下一代数据中心白皮书-华为VIP专享VIP免费

下一代数据中心
白皮书
01 下一代数据中心白皮书 前言
人类社会正在加速迈向智能化,比如智能手机、智能家居、智能制造、自动驾驶等正在重塑人们的工
作和生活。作为智能世界和数字经济的坚实底座,数据中心迎来了蓬勃发展。同时,碳中和已经成为
全球的共识和使命,绿色低碳变成世界新的主题,也是数据中心建设、运营必须考虑的重要因素。
面对 ICT 技术快速演进、建设需求激增以及绿色低碳要求,数据中心产业正在发生深刻变革,将进入
新的时代。
什么是符合新时代需求的“下一代数据中心”?华为携手全球数据中心行业领袖和技术专家,举办了
系列“松湖论道”下一代数据中心研讨会,深入探讨了行业和技术发展趋势,并就下一代数据中心定
义达成重要共识。
未来已来,相信集业界专家智慧共同定义的下一代数据中心,将为产业可持续发展发挥重要作用!
前言
目录
02
下一代数据中心白皮书目录
前言 01
总结语 18
1.1 数字经济促进数据中心快速增长 04
1.2 碳中和对数据中心可持续发展提出新的要求 04
智能化与低碳化推动数据中心快速、高质量发展 03
2.1 低碳共生 06
2.1.1 全绿色 :源头绿色化,与自然共生 06
2.1.2 全高效 :PUE xUE,评价体系从单指标到多指标 07
2.1.3 全回收 :全生命周期,资源回收利用最大化 08
2.2 融合极简 09
2.2.1 架构极简,孕育建筑与机房新形态 09
2.2.2 供电极简,部件重定义,链路重塑 11
2.2.3 温控极简,冷热交换效率最大化 12
2.3 自动驾驶 13
2.3.1 运维自动,实现无人值守 14
2.3.2 能效自优,从制冷到“智”冷 14
2.3.3 运营自治,资源价值最大化 15
2.4 安全可靠 16
2.4.1 主动安全,事后到事前,故障快速闭环 17
2.4.2 架构安全,从器件到 DC,全方位构筑安全防线 17
下一代数据中心 05
下一代数据中心白皮书01下一代数据中心白皮书前言人类社会正在加速迈向智能化,比如智能手机、智能家居、智能制造、自动驾驶等正在重塑人们的工作和生活。作为智能世界和数字经济的坚实底座,数据中心迎来了蓬勃发展。同时,碳中和已经成为全球的共识和使命,绿色低碳变成世界新的主题,也是数据中心建设、运营必须考虑的重要因素。面对ICT技术快速演进、建设需求激增以及绿色低碳要求,数据中心产业正在发生深刻变革,将进入新的时代。什么是符合新时代需求的“下一代数据中心”?华为携手全球数据中心行业领袖和技术专家,举办了系列“松湖论道”下一代数据中心研讨会,深入探讨了行业和技术发展趋势,并就下一代数据中心定义达成重要共识。未来已来,相信集业界专家智慧共同定义的下一代数据中心,将为产业可持续发展发挥重要作用!前言目录02下一代数据中心白皮书目录前言01总结语181.1数字经济促进数据中心快速增长041.2碳中和对数据中心可持续发展提出新的要求04智能化与低碳化推动数据中心快速、高质量发展032.1低碳共生062.1.1全绿色:源头绿色化,与自然共生062.1.2全高效:PUE→xUE,评价体系从单指标到多指标072.1.3全回收:全生命周期,资源回收利用最大化082.2融合极简092.2.1架构极简,孕育建筑与机房新形态092.2.2供电极简,部件重定义,链路重塑112.2.3温控极简,冷热交换效率最大化122.3自动驾驶132.3.1运维自动,实现无人值守142.3.2能效自优,从制冷到“智”冷142.3.3运营自治,资源价值最大化152.4安全可靠162.4.1主动安全,事后到事前,故障快速闭环172.4.2架构安全,从器件到DC,全方位构筑安全防线17下一代数据中心0503下一代数据中心白皮书智能化与低碳化推动数据中心快速、高质量发展数字化和低碳化已经成为全球发展的两大确定性趋势。