IMF-腐败致死:来自自然灾害的全球证据(英)-2023.10-15页VIP专享VIP免费

2023
OCT
Corruption Kills:
Global Evidence from
Natural Disasters
Serhan Cevik and João Tovar Jalles
WP/23/220
© 2023 International Monetary Fund WP/23/220
IMF Working Paper
European Department
Corruption Kills: Global Evidence from Natural Disasters
Prepared by Serhan Cevik and João Tovar Jalles1
Authorized for distribution by Bernardin Akitoby
October 2023
IMF Working Papers describe research in progress by the author(s) and are published to elicit comments
and to encourage debate. The views expressed in IMF Working Papers are those of the author(s) and do
not necessarily represent the views of the IMF, its Executive Board, or IMF management.
Abstract
Natural disasters are inevitable, but humanitarian and economic losses are determined largely by
policy preferences and institutional underpinnings that shape the quality of public infrastructure
(including emergency responses and healthcare services) and govern business practices and the
adherence to building codes. In this paper, we empirically investigate whether corruption
increases the loss of human lives caused by natural disasters, using a large panel of 135
countries during the period 19802020. The econometric analysis provides convincing evidence
that corruption increases the number of disaster-related deaths, after controlling for economic,
demographic, healthcare and institutional factors. That is, the higher the level of corruption in a
given country, the greater the number of fatalities as a share of population due to natural
disasters. Our results show that the devastating impact of corruption on loss of human lives
caused by natural disasters is significantly greater in developing countries, which are even more
vulnerable to nonlinear effects of corruption.
JEL Classification Numbers:
D31; D73; H41; P16; Q54
Keywords:
Corruption; institutions; natural disasters; fatalities
Author’s E-Mail Address:
scevik@imf.org; joaojalles@gmail.com
1 The authors would like to thank Azar Sultanov for helpful comments and suggestions.
I. INTRODUCTION
Natural disasters are inevitable, resulting in significant economic losses and tens of thousands of
deaths in most years across the world. In high fatality years, which tend to be those with major
earthquakes or cyclones, the number of deaths caused by natural disasters may reach hundreds
of thousands (Figure 1).2 Over the course of modern history, there has been a continuous
reduction in the number of fatalities caused by natural disasters owing to better living standards,
more resilient physical infrastructure, better early warning indicators and stronger emergency
response systems (Figure 2). However, there are still important disparities across countries in
humanitarian and economic losses. For example, an earthquake measuring 7 on the Richter scale
devastated Haiti and killed more than 200,000 people in 2010, while earthquakes of similar
magnitude (7.2 on the Richter scale) caused only minor fractures and injuries in Mexico and New
Zealand. Could geographic and socioeconomic factors alone explain such a striking difference in
disaster outcomes? We think not. The impact of natural disasters, in our view, is also attributable
to policy preferences and institutional underpinnings that determine the quality of public
infrastructure, the effectiveness of emergency responses and healthcare services and govern
business practices and the adherence to building codes.
This is not the first attempt in the literature to analyze economic, institutional and social factors
in determining losses associated with natural disasters (Albala-Bertrand, 1993; Tol and Leek,
1999; Haque, 2003; Anbarci et al., 2005; Kahn, 2005; Skidmore and Toya, 2007; Kellenberg and
Mobarak, 2008; Raschky, 2008; Noy, 2009; Padli and Habibullah, 2009; Schumacher and Strobl,
2011; Loayza et al., 2012; Cavallo et al., 2013; Klomp, 2016; Taghizadeh-Hesary et al., 2019).
Corruptioncommonly defined as the abuse of entrusted power for private gainis shown to
have detrimental effects on economic development, social cohesion and trust, and political
stability and effective governance (Mauro, 1995; Tanzi, 1998; Mo, 2001; Alesina and Weder, 2002;
Habib and Zurawicki, 2002; Pellegrini and Gerlagh, 2004; Meon and Sekkat, 2005; Rose-
Ackerman, 2006; Aidt et al., 2008; Hodge et al., 2011; D’Agostino et al., 2016; Huang, 2016; Chang
and Hao, 2017; Farzanegan and Witthuhn, 2017; Cieślik and Goczek, 2018; Gründler and Potrafke,
2019; Uberti, 2022). Most closely related to this paper, Escaleras et al. (2007) find that corruption
is positively related to earthquake-related deaths in 75 countries over the period 19752003. This
reflects a multitude of channels through which corruption determines losses associated with
Figure 1. Natural Disaster-Related Deaths Across the World
Source: Our World in Data based on the EM-DAT database.
2 Our World in Data provides a concise presentation of disasters based on the EM-DAT database, which is used in
this paper: https://ourworldindata.org/century-disaster-deaths.
