《自然·通讯》中国碳中和目标对全球变暖的减缓效应(英)VIP专享VIP免费

nature communications
Article https://doi.org/10.1038/s41467-022-33047-9
Mitigation of Chinascarbonneutralityto
global warming
Longhui Li
1,2,3
, Yue Zhang
1,2,3
, Tianjun Zhou
4
, Kaicun Wang
5
,CanWang
6
,
Tao Wang
7
,LinwangYuan
1,2,3
,KangxinAn
6
, Chenghu Zhou
8
& Guonian Lü
1,2,3
Projecting mitigations of carbon neutrality from individual countries in rela-
tion to future global warming is of great importance for depicting national
climate responsibility but is poorly quantied. Here, we show that Chinas
carbon neutrality (CNCN) can individually mitigate global warming by 0.48 °C
and 0.40 °C, which account for 14% and 9% of the global warming over the long
term under the shared socioeconomic pathway (SSP) 3-7.0 and 5-8.5 scenarios,
respectively. Further incorporating changes in CH
4
and N
2
Oemissionsin
association with CNCN together will alleviate global warming by 0.21 °C and
0.32 °C for SSP1-2.6 and SSP2-4.5 over the long term, and even by 0.18 °C for
SSP2-4.5 over the mid-term, but no signicant impacts are shown for all SSPs in
the near term. Divergent responses in alleviated warming are seen at regional
scales. The results provide a useful reference for the global stocktake, which
assesses the collective progress towards the climate goals of the Paris
Agreement.
Global warming since the preindustrial era has been primarily attrib-
uted to the increase in atmospheric CO
2
concentrations, which mainly
results from the carbon emissions of fossil fuel combustion1,2.The
likely range of the total human-caused global surface temperature
increase from 18501900 to 20102019is0.8°Cto1.3°C,withabest
estimate of 1.07 °C2. The contributions of historical anthropogenic
carbon emissions have been quantied, although the currently existing
qualications are based on different criteria and differ in estimation3,4.
If worldwide carbon emissions continue at the current rate, global
warming is likely to exceed 1.5 °C between 2030 and 2052, and even
more than 35 °C at the end of the 21st century2. Global warming has
caused a range of broad threats to both natural system and humanity,
including increasing extreme climate events, rising sea levels, and
shifting wildlife populations and habitats5. To limit the increase in
global mean temperature below 1.5 °C above preindustrial levels,
reaching net zero of global CO
2
emissions in 2055 and limiting non-
CO
2
greenhouse gas (GHG) emissions after 2030 are crucial mitigation
strategies6. Since the Intended Nationally Determined Contributions to
mitigating global warming agreed upon in the 2015 Paris Agreement,
more than 120 countries have pledged to achieve carbon neutrality
anddeclaredadate
7. In the context of this unique opportunity, pro-
jecting mitigations of pledged carbon neutrality to future global
warming is of the same importance as previous efforts devoted to
quantifying historical climate responsibilities, which can inform the
implementation of global climate mitigation strategies and equality in
development from nationscarbon emissions. As one of the large
annual emitters of CO
2
emissions8, China has committed to peak its
carbon emissions before 2030 and attain carbon neutrality before
20607,9. Such an ambitious policy target for CO
2
emission reduction is
expected to mitigate global warming. A recent study based on a very
simplied climate model reported that Chinascarbonneutralityalone
will contribute a 0.160.21 °C avoided global warming at the end of the
Received: 14 October 2021
Accepted: 25 August 2022
Check for updates
1
Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China.
2
Key Laboratory of
Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing 210023, China.
3
School of Geographical Sciences, Nanjing
Normal University, Nanjing 210023, China.
4
LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China.
5
Sino-French Institute for
Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
6
School of Environment, Tsinghua University,
Beijing, China.
7
State Key Laboratory of Tibetan Plateau Earth System and Resources Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese
Academy of Sciences, Beijing, China.
8
Institute of Geographical Information Science and Natural Resources, Chinese Academy of Science, Beijing, China.
e-mail: gnlu@njnu.edu.cn
Nature Communications | (2022) 13:5315 1
1234567890():,;
1234567890():,;
21st century10. However, the magnitude of such mitigation has not yet
been quantied using a fully coupled Earth system model that incor-
porates all crucial components of the climate system.
In this work, we employ the NCAR Community Earth System
Model (CESM)11 to project the mitigation of Chinas carbon neutrality
(CNCN) to global warming by comparing four pairs of simulations
corresponding to four shared socioeconomic pathways (SSPs),
including SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5, which represent
different anthropogenic surface CO
2
emissions in future scenarios of
socioeconomic development, population growth, and land and water
requirements for food supplies12. Each pair of simulations consists of
onedefaultfromthesixthphaseofCoupledModelIntercomparison
Project (CMIP6) built-in CESM and another one in which anthro-
pogenic surface CO
2
emissions in Chinas domain are replaced with
values in the policy target of CNCN released by Tsinghua University in
202113 (Supplementary Fig. S1). The results show that Chinas carbon
neutrality (CNCN) can individually mitigate global warming by 0.48 °C
and 0.40 °C, which account for 14% and 9% of the average increase in
global mean surface temperature (GMST) over the long term
(20812100) under the SSP3-7.0 and SSP5-8.5 scenarios, respectively.
When further incorporating changes in CH
4
and N
2
O emissions in
association with CNCN (CNCN
ext
), the combined effects of three pri-
mary GHGs will slow down the GMST by 0.21 °C and 0.32 °C for SSP1-
2.6 and SSP2-4.5 over the long term, and even by 0.18 °C for SSP2-4.5
over the mid-term (20412060).
Results
Temporal evolutions of mitigations of Chinas carbon neutrality
to global warming
Following the IPCC AR62, we examine the projected changes in GMST
for the near term (20212040), mid-term (20412060) and long term
(20812100) relative to 18501900 (preindustrial period). Compared
to the preindustrial period, the GMST averaged over 20812100 is
projected to increase by 1.7 °C under the low GHG emissions scenario
(SSP1-2.6), by 2.7 °C and 3.4 °C under the two intermediate scenarios
(SSP2-4.5 and SSP3-7.0), and by 4.7 °C under the very high GHG
emissions scenario (SSP5-8.5) (Fig. 1a). The simulated GMSTs for the
policy target of the CNCN scenario do not signicantly differ from
those for the corresponding SSPs over the near term (Fig. 1b), and the
insignicant response in the near-term projection is caused mainly by
the CESMsinternalvariability
14. Such insignicant mitigation is also
the case over the mid-term except for SSP5-8.5, in which CNCN miti-
gates the impact of global warming by 0.17 °C (±0.05 °C) (Fig. 1c). Over
the long term, the GMST in the policy target of CNCN scenarios is
signicantly different (p< 0.01) from that in the default SSP scenarios,
except for SSP1-2.6 (Fig. 1d). For SSP2-4.5, Chinas carbon neutrality
Fig. 1 | Mitigations of Chinas carbon neutrality (CNCN) and extension scenarios
with additional CH
4
and NO
2
emission reductions accompanied by the CO
2
emission reductions for CNCN (CNCN
ext
) to global mean surface temperature
(GMST). a Evolution of GMST changes relative to the preindustrial period
(18501900 average) (ΔT, unit in °C) for the default CMIP6, CNCN and CNCN
ext
scenarios from 2015 to 2100. bdrepresent mitigations of the CNCN and
CNCN
ext
scenarios for each shared socioeconomic pathway (SSP) over the near
term (20212040), mid-term (20412060) and long term (20812100). The
mitigation effect is calculated as the difference in GMST between the CNCN (or
CNCN
ext
) and the default CMIP6 scenarios. The segment lines represent the
original values and the shaded areas around the smooth line represent the
condence at level of 0.05 for each scenario. The box plots in panels bdshow
the 25th, the median and the 75th percentile range (box) and the
minimummaximum range (whiskers). The symbols * and *** represent statis-
tical signicance at levels of 0.01 and 0.001, respectively. nsrepresents sta-
tistical insignicance at level of 0.01. Symbols with underscores shown above
the head of the box in bdrepresent comparisons between the CNCN and
CNCN
ext
scenarios and those shown above the x-axis are referred to as com-
parisons between the CNCN (or CNCN
ext
) and the default CMIP6 scenarios. The
paired t test was used to calculate the signicance.
