全球能源趋势2023(英文版)--EnerdataVIP专享VIP免费

Enerdat
a
intelligence + consulting
20
23 GLOBAL
ENERGY
TRENDS
2022
A troubled, yet promising year
for energy transition?
Edition
2
ENERDATA – GLOBAL ENERGY TRENDS – 2023 EDITION
CONTENTS
2021 & 2022
DATA BENCHMARKS 5
Key energy & climate

6
8 Economic growth
10 Energy consumption
12 Energy intensity
14 CO2 emissions
16 Decarbonisation
evolution


18
20 Coal
22 Oil
24 Gas
26 Electricity
28 Power Mix
30 Wind
32 Solar

34
34 Keytakeawaysfrom2022gures
GLOBAL STOCKTAKE 37


38


40
40 Co2 emissions decomposition
methodology
42 Main drivers of co2 emissions
44 Still far from the targets


46
46 Manufacturing industry
48 Transport
50 Residential and services
3
ENERDATA – GLOBAL ENERGY TRENDS – 2023 EDITION

52
52 Key takeaways
NATURAL GAS CRISIS IN
EUROPE 55

57
57 Eu’s dependence on russian gas
58 Natural gas prices were already high
in the 2nd half of 2021



60
60 Adaptationandsuciencyinthe
building sector
62 Industry sector
63 Power generation sector


64
64 Substituting russian gas imports

66
66 European Gas Crisis synthesis

Géraldine DUFFOUR
Senior Analyst
Quentin BCHINI
Energy Expert
20GLOBALEdition23ENERGYTRENDSEnerdataintelligence+consulting2022Atroubled,yetpromisingyearforenergytransition?22021&2022CONTENTSDATABENCHMARKS5GLOBALSTOCKTAKE37Keyenergy&climatefiguresforG20AbouttheGlobalStocktake6388Economicgrowth10EnergyconsumptionEmissionskeptgrowing12Energyintensitysince202114CO2emissions16Decarbonisation40evolution40Co2emissionsdecompositionTrendsbyenergyformethodologyG2042Maindriversofco2emissions1844Stillfarfromthetargets20CoalSectoralbreakdownfor22OilEU,ChinaandtheUS24Gas26Electricity4628PowerMix30Wind46Manufacturingindustry32Solar48Transport50ResidentialandservicesSummary3434Keytakeawaysfrom2022figuresENERDATA–GLOBALENERGYTRENDS–2023EDITION3Summary5252KeytakeawaysNATURALGASCRISISINDiversificationoftheEUROPE55supplyPre-conflictsituation645764Substitutingrussiangasimports57Eu’sdependenceonrussiangasSummary58Naturalgaspriceswerealreadyhigh66inthe2ndhalfof202166EuropeanGasCrisissynthesisEu’snaturalgasdemanddecreasedinAuthors:allsectorsin2022GéraldineDUFFOUR60SeniorAnalystQuentinBCHINI60AdaptationandsufficiencyintheEnergyExpertbuildingsector62Industrysector63PowergenerationsectorENERDATA–GLOBALENERGYTRENDS–2023EDITION4ENERDATA–GLOBALENERGYTRENDS–2023EDITION5Chapter1•2021&2022DataBenchmarksChapter12021&2022DATABENCHMARKSKeyenergy&climatefiguresforG20TrendsbyenergyforG20SummaryENERDATA–GLOBALENERGYTRENDS–2023EDITION6KeyenergyECONOMICGROWTH&climatefiguresforreturnstotrendG202022+3.2%G20countriesrepresentaround202180%ofglobalenergyconsumption.+6.2%ENERDATA–GLOBALENERGYTRENDS–2023EDITION2020-3.1%2019+3.4%/year2010Source:Enerdata–www.enerdata.net7Chapter1•2021&2022DataBenchmarksENERGYCONSUMPTIONCO2EMISSIONSgrowsathistoricpaceriseabove2019levels20222022+1.7%11.8Gtoe+1.9%28.3GtCO220212021+5.1%+6.3%20202020-3%-4.9%20192019+1.9%+0.8%/year/year20102010CO2emissionsfromenergycombustion(>80%ofCO2emissions)Source:Enerdata–www.enerdata.netENERDATA–GLOBALENERGYTRENDS–2023EDITION8GDPgrowth(%/year)inG20countriesECONOMICGROWTH2010-20192021%/G2020202022Areturntothenormal19%pre-2020trend/G20In2022G20economicgrowthreturnedtotheUSAnormalpre-2020trend(+3.2%),withasharp+2.2%+5.7%slowdowncomparedto2021+2.1%(6.2%).-3.4%Countrysituationswerediverse:3%InEU:stronggrowth/G20despiteuncertainties.BrazilInJapan,Korea,andIndonesia:growthdriven+0.7%+4.6%+2.9%bydomesticdemand.-3.9%InBrazilandIndia:pre‑electionyearwithG20hugepublicinvestments.+3.4%+6.2%Thebiggesteconomic+3.2%slowdownswere:-3.1%InChina:Zero‑covidpolicy,asluggishdemand,andthepropertycrisis.InRussia:Westernsanctions.ENERDATA–GLOBALENERGYTRENDS–2023EDITION9Chapter1•2021&2022DataBenchmarksRussia3%5%+1.7%/G20/G20+4.8%Japan-2.7%-2.1%+0.9%+1.6%+1.1%EU18%-4.5%+1.6%/G20+5.4%+3.7%-5.9%24%/G20China+7.3%+8.1%9%+2.2%+3%India/G20+6.4%+8.9%+6.8%-6.6%Source:Enerdata,www.enerdata.netGDPshareofG20countriesOECD53%Non-OECD47%/G20/G20+2%+5.3%+2.9%+5.4%+7.2%+3.6%-4.5%-1.4%ENERDATA–GLOBALENERGYTRENDS–2023EDITION10TotalG20energyconsumptiongrowth(%/year)2010-20192021%/G20ENERGY20202022CONSUMPTIONUSA19%Energyconsumptiongrewdespitethe+0.3%/G20impactofthewarinUkraine+4.9%+1.8%ThesharpfallinEuropewasoffsetbyagrowthinenergy-8%consumptionintheUnitedStatesandCanadawhichare3%majorenergyproducers,andwerethereforenotsubjectto/G20soaringpricesasEuropeandAsiawere.BrazilTheslightdeclineinJapan+2.2%+4.5%+2.4%andthemoderategrowthinKoreawereduetovery-2.2%highgasandoilpricesonglobalmarkets,whileenergyG20consumptioninChinagrewatthesamerateastheGDP.