EfficientGrid-InteractiveBuildingsFutureofbuildingsinASEANINTERNATIONALENERGYAGENCYTheIEAexaminestheIEAmemberIEAassociationfullspectrumcountries:countries:ofenergyissuesincludingoil,gasandAustraliaArgentinacoalsupplyandAustriaBrazildemand,renewableBelgiumChinaenergytechnologies,CanadaEgyptelectricitymarkets,CzechRepublicIndiaenergyefficiency,DenmarkIndonesiaaccesstoenergy,EstoniaKenyademandsideFinlandMoroccomanagementandFranceSenegalmuchmore.ThroughGermanySingaporeitswork,theIEAGreeceSouthAfricaadvocatespoliciesthatHungaryThailandwillenhancetheIrelandUkrainereliability,affordabilityItalyandsustainabilityofJapanenergyinitsKorea31membercountries,Lithuania13associationLuxembourgcountriesandbeyond.MexicoNetherlandsThispublicationandanyNewZealandmapincludedhereinareNorwaywithoutprejudicetothePolandstatusoforsovereigntyoverPortugalanyterritory,totheSlovakRepublicdelimitationofinternationalSpainfrontiersandboundariesandSwedentothenameofanyterritory,Switzerlandcityorarea.RepublicofTürkiyeUnitedKingdomUnitedStatesTheEuropeanCommissionalsoparticipatesintheworkoftheIEASource:IEA.InternationalEnergyAgencyWebsite:www.iea.orgEfficientGrid-InteractiveBuildingsAbstractFutureofbuildingsinASEANAbstractAfuturewithnetzeroemissionsrequiresscalingupimprovementsinenergyefficiency,electrificationofendusesandrenewableenergygeneration.FortheAssociationofSoutheastAsianNations(ASEAN),agrowingpopulationandrisingstandardsoflivingwillmassivelyincreasefutureenergydemand.Mitigatinggrowingelectricitydemandandintegratingrenewableenergyintoelectricitygenerationwillthereforebeparamountfortheregion’scleanenergytransitionandavoidlock-inofadditionalfossilfuelgeneration.Theintermittentnatureofvariablerenewableenergyandincreasingdeploymentofdistributedenergyresourcesareputtingadditionalpressureonexistinggrids.Inresponsetothesechallenges,thisreportexplorestheopportunitiesandchallengesforefficientgrid-interactivebuildingsintheASEANregion.Suchbuildingsarebecomingacrucialelementfortheglobalambitiontoattainnetzeroemissions,astheycancombineenhancedenergyefficiency,advancedsmartdigitaltechnologiesanddecarbonisedelectricitygeneration.Thisintegrationcreatesthepotentialforbuildingstoshiftfromenergy-intensiveconsumerstolow-carbonprosumers,empoweredbydigitaltechnologiesthatcanofferflexibilitybenefitstotheelectricitygrids.Withtheabilitytoproduce,consume,store,sellandbuyenergy,buildingsbecomeactiveparticipantsinthebuilding-to-gridecosystem.Drawingonrelevantinternationaltrendsandbestpractices,thecurrentreportlaysoutananalyticalframeworktoassessavarietyoffactorsthatcanenableabuildingtobecomeenergyefficientandgrid-interactive.TheframeworkisusedtoanalysethecurrentsituationincountriesoftheASEANregion.Thereportprovidespolicy-orientedrecommendationsandguidelinestailoredtodifferentstagesoftheprocessforadoptingefficientgrid-interactivesolutionsinbuildings.TheserecommendationscansupportASEANpolicymakersintheirpolicydevelopmenttocreateanenergy-efficientandgrid-interactivebuiltenvironment,contributingtoacleanerandmoresustainableenergyfuture.PAGE3IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsAcknowledgementsFutureofbuildingsinASEANAcknowledgements,contributorsandcreditsThisreportwasdevelopedbytheInternationalEnergyAgency(IEA)EnergyIEA.CCBY4.0.EfficiencyDivisionintheDirectorateofEnergyMarketsandSecurity.ItwasauthoredbyKseniaPetrichenko,AndikaAkbarandIanHamilton,withkeycontributionsfromNatalieKaufandSilviaLaera.MelanieSlade,seniorprogrammemanageroftheEmergingEconomies(E4)programme,providedtheoverallguidance.KeisukeSadamori,DirectoroftheEnergyMarketsandSecurityDivisionandBrianMotherway,HeadoftheEnergyEfficiencyDivision,providedstrategicdirection.SpecialthanksgototheIEA’sDigitalDemand-DrivenElectricityNetworksInitiative(3DEN)onelectricitygridmodernisationanddigitalisation,particularlyVidaRozite,BrendanReidenbachandEmiBertolifortheirinvaluablefeedbackforthedevelopmentoftheanalyticalframework.Valuableinputs,commentsandfeedbackwereprovidedbyseveralIEAcolleaguesinalphabeticalorder):HeymiBahar,PiotrBojek,ClaraCamarasa,NicholasHowarth,VidaRozite,JonathanSinton,andAnthonyVautrin.Theworkbenefitedfromtheexpertise,collaborativesupportandstakeholderengagementprovidedbytheASEANCentreforEnergy(inalphabeticalorder):VuTrongDucAnh,ShaniaEsmeraldaManaloe,RioJonPiterSilitonga,SeptiaBuntaraSupendi,andBeniSuriyadi.Theauthorswouldliketothankanumberofinternationalexperts,includingthosefromtheAssociationofSoutheastAsianNations(ASEAN)countriesfortheirvaluableinputsandsupportduringthedatacollectionprocessandreviewofthereport(inalphabeticalorder):AlamAwaludin(PerusahaanListrikNegara[PLN],Indonesia),StevenBeletich(BeletichAssociates),GnanBora(MinistryofMinesandEnergy,Cambodia),AndrewP.Catayong(DepartmentofEnergy,Philippines),OumChansophea(MinistryofMinesandEnergy,Cambodia),AlexChongChiaChuan(NanyangTechnologicalUniversity,Singapore),Hoang-AnhDang(HanoiUniversityofScienceandTechnology,VietNam),HalilHaron(TenagaNasionalBerhad[TNB],Malaysia),KartinaHasim(TNB,Malaysia),ChalermlukJitrumpueng(DepartmentofAlternativeEnergyDevelopmentandEfficiency,Thailand),DanielCollinJornales(DepartmentofEnergy,Philippines),MyatThetKhaing(MinistryofElectricPower,Myanmar),AgnesKoh(EnergyMarketAuthority,Singapore),ReginaLee(EnergyMarketAuthority,Singapore),RodelS.Limbaga(DepartmentofEnergy,Philippines),NaingNaingLinn(MinistryPAGE4EfficientGrid-InteractiveBuildingsAcknowledgementsFutureofbuildingsinASEANofIndustry,Myanmar),WisaruthMaethasith(DepartmentofAlternativeEnergyDevelopmentandEfficiency,Thailand),KumareshanMardappan(EnergyCommission,Malaysia),DavidMorgado(AsiaDevelopmentBank),SanjibKumarPanda(NationalUniversityofSingapore),MohammadAsribinPuasa(DepartmentofElectricalServices,BruneiDarussalam),KritikaRasisuddhi(ElectricityGeneratingAuthorityofThailand[EGAT]),AnouphanhSimmachanthavong(ElectricitéDuLaos,LaoPDR),PhonepasongSithideth(MinistryofEnergyandMines,LaoPDR),EviWahyuningsih(independentconsultant,Indonesia),RadityoCahyoYudanto(MinistryofEnergyandMineralResources,Indonesia).SpecialacknowledgementgoestothefollowingmembersoftheIEATechnologyCooperationProgrammeonEnergyBuildingsCommunitiesfortheirfeedbackandinputstothereportprovidedundertheguidanceofMalcolmOrme(inalphabeticalorder):NoelChin(BuildingandConstructionAuthority,Singapore),RonglingLi(DTU–TechnicalUniversityofDenmark),MeliStylianou(NaturalResourcesCanada),StephenWhite(CommonwealthScientificandIndustrialResearchOrganisation[CSIRO],Australia).ThanksalsototheIEACommunicationsandDigitalOffice(CDO)fortheirhelpinproducingthispublication,especiallytoPoeliBojorquez,CurtisBrainard,JonCuster,AstridDumond,MerveErdil,IsabelleNonain-Semelin,ClaraVallois,ThereseWalsh.ThankstoErinCrumforherworkcopy-editingthisreport.PAGE5IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsTableofcontentsFutureofbuildingsinASEANTableofcontentsExecutivesummary.................................................................................................................7IEA.CCBY4.0.Buildingsandthegridasanecosystem...............................................................................16Energyefficiencyandenergyflexibilityarekeyforthecleanenergytransition......................16Modernisationofpowersystemsiscrucialforthecleanenergytransition..............................17Grid-interactivebuildingsprovideflexibilityservicesandotherbenefits..................................18RelevanceofEGIBsfortheASEANregion.............................................................................24Enablersforefficientgrid-interactivebuildings.....................................................................30Energyefficiency......................................................................................................................31Decarbonisation.......................................................................................................................35Smartness................................................................................................................................39Building-to-gridinteractivity......................................................................................................45Assessmentofopportunitiesforefficientgrid-interactivebuildingsinASEAN....................61Improvingenergyefficiencyofbuildingsrequiresstrongerenforcementofenergyperformancerequirements............................................................................................................................65MEPSforappliancesneedtoincreasestringencytodriveenergyefficiency.........................70Decentralisedsolarsystemsofferopportunitiesforthebuildingssector’sdecarbonisation...72Useofenergystorageinbuildingsisverylimitedacrosstheregion.......................................77Smartsensorsandcontrolsaremakingtheirwayintosmartbuildingspilotprojects.............78Energymanagementandautomationinbuildingsexpandpotentialofenergyefficiency.......78Smartmeterprogrammesarebeingrolledoutacrosstheregion...........................................81Governmentsacrosstheregionarerecognisingtheneedformodernisedandsmartergrids83LackofinteroperabilitystandardsisoneofthechallengesforEGIBs.....................................86Countriesaretappingintothepotentialofadvancedmeteringinfrastructure.........................90PilotprojectsaredemonstratingbenefitsofaggregatingDERs..............................................92Demandresponseprogrammesarecrucialforinteractionsbetweenbuildingsandthegrid..95Dynamictariffprogrammesreducepeakelectricitydemandoflargeconsumers...................98SmartEVcharginginbuildingscanhelpgridsmanageimpactsofEVs’uptake....................99Smartinvertersareshowingbenefitsforlargebuildingsandfacilities..................................103ThewayforwardforbuildingsinASEAN............................................................................105Recommendationstosupporttheuptakeofefficientgrid-interactivebuildings.....................106Conclusions.........................................................................................................................123Annexes..............................................................................................................................125Abbreviationsandacronyms..................................................................................................125Unitsofmeasure....................................................................................................................126PAGE6EfficientGrid-InteractiveBuildingsExecutivesummaryFutureofbuildingsinASEANExecutivesummaryEfficiencyandflexibilityarekeyforthecleanenergyIEA.CCBY4.0.transitionEnergyefficiencyiscrucialforreducingemissions,enhancingtheresilienceandreliabilityoftheenergysystem,andimprovingthewell-beingofpeopleinsupportofthecleanenergytransition.InthememberstatesoftheAssociationofSoutheastAsianNations(ASEAN)(BruneiDarussalam,Cambodia,Indonesia,LaoPDR,Malaysia,Myanmar,thePhilippines,Singapore,ThailandandVietNam),energyconsumptionhasdoubledsince2000,fuellingaregionaleconomythatistwoandhalftimeslargerthanitwasin2000withacurrentpopulationofover660million.Energyefficiencythereforehasanimportantroletoplayinthisregion.In2022,theglobalrateofenergyefficiencyimprovementacceleratedtojustover2%astheenergycrisisincreasedcostsandencouragedtheimprovedmanagementofenergy.Thisfollowedseveralyearsofslowingglobalprogress,includingintheASEANregion,whereintensityimprovementsslowedfromaround3%peryearachievedbetween2010to2015to1%peryearfrom2015-2020.However,toachieveglobalnetzeroemissionsby2050,globalefficiencyimprovementsneedtodoubleto4%peryearby2030withatriplinginannualefficiency-relatedinvestment.WhiletheASEANaverageannualenergyintensityisslightlybelowtheworldaverage,theslowdowninenergyintensityimprovementsobservedgloballyoverthesecondhalfofthelastdecadewasalsoexperiencedintheASEANregion,withanannualrateof2.8%peryearfrom2010to2015slowingto0.9%from2015to2020.In2021,energyintensityintheregionactuallyworsened,risingbyhalfofapercentagepointfollowingexceptionallystronggrowthinindustrialenergydemand.Althoughincreasedaccessanduseofelectricityforcleancookingisreducing,therelianceonpollutingfuelsisstillaround30%.IncreasingenergyaccessinSoutheastAsiaiscrucialforimprovingthequalityoflifeandreducingpeople’sexposuretopollution.Afuturewithnetzeroemissionsalsorequiresscalinguprenewableenergysuchaswindandsolar.Theseenergysourceswill,however,alsoincreaseintermittencywithintheelectricalgridduetotheirvariabilityanddependencyonweatherconditions.Thegridswillalsobeputunderpressurebyanincreasingnumberofdistributedenergyresources,suchasdistributedsolarPVandstoragesystems,electricvehicles(EVs),smartmeters,andotherconnectedequipmentanddevices.PAGE7EfficientGrid-InteractiveBuildingsExecutivesummaryFutureofbuildingsinASEANGrid-interactivebuildingsprovideflexibilityservicesandotherbenefitsBuildingsofferauniqueplacewheremanydistributedenergyresourcescouldbeinstalledandconnectedtothegridorrelyontheoff-gridelectricitysupply,particularlyforASEANwhereelectricitydemandisexpectedtoincreaseduetogrowthinelectricityuseforspacecoolingandotherappliances.Efficientgrid-interactivebuildingsareenergy-efficientbuildingsthathavehigh-performancebuildingenvelopesanddesignaswellasefficientappliancesandequipment.Theyarealsosmart,optimisingenergyperformancethroughtheuseofsensorsandcontrolsandintelligentanalytics.Thesebuildingsareequippedwithsensorsandmetersthatcansendandreceivesignalstorespondtothegridandareflexible,meaningthatenergyloadscanbeoptimisedthroughbehind-the-metergeneration,demandresponseandenergystorage.Efficientgrid-interactivebuildings:TechnologiesanddemandflexibilitybenefitsIEA.CCBY4.0.Notes:kW=kilowatts;HVAC=heating,ventilationandairconditioning.IEA.CCBY4.0.Source:IEA(2022),UnlockingthePotentialofDistributedEnergyResources.PAGE8EfficientGrid-InteractiveBuildingsExecutivesummaryFutureofbuildingsinASEANThesefeatures,alongsidesmartsolutionsappliedonthegrid’sside,canhelpincreasepowersystemflexibilitybytakingadvantageofpowerdemandvariationandgreaterinputofvariablerenewableelectricitygeneration.Tobeinlinewithpathwaytonetzeroemissions,by2030theglobalpowersystemflexibilityneedstomorethandoubleandtheavailabilityofdemandresponseinbuildingstoincreasemorethantenfoldbythattime.Adoptionofefficientgrid-interactivebuildingscanleadtosignificantenergysavingsandpeakdemandreductions.Globaldemandresponseavailabilityinbuildingsattimesofgreatestflexibilityneededby2030,withintheNetZeroEmissionsby2050ScenarioIEA.CCBY4.0.Notes:GW=gigawatts;TWh=terawatt-hours.Source:IEA(2023),TrackingDemandResponse.ThisreportpresentsanovelanalyticalframeworkdevelopedbytheIEAthatIEA.CCBY4.0.assesseskeyenablersforadoptionofefficientgrid-interactivebuildings.Thisframeworkisintendedtoprovideamethodologytoassessthepolicyreadinessofcountriestoenableefficientgrid-interactivebuildingsandfuture-prooftheirbuildingssectorefficiencypolicy.Whilethismethodologycouldbeappliedtoanycountry,theIEAappliesthisframeworkthroughthisreporttotheexampleofASEANmemberstates.ASEANwaschosenforthisanalysisbecauseoftherateatwhichtheSoutheastAsianregionisgrowinganddevelopingthebuildingssectoraswellastheregion’shighpotentialforenergyefficiencyimprovement.ItwasalsochosenduetotheIEA’slong-standingpartnershipwithASEANmemberstatesandregionalinstitutions,aswellasanin-depthexpertknowledgeoftheregion.Thehigh-levelrecommendationsandgroup-specificguidelinesofferedinthisreportarepresentedinthecontextoftheASEANregion;however,thePAGE9EfficientGrid-InteractiveBuildingsExecutivesummaryFutureofbuildingsinASEANframeworkisintendedtobeabletobeusedasastandaloneglobalmethodology,IEA.CCBY4.0.whichcouldbeappliedtoanyjurisdiction.Efficiency,decarbonisation,smartnessandbuilding-to-gridinteractionarekeyforefficientgrid-interactivebuildingsWithintheframeworkforefficientgrid-interactivebuildingstheidentifiedenablersaregroupedintofourcategories:energyefficiency,decarbonisation,smartnessandbuilding-to-gridinteraction.Thekeyenablersforenergyefficiencyarei)high-performancebuildingenvelopesandii)energy-efficientappliancesandequipment.BuildingenvelopesaswellastheHVAC,waterheatingandlightingsystemsdeterminebuildings’energydemandandimpactthermalcomfort,indoorenvironmentalqualityandsafety.Beyondbuildingenergycodes,whichaddresstheefficiencyofthebuildingitself,improvingtheenergyefficiencyofappliancesandequipmentiskey,includingsettingminimumenergyperformancestandardsandothersupportingpolicies,spurringinnovation,andinvestingintechnology.Thekeyenablersforbuildingsdecarbonisationarei)on-siteornearbyrenewableenergygenerationandii)on-siteenergystorage.Distributedvariablerenewableenergygenerationcanhelptosignificantlydecarboniseenergyusedinbuildings.Buildingscanalsohaveenergystorage,suchasbatterysystems,tohelpintegratevariablerenewableenergygeneration,andmitigatefluctuationsinenergysupplyanddemand.Thekeyenablersforsmartnessarei)theinternetofthings;ii)buildingenergymanagementandautomation;iii)smartmetersinbuildings;andthedevelopmentofiv)smartgrids.Theinternetofthingsisanetworkofconnectedequipment,sensorsanddevicesinbuildingsthatcommunicatewithoneanother,collectandanalysedatafromkeybuildingequipmenttooptimiseenergyperformance.Theinternetofthingscanbeintegratedusingbuildingenergymanagementsystemstocontrolparametersoftheindoorenvironmentandabuilding'senergyconsumption.Smartmeterscancollectandstoredataonactualenergyconsumptioninbuildingsonanhourlyormoredetailedbasis.Smartmeterscanhelptocollectreal-timedataonenergyuseinbuildingsonaverydetailedbasis.Smartgridsandtheirenablingsolutionshelpoptimisesystemoperations,reducecostsandincreasegenerationefficiency.Thekeyenablersforbuilding-to-gridinteractionarei)two-waycommunication;ii)distributedenergyresourcemonitoringandoptimisation;andiii)loadandfrequencymanagement.Building-to-gridinteractionrequiresinteroperability,meaningbothsidescancommunicatewitheachother.EquipmentandappliancesPAGE10EfficientGrid-InteractiveBuildingsExecutivesummaryFutureofbuildingsinASEANneedtobeabletorespondautomaticallytosignalsfromthegridbychangingelectricityconsumptionorproduction.Opencommunicationprotocolscanhelpestablishinteroperabilityandautomatedcontroltomanagevoltageandqualityfluctuationsthatcouldbecausedbydistributedenergyresources.Advancedmeteringinfrastructurecanenablereal-timedatacollectionandanalysis,demandresponse,andoutagedetection.Digitaltoolscanhelpnotonlymanageindividualdistributedenergyresourcesbutalsoaggregatethemintoasingleentitycontrolledandoperatedasaunifiedsystem,suchasavirtualpowerplant,whichcanmonitorandmanageelectricitygeneration,consumptionandstorageacrossmultiplesites.Loadandfrequencymanagementstrategiescansupportthisthroughdemandresponseprogrammes,dynamicelectricitytariffsandsmartchargingforEVs.Basedontheassessmentofacountry’scontextforeachoftheenablers,thecountrycanbeplacedintooneofthethreegroups:Explorers,AdoptersandInnovators,dependingonthestagesofadoptionofefficientandgrid-interactivetechnologiesandpolicies.Assessmentframeworkonenablersforefficientgrid-interactivebuildingsCategoryEnablersEvaluationCountrygroupscriteriaEnergyHigh-performingbuildingenvelopesCountriesthatareintheefficiencyEnergy-efficientappliancesandequipmentExplorersbeginningoftheprocessofDecarbonisationdiscoveringandresearchingtheOn-siterenewableenergygenerationAdoptersopportunitiesforEGIBsSmartnessOn-siteenergystorageInnovatorsCountriesthathaveidentifiedBuilding-to-gridInternetofthings/smartsensorsandcontrolssomeopportunitiesforEGIBsinteractionBuildingenergymanagement&automationsystemsandareimplementingpilotprojectsandsandboxestotestSmartmetersinbuildingstheirbenefitsandpotentialSmartgridsCountriesthathavebeenTwo-waycommunicationimplementingvariousEGIB-DERmonitoringandoptimisationrelatedpracticesandsolutionsLoadandfrequencymanagementonarelativelywidescaleandhaveintegratedsomeofthemintopolicyprocessesIEA.CCBY4.0.Notes:DER=distributedenergyresources;EGIBs=efficientgrid-interactivebuildings.GrowingenergydemandincreasestheneedforIEA.CCBY4.0.efficiencyandflexibilityinASEANbuildingsBuildingsoperationsaccountforclosetoone-thirdoftheglobalfinalenergyconsumptionandfor27%oftotalenergysectoremissions.Electrificationofenduses,e.g.spaceheatingandtransport,isdrivingelectricitydemandgrowthfurther.Inthebuildingssector,improvingenergyefficiencyofbuildingenvelopesandofappliancesandequipmentcansignificantlylowerenergydemand.In2020,theASEANbuildingssectorrepresentedaround4%ofglobalbuildingsdemandandemissionsandaround5%ofglobalelectricitydemandinbuildings,thoughthesenumbersarelikelytogrow.PAGE11EfficientGrid-InteractiveBuildingsExecutivesummaryFutureofbuildingsinASEANIn2022,ASEANelectricitydemandgrewby5.5%andisexpectedtoincrease4-6%peryearuntil2025,largelyduetoincreasingstandardsoflivingalongsidepopulationgrowthandrapidurbanisation.Growthinbuildingselectricitydemandrepresentsalmost50%oftotalelectricitygrowthinASEANby2025from2020.Additionaldemandwilllargelybeinthebuildingssectorandislikelytobemetbyfossilfuels.HigherapplianceownershipandanincreaseddemandforcoolingcoulddriveupenergydemandinSoutheastAsiaby15%in2030and60%in2050.Spacecoolingwillalsoaccountforalmost30%ofpeakelectricitydemandintheregionby2040,upfromaround10%in2017,andwillrequireabout150GWofadditionalgenerationcapacitytomeetthepeaklevels.Enablersforefficientgrid-interactivebuildingsarepresentinASEAN,butneedtobescaledupSeveralASEANmemberstateshavealreadyadoptedsomeformofbuildingenergycodes,buttheirimplementationcouldbescaleduptoachievelargerenergyefficiencyimprovements.BuildingsinASEANthatwerecertifiedwithgreenbuildingschemesdemonstratedenergyuseintensities20-70%lowerthanthatofcomparableuncertifiedbuildings.Allcountriesintheregionnowhavesomeformofminimumenergyperformancestandardsandlabellingpoliciesforairconditionersandsomeothertypesofapplianceseitherinforceorunderdevelopment.However,countriesneedtoincreasetheirstringency,scopeandenforcement.Moreover,aligningwiththerecommendedharmonisedlevelsofminimumenergyperformancerequirementsforairconditionersintheregioncandrivemoresubstantialenergysavingsandenvironmentalbenefits.ASEAN'scommercialandresidentialdeploymentofsolarPVisestimatedtoalmosttriplefrom2022to2027.However,toenablethisdeployment,countriesmustinvestingridinfrastructure,simplifypermittingprocedures,createambitioustargetsandattractinternationalinvestment.TheuseofenergystorageinbuildingsislimitedbuttherearesomeprojectstothatindicatepotentialforgrowthinseveralASEANcountries,suchasrecentinvestmentsinbatterystorageinSingapore.InmanyASEANcountries,electricitytariffstructuresareprimarilyflatwithafixedrate.However,dynamictariffs,suchasvaryingtime-of-usetariffs,couldhelpreducepeakdemandandencourageconsumerstoreduceenergybillsandevencarbonemissions.Demandresponseprogrammesareincreasingandaretypicallyimplementedbyutilitiesofferingfinancialincentivesforspecificgroupsofcustomerstoreducetheirconsumptionduringpeakhours.PAGE12IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsExecutivesummaryFutureofbuildingsinASEANDigitaltechnologiesandenablersarekeyforsupportingIEA.CCBY4.0.theuptakeofefficientgrid-interactivebuildingsWhiletherearenotcurrentlymanypoliciesmandatingtheuseofsmartdigitaltechnologiesinbuildings,somecountrieshavetakeninitiativestopromotedigitalisationofbuildingsthroughadoptionofsmartmetersandsmartgridpilots.Despitebeinginitsinfancystage,theASEANbuildingdigitalisationmarketisexpectedtogrowsignificantly.SeveralASEANcountriesarerollingoutprogrammestosupporttheuptakeofsmartmeters,mainlydrivenbytheutilities,toimprovedatacollectionandaccuracyofbilling.In2022,itisestimatedthatthetotalnumberofsmartmetersinstalledacrossASEANwasaround30million.TheuseofsmartinvertersforsolarPVsystemsiscurrentlylimited;however,thereareseveralpilotprojectsintheregionunderway.SmartchargingforEVsinbuildingscouldhelpreduceenergybillsandcarbonemissionswhileofferingflexibilitybenefitstothegrid,butitisrarelyusedacrosstheregion.ASEANgovernmentsarerecognisingtheneedformodernisedgridsandstandardsImprovementsareneededfortransmissionanddistributioninfrastructure,includingtheexpansionofhigh-voltagetransmissionlinesandthedevelopmentofsmartgridtechnologies.Recognisingthis,manycountriesinASEANhavedevelopedsmartgridplanstoimprovetheirgridcapacityandthereliabilityofelectricitysupply.TheASEANPowerGridwillestablishcross-bordertransmissionlinesthatinterconnecttheASEANmemberstates.Whilebuildingautomationaswellascommunicationprotocolsandtechnologiesareincreasinglybeingused,therearenopoliciestomandatetheirinstallation.InteroperabilitybetweenbuildingsandthegridiscurrentlyverylimitedintheASEANregion.Advancedmeteringinfrastructureoffersimportantpotentialformeasuring,collecting,analysingandcontrollingenergydistributionandusage,butisnotcommonformostASEANcountries.ApromisingtrendintheintegrationofdistributedenergyresourcesintheASEANregionistheemergingdeploymentofvirtualpowerplantsandpeer-to-peersolarenergytradingprojects,forexampleinMalaysia,thePhilippines,Singapore,ThailandandVietNam.GridreliabilityofexistingpowersystemscreateschallengesforconsumersPowersupplyreliability,whichcanbedefinedastheabilityofanelectricalsystemtoconsistentlyprovideelectricitytoconsumerswithoutinterruptionsorsignificantfluctuationsinvoltageorfrequency,presentschallengesformanyASEANcountries.Weatherevents,outages,electricitytheftandaffordabilityconcernsallPAGE13EfficientGrid-InteractiveBuildingsExecutivesummaryFutureofbuildingsinASEANcontributetodisruptions,increasedandvariablecostsduetoenergymarketchanges,andcompromisedlivingconditionsforendusers.Strengtheningthepowergrid'sresiliencethroughinfrastructureupgrades,bettermonitoringtoolsandadvancedanalyticssupportedbydigitalsolutionscanreducethefrequencyanddurationofinterruptionsinpowersupply.ASEANcountriesareexploringsolutionsforefficientgrid-interactivebuildingsTheassessmentofstatusandopportunitiesforefficientgrid-interactivebuildingsinASEANacrosstheenablershasshownthatmostofthecountriesintheregionhavebegunexploringdifferentwaysofimprovingenergyefficiencyinbuildingsandtestingvarioussmartanddigitaltechnologies,whiletheimplementationofbuilding-to-gridinteractivesolutionsremainslimitedandistakingplaceonlyinafewcountriesintheregionandatarelativelysmallscale.Thisreportisintendedtoprovideapathwayforcountriestobeabletodeveloptheirownpathwaystofurtherenableefficientgrid-interactivebuildingsinsupportoftheirenergytransitionobjectives.WhilenoneofthecountriesassessedinthisreportfallintotheInnovatorcategory,thiscategoryprovidesanaspirationalvisionforASEANcountriesandmaybeapplicabletoothercountriesgloballythataremoreadvancedintheirimplementationofenablingsolutionsforefficientgrid-interactivebuildings.PAGE14IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsExecutivesummaryFutureofbuildingsinASEANRecommendationsforASEANcountriesbasedontheassessmentofenablersforefficientgrid-interactivebuildingsExplorersCountriesthatareintheAdoptersCountriesthathavebeginningoftheprocessidentifiedsomeofdiscoveringandopportunitiesforEGIBsresearchingtheandareimplementingopportunitiesforEGIBspilotprojectsandsandboxestotesttheirbenefitsandpotentialBruneiCambodiaIndonesiaMalaysiaPhilippinesDarussalamMyanmarSingaporeThailandVietNamLaoPDREnergyefficiencyDevelopandimplementbuildingenergyMakeregularupdatesandmorestringentcodeswithmandatoryEErequirementsmandatoryEErequirementsinbuildingDecarbonisationIntroduceMEPSandsupportingpoliciesforenergycodesandMEPSSmartnessappliances(canbevoluntaryfirst)IntroducemandatoryrequirementsforBuilding-to-gridonsiterenewablegenerationandstorageinteractionIntroducevoluntaryrequirementsforon-sitesolarPVinbuildingsAdoptandimplementsmartbuildingsstandardsandrequirementsforPromotebatterystoragesystemssmartsolutionsinlargebuildingsDevelopvoluntarysmartbuildingsIntroducevoluntaryrequirementsforgrid-standardsandrequirementsforsmartreadinesswhichtransitiontomandatorysolutionsDevelopmandatoryrequirementsfordemand-responsereadinessinMEPS,Conductfeasibilitystudyonopeninteroperabilitystandardsandgrid-scaleupvirtualpowerplantprojectsreadinessrequirementsinbuildingenergycodesandMEPSDeveloppilotprojectsfordemandresponseandvirtualpowerplantsIEA.CCBY4.0.Note:EE=energyefficiency;MEPS=minimumenergyperformancestandards.Toensurerobustpolicymaking,theIEArecommendscountriesadoptapolicypackageapproachforpolicydevelopmentthatcombinesregulation,informationmechanismsandincentives.Countriesshouldalsocreatefavourableconditionsandsupportmechanismsforuptakeofefficientgrid-interactivebuildings.Theseincludeinvestinginresearchanddevelopment,conductingdatacollectionandanalysis,developingtrainingprogrammesandcertificationschemesforbuildingprofessionals,andupdatingpublicprocurementpolicies.Furthermore,policymakerscansupportmodernisationofthegridsandencouragegridoperatorstobetterenablegrid-interactivebuildingsbyadoptingsolutionsthatsupportcommunicationbetweenthegridandbuildings,aswellasotherdistributedenergyresources.PAGE15IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsBuildingsandthegridasanecosystemFutureofbuildingsinASEANBuildingsandthegridasanecosystemEnergyefficiencyandenergyflexibilityarekeyforthecleanenergytransitionEnergyefficiencyiscrucialforthecleanenergytransitionthroughitsabilitytoreducecarbonemissions,enhanceresilienceandreliabilityoftheenergysystem,andimprovewell-beingofpeopleandsocieties.In2022,theglobalrateofenergyefficiencyimprovementreachedjustover2%peryear–twicetheaverageoverthepreviousfiveyearsduetotheeffectofglobalenergycostvariationsandhighpricesinadditiontoprogressonpolicydevelopment.Sincethestartoftheglobalenergycrisis,countriesrepresentingover70%oftheworld’senergyconsumptionhaveintroducedneworstrengthenedenergyefficiencypolicies.However,inordertobringglobalgreenhousegasemissionsclosetonetzeroby2050,whichisneededtolimittheglobalwarmingto1.5°Cdegrees,theglobalrateofefficiencyimprovementneedstodoubletoaround4%peryearonaveragethisdecade.Thisimprovementwillalsorequireatriplinginannualefficiency-relatedinvestment,fromUSD600billiontodaytoUSD1.8trillion.Afutureinwhichtherearenetzeroemissionsalsorequiresscalinguputilisationofvariablerenewableenergysourcessuchaswindandsolar.SoutheastAsiahasconsiderablerenewableenergypotential,butthesefuelsourcescurrentlymeetonlyaround15%ofenergydemand,mainlythroughhydropowerandstill-limiteduseofsolarPVandwind.Theseenergysources,whileprovidingcleardecarbonisationbenefits,willalsoincreaseintermittencywithintheelectricalgridduetotheirvariabilityanddependencyonweatherconditions.Electricitygridswillalsobeputunderpressurebyanincreasingnumberofcertaintypesofdistributedenergyresources(DERs),suchasdistributedsolarPVsystemsandstoragesystems,electricvehicles(EVs)withnodispatchcapability,anddemandsfromheatpumpsandotherconnectedequipmentanddevices.Buildings,bothresidentialandnon-residential,offerauniqueplacewheremanyDERscouldbeinstalledandconnectedtothegridoroff-gridelectricitysupply.Thismakesbuildingsakeyplayerintheenergysystem’smodernisation.UnmanageddeploymentofDERs,however,cancauseunintendedstressonthepowersystem,suchasreverseflowsindistributionfeedersduetoexcessgenerationormassdisconnectionsduetogridinstability.TheadoptionofDERsPAGE16IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsBuildingsandthegridasanecosystemFutureofbuildingsinASEANconnectedtothegridcanrequiregridreinforcements,increaseuncertaintyinnetdemandforecasts,andpresentchallengesforpowersystemplanningandoperation,whichcanpotentiallyimpactoperationalviability.Thereareriskstoelectricitygridswhenthereisalackofappropriateplanninganddeploymenttoolsforvisibility,monitoringandmanagementoflarge-scaleDERdeployment,whichcanexacerbatefinancialchallengesforutilities.ModernisationofpowersystemsiscrucialforthecleanenergytransitionTheincreaseinelectricitydemandwillsurpassenergyconsumption,especiallyinemergingmarketsanddevelopingeconomies,withaprojectedincreaseofover2600terawatt-hours(TWh)by2030,equivalenttofivetimesGermany'scurrentdemand.Yettheglobalelectricitysystemsfacechallengessuchasinefficiencies,losses,congestion,outagesandclimate-relateddamage.FortheAssociationofSoutheastAsianNations(ASEAN),growthinbuildingselectricityrepresentsalmost50%oftotalelectricitygrowthby2025from2020.Therefore,theneedtostrengthenandmodernisegridsisurgent,particularlyinemergingmarkets,whereconsumptionisexpectedtogrowthreetimesfasterthaninadvancedeconomies.Theunprecedentedriseincoolingdemandfurthercontributestothistrend.Cleanenergysources,suchastheuptakeofwindanddistributedsolarPVsystems,continuestoincreaseacrossmanygrids,providingcleardecarbonisationbenefits.However,unmanagedPVdeploymentacrossthebuildingstockcancauseunintendedstressonthelocalpowersystem.EVsareakeypartofdecarbonisingthetransportsystembutincreasepressureontheelectricitygridandelectricityuseassociatedwithbuildingsthroughon-sitecharging.Inregionswithrobustgrids,EVscanachieveahighlevelofpenetrationwithoutadverseeffects.However,inareaswheretransformersarealreadyoverloaded,evenlowlevelsofEVuptakecouldcausedisruptions.Forexample,addinganEVtoatypicalhouseholdoffourpeopleinGermanycouldincreasethehousehold'speakelectricitydemandby70%.Modernisationofpowersystemsallowsfortheoptimisationofenergyusethroughtheimplementationofsmartgrids,1advancedsensorsanddataanalytics.Thismakesitpossibletomonitorandmanageenergyconsumptioninrealtime,identifyandreduceenergylosses,andminimiseenergywaste.Digitalsolutionscanenhanceelectricitysupplymanagement,loweroveralldemandandoptimiseelectricityuseduringpeaktimes.Thesetechnologiesaiddemandmanagementandelectrification,andminimiseunnecessarygridexpansionwhileensuringgrid1Smartgridsareelectricitynetworksthatusedigitaltechnologies,sensorsandsoftwaretobettermatchthesupplyandIEA.CCBY4.0.demandofelectricityinrealtimewhileminimisingcostsandmaintainingthestabilityandreliabilityofthegrid.PAGE17EfficientGrid-InteractiveBuildingsBuildingsandthegridasanecosystemFutureofbuildingsinASEANstability,affordabilityandavoidinglocalisedoutagesamidrisingcoolingdemandsandincreasedair-conditionerusageglobally.Smartgridsacttoimprovetheefficiencyofenergyproductionbyreducingtransmissionlossesandintegratingrenewableenergysourcesthroughactivelyandintelligentlymatchinggenerationwithenergydemandandmatchingproducerswithconsumers.Modernisingpowersystemscanimprovetheirresiliencyandreliabilitybyincreasingtheirflexibility,enablingfasterresponsetimestooutages,reducingcurtailmentofrenewableenergyandprovidingbackuppowerduringemergencies.Thisflexibilityisparticularlyimportantinthefaceofextremeweatherevents,whicharebecomingincreasinglyfrequentandsevereduetoclimatechange.Inemergingmarketsanddevelopingeconomies,frequentelectricityoutagesresultinreducedoperationalcapacityforbusinesses,leadingtoadditionalexpensesforbackuppowergeneration.Grid-interactivebuildingsprovideflexibilityservicesandotherbenefitsManagingelectricitydemandgrowthisincreasinglychallengingduetotherisinglevelofurbanisation,economicdevelopmentandimprovedlivingstandardsdrivinghighenergydemand,particularlyforelectricity,andespeciallyinemergingeconomiesanddevelopingcountries.Buildings,intermsoftheiroperations,accountforclosetoone-thirdoftheglobalfinalenergyconsumptionandfor27%oftotalenergysectoremissions.TheASEANbuildingssectorrepresentsaround4%ofglobalbuildingsdemandandemissionsandaround5%ofglobalelectricitydemandinbuildings.Electrificationofspaceheatingalongwithgrowingairconditionerandapplianceownership,particularlyinemergingmarketssuchasASEAN,arekeysourcesofincreasedelectricityconsumption.Coolingaloneisexpectedtoadd2800TWhtoglobalelectricityuseby2050.Duetotheimpactsofclimatechange,heatwavesareexpectedtobecomemorefrequentandintense,furtherincreasingcoolingneeds.By2040,theincreaseddemandforcoolingcouldraiseannualelectricitydemandby10%,withasignificantdailydifferenceinair-conditioningload.Accesstoadequatecoolingremainslimitedformost,withonly10%ofhouseholdshavingairconditionersinIndiaandIndonesiacomparedwithover90%intheUnitedStatesandAustralia.Itisexpectedthatincreasedurbanisationandrisingstandardsoflivingwillsignificantlyraisethedemandforspacecoolinginemergingmarketsinthecomingyearsaswell.Inthebuildingssector,improvingenergyefficiencyofbuildingenvelopesaswellasappliancesandequipmentcanlowerenergydemandandreducerelatedGHGemissions.Forexample,almosthalfoftheincreaseexpectedinthePAGE18IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsBuildingsandthegridasanecosystemFutureofbuildingsinASEANelectricityuseforspacecoolingcouldbeoffsetbyenergyefficiencyimprovementsofthecoolingequipment.Buildingsofferopportunitiesforcost-effectivedemand-sidemanagementtohelpbalancedemandwithsupplyovertime,integratevariablerenewableenergy(VRE)andoptimiseitsuse,andshifttheelectricityloadsawayfromthetimeswhenthegridisthemoststressedandthemostexpensivetooperateandelectricitygenerationproducesthehighestamountsofGHGemissions.Digitalisation,datamanagementandothersmarttechnologies(e.g.smartmeters,smartsensorsandcontrols)enableconsumerstoprovideflexibilitytothegridthroughcontrollingandadjustingbuildingsoperationsandenergyusageinresponsetothesignalsfromthegrid,makingbuildingsnotonlyenergyefficientbutalsogrid-interactive.Efficientgrid-interactivebuildingsEfficientgrid-interactivebuildings(EGIBs)areenergy-efficientbuildingswithgrid-connectedsmarttechnologiescharacterisedbytheactiveuseofDERstooptimiseenergyuseandenergyflexibilityforsupportinggridservices,occupantneedsandpreferences,andcostreductionsinacontinuousandintegratedway.EGIBscanbecharacterisedbythefollowingattributes:efficient:includeshigh-qualitybuildingenvelopesandwindows,high-performanceappliancesandequipment,andoptimisedbuildingdesignsandoperationtoreducefinalenergyconsumptionandpeakdemandsmart:theabilitytooperatebasedonanalyticssupportedbysensingandoptimisedcontrolsthatarenecessarytomanagemultiplebehind-the-meterDERsinwaysthatarebeneficialtothegrid,buildingownersandoccupantsconnected:theabilitytosendandreceivesignalsthatarerequiredtorespondtoneedsofthegridflexible:theabilitytodynamicallyshapeandoptimisebuildingenergyloadsandthroughresponsiveoperation,behind-the-metergeneration,EVs,batteries,waterstoragetanks,buildingthermalmassandotherformsofenergystorage.AcombinationofimprovedenergyefficiencywithflexibilitybenefitsanddecarbonisationofelectricitysupplyismakingEGIBsanimportantaspectofafuturewithnetzeroemissions,presentingsignificantpotentialforbuildingstotransitionfromenergy-intensiveconsumerstoenergy-efficientandlow-carbonprosumerssupportedbydigitaltechnologiesthatcanenablethemtoproduce,consume,store,sellandbuyenergyasapartofthebuilding-to-grid(B2G)ecosystem.PAGE19IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsBuildingsandthegridasanecosystemFutureofbuildingsinASEANEfficientgrid-interactivebuildings:TechnologiesanddemandflexibilitybenefitsIEA.CCBY4.0.Notes:kW=kilowatt;HVAC=heating,ventilationandairconditioning.Sources:IEA(2022),UnlockingthePotentialofDistributedEnergyResources.Gridandbuildingdigitalisationprovidestheopportunitytooptimiseelectricityproductionandconsumptionbetweenbuildingsandthegridinanefficientandintegratedmanner.B2Ginteractionscreateopportunitiesforbuildingstogeneratenewvaluestreamswithenergyservices,reduceenergycoststhroughoptimiseduseofresources,andalleviatecongestioninthedistributiongridthroughflexibleenergyoperations.Well-establishedinteractionsbetweenbuildingsandthegridenabledbydigitaltoolsforautomatedcommunicationandcontrolcanoptimisetheuseandgenerationofelectricityatspecifictimesandatdifferentlevelsacrossnumerousDERs,andprovidedemandflexibilitytothegrid,whilestillmeetingoccupants’needsforcomfortandproductivityaswellasreducingtheirutilitybills.PAGE20IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsBuildingsandthegridasanecosystemFutureofbuildingsinASEANDemandflexibilityDemandflexibilitycanbedefinedasaportionofthedemandthatcouldbereduced,increasedorshiftedduringand/orforaspecificperiodoftimetoprovideflexibilitybenefitstothegrid(canalsobereferredtoasdemandresponse)thatmayinclude:facilitatetheintegrationofVREbyadjustingloadprofilestomatchVREgenerationreducepeakloadandseasonalitystabilisegridfrequencyreduceelectricitygenerationcosts.Utilisationofthesebenefitstogetherwithsmartsolutionsappliedonthegrid’ssidehelpincreasepowersystemflexibility,astheabilityofthegridtorespondinatimely(oftenhour-to-hour)mannertovariationsinelectricitysupplyanddemandisalsocrucialforthedecarbonisationoftheelectricitygenerationinlinewiththeIEANetZeroEmissionsby2050(NZE)Scenario.Achievingnetzeroemissionsataglobalscalerequirespowersystemflexibilitytomorethandoubleby2030.Buildingsaccountedforabouthalfofthedemandresponseavailablein2020globally.By2030theamountofavailabledemandresponseneedstoincreasemorethanten-foldinordertobeinlinewithNZEScenario.Demandresponseprogrammescanbeappliedalternativelythroughimplicitdemandresponsemethodssuchasadoptingtime-varyingelectricitytariffstoencouragepeak-loadreductions,energybillreductionsandevencarbonemissionsreductions.Generally,time-varyingelectricitytariffs,particularlythosethatoffersignificantpricedifferencesbetweenpeakandnon-peakhours,canoptimisetheelectricitycostsavingsforbuildings’occupants.Additionally,thetime-varyingtariffscanalsoreduceGHGemissionsbyapplyinghigherrateswhenGHGemissionsproductionishighandviceversa.PAGE21IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsBuildingsandthegridasanecosystemFutureofbuildingsinASEANDemand-responseavailabilityattimesofhighestflexibilityneedsandshareintotalflexibilityprovisionintheNetZeroEmissionsby2050Scenario,2020and2030IEA.CCBY4.0.Note:GW=gigawatt.Source:IEA(2023),TrackingDemandResponse.EstimatesfortheUnitedStatesshowthatthenationwideadoptionofEGIBscouldleadtopowersystemcostsavingsintherangeofUSD100billiontoUSD200billionoverthenexttwodecades.PowersystemflexibilityenabledbyEGIBscouldleadtoCO2emissionsreductionof80milliontonnesperyearby2030,whichisequivalentto6%oftheUnitedStates’totalpowersectorCO2emissions.Theresultsofthisanalysisalsoshowsignificantenergysavings(intherangebetween164TWhand401TWh)andpeakdemandsavings(42GWto116GW)dependingonthelevelofadoptionofvariousefficientandgrid-interactivesolutionsinbuildings.ImpactsonpeakdemandandenergysavingsintheUnitedStatesbyachievablelevelofefficientgrid-interactivebuildingsAnnualEnergySavingsintheUSby2030PeakDemandSavingsintheUSby2030HighadoptionHighadoptionMidadoptionMidadoptionLowadoptionLowadoption0100200300400020406080100120TWhGWIEA.CCBY4.0.Source:DoE(2021),ANationalRoadmapforGrid-InteractiveEfficientBuildings.PAGE22IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsBuildingsandthegridasanecosystemFutureofbuildingsinASEANCostsavingsfromdemandflexibilityoftheUnitedStates’buildingssectorareestimatedatthelevelofUSD22billionperyearwiththemajorityofpotentialsavingscomingfrompeak-loadreductionandrelatedmarginalconstructioncostsofmoreefficientbuildings,aswellasdisplacementofwholesaleenergycostsachievedthroughshiftingflexiblebuildingloadsawayfrompeakhours.StrategiestoenhancedemandflexibilitythroughEGIBsIEA.CCBY4.0.Energyefficiencyofbuildingenvelopesandequipmenthelpsreduceabuilding’senergyneeds,whichinturnlowersthecostsofusingfossilfuelsandlowersdemandforinvestmentsintoadditionalgenerationcapacity.Loadsheddingenablesatemporaryreductionorpauseinelectricityuseinresponsetosignalsfromthegridwhilemaintainingrequiredcomfortlevelsinsidethebuilding.Loadshiftingallowsforcontrolofthetimingofelectricityconsumption,whichcanhelpreducepeakdemand,lowerenergycostsforconsumersasenergyisoftencheaperduringtheoff-peakhours,andavoidcurtailmentofrenewableenergy.Modulationhelpsbalancepowersupplyanddemand,autonomouslymodulatepowerdraw,maintaingridfrequency,orcontrolsystemvoltage.Itcouldreducecostsofancillaryservicesandimproveintegrationofvariablegenerationresources.Generationofrenewableenergyonabuilding’ssiteforself-consumptionanddispatchtothegridlowers(oreveneliminates)theneedforfossilfuelstosatisfyoccupants’energyneedsaswellaslarge-scaleelectricitygenerationandreducestransmissionanddistribution(T&D)losses.Source:AdaptedfromDoE(2021),NationalRoadmapforGrid-InteractiveEfficientBuildings.Thereisanincreasingamountofevidence(mainlyintheUnitedStates)forenergyandcostsavingsachievedthroughimplementationofdemandflexibilitystrategiesinEGIBs.Forexample,loadsheddingstrategiesthatinvolvedanautomated“pre-cooling”and“demandlimiting”protocolimplementedinthePhiladelphiaUnitedStatesCustomHouseandmakinguseofabuilding’ssubstantialthermalmassasenergystoragereduceditspeakdemandbyapproximately20%andloweredtheannualelectricitybillby14%(equivalenttoapproximatelyUSD100000peryear).ArenovationprojectoftwopublicbuildingsinSanDiego,Californiacombinedenergyefficiencymeasureswith462kWofsolarPVsystemsoncarportsandrooftopsaswellasabatteryenergystoragesystem(BESS).Theprojectachieveda30%reductioninthetotalenergydemand,notablepeakdemandreductionPAGE23EfficientGrid-InteractiveBuildingsBuildingsandthegridasanecosystemFutureofbuildingsinASEAN(averagereductionof186kW,amaximumreductionof582kW),energycostsavingsachievedbydischargingtheBESSduringpeaktimesandrechargingduringoff-peaktimes(monthlyon-peakdemandenergycostreductionsaroundUSD19/kW).AnotherbuildingrenovationprojectfromColoradodemonstratedcomparableenergycostreductions(USD18/kWpermonth)throughimplementingenergyefficiencymeasures,usingBESSforpeak-loadshifting,andenergymanagementwithacontrolsystemforflatteningtheenergydemand.Large-scaleapplicationofEGIBmeasures(e.g.energyefficiency,solarPV,energystorageandloadflexibility)toallpublicbuildingsownedbytheGeneralServicesAdministrationintheUnitedStatesisestimatedtoresultinUSD70millionperyearinsocietalvalueforgridusers,achieving180gigawatt-hoursperyearinenergysavings,reducingenergypeakdemandby165megawattsandannualenergycostsbymorethan20%.AnassessmentforalargeUnitedStatesretailportfoliodemonstratedthatanoptimisedbundleofEGIBmeasurescanleadto37%energycostsavingsandreduceelectricitydemandby17%,whileachievingreductionsinenergypeakdemandthatvariesacrossmodelledbuildingsdependingontheequipmentanditsefficiency.Investmentsingrid-flexiblesystemsforaScottishresidentialblockthatareusingelectricresistanceheatingsystemsandelectricwaterheatershavedemonstratednotablebenefits.Theuseofflexibleloaddevicesconnectedtothemainheatingsystemsallowedforheatingdemandtobeadjustedandthedispatchableloadtobesoldbacktothepowermarkets.Theflexibilitytriagewasactivatedthroughamechanismthatinterruptedelectricitydemandsforheatingbyfivetotenminutesandfine-tunedthesystemtolimittheimpactonoccupants.Thedemonstrationfromtheresidentialblockdeliveredamaximumshiftablecapacityof99.6kW,whichresultedinenergyshiftingofaround3600kilowatt-hours(kWh)monthlyand100kWhdailypotentialflexibledemand.Theflexibilityresultedinthebuildingsavingaround2.7tonnesofCO2duringan11-monthperiod.RelevanceofEGIBsfortheASEANregionAboutthisreportIn2022,theIEApublishedtworegionalpolicydocuments:theRoadmapforEnergy-EfficientBuildingsandConstructioninASEANandtheRoadmapTowardsSustainableandEnergy-EfficientSpaceCoolinginASEAN,commissionedbyASEAN.TheroadmapsweredeliverablesfortheprojectasapartoftheASEANPlanofActionforEnergyCooperationPhaseII2021-2025,fundedbytheASEAN-AustraliaDevelopmentCooperationProgramPhaseIIandsupportedbytheASEANSecretariat,EnergyEfficiencySub-SectorandConservationNetworkandASEANCentreforEnergy.ItaimedtohelpaddressincreasingenergydemandPAGE24IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsBuildingsandthegridasanecosystemFutureofbuildingsinASEANandemissionsinASEANandimprovecollaborationamongstakeholdersintheregion.Developmentoftheroadmapswasaccompaniedbycapacity-buildingwebinarseriesonsustainablecoolingandbuildings,aswellasaseriesofstakeholderconsultations.DuringthesestakeholderconsultationsatopiconsynergiesbetweenenergyefficiencyanddigitalisationinbuildingsemergedasarecurringareaofinterestforamajorityofASEANmemberstates.Withgrowingelectricitydemand(andpeakdemand)intheregion,alongwithregionalandnationaltargetsforenergyefficiencyandrenewableenergy,grid-interactivebuildingsareseenasafollow-upworkontherecentlypublishedroadmapsforbuildingsandconstructionandefficientspacecooling.Forthepurposeofthisreport,dataonpolicylandscapesandongoingprojectsrelatedtothetopicwerecollectedforeachASEANcountrythroughdesktopresearch,anonlinesurveyandonlineinterviewswithexpertsineachoftheASEANmemberstatestoidentifyexistingtrendsandpracticesthatcanbeapplicabletotheregion’scontext.Dataanalysiswasstructuredaroundthreemaincomponents:developmentoftheanalyticalframeworkforenablersofefficientgrid-interactivebuildingsintermsoftechnologicalsolutionsandsupportingpolicyinstrumentsanalysisofthecurrentstateofplayintheASEANbuildingsandelectricitysectorsrelatedtoenergyefficiency,renewableenergy,smartnessandinteractionwiththegrididentificationofpolicystrategiestosupporttheuptakeofefficient,low-carbon,grid-interactivebuildingsinASEAN.Examplesofexistingtechnologysolutionsandsupportingpoliciesforefficient,grid-interactivebuildingsinASEAN,aswellasrelevantinternationalbestpractices,wereidentifiedthroughdesktopresearchandinterviews.Selectedexampleswereelaboratedintocasestudiestoserveasdemonstrationsofpracticalapplicationsofsolutionsandtheirbenefits.EnergydemandinASEANcontinuestogrowBy2025,Asiawillaccountforhalfoftheworld’selectricityconsumption.IntheASEANmemberstates,energyconsumptionhasdoubledsince2000,fuellingaregionaleconomythatisnowtwoandhalftimeslargerthanitwasin2000withacurrentpopulationofover660millionpeople.ASEANmemberstatesincludeBruneiDarussalam,Cambodia,Indonesia,LaoPDR,Malaysia,Myanmar,thePhilippines,Singapore,ThailandandVietNam.PAGE25IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsBuildingsandthegridasanecosystemFutureofbuildingsinASEANAlthoughthebuildingssectorconstituteslessthanaquarterofthetotalfinalenergyconsumptionintheASEANregion,itcontributes1.4exajoulesor46%ofthepotentialenergydemandreductionintheSustainableDevelopmentScenario(SDS)spanningfrom2020to2030.Enhancedair-conditioningefficiencycansubstantiallycontributetoloweringelectricitydemand,andeliminatingtraditionalbiomassforcookingcouldresultinnoteworthyadvancementsinoverallenergydemandreductionwithinbuildings.Energydemandbyfuelandavoidedenergypotential,intheASEANregion,intheStatedPoliciesScenarioversustheSustainableDevelopmentScenarioIEA.CCBY4.0.Notes:PJ=petajoule;STEPS=StatedPoliciesScenario.Source:IEA(2022),EnergyEfficiency.In2022,electricitydemandintheregiongrewby5.5%andisexpectedtocontinueincreasingby4-6%peryearuntil2025.Growthinbuildingselectricityrepresentsalmost50%oftotalelectricitygrowthinASEANby2025from2020.Mostofthatadditionaldemandislikelytobemetbyfossilfuels,withrenewablesmeetingonlyaboutathirdofthatdemandgrowth.Theincreaseinelectricityconsumptioncanbelargelyattributedtorisingstandardsoflivingalongwiththepopulationgrowthandrapidurbanisation.Thebuildingssectorhasledtheincreaseinelectricityconsumption,withthenumberofpeoplelivingincitiesincreasingby70%since2000withmorethanhalfoftheregion’spopulationlivinginurbanareasin2020.Thisgrowthofcities,alongwithincreasingwealth,hasledtoarapiduseofairconditionersandotherappliancesinbuildings,whilethenumberofpeoplewithPAGE26IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsBuildingsandthegridasanecosystemFutureofbuildingsinASEANaccesstorefrigerationhasdoubledsince2000.Spacecoolingisamongthefastestgrowingendusesintheregiongiventhehotandhumidclimatecombinedwithrisingincomes.Air-conditionerstockacrossASEANisprojectedtogrowfromnearly50millionunitsin2020upto300millionunitsin2040.Asaresult,electricityuseforspacecoolingisprojectedtorisefrom88TWhin2019to314TWhby2040–approximatelyequivalenttothetotalelectricityconsumptionofIndonesiaandSingaporecombined.Almosttwo-thirdsofthisisexpectedtocomefromresidentialbuildings.Spacecoolingisalsoestimatedtoaccountforalmost30%ofpeakelectricitydemandintheregionby2040,upfromaround10%in2017,andwillrequireabout150GWofadditionalgenerationcapacitytomeetthepeaklevels.Inadditiontospacecooling,increasedaccesstoanduseofelectricityandaccesstocleancookingarereducingtherelianceonpollutingfuelsandraisingthequalityoflifeformanyinSoutheastAsia.Around95%ofhouseholdsnowhaveaccesstoelectricityand70%usemoreefficientcleancookingtechnologies,suchasliquefiedpetroleumgas(LPG)andimprovedcookstoves.Beyondbuildings,electricityuseisalsoextendingtonewend‐usesectors,drivenbytargetstohaltsalesofinternalcombustionenginevehiclesinThailandby2035andinSingaporeby2040,andtheaimofIndonesiaistoachieve2millionelectriccarsontheroadby2030.Combined,thesefactorstranslatetoprojectionsofincreasingelectricitydemandintheregionbutalsoraisequestionsofhowtheexistinggridinfrastructurewillbeabletomeettheseneeds,particularlyatpeaktimes.InefficienciesinASEANexistingpowersystemscreatechallengesforconsumersPowersupplyreliability,whichcanbedefinedastheabilityofanelectricalsystemtoconsistentlyprovideelectricitytoconsumerswithoutinterruptionsorsignificantfluctuationsinvoltageorfrequency,presentschallengesforanumberofASEANcountries.Severalfactorshaveanimpactonpowersupplyreliabilitysuchasqualityoftheinfrastructure,weatherevents(e.g.storms,hurricanesandextremetemperatures),reliabilityofT&Dnetworks,andloadmanagement.Thesefactorscandamagepowerlines,transformersandothercriticalinfrastructure,leadingtoprolongedoutages.Theseoutagesnotonlydisruptdailyactivitiesbutcanalsoposeriskstovulnerablepopulations,suchastheelderlyorthosewithmedicalconditionsreliantonelectricity-powereddevices.Additionally,extremetemperaturescanincreasethedemandforcooling,puttingadditionalstrainonthepowergridandpotentiallyleadingtobrownoutsorblackouts.PAGE27IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsBuildingsandthegridasanecosystemFutureofbuildingsinASEANDataontheSystemAverageInterruptionFrequencyIndex(SAIFI)2andSystemAverageInterruptionDurationIndex(SAIDI)3forASEANcountriesprovideindicationsofhowoftenandforhowlonganaveragecustomerexperiencesaninterruptionoverthecourseofayear.Whileinanumberofcountries,outagesdonotcauselongandfrequentdisruptions;inothercases(e.g.inMyanmar,CambodiaandLaoPDR)theseissuesaremoreprominent.DataonSAIFIandSAIDIinASEANcountriesin2020CountrySAIFISAIDIBruneiDarussalam0.30.4Cambodia15.420.8Indonesia2.22.8LaoPDR22.74Malaysia0.50.5Myanmar26.430.3Philippines2.23.6Singapore0.10.1Thailand0.70.4VietNam1.62.1Notes:SAIFIistheaveragenumberofserviceinterruptionsexperiencedbyacustomerinayear.SAIDIistheaveragetotaldurationofoutages(inhours)experiencedbyacustomerinayear.Source:WorldBank(2021),DataBank:DoingBusiness.Moreover,theinterplaybetweenpowersupplyissuesandinefficiencycancreateaviciouscycle.Inareaswherepowersupplyisunreliableorintermittent,endusersmayresorttousingbackupgenerators,furtherstrainingtheenergyinfrastructure.Thesebackupsolutionsareoftenlessefficientandmorepolluting,exacerbatingenvironmentalconcernsandperpetuatingthecycleofinefficiency.Anotherissueaffectingendusersiselectricitytheft.Illegalconnectionsortamperingwithpowermeterscanleadtorevenuelossesforutilitiesandimbalancesbetweenpowersupplyanddemand.Electricitytheftcanresultininadequatepowersupplytolegitimateusers,leadingtooutagesandvoltagefluctuations.Theburdenofthesedisruptionsfallsonenduserswhosufferfromunreliablepowersupply.In2018,electricitytheftinIndonesiacostPerusahaanListrikNegara(PLN),Indonesia'sstate-ownedutility,USD72million.InLaoPDR,suchelectricitytheftinthefirstthreemonthsof2023costmorethanUSD5millioninthecapitalcityalone.2SAIFIistheaveragenumberofserviceinterruptionsexperiencedbyacustomerinayear.IEA.CCBY4.0.3SAIDIistheaveragetotaldurationofoutages(inhours)experiencedbyacustomerinayear.PAGE28EfficientGrid-InteractiveBuildingsBuildingsandthegridasanecosystemFutureofbuildingsinASEANPowersupplyissuesandinefficiencyinthebuildingssectorcanhaveprofoundimpactsonendusers.Weatherevents,outages,electricitytheftandaffordabilityconcernsallcontributetodisruptions,increasedcostsandcompromisedlivingconditionsforendusers.Strengtheningthepowergrid'sresiliencethroughinfrastructureupgrades,bettermonitoringtools,andadvancedanalytics,supportedbydigitalsolutionsincombinationwithimprovingenergyefficiencybuildingsandequippingthemwithsolutionsenablingtheinteractionswiththegrid,canreducethefrequencyanddurationofinterruptionsinpowersupply.Therearevariouswaystomakebuildingsmoreefficientandgrid-interactive.Thenextchapterpresentskeyenablersthatcanbehelpinthisprocess.PAGE29IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsEnablersforefficientgrid-interactivebuildingsFutureofbuildingsinASEANEnablersforefficientgrid-interactivebuildingsThepreviouschapterdemonstratedthatefficientgrid-interactivebuildings(EGIBs)canofferanumberofbenefitstoendusersandtheenergysystem.Thischapterexploreskeyattributes(hereafter,“enablers”)thatcanenableabuildingtobecomeefficientandgrid-interactive.Suchenablersshouldbesupportedbyrespectivepoliciesaswellasadoptionoftechnologicalsolutions.PresenceandadoptionofenablersforEGIBscouldbeevaluatedforanygivencountry.Inthisreport,theenablersareplacedintofourmaincategoriesbasedonafunctionintheenergysystemthatEGIBscanperform,namely:i)efficiency;ii)decarbonisation;iii)smartness;andiv)building-to-gridinteraction.Enablersforefficientgrid-interactivebuildingsCategoryEnablersEnergyefficiencyHigh-performancebuildingenvelopesDecarbonisationEnergy-efficientappliancesandequipmentSmartnessOn-siterenewableenergygenerationOn-siteenergystorageBuilding-to-gridinteractionInternetofthingsBuildingenergymanagementandautomationSmartmetersinbuildingsSmartgridsTwo-wayEquipmentlevelcommunicationBuildingslevelBuilding-to-gridlevelDERsmonitoringandAdvancedmeteringinfrastructureoptimisationAggregationofdistributedenergyresourcesLoadandfrequencyDemand-responseprogrammesmanagementDynamicelectricitytariffsEVsmartcharginginbuildingsSmartinvertersIEA.CCBY4.0.Note:DER=distributedenergyresource.PAGE30IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsEnablersforefficientgrid-interactivebuildingsFutureofbuildingsinASEANEnergyefficiencyEnergyefficiencyplaysacrucialroleinbringingglobalemissionstowardsnetzero.Acceleratingenergyefficiencyeffortsbeyondcurrentpoliciescouldhelpavoidaroundone‐quarteroftheexcessenergydemandby2030andjustoverone‐halfofitin2050.However,tobringtheemissionsfromtheglobalbuildingssectortowardsnetzerobymid-century,electrificationofbuildings’endusesanddecarbonisationofelectricitywillplayanimportantrole.Fuelswitching,largelyfromfossilfuelspaceheatingtoelectricheatpumps,canshaveafurtherone-fifthfromthisenergydemandgap.Theremaindercouldbeavoidedthroughbehaviouralchangesanddigitalisationofenergy-relatedbuildingoperations,notablyforspaceheating,spacecoolingandwaterheating.Itisimportanttoimproveenergyefficiencyofthewholebuilding–inthisreport,twoseparateenablersareconsidered:high-performancebuildingenvelopesandenergy-efficientappliances,astheyaretypicallycoveredbydifferentpolicies.High-performancebuildingenvelopesThedesignofthebuildingenvelopeplaysacrucialroleindeterminingtheenergydemandforheatingandcooling,aswellasensuringcomfort,indoorenvironmentalqualityandsafety.Additionally,thestructuralaspectsofthebuildingenvelopehaveasignificantimpactonitsembodiedcarbonfootprint.Improvingtheenergyperformanceofbuildingenvelopesinvolvesvariousmeasures,andbuildingregulations(suchasbuildingenergycodes)playasignificantroleinpromotingandregulatingtheseimprovements:Envelopeinsulation:Buildingenergycodestypicallyspecifyminimuminsulationrequirementsforwalls,roofsandfloors.Thesecodesoftenoutlineinsulationmaterialtypes,thicknessesandinstallationstandards,ensuringthatbuildingsmeetacertainlevelofthermalresistancetoreduceheattransferandimproveenergyefficiency.Windowsandglazing:Energycodesoftenincludecriteriaforwindowperformance,suchasU-factorandsolarheatgaincoefficient.Theserequirementspromotetheuseofenergy-efficientwindowswithlow-emissivity(low-E)coatings,multipleglazinglayersandinsulatingframestominimiseheatlossorgainthroughwindows.Airsealing:Buildingenergycodesoftenaddressairleakagebysettingstandardsforairtightness.Thesecodesmayrequireairbarriers,propersealingofjointsandpenetrations,andmandatoryblowerdoorteststoensurebuildingsminimiseuncontrolledairinfiltrationandexfiltration,reducingenergylossandimprovingcomfort.Complianceandenforcement:Itisimportantthatbuildingenergycodesestablishcomplianceandenforcementmechanismstoensurethattheenergyefficiencyrequirementsaremetduringthedesign,constructionandoperationphasesofaPAGE31IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsEnablersforefficientgrid-interactivebuildingsFutureofbuildingsinASEANbuilding.Thiscanincludeinspections,energyperformancecertificationsandpenaltiesfornon-compliance.InordertoalignwiththeIEANetZeroEmissionsby2050(NZE)Scenario,itisessentialforallcountriestoestablishbuildingenergycodeswiththevisiontotransitiontozero-carbon-readybuildings.Additionally,theexistingbuildingfloorareamustberenovatedtomeetazero-carbon-readylevelofenergyefficiency.Thiswillrequiremorethandoublingtheannualenergyefficiencyrenovationratesglobally,fromthecurrentleveloflessthan1%to2.5%by2030.Zero-carbon-readybuildingsarehighlyenergy-efficientandresilientbuildingsthateitheruserenewableenergydirectlyorrelyonasourceofenergysupplythatcanbefullydecarbonised,suchaselectricityordistrictenergy.Thezero-carbon-readyconceptincludesbothoperationalandembodiedemissions.Buildingenergycodesplayavitalroleindrivingenergyefficiencyimprovementsinbuildings.Theyprovideaframeworkofmandatoryrequirementsandstandardsthatdevelopers,architects,buildersandcontractorsmustadhereto.Bysettingminimumenergyperformancerequirementswithinbuildingenergycodes,thesecodeshelpraisethebaselineofbuildingenergyefficiency,promotetheadoptionofenergy-savingtechnologies,andcontributetooverallenergyconservationandsustainabilitygoals.Itisimportanttonotethatbuildingenergycodescanvaryacrossjurisdictionsandmaybeinfluencedbylocalclimateconditions,buildingtypesandenergypolicypriorities.Regularupdatesandrevisionstothecodesensurethattheykeeppacewithadvancementsinbuildingtechnologiesandenergyefficiencypractices.Asof2022,therewere80countriesthatalreadyhadfullyoperationalbuildingenergycodes,withanadditional31countriesinemerginganddevelopingregionsactivelyworkingondevelopingnewbuildingcodes.Amongthese,69countrieshavemandatoryrequirementsinplace,while11countriesrelyonperformancestandardssuchasvoluntarycodes,modelcodesorcity-basedstandards.However,approximately85countriescurrentlylackestablishedbuildingcodesorongoingdevelopmentefforts.Thetransitiontonetzerorequireselectrificationofthebuildingssectorthatpresumesmovingfromfossilfuel-poweredbuildingstoelectric-poweredbuildings.End-useequipmentanddevicesinsideabuildingforspaceheatingandcooling,waterheating,cooking,etc.,offervariousflexibilityopportunitiesthroughdigitaltechnologies,asdescribedabove.However,inordertorealisesuchopportunitiestoafullextent,buildingsthemselvesneedtobe“prepared”atthedesignstageorPAGE32IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsEnablersforefficientgrid-interactivebuildingsFutureofbuildingsinASEANupgradedduringtherenovationprocess.Toensurethatbuildingscanaccommodateallnecessaryelectricconnections,buildingsregulationsneedtoincludecertain“electric-ready”requirements.IntheUnitedStates,forexample,severalstateshavemadeprogressonsuchrequirements.InCalifornia,50jurisdictionshavepassedpoliciestophaseoutgasappliancesinnewconstructionand37ofthemspecifyall-electricrequirementsinnewresidentialbuildings.SeattleandNewJerseyalsoadoptedplansandrelatedregulationstoelectrifythemajorityoftheirbuildings.Otherstates,suchasMaineandColorado,areacceleratingelectrificationofspaceheatingthroughacceleratingthedeploymentofheatpumpinstallations.California’s2022EnergyCode,UnitedStatesTheCalifornia2022EnergyCodeincludeselectric-readyrequirementsfornewlyconstructedandrenovatedbuildingsstartingin2023incompliancewiththestate’selectrificationstrategy,whichencouragestheadoptionofhighlyefficientelectricappliances.Themandatoryrequirementsforelectric-readybuildingsenvisageheatpumpspaceheater,electriccooktopandelectricclothesdryerreadiness.Forinstance,forsystemsusinggasorpropanefurnacesandcooktopstoserveindividualdwellingunits,adedicated240voltbranchcircuitwiringshallbeinstalledwithinthreefeetofthefurnaceorthecooktopandberatedat30ampsminimum.Inaddition,aspaceshallbereservedonthemainelectricalservicepaneltoallowforthefutureinstallationofbothheatpumpsandelectriccooktops.Themainelectricalservicepanelmustalsohavethespacefortheinstallationofadouble-polecircuitbreakerforafuturesolarelectricinstallation.Asforelectricvehicle(EV)chargingstations,theyhavebeenincludedamongtheelectricalloadsforwhichminimumrequirementsforseparationofelectricalcircuitstoallowelectricalenergymonitoringareenvisaged.EfficientappliancesImprovingtheenergyefficiencyofappliancesandequipment,includingheating,ventilationandairconditioning(HVAC),waterheatingandlightingsystems,canbedonethroughestablishingefficiencystandardsforproductsthroughavarietyofpolicyinstrumentsandstrategies.Theseapproachesaimtoinfluencemanufacturers,consumersandthemarketasawholetoprioritiseenergyandresourceefficiency:Buildingenergycodes:EnergycodesoftenprescribeefficiencystandardsforlightingandHVACsystems,promotingtheuseofenergy-efficientfixtures,lampsPAGE33IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsEnablersforefficientgrid-interactivebuildingsFutureofbuildingsinASEANandcontrols;establishingminimumrequirementsforequipmentefficiency,insulationofductworkandpropersystemsizing;andcommissioningtoimproveoverallsystemperformanceandreduceenergyconsumption.Mandatoryminimumenergyperformancestandards(MEPS):Governmentscansetlegallybindingminimumefficiencyrequirementsthatproductsmustmeettobesoldinthemarket.Productsfailingtomeetthesestandardsarenotallowedforsale,promotingtheadoptionofmoreefficienttechnologies.MEPScontributetothemarkettransformationbygraduallyphasingoutlessefficientappliancesfromthemarket.Theyalsohelpdrivetechnologicaladvancementsbysettinghigherefficiencytargets.Manufacturersareincentivisedtodevelopandproduceappliancesthatsurpasstheminimumrequirements,leadingtotheintroductionofmoreenergy-efficienttechnologiesanddesigns.Energylabels:Energylabelsprovideconsumerswithinformationaboutenergyefficiencyofappliances.Theselabelsoftenuseanenergyratingsystem,suchasstarratings,toindicatetherelativeefficiencyofdifferentmodels.Clearandstandardisedlabelsenableconsumerstomakeinformedchoicesandselectapplianceswithhigherenergyefficiency.Financialincentives:Governmentscouldprovidefinancialincentives(taxcredits,rebates,subsidiesorlow-interestloans)tobothmanufacturersandconsumersforadoptingmoreefficientproducts.Informationandeducationcampaigns:Governmentslaunchcampaignstoeducateconsumersaboutthebenefitsofchoosingefficientproductsandprovidetipsforreducingenergyconsumption.Thisraisesawarenessandinfluencespurchasingdecisions.Researchanddevelopment(R&D):GovernmentscanallocatefundstosupportR&Dofnewtechnologiesandproductdesignsthatimproveefficiency.MEPSencouragemanufacturerstoinvestinR&Dtoimproveenergyefficiencyoftheirappliances.Thisincludesinnovationsincomponents,materialsandmanufacturingprocessesthatenhanceefficiencywithoutcompromisingperformanceorfunctionality.Internationalharmonisationandco-operation:Governmentscancollaboratewithinternationalorganisationsandothercountriestodevelopconsistentefficiencystandardsandalignpolicies.Harmonisationfacilitatestradeandencouragesmanufacturerstodesignproductsforglobalmarkets.Combiningthesepolicyinstrumentsandstrategiescancreateacomprehensiveapproachtoestablishingefficiencystandardsthatdrivemarkettransformation,encourageinnovationandcontributetosustainabledevelopmentgoals.Establishmechanismstomonitorthemarketandgatherfeedbackfrommanufacturers,consumersandotherstakeholders,usingthisinformationtorefineandupdateefficiencystandardsovertime.Outoftheseinstruments,MEPSareidentifiedasthesinglemostcost-effectivemeasureindrivingenergyefficiencyimprovementsinappliances.BysettingPAGE34IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsEnablersforefficientgrid-interactivebuildingsFutureofbuildingsinASEANmandatoryefficiencyrequirements,thesestandardsensurethatappliancessoldinthemarketmeetacertainlevelofenergyperformance.Theyspurinnovation;guideconsumerchoices;andcontributetoenergysavings,costreductionsandenvironmentalbenefits.Regularupdatesandreviewsofthesestandardsarenecessarytokeeppacewithadvancementsintechnologyandtocontinuouslyraisethebarforenergyefficiencyinappliances.Morethan100countriesaroundtheworldhaveimplementedmandatoryMEPSand/orenergylabelsforcommonlyusedappliances.MEPSforresidentialrefrigerationandfreezersarecurrentlyimplementedinapproximately80countries,providingcoverageforaround80%ofthetotalenergyconsumedworldwideinresidentialrefrigeration.However,theapplicationofMEPSforotherappliancesismorelimited.Forinstance,washingmachinesarecoveredbyMEPSinjustover50countries,accountingfor78%ofenergyconsumption.Similarly,televisionshaveMEPSinfewerthan50countries,coveringalmost75%ofenergyusage,whilemonitorshaveMEPSinfewerthan40countries,accountingfor43%ofenergyconsumption.DecarbonisationDistributedvariablerenewableenergy(VRE)technologiescanhelptosignificantlydecarboniseenergyusedinbuildings.Thesetechnologiesalsoreducetheneedforlong-distancetransmissionlinesandlarge-scaleinfrastructureinvestments.SolarPVsystemsareincreasinglycommoninbuildingsaroundtheworld,promotingenergyindependence,reducingrelianceonfossilfuels,allowingconsumerstoparticipateinutilityprogrammes,andsupportinglocaleconomicdevelopmentthroughinstallationandmaintenancejobsandupskillingofworkers.Buildingscanalsobeequippedwithenergystorage,primarilybatterysystems,tohelpintegrateVREgeneration,bridgingthetimingdifferencesbetweenenergysupplyanddemand.On-siterenewableenergygenerationDistributedVREtechnologiesrefertotheuseofrenewableenergysources,suchassolarandwindpower,byindividualconsumersorbusinessesonadistributedbasis,ratherthanrelyingoncentralisedpowerplants.Inthebuildingssector,themostcommonVREtechnologiesaresolarPVsystemsofdifferentsizesandcapacityinstalledonthebuilding’ssite.DistributedVREsystemsareoftenlocatedclosetothecommunitiestheyserve,andtherebycanhelptoreducetheneedforlong-distancetransmissionlines,whichareoftenvulnerabletoweathereventsandotherdisturbances.DistributedVREsystemsconnectedtothegridenablethepossibilitytofeedtheelectricityPAGE35IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsEnablersforefficientgrid-interactivebuildingsFutureofbuildingsinASEANoutputintostoragesystemsorthegridwhengenerationexceedstheneedsofthelocalcommunityoranindividualbuilding.In2022,theoveralladditionofrenewableenergycapacitygloballyexperiencedasignificantincreaseofnearly13%,reachingapproximately340gigawatts(GW).Amongthevariousrenewabletechnologies,solarPVstoodoutbysettinganewdeploymentrecordwithanimpressivenetadditionofnearly220GW,markinga35%growthcomparedwith2021,withdistributedapplications,suchasresidentialandcommercialsolarsystems,accountingforalmosthalfofglobalPVexpansion.Renewableelectricitynetannualcapacityadditions,2017-2022IEA.CCBY4.0.IEA.CCBY4.0.However,rapidadoptionofdistributedVREtechnologieswithoutpropermanagementcouldputpressureonelectricitygrids,heightenoperationalintricaciesandjeopardisethestabilityoftransmissionnetworks.Thepotentialforreversepowerflowsindistributionfeederscouldtriggerwidespreaddisconnectionsduringgridinstability,potentiallyleadingtoblackouts.Toavertsuchoperationalchallengesandrelatedrevenuelosses,systemoperatorsshouldproactivelyplan,deviseprocessesandimplementtoolsthatenablethemonitoring,managementandcontroloflarge-scaledistributedVREintegration.Suchstrategiescanhelpenhanceoverallsystemefficiencyandelectricitysecurity.InAustralia,forinstance,themarketoperatorimplementedadigitalregistrytooverseedistributedenergyresourcesthatimprovesvisibilityandcontrol,providinginsightsintoinstallations,andemergencydisconnectmechanismstopreventcascadingblackouts.Large-scaledeploymentofdistributedVREtechnologiesmightalsonecessitategridreinforcementsandentailaddressinguncertaintiesinnetdemandforecasts,therebycomplicatinggridplanningandoperation.PAGE36EfficientGrid-InteractiveBuildingsEnablersforefficientgrid-interactivebuildingsFutureofbuildingsinASEANPoliciesforpromotingtheuptakeofdistributedVRE(e.g.variousrenumerationschemesanddirectincentivesforPVinstallation,suchastaxrebatesandsoftloans)areanessentialtoolfordecarbonisationofbuildingsandcanhelptoimprovegridresiliencyandreliabilitytakingtheneedformodernisationofpowergridsintoaccount.DistributedsolarPVremunerationschemesBuy-all,sell-all:AllPVgenerationisdeemedtobesoldtotheutility,usuallyatafixedprice.TheremunerationofPVelectricitycanbeabove,equaltoorlowerthantheretailrate,whilePVownersbuyallelectricityattheretailpricetocovertheirdemand.Netmetering:PVownerscanself-consumetheelectricitytheygenerate,whichreducestheirconsumptionfromthenetwork.PVownersreceiveanenergycreditforanyexcessgenerationexportedtothenetworkduringaspecifictimeperiod.Thisenergycreditcanbedeductedfromnetworkelectricityconsumedonfuturebillsatanothertime.Real-timeself-consumptionmodels:PVownerscangenerateelectricityforself-consumptionandsellexcesstothenetwork.Whilethisappearssimilartonetmetering,therearetwomaindifferences.First,energyaccountingisdoneinrealtime(athourlyorless-than-hourlyintervals).Second,PVownersarepaidforeachunitofelectricityexported,ratherthanearningenergycreditstowardsfuturebills.Thepricepaidforexportedelectricityvariesbyjurisdictionandcanbefromzerotoabovetheretailrate.Inthesemodels,remunerationratesrangefromwholesaletoretailprices.Source:AdaptedfromIEA(2019),RenewablesSuchpoliciescanalsohelptopromoteenergyindependenceandlocaleconomicdevelopmentthroughjobs.ThisisparticularlytrueifdistributedVREsystemsareownedandoperatedbylocalcommunitiesorindividualbuildingowners,whichcanpromoteenergysecurityandindependence.Forexample,theSosaiRenewableEnergiesCompanyisacommunity-basedrenewableenergyprojectinNigeriathathasconnectedover80householdsandbusinessestoamicrogridtosupportcleanenergyaccessandlocalindustryandjobs.AGlobalEnvironmentFacility(GEF)fundedprojectwiththeIndianRenewableEnergyDevelopmentAgencyhasshownthathouseholdsandbusinesseshaveincreasedtheirincomeandproductivitythroughbothhomeindustryandstudyhoursduetoaccesstoelectricitygeneratedbysolarPV.PAGE37IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsEnablersforefficientgrid-interactivebuildingsFutureofbuildingsinASEANOn-siteenergystorageDistributedenergystorageplaysavitalrolefortheenergysystem,whichisintegratinganincreasingamountofVREgeneration.Storagefacilitatestheintegrationofrenewablesbybridgingthetimingdifferencesbetweenenergysupplyanddemand.Thisempowersresidentialandcommercialbuildingswithon-sitesolarelectricitygenerationtoactivelyparticipateintheelectricitydistributionsystem.Itempowersconsumerstohavecontrolovertheirelectricityusage,allowingthemtoavoidhighchargesduringpeaktimesorperiodsofincreaseddemand.WhencombinedwithdistributedgenerationsuchasrooftopsolarPV,distributedenergystoragecanleadtoenergyindependenceforbuildings.Additionally,distributedenergystorageisinstrumentalinmodernisingthebroaderenergysystembyprovidingsmartgridservices.Ifusedtoincreaserelianceonrenewables,itcanyieldsignificantclimatebenefits.Themostcommontypeofstorageis(usuallylithium-ion)batterysystemsinstalledinbuildings.Thermalenergystorage,suchaswatertanks,passivethermalmassofthebuildingandphase-changematerials,couldalsobeusedtostorerenewableenergyandparticipateinloadshifting.Currently,distributedbatterystorageinbuildingsisprimarilyimplementedonasmallscale,mainlyduetohighcosts.However,thereisashiftingtrendasbatterypricesdecrease,andutilitiesseekalternativestocostlyinfrastructureupgradesinresponsetogrowingdemand.By2030,thecostsassociatedwithinstallingbatterystoragesystemsareestimatedtodecreaseby50%to66%.Thisreductionincostswillhaveatransformativeeffectontheaffordabilityofstorageforsupportingancillaryservicessuchasfrequencyresponseorcapacityreserve.Thesecostreductionsareexpectedtobedrivenbytheoptimisationofmanufacturingprocesses,improvedmaterialcombinationsandreducedmaterialusage.Asbatterytechnologycontinuestoadvance,batterylifetimesandperformancewillimprove,furthercontributingtothecostreductionofenergystorageservices.Batterystoragecanparticipateinutilityprogrammesinordertoprovideflexibilitytothegrid.In"bringyourowndevice"(BYOD)initiatives,customerscanregistertheirbatteriestoeithersupplystoredelectricitytothegridoradjusttheirelectricityconsumptiontoavoidpeakdemandoremergencysituations.Theymayalsohavetheoptiontoparticipateinfast-responseancillaryservicemarketsthroughaggregators,suchasfrequencyregulation,voltagesupportorload-followingreserves.Therechargingofbatteriescanbetimedtotakeadvantageofoff-peakhours,whenelectricitycostsarelow,orsynchronisedwithperiodsofhighrenewableenergygeneration.PAGE38IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsEnablersforefficientgrid-interactivebuildingsFutureofbuildingsinASEANDecentralisedrenewableenergygenerationinUkraineIEA.CCBY4.0.Decentralisedsolutionsbasedonrenewableenergycanplayakeyroleinensuringaccesstoelectricity,especiallyintimesofemergency.InApril2022theEnergyActforUkraineFoundationwasfoundedtosupplyrenewableenergyequipmenttowar-affectedcommunitiesinUkraine.Theaimoftheinitiativeistoinstallsolarstations(PVandstoragesystems)in100schoolswithinthenextfiveyearsthatcouldcover30-50%oftheannualelectricityconsumptionofschools,whileensuringabackuppowersupplyincaseofoutageforaboutthreetofivehours.Fiftyhospitalsarealsoexpectedtobeequippedwithsolarstationswithinthenextfiveyears.AsofFebruary2023,17installationshadbeencompletedthroughthecollaborationoftheEnergyActforUkraineFoundationwiththePolishPVdistributorMenloElectric.SmartnessSmartinteractivetechnologiesusedinbuildings,inadditiontoconventionalenergyefficiencymeasures,canaddatimedimensiontotheenergyefficiencyofabuildingandmakeitmoredynamic.Somecommonmoderninteractivetechnologiesthatcanbeusedwithinabuildinginclude:smartmeters,buildingautomationsystems,buildingloadandenergymanagementsystemsincludingsmartsensorsandcontrolsforbuildingsequipment,andappliancesthatallowtwo-waycommunicationbetweentheutilityorgridoperatorandthebuilding.InternetofthingsTheinternetofthings(IoT)isanetworkofconnectedequipment,sensorsanddevicesinbuildingsthatcommunicatewithoneanotherandcollectandanalysedatafromkeybuildingequipmentsuchasHVACandlightingsystems,toinitiateactionsthatwouldoptimiseenergyperformanceofabuilding’soperations.Sensorsandcontrollerscaneitherbewiredorconnectedwirelessly(e.g.technologiessuchasZigbee,BluetoothLowEnergy)tocollectactionabledatafromvariousbuildingequipment(e.g.occupancydetectionsandnumbers,temperature,humidity,lighting,andenergyuse).Integrationofcloudandfogcomputingarchitectureswithsmartmetering,sensorsandcontrollerscouldenablethereal-timeenergymanagementofIoTdevicesinbuildings,optimisingtheperformanceofthesystemandimprovingtheoverallenergyefficiencyofsmartbuildinginfrastructure.Internet-connectedthermostats,forexample,aredemonstratinganincreasingadoption.IntheUnitedStatesandCanadatheyarelinkedtoheatingandcoolingPAGE39EfficientGrid-InteractiveBuildingsEnablersforefficientgrid-interactivebuildingsFutureofbuildingsinASEANsystemsofabout30%ofhomesandaroundhalfofannualthermostatsales,helpingtoachieveupto20%ofenergysavings.Theyallowuserstoremotelysettheirhome’stemperatureandmonitoroccupancy,humidityandotherparameters.Smartthermostatscanalso“learn”patternsofoccupants’behaviouranddetermineanoptimalenergy-savingscheduleautomatically.BuildingenergymanagementandautomationInorderforIoTdevicestocommunicatewithoneanotherwithinthebuilding,theycanbeintegratedusingopenstandardorproprietaryprotocolsintobuildingenergymanagementsystems(BEMS),energymanagementsystems(EMS)orbuildingautomationsystems(BAS)tocontrolandadjustparametersoftheindoorenvironment(e.g.temperature,CO2levels,lighting)andthebuilding'senergyconsumption.Forresidentialdwellings,suchsystemsarecalledhomeenergymanagementsystems(HEMS).ABEMSandHEMScanbedefinedasanintegratedsystemofsoftware,hardwareandservicesthatcontrolsenergyusethroughinformationandcommunicationtechnology.Automateddatacollectionensuresacontinuousflowofdatafromabuilding’sequipmenttoacentraliseddatabase,whichtogetherwithintelligentanalyticsprovidesvisibilityoftheoverallsystemandhelpsidentifyanyissues,abnormalitiesorneedsforadjustmentstoincreaseenergyefficiencyofthewholebuilding.Fromthepointofoptimisingenergyuse,thedataanalysishelpstoidentifyoperationalinefficiencies,reduceenergylossesinbuildings,andmakeelectricitybillingmoreaccurate.Dataanalysisofenergyconsumptionpatternsandhistoricalandreal-timedataacrossvariousparametersaccordingtopredefinedsmartruleshelpstoforecastabuilding’senergydemand(andon-siteelectricitygeneration,ifthebuildingisequippedwithasolarPVpanel,forexample)atanygiventime,whichisparticularlyimportantforloadmanagementanddemandresponse.SmartmetersinbuildingsSmartmetersaredigitalelectricitymetersthatcollectandstoredataonactualenergyconsumptioninbuildingsonanhourlyorevenmoredetailedbasis.Smartmetersarecrucialforincreasingthevisibilityofbehind-the-meterdemand.Smartmetersarecapableofremotecommunicationandcanrecordelectricityuseataverygranularlevel(usuallyevery15-30minutes).Thiscanenablecustomerstobuyelectricitythroughsmartpricingmechanismsandprovideincentivestopurchasemoreenergy-efficientappliancesandequipment.Accesstodetailedreal-timedataenablescustomerstodynamicallyadjusttheirenergyconsumptionandachieveenergycostsavings(e.g.throughtime-dependentPAGE40IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsEnablersforefficientgrid-interactivebuildingsFutureofbuildingsinASEANautomaticbilling),whilegridoperatorsgetanopportunitytoassessthesituationinthegrid(e.g.supplyinterruptions,inefficientvoltages,faultyconnections)inamoreefficientandaccuratemanner,bettermatchelectricitydemandandsupplyatanygivenmoment(e.g.reducepeakdemand),andoptimisenetworkoperations(e.g.avoidcongestions).SmartmetersarealsoindispensableforintegratingdistributedVREgeneration,(e.g.fromon-sitePVsinbuildings)intothemaingrid.Asof2020,therewereover1billionsmartmetersinstalledgloballywithmorethantwo-thirdsoftheminAsiaPacific.IntheUnitedStates,aroundfourinfivehouseholdsalreadyhavesmartmeters,whileinEuropetheyareinstalledinabouthalfoftheproperties.By2030,thisglobalnumberisestimatedtoexceed1.6million.Cumulativesmartmetersinstallationsbyregion,2010-2030emillion2000180016001400120010008006004002000201020112012201320142015201620172018e2019e2020e2021e2022e2023e2024e2025e2026e2027e2028e2029e2030eAsiaandthePacificEuropeU.S.&CanadaAfricaandMiddleEastLatinAmerica&CarribeanIEA.CCBY4.0.Note:e=estimated.Source:IEAanalysisbasedonIEA(2023),TrackingCleanEnergyProgress2023andBloombergNEF(2017).Wide-scaleutilisationofsmartmetersraisesthequestionofdataprivacy,andcustomersmustconsenttothewirelesscommunicationoftheirsmartmeterdatainaccordancewiththelocalregulations.Thereisnosinglepolicythatsupportssmartmeterroll-out–itusuallyrequiresacombinationofmandatesforutilitiestorolloutsmartmeters,incentivesforconsumerstoinstallthem,awareness-raisingandconsumerengagementonPAGE41IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsEnablersforefficientgrid-interactivebuildingsFutureofbuildingsinASEANreal-timedatamanagement,regulationsondataprivacyandsecurity,etc.Mostexistingpolicies,however,arefocusedonrollingoutsmartmetersandnotadvancedmeteringinfrastructure(forfurtherdetailsseesectiononAdvancedmeteringinfrastructure),whichlimitstheopportunitiesforinteractionsbetweenbuildingsandthegrid.Forexample,theEuropeanUnion(EU)setanon-bindingtargetoranaspirationalbenchmarkforallthememberstatesbackin2014toinstallsmartmetersin80%ofthebuildingsby2020.Asof2021,severalEUcountries(e.g.Sweden,FinlandandDenmark)havesurpassedtheirrequirementsandprogressedontoasecondphaseofupgrades.However,anumberofcountriesintheregionshowedmuchslowerprogressorabandonedthecommitmentaltogether.IntheUnitedKingdom,thegovernmenthasmandatedthatenergysuppliersoffersmartmeterstoallhouseholdsandsmallbusinessesby2024.Thegovernmenthassetatargetfor85%ofhouseholdstohaveasmartmeterby2024,withtheremaining15%tobeofferedanalternativesolution.TheUnitedStatesgovernmenthasnotmandatedtheinstallationofsmartmetersatthenationallevel,butmanystates,forexampleCalifornia,haveintroducedregulationsthatrequireenergysupplierstooffersmartmeterstocustomers.TheAustralianEnergyMarketCommissionhasputforwardrecommendationstoachieve100%smartmeteruptakeinAustraliaby2030.ThestateofVictoriamandatedsmartmetersin2006forallhouseholdsandsmallbusinesses(withtheinstallationcostsappliedtothem)andachieveduniversaladoptionin2015.TheJapanesegovernmentintroducedregulationsthatrequireenergysupplierstoinstallsmartmetersforallhouseholdsandsmallbusinessesby2024.TheEnergyMarketAuthority(EMA)inSingaporehasmandatedtheinstallationofadvancedmeteringforallhouseholdsandbusinessesby2024.TheEMAhassetatargetofinstalling1.4millionadvancedmetersbythattime.TheIndiangovernmentintroducedregulationsthatrequireenergysupplierstoinstallsmartmetersforallhouseholdsandbusinessesby2025,aimingtoreach250millionsmartmetersbythattime.CountriesinLatinAmerica,suchasBrazilandMexico,arealsoinvestinginsmartgridinfrastructure.However,inBrazil,programmesforsmartmetersarevoluntarywithEnelestablishinglocalproductionofsmartmetersinSãoPaoloandinstalling300000ofthem,andCopelrollingoutalargeprogrammeondeploymentofsmartmetersandothertechnologiestoautomateitsdistributionnetworks.InMexico,thegovernmentsetagoalofinstalling30millionsmartmeters(79%penetration)by2025.PAGE42IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsEnablersforefficientgrid-interactivebuildingsFutureofbuildingsinASEANTheConnected(Smart)Neighborhoods,Birmingham,Alabama,IEA.CCBY4.0.UnitedStatesTheReynoldsLandingSmartNeighborhoodbyAlabamaPower,Alabama,UnitedStates,isaninitiativethatisfocusedonenablingenergy-efficienthomesandsystems,smartandconnecteddevices,andamicrogridforcommunityenergysystemsincludingsolarpanels,batterystorageandbackupgasgenerators.TheprogrammeatReynoldsLandingincludedtheconstructionof62newenergy-efficienthomesthatincludedsmartwalloutletssuchasthoseusingstandardisedsmartcommunicationprotocols(e.g.Z-Wave)tocontrolappliancesalongsidetraditionalplugs.Thehomesincludetriple-panelow-Eglazing,heatpumpwaterheaters,ventilationenergyrecovery,variablecapacityheatpumpsandwallinsulation.Itincludesadatamonitoringcentre,smarthomecontrolpanels,andsmartandenergy-efficientwhitegoodappliances.Inaddition,theneighbourhoodincludesamicrogridthatgeneratesaround600megawatt-hours(MWh)ofenergyayearfromsolarPVpanels,gasgeneratorsandbatterystorage.AlabamaPoweroperatesthemicrogridtointeractwiththehome’shotwaterandheating/coolingandventilationsystemtooptimisetheuseofrenewables(i.e.330kilowatt[kW]alternatingcurrent[AC]solararray)andbatterysystems(600kilowatt-hours[kWh]ofbatterystorage)andbackupgenerators(400kWhofnaturalgas).Theinitiativebetweentheutilityandresearchgroupsanalysesthevaluetothegridofoperatingmicrogridswithcontrollableloads,developingcontrolalgorithmsforloadshapes,evaluatingtheprice/incentivesignalswithinacontrollablegrid,anddevelopingscalablesystemcontrolarchitecture.Analysisfromtheinitialdemonstrationshowsthathomesaretypically35-45%moreefficientthanAlabama’stypicalnewlyconstructeddwellingsandthatdemandloadshiftingforcoolingoffersenergysavingsforaroundfourhoursofcomfort.SmartgridsAsmartgridisanelectricalnetworkemployingdigitalandadvancedtechnologiesforoverseeingandregulatingthetransmissionofelectricityfromdiversegenerationsourcestofulfilthefluctuatingelectricitydemandsofendconsumers.Theseintelligentgridsharmonisetherequirementsandcapacitiesofgenerators,gridoperators,endconsumersandparticipantsintheelectricitymarket.Theiraimistooptimisetheentiresystem'soperationwithutmostefficiency,reducingcostsandenvironmentalimpactsandintegratingVREsources,whilesimultaneouslybolsteringthesystem'sreliability,adaptabilityandstability.Useofsupervisorycontrolanddataacquisition(SCADA)systemswithinsmartgridscanenabletheremotemonitoringandcontroloftransmissionanddistributionsystems.SCADAsystemscancontinuouslycollectdata(voltagePAGE43EfficientGrid-InteractiveBuildingsEnablersforefficientgrid-interactivebuildingsFutureofbuildingsinASEANlevels,currentflows,equipmentstatusandothercriticalparameters)providingacomprehensiveviewofthegrid'scurrentconditions.SCADAcanalsoenableremotecontrolofvariousgriddevices,suchassubstations,transformers,andcircuitbreakersandrapidlydetectabnormalconditionsorfaultsandprovidealertstogridoperators.SCADAcanalsointegrateload-sheddingandload-shiftingstrategiesduringpeakdemandperiodsandmanagedistributedenergyresources,demandresponseprogrammesandotherflexibleassets.SCADAcanbeintegratedwithotheradvancedtechnologiessuchasadvancedmeteringinfrastructure,distributedenergyresourcesmanagementsystemsanddemandresponseplatformstocreateaholisticsmartgridecosystem.Byintegratingdigitallyenableddemandresponseintosmartgrids,thecurtailmentofVREsourcescouldbedecreasedbyover25%by2030.Thiswouldenhancesystemefficiency,leadingtoloweredexpensesforconsumers.Moreover,improvedsupplyanddemandforecastingcanbolsterdecarbonisationefforts,allowingforintegratedenergyplanningandofferingenhancedvisibilityandflexibilityinelectricitydemand.Governmentsandgridutilitiescandevelopsmartgridplansthatactasacomprehensivestrategyforthemodernisationandtransformationofatraditionalelectricalgridintoasmarter,moreefficientandtechnologicallyadvancedsystem.Thisplanencompassesawiderangeofinitiatives,technologiesandpoliciesaimedatenhancinggridreliability,optimisingenergyuse,integratingrenewableenergysources,andenablingnewservicesandcapabilities.Theprimarygoalsofasmartgridplanusuallyincludeimprovingenergyefficiency,reducingcarbonemissions,enhancinggridresilienceandaccommodatingtheevolvingelectricitysystem’slandscape.Inordertostayonthepathwaytowardsnetzeroemissionsby2050,investmentsinsmartgridsneedtomorethandoublethroughto2030,especiallyinemergingmarketanddevelopingeconomies.DigitalDemand-DrivenElectricityNetworksinitiativeDigitalDemand-DrivenElectricityNetworks(3DEN)isanIEAinitiativesupportedbytheItalianMinistryfortheEnvironmentandEnergySecurity.Itprovidesanalysisandpolicyguidanceonhowdigitaltoolscansupportpowersystemdecarbonisationandorganisespeer-to-peerknowledgeexchange.The3DENreportUnlockingSmartGridOpportunitiesinEmergingMarketsandDevelopingEconomiesprovidesguidanceforenergypolicymakersonpossiblewaystoenableanddriveinvestmentsinsmartandresilientelectricitygridsandonhowtocreateenablingenvironmentsfortheeffectiveuseofdigitaltechnologies.PAGE44IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsEnablersforefficientgrid-interactivebuildingsFutureofbuildingsinASEANBuilding-to-gridinteractivityModernisationofenergyefficiencyinbuildingscanbedefinedasanimprovementinreducingheatlossthroughbuildingenvelopesandincreasingenergyefficiencyofappliancestothehighestfeasiblelevelsandalsomakinguseofdigitaltechnologiesthatcanhelprealisebuildings’demandflexibilitypotentialandrespondtothesignalsfromthegrid.Demandflexibilitycanbeenabledbyvarioustechnologiesthatprovideautomaticcontroltoinfluenceandstructureacustomer’sdemandprofileinawaythatcanprovidethesameorhigherqualityofenergyservicesforconsumersandreducecostsforbothcustomersandthegrid.DemonstrationprojectsforEGIBsinEuropeCompaniesacrossEuropeareinvestinginenergyefficiencyrenovationscoupledwithgrid-interactivetechnologieswiththeaimofshowcasingthebenefitstoutilitiesandconsumersthepotentialofgridinteractivity.Forexample,aprojectdevelopedbyDcbelofasingle-familyhomeoutsideofParis,France,showcasedtheuseofacombinationofenergyefficiency,solarPVelectricitygeneration,EVchargingandgeneralhouseholdelectricitydemand.Byinvestinginimprovingtheenergyperformanceofthebuildingthroughtheinstallationofasmartgasheatingandbiomasspelletstove,smartlighting,andsmartappliances,annualCO2emissionswerereducedfrom10tonnes(t)ofCO2persquaremetre(m2)peryearto4tCO2/m2peryear.Theadditionofthesmartsystemsprovideflexibilityofaround11kWofshiftableassets,whichwastheresultofpredictiveschedulingandshiftingtocheaperperiodsthatalsocoincidedwithmorerenewablesinthegrid.Two-waycommunicationBuilding-to-gridinteractionrequiresinteroperability,meaningbothsidesareabletocommunicatewitheachother.Therearethreeaspectsofthisinteroperability:technicalinteroperability:devicesarecapableofbothphysicalanddigitalintegrationandbasicconnectivitysyntacticinteroperability:devicesuseacommondigitallanguagesemanticinteroperability:devicesunderstandspecificinstructionsusingastandardisedsetofrecognisedcommands.TherearealsodifferentlevelsatwhichinteroperabilitycouldbeimplementedwithinEGIBs.PAGE45IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsEnablersforefficientgrid-interactivebuildingsFutureofbuildingsinASEANLevelsofinteroperabilityinEGIBsLevelInteroperabilityattributesExamplesEquipmentSpecialdevicesorinterfacesthatenabletheCTA-2045modulecommunicationandinformationflow,e.g.appliancecontroller,smartcommunicationinterface,demandresponseenablingdevice,standardsocketandcommunicationprotocoltobepluggedintoappliancesandequipment.BuildingsBuildingautomationandcommunicationLonWorks,BACnet,protocolsusedinbuildingenergymanagementModbus,KNX,Zigbeeandautomationsystemstoestablishcommunicationbetweendifferentappliancesanddevices.Building-to-CommunicationprotocolstoconnectvariousOpenADR,IEEEgridtechnologiesbetweenbuildingsandthegrid,2030.5,IEC61850,andprovideautomatedcontroltomanageIEEE1547-2018voltageandqualityfluctuationsthatcouldresultfromDERs.EquipmentlevelEquipmentandappliancesneedtobecapableofrespondingautomaticallytopriceand/orothersignalsbyshiftingormodulatingelectricityconsumptionand/orproduction.Toenablesuchcommunicationbetweenappliancesand,forexample,withtheBEMSordirectlywiththegrid,devicesandequipmentneedtobeequippedwithaspecialdeviceorinterfacethatenablesthecommunicationandinformationflow.Itisgenerallyanappliancecontrollerthatdeterminestheoveralloperationoftheappliance,cansendandreceiveinformation,andreceivesrequestsandtriggersrelatedresponsesorrejectsthoserequeststhatarenotapplicable.Suchappliancesarealsosmartandcanbeprogrammedtorunatcertaintimes,whenelectricityischeaper,orberemotelycontrolledthroughsignalsfromthegridorviaabuilding(orhome)EMSbyautomaticallymodifyingitsoperationtoreduceorshiftdemand.Forexample,intheUnitedKingdomeappliancescanbeequippedwithadedicatedenergysmartcommunicationsinterfacethatcancommunicatestatusandforecastinformationconcerningenergyuseofonepieceofequipmenttootherdevices,aswellasreceiveenergy-relatedinformationandinstructionsfromotherdevices.AustraliaintroducedanapplianceinterfacefordeliveringdemandresponsecalledtheDemandResponseEnablingDevice.AirconditionersPAGE46IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsEnablersforefficientgrid-interactivebuildingsFutureofbuildingsinASEANequippedwithsuchadeviceallowanelectricityprovidertocontrolitselectricityuseatvariouspreprogrammedlevelstomanageusers’demandinthegridduringpeakperiods.TheCTA-2045-Amoduleisastandardsocketandcommunicationsprotocolthatcanbepluggedintodirectcurrent(DC)slotsoncertainappliancestoenablethemtocommunicatethroughtheinternetandconnecttothegridinordertoreceiveinformation(e.g.electricitypricesignals).Therearealreadyspecialcertifications(e.g.EcoPortmark)forappliancesthatindicatethatthecertifiedapplianceisequippedwithaspecialcontrolmodulethatiscapableofestablishingnetworkcommunicationsinlinewiththerequirementsoftheCTA-2045standard.Thiswouldaligntheappliance’senergyconsumptionbasedonminimisedelectricgridcostsorwithtimesofVREavailability.InAustraliaandNewZealand,forexample,single-phasenon-ductedairconditionersforhouseholdsrequireenergylabellingwithinformationondemandresponsecapability,includingenergyperformance,inputpower,capacityoutputandvariablecompressorcapability.Saver’sSwitch,XcelEnergy,UnitedStatesTheSaver’sSwitchprogrammebyXcelEnergyinMinneapolis,UnitedStates,aimstomanagepeakloadsduringsummerperiodsbyadjustingthetimingofwhenairconditioningsystemsareswitchedon.Theprogrammerecruitscustomerswithcentralair-conditioningsystems(e.g.notmini-splitsairconditioning)wherethesmartswitchisinstalledatthebreakerboxtoallowtheutilitytosendsignalstochangetheoperationoftheairconditioner.Theswitchcyclestheairconditioningoffandonat15-20minuteintervalsbutallowsforthesystemfanstostayontocirculatetheairthathasalreadybeencooled.TheSaver’sSwitchprogrammeistypicallyactivatedduringsummerdaysbetween14:00and19:00.Ascompensationfortakingpartintheprogramme,everyOctobertheutilityprovidesauserscredit,whichisequivalenttoa15%reductionontheirelectricitybillandvariesaccordingtothesizeoftheirair-conditioningunit.In2020,theSaver’sSwitchresidentialcoolingprogrammehadapproximately11500customersparticipatinginitsdemandresponseprogramme,whichwereestimatedtohavesaved3600MWhandavoided5400kWofdemand.TheSwitchprogrammeevaluationshowedthatparticipantretentionwasover90%andcustomerswerehighlysatisfiedwiththebillcredits,theoverallthermalcomfortduringtheswitchevents,thefrequencyoftheeventsandtheoverallprogramme.CustomerswereshowntoeithernotnoticetheeventsorchangetheirbehavioursPAGE47IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsEnablersforefficientgrid-interactivebuildingsFutureofbuildingsinASEANtopre-cooltheirhomesothatcomfortwouldbemaintainedduringpotentialeventsandthusembeddingabehaviourtoavoidenergydemandduringpeakperiods.TheSaver’sSwitchshowsthebenefittocustomerssigningontoallowutilitiestocontrolcustomerpowerdemandtoreducegridpeakloadfromair-conditioningunitsduringperiodswhereutilitiesmightneedtomanagegridsupplystabilityduetoextraneousevents(i.e.hotperiods)andexcesspowergenerationcosts(e.g.avoidingcostlypeakgeneration).Theuseofwirelessgridcommunicationstomodifytheactivityofabuildingenergysystemisanexampleofaone-waygridtoapplianceinteraction.BuildingslevelAtthebuildingslevel,BEMS,HEMSandBAS(discussedinthesectiononSmartnessabove)canprovidesupervisorycontrolofsmartappliances,EVchargersanddistributedgeneration.Thesesystemscanalsofacilitatecommunicationamongthem,aswellaswiththegridthroughutilisationofbuildingautomationandcommunicationprotocols.Buildingautomationprotocolsserveastherulesandstandardsenablingcommunicationamongdifferentdevicesinbuildingautomationsystems.Typically,proprietaryprotocolshavebeenutilisedinthesesystems,evenwithinthesamecompany,leadingtotheneedforgatewaystoconvertbetweendifferentprotocols.However,gatewaydevelopmentisacomplexprocessthatrequiresknowledgeofbothprotocolsandintroducesdelaysinresponsetime.Oneofthebiggestchallengeswithproprietaryprotocolsisintegratingthird-partysubsystems,astheylackflexibilityandcompatibility.Opencommunicationprotocols,ontheotherhand,allowdevicesfromdifferentvendorstoworktogetherwithouttheneedforproprietaryinterfacesorgateways.Themainbenefitofusingopenprotocolsistheeaseofexpandingthesystem.Withopenprotocols,thereisawiderrangeofchoicesavailablefromvariousvendors.However,itisimportanttoconsidercertainfactorswhenselectingaprotocol,suchasthenumberofproductssupportingtheprotocol,costimplications,adherencetoregionalstandardsandensuringadequatesecuritymeasures.Openprotocolscanbecategorisedaswiredorwireless,eachwithitsownstrengthsandweaknesses.Wirelessprotocolsareparticularlysuitableforexistingbuildingsduetotheireasyinstallation,whilewiredprotocolsarepreferredfornewbuildingswherereliabilityandperformancearecritical.Additionally,wirelesscommunicationtendstobemorecost-effectivecomparedwithwiredcommunication.PAGE48IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsEnablersforefficientgrid-interactivebuildingsFutureofbuildingsinASEANAlargenumberofproprietaryprotocolsandaresistanceofsomemanufacturerstoacceptstandardisedapproachesmakesthisfieldveryfragmentedandlimitsinteroperabilityamongdifferentsmarttechnologies.However,avarietyofopenstandardprotocols(e.g.LonWorks,DeviceNet,BACnet,C-Bus,m-Bus,Modbus,KNX,someInstituteofElectricalandElectronicsEngineers[IEEE]standards)havebeendevelopedandarebeingusedindifferentcountries.TheOPCFoundationhasalsobeenmakingeffortstoencourageinteroperabilityamongmajorbuildingautomationstandards.UtilisationofcloudtechnologyinBEMSandHEMSprovidesopportunitiesfordemandresponseandpropertymanagement.Machinelearningandartificialintelligenceareusefulemergingtechnologiesthatcanimprovetheefficiencyofdatamanagementandanalysisinbuildings,aswellasspeedupoperationsthatwouldotherwisebetime-consumingtoevaluateanddecode.Thesetechnologiesareparticularlyeffectiveatpatternrecognitioninbuildingsoperationsandtriggeringrequiredresponsestotheminanautomaticmanner.BEMSandHEMScanofferbenefitstotheenergysystemsthroughthecontrolofcapacityandvoltage,ancillaryservicestothegrid,andintegrationwithvirtualpowerplants(VPPs)andotheraggregators.Building-to-gridlevelOpencommunicationprotocolscanhelpestablishinteroperability,connectvarioustechnologiesbetweenbuildingsandthegrids,andprovideautomatedcontroltomanagevoltageandqualityfluctuationsthatcouldresultfromDERs.OpenADRforadecentralisedanddemand-response-focusedapproachandIEEE2030.5forresidentialDERintegration,directsmartinvertercontrol,smartmeteringandautomationofdemandresponsearewell-knowninternationalprotocolsthatcanoffersuchalanguage.Somenationalandsubnationallegislationsarealreadyadoptingtheseprotocolstofacilitatebuilding-to-grid(B2G)interactionsandDERmanagement.Forexample,CaliforniaRule21requiresthatgeneratingfacilities(e.g.solarpanels,windturbines,batteries)thatutiliseinverter-basedtechnologiestointeractwiththeutilitiesmustdeployacommunicationsprotocol.AnotherimportanttoolforachievinginternationalstandardsoninteroperabilityisIEC61850forcommunicationinelectricalsubstations.Thisstandardaimstounifycommunicationsbyavoidingproprietaryprotocols,providinginteroperabilitytointegrateequipmentfromdifferentmanufacturersandprovidingflexibilityforthestandardtoevolveasnewusecasesemerge.Itisanticipatedthatthestandardwillevolveinthefuturetocoveradditionalareassuchaswind,solar,andhydrogeneration;batterystorage;andEVintegration.PAGE49IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsEnablersforefficientgrid-interactivebuildingsFutureofbuildingsinASEANAnotherstandard–IEEE1547-2018–focusesontheinterconnectionofDERs,includingsmartinverters,andrequiresthemtoprovidevarioustypesofsupporttothegrid.ThiswillhelpincreasetheamountofDERsthatcanbehandledbythegrid,especiallyastheirpenetrationincreases,whileimprovingthestabilityandqualityofelectricitysupply.MonitoringandoptimisationofdistributedenergyresourcesAdvancedmeteringinfrastructure(AMI)canplayakeyroleinmonitoringandmanagingenergyusageinbuildings,enablingreal-timedatacollectionandanalysis,aswellasdemandresponseandoutagedetection.Distributedenergyresourcemanagementsystems(DERMS)canhelpmonitor,co-ordinateandoptimiseDERoperationatthedistributiongridlevel.DERMSensuresgridreliability,efficientutilisationofDERsandintegrationofrenewableenergyresources.AggregatingDERsintoVPPsfurtherenhancestheiroptimisationanddispatchcapabilities,allowingforreal-timecontrolandoptimisationofenergyflows.AdvancedmeteringinfrastructureAMI,similarlytosmartmeters,providesopportunitiestomonitorandmanageenergyusageinbuildingswhileofferingamorecomprehensivesystem.Thisinfrastructureincludesavarietyoftechnologies,suchascommunicationnetworksanddatamanagementsystemsallowingfortwo-waycommunicationbetweenthesmartmeterandtheenergyproviderandenablingreal-timedatacollection,monitoringandanalysis.AMIcanalsoprovideadditionalfunctionalitiessuchasdemandresponse,outagedetection,andremotedisconnectionandreconnectionofservice.AMIatBrunswickElectricMembershipCorporationBrunswickElectricMembershipCorporationislocatedinsoutheasternNorthCarolina,UnitedStates,andservesover90000meters.InordertostartusingAMI,theCorporationhadtoinstallnewsubstationequipmentandreplaceallexistingmeters.AMIhelpedtosignificantlyimproveefficiencythrough:Bettermonitoring:hourlydataandvoltagereadingsareusedtomonitorhowthesystemisperforming,whichhelpstoidentifyirregularities(e.g.potentiallyoverloadedtransformers)thatcanbefixedbeforeanactualfailureoccurs.PAGE50IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsEnablersforefficientgrid-interactivebuildingsFutureofbuildingsinASEANMoreaccuratepaymentsystem:PrePayPowerthatallowscustomerstopayfortheirpowerinadvanceor“pay-as-you-go”schemethatallowscustomerstotrackandmanagetheirelectricityconsumptioninrealtime,eliminatingtheneedforamonthlybillandprovidingtheopportunitytoknowtheexactexpenditureontheactualelectricityused.AggregationofdistributedenergyresourcesEfficientbuildingsequippedwithsolarsystems,storageandEVsmartchangingandenabledbydigitaltechnologiesforinteractionwiththegridessentiallybecomeDERsthatoffernumerousbenefitstoboththegridandconsumers,asdiscussedabove.However,iftheyarenotproperlymanagedorintegrated,theycanalsohavenegativeimpactsonpowersystemsandgrids:Introducingvariabilityanduncertaintyinpoweroutputcanstraingridstability,leadingtoissuessuchasvoltagefluctuations,frequencydeviationsandpowerqualityproblems.ConcentrationsofDERsinspecificareascanresultinlocalisedgridcongestion.Forexample,whenexcessrenewableelectricityisfedintodistributionnetworks,itcanoverwhelmthecapacityoflocaltransformersandpowerlines.IndividualDERsmaynotprovidenecessarygridservices,suchasfrequencyregulationorvoltagesupport,whichdecreasestheirabilitytorespondtosystem-widegridneeds.ThedistributednatureofDERscanintroducenewcybersecurityvulnerabilitiestothegrid,aseachindividualDERunitrepresentsapotentialentrypointforcyberattacks,whichcandisruptgridoperationsandcompromisethesecurityandprivacyofgriddataandsystems.Addressingthesenegativeimpactsrequiresproactivemeasuressuchasadvancedgridmanagementsystems,gridcodesandregulationsthatpromoteDERintegration,enhancedgridinfrastructureplanning,andstandardisedcommunicationprotocolsforDERdevices.DERMScanfacilitatemanagementofvariousDERsthroughthecombinationofasoftwareplatformandhardwaredevicesdesignedtomonitor,co-ordinateandoptimisetheoperationofDERsatthelevelofadistributiongrid.ItprovidescomprehensivevisibilityandcontroloverindividualDERsandenablesutilitiesorgridoperatorstomanagetheintegrationoftheseresourceseffectively.DERMStypicallyincludefunctionalitiessuchasreal-timemonitoring,forecastingandoptimisationalgorithmstomanageandcontrolDERs.Usingsensordataandreceivercommunications,DERMScanprovidereal-timeco-ordinationofenergygenerationandstorageacrossdistributed,grid-connectedassets.PAGE51IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsEnablersforefficientgrid-interactivebuildingsFutureofbuildingsinASEANTheprimaryfocusofDERMSistoensuregridreliability,efficientutilisationofDERsandintegrationofrenewableenergyresources.Itenablesutilitiestobalancesupplyanddemand,managegridcongestion,andaddressvoltageandfrequencyfluctuationscausedbyDERs.DigitaltoolscanhelpnotonlymanageindividualDERsbutalsoaggregatethemintoasingleentitythatcanbecontrolledandoperatedasaunifiedsystem,suchasavirtualpowerplant.TheprimarypurposeofaVPPistooptimisetheuseanddispatchoftheseDERs.Byleveragingadvancedtechnologiesandcommunicationsystems,aVPPcanmonitorandmanagegeneration,consumptionandstorageofelectricityacrossmultiplesites.Itenablesreal-timecontrolandoptimisationofenergyflowstomeetdemandandsupplyrequirementsofthegridorspecificmarketconditions.AVPPismanagedbythecentralinformationtechnologysystemthatprocessesdatasuchasweatherforecasts,wholesaleelectricityprices,andoverallpowersupplyandconsumptiontrends.ThisdataanalysisenablestheoptimisationofdispatchableDERswithintheVPP,ensuringefficientoperationbasedontheprevailingconditions.ByaggregatingmultipleDERs,aVPPcancreateasubstantialcapacitycomparabletothatofatraditionalpowergenerator.AVPP’soperatorcansellelectricityorancillaryservicesthroughelectricityexchangesorthewholesalemarket,orbyofferingtheirservicestosystemoperators.WhileVPPsareconsideredanascenttechnology,theyhavebeguntoappearincountriesaroundtheworld.SomeVPPprojectsintheworldCountryDeveloperKeyfeaturesAustraliaTeslaTeslaandtheelectricityretailerEnergyLocalsaredevelopingSouthAustralia'sVPPwiththepurposeofreaching50000solarandhomebatterysystems.In2020,Teslahad1000Powerwallbatteriesonlineandisnowrollingoutphase3toanother3000houses.TheprojectallowedconsumerstosaveuptoAUD423(Australiandollars)peryearonelectricitybill.BrazilAESBrasilAESBrasilstarteddevelopingaVPP,thefirstofitskindinChinaBrazil,in2017incollaborationwithCERTIFoundation.TheCSGsecondphaseisexpectedtorequireaninvestmentofShenzhenUSD1.9million.PowerChina’sfirstVPPwaslaunchedinShenzhen,withacapacitySupplyof870MW,plannedtoincreaseupto1GWby2025.PAGE52IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsEnablersforefficientgrid-interactivebuildingsFutureofbuildingsinASEANJapanTeslaAsofAugust2022,theproject,calledMiyakojimaVPP,hadover300PowerwallbatteriesaspartoftheVPP.Teslaexpectstoinstall600Powerwallsbytheendof2023.SingaporeEnergyIn2019,EnergyMarketAuthorityandSembcorp,inMarketpartnershipwithNanyangTechnologicalUniversity,startedAuthoritydevelopingSingapore’sfirstVPP.TheVPPwilloptimisethepoweroutputofDERslocatedacrosstheislandandbalanceenergyfluctuationsduetosolarintermittency,takingintoaccountSingapore’spowergridandmarketconditionsthroughdemandforecastingandoptimisationalgorithms.VPPscanofferbothdemand-andsupply-sideflexibilitytothegrid.Demand-sideflexibilityisachievedbyaggregatingdemand-responseresourcesandenergystorageunits,enablingthemtorespondtogridrequirements.Supply-sideflexibilityisachievedbyoptimisingpowergenerationfromflexibleresourcessuchasco-generationplants,biogasplantsandutilisingenergystorageunits.Smartcampussystems,TheUniversityofQueensland,Brisbane,AustraliaThroughinstallinga1.1MW/2.15MWhbatteryandconnectingittothevirtualpowerplantmanagedbyEnelXUniversityofQueensland’sinAustraliawasabletooffset100%ofitselectricityneedswithrenewableenergy.TheuniversityhasenrolledthebatterystoragesystemintheEnelXenergymanagementinitiativethatenablesthebatterytobeusedforgridoptimisation.Theusecaseforthebatterywastomanagethecampuselectricitydemandsalongsideactingtosupportandreinforcetheelectricitygridthroughdispatchableload.Thebatterycanprovidearoundtwohoursofstoragecapacityfortheentireuniversityatfullpower.Theuniversity’sbatterysystemcansupportthegridbyprovidinginstantdispatchableloadcapacityifapowergenerationreductionortransmissionfailureisexperienced.Bydoingso,theuniversityisabletobenefitfromimprovedtariffsforon-sitebatteryenergystorage(i.e.chargingduringlowpricesandsellingduringhigh).TheinvestmentintheVPPbatteryhasenabledtheuniversitytosavearoundAUD74000initsfirstthreemonthsofoperationandanexpectedfullreturnontheAUD2.1millioninvestmentwithineightyears.Themajority(58%)oftherevenuefromthebatteryusewasfromthepaymentsmadebytheNationalElectricityMarketfrequencycontrolancillaryservicessystem,whichpaysforgridstability,whileafurther14%camefromavirtualcapthatactsasaninsuranceforthewholesaleelectricityspotmarketvolatility,andafurther28%forarbitrage.UsingthebatteryaspartofaloadmanagementsystemprovidedanumberofbenefitsfortheuniversityandtheVPP.ThisincludedimprovingeffectivecontrolPAGE53IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsEnablersforefficientgrid-interactivebuildingsFutureofbuildingsinASEANstrategiestomaximisethedailyarbitragerevenuerelatedtothevariabilityofthespotpriceuncertainty,andreducingtheperiodoftimethebatterieswereofflineduetonuisancesurgeprotectionsandnetworkoutagesimpactingthecontrolsystemarchitecture.ThevirtualpowerplantattheUniversityofQueenslandshowshowtheuseoflargeon-sitebatteriestooptimisethegridreliabilitythroughacombinationofmicrogridandvirtualpowerplant’sdispatchableloadprovidesanopportunityfororganisations,suchasuniversities,tobecome“prosumers”byactivelyparticipatinginthegridpowermarket.Investinginenergyefficiencyinvestmentsandsmartbuildingpowerloadmanagementalongsideon-sitebatterystorageandvirtualEMSwillmeanthatbehind-the-wirestoragesolutionsareoptimallydesignedforB2Ginteractivity.ManagementandaggregationofDERscanbefacilitatedbymeansofartificialintelligencethatoffersthecapabilitytoconstantlyoverseenumerousdevicesandpromptlydeterminetheallocationofresourcesinresponsetoprevailingfactorssuchasdemand,supply,weatherconditionsandotherdynamicvariables.Artificialintelligencecanalsousehistoricaldataanalysisandpredictivemodellingforreal-timedecision-making.Thisallowsforgeneratingaccurateforecastsregardingtheimpactofthesevariablesontheelectricitysystemintheshort,mediumandlongterms.Virtualpowerplantscanalsoplayavitalroleinpeer-to-peer(P2P)solarelectricitytrading(hereafterP2Penergytrading)byenablingtheefficientandtransparentexchangeofrenewableenergybetweenconsumers.P2Penergytradingreferstothedirectbuyingandsellingofsolar-generatedelectricitybetweenlocalisedenergyproducers(oftenbuildingswithrooftopsolarPVpanels)andconsumers,withouttheinvolvementoftraditionalutilitycompaniesasintermediaries.Thistypeoftradingusuallyrequirestheuseofsmartmeterstomeasuretheamountofgeneratedandconsumedelectricity,andadigitalplatformorsoftwaretoconnectsolarpanelownerswithpotentialbuyersandtotracktheelectricitybeingsold,storedorboughtwithinthenetwork.VPPsprovidesuchaplatformwithnecessaryinfrastructureandcontrolmechanisms,aswellasenableanefficientandtransparentexchangeofrenewableenergyduringthetradingprocessamongdifferentparties.P2Penergytradingisstillarelativelynewconceptandthepotentialforimplementationofrelatedprojectsvariesdependingontheregionandregulatoryframework.ItrequiressupportivepoliciesandregulationsthatenabletheintegrationofDERsandthedevelopmentofappropriatetradingplatforms.SeveralPAGE54IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsEnablersforefficientgrid-interactivebuildingsFutureofbuildingsinASEANcountriesaroundtheworldareimplementingrelatedpilotprojectstoassesspotentialbenefitsanddrawbacks.SomeP2PenergytradingprojectsaroundtheworldCountryProjectnameKeyfeaturesColombiaComunidadTheprogrammeinvolves24families,43solarpanelsSolarLaand2distributedgenerators,whichinjectnearly3000kWhpermonthintothenationalgrid.TheEstecha–EldistributionofbenefitsisexpectedtoreducetheenergySalvadorbillby15%.GermanyLandauInLandau,20householdscantradelocallygeneratedIndiaMicrogridrenewableelectricityonaplatformviaautomatedProjectsoftwareagents,whiledataarecollectedthroughblockchain-enabledsmartmetersandtransmittedviaaBlockchainmobileapp.platforminLucknowThefirstP2PblockchaintrialinIndiapromotedbytheIndiaSmartGridForum(ISGF)andPowerLedger.SuchUnitedCommUNITYtechnologyhasreducedtheenergymarketbuypricebyKingdom43%withrespecttotheretailtariff.UnitedStatesBrooklynTheprojectisbasedinBrixton,London,anditenablesMicrogridconsumerstotradesolarenergywitheachotherviaamobileapp.Theparticipantsreducedtheirenergybillsbymorethan20%.Aself-containedsystemcomposedofsolarpanelsandbatteriesthatusesaP2Pblockchain-basedtradingplatformtechnologytoenableparticipantstobuyandsellenergy.Morethan130buildingsparticipatedintheprogrammewhenitwaslaunched,andtheprojectisstillexpandingtoday.LoadandfrequencymanagementLoadandfrequencymanagementstrategiescouldincludedemandresponseprogrammes,dynamicelectricitytariffsandsmartchargingforEVs.SmartinvertersplayanimportantroleinharnessingflexibilitypotentialofDERs,includingbuildings,andoptimisingtheoperationoftheelectricgrid.Demandresponse,dynamicelectricitytariffsandsmartchargingforEVsallowconsumerstovoluntarilyreducetheirelectricitydemandduringpeakperiodsorshifttheirusagetooff-peakhours,reducingstrainonthegridandpromotingtheadoptionofrenewableenergy.SmartchargingsystemsforEVsenableintelligentmanagementandoptimisationofchargingprocesses,balancingtheloadonthegridandmaximisingtheuseofrenewableenergysources.SmartinverterssupportPAGE55IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsEnablersforefficientgrid-interactivebuildingsFutureofbuildingsinASEANtheintegrationofsolarenergyandotherDERsintothegrid,providinggridsupportfunctionssuchasvoltageregulationandfrequencysupport.Theseloadandfrequencymanagementstrategiesareessentialforensuringgridstability,reducingpeakdemand,andpromotingamoreefficientandsustainableenergysystem.Demand-responseprogrammesDemandresponseenablesconsumerstovoluntarilyreducetheirelectricitydemandwhentheelectricitypricesarehighinexchangeforsystem-widebenefits.Demandresponseinvolvesshiftingorsheddingelectricitydemandtoprovideflexibilityinwholesaleandancillarypowermarkets,helpingtobalancethegridandusuallyreduceelectricitycosts,asmoredemandtakesplaceduringthetimeswhenelectricitypricesarelower.Moderndata-drivendemandresponseprogrammestypicallyusereal-timevalidationofavailabledemandresponsethroughtwo-waycommunicationwithconnectedelectricity-consumingappliancesandequipment.Ausercanoftenoverwritethedemandresponsesettings,whenitisneeded.Generally,therearetwomaindemandresponsemechanisms:i)implicit,orprice-basedprogrammes,whichusepricesignalstoencourageconsumerstoshiftconsumptionandadapttheirbehaviourtosaveenergy;andii)explicit,orincentive-basedprogrammes,whichmonetisedemandresponsethroughdirectpaymentstoconsumers.Demand-responseprogrammesinsomecountriesCountryStandardsorDescriptionregulationAustraliaAS4755–DemandDemandresponsecapabilityandmodesofResponseStandardappliancesandsmartdevices.IndiaTataPower-DDLTheprogrammecovers55000residentialJapanconsumersand6000largecommercialandPost-3.11“DemandindustrialconsumerstoprovideloadflexibilityinResponse”peakperiods.Theprogrammeaimsatachieving200MWofpeakcapacityreductionby2025.Imposesanacross-the-board15%reductionofpeakdemandonlarge-scaleconsumerswithcontractpowerof500kWormore.PAGE56IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsEnablersforefficientgrid-interactivebuildingsFutureofbuildingsinASEANSouthKoreaEnergyPauseResidentialdemandresponseforsmallProgrammeconsumersbelow70kW.Automateddemandresponsesysteminterfacebetweenthesmartapplianceandthecontrollingentity.NetherlandsDecree2022–14201Producersandconsumersabove60MWmustprovideflexibilityinhighlycongestedareas.UnitedStatesSenateBill49–TheMandatedtheCaliforniaEnergyCommissiontoFlexibleDemandadoptstandardsforappliancestofacilitatethedeploymentofflexibledemandtechnologies.ApplianceStandardsDynamicelectricitytariffsDynamicelectricitytariffs(e.g.time-of-usetariffsordynamicpricing)areatypeofelectricitypricingsystemthatchargesdifferentpricesforelectricitydependingonthetimeofdayordayoftheweek.Withtime-of-usetariffs,electricitypricesforconsumersaretypicallyhigherduringpeakdemandperiodsandlowerduringoff-peakhours.Thispricingstructureisintendedtoencourageconsumerstoshifttheirelectricityusagetooff-peakhours,whenelectricitymaybecheapertoproduceandmaycomefromcleanersources,andthepowergridislessstressed.Time-of-usetariffsarebecomingincreasinglyimportantaspowergridsmodernisetoincorporatemoreVREandcanmakeitdifficultforgridoperatorstobalanceelectricitysupplyanddemandinrealtime,whichcanleadtopoweroutages,blackoutsandotherissues.Time-of-usetariffscanhelptoreducepeakdemandandmayalsoreduceoverallelectricityconsumption.Bycharginghigherpricesduringpeakdemandperiods,consumersareincentivisedtouselesselectricityortoshifttheirusagetooff-peakhours,thereforereducingstrainonthepowergridduringtimesofhighdemand,whichleadstolowerelectricitybillsforconsumers.Time-of-usetariffsarealsoimportantforpromotingtheadoptionofEVs.WithEVuptakeincreasing,thereisagrowingneedforcharginginfrastructurethatcanaccommodatetheincreaseddemandforelectricity.Time-of-usetariffscanhelptoincentiviseconsumerstochargetheirEVsduringoff-peakhours.AstudyintheUnitedKingdomhasshownthatcustomersusinghourlydynamicpricingthroughsmartmetershaveshifted28%oftheirdemandfrompeakperiodsandonaveragesavedaroundGBP180ontheirannualbills.EVsmartcharginginbuildingsTheEVmarketisexperiencingrapidexpansion,withsalessurpassing10millionunitsin2022globally.In2022,electriccarsaccountedfor14%ofallnewcarsales,aPAGE57IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsEnablersforefficientgrid-interactivebuildingsFutureofbuildingsinASEANsignificantincreasefromapproximately9%in2021andlessthan5%in2020.Itmeansthatnearlyoneinfivecarssoldgloballythisyearwillbeelectric.TheincreasingadoptionofEVsintheworldisalsodrivingthedemandfortheircharginginfrastructure.Mostchargingdemandsarecurrentlyfulfilledthroughcharginginbuildings(beitathomeorinnon-residentialbuildingsthatserveasworkorpublicplaces),makingEVcharginganadditionalenergy-consumingenduseinthebuildingssector.Thereis,however,agrowingneedforpubliclyaccessiblechargerstoensurethesamelevelofconvenienceandaccessibilityasrefuellingforinternalcombustionenginevehicles.Thisisparticularlycrucialindenselypopulatedurbanareaswhereaccesstohomechargingislimited,makingpubliccharginginfrastructureavitalfactorinfacilitatingtheadoptionofEVs.Asof2022,therewere2.7millionpublicchargingpointsworldwide,withover900000installationsoccurringin2022alone.Thisrepresentsa55%increasecomparedwiththelevelsin2021.SmartchargingforEVsoffersintelligentmanagementandoptimisationofEVchargingprocesses.Itinvolvesutilisingadvancedtechnologiesandcommunicationsystemstoco-ordinateandcontrolthechargingofEVs,takingintoaccountfactorssuchaselectricitydemand,gridcapacityanduserpreferences.Smartchargingcanbalancetheloadonthebuilding'selectricalsystembydistributingandschedulingchargingsessionsbasedonavailablecapacity.Itoptimiseschargingtimestoavoidoverloadingthegridduringpeakdemandperiodsandensuresthatotherbuildingoperationsarenotdisrupted.Thishelpspreventelectricitydemandspikesandreducestheneedforcostlyinfrastructureupgrades.Thetimingofsmartchargingcanalsobeco-ordinatedwiththeavailabilityofVRE.Smartchargingcantakeadvantageoftime-of-useelectricitypricing.Byschedulingchargingduringoff-peakhourswhenelectricityratesarelower,EVownerscanbenefitfromreducedchargingcosts.Smartchargingsystemscancommunicatewiththepowergrid,allowingforbidirectionalflowofelectricity.Suchvehicle-to-gridcapabilitycanallowEVstoparticipateindemandresponseprogrammeswhereexcesselectricitystoredinbatteriescanbefedbackintothegridduringpeakdemandperiodsorusedinabuildingasabackuppowersourceintheeventofapoweroutage–inthiscaseEVscanservetheroleofdistributedenergystorage.AtypicalEVstoresabout68kWhinitsbattery,whichmeansthatitcanpoweranaveragehomeintheUnitedStatesformorethanthreedaysifitisnotusedfortransportation.PAGE58IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsEnablersforefficientgrid-interactivebuildingsFutureofbuildingsinASEANChargingPerksPilot,XcelEnergy,UnitedStatesTheChargingPerksPilotbyXcelEnergyisaprogrammethatisdesignedtobetterutilisethechargingandcapacityofEVstooptimisetheuseofrenewableenergyproductionandlowgriddemand.XcelislookingtoproactivelyaddressandmanagethepeakdemandfromEVchargingandmatchthiswithrenewableenergygenerationtomakeuseoftheEV’sabilitytovaryitschargingdemandsandcapacity.TheprogrammeinvolvesworkingwithseveralEVcompanies(BMW,Ford,GeneralMotors,HondaandTesla)withtheintentiontoattractaround600EVcustomersinColorado.ItwillpartnerwiththemanufacturerstoaccesstheEVcharginginformationwhenpluggedintothegridonLevel1andLevel2chargingstationstodeterminewhenandhowmuchchargingisneededandtomatchthiswithavailablerenewablegenerationfromthegrid.TheEVmanufacturerswillusethechargingdataalongwithdatafromtheutilitytocreateachargingschedulethatensuresacustomervehicleischargedandavailablewhenneededandoptimisedtochargewhentheconditionsaremostsuitableforusingrenewableenergyandlowdemandsonthegrid.TheprogrammeisfocusedoncustomerswithEVswhoareonbothtime-of-usetariffsandnon-time-of-usetariffstocomparetheratedesignsonchargingbehaviour.CustomerstakingpartinthepilotreceiveuptoUSD300forparticipating,whichisequivalenttoaround2000kWhoraround28fullchargesofa75kWhEVbattery.Initialanalysisshowsthattheoverallcost-effectivenessoftheprogrammeisexpectedtobehigh,withtheutilityabletoobtaininformationonhowtoscaletheprogrammetoachievepowerpeakkilowattsavings,improvesystemoptimisationtoaddresschangesinpeakdemandtimingfromchangesinEVchargingbehaviours,andevaluatebenefitsofautomatingtheincreaseinEVchargingdemandduringperiodsofwindenergycurtailment.SmartinvertersThecommoninterfacepointbetweenthegridandenergygeneratingandstoringresourcesistheinverter,whichconvertsDCvoltagefromrenewableenergyandstoragesystemsintousable,grid-qualityACvoltage.SmartinvertersareanemergingtechnologythatcanhelpintegratesolarenergyandotherDERsintotheelectricgrid.Liketraditionalinverters,smartinvertersconverttheDCoutputofsolarpanelsintotheACthatcanbeusedbyconsumersintheirhomesandbusinesses.Smartinvertersgobeyondthisbasicfunctiontoprovidegridsupportfunctions,suchasvoltageregulation,frequencysupportandride-throughcapabilities.AsthenumberofDERsonthegridincreases,theneedforadditionalinverterfunctionalityhasgrown.Additionally,existingcodesandtechnicalstandardsPAGE59IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsEnablersforefficientgrid-interactivebuildingsFutureofbuildingsinASEAN(e.g.IEEE1547andUL1741)arebeingupdatedtoensurethatsmartinvertercapabilitiescanbefullyrealised.Fortunately,smartinvertershaveavarietyofadvancedfunctionsthatcanhelpthegridreliablyaccommodatemoreDERs,suchasrooftopsolarandenergystorage.TheVolt-Wattfunctionisoneoftheadvancedfeaturesofsmartinvertersthatenablesthemtomonitorthevoltagewithintheirspecificareaofthepowergrid.Thismonitoringcapabilityofferssignificantadvantagesinsupportingtheoverallgridfunctionality.Ifthevoltageexceedsnormallevels,theinvertercanadjusttheamountofpowerbeingfedfromthesolararrayorotherDERs(suchasenergystorage)tothegrid.Thisadjustmenthelpspreventissuesrelatedtopoorpowerquality.However,insomecases,thisfunctioncanhaveanegativeimpactonindividualcustomerssinceitreducestheamountofsolarpowerbeingproducedwhenactivated.California,aleaderinmandatingtheuseofsmartinverterfunctionstoaccommodatemoreDERsonthegrid,standsoutbyrequiringtheimplementationoftheVolt-Wattfunctionforallcustomerswithdistributedsolarsystems.PAGE60IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsAssessmentofopportunitiesforefficientFutureofbuildingsinASEANgrid-interactivebuildingsinASEANAssessmentofopportunitiesforefficientgrid-interactivebuildingsinASEANInvestinginenergyefficiencyanddigitalisationisbecomingcriticalformanagingtheIEA.CCBY4.0.increaseinenergydemandintheAssociationforSoutheastAsianNations(ASEAN)regionwithgrowingpressuresofpopulationgrowth,urbanisationandanexpandingconstructionsector.Earlyactionsthatprioritisethepotentialofferedbybuildingsintermsofenhancedefficiency,flexibleelectricitydemandandsmartlocalenergystoragewillensuretheASEANelectricitygridisresilienttogrowingdemand.Byinvestinginenergyefficiencymeasures,suchasenergy-efficientappliances,high-performancebuildingenvelopes(includingpassivedesignstrategies)andmaterials,andintelligentbuildingsystems,buildingscanreduceenergydemandandaddresiliencetotheelectricitygridthroughgreaterflexibilityandinteractivity.Digitalisationplaysapivotalroleinoptimisingbuildingperformanceandunlockingenergyefficiencypotentialinthecontextofgriddecarbonisation.Throughtheadoptionofdigitaltechnologiessuchassmartmeters,sensorsandcontrollers,aswellasbuildingautomationsystems,anddataanalytics,buildingscanefficientlymanagetheirelectricityconsumption,respondtodemandfluctuationsandcontributetogridstability.Thesedigitalsolutionsenablereal-timemonitoring,analysisandcontrolofenergyusage,allowingfortimelyadjustmentsandimprovements.ByembracingdigitalisationandefficiencymeasuresinbuildingswithinASEAN,arangeofbenefitscanberealisedincludingimprovedenergysecurity,reducedGHGemissions,andloweroperationalcostsforbuildingownersandoccupants.Additionally,investinginthecleanenergyanddigitalsectorscansupportjobopportunitiesandhelpdriveeconomicgrowthandtechnologicalinnovationformodernelectrification.Inthischapter,theframeworkpresentedinthepreviouschaptertointroducetheenablersforbuilding-to-gridinteractivityisappliedtoanalysethecurrentstatusoftheseenablersinASEANcountries.Foreachenabler,severalevaluationcriteriaweredeterminedtocapturedifferentpotentialstagesacountrycouldbeatforagivenenablerdependingonitsuniquecontext.Foreachcountryandenableroneofthefourevaluationcriteriaisselectedbasedonthecollecteddataandinformationtoassessitscontributiontoenablingtheuptakeofefficientgrid-interactivebuildings(EGIBs).PAGE61EfficientGrid-InteractiveBuildingsAssessmentofopportunitiesforefficientFutureofbuildingsinASEANgrid-interactivebuildingsinASEANEvaluationcriteriaforenablersforefficientgrid-interactivebuildingsCategoryEnablersEvaluationcriteriaEnergyefficiencyHigh-performingNomandatoryorVoluntaryMandatoryMandatorybuildingenvelopesvoluntarybuildingenergybuildingenergybuildingenergycodeisavailablecodeisavailablecodeisavailableEnergy-efficientbuildingenergyforallbuildingsappliancesandcodesareMEPSareforsomeavailableavailableforabuildingsbasedMEPSareequipmentfewtypesofavailableforallNoMEPSformajorappliancesondefinedmajorappliancescriteriathetypesofusedinbuildingsmajorappliancesMEPSareareavailableavailableformostofthetypesofmajorappliancesDecarbonisationOn-siterenewableNopoliciesorVoluntaryMandatoryMandatoryenergy(RE)programmesforpoliciesorpoliciesforon-policiesforon-generationprogrammesforon-siteREon-siteREsiteREsiteREOn-siteenergygenerationingenerationaregenerationforgenerationforallstoragebuildingsareavailablesomebuildingbuildingtypesavailableVoluntarytypesareareavailablepoliciesoravailableNopoliciesorprogrammesforMandatoryprogrammesforon-siteenergyMandatorypoliciesforon-on-siteenergystorageinpoliciesforon-buildingsaresiteenergystorageinavailablesiteenergystorageforallbuildingsarestorageforsomebuildingtypesareavailableavailablebuildingtypesareavailableSmartnessInternetofthingsIoT/SmartInitial/pilotstageIoT/SmartIoT/Smart/smartsensorssensorsandofIoT/SmartsensorsandsensorsandcontrolsarenotsensorsandcontrolsareusedcontrolsareveryandcontrolsusedinbuildingsinbuildingsoftencommonincontrolsadoptionBuildingenergyBEMSorBASinbuildingsBEMSorBASbuildingsmanagementarenotusedinareusedin(BEMS)&Initial/pilotstageBEMSorBASautomationbuildingsofBEMSorBASbuildingsoftenareverycommonsystems(BAS)SmartmetersareadoptioninSmartmetersareinbuildingsSmartmetersinnotusedinbuildingsusedinbuildingsbuildingsbuildingsSmartmetersareInitial/pilotstageoftenverycommoninSmartgridsSmartgridplansofsmartmetersarenotavailableSmartgridplansbuildingsadoptioninareavailableandbuildingsComprehensivesettargets,butsmartgridplansHigh-levelsmarttheirgridplansareareavailable,implementationwithwell-definedavailable,buttheisnotwelltargetsanddefinedtargetsandimplementationimplementationarenotwelldefinedPAGE62IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsAssessmentofopportunitiesforefficientFutureofbuildingsinASEANgrid-interactivebuildingsinASEANCategoryEnablersEvaluationcriteriaBuilding-to-gridEquipmentNopoliciesonVoluntaryMandatoryMandatoryinteractionlevelopenpoliciesonopenpoliciesonopenpoliciesonopencommunicationcommunicationcommunicationBuildingsTwo-waycommunicationcommunicationstandardsforalllevelstandardsforstandardsforstandardsformajorappliancesappliancesareappliancesaresomemajorBuilding-to-appliancesareareavailablegrid(B2G)availableavailableavailableMandatorylevelNopoliciesonVoluntarypoliciesonopenopenpoliciesonopenMandatorycommunicationcommunicationpoliciesonopenstandardsforBAcommunicationstandardsforBAcommunicationareavailableforstandardsforstandardsforBAareavailableareavailableforallbuildingsbuildingsautomation(BA)VoluntarysomebuildingMandatorypoliciesonB2GtypespoliciesonB2GNopoliciesoninteroperabilityinteroperabilityB2GMandatoryareavailableforareavailablepoliciesonB2GallbuildingtypesinteroperabilityinteroperabilityareavailableareavailableforsomebuildingtypesDERsmonitoringandAdvancedAMIisnotusedInitial/pilotstageAMIisusedoftenAMIisveryoptimisationmeteringofAMIadoptioncommoninfrastructureAggregationofDERsisnotInitial/pilotstageAggregationofAggregationof(AMI)presentofaggregationofDERsisusedDERsisveryAAggggrereggaatitoionnDERsoftencommonooffddisistrtirbibuuteteddeenneergrgyyreressoouurcrceess(DERs)Demand-DRprogrammesVoluntaryMandatoryMandatoryresponsearenotavailableautomatedDR-policiesforpoliciesforprogramsautomatedDRautomatedDRpoliciesorareavailableforareavailableforLoadandfrequencymanagementDynamicDynamicmanualDRcertaintypesofalltypesofuserselectricityelectricitytariffsprogrammesarearenotavailableavailableforusersMandatorytariffscertainusersdynamicMandatoryEVsmartEVsmartVoluntarydynamicelectricitytariffscharginginchargingisnotdynamicareavailableforbuildingsusedinbuildingselectricitytariffselectricitytariffsalltypesofusersareavailableforareavailableforcertaintypesofcertaintypesofEVsmartchargingisveryusersuserscommoninInitial/pilotstageEVsmartbuildingsofEVsmartchargingisusedcharginginbuildingsoftenadoptioninbuildingsSmartSmartinvertersInitial/pilotstageSmartinvertersSmartinvertersinvertersarenotusedofsmartinvertersareusedinareverycommonadoptionbuildingsoftenIEA.CCBY4.0.Basedontheaggregationofselectedevaluationcriteriaacrossalltheenablers,eachcountryisplacedinoneofthethreegroups:Explorers,AdoptersorInnovators.Foreachcountry,grouppolicy-orientedrecommendationsareprovidedinthenextchaptertofacilitatetheprocessofadoptingpracticesandsolutionstoincreasetheuptakeofEGIBs.ThemainpurposeofthisanalysisistodeterminewhereeachASEANcountrystandsinitsjourneytorealisingtheopportunitiesofEGIBsaswellastoproviderecommendationsforimprovement,andnotfordirectcomparisonsbetweenthePAGE63IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsAssessmentofopportunitiesforefficientFutureofbuildingsinASEANgrid-interactivebuildingsinASEANcountries.Theresultsoftheassessmentwerediscussedwithexpertsfromeachcountrytoverifytheaccuracyoftheassessment.Subsequentsectionsarestructuredaroundtheenablers,andforeachASEANcountrytheassessmentofitscurrentstatusisindicatedwiththecolourcorrespondingtotheselectedevaluationcriteriabasedonthecollecteddataandinformation.ASEANcountriesareatdifferinglevelsintheirstatusofadoptingEGIBssolutions.IEAanalysisshowsthatthereareseveralcountriesthatareinnovatingandadvancingtheiradoptionofpoliciesandtechnologiestosupportEGIBs,alongwithanumberofcountriesthathaverecentlybeguntoadoptpoliciesanddemonstrateEGIBtechnologies,andothersthatcontinuetoworkonestablishingafoundationforutilisingEGIBs.ProcessofassessingenablersforEGIBsandformingcountrygroupswithtailoredrecommendationsCategoryEnablersEvaluationCountrygroupscriteriaEnergyHigh-performingbuildingenvelopesefficiencyEnergy-efficientappliancesandequipment•-DecarbonisationOn-siterenewableenergygenerationExplorers•-SmartnessOn-siteenergystorage•-Building-to-gridInternetofthings/smartsensorsandcontrolsinteractionBuildingenergymanagement&automationsystemsAdopters•-Innovators•-Smartmetersinbuildings•-Smartgrids•-Two-waycommunication•-DERsmonitoringandoptimisation•-LoadandfrequencymanagementIEA.CCBY4.0.PAGE64IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsAssessmentofopportunitiesforefficientFutureofbuildingsinASEANgrid-interactivebuildingsinASEANImprovingenergyefficiencyofbuildingsrequiresstrongerenforcementofenergyperformancerequirementsHigh-performingbuildingenvelopesBruneiCambodiaIndonesiaLaoPDRMalaysiaMyanmarPhilippinesThailandSingaporeVietNamDarussalamNomandatoryorVoluntaryMandatoryMandatoryvoluntarybuildingenergybuildingenergybuildingenergycodeisavailablecodeisavailablecodeisavailablebuildingenergyforallbuildingscodesareforsomeavailablebuildingsbasedIEA.CCBY4.0.ondefinedcriteriaEnergyefficiencyinbuildingsintheASEANregionisacrucialaspectofreducingenergyconsumptionandGHGemissions.Theimplementationofenergyefficiencymeasures,supportedbyrelevantpolicies,canoffsettheprojectedgrowthinenergyconsumption.Byimprovingtheenergyperformanceofbuildingenvelopesandenergyefficiencyofsystems,increasingrenewableenergyuse,andenhancingenergyaccessforvulnerablehouseholds,CO2emissionsfrombuildingscanbereducedbyover60%by2040.However,strongerenforcementofbuildingenergycodesisnecessarytoachievethesegoals.UndertheIEAStatedPoliciesScenario,bothfinalenergyconsumptionandCO2emissionsinbuildingsinASEANwillcontinuetogrowwithoutambitiouspolicyactions.However,theimplementationofenergyefficiencymeasuresinallbuildingssupportedbyrelevantpoliciesthroughouttheregion(underaSustainableDevelopmentScenario)willallowforoffsettingmostofthegrowthinenergyconsumption,whileprovidingmodernenergyaccessforall.Improvingtheenergyefficiencyofbuildings,increasingrenewableenergyutilisation,andphasingouttheuseoftraditionalbiomassandswitchingtocleancookingandelectricity,whileenhancingtheenergyaccessofvulnerablehouseholdsacrosstheASEANregion,canresultinmorethana60%reductioninCO2emissionsfrombuildingsby2040from2020levels.Buildingsintheregionaccountforalmostaquarteroftheregion’stotalfinalenergyconsumption(TFEC)andenergy-relatedCO2emissions.TheTFECinthebuildingssectorisprojectedtoincreasebyapproximately45%from29.3milliontonnesofoilequivalent(Mtoe)in2020to42.5Mtoein2030,andmorethantripleby2050,reachingabout92Mtoe.Thus,improvingenergyefficiencyinbuildingsandappliancesisanimportantstepforASEANtoreduceenergyconsumptionandGHGemissions.PAGE65IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsAssessmentofopportunitiesforefficientFutureofbuildingsinASEANgrid-interactivebuildingsinASEANFinalenergyconsumption(left)andtotalCO2emissions(right)oftheASEANbuildingssectorFinalenergyconsumptionintheASEANbuildingsectorTotalCO2emissionsfromASEANbuildingssector7000700PJMtCO26000600500050040004003000300200020010001000202020302040020202030204020192019StatedPoliciesScenarioSustainableDevelopmentscenarioIEA.CCBY4.0.TotalCO2emissionscomprisedirectandindirectemissions.Directemissionsincludethosefromcoal,oilandnaturalgas.Indirectemissionsaretheemissionsfrompowergenerationplants.Notes:PJ=petajoules;Mt=milliontonnes.Inthisfigure,“buildings”energyuseandemissionsrefertotheoperationalenergyconsumption,anddonotincludetheconstructionphaseortheenergyandemissionsassociatedwithmanufactureofmaterials.Source:AdaptedfromIEA(2021),WorldEnergyOutlook2021.Datacollectedfornon-residentialbuildingsinseveralASEANcountriesindicatethattheimplementationofenergyefficiencymeasuresandadherencetothecertificationschemesavailableinASEAN,suchasEDGE,GreenMark,LeadershipinEnergyandEnvironmentalDesign(LEED),andGreenBuildingIndex,haveledtoimprovementsinenergyconsumption.Onaverage,buildingsthatwerecertifiedwiththeseschemesdemonstratedenergyuseintensitiesbetween20-70%lowerthanthatofatypicalbuildingofthesametype.Underthesecertificationschemes,avarietyofenergyefficiencymeasurescouldbeimplementedinbuildings,suchasefficientbuildingenvelopes,light-emittingdiode(LED)lightingwithsmartcontrols,shading,insulation,rooftopsolarpanels,buildingautomationsystems,andenergymanagementsystems(EMS).PAGE66IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsAssessmentofopportunitiesforefficientFutureofbuildingsinASEANgrid-interactivebuildingsinASEANTypicalenergyuseintensityinASEANacrossdifferenttypesofnon-residentialbuildingsIEA.CCBY4.0.Notes:kWh=kilowatt-hours;m2=squaremetre;EUI=energyuseintensityinkWh/m2.Themiddlelineshowsthemedianofthenon-exhaustivedataset.TheEUIdatawerecollectedfromgovernmentdatabases,availablepublicationsandothersecondarysourcescoveringmorethan800buildingsoffournon-residentialbuildingstypes(offices,retail,hotels,hospitals)ineightASEANcountries:53inBruneiDarussalam,153inIndonesia,123inLaoPDR,21inMalaysia,59inthePhilippines432inSingapore,76inThailand,148inVietNam.Thediamond-shapedredmarkerindicatestheEUIreductionafterenergyefficiencyisimplemented.AccelerationofenergyefficiencyimprovementsinbuildingsinASEANrequirescomprehensivepolicydevelopmentandsupport.Mandatingandenforcingbuildingregulationswithminimumenergyperformancerequirementsforbuildingsandotherprovisionsforenergyefficiencyimprovementsarecrucialforprovidingamarketpushtowardsmoreenergy-efficientbuildings.SeveralASEANmemberstateshavealreadyadoptedsomeformofbuildingenergycodes(BECs).PAGE67IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsAssessmentofopportunitiesforefficientFutureofbuildingsinASEANgrid-interactivebuildingsinASEANStatusofbuildingenergycodes,buildingscertificationandlabellinginASEANIEA.CCBY4.0.Source:IEA(2022),EnergyEfficiency2022.InSingapore,theBuildingandConstructionAuthorityestablishedaseriesofmandatoryenergyefficiencyregulationsfornewandexistingbuildingsthroughitsBuildingControlAct(EnvironmentalRegulations2008).TheBuildingandConstructionAuthority’sregulationsaremandatedforneworexistingbuildingswithagrossfloorareaof5000m2ormore.Theregulationscoverseveralenergyefficiencyareas,includinglighting,airconditioningandbuildingenvelopedesign.TheIndonesiangovernment,throughtheMinistryofPublicWorksandHousingregulationno.21/2021,regulatesthegreenbuildingperformancefornewandexistingbuildings.Thisregulationismandatoryforbuildingswithaminimumof5000m2ofgrossfloorareaandalsosetsthecriteriaforenergyefficiencyevaluation,suchasbuildingenvelope,ventilationsystems,airconditioningandlighting.ThailandannouncedtheNotificationoftheMinistryofEnergyonDeterminationofBuildingDesignStandardsforEnergyConservationB.E.2564(2021)asthenewBEC.ThenewnotificationreplacedtheoldBEC,whichwasestablishedin2009.ThenewBECisapplicabletobothnewbuildingsandthoseundergoingmajorrenovation,withthetotalgrossfloorareaofmorethan2000m2,whichcanbeattributedtooneoftheninebuildingtypes:education,officebuildings,theatre,conventionhall,entertainment,departmentstore,hotels,hospitalsandcondominiums.PAGE68IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsAssessmentofopportunitiesforefficientFutureofbuildingsinASEANgrid-interactivebuildingsinASEANThePhilippinesalsodevelopedtheGuidelinesonEnergyConservingDesignofBuildingstoestablishtheminimumrequirementsfortheenergy-efficientdesignfornewandretrofitbuildings.Theseguidelinesapplytotwotypesofdesignatedestablishments:Type1,whicharebuildingsthatconsumedbetween500000kWhand4millionkWhofenergyinthepreviousyear,andType2,whicharebuildingsthatconsumedmorethan4millionkWhofenergyannually.VietNamrenewedtheNationalTechnicalRegulationonEnergyEfficiencyBuildingsin2017.Theregulationprovidesmandatorytechnicalstandardsindesignforthenewandretrofitbuildingwithagrossfloorareaof2500m2orlarger.Theregulationappliestobuildingsofthefollowingtypes:offices,hotels,hospitals,schools,commercialandresidential.MyanmaralsoreviseditsBECin2020,whichreplacedthepreviousregulationin2016.WhileMyanmar’sBECcontainsanumberofprovisionsfortheminimumdesignstandardsthatpromoteenergyefficiencyandgreenbuildingcriteria,itremainsvoluntaryforimplementation.InBruneiDarussalam,theMinistryofDevelopment,alongwiththeEnergyDepartmentPrimeMinister’soffice,hasdevelopedEnergyEfficiencyandConservationbuildingguidelinesfornon-residentialbuildings.Theguidelinesareregulatorymechanismsforbuildingstoestablishenergyefficiencyandconservationstandards.Thebuildingguidelinesaremandatoryforallgovernmentbuildingsandvoluntaryforallcommercialbuildings.InMalaysia,throughtheMalaysianStandard1525:2019,thegovernmentenactedavoluntaryBECfornon-residentialbuildings.Thiscodefocusesonthearchitecturalandpassivedesignstrategy,buildingenvelope,efficientairconditioningandlighting,EMS,applicationofrenewableenergyinnewandexistingnon-residentialbuildings,andbuildingenergyperformance.ForCambodiaandLaoPDR,BECsarecurrentlystillbeingdeveloped.Financialmechanismscouldhelptoencouragetheachievementofhigherlevelsofbuildingsenergyperformancegoingbeyondtheminimumrequirementsforenergyefficiencyestablishedbytheregulations,aswellaspromotetheuseofspecificenergy-efficientanddigitalsolutions.SeveralcountriesinASEANhaveimplementedvariousfinancialpolicyinstrumentstosupportenergyefficiencyandconservationprojectsinbuildings,including:Thailand(e.g.EnergyEfficiencyRevolvingFundandEnergyServiceCompanyfund)Malaysia(EnergyPerformanceContractingFund,SustainabilityAchievedviaEnergyEfficiency,theEnergyAuditConditionalGrant)PAGE69IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsAssessmentofopportunitiesforefficientFutureofbuildingsinASEANgrid-interactivebuildingsinASEANSingapore(GreenMarkIncentiveScheme)Indonesia(ViabilityGapFundandPTSaranaMultiInfrastruktur)thePhilippines(strategicinvestmentsfromtheDepartmentofEnergy)andVietNam(NationalTechnologyInnovationFundandtheVietNamEnergyEfficiencyforIndustrialandEnterprises).MEPSforappliancesneedtoincreasestringencytodriveenergyefficiencyEnergy-efficientappliancesandequipmentBruneiCambodiaIndonesiaLaoPDRMalaysiaMyanmarPhilippinesThailandSingaporeVietNamDarussalamNoMEPSforMEPSareMEPSareMEPSaremajoravailableforaavailableforavailableforallfewtypesofmostoftheappliancesusedtypesofmajorthetypesofinbuildingsaremajorappliancesmajorappliancesavailableappliancesIEA.CCBY4.0.SeveralcountriesintheASEANregionhaveimplementedenergyefficiencyrequirementsforelectricalappliances,particularlyfocusingonairconditioners.AllcountriesintheregionnowhavesomeformofMEPSandlabellingpoliciesforairconditionerseitherinforceorcurrentlyunderdevelopment.However,thestringencyofMEPSforappliancesmustbeincreasedandcountriesmuststrengthentheenforcementofpoliciestodrivefurtherenergyefficiencyimprovementsintheregion.Furthermore,ratingmethodsandrequirementsforlabelsandstandardsdifferacrosscountries,whichcreateshurdlesincreatingaregionalmarketforefficientappliances.InordertoensureMEPSacrosstheregionarecoherent,ASEANmemberstatesaimtodevelopaframeworkforharmonisationofstandardsandlabels.PAGE70IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsAssessmentofopportunitiesforefficientFutureofbuildingsinASEANgrid-interactivebuildingsinASEANStatusofMEPSandlabellingforselectedappliancesandequipmentinASEANIEA.CCBY4.0.Note:CL=comparativelabel.Source:IEA(2022),EnergyEfficiency2022.In2022,BruneiDarussalamintroducedefficiencystandardsandlabellingregulationsspecificallytargetingelectricalappliances.TheIndonesiangovernmentpromulgatedMEPSandenergylabellingregulationsforairconditioners,refrigerators,fans,ricecookersandLEDlamps.ItisprojectedthattheseMEPScanhelpavoidenergydemandof2exajoules(EJ)by2030and7EJby2050.Furthermore,theIEAidentifiedthatallairconditionersintheIndonesianmarketalreadymeettheenergyefficiencyrequirements.MeaningthecurrentMEPSregulationhadnoeffectinremovinglow-efficiencyproducts.ItisestimatedthatIndonesiaalonecouldsave225terawatt-hours(TWh)ofelectricitydemandgrowthby2050byimplementingrobustapplianceefficiencystandards,energypricingreforms,andbuildingenergycodesandstandards.PAGE71IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsAssessmentofopportunitiesforefficientFutureofbuildingsinASEANgrid-interactivebuildingsinASEANDecentralisedsolarsystemsofferopportunitiesforthebuildingssector’sdecarbonisationOn-siterenewableenergygenerationBruneiCambodiaIndonesiaLaoPDRMalaysiaMyanmarPhilippinesThailandSingaporeVietNamDarussalamNopoliciesorVoluntaryMandatoryMandatoryprogrammesforpoliciesorpoliciesforon-policiesforon-programmesforon-siteREon-siteREsiteREsiteREgenerationingenerationaregenerationforgenerationforallbuildingsareavailablesomebuildingbuildingtypesavailabletypesareareavailableavailableIEA.CCBY4.0.InASEAN,theshareofrenewableelectricityinthegenerationmixincreasedfrom28%to33%between2018and2020,mainlydrivenbythegrowinguseofdecentralisedsolarPVsystems.Thisgrowthcanbeattributedtovariousgovernmentpoliciessuchasfeed-intariffs,netenergymeteringandpowerpurchaseagreements(PPAs),whichincentivisethedeploymentofrooftopsolarsystems.Itisexpectedthatrenewableenergycapacitywillincreaseby51gigawatts(GW)(+56%)duringthe2022-2027period,wheresolarPVwillaccountforoverhalfofthegrowth,followedbyonshorewindandhydropower.However,somecountries,suchasVietNam,areconsideringpolicychangesthatmayhinderthegrowthofrooftopsolarduetogridcongestion.Hence,toacceleratethedecarbonisationprocessandachievefasterdeploymentofrenewables,itiscrucialtoinvestingridinfrastructure,simplifypermittingprocedures,updatenationalenergystrategieswithambitioustargetsandattractinternationalinvestment.PAGE72IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsAssessmentofopportunitiesforefficientFutureofbuildingsinASEANgrid-interactivebuildingsinASEANRenewablecapacityadditionsinAsiaandthePacific,2010-2027(left),andannualcapacityadditionsbycountry,2019-2027(right)IEA.CCBY4.0.Notes:Acc.case=acceleratedcase.OtherAsiaPacificexcludesChina.Source:IEA(2022),Renewables2022.IEAanalysisforanacceleratedrenewabledeploymentscenarioestimatesthatdeploymentinASEANintheperiodof2022-2027wouldneedtobemorethan50%higherinthemaincase.SolarPVandwindturbineshavethelargestpotentialforpowergenerationduetolowergenerationcostscomparedwithotherrenewablesandthesetechnologieshavebecomemorecompetitivewithcoal-firedgeneration.ASEAN'ssolarPVdeploymentinthecommercialandresidentialsectorsisestimatedtoalmosttriplefrom2022to2027,ledbyVietNambutwithimportantgrowthinIndonesia,thePhilippinesandThailand.Inthefirstquarterof2020,VietNamwastheleaderamongASEANcountriesintermsofinstalledrooftopsolarcapacity,mainlydrivenbypoliciesthatthegovernmentpreviouslyapplied,suchasafeed-in-tariffscheme,net-energymeteringandpowerpurchaseagreements(PPAs).Attheendof2020,thetotalrooftopsolarcapacityincommercialoperationsstoodat7.7GW.However,thegrowthofrooftopsolarwilllikelybehamperedduetothegovernmentproposalintheupcomingPowerDevelopmentPlan8toreplacethenetenergymeteringpolicywithself-consumption.Undertheproposal,VietNamElectricitywillnolongerpurchasegeneratedpowerfromrooftopsolar,andthecapacitywillremainatthesameleveluntil2030.InThailand,asof2020,theinstalledsolarrooftopcapacityreached3GW,supportedbyanetmeteringschemeforresidentialsolarPVslaunchedin2019.Underthisprogramme,theProvincialElectricityAuthoritypurchasessolarelectricitygeneratedbyPVsystemsinstalledontheroofsofresidentialhouses.PAGE73IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsAssessmentofopportunitiesforefficientFutureofbuildingsinASEANgrid-interactivebuildingsinASEANDuringthe2022-2023period,theProvincialElectricityAuthoritysetthepurchasepriceatafixedrateofaboutUSD0.063perkWhfortenyears.TheProvincialElectricityAuthorityalsodeterminesthatthetotalpurchasetargetfortheprogrammeis5MWperyear.Althoughthenewpowerdevelopmentplaniscurrentlybeingdrafted,thetargetsandmeasuresforincreasingrenewablecapacitythatwillbeincludedintheplanremainuncertain.InstalledcapacityofsolarPVsincommercialandresidentialbuildingsinVietNam(left),andIndonesia,thePhilippines,Thailand(right)IEA.CCBY4.0.Note:A=actual;F=forecast.Apartfromgovernmentpolicies,SumitomoRubberIndustriesinThailandhasalsotakenstepstowardspromotingrenewableenergybyannouncingtheinstallationoftheworld'slargestrooftopsolarsystem.Thesystemwillhaveacapacityof22megawatts(MW)andisexpectedtogenerate30gigawatt-hours(GWh)ofelectricityannually,makingitasignificantcontributiontowardsachievingthecountry'srenewableenergytarget.TheinstallationisscheduledtobecompletedinJanuary2025,markingasignificantsteptowardspromotingcleanenergyinThailand.InSingapore,theBuildingandConstructionAuthorityandEnergyMarketAuthorityworkedtogethertodevelopaone-stopguideforinstallingsolarPVbyresidentialdwellersandbuildingdevelopers.ThroughGreenMark2021,IntelligenceSection,theBuildingandConstructionAuthorityalsorequiresbuildingstoinstallon-siterenewableenergytobecertifiedundertheGreenMarkscheme.BuildingownerscanbenefitfrominstallingsolarPVsforself-consumptionaswellassellingtheexcesselectricitytothegrid.EnergyMarketPAGE74IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsAssessmentofopportunitiesforefficientFutureofbuildingsinASEANgrid-interactivebuildingsinASEANAuthorityoffersseveralpaymentschemesfordifferentcustomers,dependingontheircontestabilityandsolarcapacity.TheSingaporegovernment,throughtheHousing&DevelopmentBoard,alsointroducedtheSolarNovaauctionprogrammetoboostsolarPVinstallations.Theprogrammepromotesandauctionsaggregatedsolardemandbysolarprojectsacrossgovernmentagencies.TheSolarNovaprogrammeworksbyfacilitatingthedevelopmentofsolarPVsystemsonpublicsectorbuildingsandsites,suchasschools,hospitalsandgovernmentagencies.TheprogrammeinvitesprivatesolarcompaniestosubmitproposalsfortheinstallationandmaintenanceofsolarPVsystemsonthesesites.Thesolarcompaniesareselectedthroughacompetitivebiddingprocessbasedontheirproposedpricing,technicalcapabilitiesandtrackrecord.Onceselected,thesolarcompanieswilldesign,install,operateandmaintainthesolarPVsystems,andselltheelectricitygeneratedtotherelevantgovernmentagencyorinstitution.Between2015and2020,theauctionprogrammeawarded296MWofsolarcapacity.Malaysiaalsointroducedanetenergymetering(NEM)programmeforsolarPVsinNovember2016.Theprogrammeisdividedintothreeschemes,eachtailoredtospecificconsumercategories:NEMRakyatservesdomesticconsumers,NEMGoMEncaterstogovernmentagenciesandNOVA(NetOffsetVirtualAggregation)targetscommercialandindustrialconsumers.EachprogrammealsocappedthetotalmaximumPVcapacityeligibleforparticipationduringtheperiod2021-2023:150MWforNEMRakyat,100MWforNEMGoMEnand800MWforNOVA.Withinthisprogramme,anyexcesselectricityproducedbysolarPVscanbeexportedtothegridandcountedagainstthenextelectricitybillonaone-to-onebasis.Additionally,insupportofthedevelopmentofrenewableenergyinthecountryfromMay2021,KualaLumpurCityHallrequiredallfutureresidentialandcommercialdevelopmentsinthecitytosource30%oftheirelectricityfromrenewableenergy.ThishassupportedKualaLumpur’sambitiontobecomecarbon-neutralby2050.InIndonesia,theMinistryofEnergyandMineralResourcesrecentlyheldapublichearingtoinformthepublicregardingtherevisionofRegulationNo.26of2021,whichgovernstheexportofrooftopsolarelectricitytothegrid.Therevisionreplacestheexportingschemewithself-consumption,whichmeansthatconsumerswillnolongerbeabletoexportexcesselectricitytothegridandreceiveareductionintheirelectricitybill.Thenewrevisionalsoeliminatedthecapacitychargeforindustrialplayers.Furthermore,throughIndonesia’sNationalEnergyPlan,thecountryalsoimposesamandatorypolicyforgovernmentandpublicbuildingstouseaminimumof30%oftheirrooftopareaforrooftopsolarPV.ThePhilippinesalsodevelopedanetmeteringprogrammethatallowsenduserstoinstallupto100kWrenewableenergysourcestolowertheelectricitycostandPAGE75IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsAssessmentofopportunitiesforefficientFutureofbuildingsinASEANgrid-interactivebuildingsinASEANselltheexcesstothegrid.Inaddition,thePhilippinesintroducedGreenEnergyOptionProgramme,avoluntarypolicytopermitindividualsorentitiestosourcetheirelectricityfromrenewableenergysuppliers,thusloweringtheiremissions.Inordertoacceleratesolarrooftopdeployment,thePhilippinesDepartmentofEnergyhasimplementedDC2020-12-0026,whichmandatesthatnewandexistingbuildingsmeetingcertaincriteriamustincorporatesolarPVorotherrenewableenergysources.Specifically,buildingswithelectricalloadsofatleast112.5kilovolt-amperes(kVa)oratotalgrossfloorareaof10000m2ormorearerequiredtosourceaminimumof1%oftheirprojectedannualenergyrequirementsfromsolarPVorotherrenewableenergysources.SolarrooftopsupportingpoliciesforcommercialandresidentialconsumersIEA.CCBY4.0.IEA.CCBY4.0.Notes:AllinformationcollectedasofJuly2023.Thenetenergymeteringprogrammeisamechanismthatallowssolarpanelownerstoexportexcesselectricitygeneratedbacktothegridandreceivecreditsforthesurplusofenergy.Self-consumptionreferstotheutilisationofthesolarenergygeneratedbytherooftopPVtopowerthefacility/propertydirectly,reducingdependencyongridelectricityandpotentiallyleadingtocostsavings.PAGE76EfficientGrid-InteractiveBuildingsAssessmentofopportunitiesforefficientFutureofbuildingsinASEANgrid-interactivebuildingsinASEANUseofenergystorageinbuildingsisverylimitedacrosstheregionOn-siteenergystorageBruneiCambodiaIndonesiaLaoPDRMalaysiaMyanmarPhilippinesThailandSingaporeVietNamDarussalamNopoliciesorVoluntaryMandatoryMandatoryprogrammesforpoliciesorpoliciesforon-policiesforon-on-siteenergyprogrammesforon-siteenergysiteenergysiteenergystorageinstorageinstorageforstorageforallbuildingsarebuildingsaresomebuildingbuildingtypesavailabletypesareareavailableavailableavailableIEA.CCBY4.0.ASEANmemberstateshavebeguntoaddresstheintermittencyofrenewableenergythroughthedeploymentofenergystorage,bothonandoffthegrid.Currently,energystoragedeploymentacrosstheregionislargelycentredaroundgrid-scaleprojects,althoughtherearesomeinitiativesatthemicrogridanddistributedlevels.Inbuildings,energystorageintegrationoccursclosetothepointofenergygenerationandconsumption.Acrosstheregion,thereisalackofpolicyevidencemandatingtheinstallationofenergystorage.Nevertheless,therearealreadysomeenergystoragesolutionsatthebuildingslevel;however,theflexibilitypotentialthatstoragesolutionscouldofferthroughparticipationindemandresponseandotherloadmanagementprogrammesiscurrentlynotbeingutilised.InSingapore,theEnergyMarketAuthorityandSingaporePowerGroupplantopilotanicethermalenergystorageinGeorgeStreettosupportenergydemandfromtheMarinaBaydistrictcoolingnetwork.Theenergystoragesystemwillhaveacapacityupto1500refrigerationtonne-hours,enablingsavingsofupto2MW,equivalenttotheenergyconsumptionof170four-roomflatsinasingleday.Thepilotprojectisanticipatedtobecompletedinthethirdquarterof2026.InThailand,VistecUniversityandChumpollTemplehavealsoimplementedabatteryenergystoragesystem(BESS)toenhancetheirrenewableenergyoperations.Theyemploylithium-basedbatterieswithcapacitiesof0.86MW(VistecUniversity)and5kW(ChumpollTemple)toensureaconsistentpowersupplysourcedfromon-sitesolarPV.PAGE77IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsAssessmentofopportunitiesforefficientFutureofbuildingsinASEANgrid-interactivebuildingsinASEANSmartsensorsandcontrolsaremakingtheirwayintosmartbuildingspilotprojectsInternetofthings/smartsensorsandcontrolsBruneiCambodiaIndonesiaLaoPDRMalaysiaMyanmarPhilippinesThailandSingaporeVietNamDarussalamSmartmetersInitial/pilotstageSmartmetersSmartmetersarenotusedinofsmartmetersareusedinareverybuildingsadoptioninbuildingsoftencommoninbuildingsbuildingsIEA.CCBY4.0.SmartsolutionsinbuildingsarebeingimplementedinASEANcountriesatalimitedscaleandmainlyinnon-residentialbuildings.Whiletherearecurrentlynopoliciesmandatingtheuseofsmartdigitaltechnologiesinbuildings,thetopichasgainedinterestamongpolicymakers.Variouscountriesintheregionhavetakeninitiativestopromotebuildingdigitalisation.SingaporethroughitsGreenMark2021willencouragetheuseofsmartbuildingsolutions,processesandcontrols,aswellasrelevantdataandanalytics,whileanumberofothercountries,forexampleIndonesia,Malaysia,Thailand,VietNam,andhaveimplementedpilotprojectstotestsomesmartsolutionsinreal-lifebuildingsoperations.EnergymanagementandautomationinbuildingsexpandpotentialofenergyefficiencyBuildingenergymanagement&automationsystemsBruneiCambodiaIndonesiaLaoPDRMalaysiaMyanmarPhilippinesThailandSingaporeVietNamDarussalamSmartgridplansHigh-levelsmartSmartgridplansComprehensivearenotavailablegridplansareareavailablesmartgridplansavailable,butthetargetsandandsettargets,areavailable,implementationbuttheirwithwell-definedarenotwelldefinedimplementationtargetsandisnotwellimplementationdefinedIEA.CCBY4.0.PAGE78IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsAssessmentofopportunitiesforefficientFutureofbuildingsinASEANgrid-interactivebuildingsinASEANThehighlightsthepotentialbenefitsofbuildingdigitalisationtoenhanceeconomicgrowth,energysavingsandenvironmentalsustainability.Buildingdigitalisation,includingBEMSandBAS,canenhancebuildingsenergyefficiencyandflexibility.Despitebeinginitsinfancystage,thebuildingdigitalisationmarketintheregionisexpectedtogrowsignificantly,withanestimatedcompoundannualgrowthrateof13%overthenextfewyears.Atpresent,therearenopoliciesintheASEANregionthatmandatetheuseofdigitaltechnologiesinbuildings,butthetopichasgainedinterestamongpolicymakers,particularlywithrespecttoenergymanagement.Singapore’sCodeforEnvironmentalSustainabilityofBuildingsincludedaBEMS,astandaloneEMSorothersimilarsystemstocomputeanddisplaythetotalsystemenergyefficiencyanditscomponent.Thecodeismandatedfornon-residentialbuildingswithaminimumgrossfloorareaof5000m2.Singapore’snewestGreenMark2021includedintegratedenergymanagementandcontrolsystemsamongitsassessmentcriteria.Thiscriterionevaluatesthepresenceofanymechanismsfortrackingbuildingenergyuseandpresentingdatainarelevantmannertoencourageoccupantsandbuildingmanagerstooptimisebuildingenergyconsumption.Itcoversdigitaltools,suchasenergyconsumptionmonitoringandbenchmarkingsystems;heating,ventilationandairconditioning(HVAC)demandcontrols;andlightingcontrols.TheThailand20-YearEnergyEfficiencyDevelopmentPlanemphasisestheimportanceofEMSforreportingandverificationonbuildings.Thedevelopmentplanalsoincludesasetofstrategicmeasurestomandatebuildingstofollowcertainrules,regulationsandstandards.OneofthemeasuresistoenforcetheEnergyConservationPromotionActB.E.2535(2021)toestablishdesignatedbuildingsandfactoriestoimplementanEMSandimposeapenaltyforthosethatviolatetheregulation.Theactwillbeenforcedforninebuildingtypeswithaminimumtotalgrossfloorareaof2000m2ormoreorbuildingsthatconsumetheenergyof1millionkWhperyearormore.TheIndonesianMinistryofEnergyandMineralResourcesandDanishEnergyAgencyhavedevelopedaroadmapforpromotingenergyefficiencyandlow-carbonbuildingsintheconstructionsector.TheprimaryaimofthisroadmapistoprovideguidanceanddirectiontotransitiontowardslowGHGemissions,greaterenergyefficiencyandmoreenvironmentallyfriendlybuildingsinIndonesia.Recently,theIndonesiangovernmentpromulgatedGovernmentRegulationNo.33/2023,loweringtheminimumenergyconsumptionthreshold;thisrevisionrequiresthatallcommercialandpublicbuildingswiththeannualenergyconsumptionof500tonnesofoilequivalent(toe)andhigher(insteadoffrom6000toe)implementenergymanagementprogrammes,whichinvolveappointingenergymanagersanddevelopingenergymanagementplans.TheroadmapPAGE79IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsAssessmentofopportunitiesforefficientFutureofbuildingsinASEANgrid-interactivebuildingsinASEANoutlinesavisionforthefuture,withtheanticipationthatby2030asubstantialnumberofenergymanagerswillhavereceivedtraininginenergymanagement.Furthermore,by2050,allcommercialandpublicbuildingsareexpectedtohaveoperationalBEMSinplace,supportedbydedicatedenergymanagers.AccordingtoanAsia-PacificEconomicCooperation,BruneiDarussalamisconsideringimplementingISO50001standardforenergymanagementpolicyasitcontinuestodevelopitsnationalenergymanagementpolicy.ThegovernmentofBruneiDarussalamisencouragingbuildingownerstoinstallBEMS,BASandelectroniccontrollerstoincreaseenergyefficiency.InMalaysia,thegovernmentdevelopedMalaysianStandard1525:2019,avoluntarycodeofpracticeforenergyefficiencyandrenewableenergyfornon-residentialbuildings.Thecodeprovidesabroadrangeofenergyefficiencymeasures,includingimplementationofanEMS.TheEMScoversBASforbuildingswithair-conditioningsystemsservinganareaof4000m2ormore.ASEANhasdevelopedprofessionaltrainingprogrammesandcertificationsforenergymanagerstosupporttheimplementationofBEMS,BASandotherdigitaltechnologiesinbuildings.hassuccessfullytrained343energymanagerssinceitsinceptionin2010.In2022,anewprogramme,theSustainableASEANEnergyManagementCertificationScheme,wasinitiated,emphasisingtheintegrationofdigitaltechnologiessuchase-learningandvirtualrealityforpracticaltraining.Subsequently,theASEAN-JapanEnergyEfficiencyPartnershipScheme4wasintroduced,aimingtoimprovethequalityofthepreviouscurriculumandtrainingsystem.Itproposesadvancedpracticalmeasuresforenergyefficiencyandenhancestheimplementationofrelatedregulatoryframeworks.Thisschemecapitalisesondigitaltechnologytoaugmentthequalityoftraining,therebydemonstratingthepowerofdigitaltoolsindrivingenergyefficiency.NucleusTowerinMalaysia–anexusofpassiveenergy-efficientdesignandactivedigitaltechnologiesNucleusTowerisa24-storeyofficetowerwitha3-storeycommercialannexlocatedinthepopularMutiaraDamansaraareainMalaysia.ItisagreenbuildingwithGreenBuildingIndexGoldGradeAcertification,boastingseveralenergy-efficienttechnologies.Highefficiencyglazingwithdouble-glazed12.88millimetreglass,verticalshadingandanoverallthermaltransfervalueof42.31(wattspersquaremetre)resultsinsubstantiallylowerbuildingenergydemand.Thebuildingfeaturesanunderfloorair-conditioningsystemorairdistributionsystemfortheofficestoprovidezonalspacecoolingandthusreducetheenergydemandforcooling.Otherenergy-efficientfeaturesincludelightingmotionsensors,photosensorsandLEDlights.Duringconstruction,thebuildingadoptedPAGE80IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsAssessmentofopportunitiesforefficientFutureofbuildingsinASEANgrid-interactivebuildingsinASEANenvironmentallyfriendlyprocessessuchastheuseofMivansystemformworktoreduceformworkwaste,with38%ofbuildingmaterialsbeingsourcedregionally.Thebuildinghasbeendesignedandconstructedwithstormwatermanagementanderosionandsedimentationsoilpreventionstandardsanduses66.7kilowatt-peak(kWp)solarpanelstogenerateelectricity.Thebuildingalsousesanintegratedbuildingmanagementsystem,Smartstruxture,whichallowsforeffectivemonitoring,measuringandoptimisationofenergyuse.SmartstruxtureisabuildingmanagementsystemdevelopedbySchneiderElectricthatcombinesenvironmentalcontrol,energymanagementandmonitoring,andsecuritymanagement.AllofthesesustainablemeasureshaveresultedinNucleusTowerachievingabuildingenergyintensityof113kWh/year/m2,whichismorethan50%lowerincomparisontoatypicalofficetower.Thisremarkableperformanceisduetothecombinationofpassivedesigninitiatives,activedigitalcomponentsandsustainablefeaturesthatmakeNucleusToweranenergy-efficientbuilding.SmartmeterprogrammesarebeingrolledoutacrosstheregionSmartmetersinbuildingsBruneiCambodiaIndonesiaLaoPDRMalaysiaMyanmarPhilippinesThailandSingaporeVietNamDarussalamSmartmetersInitial/pilotstageSmartmetersSmartmetersarenotusedinofsmartmetersareusedinareverybuildingsadoptioninbuildingsoftencommoninbuildingsbuildingsIEA.CCBY4.0.WhilethenumberofsmartmetersinstalledacrosstheASEANregionisrelativelylow(around30millionasof2022),itisexpectedtogrowrapidly.Thecumulativeamountofsmartmeterinstallationsintheregionisestimatedtoreach115millionby2030,withacompoundannualgrowthrateof25%.Toeffectivelysustainthesmartmetergrowth,theregionwillneedanannualinvestmentofUSD1.5billion.Theinvestmentwillplayapivotalroleinsupportingthedeployment,maintenanceandadvancementofthesmartmeterinfrastructure.PAGE81IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsAssessmentofopportunitiesforefficientFutureofbuildingsinASEANgrid-interactivebuildingsinASEANASEANsmartmeterdeploymentandannualinvestment,2010-2030eIEA.CCBY4.0.Note:e=estimated.Source:IEAanalysisbasedonIEA(2023),TrackingCleanEnergyProgress2023andBloombergNEF(2017).EachoftheASEANmemberstatesstartedrollingoutprogrammestosupporttheuptakeofsmartmeters,mainlydrivenbytheutilities,toimprovedatacollectionandbillingprocesses.Whiletheinstallationofsmartmetersitselfdoesnotensureinteractionbetweenbuildingsandthegrid,theirdeploymenthelpstocreatesuchopportunitiesinfuture,especiallyifsmartmetersareintegratedintoabroaderframeworkofsmartgridinfrastructureandenergymanagementsystems.SmartmeterprogrammesinASEANCountrySmartmeterrollingoutstatusBruneiDarussalamIn2023,over4000unitsofsmartmeterswereinstalledatprivateCambodiaresidencesandcommercialbuildingsthroughtheUnifiedSmartIndonesiaMeteringSystem.CambodiaiscurrentlyexpandingitsgridcapabilitiesthroughaLaoPDRUSD127millionloanprovidedbytheAsianDevelopmentBank(ADB),includingtheinstallationofsmartmeters.Atthebeginningof2023,PerusahaanListrikNegara(PLN),asthenationalelectricutility,willstartrollingout1.2millionsmartmeterstocustomers.PLNisexpectingtoexpandthesmartmetercoverageto75millionoveratenyearspan.ElectricityDuLaos,inco-operationwithHuawei,isundertakingtheinstallationofover500000smartmetersacrossfourdistrictsofVientianeCapital.Thesmartmeterinstallationprogrammehasbeenongoingsince2018,andinstallationhasalreadybeencompletedinChanthaboulyandSisattanakdistricts.PAGE82IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsAssessmentofopportunitiesforefficientFutureofbuildingsinASEANgrid-interactivebuildingsinASEANCountrySmartmeterrollingoutstatusMalaysiaMyanmarTenagaNasionalBerhad,asanationalpowerutility,inearly2023,Philippineshadmetitstargetofinstalling1.8millionsmartmetersinKlangValley,Melaka.Theutilityplanstoexpandthesmartmeterroll-outtoSingaporereachanationwidescaleof9.1millionby2026.ThailandIn2019,MyanmarpilotedsmartmetersandAMIprojectsintheVietNamcapitalofNayPyiTaw.Thenationalpowerutility,ManilaElectricCompany,hadalreadyinstalledmorethan140000smartmetersbythefirsthalfof2021andistargetedtoinstall3.3millionsmartmetersby2024.Singaporehadinstalledmorethan788000smartmetersasof31March2023andisplanningtoreach1.5millioninstallationsby2024.Asof2021,Thailandhadrolledout116000smartmetersinPattayaCity.By2022,over4millionsmartmetershadbeeninstalledinVietNam.Additionally,93%ofconsumersintheCentralregionandCentralHighlandshadsmartmetersinstalled.IEA.CCBY4.0.GovernmentsacrosstheregionarerecognisingtheneedformodernisedandsmartergridsSmartgridsBruneiCambodiaIndonesiaLaoPDRMalaysiaMyanmarPhilippinesThailandSingaporeVietNamDarussalamSmartgridplansHigh-levelsmartSmartgridplansComprehensivearenotavailablegridplansareareavailablesmartgridplansavailable,butthetargetsandandsettargets,areavailable,implementationbuttheirwithwell-definedarenotwelldefinedimplementationtargetsandisnotwellimplementationdefinedIEA.CCBY4.0.Today,theASEANpowersystemisstilldominatedbygenerationfromfossilfuels.Toachieveitsrenewableenergytarget,theinstalledvariablerenewableenergy(VRE)generationcapacityintheASEANregionneedstoincreasefrom33%in2020to50%by2025.Withrenewableenergygenerationexpectedtoincreaseinthefollowingyears,thereisapressingneedforthegridtobecomemoreflexibleandabletomanagenumerouspointsofelectricitygenerationandconsumption.IEAanalysisshowsthatinvestmentintransmissioninASEANisfallingshort.UndertheIEAStatedPoliciesScenario,theaveragetransmissioninvestmentfor2025-2030needstobePAGE83IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsAssessmentofopportunitiesforefficientFutureofbuildingsinASEANgrid-interactivebuildingsinASEAN40%higherthanthe2019level.Additionally,intheSustainableDevelopmentScenario,thisinvestmentshouldbenearly50