数据中心作为数字世界的底座,新一代的智能、低碳数据中心将成为主流趋势。智能化与低碳化推动数据中心快速、高质量发展0104下一代数据中心白皮书智能化与低碳化推动数据中心快速、高质量发展当前,世界正在经历以人工智能、云计算、大数据、物联网、5G等为代表的数字技术变革,在加速创新的数字技术驱动下,数字经济已成为全球GDP增长的主引擎。据中国信通院统计,2020年全球数字经济占GDP比重已达43.7%,数字经济在国民经济中的核心地位不断巩固。中国、欧盟、美国都发布了新的愿景:中国在“十四五”规划纲要中将数字化发展作为重要的发展方向,并围绕制造、能源、农业、医疗、教育、政务等给出了明确的发展目标。欧盟在其发布的《2030DigitalCompass》计划中提出2030年75%的企业将使用云计算、大数据和人工智能服务,90%以上的中小企业应具备数字技术的基本水平,并宣布为实现上述目标将加大能源和数字基础设施的投资。美国国家科学理事会(NationalScienceBoard)在其《2030愿景报告》(Vision2030)中也建议未来10年应加大对数据、软件、计算、网络的投资,以保持其在数字经济领域的竞争力。数字化渗透到生产生活的方方面面,全球数字疆域不断扩大,并向纵深发展。在遭遇新冠疫情重创的全球经济复苏中,数字经济迸发出重组全球要素资源、重塑全球经济结构、重构全球竞争格局的磅礴力量。在后疫情时代,数据中心新型基础设施发展势能有望快速释放。数据资源日益成为关键生产要素,数据流量猛增,根据华为《智能世界2030》报告,预计到2030年,通用算力将增长10倍,人工智能算力将增长500倍。庞大的算力需求为数据中心发展打开新的增长空间,全球数据中心产业正进入新一轮快速发展期。据2022年3月SynergyResearchGroup的最新预测,未来三年内,全球超大型数据中心数量将突破1000个大关,并在此后继续快速增长。1.1数字经济促进数据中心快速增长1.2碳中和对数据中心可持续发展提出新的要求随着气候变化的加剧,碳中和已成为全球共识,截止目前,已经有130多个国家宣示了碳中和承诺,节能降碳成为社会所有行业的共同使命。近年来,数据中心行业蓬勃发展,规模迅速增长,其耗电量也急剧增加。《Uptime全球数据中心报告2021》指出,2014年以来,全球大型数据中心PUE连续7年维持在1.6的水平,数据中心能效利用率低,亟待提高。为推动数据中心行业的可持续发展,多个国家、国际组织发布数据中心相关政策,如美国政府通过DCOI数据中心优化倡议,要求新建数据中心PUE低于1.4,老旧改造数据中心PUE低于1.5。欧洲数据中心运营商和行业协会在《欧洲的气候中和数据中心公约》中宣布2030年实现数据中心碳中和。中国出台《全国一体化大数据中心协同创新体系算力枢纽实施方案》推动构建全国一体化大数据中心,启动“东数西算”工程,促进数据中心绿色可持续发展,加快节能低碳技术的研发应用,要求到2025年新建大型数据中心PUE低于1.3。在碳中和目标的驱动下,数据中心行业将产生深刻变革,数据中心低碳化成为必然趋势,清洁能源的大规模应用,叠光叠储、余热回收等节碳技术发展有效帮助数据中心实现可持续发展。02下一代数据中心面对数据中心蓬勃发展、绿色低碳要求,华为与全球数据中心行业领袖和技术专家展开了深入广泛的研讨,并达成重要共识,总结出下一代数据中心四大特征为低碳共生、融合极简、自动驾驶、安全可靠。1.低碳共生:面对高能耗、高资源消耗的挑战,数据中心发展的与自然社会互利的新型共生关系;2.融合极简:应对数据中心规模变大及复杂度提升,通过融合硬件设备,实现架构和关键子系统极简;3.自动驾驶:应对海量数据中心的运维和运营挑战,借助数字化和AI技术,实现基础设施的自动驾驶;4.