworseningtrendswillrequiresupportfromgovernments,theprivatesector,Althoughthevastmajorityofindicatorsarenotontrack,andcivilsociety.Intheyearahead,leadersacrossnotableprogresshasbeenmadeinsomesectors.Solarsectorswillneedtocapitalizeontheprogressseensobuildupincreasedexponentiallyin2022,powergenera-fartoworktowardlimitingwarmingto1.5°Candensuringtioncostsofsolarphotovoltaicsandonshorewindandthatjusticeandequityarecenteredinalleffortstowardbatterystoragecostshavedeclinedrapidlyinthepastthisgoal.Whilethepathforwardwillrequireanenor-decade,andsomeexpertsareprojectingthatemissionsmouseffort,theactionswetaketogettherecanhelpusfromthepowersectormayhavepeakedin2022.Thesedeliverdevelopmentalandsocietalbenefitsforall.examplesshowthatrapid,nonlinearchangeisnotonlypossiblebutalreadyunderway.Actionsbygovern-ConclusionSTATEOFCLIMATEACTION2023172FIGURE81Summaryofprogresstoward2030targetsLIKELIHOODOFFOLLOWINGANS-CURVEACCELERATIONFACTORa5xS-curvePossibleN/AS-curveLikely5xS-curveUnlikelyRIGHTDIRECTION,ONTRACKRIGHTDIRECTION,WELLOFFTRACKN/AbShareofelectricvehiclesinlight-duty>10xMangroverestoration(totalha)vehiclesales(%)RIGHTDIRECTION,OFFTRACK3xGHGemissionsintensityofagricultural>10xproduction(gCO2e/1,000kcal)Cropyields(t/ha)N/AbShareofzero-carbonsourcesinelectricity8xRuminantmeatconsumption(kcal/capita/day)N/Abgeneration(%)N/Ab>10xTechnologicalcarbonremoval(MtCO2/yr)1.5xShareofelectricvehiclesinthelight-dutyvehiclefleet(%)8xGlobaltotalclimatefinance(trillionUS$/yr)Shareofelectricvehiclesintwo-andthree-8xGlobalpublicclimatefinance(trillion$/yr)wheelersales(%)Reforestation(totalMha)1.2xRuminantmeatproductivity(kg/ha)>10xGlobalprivateclimatefinance(trillion$/yr)1.5xSmhaanredaotfogrlyocboarlpGoHraGteemcliismsiaotnesriusnkddeisrclosure(%)>10x>10xRatioofinvestmentinlow-carbontofossilfuelenergysupplyWeightedaveragecarbonpriceinjurisdictionswithemissionspricingsystems(2015$/tCO2e)RIGHTDIRECTION,WELLOFFTRACK7xShareofcoalinelectricitygeneration(%)WRONGDIRECTION,U-TURNNEEDED>10x9xShareofunabatedfossilgasinelectricityU-turnneededCarbonintensityofglobalsteel3xgeneration(%)U-turnneededproduction(kgCO2/tcrudesteel)CarbonintensityofelectricitygenerationU-turnneeded(gCO2/kWh)U-turnneededShareofkilometerstraveledbypassengercars(%ofpassenger-km)Energyintensityofbuildingoperations(kWh/m2)Shareofbatteryelectricvehicles4xCarbonintensityofbuildingoperations(kgCO2/m2)andfuelcellelectricvehiclesinbus4xsales(%)>10xShareofelectricityintheindustrysector’sN/Abfinalenergydemand(%)Mangroveloss(ha/yr)Carbonintensityofglobalcementproduction(kgCO2/tcement)U-turnneededShareoffoodproductionlost(%)Greenhydrogenproduction(Mt)U-turnneededTotalpublicfinancingforfossilfuels(billion$/yr)6xNumberofkilometersofrapidtransitperINSUFFICIENTDATA>10x1millioninhabitants(km/1Minhabitants)N/AbIns.dataRetrofittingrateofbuildings(%/yr)N/AbNumberofkilometersofhigh-qualitybikelanesIns.dataN/Abper1,000inhabitants(km/1,000inhabitants)Ins.dataShareofnewbuildingsthatarezero-carboninoperation(%)ShareofbatteryelectricvehiclesandfuelcellPeatlanddegradation(Mha/yr)electricvehiclesinmedium-andheavy-dutycommercialvehiclesales(%)Ins.dataPeatlandrestoration(totalMha)Shareofsustainableaviationfuelsinglobalaviationfuelsupply(%)Shareofzero-emissionsfuelsinmaritimeshippingfuelsupply(%)4xDeforestation(Mha/yr)Ins.dataFoodwaste(kg/capita)ConclusionSTATEOFCLIMATEACTION2023173FIGURE81Summaryofprogresstowards2030targets(continued)Notes:gCO2/kWh=gramsofcarbondioxideperkilowatt-hour;gCO2e/1,000kcal=gramsofcarbondioxideequivalentper1,000kilocalories;GHG=greenhousegas;ha/yr=hectaresperyear;kcal/capita/day=kilocaloriespercapitaperday;kg/capita=kilogramspercapita;kgCO2/m2=kilogramofcarbondioxidepersquaremeter;kgCO2/t=kilogramsofcarbondioxidepertonne;kg/ha=kilogramsperhectare;km/1Minhabitants=kilometersper1millioninhabitants;km/1,000inhabitants=kilometersper1,000inhabitants;kWh/m2=kilowatt-hourpersquaremeter;Mha/yr=millionhectaresperyear;Mt=milliontonnes;MtCO2/yr=milliontonnesofcarbondioxideperyear;passenger-km=passenger-kilometers;tCO2e=tonneofcarbondioxideequivalent;t/ha=tonnesperhectare;yr=year.Formoreinformationonindicators’definitions,deviationsfromourmethodologytoassessprogress,anddatalimitations,seecorrespondingindicatorfiguresineachsection.aForaccelerationfactorsbetween1and2,weroundtothe10thplace(e.g.,1.2times);foraccelerationfactorsbetween2and3,weroundtothenearesthalfnumber(e.g.,2.5times);foraccelerationfactorsbetween3and10,weroundtothenearestwholenumber(e.g.,7times);andaccelerationfactorshigherthan10,wenoteas>10.SeedataunderlyingthesecalculationsinAppendixA.bForindicatorscategorizedasS-curvelikely,accelerationfactorscalculatedusingalineartrendlinearenotpresented,astheywouldnotaccuratelyreflectanS-curvetrajectory.Thecategoryofprogresswasdeterminedbasedonauthorjudgment,usingmultiplelinesofevidence.SeeAppendixCandJaegeretal.(2023)formoreinformation.Sources:Authors’analysisbasedondatasourceslistedineachsection.ConclusionSTATEOFCLIMATEACTION2023174AppendicesAppendixA.SummaryofAccelerationFactorsTABLEA-1SummaryofAccelerationFactorsINDICATORMOSTRECENT203020352050LIKELIHOODAVERAGEAVERAGEACCELERATIONSTATUSDATAPOINTTARGETTARGETTARGETOFANNUALANNUALRATEFACTORPower(year)FOLLOWINGRATEOFOFCHANGE(BasedonShareofzero-carbonANS-CURVEHISTORICALREQUIRED(HowmuchaccelerationsourcesinelectricityCHANGETOMEETthepaceoffactorsand,generation(%)b2030TARGETrecentaverageinsomeShareofcoalin(Mostrecentannualchangecases,electricitygeneration(%)fiveyears(Estimatedneedstoexpertofdatafromthemostacceleratetojudgment)formostrecentyearofachieveindicators)datato2030)2030targets)a3988–9198–9999–1000.816.38xc(2022)4(2040)0(2018–22)360–1(2022)(2040)-0.54-3.97x(2018–22)Shareofunabated235–710-0.20-2.1>10xfossilgasin(2022)48–80electricitygeneration(%)(2040)(2018–22)Carbonintensity4402–6<0d-5.4-479xofelectricity(2022)generation(gCO2/kWh)(2040)(2018–22)BuildingsEnergyintensityofbuilding14085–120N/A55–80-1.8-5.33xoperations(kWh/m2)(2022)(2018–22)Carbonintensityofbuilding3813–16N/A0–2-0.77-2.94xoperations(kgCO2/m2)(2022)(2018–22)InsufficientdataRetrofittingrateof<12.5–3.53.5N/AInsufficient0.18buildings(%/yr)(2019)(2040)fdataShareofnewbuildings5100100100Insufficient9.5Insufficientthatarezero-carbon(2020)datainoperation(%)data294xIndustry(2021)e35–4351–5460–690.271.1(2040)55–90f>10xShareofelectricityinthe660(2017–21)industrysector'sfinal(2020)fN/A;energydemand(%)360–370fN/A-1.4-29U-turn1890neededCarbonintensityofglobal(2020)f,h(2016–20)>10xccementproduction(kgCO2/tcement)0.0271340–50fN/A0–130f5-55(2021)Carbonintensityof(2016–20)globalsteelproduction(kgCO2/tcrudesteel)g58iN/A330i0.00526.4Greenhydrogen(2017–21)production(Mt)Transport1938N/AN/A0.341.96xj(2020)Numberofkilometers(2015–20)ofrapidtransitper1millioninhabitants(km/1Minhabitants)AppendicesSTATEOFCLIMATEACTION2023176TABLEA-1SummaryofAccelerationFactors(continued)INDICATORMOSTRECENT203020352050LIKELIHOODAVERAGEAVERAGEACCELERATIONSTATUSDATAPOINTTARGETTARGETTARGETOFANNUALANNUALRATEFACTOR(year)FOLLOWINGRATEOFOFCHANGE(BasedonN/AN/AANS-CURVEHISTORICALREQUIRED(HowmuchaccelerationCHANGETOMEETthepaceoffactorsand,2030TARGETrecentaverageinsome(Mostrecentannualchangecases,fiveyears(Estimatedneedstoexpertofdatafromthemostacceleratetojudgment)formostrecentyearofachieveindicators)datato2030)2030targets)aNumberofkilometersof0.004420.000720.2>10xjhigh-qualitybikelanes(2020)35–43per1,000inhabitants75–95(2015–20)(km/1,000inhabitants)Shareofkilometerstraveled45N/AN/A1.4-0.57N/A;bypassengercars(2019)(2015–19)U-turn(%ofpassenger-km)kneededjShareofelectricvehiclesin10100N/A2.19.44xclight-dutyvehiclesales(%)(2022)l(2018–22)Shareofelectric1.520–40N/A85–1000.283.6>10xcvehiclesinthelight-duty(2022)l100vehiclefleet(%)100(2018–22)1.3xc49Shareofelectricvehicles(2022)m85N/A3.64.6N/A;intwo-andthree-U-turnwheelersales(%)3.8(2018–22)neededc(2022)n8xcShareofbatteryelectric60N/A-0.537vehiclesandfuel2.7cellelectricvehicles(2022)n(2018–22)inbussales(%)30N/A990.433.4Shareofbatteryelectricvehiclesandfuelcell(2018–22)electricvehiclesinmedium-andheavy-0.113N/A1000.0351.6>10cdutycommercial(2022)vehiclesales(%)(2020–22)0Shareofsustainable(2018)5N/A9300.42>10caviationfuelsinglobalaviationfuelsupply(%)(2017–21)Shareofzero-emissions5.81.9N/A0.31-0.11-0.494xqfuelsinmaritimeshipping(2022)p(2014–22)-0.005fuelsupply(%)Insufficient0.06000InsufficientdataForestsandLandodata(annualaverage,N/A;Deforestation(Mha/yr)U-turn1993–2018)neededsPeatland1.5xudegradation(Mha/yr)32,0004,900N/AN/A950-2400(2008–19)InsufficientMangroveloss(ha/yr)(annualaverage,dataReforestation(totalMha)2017–19)rPeatland1301001503006.510restoration(totalMha)(totalgain,(2020–30)t(2020-35)t(2020–50)t2000–2020)015N/A20–29Insufficient1(asof2015)v(2020–50)t(2020–30)tdataMangrove15,000240,000N/AN/A75024,000>10xrestoration(totalha)(totaldirectgain,(2020–30)t1999–2019)wAppendicesSTATEOFCLIMATEACTION2023177TABLEA-1SummaryofAccelerationFactors(continued)INDICATORMOSTRECENT203020352050LIKELIHOODAVERAGEAVERAGEACCELERATIONSTATUSDATAPOINTTARGETTARGETTARGETOFANNUALANNUALRATEFACTOR(year)FOLLOWINGRATEOFOFCHANGE(BasedonANS-CURVEHISTORICALREQUIRED(HowmuchaccelerationCHANGETOMEETthepaceoffactorsand,2030TARGETrecentaverageinsome(Mostrecentannualchangecases,fiveyears(Estimatedneedstoexpertofdatafromthemostacceleratetojudgment)formostrecentyearofachieveindicators)datato2030)2030targets)aFoodandAgricultureGHGemissionsintensity700500450320-7.2-203xofagriculturalproduction(2020)7.8(gCO2e/1,000kcal)33(2016–20)>10x6.66.5Cropyields(t/ha)(2021)618.29.60.0090.131.2x79(2017–21)0.49Ruminantmeat293542-0.75N/A;productivity(kg/ha)(2021)30–6900.42U-turn(2017–21)neededzShareoffood135.26.56.5Insufficientproductionlost(%)y(2021)1.31–2.610.054data2.61–3.92(2016–21)8x7:1Foodwaste(kg/capita)aa120756161Insufficient-5.5(2019)170–2900dataRuminantmeat917460-0.15-1.2consumption(2020)cc(kcal/capita/day)bb(2016–20)TechnologicalCarbonRemovalTechnologicalcarbon0.57N/A740–5,5000.00245>10xremoval(MtCO2/yr)(2022)(2018-22)8x8xFinance>10x>10xGlobaltotalclimatefinance0.85N/A5.10.0620.491.5x(trillionUS$/yr)dd(2021)(2017–21)0.160.29>10xGlobalpublicclimate0.332N/A1.29–2.570.0190.85finance(trillion$/yr)ee(2020)(2016–20)6.8N/A;U-turnGlobalprivateclimate0.333N/A2.57–3.860.027neededfinance(trillion$/yr)ee(2020)(2016–20)Ratioofinvestmentin1:110:110:10.06low-carbontofossil(2023)(2019–23)fuelenergysupply(2040)204.4ShareofglobalGHG(2022)N/A100(2018–22)emissionsundermandatorycorporate23N/A430–9902.430climateriskdisclosure(%)ff(2023)(2019–23)Weightedaveragecarbon1,100priceinjurisdictions(2021)gg0044-120withemissionspricingsystems(2015$/tCO2e)(2017-21)Totalpublicfinancingforfossilfuels(billion$/yr)Notes:gCO2/kWh=gramsofcarbondioxideperkilowatt-hour;gCO2e/1,000kcal=gramsofcarbondioxideequivalentper1,000kilocalories;GHG=greenhousegas;ha/yr=hectaresperyear;kcal/capita/day=kilocaloriespercapitaperday;kg/capita=kilogramspercapita;kgCO2/m2=kilogramofcarbondioxidepersquaremeter;kgCO2/t=kilogramsofcarbondioxidepertonne;kg/ha=kilogramsperhectare;km/1Minhabitants=kilometersper1millioninhabitants;km/1,000inhabitants=kilometersper1,000inhabitants;kWh/m2=kilowatt-hourpersquaremeter;Mha/yr=millionhectaresperyear;Mt=milliontonnes;MtCO2/yr=milliontonnesofcarbondioxideperyear;passenger-km=passenger-kilometers;tCO2e=tonneofcarbondioxideequivalent;t/ha=tonnesperhectare;yr=year.SeeJaegeretal.(2023)formoreinformationonmethodsforselectingtargets,indicators,anddatasets,aswellasourapproachforassessingprogress.AppendicesSTATEOFCLIMATEACTION2023178TABLEA-1SummaryofAccelerationFactors(continued)aForaccelerationfactorsbetween1and2,weroundtothe10thplace(e.g.,1.2times);foraccelerationfactorsbetween2and3,weroundtothenearesthalfnumber(e.g.,2.5times);foraccelerationfactorsbetween3and10,weroundtothenearestwholenumber(e.g.,7times);andaccel-erationfactorshigherthan10,wenoteas>10.bZero-carbonsourcesincludesolar,wind,hydropower,geothermal,nuclear,marine,andbiomasstechnologies.cForindicatorscategorizedasS-curvelikely,accelerationfactorscalculatedusingalineartrendlinearenotpresentedinthereport,astheywouldnotaccuratelyreflectanS-curvetrajectory.Thecategoryofprogresswasdeterminedbasedonauthorjudgment,usingmultiplelinesofevidence.SeeAppendixCandJaegeretal.(2023)formoreinformation.dAchievingbelowzero–carbonintensityimpliesbiomasspowergenerationwithcarboncaptureandstorage.Thesetargetslimitbioenergywithcarboncaptureandstorageuseto5GtCO2peryearin2050.SeeJaegeretal.(2023)formoreinformationaboutthesustainabilitycriteriausedintarget-setting.eHistoricaldatafromIEA(2023l)accessedwithapaidlicensetotheIEA’sdatasets.fTargetsandhistoricalemissionsdataincludedirectandindirectGHGemissions.gThecarbonintensityofsteelproductionaccountsforbothprimaryandsecondarysteel.hThe2021datapointfromtheWorldSteelAssociationisnotincludedduetoachangeinthemethodologytoderivethedata.IThetargetsrefertowhatisneededforthewholeeconomytodecarbonizeandthusnotonlyfortheindustrysector.jDuetodatalimitations,anaccelerationfactorwascalculatedforthisindicatorusingmethodsfromBoehmetal.(2021).kWecalculatedthisnumberusingtheshareofpassenger-kilometerstraveledinlight-dutyvehicles.lThesedatadifferfromthoseofpreviousinstallmentsoftheStateofClimateActioninthattheyshowonlybatteryelectricvehiclesandexcludeplug-inhybridvehiclestoalignhistoricaldatawiththe2030,2035,and2050targets.WenowusedatafromIEA(2023e).mHistoricaldatafromBloombergNEF(2023),accessedwithpermissionfromBloombergNewEnergyFinance.nThesedatadifferfromthoseincludedinpreviousinstallmentsoftheStateofClimateAction.WenowusedatafromIEA(2023e)toalignhistoricaldatawiththe2030and2050targets.oHistoricaldataforforestsandlandindicatorswereestimatedusingmapsderivedfromremotelysenseddata,andaccordingly,theycontainadegreeofuncertainty.SeeJaegeretal.(2023)formoreinformationontheknownlimitationsofeach.pSeeJaegeretal.(2023)andBox5inBoehmetal.(2022)foradescriptionofmethodsusedtoestimatedeforestation.qIndicatorsforforestsandlandexperiencehighinterannualvariabilityinhistoricaldataduetobothanthropogenicandnaturalcauses.Accord-ingly,10yearsinsteadof5yearswasusedtocalculatethelineartrendlinewherepossible.Forthisindicator,however,an8-yeartrendlinewascalculated,usingdatafrom2015to2022duetotemporalinconsistenciesinthedatabeforeandafter2015(WeisseandPotapov2021).rHistoricaldatafromMurrayetal.(2022),whichestimatedgrossmangrovearealostfrom1999to2019,wasbrokenintothree-yearepochs.Lossforeachepochwasdividedbythenumberofyearsintheepochtodeterminetheaverageannuallossrate.sIndicatorsforforestsandlandexperiencehighinterannualvariabilityinhistoricaldataduetobothanthropogenicandnaturalcauses.Accordingly,10yearsinsteadof5yearswasusedtocalculatethelineartrendlinewherepossible.Forthisindicator,however,a12-yeartrendlinewascalculated,usingdatafrom2008to2019toaccountforthefullrangeofyearsincludedinfour3-yearepochsfromMurrayetal.(2022).Toestimatetheaverageannuallossratefrom2008to2019,grosslosswasdividedbythenumberofyearsineachepoch.tReforestation,peatlandrestoration,andmangroverestorationtargetsareadditionaltoanyreforestationandrestorationthatoccurredpriorto2020,andthesetargetsarecumulativefromeither2020to2030or2020to2050.uFollowingBoehmetal.(2021)andduetodatalimitations,theaverageannualrateofchangeacrossthemostrecentlyavailabletimeperiod(2000–2020)wasusedtoestimatethehistoricalrateofchange,ratherthanalineartrendline.vPeatlandrestorationtargetswereadaptedfromHumpenöderetal.(2020)andRoeetal.(2021),whichassumethat0Mhaofpeatlandsgloballywererewettedasof2015.Thisassumption,however,doesnotsuggestthatpeatlandrestorationhasnotoccurred,asthereisevidenceofrewetting,forexample,inCanada,Indonesia,andRussia(UNEP2022b;Sirin2022;BRGM2023),butratherspeakstothelackofglobaldataonpeatlandrestoration.wMurrayetal.(2022)estimatedthatagrossareaof180,000ha(95percentconfidenceintervalof0.09to0.30Mha)ofmangrovegainoccurredfrom1999to2019,only8percentofwhichcanbeattributedtodirecthumanactivities,suchasmangroverestorationorplanting.Weestimatedthemostrecentdatapointformangroverestorationbytaking8percentofthetotalmangrovegainfrom1999to2019(15,000ha).SeeJaegeretal.(2023)formoreinformation.xFollowingBoehmetal.(2021)andduetodatalimitations,theaverageannualrateofchangeacrossthemostrecentlyavailabletimeperiod(1999–2019)wasusedtoestimatethehistoricalrateofchange,ratherthanalineartrendline.yFoodlossoccursbeforefoodgetstomarket.zDuetodatalimitations,anaccelerationfactorwascalculatedforthisindicatorusingalineartrendlineestimatedwiththreedatapointsacrosssixyears.aaFoodwasteoccursattheretaillevelandinhomesandrestaurants,amongotherlocations.bbThisdietshiftappliesspecificallytothehigh-consumingregions(Americas,Europe,andOceania).ItdoesnotapplytopopulationswithintheAmericas,Europe,andOceaniathatalreadyconsumelessthan60kcal/capita/day,havemicronutrientdeficiencies,and/ordonothaveaccesstoaffordableandhealthyalternativestoruminantmeat.ccConsumptiondataaregiveninavailability,whichisthepercapitaamountofruminantmeatavailableattheretaillevelandisaproxyforconsumption.ddThisindicatorincludespublicandprivate,aswellasdomesticandinternational,flows.eeTheseindicatorsincludebothdomesticandinternationalflows.ffJurisdictionsincludedin2022areBrazil,Egypt,India,Japan,NewZealand,Singapore,Switzerland,theUnitedKingdom,andtheEuropeanUnion.Disclosurerequirementsarenotuniformamongcountriesandapplytodifferentorselecttypesoffirms(e.g.,financialinstitutionsorpubliclytradedfirms)withdiverseimplementationtimelines.Weconsiderjurisdictionsthatimplementedanyformofmandatoryrequirementduringtheyearitwasapproved,evenifitentersintoforceinphaseswithdifferenttimelines.Thisapproachcanresultinanoverestimation,asimplementa-tiontimelinesareenforcedovertheyearsindifferentstages.ggDataareacompilationofproductionandconsumptionsubsidies,G20state-ownedentityfossilfuelcapitalexpenditure,andinternationalpublicfossilfuelfinancefrommultilateraldevelopmentbanksandG20countries’developmentfinanceinstitutionsandexportcreditagencies.Source:Authors’analysisbasedondatasourceslistedineachsection.AppendicesSTATEOFCLIMATEACTION2023179AppendixB.ChangesinAccelerationFactorsandCategoriesofProgressbetweenStateofClimateAction2022andStateofClimateAction2023TableB-1indicatesifandwhyeachindicator’saccel-First,the5-year(or10-year)trendlinechangeswitherationfactorandcategoryofprogresschangedfromanewdatapointand/ordifferentdata.Second,thetheStateofClimateAction2022(Boehmetal.2022)toaverageannualrateofchangeneededtoreachthetheStateofClimateAction2023.Formostindicators,a2030targetchangesaswegetcloserto2030withancombinationofseveralfactors,suchastargetchanges,additionalyearofdata.Hence,everychangeindataanadditionalyearofdata,orchangesinunderlyingaffectstheaccelerationfactor.InTableB-1,weindicatedatasets,likelyspurredthesedifferences.Andwhileitiswhetherweswitchedtoanewdatasetorwhetheranewdifficulttodisentangletheseeffects,weidentifyseveraldatapointwasaddedforeachindicator.keyexplanationsforeachindicator.Finally,someindicatorsandtargetshavebeenestab-1.Targetchange.Forsomeindicators,thetargetitselflishedinthisreportthatwedidnottrackinprevioushaschanged.Thismeansthat,intheStateofClimateiterationsoftheseries.TheseindicatorsarelabeledasAction2023,thegoaltowardwhichprogressismea-newindicator.Forothers,weadjustedtheindicatorsureddiffersfromthegoalinlastyear’sreport.Assuch,tobetterreflectthelatest,bestavailablescienceortoaccelerationfactorsandcategoriesofprogressformatchanewlypublisheddatasource.Welabelthesetheseindicatorsarenotdirectlycomparabletolastindicatorsasupdatedindicator.Finally,forstillmoreyear’sreport.Thereasonsforchangingindividualtargetsindicators,weobservenochangebetweenthereports,aredescribedfurtherinourupdated,complementaryandaccordingly,welabeltheseasnodifference.technicalnote(Jaegeretal.2023).Whenthisreportfeaturesneworrevisedtargetsand2.Datachange.AchangeinhistoricaldatabetweenindicatorsrelativetotheStateofClimateAction2022,the2022and2023reports—eitherthroughtheadditionwenotethesechangesasafirst-orderexplanationofjustonenewdatapointorthroughswitchingthefullofdifferencesbetweentheassessmentsofprogresshistoricaldatasetduetonewavailabilityofanimprovedacrossbothpublications.However,insomeinstances,source—impactstheaccelerationfactorintwoways.underlyinghistoricaldatahavechangedaswell.TABLEB-1ChangesinaccelerationfactorandcategoryofprogressbetweenStateofClimateAction2022andStateofClimateAction20232023INDICATORSOCA2022SOCA2022SOCA2023SOCA2023EXPLANATIONACCELERATIONSTATUSACCELERATIONSTATUSOFFACTORFACTORaDIFFERENCESBETWEEN2022AND2023PowerShareofzero-carbonsources6x8xcTargetchangeinelectricitygeneration(%)bShareofcoalin6x7xTargetchangeelectricitygeneration(%)ShareofunabatedfossilgasinN/A;>10xTargetchangeelectricitygeneration(%)U-turnneededCarbonintensityofelectricity5x9xTargetchangegeneration(gCO2/kWh)7x/5x(residential/3xUpdatedindicatorBuildingscommercial)Energyintensityofbuildingoperations(kWh/m2)AppendicesSTATEOFCLIMATEACTION2023180TABLEB-1ChangesinaccelerationfactorandcategoryofprogressbetweenStateofClimateAction2022andStateofClimateAction2023(continued)2023INDICATORSOCA2022SOCA2022SOCA2023SOCA2023EXPLANATIONACCELERATIONSTATUSACCELERATIONSTATUSOFFACTORFACTORaDIFFERENCESBETWEEN2022CarbonintensityofbuildingInsufficientdata4xAND2023operations(kgCO2/m2)InsufficientdataUpdatedindicatorRetrofittingrateofbuildings(%/yr)InsufficientdataNodifferenceShareofnewbuildingsthatareN/AN/AInsufficientdataNewindicatorzero-carboninoperation(%)Industry1.7x4xTargetchangeNodifferenceShareofelectricityinthe>10x>10xNodifferenceindustrysector’sfinalTargetchangeenergydemand(%)N/A;N/A;U-turnneededU-turnneededCarbonintensityofglobal>10x>10xccementproduction(kgCO2/tcement)Carbonintensityofglobalsteelproduction(kgCO2/tcrudesteel)dGreenhydrogenproduction(Mt)TransportNumberofkilometersofrapid6x6xeNodifference>10xeNodifferencetransitper1millioninhabitants(km/1Minhabitants)Numberofkilometersof>10xhigh-qualitybikelanesper1,000inhabitants(km/1,000inhabitants)ShareofkilometerstraveledbyN/A;N/A;NodifferencepassengercarsU-turnneededU-turnneedede(%ofpassenger-km)fDatachange;5x4xcnewdatasetgShareofelectricvehiclesinDatachange;light-dutyvehiclesales(%)newdatasetgNewindicatorShareofelectricvehiclesinthe>10x>10xclight-dutyvehiclefleet(%)Datachange;newdatasethShareofelectricvehiclesN/AN/A1.3xcintwo-andthree-wheelersales(%)Shareofbatteryelectric>10xN/A;U-turnneededcvehiclesandfuelcellelectricvehiclesinbussales(%)AppendicesSTATEOFCLIMATEACTION2023181TABLEB-1ChangesinaccelerationfactorandcategoryofprogressbetweenStateofClimateAction2022andStateofClimateAction2023(continued)2023INDICATORSOCA2022SOCA2022SOCA2023SOCA2023EXPLANATIONACCELERATIONSTATUSACCELERATIONSTATUSOFFACTORFACTORaDIFFERENCESBETWEEN2022ShareofbatteryelectricInsufficientdata8xcAND2023vehiclesandfuelcellelectricInsufficientdatavehiclesinmedium-andInsufficientdataDatachange;heavy-dutycommercial2.5xnewdatasethvehiclesales(%)InsufficientdatacTargetchangeShareofsustainableaviationInsufficientdatacTargetchangefuelsinglobalaviationfuelsupply(%)4xiDatachange;InsufficientdataadditionalShareofzero-emissionsyear(s)ofdatafuelsinmaritimeshippingfuelsupply(%)NodifferenceForestsandLandDeforestation(Mha/yr)Peatlanddegradation(Mha/yr)InsufficientdataMangroveloss(ha/yr)N/A;N/A;NodifferenceReforestation(totalMha)U-turnneededU-turnneededjNodifference1.5x1.5xkPeatlandInsufficientdataInsufficientdataNodifferencerestoration(totalMha)>10xlDatachange;Mangroverestoration(totalha)InsufficientdatanewdatasetmFoodandAgricultureUpdatedindicatornGHGemissionsintensityN/AN/A3xDatachange;additionalofagriculturalproductionyear(s)ofdataDatachange;(gCO2e/1,000kcal)additionalyear(s)ofdataCropyields(t/ha)6x>10xDatachange;additionalRuminantmeat1.3x1.2xyear(s)ofdataproductivity(kg/ha)InsufficientdataNodifferenceInsufficientdataN/A;ShareoffoodU-turnneededpproductionlost(%)oInsufficientdataFoodwaste(kg/capita)qAppendicesSTATEOFCLIMATEACTION2023182TABLEB-1ChangesinaccelerationfactorandcategoryofprogressbetweenStateofClimateAction2022andStateofClimateAction2023(continued)2023INDICATORSOCA2022SOCA2022SOCA2023SOCA2023EXPLANATIONACCELERATIONSTATUSACCELERATIONSTATUSOFFACTORFACTORaDIFFERENCESBETWEEN2022Ruminantmeatconsumption5x8xAND2023(kcal/capita/day)rDatachange;additionalyear(s)ofdataTechnologicalCarbonRemovalTechnologicalcarbon>10x>10xTargetchangeremoval(MtCO2/yr)FinanceGlobaltotalclimatefinance>10x8xDatachange;additional(trillionUS$/yr)syear(s)ofdataDatachange;Globalpublicclimatefinance>10x8xadditionalyear(s)ofdata(trillion$/yr)tNodifferenceGlobalprivateclimatefinance>10x>10xNewindicator(trillion$/yr)tTargetchangeRatioofinvestmentinN/AN/A>10xUpdatedindicatorvlow-carbontofossilfuelenergysupplyShareofglobalGHGemissions>10x1.5xundermandatorycorporateclimateriskdisclosure(%)uWeightedaveragecarbon8x>10xpriceinjurisdictionswithemissionspricingsystems(2015$/tCO2e)Totalpublicfinancingforfossil5xN/A;Datachange;fuels(billion$/yr)U-turnneededadditionalyear(s)ofdataNotes:gCO2/kWh=gramsofcarbondioxideperkilowatt-hour;gCO2e/1,000kcal=gramsofcarbondioxideequivalentper1,000kilocalories;GHG=greenhousegas;ha/yr=hectaresperyear;kcal/capita/day=kilocaloriespercapitaperday;kg/capita=kilogramspercapita;kgCO2/m2=kilogramofcarbondioxidepersquaremeter;kgCO2/t=kilogramsofcarbondioxidepertonne;kg/ha=kilogramsperhectare;km/1Minhabitants=kilometersper1millioninhabitants;km/1,000inhabitants=kilometersper1,000inhabitants;kWh/m2=kilowatt-hourpersquaremeter;Mha/yr=millionhectaresperyear;Mt=milliontonnes;MtCO2/yr=milliontonnesofcarbondioxideperyear;passenger-km=passenger-kilometers;SoCA=StateofClimateAction;tCO2e=tonneofcarbondioxideequivalent;t/ha=tonnesperhectare;yr=year.SeeJaegeretal.(2023)formoreinformationonmethodsforselectingtargets,indicators,anddatasets,aswellasourapproachforassessingprogress.aForaccelerationfactorsbetween1and2,weroundtothe10thplace(e.g.,1.2times);foraccelerationfactorsbetween2and3,weroundtothenearesthalfnumber(e.g.,2.5times);foraccelerationfactorsbetween3and10,weroundtothenearestwholenumber(e.g.,7times);andaccelera-tionfactorshigherthan10,wenoteas>10.bZero-carbonsourcesincludesolar,wind,hydropower,geothermal,nuclear,marine,andbiomasstechnologies.cForindicatorscategorizedasS-curvelikely,accelerationfactorscalculatedusingalineartrendlinearenotpresentedinthereport,astheywouldnotaccuratelyreflectanS-curvetrajectory.Thecategoryofprogresswasdeterminedbasedonauthorjudgment,usingmultiplelinesofevidence.SeeAppendixCandJaegeretal.(2023)formoreinformation.dThecarbonintensityofsteelproductionaccountsforbothprimaryandsecondarysteel.eDuetodatalimitations,anaccelerationfactorwascalculatedforthisindicatorusingmethodsfromBoehmetal.(2021).fWecalculatedthisnumberusingtheshareofpassenger-kilometerstraveledinlight-dutyvehicles.gThesedatadifferfromthoseofpreviousinstallmentsoftheStateofClimateActioninthattheyshowonlybatteryelectricvehiclesandexcludeplug-inhybridvehiclestoalignhistoricaldatawiththe2030,2035,and2050targets.WenowusedatafromIEA(2023e).AppendicesSTATEOFCLIMATEACTION2023183TABLEB-1ChangesinaccelerationfactorandcategoryofprogressbetweenStateofClimateAction2022andStateofClimateAction2023(continued)hThesedatadifferfromthoseinpreviousinstallmentsoftheStateofClimateAction.WenowusedatafromIEA(2023e)toalignhistoricaldatawiththe2030and2050targets.iIndicatorsforforestsandlandexperiencehighinterannualvariabilityinhistoricaldataduetobothanthropogenicandnaturalcauses.Accordingly,10yearsinsteadof5yearswasusedtocalculatethelineartrendlinewherepossible.Forthisindicator,however,an8-yeartrendlinewascalculated,usingdatafrom2015to2022duetotemporalinconsistenciesinthedatabeforeandafter2015(WeisseandPotapov2021).jIndicatorsforforestsandlandexperiencehighinterannualvariabilityinhistoricaldataduetobothanthropogenicandnaturalcauses.Accordingly,10yearsinsteadof5yearswasusedtocalculatethelineartrendlinewherepossible.Forthisindicator,however,a12-yeartrendlinewascalculated,usingdatafrom2008to2019toaccountforthefullrangeofyearsincludedinfour3-yearepochsfromMurrayetal.(2022).Toestimatetheaverageannuallossratefrom2008to2019,grosslosswasdividedbythenumberofyearsineachepoch.kFollowingBoehmetal.(2021)andduetodatalimitations,theaverageannualrateofchangeacrossthemostrecentlyavailabletimeperiod(2000–2020)wasusedtoestimatethehistoricalrateofchange,ratherthanalineartrendline.lFollowingBoehmetal.(2021)andduetodatalimitations,theaverageannualrateofchangeacrossthemostrecentlyavailabletimeperiod(1999–2019)wasusedtoestimatethehistoricalrateofchange,ratherthanalineartrendline.mMurrayetal.(2022)estimatedthatagrossareaof180,000ha(95percentconfidenceintervalof0.09to0.30Mha)ofmangrovegainoccurredfrom1999to2019,only8percentofwhichcanbeattributedtodirecthumanactivities,suchasmangroverestorationorplanting.Weestimatedthemostrecentdatapointformangroverestorationbytaking8percentofthetotalmangrovegainfrom1999to2019(15,000ha).Wenowusethesedatatocalculateanaccelerationfactor,whichBoehmetal.2022didnotdo.nWeconvertedourpriorindicatoronGHGemissionsfromagriculturalproductiontoanindicatoronGHGemissionsintensityofagriculturalproduc-tiontobettermatchtheotherfoodandagricultureindicators,whichareallintensitymetrics.oFoodlossoccursbeforefoodgetstomarket.pDuetodatalimitations,anaccelerationfactorwascalculatedforthisindicatorusingalineartrendlineestimatedwiththreedatapointsacrosssixyears.qFoodwasteoccursattheretaillevelandinhomesandrestaurants,amongotherlocations.rThisdietshiftappliesspecificallytothehigh-consumingregions(Americas,Europe,andOceania).ItdoesnotapplytopopulationswithintheAmericas,Europe,andOceaniathatalreadyconsumelessthan60kcal/capita/day,havemicronutrientdeficiencies,and/ordonothaveaccesstoaffordableandhealthyalternativestoruminantmeat.sThisindicatorincludespublicandprivate,aswellasdomesticandinternational,flows.tTheseindicatorsincludebothdomesticandinternationalflows.uJurisdictionsincludedin2022areBrazil,Egypt,India,Japan,NewZealand,Singapore,Switzerland,theUnitedKingdom,andtheEuropeanUnion.Disclosurerequirementsarenotuniformamongcountriesandapplytodifferentorselecttypesoffirms(e.g.,financialinstitutionsorpubliclytradedfirms)withdiverseimplementationtimelines.Weconsiderjurisdictionsthatimplementedanyformofmandatoryrequirementduringtheyearitwasapproved,evenifitentersintoforceinphaseswithdifferenttimelines.Thisapproachcanresultinanoverestimation,asimplementationtimelinesareenforcedovertheyearsindifferentstages.vWeconvertedourpriorindicatoronmediancarbonpriceinjurisdictionswithpricingsystemstoanindicatoronweightedaveragecarbonpriceinjurisdictionswithemissionswithpricingsystemstobetteraccountforthepercentageofglobalGHGemissionscoveredbyeachcarbonpriceforeachyear.Source:Authors’analysisbasedondatasourceslistedineachsection.AppendicesSTATEOFCLIMATEACTION2023184AppendixC.AssessmentofProgressfor“S-CurveLikely”IndicatorsTableC-1presentsouranalysisforthenineS-curvethenfittedanS-curvetothehistoricaldatatoinformlikelyindicators,followingthemethodologydescribedinauthorjudgmenttoidentifythecategoryorprogressJaegeretal.