CorruptionKills:GlobalEvidencefromNaturalDisastersSerhanCevikandJoãoTovarJallesWP/23/2202023OCT©2023InternationalMonetaryFundWP/23/220IMFWorkingPaperEuropeanDepartmentCorruptionKills:GlobalEvidencefromNaturalDisastersPreparedbySerhanCevikandJoãoTovarJalles1AuthorizedfordistributionbyBernardinAkitobyOctober2023IMFWorkingPapersdescriberesearchinprogressbytheauthor(s)andarepublishedtoelicitcommentsandtoencouragedebate.TheviewsexpressedinIMFWorkingPapersarethoseoftheauthor(s)anddonotnecessarilyrepresenttheviewsoftheIMF,itsExecutiveBoard,orIMFmanagement.AbstractNaturaldisastersareinevitable,buthumanitarianandeconomiclossesaredeterminedlargelybypolicypreferencesandinstitutionalunderpinningsthatshapethequalityofpublicinfrastructure(includingemergencyresponsesandhealthcareservices)andgovernbusinesspracticesandtheadherencetobuildingcodes.Inthispaper,weempiricallyinvestigatewhethercorruptionincreasesthelossofhumanlivescausedbynaturaldisasters,usingalargepanelof135countriesduringtheperiod1980–2020.Theeconometricanalysisprovidesconvincingevidencethatcorruptionincreasesthenumberofdisaster-relateddeaths,aftercontrollingforeconomic,demographic,healthcareandinstitutionalfactors.Thatis,thehigherthelevelofcorruptioninagivencountry,thegreaterthenumberoffatalitiesasashareofpopulationduetonaturaldisasters.Ourresultsshowthatthedevastatingimpactofcorruptiononlossofhumanlivescausedbynaturaldisastersissignificantlygreaterindevelopingcountries,whichareevenmorevulnerabletononlineareffectsofcorruption.JELClassificationNumbers:D31;D73;H41;P16;Q54Keywords:Corruption;institutions;naturaldisasters;fatalitiesAuthor’sE-MailAddress:scevik@imf.org;joaojalles@gmail.com1TheauthorswouldliketothankAzarSultanovforhelpfulcommentsandsuggestions.I.INTRODUCTIONNaturaldisastersareinevitable,resultinginsignificanteconomiclossesandtensofthousandsofdeathsinmostyearsacrosstheworld.Inhighfatalityyears,whichtendtobethosewithmajorearthquakesorcyclones,thenumberofdeathscausedbynaturaldisastersmayreachhundredsofthousands(Figure1).2Overthecourseofmodernhistory,therehasbeenacontinuousreductioninthenumberoffatalitiescausedbynaturaldisastersowingtobetterlivingstandards,moreresilientphysicalinfrastructure,betterearlywarningindicatorsandstrongeremergencyresponsesystems(Figure2).However,therearestillimportantdisparitiesacrosscountriesinhumanitarianandeconomiclosses.Forexample,anearthquakemeasuring7ontheRichterscaledevastatedHaitiandkilledmorethan200,000peoplein2010,whileearthquakesofsimilarmagnitude(7.2ontheRichterscale)causedonlyminorfracturesandinjuriesinMexicoandNewZealand.Couldgeographicandsocioeconomicfactorsaloneexplainsuchastrikingdifferenceindisasteroutcomes?Wethinknot.Theimpactofnaturaldisasters,inourview,isalsoattributabletopolicypreferencesandinstitutionalunderpinningsthatdeterminethequalityofpublicinfrastructure,theeffectivenessofemergencyresponsesandhealthcareservicesandgovernbusinesspracticesandtheadherencetobuildingcodes.Thisisnotthefirstattemptintheliteraturetoanalyzeeconomic,institutionalandsocialfactorsindetermininglossesassociatedwithnaturaldisasters(Albala-Bertrand,1993;TolandLeek,1999;Haque,2003;Anbarcietal.,2005;Kahn,2005;SkidmoreandToya,2007;KellenbergandMobarak,2008;Raschky,2008;Noy,2009;PadliandHabibullah,2009;SchumacherandStrobl,2011;Loayzaetal.,2012;Cavalloetal.,2013;Klomp,2016;Taghizadeh-Hesaryetal.,2019).Corruption—commonlydefinedastheabuseofentrustedpowerforprivategain—isshowntohavedetrimentaleffectsoneconomicdevelopment,socialcohesionandtrust,andpoliticalstabilityandeffectivegovernance(Mauro,1995;Tanzi,1998;Mo,2001;AlesinaandWeder,2002;HabibandZurawicki,2002;PellegriniandGerlagh,2004;MeonandSekkat,2005;Rose-Ackerman,2006;Aidtetal.,2008;Hodgeetal.,2011;D’Agostinoetal.,2016;Huang,2016;ChangandHao,2017;FarzaneganandWitthuhn,2017;CieślikandGoczek,2018;GründlerandPotrafke,2019;Uberti,2022).Mostcloselyrelatedtothispaper,Escalerasetal.