%higherthanthe2019level.AnnualtransmissioninvestmentinASEANcomparedwithannualaverageinvestmentinIEAStatedPoliciesandSustainableDevelopmentScenarios,2025-2030IEA.CCBY4.0.IEA.CCBY4.0.Notes:SDS=SustainableDevelopmentScenario,atrajectoryconsistentwithParisagreement;STEPS=StatedPoliciesScenario,atrajectoryconsistentwithcurrentpoliciesofgovernments.Source:IEA(2020),AttractingprivateinvestmenttotheelectricitytransmissionsectorinSoutheastAsia.Effortswillneedtobemadetoimprovetransmissioninfrastructure,includingtheexpansionofhigh-voltagetransmissionlinesandthedevelopmentofsmartgridtechnologies.Recognisingthis,manycountriesinASEANhavedevelopedsmartgridplanstoimprovetheirgridcapacity,whilemitigatingchallengesposedbyfluctuatingavailabilityandthedistributednatureofVREtoensurethereliabilityofelectricitysupply.Thailand’sEnergyPolicyandPlanningOfficewithintheMinistryofEnergypublishedThailand’ssmartgriddevelopmentMasterPlan(2015-2036).Themasterplanservesasaframeworkfordevelopingaholisticsmartgridpolicyandoutlinestechnologicaldevelopmentandinvestmentdirection.Thepreparatoryphasewascarriedoutfrom2015to2016,followedbytheshort-termphasefrom2017to2021.Currently,effortsarebeingmadetoprepareforthemedium-termphase(2022to2031),focusingonseveralkeyareas.Theseincludepromotingreal-timepricing,establishingdatacentresonrenewablegenerationforecasts,andincentivisingprivate-sectordevelopmentofrelevantsoftwareandhardware.Along-termplanningphasewillcommencein2032-2036,withgreateremphasisontheinvestmentofnewtechnologiesfromtheinfrastructurethathasalreadybeendeveloped.PAGE84EfficientGrid-InteractiveBuildingsAssessmentofopportunitiesforefficientFutureofbuildingsinASEANgrid-interactivebuildingsinASEANTheIndonesiannationalelectricityutility,PLN,hasaroadmapfordevelopingthesmartgridinIndonesia,dividedintotwodistinctphases.Thefirstphase(2021-2025)prioritisesgridautomationandmanagementandtheimplementationofAMI.Thesecondphase(2026-onwards)willfocusonintegratingDERs,energystoragesystemsanddemandresponsemechanisms.Since2014,PLNhasundertakenseveralpilotsmartgridprojectsinvariouscitiesacrossIndonesiatotestandrefinesmartgridtechnologies.In2019,PLNinstalledsmartloaddispatchingdevicesinSumbatoaddresssolarenergyintermittency.Thedispatchingdeviceusedtheautomateddispatchsystemtomanageenergyloadandproductionforahybridsolarpowerplantwithdieselgenerators.TheVietnamesegovernmentestablishedasmartgridknowledgehub,aninitiativebytheSmartGridsforRenewableEnergyandEnergyEfficiencyproject,whichisimplementedbytheElectricityRegulatoryAuthorityofVietNam.Thehubservesasapublicplatformonthetopic,experience,conceptsharingandofficialdocumentsrelatedtosmartgridapplicationsinthecountry.ThehubwasdevelopedinsupportofVietNam’supcomingPowerDevelopmentPlanVIII2021-2030,whichincludesasmartgridplantoenhancethepowerqualityandreliabilityofthepowersupply.AdetailedstrategyforthedevelopmentofsmartgridsinVietNamhasnotyetbeenpubliclyreleased.ThePhilippineshasdevelopedtheSmartDistributionUtilityRoadmap,whichoutlinestheplanforthetransitiontoasmartgrid.Thefullimplementationisexpectedby2040.Thecountry'splanenvisionsacomprehensiverangeofcapabilitiesforthesmartgrid,suchasaself-healinggrid,theimplementationofacompetitiveretailmarket,optimisationofenergystoragesystems,virtualpowerplants(VPPs),andsmarthomesandcities.InMalaysia,since2016,TenagaNasionalBerhadutilityhasbeenactivelyworkingonsmartgridinitiatives.Theprimarygoaloftheseinitiativesistocreateanadvancedanddigitallyenablednationalgrid,aimedatoptimisingefficiencyandenhancingreliability.Thefocusareasforthesmartgridinitiativesincludeautomatedmonitoringandcontrol,dataanalytics,supplyreliability,integrationofDERs,promotinggreenenergy,andimplementingrobustcybersecuritymeasures.Malaysia’sSustainableEnergyDevelopmentAuthorityhasalsodevelopedtheMalaysiaRenewableEnergyRoadmap,whichidentifiesthesmartgridasacrucialinitiativetoachievetherenewableenergytargetof40%by2035.TheEnergyMarketAuthorityofSingapore,incollaborationwiththeSPGroupandtheTechnologyPolicyandPlansOffice,isalsodevelopingtoenhancegridresiliency(seeChapter2).Thegriddigitaltwinservesasavirtualrepresentationofthephysicalpowergridassetsandnetworks,leveragingreal-timedataforoperation.Thisdigitaltwinwillconsistoftwoessentialmodels:theassettwin,PAGE85IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsAssessmentofopportunitiesforefficientFutureofbuildingsinASEANgrid-interactivebuildingsinASEANdesignedtooptimisetheplanning,operationsandmaintenanceofgridassets,andthenetworktwin,usedtoassesstheeffectsofadditionalloadsandDERs.IntegrationofVREcanalsobefacilitatedthroughcross-borderinterconnectionsacrosstheregion,whileprovidingoperationalflexibility.Inaddition,increasingthetransmissionlineswithmultilateraltradingcanlowerthecurtailmentofrenewableenergyand,therefore,loweroperationalcostsforthesystem.Intheregion,memberstatesaredevelopingtheASEANPowerGridtoestablishcross-bordertransmissionlinesthatwillfullyinterconnecttheASEANmemberstates.Asof2021,significantprogresshasbeenmadeoninterconnections.Forinstance,MalaysiaisconnectedtoSingaporebymeansofa400kilovolt(kV)high-voltagedirectcurrenttransmissionlinkwithacapacityof600MW,whilea230kValternatingcurrent(AC)linewithacapacityof300MWconnectsThailand,MalaysiaandSingapore.AnotherlinewiththesamecapacityandvoltageconnectsthesecountriestoLaoPDR.AnewinterconnectionprojectinvolvingBruneiDarussalam,Indonesia,MalaysiaandthePhilippinesiscurrentlyinitsinitialphase.Theprojectaimstoutiliseexclusivelyrenewableenergysourcesandisexpectedtohaveaminimumcapacityof500kVto1000kV.LackofinteroperabilitystandardsisoneofthechallengesforEGIBsEquipmentlevelBruneiCambodiaIndonesiaLaoPDRMalaysiaMyanmarPhilippinesThailandSingaporeVietNamDarussalamNopoliciesonVoluntaryMandatoryMandatoryopenpoliciesonopenpoliciesonopenpoliciesonopencommunicationcommunicationcommunicationcommunicationstandardsforallstandardsforstandardsforstandardsformajorappliancesappliancesareappliancesaresomemajorappliancesareareavailableavailableavailableavailableIEA.CCBY4.0.IntheASEANregion,therearecurrentlynomandatedpolicies,projectsorprogrammesthatutilisetechnologiestoenablecommunicationandinformationflowattheequipmentlevel,suchasCTA-2045.However,VietNamhasadoptedIEC10192-2017:3,whichoutlinesthefeaturesofhomecontrolsystemknownasthehomeelectronicsystemthatCTA-2045hasincorporatedandadaptedforitsownuse.ItisimportanttonotethatIEC10192-2017:3isnotastandardsocketlikeCTA-2045.Instead,itcomprisesauniversalcommunicationmoduleforfacilitatingtheexchangeofenergymanagementdatabetweendevicesandEMSthroughthehomenetwork.PAGE86IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsAssessmentofopportunitiesforefficientFutureofbuildingsinASEANgrid-interactivebuildingsinASEANNevertheless,severalcountriesintheASEANregionhaveimplementedBACnet(buildingautomationandcontrolnetwork)projects,whichenabletheintegrationofload-connecteddeviceswiththeEMS.Thishasledtopositivetrendsinload-connecteddevices,althoughnotnecessarilybasedonCTA-2045.AstudyonsmartgridinteroperabilitystandardsadoptioninSoutheastAsiasuggeststhatcountriesintheregioncanexploretheopportunitytoadopttheCTA-2045standard.Thiswouldinvolveupgradingoldapplianceswithanewuniversalcommunicationmodule,enablingtheirparticipationindemandresponseprogrammes.BuildingslevelBruneiCambodiaIndonesiaLaoPDRMalaysiaMyanmarPhilippinesThailandSingaporeVietNamDarussalamNopoliciesonVoluntaryMandatoryMandatoryopenpoliciesonopenpoliciesonopenpoliciesonopencommunicationcommunicationcommunicationcommunicationstandardsforBAstandardsforBAstandardsforBAstandardsforareavailableforareavailableforareavailablebuildingssomebuildingallbuildingsautomation(BA)typesIEA.CCBY4.0.Whiletheadoptionofbuildingautomationandcommunicationprotocols(i.e.LonWorks,BACnet,Modbus,KNX,Zigbee)technologiesinASEANbuildingshasgainedmomentum,therearenopoliciesinplacethatspecificallymandatetheirinstallation.Nevertheless,theincreasingimplementationofBACnetsystemsindicatesapositivetrendtowardsB2Ginteractivity.InSingapore,the20214thEditionoftheCodeforEnvironmentalSustainabilityofBuildingsaddressedsustainabletechnologiesasalternativesolutionsaimedatreducingcarbonemissionsfrombuildings.Thesetechnologiesinvolvetheimplementationofanopenprotocolnetworkbackbone,suchasBACnet,Modbusandothersimilarprotocols.Theseprotocolsplayacrucialroleinenhancingbuildingmanagementsystemsbyenablingtheexchangeofdatapointsandfacilitatingseamlesscommunicationandintegrationwithotherbuildingsystems.TanjongPagarCentre,thetallestlandmarkofficespaceinSingapore,utilisesABBCyclon,aBACnetbuildingcontroltechnologythatoffersintegratedcontrolsolutionsforenergymanagementapplications.ABBCyclonisemployedforintelligentcontrolofvariousHVACequipment,includingboilers,chillers,coolingtowers,air-handlingunits,lightingcontrol,variablefrequencydrivesandmetering.Moreover,thebuildinghasobtainedGreenMarkPlatinumandLEEDcertifications,withanestimatedenergysavingsof31%comparedwithsimilarlycertifiedandcompliantbuildings.PAGE87IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsAssessmentofopportunitiesforefficientFutureofbuildingsinASEANgrid-interactivebuildingsinASEANTheViettelheadquartersinHanoi,VietNam,implementedaBACnetsystemtoenhanceitsbuildingautomationsystemsandintegrateequipmentconnectivity.TheBACnetsystem,providedbyABB,oversawtheABBI-BusKNXsystemandtheHVACACH580variable-speeddrives.TheABBI-BusKNXsystemservesasaunifiedbusinterfacesystem,enablingcommunicationamongvariouscomponentssuchaslightingcontrol,shuttercontrol,heating,ventilationandenergymanagement.Ontheotherhand,ABB'sACH580isavariable-speeddrivedesignedforprecisecontrolofelectricmotorsusedinheatingandventilationsystems.ByemployingtheBACnetsystem,theViettelheadquarterscaneffectivelymanageandoptimiseenergyuseforitsappliancesandequipmentaccordingtotheprevailingenvironmentalconditions.TheElectricityGeneratingAuthorityofThailand’sElectricalEquipmentLaboratoryhasbeenequippedwithBACnetandModbusinstallationsbyDEOS:AG,aGerman-basedcompany.TheprojectaimstocontroltheHVACsystem,whichcomprisesthreewater-cooledchillersinordertooptimisethesupplyoffreshairbasedontheconditionsofeachroom.Furthermore,aThailand-basedcompanycalledDeltaisactivelyinvolvedinthedevelopmentofBACnetproducts,includingHVACandlightingcontrolsolutions.Theseproductsfeaturefullyprogrammablecontrollersalongwithbuildingoperationssoftware,withthegoalofenhancingbuildingenergyefficiency.InIndonesia,PTKonimek,anIndonesian-basedpharmaceuticalcompany,installedaBACnetsysteminitsmanufacturingfacilitybackin2015.TheBACnetsystemprovidesintelligentcontrolfor15air-handlingunits,3chillers,and3coolingtowers.ThepurposeofimplementingthissystemistooverseetheEMSandmanagetemperature,humidityandroompressureinordertoensurethequalityofthecleanroomproductionarea.Alton,aMalaysia-basedcompany,specialisesincontrolsandautomationengineeringsystems,aswellasindustrialinternetofthingstechnologiesforbuildings.ThecompanyoffersBACnetsystemsolutionsforbothcommercialandindustrialbuildings,specificallyforelectricalandmechanicalequipment.In2019,AltoninstalledBACnetsystemsintheWismaBSNbuilding,anofficebuildinglocatedinKualaLumpur.TheBACnetsystemefficientlymanagedvariousequipment,includingchillers,air-handlingunits,lightingcontrol,ventilationfans,plumbingsystemsandfiresystems.PAGE88IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsAssessmentofopportunitiesforefficientFutureofbuildingsinASEANgrid-interactivebuildingsinASEANBuilding-to-gridlevelBruneiCambodiaIndonesiaLaoPDRMalaysiaMyanmarPhilippinesThailandSingaporeVietNamDarussalamNopoliciesonVoluntaryMandatoryMandatoryB2GpoliciesonB2GpoliciesonB2GpoliciesonB2GinteroperabilityinteroperabilityinteroperabilityinteroperabilityareavailableforareavailableforareavailableareavailablesomebuildingallbuildingtypestypesIEA.CCBY4.0.InteroperabilitybetweenbuildingsandthegridiscurrentlylimitedintheASEANregion.InThailand,demandresponseoperationhasalreadyusedtheinteractionbetweenmachineswithouthumaninterference.TheDemandResponseControlCentreandLoadAggregatoroperatingmechanismusesOpenADRstandardstodeliverandreceiveanyinformationregardingdemandresponseevents.ElectricityGeneratingAuthorityofThailandhasalsodevelopeditsowndemandresponsemanagementsystembasedoninternationalstandardOpenADR2.0b,whichisacrucialpartofthecommunicationbetweentheloadaggregatoroftheMetropolitanElectricityAuthorityandProvincialElectricityAuthority.SeveralfeasibilitystudieshavealsobeenconductedbyprivatecompaniestofurtherexploretheintegrationofOpenADRtotheelectricitymarket.ASeoul-basedcompanycalledEIPGRIDisdevelopingabenchmarkfortheProvincialElectricityAuthorityandMetropolitanElectricityAuthoritytoworktowardsimplementingOpenADR2.0bcommunicationprotocolsindemandresponseoperations.Thestudyalsoinvolvesdesigninganddevelopingacustomiseddemandresponse-orientedelectricitymarketwithconnectedloaddevices.TheprojectaimstodeliveranOpenADR2.0architecturewitharesourcemanagementsystemandoperatingguidelines.InIndonesia,thereisnoevidenceofB2Ginteroperabilityimplementationinbuildings.However,thetechnologyhasbeenacknowledgedasapotentialavenueforenergyefficiencydevelopment.ThegovernmentAgencyfortheAssessmentandApplicationofTechnology,hasimplementedasmartEMSintheAgency’sbuilding.Thissystemincorporatessmartlightingandmonitoringandinformationsystems.Inthefuture,themanagementsystemsaimtoincludeairconditioners,withOpenADRservingasacommunicationprotocolforappliancestoactivelycontributetoenergyconservationefforts.InothercountriessuchasMalaysia,thePhilippinesandVietNam,therewasnoevidenceofOpenADRbeingused.However,astudyontheadoptionofsmartgridinteroperabilitystandardsinSoutheastAsiarevealedthatthesecountrieshaveembracedothersmartinteroperabilitystandards,suchasInternationalPAGE89IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsAssessmentofopportunitiesforefficientFutureofbuildingsinASEANgrid-interactivebuildingsinASEANElectrotechnicalCommission(IEC)standardsandISO.AlthoughthesestandardsdonotdirectlyaddressinteroperabilitybetweenB2Gcommunicationprotocols,theycanserveasafoundationtoenhanceconnectivitybetweenbuildingsandthegridinthefuture.ThestudyalsosuggeststhatASEANmemberstatescanconsideradoptingtheOpenADRstandardtoautomatedemandresponse,therebyencouraginggreaterparticipationfromendusers.Thiscouldresultinahigherlevelofengagementfromendusersinmanagingtheirenergyconsumption.CountriesaretappingintothepotentialofadvancedmeteringinfrastructureAdvancedmeteringinfrastructureBruneiCambodiaIndonesiaLaoPDRMalaysiaMyanmarPhilippinesThailandSingaporeVietNamDarussalamAMIisnotusedInitial/pilotstageAMIisusedAMIisveryofAMIadoptionoftencommonIEA.CCBY4.0.AsseveralASEANmemberstatesareincreasingtheirrenewableenergygenerationandimplementingsmartgridtechnologiesandsmartmeters,AMIhasbecomeanessentialtechnologyformeasuring,collecting,analysingandcontrollingenergydistributionandusage.Asdiscussedinthepreviouschapter,AMIintroducesautomatedandreal-timemeasurementprocesses,enablingthecontinuousrecordingofelectricityconsumptionwithheightenedfrequency.Additionally,itfacilitateson-demanddatainteractionsthroughacentralisedmeteringpoint.Byofferingtheseadvancedfunctionalities,AMIplaysapivotalroleinenhancingprecision,responsivenessandefficiencyofenergymanagement.SingaporewasoneofthepioneeringcountriesinASEANtoadoptAMItechnologiesthroughtheIntelligentEnergySystem(IES)project.Launchedin2009,theIESaimstoenhancenetworkresiliencyandinteractivitythroughsmartgridtechnologies.Aspartoftheproject,AMIhasbeenimplementedtoenabletwo-waydatacommunicationbetweenresidential,commercialandindustrialconsumers.InMalaysia,TenagaNasionalBerhadutilityrolledoutanAMIprojectin2018toimproveitsgridresiliency.TheprojectincorporatedvarioustechnologiesincludingaPAGE90IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsAssessmentofopportunitiesforefficientFutureofbuildingsinASEANgrid-interactivebuildingsinASEANmeterdatamanagementsystemandback-endinformationtechnologysystems.Itusedradiofrequency,powerlinecommunicationandpubliccellularnetworktechnologies,involvingover340000electricityconsumers.SustainableEnergyDevelopmentAuthorityalsosetsAMIasastrategicinitiativetodigitalisethepowersector.ThePhilippines'nationalelectricutility,ManilaElectricCompany,isalsotransformingitsnetworkintothesmartgrid.ThisinvolvestheofAMI,smartdevicesandsystemsthroughoutthedistributionnetwork.ManilaElectricCompanyhasallocatedoverininvestmentinthisinitiativeandfocusesonAdvancedNetworkAutomation.Thisinitiativeaimstomonitorandmanagenetworkoperationsandaddresschangingloads,generationandoutageevents.TheAdvancedNetworkAutomationcomprisesseveraltechnologies,includingthosealreadyimplementedbyManilaElectricCompany,suchastheadvanceddistributionmanagementsystemandsupervisorycontrolanddataacquisition(SCADA).ManilaElectricCompanyplanstoimplementupcomingtechnologiestofurtherenhancenetworkreliability.Theseincludeadvancedassetmanagement,controlcentremodernisation,distributedenergyresourcemanagementsystemsandEVmanagementsystems.VietNamElectricityhasimplementedvariousAMItechnologies,includingautomaticmonitoringofsubstations,automaticprotectionforsubstations,remotecontrolof110kVsubstationsandautomaticvoltageadjustment.Additionally,mostpowercorporationsinVietNamhavedeployedgridautomationapplications.Currently,powercorporationsareinvestinginequippingSCADAanddistributionmanagementsystemsforthedistributiongrid.PLN,theIndonesiannationalelectricityutility,hasdevelopedaroadmapfortheimplementationofAMIandplannedtobeginitsroll-outinmid-2023.Inaddition,theutilityimplementedseveralpilotprojects.Between2018and2019,fourpilotprojectswerecarriedouttotesttwo-waycommunicationbetweensmartmetersandsmartloaddispatchingdevices.Trilliant,asmartgridtechnologyproviderinThailand,formedapartnershipwithSamartin2022todeliverAMItechnologiestoProvincialElectricityAuthority.TheimplementationofAMIwillenableProvincialElectricityAuthoritytoenhancetheefficiencyofreal-timedatacollectionforcommercialandindustrialconsumers.Althoughthespecificdetailsoftheplanhavenotbeendisclosedatthistime,thecollaborationaimstoleverageAMItobenefitProvincialElectricityAuthority'soperationsandservices.InMyanmar,theElectricitySupplyEnterpriseundertheMinistryofElectricPowerhaspilotedtheimplementationofAMIinNayPyiTawintentownships.Amongthem,50%ofthehouseholdshaveachievedtheinstallationaswellasitscontrolcentreforbillingandmonitoringsystem.TheYangonElectricitySupplyCorporationhasalsoinstalledAMIinninetownships,andthenextsixareintheimplementingstage.PAGE91IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsAssessmentofopportunitiesforefficientFutureofbuildingsinASEANgrid-interactivebuildingsinASEANPilotprojectsaredemonstratingbenefitsofaggregatingDERsAggregationofdistributedenergyresourcesBruneiCambodiaIndonesiaLaoPDRMalaysiaMyanmarPhilippinesThailandSingaporeVietNamDarussalamAggregationofInitial/pilotstageAggregationofAggregationofDERsisnotofaggregationDERsisusedDERsisverypresentofDERsoftencommonIEA.CCBY4.0.ApromisingtrendintheintegrationofDERsintheASEANregionistheemergingdeploymentofpeer-to-peer(P2P)energytradingandVPPprojects.Theseinnovativeapproacheshavebeenimplementedinseveralcountriesintheregion,suchasMalaysia,thePhilippines,Singapore,ThailandandVietNam.InSingapore,theEnergyMarketAuthorityandSembcorpIndustriespartneredwithNanyangTechnologicalUniversitytodevelopSingapore’sfirstVPPin2019.TheprimaryobjectiveoftheVPPistooptimisepoweroutputfromvariousDERs,predominantlysolarenergy.Itaggregatestheenergygenerationdatafromrooftopandutilitysolarandusesforecastingmodelstopredictenergydemand,weatherconditions,energyproductionandpricingforecast.Byusingthisinformation,theVPPwillbalancethefluctuationsinsolarenergysupplyacrossdifferentlocationsinSingapore.In2020,Singaporean-basedcompanySenokoEnergytogetherwithENGIEandElectricify,launchedaP2PenergytradingplatformcalledSolarShare.TheplatformenablesprosumerstosellexcesssolarenergytoconsumerswithinthesameSolarSharenetwork.CustomersmustinstallasmartmeterthattrackstheirenergygenerationandconsumptiontoparticipateinP2Penergytrading.ThesmartmetersendsdatatotheSolarShareplatform,whichisbuiltonablockchain-basedsystemtofacilitateenergytransactionsbetweenbuyersandsellers.In2021,theSolarSharetradingplatformunderwentapilotprojectinvolvingtenhouseholdsinSingapore.Asofnow,therearenopubliclyavailabledataontheamountofenergythathasbeentraded.In2018,oneofthelargestwaslaunchedinoneofthedistricts(T77)inBangkok,Thailand.TheprojectwasdeployedasapartoftheregulatorysandboxthatthegovernmentdevelopedtodemonstrateP2Penergytradingwithblockchaintechnology.Regulatorysandboxesallowcompaniestotesttheirproducts,services,businessmodelsanddeliverymechanismswithrelaxedregulatoryrequirements.PAGE92IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsAssessmentofopportunitiesforefficientFutureofbuildingsinASEANgrid-interactivebuildingsinASEANInadditiontosolarPV,theT77projectalsoincorporatedBESStomanageexcesselectricitysupplyanddemand.Ablockchain-basedsoftwareplatformwasimplementedtoofferthesolutionsfortracking,tracingandtradingrenewableenergy.Theprojecttradedsolarenergyacrosssevensites,includingshoppingcentres,hospitals,schoolsandapartmentbuildings.TheThailandgovernmentandThai-basedrenewableenergycompanyBCPGalsodevelopedThaiDigitalEnergyDevelopmentatChiangMaiUniversity.TheprojectalsousedablockchainplatformtoexplorehowChiangMaiUniversitycouldoperatewithcleanenergyanddemonstraterenewableelectricitytradingandenergymanagementsolutions.Theprojectalsodemonstratedhowthelocalenergymarketcouldprocurerenewableenergyandacceleratethedeploymentofrooftopsolarthroughamarketmechanismratherthanthroughtheimplementationofgovernmentsubsidies.ElectricityGeneratingAuthorityofThailandalsolaunchedtheNationalEnergyTradingPlatformin2019.Thisplatformenableshouseholds,businessesandcommunitieswithrenewableenergysystemstoparticipateintheP2Penergytradingbysellingexcesselectricitybacktothegridordirectlytootherconsumers.In2019,ElectricityGeneratingAuthorityofThailandpilotedtwoP2PenergytradingprojectsintheSamsendistrictoftheMetropolitanElectricityAuthorityandtheProvincialElectricityAuthority’sheadquartersinBangkhen.Bothpilotprojectsincludedcommercialbuildings,asmarthomeandanEVchargingstation.TheMetropolitanElectricityAuthorityprojectinvolveda66kWsolarPVsystemwitha10kWbatterysystem,whiletheProvincialElectricityAuthority’sprojectuseda110kWsolarPVsystemwithoutabatterysystem.InMalaysia,SustainableEnergyDevelopmentAuthorityconductedthefirstP2Penergytradingpilotprojectin2019.Thisprojectwasinitiatedunderaregulatorysandboxframework,whichprovideacontrolledenvironmentforelectricityprosumerstoselltheirexcesssolarPVelectricitytoconsumersofTenagaNasionalBerhadutility.TheprojectaimstodemonstratethefeasibilityofsolarenergytradingintheMalaysianenergymarketandadvancethedeploymentofDERsinMalaysia.TheP2Pblockchainplatforminvolvedfourprosumersandeightconsumers,withatotalinstalledcapacityof4031kWpforsolarPV.Underthisarrangement,theutilitypurchasedelectricityfromtheprosumersatarate10%higherthanthemediumvoltageindustrialtariffandsoldittoconsumersatarate11%cheaperthantheresidentialtariff.Duringtheeight-monthoperatingperiodfromJune2020,atotalof680megawatt-hours(MWh)ofenergywasexportedbytheprosumers,and470MWhofenergywastradedbetweenparticipantsintheP2Penergyproject.TheIndependentElectricityMarketOperatorofthePhilippinesiscurrentlyexploringblockchaintechnologyforP2Penergytrading.Thistechnologywillbeintegratedinthecountry’sWholesaleElectricitySpotMarket,allowingprosumerstoselltheirPAGE93IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsAssessmentofopportunitiesforefficientFutureofbuildingsinASEANgrid-interactivebuildingsinASEANexcesselectricitydirectlytootherconsumers.However,thedetailsoftheplanhavenotyetbeenmadepublic.VietNamalsoplanstolaunchitsfirstP2Penergytradingtrialproject.ThetrialprojectusesablockchainplatformtotradesolarenergyinDaNangandQuandNamprovinces.Theplatformwillenableprosumerstosellelectricitydirectlytoconsumers.Thegovernmenthasnotyetannouncedthestartingdateoftheproject.Virtualpowerplantandgriddigitaltwin,SingaporeThevirtualpowerplant(VPP)inSingaporeisunderdevelopmentbytheNanyangTechnicalUniversityinpartnershipwiththeEnergyMarketAuthorityandSembcorpIndustries.TheaimoftheprojectistodevelopthefirstVPPinSingaporethatwillco-ordinateandlinkenergyresources,solarinstallationsandenergystoragesystems.TheVPPusesintelligentsystemstoco-ordinateDERstoreplicateatraditionalsingleutility-scalepowerstationbygenerating,storing,shifting,optimising,aggregatingandpredictingenergydemandandenergysupplyfromarangeofsources,includingrenewables.TheVPPisanopportunityforSingaporetodevelopsolutionsthattestandenablealargermixofDERs,suchassolarPV,intothegridthroughdemandmatchingandstorage,whileprotectingthepowersystemstability.Thesystemwillincludeabatterystoragesystemtobalancethesmartanddynamicload,andtheuseofinstalledonshoreandoffshoresolarPVsystems.AlongsidetheVPP,Singaporeisdevelopingadigitaltwinofthenationalpowergridthatwillallowthenationalutilitytotestgridinteractionsandevaluateenergyresourcesandinfrastructurechanges.Thegriddigitaltwinprovidesavirtualrepresentationofthephysicalgridsystemcomprisingthegridassets(e.g.substations,transformers)andnetworktwin(e.g.griddesignandoperation)includingover18000transformers,11000substationsand27000kmofinterconnectioncables.Thegriddigitaltwinaimstostreamlinepre-testingoftechnologydeploymentandoperatingconditions,alongsideplanningandanalysis,andremotetestingofgridsystemchangesinadynamicenvironment.TheVPPandgriddigitaltwinsystemstogetherofferanenvironmenttoevaluateincreasinginteractivityofSingapore’sbuildingenergydemandandtestgridstabilityasmoredynamicloadsandDERsarebroughtonline.Thebenefitsofagriddigitaltwinincludeimprovedconditionsforassetmonitoringandassetrenewals,improvednetworkplanninganalysisforbalancingneworpeakelectricityloads,andoptimisedinvestmentsofassets.PAGE94IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsAssessmentofopportunitiesforefficientFutureofbuildingsinASEANgrid-interactivebuildingsinASEANThailand’sT77Precinct,aP2PenergytradingenvironmentdevelopedbyPowerLedgerandBCPGThailand’sMetropolitanElectricityAuthoritypilotedaP2PenergytradingenvironmentintheT77precinct,Bangkok,in2018.TheprojectusedPowerLedger’senergyblockchainsoftwareandThai-basedrenewableenergycompanyBCPG.Theprojectfacilitatedthetradeofsolarpoweramongaschool,anapartmentcomplex,ashoppingcentreandahospital.PowerLedger’splatformprovidedatransactivelayertoenableP2Ptrading,monitorenergytransactionsbetweenparticipants,generateaninvoicetoallowforsettlementandsummarisethetradingactivitiesofindividualparticipants.TheP2Penergytradingplatformallowedtheprecincttosource18%ofitsenergyconsumedfromrenewablesourceswhilealsoreducingelectricitycostsfortheparticipantsandgeneratingincomeforthesolarowners.TheT77projecthassinceexpandedtosevenbuildingswithatotalof1.1MWofsolarPVconnected,generatinganaverageof2.8MWhdailyandanaverageof10MWhofenergybeingtransactedeachmonth.Theprojectalsoinstalledsmartmeterstocollectdataonenergyconsumptionpatternsinhouseholdsandbuildingsaswellasa50kW,200kWhBESSaimedatbalancingexcesssupplyanddemand.Thesesmartmetersmeasureelectricityusageinrealtimeandprovideinformationtobothconsumersanddevelopersaboutenergyconsumptionpatterns.DemandresponseprogrammesarecrucialforinteractionsbetweenbuildingsandthegridDemandresponseprogramsBruneiCambodiaIndonesiaLaoPDRMalaysiaMyanmarPhilippinesThailandSingaporeVietNamDarussalamDRprogrammesVoluntaryMandatoryMandatoryarenotavailableautomatedDR-policiesforpoliciesforautomatedDRautomatedDRpoliciesorareavailableforareavailableformanualDRcertaintypesofalltypesofprogrammesareavailableforusersuserscertainusersIEA.CCBY4.0.IntheASEANregion,demandresponseprogrammesaregainingpopularityduetotheirpotentialtoreduceenergyconsumptionduringpeakhoursandbalancetheelectricitygrid.DemandresponseprogrammesinASEANaretypicallyPAGE95IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsAssessmentofopportunitiesforefficientFutureofbuildingsinASEANgrid-interactivebuildingsinASEANimplementedbyutilities,whichofferfinancialincentivesorrebatestoencouragecustomerstoreducetheirenergyconsumptionduringpeakhours.Singaporewasthefirstcountryintheregionthatintroducedanexplicitdemandresponseprogramme.Underthisprogramme,theEnergyMarketAuthorityincentivisesconsumerstoreducetheirelectricitydemandwhenitisneeded.Consumerscanparticipatethroughdemandresponseaggregators,whicharethird-partyentitiesthattypicallyworkwithelectricityconsumersfromcommercialandindustrialsectors.Theaggregatorstypicallymanageconsumers’electricityconsumptionduringpeakperiodsandparticipateindemandresponseprogrammesofferedbyEnergyMarketAuthority.Consumersthatcanoffertoreducetheirelectricityconsumptionbyatleast0.1MWcanalsoparticipatedirectlyinthewholesaleelectricitymarkets.Theparticipatingconsumersthensubmittheirbiddemand,indicatingtheirwillingnesstoreducetheelectricitydemandatdifferentpricepoints.Theparticipatingconsumerswillreceiveone-thirdofthesavingsarisingfromthereductioninelectricitypricesasincentivepayments.Thisensuresthatmostofthebenefitsareaccruedtothebroaderconsumerbasewhileprovidingafairreturntoparticipants.TheincentivepaymentwillbeuptoSGD4500(Singaporedollars)permegawatt-hour,whichistheexistingceilingforwholesaleelectricityprices.SingaporealsolauncheditsInterruptibleLoadSchemein2005.Thisprogrammeincentivisesparticipatingconsumerstoreducetheirconsumptionduringperiodsofhighdemandthroughtheirparticipationinthereservesmarket.TheInterruptibleLoadSchemeisavoluntaryprogrammethattargetslargeenergyuserssuchasmallsandfactories,andeligibleconsumersmustbeabletoreducetheirelectricityconsumptionbyatleast0.1MW.UndertheInterruptibleLoadScheme,theconsumersmustalsoinstallaload-sheddingdevice,knownasamonitoring-recording-activationdevice,whichcanbeactivatedremotelybythegridoperatorduringperiodsofhighdemand.Participatingconsumersareinformedinadvanceoftheelectricitycurtailment,andthegridoperatorsendsasignaltotheload-sheddingdevicetoinitiatethecurtailment.Thedurationofcurtailmenttypicallylastsbetween30minutesand2hours.Inexchangeforparticipatinginthescheme,theparticipatingconsumersarepaidtheclearingpriceforcontingencyreservesineveryeventwheretheirelectricityconsumptionisreduced.Theclearingpriceissetthroughamarketbiddingprocessbasedonsupplyanddemand.Toparticipateinthisprogramme,consumerscanregisterthroughtheirrespectiveelectricityretailersordirectlyinthewholesaleelectricitymarket.InThailand,demandresponseprogrammeshavebeenimplementedoccasionallyinthepast.In2014,ademandresponseprogrammewasimplementedtosupportthemaintenanceoftheYetagungastransmissionsystem.DuringthisPAGE96IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsAssessmentofopportunitiesforefficientFutureofbuildingsinASEANgrid-interactivebuildingsinASEANimplementation,theprogrammesuccessfullyreducedthepeakdemandby70MWoutofthe200MWtarget.Fortheperiod2022-2023,EnergyPolicyandPlanningOfficeandMetropolitanElectricityAuthorityinitiatedthedemandresponseprogrammetotesttheeffectivenessofreducingpowersystemloadandelectricityconsumptionduringpeakperiods.TheprogrammeisoperationalfromJanuary2023toDecember2023andtargetscommercial,industrialandresidentialconsumers.Themainobjectiveofthisdemandresponseprogrammeistoreducethepeakloadby19.5MWduringspecifictimeperiods,namelyintheafternoonfrom13:30to16:30andintheeveningfrom19:30to22:30.Theprogrammealsooffersfinancialincentivesintheformofanavailabilityandenergypaymenttotheparticipatingconsumers.VietNamismakingimprovementstoitsdemandresponseprogrammetoensurebalancedandreliablesupplyofelectricity.Thecountryhasbeenwitnessingasteepgrowthrateincommercialelectricitydemand,about10%peryear,andfacestheriskofpotentialsupplyshortagesinthecomingyears.In2019,thegovernment,throughtheVietNamElectricity,conductedtendemandresponsevoluntaryevents,consistingofsevenemergencyeventsandthreeplannedevents.Around1300consumersparticipatedintheseevents,committingtoreducetheirelectricityconsumption.Thetotalcapacityreductionachievedduringtheseeventswasapproximately514MW,whichaccountedforabout53%oftheprojecteddemandresponsepotentialreduction.Theeventsuccessfullyreducedelectricitybyaround6373MWh,withanestimatedsavingequaltoVND24.12billion(Vietnamesedong)(approximatelyUSD1million).Lookingaheadto2023,thegovernmenthasdevelopedademandresponseprogrammetoaddressthechallengesanticipatedduringthedryseason,whichmayaffecthydropowerreservoirs.Bymid-2023,around6521consumerswithanannualelectricityconsumptionof1millionkWhormorehadregisteredintheprogramme.InthePhilippines,theInterruptibleLoadProgrammewasimplementedbytheDepartmentofEnergyin2014tomanageelectricitysupplyduringpeakdemandperiods.Thisprogrammeisvoluntaryandtargetslargecommercialandindustrialconsumers,suchasshoppingmalls,officesandfactories.Theprogrammerequiresparticipatingconsumersto“de-load”duringspecifichoursofthedaywhenthepowersupplyinthegridisinsufficienttomeetthedemand,whichtypicallyoccurbetween9:00and17.00.Participantsreceiveadvancenoticeand“de-load”byusingtheirownstandbygeneratorsorswitchingtobackuppowersources.Theparticipatingcustomersmayeitherfullyde-loadbydisconnectingelectricityfromthedistributionutilityorpartiallyde-loadbyreducingitsloadfromthedistributionutility.ToparticipateintheInterruptibleLoadProgramme,theparticipantsmustbelargeelectricityconsumerswithanaveragepeakdemandofatleast1MWandhavetheirownstandbygenerators.Furthermore,theparticipantPAGE97IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsAssessmentofopportunitiesforefficientFutureofbuildingsinASEANgrid-interactivebuildingsinASEANmustbewillingtocommittotheminimuminterruptibleload,whichrepresentstheminimumamountofpowertheywillcommittointerruptingwhenrequestedbythedistributionutility.Thedistributionutilitywillprovidede-loadcompensationtotheconsumers.DynamictariffprogrammesreducepeakelectricitydemandoflargeconsumersDynamicelectricitytariffsBruneiCambodiaIndonesiaLaoPDRMalaysiaMyanmarPhilippinesThailandSingaporeVietNamDarussalamDynamicVoluntaryMandatoryMandatoryelectricitytariffsdynamicdynamicdynamicarenotavailableelectricitytariffselectricitytariffselectricitytariffsareavailableforareavailableforareavailableforcertaintypesofcertaintypesofalltypesofusersusersusersIEA.CCBY4.0.InmanyASEANcountries,theprevailingelectricitytariffstructuresforbuildingownersareprimarilyflattariffs,whereconsumersarechargedatafixedrate.Price-baseddemandresponseprogrammes,suchastime-of-usetariffs,ontheotherhand,offeranopportunityforconsumerstoreducetheirelectricityconsumptionduringpeakhours,hencesavingmoneyonelectricitybills.Currently,price-baseddemandresponseprogrammessuchastime-of-usetariffs,real-timepricingandcriticalpeakpricingareavailabletospecificelectricityconsumersintheregion.Thetablebelowshowstheavailabilityofprice-baseddemandresponsetariffsacrossdifferenttypesofconsumersinASEAN.Manyexistingtime-of-usetariffsareimplementedformediumtolargeenergyconsumers,suchasthoseinthecommercialandindustrialsectors,whileresidentialcustomersareusuallysubjectedtoafixedtariff.StatusofdynamictariffsinASEANCountryTypeoftariffConsumereligibilityIndonesiaTime-of-useBusinesses,industriesandofficeswithvoltagelevelsabove200kVaaresubjecttotime-of-useMalaysiaTime-of-usetariff.Time-of-usetariffisofferedasoptionalpricingformedium-andhigh-voltageforcommercial,industrial,agricultureandminingcustomers.PAGE98IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsAssessmentofopportunitiesforefficientFutureofbuildingsinASEANgrid-interactivebuildingsinASEANCountryTypeoftariffConsumereligibilityPhilippinesTime-of-useTime-of-usetariffisofferedasoptionalpricingforresidentialandcommercialcustomerswithminimumelectricityconsumptionof500kWhpermonth.Smartmeterisrequiredforthistariff.SingaporeHalf-hourlypricesConsumersfromresidentialandcommercialThailandsectorshavetheoptiontobuyelectricityfromtheVietNamWholesaleElectricityMarket.Consumerspayelectricitypricesthatvaryeveryhalfhour,dependingonthedemandandsupply.Time-of-useTime-of-usetariffisanoptionaltariffforalltypesTime-of-useofcustomers,includingresidential,commercialandindustrial.Smartmeterisrequiredforthistariff.Businesses,industriesandofficeswithvoltagelevels25kVaoraboveorhavingaverageelectricityconsumptionof2000kWh/monthforthreeconsecutivemonthsaresubjecttotime-of-usetariff.SmartEVcharginginbuildingscanhelpgridsmanageimpactsofEVs’uptakeEVsmartcharginginbuildingsBruneiCambodiaIndonesiaLaoPDRMalaysiaMyanmarPhilippinesThailandSingaporeVietNamDarussalamEVsmartInitial/pilotstageEVsmartEVsmartchargingisnotofEVsmartchargingisusedchargingisveryusedinbuildingscharginginbuildingsoftenadoptionincommoninbuildingsbuildingsIEA.CCBY4.0.InASEAN,itisestimatedthatby202520%ofallvehiclesintheregionwillbeelectric,andby2030EVsareprojectedtomakeupnearly50%oftotalvehiclesales.AsEVadoptioncontinuestogrow,thereisapressingneedtoexpandthechargingstationinfrastructure.Currently,EVchargingstationsintheregionremainlimited,withmemberstatesprogressingatvaryingpaces.Moreover,itisprojectedthat90%ofEVchargingunitswillbeinstalledinprivatesettings,suchasresidential,commercialandindustrialbuildings.Thiswidespreadadoptionofchargingpoints,especiallyinbuildings,willsubstantiallyincreasethebuildings'PAGE99IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsAssessmentofopportunitiesforefficientFutureofbuildingsinASEANgrid-interactivebuildingsinASEANelectricityconsumption(morethan40%accordingtosomeestimates).ThesechallengesalsopresentanopportunityforEGIBstoeffectivelysynchronisewithchargingstations,particularlythroughsmartcharging.ASEANmemberstates’targetsforEVsandEVchargingstationsCountryElectricvehicletargetChargingstationstargetIndonesiaLaoPDRTargetof400000electricfour-Targetof25000chargingwheelersand6millionelectrictwo-stationsby2030wheelersontheroadby2025,and5.7millionelectricfour-wheelersand500EVchargingstations46.3millionelectrictwo-wheelersbyby2030.2035.Achieve30%ofEVsinthenationalvehiclemixby2030.MalaysiaTargetof1.5millionEVsby2040.Targetof125000chargingstationsbytheendof2030.PhilippinesTheComprehensiveRoadmapforTargetof41700chargingIndustryofthePhilippinessetatargetstationsby2040intheofabout1.75millionEVs(10%EVBAUScenarioor147000fleet)by2040intheBAUScenario,orby2040inthePhilippine’s6.3millionEVs(50%EVfleet)intheCleanEnergyScenario.Philippine’sCleanEnergyScenario.SingaporeUndertheSingaporeGreenPlan2030,Targetof40000chargingtheLandTransportAuthorityaimstostationsinpubliccarparkselectrify50%ofbusandtaxifleetsbyand20000inprivate2030andreducepeaklandtransportpremisesby2030.emissionby80%by2050.ThailandAimstohave50%locallymadeTargetof2200to2400vehiclestobeelectricby2030,andchargingstationsby2025100%by2050.and12000by2030.EVfleetreferstothemixofallvehiclesinsectorsofcorporateandgovernmentfleets,publictransportoperators,andindustrialandcommercialcompanies.Estimatesindicatethattheintegrationofsmartchargingtechnologywithbuildings,particularlythoseequippedwithtime-of-usetariffs,demandchargesandDERs(solarPV),hasthepotentialtoyieldenergysavingsofupto70%forbuildings.ForPAGE100IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsAssessmentofopportunitiesforefficientFutureofbuildingsinASEANgrid-interactivebuildingsinASEANexample,whenintegratedwithtime-of-usetariffs,thechargingcanbedonewhenthegridisleastconstrained,usuallyduringoff-peak.ThistranslatestocostsavingsonchargingforEVowners,whilebuildingownerscanusethisstrategytocreatedynamicenergyloadsthatmighthelpbufferagainstpotentialpricespikesinfutureelectricitydemand.InASEAN,theimplementationofsmartchargingwouldnotonlybenefitbuildingsbutalsohaveasignificantimpactonthegridsystem.Forinstance,if10millionEVswerechargedwithsmartcharging,thepeakdemandwouldincreasebyonly0.5GW,incontrastto3GWwithunsupportedcharging.Theintegrationofsmartchargingandbuildingsalsoexpandstheopportunitytoprovideenergyservices.Bidirectionalcharginginbuildings,forinstance,allowsparkedEVstoparticipateinmanagementand/oraggregationofDERs,aswellasdemandresponseprogrammes.InASEAN,thelandscapeofEVs,chargingpointsandsmartchargingpoliciesvariesacrosscountries.Thailand,currentlytheregion'sleadingEVmarket,hassetatargettomake50%oftheirlocallymadevehicleselectricby2030.ToacceleratetheEVadoption,theThaigovernmenthasimplementedarangeofEVchargingincentives.ThegovernmenthasalsoforgedapartnershipwiththeADBandEnergyAbsolutetosecureUSD48millioningreenloanstofundcharginginfrastructuredevelopment.Atthemoment,however,thesmartcharginginfrastructureinThailandisavailableonlyinlimitedlocations,specificallyBangkok,NonthaburiandSamutPrakan.ThesesmartchargingstationsarepartoftheMetropolitanElectricityAuthority’sSmartChargingSystemproject,whichaimstoestablishgridflexibility.Inlinewiththisgoal,MetropolitanElectricityAuthorityhasalsoformedpartnershipswithEnergyAbsoluteandJRWutilitytofurtherenhancegridflexibilitythroughsmartcharging.IndonesiaalsohasplanstobecomeamanufacturinghubofEVsby2025.Thecountryaimstoexport200000EVsbythattime–whichaccountsfor20%oftheoverallannualexportsofthecountry.Inlinewiththisgoal,theIndonesianMinistryofEnergyandMineralResourceshaspromulgatedincentivesforthedevelopmentofpublicelectricchargingstations.Theincentivesfocusonestablishingthebulktariffforchargingstationprovidersandimplementingapricecapfortheservicestheyoffer.Theincentivealsoincludesotherbenefits,suchasreliefonconnectionfeesandsubscriptionguarantees,whichcontributetocostreduction.In2022,thecountrysuccessfullyadded1415newchargingstations,surpassingtheinitialtargetof693by204%.Buildinguponthisachievement,thegovernmenthassetaplantoestablishanadditional1030chargingstationsbytheendof2023.InformationregardingtheavailabilityofsmartcharginginfrastructureinIndonesiais,however,notyetavailable.PAGE101IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsAssessmentofopportunitiesforefficientFutureofbuildingsinASEANgrid-interactivebuildingsinASEANInSingapore,abillhasbeenpassedtoensurethewidespreadavailabilityofEVchargers.Underthisbill,allnewbuildingsarerequiredtoinstallaminimumnumberofchargingpoints,equivalenttoapproximately1forevery25parkingspaces.TofurtherencouragetheadoptionofEVcharginginbothresidentialandcommercialsectors,theLandTransportAuthorityhasintroducedtheEVcommonchargergrantin2021.Thisgrantaimstoco-fundtheinstallationcostsofEVchargers.Currently,buildingsaccountforone-thirdofthepotential2000chargingpointsinSingapore,withamajoritylocatedincommercialsettingssuchasmalls.Throughthegrantprogramme,thegovernmentwillcover50%oftheinstallationcost,withamaximumcapofUSD4000percharger.ThisgrantwillbeavailableuntilDecember2025,oruntilatotalof2000chargershavebeenco-funded.Thisgrantprogrammealsoofferspotentialco-fundingfortheinstallationofsmartchargers,limitedtoamaximumof1%ofthetotalresidentialcarparklots.ThesmartchargershavetocomplywiththeOpenChargePointProtocolandareexpectedtofulfilmultiplefunctions,includingtheabilitytoadjustthechargingrate,monitorandrecordenergyconsumption,andtransmitenergydata.Asofnow,thereisnoreadilyavailableinformationontheexactnumberofsmartchargersthathavebeeninstalledinSingapore.In2023,theMalaysiangovernment,throughitsBudget2023,extendedincentivesforEVchargingmanufacturers,includinga100%taxexemptiononstatutoryincomefrom2023to2032.Theseincentivesalsoprovidea100%investmenttaxallowanceforadurationoffiveyears.TheBudget2023willalsoallocateapproximatelyUSD36millionfortheinstallationof500newEVchargingstations.Inaddition,theTenagaNasionalBerhadutility,throughitschargerproductElectron,hasdevelopedadirectcurrent(DC)chargerandwillfurtherdevelopsmartchargersinthefuture.ThePhilippinesimplementedRepublicAct11697in2022,commonlyknownastheElectricVehicleIndustryDevelopmentAct,tofacilitatethewidespreadadoptionofEVsinthecountry.Underthislaw,specificprovisionsareinplacetosupportEVcharginginfrastructure.Notably,importedchargingstationsaregrantedanexemptionfrompaymentofduties,whichtypicallyrangefrom10%to30%,foradurationofeightyearsfrom2022to2030.Additionally,theElectricVehicleAssociationofthePhilippinesincollaborationwithDeltaElectronicshassuccessfullydevelopedasmartchargingsolutionforthecountry.Thissystemcombinessolarpower,energystorageandenergymanagementcapabilities.Byleveragingthesetechnologies,thesmartchargingsolutionprovidesflexibilityforbothEVsandgridoperators.ThroughDelta’senergymanagementtechnology,thegridoperatorscantakeadvantageofpeakshaving,PVself-consumptionandloadshiftinginoff-peakperiodstooptimiseenergyusage.PAGE102IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsAssessmentofopportunitiesforefficientFutureofbuildingsinASEANgrid-interactivebuildingsinASEANInVietNam,VinBus,anelectricbusescompany,haspartneredwithStarChargetodevelopsmartcharginginfrastructurefortheirfleet.ThiscollaborationaimstosupportVinBus'fleetof150-200electricbusesinHanoi,HoChiMinhCityandPhuQuoc.ThesmartcharginginfrastructureprovidedbyStarChargewillincorporatevariousintelligentfeatures,includingloadmanagement,powerconsumptiondataanalysis,energymanagementsystemandenergystoragecapabilitiestohandlepeakchargingdemands.TheincreasingadoptionofEVsintheASEANregionpresentsasignificantopportunityfortheintegrationofEVcharginginfrastructurewithbuildings,enablinggridflexibilityandenergysavings.ItisimportanttonotethateachASEANmemberstatehassetdifferenttargetsforEVandchargingadoption.Thesetargetsreflecttheiruniqueprioritiesandambitions.ByleveragingEGIBsandsmartchargingsolutions,ASEANcountriescanworktowardsachievingtheirEVtargetswhilealsoenablingbuildingstoparticipateactivelyintheelectricitygrid.SmartinvertersareshowingbenefitsforlargebuildingsandfacilitiesSmartinvertersBruneiCambodiaIndonesiaLaoPDRMalaysiaMyanmarPhilippinesThailandSingaporeVietNamDarussalamSmartinvertersInitial/pilotstageSmartinvertersSmartinvertersarenotusedofsmartareusedinareveryinverterscommonadoptionbuildingsoftenIEA.CCBY4.0.WiththeincreaseofsolarPVdeploymentinresidentialandcommercialbuildingsinASEAN,theuseofinverterhasbecomeanecessitytoconvertDCtoAC.Theuseofsmartinvertersintheregion,however,isstillinanascentphase.Thereareseveralpilotprojects,mainlyimplementedinlargecommercialandindustrialbuildings,thatarebenefitingfromthistechnology,assmartinvertersareprogrammedtorespondtogridconditionsinanautomatedmannerandunlikeconventionalinvertersthatsimplyshutdownwhensensinganygriddisturbance,smartinvertersprovidegrid-supportivefunctionalitiesandeffectivelymanageandmitigatesmallfluctuationsinvoltageorfrequency.Forexample,inSingapore,20TRIO-50solarinverterswereinstalledbyABBinIKEA'sflagshipstorelocatedinTampines,tosupporttherooftopsolarsystemcapableofgenerating1.3millionkWhofrenewableenergyannually,equivalenttopoweringover280households.PAGE103IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsAssessmentofopportunitiesforefficientFutureofbuildingsinASEANgrid-interactivebuildingsinASEANAnexampleofsuchtechnologyavailableinSingapore’smarketistheSunnyTripowerSmartEnergyhybridinverter,whichcombinessmarttechnologywithintegratedservicesforstoragesolutions.Userscaneasilygenerate,useandstoresolarpower,withtheflexibilitytoexpandthesystembyincorporatingadditionalcomponentssuchase-mobilityorheatpumps.Theintegratedbattery-backupfunctionensuresuninterruptedelectricitysupply,evenduringgridfailures,resultingincomprehensiveandself-sufficientsmartenergysystemswithupto100%solarenergy.InIndonesia,inJakartatherearetwoexamplesincludingahybridPVsystemwithan11.68kWpcapacityanda5.4kWphybridreadysystem,usingGoodWeETinverters.InVietNam,ABBinstalledasolarPVinstallationwithacapacityof75kWpatitsfactoryinBacNinhprovince,includingthree-phasesolarinverterssuchasTRIO-27.6andTRIO-TM-50.0,WeatherStationandasmartACBEkip.Theseadvancedtechnologiesleveragethedigitalcapabilitiestoensuremaximumefficiency,automationandcost-effectiveness,whilealsooptimisingspaceutilisation.Theinverterscanberemotelycontrolled,maintainedandmonitoredusinganyweb-enableddevice,suchasasmartphone,tabletorcomputer.ACBEkiphelpsintegraterenewableenergyintotheexistinggridthroughbuilt-inloadshedding,monitoringandprotectionfeatures,whichoptimiseoperations.VietNamalsohostsamanufacturingfacilityforKSTARsolarinvertersproduction.Smartinverterswereintegratedintoamulti-roofsolarenergysystem(9600modulesover8roofs)inThailandimplementedbyToyotausingSolarEdgetechnology.SolarEdgeincludesPVmodulesofatotalcapacityof3.4MWconnectedtoapower-optimisinginvertersystemturningthemintosmartmodules.Itincreasestheoverallefficiency,minimisespowerloses,allowsforeachmoduletoproducesolarelectricityatitsmaximumcapacityandthereforeincreasestheamountofelectricityproducedbytheentiresystem.Smartinvertersandpoweroptimisersalsoenableareal-timemodule-levelmonitoringofproduction,consumptionandgrid-importdata,aswellasaccuratefaultdetection.BothMalaysiaandthePhilippinesdevelopedguidelinesonnetmetering,whichindicatestheimportanceofsmartinvertersandparticulartheirabilityforoptimisationandmonitoringatthesystemlevel.PAGE104IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsThewayforwardforbuildingsinASEANFutureofbuildingsinASEANThewayforwardforbuildingsinASEANEfficientgrid-interactivebuildings(EGIBs)intheAssociationofSoutheastAsianNations(ASEAN)canplayacrucialroleinmeetinggrowingelectricitydemandwhilereducingGHGemissions.Governments,industryandconsumerscanrealisethebenefitsfromtheadoptionofEGIBsthroughgreaterresearchanddevelopment(R&D),bypromotingthevalueofinteractivitywithinbuildingsandwiththeelectricitysystematlarge,byengaginguserstoincreasetheirawarenessofpotentialbenefitsandcostsavings,andthroughgovernmentsupportindevelopmentandimplementationofpolicies,programmesandprojects.Basedontheaggregationoftheassessmentresultsforeachenablerpresentedabove,eachASEANcountrywasplacedinoneofthethreegroupsdependingonwhereitstandsintermsoftheprogressonenablingtheadoptionofefficientgrid-interactivesolutionsinbuildings.AssessmentresultsforenablersofEGIBsinASEANcountriesExplorersCountriesthatareintheAdoptersCountriesthathaveidentifiedInnovatorsCountriesthathavebeenbeginningoftheprocessofsomeopportunitiesforEGIBsimplementingvariousEGIB-discoveringandresearchingtheandareimplementingpilotrelatedpracticesandsolutionsopportunitiesforEGIBsprojectsandsandboxestotestonarelativelywidescaleandtheirbenefitsandpotentialhaveintegratedsomeofthemintopolicyprocessesBruneiCambodiaIndonesiaMalaysiaPhilippinesDarussalamMyanmarSingaporeThailandVietNamLaoPDRIEA.CCBY4.0.TheassessmentofEGIBstatusandopportunitiesinASEANhasshownthatinterestinbuildingsasasourceofmanagingenergydemandthroughenergyefficiencyandpromotinggridinteractivityisrapidlyemerginginagrowingnumberofcountriesacrosstheregion,becominganimportantpolicyareafortheirfuturebuildingsstrategies.Thelevelofadoptionofefficientgrid-interactivesolutionsinbuildingsalsomayvarysignificantlywithineachgroup.Forexample,someofthecountries(e.g.Singapore)withintheAdoptersgroupmightbeclosertomovingintotheInnovatorscategorythanothers.Itcreatesopportunitiesforcountriestolearnfromeachotherthroughpeer-to-peerexchanges.NoneofthecountriesinASEANwereplacedintotheInnovatorsgroup,aspolicydevelopmentsandtechnologyadoptionPAGE105IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsThewayforwardforbuildingsinASEANFutureofbuildingsinASEANnecessaryformainstreamingefficientgrid-interactivebuildingsarestilllimited.TheInnovatorsgroupcanserveasavisionthatASEANcountriescanaspireandmovetowardsthroughimplementationofrelatedactionandinternationalcollaborationwithothercountriesaroundtheworld,whichhavealongertrackrecordofutilisationofefficientgrid-interactivesolutionsandbestpracticesinbuildings(e.g.theUnitedStates,EuropeanUnion).Thefollowingrecommendationshighlightkeyactionsthatgovernment,industryandconsumerscantaketobenefitmorefullyfromEGIBs.Theserecommendationsarefurtherexpandedbelowforthegroupsdefinedintheassessment;however,therecommendationscouldalsobeseenasapotentialwayforwardformostcountries.Recommendationstosupporttheuptakeofefficientgrid-interactivebuildingsDevelopacomprehensivepolicypackageImplementationofenergyefficiencymeasures,smarttechnologiesandenablingsolutionsforbuilding-to-gridinteractionsrequiresthedevelopmentofacomprehensivepolicypackage.Aneffectivepolicypackageincludesacombinationofregulatorymechanisms,incentivesandinformationpolicyinstruments,supportingthetransitionofthebuildingssectortowardshigherlevelsofbuildingsenergyperformanceandcontributingtoenhancingflexibilityoftheenergysystem.Establishingafoundationforthepolicypackagecouldbeginfromsettingambitiousyetachievableoverarchingtargetsforimprovingenergyefficiency,decarbonisingthebuildingssector,establishingeffectiveinteractionsbetweenbuildingsandthegrid,andcommunicatingthesetargetstokeystakeholdergroups.PAGE106IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsThewayforwardforbuildingsinASEANFutureofbuildingsinASEANBuildingsenergyefficiencypolicypackageIEA.CCBY4.0.Source:IEA(2023),EnergyEfficiencyPolicyToolkit.Regulationssetminimumbenchmarksandtargetstogiveasignaltothemarkettoretrofit(orinfewcases,demolish)theworstperformingbuildings,phaseoutproductsandmaterialsandsetoutapathwayforinvestmentstowardsmoreefficient,low-carbon,smartandflexiblealternatives.Regulatorypolicyinstrumentsarecriticalelementswhendevelopingapolicypackage.Buildingenergycodesareamongthe“mostwidelyrecognised,scalable”andeffectivepolicyinstrumentsforbuildings.Theyareimplementedinover80countriesaroundtheworld.Propertoolstodeterminepost-constructioncompliancewillneedtobedeployedtogetherwithbuildingcodeimplementation.Suchtoolscanalsoprovidefeedbacktoimprovethewholeconstructionprocess,takingadvantageofdigitalisationandcontrolstomonitoractualbuildings’performance.Mandatoryminimumenergyperformancestandards(MEPS)andlabelsforkeyappliancesandequipmentusedinbuildingsareadditionalfundamentalpolicyinstrumentswithproveneffectiveness.Implementedinover120countriesaroundtheworld,MEPSandlabels“havehelpedmorethanhalvetheenergyconsumptionofmajorappliancesincountrieswiththelongest-runningprogrammes”.PAGE107IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsThewayforwardforbuildingsinASEANFutureofbuildingsinASEANOnceregulatorypoliciesareinplace,theireffectiveimplementationandenforcementcouldbesupportedbyinformationpolicyinstrumentsandincentivestoensurecomplianceandfurtherprogress.Buildingcertificationandlabellingwithratingsbasedonenergyandcarbonperformanceofbuildingscanprovideclearsignalsforconsumersandindustrytoencouragemoreinformedandsustainablechoicesandpractices.Informationtoolsandawareness-raisingcampaignsintendtohelpconsumersanddevelopersmakeinformeddecisionsaboutlow-carbonchoicesfortheconstruction,renovation,purchaseandleaseofbuildingspaces.Capacity-buildingprogrammesaimtoensurethattherearesufficientskillsandknowledgeonvariousaspectsofefficientgrid-interactivebuildings,aswellasanadequatenumberoflocal,qualifiedexpertstoundertakeaneffectiveimplementationofpoliciesandtodrivethenecessarymarkettransformation.Arangeoffinancialandnon-financialincentivescouldbelinkedtocertificationschemestosupportthebuildingsandconstructionindustrytoadapttotheregulationatearlystagesofadoptionandtohelpovercomemarketbarrierssuchasupfrontcostsandaccesstocapital,aswellastodriveactionbeyondminimumstandards.Suchpackagescouldincludethefollowingelementsandcapitaliseonthelinkagesbetweenthem:Regulatorymandatoryzero-carbon-readyrequirementsforallnewbuildingsandretrofitscoveringbothoperationalandconstruction-phaseenergyintensityandemissions(e.g.throughbuildingenergycodes).Theywouldalsoincluderequirementsforsmartelectricvehicle(EV)charging,demandmanagementandflexibilityrequirementstohelpbuildingsaccommodatevariablerenewableenergy(VRE)sourcesandinteractwiththeelectricitysystem.Minimumenergyperformancerequirementsforappliancesandequipmentthatsetenergyefficiencyanddemandresponse-readyrequirements.Certificationandlabellingprogrammesprovideidentificationlabelstoshowthatcertificationhasbeenachieved.Suchcertificationandlabellingschemescanalsoincludeinformationonwhetherappliancesandequipmentaredemandresponse-readyoriftheyareequippedwithothersmartordigitaltechnologiesthatcanfacilitatetheinteractionwiththegrid.Applyingthesetonewbuildingsandsystemsalongwithmajorrenovationscanincreaseconsumerconfidenceandperformancecompliance.Incentivesthatencourageenergyefficiencyperformanceimprovementsandlow-carbonsolutionsareoftenneededtopromptactions.Non-financialand,whereappropriate,financialincentivestiedtotheenergyandcarbonperformance,aswellasdemandresponse-readinessoftargetedtechnologiesandproducts,canboostdemandforlow-carbon,flexibleandenergy-efficientsolutions.PAGE108IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsThewayforwardforbuildingsinASEANFutureofbuildingsinASEANMonitoringandtrackingframeworkssetouttherangeofindicatorstoinformpolicymakersandindustryoftheprogress,deliveryandperformanceofsustainableandlow-carbonbuildingsacrosstheregion.Datacollectionprovidesameansofgaininginformationtomanagebuildingenergyuseandoperation,renewableenergygeneration,andbuildingconstructionandrenovationpractices.Thesedatacanhelptodevelopandregularlyupdatebaselinesfortrackingprogresstowardsanetzero-carbonbuildingssectorandevaluateimpactsofpolicyinterventions.Robustdatacanalsohelptoaccessprojectfinanceanddevelopmorecompellingproposalsforinvestors.ArecenttooltocollectbuildingsdatahasbeendevelopedthroughtheBuildingPassport,ausefulwaytocollectdatafornationalbuildingstockstatistics.Financingandinvestingconditionsforsustainablelow-carbonbuildingprojects(bothconstructionandrenovation)throughharmonisingregulationsanddevelopingqualityassuranceprogrammesarevitaltoaddressingriskadversityandbroadeninginvestmentopportunities.Buildingcapacityamonggovernmentalofficials(national,subnationalandlocal)andindustrycanbroadensupportforlow-carbonbuildings.Providingaccessibletrainingonbuildingenergyperformancecertification,sustainableurbandevelopmentandmaterialsdecarbonisationaccompaniedbyprofessionalaccreditation(e.g.certifiedenergymanagers)iscriticaltomovingtowardsanetzero-carbonbuildingssector.Stakeholderengagementwithinpolicydevelopment,communicationofpolicypriorities,andenactingandupdatingpolicieswillbroadensupportforeffortstodeliverlow-carbonbuildingsamongnational,subnationalandlocalgovernmentsbasedontheprinciplesofmultilevelgovernance.ModernisebuildingenergyefficiencythroughregulationtosupportflexibilityBuildingenergycodesareakeymechanismtopromoteenergyefficiencyadoptioninnewbuildingsconstruction,andtheuseofcodestoincludesmartandinteractivefeatureswillbeanimportantapproachtoenablingbuilding-to-gridinteractivity.Itiscrucialthatbuildingenergycodesincludeminimumrequirementsforvariousparameters,e.g.buildingfabricandsystemperformancelevels,aswellasthewholebuilding’sperformance,whichisrequiredtobecomemorestringentovertime.ForASEANcountriesthathavealreadyadoptedbuildingenergycodes,inthenextiterationofthosecodestheycanincludeenergyefficiencyrequirements,suchasachievementofhigherlevelsofperformanceofthebuildingenvelope,glazingandmoreefficientbuildingservicessystemperformancerequirementsthroughreferencetoenhancedMEPS.Forthosewithoutbuildingcodes,separatestandardsfornewbuildingscanbeenacted(orembeddedinforthcomingcodes)tosetfabricperformancerequirementsforallormostbuildingtypes.PAGE109IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsThewayforwardforbuildingsinASEANFutureofbuildingsinASEANToavoidlockingintheflexibilitypotentialofbuildings,itiscrucialtopreparethebuildingssector(especiallynewbuildings)forpotentialinteractionswiththegrid,evenifitisgoingtotakesometimetomodernisetheelectricitysystem.Animportantstepinthisdirectionisinclusionofcertainrequirementsintothebuildingregulationswiththeirsubsequentimplementationandenforcementatthenationalandsubnationallevels.Suchmodernisedrequirementsmightinclude,butarenotlimitedto:Stringentenergyefficiencyrequirementsforbuildingenvelopesandelectricity-consumingsystemswithsomeleveloftheoveralltargetedbuildingenergyperformanceandsupplementedbyprescriptivecomplianceoptions.Wherepossible,thisshouldbedoneforbothnewandexistingbuildingstoensureefficientdesign,maintenance,operationandrenovationofbuildings.Requirementsforbuildingstobeequippedwithsmartmeters,advancedcontrols(includingdemandresponsecontrols,suchasdemandresponsethermostats,demandresponselightingcontrols,demandresponseheating,ventilationandairconditioning(HVAC)controls),sensors,andcommunicationtechnologies.Requirementsforbuildingstobeequippedwithsmartdevicesandmakeuseofintelligentanalyticstoimproveoperation.Prescriptiverequirementsforon-siterenewableenergysystems.Grid-readyrequirementsforbuildings(pre-wiring,spacerequirementsforfutureinstallationsofPVsystems,EVchargingandenergystorage).SmartEVchargingrequirements.Requirementsforthoroughtestingandcommissioningpriortooccupancy.Requirementsforpost-occupancyenergyusemonitoringbasedonthesmartmeterdata.Inordertoensuretheeffectivecompliancewiththesemodernisedrequirementsandrealisationoftheflexibilitypotentialbuildingshavetooffer,itisimportanttoassesstheimpactofdifferentEGIB-relatedmeasuresandtheirabilitytoprovidevariousgridservices.SomeEGIB-relatedmeasurescouldbeprioritisedbasedontheirimpactandamountofeffortandresourcestheirimplementationwouldrequire.MEPSplayavitalroleinpromotingEGIBsbysettingmandatoryminimumrequirementsforsystemperformancewhichcanreduceenergyconsumptionandhelpreducepeakdemand.MEPScanalsoincludemechanismsthatintroducecontrolsandsmartperformancefeatures,aswellasdemand-response-readyrequirementsforappliancestobeequippedwithdevicesthatarecommunications-enabledandabletorespondautomaticallytopriceand/orothersignalsbyshiftingormodulatingtheirelectricityconsumptionand/orproduction.PAGE110IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsThewayforwardforbuildingsinASEANFutureofbuildingsinASEANASEANcountriescanadoptMEPSwithhigherperformancerequirementsandsmartfeaturesthatspecificallyincluderequirementsforequippingapplianceswithsmartcontrolsandinteroperabilitycommunicationprotocols.Supportflexibledecarbonisationthroughon-siterenewablesandstorageDecentralisedon-siterenewables(e.g.rooftopsolarPVsystems)provideameansforbuildingstodirectlyreduceenergydemandthroughgenerationanduseofthatenergyforbuilding’soperation.Theyalsocontributetocarbonemissionsreductionsandincreaseenergysecuritythroughdecentralisationofthegeneration.SeveralASEANgovernmentshavepoliciesthatpromoterenewableenergyinnewbuildingconstruction.Thesepoliciescanbeadoptedacrosstheregionthroughtheuseofland-useplanningregulations,buildingenergycodes,andpoliciesforexistingbuildingsthatmeetenergyorpowerthresholds(i.e.largeenergyuserswiththeenergyconsumptionaboveacertainthreshold).ASEANgovernmentsandutilitiescanalsoimplementmeasurestoprioritiseon-siteusagetoreducecurtailmentandadoptmeasuresthatenablelocalnetworkpeer-to-peersolarelectricitytradingwherefeasiblewithinthegridormicrogrids.On-siteenergystorage(thermalandelectrical)isakeywaytosimultaneouslyincreasetheadoptionofrenewableenergywhilealsoreducingpotentialnegativeimpactsonthegrid.Sizingrenewablesthatusebatterystoragedesignedtomeetahigherbaseloadofenergydemandinbuildingscanresultingreaterenergyindependenceofbuildingsandcanactasreservoirsforthegridwhenpowersupplyrequiresadditionalsupport.ASEANcountriescanadoptrequirementsforon-siteenergystoragealongsiderenewables,whichcanbethroughinstallationconnectionpermissionsforrenewables,buildingcodesrequirementsforon-sitestorage,orregulationsforlargeusersrequiringon-sitegenerationandstorage.IntegratesmartnessintobuildingsystemsandcontrolsAdoptionofsmartsystemsinbuildingsisawaytoensurebuildingenergyservicedemandscanbemademoreflexibleandinteractive.The“smart”elementsensurethatsystemsarecapableofbeinginteractiveanduseanalyticstomoreintuitivelyadapttouserandcontextualfactors(e.g.weather).Promotingtheuseoftheinternetofthings(IoT)inbuildingsystemsandtheuseofsmartsensorsandcontrolsandtheirintegrationintobuildingenergymanagementsystems(BEMS)willensurethatdemandsforcooling,lightingandventilationaremaximisinguserrequirementsandcapableofbeingreactivetogridinteractions.Thesesystemscanhelpusersidentifyenergy-savingopportunitiesandencouragebehaviouralchangesthatcontributetooverallbuildingenergyefficiency.Topromotewideradoptionofsmartsystemsinbuildings,ASEANgovernmentscanworkwithindustrytoadoptsmart-readystandardsforappliancesandcontrolstoensurethatPAGE111IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsThewayforwardforbuildingsinASEANFutureofbuildingsinASEANsysteminteroperabilityisnotabarriertofutureadoption.Inaddition,smartrequirementsforbuildingscanbeincludedinbuildingstandards(e.g.MEPS)andcodesforcommunicationandpowersupplyinbuildingswhenissuingbuildingpermits.Smartmetersandopencommunicationstandardsinbuildingsareakeyinterfaceforbuildingsthatpromotesinteractivitywiththegrid.Consumersbenefitfromsmartmetersthroughaccesstotheirenergyuseinformationthatcaninformwhenandhowenergyisused,particularlywhenconnectedtosmartappliancesandsystems,whichcanenablebehaviourchangesandchoicesforadoptingmoreefficientsystems.Utilitiesbenefitfromsmartmetersthroughmoreaccurateandremotemeteringofusageandcanhelpplanandbetterservetheircustomersthroughpricingmechanisms.ASEANgovernmentsandutilitiesintheregionareadoptingsmartmetersandthecontinuedroll-outcanbefurtherfacilitatedbylinkingthesmartmeterinstallationtoprogrammesthatincentiviseadoption(e.g.time-of-useorotherenergysavingsprogrammes).Promotetechnologyadoptiontosupportbuilding-to-gridinteractionAdoptionofgrid-interactivetechnologiesthatareneededforestablishingandensuringaneffectivecommunicationbetweengridsandbuildingsshouldbesupportedbyenablingpolicies.Technologiessuchasadvancedmeteringinfrastructure(AMI)thatallowtwo-waycommunicationfromthemeterpoint,smartinvertersthatallowforbidirectionalflowfromon-siterenewableenergygeneration,andinclusionofsmartchargingforEVsinbuildingselectricalwiringandpowerconnectionsneedtobereflectedintoappropriatepoliciesfortheirdeployment.ASEANcountriescanuseexistingmechanismstoenhancetheadoptionofthesetechnologiesthroughexistingpowerconnectionstandardsforbuildingsthatrequireAMIaspartofthecertificationprocessforneworupgradedconnections.Forbuildingsthatinstallon-siterenewables,standardsforcommissioningaswellaslicencesforinstallationandconnectioncanrequirethatsmartinvertersareused.ForsmartEVcharging,buildingpermissionscanrequirethatbuildingsadoptstandardsrequiringsmartchargingtomaximisepowerandenergysupplyforagreaternumberofEVson-site.Usepoliciesandprogrammesthatincreasethevaluepropositionofsmartgridstosupportconsumerstoadoptsmarttechnologiesandutilitiestopromotetheuseofgrid-interactiveservices.Theuseofdemandresponse-readinessstandardsfornewappliancesbeingmanufacturedwillensuregrid-basedcommunicationscanmanageenergydemandfromappliances.Demandresponseprogrammesthatallowconsumerstobenefitfromflexiblepowerdemandsforfinancialorserviceincentivesallowutilitiestoreducepeakpowerandconsumerstobenefit.ASEANcountriescandeveloppoliciesthatallowutilitiestoofferdemandresponsePAGE112IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsThewayforwardforbuildingsinASEANFutureofbuildingsinASEANprogrammeswithintheiroperatingmandatetoallowforconsumerbenefitsandgridoperationimprovements.RegulationsaroundMEPScanbeenhancedtorequiremanufacturerstoadoptstandardsthatallowforgridcommunicationstotransmittobuildingappliances,suchasair-conditioningandwaterheatingunits.Utility-basedprogrammesandinitiativescanfurtherenablegridinteractivitybyprovidinganenvironmentthatallowsforbuildingstobemorecloselyconnectedtothegrid.Thisenvironmentrequiresbothprogrammesandinfrastructurewhichensurethat,asbuildings’capacityforflexibilityincreasesthroughenergyefficiencyandsmartness,thegridisabletoadoptthisopportunity.UtilitiesinASEANcandevelopprogrammesorallowenergyservicecompaniesthataggregateflexibilityinbuildingstoenhancethepotentialpowerandenergysavingsavailablefromalargernumberofbuildings.Utilitiescandevelopdynamictariffsthatallowforconsumerstobenefitfromlowerpricesduringoff-peakperiodsandcanenableutilitiestobettermanagetheirpeakpowerpricingtodiversifytheavailablebaseload.Withtheuseofsmartbuildingsystems,thispowerdiversificationcanbeautomatedtooptimiseenergyusealongsidereducingthepeakelectricitydemand.UtilitiesinASEANcaninvestincreatingvirtualpowerplant(VPP)systemsthatcanbettertestandmanagetheutilitypowerenvironment,forwardplanfordecentralisedenergygenerationandsignalpowermanagementinsmartbuildings.DemonstratorprojectforEGIBsacrossEuropeTheSmartReadinessIndicator(SRI)isaratingtoolthatevaluatesabuilding’sabilitytoaccommodatesmart-readyservices.TheconceptwasintroducedintheEuropeanCommission’s2018EuropeanEnergyPerformanceofBuildingsDirective(EPBD).Theconceptofasmartbuildingisrelatedtoitsabilityto“sense,interpret,communicateandactivelyrespondinanefficientmannertochangingconditionsinrelationto:theoperationoftechnicalbuildingssystems,theexternalenvironment(includingenergygrids),anddemandsfrombuildingsoccupants.”Asof2020,theSRIisestablishedasanofficialEUratingsystemthroughitsimplementationmechanism,andasastandard.TheSRIlooksacrossarangeofenergyservicedemand(i.e.heating,cooling,hotwater,EVcharging,dynamicbuildingenvelope)anddeterminesthesmartreadinessofabuildingbasedonitscapacitytooptimiseenergyefficiency,adjustoperationstomeetoccupantneedsandtoadapttogridsignals.Theratingsystemprovidesascorethatdeterminesabuilding’ssmartreadinessusinginputonthethreekeyfunctionalities(i.e.optimalefficiency,adaptiontoneedsandadaptingtogrid)andsevenimpactcriteriarelatedtoefficiency,maintenance,comfort,convenience,healthandwell-being.PAGE113IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsThewayforwardforbuildingsinASEANFutureofbuildingsinASEANApilotphasebeganin2021toevaluatetheuseoftheSRIamonganumberofmemberstateswithintheEuropeanUnion.Denmarkisbeginningatestphaseofapplyingthestandardtoaround30buildingswithavarietyofusestodeterminethesuitabilityoftheSRIforDanishbuildings,whileFrance’sMinistryforHousingandCeremaareapplyingthemethodologyonalargenumberofbuildingsinordertotestandbringtogetherthesmartreadinessindexandenergyperformancecertificatesalongsideanationaltestingphase.TheSRIprovidesanexampleofaregionallyagreedcommonstandardtodescribeanybuilding’scapacitytoenablesmartservices.Havingastandardthatmemberstatescanusetoevaluatebuildingsintheircurrentandfuturesmartnesslevelmeansthatpoliciescanbedevisedtoaddresscurrentgapsandmarketlimitations.Thebenefitofauniformstandardthatisalsointegratedwithanenergyperformancestandardisthatthesmartbuildings,gridinteractivityandenergyefficiencyarealignedandself-enforcingwithintheircriteria.FortheEuropeanUnion,adoptingtheSRIwillprovideameansofadvancingEGIBsacrossthememberstatesintheaimofachievingtheEPBDanditsenergyandclimategoalsforbuildings.CreatefavourableconditionsandsupportmechanismsforEGIBsuptakeTosupporttheaboverecommendations,itwillbenecessaryforgovernmentsandindustrytoinvestinR&DanddigitalsystemsfordatatosupportEGIBevidenceandadoptionandcontinuetobuildthevaluepropositionsforgridinteractivityforbuildingowners,consumersandutilities.ASEANeconomiesshouldprioritisefundingforresearchinenergy-efficientbuildingsystemsthatsupportflexibility,theadoptionofadvancedcontrolsystemsforenergyefficiencyandenergyflexibility,andthedynamicsofrenewableenergyintegrationwithdemandandgridperformance.DatacollectionandanalysisareessentialtounderstandtheperformanceofEGIBsandidentifyareasforimprovement.Governmentscouldestablishstandardiseddatarequirementsforbuildingenergyconsumptionandperformancethatcanhelpguidewhereflexibilitybenefitsareseen.Thesedatacanbeusedtodevelopbenchmarks,informpolicydecisions,andtrackprogresstowardsefficiencyandinteractivitygoalsforbuildings.TopromotetheadoptionofEGIBs,itisessentialtodemonstratetheirvaluetobothconsumersandutilities.Forconsumers,EGIBscanofferenergycostsavings,improvedcomfortandincreasedpropertyvalue.GovernmentsshouldPAGE114IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsThewayforwardforbuildingsinASEANFutureofbuildingsinASEANdeveloppublicawarenesscampaignstoeducateconsumersaboutthesebenefitsandprovideincentivesforadoptingenergy-efficienttechnologies.UtilitiescanbenefitfromEGIBsthroughreducedpeakdemand,increasedgridstabilityandlowerinfrastructurecosts.ToencourageutilitiestosupportEGIBs,governmentsshouldestablishregulatoryframeworksthatrewardutilitiesforinvestingindemand-sidemanagementprogrammes,smartgridsandintegratingdistributedenergyresources(DERs).Actionsfordevelopingasustainable,smartandreliablegridtosupportgreaterinteractivityPotentialandbenefitsofEGIBscouldberealisedtotheirfullextentiftheirdeploymentisaccompaniedbytheactionsformodernisationoftheelectricitygrids.Whilethisareaisoutsideofthescopeofthisreport,theIEAreportUnlockingSmartGridOpportunitiesinEmergingMarketsandDevelopingEconomiesoffersadeepdiveonthetopic.Thereportoutlinesfivekeyactions:Createacoherentvisionandmoderniseplanning:Governmentsshouldenvisionhowdigitalgridtechnologiesalignwithnationalprioritiesandupdatepolicyframeworksaccordingly.Engagingstakeholdersfromthedigitalandenergysectorsiscrucialforsuccess.Integratedplanningthatconsidersdistributedresourcesanddemand-sideaspectsmustbeprioritisedacrosssystemoperatorsandnetworkcompanies.Co-ordinateimplementation:Governmentsshouldensurecoherenceamongvariousdepartments,regulatorsandindustrystakeholders.Aligningnationalinnovationsystemswithenergypolicyobjectivesandfacilitatinglarge-scaledemonstrationscanvalidatedigitalsolutions.Governmentsshouldalsoenhancedataaccessandsharingtosupportdigitalinnovationandpromotesocio-economicbenefits.Facilitaterulesandregulationsthatvaluedigitalsolutions:Governmentscanincentiviseandde-riskdigitalisationinvestmentsthroughdedicatedpolicies.Performance-basedregulatoryoversight,supply-demandbalanceandflexibilityconsiderationsshouldbeintegratedintoregulationstopromotesystemsefficiency.Integrateresiliencyandsecurity:Governmentsshouldincorporateresiliencyandsecurityintoelectricitypolicydomains,consideringclimateimpactsandcyberresilience.Long-termplanningframeworkslikenationallydeterminedcontributionsandlight-emittingdiodes(LEDs)canhighlightthevalueofdigitalandphysicalresilience.PAGE115IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsThewayforwardforbuildingsinASEANFutureofbuildingsinASEANStrengtheningtiesbetweendigitalandphysicalinfrastructuresecurityisessential.Track,evaluateanddisseminateprogress:Governmentsshouldfosteradata-drivencultureandmonitordigitalisationprogress.Monitoringimplementation,promotinginformationsharingandstrengtheninginternationalcollaborationarekey.Demonstrationprojectscanprovidevaluableinsightsandde-riskfutureinvestments,whileknowledgesharingacceleratesprogressandstandardisation.Empoweringusers,installersandoperatorsofEGIBsisessentialtoensuretheirsuccessfulimplementation.Governmentsshoulddeveloptrainingprogrammesandcertificationschemesforbuildingprofessionals,suchasarchitects,engineersandfacilitymanagers,toensuretheyhavethenecessaryskillstodesign,constructandoperateEGIBs.Governmentsshouldalsopromotetheuseofenergymanagementsystems(EMS)thatallowbuildingoccupantstomonitorandcontroltheirenergyconsumption.PublicprocurementpoliciescanplayasignificantroleindrivingmarketdemandforEGIBs.Governmentsshouldleadbyexamplebyprioritisingenergyefficiencyandgridinteractivityintheirownbuildingprojectsandrequiringpublicbuildingstomeethighperformancestandards.GovernmentsupportiscrucialforfosteringthewidespreadadoptionofEGIBs.SoutheastAsiangovernmentsshoulddevelopcomprehensivepolicyframeworksthatincludebuildingcodesandstandards,financialincentives,andpublicprocurementpoliciesthatfavourEGIBs.Identifyactionsforefficientgrid-interactivebuildingsdependingonthecountrycontextTheadoptionandimplementationofenergy-efficientgrid-interactivebuildingstoalargeextentdependonacountry'scurrentstatusregardingpoliciesandtechnologiesrelatedtoutilisingenergy-efficient,smartandrenewableenergysolutionsinbuildingsandestablishinginteractionsbetweenbuildingsandthegrid.Byassessingthesefactors,countriescanbeclassifiedintothreedistinctgroups:Explorers,AdoptersandInnovators.EachgrouprepresentsadifferentstageintheadoptionofEGIBs,andrecommendationsforallthreegroupscanbestructuredacrossfourcategories:EnergyEfficiency,Decarbonisation,Smartness,andBuilding-to-GridInteraction.PAGE116IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsThewayforwardforbuildingsinASEANFutureofbuildingsinASEANRecommendationsforExplorersCountriesfallingintotheExplorerscategoryareattheinitialstagesofdiscoveringandresearchingthepotentialopportunitiesassociatedwithEGIBs.Theyareyettoimplementconcretemeasuresorpoliciestopromotewidespreadadoption.Forthisgroup,thefocusshouldbeonbuildingafoundationforEGIBadoption.EnergyefficiencyExplorersareadvisedtodevelopandimplementbuildingenergycodes,whichwillestablishmandatoryenergyefficiencyrequirementsfornewconstructionsandretrofits.Ifnotpossibletointroducemandatoryregulationrightaway,governmentscanconsiderintroducingvoluntaryrequirementsfirst,butwithaclearambitionandatimelinetomakethemmandatory.Additionally,introducingMEPSforhouseholdandcommercialappliancescanpromotetheadoptionofenergy-efficienttechnologies.Toensurecompliancewiththeseregulatoryrequirements,supportingpoliciessuchasinformationmechanismsandincentivesshouldbeintroduced.Bycombiningtheseactions,countriescanfosteracultureofenergyefficiency,leadingtoreducedenergyconsumptionandlowerGHGemissions.DecarbonisationExplorerscouldconsiderintroducingvoluntaryrequirementsfortheinstallationofon-sitesolarPVsystemsinbuildingstoenablethegenerationofrenewableenergyon-site.Furthermore,promotingtheintegrationofbatterystoragesystemstostoreexcesssolarenergyenhancesenergyresilienceandallowsforbettermanagementofintermittentenergysources.Byembracingthesemeasures,countriescanmakesignificantprogressinreducingtheirdependenceonfossilfuelsandadvancingtowardsamoresustainableandlow-carbonfuture.SmartnessExplorerscoulddevelopasmartbuildingstandardthatcanbevoluntarilyadoptedbydeveloperstoencouragetheintegrationofinternetofthings(IoT)solutions,smartsensorsandcontrolsinbuildings,particularlyinlargebuildingsorhigh-energy-demandusers.ImplementingBEMSintheselargebuildingsthroughdraftregulationsfurtherenhancestheirsmartness.Introducingregulatoryrequirementsforsmartmeterscouldprovidereal-timeenergydatatoconsumersandgridoperators,enablingmoreinformedenergyusagedecisions.Developingahigh-levelplanforsmartgriddevelopmentsetsthestageforanintelligentandinterconnectedenergyinfrastructure,allowingforbetterco-ordinationandoptimisationofenergydistribution.PAGE117IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsThewayforwardforbuildingsinASEANFutureofbuildingsinASEANBuilding-to-gridinteractionConductingafeasibilitystudyonopeninteroperabilitystandardsfortwo-waybuilding-to-gridcommunication,basedoninternationalbestpractices,canpavethewayforinitiatingtheprocessofestablishinginteractionsbetweenbuildingsandthegrid.Incorporatingvoluntaryrequirementsforgridreadinessinbuildingenergycodes(BECs)andMEPScanpromotetheadoptionofgrid-interactivetechnologiessuchassmartEVcharging,rooftopPVsandenergystorage.Developingvoluntarycertificationandlabellingforinverters,appliancesandotherequipmentindicatestheirdemandresponsecapabilities,supportingefficientgridmanagement.Byconductingpilotprojectsandregulatorysandboxestotestgrid-interactivetechnologiesinreal-lifeconditions,countriescangaininsightsandoptimisetheintegrationprocess.Introducingsmall-scalepilotprogrammesfordemandresponseandvoluntaryoptionsfordynamictariffsfurtherincentivisesconsumerstoshifttheirenergyusagemoretowardsoff-peakhours,contributingtogridstabilityandenergyefficiency.RecommendationsforAdoptersCountriesintheAdoptersgrouphaveidentifiedsomeopportunitiesforEGIBsandareactivelyimplementingpilotprojectsandsandboxestotestthebenefitsandpotentialofthesetechnologies.EnergyefficiencyForcountriesintheAdopterscategory,thefocusintheenergyefficiencycategoryshouldbeontransitioningfromvoluntarytomandatoryandwell-enforcedmeasures.ThisincludesmakingvoluntaryBECsandMEPSforappliancesmandatoryandexpandingtheirscopetocoverallbuildingtypes,includingbothcommercialandresidential,aswellasnewandexistingbuildings.RegularupdatesandstricterregulationsforBECsandMEPS(everythreetofiveyears)areessentialtodrivecontinuousimprovementinenergyefficiency.Additionally,theintroductionofsupportingpolicies,suchasinformationmechanismsandincentives,willplayacrucialroleinenforcingtheseregulatoryrequirementsandpromotingenergy-efficientpracticesacrossthecountry.DecarbonisationToacceleratedecarbonisationefforts,countriesintheAdopterscategoryshouldintroducemandatoryrequirementswithinBECsand/orstandardsforrenewableenergygeneratedon-site,specifyingacertainproportionofenergyandpowerdemandthatmustbemetthroughrenewables.Similarly,theintroductionofmandatoryrequirementsforon-sitebatterystoragewithaminimumenergyandpowerdurationbackupbasedonbaseloaddemandswillenhanceenergyresilienceandsupporttheintegrationofintermittentrenewableenergysources.PAGE118IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsThewayforwardforbuildingsinASEANFutureofbuildingsinASEANSmartnessForSmartness,Adopterscouldfocusonadoptingandimplementingsmartbuildingstandardsforlargebuildingsorhigh-energy-demandusers,ensuringtheintegrationofIoTsolutions,smartsensorsandcontrols.RegulationsmakingitmandatoryforthesebuildingstoimplementBEMSwillfurtheroptimiseenergyusageandenhancebuildingefficiency.Additionally,introducingaregulatoryrequirementforsmartmetersinallnewbuildingswillprovidereal-timeenergydataforbetterenergymanagement.Developingadetailedplanforsmartgriddevelopmentwillsetthedirectionfortheintegrationofsmarttechnologiesintothenationalgridinfrastructure.Building-to-gridinteractionWithinthiscategory,countriescouldfocusondevelopingguidelinesforutilisingopeninteroperabilitystandardsfortwo-waybuilding-to-gridcommunicationbasedoninternationalbestpractices.WithinBECs,voluntaryrequirementsforgridreadiness(EVcharging,rooftopPVs,energystorage)shouldbeincorporated,withavisiontomakethemmandatoryinthenextupdate.Similarly,mandatoryrequirementsfordemand-responsereadinessinMEPSformajorappliances(e.g.airconditioners)shouldbeintroducedtoenableappliancestorespondtogridsignals.Developingcertificationandlabellingforinverters,appliancesandotherequipmentwillhelpconsumersidentifytheirdemandresponsecapabilities,promotinggrid-friendlychoices.Replicatingandscalinguppilotprojectsandprogrammesforgrid-interactivetechnologies(e.g.AMI,smartinverters,smartEVcharging,DERaggregation,smartmini-grids)andincorporatinglessonslearnedintoregulatoryupdateswillfacilitatethewidespreadadoptionofthesetechnologies.TheintroductionofautomateddemandresponseprogrammesforlargeelectricityconsumersandthedevelopmentofpilotprojectsandregulatorysandboxesforDERaggregationwillfurtherenhancegridflexibilityandstability.Additionally,earlyadoptionofdynamicelectricitytariffsforlargeelectricityconsumerscouldincentiviseelectricityconsumptionduringoff-peakhoursandwhenvariablerenewableenergy(VRE)sourcesaremoreavailable,promotingdemandresponseandgridoptimisation.RecommendationsforInnovatorsCountriescategorisedasInnovatorshavebeenimplementingvariousEGIB-relatedpracticesandsolutionsonarelativelywidescaleandhaveintegratedsomeofthemintopolicyprocesses.EventhoughnoneofASEANcountrieswereplacedintothisgroupbasedontheresultsofthecurrentassessment,recommendationsforthisgroupprovidedetailsofthevisionforthefuture,whichASEANcountriescouldmovetowards.PAGE119IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsThewayforwardforbuildingsinASEANFutureofbuildingsinASEANEnergyefficiencyForcountriesintheInnovatorscategory,thefocusintheenergyefficiencycategoryshouldbeonfurtherexpandingthescopeofBECstocoverallbuildings,includingbothcommercialandresidential,bothnewandexistingstructures.Thesecodesshouldincorporaterequirementsforbuildingenergyperformance,ensuringthatallbuildingsstriveforoptimalenergyefficiency.RegularupdatesandstricterregulationsforBECsandMEPS(everythreetofiveyears)willcontinuedrivingprogressinenergyefficiency.Additionally,linkingsupportingpolicies,suchasinformationmechanisms(e.g.awardsandcapacitybuilding)andincentivestohigherlevelsofachievedbuildingenergyperformancewillencouragecontinuousimprovementandrecognitionofenergy-efficientbuildings.DecarbonisationInthedecarbonisationcategory,countriesshouldexpandmandatoryrequirementswithinBECsand/orstandardstoensurethatbothnewandexistingon-siterenewableenergygenerationsignificantlycontributetomeetingenergyandpowerdemand.Similarly,expandingrequirementsforon-sitebatterystoragetomeetaminimumenergyandpowerdurationbackupbasedonbaseloaddemandswillenhanceenergyresilienceandsupportrenewableenergyintegration.SmartnessInthesmartnesscategory,thefocusshouldbeonadoptingcomprehensivesmartbuildingstandardsforallbuildings,includingIoTsolutions,smartsensorsandcontrols.Regulationsmakingitmandatoryforallnon-residentialbuildingstoimplementBEMSandforresidentialbuildingstoadopthomeenergymanagementsystems(HEMS)willfurtherenhancesmartbuildingcapabilities.Implementingaregulatoryrequirementtomandatetheadoptionofsmartmetersinallbuildingswillprovidereal-timeenergydataforimprovedenergymanagement.Developingacomprehensiveimplementationplanforsmartgrids,supportedbyprojectdevelopmentandinvestments,willpavethewayforanintelligentandinterconnectedenergyinfrastructure.Building-to-gridinteractionInnovatorswouldhaveincorporatedintogridcodesrequirementsfortheimplementationofAMI,smartinvertersinbuildingswithon-siteVREgeneration,andopeninteroperabilitystandardsfortwo-waybuilding-to-gridcommunication.Expandingdemand-responsereadinessinMEPSforallmajorapplianceswillfurtherenhancegridflexibility.Introducingmandatorycertificationandlabellingforinverters,appliancesandotherequipmenttoindicatetheirdemand-responsecapabilitieswillempowerconsumerstomakegrid-friendlychoices.PAGE120IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsThewayforwardforbuildingsinASEANFutureofbuildingsinASEANCountriesshouldalsofocusonfurtherdevelopingautomateddemandresponseprogrammes,specifyingthemincontractswithdifferentconsumers,andallowingtheparticipationofaggregatorsinelectricitywholesaleandancillaryservicemarkets.IntroducingregulationsthatallowDERstoprovideservicestothegridswillpromoteamoredynamicandinteractivegridecosystem.Updatingelectricitytariffregulationstoapplymandatorydynamictariffstoalltypesofconsumerswillincentiviseelectricityconsumptionduringoff-peakhoursandwhenVREisavailable,furtherpromotingdemandresponseandgridoptimisation.Bytakingthesemeasures,countriescancontinuetoleadintheintegrationofgrid-interactivetechnologiesandcreateamoresustainableandresilientenergyfuture.IdentifyingcountriesasExplorers,AdoptersorInnovatorsintheEGIBadoptionjourneyprovidesvaluableinsightsforcontext-tailoredrecommendationsfortargetedactionsandstrategies.Byfocusingonenergyefficiency,decarbonisation,smartnessandbuilding-to-gridinteraction,countriescanacceleratethetransitiontowardsamoresustainableandgrid-interactivebuiltenvironment.Theserecommendationsarecrucialforachievingenergyresilience,reducingGHGemissionsandfosteringtheadoptionofEGIBs.PAGE121IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsThewayforwardforbuildingsinASEANFutureofbuildingsinASEANGroup-specificrecommendationsforEGIBsbasedontheassessmentofthecurrentstatusEnergyefficiencyExplorersAdoptersInnovatorsDecarbonisation•IfBECsandMEPSforapplianceshavenotbeenadopted•IncaseofvoluntaryBECsandMEPSforappliances,•ExpandthescopeofBECstoincludeallthebuildings(e.g.yet,developandadoptthemwithclearandmandatorymakethemmandatoryandwell-enforcedbothcommercialandresidential,newandexisting)energyefficiencyrequirements•ExpandthescopeofBECstoincludeallthebuildings(e.g.•MakesurethatBECsincluderequirementsforbuilding•IftherearevoluntaryBECsandMEPSforappliancesinbothcommercialandresidential,newandexisting)energyperformanceplace,makethemmandatoryandwell-enforced•RegularlyupdateandmakemorestringentBECsandMEPS•RegularlyupdateandmakemorestringentBECsandMEPS•RegularlyupdateandmakemorestringentBECsandMEPSforappliances(every3-5years)forappliances(every3-5years)forappliances(every3-5years)•Introducesupportingpolicies,suchasinformation•Linksupportingpolicies,suchasinformationmechanisms•Introducesupportingpolicies,suchasinformationmechanismsandincentivestosupportenforcementofthe(e.g.awards,capacitybuilding)andincentivestohighermechanismsandincentivestosupportenforcementoftheregulatoryrequirementslevelsofachievedbuildingenergyperformanceregulatoryrequirements•IntroducemandatoryrequirementsintoBECsand/or•ExpandmandatoryrequirementsinBECsand/orstandards•Introducevoluntaryrequirementsforon-siterenewablestandardsforrenewableenergyproducedon-sitetomeetathatbothnewandexistingon-siterenewableenergyenergygeneration(typicallyrooftopPV)intotheBECsand/orcertainproportionofenergyandpowerdemandgenerationareupgradedtomeetasubstantialportionofstandardsenergyandpowerdemand•IntroducemandatoryrequirementsintotheBECsand/or•IncludevoluntaryrequirementsintotheBECsand/orstandardsfortheon-sitebatterystoragetomeetaminimum•ExpandmandatoryrequirementsinBECsand/orstandardsstandardsforon-sitebatterystoragetoaccompanytheenergyandpowerdurationbackupbasedonbaseloadthaton-sitebatterystoragemeetsaminimumenergyandinstallationofon-siterenewableenergygenerationtomeetademandspowerdurationbackupbasedonbaseloaddemandsminimumenergyandpowerdurationbackup.•AdoptrequirementsforimplementationofIoTsolutions,Smartness•Developasmartbuildingstandardthatcanbevoluntarily•AdoptrequirementsforimplementationofIoTsolutions,smartsensorsandcontrolsinaccordancewiththesmartadoptedbydeveloperstoenhancebuildings’smartnesssmartsensorsandcontrolsinaccordancewiththesmartbuildingstandardthatismandatoryforallbuildingsthroughintegrationofIoTsolutions,smartsensorsandbuildingstandardthatismandatoryforlargebuildingsorcontrols,startingwithlargebuildingsorhigh-energy-highenergydemandusers•Adopttheregulationthatmakesitmandatoryforallnon-demandusersresidentialresidentialtoimplementbuildingenergy•Adopttheregulationthatmakesitmandatoryforlargemanagementsystemsandforresidentialbuildings–home•Developadraftregulationforlargebuildingsorhigh-buildingsorhighenergydemanduserstoimplementenergymanagementsystemsenergy-demanduserstoimplementbuildingenergybuildingenergymanagementsystemsmanagementsystems•Introducearegulatoryrequirementtomandatetheadoption•Introducearegulatoryrequirementtomandatetheadoptionofsmartmetersinallbuildings•Introducearegulatoryrequirementforlargebuildingsorofsmartmetersinallnewbuildingshigh-energy-demanduserstomandatetheadoptionof•Developacomprehensiveimplementationplanforsmartsmartmeters•Developadetailedplanforsmartgridsdevelopmentgridssupportedbyprojectdevelopmentandinvestments•Developahigh-levelplanforsmartgridsdevelopment•Incorporateintothegridcodesrequirementsforimplementationofadvancedmeteringinfrastructure,Building-to-grid•Conductafeasibilitystudyonutilisationofopen•Developguidelinesonutilisationofopeninteroperabilityutilisationofsmartinvertersinbuildingswithon-siteinteractioninteroperabilitystandardsfortwo-waybuildings-to-gridstandardsfortwo-waybuildings-to-gridcommunicationVREgeneration,utilisationofopeninteroperabilitycommunicationconsideringinternationalbestpractices;consideringinternationalbestpracticesstandardsfortwo-waybuildings-to-gridcommunicationdeveloparoadmapfortheirutilisationinthecountry•IncorporateintoBEC,voluntary(withthevisiontomake•IncorporateintoBEC,requirementsforgrid-readiness•WhendevelopingorupdatingBECsconsiderthemmandatoryinthenextupdate)requirementsfor(spaceandwiringrequirementsforEVcharging,rooftopIncorporatingvoluntaryrequirementsforgrid-readinessgrid-readiness(spaceandwiringrequirementsforEVPVs,energystorage)(spaceandwiringrequirementsforEVcharging,rooftopcharging,rooftopPVs,energystorage)PVs,energystorage)•IncorporateintoMEPSforallmajorappliances,•IncorporateintoMEPSforsomemajorappliances(e.g.requirementsfordemandresponsereadiness•WhendevelopingorupdatingMEPSforselectedmajorairconditioners)mandatoryrequirementsfordemandappliancesconsiderincorporatingvoluntaryresponsereadiness•Introducemandatorycertification&labellingforrequirementsfordemandresponsereadinessinverters,appliances,otherequipmenttoindicatetheir•Developcertification&labellingforinverters,demandresponsecapabilities•Developvoluntarycertification&labellingforinverters,appliances,otherequipmenttoindicatetheirdemandappliances,otherequipmenttoindicatetheirdemandresponsecapabilities•Developautomateddemandresponseprogrammesandresponsecapabilitiesspecifytheminthecontractswithdifferentconsumers•Replicateandscaleupprojectsandprogrammesfor•Developpilotprojects,programmesand,ifneeded,variousgrid-interactivetechnologies(e.g.AMI,smart•Allowparticipationofaggregatorsinelectricityregulatorysandboxestotestvariousgrid-interactiveinverters,smartEVcharging,aggregationofDERs,wholesalemarketsandancillaryservicemarketstechnologies(e.g.AMI,smartinverters,smartEVsmartmini-grids)andconsiderincorporatinglessonscharging,aggregationofDERs,smartmini-grids)inlearnedintoregulatoryupdates•IntroduceregulationsallowingDERstoprovideservicesclose-toreal-lifeconditionstothegrids•Introduceautomateddemandresponseprogrammes•Conductafeasibilitystudyondevelopmentofdemandstartingwithlargeelectricityconsumers•Updateelectricitytariffregulationstoapplymandatoryresponseanddevelopsmall-scalepilotprogrammesdynamictariffstoalltypesofconsumerstoincentivise•Developpilotprojectsandregulatorysandboxesforelectricityconsumptionduringoff-peakhoursandwhen•IntroducevoluntaryoptionsfordynamictariffsforsomeDERsaggregationandassessservicestheycanVREisavailabletypesofconsumerstoincentiviseelectricityprovidetothegridsconsumptionduringoff-peakhours•Introducedynamicelectricitytariffsstartingwithlargeelectricityconsumerstoincentiviseelectricityconsumptionduringoff-peakhoursandwhenVREismoreavailableIEA.CCBY4.0.PAGE122IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsConclusionsFutureofbuildingsinASEANConclusionsTheconceptofefficientgrid-interactivebuildings(EGIBs)marksapromisingandIEA.CCBY4.0.transformativepathtowardsasustainableenergyfutureintheAssociationforSoutheastAsianNations(ASEAN)region.EGIBsarebuildingsthatactivelyinteractwiththeenergygrid,optimisingenergyconsumption,promotingrenewableenergyintegrationandsupportinggridstability.Byactivelyengagingwiththeelectricitygrid,EGIBsoffernumerousbenefitstotheenvironment,gridandconsumers,makingthemacrucialcomponentofthetransitiontowardsasustainableandresilientenergyfuture.OneofthekeyadvantagesofEGIBsliesintheirflexibilityandthebenefitsthisprovidestotheelectricitygrid.Bydynamicallyadjustingtheirenergyconsumptionandgenerationinresponsetogridsignals,EGIBshelpimprovethestabilityoftheelectricitysupply.Thisflexibilityisparticularlyvaluableinbalancingthegridduringpeakdemandperiodsandcansignificantlyreducegridcongestion,mitigatingtheriskofblackoutsorvoltagefluctuations.Moreover,EGIBsplayapivotalroleinintegratingdistributedvariablerenewableenergy(VRE)sourcesintothegrid.VREsourcesaresubjecttofluctuationsduetoweatherconditionsanddifferentfrequenciesthatputpressureonthegridsandchallengestabilityofelectricitysupply.However,EGIBscouldbeequippedtooptimallyuseandstoreexcessrenewableenergyduringperiodsofhighgeneration,ensuringitsefficientutilisationduringtimeswhenVREgenerationislow.Thisgrid-interactivebehaviourenablesasmootherintegrationofVRE,reducingcurtailmentandmaximisingtheutilisationofcleanenergyresources.ThisreporthasexploredthebenefitsofEGIBs,drawinginspirationfrominternationalbestpracticesandrelatedprojectsandpoliciesaroundtheworld.ToprovideacomprehensiveassessmentoftheEGIBlandscapeintheASEANregion,ananalyticalframeworkwasdevised,encompassingkeyenablersforadoptionofEGIBsacrossformaincategories:energyefficiency,decarbonisation,smartnessandbuilding-to-gridinteraction.Thisframeworkallowsforanevaluationofeachenabler,consideringafour-levelscale.Basedontheaggregationofresultsacrossdifferentenablers,countriesintheASEANregionwereplacedintooneofthreegroups:Explorers,AdoptersandInnovators,eachrepresentingdifferentstagesofEGIBadoption.Throughthisassessment,BruneiDarussalam,Cambodia,LaoPDRandMyanmarwereidentifiedasExplorers,astheyareinthebeginningoftheprocessofdiscoveringandresearchingtheopportunitiesforEGIBs.Indonesia,Malaysia,thePhilippines,Singapore,ThailandandVietNamwereclassifiedasAdopters,astheyPAGE123EfficientGrid-InteractiveBuildingsConclusionsFutureofbuildingsinASEANhaveidentifiedsomeopportunitiesforEGIBsandareimplementingpilotprojectsandsandboxestotesttheirbenefitsandpotential,butstilldonothaveallnecessarypolicyinstrumentsinplacetosupportthemainstreamadoptionofEGIBs.Theseclassificationsrecognisetheuniquenationalcircumstancesinpolitical,economic,environmentalandsocialspheres,andprovideabasisfortailoringspecificrecommendationstosupporttheuptakeofEGIBsineachcountry.Thehigh-levelrecommendationsandgroup-specificguidelinesofferedinthisreportprovideasolidfoundationforASEANcountriestoembarkonatransformativejourneytowardsEGIBadoption.Developmentofacomprehensivepolicypackage,combiningregulations,informationinstrumentsandincentivesiskeyforfosteringEGIBadoption,especiallyinarapidlygrowingregion,suchasASEAN,wheremostofthebuildingsareyettobebuilt.Withinthispackageincorporatingenergyefficiencyrequirements,flexibilityconsiderationsandreadinessfeaturesforinteractionwiththegridintothebuildingsandappliances’regulationscanhelpthebuildingssectortoleapfrogtowardshigherlevelsofenergyperformanceanddecarbonisation,aswellassupportmodernisationoftheelectricitysystem.Policyprovisionstosupportintegrationofsmartsensorsandcontrolsintobuildingsystemsandenergymanagementatthebuildinglevelarealsocrucial.Importantenablerstoenhancebuilding-to-gridinteractivity,suchasautomateddemandresponseprogrammes,aggregationofdistributedenergyresourcesanddynamicelectricitytariffsaretypicallynotpresentinmostofASEANbeyondsomepilotprojects.Interoperabilitystandardsarecrucialforestablishingatwo-waycommunicationbetweenbuildingssystemsandthegrid;however,theirutilisationinASEANisverylimited.Therearecurrentlynomandatedpolicies,projectsorprogrammesthatutilisetechnologiestoenablecommunicationandinformationflowattheequipmentlevel.Atthebuildinglevel,thereareafewbuildingprojectsthatutiliseBACnetandsimilarsystemsinseveralASEANmemberstates.Asforinteroperabilitybetweenbuildingsandthegrid,therelatedopenstandardsarenotusedinmostoftheASEANcountries,exceptforThailand,whereOpenADRisusedindemandresponseprogrammes.TheASEANregion,comprisingthetenASEANmemberstates,isonthecuspofatransformativeenergytransitionthroughtheadoptionofEGIBs.Whileeachcountryfacesitsindividualchallengesandopportunities,thecollectiveeffortstowardsEGIBswillacceleratetheregion'sprogresstowardsasustainableandresilientfuture.Byidentifyingandprioritisingactionsbasedontherecommendationsandgroup-specificguidelines,ASEANcountriescanleadthewayincreatinganenergy-efficientandgrid-interactivebuiltenvironment,contributingtoacleanerandmoresustainableenergylandscapeforgenerationstocome.PAGE124IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsAnnexesFutureofbuildingsinASEANAnnexesAbbreviationsandacronyms3DENDigitalDemand-DrivenElectricityNetworksACalternatingcurrentADBAsianDevelopmentBankAMIadvancedmeteringinfrastructureASEANAssociationofSoutheastAsianNationsAUDAustraliandollarsB2Gbuilding-to-gridBASbuildingautomationsystemsBECbuildingenergycodeBEMSbuildingenergymanagementsystemsBESSbatteryenergystoragesystemCO2carbondioxideDCdirectcurrentDERMSdistributedenergyresourcemanagementsystemsDERdistributedenergyresourceEGIBefficientgrid-interactivebuildingEMSenergymanagementsystemsEPBDEnergyPerformanceofBuildingsDirectiveEUEuropeanUnionEUIenergyuseintensityEVelectricvehicleGEFGlobalEnvironmentFacilityGHGgreenhousegasHEMShomeenergymanagementsystemsHVACheating,ventilationandairconditioningIEAInternationalEnergyAgencyIECInternationalElectrotechnicalCommissionIEEEInstituteofElectricalandElectronicsEngineersIESIntelligentEnergySystemIoTinternetofthingsLEDlight-emittingdiodeLEEDLeadershipinEnergyandEnvironmentalDesignlow-Elow-emissivityLPGliquefiedpetroleumgasMEPSminimumenergyperformancestandardsNZEScenarioNetZeroEmissionsby2050ScenarioP2Ppeer-to-peerPLNPerusahaanListrikNegaraPPApowerpurchaseagreementPVphotovoltaicR&DresearchanddevelopmentSAIDISystemAverageInterruptionDurationIndexSAIFISystemAverageInterruptionFrequencyIndexSCADAsupervisorycontrolanddataacquisitionPAGE125IEA.CCBY4.0.EfficientGrid-InteractiveBuildingsAnnexesFutureofbuildingsinASEANSDSSustainableDevelopmentScenarioSGDSingaporedollarsSRISmartReadinessIndicatorSTEPSStatedPoliciesScenarioT&DtransmissionanddistributionTFECtotalfinalenergyconsumptionVNDVietnamesedongVPPvirtualpowerplantVREvariablerenewableenergyUnitsofmeasureEJexajouleGWgigawattGWhgigawatt-hourkVkilovoltkVakilovolt-amperekWkilowattkWhkilowatt-hourkWpkilowatt-peakm2squaremetreMtmilliontonnesMtoemilliontonnesofoilequivalentMWmegawattMWhmegawatt-hoursPJpetajoulettonnetoetonneofoilequivalentTWhterawatt-hourPAGE126IEA.CCBY4.0.InternationalEnergyAgency(IEA)ThisworkreflectstheviewsoftheIEASecretariatbutdoesnotnecessarilyreflectthoseoftheIEA’sindividualmembercountriesorofanyparticularfunderorcollaborator.Theworkdoesnotconstituteprofessionaladviceonanyspecificissueorsituation.TheIEAmakesnorepresentationorwarranty,expressorimplied,inrespectofthework’scontents(includingitscompletenessoraccuracy)andshallnotberesponsibleforanyuseof,orrelianceon,thework.SubjecttotheIEA’sNoticeforCC-licencedContent,thisworkislicencedunderaCreativeCommonsAttribution4.0InternationalLicence.Thisdocumentandanymapincludedhereinarewithoutprejudicetothestatusoforsovereigntyoveranyterritory,tothedelimitationofinternationalfrontiersandboundariesandtothenameofanyterritory,cityorarea.Unlessotherwiseindicated,allmaterialpresentedinfiguresandtablesisderivedfromIEAdataandanalysis.IEAPublicationsInternationalEnergyAgencyWebsite:www.iea.orgContactinformation:www.iea.org/contactTypesetinFrancebyIEA-October2023Coverdesign:IEAPhotocredits:©Shutterstock