(2023).Morespecifically,toplaceeachindi-foreachindicator.Thiswaspossiblefortheshareofcatorintoeithertheemergence,breakthrough,diffusion,zero-carbonsourcesinelectricitygeneration(FigureC-1)orreconfigurationstageofanS-curve,wefitteddifferentandtheshareofelectricvehiclesinlight-dutyvehicletypesoftrendlinestohistoricaldatatodeterminethesales(FigureC-2).Forallindicators,wealsoreviewedbestfit,aswellasestimatedeachindicator’scurrenttheliterature,consultedwithexperts,andcalculatedvalueasapercentageofitstheoreticalsaturationthecategoryofprogressbasedonalineartrendlinetovalue.Forindicatorsinthebreakthrough,diffusion,orinformauthorjudgment.reconfigurationstagewithsufficientavailabledata,weFIGUREC-1Shareofzero-carbonsourcesinFIGUREC-2Electricvehiclesasshareoflight-electricitygeneration:S-curveanalysisfordutyvehiclesales:S-curveanalysissolarandwind%ofelectricitygenerationAll-electricvehiclesasshareoflight-dutyvehiclesales100100909080Midpointof802030target707060Combined6050zero-carbon50electricity4040302030Solar1020WindHydro02018202620351020100Nuclear200020102020S-curvetrajectorybasedonbestfitBioenergy+HistoricaldataotherTargets2030renewablesNotes:Forthepost-2022trajectory,weassumethatsolarandNotes:Forthepost-2022trajectory,weassumedthatEVsaleswindcontinuealongS-curvesfittothehistoricaldata.Forsolar,continuealonganS-curvefittothehistoricaldatawithasaturationweassumedthesaturationpointwas64percentoftheelectricityvalueof100percent.Wealsoshowthemidpointofthetargetmix,andforwindweassumedthesaturationpointwas32percentrangefor2030here.oftheelectricitymix.Collectively,theseaddupto96percent,whichistheupperboundofour2050targetforsolarandwind.Sources:HistoricaldatafromIEA(2023f).Extrapolationbyauthors.Forhydro,nuclear,bioenergy,andotherrenewables,weassumedtheycontinuealongalineartrajectory.Sources:HistoricaldatafromEmber(2023).Extrapolationbyauthors.AppendicesSTATEOFCLIMATEACTION2023185TABLEC-1Additionalanalysisfor“S-curvelikely”indicatorsWHICHWHATWHATSTAGEOFWHATWASWHATOTHERLINESWHATISWHATISTRENDLINEPERCENTAGEOFS-CURVEISTHEOURS-CURVEOFEVIDENCEWERETHESTATUSTHESTATUSREPRESENTSTHETHESATURATIONTECHNOLOGYANALYSIS?CONSIDERED?USINGAUSINGBESTFITFORTHEVALUEDOESTHEIN?LINEARAUTHORLASTFIVEYEARSMOSTRECENTTRENDLINE?JUDGMENT?OFDATA?DATAPOINTREPRESENT?Shareofzero-carbonsourcesinelectricitygeneration(%)BecausethisWeassumethatBreakthroughstageWefittedS-curvesArecentreportfromRMIfindsindicatordescribessolarandwindforsolarpower,tothehistoricalthatifsolarandwindfollowasetofrelatedtogetherhaveagiventhatthedataforsolarandafastS-curve,theywouldtechnologies,wesaturationvalueindicator’scurrentwindandusedreach33percentofelectricityexaminedtrendlinesof96percent(thevalueisgreaterlineartrendlinesforgenerationin2030;iftheyfollowforeachtechnologyupperboundofthan5percentnuclear,hydropower,pureexponentialgrowth,theyseparately.Forsolar,our2050target).Itofitssaturationandbioenergywouldreach39percentoftheexponentialisdifficulttoknowvalueandthepower.Thiselectricitygenerationin2030trendlinewasthehowmuchofthishistoricaltrendlinecombinedtrajectory(Bondetal.2023).Thisiswithinbestfit,whileforwouldbefromsolarisexponential.indicatesthatthestrikingdistanceoftheIEA’sNetwind,thelinearcomparedtowind,shareofzero-carbonZeroEmissions(NZE)ScenariotrendlinewasthebutweassumeDiffusionstagesourcesinelectricity(IEA2022t),whichshowsa41bestfit.Wedonotthatsolarmakesupforwindpower,generationwillreachpercentshareofsolarandexpectnuclear,two-thirdsandwindgiventhatthe59percentin2030.windinelectricitygenerationhydropower,andmakesupone-third.indicator’scurrentThisislessthanhalfby2030,butwellbelowthisbioenergytofollowvalueisgreaterofthewayfromreport’stargetof53–78percent.anS-curve,and,Inthiscase,solarthan5percentofthecurrentvalueThescenariosandliteratureaccordingly,thepowerhasaitssaturationvaluetothemidpointofthatunderpinthisreport’slineartrendlinesaturationvalueofandthehistoricalour2030target,targetsshowahighershareofwasthebestfit.64percent,andthetrendlineislinear.whichsuggeststotalzero-carbonpowerandacurrentvalueof4.6thattheindicatorishighershareofwindandsolarpercentis7percentwellofftrack.withinzero-carbonpowerthanofthesaturationtheIEA’sNZE.Thisisbecausethevalue.WindpowerIEANZEshowsstronggrowthinhasasaturationnuclear,fossilgaswithcarbonvalueof32percent,captureandstorage,biomass,andthecurrentandhydropowergeneration.valueof7.3percentAdditionally,theNZEhasais23percentofthehigheroverallcarbonintensitysaturationvalue.ofpowergenerationthantheaverage1.5°C-compatibleEvenifourscenariosusedinthisreport,assumptionsforwhichmeansthatothersectorstheshareofwinddecarbonizefasterintheNZE.comparedtotheshareofsolarwereIEA(2023i)findssolarpowerdifferent,bothis“ontrack”foritsnet-zerosolarandwindemissionsby2050scenario,areclearlygreaterbutotherzero-carbonthan5percentoftechnologiessuchaswindtheirrespectiveareclassifiedas“moreeffortssaturationvaluesneeded.”Overall,theelectricityand,thus,abovesystemisclassifiedas“morethecutoffoftheeffortsneeded.”emergencestage.Greenhydrogenproduction(Mt)AlineartrendlineAssumingEmergencestage,S-curvefittingisIEA(2023i)classifiesgreenisthebestfitgreenhydrogengiventhatthetoouncertaininhydrogenas“moreeffortforthepastfiveproductionhasaindicator’scurrenttheemergenceneeded”tobeconsistentyearsofdata,butsaturationvalueofvalueislessthanstage.Giventhesewithitsnet-zeroemissionsbyanexponential330Mt(our20505percentofitsuncertainties,we2050scenario.Thiscategorytrendlineisthetarget),thecurrentsaturationvalue.defaulttowelloffofprogressisonestepabovebestfitforthepastvalueof0.027MtistrackunlesstheretheIEA’s“wellofftrack”status.tenyearsofdata.only0.008percentofiscompellingevi-TheIEA’scategories,however,thesaturationvalue.dencetoupgradearenotidenticaltothosethisindicator’scate-inthisreport.goryofprogress.AppendicesSTATEOFCLIMATEACTION2023186TABLEC-1Additionalanalysisfor“S-curvelikely”indicators(continued)WHICHWHATWHATSTAGEOFWHATWASWHATOTHERLINESWHATISWHATISTRENDLINEPERCENTAGEOFS-CURVEISTHEOURS-CURVEOFEVIDENCEWERETHESTATUSTHESTATUSREPRESENTSTHETHESATURATIONTECHNOLOGYANALYSIS?CONSIDERED?USINGAUSINGBESTFITFORTHEVALUEDOESTHEIN?LINEARAUTHORLASTFIVEYEARSMOSTRECENTTRENDLINE?JUDGMENT?OFDATA?DATAPOINTREPRESENT?Shareofelectricvehiclesinlight-dutyvehiclesales(%)ExponentialAssumingtheshareBreakthroughstage,WefittedanS-curveIEA(2023i)classifiesEVsas“onofEVsinlight-dutygiventhatthetothehistoricaltrack”toachieveitsnet-zerovehiclesaleshasindicator’scurrentdata,andthisemissionsby2050scenario.asaturationvaluevalueisgreatertrajectoryindicatesButitdoesnotspecifywhetherof100percent(ourthan5percentthattheshareofEVsthisassessmentreferstosales,2035target),theofitssaturationinlight-dutyvehiclefleet,orsomeothermeasure.currentvalueisonlyvalueandthesaleswillreach93ProjectionsfromIEA(2022t)10percentofthehistoricaltrendlinepercentby2030.andBloombergNEF(2022a)saturationvalue.isexponential.ThissuggeststhatsuggestthatEVsaleswouldtheindicatorisonbe“offtrack”toreachtheirtracktoachieverespectivenet-zeroemissionsthemidpointofourscenarios,butbothforecasts2030target(seeuselinearprojections,sowedoFigure83,below).notconsiderthem.Shareofelectricvehiclesinthelight-dutyvehiclefleet(%)ExponentialAssumingtheshareEmergencestage,S-curvefittingisStronggrowthinEVsalesofEVsinthelight-giventhatthetoouncertaininsuggestsaforthcomingdutyvehiclefleetindicator’scurrenttheemergencebreakthroughinEVsasasharehasasaturationvalueislessthanstage.GiventheseoftheLDVfleet.IEA(2023i)valueof100percent5percentofitsuncertainties,weclassifiesEVsas“ontrack”to(theupperboundofsaturationvalue.defaulttowelloffachieveitsnet-zeroemissionsour2050target),thetrackunlessthereby2050scenario.Butitdoescurrentvalueisonlyiscompellingevi-notspecifywhetherthis1.5percentofthedencetoupgradeassessmentreferstosales,saturationvalue.thisindicator’scate-fleet,orsomeothermeasure.goryofprogress.ProjectionsfromIEA(2022t)andBloombergNEF(2022a)suggestthatEVfleetwouldbe“offtrack”toreachtheirrespectivenet-zeroemissionsscenarios,butbothforecastsuselinearprojections,sowedonotconsiderthem.AlthoughEVsalesareontrackfor2030targets,EVfleetisnotbecausenewcarsalesdonotnecessarilycorrespondwithequalremovalofoldcarsfromthemarket,andthereforetheshareofEVsontheroadmaylagwellbehindincreasesinsales(Keithetal.2019).Thereisnotenoughevidencethatthestockturnoverwilloccurquicklyenoughtomeet2030fleetgoals,sothisindicatorremainsofftrack.AppendicesSTATEOFCLIMATEACTION2023187TABLEC-1Additionalanalysisfor“S-curvelikely”indicators(continued)WHICHWHATWHATSTAGEOFWHATWASWHATOTHERLINESWHATISWHATISTRENDLINEPERCENTAGEOFS-CURVEISTHEOURS-CURVEOFEVIDENCEWERETHESTATUSTHESTATUSREPRESENTSTHETHESATURATIONTECHNOLOGYANALYSIS?CONSIDERED?USINGAUSINGBESTFITFORTHEVALUEDOESTHEIN?LINEARAUTHORLASTFIVEYEARSMOSTRECENTTRENDLINE?JUDGMENT?OFDATA?DATAPOINTREPRESENT?Shareofelectricvehiclesintwo-andthree-wheelersales(%)LinearAssumingtheshareDiffusionstage,N/A;datalimitationsBloombergNEF(2022a)ofEVsintwo-andgiventhatthepreventedusprojectstheshareofEVsthree-wheelersalesindicator’scurrentfromfittinganintwo-andthree-wheelerhasasaturationvalueisgreaterS-curve.Historicalsaleswillincreasefrom43valueof100percentthan5percentofdatabeginsat34percentin2021to54percent(our2050target),itssaturationvaluepercentin2015,soin2030,whichsuggeststhatthecurrentvalueisandthehistoricalwedon’tknowthetheindicatoriswellofftrack.49percentofthetrendlineislinear.shapeofthecurveTheseprojections,however,saturationvalue.from0percenttodonotaccountforthemost34percent.Butrecentdatapointof49giventhatthepercentin2022.indicatorisinthediffusionstage,inwhichchangeisroughlylinear,weusedthelineartrendlinetoinformthejudgment.Theaccelerationfactorcalculatedusingthistrendlinewas1.3x.Shareofbatteryelectricvehiclesandfuelcellelectricvehiclesinbussales(%)LinearAssumingtheshareEmergencestage,S-curvefittingisIEA(2023f)projectsthatEVsofbatteryelectricgiventhatthetoouncertaininwillaccountfor17percentvehiclesandfuelindicator’scurrenttheemergenceofbussalesin2030,whichcellelectricvehiclesvalueislessthanstage.Giventhesesuggeststhattheindicatorisinbussaleshasa5percentofitsuncertainties,wewellofftrack.saturationvaluesaturationvalue.defaulttowelloffof100percent(ourtrackunlessthere2050target),theFrom2015to2018,iscompellingcurrentvalueisonlythisindicatorwasevidenceto3.8percentoftheabove5percent,upgradethissaturationvalue.butithassinceindicator’scategorydecreased,ofprogress.Here,indicatingthatathedatashowbarriercameupthatrecentratesthatpreventedofchangehaveitfromreachingbeenheadingabreakthrough.inthewrongdirectionentirely.Shareofbatteryelectricvehiclesandfuelcellelectricvehiclesinmedium-andheavy-dutycommercialvehiclesales(%)ExponentialAssumingtheshareEmergencestage,S-curvefittingisBloombergNEF(2022a)projectsofbatteryelectricgiventhatthetoouncertaininthatbothmedium-andvehiclesandfuelindicator’scurrenttheemergenceheavy-dutyEVsaleswillreachcellelectricvehiclesvalueislessthanstage.Giventheseapproximately15percentinmedium-and5percentofitsuncertainties,wein2030,whichwouldbeheavy-dutysaturationvalue.defaulttowelloffapproximatelyhalfasmuchcommercialtrackunlessthereaswhatisneededtoachievevehiclesaleshasiscompellingevi-ourtargetof30percent.NoteasaturationvaluedencetoupgradethatBNEF’sprojectionsincludeof99percent(ourthisindicator’scate-plug-inhybridelectricvehicles2050target),thegoryofprogress.aswell,sowithoutincludingcurrentvalueisonlythosetheirprojectionswould2.7percentofthelikelybeevenlower.saturationvalue.AppendicesSTATEOFCLIMATEACTION2023188TABLEC-1Additionalanalysisfor“S-curvelikely”indicators(continued)WHICHWHATWHATSTAGEOFWHATWASWHATOTHERLINESWHATISWHATISTRENDLINEPERCENTAGEOFS-CURVEISTHEOURS-CURVEOFEVIDENCEWERETHESTATUSTHESTATUSREPRESENTSTHETHESATURATIONTECHNOLOGYANALYSIS?CONSIDERED?USINGAUSINGBESTFITFORTHEVALUEDOESTHEIN?LINEARAUTHORLASTFIVEYEARSMOSTRECENTTRENDLINE?JUDGMENT?OFDATA?DATAPOINTREPRESENT?Shareofsustainableaviationfuelsinglobalaviationfuelsupply(%)InsufficientdataAssumingtheshareEmergencestage,S-curvefittingisIEA(2023i)findsthataviationofsustainablegiventhatthetoouncertaininis“notontrack”toachieveaviationfuelsinindicator’scurrenttheemergenceitsnet-zeroemissionsbytheglobalaviationvalueislessthanstage.Giventhese2050scenario,althoughthisfuelsupplyhasa5percentofitsuncertainties,weassessmentdoesnotrefersaturationvaluesaturationvalue.defaulttowelloffspecificallytosustainableof100percent(ourtrackunlessthereaviationfuels.2050target),theiscompellingevi-currentvalueisonlydencetoupgrade0.1percentofthethisindicator’scat-saturationvalue.egoryofprogress.Shareofzero-emissionsfuelsinmaritimeshippingfuelsupply(%)InsufficientdataAssumingtheEmergencestage,S-curvefittingisIEA(2023i)findsthatshippingshareofzero-giventhatthetoouncertaininis“notontrack”toachieveemissionsfuelsinindicator’scurrenttheemergenceitsnet-zeroemissionsbymaritimeshippingvalueislessthanstage.Giventhese2050scenario,althoughfuelsupplyhasa5percentofitsuncertainties,wethisassessmentdoesnotsaturationvaluesaturationvalue.defaulttowelloffreferspecificallytozero-of93percent(ourtrackunlessthereemissionsfuels.2050target),theiscompellingevi-currentvalueisdencetoupgrade0percentofthethisindicator’scat-saturationvalue.egoryofprogress.Notes:EV=electricvehicle;IEA=InternationalEnergyAgency;LDV=light-dutyvehicle;Mt=milliontonnes.Source:Authors.AppendicesSTATEOFCLIMATEACTION2023189ENDNOTES5.Notethat,whiletheIPCCtreatsagriculture,forestry,andotherlandusesasonesector,thisreportsplitsitinto1.Wind,solar,nuclear,andsomebiomasselectricitytwosections:forestsandland,aswellasfoodandagri-generationtechnologiesarezero-carbontechnolo-culture,giventhenumberofindicatorsineachsection.giesintheiroperation,asarebatteryelectricvehicles,batteryelectricplanes,batteryelectricships,andgreen6.Identifyingshiftsforeachsector,aswellaskeyhydrogeniftheelectricitytheyuseisgeneratedfromchangesneededtosupportthescale-upofcarbonzero-carbonsources.Othertechnologiesthatcontributeremovaltechnologiesandclimatefinance,isaninher-toreducingemissions,suchasthosethathelpimproveentlysubjectiveexercise,astherearemanypossibleenergyefficiencyorfacilitateelectrification,aredescribedwaystotranslateaglobaltemperaturegoalintoasetaslow-carboninthisreport.Technologiesthatrelyonofindividualactions.SolongastheoverallGHGemis-carboncapture,utilization,andstorageforanyremainingsionsbudgetismaintained,arangeofstrategies(e.g.,emissionstoachievenetzero,suchasthoseusedinassigningmorerapidandambitiousemissions-reductioncementproduction,arealsodescribedaslow-carbon.targetstothepowersectorthantothetransportsectororviceversa)canbepursuedtolimitglobalwarmingto2.Notethatthisisdifferent,andlower,thantheratioof1.5°C.However,becausetheremainingGHGemissionstotalcleanenergyinvestmenttofossilfuelinvestment,budgetissmall,thedegreeoffreedomtoassigndifferentwhichalsoincludesinvestmentsinenergyefficiencyweightstodifferentsector-widetransformationsthatandotherend-useinvestments.Theratiooftotalcleanmustoccurisrelativelylimited,andtheIPCCmakesclearenergytofossilfuelinvestmentwas1.7:1in2023(IEAthat,together,allsectorswilleventuallyhavetodramat-2023m).Whileinvestmentsinefficiencyandelectrifyingicallyloweremissionstolimitglobalwarmingto1.5°Cenduseareimportant,thisindicatorfocusesonenergy(IPCC2022b).So,ifatransformationacrossonesectorsupplybecauseend-useinvestmentscanbeneutralisslowerthanthisglobalrequirement,anotherneedstotofuelsource.transitionproportionatelyfaster,oradditionalCO2mustberemovedfromtheatmosphere.Arguingthatasector3.Ifimplementedinappropriately,reforestation,peat-needsmoretimefordecarbonization,then,canonlybelandrestoration,andmangroverestorationcangeneratedoneincombinationwithassertingthatanothercanadverseecologicaleffects.Plantingalienspeciesand/transitionfaster.Agoodstartingpointintranslatingtheseormonocultures,forexample,threatensecosystemsector-widetransformationsneededtolimitglobaltem-integrity,whilereforestationathigherlatitudes,althoughperatureriseto1.5°Cintoasetofcriticalshiftsisaskingbeneficialforconservingbiodiversity,providesfew,ifany,whetherasectorcandecarbonizeby2050.Ifso,howandcontributionstoclimatemitigation,asaddingtreestohowquickly,and,ifnot,why(CAT2020a)?theselandscapescanalterthereflectivityoftheplanet’ssurfaceandproduceanetwarmingeffect(IPCC2022b).7.Acomprehensiveassessmentofequityandbiodi-ButwhenbroaderlandscaperestorationprinciplesareversityisbeyondthescopeoftheStateofClimateActionapplied(e.g.,byfocusingonrestoringentirelandscapes,series.See“KeyLimitations”fromJaegeretal.(2023)forrecoveringecologicalintegrity,deliveringmultiplebene-moreinformation.fits,etc.),theseharmfulimpactscanoftenbeprevented.Forexample,reestablishingnaturalhydrologicalregimes8.WhiletheotherForestsandLandindicatorsusedacrossmangroveforestsisoftenmoresuccessfulina10-yeartrendline,forourdeforestationindicatorwerestoringthesecoastalecosystemsthanplantingsap-calculatedan8-yeartrendlineusingdatafrom2015tolings,alone(Lewis2001,2005).2022duetotemporalinconsistenciesinthedatabeforeandafter2015(WeisseandPotapov2021).4.TheIPCCdevelopeditscategoryof“noandlimitedovershoot”pathwaysinitsSpecialReportonGlobal9.NotethatfortheindicatorswithtargetspresentedasWarmingof1.5°C.TheIPCC’srecentAR6WorkingGrouparange,weassessedprogressbasedonthemidpointIIIreportusesthesamedefinitionforitscategoryC1ofthatrange—thatis,wecomparedthehistoricalratespathways,whicharedefinedasfollows:“CategoryC1ofchangetotheratesofchangerequiredtoreachthecomprisesmodelledscenariosthatlimitwarmingto1.5°Cmidpoint.Oneexceptionisthemediancarbonpriceinin2100withalikelihoodofgreaterthan50%,andreachjurisdictionswithemissionswithapricingsystemsindica-orexceedwarmingof1.5°Cduringthe21stcenturywithator;here,wecalculatedtheaccelerationfactorrequiredlikelihoodof67%orless.Inthisreport,thesescenariosarefromamidpointof$220/tCO2ewithinthe2030range,asreferredtoasscenariosthatlimitwarmingto1.5°C(>50%)determinedbyIPCC(2022b).withnoorlimitedovershoot.Limitedovershootreferstoexceeding1.5°Cglobalwarmingbyuptoabout0.1°Cand10.Foraccelerationfactorsbetween1and2,weroundedforuptoseveraldecades”(IPCC2022b).Thereportalsotothe10thplace(e.g.,1.2times);foraccelerationfactorsnotesthat“scenariosinthiscategoryarefoundtohavebetween2and3,weroundedtothenearesthalfnumbersimultaneouslikelihoodtolimitpeakglobalwarmingto(e.g.,2.5times);foraccelerationfactorsbetween3and10,2°Cthroughoutthe21stcenturyofclosetoandmorethanweroundedtothenearestwholenumber(e.g.,7times);90%”(IPCC2022b).andwenotedaccelerationfactorshigherthan10as>10.STATEOFCLIMATEACTION2023190Inpreviousreports,allaccelerationfactorsunder10were20.Itisimportanttoalsocontinuetrackingtotalpowerroundedtothe10thplace(e.g.,7.4),whichwastoohighasectoremissionstomeasureifoverallelectricitydemandlevelofprecisionforthedataavailable.Roundingtotheisincreasingfasterthantheemissionsintensityisfalling.nearestwholenumberisclearerandprovidesequivalentinformationaboutthepaceofchangeneeded.21.Feed-intariffsarepaymentstoindividualhouse-holdsorbusinessesaddingelectricitytothegridfrom11.Inachangefromthe2021report,wenolongerhaverenewablesources.a“stagnant”category.Indicatorsthatwereclassifiedasstagnantinlastyear’sreportarenowplacedinthe“well22.Pumpedstoragehydropowerstoreshydroelectricofftrack”or“wrongdirection”categorybasedontheenergybypumpingwaterfromalowerreservoirtoalineartrendline.higherone,thenallowingittoflowbackdownthroughaturbinetogeneratepower.12.Zero-carbonpowerisdefinedaselectricitygenerationbysolar,wind,hydropower,nuclear,geothermal,marine,23.Achievingzero-carbonoperationalemissionsinbuild-andbiomasstechnologies,allofwhichgeneratenegligi-ingswillnotbefeasibleforallbuildingsuntilthepowerbleCO2duringtheiroperationalcycles.gridisfullydecarbonized.TheIEAreferstobuildingsthatwouldbedecarbonizedwithazero-emissionspowergrid13.Storageoptionssuchasbatteries,pumpedhydro-as“zerocarbonready,”whilewetermthesezero-carbonpower,orrenewablehydrogencanhelptosmoothoutbasedontheassumptionthatthepowersectortargetsfluctuationsintheelectricitysupply,improvegridsta-willbemetandthebuildingsdecarbonizedifnoon-sitebility,andreducetheneedforfossilfuelpowerplantstofossilfuelsareused.meetpeakdemand.24.Suchtechnologiesmayalsoincludechangesinraw14.InaMay2022communiqué,allG7environment,materials,suchastheincreaseduseofscrapsteelinclimate,andenergyministerscommittedtoachievingsteelmaking,andtheuseofsupplementarycementitious“predominatelydecarbonizedelectricitysectors”withinmaterialsincement-making.theircountriesby2035(CleanEnergyWire2022).However,thecommuniquéstoppedshortofsettingaconcrete25.Withcurrenttechnologies,zeroemissionsinthedateforexitingcoal.cementsectorarenotachievable,andtherelikelywillberesidualemissionsthatneedtobeaddressedtoachieve15.Adoptionofanyofthesetechnologiesentailsnet-zeroemissions.trade-offs.Generatingpowerfrombiomass,forexample,isnotinherentlyzero-carbonandrequires26.Achievingnet-zeroemissionsintheglobalsteelsectoradequatesafeguards.willlikelyrequireaddressingresidualemissions.16.Inadditiontothelevelizedcostofelectricity,which27.Includingbothprimaryandsecondarylooksatthecostsideofpowergeneration,excludingsteelproduction.factorssuchasgovernmentsubsidies,systembalancingcosts,andmarketdynamics,itisalsoimportanttolookat28.Recentdevelopmentssuggestthattheambitionlevelprojectrevenues.However,thesedependonarangeofofthetargetscouldbeevenfurtherincreased,partic-parametersthatvarybylocationandsector.ularlyinthenearterm(MPP2022b;Witeckaetal.2023;Batailleetal.2021).17.Notethatthisindicatortrackstotalcoaluse,irre-spectiveofwhetheritiscombinedwithcarboncapture29.Greenhydrogen–basedDRI-EAFusesgreenhydrogenandstorage(CCS).Thisisachangefrompreviousyears,asthereducingagent(insteadofcoke)andthereforewhenwetrackedonlyunabatedcoal(withoutCCS),doesnotgenerateprocessemissions.ItuseselectricitybecauseouranalysisshowsthatcoalwithCCSisnotaandcanthusalsobefullydecarbonizedbyensuringthatfeasiblesolutionfordecarbonizingthepowersectorforthepowersupplyisclean.Similarly,ironoreelectrolysisavarietyofreasons,andthereforewouldhaveanegligi-isafullyelectrifiedproductionroutewhereeventhebleroletoplay.reductionoftheironoreisdonewithelectricity.18.ThisindicatoronlytracksfossilgaswithCCS,butitis30.Switchingfromfossilfuel–basedDRItohydro-importanttonotethatthemodelsusedfordetermininggen-basedDRIrequiresrepurposingthetechnology.benchmarksinthisreportshowthatgaswithCCSonlyplaysaminorroleindecarbonizationofthepowersector,31.Hydrogencanbeproducedusingdifferenttypesofmakingup0.1percentofglobalpowergenerationin2030,fuelsandtechnologies.Greenhydrogenisproducedwith0.3percentin2040,and0.5percentin2050.SeeJaegerrenewablebasedelectricityfacilitatedbyanelectrolyzeretal.(2023)foramorecomprehensiveoverviewofhowandthusdoesnotgenerateCO2emissions.targetsforthisindicatorweredeveloped.32.Electrificationinsomeindustries,suchassteel,19.Thefugitiveemissionsassociatedwiththeproduc-isalreadycommerciallyavailableusingelectricarctionandvaluechainoffossilgasareoftennotproperlyfurnaces.Inothers,suchascement,furtherdevelop-accountedfor,andareyetanotherreasontophaseoutmentisneeded.gasasquicklyaspossible(Hendricketal.2016).33.TheIFCisaglobalfinancialinstitutionfocusingonprivatesectordevelopmentindevelopingcountries.STATEOFCLIMATEACTION202319134.Otherstudiessuggestthatevenlowerclinker-to-ce-49.Two-wheelersalesdatainChinashallbeviewedwithmentratiosarepossiblebyusingSCMs,downto40caution,asofficialdatatracksfactoryshipments(includ-percent(Dixitetal.2021).ingexports)andoftenincludespedal-electricbicyclesandothervehicleswithatopspeedoflessthan50km/35.Giventhevaryingdefinitionsoflow-carbonsteel,hour.Derivingdatausedherewithaminimumtopspeedthereisaneedforemissionsaccountingmethodologiesof50km/houristhereforechallenging(IEA2023e).toalignforadoptionofsteelstandards.ThisreportusesthedefinitionintheGreenSteelTrackertoestimatethe50.Thecategorizationofprogressforthisindicatordiffersnumberoflow-carbonsteelprojects.significantlyfromthecategorizationinBoehmetal.(2022)becausethedatasourcehasbeenupdatedtobetter36.Thesearepreliminarynumbers,asthelatestversionalignwiththe2030and2050targets.ofthedatasetwasupdatedbeforetheendof2022.51.Zero-emissionsfuelsarethosethatemitnet-zero37.WeusedtheApril2023versionoftheGreenSteelemissionsonalife-cyclebasis.TheseincludegreenTrackerdataset.Onlysteelmakingprojectsareconsid-ammonia,greenhydrogen,e-methanol,andsyntheticered,thusexcludinghydrogenproductionprojects.Thee-fuelsproducedfromrenewablesourcesofenergy.figureforoperationalfull-scaleplantsis48projectswhenalsoincludingpilot,demonstration,andresearchand52.AccordingtoIPBES(2019),naturerefersto“thenon-developmentprojects.humanworld,includingcoproducedfeatures,withparticularemphasisonlivingorganisms,theirdiversity,38.However,thedatasetmightnotfullyreflectrecenttheirinteractionsamongthemselvesandwiththeirdevelopmentsincertainpartsoftheworldwhereprojectsabioticenvironment,”anditincludes“alldimensionsofmaybereportedinlanguagesotherthanEnglish.biodiversity,species,genotypes,populations,ecosystems,communities,biomes,Earthlifesupport’ssystems,and39.Thesealsoincludecurrentlynaturalgas–fedDRItheirassociatedecological,evolutionaryandbiogeo-plantsthatareplannedtobeconvertedtogreenorchemicalprocesses.”low-carbonhydrogen.53.GHGemissionsfromAFOLUgenerallyincludethose40.Assumingacapacityfactorof0.08.fromagriculturalproduction,aswellaslanduse,land-usechange,andforestry.Boehmetal.(2022)reliedonthe41.0.1–0.2Mtannuallyby2025comparedtoabout0.009meanofthreebookkeepingmodelsfromIPCC(2022b),asMtin2021,basedondatafromIEA’sGlobalHydrogenpresentedinthe“GlobalCarbonBudget2020”(Friedling-Projectsdatabase.steinetal.2020),toestimatenetanthropogenicCO2emissionsfromlanduse,land-usechange,andforestry.42.StatisticsprovidedbytheInternationalEnergyAgency.ButtheseestimatesofnetanthropogenicCO2emissionsfromlanduse,land-usechange,andforestryhavebeen43.Theterms“shared,”“collective,”and“activetransport”reviseddownward(e.g.,from6.6GtCO2to4.5GtCO2inrefertomodesoftransportationwhereeitherpassen-2019)sincethepublicationofWorkingGroupIII’sContri-gersridewithothers,mobilityassetsaresharedamongbutiontoAR6,andthisupdatehasimpactedestimatesofmultipleusers(seeCastellanosetal.2021),orwhereGHGemissionsfromAFOLUmorebroadly(e.g.,estimatesnonmotorizedvehiclesareused.ofGHGemissionswerealsoreviseddownwardfromroughly13GtCO2eto11GtCO2ein2019).Morespecifically,44.Pleasenotethattheseconclusionsaredrawnfromboththe“GlobalCarbonBudget2021”and“GlobalCarbonthelimitednumberofcitiesthatweareaggregatingandBudget2022”featureimprovementsinland-useforcingmightnotreflecttheglobalstandings.data,aswellasupdatedestimatesofagriculturalareasandnewlyincorporatedland-covermapsfromsatellite45.Pleasenotethatlastyear’sreporthadanumberremotesensing,thatunderpintwoofthestudy’sthreeof0.0077fortheyear2020.Thisreflectschangesinthebookkeepingmodels(BlueandOscar).Together,thesequalityofthedatacomingfromOpenStreetMaps,notachangesresultedinrevisedannualestimatesofnetCO2changeindataormethodology.emissionsdownward,suchthatallbookkeepingmodelsnowshowadecreasingtrendinnetCO2emissionsfrom46.Onalife-cyclebasis,electricvehiclesalreadyemitlanduse,land-usechange,andforestrysincethe1990slessthaninternalcombustionenginevehicles,evenwhen(Friedlingsteinetal.2022a,2022b).Yetauthorsoftheaccountingforbatteryproductionandvehicleassem-“GlobalCarbonBudget2022”cautionthattheglobalbly(Bieker2021).Asthepowersectordecarbonizes,theland-usechangedatausedasamodelinginputdonotemissionsadvantageofelectricvehicleswillonlygrow.includeforestdegradation,whichposesanincreasingthreattotheseecosystems’carbonstocks,andtheynote47.Thistargetincludestwo-andthree-wheelersinthatCO2emissionsfromdegradationmaysoonsurpassChina,India,andIndonesiabecausetheymakeupathosefromdeforestation(e.g.,Matricardietal.2020;Qinetsubstantialportionofthelight-dutyvehiclefleetinthoseal.2021;Lapolaetal.2023).countries(CAT2020b).Two-andthree-wheelersalesarenotincludedinthehistoricaldataforthisindicatorduetodatalimitations.48.Inthisreport,“electriclight-dutyvehicles”referstobatteryelectricvehiclesonlyandexcludesplug-inhybridvehicles.STATEOFCLIMATEACTION202319254.Globaldatabases,aswellasmethodstoestimate61.Theseestimatesofboreal,temperate,andtropicalnetanthropogenicCO2emissions,differonwhichCO2forestcarbondensityincludecarbonstoredinabo-emissionsandremovalsoccurringonlandcanbevegroundandbelowgroundbiomass,aswellassoildefinedas“anthropogenic.”Thissectionreportsnetorganiccarbonwithinthetop30centimeters.TheyrangeanthropogenicCO2emissionsasestimatedbythemeanfrom166tonnesofcarbonperhectarewithintropicalofthreeglobalbookkeepingmodels,withsupplementarydryforeststo272tonnesofcarbonperhectarewithindataonemissionsfrompeatburninganddrainage(Minxtemperateconiferforests.Formangroveforests,soiletal.2021;EuropeanCommissionandJRC(2022),asusedorganiccarbonwithinthetop100centimetersisincluded,inthe“GlobalCarbonBudget2022”(Friedlingsteinetal.withtheestimatedcarbondensityoftheseecosystems2022b).Notethattheseglobalestimatesofnetanthropo-roughly500tonnesofcarbonperhectare(GoldsteinetgenicCO2emissionsarehigherthanthosefromNationalal.2020).WhenaccountingforcarbonstoredatgreaterGreenhouseGasInventoriesandFAOSTAT(Friedlingsteindepths(i.e.,downtoonemeterforforestsandtwometersetal.2022b).Whilenomethodisinherentlypreferableformangroves),mangrovecarbondensityisroughlyfouroveranother,thissectionfollowsthe“SummaryforPoli-tosixtimeshigherthanthatofterrestrialforests(Tem-cymakers”inIPCC(2022b)inreportingtheestimatefromminketal.2022).globalbookkeepingmodels.62.Thewiderangeinestimatesoftotalcarbonstored55.“Land-basedmitigationmeasures”or“land-basedinmangroveecosystemsisinpartduetovariabilityinmeasures”inSection6,ForestsandLand,focusonthesoildepthincludedintheseestimates.Theloweractivitiestoprotect,restore,andsustainablymanageendoftherangeaccountsforuptoonemeterofsoilforestsandotherecosystems.Land-basedmitigationdepth(LealandSpalding2022),whilethehigherendofmeasuresthatfocusonactionstoreduceGHGemissionstherangeaccountsforuptotwometersofsoildepthandenhancecarbonremovalsacrossagriculturallands(Temminketal.2022).arediscussedinSection7,FoodandAgriculture.TheIPCC(2022b)findsthatland-basedmitigationmeasuresfrom63.Estimatesofgrossmangrovelossvary.Forexample,forestsandotherecosystemsthatcostupto$100/tCO2eGoldbergetal.(2020)findthatratesofmangrovelosscandeliverbetween4.2and7.3GtCO2eperyearfromdeclinedfrom2000to2016.Suchdifferencesinestimates2020to2050,withthebottomendoftherangerepresent-canbeduetoseveralfactors,includinglackofalignmentingthemedianestimatefromintegratedassessmentinthetimeperiodassessedacrossstudies,differencesmodelsandthetopendoftherangerepresentingtheinmethodologyusedformapping,anddifferencesmedianestimatefromsectoralstudies.indefinitions.56.FollowingRoeetal.(2021),thisreportfocuses64.Murrayetal.(2022)reporta95percentconfidencesolelyonmangroveforests,ratherthancoastalwet-intervalof0.33to0.68Mhaforthisestimate.landsmorebroadly.65.Ifimplementedinappropriately,reforestation,peat-57.TheTyukavinaetal.(2022)dataidentifytreelosslandrewetting,andmangroverestorationcangeneratewherefirewasthedirectdriveroflossforeach30-meteradverseecologicaleffects.Plantingalienspeciesand/losspixelmappedbyHansenetal.(2013).Thisdoesnotormonocultures,forexample,threatensecosystemincludelosswheretreeswereremovedpriortoburningintegrity,whilereforestationathigherlatitudes,although(e.g.,burningfelledtreestoclearlandforagriculture).beneficialforconservingbiodiversity,providesfew,ifany,Itmayincludewildfires,escapedfiresfromhumancontributionstoclimatemitigation,asaddingtreestoactivities,andintentionallysetfires,amongothers(Tyu-theselandscapescanalterthereflectivityoftheplanet’skavinaetal.2022).surfaceandproduceanetwarmingeffect(IPCC2022b).Mangroverestorationprojects,forexample,oftenfocused58.FollowingLeifeldandMenichetti(2018),peatlands’soilonlarge-scaleplantingofasingle,sometimesnonnativecarbonstocksareestimatedtoberoughly640GtC(Yuspeciesacrossunsuitablelandscapes,andasurveyetal.2010;Pageetal.2011;Dargieetal.2017),andglobaloftheseinitiativesacross11countriesinSoutheastAsiacarbonstocksdowntodepthsof3metersareestimatedfoundthatfewtreessurvivedinthelongterm(Leeetal.tobeabout3,000GtCfromScharlemannetal.(2014).2019).InthePhilippines,plantingoccurredacrossintactseagrassmeadows,anotherimportantecosystemfor59.Therearefourcategoriesoforganicsoils,alsoknowncarbonstorage(Fourqureanetal.2012)andaninappro-ashistosols(Fibrists,Hemists,Saprists,andFolists),and,priatesiteformangroves,whileanoverrelianceonalienwhilepeatisanorganicsoil,notallofthesecategoriestreespeciesspurredlossesinecosystemfunctioningarepeat.Forexample,bothFibristsandHemistsincludeacrossChina’scoastline(Leeetal.2019).Butwhenpeat,butFolistsoilsdonot(IPSn.d.).broaderlandscaperestorationprinciplesareapplied(e.g.,byfocusingonrestoringentirelandscapes,recover-60.Thisglobalestimateofavoidedemissionsasso-ingecologicalintegrity,deliveringmultiplebenefits,etc.),ciatedwiththistargettoreducemangrovelossdoestheseharmfulimpactscanoftenbeprevented.Forexam-notaccountfornon-CO2fluxesthatmayoccurduringple,reestablishingnaturalhydrologicalregimesacrossconversion,representingonegapinthescientificcom-mangroveforestsisoftenmoresuccessfulinrestoringmunity’sunderstandingoftherolethatmangroveforeststhesecoastalecosystemsthanplantingsaplings,aloneplayinclimatechangemitigation(Macreadieetal.2019).(Lewis2001,2005).STATEOFCLIMATEACTION202319366.Althoughthesetargetsfallbelowthosesetbythe70.RewettedpeatlandsemitmoremethanethanintactBonnChallengeandtheNewYorkDeclarationonForestspeatlands,butnetGHGemissionsfromtheserewetted(350Mhaby2030),theyfocussolelyonreforestation,peatlands,onaggregate,arelowerthanGHGemissionswhilebothinternationalcommitmentsincludepledgestofromdrainedpeatlands(Humpenöderetal.2020;Gün-planttreesacrossabroaderrangeoflanduses,suchastheretal.2020).agroforestrysystems,andtorestoreabroaderrangeofdegradedecosystems.SeeJaegeretal.(2023)formore71.Nationalcontributionstothisglobalpeatlandresto-informationonhowthesetargetswereestablished.rationtargetwerederivedfromcountry-levelestimatesofcost-effectivemitigationpotentialforthiswedgefrom67.TreecovergainisdefinedastheestablishmentorRoeetal.