(2007)findthatcorruptionispositivelyrelatedtoearthquake-relateddeathsin75countriesovertheperiod1975–2003.ThisreflectsamultitudeofchannelsthroughwhichcorruptiondetermineslossesassociatedwithFigure1.NaturalDisaster-RelatedDeathsAcrosstheWorldSource:OurWorldinDatabasedontheEM-DATdatabase.2OurWorldinDataprovidesaconcisepresentationofdisastersbasedontheEM-DATdatabase,whichisusedinthispaper:https://ourworldindata.org/century-disaster-deaths.4naturaldisasters:(i)inadequateinfrastructure,weakbuildingcodesandunsafeconstruction(Brinkerhoff,2008;AlamandVennemo,2014;Iqbal,2018);(ii)slowandinefficientemergencyresponses,reliefdistributionandhealthcare(Akhtaruzzaman,2011;KlompanddeHaan,2013);(iii)disproportionateimpactonvulnerablegroupsofthesocietyduetoinequalitiesindisasterpreparednessandresponseandaccesstoinformation,resources,andsupport(Guptaetal.,2002;LehoucqandMolinas,2002);and(iv)lackofaccountabilityandtransparencyingovernance(Shah,2006;Heywood,2007).Inthispaper,weusealargepanelof135countriesduringtheperiod1980–2020andfocusontheroleofcorruptionindeterminingthelossofhumanlivescausedbynaturaldisasters.Corruptionisacomplexphenomenonthataffectsallcountries,butitseconomic,institutional,politicalandsocialcausesandconsequencesshowgreatvariationacrosscountries.Theeconometricanalysisprovidesconvincingevidencethatcorruptionincreasesthenumberofdisaster-relateddeaths,aftercontrollingforeconomic,demographic,healthcareandinstitutionalfactors.Hence,wecaninferthatthehigherthelevelofcorruption,thegreaterthenumberoffatalitiesperpopulationinnaturaldisasters.Toputthisempiricalfindingintoperspective,thedifferencebetweentheleastandmostcorruptcountriesinoursampleimpliesasixfoldincreaseinthenumberofdeathsperpopulationcausedbynaturaldisasterinagivenyear.Ourresultsalsoshowthatthedevastatingimpactofcorruptionisgreaterindevelopingcountriesthaninadvancedeconomiesandtherearenonlineareffectswithhigherlevelsofcorruptionresultinginanevenlargernumberofdeathsfromnaturaldisasters,especiallyindevelopingcountries.Inourview,thisreflectsthelowqualityofbuildingsandinfrastructureandtheweaknessofhealthandriskmanagementsystemsduetowidespreadcorruption.Theseempiricalfindingsarerobusttovariousregressionspecificationsandsampleheterogeneity,whichweusetoobtainagranularanalysisoftheimpactofcorruptiononlossofhumanlivesFigure2.AnnualAverageofNaturalDisaster-RelatedDeathsAcrosstheWorldSource:OurWorldinDatabasedontheEM-DATdatabase.5causedbynaturaldisasters.Allinall,theempiricalresultspresentedinthispaperhighlightthecriticalrelationshipbetweeneconomicdevelopmentandinstitutionalcapacityinstrengtheninggoodgovernance.Promotinganti-corruptionmeasurestostrengtheninstitutionsandcreateaconduciveenvironmentforgreatertransparencyingovernanceandappropriateuseofpublicresourcesis,therefore,paramountinthisregard.Theremainderofthispaperisorganizedasfollows.SectionIIdescribesthedatausedintheempiricalanalysis.SectionIIIintroducesthesalientfeaturesofoureconometricstrategy.SectionIVpresentsanddiscussestheempiricalresults,includingaseriesofrobustnesschecks.Finally,SectionVoffersconcludingremarksincludingpolicyimplications.II.DATAOVERVIEWWeputtogetherapaneldatasetofannualobservationscovering135countriesovertheperiod1980–2020.Thedependentvariableisthenumberofdeathsperpopulationduetonaturaldisastersinagivenyear,whichisobtainedfromtheEmergencyEventsDatabase(EM-DAT)compiledbytheCentreforResearchontheEpidemiologyofDisasters(CRED)attheUniversitéCatholiquedeLouvaininBelgium.TheEM-DATprovidesdataontheoccurrenceandeffectsofover22,000large-scalenaturaldisastersacrosstheworldfrom1900tothepresentdayandoffersinformationondifferentcategoriesofnaturaldisastersincludinggeophysical(earthquake,massmovementandvolcanicactivity),meteorological(extremetemperature,fogandstorm),hydrological(flood,landslideandwaveaction),climatological(drought,glaciallargeoutburst,wildfire),andbiological(epidemic,insectinfestationandanimalaccident).3▪Geophysical:Ahazardoriginatingfromsolidearth.Thistermisusedinterchangeablywiththetermgeologicalhazard.▪Meteorological:Ahazardcausedbyshort-lived,micro-tomeso-scaleextremeweatherandatmosphericconditionsthatlastfromminutestodays.▪Hydrological:Ahazardcausedbytheoccurrence,movement,anddistributionofsurfaceandsubsurfacefreshwaterandsaltwater.▪Climatological:Ahazardcausedbylong-lived,meso-tomacro-scaleatmosphericprocessesrangingfromintra-seasonaltomulti-decadalclimatevariability.