Article https://doi.org/10.1038/s41467-022-33047-9
Nature Communications | (2022) 13:5315 2
reduces the GMST by 0.14 °C (±0.07 °C) in the long term. For the SSP3-
7.0 and SSP5-8.5 scenarios, CNCN potentially reduces the long-term
GMST by 0.48 (±0.09) °C and 0.40 (±0.09) °C (p< 0.01), respectively
(Fig. 1d). Such mitigations account for 14% and 9% of the average
increase in the GMST during the last two decades of the 21st century,
respectively.
When further incorporating the changes in CH
4
and N
2
O accom-
paniedbythereductionsincarbonemissions(i.e.,CNCN
ext
), the
CNCN
ext
scenario does not result in signicant changes in GMST for all
four SSPs over the near and mid-terms except for SSP2-4.5, which
shows ~0.09 °C less warming over the mid-term (p< 0.01) compared
with the CNCN scenario (Fig. 1b, c). Over the long term, changes in CH
4
and N
2
O emissions prevent signicant further GMST warming relative
to the CNCN scenario for all SSPs except for SSP3-7.0 (Fig. 1d). Con-
sequently, changes in the three GHG emission under the pledge of
Chinas carbon neutrality result in signicant and large net declines in
GMST by 0.21 0.17), 0.32 (±0.13), 0.50 (±0.21) and 0.39 (±0.17) °C
over the long term for SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5,
respectively (Fig. 1d). Such impacts on the GMST are signicant for
SSP2-4.5 (0.18 ± 0.09 °C) and SSP5-8.5 (0.13 ± 0.07 °C) over the mid-
term but insignicant for all SSPs over the near term. For those pairs of
simulated GMST without signicant differences, underlying causes
mainly come from either smaller differences among the default CMIP6,
CNCN and CNCN
ext
scenarios (Supplementary Figs. S3, S4) or historical
CO
2
accumulation up to the simulation years4,aswellastheinternal
variability14. As previously reported, the internal variability of the CESM
ranges from 0.06 to 0.09 °C15, and the magnitudes of mitigations on
global warming from CNCN and CNCN
ext
for the SSP3-7.0 (0.48 and
0.39 °C) and SSP5-8.5 (0.4 and 0.5 °C) scenarios over the long term are
larger than the internal variability, indicating a robust response.
Spatial divergences of mitigations of Chinas carbon neutrality
to global warming
The effect of anthropogenic CO
2
emissions on GMST is evident at both
global and regional or local scales16. The change of surface tempera-
ture induced by CNCN (dT) is scenario-dependent, spatially not uni-
form and varies with time. The magnitudes of dT at the global scale
range from 1.84 to 1.76 °C (Fig. 2). Remarkable differences are seen at
regional scale. Over the near term and mid-terms, only 0.24% of grids
show signicant differences in dT at the global scale (Fig. 2ad). A
strong warming is seen in the near term under SSP1-2.6 over the
Barents Sea and its southern regions adjacent to western Russia
(Fig. 2a). Such kind of warming can be explained by the fact that the
SSP1-2.6 under the CNCN scenario has signicantly larger carbon
emissions than the default scenario over the near term (Supplemen-
tary Fig. S2). Over the mid-term, CNCN leads to a strong increase in
surface temperature in south of Greenland under both the SSP2-4.5
and SSP3-7.0 scenarios but a signicant decrease in east of Siberian sea
and adjacent to eastern Russia under the SSP2-4.5 scenario (Fig. 2f, g),
which is highly consistent with the report of a signicant regional
transient response of local temperature to CO
2
emissions16.Overthe
long term, grids with signicant differences in dT account for up to
10% and 9% of the global values for SSP1-2.6 and SSP2-4.5, respectively,
but the signs of CNCN-induced surface temperature change are
regionally dependent (Fig. 2il). Warming effects over the long term in
Greenland and the Arctic from SSP1-2.6 are primarily caused by higher
(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)
(i)
(j)
(k)
(l)
Near term Midterm Long term
SSP12.6SSP24.5
SSP37.0SSP58.5
dT
1.9
1.7
1.5
1.3
1.1
0.9
0.7
0.5
0.3
0.1
0.1
0.3
0.5
0.7
0.9
1.1
1.3
1.5
1.7
1.9
Fig. 2 | Mean surface temperature difference between Chinas carbon neutrality
(CNCN) and default CMIP6 scenarios for four shared socioeconomic pathways
(SSPs). Panels from left to right represent the near term (20212040, ad),
mid-term (20412060, eh) and long term (20812100, il), and panels from
top to bottom represent SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5,
respectively. The mean surface temperature difference (dT, unit in °C) is cal-
culated as the value of CNCN minus the default CMIP6 for each combination of
the study term and SSPs. Pixels overlayed by dots indicate that the dT is sta-
tistically signicant at a level of 0.01. The paired ttest was used to calculate the
signicance.
