能源部门间歇性可再生能源整合成本综述(英文版)-KAPSARCVIP专享VIP免费

An Overview of Integration Costs of Variable
Renewables in the Power Sector
Faris F. Aljamed, Frank A. Felder, Amro M. Elshurafa
Commentary
June 2023
2
An Overview of Integration Costs of Variable Renewables in the Power Sector
Introduction
In recent years, the cost of electricity generated by renewables has
signicantly decreased to the point where it is cost competitive with
conventional plants (Heptonstall and Gross, 2021). However, incorporating
variable renewable energy (VRE) technologies like wind and solar
photovoltaics (PV) into the power system creates intermittency. By adding
intermittent sources of generation, demand and supply will not always
match. This means that the system requires more backup generators and
more exibility to balance the mismatch between supply and demand.
Integration costs must be factored in to determine the optimal share of VRE
and the total system cost.
Traditionally, the levelized cost of energy (LCOE) has been used to
compare the costs of different power generators. LCOE calculates the
total lifetime discounted costs of constructing and operating a plant and
divides it by the projected total energy produced during its assumed
lifespan. However, LCOE does not consider the costs that arise due to
VRE intermittency or the expenses associated with adapting the power
system to the changes brought by VRE. Therefore, LCOE alone cannot
capture the total system costs when VRE is introduced to the grid (Loth
et al., 2022). This commentary provides a brief overview of how VRE
integration costs are calculated by examining various methods available in
the literature.
Denition of Integration Costs and
their Components
Integration costs are categorized into three components: balancing costs,
grid costs, and prole costs. Balancing costs refer to the costs imposed
by the unpredictable nature of VRE generation. Supply uncertainty causes
day-ahead forecasting errors, which necessitate operating reserves and/or
storage to balance supply and demand. Grid costs result from VRE region-
specic requirements. VRE technologies are less exible than conventional
generation in terms of where they can be built. Sometimes, VRE generators
are located far from load centers, requiring additional transmission
infrastructure to deliver energy. Prole costs are mostly due to the variable
nature of VRE (Ueckerdt et al. 2013).
Prole costs were previously referred to as ‘adequacy costs.’ Adequacy
costs are the expenses attributable to the low-capacity credit of VRE.
Conventional generation capacity is considered ‘rm’ capacity, always
ready to meet demand, which is not the case for VRE. As a result, capacity
costs increase as more VRE is integrated into the system. Prole costs are
a more comprehensive concept that captures all costs imposed by VRE
variability (Heptonstall and Gross 2021).
Prole costs comprise three components. The rst component is
overproduction costs, which are the costs arising from the curtailment
required for over-generated power. The second component is backup
costs, which are the costs of backup capacity needed to balance supply
Integration costs
are categorized into
three components:
balancing costs, grid
costs, and prole
costs
3
An Overview of Integration Costs of Variable Renewables in the Power Sector
and demand. The third component is full-load hour (FLH) reduction costs.
VREs reduce the FLH of dispatchable plants, resulting in lower generation
per capacity for these plants (Ueckerdt et al. 2013). Figure 1 summarizes
the integration costs.
Review of How Integration Costs of Variable
Renewable Energy Are Calculated
Load duration curves method
One method to assess integration costs is the load duration curve (LDC)
method. An LDC displays the hourly load of a year, sorted from the highest
load hour to the least load hour. When (VRE) is added, the LDC is changed
to residual load duration curve (RLDC), which shows how much electricity
demand is left after subtracting the supply from renewable resources.
To determine the residual costs for the system with VRE, one needs to
integrate along the inverse of the RLDC and multiply the value by the
respective minimum screening curve value. For the system without VRE,
the integration is along the inverse of the LDC. Screening curves show the
total cost per kilowatt (kW) per year of different generation technologies.
Figure 2 displays an example of an LDC and an RLDC.
Figure 1. Hierarchy of integration costs and their components.
Source: Ueckerdt et al. (2013).