(2021)and,therefore,donotaccountforequityrecoveryoftreecover(i.e.,woodyvegetationwithaconsiderations.Globalpeatlandrestorationtargetsheightofgreaterthanorequaltofivemeters)bytheyeardonotexceedtheareaassociatedwithGriscometal.2020inareasthatdidnothavetreecoverintheyear(2017)’sglobal“maximumadditionalmitigationpotential”2000(Potapovetal.2022a).SeeJaegeretal.(2023)forforpeatlandrestoration(46Mha),whichisatechnicalmoreinformation.estimateofmitigationpotentialconstrainedbysocialandenvironmentalsafeguards.Butdownscaled,country-level68.NationalcontributionstothisglobalreforestationmitigationpotentialsestimatedbyRoeetal.(2021)donottargetwerederivedfromcountry-levelestimatesofexplicitlyaccountforthesesamesafeguards.cost-effectivemitigationpotentialforthiswedgefromRoeetal.(2021)and,therefore,donotaccountforequity72.ThistargetisfromRoeetal.(2021),whoderivetheirconsiderations.GlobalreforestationtargetsdonotestimatesfromGriscometal.(2020).Inmeasuringprog-exceedtheareaassociatedwithGriscometal.’s(2017)resstowardthis2030target,wefocussolelyonmitigationglobal“maximumadditionalmitigationpotential”foroutcomesdirectlyattributedtohumanactivities(Murrayreforestation(678Mha),whichisatechnicalestimateetal.2022)andexcludegainsinmangroveforestareaofmitigationpotentialconstrainedbysocialandenvi-thatoccurfrominlandmigration,anatural,adaptiveronmentalsafeguards.Butdownscaled,country-levelresponsethatthisecosystemhastorelativesealevelmitigationpotentialsestimatedbyRoeetal.(2021)donotrise(Schuerchetal.2018).Also,themitigationpotentialexplicitlyaccountforthesesamesafeguards.associatedwiththismangroverestorationtargetfocusessolelyonenhancedcarbonsequestration(Griscomet69.Thisreportincludesamoreambitiouspeatlandal.2020)anddoesnotaccountformethanefluxesthatrestorationtargetthanRoeetal.(2021)becausesomeoccurnaturallywithintheseecosystemsandpartiallystudies(e.g.,Leifeldetal.2019;Kreylingetal.2021)argueoffsettheircarbonsequestrationrates(Rosentreteretthatrestoringnearlyalldegradedpeatlandsbyaroundal.2018,2021).midcenturywillberequiredtolimitwarmingto1.5°Corbelow,asemissionsfromdrainedpeatlandsmayother-73.Murrayetal.(2022)reporta95percentconfidencewiseconsumealargeshareoftheglobalcarbonbudgetintervalof0.09to0.30Mhaforthisestimate.associatedwiththistemperaturelimit.However,astheIPCC(2022b)notes,restoringalldegradedpeatlands74.AlthoughtheFoodandAgricultureOrganizationofmaynotbepossible(e.g.,thoseuponwhichcitieshavetheUnitedNationscollectsandpublishesnational-levelbeenconstructed,thosesubjecttosaltwaterintrusion,statisticsontheareaofmanagedforestseveryfiveyears,orthosealreadyconvertedintoplantationforests).globaldatasetsthatmapmanagedforestsareextremelyWhileitremainstobedeterminedwithcertaintywhatlimited.Similarly,nosuchdatasetsexistforgrasslands.percentagecanbefeasiblyrehabilitated,particularlyatcostsofupto$100/tCO2e(asnotedinGriscometal.2017,75.Globally,recentevidencesuggeststhatestablish-themarginalabatementcostliteraturelacksapreciseingprotectedareascangeneratesubstantialcarbonunderstandingofthecomplex,geographicallyvariablebenefits(Duncansonetal.2023).Butfindingsfromthecostsandbenefitsassociatedwithpeatlandrestorationliteratureontheeffectivenessofspecificprotectedand,therefore,estimatesofcost-effectivepeatlandresto-areasvarysignificantly,withstudiesdemonstratingbothrationvary),severalreportsfindthatrestoringroughly50reductionsindeforestationandincreaseddeforesta-percentofdegradedpeatlandsisneededtohelpdelivertionacrossprotectedareas.Localfactors,suchastheAFOLU’scontributiontolimitingglobaltemperaturerisetoqualityofmonitoringsystems,accesstofinance,orpoor1.5°C(e.g.,Searchingeretal.2019;Roeetal.2019).Wefol-enforcement,canimpactprotectedareas’effectivenesslowedthesestudiesandsetamoreambitioustargetthanandmayaccountforsomeofthesedifferences(WolfRoeetal.(2021).Our2050target,then,involvesrestoringetal.2021;IPCC2022b).Thissuggeststhatexpandingnearlyhalfofdegradedpeatlands(recentlyestimatedprotectedareasmayproveeffectiveinsomecontextsat46MhabyHumpenöderetal.2020to57MhabyUNEPbutnotothers,andwilllikelybemoreeffectiveincurbing2022b)bymidcentury.Thistarget,then,representsandeforestationwhenpursuedwithinabroaderportfolioofimportantstartingpointratherthanadefinitivegoalconservationpolicies.forpolicymakers.STATEOFCLIMATEACTION202319476.ThissectionusesFAOSTAT(2023)asitsdatasourceandhealthyalternativestoruminantmeat.FAOSTAT’sofagriculturalproductionemissions,becausethesedefinitionofOceaniaincludesAustralia,NewZealand,dataaremoredetailedforthissectorthanthoseofMinxMelanesia,Micronesia,andPolynesia.etal.(2021).Weacknowledgethemanylimitationsanduncertaintiesaroundmeasurementofagricultureand83.Inthissection,consumptiondataaregiveninland-sectoremissions,aswellasagriculturallanduse,availability,whichisdefinedinFAO’sFoodBalanceandtargetsshouldberefinedinthefutureasthedataSheets(FAOSTAT2023)asthepercapitaamountofcontinuetoimprove.Toavoiddoublecountingwithruminantmeatavailableattheretaillevelandisaproxyothersectionsofthisreport,wedonotcountcarbonforconsumption.dioxidefromon-farmenergyuse,orcarbondioxideandnitrousoxidefromdrainedorganicsoilsandpeatlands,84.Thisdietshiftdoesnotapplytopopulationswithininthissection.theAmericas,Europe,andOceaniathatalreadycon-sumelessthan60kcal/capita/day,havemicronutrient77.Severalotheremissionssourcesrelatedtofoodanddeficiencies,and/ordonothaveaccesstoaffordableagriculturearecoveredelsewhereinthisreport.Carbonandhealthyalternativestoruminantmeat.FAOSTAT’sdioxideemissionsfromfossilfuelcombustionoccurdefinitionofOceaniaincludesAustralia,NewZealand,duringtheproductionofagriculturalinputs,inconjunc-Melanesia,Micronesia,andPolynesia.tionwithon-farmenergyuse,andthroughoutthefoodsystem(e.g.,foodprocessing,transport,andpackaging),85.Thisequivalentisbasedona100-gramservingofbutthesefossilenergyemissionsarecoveredinthe80percentleanbeefthatcontains248kilocaloriesPower,Industry,andTransportsections.Similarly,carbon(USDA2019).FollowingSearchingeretal.(2019),wedioxideandotheremissionsfromland-usechangeandassumeactualconsumptionis87percentofretail-leveldrainedorganicsoils(orpeatlands)arecoveredinthefoodavailability.ForestsandLandsection.86.Differentmembersusedifferentbaseyearsdueto78.Thesesubtargetsbyemissionssourceillustratethedataconstraintsrelativeimportanceofeachactivitytoclimatechangemitigation,basedonthemodelingconductedby87.WefocusoncarbondioxideremovalratherthanSearchingeretal.(2019)thatunderliesmostofthetargetsgreenhousegasremovalasmanymethodsforremov-inthissection.ingCO2fromtheatmosphereareindevelopment,demonstration,andearlycommercialstagesofgrowth,79.Foodproductionprovidespeoplenotonlycalorieswhileremovalofnon-CO2gasessuchasmethaneisbutalsomanyothernutrients(e.g.,proteins,vitamins,muchmorenascent(e.g.,asproposedbyJacksonetal.fiber).Thereisnooneperfectnormalizationfactorforthis2021);andbecausecarbondioxidehasalongerlifetimeGHGintensitymetric.Forexample,becausesugarsandthanmethaneandexistsathigherconcentrationsinprocessedgrainsareveryGHG-efficient,theworldcouldtheatmosphere.improveperformanceonthismetricwhileworseningnutrition.Thismetricisusedbecausedataonproduction88.Whichemissionsareconsidered“hard-to-abate”andandconsumptionofcaloriesareavailableinFAOSTATappropriatetobecounterbalancedbycarbonremoval(2023)forallcountries.Thismetricshouldbeimprovedisnotclearandopinionsdiffer.Whatcountsas“hard-whileensuringhealthydietsforall.Thisindicatorincludesto-abate”dependsonthecostandfeasibilityofdeepkilocaloriesofbothplant-andanimal-basedfoodsinthedecarbonizationacrossallsectorsaswellasonpoliticalglobalfoodsupply,astrackedbyFAOSTAT.choices,suchaslevelsofdemandforcertainemis-sions-intensiveactivities.80.FAOcropyieldsareexpressedintermsoffreshweight,unlessotherwisespecifiedwithinthedatabase.89.Point-sourcecaptureisdefinedasanemissions-re-Yieldstrendsmaybedistortedbycropswithhighductionapproachratherthancarbonremovalsinceitmoisturecontent.preventsemissionsfromenteringtheatmosphere.81.Foodlossthatoccursonfarms(e.g.,unharvested90.Whatisconsidereddurableorpermanentseques-produce)istypicallyexcludedfromfoodlossandwastetrationisdefineddifferentlybydifferentgroups.Someinventories,includingthosereportedabove,duetomea-governmentsandcompanieshavesuggestedthatsurementchallengesaswellasunderlyingdifferencesstorageovertimescalesfrom10years(Norin.d.)to100inthenatureofthedata(Hansonetal.2017).Thatsaid,ayears(Weiss2022)couldbeconsideredas“permanent,”recentreportdrewattentiontothefactthatpreharvestbutthisisnotconsistentwiththecarboncycle.Fromafoodlossesrepresentasignificantadditionalsourceofscientificperspective,carbonwouldneedtobestoredemissionsthatcouldbemeasuredandreducedmovingovermorethan1,000yearsinordertofullycompensateforward(WWF-UK2021).forthewarmingeffectoftheequivalentamountofCO2emissions.Wherethethresholdforpermanenceissetwill82.ThisdietshiftdoesnotapplytopopulationswithindeterminewhichtechnologiesandapproachesmeetthetheAmericas,Europe,andOceaniathatalreadycon-definitionofpermanentCDR.sumelessthan60kcal/capita/day,havemicronutrientdeficiencies,and/ordonothaveaccesstoaffordableSTATEOFCLIMATEACTION202319591.Thisisagrossnumberanddoesnotfactorinlife-cy-98.Notethatthisisdifferent,andlower,thantheratioofcleemissionsassociatedwithethanolcombustion;totalcleanenergyinvestmenttofossilfuelinvestment,factoringintheseemissionswouldlowerthenetremoval.whichalsoincludesinvestmentsinenergyefficiencyandotherend-useinvestments.Theratiooftotalclean92.Whilestilladraftproposal,theCRCFhasbeencriti-energytofossilfuelinvestmentwas1.7:1in2023(IEAcizedforhowitdefinescarbonremovalandaddresses2023m).Whileinvestmentsinefficiencyandelectrifyingquestionsofpermanence.Therearealsoquestionsenduseareimportant,thisindicatorfocusesonenergyaroundhowitwouldinteractwithexistingpolicysupplybecauseend-useinvestmentscanbeneutral(CATF2022a;Harvey2022;Stoefs2022)thatshouldbetofuelsource.addressedinongoingconversationsandfinalization.99.Disclosurerequirementsarenotuniformamong93.Thereissubstantialdebateaboutwhatshouldandcountriesandapplytodifferentorselecttypesoffirmsshouldnotbecountedasclimatefinance,bothinterms(e.g.,financialinstitutionsorpubliclytradedfirms)ofsectorsandtypesoffinancialflows.Forthepurposesofwithdiverseimplementationtimelines.Weconsiderthissection,weusetheoperationaldefinitionofclimatejurisdictionsthatimplementedanyformofmandatoryfinancefromtheUNFCCC’sStandingCommitteeonrequirementduringtheyearitwasapproved,eveniftheFinance,whichhasalsobeenusedbytheIPCC:“Climaterequiremententersintoforceinphaseswithdifferentfinanceaimsatreducingemissions,andenhancingsinkstimelines.Governmentswillneedtoexpandthecoverageofgreenhousegasesandaimsatreducingvulnerabilityofregulatorydisclosurerulestoalltypesoffirmsandof,andmaintainingandincreasingtheresilienceof,sectorstoachievecomprehensivemeasurementandhumanandecologicalsystemstonegativeclimatedisclosureofclimaterisks.changeimpacts”(SCF2014;IPCC2022b).100.TheIPCC’sSixthAssessmentReportestimatesthe94.Anumberofgapsexistintheclimatefinancemarginalabatementcostofcarbonforpathwaysthattrackingdata,andClimatePolicyInitiative(CPI),whichlimitwarmingto1.5°Cwithnoorlimitedovershootasprovidesthemostcomprehensiveassessmentofglobal$220/tCO2withaninterquartilerangeof$170–$290/tCO2climatefinanceflows,takesaconservativeapproachin2030,and$630/tCO2withaninterquartilerangeoftocollectingandreportingdata.CPImakeseffortsto$430–$990/tCO2in2050(IPCC2022b).avoiddouble-countingbyexcludingsecondarymar-kettransactionssuchastradingonfinancialmarkets,101.Productionsubsidiesbenefittheproducersofbecausetheydonotrepresentnewinvestmentbutratherfossilfuels,suchasentitiesinvolvedinexplorationandexchangeofmoneyforexistingassets;R&Dandinvest-extraction,bulktransportationandstorage,andrefin-mentinmanufacturing,sincethesecostsarefactoredingandprocessing.Consumptionsubsidiesbenefitintofinancingforprojectsthatultimatelydeploytech-consumersoffossilfuels,atthepointatwhichtheyarenologies;revenuesupportmechanismssuchasfeed-incombustedorusedasend-useproducts,suchaspowertariffsandotherpublicsubsidies,sincetheyaredesignedandheatgeneration;industrialprocesses;useintrans-topaybackprojectinvestmentcosts;financingforfossilportation;andinprimaryindustriessuchasagriculturalfuels;anddatawheretheyareunreliable,suchasprivatefertilizerandplasticproduction(OECDandIISD2023).sectorenergyefficiencyinvestment(CPI2021).102.TheIEA’s(2021a)definitionofcleanenergyincludes95.Itisimportanttonotethatwhileinternationalpublicrenewables,nuclear,batterystorage,energyefficiencyclimatefinanceflowsarewelltracked,comprehensiveandelectrification,low-carbonfuels,andcarboncapture,dataondomesticpublicclimatefinanceareavailableutilization,andstorage.onlyforsomecountries(Naranetal.2022),sototalpublicclimatefinancemaybehigherthaniscurrentlytracked.103.TheGreenhouseGasProtocolclassifiesScope3GHGemissionsasindirectemissionsthatoccurinacompa-96.Significantdatagapsexistforprivateclimatefinanceny’svaluechain.trackingdatasets,soactualclimate-relatedfinanceflowsmaybehigher(CPI2021).Thisispartofwhybetterdisclosure,ascoveredinIndicator4,isimportant.97.Totalclimatefinancefromdevelopedtodevelopingcountries,includingexportcreditsandmobilizedprivatefinance,was$83.3billionin2020(OECD2022a).STATEOFCLIMATEACTION2023196REFERENCESAllen,C.,A.Chuney,C.Holness,R.Jacobson,U.Kosar,andV.Suarez.2022.“SettingDAConTrack:StrategiesforHubAbramczyk,M.,A.B.Jaffee,A.Chitkara,M.Diawara,A.Implementation.”Washington,DC:Carbon180.Lerch,andJ.Newcomb.2017.“PositiveDisruption:Limitinghttps://static1.squarespace.com/static/5b9362d89d5ab-GlobalTemperatureRisetowellbelow2C°.”Basalt,b8c51d474f8/t/6261d1890b76863f1047a2dd/1650577901659/CO:RockyMountainInstitute.https://rmi.org/insight/Carbon180-SettingDAConTrack.pdf.positive_disruption_limiting_global_temperature_rise/.Alongi,D.M.2014.“CarbonCyclingandStorageinMan-Abrasu,Sibi.2023.“IndiaPausesPlanstoAddNewgroveForests.”AnnualReviewofMarineScience6(1):CoalPlantsforFiveYears,BetsonRenewables,195–219.doi:10.1146/annurev-marine-010213-135020.Batteries.”APNews,June1.https://apnews.com/article/india-coal-pause-plan-climate-renew-Ameli,N.,O.Dessens,M.Winning,J.Cronin,H.Chenet,ables-68b75402af663e4553434bc672fc9cda.P.Drummond,A.Calzadilla,etal.2021.“HigherCostofFinanceExacerbatesaClimateInvestmentTrapinDevel-Adow,M.,A.Wemanya,K.Opfer,C.Nweke-Eze,A.B.Njamn-opingEconomies.”NatureCommunications12(1):4046.shi,J.Fernandez,andS.Singer.2022.“GreenHydrogendoi:10.1038/s41467-021-24305-3.ProductionandPower-to-XProductsinAfrica.”German-watch.https://www.germanwatch.org/en/84785.Anderson,C.,T.Bicalho,E.Wallace,T.Letts,andM.Steven-son.2022.“Forest,LandandAgricultureScienceBasedAfricaRegionalNetworkofGBCs.2022.“AfricaManifestoTarget-SettingGuidance.”WorldWildlifeFund,ScienceforSustainableCitiesandtheBuiltEnvironment.”WorldBasedTargetsInitiative.https://sciencebasedtargets.org/GreenBuildingCouncil.https://worldgbc.s3.eu-west-2.resources/files/SBTiFLAGGuidance.pdf.amazonaws.com/wp-content/uploads/2022/11/03104944/WorldGBC-Africa-Manifesto-FINAL-31102022.pdf.ArcelorMittal.2023.“ArcelorMittalandJohnCockerillAnnouncePlanstoDevelopWorld’sFirstIndustrialScaleAFSA(AllianceforFoodSovereigntyinAfrica).2018.LowTemperature,IronElectrolysisPlant.”https://finance.“DroughtTolerantFicusThonningiiSilvopasturesSustainyahoo.com/news/arcelormittal-john-cockerill-an-LivestockandCropsinNorthernEthiopia.”https://www.nounce-plans-110000711.html.researchgate.net/publication/325607838_Drought_toler-ant_Ficus_thonningii_silvopastures_sustain_livestock_Arthur,W.B.1989.“CompetingTechnologies,Increasingand_crops_in_Northern_Ethiopia.Returns,andLock-InbyHistoricalEvents.”EconomicJournal99(394):116.doi:10.2307/2234208.AgoraEnergiewende.2022.“ReducingEmbodiedCar-boninNewBuildings:RE2020inFrance.”https://static.AssociatedPress.2023.“Brazil’sLulaLaysOutPlantoHaltagora-energiewende.de/fileadmin/Success_Stories/AmazonDeforestation.”Politico,June6.https://www.BP/BP_FR_RE2020/A-E_272_Succ_Stor_BP_France_politico.com/news/2023/06/06/brazils-lula-lays-out-plan-RE2020_WEB.pdf.to-halt-amazon-deforestation-00100342.AgoraIndustryandWuppertalInstitute.2023.“15InsightsAstle,P.,L.Gibbons,andA.Eriksen.2023.“ComparingontheGlobalSteelTransformation.”Version1.1,June.DifferencesinBuildingLifeCycleAssessmentMethod-https://static.agora-energiewende.de/fileadmin/ologies.”Ramboll.https://brandcentral.ramboll.com/Projekte/2021/2021-06_IND_INT_GlobalSteel/A-EW_298_share/7MtV5DRw.GlobalSteel_Insights_WEB.pdf.AtelierParisiend’Urbanisme.2021.“ÉvolutiondesAhmed,A.2022.“EnergyCrisis:PakistanFailstoSecuremobilitésdansleGrandParis.”https://www.apur.org/LNGContract.”BusinessRecorder,April10.https://www.sites/default/files/evolution_mobilites_grand_paris.brecorder.com/news/40201217.pdf?token=uM1LFlmo.AIM(AgricultureInnovationMission)forClimate.2023.“AIMAttwood,S.,P.Voorheis,C.Mercer,K.Davies,andD.Ven-forClimate:InnovationSprints.”https://www.aimforcli-nard.2020.PlaybookforGuidingDinerstowardPlant-Richmate.org/innovation-sprints/.DishesinFoodService.Washington,DC:WorldResourcesInstitute.https://wriorg.s3.amazonaws.com/s3fs-pub-AirTransportActionGroup.2021.“Waypoint2050.”lic/19_Report_Playbook_Plant-Rich_Diets_final.pdf.https://aviationbenefits.org/media/167417/w2050_v2021_27sept_full.pdf.Austin,K.G.,J.S.Baker,B.L.Sohngen,C.M.Wade,A.Daigneault,S.B.Ohrel,S.Ragnauth,andA.Bean.2020.“TheAlexander,F.,andH.Ensign-Barstow.2022.“OneSmallEconomicCostsofPlanting,Preserving,andManagingtheStepFromFinancialMaterialitytoSesquimaterial-World’sForeststoMitigateClimateChange.”NatureCom-ity:ACriticalConceptualLeapfortheISSB.”Harvardmunications11(1):5946.doi:10.1038/s41467-020-19578-z.LawSchoolForumonCorporateGovernance(blog),May4.https://corpgov.law.harvard.edu/2022/05/04/one-small-step-from-financial-materiality-to-sesquima-teriality-a-critical-conceptual-leap-for-the-issb/.STATEOFCLIMATEACTION2023197Balehegn,M.2017.“SilvopastureUsingIndigenousFodderBEA(BuildingEfficiencyAccelerator).2023.“BuildingTreesandShrubs:TheUnderexploitedSynergybetweenEfficiencyAccelerator:About.”https://buildingefficiency-ClimateChangeAdaptationandMitigationintheaccelerator.org/about/.LivestockSector.”InClimateChangeAdaptationinAfrica:FosteringResilienceandCapacitytoAdapt,editedbyW.L.Beal,T.,C.D.Gardner,M.Herrero,L.L.Iannotti,L.Merbold,S.Filho,B.Simane,J.Kalangu,M.Wuta,P.Munishi,K.Musiyiwa,Nordhagen,andA.Mottet.2023.“FriendorFoe?TheRole493–510.Berlin:Springer.ofAnimal-SourceFoodsinHealthyandEnvironmentallySustainableDiets.”JournalofNutrition153(2):409–25.Balehegn,M.,E.A.Eniang,andA.Hassen.2012.“Estimationdoi:10.1016/j.tjnut.2022.10.016.ofBrowseBiomassofFicusThonningii,anIndigenousMultipurposeFodderTreeinNorthernEthiopia.”AfricanBeauchemin,K.A.,E.M.Ungerfeld,A.L.Abdalla,C.Alvarez,C.JournalofRangeandForageScience29(1):25–30.Arndt,P.Becquet,C.Benchaar,etal.2022.“InvitedReview:CurrentEntericMethaneMitigationOptions.”JournalofBalehegn,M.,L.O.Eik,andY.Tesfay.2015.“SilvopastoralSys-DairyScience105(12):9297–326.doi:10.3168/jds.2022-22091.temBasedonFicusThonningii:AnAdaptationtoClimateChangeinNorthernEthiopia.”AfricanJournalofRangeBellevrat,E.,andK.West.2018.“CleanandEfficientandForageScience32(3):183–91.HeatforIndustry:Analysis.”InternationalEnergyAgency.https://www.iea.org/commentaries/Balehegn,M.,L.O.Eik,andY.Tesfay.2016.“FicusThonningiiclean-and-efficient-heat-for-industry.Silvopastures:AnIndigenousInnovationforLivelihoodImprovement,ClimateChangeAdaptationandEnviron-Bergman,A.,andA.Rinberg.2021.“TheCaseforCarbonmentalResilienceinNorthernEthiopia.”InProceedings:DioxideRemoval:FromSciencetoJustice.”CarbonDioxide10thInternationalRangelandCongress,16–22July2016,RemovalPrimer.https://cdrprimer.org/read/chapter-1.Saskatoon,SK,editedbyA.Iwaasa,H.A.Lardner,M.Schel-lenberg,W.Willms,andK.Larson,349.N.p:n.p.Berhe,D.H.,A.Anjulo,A.Abdelkadir,andS.Edwards.2013.“EvaluationoftheEffectofFicusThonningii(Blume)onSoilBaresic,D.,K.Palmer,T.Smith,N.Rehmatulla,J.Taylor,A.PhysicochemicalPropertiesinAhferomDistrictofTigray,Saucedo,D.A.Kapur,etal.2022.“ClimateActioninShip-Ethiopia.”JournalofSoilScienceandEnvironmentalping:ProgresstowardsShipping’s2030Breakthrough.”Management4(2):35–45.doi:10.5897/JSSEM13.0369.GettingtoZeroCoalition.www.lr.org.Bernhardt,R.2023.“WhatIsRequiredofBuildings:ABarrow,E.,J.Kamugisha-Ruhombe,I.Nhantumbo,ReviewofUNandIPCCFindings,GlobalCommitmentsR.Oyono,andM.Savadogo.2016.“WhoOwnsAfri-andCurrentProgress.”BuildingPerformanceAssuranceca’sForests?ExploringtheImpactsofForestTenureCouncil.https://globalabc.org/resources/publications/ReformonForestEcosystemsandLivelihoods.”Forests,what-required-buildings-review-un-and-ipcc-findings-TreesandLivelihoods25(2):132–56.doi:10.1080/14728global-commitments-and.028.2016.1159999.Bertram,C.,G.Luderer,F.Creutzig,N.Bauer,F.Ueckerdt,Bataille,C.,S.Steibert,andF.Li.2021.“GlobalFacilityLevelA.Malik,andO.Edenhofer.2021.“COVID-19-InducedNet-ZeroSteelPathways:TechnicalReportontheFirstLowPowerDemandandMarketForcesStarklyReduceScenariosoftheNet-ZeroSteelProject.”IDDRIandGlobalCO2Emissions.”NatureClimateChange11(3):193–96.EnergyMonitor.http://netzerosteel.org/wp-content/doi:10.1038/s41558-021-00987-x.uploads/pdf/net_zero_steel_report.pdf.Bhaskar,A.,M.Assadi,andH.NikpeySomehsaraei.2020.Bataille,C.,S.Stiebert,O.Hebeda,H.Trollip,B.McCall,and“DecarbonizationoftheIronandSteelIndustrywithDirectS.S.Vishwanathan.2023.“TowardsNet-ZeroEmissionsReductionofIronOrewithGreenHydrogen.”Energies13ConcreteandSteelinIndia,BrazilandSouthAfrica.”Cli-(3):758.doi:10.3390/en13030758.matePolicy,March,1–16.doi:10.1080/14693062.2023.2187750.Bieker,G.2021.“AGlobalComparisonoftheLife-CycleBatty,P.,R.Palacin,andA.González-Gil.2015.“ChallengesGreenhouseGasEmissionsofCombustionEngineandOpportunitiesinDevelopingUrbanModalShift.”andElectricPassengerCars.”Berlin:InternationalTravelBehaviourandSociety2(2):109–23.doi:10.1016/j.CouncilonCleanTransportation.https://theicct.org/tbs.2014.12.001.publication/a-global-comparison-of-the-life-cycle-greenhouse-gas-emissions-of-combustion-engine-Bauer,G.,C.-W.Hsu,andN.Lutsey.2021.“WhenMightand-electric-passenger-cars/.Lower-IncomeDriversBenefitfromElectricVehicles?QuantifyingtheEconomicEquityImplicationsofElectricBingler,J.A.,M.Kraus,M.Leippold,andN.Webersinke.VehicleAdoption.”Washington,DC:InternationalCouncil2022.“CheapTalkandCherry-Picking:WhatClimate-onCleanTransportation.https://theicct.org/publication/BERTHastoSayonCorporateClimateRiskDisclosures.”when-might-lower-income-drivers-benefit-from-elec-FinanceResearchLetters47(June):102776.doi:10.1016/j.tric-vehicles-quantifying-the-economic-equity-implica-frl.2022.102776.tions-of-electric-vehicle-adoption/.STATEOFCLIMATEACTION2023198BloombergNEF(NewEnergyFinance).2020.“Scale-UpofBos,J.,andJ.Thwaites.2021.“ABreakdownofDevel-SolarandWindPutsExistingCoal,GasatRisk.”April28.opedCountries’PublicClimateFinanceContributionshttps://about.bnef.com/blog/scale-up-of-solar-and-Towardsthe$100BillionGoal.”Washington,DC:Worldwind-puts-existing-coal-gas-at-risk/.ResourcesInstitute.https://www.wri.org/research/breakdown-developed-countries-public-climate-fi-BloombergNEF.2021a.“ChinaBaowuSteel’sNet-Zeronance-contributions-towards-100-billion.TargetIsJusttheStart.”BloombergProfessionalSer-vices,February18.BostonMetal.2022.“ZeroCO2SteelbyMoltenOxidehttps://www.bloomberg.com/professional/blog/Electrolysis:APathto100%GlobalSteelDecarbonization.”china-baowu-steels-net-zero-target-is-just-the-start/.September20.https://www.bostonmetal.com/blog/zero-co2-steel-by-molten-oxide-electrolysis-a-path-to-BloombergNEF.2021b.“ElectricVehicleOutlook2021.”100-global-steel-decarbonization/.https://about.bnef.com/electric-vehicle-outlook/.BP.2022.“StatisticalReviewofWorldEnergy.”BP.BloombergNEF.2022a.“ElectricVehicleOutlook2022.”https://about.bnef.com/electric-vehicle-outlook/.BRGM(BadanRestorasiGambutDanMangrove).2021.“GelarRefleksiAkhirTahun,BRGMInginCapaianTahunBloombergNEF.2022b.“Lithium-IonBatteryPackPrices2021Berlanjut.”December13.https://ppid.brgm.go.id/RiseforFirstTimetoanAverageof$151/KWh.”Decembersiaranpers/gelar-refleksi-akhir-tahun-brgm-ingin-capa-6.https://about.bnef.com/blog/lithium-ion-battery-pack-ian-tahun-2021-berlanjut/.prices-rise-for-first-time-to-an-average-of-151-kwh.BRGM.2022.“AkhirTahun,BRGMGelarEvaluasiSekaligusBloombergNEF.2022c.“NewEnergyOutlook.”https://about.PersiapkanKegiatanRestorasiGambutDanRehabili-bnef.com/new-energy-outlook/.tasiMangroveTahun2023.”December14.https://ppid.brgm.go.id/2287/.BloombergNEF.2022d.“Two-WheelersonaSteeperPathtoZeroEmissionsby2050.”June14.https://about.bnef.BRGM.2023.“SambutAwalTahun,BRGMGelarcom/blog/two-wheelers-on-a-steeper-path-to-zero-RakorDanSerahkanDIPAKe7ProvinsiRestorasiemissions-by-2050/.Gambut.”January30.https://ppid.brgm.go.id/sambut-awal-tahun-brgm-gelar-rakor-dan-serahkan-BloombergNEF.2023a.“ElectricVehicleOutlook2023.”dipa-ke-7-provinsi-restorasi-gambut/.https://about.bnef.com/electric-vehicle-outlook/.Brienen,R.J.W.,O.L.Phillips,T.R.Feldpausch,E.Gloor,T.R.BloombergNEF.2023b.“GlobalLow-CarbonEnergyBaker,J.Lloyd,G.López-González,etal.2015.“Long-TermTechnologyInvestmentSurgesPast$1TrillionfortheDeclineoftheAmazonCarbonSink.”Nature519(7543):FirstTime.”January26.https://about.bnef.com/blog/344–48.doi:10.1038/nature14283.global-low-carbon-energy-technology-investment-surges-past-1-trillion-for-the-first-time/.Bryant,C.J.2022.“Plant-BasedAnimalProductAlternativesAreHealthierandMoreEnvironmentallySustainablethanBoadle,A.2022.“Right-WingWinsinBrazil’sCongressAnimalProducts.”FutureFoods6(December):100174.ShowStayingPowerof‘Bolsonarismo.’”Reuters,doi:10.1016/j.fufo.2022.100174.October5.https://www.reuters.com/world/americas/right-wing-wins-brazils-congress-show-staying-power-Buchner,B.,B.Naran,P.Fernandes,R.Padmanabhi,bolsonarismo-2022-10-03/.P.Rosane,M.Soloman,S.Stout,etal.2021.“GlobalLandscapeofClimateFinance2021.”London:ClimateBoehm,S.,K.Lebling,K.Levin,H.Fekete,J.Jaeger,R.Waite,PolicyInitiative.https://www.climatepolicyinitiative.org/A.Nilsson,etal.2021.StateofClimateAction2021:Systemspublication/global-landscape-of-climate-finance-2021/.TransformationsRequiredtoLimitGlobalWarmingto1.5°C.Washington,DC:WorldResourcesInstitute.https://Buchner,B.,B.Naran,R.Padmanabhi,S.Stout,CStrinati,D.www.wri.org/research/state-climate-action-2021.Wignarajah,G.Miao,J.Connolloy,N.Marin.2023.“GlobalLandscapeofClimateFinance2023.”ClimatePolicyInitia-Boehm,S.,L.Jeffery,K.Levin,J.Hecke,C.Schumer,C.tive.https://www.climatepolicyinitiative.org/publication/Fyson,A.Majid,etal.2022.StateofClimateAction2022.global-landscape-of-climate-finance-2023/.Washington,DC:WorldResourcesInstitute.https://doi.org/10.46830/wrirpt.22.00028.Buckingham,K.,andT.Ellersick.2015.“TheRestorationDiagnostic:CaseExample—NepalCommunityForestry.”Bond,K.,S.Butler-Sloss,A.Lovins,L.Speelman,andN.Washington,DC:WorldResourcesInstitute.https://files.wri.Topping.2023.“X-Change:Electricity.”RockyMountainorg/d8/s3fs-public/WRI_Restoration_Diagnostic_Case_Institute.https://rmi.org/insight/x-change-electricity/.Example_Nepal.pdf.Borenstein,S.,andL.W.Davis.2016.“TheDistributionalEffectsofUSCleanEnergyTaxCredits.”TaxPolicyandtheEconomy30(1):191–234.doi:10.1086/685597.STATEOFCLIMATEACTION2023199Budiman,I.,R.D.Hapsari,C.I.Wijaya,andE.N.N.Sari.CambridgeEconometricsandElementEnergy.2018.2021.“TheGovernanceofRiskManagementonPeat-“Low-CarbonCarsinEurope:ASocio-economicAssess-land:ACaseStudyofRestorationinSouthSumatra,ment.”TheHague:EuropeanClimateFoundation.Indonesia.”Jakarta:WorldResourcesInstituteIndo-https://europeanclimate.org/resources/nesia.https://wri-indonesia.org/en/publication/fuelling-europes-future-how-the-transition-from-oil-governance-risk-management-peatland.strengthens-the-economy/.Buhr,B.,U.Volz,C.Donovan,G.Kling,Y.Lo,V.Murinde,Cameron,A.,andT.A.McAllister.2016.“AntimicrobialUsageandN.Pullin.2018.“ClimateChangeandtheCostofandResistanceinBeefProduction.”JournalofAnimalCapitalinDevelopingCountries.”ImperialCollegeScienceandBiotechnology68(7).https://doi.org/10.1186/London,SOASUniversityofLondon,andUNEnvironment.s40104-016-0127-3.http://unepinquiry.org/wp-content/uploads/2018/07/Climate_Change_and_the_Cost_of_Capital_in_Devel-Cames,M.,N.Wissner,andJ.Sutter.2021.“Ammoniaasaoping_Countries.pdf.MarineFuel.”Öko-Institut.https://en.nabu.de/imperia/md/content/nabude/verkehr/210622-nabu-study-ammo-Bunting,P.,A.Rosenqvist,L.Hilarides,R.M.Lucas,N.nia-marine-fuel.pdf.Thomas,T.Tadono,T.A.Worthington,etal.2022.“GlobalMangroveExtentChange,1996–2020:GlobalMan-CanadaandGermany.2021.“ClimateFinanceDeliverygroveWatchVersion3.0.”RemoteSensing14(15):3657.Plan:Meetingthe$100BillionGoal.”https://ukcop26.org/doi:10.3390/rs14153657.wp-content/uploads/2021/10/Climate-Finance-De-livery-Plan-1.pdf.Busch,J.,O.Amarjargal,F.Taheripour,K.G.Austin,R.N.Siregar,K.Koenig,andT.W.Hertel.2022.“EffectsofCarbonBusinessCouncil.2022.“CarbonBusinessDemand-SideRestrictionsonHigh-DeforestationPalmCouncilLaunches.”https://www.carbonbusinesscouncil.OilinEuropeonDeforestationandEmissionsinIndo-org/news/launch.nesia.”EnvironmentalResearchLetters17(1):014035.doi:10.1088/1748-9326/ac435e.Cardama,M.,A.Krapp,N.Medimorec,andA.Yiu.2023.“TransformingTransportandMobilitytoAchievetheButler-Sloss,S.,K.Bond,andH.Benham.2021.“SpirallingTargetsoftheParisAgreementandtheSustainableDisruption:TheFeedbackLoopsoftheEnergyTransition.”DevelopmentGoals.”InSLOCATTransport,ClimateandLondon:CarbonTracker.https://carbontracker.org/SustainabilityGlobalStatusReport,3rded.Brussels:reports/spiralling-disruption/.SLOCAT.https://tcc-gsr.com/.Byers,E.,V.Krey,E.Kriegler,andK.Riahi.2022.“AR6Scenar-Castellanos,S.,S.Grant-Muller,andK.Wright.2022.“Tech-iosDatabaseHostedbyIIASA.”InternationalInstitutefornology,Transport,andtheSharingEconomy:TowardsaAppliedSystemsAnalysis.doi:10.5281/zenodo.5886911.WorkingTaxonomyforSharedMobility.”TransportReviews42(3):318–36.doi:10.1080/01441647.2021.1968976.C40.2018.“TheNetZeroCarbonBuild-ingsDeclaration.”https://www.c40.org/other/CAT(ClimateActionTracker).2020a.“ParisAgreementnet-zero-carbon-buildings-declaration.CompatibleSectoralBenchmarks:SummaryReport.”https://climateactiontracker.org/documents/754/C40.2022.“C40NetZeroCarbonBuildingsDeclara-CAT_2020-07-10_ParisAgreementBenchmarks_tion:HowCitiesAreDeliveringLowCarbonandEnergySummaryReport.pdf.EfficientBuildings.”https://www.c40.org/wp-content/uploads/2022/02/C40-Net-Zero-Carbon-Buildings-Decla-CAT.2020b.ParisAgreementCompatibleSectoralration_Public-progress-report_Feb-2022.pdf.Benchmarks:MethodsReport.Berlin:ClimateActionTracker.https://climateactiontracker.org/documents/753/C40.2023a.“CitiesRacetoZero.”C40Knowl-CAT_2020-07-10_ParisAgreementBenchmarks_edgeHub.https://www.c40knowledgehub.org/s/FullReport.pdf.cities-race-to-zero?language=en_US.CAT.2022a.“China.”https://climateactiontracker.org/C40.2023b.“CleanConstructionAccelerator.”countries/china/.https://www.c40.org/accelerators/clean-construc-tion/?utm_medium=website&utm_source=archdaily.com.CAT.2022b.“EU.”https://climateactiontracker.org/countries/eu/policies-action/.C40Cities.2023.“GoodFoodCitiesAccelerator.”https://www.c40.org/accelerators/good-food-cities/.CAT.2022c.“DecarbonisingBuildings:AchievingZeroCar-bonHeatingandCooling.”https://climateactiontracker.CabinetOfficeandtheRtHonRishiSunakMP.2022.org/publications/decarbonising-buildings-achiev-“WorldLeadersLaunchForestsandClimateLeaders’ing-net-zero-carbon-heating-and-cooling/.PartnershiptoAccelerateMomentumtoHaltandReverseForestLossandLandDegradationby2030.”CAT.2022d.“Aviation.”https://climateactiontracker.org/November7.https://www.gov.uk/government/news/sectors/aviation/country-action/.world-leaders-launch-forests-and-climate-leaders-partnership-to-accelerate-momentum-to-halt-and-re-STATEOFCLIMATEACTION2023200verse-forest-loss-and-land-degradation-by-2030.CAT.2023a.“Methodologyfor1.5°CCompatibleCervero,R.,O.L.Sarmiento,E.Jacoby,L.F.Gomez,andSectoralBenchmarks.”September.A.Neiman.2009.“InfluencesofBuiltEnvironmentsonhttps://climateactiontracker.org/publications/WalkingandCycling:LessonsfromBogotá.”Internationalparis-aligned-benchmarks-power-sector/.JournalofSustainableTransportation3(4):203–26.doi:10.1080/15568310802178314.CAT.2023b.“PoliciesandAction.”https://climateaction-tracker.org/countries/india/policies-action/.Chamanara,S.,B.Goldstein,andJ.P.Newell.2021.“Where’stheBeef?Costco’sMeatSupplyChainandEnvironmentalCATF(CleanAirTaskForce).2022a.