安全可靠:可靠运行是数据中心的基石,通过模块化冗余架构和AI主动预防等手段,从部件、设备、系统各层面全方位地保障数据中心的安全可靠。05下一代数据中心白皮书下一代数据中心06下一代数据中心白皮书下一代数据中心回顾全球现代化发展历程,人类已经完成了从“蒸汽时代”、“电气时代”到“信息化时代”的三次工业革命。前三次工业革命主要依赖化石能源,经济快速增长的同时,二氧化碳排放也呈指数级增加,引发全球气候变化问题,为人类社会生存与发展带来巨大挑战。下一代数据中心将是全绿色、全高效、全回收的数据中心。2.1低碳共生绿色发展成为全球共识,它是以绿色低碳循环为主的新型可持续发展模式,是指在保持经济持续增长的同时,减少对自然环境的损害或者能同时改进自然资源的状况。结合绿色发展的理念,下一代数据中心建设首先要从源头实现绿色化。全绿色:源头绿色化,与自然共生通过资源源头的绿色化,实现数据中心与自然的和谐共生。土地:数据中心建设将集约化利用土地资源,在数据中心规模越来越大的背景下,能够最大化发挥土地价值,让每一平方土地产生更多算力。气候:数据中心要多利用自然冷源,一方面选择气候适宜的区域,另一方面可以通过技术手段(比如提高进出风温度、扩大温差),进而更大程度使用自然冷源。电:电力输入侧将规模使用绿电,就近消纳本地光电、风电、水电等绿色电力,减少火力发电使用,“解绑”化石能源依赖。同时在数据中心园区部署分布式光伏,充分利用园区屋顶及土地资源,部署分布式光伏,可以降低数据中心碳排放1~2%。水:水资源的消耗,需要尽量减少清洁水的使用,替而代之使用回收水,甚至不用水。全球很多地区的水资源越来越紧缺,数据中心更要节约宝贵水资源。例如,中国乌兰察布市已经禁止数据中心企业使用地下水冷却降温。07下一代数据中心白皮书下一代数据中心不同的区域不同的行业,对相应的指标关注度是有差异的,因此可以根据区域和行业的特点对每个指标进行衡量,最终基于综合考虑选择最优的评价方案。全高效:PUE→xUE,评价体系从单指标到多指标自2007年绿色网格组织(TheGreenGrid)提出“PUE”作为衡量数据中心电能效率的指标以来,它已逐渐被业界广泛接受、认可和使用。但单纯的PUE无法完整地反映数据中心的资源利用状况。比如即使是同样的PUE,火电和绿电所导致的碳排放量是完全不同的,冷冻水系统和间接蒸发冷却系统所消耗的水资源也是不同的。在一定的市电容量情况下,不同的方案能够部署的IT机柜数量也是不同的。因此,资源是否得到高效利用,其评价体系应该从唯PUE论走向xUE,即包含CUE、PUE、WUE、GUE等多维的评价体系。CUE(CarbonUsageEffectiveness)碳使用效率是可量化的数据中心碳排放指标,用于衡量数据中心的碳排放量。使用不同能源产生的碳排放量不同,比如燃煤每千瓦时碳排放为1023克二氧化碳,光伏每千瓦时碳排放仅为30克,因此在数据中心使用不同来源的电,其CUE大相径庭。WUE(WaterUsageEffectiveness)水资源利用率是衡量数据中心IT设备制冷时耗水量的指标,通过这个指标可以用来约束耗水量大的方案和产品。GUE(GridUsageEffectiveness)出电率是衡量市电容量一定的情况下可以部署IT设备最大数量的指标。通过这个指标,可以促进整个行业优化产品,进而能够部署更多的IT设备。08下一代数据中心白皮书下一代数据中心全回收:全生命周期,资源回收利用最大化数据中心是耗能大户,同时也是“产热”大户,其所消耗的电能最终都转化成热量排放到了空气中,未得到有效利用,同时还在数据中心周围形成热岛,影响制冷PUE。余热回收是低碳时代重要的技术,也是下一代数据中心的重要特征之一。欧洲数据中心碳中和约定(CNDCP)明确提出热回收是2030实现碳中和的五大关键措施之一,欧洲可持续基础设施联盟(SDIA)已将热回收列入路标,数据中心余热回收比例大于60%。