+1.9%+5.1%+1.7%Energyconsumptionrosesignificantlyincoal‑intensive-3%IndiaandIndonesiaandinoil‑intensiveSaudiArabia,whichallhadarobusteconomicgrowth.ENERDATA–GLOBALENERGYTRENDS–2023EDITION11Chapter1•2021&2022DataBenchmarksRussia7%Japan3%+2%/G20/G20-2%+8.4%+4.6%-1.4%11%-1.5%-6.9%-0.2%EU/G20+4.8%-0.5%-6.8%-4.2%India9%32%+4.3%/G20/G20+7.4%+7.3%China-5.9%+4.4%+3.3%+5.2%+3%Source:Enerdata,www.enerdata.netEnergyconsumptionshareofG20countriesOECD43%Non-OECD57%/G20/G20+0.1%-6.7%+4.6%-0.2%+3.6%+0.1%+5.5%+3.3%ENERDATA–GLOBALENERGYTRENDS–2023EDITION12Energyintensitytrends(%/year)inG20countries2010-20192021ENERGY20202022INTENSITYUSAAreductionin2022thatisnotsufficient-2.2%-4.7%-0.8%-0.3%tomeetthe2°CobjectiveBrazilInEurope,thesharp+0.6%+1.8%-0.1%-0.4%reductionisduetothedeclineinenergyconsumptionandthegrowthinGDP.InChinaenergyconsumptionandGDPgrewatthesamepace,resultinginastableenergyintensity.G20+0.1%-2%-1%-1.5%“Energyintensity”=energyconsumption/GDPENERDATA–GLOBALENERGYTRENDS–2023EDITION13Chapter1•2021&2022DataBenchmarksRussia+3.4%+0.6%-0.2%+0.7%Japan+2.9%-2.8%-2.5%-1.3%EU-2.3%-0.9%-0.6%-7.6%China-2.7%+0.1%+1%-3.8%IndiaSource:Enerdata,www.enerdata.net-2.8%+0.7%-1.5%+0.5%OECDNon-OECD-2.2%-2.3%-0.7%-3%-2.5%+1.5%-1.6%-0.3%ENERDATA–GLOBALENERGYTRENDS–2023EDITION14Energy-relatedCO2emissions(%/year)inG20countries2010-20192021%/G20CO2EMISSIONS20202022RecordlevelsinUSA17%2022,exceeding2019-1.2%/G20CO2emissionsfellinthe+7%EUduetoadropinenergy+1.2%consumption,particularlygas,whichmadeOECDemissions-10.6%stable.Buttheincreaseinnon‑OECDBrazil1%countriesishuge:morethan4%,duetotheincrease/G20inenergyconsumptioninCO2‑intensivecountriessuch+13%asIndia,Indonesia,andSaudiArabia.Therefore,themore+1.1%-6.2%energytheyconsume,the-5.3%moreemissionstheyemit.TheCO2emissionsconsideredarerelatedtoenergycombustionG20+0.8%+6.3%+1.9%-4.9%ENERDATA–GLOBALENERGYTRENDS–2023EDITION15Chapter1•2021&2022DataBenchmarksRussia6%/G204%+10.2%/G20+0.7%-0.2%Japan-5.2%-0.9%-5.1%+2.2%-0.2%EU9%37%/G20/G20+7.1%China-1.8%-9.5%-1.3%+2.5%+1.4%+5.5%+1.0%India9%Source:Enerdata,+4.2%/G20www.enerdata.netCO2emissionsshareofG20countries+10.3%+8.8%-8.7%OECD38%Non-OECD62%/G20/G20+5.9%+2.4%+6.4%+4.1%+0.3%-1.9%-1%-9.2%ENERDATA–GLOBALENERGYTRENDS–2023EDITION16DECARBONISATIONEVOLUTIONEnergyintensity:Energy-relatedG20CO2emissions:G201%8%2°C6%4%0%Yearlytarget2%0%-1%-2%-4%-2%-6%-3%AverageTheCO2emissionsconsideredarerelatedtoenergycombustion2000200220042006200820102012201420162018202020222000200420082012201620202°C(World)since2000-4%CarbonfactorCarbonfactor:growth:G20G202%tCO2/toeTrendsinceParisagreement1%2.62.52°Cpathway0%2.42.3-1%2.22.1-2%2-3%AveragesinceParisAgreement-4%2000200420082012201620202°C(World)20152016201720182019202020212022202320242025Source:Enerdata–www.enerdata.netENERDATA–GLOBALENERGYTRENDS–2023EDITION17Chapter1•2021&2022DataBenchmarksLatestdecarbonisationSince2000,althoughtheenergyintensityinindicatorsdriftfurtherawaytotheclimatetheG20hasfallenbyanaverageof1.5%targetslimitingaglobalperyear,thisisnotenoughtoachievethetemperatureincreasetotwo-degreetarget,whichrequiresannualunder2°C.reductionsofalmost4%.Moreeffortneedstobemade.MoreinformationintheGlobalStocktakeCO2emissionsintheG20aresignificantlysection.abovethelevelwewouldneedtomaintaintoachievethetwo-degreetarget,sincetheywouldneedtofallbymorethan4%peryear.TheaveragedeclineinthecarbonfactorsincetheParisagreementislessthan1%peryear,whereasweneednearly3.5%peryeartoreachthetwo-degreetarget.Therewasadeclineuntil2020,butthelasttwoyearshaveslowedthisprogress.Thisisbecausepowergenerationisstillverycarbonintensive,using60%forthermalpowergeneration,andtherehasbeenasurgeincoalconsumptionoverthelasttwoyears.ENERDATA–GLOBALENERGYTRENDS–2023EDITION18TrendsbyenergyforG20ECONOMICGROWTHENERGYCONSUMPTIONreturnstotrendgrowsathistoricpace20222022+3.2%+1.7%11.8Gtoe20212021+6.2%+5.1%20202020-3.1%-3%20192019+3.4%/year+1.9%/year20102010ENERDATA–GLOBALENERGYTRENDS–2023EDITIONSource:Enerdata–www.enerdata.net19Chapter1•2021&2022DataBenchmarksCOAL—32%ShareoftotalOIL—28%Shareoftotal+3.7%-3%-6.7%+1.9%201920202021202220192020202120222010-19+6%2010-19+4.9%+0.4%/year+0.9%/yearGAS—21%ShareoftotalSource:Enerdata-1.4%www.enerdata.net-1.1%ELECTRICITY2019202020212022-0.2%+2.2%20192020202120222010-19+4.8%2009-19+6%+2.3%/year+2.7%/yearENERDATA–GLOBALENERGYTRENDS–2023EDITION20+3.7%20212022COALSteadygrowthin2022CoalconsumptiongrewKeydatasteadily,drivenbyAsiancoalproducers:China(over60%of+4.3%+9%totalG20coalconsumption),ChinaIndiaIndiaandIndonesia.