Article https://doi.org/10.1038/s41467-022-33047-9
Nature Communications | (2022) 13:5315 3
naturecommunicationsArticlehttps://doi.org/10.1038/s41467-022-33047-9MitigationofChina’scarbonneutralitytoglobalwarmingLonghuiLi1,2,3,YueZhang1,2,3,TianjunZhou4,KaicunWang5,CanWang6,TaoWang7,LinwangYuan1,2,3,KangxinAn6,ChenghuZhou8&GuonianLü1,2,3Projectingmitigationsofcarbonneutralityfromindividualcountriesinrela-tiontofutureglobalwarmingisofgreatimportancefordepictingnationalclimateresponsibilitybutispoorlyquantified.Here,weshowthatChina’scarbonneutrality(CNCN)canindividuallymitigateglobalwarmingby0.48°Cand0.40°C,whichaccountfor14%and9%oftheglobalwarmingoverthelongtermunderthesharedsocioeconomicpathway(SSP)3-7.0and5-8.5scenarios,respectively.FurtherincorporatingchangesinCH4andN2OemissionsinassociationwithCNCNtogetherwillalleviateglobalwarmingby0.21°Cand0.32°CforSSP1-2.6andSSP2-4.5overthelongterm,andevenby0.18°CforSSP2-4.5overthemid-term,butnosignificantimpactsareshownforallSSPsinthenearterm.Divergentresponsesinalleviatedwarmingareseenatregionalscales.Theresultsprovideausefulreferencefortheglobalstocktake,whichassessesthecollectiveprogresstowardstheclimategoalsoftheParisAgreement.Globalwarmingsincethepreindustrialerahasbeenprimarilyattrib-utedtotheincreaseinatmosphericCO2concentrations,whichmainlyresultsfromthecarbonemissionsoffossilfuelcombustion1,2.Thelikelyrangeofthetotalhuman-causedglobalsurfacetemperatureincreasefrom1850–1900to2010–2019is0.8°Cto1.3°C,withabestestimateof1.07°C2.Thecontributionsofhistoricalanthropogeniccarbonemissionshavebeenquantified,althoughthecurrentlyexistingqualificationsarebasedondifferentcriteriaanddifferinestimation3,4.Ifworldwidecarbonemissionscontinueatthecurrentrate,globalwarmingislikelytoexceed1.5°Cbetween2030and2052,andevenmorethan3–5°Cattheendofthe21stcentury2.Globalwarminghascausedarangeofbroadthreatstobothnaturalsystemandhumanity,includingincreasingextremeclimateevents,risingsealevels,andshiftingwildlifepopulationsandhabitats5.Tolimittheincreaseinglobalmeantemperaturebelow1.5°Cabovepreindustriallevels,reachingnetzeroofglobalCO2emissionsin2055andlimitingnon-CO2greenhousegas(GHG)emissionsafter2030arecrucialmitigationstrategies6.SincetheIntendedNationallyDeterminedContributionstomitigatingglobalwarmingagreeduponinthe2015ParisAgreement,morethan120countrieshavepledgedtoachievecarbonneutralityanddeclaredadate7.Inthecontextofthisuniqueopportunity,pro-jectingmitigationsofpledgedcarbonneutralitytofutureglobalwarmingisofthesameimportanceaspreviouseffortsdevotedtoquantifyinghistoricalclimateresponsibilities,whichcaninformtheimplementationofglobalclimatemitigationstrategiesandequalityindevelopmentfromnations’carbonemissions.AsoneofthelargeannualemittersofCO2emissions8,Chinahascommittedtopeakitscarbonemissionsbefore2030andattaincarbonneutralitybefore20607,9.SuchanambitiouspolicytargetforCO2emissionreductionisexpectedtomitigateglobalwarming.ArecentstudybasedonaverysimplifiedclimatemodelreportedthatChina’scarbonneutralityalonewillcontributea0.16–0.21°CavoidedglobalwarmingattheendoftheReceived:14October2021Accepted:25August2022Checkforupdates1JiangsuCenterforCollaborativeInnovationinGeographicalInformationResourceDevelopmentandApplication,Nanjing210023,China.2KeyLaboratoryofVirtualGeographicEnvironment(NanjingNormalUniversity),MinistryofEducation,Nanjing210023,China.3SchoolofGeographicalSciences,NanjingNormalUniversity,Nanjing210023,China.4LASG,InstituteofAtmosphericPhysics,ChineseAcademyofSciences,Beijing,China.5Sino-FrenchInstituteforEarthSystemScience,CollegeofUrbanandEnvironmentalSciences,PekingUniversity,Beijing100871,China.6SchoolofEnvironment,TsinghuaUniversity,Beijing,China.7StateKeyLaboratoryofTibetanPlateauEarthSystemandResourcesEnvironment(TPESRE),InstituteofTibetanPlateauResearch,ChineseAcademyofSciences,Beijing,China.8InstituteofGeographicalInformationScienceandNaturalResources,ChineseAcademyofScience,Beijing,China.e-mail:gnlu@njnu.edu.cnNatureCommunications(2022)13:531511234567890():,;1234567890():,;21stcentury10.However,themagnitudeofsuchmitigationhasnotyetbeenquantifiedusingafullycoupledEarthsystemmodelthatincor-poratesallcrucialcomponentsoftheclimatesystem.Inthiswork,weemploytheNCARCommunityEarthSystemModel(CESM)11toprojectthemitigationofChina’scarbonneutrality(CNCN)toglobalwarmingbycomparingfourpairsofsimulationscorrespondingtofoursharedsocioeconomicpathways(SSPs),includingSSP1-2.6,SSP2-4.5,SSP3-7.0andSSP5-8.5,whichrepresentdifferentanthropogenicsurfaceCO2emissionsinfuturescenariosofsocioeconomicdevelopment,populationgrowth,andlandandwaterrequirementsforfoodsupplies12.EachpairofsimulationsconsistsofonedefaultfromthesixthphaseofCoupledModelIntercomparisonProject(CMIP6)built-inCESMandanotheroneinwhichanthro-pogenicsurfaceCO2emissionsinChina’sdomainarereplacedwithvaluesinthepolicytargetofCNCNreleasedbyTsinghuaUniversityin202113(SupplementaryFig.S1).TheresultsshowthatChina’scarbonneutrality(CNCN)canindividuallymitigateglobalwarmingby0.48°Cand0.40°C,whichaccountfor14%and9%oftheaverageincreaseinglobalmeansurfacetemperature(GMST)overthelongterm(2081–2100)undertheSSP3-7.0andSSP5-8.5scenarios,respectively.WhenfurtherincorporatingchangesinCH4andN2OemissionsinassociationwithCNCN(CNCNext),thecombinedeffectsofthreepri-maryGHGswillslowdowntheGMSTby0.21°Cand0.32°CforSSP1-2.6andSSP2-4.5overthelongterm,andevenby0.18°CforSSP2-4.5overthemid-term(2041–2060).ResultsTemporalevolutionsofmitigationsofChina’scarbonneutralitytoglobalwarmingFollowingtheIPCCAR62,weexaminetheprojectedchangesinGMSTforthenearterm(2021–2040),mid-term(2041–2060)andlongterm(2081–2100)relativeto1850–1900(preindustrialperiod).Comparedtothepreindustrialperiod,theGMSTaveragedover2081–2100isprojectedtoincreaseby1.7°CunderthelowGHGemissionsscenario(SSP1-2.6),by2.7°Cand3.4°Cunderthetwointermediatescenarios(SSP2-4.5andSSP3-7.0),andby4.7°CundertheveryhighGHGemissionsscenario(SSP5-8.5)(Fig.1a).ThesimulatedGMSTsforthepolicytargetoftheCNCNscenariodonotsignificantlydifferfromthoseforthecorrespondingSSPsoverthenearterm(Fig.1b),andtheinsignificantresponseinthenear-termprojectioniscausedmainlybytheCESM’sinternalvariability14.Suchinsignificantmitigationisalsothecaseoverthemid-termexceptforSSP5-8.5,inwhichCNCNmiti-gatestheimpactofglobalwarmingby0.17°C(±0.05°C)(Fig.1c).Overthelongterm,theGMSTinthepolicytargetofCNCNscenariosissignificantlydifferent(p<0.01)fromthatinthedefaultSSPscenarios,exceptforSSP1-2.6(Fig.1d).ForSSP2-4.5,China’scarbonneutralityFig.1MitigationsofChina’scarbonneutrality(CNCN)andextensionscenarioswithadditionalCH4andNO2emissionreductionsaccompaniedbytheCO2emissionreductionsforCNCN(CNCNext)toglobalmeansurfacetemperature(GMST).aEvolutionofGMSTchangesrelativetothepreindustrialperiod(1850–1900average)(ΔT,unitin°C)forthedefaultCMIP6,CNCNandCNCNextscenariosfrom2015to2100.b–drepresentmitigationsoftheCNCNandCNCNextscenariosforeachsharedsocioeconomicpathway(SSP)overthenearterm(2021–2040),mid-term(2041–2060)andlongterm(2081–2100).ThemitigationeffectiscalculatedasthedifferenceinGMSTbetweentheCNCN(orCNCNext)andthedefaultCMIP6scenarios.Thesegmentlinesrepresenttheoriginalvaluesandtheshadedareasaroundthesmoothlinerepresenttheconfidenceatlevelof0.05foreachscenario.Theboxplotsinpanelsb–dshowthe25th,themedianandthe75thpercentilerange(box)andtheminimum–maximumrange(whiskers).Thesymbolsandrepresentstatis-ticalsignificanceatlevelsof0.01and0.001,respectively.“ns”representssta-tisticalinsignificanceatlevelof0.01.Symbolswithunderscoresshownabovetheheadoftheboxinb–drepresentcomparisonsbetweentheCNCNandCNCNextscenariosandthoseshownabovethex-axisarereferredtoascom-parisonsbetweentheCNCN(orCNCNext)andthedefaultCMIP6scenarios.Thepairedttestwasusedtocalculatethesignificance.Articlehttps://doi.org/10.1038/s41467-022-33047-9NatureCommunications(2022)13:53152reducestheGMSTby0.14°C(±0.07°C)inthelongterm.FortheSSP3-7.0andSSP5-8.5scenarios,CNCNpotentiallyreducesthelong-termGMSTby0.48(±0.09)°Cand0.40(±0.09)°C(p<0.01),respectively(Fig.1d).Suchmitigationsaccountfor14%and9%oftheaverageincreaseintheGMSTduringthelasttwodecadesofthe21stcentury,respectively.WhenfurtherincorporatingthechangesinCH4andN2Oaccom-paniedbythereductionsincarbonemissions(i.e.,CNCNext),theCNCNextscenariodoesnotresultinsignificantchangesinGMSTforallfourSSPsoverthenearandmid-termsexceptforSSP2-4.5,whichshows~0.09°Clesswarmingoverthemid-term(p<0.01)comparedwiththeCNCNscenario(Fig.1b,c).Overthelongterm,changesinCH4andN2OemissionspreventsignificantfurtherGMSTwarmingrelativetotheCNCNscenarioforallSSPsexceptforSSP3-7.0(Fig.1d).Con-sequently,changesinthethreeGHGemissionunderthepledgeofChina’scarbonneutralityresultinsignificantandlargenetdeclinesinGMSTby0.21(±0.17),0.32(±0.13),0.50(±0.21)and0.39(±0.17)°CoverthelongtermforSSP1-2.6,SSP2-4.5,SSP3-7.0andSSP5-8.5,respectively(Fig.1d).SuchimpactsontheGMSTaresignificantforSSP2-4.5(0.18±0.09°C)andSSP5-8.5(0.13±0.07°C)overthemid-termbutinsignificantforallSSPsoverthenearterm.ForthosepairsofsimulatedGMSTwithoutsignificantdifferences,underlyingcausesmainlycomefromeithersmallerdifferencesamongthedefaultCMIP6,CNCNandCNCNextscenarios(SupplementaryFigs.S3,S4)orhistoricalCO2accumulationuptothesimulationyears4,aswellastheinternalvariability14.Aspreviouslyreported,theinternalvariabilityoftheCESMrangesfrom0.06to0.09°C15,andthemagnitudesofmitigationsonglobalwarmingfromCNCNandCNCNextfortheSSP3-7.0(0.48and0.39°C)andSSP5-8.5(0.4and0.5°C)scenariosoverthelongtermarelargerthantheinternalvariability,indicatingarobustresponse.SpatialdivergencesofmitigationsofChina’scarbonneutralitytoglobalwarmingTheeffectofanthropogenicCO2emissionsonGMSTisevidentatbothglobalandregionalorlocalscales16.Thechangeofsurfacetempera-tureinducedbyCNCN(dT)isscenario-dependent,spatiallynotuni-formandvarieswithtime.ThemagnitudesofdTattheglobalscalerangefrom−1.84to1.76°C(Fig.2).Remarkabledifferencesareseenatregionalscale.Overtheneartermandmid-terms,only0.2–4%ofgridsshowsignificantdifferencesindTattheglobalscale(Fig.2a–d).AstrongwarmingisseenintheneartermunderSSP1-2.6overtheBarentsSeaanditssouthernregionsadjacenttowesternRussia(Fig.2a).SuchkindofwarmingcanbeexplainedbythefactthattheSSP1-2.6undertheCNCNscenariohassignificantlylargercarbonemissionsthanthedefaultscenariooverthenearterm(Supplemen-taryFig.S2).Overthemid-term,CNCNleadstoastrongincreaseinsurfacetemperatureinsouthofGreenlandunderboththeSSP2-4.5andSSP3-7.0scenariosbutasignificantdecreaseineastofSiberianseaandadjacenttoeasternRussiaundertheSSP2-4.5scenario(Fig.2f,g),whichishighlyconsistentwiththereportofasignificantregionaltransientresponseoflocaltemperaturetoCO2emissions16.Overthelongterm,gridswithsignificantdifferencesindTaccountforupto10%and9%oftheglobalvaluesforSSP1-2.6andSSP2-4.5,respectively,butthesignsofCNCN-inducedsurfacetemperaturechangeareregionallydependent(Fig.2i–l).WarmingeffectsoverthelongterminGreenlandandtheArcticfromSSP1-2.6areprimarilycausedbyhigher(a)(b)(c)(d)(e)(f)(g)(h)(i)(j)(k)(l)NeartermMid–