“EuropeanProposalforJusticeinCalifornia.”JournalofCleanerProduction278.aCarbonRemovalCertificationFrameworktheFirstStephttps://doi.org/10.1016/j.jclepro.2020.123744.towardsVerifiableCarbonDioxideRemovals.”December1.https://www.catf.us/2022/12/european-proposal-car-Chaturvedi,R.,C.Hanson,H.Ding,andF.Seymour.bon-removal-certification-framework-first-step-to-2019.“Public-SectorMeasurestoConserveandwards-verifiable-carbon-dioxide-removals/.RestoreForests:OvercomingEconomicandPolit-icalEconomyBarriers.”Washington,DC:WorldCATF.2022b.“CarbonCaptureProvisionsintheInflationResourcesInstitute.https://www.wri.org/research/ReductionActof2022.”https://cdn.catf.us/wp-content/public-sector-measures-conserve-and-restore-for-uploads/2022/08/19102026/carbon-capture-pro-ests-overcoming-economic-and-political.visions-ira.pdf.Chazdon,R.L.,P.H.S.Brancalion,D.Lamb,L.Laestadius,M.Cattaneo,A.,M.V.Sánchez,M.Torero,andR.Vos.2021.Calmon,andC.Kumar.2017.“APolicy-DrivenKnowledge“ReducingFoodLossandWaste:FiveChallengesforAgendaforGlobalForestandLandscapeRestoration.”PolicyandResearch.”FoodLossandWaste:EvidenceConservationLetters10(1):125–32.doi:10.1111/conl.12220.forEffectivePolicies98(January):101974.doi:10.1016/j.foodpol.2020.101974.Chemnick,J.2022.“KerryPitchesClimateFinancePlan:OtherCountriesSayIt’s‘NotEnough.’”Politico,Caulfield,B.,D.Furszyfer,A.Stefaniec,andA.Foley.2022.November9.https://www.politico.com/news/2022/11/09/“MeasuringtheEquityImpactsofGovernmentSubsidiesjohn-kerry-offset-plan-climate-finance-00065753.forElectricVehicles.”Energy248(June):123588.doi:10.1016/j.energy.2022.123588.Chen,J.2022.“WhatIsaReverseAuction?HowItWorks,Example,andRisks.”Investopedia,August23.https://www.Cazzola,P.,andP.Crist.2020.“GoodtoGo?Assessingtheinvestopedia.com/terms/r/reverse-auction.asp.EnvironmentalPerformanceofNewMobility.”Chen,C.,R.Xu,D.Tong,X.Qin,J.Cheng,J.Liu,B.Zheng,CBD(ConventiononBiologicalDiversity).2022a.etal.2022.“AStrikingGrowthofCO2EmissionsfromKunming-MontrealGlobalBiodiversityFrame-theGlobalCementIndustryDrivenbyNewFacilitiesinwork.https://www.cbd.int/doc/c/e6d3/cd1d/EmergingCountries.”EnvironmentalResearchLetters17daf663719a03902a9b116c34/cop-15-l-25-en.pdf.(4):044007.doi:10.1088/1748-9326/ac48b5.CBD.2022b.“ReportoftheOpen-EndedWorkingCherp,A.,V.Vinichenko,J.Tosun,J.Gordon,andJ.Jewell.GrouponthePost-2020GlobalBiodiversityFrame-2021.“NationalGrowthDynamicsofWindandSolarPowerworkonItsThirdMeeting(PartII).”https://www.cbd.ComparedtotheGrowthRequiredforGlobalClimateTar-int/doc/c/50c9/a685/3844e4030802e9325bc5e0b4/gets.”NatureEnergy6:742–54.doi:https://doi.org/10.1038/wg2020-03-07-en.pdf.s41560-021-00863-0.CEICData.n.d.“UruguayUY:IndustryElectricityCho,C.,andR.Waite.2023.2022CoolfoodPledgeCol-Price:USDperKWh.”https://www.ceicdata.com/en/lectiveClimateImpactReport.Washington,DC:Worlduruguay/environmental-environmental-policy-tax-ResourcesInstitute.es-and-transfers-non-oecd-member-annual/uy-industry-electricity-price-usd-per-kwh.Choi,J.,W.Li,andT.Heller.2021.“ThePotentialforScalingClimateFinanceinChina.”London:ClimatePolicyInitia-Cemnet.2022.“CalcinedClays:MakingaGlobalImpact.”tive.https://www.climatepolicyinitiative.org/publication/April1.https://www.cemnet.com/News/story/172453/cal-the-potential-for-scaling-climate-finance-in-china/.cined-clays-making-a-global-impact.html.Churkina,G.,A.Organschi,C.P.O.Reyer,A.Ruff,K.Vinke,Z.Cemnet.2023a.“SaltXTechnologyHasPatentAwardedforLiu,B.K.Reck,etal.2020.“BuildingsasaGlobalCarbonEAC.”InternationalCementReview,March15.https://www.Sink.”NatureSustainability3(4):269–76.doi:10.1038/cemnet.com/News/story/174503/saltx-technology-has-s41893-019-0462-4.patent-awarded-for-eac.html.CityofParis.2021.“UnnouveauplanvélopouruneCemnet.2023b.“ChinaStartsCCUSFocus.”Internationalville100%cyclable.”October21.https://www.paris.CementReview,July14.https://www.cemnet.com/News/fr/pages/un-nouveau-plan-velo-pour-une-ville-story/175179/china-starts-ccus-focus.html.100-cyclable-19554.STATEOFCLIMATEACTION2023201Clark,M.A.,N.G.G.Domingo,K.Colgan,S.K.Thakrar,D.Til-Cook,J.A.,andC.-Y.C.LinLawell.2020.“WindTurbineman,J.Lynch,I.L.Azevedo,andJ.D.Hill.2020.“GlobalFoodShutdownsandUpgradesinDenmark:TimingDecisionsSystemEmissionsCouldPrecludeAchievingthe1.5°andandtheImpactofGovernmentPolicy.”EnergyJournal412°CClimateChangeTargets.”Science370(6517):705–8.(3).doi:10.5547/01956574.41.3.jcoo.doi:10.1126/science.aba7357.Cook-Patton,S.C.,C.R.Drever,B.W.Griscom,K.Hamrick,CleanEnergyWire.2022.“G7Committo‘Predominantly’H.Hardman,T.Kroeger,P.Pacheco,etal.2021.“Protect,DecarboniseElectricityby2035.”May27.ManageandThenRestoreLandsforClimateMitiga-https://www.cleanenergywire.org/news/tion.”NatureClimateChange11(12):1027–34.doi:10.1038/g7-commit-predominantly-decarbonise-electricity-2035.s41558-021-01198-0.ClimateAnalytics.2023.“2030TargetsAlignedto1.5°C:COP26Presidency.2021.“StatementonInternationalEvidencefromtheLatestGlobalPathways.”June.PublicSupportfortheCleanEnergyTransition.”https://climateanalytics.org/media/2030_tar-https://ukcop26.org/statement-on-international-pub-gets_for_1-5.pdf.lic-support-for-the-clean-energy-transition/.ClimateAnalyticsandWorldResourcesInstitute.2021.“COP26IPLCForestTenureJointDonorState-“ClosingtheGap:TheImpactofG20ClimateCommit-ment.”2021.UNClimateChangeConferencementsonLimitingGlobalTemperatureRiseto1.5°C.”UK2021.November2.https://ukcop26.org/https://www.wri.org/research/closing-the-gap-g20-cli-cop26-iplc-forest-tenure-joint-donor-statement/.mate-commitments-limiting-global-temperature-rise.CPI(ClimatePolicyInitiative).2021.“GlobalLandscapeClimateWatch.2023.“HistoricalGHGEmissions.”ofClimateFinance2021Methodology.”https://www.https://www.climatewatchdata.org/ghg-emissions.climatepolicyinitiative.org/wp-content/uploads/2021/10/Methodology.pdf.Climeworks.2021.“OrcaIsClimeworks’NewLarge-ScaleCarbonDioxideRemovalPlant.”https://climeworks.Crezee,B.,G.C.Dargie,C.E.N.Ewango,E.T.A.Mitchard,O.com/roadmap/orca.EmbaB.,J.KanyamaT.,P.Bola,etal.2022.“MappingPeatThicknessandCarbonStocksoftheCentralCongoBasinCoady,D.,I.Parry,L.Sears,andB.Shang.2017.“HowLargeUsingFieldData.”NatureGeoscience15(8):639–44.AreGlobalFossilFuelSubsidies?”WorldDevelopment91doi:10.1038/s41561-022-00966-7.(March):11–27.doi:10.1016/j.worlddev.2016.10.004.Crownhart,C.2023.“TheClimateSolutionbeneathYourCollins,L.2022a.“ConstructionBeginsinBrazilonFeet.”MITTechnologyReview,February9.‘World’sLargestGreenHydrogenandAmmoniaPlant.’”https://www.technologyreview.com/2023/02/09/1068083/Recharge,July27.https://www.rechargenews.com/climate-solution-cement/.energy-transition/construction-begins-in-brazil-on-worlds-largest-green-hydrogen-and-ammonia-plant/2-Crozier,C.2020.“ForecastingS-CurvesIsHard.”Con-1-1267668?zephr_sso_ott=W3lEFI.stanceCrozier(blog),April16.https://constancecrozier.com/2020/04/16/forecasting-s-curves-is-hard/.Collins,T.2022b.“GabonSetsExampleofHowtoPreservetheCongoBasinRainforest.”August31.https://www.Currie&BrownandAECOM.2019.“TheCostsandBenefitsaljazeera.com/features/2022/8/31/gabon-sets-example-ofTighterStandardsforNewBuildings.”Reportfortheof-how-to-preserve-the-congo-basin-rainforest-2.CommitteeonClimateChange.https://www.theccc.org.uk/publication/the-costs-and-benefits-of-tighter-stan-CommonwealthofMassachusetts.2023.“BillS.2096.”dards-for-new-buildings-currie-brown-and-aecom/.https://malegislature.gov/Bills/193/SD371.Curtis,P.G.,C.M.Slay,N.L.Harris,A.Tyukavina,andM.C.Conchedda,G.,andF.N.Tubiello.2020.“DrainageofHansen.2018.“ClassifyingDriversofGlobalForestLoss.”OrganicSoilsandGHGEmissions:ValidationwithScience361(6407):1108–11.doi:10.1126/science.aau3445.CountryData.”EarthSystemScienceData12(4):3113–37.doi:10.5194/essd-12-3113-2020.Dargie,G.C.,S.L.Lewis,I.T.Lawson,E.T.A.Mitchard,S.E.Page,Y.E.Bocko,andS.A.Ifo.2017.“Age,ExtentandCarbonCongressionalResearchService.2019.“ThePlug-InElectricStorageoftheCentralCongoBasinPeatlandComplex.”VehicleTaxCredit.”https://sgp.fas.org/crs/misc/IF11017.pdf.Nature542(7639):86–90.doi:10.1038/nature21048.Conley,T.,andK.Botwright.2023.“WhatDoGreenSub-Darusman,T.,D.Murdiyarso,Impron,andI.Anas.2023.sidiesMeanfortheFutureofClimateandTrade?”World“EffectofRewettingDegradedPeatlandsonCarbonEconomicForum,March13.https://www.weforum.org/Fluxes:AMeta-analysis.”MitigationandAdaptationagenda/2023/03/what-do-green-subsides-mean-for-StrategiesforGlobalChange28(3):10.doi:10.1007/the-future-of-climate-and-trade-099a016307/.s11027-023-10046-9.STATEOFCLIMATEACTION2023202Davenport,C.2023.“E.P.A.LaysOutRulestoTurbochargeDing,H.,S.Faruqi,A.Wu,J.C.Altamirano,A.A.Ortega,SalesofElectricCarsandTrucks.”NewYorkTimes,AprilM.Verdone,R.Z.Cristales,etal.2017.“TheEconomics12.https://www.nytimes.com/2023/04/12/climate/biden-andFinanceofRestoringLand.”Washington,DC:Worldelectric-cars-epa.html.ResourcesInstitute.https://www.wri.org/research/roots-prosperity-economics-and-finance-restoring-land.Day,P.2023.“USGrappleswithHowCleanIsGreenHydro-gen.”Reuters,June7.https://www.reuters.com/business/DiSacco,A.,K.A.Hardwick,D.Blakesley,P.H.S.Bran-energy/us-grapples-with-how-clean-is-green-hydro-calion,E.Breman,L.CecilioRebola,S.Chomba,etal.gen-2023-06-07/.2021.“TenGoldenRulesforReforestationtoOptimizeCarbonSequestration,BiodiversityRecoveryandLive-deArriba-Sellier,N.2023.“TheISSB’sNewStandards:lihoodBenefits.”GlobalChangeBiology27(7):1328–48.BreakingGroundorLowHangingFruits?”Europeandoi:10.1111/gcb.15498.CorporateGovernanceInstitute,July13.https://www.ecgi.global/blog/issb%E2%80%99s-new-standards-breaking-diSario,F.2023.“CommissionReleasesNet-ZeroIndustryground-or-low-hanging-fruits.Act.”Politico,March16.https://www.politico.eu/article/commission-releases-net-zero-industry-act/.Deason,J.,M.Wei,G.Leventis,S.Smith,andL.C.Schwartz.2018.“ElectrificationofBuildingsandIndustryintheDixit,A.,H.Du,J.Dang,andS.D.Pang.2021.“QuaternaryUnitedStates:Drivers,Barriers,Prospects,andPol-BlendedLimestone-CalcinedClayCementConcreteicyApproaches.”U.S.DepartmentofEnergy,OfficeIncorporatingFlyAsh.”CementandConcreteCompositesofScientificandTechnicalInformation.1430688.123(October):104174.doi:10.1016/j.cemconcomp.2021.104174.doi:10.2172/1430688.Djenontin,I.,S.Foli,andL.Zulu.2018.“RevisitingtheDechezleprêtre,A.,A.Fabre,T.Kruse,B.Planterose,A.S.FactorsShapingOutcomesforForestandLandscapeChico,andS.Stantcheva.2022.“FightingClimateChange:RestorationinSub-SaharanAfrica:AWayforwardforInternationalAttitudestowardClimatePolicies.”w30265.Policy,PracticeandResearch.”Sustainability10(4):906.Cambridge,MA:NationalBureauofEconomicResearch.doi:10.3390/su10040906.doi:10.3386/w30265.DNV(DetNorskeVeritas).2022.“MaritimeForecast2050.”DEFRA(DepartmentforEnvironmentFoodandRuralAffairs).2022.“ImplementingduediligenceDohong,A.,A.A.Aziz,andP.Dargusch.2017.“AReviewoftheonforestriskcommodities.”https://consult.defra.DriversofTropicalPeatlandDegradationinSouth-Eastgov.uk/international-biodiversity-and-climate/Asia.”LandUsePolicy69(December):349–60.doi:10.1016/j.implementing-due-diligence-forest-risk-commodities/.landusepol.2017.09.035.Deloitte.2021.“GettingfromHard-to-AbatetoaLow-Car-Dominioni,G.,andD.Englert.2022.“CarbonRevenuesbonFuture.”https://www.deloitte.com/global/en/FormInternationalShipping:EnablinganEffectiveandour-thinking/insights/topics/business-strategy-growth/EquitableTransition.”Washington,DC:WorldBank.industrial-decarbonization-hard-to-abate-sectors.html.DrivetoZero.2022.“COP27:USA,Ukraine,Ireland,deVillafrancaCasas,M.J.,A.Nilsson,S.Smit,J.Beuerle,Aruba,Belgium,Croatia,Curacao,DominicanandT.Kuramochi.2022.“DecarbonisationintheGlobalRepublic,Liechtenstein,LithuaniaSignGlobalMOU,SteelSector:TrackingtheProgress.”Cologne:NewClimateSupportPathto100%NewTruckandBusSalesby2040.”Institute.https://newclimate.org/sites/default/files/2023-November17.https://globaldrivetozero.org/2022/11/16/01/steel_sector_05_12.pdf.cop27-usa-growing-number-nations-sign-global-mou/.DGEnergy.2023.“PactforSkills:LaunchofLarge-ScaleDSM.2022.“DSMReceivesLandmarkEUMarketApprovalRenewableEnergySkillsPartnership.”EuropeanCommis-forItsMethane-ReducingFeedAdditiveBovaer®.”Presssion:Energy(blog),March21.https://energy.ec.europa.release,February24.https://www.dsm.com/corporate/eu/news/pact-skills-launch-large-scale-renewable-news/news-archive/2022/dsm-receives-eu-approv-energy-skills-partnership-2023-03-21_en#:~:text=This%20al-Bovaer.html#.large-scale%20partnership%20under%20the%20Pact%20for%20Skills,of%20millions%20of%20jobs%20across%20Dufour,L.,B.Tucker,L.vanderBurg,M.Hendriwardani,all%20renewables%27%20sectors.andA.Geddes.2022.“TurningPledgesIntoAction:HowGlasgowStatementSignatoriesCanMeetTheirCom-Ding,H.,P.Veit,E.Gray,K.Reytar,J.-C.Altamirano,andmitmenttoShiftInternationalPublicFinanceOutofA.Blackman.2016.“ClimateBenefits,TenureCosts:TheFossilFuelsandIntoCleanEnergybytheEndof2022.”EconomicCaseforSecuringIndigenousLandRights.”Winnipeg,MB:InternationalInstituteforSustainableWashington,DC:WorldResourcesInstitute.https://www.Development.https://www.iisd.org/system/files/2022-06/wri.org/research/climate-benefits-tenure-costs.turning-glasgow-statement-into-action.pdf.STATEOFCLIMATEACTION2023203Dummett,C.2022.“SaleofOilandGasPer-EuropaWirePR.2023.“NordicInvestmentBankPro-mitsCastsShadowoverWorld’sSecond-Largestvides€134.4mLoantoEnerginetforDenmark’sPowerRainforest.”Guardian,November1.https://www.GridExpansion.”April22.https://news.europawire.eu/theguardian.com/environment/2022/nov/01/nordic-investment-bank-provides-e134-4m-loan-democratic-republic-of-congo-sale-oil-gas-drilling-to-energinet-for-denmarks-power-grid-expansion/permits-threatens-vast-peat-carbon-sink-rainforest-aoe.eu-press-release/2023/04/22/15/17/14/115647/.Duncanson,L.,M.Liang,V.Leitold,J.Armston,S.M.KrishnaEuropeanCommission.2019.“CommunicationfromtheMoorthy,R.Dubayah,S.Costedoat,etal.2023.“TheCommissiontotheEuropeanParliament,theEuropeanEffectivenessofGlobalProtectedAreasforClimateCouncil,theCouncil,theEuropeanEconomicandChangeMitigation.”NatureCommunications14(1):2908.SocialCommitteeandtheCommitteeoftheRegions:doi:10.1038/s41467-023-38073-9.TheEuropeanGreenDeal.”https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1576150542719&uri=COM%3AEAFO(EuropeanAlternativeFuelsObservatory).2023.2019%3A640%3AFIN.“VehiclesandFleet:EuropeanUnion.”https://alterna-tive-fuels-observatory.ec.europa.eu/transport-mode/EuropeanCommission.2020.“Communicationfromtheroad/european-union-eu27/vehicles-and-fleet.CommissiontotheEuropeanParliament,theCouncil,theEuropeanEconomicandSocialCommitteeandEASA(EuropeanUnionAviationSafetyAgency).2022.“FittheCommitteeoftheRegions:ARenovationWaveforfor55andReFuelEUAviation.”https://www.easa.europa.Europe—GreeningOurBuildings,CreatingJobs,Improvingeu/en/light/topics/fit-55-and-refueleu-aviation.Lives.”https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1603122220757&uri=CELEX:52020DC0662.Economidou,M.,V.Todeschi,P.Bertoldi,D.D’Agostino,P.Zangheri,andL.Castellazzi.2020.“Reviewof50YearsofEUEuropeanCommission.2022a.“ClimateMainstreaming.”EnergyEfficiencyPoliciesforBuildings.”EnergyandBuild-https://commission.europa.eu/strategy-and-policy/ings225(October):110322.doi:10.1016/j.enbuild.2020.110322.eu-budget/performance-and-reporting/mainstreaming/climate-mainstreaming_en.EERC(EnergyandEnvironmentalResearchCenter).2022.“RedTrailEnergyCCS.”https://undeerc.org/research/proj-EuropeanCommission.2022b.“Communicationfromects/redtrailenergyccs.html.theCommissiontotheEuropeanParliament,theEuro-peanCouncil,theCouncil,theEuropeanEconomicElliott,C.,C.Schumer,R.Gasper,K.Ross,andandSocialCommittee,andtheCommitteeoftheN.Singh.2023.“RealizingNet-ZeroEmissions:Regions:REPowerEUPlan.”https://eur-lex.europa.eu/GoodPracticesinCountries.”WorldResourceslegal-content/EN/TXT/.Institute,June.https://www.wri.org/research/realizing-net-zero-emissions-good-practices-countries.EuropeanCommission.2022c.“EUBuildingsDatabase.”https://ec.europa.eu/energy/eu-buildings-database_en.Ellis,P.W.,T.Gopalakrishna,R.C.Goodman,F.E.Putz,A.Roopsind,P.M.Umunay,J.Zalman,etal.2019.EuropeanCommission.2022d.“JointStatementonthe“Reduced-ImpactLoggingforClimateChangeMitigationEU-EgyptRenewableHydrogenPartnership.”November9.(RIL-C)CanHalveSelectiveLoggingEmissionsfromTrop-https://ec.europa.eu/commission/presscorner/detail/en/icalForests.”ForestEcologyandManagement438(April):statement_22_6646.255–66.doi:10.1016/j.foreco.2019.02.004.EuropeanCommission.2022e.“LawtoFightGlobalElston,L.2022.“NamibiaStakesItsFutureontheGreenDeforestationandForestDegradation.”DecemberHydrogenMarket.”EnergyMonitor,June24.https://www.6.https://ec.europa.eu/commission/presscorner/energymonitor.ai/tech/hydrogen/namibia-stakes-its-fu-detail/en/IP_22_7444.ture-on-the-green-hydrogen-market/.EuropeanCommission.2023a.“AEuropeanGreenEmber.2023.“EmberDataExplorer.”https://ember-climate.Deal:StrivingtoBetheFirstClimate-NeutralContinent.”org/data/data-tools/data-explorer/.https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en.EnergySavingTrust.2022.“HeatingYourHome:In-DepthGuidetoHeatPumps.”https://energysavingtrust.org.uk/EuropeanCommission.2023b.“CallforEvidenceforanadvice/in-depth-guide-to-heat-pumps/.Initiative(withoutanImpactAssessment):HeatPumps—ActionPlantoAccelerateRoll-OutacrosstheEU.”https://Erickson,P.,A.Down,M.Lazarus,andD.Koplow.2017.ec.europa.eu/info/law/better-regulation/.“EffectofSubsidiestoFossilFuelCompaniesonUnitedStatesCrudeOilProduction.”NatureEnergy2(11):891–98.EuropeanCommission.2023c.“Norway:Vehiclesdoi:10.1038/s41560-017-0009-8.andFleet.”EuropeanAlternativeFuelsObservatory.https://alternative-fuels-observatory.ec.europa.eu/ESMAP(EnergySectorManagementAssistanceProgram).transport-mode/road/norway/vehicles-and-fleet.2022.“CleanCookingFund.”https://www.esmap.org/clean-cooking-fund.STATEOFCLIMATEACTION2023204EuropeanCommission.2023d.“ReducingCO2EmissionsEuropeanParliament.2023b.“EURulesforRenewablefromHeavy-DutyVehicles.”ClimateAction.https://HydrogenDelegatedRegulationsonaMethodologyforclimate.ec.europa.eu/eu-action/transport-emissions/RenewableFuelsofNon-biologicalOrigin.”https://www.road-transport-reducing-co2-emissions-vehicles/europarl.europa.eu/RegData/etudes/BRIE/2023/747085/reducing-co2-emissions-heavy-duty-vehicles_en.EPRS_BRI(2023)747085_EN.pdf.EuropeanCommission.2023e.“CommissionOut-EuropeanParliament.2023c.“G7ClimateClub.”linesEuropeanHydrogenBanktoBoostRenewablehttps://www.europarl.europa.eu/RegData/etudes/Hydrogen.”March16.https://energy.ec.europa.ATAG/2023/739385/EPRS_ATA(2023)739385_EN.pdf.eu/news/commission-outlines-european-hydro-gen-bank-boost-renewable-hydrogen-2023-03-16_en.EuropeanParliament.2023d.“RevisionoftheEnergyPerformanceofBuildingsDirective.”EuropeanCommission.2023f.“RegulationoftheEuropeanhttps://www.europarl.europa.eu/legislative-train/ParliamentandoftheCouncil.”https://eur-lex.europa.eu/theme-a-european-green-deal/file-revision-of-the-en-legal-content/EN/TXT/.ergy-performance-of-buildings-directive.EuropeanCommission.2023g.“FoodWasteReduc-EuropeanParliament.2023e.“ParliamentAdoptstionTargets.”https://food.ec.europa.eu/safety/NewLawtoFightGlobalDeforestation.”Aprilfood-waste/eu-actions-against-food-waste/19.https://www.europarl.europa.eu/news/en/food-waste-reduction-targets_en.press-room/20230414IPR80129/parliament-adopts-new-law-to-fight-global-deforestation.EuropeanCommission.n.d.a.“CarbonBor-derAdjustmentMechanism.”TaxationandEVAdoption.2023.“EVModelsCurrentlyAvailableintheCustomsUnion.https://taxation-customs.ec.europa.eu/US.”March3.https://evadoption.com/ev-models/.carbon-border-adjustment-mechanism_en.Evans,M.C.2018.“EffectiveIncentivesforReforestation:EuropeanCommission.n.d.b.“RegulationonDeforesta-LessonsfromAustralia’sCarbonFarmingPolicies.”Currenttion-FreeProducts.”AccessedAugust9,2023.https://OpinioninEnvironmentalSustainability32(June):38–45.environment.ec.europa.eu/topics/forests/deforestation/doi:10.1016/j.cosust.2018.04.002.regulation-deforestation-free-products_en.Evans,S.,andZ.Hausfather.2018.“Q&A:How‘Inte-EuropeanCommission.n.d.c.“RenovationWave.”gratedAssessmentModels’AreUsedtoStudyClimateAccessedApril5,2023.https://energy.ec.europa.eu/Change.”CarbonBrief.https://www.carbonbrief.org/topics/energy-efficiency/energy-efficient-buildings/qa-how-integrated-assessment-models-are-used-to-renovation-wave_en.study-climate-change/#pathways.EuropeanCommissionandJRC(JointResearchCentre).Evine-Binet.2022.“InGabon,aCommunity’sPleaagainst2022.“EDGAR(EmissionsDatabaseforGlobalAtmosphericLoggingPavestheWayforaNewReserve.”MongabayResearch)CommunityGHGDatabase(aCollaborationEnvironmentalNews,April12.https://news.mongabay.betweentheEuropeanCommission,JointResearchcom/2022/04/in-gabon-a-communitys-plea-against-Centre(JRC),theInternationalEnergyAgency(IEA),andlogging-paves-the-way-for-a-new-reserve/.ComprisingIEA-EDGARCO2,EDGARCH4,EDGARN2O,EDGARF-GASES,Version7.0.”Datasets.https://edgar.jrc.Ewen,M.,andS.Brown.2023.“EUFossilGenerationec.europa.eu/dataset_ghg70.HitsRecordLowasDemandFalls.”Ember,August30.https://ember-climate.org/insights/research/EuropeanInvestmentBank.2023.“HowtoMaketheIRAeu-fossil-generation-hits-record-low-as-de-Work—fortheEuropeanEconomy.”https://www.eib.org/en/mand-falls/#supporting-material.stories/ira-european-economy.Fa,J.E.,J.E.Watson,I.Leiper,P.Potapov,T.D.Evans,N.D.EuropeanParliament.2022.Directive(EU)2022/2464oftheBurgess,Z.Molnár,etal.2020.“ImportanceofIndigenousEuropeanParliamentandoftheCouncilof14DecemberPeoples’LandsfortheConservationofIntactForest2022AmendingRegulation(EU)No537/2014,DirectiveLandscapes.”FrontiersinEcologyandtheEnvironment182004/109/EC,Directive2006/43/ECandDirective2013/34/(3):135–40.doi:10.1002/fee.2148.EU,asRegardsCorporateSustainabilityReporting(TextwithEEARelevance).OJL,vol.322.http://data.europa.eu/Falcon,W.P.,R.L.Naylor,andN.D.Shankar.2022.“Rethinkingeli/dir/2022/2464/oj/eng.GlobalFoodDemandfor2050.”PopulationandDevelop-mentReview48(4):921–57.doi:10.1111/padr.12508.EuropeanParliament.2023a.“EnergyPerfor-manceofBuildings:ClimateNeutralityby2050.”Falk,J.,O.Gaffney,A.K.Bhowmik,P.Bergmark,V.Galaz,N.https://www.europarl.europa.eu/news/en/Gaskell,S.Henningsson,etal.2020.“ExponentialRoad-press-room/20230206IPR72112/energy-perfor-map:Scaling36SolutionstoHalveEmissionsby2030,mance-of-buildings-climate-neutrality-by-2050.Version1.5.1.”FutureEarth.https://exponentialroadmap.org/wp-content/uploads/2020/03/ExponentialRoad-map_1.5.1_216x279_08_AW_Download_Singles_Small.pdf.STATEOFCLIMATEACTION2023205FAO(FoodandAgricultureOrganizationoftheUnitedFewster,R.E.,P.J.Morris,R.F.Ivanovic,G.T.Swindles,A.M.Nations).2011.“GlobalFoodLossesandFoodWaste:Peregon,andC.J.Smith.2022.“ImminentLossofClimateExtent,CausesandPrevention.”https://www.fao.org/3/SpaceforPermafrostPeatlandsinEuropeandWesterni2697e/i2697e.pdf.Siberia.”NatureClimateChange12(4):373–79.doi:10.1038/s41558-022-01296-7.FAO.2019.“TheStateofFoodandAgriculture2019:MovingForwardonFoodLossandWasteReduction.”http://www.Feyertag,J.,M.Childress,R.Flynn,I.Langdown,A.Locke,fao.org/3/ca6030en/ca6030en.pdf.andD.Nizalov.2020.“PrindexComparativeReport2020:AGlobalAssessmentofPerceivedTenureSecurityfromFAO.2020.“PeatlandsMappingandMonitoring:Rec-140Countries.”London:Prindex.https://www.prindex.net/ommendationsandTechnicalOverview.”https://doi.reports/prindex-comparative-report-july-2020/.org/10.4060/ca8200en.FIDH(FédérationInternationalepourlesDroitsHumains).FAO.2021.“TECA:TechnologiesandPracticesforSmall2022.“‘HeavyMetal’:FromAbuse-RiddenMinestoGlobalAgriculturalProducers—FicusthonningiiSilvopasturesforConsumerGoods,theJourneyofBrazilianIron.”LivelihoodImprovement,ClimateChangeAdaptationandhttps://www.fidh.org/IMG/pdf/piquia788anglais_1_.pdf.EnvironmentalResilience.”https://teca.apps.fao.org/teca/en/technologies/10051.Flanagan,K.,K.Robertson,andC.Hanson.2019.ReducingFoodLossandWaste.Washington,DC:WorldResourcesFAO.2022a.“FoodandAgricultureforSustainableTrans-Institute.https://wriorg.s3.amazonaws.com/s3fs-public/formationInitiative:FAST.”CC2186EN/1/09.22.https://www.reducing-food-loss-waste-global-action-agenda_0.pdf.fao.org/3/cc2186en/cc2186en.pdf.Fluet-Chouinard,E.,B.D.Stocker,Z.Zhang,A.Malhotra,J.R.FAO.2022b.TheStateofFoodSecurityandNutritionintheMelton,B.Poulter,J.O.Kaplan,etal.2023.“ExtensiveGlobalWorld2022:RepurposingFoodandAgriculturalPoliciestoWetlandLossoverthePastThreeCenturies.”Nature614MakeHealthyDietsMoreAffordable.Rome:FAO,Interna-(7947):281–86.doi:10.1038/s41586-022-05572-6.tionalFundforAgriculturalDevelopment,UNChildren’sFund,WorldFoodProgramme,andWorldHealthOrgani-FOLU(FoodandLandUseCoalition).2023.“Align-zation.doi:10.4060/cc0640en.ingRegenerativeAgriculturalPracticeswithOutcomestoDeliverforPeople,NatureandCli-FAO.2023.TheStateofFoodSecurityandNutritioninthemate.”https://www.evidensia.eco/resources/3120/World2023:Urbanization,AgrifoodSystems,Transforma-aligning-regenerative-agricultural-practices-with-out-tionandHealthyDietsacrosstheRuralUrbanContinuum.comes-to-deliver-for-people-nature-and-climate/.Rome:FAO,InternationalFundforAgriculturalDevelop-ment,UNChildren’sFund,WorldFoodProgramme,andFoodNation.n.d.“Denmark’sNewDietaryGuide-WorldHealthOrganization.doi:10.4060/cc3017en.linesHasClimate-FriendlyFoodinMind.”https://foodnationdenmark.com/news/denmarks-new-dietary-FAOSTAT.2023.“FAOSTATData.”Rome:FoodandAgricultureguidelines-has-climate-friendly-food-in-mind/.OrganizationoftheUnitedNations.http://www.fao.org/faostat/en/#data.Forest500.2022.“AClimateWake-Up:ButBusinessFailingtoHeartheAlarmonDeforestation.”Oxford,Farand,C.2021.“HeatRisesonDonorCountriestoMeetUK:GlobalCanopy.https://forest500.org/publications/Overdue$100bnClimateFinancePromise.”ClimateHomeclimate-wake-business-failing-hear-alarm-deforestation.News,October13.https://www.climatechangenews.com/2021/10/13/heat-rises-donor-countries-deliver-over-Forest500.2023.“2023:AWatershedYearforActionondue-100bn-climate-finance/.Deforestation.”Oxford,UK:GlobalCanopy.https://forest500.org/publications/FederalStatisticalOffice.2022.“GasHeatingPlannedfor2023-watershed-year-action-deforestation.Justunder16%ofResidentialBuildingsApprovedinthe1stHalfof2022.”StatistischesBundesamt.https://www.ForestTenureFundersGroup.2022.“IndigenousPeoplesdestatis.de/EN/Press/2022/09/PE22_N056_311.html.andLocalCommunitiesForestTenurePledge:AnnualReport2021–2022.”NewYork:FordFoundation.Fekete,H.,andI.Outlaw.2023.“TheRoleofGreenHydrogenhttps://www.fordfoundation.org/wp-content/inaJust,Paris-CompatibleTransition.”https://newclimate.uploads/2022/11/indigenous-peoples-and-local-commu-org/resources/publications/the-role-of-green-hydrogen-nities-forest-tenure-pledge-annual-report-2021-2022.pdf.in-a-just-paris-compatible-transition.ForestTrends.2021.“TimberLegalityRishDashboard:Ferguson,R.,B.Maharjan,C.Wortmann,andB.Gabon.”https://www.forest-trends.org/wp-content/Krienke.2019.“NitrogenInhibitorsforImproveduploads/2022/01/Gabon-Timber-Legality-Risk-Dash-FertilizerUseEfficiency.”CropWatch,Jan-board-IDAT-Risk.pdf.uary14.https://cropwatch.unl.edu/2019/nitrogen-inhibitors-improved-fertilizer-use-efficiency.STATEOFCLIMATEACTION2023206Fourqurean,J.W.,C.M.Duarte,H.Kennedy,N.Marbà,M.Fyson,C.L.,S.Baur,M.Gidden,andC.-F.Schleussner.2020.Holmer,M.A.Mateo,E.T.Apostolaki,etal.2012.“Seagrass“Fair-ShareCarbonDioxideRemovalIncreasesMajorEcosystemsasaGloballySignificantCarbonStock.”EmitterResponsibility.”NatureClimateChange10(9):NatureGeoscience5(7):505–9.doi:10.1038/ngeo1477.836–41.doi:10.1038/s41558-020-0857-2.Fraser,C.2022.“CommunityBenefitsAgreementsGaboneseRepublic.2021.“Gabon’sProposedNationalOfferMeaningfulOpportunitiestoIncludeVoters’REDD+ForestReferenceLevel.”https://redd.unfccc.int/files/VoicesinDevelopment.”DataforProgress(blog),Julygabon_frl_submitted_feb2021.pdf.6.https://www.dataforprogress.org/blog/2022/7/5/community-benefits-agreements-offer-meaningful-op-Gabor,D.2021.“TheWallStreetConsensus.”Devel-portunities-to-include-voters-voices-in-development.opmentandChange52(3):429–59.doi:https://doi.org/10.1111/dech.12645.FraunhoferIAO(InstitutfürArbeitswirtschaftundOrgan-isation).2020.“Employment2030:EffectsofElectricGangotra,A.,K.Lebling,andK.Kennedy.2023.“WhatMobilityandDigitalisationontheQualityandQuantityofDoes‘Green’ProcurementMean?InitiativesandEmploymentatVolkswagen.”https://www.volkswagenag.StandardsforCementandSteel.”WorldResourcescom/en/news/stories/2020/12/fraunhofer-study--employ-Institute(blog),April5.https://www.wri.org/insights/ment-at-volkswagen-in-2030.html.green-procurement-initiatives.Friedlingstein,P.,M.O’Sullivan,M.W.Jones,R.M.Andrew,Gao,Y.,andA.CabreraSerrenho.2023.“GreenhouseGasJ.Hauck,A.Olsen,G.P.Peters,etal.2020.“GlobalCarbonEmissionsfromNitrogenFertilizersCouldBeReducedbyBudget2020.”EarthSystemScienceData12(4):3269–340.uptoOne-FifthofCurrentLevelsby2050withCombineddoi:10.5194/essd-12-3269-2020.Interventions.”NatureFood4(2):170–78.doi:10.1038/s43016-023-00698-w.Friedlingstein,P.,M.W.Jones,M.O’Sullivan,R.M.Andrew,D.C.E.Bakker,J.Hauck,C.LeQuéré,etal.2022a.“GlobalGardner,T.2023.“USAnnounces$6BlninGrantsCarbonBudget2021.”EarthSystemScienceData14(4):toDecarbonizeHeavyIndustry.”Reuters,March8.1917–2005.doi:10.5194/essd-14-1917-2022.https://www.reuters.com/business/environment/us-announces-6-bln-grants-decarbonize-heavy-indus-Friedlingstein,P.,M.O’Sullivan,M.W.Jones,R.M.Andrew,L.try-2023-03-08/.Gregor,J.Hauck,C.LeQuéré,etal.2022b.“GlobalCarbonBudget2022.”EarthSystemScienceData14(11):4811–900.Garrett,R.D.,S.Levy,K.M.Carlson,T.A.Gardner,J.doi:10.5194/essd-14-4811-2022.Godar,J.Clapp,P.Dauvergne,etal.2019.“CriteriaforEffectiveZero-DeforestationCommitments.”GlobalFriess,D.A.,K.Rogers,C.E.Lovelock,K.W.Krauss,S.E.Ham-EnvironmentalChange54(January):135–47.doi:10.1016/j.ilton,S.Y.Lee,R.Lucas,etal.2019.“TheStateoftheWorld’sgloenvcha.2018.11.003.MangroveForests:Past,Present,andFuture.”AnnualReviewofEnvironmentandResources44(1):89–115.Garrison,G.L.,J.T.Biermacher,andB.W.Brorsen.2022.doi:10.1146/annurev-environ-101718-033302.“HowMuchWillLarge-ScaleProductionofCell-CulturedMeatCost?”JournalofAgricultureandFoodResearch10.Frontier.2023.“AnAdvanceMarketCommitmenttoAccel-https://doi.org/10.1016/j.jafr.2022.100358.erateCarbonRemoval.”https://frontierclimate.com/.Gatti,L.V.,L.S.Basso,J.B.Miller,M.Gloor,L.GattiDomingues,FSB(FinancialStabilityBoard).2023.“FSBRoadmapH.L.G.Cassol,G.Tejada,etal.2021.“AmazoniaasaCarbonforAddressingFinancialRisksfromClimateChangeSourceLinkedtoDeforestationandClimateChange.”ProgressReport:2023ProgressReport.”https://www.fsb.Nature595(7867):388–93.doi:10.1038/s41586-021-03629-6.org/2023/07/fsb-roadmap-for-addressing-financial-risks-from-climate-change-2023-progress-report/.Gauthier,M.2022.“NewLegislationtoProtecttheRightsoftheIndigenousPygmyPeoplesintheDRC.”InternationalFSC(ForestStewardshipCouncil).2020.“FSCinGabon:UnionforConservationofNature,August5.https://www.StartingtheJourneytowards100%Certification.”iucn.org/story/202208/new-legislation-protect-rights-in-https://fsc.org/en/newscentre/fsc-in-gabon-start-digenous-pygmy-peoples-drc.ing-the-journey-towards-100-certification.GCCA(GlobalCementandConcreteAssociation).2023.FundaçãoPerseuAbramo.2022.“Diretrizesparao“GettingtheNumbersRight.”https://gccassociation.org/ProgramadeReconstruçãoeTransformaçãodoBrasil.”sustainability-innovation/gnr-gcca-in-numbers/.https://www.programajuntospelobrasil.com.br/diretrizes/.GEF(GlobalEnvironmentFacility).2022.“TransformingFor-Fuss,S.,W.F.Lamb,M.W.Callaghan,J.Hilaire,F.estLandscapeGovernanceintheLowerOgooué–LowerCreutzig,T.Amann,T.Beringer,etal.2018.“NegativeNyangaLandscapeCorridor.”https://www.thegef.org/Emissions—Part2:Costs,PotentialsandSideEffects.”projects-operations/projects/10729.EnvironmentalResearchLetters13(6):063002.doi:10.1088/1748-9326/aabf9f.GEM(GlobalEnergyMonitor).2023a.“BoomandBustCoal2023.”https://globalenergymonitor.org/report/boom-and-bust-coal-2023/.STATEOFCLIMATEACTION2023207GEM.2023b.“GlobalEnergyMonitor.”https://globalen-GlobalABC(AllianceforBuildingsandConstruc-ergymonitor.org/.tion),IEA(InternationalEnergyAgency),andUNEP(UNEnvironmentProgramme).2020.“GlobalABCGEM.2023c.“ChinaPoisedtoDoubleWindandSolarRoadmapforBuildingsandConstruction:TowardsaCapacityFiveYearsaheadof2030Target.”JuneZero-Emissions,Efficient,andResilientBuildingsand28.https://globalenergymonitor.org/press-release/ConstructionSector.”https://iea.blob.core.windows.china-poised-to-double-wind-and-solar-capacity-five-net/assets/6cca78af-2327-4e97-868c-294d48cb66b3/years-ahead-of-2030-target/.GlobalABC_Roadmap_for_Buildings_and_Construc-tion_2020-2050.pdf.Gensler,G.2022.