CommentaryAnOverviewofIntegrationCostsofVariableRenewablesinthePowerSectorJune2023FarisF.Aljamed,FrankA.Felder,AmroM.ElshurafaIntroductionInrecentyears,thecostofelectricitygeneratedbyrenewableshassignificantlydecreasedtothepointwhereitiscostcompetitivewithconventionalplants(HeptonstallandGross,2021).However,incorporatingvariablerenewableenergy(VRE)technologieslikewindandsolarphotovoltaics(PV)intothepowersystemcreatesintermittency.Byaddingintermittentsourcesofgeneration,demandandsupplywillnotalwaysmatch.Thismeansthatthesystemrequiresmorebackupgeneratorsandmoreflexibilitytobalancethemismatchbetweensupplyanddemand.IntegrationcostsmustbefactoredintodeterminetheoptimalshareofVREandthetotalsystemcost.Traditionally,thelevelizedcostofenergy(LCOE)hasbeenusedtocomparethecostsofdifferentpowergenerators.LCOEcalculatesthetotallifetimediscountedcostsofconstructingandoperatingaplantanddividesitbytheprojectedtotalenergyproducedduringitsassumedlifespan.However,LCOEdoesnotconsiderthecoststhatariseduetoVREintermittencyortheexpensesassociatedwithadaptingthepowersystemtothechangesbroughtbyVRE.Therefore,LCOEalonecannotcapturethetotalsystemcostswhenVREisintroducedtothegrid(Lothetal.,2022).ThiscommentaryprovidesabriefoverviewofhowVREintegrationcostsarecalculatedbyexaminingvariousmethodsavailableintheliterature.IntegrationcostsDefinitionofIntegrationCostsandarecategorizedintotheirComponentsthreecomponents:balancingcosts,gridIntegrationcostsarecategorizedintothreecomponents:balancingcosts,gridcosts,andprofilecosts.Balancingcostsrefertothecostsimposedcosts,andprofilebytheunpredictablenatureofVREgeneration.Supplyuncertaintycausescostsday-aheadforecastingerrors,whichnecessitateoperatingreservesand/orstoragetobalancesupplyanddemand.GridcostsresultfromVREregion-specificrequirements.VREtechnologiesarelessflexiblethanconventionalgenerationintermsofwheretheycanbebuilt.Sometimes,VREgeneratorsarelocatedfarfromloadcenters,requiringadditionaltransmissioninfrastructuretodeliverenergy.ProfilecostsaremostlyduetothevariablenatureofVRE(Ueckerdtetal.2013).Profilecostswerepreviouslyreferredtoas‘adequacycosts.’Adequacycostsaretheexpensesattributabletothelow-capacitycreditofVRE.Conventionalgenerationcapacityisconsidered‘firm’capacity,alwaysreadytomeetdemand,whichisnotthecaseforVRE.Asaresult,capacitycostsincreaseasmoreVREisintegratedintothesystem.ProfilecostsareamorecomprehensiveconceptthatcapturesallcostsimposedbyVREvariability(HeptonstallandGross2021).Profilecostscomprisethreecomponents.Thefirstcomponentisoverproductioncosts,whicharethecostsarisingfromthecurtailmentrequiredforover-generatedpower.Thesecondcomponentisbackupcosts,whicharethecostsofbackupcapacityneededtobalancesupplyAnOverviewofIntegrationCostsofVariableRenewablesinthePowerSector2Figure1.Hierarchyofintegrationcostsandtheircomponents.Source:Ueckerdtetal.