+15%+4.9%CoalconsumptionalsoincreasedintheIndonesiaEUEUforthesecondyearinarowduetoextremelyhighgaspricesthroughoutthe+6.8%Noticeableyear.Russiadeclinedue-6%tocompetitionCompetitionfromgasandrenewablesUSAfromgas&intheUSelectricitysectorreducedcoalrenewables.consumptionby6%.AlthoughAustraliaisamajorproducer,itscoalconsumptiondeclinedduetoextensivepowerplantmaintenance(1/4ofthefleetofflineinMay-June2022)thatreducedcoal‑firedpowergeneration;massiverainsandfloodingalsohadanimpactonAustraliancoalproduction.ENERDATA–GLOBALENERGYTRENDS–2023EDITION21Chapter1•2021&2022DataBenchmarksTrendsincoalconsumptioninG20countries(%/year)2020202120222010-201920%15%10%5%0%-5%-10%-15%-20%-25%%/G2018%82%61%12%2%3%6%4%3%G20OECDn-OECDChinaIndianesiaRussiaUSAEUJapanIndoNoSource:Enerdata–www.enerdata.netPrimaryconsumptionofcoal(Mtoe)MtoeG20G20OECDG20Non-OECDWorld5,0004,0003,0002,0001,0000200020022004200620082010201220142016201820202022Source:Enerdata–www.enerdata.netENERDATA–GLOBALENERGYTRENDS–2023EDITION22+1.9%20212022OILContrastinggrowthinoilconsumptionDuetotheeconomicKeydata-1.6%slowdownandsoaringChinaoilprices,growthinoilSlower+1.4%consumptionalsoslowed.growthforEUOntheonehand,thethreemainoilthemainoilconsumersoftheG20playedaleadingconsumersofroleinthistrend.Indeed,China’stheG20.industrialdemanddecreased,andtheUSandEUconsumptiongrewataslowerrate.+0.9%Ontheotherhand,insomecountrieswithUSAstrongeconomicgrowth,energydemandhasbeensustained,leadingtohighoilStrongincrease+12%consumptioninIndia,IndonesiaandSaudiIndiaArabia.forsomecountrieswithENERDATA–GLOBALENERGYTRENDS–2023EDITIONstrongeconomicgrowth.+13%+10%IndonesiaSaudiArabia23Chapter1•2021&2022DataBenchmarksTrendsinoilconsumptioninG20countries(%/year)2020202120222010-201915%10%5%0%-5%-10%-15%%/G2054%46%20%7%3%5%24%13%5%G20OECDOECDChinaIndiaBrazilussiaUSAEUJapanNon-RSource:Enerdata–www.enerdata.netPrimaryconsumptionofoil(Mtoe)MtoeG20G20OECDG20Non-OECDWorld5,0004,0003,0002,0001,0000200020022004200620082010201220142016201820202022Source:Enerdata–www.enerdata.netENERDATA–GLOBALENERGYTRENDS–2023EDITION2420212022GASTheimpactoftheUkrainianconflict-1.4%Twosignificantimpacts.Keydata-12%EUFirstly,gasconsumptioninEuropefellDeclineduetotheby12%duetosoaringpricesandfearsofsupplydisruption,forcingindustrywarinUkraine.andendconsumerstoreducegasuse.Themildwinterandtheintroductionof€RiseinEuropeanenergy‑savingmeasureshelpedtoo.gaspricesbetweenHighgaspricesandtheindustrial+56%February&MarchslowdownalsoimpactedChina,which2022.sawitsfirstdropingasconsumptioninForEuropeangas30years.pricesFirstdropin30yearsSecondly,theinvasionofUkraineled-1.2%(industrialtoa56%riseinEuropeangaspricesChinaslowdownandintwomonths,andpressuretoboosthighgasprices).gasreservescontributedtoo.Inaddition,withEuropeanconsumersturningtoLNGSubstantialgrowthduetomuchimportsonamassivescale,LNGpricesontheEuropeanandAsianmarketsreachedcheaperLNGprices.recordhighs.USLNGpricesincreasedataslowerpace.Thus,LNGgrowthwas+5.3%+4.4%substantial:+5.3%intheUSAand+4.4%inUSACanadaCanada.ENERDATA–GLOBALENERGYTRENDS–2023EDITION25Chapter1•2021&2022DataBenchmarksTrendsingasconsumptioninG20countries(%/year)2020202120222010-201915%10%5%0%-5%-10%-15%%/G2060%40%12%2%18%30%12%3%G20OECDn-OECDChinaIndiaRussiaUSAEUJapanNoSource:Enerdata–www.enerdata.netConsumptionofnaturalgas(Mtoe)MtoeG20G20OECDG20Non-OECDWorld4,0003,5003,0002,5002,0001,5001,0005000200020022004200620082010201220142016201820202022Source:Enerdata–www.enerdata.netENERDATA–GLOBALENERGYTRENDS–2023EDITION26+2.2%20212022ELECTRICITYSlowergrowthinelectricitydemandHowever,theshareofKeydataGrowthiselectricityinfinalenergy+0.5%moderateduetoconsumptioncontinuedtoOECDadeclineintherise.24%in2022whichisEUandJapan.+1.3ppcomparedto2019-3.1%level.EU-1.7%JapanIntheEU,electricitypricesweredirectlylinkedtotheincreaseingasprices,whichShareofledtoenergy-savingmeasuresandaelectricityindecreaseinelectricityconsumption.24%G20'sfinalenergyTheshareofelectricityinfinalenergyconsumption,consumptionisclearlyrisingwithasharpincreasedrivenincreaseinChina.byChina.24%ofthefinalconsumptioniselectricity,whichismorethanone28%percentagepointhigherthanpre-crisisChinalevels.ENERDATA–GLOBALENERGYTRENDS–2023EDITION27Chapter1•2021&2022DataBenchmarksTrendsinelectricityconsumptioninG20countries(%/year)2020202120222010-201915%10%5%0%-5%-10%%/G2044%56%37%6%3%4%19%11%4%G20OECDon-OECDChinaIndiaBrazilRussiaUSAEUJapanNSource:Enerdata–www.enerdata.netElectricityshareinfinalconsumptionG20EUChinaUSAIndia30%25%20%15%10%200020022004200620082010201220142016201820202022Source:Enerdata–www.enerdata.netENERDATA–GLOBALENERGYTRENDS–2023EDITION28Increaseintheshareofwindandsolarinthepowermix,inpercentagepointsPOWERMIX+2ppAlesscarbon-intensivepowermix20212022StronggrowthinsolarKeydataandwindgenerationbutthepowermixremainsSharpriseinsolar&wind:dominatedbythermalpower.theshareofsolarintheG20Powergenerationisstillrisingwithaelectricitymixhasgrownby6ppsharpincreaseinsolar(27%)andwindsince2010(8%in2022),andthatof(13%)powergeneration.windby5pp(5%in2022).Nucleargenerationdroppedby4.9%,primarilyinEuropewiththeclosureofnuclearpowerplantsinGermany,andwith+27%+13%maintenance,strikesanddroughtinFrance.However,thermalpowergenerationForSolarForWindremainsbroadlyunchangedsince2020andisstilldominantwith60%oftheDropinnuclearpowermix.generation-4.9%(especiallyinEurope).ForNuclearENERDATA–GLOBALENERGYTRENDS–2023EDITION29Chapter1•2021&2022DataBenchmarksEvolutionofpowergenerationbysourceinG20countries30,000CoalGasOilNuclearHydroBiomassWindSolar25,00020,000Source:Enerdata–www.enerdata.net15,000Powergeneration(TWh)10,00020005,00020010200220032004200520062007200820092010201120122013201420152016201720182019202020212022CoalPowermix–G20OilNuclearBiomassWindGasFossilfuelshare100%HydroSolar70%%mix50%60%%thermal0%50%2000200520102015202020212022Source:Enerdata–www.enerdata.netENERDATA–GLOBALENERGYTRENDS–2023EDITION30WINDStronggrowthforwind+13%powergeneration,whilecapacitydevelopment20212022sloweddownTheincreaseinwindpowerKeydata+16%capacitycontinuedtoslowChinadown,to+75GW.Growth+14%BrazilChinaaccountedforhalfofthenewdrivenbycapacityinstalledwith37GW.China,theWindpowergenerationincreasedby13%,USA,Brazil&particularlyinChinaandtheUSAwithmoretheEU.than15%growth,andBrazilwith+14%.+15%Chinadominatedwindenergy,producingUSAalmosttwiceasmuchastheEUandtheUSA.+7.3%EUTheEUandtheUSAeachgeneratedasmuchastheotherG20countriescombined.Slowdownafter+108GWin2020+75GWand+83GWin2021.OfwindpowercapacityENERDATA–GLOBALENERGYTRENDS–2023EDITION31Chapter1•2021&2022DataBenchmarksWindpowergenerationinthemainG20countries(TWh)EUChinaUSAOtherG20800TWh700600200050020014002002300200320020041002005200602007200820092010201120122013201420152016201720182019202020212022Source:Enerdata–www.enerdata.netWindpower:Newcapacityadditions(GW)GW2020202120228070605040302010-EUChinaUSASource:Enerdata–www.enerdata.netENERDATA–GLOBALENERGYTRENDS–2023EDITION32Solarpowergeneration+27%SOLAR20212022Solardevelopment:arecord-breakingyearSolarinstallationsincreasedKeydata+86GWasproductionandinstallationChinacostsdecreased.AccelerationChinainstalled86GW,representing45%inChina,ofthenewsolarcapacity.intheEU&Asaresult,solarpowergenerationinIndia.surgedinmanycountries:+32%inChina,+27%intheEU,+24%intheUSA,+39%in+36GWIndia,+64%inBrazil,and+11%inJapan.EU+13GWIndia+17GWSlowdowninUSAtheUnitedStates.ENERDATA–GLOBALENERGYTRENDS–2023EDITION33Chapter1•2021&2022DataBenchmarksSolarpowergenerationinthemainG20countries(TWh)EUChinaIndiaUSAJapanGermanyTWh4504003503002502001501005002010201120122013201420152016201720182019202020212022Source:Enerdata–www.enerdata.netSolarpower:Newcapacityadditions(GW)GW20202021202290ChinaUSAIndia70503010-10EUSource:Enerdata–www.enerdata.netENERDATA–GLOBALENERGYTRENDS–2023EDITION34SummaryKEYTAKEAWAYSFROMGlobaleconomyandenergy2022FIGURESconsumptionarebacktotheirtrendgrowthOntheeconomicfront,theslowdowninChinaandtheimpactofthewarinUkraineonEuropeareparticularlynoteworthy.Apartfromthe“forcedenergysufficiency"inEurope,energyconsumptionhascloselyfollowedeconomictrends,withnoaccelerationinthedecouplingoftheeconomyfromenergyconsumption–andwithrobustgrowthinIndiaandIndonesia.Somethingtowatch:howconsumptionwillreboundinEuropeifsupplytensionsevolve,inordertounderstandtowhatextentsufficiencyinitiativesaretemporaryorstructural.ENERDATA–GLOBALENERGYTRENDS–2023EDITION35Chapter1•2021&2022DataBenchmarksCO2emissionsrisebyaround2%againFinally,in2022weseereturnstopre‑covidtrendsAsidefromtheimpactofrisingenergyandnewquestionsaboutthelong-termimpactsofconsumption,theenergymixhasnottheRussia‑Ukraineconflict.evolvedfavourably.ThesequestionsconcerntheevolutionofenergyInEurope,theunfavourabletrendintheconsumption,theenergymix,andprices.energymixalmostoffsetthefallinenergyconsumption.Globally,theshareoffossilfuelsisnotdecreasing,withtheriseincoalusagelargelyoffsettingthefallingasconsumption.Renewablepowergeneration(wind,solarPV)continuestoriseRenewableenergyproductionisgrowingrapidly(+27%forsolarand+13%forwind)whilenewinstallationsremainsteady.Chinaaccountsfor50%ofwindpowerinstallationsand45%ofsolarpowerinstallationsintheG20.ENERDATA–GLOBALENERGYTRENDS–2023EDITION36ENERDATA–GLOBALENERGYTRENDS–2023EDITION37Chapter2•GlobalstocktakeChapter2GLOBALSTOCKTAKEHowhaveCO2emissionsevolvedsincetheParisAgreement,andwhatwerethemaindriversbehindthisevolution?AbouttheGlobalStocktakeEmissionskeptgrowingsince2021SectoralbreakdownforEU,ChinaandtheUSSummaryENERDATA–GLOBALENERGYTRENDS–2023EDITION38AbouttheGlobalStocktakeTheGlobalStocktakeisthepartoftheParisAgreementwhichoverseesthenationallydeterminedcontribution(NDCs).Itprovides:Enerdatacontributesinaverymodestway,tryingtobringourvisiontoAssessmentofimplementedcomplementtheofficialprocessandtoovercometheperceivedlimitations.measuresNotablyweareworkingoncomparingpasttrendswithreferencescenarios.OurAssessmentofremainingeffortsgoalistoprovidearegionalandsectoralassessment.requiredWederivetwoscenariosfromaninternalPolicyrecommendationsmodelcalledPOLES:Itsmainlimitationsare:EnerBlue:scenariobasedontheGlobalapproach:doesnotallowforachievementofupdatedNDCs.amoregranularassessment,onEnerGreen:scenariobasedonacountryorregionalandsectorallevel.temperatureriseoflessthan2°C.NobenchmarkingagainstanidealThesetwoscenariosallowustoconsidertrajectory.thedifferencebetweentheNDCsandanactualidealtrajectory.ThisiswhatTheGlobalStocktakewaslaunchedinwecommonlyrefertoastheemissions2021withaninitialperiodofdatacollectiongap.Thisexerciseisupdatedeveryyearbyvariousparties.Lastyear,afterabyourservicesandwillleadtofurtherlongperiodofdataanalysis,technicalpublications.assessmentreportswerepublished.Thesynthesisreportisexpectedbytheendof2023,aroundthetimeofCOP28onNovember30th.Thisprocessisplannedtobereproducedeveryfiveyears.ENERDATA–GLOBALENERGYTRENDS–2023EDITION39Chapter2•GlobalstocktakeUNclimateagenda–timelineanddeliverablesDisussnewCOP25TalanoaDialoguefinancialgoalforAdoptionofthe2025NovParisRulebookCommunicatenewUNSGSummit2018orupdatedNDCsSeptember23rdandlong-termGHGreductionplans20202019UNFCCCGlobalSecretariatcollectsStocktakenewfinanceinformation202120222023M-ayCOP26/SB56COP27/SB58COP28/JuneSB58CMA3CMA4CMA5Sessions1UpdatesourcesofInformationCollectionandPreparationinformationICPguidingTAguidingSynthesisCOGuidingquestionsquestionsreportsquestionsCallforSubmissionWebinars2WebinarsinputsofinputsTechnicalAssessmentIPCCAR6WGI(Aug2021)Mitigation/Adaptation/MOI/SynthesisWGII(Feb2022)ConsideringrelevanteffortsonRMandL&DreportsWGIII(Apr2022)TD1TD2TD3JCG1JCG2JCG3JCG4IPCCAR6HighlevelSYR(Sept2022)event(s)3ConsiderationofOutputsInthelightofequityandthebestavailablescienceDecision/declarationGlobalNewfinancialNationalinventoryStocktakecommitmentduereportonNDCs2028Communicatenew2024orupdatedNDCs2025CommunicatenewDecisiononNet-ZeroorupdatedNDCsacommonEmissionstimeframefor2030NDCs2050Sources:UNFCCC,SWP,Enerdata2031ENERDATA–GLOBALENERGYTRENDS–2023EDITION40Emissionskeptgrowingsince2021CO2EMISSIONSDECOMPOSITIONMETHODOLOGYInthissectionweprovideinsightsandtrendsonglobalemissionssincetheParisAgreement.Beforedivingintotheheartofthematter,let’stakeaquicklookatourmethodology.Inlinewithourintenttoprovidemoregranularfeaturesonemissions,weconsideredtheKayaidentity,whichisderivedasfollows:KAYAIDENTITYMODELGDPEnergyCO2PopulationconsumptionemissionsCO2emissionsPopulationGDP/GDPEnergycapitaconsumptionEnergyintensityCarbonfactorTheKayaidentityprovidesasimplisticbuteasilyreplicableinitialbreakdownofemissionsbydriverforeachcountry.Inordertobreakthisdownintoasectoralanalysis,weintegratemorespecificdrivers,suchasindustrialproductionbybranch,andpassengerandfreighttrafficfortransport.ENERDATA–GLOBALENERGYTRENDS–2023EDITION41Chapter2•GlobalstocktakeENERDATA–GLOBALENERGYTRENDS–2023EDITION42MAINDRIVERSOFCO2EMISSIONSComparedwith2015,globalCO2emissionsincreasedby6%in2022(+2Gt).Lower-than-expectedcumulatedeconomicgrowthsince2015hasmitigatedtheincreaseofemissions(approx.3.3Gt).However,comparedwitha2°Cscenario,energyintensitygainsanddecarbonisationare50%lowerthanexpected.ThereisstillnodecouplingofGDP/CO2emissions,andtheevolutionoftheglobalenergymixisveryslow.GlobalCO2emissions(2015-2022)+2.7+4.7-3.8-1.4GtCO2GtCO2GtCO2GtCO2PopulationGDP/capitaEnergyEmissionintensityfactor36382022emissionsGtCO2GtCO2estimated+6%20152022ENERDATA–GLOBALENERGYTRENDS–2023EDITIONSource:Enerdata–www.enerdata.net43Chapter2•GlobalstocktakeAllotherthingsbeingequal,thebreakComparingtheactualevolutionanddownyields