通过余热回收,可以把回收的热量用于:(1)数据中心自用,可用于办公区域生活热水,油机房间加热。(2)数据中心周边的配套产业,如养殖、或商业综合体供暖。(3)并入市政热管网。除了数据中心的余热回收,还需要关注数据中心设备和设施本身材料的可回收性。未来越来越多区域将推广新型装配式绿色建筑,采用绿色建筑材料,材料回收率超过80%。在设备的元器件、单板、部件、辅料等层级采用无铅无卤的绿色可回收新材料代替传统的含铅等有害物质,可以做到更高的可回收率,促进数据中心迈向低碳循环经济。2.2融合极简09下一代数据中心白皮书下一代数据中心为应对传统数据中心建设慢、运维难等问题,在数据中心不断升级发展的道路上,对“简单”的持续追求将驱动部件、设备、系统和数据中心架构的融合极简。《数据中心设计规范》GB50174-2017将数据中心明确定义为“为集中放置的电子信息设备提供运行环境的建筑场所,可以是一栋或几栋建筑物,也可以是一栋建筑物的一部分,包括主机房、辅助区、支持区和行政管理区等。”数据中心建设被认为是一项复杂的建筑工程,传统建设模式是土建、供电、制冷等工程串行施工,施工流程冗长,并且在实际建设过程中,受天气、设计变更等影响,建设周期面临多重不确定性。此外,不同环节由不同的厂商负责实施,现场“攒机”,导致现场施工单位和施工人员繁杂,增加现场管理难度,难以保障建设周期和最终质量。未来,随着数据中心规模越来越大,无论是建筑形态,还是机房形态,只有做到融合极简,才能匹配业务快速上线需求,符合行业发展趋势。建筑预制化:将数据中心化整为零,改变建筑形态和建设模式,从传统的“钢筋混凝土+现场施工”转变成“装配式钢结构建筑+工厂预制”,工程产品化,使数据中心建设从串行走向并行,实现快速交付,按需部署,满足云数据中心时代的业务快速上线诉求。传统建筑建设模式,全流程包括地基工程、主体工程、装饰装修工程、供配电工程、暖通工程、消防工程、监控系统安装调测等串行施工。预制模块化建设模式可以实现全面并行施工,具体体现在两个层面,第一个层面是地基工程与工厂功能模块制造、预集成、预调试并行;第二个层面,采用标准化的模块,可在工厂同步并行生产多个模块,通过工装、治具、模具等批量生产工艺大幅提升效率。在工厂预集成模块,预调测模块,能够大幅提升模块的质量和品质,支持现场快速部署和联调交付。建设一个1000柜的数据中心,采用预制模块化建设模式,在中国,建设周期可从18个月以上减少至6~9个月,缩短50%。这个差异在中东地区更为明显,受气候条件影响,每年的5~10月份之间为中东全年最热的时间,每天下午13:00~17:00不允许进行户外施工作业,一个大型数据中心的建设时间远超其它地区。在中东地区,相较传统的建设模式,预制模块化数据中心的建设周期从30个月减少至12个月,缩短60%。架构极简,孕育建筑与机房新形态10下一代数据中心白皮书下一代数据中心武汉人工智能计算中心采用预制模块化数据中心解决方案,将传统数据中心的串行建设模式转变为并行模式,4个月主体竣工,5个月实现从地基建设到业务投运,上线时间缩短50%以上。机房模块化:对于数据中心机房,采用模块化架构,重塑机房形态。传统的机房建设,机柜、空调、UPS、配电柜、电池、消防,以及线缆等部件分散采购,分散安装,分散验收,给前期建设、后期运维以及能效管理都带来了较大挑战。通过全模块化架构设计,将机柜、温控、供电、监控、消防等子系统集成到一个模块内,同时对冷风和热风进行隔离。通过对机房形态的改变,使交付周期缩短,运维难度降低,能效水平提升。11下一代数据中心白皮书下一代数据中心中交通信大数据(上海)数据中心(交通云)采用华为电力模块解决方案,相比传统方案,节省供配电系统空间40%以上,助力客户多部署350个IT机柜,节省电力电缆超16,000米。