“StatementonProposedMandatoryClimateRiskDisclosures.”USSecuritiesandExchangeGlobalABC,IEA,andUNEP.2021.“TheBuildingPassport:Commission,March21.https://www.sec.gov/news/AToolforCapturingandManagingWholeLifeDatastatement/gensler-climate-disclosure-20220321.andInformationinConstructionandRealEstate.”https://globalabc.org/sites/default/files/2021-09/GABC_GettingtoZeroForum.2023.“GettingtoZeroForum.”The-Building-Passport_FINAL.pdf.https://gettingtozeroforum.org/local-governments/.GlobalCement.2021.“ACCandAmbujaCementstoGFI(GoodFoodInstitute).2020.StateoftheIndustryDevelopCalcinedClayCementswithIndianInstituteReport:Plant-BasedMeat,Eggs,andDairy.Washington,ofTechnologyDelhi.”https://www.globalcement.com/DC:GFI.https://gfi.org/wp-content/uploads/2023/01/news/item/13342-acc-and-ambuja-cements-to-de-GFI-2019-State-of-Industry-Report-Plant-Based-Meat-velop-calcined-clay-cements-with-indian-institute-of-Eggs-and-Dairy.pdf.technology-delhi.GFI.2023a.2022StateofGlobalPolicy.Washington,GlobalCement.2023.“AllianceforLow-CarbonCementDC:GFI.https://gfi.org/wp-content/uploads/2023/01/andConcreteLauncheswithCallforLow-CO2CementState-of-Global-Policy-Report_2022.pdf.andConcrete.”May.https://www.globalcement.com/news/item/15799-alliance-for-low-carbon-ce-GFI.2023b.“CultivatedMeatIndustryLandscape,2023.”ment-concrete-launches-with-call-for-low-co2-ce-https://gfi.org/wp-content/uploads/2023/01/Cultivat-ment-and-concrete.ed-meat-industry-summary-2023.pdf.GlobalMangroveAllianceandHigh-LevelChampions.GFI.2023c.StateoftheIndustryReport:Plant-BasedMeat,2023.“TheMangroveBreakthrough.”Seafood,Eggs,andDairy.Washington,DC:GFI.https://www.mangrovealliance.org/https://gfi.org/wp-content/uploads/2023/01/2022-Plant-wp-content/uploads/2022/11/Mangrove-Break-Based-State-of-the-Industry-Report-1-1.pdf.through-Leaflet-2023.pdf.Ghosh,R.2023.“IndiaReleasesDraftCarbonCreditGMF(GlobalMaritimeForum).2022.“AnnualProgressTradingScheme.”ArgusMedia,March28.https://www.ReportonGreenShippingCorridors.”argusmedia.com/en/news/2433692-india-releases-https://www.globalmaritimeforum.org/publications/draft-carbon-credit-trading-scheme.annual-progress-report-on-green-shipping-corridors.GIZ(GesellschaftfürInternationaleZusam-Goldberg,L.,D.Lagomasino,N.Thomas,andT.menarbeit).2014.“RenewedNewEnergyVehicleFatoyinbo.2020.“GlobalDeclinesinHuman-DrivenSubsidyinChina.”MobilityTransitioninChina.Feb-MangroveLoss.”GlobalChangeBiology26(10):5844–55.ruary17.https://transition-china.org/mobilityposts/doi:10.1111/gcb.15275.renewed-new-energy-vehicle-subsidy-in-china/.Goldman,E.,M.J.Weisse,N.Harris,andM.Schneider.GIZ.2020.“NewEnergyBusesinChina:Overviewon2020.“EstimatingtheRoleofSevenCommoditiesinPoliciesandImpacts.”https://www.changing-transport.Agriculture-LinkedDeforestation:OilPalm,Soy,Cattle,org/wp-content/uploads/2020_GIZ_New-Energy-Bus-WoodFiber,Cocoa,Coffee,andRubber.”Washington,es-in-China.pdf.DC:WorldResourcesInstitute.wri.org/publication/estimating-the-role-of-sevencommodities-in-agricul-GIZ.2022.“SectorBriefNamibia:RenewableEnergies.”ture-linked-deforestation.https://www.giz.de/en/downloads/giz2022-en-sec-tor-brief-namibia-renewable-energy.pdf.GoldmanSachs.2023.“TheUSIsPoisedforanEnergyRevolution.”June8.https://www.goldmansachs.com/Glauber,J.,andD.Laborde,eds.2023.TheRussia-Ukraineintelligence/pages/the-us-is-poised-for-an-energy-ConflictandGlobalFoodSecurity.Washington,revolution.html.DC:InternationalFoodPolicyResearchInstitute.doi:10.2499/9780896294394.GoldmanSchoolofPublicPolicy.2021.The2035Report.Berkeley:UniversityofCaliforniaBerkeley.Gleeson,D.2022.“BostonMetalLookstoDisruptandhttps://www.2035report.com/transportation/.DecarboniseSteelandIronOreIndustries.”InternationalMining(blog),July22.https://im-mining.com/2022/07/22/STATEOFCLIMATEACTION2023208boston-metal-looks-to-disrupt-and-decarbonise-steel-and-iron-ore-industries/.Goldstein,A.,W.R.Turner,S.A.Spawn,K.J.Anderson-Teix-Griscom,B.W.,J.Adams,P.W.Ellis,R.A.Houghton,G.Lomax,eira,S.Cook-Patton,J.Fargione,H.K.Gibbs,etal.2020.D.A.Miteva,W.H.Schlesinger,etal.2017.“NaturalClimate“ProtectingIrrecoverableCarboninEarth’sEcosystems.”Solutions.”ProceedingsoftheNationalAcademyofNatureClimateChange10(4):287–95.doi:10.1038/Sciences114(44):11645–50.doi:10.1073/pnas.1710465114.s41558-020-0738-8.Griscom,B.W.,J.Busch,S.C.Cook-Patton,P.W.Ellis,J.Funk,GovernmentofIndia.2023.“CabinetApprovesNationalS.M.Leavitt,G.Lomax,etal.2020.“NationalMitigationGreenHydrogenMission.”https://pib.gov.in/PressRe-PotentialfromNaturalClimateSolutionsintheTropics.”leasePage.aspx?PRID=1888547.PhilosophicalTransactionsoftheRoyalSocietyB:Biologi-calSciences375(1794):20190126.doi:10.1098/rstb.2019.0126.Grant,N.,A.Hawkes,S.Mittal,andA.Gambhir.2021.“ConfrontingMitigationDeterrenceinLow-CarbonGross,S.2020.“TheChallengeofDecar-Scenarios.”EnvironmentalResearchLetters16(6):064099.bonizingHeavyTransport.”Washington,DC:doi:10.1088/1748-9326/ac0749.Brookings.https://www.brookings.edu/research/the-challenge-of-decarbonizing-heavy-transport/.Graver,B.,Rutherford,D.,andZheng,S.2020.“CO2Emis-sionsfromCommercialAviation:2013,2018,and2019.”Grubb,M.,P.Drummond,andN.Hughes.2021.“TheShapeInternationalCouncilonCleanTransportation.andPaceofChangeintheTransportTransition.”London:https://theicct.org/publication/co2-emissions-from-com-UCLInstituteforSustainableResources.mercial-aviation-2013-2018-and-2019/.https://www.wemeanbusinesscoalition.org/wp-content/uploads/2021/05/Shape-And-Pace-Of-Change-In-The-Graver,B.,X.S.Zheng,D.Rutherford,J.Mukhopadhaya,Transport-Transition-1.pdf.andE.Pronk.2022.“Vision2050:AligningAviationwiththeParisAgreement.”InternationalCouncilonCleanGrunwald,M.2023.“CattleAreaHugeClimateTransportation.Threat:SmarterRanchingCanHelp.”CanaryMedia.April17.https://www.canarymedia.com/articles/Gray,N.,S.McDonagh,R.O’Shea,B.Smyth,andJ.D.Murphy.food-and-farms/cattle-are-a-huge-climate-threat-2021.“DecarbonisingShips,PlanesandTrucks:AnAnalysissmarter-ranching-can-help.ofSuitableLow-CarbonFuelsfortheMaritime,AviationandHaulageSectors.”AdvancesinAppliedEnergy1G7.2016.“G7Ise-ShimaLeaders’Declaration.”https://www.(February):100008.doi:10.1016/j.adapen.2021.100008.mofa.go.jp/files/000160266.pdf.GreenCoolingInitiative.2023a.“GlobalGreenhouseGasG7.2022.“G7Climate,EnergyandEnvironmentMin-EmissionsfromtheRACSector.”https://www.green-cool-isters’Communiqué.”https://www.bundesregierung.ing-initiative.org/country-data#!indirect-emissions/de/resource/blob/974430/2044350/84e3800881all-sectors/absolute.70c69e6b6ad45dbd133ef8/2022-05-27-1-climate-minis-ters-communique-data.pdf?download=1.GreenCoolingInitiative.2023b.“TheTechnologybehindGreenCooling.”https://www.green-cooling-initiative.org/G7Germany.2022.“G7Climate,EnergyandEnvironmentgreen-cooling/technology.Ministers’Communiqué.”https://www.bundesregierung.de/resource/blob/974430/2044350/84e3800881GreenHydrogenOrganisationandRacetoZero.n.d.“The70c69e6b6ad45dbd133ef8/2022-05-27-1-climate-minis-AfricaGreenHydrogenAlliance:RealisingAfrica’sGreenters-communique-data.pdf?download=1.HydrogenPotentialthroughGovernmentLeadership.”AccessedApril11,2023.https://gh2.org/sites/default/G20.2009.“Leaders’Statement:ThePittsburghSummit.”files/2022-08/GH2_The%20Africa%20Green%20Hydro-https://www.treasury.gov/resource-center/international/gen%20Alliance_Fact%20Sheet.pdf.g7-g20/Documents/pittsburgh_summit_leaders_state-ment_250909.pdf.GreenSteelTracker.2023.“GreenSteelTracker.”Lead-ershipGroupforIndustryTransition.https://www.Günther,A.,A.Barthelmes,V.Huth,H.Joosten,G.Jurasinski,industrytransition.org/green-steel-tracker/.F.Koebsch,andJ.Couwenberg.2020.“PromptRewettingofDrainedPeatlandsReducesClimateWarmingdespiteGreene,D.L.,J.M.Greenwald,andR.E.Ciez.2020.“U.S.FuelMethaneEmissions.”NatureCommunications11(1):1644.EconomyandGreenhouseGasStandards:WhatHavedoi:10.1038/s41467-020-15499-z.TheyAchievedandWhatHaveWeLearned?”EnergyPolicy146(November):111783.doi:10.1016/j.enpol.2020.111783.Guo,X.,J.Broeze,J.J.Groot,H.Axmann,andM.Volle-bregt.2020.“AWorldwideHotspotAnalysisonFoodGregersen,H.,H.ElLakany,L.Bailey,andA.White.LossandWaste,AssociatedGreenhouseGasEmis-2011.“GreenerSideofREDD+:LessonsforREDD+fromsions,andProteinLosses.”Sustainability12(18):7488.CountriesWhereForestAreaIsIncreasing.”Washing-doi:10.3390/su12187488.ton,DC:RightsandResourcesInitiative.http://rgdoi.net/10.13140/2.1.1410.6401.STATEOFCLIMATEACTION2023209Hansen,M.C.,P.V.Potapov,R.Moore,M.Hancher,S.A.Henderson,B.B.,P.J.Gerber,T.E.Hilinski,A.Falcucci,D.S.Turubanova,A.Tyukavina,D.Thau,etal.2013.“High-Reso-Ojima,M.Salvatore,andR.T.Conant.2015.“GreenhouselutionGlobalMapsof21st-CenturyForestCoverChange.”GasMitigationPotentialoftheWorld’sGrazingLands:Science342(6160):850–53.doi:10.1126/science.1244693.ModelingSoilCarbonandNitrogenFluxesofMitigationPractices.”Agriculture,Ecosystems&Environment207Hanson,C.,K.Buckingham,S.Dewitt,andL.Laestadius.(September):91–100.doi:10.1016/j.agee.2015.03.029.2015.“TheRestorationDiagnostic:AMethodforDevelop-ingForestLandscapeRestorationStrategiesbyRapidlyHendrick,M.F.,R.Ackley,B.Sanaie-Movahed,X.Tang,andAssessingtheStatusofKeySuccessFactors.”Washing-N.G.Phillips.2016.“FugitiveMethaneEmissionsfromLeak-ton,DC:WorldResourcesInstitute.https://www.wri.org/ProneNaturalGasDistributionInfrastructureinUrbanresearch/restoration-diagnostic.Environments.”EnvironmentalPollution213(June):710–16.doi:10.1016/j.envpol.2016.01.094.Hanson,C.,B.Lipinski,K.Robertson,D.Dias,I.Gavilan,P.Gréverath,S.Ritter,etal.2017.“FoodLossandWasteHensley,B.,andA.Lappetelainen.2023.“RacetotheTopAccountingandReportingStandard.”Washington,DC:onCleanEnergy:TheUSandEUResponsetoChina’sWorldResourcesInstitute.https://flwprotocol.org/wp-con-Dominance.”Kaya,InevitablePolicyResponse,Principlestent/uploads/2017/05/FLW_Standard_final_2016.pdf.forResponsibleInvestment.https://www.unpri.org/inevitable-policy-response/new-ipr-report-examines-Harris,N.L.,D.A.Gibbs,A.Baccini,R.A.Birdsey,S.deBruin,global-race-to-the-top-on-clean-energy/11061.article.M.Farina,L.Fatoyinbo,etal.2021.“GlobalMapsofTwen-ty-FirstCenturyForestCarbonFluxes.”NatureClimateHerforth,A.,andS.Ahmed.2015.“TheFoodEnvironment,ItsChange11(3):234–40.doi:10.1038/s41558-020-00976-6.EffectsonDietaryConsumption,andPotentialforMea-surementwithinAgriculture-NutritionInterventions.”FoodHart,A.2023.“BHPtoPilotGreenSmeltingFurnaceSecurity7:505–20.UsingElectricity,HydrogenandPilbaraIronOre.”RenewEconomy,March23.https://reneweconomy.com.au/Herrero,M.,P.Havlík,H.Valin,A.Notenbaert,M.C.Rufino,bhp-to-pilot-green-smelting-furnace-using-electricity-P.K.Thornton,M.Blümmel,etal.2013.“BiomassUse,hydrogen-and-pilbara-iron-ore/.Production,FeedEfficiencies,andGreenhouseGasEmissionsfromGlobalLivestockSystems.”ProceedingsHarvey,V.2022.“TheEU’sCarbonRemovalCer-oftheNationalAcademyofSciences110(52):20888–93.tificationFramework:PoliticalLeadershipordoi:10.1073/pnas.1308149110.VoluntaryHurdle?”December8.https://www.euractiv.com/section/climate-environment/opinion/High-LevelChampions.2022a.“RoofoverOurHeads:the-eus-carbon-removal-certification-framework-politi-DeliveringResilient,Affordable,LowCarbonHomesfor2bncal-leadership-or-voluntary-hurdle/.Peopleby2050.”UnitedNationsClimateChangeHigh-LevelChampions.https://climatechampions.unfccc.int/Hasanbeigi,A.,L.A.Kirshbaum,andB.Collison.2023.roof-over-our-heads-delivering-resilient-affordable-low-“IndustrialElectrificationinU.S.States.”GlobalEfficiencycarbon-homes-for-2bn-people-by-2050/?utm_medi-IntelligenceLLCandDavidGardinerandAssociates.um=website&utm_source=archdaily.com.https://static1.squarespace.com/static/5877e86f9de4bb-8bce72105c/t/6401cecb6e498a2a2dfa5ed1/1677840114109/High-LevelChampions.2022b.“TheBreakthroughAgenda:State+level+industrial+Electrification-2.23.2023rev.pdf.AMasterPlantoAccelerateDecarbonizationofFiveMajorSectors.”RacetoZero.https://climatechampions.unfccc.Hawkins,A.J.2022.“Yes,theNewElectricVehicleTaxint/breakthrough-agenda/.CreditsAreReallyConfusing,butWeCanHelp.”Verge,August17.https://www.theverge.com/23310457/inflation-High-LevelChampions.2023.“InternationalShipping.”reduction-act-ev-tax-credit-act-explainer-how-to.https://climatechampions.unfccc.int/system/shipping/.Hegarty,R.S.,R.A.Passetti,K.M.Dittmer,Y.Wang,S.Shelton,High-LevelChampions.n.d.“Nature-BasedSolutions.”J.Emmet-Booth,E.Wollenberg,etal.2021.AnEvaluationofAccessedAugust9,2023.https://climatechampions.EmergingFeedAdditivestoReduceMethaneEmissionsunfccc.int/system/nature-based-solutions/.fromLivestock.Report.NewDelhi:CGIARResearchPro-gramonClimateChange,AgricultureandFoodSecurityHirth,L.,andJ.C.Steckel.2016.“TheRoleofCapi-andNewZealandAgriculturalGreenhouseGasResearchtalCostsinDecarbonizingtheElectricitySector.”CentreinitiativeoftheGlobalResearchAlliance.EnvironmentalResearchLetters11(11):114010.https://cgspace.cgiar.org/handle/10568/116489.doi:10.1088/1748-9326/11/11/114010.HeidelbergMaterials.2023.“ProjectStatusBrevikCCSHockenos,P.2023.“InEurope’sCleanEnergySpring2023.”https://www.brevikccs.com/en/status.Transition,IndustryLookstoHeatPumps.”YaleEnvironment360.https://e360.yale.edu/features/europe-industrial-heat-pumps.STATEOFCLIMATEACTION2023210Höglund,R.2022.“ListofKnownCDRPurchases:HydrogenCentral.2023a.“GreenAmmoniaProductionMarginalCarbon.”GoogleDocs.PlantsforSouthernEurope,SouthAmericaandAfrica:https://docs.google.com/spreadsheets/d/1BH_B_ProtonVentures.”January29.https://hydrogen-central.Df_7e2l6AH8_8a0aK70nlAJXfCTwfyCgxkL5C8/com/green-ammonia-production-plants-southern-eu-edit?usp=embed_facebook.rope-south-america-africa-proton-ventures/.Höglund,R.,andK.Niparko.2023.“Cdr.Fyi.”HydrogenCentral.2023b.“ATOMEEnergySecuresRenew-https://www.cdr.fyi/.ableEnergyandFirstOfftakeforIcelandGreenAmmoniaPlant.”April7.https://hydrogen-central.com/atome-en-Höhl,M.,V.Ahimbisibwe,J.A.Stanturf,P.Elsasser,M.Kleine,ergy-secures-renewable-energy-first-offtake-ice-andA.Bolte.2020.“ForestLandscapeRestoration:Whatland-green-ammonia-plant/.GeneratesFailureandSuccess?”Forests11(9):938.doi:10.3390/f11090938.IATA(InternationalAirTransportAssociation).2022.“2022SAFProductionIncreases200%:MoreIncentivesNeededHolger,D.2023.“AtLeast10,000ForeignCompa-toReachNetZero.”December7.https://www.iata.org/en/niestoBeHitbyEUSustainabilityRules.”WallStreetpressroom/2022-releases/2022-12-07-01/.Journal,April5.https://www.wsj.com/articles/at-least-10-000-foreign-companies-to-be-hit-by-eu-IATA.2023.“StatementonRefuelEUPro-sustainability-rules-307a1406.posals.”https://www.iata.org/en/pressroom/2023-releases/2023-04-26-02/.Honegger,M.,M.Poralla,A.Michaelowa,andH.-M.Ahonen.2021.“WhoIsPayingforCarbonDioxideRemoval?Design-ICAO(InternationalCivilAviationOrganization).2022.ingPolicyInstrumentsforMobilizingNegativeEmissions“ICAOGFAAF:SAFOfftakeAgreements.”Technologies.”FrontiersinClimate3.https://www.frontier-http://lookerstudio.google.com/report-sin.org/article/10.3389/fclim.2021.672996.ing/8e9488a2-1811-4b13-b7eb-b3fc2e970160/page/FTHXC?feature=opengraph.HPTMagazine.2023.“USInflationReductionAct,EUNetZeroIndustryAct,andHeatPumpICAO.2023.“LongTermGlobalAspirationalGoal(LTAG)forActionPlan:ImportantClimatePoliciesforHeatInternationalAviation.”https://www.icao.int/environmen-Pumps.”HeatPumpingTechnologiesMagazine41tal-protection/Pages/LTAG.aspx.(1/2023):7https://issuu.com/hptmagazine/docs/hpt_magazine_1_2023_final_interaktiv/s/22625027ICCT(InternationalCouncilonCleanTransportation).2020.“Vision2050:AStrategytoDecarbonizetheGlobalHrelja,R.,andT.Rye.2022.“DecreasingtheShareofTravelTransportSectorbyMid-century.”https://theicct.org/byCar:StrategiesforImplementing‘Push’or‘Pull’Mea-publications/vision2050.suresinaTraditionallyCar-CentricTransportandLandUsePlanning.”InternationalJournalofSustainableTrans-IEA(InternationalEnergyAgency).2017a.“EnergyTechnol-portation,March,1–13.doi:10.1080/15568318.2022.2051098.ogyPerspectives2017.”www.iea.org/etp2017.Hubau,W.,S.L.Lewis,O.L.Phillips,K.Affum-Baffoe,H.IEA.2017b.WorldEnergyOutlook2017.Paris:IEA.Beeckman,A.Cuní-Sanchez,A.K.Daniels,etal.2020.https://www.iea.org/reports/world-energy-outlook-2017.“AsynchronousCarbonSinkSaturationinAfricanandAmazonianTropicalForests.”Nature579(7797):80–87.IEA.2018.TheFutureofCooling.Paris:IEA.https://www.iea.doi:10.1038/s41586-020-2035-0.org/reports/the-future-of-cooling.Hugelius,G.,J.Loisel,S.Chadburn,R.B.Jackson,M.Jones,IEA.2019.“PerspectivesfortheCleanEnergyG.MacDonald,M.Marushchak,etal.2020.“LargeStocksofTransition2019:TheCriticalRoleofBuild-PeatlandCarbonandNitrogenAreVulnerabletoPer-ings.”https://iea.blob.core.windows.net/mafrostThaw.”ProceedingsoftheNationalAcademyofassets/026bff1b-821d-48bc-8a0e-7c10280c62bc/Perspec-Sciences117(34):20438–46.doi:10.1073/pnas.1916387117.tives_for_the_Clean_Energy_Transition_2019.pdf.Huling,R.2020.“BREAKING:World’sFirstApprovalofCulti-IEA.2020a.“BuildingsSectorEnergyIntensityinSelectedvatedMeatSales.”GoodFoodInstitute(blog),December1.RegionsintheSustainableDevelopmentScenario,https://gfi.org/blog/cultivated-meat-singapore/.2000–2030—Charts—Data&Statistics.”https://www.iea.org/data-and-statistics/charts/buildings-sector-ener-Humpenöder,F.,K.Karstens,H.Lotze-Campen,J.Leifeld,gy-intensity-in-selected-regions-in-the-sustainable-de-L.Menichetti,A.Barthelmes,andA.Popp.2020.“Peatlandvelopment-scenario-2000-2030.ProtectionandRestorationAreKeyforClimateChangeMitigation.”EnvironmentalResearchLetters15(10):104093.IEA.2020b.EnergyTechnologyPerspectivesdoi:10.1088/1748-9326/abae2a.2020.Paris:IEA.https://www.iea.org/reports/energy-technology-perspectives-2020.Humpenöder,F.,B.L.Bodirsky,I.Weindl,H.Lotze-Campen,T.Linder,andA.Popp.2022.“ProjectedEnvironmentalIEA.2020c.SustainableRecovery:WorldEnergyOutlookBenefitsofReplacingBeefwithMicrobialProtein.”NatureSpecialReport.Paris:IEA.https://www.iea.org/reports/605(7908):90–96.doi:10.1038/s41586-022-04629-w.sustainable-recovery.STATEOFCLIMATEACTION2023211IEA.2021a.FinancingCleanEnergyTransitionsinEmergingIEA.2022k.Heating.Paris:IEA.https://www.iea.org/andDevelopingEconomies.Paris:IEA.https://www.iea.org/reports/heating.reports/financing-clean-energy-transitions-in-emerg-ing-and-developing-economies.IEA.2022l.“HydrogenProjectsDatabase.”https://www.iea.org/data-and-statistics/data-product/IEA.2021b.“NetZeroby2050:ARoadmapfortheGlobalhydrogen-projects-database.EnergySector.”https://iea.blob.core.windows.net/assets/deebef5d-0c34-4539-9d0c-10b13d840027/NetZero-IEA.2022m.Industry.Paris:IEA.https://www.iea.org/by2050-ARoadmapfortheGlobalEnergySector_CORR.pdf.reports/industry.IEA.2021c.“NetZeroby2050HingesonaGlobalPushtoIEA.2022n.Lighting.Paris:IEA.https://www.iea.org/IncreaseEnergyEfficiency.”https://www.iea.org/articles/reports/lighting.net-zero-by-2050-hinges-on-a-global-push-to-in-crease-energy-efficiency.IEA.2022o.“Poland2022:EnergyPolicyReview.”https://iea.blob.core.windows.net/assets/b9ea5a7d-3e41-IEA.2021d.TrackingBuildings.Paris:IEA.https://www.iea.4318-a69e-f7d456ebb118/Poland2022.pdf.org/reports/tracking-buildings-2021.IEA.2022p.Renovationofnear20%ofExistingBuildingIEA.2021e.UrbanisationandIndustrialisationinIndia:IndiaStocktoZero-Carbon-Readyby2030IsAmbitiousEnergyOutlook2021—Analysis.Paris:IEA.butNecessary.Paris:IEA.https://www.iea.org/reports/https://www.iea.org/reports/india-energy-outlook-2021/renovation-of-near-20-of-existing-building-stock-to-ze-urbanisation-and-industrialisation-in-india.ro-carbon-ready-by-2030-is-ambitious-but-necessary.IEA.2021f.“WorldEnergyBalances2021.”IEA.2022q.SDG7:DataandProjections.Paris:IEA.https://www.iea.org/data-and-statistics/data-product/https://www.iea.org/reports/sdg7-data-and-projections/world-energy-balances.access-to-clean-cooking.IEA.2022a.AppliancesandEquipment.Paris:IEA.IEA.2022r.SpaceCooling.Paris:IEA.https://www.iea.org/https://www.iea.org/reports/appliances-and-equipment.reports/space-cooling.IEA.2022b.Aviation:Analysis.Paris:IEA.https://www.iea.IEA.2022s.“TheFutureofHeatPumps.”org/reports/aviation.doi:10.1787/2bd71107-en.IEA.2022c.Buildings.Paris:IEA.https://www.iea.org/IEA.2022t.WorldEnergyOutlook2022.https://www.iea.org/reports/buildings.reports/world-energy-outlook-2022.IEA.2022d.“DirectAirCapture:AKeyTechnologyIEA.2022u.NuclearPowerandSecureEnergyTransitions:forNetZero.”https://iea.blob.core.windows.net/FromToday’sChallengestoTomorrow’sCleanEnergyassets/78633715-15c0-44e1-81df-41123c556d57/DirectAir-Systems.Paris:OrganisationforEconomicCo-operationCapture_Akeytechnologyfornetzero.pdf.andDevelopment.doi:10.1787/aca1d7ee-en.IEA.2022e.DistrictHeating.Paris:IEA.https://www.iea.org/IEA.2022v.Grid-ScaleStorage.Paris:IEA.September.reports/district-heating.https://www.iea.org/reports/grid-scale-storage.IEA.2022f.“GlobalElectricVehicleOutlookIEA.2022w.“EnergyTechnologyPatentsDataExplorer.”2022.”https://iea.blob.core.windows.net/assets/September2.https://www.iea.org/data-and-statistics/ad8fb04c-4f75-42fc-973a-6e54c8a4449a/GlobalElec-data-tools/energy-technology-patents-data-explorer.tricVehicleOutlook2022.pdf.IEA.2022x.“CoalinNetZeroTransitions:StrategiesIEA.2022g.GlobalEnergyReview:CO2EmissionsforRapid,SecureandPeople-CentredChange.”in2021.Paris:IEA.https://www.iea.org/reports/doi:10.1787/5873f7bb-en.global-energy-review-co2-emissions-in-2021-2.IEA.2022y.Renewables2022.Paris:IEA.https://www.iea.IEA.2022h.GlobalHydrogenReview2022.Paris:IEA.org/reports/renewables-2022.https://www.iea.org/reports/global-hydrogen-review-2022.IEA.2023a.“CCUSProjectsDatabase.”https://www.iea.org/data-and-statistics/data-product/IEA.2022i.“GreenhouseGasEmissionsfromEnergy,ccus-projects-database.asModifiedbytheJointResearchCentre.”https://www.iea.org/data-and-statistics/data-product/IEA.2023b.“Electrolysers.”https://www.iea.org/greenhouse-gas-emissions-from-energy-highlights.energy-system/low-emission-fuels/electrolysers.IEA.2022j.HeatPumps.Paris:IEA.https://www.iea.org/IEA.2023c.FossilFuelsConsumptionSubsi-reports/heat-pumps.dies2022.Paris:IEA.https://www.iea.org/reports/fossil-fuels-consumption-subsidies-2022.STATEOFCLIMATEACTION2023212IEA.2023d.“GlobalCO2EmissionsfromtheOpera-IEA,UNStatisticsDivision,WorldBank,andWorldHealthtionofBuildingsintheNetZeroScenario,2010–2030.”Organization.2022b.“TrackingSDG7:TheEnergyProgresshttps://www.iea.org/data-and-statistics/charts/Report2022.”Washington,DC:WorldBank.https://track-global-co2-emissions-from-the-operation-of-buildings-ingsdg7.esmap.org/data/files/download-documents/in-the-net-zero-scenario-2010-2030.sdg7-report2022-full_report.pdf.IEA.2023e.GlobalElectricVehicleOutlook2023.Paris:IEA.IFC(InternationalFinanceCorporation).2023a.“IFCandhttps://www.iea.org/reports/global-ev-outlook-2023.SococimPartnerinLandmarkDealtoBoostLow-CarbonCementProductioninSenegal.”https://pressroom.ifc.org/IEA.2023f.“GlobalEVDataExplorer.”https://www.iea.org/all/pages/PressDetail.aspx?ID=27431.data-and-statistics/data-tools/global-ev-data-explorer.IFC.2023b.“IFCInvestsinBostonMetaltoSupportGlobalIEA.2023g.“GlobalFloorAreaandBuildingsEnergyCommercializationofZero-CarbonSteelProduc-IntensityintheNetZeroScenario,2010–2030.”tion.”https://pressroom.ifc.org/all/pages/PressDetail.https://www.iea.org/data-and-statistics/charts/aspx?ID=27557.global-floor-area-and-buildings-energy-intensity-in-the-net-zero-scenario-2010-2030.IFPRI(InternationalFoodPolicyResearchInsti-tute).2022.GlobalFoodPolicyReport:ClimateIEA.2023h.“Rail.”https://www.iea.org/energy-system/ChangeandFoodSystems.Washington,DC:IFPRI.transport/rail.doi:10.2499/9780896294257.IEA.2023i.TheStateofCleanEnergyTechnologyIFRS(InternationalFinancialReportingStandards).2023.Manufacturing.Paris:IEA.https://www.iea.org/reports/“ISSBIssuesInauguralGlobalSustainabilityDisclosurethe-state-of-clean-technology-manufacturing.Standards.”June.https://www.ifrs.org/news-and-events/news/2023/06/issb-issues-ifrs-s1-ifrs-s2/.IEA.2023j.“TrackingBuildings.”https://www.iea.org/energy-system/buildings.IISD(InternationalInstituteforSustainableDevelopment).2022.“EnergyPolicyTracker.”https://www.energypol-IEA.2023k.TrackingCleanEnergyProgressicytracker.org/.2023.Paris:IEA.https://www.iea.org/reports/tracking-clean-energy-progress-2023.ILO(InternationalLabourOrganization).n.d.“FrequentlyAskedQuestionsonJustTransition.”AccessedJulyIEA.2023l.“WorldEnergyBalances.”https://www.2,2023.http://www.ilo.org/global/topics/green-jobs/iea.org/data-and-statistics/data-product/WCMS_824102/lang--en/index.htm.world-energy-balances.IMO(InternationalMaritimeOrganization).2020.“FourthIEA.2023m.WorldEnergyInvestment2023.IMOGreenhouseGasStudy.”https://www.imo.org/en/Paris:IEA.https://www.iea.org/reports/OurWork/Environment/Pages/Fourth-IMO-Greenhouse-world-energy-investment-2023.Gas-Study-2020.aspx.IEA.2023n.ElectricityMarketReport2023.Paris:IEA.IMO.2023.“RevisedGHGReductionStrategyforGlobalhttps://www.iea.org/reports/ShippingAdopted.”July7.electricity-market-report-2023.Indrajaya,Y.,T.W.Yuwati,S.Lestari,B.Winarno,B.H.Naren-IEA.2023o.CO2Emissionsin2022.https://www.iea.org/dra,H.Y.S.H.Nugroho,D.Rachmanadi,etal.2022.“Tropicalreports/co2-emissions-in-2022.ForestLandscapeRestorationinIndonesia:AReview.”Land11(3):328.doi:10.3390/land11030328.IEA.2023p.“TrackingSDG7:TheEnergyProg-ressReport,2023.”https://www.iea.org/news/IngkaGroup.2022.“IKEAHalvesFoodWasteandSavesbasic-energy-access-lags-amid-renewable-+20MMealsinFourYears.”https://www.ingka.com/news/opportunities-new-report-shows.ikea-stores-halve-production-food-waste-saving-more-than-20-million-meals-over-four-years/.IEA.2023q.“DirectAirCapture.”https://www.iea.org/energy-system/carbon-capture-utilisation-and-IOSCO(InternationalOrganizationofSecuritiesstorage/direct-air-capture.Commissions).2023.“IOSCOEndorsestheISSB’sSustain-ability-RelatedFinancialDisclosuresStandards.”IEA,IRENA(InternationalRenewableEnergyAgency),https://www.iosco.org/news/pdf/IOSCONEWS703.pdf.andHLCs(UNClimateChangeHigh-LevelChampions).2022a.BreakthroughAgendaReport2022:Accelerat-IPBES(IntergovernmentalScience-PolicyPlatformoningSectorTransitionsthroughStrongerInternationalBiodiversityandEcosystemServices).2019.GlobalAssess-Collaboration.Paris:IEA.https://www.iea.org/reports/mentReportonBiodiversityandEcosystemServicesofbreakthrough-agenda-report-2022.theIntergovernmentalScience-PolicyPlatformonBiodi-versityandEcosystemServices.EditedbyE.S.Brondizio,J.Settele,andS.Díaz.Bonn,Germany:IPBESSecretariat.https://doi.org/10.5281/zenodo.3831673.STATEOFCLIMATEACTION2023213IPCC(IntergovernmentalPanelonClimateChange).IRENA.2021a.“ReachingZerowithRenewables:Biojet2018.SpecialReport:GlobalWarmingof1.5C.Cambridge:Fuels.”https://www.irena.org/publications/2021/Jul/CambridgeUniversityPress.https://www.ipcc.ch/sr15/.Reaching-Zero-with-Renewables-Biojet-Fuels.IPCC.2019.ClimateChangeandLand:AnIPCCSpecialIRENA.2021b.“RenewablePowerGenerationCostsinReportonClimateChange,Desertification,LandDeg-2020.”https://www.irena.org/publications/2021/Jun/radation,SustainableLandManagement,FoodSecurity,Renewable-Power-Costs-in-2020.andGreenhouseGasFluxesinTerrestrialEcosystems.EditedbyP.R.Shukla,J.Skea,E.C.Buendia,V.Masson-Del-IRENA.2022a.“RenewableCapacityStatistics2022.”motte,H.-O.Pörtner,D.C.Roberts,P.Zhai,etal.Cambridge:https://www.irena.org/publications/2022/Apr/CambridgeUniversityPress.https://www.ipcc.ch/srccl/.Renewable-Capacity-Statistics-2022.IPCC.2021.ClimateChange2021:ThePhysicalScienceIRENA.2022b.“ElSalvadorEyesMajorRenewablesBasis.ContributionofWorkingGroupItotheSixthPushunderNewPartnershipwithIRENA.”January16.AssessmentReportoftheIntergovernmentalPanelonhttps://www.irena.org/News/pressreleases/2022/Jan/ClimateChange.EditedbyV.Masson-Delmotte,P.Zhai,El-Salvador-Eyes-Major-Renewables-Push-Under-New-A.Pirani,S.L.Connors,C.Péan,S.Berger,N.Caud,etal.Partnership-with-IRENA.Cambridge:CambridgeUniversityPress.https://www.ipcc.ch/report/ar6/wg1/.IRENA.2022c.“RenewableEnergyJobsHit12.7MillionGlobally.”September22.https://www.IPCC.2022a.ClimateChange2022:Impacts,Adap-irena.org/News/pressreleases/2022/Sep/tation,andVulnerability.ContributionofWorkingRenewable-Energy-Jobs-Hit-12-7-Million-Globally.GroupIItotheSixthAssessmentReportoftheInter-governmentalPanelonClimateChange.EditedbyIRENA.2023a.“RenewableCapacityStatistics2023.”H.-O.Pörtner,D.C.Roberts,M.Tignor,E.S.Poloczanska,https://www.irena.org/Publications/2023/Mar/K.Mintenbeck,A.Alegría,M.Craig,etal.Cambridge:Renewable-capacity-statistics-2023.CambridgeUniversityPress.https://www.ipcc.ch/report/sixth-assessment-report-working-group-ii/.IRENA.2023b.“RenewablePowerGenerationCostsin2022.”AbuDhabi:IRENA.IPCC.2022b.ClimateChange2022:MitigationofClimatehttps://www.irena.org/Publications/2023/Aug/Change.ContributionofWorkingGroupIIItotheSixthRenewable-power-generation-costs-in-2022.AssessmentReportoftheIntergovernmentalPanelonClimateChange.EditedbyP.R.Shukla,J.Skea,R.Slade,A.IRENA,IEA,andREN21.2020.“RenewableEnergyPol-AlKhourdajie,R.vanDiemen,D.McCollum,M.Pathak,eticiesinaTimeofTransition:HeatingandCooling.”al.Cambridge:CambridgeUniversityPress.https://www.https://www.irena.org/-/media/Files/IRENA/Agency/ipcc.ch/report/ar6/wg3/.Publication/2020/Nov/IRENA_IEA_REN21_Policies_Heat-ing_Cooling_2020.pdf.IPCC.2022c.“LimitingGlobalWarming:Buildings.”Factsheet.https://buildingperformanceassurance.IRMA(InitiativeforResponsibleMiningAssurance).n.d.org/wp-content/uploads/2023/01/IPCC-Fact-Sheet-“Members/Partners.”https://responsiblemining.net/Buildings-2022.pdf.members-partners/.IPCC.2023.ClimateChange2023:SynthesisReport.IRS(InternalRevenueService).2023.“IRSUpdatesFre-ContributionofWorkingGroupsI,IIandIIItotheSixthquentlyAskedQuestionsRelatedtoNew,PreviouslyAssessmentReportoftheIntergovernmentalPanelonOwnedandQualifiedCommercialCleanVehicleCredits.”ClimateChange.EditedbyCoreWritingTeam,H.Lee,https://www.irs.gov/pub/taxpros/fs-2023-08.pdf.andJ.Romero,35–115.Geneva:IPCC.doi:10.59327/IPCC/AR6-9789291691647.ITA(InternationalTradeAdministration).2022.“Uru-guay:RenewableEnergyEquipment.”September22.IPS(InternationalPeatlandSociety).n.d.“Organichttps://www.trade.gov/country-commercial-guides/Soil.”AccessedAugust3,2023.https://peatlands.org/uruguay-renewable-energy-equipment.peat/organic-soil/.ITA.2023.“China:CountryCommercialGuide.”IRENA(InternationalRenewableEnergyAgency).https://www.trade.gov/country-commercial-guides/2019.“AdvancedBiofuels:WhatHoldsThemchina-design-and-construction.Back?”https://irena.org/publications/2019/Nov/Advanced-biofuels-What-holds-them-back.ITDP(InstituteforTransportationandDevelopmentPolicy).2021.“RapidTransitDatabase.”https://www.itdp.org/IRENA.2020.“RenewablesReadinessAssessment:Elrapid-transit-database/.Salvador.”https://www.irena.org/publications/2020/Dec/Renewables-Readiness-Assessment-El-Salvador.ITDP.2022.“MakingtheEconomicCaseforCycling.”https://www.itdp.org/publication/economics-of-cycling.STATEOFCLIMATEACTION2023214ITF(InternationalTransportForum).2020.“GoodJiang,B.,M.Mandloi,R.Carlson,M.Hope,M.Ziffer,N.toGo?AssessingtheEnvironmentalPerfor-Campanella,A.Rosa,etal.2022.“Treeprint:USInflationmanceofNewMobility.”https://www.itf-oecd.org/ReductionAct—ATippingPointinClimateAction.”Creditgood-to-go-environmental-performance-new-mobility.Suisse.https://www.credit-suisse.com/about-us-news/en/articles/news-and-expertise/us-inflation-reduc-ITF.2021.ITFTransportOutlook2021.tion-act-a-catalyst-for-climate-action-202211.html.https://www.oecd-ilibrary.org/transport/itf-transport-outlook-2021_16826a30-en.Jones,P.2022.“HowMuchDoElectricCarBat-teriesCost?(10Examples).”MotorandWheels,ITF.2023a.ITFTransportOutlook2023.Paris:August25.https://motorandwheels.com/OECDPublishing.how-much-do-electric-car-batteries-cost/.ITF.2023b.“DecarbonisationandthePricingJong,H.N.2022.“InNewClimateDeal,NorwayWillofRoadTransport.”https://www.itf-oecd.org/PayIndonesia$56MillionforDropinDeforesta-decarbonisation-pricing-road-transport.tion,Emissions.”MongabayEnvironmentalNews,November1s.https://news.mongabay.com/2022/11/ITUC(InternationalTradeUnionConfederation).2017.in-new-climate-deal-norway-will-pay-indonesia-56-“JustTransition:WhereAreWeNowandWhat’sNext?million-for-drop-in-deforestation-emissions/.AGuidetoNationalPoliciesandInternationalClimateGovernance.”September19.https://www.ituc-csi.org/Kavlak,G.,J.McNerney,andJ.E.Trancik.2018.