(2013).anddemand.Thethirdcomponentisfull-loadhour(FLH)reductioncosts.VREsreducetheFLHofdispatchableplants,resultinginlowergenerationpercapacityfortheseplants(Ueckerdtetal.2013).Figure1summarizestheintegrationcosts.ReviewofHowIntegrationCostsofVariableRenewableEnergyAreCalculatedLoaddurationcurvesmethodOnemethodtoassessintegrationcostsistheloaddurationcurve(LDC)method.AnLDCdisplaysthehourlyloadofayear,sortedfromthehighestloadhourtotheleastloadhour.When(VRE)isadded,theLDCischangedtoresidualloaddurationcurve(RLDC),whichshowshowmuchelectricitydemandisleftaftersubtractingthesupplyfromrenewableresources.TodeterminetheresidualcostsforthesystemwithVRE,oneneedstointegratealongtheinverseoftheRLDCandmultiplythevaluebytherespectiveminimumscreeningcurvevalue.ForthesystemwithoutVRE,theintegrationisalongtheinverseoftheLDC.Screeningcurvesshowthetotalcostperkilowatt(kW)peryearofdifferentgenerationtechnologies.Figure2displaysanexampleofanLDCandanRLDC.AnOverviewofIntegrationCostsofVariableRenewablesinthePowerSector3Figure2.ConceptualschematicexplainingthedifferencebetweenLDCandRLDC.Source:Authors’illustration.Ueckerdtetal.(2013)introducedthesystemLCOEmetric,whichisthesumoftheplant’smarginalgenerationcostsandmarginalintegrationcosts.TheauthorsdividedthecostsofthesystemintoVREgenerationcostandresidualcosts.TheresidualcostsarethegenerationcostsofconventionalplantsandtheintegrationcostsofVRE.Theauthorscomparedtheresidualcostsoftwosystems:onewithVREandonewithout.SincethesystemwithoutVREhasnointegrationcosts,comparingtheresidualcostsofthetwosystemsisolatestheVREintegrationcosts.Theintegrationcostsaredefinedasthedifferencebetweenthespecificcostsperunitofresidualloadofthetwosystemsmultipliedbytheresidualgeneration.Ueckerdtetal.estimatedbalancingandgridcostsfrompreviousstudiesandcalculatedprofilecosts.Forwindsharesfrom5%to30%,balancingcostsrangefrom2.5to5eurospermegawatthour(€/MWh),andgridcostsarearound13€/MWhfor40%windpenetration.Profilecostsreachabout30€/MWhat30%windpenetration,andoverallintegrationcostscangoupto60€/MWhat40%windpenetration.Integrationcostscanbereducedbyintroducingoptionssuchaslongdistanceinterconnection,storage,anddemandmanagement.Notethatthestudybeingrevieweddoesnotoptimizetheenergymix.Theonlyoptionconsideredwasthecapacitymixofresidualpowergenerationbythermalgenerators.Thus,theprofilecostscalculatedareoverestimated.AnOverviewofIntegrationCostsofVariableRenewablesinthePowerSector4CostproductionmodelmethodAnothermethodtoassessintegrationcostsisthecostproductionmodelmethod.Here,themodelercomparesascenariowithoutrenewablestoanotherwithrenewables.Thedifferenceincostbetweenthetwoscenarioswouldbetheintegrationcosts.Themodelscanbebuiltusingstandardsoftwareorprogramminglanguages.Forinstance,Brouweretal.(2015)usedPLEXOS,acommerciallyavailablesoftwarepackagethatmodelspowersystems,tosimulatethepowersectorforWesternEuropein2050.Fordifferentpenetrationlevels,theauthorsconsideredfivecomplementaryoptionstointegrateVREatthelowestcost:demandresponse(DR),gas-firedpowerplantswithandwithoutcarboncapture,increasedinterconnectioncapacity,curtailment,andelectricitystorage.PLEXOSoptimizesunitcommitmentandeconomicdispatchwhilemeetingfiveconstraints:balancingelectricitysupplyanddemand,flexibilityconstraintsofgenerators,limitedtransmissioncapacityforinterconnections,scheduledandunscheduledoutages,andthebalancingreservesrequirements.Profilecostswerecalculatedforvariablerenewableenergy(VRE)penetrationlevelsbetween22%and59%,withvaluesbetween0%and22%linearlyinterpolated.TheincreaseinprofilecostsduetoVREadditionismainlyattributedtotwofactors:thereductioninthecapacityfactorofthermalgeneratorscausedbyincreasedVRE,andtheneedformorecurtailmentduetooverproductionfromrenewables(Brouweretal.2015).Marginalprofilecostsrangedfrom0€/MWhto100€/MWhforpenetrationlevelsof0%to60%.Upto40%penetration,integrationcostsincreasedlinearly,reachingapproximately30€/MWh.However,afterthe40%mark,integrationcostsstartedtogrowexponentially.Reichenbergetal.