termLongtermSSP1–2.6SSP2–4.5SSP3–7.0SSP5–8.5dT–1.9–1.7–1.5–1.3–1.1–0.9–0.7–0.5–0.3–0.10.10.30.50.70.91.11.31.51.71.9Fig.2MeansurfacetemperaturedifferencebetweenChina’scarbonneutrality(CNCN)anddefaultCMIP6scenariosforfoursharedsocioeconomicpathways(SSPs).Panelsfromlefttorightrepresentthenearterm(2021–2040,a–d),mid-term(2041–2060,e–h)andlongterm(2081–2100,i–l),andpanelsfromtoptobottomrepresentSSP1-2.6,SSP2-4.5,SSP3-7.0andSSP5-8.5,respectively.Themeansurfacetemperaturedifference(dT,unitin°C)iscal-culatedasthevalueofCNCNminusthedefaultCMIP6foreachcombinationofthestudytermandSSPs.PixelsoverlayedbydotsindicatethatthedTissta-tisticallysignificantatalevelof0.01.Thepairedttestwasusedtocalculatethesignificance.Articlehttps://doi.org/10.1038/s41467-022-33047-9NatureCommunications(2022)13:53153anthropogenicCO2emissionsthanthedefaultscenario(Supplemen-taryFig.S2).TheavoidedwarmingfromSSP2-4.5ismainlylocatedintheSouthernOcean(Fig.2j).ForSSP3-7.0andSSP5-8.5,53%and34%oftheglobalvaluesshowsignificantdifferencesindT,respectively(Fig.2k–l).Generally,theavoidedwarminginducedbyCNCNoverthelongtermunderSSP3-7.0scenariofeaturesapolaramplificationpat-tern,withstrongeravoidedwarmingintheArcticandhigh-latitudes,andweakavoidedwarminginlowlatitudes(Fig.2k).UndertheSSP5-8.5scenario,strongavoidedwarmingisseenineasternGreenland,theGreenlandSea,largeregionsofRussiaandsomefractionsofregionsoflandandoceansfromlowtohighlatitudes(Fig.2l).ComparedtotheCNCNscenario,thejointeffectsofCH4andN2Ofurtherresultinadditionalnear-termwarmingunderbothSSP1-2.6andSSP2-4.5scenariosbutsignificantlylesswarmingunderSSP5-8.5scenarioinhighlatitudesoftheNorthernHemi-sphere(SupplementaryFig.S7),whichismainlyduetothediffer-enceinN2Oemissionsbetweenthetwoscenarios(SupplementaryFig.S4).FurtheravoidedwarmingsfromthecombinedeffectsofCH4andN2OaremoreevidentunderbothSSP1-2.6andSSP2-4.5scenariosinthelongterminhighlatitudesoftheNorthernHemisphere.However,significantwarminginducedbyCH4andN2OemissionsisobservedoverthelongtermunderSSP3-7.0scenariointheregionssurroundingtheMediterraneanSeaandtheBarentsSea(SupplementaryFig.S7).TakingcomprehensivecovariationsofthreeprimaryGHGswithintheChina’scarbonneutralitypledgeintoaccountresultsinastrongwarmingeffectinnear-termGMSToveralargeareacoveringthemajorityoftheBarentsSea,RussiaanditsnorthernoceansovertheneartermforSSP1-2.6(Fig.3a).Theresponseofsurfacetemperatureinthenear-termisnotevidentunderallotherscenarios(Fig.3a–d).Theavoidedwarminginthemid-termunderCNCNextscenarioisonlyevidentinsmallregions,whichcoversonly3%(SSP1-2.6)to10%(SSP2-4.5)ofglobalarea(Fig.3e,f).Incontrast,aremarkableavoidedwarmingisseeninthelongterm,whichaccountsfor8%,22%,25%and36%oftheglobalareaforSSP1-2.6,SSP2-4.5,SSP3-7.0andSSP5-8.5,respectively(Fig.3i–l).DiscussionHere,wemakeafirstattempttoprojecttheeffectofpledgedcarbonneutralityfromanindividualcountry,takingthecurrentlylargestemittingcountryasanexample,onfutureglobalwarmingmitigationbasedonafullycoupledEarthsystemmodel.TheavoidedwarmingsfromCNCNaresignificantunderSSP3-7.0andSSP5-8.5scenariosoverthelongtermbutinsignificantorsignificantinonlylessthan10%ofglobalregionsunderotherscenariosforneartermandmid-term.MitigationscausedbyCNCNalonewouldreduceglobalwarmingby0.48(±0.09)°Cand0.40(±0.09)°Cinthesetwoscenarios,respec-tively.Suchmitigationmagnitudesaccountfor14%and9%ofglobalwarminginthesameperiod.WhenfurtherchangesinCH4andN2OemissionsinassociationwithChina’scarbonneutralityareincorpo-rated,thecombinedeffectsofthethreeprimaryGHGsslowedthewarmingofGMSTinthelongtermby0.21–0.50°CforthefourSSPs,whichaccountedforapproximately11–12%ofglobalwarming.CNCNextalsocontributeavoidedwarmingsforSSP2-4.5(0.18°C)and(a)(b)(c)(d)(e)(f)(g)(h)(i)(j)(k)(l)NeartermMid–termLongtermSSP1–2.6SSP2–4.5SSP3–7.0SSP5–8.5dT–2.5–2.1–1.9–1.7–1.5–1.3–1.1–0.9–0.7–0.5–0.3–0.10.10.30.50.70.91.11.31.51.71.92.12.5Fig.3MeansurfacetemperaturedifferencebetweenextensionscenarioswithadditionalCH4andNO2emissionreductionsaccompaniedbytheCO2emissionreductionsforChina’scarbonneutrality(CNCNext)anddefaultCMIP6scenariosforfoursharedsocioeconomicpathways(SSPs).Panelsfromlefttorightrepresentthenearterm(2021–2040,a–d),mid-term(2041–2060,e–h)andlongterm(2081–2100,i–l),andpanelsfromtoptobottomrepresentSSP1-2.6,SSP2-4.5,SSP3-7.0andSSP5-8.5,respectively.Themeansurfacetemperaturedif-ference(dT,unitin°C)iscalculatedasthevalueofCNCNextminusthedefaultCMIP6foreachcombinationofthestudytermandSSPs.PixelsoverlayedbydotsindicatethatthedTisstatisticallysignificantatalevelof0.01.Thepairedttestwasusedtocalculatethesignificance.Articlehttps://doi.org/10.1038/s41467-022-33047-9NatureCommunications(2022)13:53154SSP5-8.5(0.12°C)overthemid-termbutdoesnothaveanysignificantimpactsontheGMSTforallfourSSPsinthenearterm.Wealsoacknowledgetheuncertaintiesinourstudy.First,inournumericalexperiments,weassumedthatothercountriesdonottakeanysignificantmitigationactions,whichisfardifferentfromfuturereality,asmorethan120countrieshavepledgedsuchactions7.GiventhatmanyeffortstoreduceGHGemissionsworld-widehavebeenpledged,China’sshareofthemitigationofglobalwarmingwilllargelydecline.Second,theemissionpathwayusedtodrivetheEarthsystemmodelinthisstudyisonlyoneofvariouspossiblepathwaystoattaincarbonneutrality,andemissionpath-waysforcarbonneutralityarequitesensitivetovariationsinnations’policyinterventions,thedecarbonizationprogressinelectricityandindustrialsectors,andestablishmentofrenewableenergyandtechnologyinnovationsforcarboncaptureandstorageorcarbondioxideremoval17.Third,changesinatmosphericaerosols,suchasshortlivedGHGscooccurringwithfossilfuelcombustionsanddiversehumanactivities,arenottakenintoaccountinthesimula-tions,althoughthecombinedeffectofvariouskindsofaerosolsisreportedtohaveconflictingeffectsthatrangefromsignificantreductionintemperaturetoamodestimpactandevenanetfuturewarmingeffect18–21.Finally,mitigationeffectsarederivedbypairsimulationsofasinglefactor,CO2onlyoracombinationofCO2,CH4andN2O,whichessentiallycannotsortoutanindividualcountry’seffectsonglobalwarmingbecausetheglobalwarmingiscausedbythecumulativeanthropogenicCO2emissionsfromthepreindustrialeraandthehistoricalemissionwillstillworkinfuturewarming.Inaddition,multiplesimulationsforthesamescenariowouldreducetheuncertaintyinducedbythemodel’sinternalvariabilityandmaketheresultsmorerobust.ItiswellknownthatCO2emissionpathwaysforcarbonneu-tralityandGHGneutralityaredifferent.Carbonneutralitytargetsabalancebetweenanthropogenicemissionsbysourcesandremovalsbysinksofcarbon,butGHGneutralityreferstoallgreenhousegases,whichmeansthatadditionalnegativeCO2emissionsandsomenon-CO2GHGemissionshavetocancelouteachotherforGHGneutrality22–24.Chinahasdeliveredaseriesofdomesticstrategiesandpoliciesincludingabatedcoalconsumption25,clearenergydevelopment26–28,nationwideecologicalrestoration29,30andothervariousnegative-emissiontechnologies31aspotentialcounter-measurestoachievecarbonneutralityby2060.MostoftheseChi-na’songoingemissionactionsalsocontributetoreductionsinsomenon-CO2GHGemissionsandincreasesinnegative-emissionofCO2,whichimpliesthatChina’sfutureemissionpathwayisultimatelytargetingforaGHGneutrality,althoughcarbonneutralityiscur-rentlyclaimed7,9.China’srapidgrowthinanthropogenicCO2emis-sionsoccurredafter2000(SupplementaryFig.S2),andthetimespanstocarbonpeaking(2030)andneutrality(2060)arequiteshort,comparedtothoseofdevelopedcountries4.ThiscreatesgreatchallengesforChinatoachievecarbonorGHGneutrality.However,China’sdeterminationandambitionforcarbonorGHGneutralityareverystrongbecauseimpellingforcarbonandGHGneutralitywillnotonlycontributetomitigatingfurtherglobalwarmingbutalsotofacilitatingeconomictransformationandupgradeformoresus-tainabledevelopment,includingimprovingdomesticairqualityandprotectingpublichealth32.ThisstudyquantifiestherelativecontributionofChina’scarbonneutralitypledgetofutureglobalwarming,whichisinformativeandinsightfulforquantifyinganindividualcountry’smitigationofcarbonemissionsonscalesofbothtimehorizonsandspatialdistributions.Ourresultsprovideausefulreferencefortheglobalstocktake,whichassessesthecollectiveprogresstowardstheclimategoalsoftheParisAgreement.Thisalsoimpliesthatjointeffortsfromallcountriesintheworldareurgentlyneededtomitigatefurtherglobalwarmingthroughnet-zerocarbonactions.MethodsCommunicationearthsystemmodelTheNCAR’sCommunityEarthSystemModel(CESM)11isafullycoupledearthsystemmodelconsistingofsevenprognosticcomponents,namelyatmosphere,land,landice,ocean,seaice,riverandacouplerthatcomputesfluxesbetweencomponents.TheCESM2.1.3versionincorporatesasuiteofcasesforCMIP6simulationswithseveralsharedsocioeconomicpathway(SSP)scenarios.FourSSPswereusedinthisstudy.ThefirstisSSP1-2.6,whichrepresentsthelowendoftherangeoffutureforcingpathwaysandupdatestheRCP2.6(RCP,representativeconcentrationpathways).ThesecondisSSP2-4.5,whichrepresentsthemediumpartoftherangeoffutureforcingpathwaysandupdatestheRCP4.5pathway.ThethirdisSSP3-7.0,whichrepresentsthemediumtohighendoftherangeoffutureforcingpathways.ThefourthisSSP5-8.5,whichrepresentsthehighendoftherangeoffuturepathwaysandupdatestheRCP8.512,althoughtheSSP5-8.5scenarioiscriticisedasoverestimatingfuturecumulativefossilfuelandindustryCO2emissions33.EachdefaultCMIP6SSPincorporatescorrespondingspatiallyanthropogenicsurfaceCO2emissionsproducedwiththeIntegratedAssessmentModel(IAM).GlobalCO2forcingdataunderCNCNscenarioTheCNCNscenario13ismainlybasedoncarbonemissionsconsistentwiththeIPCC1.5°Ctarget,butitrequiresfurtherreductionsinnationaltotalenergyconsumptionandlargeincreasesinthepropor-tionofnonfossilenergyinprimaryenergyconsumption.TheCNCNscenarioalsorequiressignificantdecreasesinnon-CO2GHGemissionsandincreasesinterrestrialecosystemcarbonsinksandlarge-scaleimplementationsofcarboncaptureandstorage(CCS)andcarbondioxideremoval(CDR).UnlikeIAMs,itisnotpossibletogeneratespatiallyexplicitanthropogenicsurfaceCO2emissionsfortheCNCNscenario,butaroadmapwiththeexpectedamountoftotallydomesticCO2emissionsforCNCNupto2050isgenerated13.WeassumethatfutureanthropogenicCO2emissionsforeachgridundertheCNCN(CO2ði,jÞ)scenarioarelinearlyproportionaltotheiroriginalvaluesinthedefaultSSPs(CO2,SSPði,jÞ),i.e.,theEq.(1).CO2ði,jÞ=CO2,CNN∑n1CO2,SSPði,jÞ×CO2,SSPði,jÞð1ÞGeneratedspatialCO2emissionsthenreplacethevaluesindefaultSSPsinChinabutremainunchangedoutsideofChina,andanthro-pogenicCO2emissionsfortheCNCNscenarioafter2050remainunchangedasitsvaluein2050.ThenewdatasetsofCO2emissionsforCNCNareusedtodrivetheCESMandrepresenttheCNCNscenarios.Therefore,fourpairsofsimulationsareformed,andthedifferenceineachpairofsimulationsrepresentsthemitigationsofglobalwarmingfromCNCN.FromtheCNCNreport13,China’santhropogeniccarbonemissionswillpeakat10.5GtCO2year−1in2030anddropto1.2GtCO2year−1in2050.Underthecarbonneutralitypathway13,Chinawillreduceitscarbonemissionsby89%in2050,whichisroughlyconsistentwitharecentsynthesisforthe1.5°Ctargetbasedonmultipleintegratedassessmentmodels17.ComparedwiththedefaultCMIP6scenario,CNCNhasadifferencerangingfrom−3.70to18.03GtCO2year−1inanthropogenicsurfaceCO2(SupplementaryFigs.S2–S3).GlobalCH4andN2OforcingdataunderCNCNscenarioBecausebothCH4andN2O,twootherkindsofgreenhousegases,areemittedalongwiththefossilfuelproduction,transportationorcom-bustionandotheranthropogenicactivities9,34,changesinCH4andN2OconcomitantwithCNCNarealsoincorporatedtodrivetheCESM(referredtoasCNCNext).UndertheCNCNextscenario,China’scumu-lativeCH4emissionsduringtheperiod2015-2100havedifferencesof−785,810,3552,and661MtCH4comparedtothedefaultSSP1-2.6,Articlehttps://doi.org/10.1038/s41467-022-33047-9NatureCommunications(2022)13:53155SSP2-4.5,SSP3-7.0andSSP5-8.5,respectively.Incontrast,theCNCNextscenarioresultsinchangesincumulativeN2Oemissionsof−19.4,8.2,24.1and30.4MtN2OcomparedtothefourdefaultSSPs,respectively.BothCH4andN2OforcingdataoftheCESMareprescribedasgloballyuniformsurfaceconcentrations,ratherthantheirsurfacefluxes.ConversionfromfluxestoconcentrationsgenerallyrequiresrunningasimpleclimatemodellikeMAGICC35.UnderscenariosoffourdefaultSSPs,concentrationsofCH4andN2Ocanbeeasilyextracted.However,reimplementinganMAGICCfortheCNCNscenarioessen-tiallyinvolvesalargenumberofsimulationtasks.Fortunately,dependencesofbothCH4andN2Oconcentrationsontheircumulativeemissionsinthetroposphereduringtheperiod2015-2100canbeempiricallyfittedbycubicfunctionsforfourSSPsunderthedefaultCMIP6scenario(R2closeto1,SupplementaryFig.S5),althoughtheirfittingequationsarelargelydifferentamongvariablesandSSPs,sowehavehighconfidenceinderivingcorrespondingsurfaceconcentra-tionsofCH4andN2Obasedontheircumulativeemissionsduringaspecifiedperiod(2015–2100)(SupplementaryFig.S5).AsChinahasyetspecifiednon-CO2GHGemissionreductiontargetsandtimelinesforGHGneutrality,theGlobalChangeAssessmentModel36(GCAM,version5.4)isusedtoprojectemissionsofCH4andN2OundertheCNCNscenariofrom2015to2100,inwhichemissionsofCO2undertheCNCNscenarioareusedasconstraints,andanequalmarginalcostofemissionreductionsbetweenCO2andnon-CO2GHGsisassumed.Therefore,concentrationsofCH4andN2OcanbederivedunderbothscenariosofthedefaultCMIP6andCNCN(SupplementaryFig.S6).SuchCESMsimulationsdrivenbycombinedvariationsinCO2,CH4andN2OundertheCNCNscenariorepresenttheCNCNextscenario,whosedifferencesinsimulatedGSMTfromCNCNsimulationsareregardedasrelativecontributionstoglobalwarmingbybothCH4andN2ObutthosedifferencesinsimulatedGMSTfromthedefaultCMIP6simulationsareregardedascontributionsbyCNCNext.PriorvalidationofthecommunityearthsystemmodelPriortobeginningsimulations,theCESM2.1.3wasrunwithfullycoupledcomponentsfromboth1850and1900to2014,andnosig-nificantdifferenceinthesimulatedGMSTwasfound(SupplementaryFig.S8),whichallowedustousethespin-upsimulationfrom1850to2014forthestart-upsimulation.ThesimulatedGMSTfromspin-uprunswasalsocomparedwiththreeglobalhistoricaltemperaturedatasets,andtheconsistencyidentifiedbycross-corelationwashigh(Rrangingfrom0.78to0.99)(SupplementaryFig.S9),provingtherobustnessofthemodelinsimulatingtheresponseofglobalmeantemperaturetoanthropogenicCO2emissions.DataavailabilityDatasetoffutureCH4andN2OemissionsfordifferentSSPsarearchivedinIIASAwebsite(https://tntcat.iiasa.ac.at/SspDb).DuetotheextremelylargesizeoftheoutputrawdatafromCESMsimulations,thesefileswerenotdepositedinapublicrepository,butareavailablefromthecorrespondingauthorsonreasonablerequest.CodeavailabilityTheRcodesforvisualizingtheresultsinthisstudyareavailablefromthecorrespondingauthorsonrequest.References1.IPCC.ClimateChange2014:SynthesisReport.ContributionofWorkingGroupsI,IIandIIItotheFifthAssessmentReportoftheIntergovernmentalPanelonClimateChange[CoreWritingTeam,R.K.PachauriandL.A.Meyer(eds.)].IPCC,Geneva,Switzerland.151(2014).2.IPCC.SummaryforPolicymakers.In:ClimateChange2021:ThePhysicalScienceBasis.ContributionofWorkingGroupItotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange[Masson-Delmotte,V.,P.Zhai,A.Pirani,S.L.Connors,C.Péan,S.Berger,N.Caud,Y.Chen,L.Goldfarb,M.I.Gomis,M.Huang,K.Leitzell,E.Lonnoy,J.B.R.Matthews,T.K.Maycock,T.Waterfield,O.Yelekçi,R.Yu,andB.Zhou(eds.)].CambridgeUniversityPress,Cambridge,UnitedKingdomandNewYork,NY,USA.3−32(2021).3.Rive,N.&Fuglestvedt,J.S.Introducingpopulation-adjustedhis-toricalcontributionstoglobalwarming.Glob.Environ.Change18,142–152(2008).4.Matthews,H.D.Quantifyinghistoricalcarbonandclimatedebtsamongnations.Nat.Clim.Change6,60–64(2016).5.Mora,C.etal.Broadthreattohumanityfromcumulativeclimatehazardsintensifiedbygreenhousegasemissions.Nat.Clim.Change8,1062–1071(2018).6.IPCC.SummaryforPolicymakers.In:GlobalWarmingof1.5°C.AnIPCCSpecialReportontheimpactsofglobalwarmingof1.5°Cabovepre-industriallevelsandrelatedglobalgreenhousegasemissionpathways,inthecontextofstrengtheningtheglobalresponsetothethreatofclimatechange,sustainabledevelopment,andeffortstoeradicatepoverty[Masson-Delmotte,V.,P.Zhai,H.-O.Pörtner,D.Roberts,J.Skea,P.R.Shukla,A.Pirani,W.Moufouma-Okia,C.Péan,R.Pidcock,S.Connors,J.B.R.Matthews,Y.Chen,X.Zhou,M.I.Gomis,E.Lonnoy,T.Maycock,M.Tignor,andT.Water-field(eds.)].6(2018).7.Editorials.Net-zerocarbonpledgesmustbemeaningful.Nature592,8(2021).8.Friedlingstein,P.etal.Globalcarbonbudget2020.EarthSyst.Sci.Data12,3269–3340(2020).9.Cornwall,W.Fiveyearsin,Parispactstillaworkinprogress.Sci-ence370,1390(2020).10.Chen,J.,Cui,H.,Xu,Y.,Ge,Q.Long-termtemperatureandsea-levelrisestabilizationbeforeandbeyond2100:EstimatingtheadditionalclimatemitigationcontributionfromChina’srecent2060carbonneutralitypledge.Environ.Res.Lett.16,074032(2021).11.Danabasoglu,G.,etal.Thecommunityearthsystemmodelversion2(CESM2).J.Adv.Model.EarthSyst.12,e2019MS001916(2020).12.O’Neill,B.C.etal.Thescenariomodelintercomparisonproject(ScenarioMIP)forCMIP6.Geosci.ModelDev.9,3461–3482(2016).13.TsinghuaUniversityIoCCaSD.SynthesisreportonChina’slongtermlowcarbondevelopmentandtransmissionpathways.ChinaPopul.,Resour.Dev.30,1–25(2021).14.Hawkins,E.