供电极简,部件重定义,链路重塑数据中心的发展呈现高密化、规模化的趋势,供电系统作为数据中心的“心脏”,为匹配需求增长,未来数据中心对供电系统的创新,主要在于对供电链路的所有设备进行融合创新,进入供电极简时代。部件融合:大型数据中心的供电系统,过去大多采用“UPS并机+铅酸电池”的方案,设备多而杂,面临现场安装调试复杂,占地面积大等挑战。以一个1500柜,8kW/柜的数据中心为例,整个供电系统(含变压器,UPS,开关柜,配电柜,电池等)占地面积约1800平米,占整个数据中心面积比重高达15%~20%。随着未来IT机柜功率密度越来越高,如果供电系统不改变,这一比例还将继续增加。面对占地面积大、现场交付调测复杂的挑战,将原来分散部署的设备进行一体化融合集成,在不改变供电链路的基础上,对部件进行技术创新,对系统进行空间重构,优化布局。比如利用开关小型化技术,在不减少开关数量的前提下减少开关柜的数量,另一方面,利用拓扑池化、器件优化等技术,提升UPS模块功率密度,从而有效减少占地面积,降低现场交付难度。链路极简:在碳中和大背景下,清洁能源应用,峰谷电价差,虚拟电厂(VPP)等推动数据中心叠光叠储成为趋势。传统方案是在供电链路上部署光伏系统(逆变器和光伏板等)和储能系统(变流箱和储能箱等)。更多设备的接入,意味着供电系统的复杂度提升,从而面临设备变多、链路变长、维护变难等挑战。下一代数据中心通过在链路上进行创新,将全链路综合考虑,使其达到最简。比如将光伏逆变器和储能变流箱的与不间断电源系统进行融合创新,构建新的中压不间断电源系统,用一套系统同时接入市电、光伏和储能,融合市电整流逆变、光伏逆变、储能三大功能,使供电链路的复杂度大幅降低。12下一代数据中心白皮书下一代数据中心温控极简,冷热交换效率最大化走向低碳化,实现数据中心节能降耗的根本在于温控系统的融合极简,追求冷热交换效率的最大化。冷链极简:过去大型数据中心温控主要采用机械制冷的方式为数据中心提供冷量。以冷冻水为例,包含有7大设备(冷水机组、冷却塔、蓄冷罐、温控末端、冷却水泵、板换、管理系统),从冷源到热源经历4次换热过程,工程交付周期长达半年以上,工程复杂,且制冷效率与交付质量强相关,施工质量优劣影响制冷效率高低。未来,数据中心温控系统将多部件融合成一个模块,实现“一模块一系统”,有效缩短安装交付周期和运维难度。同时,直接利用自然冷源给数据中心降温,从多次热交换变成一次热交换,缩短制冷链路,从而提升制冷效率。风液融合:另一方面,随着IT设备功率密度的提升,尤其是人工智能、超算带来的超高功率计算场景,服务器和芯片散热对温控系统的制冷能力和效率提出更高的要求,因此,贴近热源制冷成为温控系统发展的又一重要趋势。制冷方式从传统房间级弥散式制冷,到密闭冷/热通道实现机房模块级制冷,再到机柜级和芯片级液冷制冷,最终实现直接从芯片上带走热量。未来,对于机柜功率20kW以上的场景,以液冷为主、风冷为辅,风液结合的制冷方式将成为主流。13下一代数据中心白皮书下一代数据中心2.3自动驾驶随着数据中心从千柜级建筑到万柜级园区,需要监控的对象数量和管理的状态呈指数级增加,其系统的复杂程度已经完全超越了人工管理能力,当前数据中心基础设施管理也面临巨大挑战:1.人工巡检为主,一般千柜级的数据中心需要配备15~30位专业运维人员,每天进行6~12次现场抄表巡检,运维成本极高而且巡检质量难以保证。2.告警驱动的被动响应,数据中心每天会产生海量的告警信息,包括表象告警、冗余告警、根因告警等。一个故障往往会触发上百条错综叠加的告警,根因告警会被淹没在其中,导致故障识别异常困难。传统数据中心依靠人工辨别告警优先级、逐项排查告警根因和分析定位故障,运维效率极低,而且可能存在人工操作失误的风险。3.运营落差,一般情况下,设计PUE比较优秀,而实际运行PUE却不尽理想,二者往往存在差距;另一方面,数据中心平均资源利用率往往低于65%,资源价值未最大化挖掘。