“Evaluatingjust-transition-where-are-we-now.theCausesofCostReductioninPhotovoltaicModules.”EnergyPolicy123(December):700–710.doi:10.1016/j.IUCN(InternationalUnionforConversationofNature).enpol.2018.08.015.2020.RestoreOurFuture:ImpactandPotentialofForestLandscapeRestoration.Bonn,Germany:Keith,D.R.,S.Houston,andS.Naumov.2019.“Vehi-IUCN.https://www.bonnchallenge.org/resources/cleFleetTurnoverandtheFutureofFuelEconomy.”bonn-challenge-2020-report.EnvironmentalResearchLetters14(2):021001.doi:10.1088/1748-9326/aaf4d2.Jackson,R.B.,S.Abernethy,J.G.Canadell,M.Cargnello,S.J.Davis,S.Féron,S.Fuss,etal.2021.“AtmosphericMethaneKersey,J.,N.D.Popovich,andA.A.Phadke.2022.“RapidBat-Removal:AResearchAgenda.”PhilosophicalTransac-teryCostDeclinesAcceleratetheProspectsofAll-ElectrictionsoftheRoyalSocietyA:Mathematical,PhysicalandInterregionalContainerShipping.”NatureEnergy7(7):EngineeringSciences379(2210):20200454.doi:10.1098/664–74.doi:10.1038/s41560-022-01065-y.rsta.2020.0454.Khan,T.,andZ.Yang.2022.“ElectrificationofHeavy-DutyJaeger,J.2023.“These8CountriesAreScalingVehiclesinEmergingMarkets.”InternationalCouncilonUpRenewableEnergytheFastest.”WRIInsightsCleanTransportation.https://theicct.org/wp-content/(blog),July12.https://www.wri.org/insights/uploads/2022/09/global-hvs-evs-zev-electrif-hdv-countries-scaling-renewable-energy-fastest.emerg-mkts-sep22.pdf.Jaeger,J.,G.Walls,E.Clarke,J.C.Altamirano,A.Harsono,H.Khatib,T.,A.Bazyan,H.Assi,andS.Malhis.2021.“PalestineMountford,S.Burrow,etal.2021.“TheGreenJobsAdvan-EnergyPolicyforPhotovoltaicGeneration:CurrentStatustage:HowClimate-FriendlyInvestmentsAreBetterJobandWhatShouldBeNext?”Sustainability13(5):2996.Creators.”WorldResourcesInstitute.https://www.wri.org/doi:10.3390/su13052996.research/green-jobs-advantage-how-climate-friendly-investments-are-better-job-creators.Kim,B.F.,R.E.Santo,A.P.Scatterday,J.P.Fry,C.M.Synk,S.R.Cebron,M.M.Mekonnen,etal.2020.“Country-SpecificJaeger,J.,S.Boehm,C.Schumer,C.Fyson,J.Hecke,L.DietaryShiftstoMitigateClimateandWaterCri-Jeffery,K.Levin,etal.2023.“MethodologyUnderpinningses.”GlobalEnvironmentalChange62(May):101926.theStateofClimateActionSeries:2023Update.”Bezosdoi:10.1016/j.gloenvcha.2019.05.010.EarthFund,ClimateActionTracker,ClimateAnalytics,ClimateWorksFoundation,NewClimateInstitute,theKlevstrand,A.2023.“$20bnforGreenHydrogen:UNClimateChangeHigh-LevelChampions,andWorldOmanSignsSixDealswithInternationalDevelopersResourcesInstitute.https://doi.org/10.46830/writn.23.00043toBuild15GWofElectrolyserCapacity.”HydrogenInsight,March14.https://www.hydrogeninsight.com/Jama,B.,andG.Pizarro.2008.“AgricultureinAfrica:production/-20bn-for-green-hydrogen-oman-signs-six-StrategiestoImproveandSustainSmallholderProductiondeals-with-international-developers-to-build-15gw-of-Systems.”AnnalsoftheNewYorkAcademyofScienceselectrolyser-capacity/2-1-1419493.1136:218–32.doi:10.1196/annals.1425.034.Kopas,J.,E.York,X.Jin,S.P.Harish,R.Kennedy,S.V.Shen,James,F.2021.“GabonLeadsAfricainthePreservationandJ.Urpelainen.2020.“EnvironmentalJusticeinIndia:andConservationofForests.”UNDevelopmentPro-IncidenceofAirPollutionfromCoal-FiredPowerPlants.”gramme(blog),July23.https://www.undp.org/africa/EcologicalEconomics176(October):106711.doi:10.1016/j.blog/gabon-leads-africa-preservation-and-con-ecolecon.2020.106711.servation-forests.STATEOFCLIMATEACTION2023215Kreyling,J.,F.Tanneberger,F.Jansen,S.vanderLinden,C.Lamb,W.F.,T.Wiedmann,J.Pongratz,R.Andrew,M.Crippa,Aggenbach,V.Blüml,J.Couwenberg,etal.2021.“Rewet-J.G.J.Olivier,D.Wiedenhofer,etal.2021.“AReviewofTrendstingDoesNotReturnDrainedFenPeatlandstoTheirOldandDriversofGreenhouseGasEmissionsbySectorSelves.”NatureCommunications12(1):5693.doi:10.1038/from1990to2018.”EnvironmentalResearchLetters16(7):s41467-021-25619-y.073005.doi:10.1088/1748-9326/abee4e.Kröner,N.,andA.Newman.2021.“TheTCFDFrameworkLambin,E.F.,andP.R.Furumo.2023.“Deforestation-FreeHasPushedClimate-RelatedFinancialReportingintoCommoditySupplyChains:MythorReality?”AnnualtheMainstream.”SouthPole(blog),April12.https://www.ReviewofEnvironmentandResources48(1):null.southpole.com/blog/the-tcfd-framework-has-pushed-doi:10.1146/annurev-environ-112321-121436.climate-related-financial-reporting-into-the-main-stream---companies-must-move-fast.Lapola,D.M.,P.Pinho,J.Barlow,L.E.O.C.Aragão,E.Beren-guer,R.Carmenta,H.M.Liddy,etal.2023.“TheDriversandKrug,A.,T.Knoblinger,andO.Qvist.2023.“TruckElectrifica-ImpactsofAmazonForestDegradation.”Science379tion:ProfitBoosterorWhiteElephant?”ArthurD.Little,June(6630):eabp8622.doi:10.1126/science.abp8622.26.https://www.adlittle.com/sa-en/insights/viewpoints/truck-electrification-profit-booster-or-white-elephant.Larsen,K.,H.Pitt,M.Mobir,S.Movalia,A.Rivera,E.Rut-kowski,andT.Houser.2023.“GlobalEmergingClimateKrupnick,A.,andA.Bergman.2022.“IncentivesforCleanTechnologyDiffusionandtheInflationReductionHydrogenProductionintheInflationReductionAct.”Act.”RhodiumGroup.https://rhg.com/research/ResourcesfortheFuture.https://media.rff.org/documents/emerging-climate-technology-ira/.Report_22-13_UNfLJLS.pdf.Lawrence,D.,M.Coe,W.Walker,L.Verchot,andK.Vande-Kucharavy,D.,andR.DeGuio.2011.“LogisticSub-car.2022.“TheUnseenEffectsofDeforestation:BiophysicalstitutionModelandTechnologicalForecasting.”EffectsonClimate.”FrontiersinForestsandGlobalProcediaEngineering,ProceedingoftheETRIAWorldChange5.https://www.frontiersin.org/articles/10.3389/TRIZFutureConference,9(January):402–16.doi:10.1016/j.ffgc.2022.756115.proeng.2011.03.129.Lazarus,M.,andH.VanAsselt.2018.“FossilFuelSupplyandKulpa,J.,P.Olczak,T.Surma,andD.Matuszewska.2021.ClimatePolicy:ExploringtheRoadLessTaken.”Climatic“ComparisonofSupportProgramsfortheDevelop-Change150(1–2):1–13.doi:10.1007/s10584-018-2266-3.mentofPhotovoltaicsinPoland:MyElectricityProgramandRESAuctionSystem.”Energies15(1).https://doi.Lazos-Chavero,E.,J.Zinda,A.Bennett-Curry,P.Balvanera,org/10.3390/en15010121.G.Bloomfield,C.Lindell,andC.Negra.2016.“StakeholdersandTropicalReforestation:Challenges,Trade-Offs,andKumar,M.2023.“UnionBudgetGivesIndia’sGreenStrategiesinDynamicEnvironments.”Biotropica48(6):HydrogenMissionaShotintheArm.”Mongabay-India,900–914.doi:10.1111/btp.12391.February9.https://india.mongabay.com/2023/02/union-budget-gives-indias-green-hydrogen-mission-a-LD4D(LivestockDataforDecisions).2021.“PlantingTreesshot-in-the-arm/.forGreenerLivestockProductioninEthiopia.”Livestock&ClimateResilience:20InnovationsThatDemon-Kuzminski,L.,A.Halama,M.Nadolny,andJ.Dynowska.strateOpportunitiesforClimateAdaptationthrough2023.“EconomicInstrumentsandtheVisionofProsumerLivestock(blog).https://projects.livestockdata.org/EnergyinPoland:AnalysisofthePotentialImpactsoflivestock-climate-resilience/#1.the‘MyElectricity’Program.”Energies16(4).https://doi.org/10.3390/en16041680.Leal,M.,andM.Spalding.2022.TheStateoftheWorld’sMangroves2022.GlobalMangroveAlliance.https://www.Laan,T.,A.Geddes,N.Jones,O.BoisvonKursk,K.Kuehne,mangrovealliance.org/mangrove-forests/.L.Gerbase,C.O’Manique,etal.2023.FanningtheFlames:G20ProvidesRecordFinancialSupportforFossilFuels.Lebling,K.,M.Ge,K.Levin,R.Waite,J.Friedrich,C.Elliott,K.Winnipeg,MB:InternationalInstituteforSustainableRoss,F.Stolle,andN.Harris.2020.StateofClimateAction:Development.https://www.iisd.org/publications/report/AssessingProgresstoward2030and2050.Washing-fanning-flames-g20-support-of-fossil-fuels.ton,DC:WorldResourcesInstitute.https://www.wri.org/research/state-climate-action-assessing-progress-to-Lacerda,J.,andJ.VanDenBergh.2014.“Internationalward-2030-and-2050.DiffusionofRenewableEnergyInnovations:LessonsfromtheLeadMarketsforWindPowerinChina,GermanyandLebling,K.,H.Leslie-Bole,P.Psarras,E.Bridgwater,Z.USA.”Energies7(12):8236–63.doi:10.3390/en7128236.Byrum,andH.Pilorgé.2022a.“DirectAirCapture:Assess-ingImpactstoEnableResponsibleScaling.”WorldLackner,K.S.,andH.Azarabadi.2021.“BuyingDowntheResourcesInstitute,April.https://www.wri.org/research/CostofDirectAirCapture.”IndustrialandEngineeringdirect-air-capture-impacts.ChemistryResearch60(22):8196–8208.doi:10.1021/acs.iecr.0c04839.STATEOFCLIMATEACTION2023216Lebling,K.,E.Northrop,C.McCormick,andL.Bridgwa-Lewis,R.R.2001.“MangroveRestoration:CostsandBenefitster.2022b.“TowardResponsibleandInformedofSuccessfulEcologicalRestoration.”InProceedingsOcean-BasedCarbonDioxideRemoval:ResearchoftheMangroveValuationWorkshop,UniversitiSainsandGovernancePriorities.”WorldResourcesInstitute,Malaysia,Penang.Stockholm:BeijerInternationalInstituteNovember.https://www.wri.org/research/responsible-in-ofEcologicalEconomics.https://www.fao.org/forest-formed-ocean-based-carbon-dioxide-removal.ry/10560-0fe87b898806287615fceb95a76f613cf.pdf.Lebling,K.,C.Schumer,andD.Riedl.2023.“InternationalLewis,R.R.2005.“EcologicalEngineeringforSuccessfulGovernanceofTechnologicalCarbonRemoval:Sur-ManagementandRestorationofMangroveForests.”facingQuestions,ExploringSolutions.”WorldResourcesEcologicalEngineering24(4):403–18.doi:10.1016/j.Institute,August.https://www.wri.org/research/ecoleng.2004.10.003.international-carbon-removal-governance.Lewis,M.,M.Huang,B.Waldman,S.Carlisle,andK.Lee,S.Y.,S.Hamilton,E.B.Barbier,J.Primavera,andR.R.Simonen.2021.“EnvironmentalProductDeclarationLewis.2019.“BetterRestorationPoliciesAreNeededtoRequirementsinProcurementPolicies:AnAnalysisofConserveMangroveEcosystems.”NatureEcologyandEPDDefinitionsinBuyCleanandOtherNorthAmericanEvolution3(6):870–72.doi:10.1038/s41559-019-0861-y.ProcurementPolicies.”CarbonLeadershipForum,July.https://carbonleadershipforum.org/download/17510/.Legesse,B.A.,K.Jefferson-Moore,andT.Thomas.2018.“ImpactsofLandTenureandPropertyRightsonRefor-Lewis,A.N.,K.Kaaret,E.TorresMorales,E.Piirsalu,andK.estationInterventioninEthiopia.”LandUsePolicy70Axelsson.2023.“AcceleratingGreenPublicProcurement(January):494–99.doi:10.1016/j.landusepol.2017.11.018.forDecarbonizationoftheConstructionandRoadTrans-portSectorsintheEU.”StockholmEnvironmentInstitute.Leifeld,J.,andL.Menichetti.2018.“TheUnderappreciateddoi:10.51414/sei2023.007.PotentialofPeatlandsinGlobalClimateChangeMiti-gationStrategies.”NatureCommunications9(1):1071.Li,Q.,andM.Kim.2023.“China’sCarSalesFallfor2nddoi:10.1038/s41467-018-03406-6.MonthinJulyasPriceWarContinues.”Reuters,August8.https://www.reuters.com/business/autos-transportation/Leifeld,J.,C.Wüst-Galley,andS.Page.2019.“Intactandchinas-car-sales-fall-2nd-month-july-price-war-contin-ManagedPeatlandSoilsasaSourceandSinkofGHGsues-2023-08-08/.from1850to2100.”NatureClimateChange9(12):945–47.doi:10.1038/s41558-019-0615-5.Liang,X.,L.Scarazzato,L.Béraud-Sudreau,A.Assis,N.Tian,andD.LopesdaSilva.2023a.“TrendsinWorldMilitaryLenton,T.M.2020.“TippingPositiveChange.”PhilosophicalExpenditure,2022.”Solna,Sweden:StockholmInterna-TransactionsoftheRoyalSocietyB:BiologicalSciencestionalPeaceResearchInstitute.375(1794):20190123.doi:10.1098/rstb.2019.0123.https://www.sipri.org/publications/2023/sipri-fact-sheets/trends-world-military-expenditure-2022.Lenton,T.M.,H.Held,E.Kriegler,J.W.Hall,W.Lucht,S.Rahmstorf,andH.J.Schellnhuber.2008.“TippingEle-Liang,D.,H.Shi,Q.Lu,R.L.Quirino,andC.Zhang.2023b.mentsintheEarth’sClimateSystem.”Proceedingsofthe“Controlled-ReleaseFertilizerswithanUltralowCoatingNationalAcademyofSciences105(6):1786–93.doi:10.1073/Content.”JournalofMaterialsChemistryA11(9):4527–38.pnas.0705414105.Lipinski,B.2022.SDGTarget12.3onFoodLossandWaste:Lenton,T.M.,J.Rockström,O.Gaffney,S.Rahmstorf,K.Rich-2022ProgressReport.Washington,DC:Champions12.3.ardson,W.Steffen,andH.J.Schellnhuber.2019.“Climatehttps://champions123.org/publication/sdg-target-123-TippingPoints:TooRiskytoBetAgainst.”Nature575(7784):food-loss-and-waste-2022-progress-report.592–95.doi:10.1038/d41586-019-03595-0.Lipsett-Moore,G.J.,N.H.Wolff,andE.T.Game.2018.“Emis-Lesiv,M.,D.Schepaschenko,M.Buchhorn,L.See,M.sionsMitigationOpportunitiesforSavannaCountriesfromDürauer,I.Georgieva,M.Jung,etal.2022.“GlobalForestEarlyDrySeasonFireManagement.”NatureCommunica-ManagementDatafor2015ata100mResolution.”Scien-tions9(1):2247.doi:10.1038/s41467-018-04687-7.tificData9(1):199.doi:10.1038/s41597-022-01332-3.Liu,G.,Y.Tan,andX.Li.2020.“China’sPoliciesofBuildingLETI(LondonEnergyTransitionInitiative).2021.“LETIClimateGreenRetrofit:AState-of-the-ArtOverview.”BuildingEmergencyRetrofitGuide:HowExistingHomesCanBeandEnvironment169:106554.doi:https://doi.org/10.1016/j.AdaptedtoMeetUKClimateTargets.”buildenv.2019.106554.https://www.leti.uk/_files/ugd/252d09_c71428bafc3d42f-bac34f9ad0cd6262b.pdf.Liu,Z.,Z.Deng,S.Davis,andP.Ciais.2023.“MonitoringGlobalCarbonEmissionsin2022.”NatureReviewsEarthandEnvironment4(4):205–6.doi:10.1038/s43017-023-00406-z.STATEOFCLIMATEACTION2023217Lo,J.2023.“DRCongoDelaysRainforestOilAuctions.”Maisels,F.,S.Strindberg,S.Blake,G.Wittemyer,J.Hart,E.A.ClimateHomeNews,January31.Williamson,R.Aba’a,etal.2013.“DevastatingDeclineofhttps://www.climatechangenews.com/2023/01/31/ForestElephantsinCentralAfrica.”PLoSONE8(3):e59469.dr-congo-delays-rainforest-oil-auctions/.doi:10.1371/journal.pone.0059469.Löfqvist,S.,andJ.Ghazoul.2019.“PrivateFundingIsMaisonnave,F.2023.“InLula’sFirstSixMonths,BrazilAma-EssentialtoLeverageForestandLandscapeRestorationatzonDeforestationDropped34%,ReversingTrendunderGlobalScales.”NatureEcologyandEvolution3(12):1612–15.Bolsonaro.”APNews,July6.https://apnews.com/article/doi:10.1038/s41559-019-1031-y.brazil-amazon-deforestation-lula-climate-change-2fe-225f71a8f484e8d365ea641acd65e.Loisel,J.,andA.Gallego-Sala.2022.“EcologicalResilienceofRestoredPeatlandstoClimateChange.”Commu-Maisonnave,F.,andD.Jeantet.2023.“Brazil’sNewnicationsEarthandEnvironment3(1):208.doi:10.1038/PresidentWorkstoReverseAmazonDeforestation.”s43247-022-00547-x.APNews,January22.https://apnews.com/article/brazil-amazon-deforestation-indigenous-people-44ae-Lorea,C.,F.Sánchez,andE.T.TorresMorales.576b9010a8f11795f8b1ad9e5b2d.2022.“GreenCementTechnologyTracker:Ver-sion07/2023.”https://www.industrytransition.org/Maizlish,N.,N.J.Linesch,andJ.Woodcock.2017.“Healthgreen-cement-technology-tracker/.andGreenhouseGasMitigationBenefitsofAmbitiousExpansionofCycling,Walking,andTransitinCalifornia.”Louis-Prescott,L.,andR.Golden.2022.“HowJournalofTransportandHealth6(September):490–500.LocalGovernmentsandCommunitiesAreTak-doi:10.1016/j.jth.2017.04.011.ingActiontoGetFossilFuelsoutofBuildings.”RockyMountainInstitute,August9.https://rmi.org/Mansouri,H.,H.AitSaid,H.Noukrati,A.Oukarroum,H.Bentaking-action-to-get-fossil-fuels-out-of-buildings/.youcef,andF.Perreault.2023.“AdvancesinControlledReleaseFertilizers:Cost-EffectiveCoatingTechniquesLovejoy,T.E.,andC.Nobre.2019.“AmazonTippingPoint:LastandSmartStimuli-ResponsiveHydrogels.”AdvancedChanceforAction.”ScienceAdvances5(12):eaba2949.SustainableSystems,July9.https://doi.org/10.1002/doi:10.1126/sciadv.aba2949.adsu.202300149.Lovelock,C.E.,andB.M.Brown.2019.“LandTenureCon-Mao,Y.,D.L.Hopkins,Y.Zhang,andX.Luo.2016.“Consump-siderationsAreKeytoSuccessfulMangroveRestoration.”tionPatternsandConsumerAttitudestoBeefandSheepNatureEcologyandEvolution3(8):1135.doi:10.1038/MeatinChina.”AmericanJournalofFoodandNutrition4s41559-019-0942-y.(2):30–39.doi:10.12691/ajfn-4-2-1.Lubis,C.,D.Doherty,andW.Young.2022.“InvestmentMarkusson,N.,D.McLaren,andD.Tyfield.2018.“TowardsRequirementsofaLow-CarbonWorld:EnergySupplyaCulturalPoliticalEconomyofMitigationDeterrencebyInvestmentRatios.”BloombergNEF.https://assets.bbhub.NegativeEmissionsTechnologies(NETs).”GlobalSustain-io/professional/sites/24/BNEF-EIRP-Climate-Scenari-ability1.doi:10.1017/sus.2018.10.os-and-Energy-Investment-Ratios.pdf.Martyshev,P.,O.Nivievskyi,andM.Bogonos.2023.Mace,M.J.,C.Fyson,M.Schaeffer,andW.L.Hare.2021.“RegionalWar,GlobalConsequences:MountingDamages“GoverningLarge-ScaleCarbonDioxideRemoval:AretoUkraine’sAgricultureandGrowingChallengesforWeReady?AnUpdate.”CarnegieClimateGovernanceGlobalFoodSecurity.”InternationalFoodPolicyResearchInitiative.https://climateanalytics.org/media/are-we-Institute(blog),March27.https://www.ifpri.org/blog/ready_2021_fullreport.pdf.regional-war-global-consequences-mounting-damag-es-ukraines-agriculture-and-growing-challenges.Macreadie,P.I.,A.Anton,J.A.Raven,N.Beaumont,R.M.Connolly,D.A.Friess,J.J.Kelleway,etal.2019.“TheFutureMata,E.,A.K.Korpal,S.H.Cheng,J.P.JimenezNavarro,F.ofBlueCarbonScience.”NatureCommunications10(1):Filippidou,J.Reyna,andR.Wang.2020.“AMapofRoad-3998.doi:10.1038/s41467-019-11693-w.mapsforZeroandLowEnergyandCarbonBuildingsWorldwide.”EnvironmentalResearchLetters15(11).https://Maddy,S.2023.“TheRaceacrossEuropetoBuildGreeniopscience.iop.org/article/10.1088/1748-9326/abb69f.SteelPlants.”February17.https://www.bbc.com/news/business-64538296.Matricardi,E.A.T.,D.L.Skole,O.B.Costa,M.A.Pedlowski,J.H.Samek,andE.P.Miguel.2020.“Long-TermForestDegra-Madsen,S.,andA.Wezel.2021.“ReducingHungeranddationSurpassesDeforestationintheBrazilianAmazon.”DroughtEffectsinEthiopia:AMiraculousTree.”EuropeanScience369(6509):1378–82.doi:10.1126/science.abb3021.Commission.https://knowledge4policy.ec.europa.eu/publication/reducing-hunger-drought-effects-ethio-McCulloch,N.,D.Natalini,N.Hossain,andP.Justino.2022.pia-miraculous-tree_en.“AnExplorationoftheAssociationbetweenFuelSubsidiesandFuelRiots.”WorldDevelopment157(September):105935.doi:10.1016/j.worlddev.2022.105935.STATEOFCLIMATEACTION2023218McGibbon,A.2023.“PromiseBreakers:AssessingtheMicrosoft.2021.“MicrosoftCarbonRemoval:LessonsfromImpactofCompliancewiththeGlasgowStatementanEarlyCorporatePurchase.”Microsoft.https://query.CommitmenttoEndInternationalPublicFinanceforprod.cms.rt.microsoft.com/cms/api/am/binary/RE4MDlc.FossilFuels.”OilChangeInternational.https://priceofoil.org/2023/03/15/promise-breakers-assessing-the-im-Minasny,B.,B.P.Malone,A.B.McBratney,D.A.Angers,D.pact-of-compliance-with-the-glasgow-statement-Arrouays,A.Chambers,V.Chaplot,etal.2017.“SoilCarboncommitment-to-end-international-public-finance-4perMille.”Geoderma292(April):59–86.doi:10.1016/j.for-fossil-fuels/.geoderma.2017.01.002.McGinn,A.,E.Johnson,S.Bertrand,M.Brind’Amour,MiningTechnology.2022.“JindalShadeedtoBuild$3bnandA.Davis.2022.“COP27AnnouncementTracker:GreenSteelPlantinOman.”December5.https://www.KeyAnnouncementsfromthe2022U.N.Climatemining-technology.com/news/jindal-green-steel-oman/.Summit.”https://www.eesi.org/articles/view/cop27-announcement-tracker-key-announcements-MinistryofClimateandEnvironment,Poland.2019.“‘Myfrom-the-2022-u.n-climate-summit.Electricity’ProgrammeLaunched.”https://www.gov.pl/web/climate/my-electricity-programme-launched#:~:-McKay,D.I.A.,A.Staal,J.F.Abrams,R.Winkelmann,B.text=%E2%80%9CMy%20Electricity%E2%80%9D%20is%20Sakschewski,S.Loriani,I.Fetzer,etal.2022.“Exceedinga%20new%20programme%20developed%20in,Fund%201.5°CGlobalWarmingCouldTriggerMultipleClimatefor%20Environmental%20Protection%20and%20Water%20TippingPoints.”Science377(6611):eabn7950.doi:10.1126/Management%20%28NFO%C5%9AiGW%29.science.abn7950.Minx,J.C.,W.F.Lamb,R.M.Andrew,J.G.Canadell,M.Crippa,McKerracher,C.2021.“GrowingOptimismonElectricN.Döbbeling,P.M.Forster,etal.2021.“AComprehensiveTrucks.”BloombergNEF(blog),July26.https://about.bnef.andSyntheticDatasetforGlobal,Regional,andNationalcom/blog/growing-optimism-on-electric-trucks/.GreenhouseGasEmissionsbySector1970–2018withanExtensionto2019.”EarthSystemScienceData13(11):Mekuriaw,Y.,andB.Asmare.2018.“NutrientIntake,Digest-5213–52.doi:10.5194/essd-13-5213-2021.ibilityandGrowthPerformanceofWasheraLambsFedNaturalPastureHaySupplementedwithGradedLevelsMistry,H.2022.“EnergyTransitionandSustainableofFicusThonningii(Chibha)LeavesasReplacementforAviationFuel.”PaperpresentedattheIATAGlobalMediaConcentrateMixture.”AgricultureandFoodSecurity7(1):Days,December7.https://www.iata.org/en/Recycle-Bin/30.doi:10.1186/s40066-018-0182-4.energy-transition-hemant-mistry-gmd2022/.Melodia,L.,andK.Karlsson.2022.“EnergyPriceStability:Moballa-Mbun,C.,A.Mgaza,C.Floros,andH.K.Chen.2023.ThePerilofFossilFuelsandthePromiseofRenew-“AnOverviewoftheTimberTraceabilitySystemsintheables.”RooseveltInstitute.https://rooseveltinstitute.org/CongoBasinCountries.”TRAFFIC.https://www.traffic.org/wp-content/uploads/2022/05/RI_EnergyPriceStabil-site/assets/files/20862/traffic-report-_overview_of_tim-ity_IssueBrief_202205.pdf.ber_traceability_-_20230203.pdf.Mersmann,F.,K.HolmOlsen,T.Wehnert,andZ.Boodoo.Monschauer,Y.,C.Delmastro,andR.Marti-2014.“UnderstandingTransformationalChangeinnez-Gordon.2023.“GlobalHeatPumpSalesNAMAs:FromTheorytoPractice.”WuppertalInstituteContinueDouble-DigitGrowth.”InternationalforClimate,EnvironmentandEnergy.https://www.EnergyAgency.https://www.iea.org/commentaries/transparency-partnership.net/sites/default/files/unep_global-heat-pump-sales-continue-double-digit-growth.dtu_nama_hr_web.pdf.Moore,F.C.,K.Lacasse,K.J.Mach,Y.A.Shin,L.J.Gross,andMeyer,S.2023.“Study:AverageCarSizeIsIncreasing—WillB.Beckage.2022.“DeterminantsofEmissionsPathwaysinRoadsStillBeSafeforSmallCarsandPedestrians?”ZebratheCoupledClimate-SocialSystem.”Nature603(7899):(blog),May25.https://www.thezebra.com/resources/103–11.doi:10.1038/s41586-022-04423-8.driving/average-car-size.Moran,D.,K.Kanemoto,M.Jiborn,R.Wood,J.Többen,Micheli,M.,A.S.Oyewo,M.Fasihi,C.Breyer,W.Weindorf,andK.C.Seto.2018.“CarbonFootprintsof13,000Cities.”andP.Schmidt.2022.“E-KeroseneforCommercialEnvironmentalResearchLetters13(6):064041.https://doi.Aviation:FromGreenHydrogenandCO2fromDirectAirorg/10.1088/1748-9326/aac72a.Capture—Volumes,AreaDemand,andRenewableEnergyCompetitionintheUnitedStatesandtheEuropeanUnionMoser,D.,andA.Wagner.2021.“HereIsWhyCitiesaroundin2050ScenariostoDefossilizeAviationFuel.”DeutschetheWorldShouldBuild2KmHighQuality,SegregatedEnergie-AgenturGmbH.https://www.researchgate.net/CyclingLaneper1000Inhabitants.”TransformativeUrbanpublication/363417593_E-Kerosene_for_Commercial_Avi-MobilityInitiative,June.https://www.transformative-mo-ation_From_Green_Hydrogen_and_CO2_from_Direct_bility.org/assets/publications/TUMI_Strategy-Outlook_2kAir_Capture_-_Volumes_Cost_Area_Demand_and_m-bike-lanes-per-1000-inhabitants.pdf.Renewable_Energy_Competition_in_the_United_States_and_Europe_from_2030_to_2050.STATEOFCLIMATEACTION2023219Mossalgue,J.2022.“NorwayRollsBackEVIncentiveswhileMunthe,B.C.,andF.Ungku.2021.“IndonesiatoUse‘ExistingBoostingWalkingandCycling.”Electrek,May17.https://Laws’asPalmOilMoratoriumExpires.”Reuters,Septemberelectrek.co/2022/05/17/norway-rolls-back-ev-incentives-22.https://www.reuters.com/business/environment/while-boosting-walking-and-cycling/.indonesia-use-existing-laws-palm-oil-moratorium-ex-pires-2021-09-22/.MPP(MissionPossiblePartnership).2022a.“GlobalStrategyforNet-ZeroAviationBackedbyIndustryLeaders.”Murray,N.J.,T.A.Worthington,P.Bunting,S.Duce,V.Hagger,https://missionpossiblepartnership.org/global-strate-C.E.Lovelock,R.Lucas,etal.2022.“High-Resolutiongy-for-net-zero-aviation-backed-by-industry-leaders/.MappingofLossesandGainsofEarth’sTidalWetlands.”Science376(6594):744–49.doi:10.1126/science.abm9583.MPP.2022b.“MakingNet-ZeroSteelPossible:AnIndustry-Backed,1.5°C-AlignedTransitionStrategy.”Mursyid,H.,M.H.Daulay,A.A.Pratama,D.Laraswati,N.https://missionpossiblepartnership.org/wp-content/Novita,A.Malik,andA.Maryudi.2021.“GovernanceIssuesuploads/2022/09/Making-Net-Zero-Steel-possible.pdf.RelatedtotheManagementandConservationofMan-groveEcosystemstoSupportClimateChangeMitigationMPP.2022c.“MissionPossiblePartnership:2030Milestones.”ActionsinIndonesia.”ForestPolicyandEconomics133https://missionpossiblepartnership.org/2030-milestones/.(December):102622.doi:10.1016/j.forpol.2021.102622.MPP.2022d.“MakingNet-ZeroAviationPossible.”Naden,C.2020.“ConstructingaBetterFuture:ASectorhttps://missionpossiblepartnership.org/wp-content/ThatHoldsAlltheCards.”InternationalStandardsOrgani-uploads/2023/01/Making-Net-Zero-Aviation-possible.pdf.zation.https://www.iso.org/news/ref2510.html.Mrotzek,A.,D.Michaelis,A.Günther,N.Wrage-Mönnig,andNahm,J.M.,S.M.Miller,andJ.Urpelainen.2022.“G20’sJ.Couwenberg.2020.“MassBalancesofaDrainedandaUS$14-TrillionEconomicStimulusRenegesonEmis-RewettedPeatland:OnFormerLossesandRecentGains.”sionsPledges.”Nature603(7899):28–31.doi:10.1038/SoilSystems4(1):16.doi:10.3390/soilsystems4010016.d41586-022-00540-6.Muehlegger,E.,andD.Rapson.2019.“UnderstandingtheNaik,G.2021.“Companies,InvestorsFaceNewPressureDistributionalImpactsofVehiclePolicy:WhoBuysNewfromCompulsoryDisclosureofClimateRisk.”SPGlobalandUsedElectricVehicles?”Davis,CA:UCDavisNational(blog),August25.https://www.spglobal.com/esg/insights/CenterforSustainableTransportation.https://escholar-companies-investors-face-new-pressure-from-compul-ship.org/uc/item/1q259456.sory-disclosure-of-climate-risk.MUFPP(MilanUrbanFoodPolicyPact).2023.“FrameworkNamibiaMinistryofMinesandEnergy.2017.“NationalforAction.”https://www.milanurbanfoodpolicypact.org/RenewableEnergyPolicy.”https://www.mme.gov.na/files/framework-for-action/.publications/03f_National%20Renewable%20Energy%20Policy%20-%20July%202017.pdf.Mulhollem,J.2023.“ResearcherGets$2MGranttoTestFeedAdditives’EffectonMethaneEmissions.”PennStateNaran,B.,J.Connolly,P.Rosane,D.Wignarajah,G.Wakaba,University.https://www.psu.edu/news/research/story/andB.Buchner.2022.“GlobalLandscapeofClimateresearcher-gets-2m-grant-test-feed-additives-effect-Finance:ADecadeofData.”ClimatePolicyInitiative.methane-emissions/.https://www.climatepolicyinitiative.org/publication/glob-al-landscape-of-climate-finance-a-decade-of-data/.Mueller,N.,D.Rojas-Rueda,M.Salmon,D.Martinez,A.Ambros,C.Brand,A.deNazelle,etal.2018.“HealthImpactNASEM(NationalAcademiesofScience,Engineering,AssessmentofCyclingNetworkExpansionsinEuropeanandMedicine).2019.“NegativeEmissionsTechnolo-Cities.”PreventiveMedicine109(April):62–70.https://doi.giesandReliableSequestration:AResearchAgenda.”org/10.1016/j.ypmed.2017.12.011.doi:10.17226/25259.Mulligan,J.,A.Rudee,K.Lebling,K.Levin,J.Anderson,Negulescu,P.G.,D.Risner,E.S.Spang,D.Sumner,D.Block,S.andB.Christensen.2020.“CarbonShot:FederalPolicyNandi,K.A.McDonald.2023.“Techno-economicModelingOptionsforCarbonRemovalintheUnitedStates.”WorldandAssessmentofCultivatedMeat:ImpactofProductionResourcesInstitute.https://www.wri.org/publication/BioreactorScale.”BiotechnologyandBioengineeringcarbonshot-federal-policy-options-for-carbon-remov-120(4):1055–67.al-in-the-united-states.Neidl,C.2023.“NewJerseyAdoptsFirst-of-a-KindLowMunjal,D.2022.“Explained:WhatAreCarbonMarketsandCarbonConcreteLaw.”NationalResourcesDefenseHowDoTheyOperate?”Hindu,December18.Council(blog),January31.https://www.nrdc.org/biohttps://www.thehindu.com/news/national/explained-/sasha-stashwick/new-jersey-adopts-first-kind-low-what-are-carbon-markets-and-how-do-they-operate/carbon-concrete-law.article66260084.ece.STATEOFCLIMATEACTION2023220Nepstad,D.,D.McGrath,C.Stickler,A.Alencar,A.Aze-NYDFAssessmentPartners.2021.“TakingStockvedo,B.Swette,T.Bezerra,etal.2014.“SlowingAmazonofNationalClimateActionforForests.”ClimateDeforestationthroughPublicPolicyandInterventionsinFocus.https://forestdeclaration.org/resources/BeefandSoySupplyChains.”Science344(6188):1118–23.taking-stock-of-national-climate-action-for-forests/.doi:10.1126/science.1248525.NYDFAssessmentPartners.2022a.“End-Neslen,A.2023.“EUBanonDeforestation-LinkedGoodsingNaturalForestLoss:Progresssince2014.”SetsBenchmark,SayUSLawmakers.”Guardian,January5.ClimateFocus.https://forestdeclaration.org/resources/https://www.theguardian.com/environment/2023/jan/05/ending-natural-forest-loss-progress-since-2014/.eu-ban-on-deforestation-linked-goods-sets-bench-mark-say-us-lawmakers.NYDFAssessmentPartners.2022b.“ForestDeclara-tionAssessment:AreWeonTrackfor2030?”ClimateNewClimateInstituteandEEDAdvisory.2021.“TheKenyanFocus.https://forestdeclaration.org/resources/CookingSector:OpportunitiesforClimateActionandforest-declaration-assessment-2022/.SustainableDevelopment.”https://newclimate.org/resources/publications/the-kenyan-cooking-sector-op-Nyemba,B.,andA.Ross.2022.“CongoOilBlocksAuctionportunities-for-climate-action-and-sustainable.DrawsWarningsofEnvironmentalCatastrophe.”Reuters,July28.https://www.reuters.com/business/energy/Nicholas,S.,andS.Basirat.2022.“SolvingIronOreQualitycongo-oil-blocks-auction-draws-warnings-environmen-IssuesforLow-CarbonSteel.”InstituteforEnergyEconom-tal-catastrophe-2022-07-28/.icsandFinancialAnalysis.https://ieefa.org/resources/solving-iron-ore-quality-issues-low-carbon-steel.Nyirenda,R.,andA.Mbzibain.2020.“TheFutureofInde-pendentForestMonitoring.”ChathamHouse.https://Nicholas,S.,andS.Basirat.2023.“ArcelorMittal:Greenforestgovernance.chathamhouse.org/publications/SteelforEurope,BlastFurnacesforIndia.”Insti-the-future-of-independent-forest-monitoring.tuteforEnergyEconomicsandFinancialAnalysis,February16.https://ieefa.org/resources/arcelormit-O’Brien,S.,T.Gordner,K.Sutton,andT.Farrell.2023.“Green-tal-green-steel-europe-blast-furnaces-india?utm_ingProcurementinCanada:NewImplicationsforthecontent=238328429&utm_medium=social&utm_ConstructionIndustryandBeyond.”McMillanLLP(blog),source=twitter&hss_channel=tw-1103082137991864320.February1.https://mcmillan.ca/insights/publications/greening-procurement-in-canada-new-implica-Nickel,R.2023.“TheClimate-FriendlyCowsBredtoBelchtions-for-the-construction-industry-and-beyond/.LessMethane.”Reuters,August8.https://www.reuters.com/business/environment/climate-friendly-cows-bred-OCI(OilChangeInternational).2023.“PublicFinanceforbelch-less-methane-2023-08-08/.EnergyDatabase.”https://energyfinance.org/.Niraula,R.R.,H.Gilani,B.K.Pokharel,andF.M.Qamer.2013.OECD(OrganisationforEconomicCo-operationand“MeasuringImpactsofCommunityForestryProgramDevelopment).2017.“InvestinginClimate,InvestinginthroughRepeatPhotographyandSatelliteRemoteGrowth.”doi:https://doi.org/10.1787/9789264273528-en.SensingintheDolakhaDistrictofNepal.”JournalofEnvironmentalManagement126(September):20–29.OECD.2021a.“Forward-LookingScenariosofClimatedoi:10.1016/j.jenvman.2013.04.006.FinanceProvidedandMobilisedbyDevelopedCountriesin2021–2025:TechnicalNote.”doi:10.1787/a53aac3b-en.Nolte,C.,A.Agrawal,K.M.Silvius,andB.S.Soares-Filho.2013.“GovernanceRegimeandLocationInfluenceAvoidedOECD.2021b.“OECDCompaniontotheInventoryofDeforestationSuccessofProtectedAreasintheBrazil-SupportMeasuresforFossilFuels2021.”doi:https://doi.ianAmazon.”ProceedingsoftheNationalAcademyoforg/10.1787/e670c620-en.Sciences110(13):4956–61.doi:10.1073/pnas.1214786110.OECD.2022a.“AggregateTrendsofClimateFinanceNoon,M.L.,A.Goldstein,J.C.Ledezma,P.R.Roehrdanz,ProvidedandMobilisedbyDevelopedCountriesinS.C.Cook-Patton,S.A.Spawn-Lee,T.M.Wright,etal.2021.2013–2020.”https://www.oecd.org/climate-change/“MappingtheIrrecoverableCarboninEarth’sEcosys-finance-usd-100-billion-goal.tems.”NatureSustainability5(1):37–46.doi:10.1038/s41893-021-00803-6.OECD.2022b.“SupportforFossilFuelsAlmostDou-bledin2021,SlowingProgresstowardInternationalNori.n.d.“SixWaysNoriProvidesCredibleCarbonClimateGoals,AccordingtoNewAnalysisfromRemoval.”AccessedDecember21,2022.https://nori.com/OECDandIEA.”https://www.oecd.org/environment/credible-carbon-removal.support-for-fossil-fuels-almost-doubled-in-2021-slowing-progress-toward-international-climate-goals-accord-NYDF(NewYorkDeclarationonForests)Assessmenting-to-new-analysis-from-oecd-and-iea.htm.Partners.2019.“ProtectingandRestoringForests:AStoryofLargeCommitmentsyetLimitedProgress.NewYorkOECD.2022c.“AgriculturalPolicyMonitoringandEvalu-DeclarationonForestsFive-YearAssessmentReport.”ation2022:ReformingAgriculturalPoliciesforClimateClimateFocus.https://forestdeclaration.org/wp-content/ChangeMitigation.”doi:10.1787/7f4542bf-en.uploads/2021/10/2019NYDFReport.pdf.STATEOFCLIMATEACTION2023221OECDandIISD(InternationalInstituteforSustainablePan,Y.,R.A.Birdsey,J.Fang,R.Houghton,P.E.Kauppi,W.A.Development).2023.“FossilFuelSubsidyTracker.”Kurz,O.L.Phillips,etal.2011.“ALargeandPersistentCarbonhttps://fossilfuelsubsidytracker.org/.SinkintheWorld’sForests.”Science333(6045):988–93.doi:10.1126/science.1201609.OECD,WorldBank,andUNEnvironmentProgramme.2018.“FinancingClimateFutures:RethinkingInfrastructure.”PEEB(ProgrammeforEnergyEfficiencyinBuildings).2021.Paris:OECD.https://doi.org/10.1787/9789264308114-en.“EmbodiedCarbon:AHiddenHeavyweightfortheCli-mate;HowFinancingandPolicyCanReducetheCarbonOhene,E.,A.P.C.Chan,andDarko.2022.“PrioritizingBarriersFootprintofBuildingMaterialsandConstruction.”Work-andDevelopingMitigationStrategiestowardNet-Zeroingpaper.https://www.peeb.build/imglib/downloads/CarbonBuildingSector.”BuildingandEnvironment223.PEEB_Building_Materials_Embodied_Carbon.pdf.doi:https://doi.org/10.1016/j.buildenv.2022.109437.PEEB.2022.