&Sutton,R.Thepotentialtonarrowuncertaintyinprojectionsofregionalprecipitationchange.Clim.Dyn.37,407–418(2011).15.Lu,J.W.,Zhou,T.J.,Huang,X.,Zhang,W.X.&LW,Z.Acomparisonofthreemethodsforestimatinginternalvariabilityofnear-surfaceairtemperature.Chin.J.Atmos.Sci.44,105–121(2020).16.Leduc,M.,Matthews,H.D.&deElía,R.RegionalestimatesofthetransientclimateresponsetocumulativeCO2emissions.Nat.Clim.Change6,474–478(2016).17.Duan,H.etal.AssessingChina’seffortstopursuethe1.5°Cwarminglimit.Science372,378–385(2021).18.Andreae,M.O.,Jones,C.D.&Cox,P.M.Strongpresent-dayaerosolcoolingimpliesahotfuture.Nature435,1187–1190(2005).19.Allen,R.J.,etal.Significantclimatebenefitsfromnear-termclimateforcermitigationinspiteofaerosolreductions.Environ.Res.Lett.,(2021).20.Collins,W.J.etal.Globalandregionaltemperature-changepotentialsfornear-termclimateforcers.Atmos.Chem.Phys.13,2471–2485(2013).21.Fu,B.etal.Short-livedclimateforcershavelong-termclimateimpactsviathecarbon–climatefeedback.Nat.Clim.Change10,851–855(2020).22.Tanaka,K.&O’Neill,B.C.TheParisAgreementzero-emissionsgoalisnotalwaysconsistentwiththe1.5°Cand2°Ctemperaturetar-gets.Nat.Clim.Change8,319–324(2018).Articlehttps://doi.org/10.1038/s41467-022-33047-9NatureCommunications(2022)13:5315623.Fuglestvedt,J.,etal.Implicationsofpossibleinterpretationsof‘greenhousegasbalance’intheParisAgreement.Philos.Trans.AMath.Phys.Eng.Sci.376,20160445(2018).24.vanSoest,H.L.,denElzen,M.G.J.&vanVuuren,D.P.Net-zeroemissiontargetsformajoremittingcountriesconsistentwiththeParisAgreement.Nat.Commun.12,2140(2021).25.Cui,R.Y.etal.Aplant-by-plantstrategyforhigh-ambitioncoalpowerphaseoutinChina.Nat.Commun.12,1468(2021).26.Xing,X.etal.SpatiallyexplicitanalysisidentifiessignificantpotentialforbioenergywithcarboncaptureandstorageinChina.Nat.Commun.12,3159(2021).27.Wang,P.,Zhang,S.,Pu,Y.,Cao,S.&Zhang,Y.Estimationofpho-tovoltaicpowergenerationpotentialin2020and2030usinglandresourcechanges:AnempiricalstudyfromChina.Energy219,119611(2021).28.Zhou,S.,Wang,Y.,Zhou,Y.,Clarke,L.E.&Edmonds,J.A.RolesofwindandsolarenergyinChina’spowersector:Implicationsofintermittencyconstraints.Appl.Energy213,22–30(2018).29.Lu,F.etal.EffectsofnationalecologicalrestorationprojectsoncarbonsequestrationinChinafrom2001to2010.Proc.NatlAcad.Sci.USA115,4039–4044(2018).30.Wang,J.etal.LargeChineselandcarbonsinkestimatedfromatmosphericcarbondioxidedata.Nature586,720–723(2020).31.Liu,Z.etal.ChallengesandopportunitiesforcarbonneutralityinChina.Nat.Rev.EarthEnviron.3,141–155(2022).32.Cheng,J.,etal.PathwaysofChina’sPM2.5airquality2015–2060inthecontextofcarbonneutrality.Natl.Sci.Rev.8,nwab078(2021).33.Hausfather,Z.&Peters,G.P.RCP8.5isaproblematicscenariofornear-termemissions.Proc.NatlAcad.Sci.USA117,27791–27792(2020).34.Tian,H.etal.Acomprehensivequantificationofglobalnitrousoxidesourcesandsinks.Nature586,248–256(2020).35.Meinshausen,M.etal.Thesharedsocio-economicpathway(SSP)greenhousegasconcentrationsandtheirextensionsto2500.GeoscientificModelDev.13,3571–3605(2020).36.Calvin,K.etal.GCAMv5.1:representingthelinkagesbetweenenergy,water,land,climate,andeconomicsystems.GeoscientificModelDev.12,677–698(2019).AcknowledgementsThisstudyissupportedbytheNationalKeyResearchandDevelopmentProgramofChina(2017YFA0603603)andtheNationalNaturalScienceFoundationofChina(U2003201).AuthorcontributionsL.L.andG.L.designedresearchanddraftedthepaper;L.L.,Y.Z.,andK.A.performedthenumericalsimulations;L.L.,Y.Z.,andT.Z.analyzedtheresults;andL.L.,T.Z.,K.W.,C.W.,T.W,L.Y.,andC.Z.revisedthepaper.L.L.,Y.Z.,T.Z.,K.W.,C.W.,T.W.,L.Y.,C.Z.,andG.L.contributedtotheinterpretationoftheresultsandtothetext.CompetinginterestsTheauthorsdeclarenocompetinginterests.AdditionalinformationSupplementaryinformationTheonlineversioncontainssupplementarymaterialavailableathttps://doi.org/10.1038/s41467-022-33047-9.CorrespondenceandrequestsformaterialsshouldbeaddressedtoGuonianLü.PeerreviewinformationNatureCommunicationsthankstheanon-ymousreviewer(s)fortheircontributiontothepeerreviewofthiswork.Peerreviewerreportsareavailable.Reprintsandpermissioninformationisavailableathttp://www.nature.com/reprintsPublisher’snoteSpringerNatureremainsneutralwithregardtojur-isdictionalclaimsinpublishedmapsandinstitutionalaffiliations.OpenAccessThisarticleislicensedunderaCreativeCommonsAttribution4.0InternationalLicense,whichpermitsuse,sharing,adaptation,distributionandreproductioninanymediumorformat,aslongasyougiveappropriatecredittotheoriginalauthor(s)andthesource,providealinktotheCreativeCommonslicense,andindicateifchangesweremade.Theimagesorotherthirdpartymaterialinthisarticleareincludedinthearticle’sCreativeCommonslicense,unlessindicatedotherwiseinacreditlinetothematerial.Ifmaterialisnotincludedinthearticle’sCreativeCommonslicenseandyourintendeduseisnotpermittedbystatutoryregulationorexceedsthepermitteduse,youwillneedtoobtainpermissiondirectlyfromthecopyrightholder.Toviewacopyofthislicense,visithttp://creativecommons.org/licenses/by/4.0/.©TheAuthor(s)2022Articlehttps://doi.org/10.1038/s41467-022-33047-9NatureCommunications(2022)13:53157

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