:whatweexpectedbackin2015revealsinsufficientefforts.ItiscounterintuitiveThepopulationeffectaccountstohaverecordedgrowingemissionsatatimewhenglobaleconomicactivityfornearly2.7GtofCO2emissionswasfarbelowtheexpectationsofgrowth.theParisAgreement.ItdepictshowinsufficienttheintensityandefficiencyGDPpercapitaaccountsforthegainshavebeenforthelastsevenyears.Thisedifyingstatementshowsthatwelargestshareoftheincrease,atwerenotabletoactivatethemitigation4.7Gt.commitmentsyet.Areductionoftheenergyintensityfactorbyalmost4Gt.Amodestimprovementofthecarbonfactor,helpingtoreduceemissionsby1.4Gt.Projectedemissionsasper2015+2.7+8-7.4GtCO2GtCO2GtCO2PopulationGDP/capitaEnergyintensity-3.4GtCO2Emissionfactor36352022emissionsGtCO2GtCO2estimated2015-3%2022Source:Enerdata–www.enerdata.netENERDATA–GLOBALENERGYTRENDS–2023EDITION44STILLFARFROMTHETARGETSGlobalenergyintensityGlobalcarbonfactorHistoricalvs.trends&scenariosHistoricalvs.trends&scenariosGJ/$770kgCO2/MJ660550420202040402020204033022011002000020002015-2022projHistoricalEnerBlueEnerGreenSource:Enerdata–www.enerdata.netOurEnerBlueandEnerGreenscenariosillustratedaboveclearlyconfirmthatwearenotdoingenoughtocutCO2emissions.Eventhoughthetargetsfor2030werenotveryambitious,theyarefarfrombeingmet.Theyear2022isnoexception,despiteslightimprovements.ENERDATA–GLOBALENERGYTRENDS–2023EDITION45Chapter2•GlobalstocktakeENERDATA–GLOBALENERGYTRENDS–2023EDITION46SectoralbreakdownforEU,ChinaandtheUSMANUFACTURINGINDUSTRYIndustrialactivityrising,Chinaalongsideenergyefficiencygains.+2717EmissionsdeclinedslightlyinMtCO2China,theEUandtheUS.IndustrialproductionLargeintensitygainsinChina-2303-704offsettherisingoutputinindustries.MtCO2MtCO2ModerategainsinefficiencyEfficiencyintheEUcutemissionsbyapproximately15%.SmallgainsintheUSbarelycompensatedfortheincreasedproduction.FuelswitchingwassignificantinChina,whileitappearedinmuchsmallerproportionsintheEUandtheUS(quiteintuitiveconsideringthelargerinitialfossilfuelshareinChina).Fuelswitching2395-12%2105MtCO2MtCO220102022Source:Enerdata–www.enerdata.netENERDATA–GLOBALENERGYTRENDS–2023EDITION47Chapter2•GlobalstocktakeUSAEU+55-28-31+26MtCO2MtCO2MtCO2MtCO2IndustrialEfficiencyFuelIndustrialproductionswitchingproduction371-63-24MtCO2MtCO2MtCO2EfficiencyFuelswitching460457MtCO2MtCO2-1%311MtCO2-16%2010202220102022Source:Enerdata–www.enerdata.netENERDATA–GLOBALENERGYTRENDS–2023EDITION48ChinaTRANSPORT+663+96+10-80TransportsectorMtCO2MtCO2MtCO2MtCO2decarbonisationbarelystarted.TrafficModalEfficiencyElectricityshifts&biofuelsInChina,emissionshave(passengers&freight)risensignificantlywithincreasedpassenger249938andfreighttraffic,littledecarbonisationandnoMtCO2MtCO2efficiencygains.2000+277%InEuropeandtheUSA,2021emissionsaresteadywithpoorgainsinefficiencyandSource:Enerdata–www.enerdata.netelectricity&biofuelsuse.Modalshift(forinstanceswitchingfromindividualcarstopublictransport)hasactuallygonetheoppositewayfromwhatweexpected,contributingtoariseinemissionsinthethreeregions.Electrificationhasyettohaveasubstantialimpactbutisamajorpotentialgamechangerinthecomingyears,alongwithanoverallreductionindemand.ENERDATA–GLOBALENERGYTRENDS–2023EDITION49Chapter2•GlobalstocktakeUSAEU+109+145-256-100+72+48-68-56MtCO2MtCO2MtCO2MtCO2MtCO2MtCO2MtCO2MtCO2TrafficModalEfficiencyElectricityTrafficModalEfficiencyElectricityshifts&biofuelsshifts&biofuels(passengers&(passengers&freight)freight)16911589772768MtCO2MtCO2MtCO2MtCO22000-6%-1%202120002021Source:Enerdata–www.enerdata.netENERDATA–GLOBALENERGYTRENDS–2023EDITION50ChinaRESIDENTIALAND+231-35-95-5SERVICESMtCO2MtCO2MtCO2MtCO2DifferentdynamicsaccordingtoworldActivityDegreeregions.days(population+Therehasbeenasignificanttertiarization)decreaseinemissionsfromFuelEnergybuildingsintheEUcomparedswitchingintensityto2010.Thisisattributabletoamild2022winter(depictedby418514degreedaysbeingthedifferencebetweenambienttemperaturesMtCO2MtCO2andindoortemperaturesofdwellingsandoffices)and2010+23%progressindecarbonisationandenergyintensity.2022InChina,demographicandSource:Enerdata–www.enerdata.neteconomicgrowthdroveemissionsupwards,whileenergyintensitybarelychanged.Improvementsinfuelswitchingwereinsufficienttocompensate.TheUSsawalmostnochangeinemissions,andgrowthwasoffsetbyverysmallgains.ENERDATA–GLOBALENERGYTRENDS–2023EDITION51Chapter2•GlobalstocktakeUSAEU+81-29-16-33+34-99-41MtCO2MtCO2MtCO2MtCO2MtCO2MtCO2MtCO2ActivityDegreeFuelEnergyActivityDegreeFueldaysswitchingintensitydaysswitching(population+(population+tertiarization)tertiarization)-46MtCO2Energyintensity540544539387MtCO2MtCO2MtCO2MtCO2+1%-28%2010202220102022Source:Enerdata–www.enerdata.netENERDATA–GLOBALENERGYTRENDS–2023EDITION52SummaryKEYTAKEAWAYSGlobalemissionsCO2emissionscontinuedtoincreasedespitealower-than-expectedeconomicgrowth.EffortstoreduceenergyintensityandthecarbonfactorareinsufficienttomeetatrajectorycompatiblewithParisAgreement.ENERDATA–GLOBALENERGYTRENDS–2023EDITION53Chapter2•GlobalstocktakeRegionalandsectoraldynamicsLeverstobeactivatedNotableefficiencygainsinChinaElectrifying,heatingandremaininsufficienttooffsetthetransportationwithadoublebenefitriseinactivity(industrialoutput,ofloweringdirectemissionsandpopulation,etc).creatingsubstantialefficiencygains.Off-targettrendinEuropeandthePaceofrenovatingbuildingsshouldUSwhereactivityincreasedmuchincreasesignificantlyindevelopedlesswithoutasignificantdropineconomies.emissions.Demandpatternsarebecomingessential:energysufficiency,circulareconomy,etc.ENERDATA–GLOBALENERGYTRENDS–2023EDITION54ENERDATA–GLOBALENERGYTRENDS–2023EDITION55Chapter3•NaturalgascrisisineuropeChapter3NATURALGASCRISISINEUROPEWhatmeasureswereimplementedtoadapttothenewgeopoliticalsituationregardingnaturalgassupplyintheEU?Pre-conflictsituationEu’snaturalgasdemanddecreasedinallsectorsin2022DiversificationofthesupplySummaryENERDATA–GLOBALENERGYTRENDS–2023EDITION56Thissectionpresentsananalysisofnaturalgasprices,focusingonthestakesandadaptationstrategiesinEuropefollowingtheinvasionofUkraineinFebruary2022.Thereferenceyearusedis2019inordertoexcludeanybiasinthecomparisons,as2021wasstillmarkedbythepandemicandamajoreconomicrebound,andgasconsumptionwasnotrepresentativeofpre-wartrends.ENERDATA–GLOBALENERGYTRENDS–2023EDITION57Chapter3•NaturalgascrisisineuropePre-conflictsituationEU’SDEPENDENCEONRUSSIANGASTheEuropeanUnionhasalwaysbeenhighlydependentonnaturalgasimports.Asof2019,domesticproductiononlyprovided15%oftotalneeds.NaturalgasisastrategicsourceofenergyforEuropeancountriessinceitaccountsforasignificantshareoffinalenergydemandinallsectors(excepttransport)aswellasinpowergeneration.In2019,importsfromRussia(182bcm)accountedfor45%ofnaturalgasimportsintheEU,makingitbyfarthelargestsupplier.GrossnaturalgasconsumptionintheEUbysource(2019)15%85%DomesticImportsproduction45%22%15%18%RussiaNorwayOtherOther(Pipeline)(LNG)Sources:Eurostat,CedigazENERDATA–GLOBALENERGYTRENDS–2023EDITION58NATURALGASPRICESWEREALREADYHIGHINTHE2NDHALFOF2021Spotpricesandend-userpricesofnaturalgasinEurope(2021-2023)TTFSpotResidentialEUaverage(semester)IndustryEUaverage(semester)250200€/MWh150100500ai-21juil-21sept-21nov-21janv-22mars-22mai-22juil-22sept-22nov-22janv-23mars-23mai-23janv-21mars-21mSources:EnergyMarketPrice,EurostatENERDATA–GLOBALENERGYTRENDS–2023EDITION59Chapter3•NaturalgascrisisineuropeAtthebeginningofInbrief:theconflictinUkraine,gaspricesskyrocketedWholesalenaturalgaspricesfirstasaresultofWesternsanctionsagainstRussia.increasedinEuropein2021,amidastrongpost-pandemiceconomicThesesanctions,combinedwithrecovery,drivingupnaturalgasdemand,supplypressuresduetopipelinecutsparticularlyinAsia.fromRussiareinforcedthepressureonnaturalgasprices.However,theTheinvasionofUkrainebytheRussianupwardtrendinnaturalgaspriceshadalreadystartedin2021,causedbyanarmycausedpricestosoarin2022.increaseinconsumptionandstrategicactionsbyRussiatopushuppricesEnd-userpricesalsoincreasedbeforetheinvasion.substantially,butdidn’tmatchpricepeaksobservedinwholesalemarkets.ENERDATA–GLOBALENERGYTRENDS–2023EDITION60Eu’snaturalgasdemanddecreasedinallsectorsin2022ADAPTATIONANDSUFFICIENCYINTHEBUILDINGSECTORIn2019,naturalgasconsumptionintheEU’sbuildingsectorwasdividedaccordingly:SpaceheatingCooking78%Water14%8%NaturalgasheatingapplicationsinbuildingsintheEU(2019)Source:Enerdata–www.enerdata.netBetween2019and2022,theuseofnaturalgasforheatingdecreased,partlyduetotheriseofheatpumps.ENERDATA–GLOBALENERGYTRENDS–2023EDITION61Chapter3•NaturalgascrisisineuropeBreakingdownthedecreaseinEUnaturalgasconsumptioninthebuildingssectorbetween2019and2022+64-82-248-24-127PJPJPJPJPJDemographyClimateFuelEnergyBehaviourimpactswitchefficiency49224505PJPJ-8%20192022Source:Enerdata–www.enerdata.netNaturalgasconsumptioninthebuildingsectordecreasedby8.4%duetothefollowingfactors:Fuelswitching,accountingformorethanhalfofthecut(notablymovingtowardsheatpumps,asmentionedbefore).Priceelasticityofdemandandforcedenergysufficiencyresultingfromfearofasupplyshortage(knownas“behaviour”)responsiblefor30%ofthedecrease.Milderweather.ENERDATA–GLOBALENERGYTRENDS–2023EDITION62