▪Biological:Ahazardcausedbytheexposuretolivingorganismsandtoxicsubstances(e.g.venom,mold)orvector-bornediseases.Thenumberofdeathsperpopulationandpereventvariesonaverageaccordingtothetypeofnaturaldisaster(Figure3).Weather-relateddisasterssuchasdroughtsandfloodscausedextremelylargenumberofdeathsinthefirsthalfofthe20thcenturybuthavebecomelessimpactfulintermsofhumanitarianlossesovertime,owingtoimprovementsininfrastructureand3Weexcludeextraterrestrialdisasterscausedbyasteroids,meteoroids,andcometsastheypassnear-earth,entertheearth’satmosphere,and/orstriketheearth,andbychangesininterplanetaryconditionsthateffecttheearth’smagnetosphere,ionosphere,andthermosphere.6emergencymanagementincludinginternationalaid.Naturaldisasterscausedbyclimatechangesuchasextremetemperatureandstorms,ontheotherhand,havebecomemorepronouncedoverthepasthalfcentury.Large-scaleearthquakeshavealwaysresultedinsignificanteconomicandhumanitarianlosses,especiallyincountrieswithweakinstitutionalandphysicalinfrastructure.Themainexplanatoryvariableofinterestiscorruption,whichismeasuredbythecorruptionindexconstructedbytheInternationalCountryRiskGuide(ICRG).Corruptionisdefinedas“theextenttowhichpublicpowerisexercisedforprivategain,includingpettyandgrandformsofcorruption,aswellascaptureofthestatebyelitesandprivateinterests.”Thesurvey-basedcorruptionindexrangesfrom0(highestpotentialrisk)to6(lowestpotentialrisk).4Weinverttheindexsothatthenewvariableisincreasinginthedegreeofcorruption.TheICRGdatasetprovidesthemostcomprehensivecoverageacrosscountriesandovertime,startingin1984.Tomaximizethesamplesizeofnaturaldisasters,weusethe1984valueofthecorruptionindex(aswellasotherinstitutionalvariablesdescribedbelow)fortheperiod1980–1983.Althoughthisisastrongassumption,thecorruptionindexandotherinstitutionalfactorsusedintheanalysisareslow-movingvariables.5Followingtheliterature,weintroduceseveralcontrolvariables,includingrealGDPpercapita,tradeopennessasmeasuredbytheshareofexportsandimportsinGDP,urbanizationasmeasuredbytheshareofurbanpopulationintotal,andthenumberofhospitalbedsperFigure3.GlobalDeathsfromNaturalDisastersAcrosstheWorld,bytypeSource:OurWorldinDatabasedontheEM-DATdatabase.4TheICRGdatabaseisavailableathttps://www.prsgroup.com/explore-our-products/icrg/.5Ourbaselineestimationresultsremainunchangedwhenwealternativelyusetheperiod1984–2020.7population,whicharedrawnfromtheWorldBank´sWorldDevelopmentIndicatorsdatabase.Wealsoincludeadditionalvariablestocontrolforbroaderinstitutionalcharacteristics,whichcouldinfluenceboththelevelofcorruptionandthehumanitariancostofnaturaldisasters.6Specifically,weusecompositeindicesofbureaucraticquality,democraticaccountabilityandgovernmentstability,whichareobtainedfromtheICRGdatabase.Bureaucraticqualitymeasurestheinstitutionalstrengthandthelevelofexpertisetogovernwithoutdrasticchangesinpolicyorinterruptionsingovernmentservices.Countriesthatlackthecushioningeffectofastrongbureaucracyreceivelowpointsbecauseachangeingovernmenttendstobetraumaticintermsofpolicyformulationandday-to-dayadministrativefunctions.Democraticaccountabilityisameasureofhowresponsivegovernmentistoitspeople,onthebasisthatthelessresponsiveitis,themorelikelyitisthatthegovernmentwouldfall,peacefullyinademocraticsociety,butpossiblyviolentlyinanon-democraticone.Ingeneral,thelowestriskpointisassignedtoalternatingdemocracies,whilethehighestriskpointisassignedtoautarchies.Governmentstabilityisanassessmentbothofthegovernment’sabilitytocarryoutitsdeclaredprogramsaswellasitsabilitytostayinoffice.DescriptivestatisticsforthevariablesusedintheempiricalanalysisarepresentedinTable1.Thereisasignificantdegreeofdispersionacrosscountriesinthenumberofdisaster-relatedfatalitiesandconsiderableheterogeneityineconomicandinstitutionalfactorsbetweencountriesandwithinandbetweenincomegroups.Forexample,advancedeconomies,onaverage,havealowerlevelofcorruptionandexperiencefewernaturaldisastersthandevelopingcountries.Correspondingly,thenumberofdeathscausedbynaturaldisastersinadvancedeconomiesissignificantlylowerthanindevelopingcountries.Table1.SummaryStatisticsVariableObservationsMeanStd.dev.MinimumMaximumNaturaldisaster-relateddeathsperpopulation7,9441.331.30.02,331.5Corruption4,7373.01.40.06.0RealGDPpercapita7,12611,02316,130166Tradeopenness6,51283.852.60.0114,048Urbanization7,91353.323.94.3442.6Healthcare(hospitalbeds)3,4154.53.40.1100.0Bureaucraticquality4,8