为应对以上挑战,数据中心需要更先进的管理手段,通过系统化、自动化、智能化的手段来改变现状,实现数据中心自动驾驶,即运维自动、能效自优、运营自治。14下一代数据中心白皮书下一代数据中心运维自动,实现无人值守随着云数据中心走向集约化、规模化发展,数据中心规模越来越大,运维难度也同步增加。以一个1500个机柜的数据中心为例,仅设备种类就超过了上百种,且多为“哑”设备,设备数量则以万计,导致人工巡检难度大,故障定位时间长。此外运维依赖于人工经验,人力成本占比持续上升,根据Uptime2021的调研报告(UptimeInstituteglobalsupply-sidesurvey2021),数据中心运维人力成本从2015的4.5%上升至2020的10%。另一方面,全球人口老年化加速,劳动力减少,企业招聘到合适的运维工程师难度增加,该报告指出,有47%的数据中心企业难以找到合格运维人员。传统人工运维方式难以应对数据中心复杂运维要求,自动化运维将成为下一代数据中心的重要特征。运维数字化构建可视底座,同时利用AI技术,通过智能传感、声音&图像识别,实现无人巡检。另外,运维流程标准化,通过将专家经验云化共享,并固化到流程中,快速提升运维人员的技能。过去,1名工程师巡检2000机柜的数据中心需要耗费2个小时,未来采用自动化巡检手段,如指标采集、摄像头图片分析、红外感知等,5分钟即可完成2000机柜巡检工作,且无需人到机房,实现远程值守。能效自优,从制冷到“智”冷除IT设备外,数据中心制冷系统的电力消耗占比较高,传统的制冷群控系统存在采集参数少于10,可调节参数少于3,调节速度慢且精度差,每次优化耗费2小时,调节效果持续时间短等挑战,同时主要依靠人工调优,严重依赖专家经验,对于技能要求非常高。针对日益复杂的制冷系统,仅基于专家经验的人工调节无法根据环境参数和负载率实时调优,而且为保证系统可靠性,制冷需求往往会被层层放大,从而造成难以估量的能源浪费。未来数据中心能效调优利用AI动态建模技术,建立能耗与IT负载、气候条件、设备运行等可调节参数间的机器学习模型,在保障设备和系统可靠的基础上,实时诊断各个子系统的能耗,并自动准确地推理和配置出数据中心最优控制逻辑,通过深度神经网络下训练得出PUE预测模型,最后得出最合适的指令,1分钟内从140万个原始组合中推断出最佳冷却策略,下发执行并反馈效果,实现数据中心能效最优。15下一代数据中心白皮书下一代数据中心以华为云廊坊数据中心为例,引入AI能效调优,共有700+采集点,优化后年平均PUE从1.42降至1.25,每年节约电量3336万度,节省电费2355万元(0.75元/kWh)运营自治,资源价值最大化资源优化@AI在数据中心运营中,随着业务的变化,大量设备上下架对数据中心机柜空间资源的管理带来较大的挑战,数据中心经常出现某些机柜未充分利用甚至闲置的同时,某些机柜负载偏高的情况。如何更高效地管理数据中心资源,使其得到最大化利用,是下一代数据中心需要考虑的问题。基于AI的资源优化技术通过对数据中心资产进行全生命周期管理,建立以设备管理为核心的管理模型以及分析平台,通过AI仿真设备状态和AI业务预测,自动盘点数据中心资产状态,基于资产U位精准定位,对机柜可用空间、可用电力、可用制冷和可用网络(SPCN:Space,Power,Cooling,Network)等要素进行综合分析,智能推荐设备最佳上架机位,实现数据中心资源的可视、可管,避免容量搁浅,实现数据中心资源最大化利用,提升资源使用率和运营收益。能源调度@AI随着未来数据中心的能源输入和使用逐步多元化,借助AI自动驾驶平台,可以实现各种能源的灵活调度,在绿电直供、叠光、储能削峰填谷等方面实现按需调用,减少人为计算和操作,最大化挖掘资源的价值。