(2018)focusedontheintegrationcostsofVREinEuropebydividingitinto10regions.Theyusedanelectricityinvestmentmodelthataccountsforvariabilityandvariationmanagementtooptimizethedispatchandinvestmentingeneration,storage,andtransmissionforallpenetrationlevels.Theauthorscalculatedthesystemlevelizedcostofelectricity(LCOE)usingthesamedefinitionasUeckerdtetal.ThemarginalsystemLCOEincreasedlinearlyasVREpenetrationincreased,witharateof6€/MWhforeach10%increaseuntilreaching80%penetration.Afterthatpoint,themarginalsystemLCOEstartedtoincreaseexponentiallyduetoallocatingVREinregionswithlowercapacityfactorsandtheneedtocurtailorstoreexcessenergy.Xietal.(2022)calculatedtheintegrationcostsforthepowersystemintheJilinprovinceofChina,comparingasystemwithnoVREgenerationtoasystemwithVREgeneration.Duetothecoal-dominatednatureoftheJilinpowersystem,itexperiencedarapidincreaseinintegrationcostsatanearlierpenetrationlevelcomparedtootherpowersystems.Yaoetal.(2020)simulatedthepowersystemofGuangdongprovinceinChinaandfoundthatintegrationcostsforwindandsolarPVrangedfrom-2.18€/MWhto11.47€/MWhand-5.21€/MWhto6.73€/MWh,respectively,forpenetrationlevelsupto30%.AnOverviewofIntegrationCostsofVariableRenewablesinthePowerSector5Overall,theOverall,theintegrationcostsofVREvarydependingonthepenetrationintegrationcostslevel,systemflexibility,andthespecificcharacteristicsofthepowersystembeinganalyzed.WhilemarginalsystemLCOEandincrementalofVREvaryoperatingcostsofthermalplantstendtoincreaselinearlywithhigherdependingontheVREpenetration,curtailmentcosts,idlecosts,andbalancingcostscanpenetrationlevel,decreaseorremainconstantinmoreflexiblepowersystems.systemflexibility,andthespecificThetwostudieswediscussedonChinaonlyconsiderintegrationcostscharacteristicsoftheforpenetrationlevelsupto40%.However,toincreasethedeploymentpowersystembeingofVREintheChinesepowersystem,bettersystemflexibilityisneeded.Ruetal.(2022)proposethattheChinesepowersystemcanachieveanalyzedVREpenetrationlevelsbetween70%and85%byimplementingvariationmanagementoptionssuchasdifferentenergystoragetechnologyandultra-highvoltagedirectcurrent-based(UHVDC-based)transmission.DiscussionInUeckerdtetal.’smodel,theintegrationcostsstartedtoincreaseatahigherrateatlowerpenetrationlevelsthaninotherstudies.Forwind,thejumpoccurredat25%penetration,whileforPV,itoccurredat15%penetration.Reichenbergetal.suggestthatthereasonbehindthisrelativelyearlyjumpinintegrationcostsisduetotheabsenceofvariationmanagementsolutionssuchastrade,storage,demandresponse,orcomplementarityofwindandsolar.Brouweretal.calculatedtheintegrationcostsofVREforupto60%penetration.ThesharpincreaseinprofilecostshappenedlaterthaninUeckerdtetal.’sstudy.Brouweretal.’smodelisimplementedacrossEurope