002.21.20.019.9Democraticaccountability4,8003.91.60.04.0Governmentstability4,8007.42.00.06.012.0Source:EM-DAT;ICRG;WorldBank;author'scalculations.III.ECONOMETRICSTRATEGYANDEMPIRICALRESULTSTheobjectiveofthispaperistoempiricallyinvestigatetheroleofcorruptionindisaster-relatedfatalitiesin135countriesovertheperiod1980–2020.Takingadvantageofthepanelstructureinthedata,weestimatethefollowingbaselinereduced-formempiricalspecification:6Theexclusionoftheseinstitutionalvariablesmayleadtoapotentialomittedvariablebias.8𝐷𝑒𝑎𝑡ℎ𝑠𝑖𝑡=𝛽1+𝛽2𝐶𝑜𝑟𝑟𝑢𝑝𝑡𝑖𝑡−1+𝛽3𝑋𝑖𝑡−1+𝜂𝑖+𝜇𝑡+𝜀𝑖𝑡(1)where𝐷𝑒𝑎𝑡ℎ𝑠𝑖𝑡isthelogarithmofthenumberofdeathsperpopulationduetonaturaldisastersincountryiandtimet,whicharewinsorizedat5thand95thpercentilestomitigatetheeffectsofextremeoutliers;𝐶𝑜𝑟𝑟𝑢𝑝𝑡𝑖𝑡isanindicatorofcorruption—themainvariableofinterestinthisanalysismeasuredfromlesstomorecorruptionbyinvertingtheoriginalscale;𝑋𝑖𝑡denotesavectorofcontrolvariablesincludingthelogarithmofrealGDPpercapita,tradeopenness,urbanization,thelogarithmofhospitalbeds,andmeasuresofbureaucraticquality,democraticaccountabilityandgovernmentstability(whicharerescaledforhighervaluestoindicatehigherrisk).Allexplanatoryvariablesincludingcorruptionarelaggedbyoneperiodtoreducepotentialreversecausalityconcerns.The𝜂𝑖arecountry-fixedeffectstocaptureunobservedheterogeneityacrosscountries,andtime-unvaryingfactorssuchageographicalvariableand𝜇𝑡aretime-fixedeffectstocontrolforglobalshocks(suchastheglobalbusinesscycleorcommoditypriceshocks).𝜀𝑖𝑡isanidiosyncraticerrortermsatisfyingusualassumptionsofzeromeanandconstantvariance.WeusetheDriscoll-Kraay(1998)robuststandarderrors,whichassumetheerrorstructuretobeheteroskedastic,autocorrelateduptosomelagandpossiblycorrelatedbetweenthegroups.Theempiricalanalysis—robusttovarioussensitivitychecks—providesconsistentevidencethatcorruptionhasastatisticallysignificanteffectonfatalitiescausedbynaturaldisastersacrosstheworld.First,weestimatethespatiallycorrelatedconsistentmodelforthenumberofdeathsperpopulationduetonaturaldisastersinagivenyear.Theseresults,presentedinTable2,demonstrateaconsistentpicturewiththesignsofallestimatedparameterscorrespondingtotheirexpectedvaluesacrossdifferentspecifications.Corruption—themainexplanatoryvariableofinterestinthisanalysis—issignificantlyandpositivelyassociatedwithahighernumberofnaturaldisaster-relateddeathsinoursampleof135countriesduringtheperiod1980–2020.Theestimatedcoefficientoncorruptionisstatisticallysignificantacrossallspecification,therebyimplyingthata1percentincreaseincorruptionleadstoanincreaseofabout2.1percentinthenumberofdeathsperpopulationcausedbynaturaldisaster,aftercontrollingforothereconomic,demographic,healthcareandinstitutionalfactors.Hence,wecaninferthatthehigherthecorruptionindexinagivencountry,thegreaterthenumberoffatalitiesasashareofpopulationduetonaturaldisasters.Toputthisfindingintoperspective,thedifferencebetweentheleastandmostcorruptcountriesinoursampleimpliesasixfoldincreaseinthenumberofdeathsperpopulationcausedbynaturaldisasterinagivenyear.Withregardstocontrolvariables,weobtainconsistentandintuitiveestimationresults.ThelevelofrealGDPpercapitaisinverselycorrelatedtonaturaldisaster-relateddeaths,suggestingthatdisasterstendtoresultinfewerfatalitiesincountrieswithhigherlevelsofincome.ThecoefficientonrealGDPpercapitaislargerinmagnitude(thanthatoncorruption)butstatisticallyinsignificantacrossallspecifications.Likewise,wefindthattradeopenness—ameasureofinternationaleconomicintegrationanddevelopment—doesnotappeartohavestatisticallysignificanteffectonnaturaldisasterdeaths.Bothurbanizationandhealthcareconditionsarecrucialfactorsindeterminingcross-countrydifferencesinthenumberofdeathsperpopulation9causedbynaturaldisasters.Thecoefficientsonurbanizationandhealthcareindicateastrongandstatisticallysignificantnegativerelationshipbetweentheshareofpopulationlivinginurbanareasandthestrengthofthehealthcaresystemandnaturaldisaster-relateddeathsperpopulation.Finally,weintroduceaseriesofinstitutionalandpoliticalvariables,whichdonotaltertheresults,butprovidemoreinformationonfactorsaffectingthehumanitarianimpactofnaturaldisasters.Allthreemeasures—bureaucraticquality,democraticaccountability,andgovernmentstability—contributetoadeclineinthenumberofdeathsperpopulationcausedbynaturaldisasters,butwithvaryingdegreesofstatisticalsignificance.Inotherwords,countrieswithhigherbureaucraticquality,greaterdemocraticaccountabilityandmorestablegovernmentstendtohavelowermortalityfromnaturaldisasters.Forrobustnessandtoobtainabetterunderstandingofhowthelevelofeconomicdevelopmentshapestheimpactofcorruptiononnaturaldisasterdeaths,weestimatethemodelseparatelyfordifferentincomegroups—advancedeconomiesanddevelopingcountries—andpresenttheseresultsinTable3.ThisdisaggregationrevealsastrikingcontrastintheimpactofcorruptiononTable2.DeterminantsofNaturalDisaster-RelatedDeaths(Dependentvariable:Annualnumberofdeathsperpopulation)Specification(1)(2)(3)(4)SampleofcountriesALLALLALLALLCorruption0.02030.02070.02040.0205Income(0.007)(0.008)(0.008)(0.008)Openness-0.0675-0.0718-0.0988-0.0939Urbanization(0.046)(0.055)(0.065)(0.068)Healthcare0.03230.01580.01350.0039Bureaucraticquality(0.028)(0.024)(0.023)(0.024)Democraticaccountability-0.3405-0.6330-0.6978-0.6220Governmentstability(0.311)(0.351)(0.370)(0.347)-0.0695-0.0877-0.0897-0.0877(0.033)(0.049)(0.049)(0.051)-0.0714(0.037)-0.0080-0.0108(0.012)(0.008)Observations1,8121,5091,5091,509Countries117888888R2_weighted0.0412CountryEffectsYes0.06630.05950.0614TimeEffectsYesYesYesYesYesYesYesNote:Driscoll-Kraayestimation.Standarderrorsinparenthesis.,,denotestatisticalsignificanceatthe10,5and1percentlevels,respectively.Aconstanttermisincludedbutomittedinthetable.Countryandtimeeffectsareincludedbutnotshownforreasonsofparsimony.10naturaldisaster-relatedfatalitiesacrosscountrieswithvaryinglevelsofeconomicdevelopment.Whilecorruptionhasnosignificanteffectinadvancedeconomies,ithasastatisticallyhighlysignificanteffectindevelopingcountries.Theestimatedcoefficientoncorruptionisstatisticallysignificantacrossallspecification,therebyimplyingthata1percentincreaseincorruptionleadstoanincreaseofalmost2.5percentinthenumberofnaturaldisaster-relateddeathsperpopulationindevelopingcountriesofoursample.Thisfinding,inourview,confirmsthecriticalrelationshipbetweeneconomicdevelopmentandinstitutionalcapacityinstrengtheninggoodgovernanceandcombatingcorruption,whichunderminethequalityofphysicalandinstitutionalinfrastructureandtherebyleadtoanincreaseinthenumberofdeathsfromnaturaldisasters.Finally,wesplitthesamplebythemedianlevelofcorruptionandestimatethemodelseparatelyforcountrieswithhighandlowlevelsofcorruption.Theseresults,presentedinTable4,validatethedeleteriouseffectsofwidespreadcorruption,especiallyindevelopingcountries.Wefindthattheimpactofcorruptiononnaturaldisaster-relateddeathsisnonlinear—increasingwiththelevelofcorruption.Table3.DeterminantsofNaturalDisaster-RelatedDeaths(Dependentvariable:Annualnumberofdeathsperpopulation)Specification(1)(2)(3)(4)SampleofcountriesALLAEEMLICCorruption0.02070.01900.02670.9558Income(0.008)(0.014)(0.011)(0.000)Openness-0.07180.0031-0.0858Urbanization(0.055)(0.081)(0.043)-1.0629Healthcare0.01580.0065-0.0377(0.000)Bureaucraticquality(0.024)(0.019)(0.058)-0.6330-0.4655-1.50456.7233(0.351)(0.348)(0.507)(0.000)-0.0877-0.0689-0.10540.0000(0.049)(0.059)(0.088)(0.000)-0.0714-0.0966-0.0687(0.037)(0.039)(0.044)-0.0551(0.000)-0.4330(0.000)Observations1,50974976025Numberofgroups8829597R2_weighted0.12660.14051.0000CountryEffects0.0663YesYesYesTimeEffectsYesYesYesYesYesNote:Driscoll-Kraayestimation.Standarderrorsinparenthesis.,,denotestatisticalsignificanceatthe10,5and1percentlevels,respectively.Aconstanttermisincludedbutomittedinthetable.Countryandtimeeffectsareincludedbutnotshownforreasonsofparsimony.11Table4.DeterminantsofNaturalDisaster-RelatedDeaths(Dependentvariable:Annualnumberofdeathsperpopulation)Specification(1)(2)(5)(6)LevelofCorruptionHighLowHighLowSampleofcountriesAllAllEMEMCorruption0.01470.02090.02250.0001Income(0.008)(0.015)(0.010)(0.018)Openness-0.1458-0.1223-0.1296-0.0658Urbanization(0.086)(0.104)(0.089)(0.128)Healthcare-0.03830.0519-0.0471-0.0286Bureaucraticquality(0.043)(0.039)(0.040)(0.328)-0.4721-0.1351-3.0012-0.6349(0.423)(0.352)(0.442)(1.596)-0.2220-0.0672-0.24250.0647(0.086)(0.037)(0.093)(0.095)-0.0900-0.0675-0.0928-0.0460(0.041)(0.033)(0.042)(0.042)Observations492819427147Numberofgroups37343310R2weighted0.18810.10300.19900.4173CountryEffectsYesYesYesYesTimeEffectsYesYesYesYesNote:Driscoll-Kraayestimation.Standarderrorsinparenthesis.,,denotestatisticalsignificanceatthe10,5and1percentlevels,respectively.Aconstanttermisincludedbutomittedinthetable.Countryandtimeeffectsareincludedbutnotshownforreasonsofparsimony.IV.CONCLUSIONNaturaldisastersareinevitable,resultinginsignificanteconomiclossesandtensofthousandsofdeathsinmostyearsacrosstheworld.Whiletherehasbeenacontinuousreductioninthenumberoffatalitiescausedbynaturaldisastersoverthepastcenturyowingtobetterlivingstandards,moreresilientphysicalinfrastructure,betterearlywarningindicatorsandstrongeremergencyresponsesystems,therearestillsignificantdisparitiesacrosscountriesinhumanitarianandeconomiclossescausedbynaturaldisasters.Thisisnotthefirstattemptintheliteraturetoanalyzeeconomic,institutionalandsocialfactorsindetermininglossesassociatedwithnaturaldisastersthatcontributetolossesassociatedwithnaturaldisasters,butweusealargepanelof135countriesoveralongperiodspanningfrom1980to2020andparticularlyfocusontheroleofcorruption.Theempiricalanalysisprovidesconvincingevidencethatwidespreadcorruptionincreasesthenumberofdisaster-relateddeaths,aftercontrollingforeconomic,demographic,healthcareandinstitutionalfactors.Hence,wecaninferthatthehigherthelevelofcorruption,thegreaterthenumberoffatalitiesperpopulationinnaturaldisasters.Toputthisempiricalfindingintoperspective,thedifferencebetweentheleast12andmostcorruptcountriesinoursampleimpliesasixfoldincreaseinthenumberofdeathsperpopulationcausedbynaturaldisasterinagivenyear.Ourresultsshowthatthisimpactisstrongerindevelopingcountriesthaninadvancedeconomies,highlightingthecriticalrelationshipbetweeneconomicdevelopmentandinstitutionalcapacityinstrengtheninggoodgovernanceandcombatingcorruption.Wealsofindevidenceofnonlineareffectswithhigherlevelsofcorruptionresultinginanevenlargernumberofdeathsfromnaturaldisasters,especiallyindevelopingcountries.Thesefindingsarerobusttovariouseconometricspecificationsandsampleheterogeneity,whichweusetoobtainagranularanalysisoftheimpactofcorruptiononlossofhumanlivescausedbynaturaldisasters.Corruptionisacomplexphenomenonthataffectsallcountries,butitseconomic,institutional,politicalandsocialcausesandconsequencesshowgreatvariationacrosscountries.Empiricalfindingspresentedinthisstudyshowthatdevelopingcountriestendtobemorevulnerabletothedeleteriousimpactofcorruptioninnaturaldisasters.Inourview,thisreflectsthelowqualityofbuildingsandinfrastructureandtheweaknessofhealthandriskmanagementsystemsduetowidespreadcorruption.Ourresultsthereforehighlighttheimportanceofpromotinganti-corruptionmeasurestostrengtheninstitutionsandcreateaconduciveenvironmentforgreatertransparencyingovernanceandappropriateuseofpublicresources.13REFERENCESAkhtaruzzaman,M.(2011).“Post-DisasterReliefOperationsinBangladesh:ContextandChallenges,”Disasters,Vol.35,pp.803–818.Alam,M.,andH.Vennemo(2014).“CorruptionandCatastrophicDisaster:AReview,”EcologicalEconomics,Vol.108,pp.49–58.Albala-Bertrand,J.(1993).PoliticalEconomyofLargeNaturalDisasters(NewYork:OxfordUniveristyPress).Aidt,T.,J.Dutta,andV.Sena(2008).“GovernanceRegimes,CorruptionandGrowth:TheoryandEvidence,”JournalofComparativeEconomics,Vol.36,pp.195–220.Alesina,A.,andB.Weder(2002).“DoCorruptGovernmentsReceiveLessForeignAid?”AmericanEconomicReview,Vol.92,pp.1126–1137.Anbarci,N.,M.Escaleras,andC.Register(2005).“EarthquakeFatalities:TheInteractionofNatureandPoliticalEconomy,”JournalofPublicEconomics,Vol.89,pp.1907–1933.Brinkerhoff,D.(2008).“BuildingGovernanceandAnticorruptioninDisaster-ProneCountries:PolicyLessonsfromNepal.”PublicAdministrationandDevelopment,Vol.28,pp.327–341.Cavallo,E.,S.Galiani,I.Noy,andJ.Pantano(2013).“CatastrophicNaturalDisastersandEconomicGrowth,”ReviewofEconomicsandStatistics,Vol.95,pp.1549–1561.Chang,C.,andY.Hao(2018).“EnvironmentalPerformance,CorruptionandEconomicGrowth:GlobalEvidenceUsingaNewDataset,”AppliedEconomics,Vol.49,pp.498–514.Cieślik,A.,andL.Gozcek(2018).“ControlofCorruption,InternationalInvestment,andEconomicGrowth:EvidencefromPanelData,”WorldDevelopment,Vol.103,pp.323–335.D’Agostino,G.,J.Dunne,andL.Pieroni(2016).“GovernmentSpending,Corruption,andEconomicGrowth,”WorldDevelopment,Vol.84,pp.190–205.Escaleras,M.,N.Anbarci,andC.Register(2007).