“PEEBCool.”https://www.peeb.build/peebcool.OICA(OrganisationInternationaledesConstructeursd’Automobiles).2023.“2022Pro-Pendrill,F.,U.M.Persson,J.Godar,andT.Kastner.ductionStatistics.”https://www.oica.net/category/2019a.“DeforestationDisplaced:TradeinForest-Riskproduction-statistics/2022-statistics/.CommoditiesandtheProspectsforaGlobalForestTransition.”EnvironmentalResearchLetters14(5):055003.Olczak,P.,A.Zelazna,D.Matuszewska,andM.Olek.2021.doi:10.1088/1748-9326/ab0d41.“The‘MyElectricity’ProgramasOneoftheWaystoReduceCO2EmissionsinPoland.”Energies14(22).Pendrill,F.,U.M.Persson,J.Godar,T.Kastner,D.Moran,S.https://doi.org/10.3390/en14227679.Schmidt,andR.Wood.2019b.“AgriculturalandForestryTradeDrivesLargeShareofTropicalDeforestationOnePlanetSummit.2023.“10by30Initia-Emissions.”GlobalEnvironmentalChange56(May):1–10.tive.”https://www.oneplanetsummit.fr/en/doi:10.1016/j.gloenvcha.2019.03.002.coalitions-82/10by30-initiative-253.Pendrill,F.,T.A.Gardner,P.Meyfroidt,U.M.Persson,J.Onwezen,M.C.,E.P.Bouwman,M.J.Reinders,andH.Dage-Adams,T.Azevedo,M.G.BastosLima,etal.2022.“Disen-vos.2021.“ASystematicReviewonConsumerAcceptancetanglingtheNumbersbehindAgriculture-DrivenTropicalofAlternativeProteins:Pulses,Algae,Insects,Plant-BasedDeforestation.”Science377(6611):eabm9267.doi:10.1126/MeatAlternatives,andCulturedMeat.”Appetite159(April):science.abm9267.105058.doi:10.1016/j.appet.2020.105058.Penn,I.,andE.Lipton.2021.“TheLithiumGoldRush:InsideOpenStreetMapcontributors.2021.“OpenStreetMap.”theRacetoPowerElectricVehicles.”NewYorkTimes,MayOpenStreetMapFoundation.6.https://www.nytimes.com/2021/05/06/business/lithi-um-mining-race.html.OpenStreetMapFoundation.n.d.“OpenStreetMap.”https://www.openstreetmap.org/.Perilli,D.2022.“CalcinedClayProjectsinAfrica.”GlobalCement,April6.https://www.globalcement.com/news/Ortiz-Bobea,A.,T.R.Ault,C.M.Carrillo,R.G.Chambers,item/13938-calcined-clay-projects-in-africa.andD.B.Lobell.2021.“AnthropogenicClimateChangeHasSlowedGlobalAgriculturalProductivityGrowth.”Perilli,D.2023.“UpdateonCalcinedClaysinEurope,NatureClimateChange11(4):306–12.doi:10.1038/February2023.”GlobalCement,February15.https://www.s41558-021-01000-1.globalcement.com/news/item/15335-update-on-cal-cined-clays-in-europe-february-2023.Outlook.2023.“MoUwithHLCGreenEnergyLLCforGreenHydrogenandGreenAmmoniaProject.”MarchPham,T.T.,T.P.Vu,T.L.Hoang,T.L.C.Dao,D.T.Nguyen,D.C.27.https://www.outlookindia.com/outlook-spotlight/Pham,L.H.T.Dao,etal.2022.“TheEffectivenessofFinancialmou-with-hlc-green-energy-llc-for-green-hydrogen-IncentivesforAddressingMangroveLossinNorthernViet-and-green-ammonia-project-news-273736.nam.”FrontiersinForestsandGlobalChange4(January):709073.doi:10.3389/ffgc.2021.709073.OxfordUniversityEconomicRecoveryProject.2022.“GlobalRecoveryObservatory.”https://recovery.smith-Pontecorvo,E.2023.“ANewAlliancefor‘HighQual-school.ox.ac.uk/tracking/.ity’CarbonRemovalHighlightsTensionswithintheIndustry.”Grist,February28.https://grist.org/Page,S.E.,J.O.Rieley,andC.J.Banks.2011.“Globaltechnology/a-new-alliance-for-high-quality-carbon-re-andRegionalImportanceoftheTropicalPeatlandmoval-highlights-tensions-within-the-industry/.CarbonPool.”GlobalChangeBiology17(2):798–818.doi:10.1111/j.1365-2486.2010.02279.x.Poore,J.,andT.Nemecek.2018.“ReducingFood’sEnvi-ronmentalImpactsthroughProducersandConsumers.”Page,S.,S.Mishra,F.Agus,G.Anshari,G.Dargie,S.Evers,Science360(6392):987–92.doi:10.1126/science.aaq0216.J.Jauhiainen,etal.2022.“AnthropogenicImpactsonLowlandTropicalPeatlandBiogeochemistry.”NatureReviewsEarthandEnvironment3(7):426–43.doi:10.1038/s43017-022-00289-6.STATEOFCLIMATEACTION2023222Poorter,L.,D.Craven,C.C.Jakovac,M.T.vanderSande,Prütz,R.,J.Strefler,J.Rogelj,andS.Fuss.2023.“Under-L.Amissah,F.Bongers,R.L.Chazdon,etal.2021.“Multidi-standingtheCarbonDioxideRemovalRangein1.5°CmensionalTropicalForestRecovery.”Science374(6573):CompatibleandHighOvershootPathways.”Envi-1370–76.doi:10.1126/science.abh3629.ronmentalResearchCommunications5(4):041005.doi:10.1088/2515-7620/accdba.Potapov,P.,M.C.Hansen,A.Pickens,A.Hernandez-Serna,A.Tyukavina,S.Turubanova,V.Zalles,etal.2022a.“ThePsaraftis,H.N.,T.Zis,andS.Lagouvardou.2021.“ACompar-Global2000–2020LandCoverandLandUseChangeativeEvaluationofMarketBasedMeasuresforShippingDatasetDerivedfromtheLandsatArchive:FirstResults.”Decarbonization.”MaritimeTransportResearch2(Janu-FrontiersinRemoteSensing3.https://www.frontiersin.org/ary):100019.doi:10.1016/J.MARTRA.2021.100019.articles/10.3389/frsen.2022.856903.PTPiREE.2023.“Micro-installationsinPoland.”http://www.Potapov,P.,S.Turubanova,M.C.Hansen,A.Tyukavina,V.ptpiree.pl/energetyka-w-polsce/energetyka-w-liczbach/Zalles,A.Khan,X.-P.Song,etal.2022b.“GlobalMapsofmikroinstalacje-w-polsce.CroplandExtentandChangeShowAcceleratedCroplandExpansionintheTwenty-FirstCentury.”NatureFood3(1):Pucher,J.,andR.Buehler.2008.“MakingCycling19–28.doi:10.1038/s43016-021-00429-z.Irresistible:LessonsfromtheNetherlands,DenmarkandGermany.”TransportReviews28(4):495–528.Poulton,P.,J.Johnston,A.Macdonald,R.White,andD.doi:10.1080/01441640701806612.Powlson.2018.“MajorLimitationstoAchieving‘4per1000’IncreasesinSoilOrganicCarbonStockinTemperatePunte,S.2023.“TheRoleofBusinessinDecarbonisingRegions:EvidencefromLong-TermExperimentsatTransport.”InSLOCATTransport,ClimateandSus-RothamstedResearch,UnitedKingdom.”GlobalChangetainabilityGlobalStatusReport,3rded.PartnershipBiology24(6):2563–84.doi:10.1111/gcb.14066.onSustainableLow-CarbonTransport(SLOCAT).https://tcc-gsr.com/.PRNewswire.2023.“EverWindFuelsReceivesEnvironmen-talApprovalforFirstIndustrial-ScaleGreenHydrogenPyhälä,A.,A.O.Orozco,andS.Counsell.2016.“ProtectedandGreenAmmoniaProjectinNorthAmerica.”FebruaryAreasintheCongoBasin:FailingBothPeopleandBiodi-7.https://www.prnewswire.com/news-releases/ever-versity?”RainforestFoundationUK.wind-fuels-receives-environmental-approval-for-first-in-dustrial-scale-green-hydrogen-and-green-ammo-Qin,Y.,X.Xiao,J.-P.Wigneron,P.Ciais,M.Brandt,L.Fan,nia-project-in-north-america-301741136.html.X.Li,etal.2021.“CarbonLossfromForestDegradationExceedsThatfromDeforestationintheBrazilianAma-Prasara-A.J.,andA.Bridhikitti.2022.“CarbonFootprintandzon.”NatureClimateChange11(5):442–48.doi:10.1038/CostAnalysisofaBicycleLaneinaMunicipality.”Globals41558-021-01026-5.JournalofEnvironmentalScienceandManagement8(2).doi:10.22034/GJESM.2022.02.04.RacetoZero.2021.“CommitmentonEliminatingAgriculturalCommodity-DrivenDeforestation.”Prentice,A.2021.“GabonGamblesonSustainableLoggingNovember2.https://racetozero.unfccc.int/system/toPreventDeforestation.”Reuters,November2.nature-and-tackling-deforestation/.https://www.reuters.com/business/environment/logging-help-climate-gabon-turns-its-rainforests-2021-11-02/.Rakes,K.2022a.“6CitiesandLocalGovernmentsAcceleratingZeroCarbonBuildings.”BuildingEfficiencyPrimeMinister’sOffice,UnitedKingdom.Accelerator,June30.https://buildingefficiencyaccelerator.2021a.“GlasgowLeaders’Declarationonorg/news/6-cities-and-local-governments-accelerat-ForestsandLandUse.”UNClimateChangeCon-ing-zero-carbon-buildings/.ferenceUK2021.November2.https://ukcop26.org/glasgow-leaders-declaration-on-forests-and-land-use/.Rakes,K.2022b.“ColombiaLaunchesNationalRoadmapforNetZeroCarbonBuildings.”BuildingEfficiencyAccel-PrimeMinister’sOffice,UnitedKingdom.2021b.“Over100erator,August4.https://buildingefficiencyaccelerator.org/LeadersMakeLandmarkPledgetoEndDeforestationatnews/colombia-launches-national-roadmap-for-net-ze-COP26.”November2.https://www.gov.uk/government/ro-carbon-buildings/.news/over-100-leaders-make-landmark-pledge-to-end-deforestation-at-cop26.Ramírez,L.J.2021.“Elcoronavirusynuestroreencuentroconlabicicleta.”CityofBogotá.Prisco,J.2022.“$4.6BillionPlantinSouthAfricaWillMakehttps://bogota.gov.co/mi-ciudad/movilidad/‘theFueloftheFuture.’”CNN,October18.https://edition.el-uso-de-la-bicicleta-durante-la-pandemia.cnn.com/2022/10/18/africa/green-ammonia-hive-ener-gy-scn-climate-spc-intl/index.html.Ranganathan,J.,D.Vennard,R.Waite,P.Dumas,B.Lipinski,andT.Searchinger.2016.“ShiftingDietsforaSustainableFoodFuture.”CreatingaSustainableFoodFuture,no.11(April):90.https://www.wri.org/research/shifting-diets-sustainable-food-future.STATEOFCLIMATEACTION2023223Ranjan,R.2023.“China’sHugeSteelCapacityBelea-Roe,S.,C.Streck,M.Obersteiner,S.Frank,B.Griscom,L.guersSteelMarket,GovernmenttoOrderOutputCutsDrouet,O.Fricko,etal.2019.“ContributionoftheLandSec-Soon.”SPGlobal,April10.https://www.spglobal.com/tortoa1.5°CWorld.”NatureClimateChange9(11):817–28.commodityinsights/en/market-insights/latest-news/doi:10.1038/s41558-019-0591-9.metals/041023-chinas-huge-steel-capacity-beleaguers-steel-market-government-to-order-output-cuts-soon.Roe,S.,C.Streck,R.Beach,J.Busch,M.Chapman,V.Daio-glou,A.Deppermann,etal.2021.“Land-BasedMeasuresReadfearn,G.2023.“AustralianTrialofSeaweedCowFeedtoMitigateClimateChange:PotentialandFeasibilityFailstoAchieveHoped-forMethaneCuts.”Guardian,JulybyCountry.”GlobalChangeBiology27(23):6025–58.12.https://www.theguardian.com/environment/2023/doi:10.1111/gcb.15873.jul/13/seaweed-cow-feed-trial-fails-methane-re-duction-australia.Roelofsen,O.,K.Somers,E.Speelman,andM.Witteveen.2020.“PluggingIn:WhatElectri-Reich,D.T.,G.Aberra,A.Ángel,M.Á.Cuéllar,K.He,Q.Hu,M.F.ficationCanDoforIndustry.”McKinseyandRamírez,etal.2022.“ProtectedBicycleLanesProtecttheCompany,May28.https://www.mckinsey.com/indus-Climate.”InstituteforTransportationandDevelopmenttries/electric-power-and-natural-gas/our-insights/Policy.https://www.itdp.org/wp-content/uploads/2022/10/plugging-in-what-electrification-can-do-for-industry.CC-PROTECTED-OCT271022.pdf.Rokadiya,S.2021.“FAME-IIRevisionsSparkHopesforaRenewableEnergyWorld.2023.“DOEFundsConcentratedJumpinElectricTwo-WheelerSalesinIndia.”InternationalSolarThermalProjectforCementProduction.”FebruaryCouncilonCleanTransportation,July28.https://theicct.16.https://www.renewableenergyworld.com/solar/org/fame-ii-revisions-spark-hopes-for-a-jump-in-elec-doe-funds-concentrated-solar-thermal-project-for-ce-tric-two-wheeler-sales-in-india/.ment-production/.Rosenow,J.,andD.Gibb.2023.“GuestPost:HowtheEnergyRepublicofGabon.2022.“SecondNationallyDeterminedCrisisIsBoostingHeatPumpsinEurope.”CarbonBrief,Contribution(2ndNDC).”https://www.climatewatchdata.March21.https://www.carbonbrief.org/guest-post-how-org/ndcs/country/GAB/full?document=second_ndc.the-energy-crisis-is-boosting-heat-pumps-in-europe/.Reus,A.2023.“BillWouldStreamlineFDAApprovalofRosentreter,J.A.,D.T.Maher,D.V.Erler,R.H.Murray,andFeedAdditives.”FeedStrategy,June8.B.D.Eyre.2018.“MethaneEmissionsPartiallyOffset‘Bluehttps://www.feedstrategy.com/animal-feed-regu-Carbon’BurialinMangroves.”ScienceAdvances4(6):lations-safety/regulatory-updates/article/15540232/eaao4985.doi:10.1126/sciadv.aao4985.bill-would-streamline-fda-approval-of-feed-additives.Rosentreter,J.A.,A.V.Borges,B.R.Deemer,M.A.Holgerson,S.Reuters.2022.“Factbox:WindfallTaxMechanismsonLiu,C.Song,J.Melack,etal.2021.“HalfofGlobalMethaneEnergyCompaniesacrossEurope.”December8.EmissionsComefromHighlyVariableAquaticEcosystemhttps://www.reuters.com/business/energy/Sources.”NatureGeoscience14(4):225–30.doi:10.1038/windfall-tax-mechanisms-energy-compa-s41561-021-00715-2.nies-across-europe-2022-12-08/.Rowe,S.J.,S.M.Hickey,A.Jonker,M.K.Hess,P.Janssen,T.Reynolds,C.C.,M.A.Harris,K.Teschke,P.A.Cripton,Johnson,B.Bryson,etal.2019.“SelectionforDivergentandM.Winters.2009.“TheImpactofTransportationMethaneYieldinNewZealandSheep:ATen-YearPer-InfrastructureonBicyclingInjuriesandCrashes:Aspective.”InProceedingsofthe23rdConferenceoftheReviewoftheLiterature.”EnvironmentalHealth8(1):47.AssociationfortheAdvancementofAnimalBreedinganddoi:10.1186/1476-069X-8-47.Genetics(AAABG),Armidale,NewSouthWales,Australia,27thOctober–1stNovember2019,306–9.Richardson,J.2020.“TheIncentivesStimulatingNorway’sElectricVehicleSuccess.”CleanTechnica,January28.Roy,D.2022.“DeforestationofBrazil’sAmazonHashttps://cleantechnica.com/2020/01/28/the-incen-ReachedaRecordHigh.What’sBeingDone?”Councilontives-stimulating-norways-electric-vehicle-success.ForeignRelations,August24.https://www.cfr.org/in-brief/deforestation-brazils-amazon-has-reached-record-Rissman,J.2022.“DecarbonizingIndustrialHeathigh-whats-being-done.viaHeatPumps.”IndustrialHeating.https://www.industrialheating.com/articles/97313-decarbonizing-in-RRI(RightsandResourcesInitiative).2023.“WhoOwnsthedustrial-heat-via-heat-pumps.World’sLand?GlobalStateofIndigenous,Afro-descen-dant,andLocalCommunityLandRightsRecognitionfromRobins,N.2020.“FinancingaJustTransition:Howto2015–2020.”doi:10.53892/MHZN6595.ConnecttheEnvironmentalandSocialDimensionsofStructuralChange.”InMakingtheFinancialSystemSus-tainable,editedbyP.G.Fisher,1sted.,237–57.Cambridge:CambridgeUniversityPress.doi:10.1017/9781108908269.014.STATEOFCLIMATEACTION2023224RRIandDGPA(DynamiquedesGroupesdesPeuplesSaygin,D.,H.Blanco,F.Boshell,J.Cordonnier,K.Rou-Autochtones).2022.“PresidentoftheDemocraticRepub-wenhorst,P.Lathwal,andD.Gielen.2023.“AmmonialicoftheCongoSignsNewLawtoProtectIndigenousProductionfromCleanHydrogenandtheImplicationsforPygmyPeoples.”RightsandResourcesInitiative(blog),GlobalNaturalGasDemand.”Sustainability15(2):1623.November16.https://rightsandresources.org/blog/doi:10.3390/su15021623.president-of-the-democratic-republic-of-the-congo-signs-new-law-to-protect-indigenous-pygmy-peoples/.SCF(UNFrameworkConventiononClimateChangeStandingCommitteeonFinance).2014.“2014BiennialRueda,O.,J.M.Mogollón,A.Tukker,andL.Scherer.2021.AssessmentandOverviewofClimateFinanceReport.”“Negative-EmissionsTechnologyPortfoliostoMeetthehttp://unfccc.int/files/cooperation_and_support/finan-1.5°CTarget.”GlobalEnvironmentalChange67(March):cial_mechanism/standing_committee/application/102238.doi:10.1016/j.gloenvcha.2021.102238.pdf/2014_biennial_assessment_and_overview_of_cli-mate_finance_flows_report_web.pdf.Salcedo-LaViña,C.,andR.Giovarelli.2021.“OnEqualGround:PromisingPracticesforRealizingWomen’sScharlemann,J.P.,E.V.Tanner,R.Hiederer,andV.Kapos.RightsinCollectivelyHeldLands.”Washington,DC:2014.“GlobalSoilCarbon:UnderstandingandManagingWorldResourcesInstitute.https://www.wri.org/research/theLargestTerrestrialCarbonPool.”CarbonManagementequal-ground-promising-practices-realizing-wom-5(1):81–91.doi:10.4155/cmt.13.77.ens-rights-collectively-held-lands.Schatz,B.2021a.FosteringOverseasRuleofLawandSalvin,H.E.,A.M.Lees,L.M.Cafe,I.G.Coldiz,andC.Lee.2020.EnvironmentallySoundTradeActof2021.U.S.Senate.“WelfareofBeefCattleinAustralianFeedlots:AReviewoftheRisksandMeasures.”AnimalProductionScienceSchatz,B.2021b.“Schatz,BlumenauerUnveilNew60(13):1569–90.BipartisanLegislationtoHelpStopIllegalDeforestationaroundtheWorld,FightClimateChange.”Pressrelease.SaltXTechnology.2023.“SaltXHasBeenGrantedahttps://www.schatz.senate.gov/news/press-releases/PatentforItsElectricCalcinerTechnology,EAC(Elec-schatz-blumenauer-unveil-new-bipartisan-legisla-tricArcCalciner).”https://www.saltxtechnology.com/tion-to-help-stop-illegal-deforestation-around-the-worlpress-release/5E5FE4D3915B3621.d-fight-climate-change.Sandalow,D.,R.Aines,J.Friedmann,P.Keleman,C.McCor-Schleicher,J.,C.A.Peres,T.Amano,W.Llactayo,andN.mick,I.Power,B.Schmidt,andS.Wilson.2021.“CarbonLeader-Williams.2017.“ConservationPerformanceofMineralizationRoadmap.”InnovationforCoolEarthForum,DifferentConservationGovernanceRegimesintheInnovationRoadmapProject.https://www.icef.go.jp/pdf/PeruvianAmazon.”ScientificReports7(1):11318.doi:10.1038/summary/roadmap/icef2021_roadmap.pdf.s41598-017-10736-w.Saner,E.2023.“FlyingShame:TheScandalousRiseSchonhardt,S.2023.“ChinaInvests$546BillioninCleanofPrivateJets.”Guardian,January26.Energy,FarSurpassingtheU.S.”ScientificAmerican,https://www.theguardian.com/environment/2023/jan/26/January30.https://www.scientificamerican.com/article/flying-shame-the-scandalous-rise-of-private-jets.china-invests-546-billion-in-clean-energy-far-sur-passing-the-u-s/.Santo,R.E.,B.F.Kim,S.E.Goldman,J.Dutkiewicz,E.M.B.Biehl,M.W.Bloem,R.A.Neff,andK.E.Nachman.2020.“Consider-Schuerch,M.,T.Spencer,S.Temmerman,M.L.Kirwan,C.ingPlant-BasedMeatSubstitutesandCell-BasedMeats:Wolff,D.Lincke,C.J.McOwen,etal.2018.“FutureResponseAPublicHealthandFoodSystemsPerspective.”FrontiersofGlobalCoastalWetlandstoSea-LevelRise.”Nature561inSustainableFoodSystems4.https://www.frontiersin.(7722):231–34.doi:10.1038/s41586-018-0476-5.org/articles/10.3389/fsufs.2020.00134.Schweikart,M.,O.Mertz,andD.Müller.2022.“AdaptiveSantos,B.2022.“TheEconomicCaseforHeatApproachestoREDD+AreNeededforCountrieswithHighPumpsinPoland.”PVMagazine,NovemberForestCoverandLowDeforestationRates.”Environmental11.https://www.pv-magazine.com/2022/11/11/ResearchLetters17(11):114011.doi:10.1088/1748-9326/ac9827.the-economic-case-for-heat-pumps-in-poland/.Scrivener,K.,andS.Shell.2023.“HowLow-CarbonCementSantos,G.,H.Behrendt,L.Maconi,T.Shirvani,andA.Teytel-CanBenefitEmergingEconomiesandthePlanet.”boym.2010.“PartI:ExternalitiesandEconomicPoliciesinClimateWorksFoundation(blog),March30.https://www.RoadTransport.”ResearchinTransportationEconomicsclimateworks.org/blog/how-low-carbon-cement-can-28(1):2–45.doi:10.1016/j.retrec.2009.11.002.benefit-emerging-economies-and-the-planet/.Sasmito,S.D.,P.Taillardat,J.N.Clendenning,C.Cameron,Searcey,D.2022.“CanaNationReplaceItsOilWealthwithD.A.Friess,D.Murdiyarso,andL.B.Hutley.2019.“EffectofTrees?”NewYorkTimes,October3.https://www.nytimes.Land-UseandLand-CoverChangeonMangroveBluecom/2022/11/03/climate/gabon-logging-oil-economy.Carbon:ASystematicReview.”GlobalChangeBiology25html?auth=login-google1tap&login=google1tap.(12):4291–4302.doi:10.1111/gcb.14774.STATEOFCLIMATEACTION2023225Searchinger,T.D.,S.Wirsenius,T.Beringer,andP.Dumas.Shoman,M.,andH.Imine.2023.“AssessingtheAccessibil-2018.“AssessingtheEfficiencyofChangesinLandUseityofCyclingInfrastructureforWheelchairUsers:InsightsforMitigatingClimateChange.”Nature564(7735):249.fromanOn-RoadExperimentandOnlineQuestionnairedoi:10.1038/s41586-018-0757-z.Study.”Vehicles5(1):321–31.doi:10.3390/vehicles5010018.Searchinger,T.,R.Waite,C.Hanson,andJ.Ranganathan.Sikarwar,V.S.,A.Reichert,M.Jeremias,andV.Manovic.2019.WorldResourcesReport:CreatingaSustainable2021.“COVID-19PandemicandGlobalCarbonDioxideFoodFuture.Washington,DC:WorldResourcesInstitute.Emissions:AFirstAssessment.”ScienceoftheTotalhttps://research.wri.org/sites/default/files/2019-07/Environment794(November):148770.doi:10.1016/j.WRR_Food_Full_Report_0.pdf.scitotenv.2021.148770.Searchinger,T.,C.Malins,P.Dumas,D.Baldock,J.Glauber,Singh,R.2023a.“Australia’sNationalReconstructionFundT.Jayne,J.Huang,andP.Marenya.2020.“RevisingPublictoHelpRenewables,Hydrogen.”https://www.spglobal.AgriculturalSupporttoMitigateClimateChange.”Worldcom/commodityinsights/en/market-insights/latest-news/BankGroup.doi:10.1596/33677.energy-transition/033023-australias-national-recon-struction-fund-to-help-renewables-hydrogen.Searchinger,T.,J.Zionts,S.Wirsenius,L.Peng,T.Beringer,andP.Dumas.2021.“APathwaytoCar-Singh,R.2023b.“IndiaMayAnnounceDetailsbonNeutralAgricultureinDenmark.”WorldofNationalCarbonMarketSchemeinJune:ResourcesInstitute.https://www.wri.org/research/Official.”March17.https://www.spglobal.com/com-pathway-carbon-neutral-agriculture-denmark.modityinsights/en/market-insights/latest-news/energy-transition/031723-india-may-announce-details-Searchinger,T.,PengLiqing,R.Waite,andJ.Zionts.of-national-carbon-market-scheme-in-june-official.2023.“WoodIsNottheClimate-FriendlyBuild-ingMaterialSomeClaimIttoBe.”WRIInsightsSingh,R.K.2022.“Eight-HourBlackoutsHitIndiaafterHot-(blog),July20.https://www.wri.org/insights/testMarchonRecord.”Bloomberg,April21.https://www.mass-timber-wood-construction-climate-change.bloomberg.com/news/articles/2022-04-21/eight-hour-blackouts-hit-india-after-hottest-march-since-1901.SEforAll(SustainableEnergyforAll)andCPI(ClimatePolicyInitiative).2020.“EnergizingFinance2020:UnderstandingSinke,P.,E.Swartz,H.Sanctorum,C.vanderGiesen,andtheLandscape.”EnergizingFinance.https://www.seforall.I.Odegard.2023.“Ex-AnteLifeCycleAssessmentoforg/system/files/2020-11/EF-2020-UL-SEforALL_0.pdf.Commercial-ScaleCultivatedMeatProductionin2030.”InternationalJournalofLifeCycleAssessment28(3):Segal,M.2023.“GermanyLaunches€50BillionIndustrial234–54.doi:10.1007/s11367-022-02128-8.DecarbonizationSubsidyProgram.”ESGToday,June6.https://www.esgtoday.com/germany-launches-e50-bil-Sirin,A.A.2022.“MiresandPeatlands:Carbon,Greenhouselion-industrial-decarbonization-subsidy-program/.Gases,andClimateChange.”BiologyBulletinReviews12(S2):S123–39.doi:10.1134/S2079086422080096.Semenchuk,P.,C.Plutzar,T.Kastner,S.Matej,G.Bidoglio,K.-H.Erb,F.Essl,etal.2022.“RelativeEffectsofLandCon-Skelton,R.,andV.Miller.2016.“TheEnvironmentalversionandLand-UseIntensityonTerrestrialVertebrateJusticeMovement.”NationalResourcesDefenseDiversity.”NatureCommunications13(1):615.doi:10.1038/Council,March17.https://www.nrdc.org/stories/s41467-022-28245-4.environmental-justice-movement.Seto,K.C.,S.J.Davis,R.B.Mitchell,E.C.Stokes,G.Unruh,Slowik,P.,A.Isenstadt,L.Pierce,andS.Searle.2022.andD.Ürge-Vorsatz.2016.“CarbonLock-In:Types,“AssessmentofLight-DutyElectricVehicleCostsCauses,andPolicyImplications.”AnnualReviewofandConsumerBenefitsintheUnitedStatesintheEnvironmentandResources41(1):425–52.doi:10.1146/2022–2035TimeFrame.”InternationalCouncilonannurev-environ-110615-085934.CleanTransportation.https://theicct.org/publication/ev-cost-benefits-2035-oct22/.Seymour,F.,M.Wolosin,andE.Gray.2022.“NotJustCarbon:CapturingAlltheBenefitsofForestsforStabilizingSmith,T.,andA.Shaw.2023.“AnOverviewoftheDiscus-theClimatefromLocaltoGlobalScales.”WorldResourcessionsfromIMOMEPC80andFrequentlyAskedQuestions.”Institute.https://doi.org/10.46830/wrirpt.19.00004.UniversityMaritimeAdvisoryServices.https://www.u-mas.co.uk/the-2023-imo-ghg-strategy-sends-an-unequiv-Sharpe,S.,andT.M.Lenton.2021.“Upward-ScalingTippingocal-signal-to-investors-that-ships-being-ordered-CascadestoMeetClimateGoals:PlausibleGroundstoday-and-many-already-built-have-to-be-capable-forHope.”ClimatePolicy21(4):421–33.doi:10.1080/14693of-running-on-zero-emission-fuels/.062.2020.1870097.Smith,T.,A.Shaw,andJ.-M.Bonello.2022.“AnOverviewShen,G.,Z.Li,T.Hong,Y.Ru,J.Han,andY.Guo.2023.“TheoftheDiscussionsfromIMOISWG-GHG13andMEPC79.”StatusoftheGlobalFoodWasteMitigationPolicies:UniversityMaritimeAdvisoryServices.www.u-mas.co.uk.ExperienceandInspirationforChina.”Environment,DevelopmentandSustainability.https://doi.org/10.1007/s10668-023-03132-0.STATEOFCLIMATEACTION2023226Smith,S.,O.Geden,G.Nemet,M.Gidden,W.F.Lamb,C.StateofGreen.2022.“REDDAP:TheWorld’sFirstDynamicPowis,R.Bellamy,etal.2023.TheStateofCarbonDioxideGreenAmmoniaPlant.”August8.https://stateofgreen.Removal,1sted.http://www.stateofcdr.rog.com/en/solutions/reddap-the-worlds-first-dynamic-green-ammonia-plant/.SmithInnovation.2022.“INDICATENationalBuildingLCADataAccelerator.”https://www.indicatedata.com/.Steffen,W.,J.Rockström,K.Richardson,T.M.Lenton,C.Folke,D.Liverman,C.P.Summerhayes,etal.2018.“TrajectoriesSolarPowerEurope.2023.“SolarPowersHeat2023:HowoftheEarthSystemintheAnthropocene.”ProceedingsSolarPVEmpowersHouseholdstoTurnDownFossilGasoftheNationalAcademyofSciences115(33):8252–59.andSaveonEnergyBills.”SolarPowerEurope.doi:10.1073/pnas.1810141115.https://www.solarpowereurope.org/insights/thematic-reports/solar-powers-heat-2023-2.Stepanchenko,N.,H.Stefoni,M.Hennessy,I.Nagaraju,D.E.Wasson,S.F.Cueva,S.E.Räisänen,etal.2023.“MicrobialSongwe,V.,N.Stern,andA.Bhattacharya.2022.“FinanceComposition,RumenFermentationParameters,EntericforClimateAction:ScalingUpInvestmentforClimateMethaneEmissions,andLactationalPerformanceofPhe-andDevelopment.ReportoftheIndependentHigh-LevelnotypicallyHighandLowMethane–EmittingDairyCows.”ExpertGrouponClimateFinance.”GranthamResearchJournalofDairyScience106(9):6146–70.InstituteonClimateChangeandtheEnvironment,LondonSchoolofEconomicsandPoliticalScience.https://www.Stern,N.2006.“TheEconomicsofClimateChange:Thelse.ac.uk/granthaminstitute/wp-content/uploads/2022/11/SternReview.”HMTreasury.https://webarchive.nationalar-IHLEG-Finance-for-Climate-Action-1.pdf.chives.gov.uk/20100407172811/http://www.hm-treasury.gov.uk/stern_review_report.htm.Spalding,M.D.,andM.Leal.2021.TheStateoftheWorld’sMangroves2021.Queensland,Australia:GlobalStevens,C.,R.Winterbottom,J.Springer,andK.Reytar.MangroveAlliance.2014.“SecuringRights,CombatingClimateChange:HowStrengtheningCommunityForestRightsMitigatesClimateSpring,J.2023.“Exclusive:BrazilLaunchesFirstAnti-defor-Change.”WorldResourcesInstitute.https://www.wri.org/estationRaidsunderLulaBidtoProtectAmazon.”Reuters,research/securing-rights-combating-climate-change.January22.https://www.reuters.com/world/americas/first-brazil-logging-raids-under-lula-aim-curb-ama-Stoefs,W.2022.“EU’sCarbonRemovalsCertifica-zon-deforestation-2023-01-19/.tionFrameworkIsCertifiablyProblematic.”https://carbonmarketwatch.org/2022/11/04/eus-carbon-remov-Springmann,M.,H.C.J.Godfray,M.Rayner,andP.Scar-als-certification-framework-is-certifiably-problematic/.borough.2016.“AnalysisandValuationoftheHealthandClimateChangeCobenefitsofDietaryChange.”Proceed-Strack,M.,S.J.Davidson,T.Hirano,andC.Dunn.2022.ingsoftheNationalAcademyofSciences113(15):4146–51.“ThePotentialofPeatlandsasNature-BasedClimatedoi:10.1073/pnas.1523119113.Solutions.”CurrentClimateChangeReports8(3):71–82.doi:10.1007/s40641-022-00183-9.Springmann,M.,L.Spajic,M.A.Clark,J.Poore,A.Herforth,P.Webb,M.Rayner,andP.Scarborough.2020.“TheHealth-Strauss,J.,H.Li,andJ.Cui.2021.“High-SpeedRail’sinessandSustainabilityofNationalandGlobalFoodImpactonAirlineDemandandAirCarbonEmissionsinBasedDietaryGuidelines:ModellingStudy.”BMJ(ClinicalChina.”TransportPolicy109(August):85–97.doi:10.1016/j.ResearchEd.)370(July):m2322.doi:10.1136/bmj.m2322.tranpol.2021.05.019.Sridhar,A.,A.Balakrishnan,M.M.Jacob,M.Sillanpää,andStripe.2021.“StripeClimateIncreasesCarbonRemovalN.Dayanandan.2023.“GlobalImpactofCOVID-19onCommitmentsto$15Million,AddingFourNewCompa-Agriculture:RoleofSustainableAgricultureandDigitalnies.”December15.https://stripe.com/newsroom/news/Farming.”EnvironmentalScienceandPollutionResearchfall-21-carbon-removal-purchases.30(15):42509–25.doi:10.1007/s11356-022-19358-w.Su,J.,D.A.Friess,andA.Gasparatos.2021.“AMeta-analysisStateofCalifornia.2023a.BillText:SB-308CarbonoftheEcologicalandEconomicOutcomesofMan-DioxideRemovalMarketDevelopmentAct.groveRestoration.”NatureCommunications12(1):5050.https://leginfo.legislature.ca.gov/faces/billTextClient.doi:10.1038/s41467-021-25349-1.xhtml?bill_id=202320240SB308.Sullivan,L.2023.“InflationReductionActandSustainableStateofCalifornia.2023b.“California,TruckManufacturersAviationFuels:ComeFlywithMe?”ResourceWise,AprilStrikeAgreementonZero-EmissionTransition.”California4.https://www.resourcewise.com/environmental-blog/Governor,July6.https://www.gov.ca.gov/2023/07/06/inflation-reduction-act-sustainable-aviation-fu-california-truck-manufacturers-strike-agreement-on-ze-els-come-fly-with-me.ro-emission-transition/.STATEOFCLIMATEACTION2023227Sun,Z.,L.Scherer,A.Tukker,S.A.Spawn-Lee,M.Bruckner,Tan,Z.D.,L.R.Carrasco,S.Sutikno,andD.Taylor.2022.H.K.Gibbs,andP.Behrens.2022.“DietaryChangein“PeatlandRestorationasanAffordableNature-BasedHigh-IncomeNationsAloneCanLeadtoSubstantialDou-ClimateSolutionwithFireReductionandConservationbleClimateDividend.”NatureFood3(1):29–37.doi:10.1038/Co-benefitsinIndonesia.”EnvironmentalResearchLetterss43016-021-00431-5.17(6):064028.doi:10.1088/1748-9326/ac6f6e.SustainableFoodPlaces.2023.“FoodforthePlanetTanneberger,F.,L.Appulo,S.Ewert,S.Lakner,N.ÓBrolcháin,CampaignsacrosstheUK.”https://www.foodforthe-J.Peters,andW.Wichtmann.2021.“ThePowerofNature-planet.org.uk/local/.BasedSolutions:HowPeatlandsCanHelpUstoAchieveKeyEUSustainabilityObjectives.”AdvancedSustainableSwalec,C.2023.“GoodJobsandGreenJobsShouldSystems5(1):2000146.doi:10.1002/adsu.202000146.NotBeMutuallyExclusiveintheUSSteelIndustry.”GreenBiz,February21.https://www.greenbiz.com/article/TCFD(TaskForceonClimate-RelatedFinancialDisclo-good-jobs-and-green-jobs-should-not-be-mutually-sures).2022.TaskForceonClimate-RelatedFinancialexclusive-us-steel-industry.Disclosures:2022StatusReport.Basel,Switzerland:TCFD.https://assets.bbhub.io/company/sites/60/2022/10/2022-Swalec,C.,andA.Grigsby-Schulte.2023.“PedaltoTCFD-Status-Report.pdf.theMetal2023:It’sTimetoShiftSteelDecarbonizationintoHighGear.”GlobalEnergyMonitor.Temmink,R.J.M.,L.P.M.Lamers,C.Angelini,T.J.Bouma,C.https://globalenergymonitor.org/wp-content/Fritz,J.vandeKoppel,R.Lexmond,etal.2022.“Recoveringuploads/2023/07/GEM_SteelPlants2023.pdf.WetlandBiogeomorphicFeedbackstoRestoretheWorld’sBioticCarbonHotspots.”Science376(6593):eabn1479.Swennenhuis,F.,V.deGooyert,andH.deConinck.2022.doi:10.1126/science.abn1479.“TowardsaCO2-NeutralSteelIndustry:JusticeAspectsofCO2CaptureandStorage,Biomass-andGreenTemple,J.2021.“CarbonRemovalHypeIsBecomingaHydrogen-BasedEmissionReductions.”EnergyResearchDangerousDistraction.”MITTechnologyReview,July8.andSocialScience88(June):102598.doi:10.1016/j.https://www.technologyreview.com/2021/07/08/1027908/erss.2022.102598.carbon-removal-hype-is-a-dangerous-distrac-tion-climate-change/.Swensson,LuanaF.J.,andF.Tartanac.2020.“PublicFoodProcurementforSustainableDietsandFoodSystems:TheTeske,S.,S.Niklas,andR.Langdon.2021.“TUMITransportRoleoftheRegulatoryFramework.”GlobalFoodSecurityOutlook1.5°C:AGlobalScenariotoDecarbonizeTrans-25(June):100366.doi:10.1016/j.gfs.2020.100366.port.”TransformativeUrbanMobilityInitiative.https://outlook.transformative-mobility.org/.SystemsChangeLab.2022.“EnsureEnergyAccessandaJustandEquitableTransitionforAll.”Thiel,G.P.,andA.K.Stark.2021.“ToDecarbonizeIndustry,Wehttps://systemschangelab.org/power/ensure-energy-ac-MustDecarbonizeHeat.”Joule5(3):531–50.doi:10.1016/j.cess-and-just-and-equitable-transition-all#indicator-411.joule.2020.12.007.Sze,J.S.,L.R.Carrasco,D.Childs,andD.P.Edwards.2022.Thöne,M.,A.Jung,D.Koplow,C.Lin,andL.Lontoh.2010.“ReducedDeforestationandDegradationinIndigenousMappingtheCharacteristicsofProducerSubsidies:ALandsPan-tropically.”NatureSustainability5(2):123–30.ReviewofPilotCountryStudies.UntoldBillions:Fossil-Fueldoi:10.1038/s41893-021-00815-2.Subsidies,TheirImpactsandthePathtoReform.Geneva:InternationalInstituteforSustainableDevelopment,Szőke,E.2022.“JustTransitioninPractice:50+SuccessGlobalSubsidiesInitiative.StoriesofTransformingCoalRegions.”CEEnergyNews,June23.https://ceenergynews.com/climate/Thwaites,J.2017.“USClimateFinance:AGreatDealforjust-transition-in-practice-50-success-stories-of-trans-theNationandtheWorld.”WorldResourcesInstitute,forming-coal-regions/.commentary,February16.https://www.wri.org/insights/us-climate-finance-great-deal-nation-and-world.Täger,M.2021.“‘DoubleMateriality’:WhatIsItandWhyDoesItMatter?”GranthamResearchInstituteThyssenKrupp.n.d.“ClimateStrategyandTar-onClimateChangeandtheEnvironment,April2021.gets.”AccessedApril11,2023.https://www.https://www.lse.ac.uk/granthaminstitute/news/thyssenkrupp.com/en/company/sustainability/double-materiality-what-is-it-and-why-does-it-matter/.climate-strategy-and-targets#6098233.Tan,J.2021.“GabonBecomesFirstAfricanCountrytoGetTilman,D.,andM.Clark.2014.“GlobalDietsLinkEnviron-PaidforProtectingItsForests.”MongabayEnvironmentalmentalSustainabilityandHumanHealth.”Nature515News,July20.https://news.mongabay.com/2021/07/(7528):518–22.doi:10.1038/nature13959.gabon-becomes-first-african-country-to-get-paid-for-protecting-its-forests/.STATEOFCLIMATEACTION2023228Tobias,K.,andL.Makoma.2023.“TheGreenHydrogenUMAS(UniversityMaritimeAdvisoryServices).2021.AFrontier:Neocolonialism,GreenwashingorJustTransi-StrategyfortheTransitiontoZero-EmissionShipping.tion?”Heinrich-Böll-Stiftung.2023.https://za.boell.org/London:UMAS.https://www.u-mas.co.uk/wp-content/en/2023/01/18/green-hydrogen-frontier-neocolonial-uploads/2021/10/Transition-Strategy-Report.pdf.ism-greenwashing-or-just-transition.UNCCD(UNConventiontoCombatDesertification).2017.Tonks,N.2023.“WhyWeNeedWholeLifeCarbonDatatoGlobalLandOutlook,1sted.Bonn,Germany:UNCCD.ScaleNetZeroBuildings.”Arup.https://www.arup.com/https://knowledge.unccd.int/sites/default/files/2018-06/perspectives/why-we-need-whole-life-carbon-to-scale-GLO%20English_Full_Report_rev1.pdf.net-zero-buildings.UNDESA(UNDepartmentofEconomicandSocialAffairs).Toplensky,R.2023.