,notjustinGermany.Thisgivesitawiderscopethataccountsfortradebetweenregions.However,onedownsidetothemodelisthatVREcapacityandtransmissionlocationswerenotoptimized,andthesharpincreaseinprofilecostsoccursataround40%penetrationduetoreducedFLHandcurtailmentcosts.IntegrationcostsinReichenbergetal.startincreasingsharplyatamuchhigherpenetrationlevelthanthatofpreviousstudies,whichhappensataround80%penetration.Theauthorsstatethatthevaluesoftheintegrationcostaremostlyattributedtocostassumptions,whilethepointatwhichthecostsstarttoincreasesharplystemsfromsystemdynamics.ThisstudyshowsthebenefitsofaccountingforvariationmanagementoptionsandhowtheyaffectthelinearincreaseofintegrationcostswithrespecttoVREpenetrationatsmallshares.Employingdifferentintegrationoptionscouldalsoprovetobecomplementarytoeachother.Forexample,Auguadraetal.(2023)demonstratethatdemandresponseiscomplementarytoenergystorageandprovidesflexibilityforstoragetechnology.AlimitationofReichenbergetal.’smodelisthatitdoesn’tconsidersometechnicalaspectslikeforecastingerrorsandtheneedforbalancingpowerfromthermalplants.Anotherlimitationisthat,whilethemodelinvestsintransmissionbetweentheregions,transmissionwithineachregionisunaccountedfor.AlimitationofsolarPVsisthatthetimeresolutionisnothourly,whichimpactssolaravailability,asitcanchangedrasticallyAnOverviewofIntegrationCostsofVariableRenewablesinthePowerSector6fromonepointintimetothenext(e.g.,from9a.m.to11a.m.).Finally,aAccordingtothelimitationofwindgenerationistheinterannualvariabilityofwindspeed,literature,balancingwhichwasnotaccountedforinthestudy.costsaregenerallylowwhencomparedAccordingtotheliterature,balancingcostsaregenerallylowwhentoothercomponents,comparedtoothercomponents,withestimatestheirvaluestypicallybelowwithestimatestheir6€/MWh.Whenthetrendlineisfittedtothedata,balancingcostsincreasefrom2€/MWhto4€/MWhforwindpenetrationfrom0%to40%(Hirthetvaluestypicallyal.2014).Hirthetal.findthatgridcostsarealsosmall,andtheyarenotbelow6€/MWhusuallyreportedinmarginalterms.Furthermore,theresultsareusuallynotbasedoncostoptimization.Gridcostsareestimatedtobeintheorderof5€/MWh.Windprofilecostsareestimatedtobenegativeorclosetozeroatlowpenetrationrates.However,athigherpenetrationratesofbetween30%and40%,profilecostsforwindareestimatedtobearound15to25€/MWh(Hirthetal.2014).AnotherstudythatreviewedpastliteratureestimateswasconductedbyHeptonstallandGross(2021).Theyestimatedthatadditionalcostsforoperatingreserves(usedtobalancesupplyanddemand)arebelow5€/MWhforupto35%penetrationandbelow10€/MWhforpenetrationlevelsupto45%,withthesizeofthesecostsdependingontheflexibilityofthesystem.Adequacycosts,whichareaspecifictypeofprofilecost,areestimatedtobearound10€/MWhorlessforallpenetrationlevels.Profilecostsareestimatedtorangefrom15to25€/MWhat25%to35%penetration.Theauthorsalsoestimatedgridcoststobeintherangeof7to28€/MWh.However,theynotedthatestimatesforthesecostsvarywidelyacrosstheliterature,anditischallengingtoattributeallgridandtransmissionupgradestothevariablegenerationofVRE.Table1,below,summarizesthecostsdiscussedinthissection.Table1.Anestimateofthecostscalculatedinthestudiescovered.StudyMethodLocationPenetrationBalancingGridcostsProfilecostsPointofpercentagecosts(€/MWh)(€/MWh)(€/MWh)exponentialUeckertdLDCGermanyincreaseetal.calculations0%-40%(wind)2.5-5(wind)0-13(wind)-5-60(wind)25%(wind)BrouwerEurope0%-25%(Solar)-10-100(solar)15%(solar)etal.CostproductionReichenbergmodelEurope0%-60%0.2-1N/A0-10040%etal.80%CostproductionChina0%-100%N/A0-11020%Xietal.modelN/AChina0%-40%IncludedwithN/A0-16.8Yaoetal.CostproductionUSAandprofileN/AmodelEuropean0%-30%Hirthetal.countries-2.18-11.47(wind)N/ACostproductionEurope,0%-40%-5.21-6.73(solar)HeptonstallmodelUSA,andGrossAsia0%-45%(Balancing)2-450-25Costproduction0%-35%(Profile)modelsN/A(Grid)0-107-280-25CostproductionmodelsAnOverviewofIntegrationCostsofVariableRenewablesinthePowerSector7ConclusionTherearegenerallytwomethodsforcalculatingintegrationcosts.Thefirstmethodwecoveredusestheloaddurationcurveandresidualloaddurationcurvetocomparetheresidualcostsofanon-VREsystemandasystemwithVRE.Thesecondmethodusesproductioncostmodels,whichisthemostcommonlyusedmethodduetoitshigheraccuracyanddescriptivepower.Wealsosawthateachsystemhasitsowncharacteristicsandintegrationchallenges,andthereforerequiresadedicatedstudy.Theproductioncostmethodisthemostcommonlyusedmethodtoestimateintegrationcostsduetoitshigheraccuracy,despiteitbeingmoredataandmodelingheavy.Althoughthecalculationsperformedondifferentsystemswerenotexactlythesame,wegenerallyobservesimilartrends.Balancingcostsareusuallybelow10€/MWhandaretypicallyinthesingledigits.Whileliteratureongridcostsisscarce,thesecostsareusuallygreaterthanbalancingcosts.Profilecostsarealwaysthelargestcomponentofintegrationcosts,andtheytypicallyamounttoaround25€/MWhat35%to40%penetration.Insomecases,theycanevenbehigherifthesystemdoesnotaccountforappropriatevariationmanagementsolutions.AtlowerVREpenetrationlevels,integrationcostscanbeclosetozeroorevennegativeinsomecases.However,asmoreVREgenerationisaddedtothesystem,thesecostsincreaserapidly.Dependingonthesystemcharacteristicsandintegrationoptionsconsidered,thelevelofincreaseinintegrationcostsvaries.Moreover,thepointatwhichthesecostsbegintoincreaseexponentiallyalsodependsontheaforementionedfactors.Forflexiblesystems,integrationcostsstarttoincreaseexponentiallyatpenetrationlevelsabove40%.Ifthesystemalsoimplementsvariationmanagementsolutions,thenthepointofexponentialcostincreasescanbedelayedtoupto80%penetration.TheseresultsmustbeconsideredwhenVREtechnologiesareintegratedintothepowersystem.Factorssuchassystemflexibilityandinterconnectivity,forexample,needtobecarefullyevaluatedtoensureasmoothtransitiontothetargetedVREpenetrationlevel.Furthermore,keepinginmindthepowersystem’scharacteristicandchallengesisoftheutmostimportancetosuccessfullyselecttheappropriateintegrationoptions.AlthoughtheseconsiderationswillnotaffecttheLCOEofVRE,thesystemLCOE(theoverallsystemmarginalcosts)willbedecreased.AnOverviewofIntegrationCostsofVariableRenewablesinthePowerSector8ReferencesAuguadra,Marco,DavidRibó-Pérez,andTomásGómez-Navarro.2023.“Planningthedeploymentofenergystoragesystemstointegratehighsharesofrenewables:TheSpaincasestudy.”Energy264:126275.Brouwer,AnneSjoerd,MachteldvandenBroek,WilliamZappa,WimC.Turkenburg,andAndréFaaij.2016.