16下一代数据中心白皮书下一代数据中心2.4安全可靠数据中心基础设施安全可靠依然面临巨大的挑战。根据Uptime2021年报告显示(UptimeInstituteglobalsupply-sidesurvey2021),供电系统和制冷系统依然是造成数据中心运行中断的主要原因,占比高达57%,其中供电系统43%,制冷系统14%。基础设施一旦发生安全问题,其带来的后果和影响也是巨大的,例如2021年欧洲某云服务提供商的数据中心发生火灾,造成360万网站瘫痪,部分数据永久性丢失,损失巨大。下一代数据中心低碳共生、融合极简、自动驾驶三大特征,无一不是建立在数据中心安全可靠的基础上的。那么下一代数据中心该如何进一步保障安全可靠?可以从主动安全和架构安全两个方面去实现。17下一代数据中心白皮书下一代数据中心主动安全,事后到事前,故障快速闭环海恩法则提出“任何事故都是可以预防的,每1起严重事故的背后,必然有29次轻微事故和300起未遂先兆以及1000起事故隐患”。高级别的安全可靠自然是防范于未然,治未病替代治病。而传统的数据中心维护通常都是依赖人工的被动响应,难以发现细微的隐患,难以有效提前预防故障的发生。主动安全则是在数据中心全域可视可感的基础上,基于大数据和AI技术,实现部件到系统的预测性维护。例如对于电容、风扇这类关键器件和易损部件,通过大数据采集和AI模型训练,对寿命进行预测,提前计算出器件的失效时间并提醒运维人员进行更换,避免发生故障后再进行维修,真正做到从“治病”到“治未病”。另一方面,故障的响应机制也从工单驱动的人工响应,转变为系统自动化故障响应。基于故障实时感知、可视化全景呈现、AI辅助定位等,做到快速发现故障,快速完成分析,快速恢复业务,辅助故障快速闭环。架构安全,从器件到DC,全方位构筑安全防线未来,数字技术将越来越广泛地应用到数据中心基础设施领域,与电力电子技术进行深度的融合,在部件、设备、系统等各层面保障安全,以有效增强基础设施韧性,全方位构筑安全防线。例如,在部件层面,通过模块化设计,关键部件实现热插拔,使故障快速恢复。在设备层面,通过采用全冗余设计,实现单点故障后0ms无缝切换到冗余模块,确保设备运行无任何中断。在系统层面,基于全链路可视可管可控平台,使系统可用性达到“五个九”(99.999%)。总之,通过架构级优化设计,减少能量的转换层级,去除多余部件,在减少故障点的同时,做到无损切换、无感知切换,实现系统的永续在线,实现全方位全体系的架构安全。18下一代数据中心白皮书总结语属于下一代数据中心的智能、可持续发展时代正在到来,技术创新将是引领数据中心发展和变革的关键力量,面向未来,华为将通过持续的创新投入,在产品和技术方面不断实现突破,并将从技术、产品、产业各个层面,与行业客户、生态伙伴、产业组织、标准组织开展全方位的合作,共同开启数据中心发展新时代!总结语商标声明,,是华为技术有限公司商标或者注册商标,在本手册中以及本手册描述的产品中,出现的其它商标,产品名称,服务名称以及公司名称,由其各自的所有人拥有。免责声明本文档可能含有预测信息,包括但不限于有关未来的财务、运营、产品系列、新技术等信息。由于实践中存在很多不确定因素,可能导致实际结果与预测信息有很大的差别。因此,本文档信息仅供参考,不构成任何要约或承诺,华为不对您在本文档基础上做出的任何行为承担责任。华为可能不经通知修改上述信息,恕不另行通知。版权所有©华为技术有限公司2022。保留一切权利。非经华为技术有限公司书面同意,任何单位和个人不得擅自摘抄、复制本手册内容的部分或全部,并不得以任何形式传播。华为技术有限公司深圳龙岗区坂田华为基地电话:+8675528780808邮编:518129www.huawei.com

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