“ProTake:ForgettheSEC,International2022.“WorldPopulationProspects2022.”https://popula-ClimateReportingStandardsCouldBecometheGlobaltion.un.org/wpp/.Baseline.”WallStreetJournal,June26.https://www.wsj.com/articles/pro-take-forget-the-sec-international-cli-UNDESA.n.d.“EnsureAccesstoAffordable,Reliable,mate-reporting-standards-could-become-the-global-Sustainable,andModernEnergyforAll.”AccessedApril2,baseline-ea01d05a.2023.https://sdgs.un.org/goals/goal7.TorresMorales,E.,F.Skinner,P.Hemingway,K.Axelsson,UNDP(UNDevelopmentProgramme).2021.“AandE.Piirsalu.2023.“UnlockingtheG20’sGreenPublicGuidetoCarbonPricingandFossilFuelSub-ProcurementPotential:T20PolicyBrief.”ThinkTwenty(T20)sidyReform.”https://www.undp.org/publications/India2023:OfficialEngagementGroupofG20.guide-carbon-pricing-and-fossil-fuel-subsidy-reform.https://t20ind.org/research/unlock-ing-the-g20s-green-public-procurement-potential/.UNEP(UNEnvironmentProgramme).2017.“GlobalReviewofSustainableProcurement2017.”https://wed-Trancik,J.E.2014.“RenewableEnergy:BacktheRenewablesocs.unep.org/bitstream/handle/20.500.11822/20919/Boom.”Nature507(7492):300–302.doi:10.1038/507300a.GlobalReview_Sust_Procurement.pdf?sequence=1&%3BisAllowed=y%2C%20Fact-TransportandEnvironment.2023.“TruckCO2:Europe’ssheets%7C%7Chttps%3A//wedocs.unep.org/bitstream/ChancetoLead.”April5.https://www.transportenviron-handle/20.500.11822/20919/GlobalReview_Sust_Procure-ment.org/discover/truck-co2-europes-chance-to-lead/.ment_factsheet.pdf%3Fsequence%3D3&%3Bis=.TransportandEnvironment.n.d.“AviationintheETS.”UNEP.2020a.2020GlobalStatusReportforBuildingsAccessedAugust9,2023.https://www.transporten-andConstruction.Nairobi:UNEP.https://globalabc.org/vironment.org/challenges/planes/price-of-flying/resources/publications/2020-global-status-report-build-aviation-in-the-ets/.ings-and-construction.Tubiello,F.N.,K.Karl,A.Flammini,J.Gütschow,G.UNEP.2020b.EmissionsGapReport2020.Nairobi:UNEP.Obli-Laryea,G.Conchedda,X.Pan,etal.2022.“Pre-andhttps://www.unep.org/emissions-gap-report-2020.Post-productionProcessesIncreasinglyDominateGreenhouseGasEmissionsfromAgri-foodSystems.”UNEP.2021a.2021GlobalStatusReportforBuildingsEarthSystemScienceData14(4):1795–1809.doi:10.5194/andConstruction.Nairobi:UNEP.https://www.unep.org/essd-14-1795-2022.resources/report/2021-global-status-report-build-ings-and-construction.Turrell,C.2023.“BaliRiceExperimentCutsGreenhouseGasEmissionsandIncreasesYields.”MongabayEnvironmen-UNEP.2021b.AdaptationGapReport2021:TheGatheringtalNews,August11.https://news.mongabay.com/2023/08/Storm—AdaptingtoClimateChangeinaPost-pandemicbali-rice-experiment-cuts-greenhouse-gas-emissions-World.Nairobi:UNEP.https://www.un-ilibrary.org/content/and-increases-yields/.books/9789280738957.Turubanova,S.,P.V.Potapov,A.Tyukavina,andM.C.UNEP.2021c.BeatingtheHeat:ASustainableHansen.2018.“OngoingPrimaryForestLossinCoolingHandbookforCities.Nairobi:UNEP.Brazil,DemocraticRepublicoftheCongo,andIndo-https://www.unep.org/ndc/resources/report/nesia.”EnvironmentalResearchLetters13(7):074028.beating-heat-sustainable-cooling-handbook-cities.doi:10.1088/1748-9326/aacd1c.UNEP.2021d.EmissionsGapReport2021:TheHeatTyukavina,A.,P.Potapov,M.C.Hansen,A.H.Pickens,S.V.IsOn—AWorldofClimatePromisesNotYetDeliv-Stehman,S.Turubanova,D.Parker,etal.2022.“Globalered.Nairobi:UNEP.https://www.unep.org/resources/TrendsofForestLossDuetoFirefrom2001to2019.”emissions-gap-report-2021.FrontiersinRemoteSensing3.https://www.frontiersin.org/articles/10.3389/frsen.2022.825190.UNEP.2021e.FoodWasteIndexReport2021.Nai-robi:UNEP.https://www.unep.org/resources/report/U.K.Government.2021.““EnvironmentAct2021.”unep-food-waste-index-report-2021.https://www.legislation.gov.uk/ukpga/2021/30/contents.STATEOFCLIMATEACTION2023229UNEP.2021f.“StateofFinanceforNature.”https://www.UNFCCC.2022a.ReportoftheConferenceofthePartiesunep.org/resources/state-finance-nature.onItsTwenty-SixthSession,HeldinGlasgowfrom31Octoberto13November2021.Geneva:UNFCCC.UNFCCC.UNEP.2021g.AGlobalOverviewofUsedLightDutyVehi-2022b.“Sharmel-SheikhImplementationPlan.”cles:Flow,ScaleandRegulationUpdateandProgresshttps://unfccc.int/documents/624444.2021.Nairobi:UNEP.https://www.unep.org/resources/report/used-vehicles-and-environment-prog-UNGeneralAssembly.2015.TransformingOurWorld:ress-and-updates-2021.The2030AgendaforSustainableDevelopment.https://www.un.org/ga/search/view_doc.asp?symbol=A/UNEP.2021h.GlobalMethaneAssessment:BenefitsRES/70/1&Lang=E.andCostsofMitigatingMethaneEmissions.May5.Nairobi:UNEP.http://www.unep.org/resources/report/Unger,C.,andS.Thielges.2023.“BenefitsandChallengesglobal-methane-assessment-benefits-and-costs-miti-ofExpandingtheG7ClimateClubtoaG20ClimateClub.”gating-methane-emissions.T20PolicyBrief.https://www.orfonline.org/research/benefits-and-challenges-of-expanding-the-g7-climate-UNEP.2022a.2022GlobalStatusReportforBuildingsclub-to-a-g20-climate-club/.andConstruction.Nairobi:UNEP.https://globalabc.org/our-work/tracking-progress-global-status-report.UNHLEG(HighLevelExpertGroup).2022.“IntegrityMatters:NetZeroCommitmentsbyBusinesses,FinancialInstitu-UNEP.2022b.GlobalPeatlandsAssessment:TheStateoftions,CitiesandRegions.”https://www.un.org/sites/un2.theWorld’sPeatlands:EvidenceforActiontowardtheun.org/files/high-level_expert_group_n7b.pdf.Conservation,Restoration,andSustainableManagementofPeatlands—MainReport.Nairobi:GlobalPeatlandsUnitedNations.2015.“The17Goals:SustainableDevelop-Initiative,UNEP.https://www.unep.org/resources/mentGoals.”https://sdgs.un.org/goals.global-peatlands-assessment-2022.UnitedNations.2019.WorldUrbaniza-UNEP.2023.“PartnersAnnounceNewAmbitionontionProspects:The2018Revision.NewYork:SustainableCoolingforCOP28.”Pressrelease,Jan-UnitedNations.https://www.un.org/en/uary16.https://www.unep.org/news-and-stories/desa/2018-revision-world-urbanization-prospects.press-release/partners-announce-new-ambition-sus-tainable-cooling-cop28.UnitedNations.2022.“UNOrganizationsLaunchPlantoCatalyseActionby2025onEnergyCom-UNEP—ClimateandCleanAirCoalition.2022.Globalmitments.”June.https://www.un.org/en/desa/MethaneAssessment:2030BaselineReport.https://un-organizations-launch-plan-catalyse-action-2025-en-wedocs.unep.org/bitstream/handle/20.500.11822/41107/ergy-commitments.methane_2030.pdf?sequence=1&isAllowed=y.UnitedNations.2023.“OurCommonAgendaPolicyUNEPandIEA.2020.“CoolingEmissionsandPolicyBrief6:ReformstotheInternationalFinancialArchi-SynthesisReport:BenefitsofCoolingEfficiencyandthetecture.”https://www.un.org/sites/un2.un.org/files/KigaliAmendment.”https://iea.blob.core.windows.net/our-common-agenda-policy-brief-international-fi-assets/71c8db7e-1137-41ef-99c3-8f2c8d3a5d86/Cool-nance-architecture-en.pdf.ing_Emissions_and_Policy_Synthesis_Report.pdf.UNSD(UNSustainableDevelopment).2023.“EnsureAccessUNFCCC(UNFrameworkConventiononClimateChange).toAffordable,Reliable,SustainableandModernEnergy.”1992.UnitedNationsFrameworkConventiononClimatehttps://www.un.org/sustainabledevelopment/energy/.Change.Bonn,Germany:UNFCCC.Ürge-Vorsatz,D.,R.Khosla,R.Bernhardt,Y.C.Chan,D.UNFCCC.2009.CopenhagenAccord.Bonn,Germany:Vérez,S.Hu,andL.F.Cabeza.2020.“AdvancestowardUNFCCC.https://unfccc.int/process-and-meetings/aNet-ZeroGlobalBuildingSector.”AnnualReviewofconferences/past-conferences/copenhagen-cli-EnvironmentandResources45(1):227–69.doi:10.1146/mate-change-conference-december-2009/cop-15/annurev-environ-012420-045843.cop-15-decisions.UruguayXXI.2022.“RenewableEnergiesinUruguay.”UNFCCC.2015.AdoptionoftheParisAgreement.Bonn,https://www.uruguayxxi.gub.uy/en/information-center/Germany:UNFCCC.https://unfccc.int/resource/docs/2015/article/renewable-energies-esp/.cop21/eng/10a01.pdf.U.S.ConferenceofMayors.2023.“2023AdoptedUNFCCC.2020.“JustTransitionoftheWorkforce,andtheResolutions.”Ninety-FirstAnnualMeeting,JuneCreationofDecentWorkandQualityJobs.”https://unfccc.2–5,Columbus,Ohio.https://legacy.usmayors.org/int/documents/226460.resolutions/91st_Conference/proposed-review-list-full-print-committee-all.asp.STATEOFCLIMATEACTION2023230U.S.Congress.2021.“H.R.3684:117thCongress(2021–2022):U.S.Government.2022.“Summary:TheInflationReduc-InfrastructureInvestmentandJobsAct.”https://www.tionActof2022.”https://www.democrats.senate.congress.gov/bill/117th-congress/house-bill/3684/text.gov/imo/media/doc/inflation_reduction_act_one_page_summary.pdf.USDA(U.S.DepartmentofAgriculture).2019.“Beef,Ground,85%LeanMeat/15%Fat,Patty,Cooked,Broiled.”FoodU.S.HouseofRepresentatives.2022.“H.R.7434:117thDataCentral.https://fdc.nal.usda.gov/fdc-app.html#/Congress(2021–2022):FederalCarbonDioxideRemovalfood-details/174032/nutrients.LeadershipActof2022.”April7.https://www.congress.gov/bill/117th-congress/house-bill/7434/text.USDA.2023.“ChoiceBeefValuesandSpreadsandtheAll-FreshRetailValue.”https://www.ers.usda.gov/U.S.Senate.2022a.“DivisionD:EnergyandWaterDevel-data-products/meat-price-spreads/.opmentandRelatedAgenciesAppropriationsAct,2023.”https://www.appropriations.senate.gov/imo/media/doc/U.S.DepartmentofState.2021.“TheLong-TermStrategyofDivision%20D%20-%20Energy%20&%20Water%20State-theUnitedStates:PathwaystoNet-ZeroGreenhouseGasment%20FY23.pdf.Emissionsby2050(AccessibleVersion).”https://unfccc.int/documents/308100.U.S.Senate.2022b.InflationReductionActof2022.https://www.democrats.senate.gov/imo/media/doc/infla-U.S.DepartmentofTreasury.2022.“AnticipatedDirectiontion_reduction_act_of_2022.pdf.ofForthcomingProposedGuidanceonCriticalMineralandBatteryComponentValueCalculationsfortheNewU.S.Senate.2022c.“S.4420:117thCongress(2021–2022):CleanVehicleCredit.”https://home.treasury.gov/system/CRESTActof2022.”December1.http://www.congress.gov/.files/136/30DWhite-Paper.pdf.Valiela,I.,J.L.Bowen,andJ.K.York.2001.“MangroveForests:U.S.DOE(DepartmentofEnergy).2021.“CarbonOneoftheWorld’sThreatenedMajorTropicalEnviron-NegativeShot.”https://www.energy.gov/fecm/ments:AtLeast35%oftheAreaofMangroveForestsHascarbon-negative-shot.BeenLostinthePastTwoDecades,LossesThatExceedThoseforTropicalRainForestsandCoralReefs,TwoU.S.DOE.2022a.“DOENationalCleanHydrogenStrategyOtherWell-KnownThreatenedEnvironments.”BioSci-andRoadmap.”https://www.hydrogen.energy.gov/pdfs/ence51(10):807–15.doi:10.1641/0006-3568(2001)051[0807clean-hydrogen-strategy-roadmap.pdf.:MFOOTW]2.0.CO;2.U.S.DOE.2022b.“InflationReductionActof2022.”Vallée,M.,V.Vauthier,S.Moukouri,andS.Labaste.2022.https://www.energy.gov/lpo/inflation-reduction-act-2022.“IndependentForestMonitoringintheCongoBasin:Tak-ingStockandThinkingAhead.”WorldResourcesInstitute.U.S.DOE.2023.“Biden-HarrisAdministrationAnnounceshttps://www.wri.org/research/independent-forest-moni-$90MilliontoSupportResilientandEfficientBuildingtoring-congo-basin-taking-stock-thinking-ahead.EnergyCodesandSaveAmericanFamiliesMoney.”Pressrelease,July12.https://www.energy.gov/articles/Veit,P.,D.Gibbs,andK.Reytar.2023.“IndigenousFor-biden-harris-administration-announces-90-million-sup-estsAreSomeoftheAmazon’sLastCarbonSinks.”WRIport-resilient-and-efficient-building.Insights(blog),January6.https://www.wri.org/insights/amazon-carbon-sink-indigenous-forests.U.S.DOEandU.S.EPA(EnvironmentalProtectionAgency).2023.“FederalTaxCreditsforPlug-inElectricandFuelCellVelders,G.J.M.,J.S.Daniel,S.A.Montzka,I.Vimont,M.Rigby,ElectricVehiclesPurchasedin2023orAfter.”https://fuele-P.B.Krummel,J.Muhle,etal.2022.“ProjectionsofHydro-conomy.gov/feg/tax2023.shtml.fluorocarbon(HFC)EmissionsandtheResultingGlobalWarmingBasedonRecentTrendsinObservedAbun-U.S.EPA(EnvironmentalProtectionAgency).2011.“ThedancesandCurrentPolicies.”AtmosphericChemistryandBenefitsandCostsoftheCleanAirActfrom1990Physics22(9):6087–101.to2020:SummaryReport.”https://www.epa.gov/clean-air-act-overview/benefits-and-costs-clean-air-Vergeer,R.,P.Sinke,andI.Odegard.2021.“TEAofCultivatedact-1990-2020-report-documents-and-graphics.Meat:FutureProjectionsofDifferentScenarios—Corrigen-dum.”CEDelft.https://cedelft.eu/wp-content/uploads/U.S.EPA.2023a.2019WastedFoodReport:Estimatesofsites/2/2021/02/CE_Delft_190254_TEA_of_Cultivated_GenerationandManagementofWastedFoodintheMeat_FINAL_corrigendum.pdf.UnitedStatesin2019.Washington,DC:USEPA.https://www.epa.gov/system/files/docu-Vetter,D.2019.“HowSwedenDeliveredtheWorld’sFirstments/2023-03/2019%20Wasted%20Food%20FossilFuel–FreeSteel.”Forbes,August19.Report_508_opt_ec.pdf.https://www.forbes.com/sites/davidrvetter/2021/08/19/how-sweden-delivered-the-worlds-first-fossil-fuel-free-U.S.EPA.2023b.“GHGFacilityDetails:ArcherDanielsMid-steel/?sh=766831bb6b55.landCompany.”https://ghgdata.epa.gov/ghgp/service/facilityDetail/2021?id=1005661&ds=E&et=&popup=true.STATEOFCLIMATEACTION2023231Victor,D.G.,F.W.Geels,andS.Sharpe.2019.“Accelerat-Weiss,J.2022.“KeepingIt100:PermanenceinCarboningtheLowCarbonTransition:TheCaseforStronger,OffsetPrograms.”ClimateActionReserve(blog),July26.MoreTargetedandCoordinatedInternationalAction.”https://www.climateactionreserve.org/blog/2022/07/26/Brookings.https://www.brookings.edu/wp-content/keeping-it-100-permanence-in-carbon-offset-programs/.uploads/2019/12/Coordinatedactionreport.pdf.Weisse,M.,andP.Potapov.2021.“HowTreeCoverViglione,G.2021.“ClimateJustice:TheChallengeofLossDataHasChangedOverTime.”GlobalAchievinga‘JustTransition’inAgriculture.”CarbonBrief.ForestWatch(blog),April28.https://www.global-https://www.carbonbrief.org/climate-justice-the-chal-forestwatch.org/blog/data-and-research/lenge-of-achieving-a-just-transition-in-agriculture/.tree-cover-loss-satellite-data-trend-analysis.VividEconomics.2021.“GlobalInnovationNeedsAssess-Weisse,M.,E.Goldman,andS.Carter.2023.“For-ments:ProteinDiversity.”https://www.climateworks.org/estPulse:TheLatestontheWorld’sForests.”wp-content/uploads/2021/11/GINAs-Protein-Diversity.pdf.GlobalForestReview.https://research.wri.org/gfr/latest-analysis-deforestation-trends.Vogl,V.,M.Åhman,andL.J.Nilsson.2018.“AssessmentofHydrogenDirectReductionforFossil-FreeSteelmaking.”Welch,B.2021.“WhenBogotáBelongstotheBicycles:JournalofCleanerProduction203(December):736–45.HowCiclovíaHasShapedColombia’sCapitalCity.”Velodoi:10.1016/j.jclepro.2018.08.279.News,February16.https://www.velonews.com/culture/when-bogota-belongs-to-the-bicycles-how-ciclovia-Vogl,V.,J.Rootzén,andO.Svensson.2019.“AJustTransitionhas-shaped-colombias-capital-city/.towardsaCoal-FreeSteelIndustry:PerspectivesfromLabour.”Paperpresentedat14thNordicEnvironmentalWestphal,M.,andJ.Thwaites.2016.“Transfor-SocialScienceConference:SocialScienceinOurTime,mationalClimateFinance:AnExplorationofGothenburg,Sweden,June7–9,1–30.Low-CarbonEnergy.”WorldResourcesInstitute.doi:10.1163/9789004322714_cclc_2016-0020-016.Vorrath,S.2023.“FortescueHails‘GreenIron’BreakthroughasOwnCoal-FreeTechMovestoPilotPhase.”RenewWheatley,J.2023.“DevelopingCountries’DebtsEconomy,March24.https://reneweconomy.com.au/MountasPandemicandStrongDollarHitFinances.”fortescue-hails-green-iron-breakthrough-as-own-coal-FinancialTimes,February22.https://www.ft.com/free-tech-moves-to-pilot-phase/#disqus_thread.content/107cd26b-7fb0-4ff6-b698-350b8d3bee7a.V20.2021.“FirstClimateVulnerable’sFinanceWhiteHouse.2021.“Justice40.”https://www.whitehouse.SummitCommuniqué.”https://www.v-20.org/gov/environmentaljustice/justice40/.activities/ministerial/1st-climate-vulnerables-fi-nance-summit-communique.WhiteHouse.2023.BuildingaCleanEnergyEconomy:AGuidebooktotheInflationReductionAct’sInvestmentsWainaina,P.,P.A.Minang,J.Nzyoka,L.Duguma,E.Temu,inCleanEnergyandClimateAction.Washington,DC:andL.Manda.2021.“IncentivesforLandscapeRestoration:WhiteHouse.https://www.whitehouse.gov/wp-content/LessonsfromShinyanga,Tanzania.”JournalofEnviron-uploads/2022/12/Inflation-Reduction-Act-Guidebook.pdf.mentalManagement280(February):111831.doi:10.1016/j.jenvman.2020.111831.Whitley,S.,J.Thwaites,H.Wright,andC.Ott.2018.“Mak-ingFinanceConsistentwithClimateGoals:InsightsforWalker,W.S.,S.R.Gorelik,A.Baccini,J.L.Aragon-Osejo,C.OperationalisingArticle2.1coftheUNFCCCParisAgree-Josse,C.Meyer,M.N.Macedo,etal.2020.“TheRoleofment.”OverseasDevelopmentInstitute,WorldResourcesForestConversion,Degradation,andDisturbanceintheInstitute,E3G,andRockyMountainInstitute.https://odi.CarbonDynamicsofAmazonIndigenousTerritoriesandorg/en/publications/making-finance-consistent-with-cli-ProtectedAreas.”ProceedingsoftheNationalAcademyofmate-goals-insights-for-operationalising-arti-Sciences117(6):3015–25.doi:10.1073/pnas.1913321117.cle-21c-of-the-unfccc-paris-agreement/.WBCSD(WorldBusinessCouncilforSustainableWiatros-Motyka,M.,D.Jones,H.Broadbent,N.Fulghum,C.Development).2021.“Net-ZeroBuildings:WhereBruce-Lockhart,R.Dizon,P.MacDonald,etal.2023.“GlobalDoWeStand?”https://www.wbcsd.org/Programs/ElectricityReview2023.”Ember.Cities-and-Mobility/Sustainable-Cities/Transform-ing-the-Built-Environment/Decarbonization/Resources/Willett,W.,J.Rockström,B.Loken,M.Springmann,T.Lang,S.Net-zero-buildings-Where-do-we-stand.Vermeulen,T.Garnett,etal.2019.“FoodintheAnthropo-cene:TheEAT–LancetCommissiononHealthyDietsfromWBCSDandArup.2023.“Net-ZeroBuildings:HalvingSustainableFoodSystems.”TheLancet393(10170):447–92.ConstructionEmissionsToday.”https://www.wbcsd.org/doi:10.1016/S0140-6736(18)31788-4.contentwbc/download/15653/227132/1.Williams,D.R.,B.Phalan,C.Feniuk,R.E.Green,andA.Balm-ford.2018.“CarbonStorageandLand-UseStrategiesinAgriculturalLandscapesacrossThreeContinents.”CurrentBiology28(15):2500-2505.e4.doi:10.1016/j.cub.2018.05.087.STATEOFCLIMATEACTION2023232Wilson,D.,D.Blain,andJ.Couwenberg.2016.“Green-WorldBank.2023e.“TheWorldBankinGabon.”houseGasEmissionFactorsAssociatedwithRewettinghttps://www.worldbank.org/en/country/gabon/overview.ofOrganicSoils.”MiresandPeat,no.17(April):1–28.doi:10.19189/MaP.2016.OMB.222.WorldBank.2023f.“MovingtheNeedleonCleanCookingforAll.”https://www.worldbank.org/en/results/2023/01/19/Wily,L.A.2012.LandRightsinGabon:FacingUptothemoving-the-needle-on-clean-cooking-for-all.Past—andPresent.BrusselsandMoretoninMarsh,UK:FERN.https://www.fern.org/fileadmin/uploads/fern/Docu-WorldBank.n.d.“JustTransitionforAll.”Accessedments/fern_gabon_LR_EN_0.pdf.August10,2023.https://www.worldbank.org/en/topic/extractiveindustries/justtransition.Witecka,W.K.,O.vonEitzenToni,J.Somers,andK.Reimann.2023.“15InsightsontheGlobalSteelTransformation.”WorldEconomicForum.2021.“HowNamibiaIsAgoraIndustry.https://www.agora-energiewende.MovingtowardsaGreenandBlueEconomy.”Octo-de/en/publications/15-insights-on-the-glob-ber.https://www.weforum.org/agenda/2021/10/al-steel-transformation-1/.namibia-is-positioned-to-become-the-renewable-ener-gy-hub-of-africa/.Wolf,C.,T.Levi,W.J.Ripple,D.A.Zárrate-Charry,andM.G.Betts.2021.“AForestLossReportCardfortheWorld’sPro-WorldGBC(GreenBuildingCouncil).2019.“BringingtectedAreas.”NatureEcologyandEvolution5(4):520–29.EmbodiedCarbonUpfront.”https://worldgbc.org/doi:10.1038/s41559-021-01389-0.advancing-net-zero/embodied-carbon/.WorldBank.2014.“MotorVehiclesper1000Inhab-WorldGBC.2020.“AsiaPacificEmbodiedCarbonPrimer.”itantsvsGDPperCapita,2014.”OurWorldinhttps://www.worldgbc.org/sites/default/files/Asia%20Data.https://ourworldindata.org/grapher/Pacific%20Embodied%20Carbon%20Primer_FINAL_road-vehicles-per-1000-inhabitants-vs-gdp-per-capita.v5_240920_1.pdf.WorldBank.2020.“AddressingFoodLossandWorldGBC.2021.“TheNetZeroCarbonBuildingsCommit-Waste:AGlobalProblemwithLocalSolutions.”ment.”https://worldgbc.org/thecommitment.https://openknowledge.worldbank.org/server/api/core/bitstreams/674c11d6-79eb-5905-8822-fc-WorldGBC.2022a.“AdvancingNetZeroStatusReport.”d9663eabb4/content.https://worldgbc.org/advancing-net-zero/.WorldBank.2021a.“EmploymentinAgriculture(%ofWorldGBC.2022b.“AfricaManifestoforSustainableTotalEmployment)(ModeledILOEstimate).”https://data.CitiesandtheBuiltEnvironment.”https://worldgbc.org/worldbank.org/indicator/SL.AGR.EMPL.ZS.worldgbc-africa-manifesto/.WorldBank.2021b.“AccesstoElectricity(%ofPopulation):WorldGBC.2022c.“#BuildingLife.”https://worldgbc.Namibia,SouthAfrica.”https://data.worldbank.org/indica-org/buildinglife/.tor/EG.ELC.ACCS.ZS?locations=NA-ZA.WorldGBC.2022d.“EUPolicyWholeLifeCarbonRoadmap.”WorldBank.2022a.“StateandTrendsofCarbonPric-https://viewer.ipaper.io/worldgbc/eu-roadmap/.ing2022.”https://openknowledge.worldbank.org/handle/10986/37455.WorldGBC.2023a.“AdvancingNetZeroSta-tusReport.”https://worldgbc.org/wp-content/WorldBank.2022b.“IndonesiaReceivesFirstPay-uploads/2023/07/WorldGBC-ANZ-Status-Report-2023_mentforReducingEmissionsinEastKalimantan.”FINAL-compressed_1.pdf.November8.https://www.worldbank.org/en/news/press-release/2022/11/08/indonesia-receives-first-pay-WorldGBC.2023b.“AllBuiltEnvironmentInitiativesment-for-reducing-emissions-in-east-kalimantan.AnnouncedatCOP27.”BuildingtoCOP.https://buildingtocop.org/2022/11/16/list-of-built-environ-WorldBank.2023a.“CarbonPricingDashboard.”ment-initiatives-announced-at-cop27/.https://carbonpricingdashboard.worldbank.org/.WorldGBC.2023c.“GlobalPolicyPrinciplesforaSustain-WorldBank.2023b.“ChiletoAccelerateItsGreenableBuiltEnvironment.”https://worldgbc.org/article/HydrogenIndustrywithWorldBankSupport.”Pressglobal-policy-principles/.release,June29.https://www.worldbank.org/en/news/press-release/2023/06/29/chile-to-accelerate-its-green-WorldGBC.2023d.SustainableandAffordablehydrogen-industry-with-world-bank-support.Housing:SpotlightingActionfromacrosstheWorldGreenBuildingCouncilNetwork.Lon-WorldBank.2023c.“PovertyandInequalityPlatform.”don:WorldGBC.https://worldgbc.org/article/pip.worldbank.org.launch-sustainable-and-affordable-housing-report/.WorldBank.2023d.“StateandTrendsofCarbonPricingWNA(WorldNuclearAssociation).2022.“NuclearPower2023.”https://openknowledge.worldbank.org/entities/intheWorldToday.”June.https://world-nuclear.org/publication/58f2a409-9bb7-4ee6-899d-be47835c838f.information-library/current-and-future-generation/nuclear-power-in-the-world-today.aspx.STATEOFCLIMATEACTION2023233WRI(WorldResourcesInstitute).2021.“EuropeanUnion’sXin,Z.2023.“Fortescue,ChinaBaowuSteelGroupEnterJustTransitionMechanism:TransnationalFundingandAgreementtoReduceEmissions.”ChinaDaily,June14.SupportforaJustTransition.”https://www.wri.org/update/global.chinadaily.com.cn/a/202306/14/WS64895ee-european-unions-just-transition-mechanism-transna-4a31033ad3f7bc343.html.tional-funding-and-support-just-transition.Xu,J.,P.J.Morris,J.Liu,andJ.Holden.2018.“PEATMAP:Refin-WRI.2023a.“ForestDegradation.”GlobalForestReview.ingEstimatesofGlobalPeatlandDistributionBasedonahttps://research.wri.org/gfr/forest-condition-indicators/Meta-analysis.”CATENA160(January):134–40.doi:10.1016/j.forest-degradation.catena.2017.09.010.WRI.2023b.“ForestGain.”GlobalForestReview.Yobo,C.M.,andK.Ito.2016.“EvolutionofPoliciesandhttps://research.wri.org/gfr/forest-extent-indicators/LegalFrameworksGoverningtheManagementofForestforest-gain.andNationalParksResourcesinGabon.”InternationalJournalofBiodiversityandConservation8(2):41–54.WRI.2023c.“ForestLoss.”GlobalForestReview.doi:10.5897/IJBC2015.0834.https://research.wri.org/gfr/forest-extent-indicators/forest-loss.Yu,Z.,J.Loisel,D.P.Brosseau,D.W.Beilman,andS.J.Hunt.2010.“GlobalPeatlandDynamicssincetheLastGla-WRI.2023d.“ForestPulse.”GlobalForestReview.cialMaximum.”GeophysicalResearchLetters37(13).https://research.wri.org/gfr/forest-pulse.doi:10.1029/2010GL043584.WRI.2023e.“KeyTermsandDefinitions.”GlobalForestYu,G.,K.A.Beauchemin,andR.Dong.2021.“AReviewofReview.https://research.wri.org/gfr/key-terms-definitions.3-NitrooxypropanolforEntericMethaneMitigationfromRuminantLivestock.”Animals:AnOpenAccessJournalWRM(WorldRainforestMovement).2020.“CommunitiesfromMDPI11(12):3540.doi:10.3390/ani11123540.FacingZeroDeforestationPledges:TheCaseofOlaminGabon.”MuyissiEnvironmentandWRM.https://www.wrm.Zdonek,I.,S.Tokarski,A.Mularczyk,andM.Turek.2022.org.uy//wp-content/uploads/2020/03/Communities-fac-“EvolutionoftheProgramSubsidizingProsumerPho-ing-Zero-Deforestation-pledges-case-Olam-Gabon.pdf.tovoltaicSourcesinPoland.”Energies15(3).https://doi.org/10.3390/en15030846.WSA(WorldSteelAssociation).2022.“SustainabilityIndica-tors2022.”Pressrelease,December14.Zeniewski,P.,G.Molnar,andP.Hugues.2023.“Europe’shttps://worldsteel.org/es/media-centre/EnergyCrisis:WhatFactorsDrovetheRecordFallinNat-press-releases/2022/sustainability-indicators-2022/.uralGasDemandin2022?”InternationalEnergyAgency,March14.Paris:IEA.https://www.iea.org/commentaries/WSA.2023.“OurPerformance:SustainabilityIndica-europe-s-energy-crisis-what-factors-drove-the-record-tors.”https://worldsteel.org/steel-topics/sustainability/fall-in-natural-gas-demand-in-2022.sustainability-indicators/.Zerbe,S.,P.Steffenhagen,K.Parakenings,T.Timmermann,Wu,E.,andZ.Uddin.2022.“AsTCFDComesofAge,A.Frick,J.Gelbrecht,andD.Zak.2013.“EcosystemServiceRegulatorsTakeaVariedApproach.”MSCI(blog),Restorationafter10YearsofRewettingPeatlandsinNEApril21.https://www.msci.com/www/blog-posts/Germany.”EnvironmentalManagement51(6):1194–1209.as-tcfd-comes-of-age-regulators/03140250988.doi:10.1007/s00267-013-0048-2.WWF.2022.“UnlockingandScalingClimateSolutionsinZhi,X.,andX.An.2023.“LowCarbonTechnologyRoad-FoodSystems:AnAssessmentofNationallyDeterminedmapofChinaCementIndustry.”JournalofSustainableContributions.”https://wwfint.awsassets.panda.org/Cement-BasedMaterials12(6):771–74.doi:10.1080/21650downloads/unlocking_and_scaling_climate_solutions_373.2023.2188274.in_food_systems___wwf_analysis_of_ndcs_2022.pdf.zuErmgassen,E.K.H.J.,M.P.deAlcântara,A.Balmford,WWF-UK.2021.“DriventoWaste:TheGlobalL.Barioni,F.B.Neto,M.M.F.Bettarello,G.D.Brito,etal.ImpactofFoodLossandWasteonFarms.”2018.“ResultsfromOn-the-GroundEffortstoPromotehttps://wwfint.awsassets.panda.org/downloads/SustainableCattleRanchingintheBrazilianAmazon.”wwf_uk__driven_to_waste___the_global_impact_of_Sustainability10(4):1301.doi:10.3390/su10041301.food_loss_and_waste_on_farms.pdf.Wylie,L.,A.E.Sutton-Grier,andA.Moore.2016.“KeystoSuccessfulBlueCarbonProjects:LessonsLearnedfromGlobalCaseStudies.”MarinePolicy65(March):76–84.doi:10.1016/j.marpol.2015.12.020.STATEOFCLIMATEACTION2023234PHOTOCREDITSCover,AdamSébire(www.adamsebire.info);Pg.ii-vi,AnnieSpratt/Unsplash;Pg.vi,RihardsSergis/Unsplash.ExecutiveSummary:Pg.1,CecilioRicardo/Flickr;Pg.3,KristenSturdivant/Unsplash;Pg.14,Alice/Unsplash.MethodologyforAssessingProgress:Pg.18,NEJYao/Unsplash;Pg.19,JohnyGoerend/Unsplash;Pg.23,MichaelFousert/Unsplash;Pg.24;UNclimatechange/Flickr;Pg.25,DOE/Flickr.Power:Pg.26,FranzMichaelSchneeberger/Unsplash;Pg.27,SameerHalai/Flickr;Pg.30,GPAPhotoArchive/Flickr;Pg.31,AlexMaina/CIFOR-ICRAF/Flickr;Pg.38,GPAPhotoArchive/Flickr.Buildings:Pg41,SiphoNdebele/Unsplash;Pg.46,CHUTTERSNAP/Unsplash;Pg.49,CDustin/Unsplash;Pg.56,MohammadShahhosseini/Unsplash;Pg.57,AshkanForouzani/Unsplash.Industry:Pg.58,MattBenson/Unsplash;Pg.63,AntRozetsky/Unsplash;Pg.67,SpencerDavis/Unsplash;Pg.69,IvanBandura/Unsplash;Pg.71,YasinHemmati/Unsplash.Transport:Pg.75,FlorianWehde/Unsplash;Pg.79,PemaLama/Unsplash;Pg.83,CarlosFelipePardo;Pg.85,AndrewRoberts/Unsplash;Pg.88,AleksandrPopov/Unsplash;Pg.90,Pop&Zebra/Unsplash;Pg.93,SkylerSmith/Unsplash;Pg.95,CHUTTERSNAP/Unsplash;Pg.98,LiamBurnett-Blue/Unsplash.ForestsandLand:Pg.99,LandonParenteau/Unsplash;Pg.105,KateEvans/CIFOR/Flickr;Pg.111,DaveGardnerCreative/NationalForestFoundation/Flickr;Pg.114,AnthonyOchieng/ClimateVisualsCountdo;Pg.118,NanangSujana/CIFOR/Flickr;Pg.119,Munita/CIFOR/Flickr;Pg.121,Andrew/Flickr.FoodandAgriculture:Pg.122,AnnieSpratt/Flickr;Pg.129,SergioArteaga/Unsplash;Pg.132,SriLanka/Unsplash;Pg.133,EloisePhipps/CIMMYT;Pg.136,UNPhoto/KibaePark/Flickr;Pg.137,2015CIAT/GeorginaSmith.TechnologicalCarbonRemoval:Pg.141,ArniSaeberg;Pg.142,Climeworks;Pg.143,StevenKamenar/Unsplash;Pg.146,Climeworks;Pg.147,Climeworks.Finance:Pg.150,MissaelLopez/Unsplash;Pg.152,UNclimatechange/Flickr;Pg.156,UNclimatechange/Flickr;Pg.161,OrenElbaz/Unsplash;Pg.163,EmmausStudio/Unsplash;Pg.164,DominikVanyi/Unsplash;Pg.165,AtharvaTulsi/Unsplash;Pg.168,AbRashid/Flickr.Conclusion:Pg.171,RoxanneDesgagnés/Unsplash;Pg.172,JulieRicard/Unsplash.Appendices:Pg.175,PopZebra/Unsplash.MAPSMapsareforillustrativepurposesanddonotimplytheexpressionofanyopiniononthepartoftheBezosEarthFund,ClimateActionTracker(includingClimateAnalyticsandNewClimateInstitute),ClimateWorksFoundation,theUnitedNationsClimateChangeHigh-LevelChampions,andWorldResourcesInstitute,concerningthelegalstatusofanycountryorterritoryorconcern-ingthedelimitationoffrontiersorboundaries.STATEOFCLIMATEACTION2023235AboutSystemsChangeLabSystemsChangeLabaimstodrivechangeatthepaceandscaleneededtotacklesomeoftheworld’sgreatestchal-lenges:limitingglobalwarmingto1.5degreesC,haltingbiodiversitylossandbuildingajustandequitableeconomy.ConvenedbyWorldResourcesInstituteandtheBezosEarthFund,SystemsChangeLabsupportstheUNClimateChangeHigh-LevelChampionsandworkswithkeypartnersandfundersincludingClimateActionTracker(aprojectofClimateAnalyticsandNewClimateInstitute),ClimateWorksFoundation,GlobalEnvironmentFacility,JustClimate,MissionPossi-blePartnership,Systemiq,UniversityofExeterandtheUniversityofTokyo’sCenterforGlobalCommons,amongothers.SystemsChangeLabisacomponentoftheGlobalCommonsAlliance.AboutSystemsChangeLab’sPartnersforthisReportBezosEarthFundNewClimateInstituteTheBezosEarthFundistransformingthefightagainstNewClimateInstituteisanon-profitthinktanksupportingclimatechangewiththelargesteverphilanthropicimplementationofactionagainstclimatechangeinthecommitmenttoclimateandnatureprotection.We’recontextofsustainabledevelopmentaroundtheworld.investing$10billioninthisdecisivedecadetoprotectNewClimateInstituteconnectsup-to-dateresearchwithnatureanddrivesystems-levelchange,creatingajustrealworlddecision-makingprocesseswithafocusontransitiontoalow-carboneconomy.Byprovidingfundinginternationalclimatenegotiations,nationalandsectoralandexpertise,wepartnerwithorganizationstoaccel-climateactionandcorporateclimatecommitments.erateinnovation,breakdownbarrierstosuccessandcreateamoreequitableandsustainableworld.JoinusUnitedNationsClimateChangeinourmissiontocreateaworldwherepeopleprosperinHigh-LevelChampionsharmonywithnature.ClimateActionTrackerTheUnitedNationsClimateChangeHigh-LevelCham-pionsforCOP27andCOP28–MahmoudMohieldinandTheClimateActionTracker(CAT)isanindependentRazanAlMubarak–driverealworldmomentumintoresearchprojectthattracksgovernmentclimateactiontheUNClimateChangenegotiations.TheydothisbyandmeasuresitagainstthegloballyagreedParisAgree-mobilizingclimateactionamongstnon-Stateactorsmentgoaloflimitingwarmingto1.5˚C.Acollaboration(companies,cities,regions,financial,educationalandoftwoorganizations,ClimateAnalyticsandNewClimatehealthcareinstitutions)toachievethegoalsoftheParisInstitute,theCAThasbeenprovidingthisindependentAgreement,inclosecollaborationwiththeUNFCCC,theanalysistopolicymakerssince2009.MarrakechPartnershipandtheCOPPresidencies.ClimateAnalyticsWorldResourcesInstituteClimateAnalyticsisaglobalclimatescienceandpolicyWorldResourcesInstituteisaglobalresearchinstituteengagedaroundtheworldindrivingandorganizationthatturnsbigideasintoactionatthesupportingclimateactionalignedtothe1.5°Cwarmingnexusofenvironment,economicopportunity,andlimit.IthasofficesinAfrica,AustraliaandthePacific,thehumanwell-being.Caribbean,NorthAmericaandSouthAsia.OurChallenge:NaturalresourcesareatthefoundationofClimateWorksFoundationeconomicopportunityandhumanwell-being.Buttoday,wearedepletingEarth’sresourcesatratesthatarenotClimateWorksFoundationisaglobalplatformforsustainable,endangeringeconomiesandpeople’slives.philanthropytoinnovateandscalehigh-impactclimatePeopledependoncleanwater,fertileland,healthyfor-solutionsthatbenefitpeopleandtheplanet.Wedeliverests,andastableclimate.Livablecitiesandcleanenergyglobalprogramsandservicesthatequipphilanthropyareessentialforasustainableplanet.Wemustaddresswiththeknowledge,networks,andsolutionstodrivetheseurgent,globalchallengesthisdecade.climateprogressforamoresustainableandequitablefuture.Since2008,ClimateWorkshasgrantedover$1.7OurVision:Weenvisionanequitableandprosperousbilliontomorethan750granteesinover50countries.planetdrivenbythewisemanagementofnaturalresources.Weaspiretocreateaworldwheretheactionsofgovernment,business,andcommunitiescombinetoeliminatepovertyandsustainthenaturalenvironmentforallpeople.Copyright2023WorldResourcesInstitute.ThisworkislicensedundertheCreativeCommonsAttribution4.0InternationalLicense.Toviewacopyofthelicense,visithttp://creativecommons.org/licenses/by/4.0/