“Least-costoptionsforintegratingintermittentrenewablesinlow-carbonpowersystems.”AppliedEnergy161:48-74.Heptonstall,PhilipJ.,andRobertJKGross.2021.“Asystematicreviewofthecostsandimpactsofintegratingvariablerenewablesintopowergrids.”NatureEnergy6(1):72-83.Hirth,Lion,FalkoUeckerdt,andOttmarEdenhofer.2015.“Integrationcostsrevisited–Aneconomicframeworkforwindandsolarvariability.”RenewableEnergy74:925-939.Joos,Michael,andIainStaffell.2018.“Short-termintegrationcostsofvariablerenewableenergy:WindcurtailmentandbalancinginBritainandGermany.”RenewableandSustainableEnergyReviews86:45-65.Li,Ru,Bao-JunTang,BiyingYu,HuaLiao,ChenZhang,andYi-MingWei.2022.“Cost-optimaloperationstrategyforintegratinglargescaleofrenewableenergyinChina’spowersystem:Fromamulti-regionalperspective.”AppliedEnergy325:119780.Loth,Eric,ChrisQin,JulietG.Simpson,andKatherineDykes.2022.“WhywemustmovebeyondLCOEforrenewableenergydesign.”AdvancesinAppliedEnergy8:100112.Reichenberg,Lina,FredrikHedenus,MikaelOdenberger,andFilipJohnsson.2018.“ThemarginalsystemLCOEofvariablerenewables–EvaluatinghighpenetrationlevelsofwindandsolarinEurope.”Energy152:914-924.Ueckerdt,Falko,LionHirth,GunnarLuderer,andOttmarEdenhofer.2013.“SystemLCOE:Whatarethecostsofvariablerenewables?”Energy63:61-75.Xi,Xingxuan,WeirongZhang,YanleiZhu,JianZhang,andJiahaiYuan.2022.“WindintegrationcostinChina:Aproductionsimulationapproachandcasestudy.”SustainableEnergyTechnologiesandAssessments51:101985.Yao,Xing,BowenYi,YangYu,YingFan,andLeiZhu.2020.“Economicanalysisofgridintegrationofvariablesolarandwindpowerwithconventionalpowersystem.”AppliedEnergy264:114706.AnOverviewofIntegrationCostsofVariableRenewablesinthePowerSector9AbouttheProjectTheKingdomintendstoreduceoreliminateitsuseofliquidfuelsbydeployingconsiderablerenewableenergycapacity.TheAssessmentoftheChangingEconomicsoftheSaudiElectricityIndustryprojectassessestheimpactsofdeployingrenewablesontheSaudipowersectorintermsofcosts,reliability,emissions,andnaturalgasconsumption.AnOverviewofIntegrationCostsofVariableRenewablesinthePowerSector10AboutKAPSARCKAPSARCisanadvisorythinktankwithinglobalenergyeconomicsandsustainabilityprovidingadvisoryservicestoentitiesandauthoritiesintheSaudienergysectortoadvanceSaudiArabiaʼsenergysectorandinformglobalpoliciesthroughevidence-basedadviceandappliedresearch.LegalNotice©Copyright2023KingAbdullahPetroleumStudiesandResearchCenter(“KAPSARC”).ThisDocument(andanyinformation,dataormaterialscontainedtherein)(the“Document”)shallnotbeusedwithouttheproperattributiontoKAPSARC.TheDocumentshallnotbereproduced,inwholeorinpart,withoutthewrittenpermissionofKAPSARC.KAPSARCmakesnowarranty,representationorundertakingwhetherexpressedorimplied,nordoesitassumeanylegalliability,whetherdirectorindirect,orresponsibilityfortheaccuracy,completeness,orusefulnessofanyinformationthatiscontainedintheDocument.NothingintheDocumentconstitutesorshallbeimpliedtoconstituteadvice,recommendationoroption.TheviewsandopinionsexpressedinthispublicationarethoseoftheauthorsanddonotnecessarilyreflecttheofficialviewsorpositionofKAPSARC.AnOverviewofIntegrationCostsofVariableRenewablesinthePowerSector11www.kapsarc.org

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