INDUSTRYSECTORNaturalgasconsumptioninthemanufacturingsectorfollowedthesamepathasthebuildingsector.However,theleverswerenotthesame.BreakingdownthedecreaseinEUnaturalgasconsumptioninmanufacturingindustrybetween2019and2022+24-221-271PJPJPJActivity&EnergyFuelstructureefficiencyswitching3054PJ2586PJ-15%20192022Source:Enerdata,UNIDONosignofde-industrialisation:Fuelswitchingaccountsforthestableactivitydespiteadeclineinthelargestshare(58%).ironandsteelmakingindustries,andchemicalsindustriestoalesserextent.Energyefficiencyimprovementshavebeenimplemented.ENERDATA–GLOBALENERGYTRENDS–2023EDITION63Chapter3•NaturalgascrisisineuropePOWERGENERATIONSECTORSince2019,theEUhasnotabandonedgas-firedpowerstationsinfavourofotherpowerstations,becausetheeffectoftheorderofmerithasbeenneutralised.Gas-firedpowerplantslostcompetitivenessduetosoaringpricesandshouldhavebeenrelegatedtotheendofthepeckingorder.However,theverylowavailabilityofFrenchnuclearpowerplants,amongotherthings,increasedtheneedforothermeansofproduction,includinggas-firedpowerplants,meaningthepowersectorhadverylittleflexibility.Breakingdownthedecreaseinnaturalgasconsumptioninpowergenerationbetween2019and2022intheEU-40-4bcmbcmbcmElectricityFuelEfficiencyconsumptionswitching121113Slightreductioninbcmoverallelectricitybcmconsumption.-7%Nofuelswitchingdespitethelossofcompetitivenessofgas‑firedplants.Overallefficiencyimprovements.20192022Source:Enerdata–www.enerdata.netENERDATA–GLOBALENERGYTRENDS–2023EDITION64DiversificationofthesupplySUBSTITUTINGRUSSIANGASIMPORTSDespiteadropindomesticproduction(positiveinthewaterfallchartsinceitledtoincreasingimportneeds),importsfromRussiafellby45%in2022comparedto2019.ItisnoteasytotrackgasfromRussiaaccuratelyduetochangesintheusualroutes,thoughweestimateavolumeof101bcmin2022comparedwith182bcmin2019.TheEU’snaturalgassupplywasforcedtodiversifytoreducetheuseofRussiangas.MaindriversbehindthedecreaseofRussiangasimportsintheEUbetween2019and2022-33-9-7+22bcmbcmbcmbcmFinalPowerOtherDomesticconsumptionsectorconsumptionproduction182-54bcmbcmImportEstimationsubstitutions101bcm-45%20192022Sources:Enerdata,Eurostat,CedigazLowerfinalconsumptionandimportsubstitutionsplayedthemainroleinthedeclineofRussiangasimports.Theyeachaccountedforathirdofthedrop.Thepowersector’scontributionislowerthanexpectedduetothemitigatedmeritordereffect.ENERDATA–GLOBALENERGYTRENDS–2023EDITION65Chapter3•NaturalgascrisisineuropeGasimportsintheEUbysourcein2019and20222022101bcm93bcm74bcm109bcmRussiaNorwayOthersOther(pipeline)(LNG)2019182bcm87bcm61bcm74bcmRussiaNorwayOthersOther(pipeline)(LNG)Sources:Eurostat,CedigazLNGimportsincreasedmassivelyby47%tocompensateforthedropinRussiansupplies.LNGnowrepresentsthelargestshareoftotalgassupplyintheEU.Itisamoreflexiblesourcewhichcanbereroutedeasierthanpipelines.ImportsfromNorwayalsoincreased(+6bcm),complementingLNGimportstoensuresufficientsupply.ENERDATA–GLOBALENERGYTRENDS–2023EDITION66SummaryEUROPEANGASCRISISOverall,theinvasionofUkraineSYNTHESISledtodistortionsinthenaturalgasmarketwithsurgingpricesintheEU.However,therewereultimatelynosupplyoutagesasinitiallyfeared,thanksto:Consumptionadaptation.Adiversificationofnaturalgassupplychains.ENERDATA–GLOBALENERGYTRENDS–2023EDITION67Chapter3•NaturalgascrisisineuropeNaturalgasconsumptionfellby12%Russianimports,fallingby44%,comparedwith2019through:werecompensatedforby:Improvedefficiencyandfuel-switching48%riseofLNGimports(largestintheindustry.sourceoftotalsupply).Favourableweather,heatpumps7%increaseofNorwegianimports.emergenceandenergysufficiencyinbuildings.Aslightdecreaseofelectricityconsumptionandsmallintensitygainsinthepowersector.ENERDATA–GLOBALENERGYTRENDS–2023EDITIONEnerdataintelligence+consultingHELPINGEnerdataisanindependentresearchYOUSHAPEcompanythatspecialisesintheTHEENERGYanalysisandforecastingofenergyandTRANSITIONclimateissues,atavarietyofdifferentgeographicandbusiness/sectorFormoreinformationlevels.ThecompanyisheadquarteredinGrenoble,France,whereitwaswww.enerdata.netfoundedin1991,andhasasubsidiaryresearch@enerdata.netinSingapore.IfyouwishtouseordisseminategraphsLeveragingitsgloballyrecognisedandfiguresincludedinthisdocumentdatabases,businessintelligencepleasecontact:research@enerdata.netprocesses,andprospectivemodels,©2023EnerdataS.A.S.,allrightsreserved.Enerdataassistsclients–whichincludecompanies,investors,Graphicdesign:AliceLapillonneandpublicauthoritiesaroundtheworld–indesigningtheirpolicies,strategies,andbusinessplans.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