“PublicSectorCorruptionandMajorEarthquakes:APotentiallyDeadlyInteraction,”PublicChoice,Vol.132,pp.209–230.Farzanegan,M.,andS.Witthuhn(2017).“CorruptionandPoliticalStability:DoestheYouthBulgeMatter?”EuropeanJournalofPoliticalEconomy,Vol.49,pp.47–70.Gründler,K.,andN.Potrafke(2019).“CorruptionandEconomicGrowth:NewEmpiricalEvidence,”ifoWorkingPapersNo.309(Munich:LeibnizInstituteforEconomicresearchattheUniversityofMunich).Gupta,S.,H.Davoodi,andE.Tiongson(2002).“CorruptionandtheProvisionofHealthcareandEducationServices,”InG.T.AbedandS.Gupta(Eds.),Governance,Corruption,andEconomicPerformance(Washington,DC:InternationalMonetaryFund).Habib,M.,andL.Zurawicki(2002).“CorruptionandForeignDirectInvestment,”JournalofInternationalBusinessStudies,Vol.33,pp.291–307.Haque,C.(2003).“PerspectivesofNaturalDisasterinEastandSouthAsia,andthePacificIslandStates:SocioeconomicCorrelatesandNeedAssessment,”NaturalHazards,Vol.29,pp.465–483.14Heywood,P.(2007).“TheEthicalFoundationsofPublicAdministration,”PublicAdministrationReview,Vol.67,pp.96–102.Hodge,A.,S.Shankar,P.Rao,andA.Duhs(2011).“ExploringtheLinksBetweenCorruptionandGrowth,”ReviewofDevelopmentEconomics,Vol.15,pp.474–490.Huang,C.(2016).“IsCorruptionBadforEconomicGrowth?EvidencefromAsia-PacificCountries,”NorthAmericanJournalofEconomicsandFinance,Vol.35,pp.247–256.Im,K.,M.Pesaran,andY.Shin(2003).“TestingforUnitRootsinHeterogeneousPanels,”JournalofEconometrics,Vol.115,pp.53–74.Iqbal,M.(2018).“PoliticalEconomyofBuildingRegulationsEnforcement:EmpiricalInsightsfromPakistan,”LandUsePolicy,Vol.73,pp.435–444.Kahn,M.(2005).“TheDeathTollfromNaturalDisasters:TheRoleofIncome,Geography,andInstitutions,”ReviewofEconomicsandStatistics,Vol.87,pp.271–284.Kellenberg,D.,andA.Mobarak(2008).“DoesRisingIncomeIncreaseorDecreaseDamageRiskfromNaturalDisasters?”JournalofUrbanEconomics,Vol.63,pp.799–802.Klomp,J.(2016).“EconomicDevelopmentandNaturalDisasters:ASatelliteDataAnalysis,”GlobalEnvironmentalChange,Vol.36,pp.67–88.Klomp,J.,andJ.deHaan(2013).“CorruptionandtheEffectivenessofForeignAid,”EuropeanJournalofPoliticalEconomy,Vol.29,pp.84–101.Koenker,R.,andG.Bassett(1978).“RegressionQuantiles,”Econometrica,Vol.46,pp.33–50.Lehoucq,F.,andJ.Molinas(2002).“StuffingtheBallotBox:Fraud,ElectoralReform,andDemocratizationinCostaRica,”ComparativePoliticalStudies,Vol.35,pp.749–775.Loayza,N.,E.Olaberria,J.Rigolini,andL.Christiaensen(2012).“NaturalDisastersandGrowth:GoingBeyondtheAverages,”WorldDevelopment,Vol.40,pp.1317–1336.Machado,J.,andJ.SantosSilva(2019).“QuantilesviaMoments,“JournalofEconometrics,Vol.213,pp.145–173.Mauro,P.(1995).“CorruptionandGrowth,”QuarterlyJournalofEconomics,Vol.110,pp.681–712.Mo,P.(2001).“CorruptionandEconomicGrowth,”JournalofComparativeEconomics,Vol.29,pp.66–79.Noy,I.(2009).“TheMacroeconomicConsequencesofDisasters,”JournalofDevelopmentEconomics,Vol.88,pp.221–231.Padli,J.,andM.Habibullah(2009).“NaturalDisasterandSocioeconomicFactorsinSelectedAsianCountries:APanelAnalysis,”AsianSocialScience,Vol.5,pp.65–71.Raschky,P.(2008).“InstitutionsandtheLossesfromNaturalDisasters,”NaturalHazardsandEarthSystemSciences,Vol.8,pp.627–634.Rose-Ackerman,S.(2006).InternationalHandbookontheEconomicsofCorruption(Cheltenham,UK:EdwardElgar).Schumacher,I.,andE.Strobl(2011).“EconomicDevelopmentandLossesduetoNaturalDisasters,”EcologicalEconomics,Vol.72,pp.97–105.15Shah,A.(2006).“CorruptionandDecentralizedPublicGovernance,”WorldBankPolicyResearchWorkingPaperNo.3824(Washington,DC:WorldBank).Skidmore,M.,andH.Toya(2007).“EconomicDevelopmentandtheImpactofNaturalDisasters,”EconomicLetters,Vol.94,pp.20–25.Taghizadeh-Hesary,F.,N.Yoshino,A.Mortha,andT.Sarker(2019).“QualityInfrastructureandNaturalDisasterResilience,”ADBIWorkingPaperNo.991(Manila:AsianDevelopmentBankInstitute).Tanzi,V.(1998).“CorruptionAroundtheWorld:Causes,Consequences,Scopes,andCures,”IMFWorkingPaperNo.98/63(Washington,DC:InternationalMonetaryFund).Tol,R.,andF.Leek(1999).“EconomicAnalysisofNaturalDisasters,”InT.Downing,A.Olsthoorn,andR.Tol(Eds.),ClimateChangeandRisk(London:Routledge).Uberti,L.(2022).“CorruptionandGrowth:HistoricalEvidence,1790–2010,”JournalofComparativeEconomics,Vol.50,pp.321–349.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