RENEWABLEENERGYBENEFITSLEVERAGINGLOCALCAPACITYFORSMALL-SCALEHYDROPOWER©IRENA2023Unlessotherwisestated,materialinthispublicationmaybefreelyused,shared,copied,reproduced,printedand/orstored,providedthatappropriateacknowledgementisgivenofIRENAasthesourceandcopyrightholder.Materialinthispublicationthatisattributedtothirdpartiesmaybesubjecttoseparatetermsofuseandrestrictions.Appropriatepermissionsfromthesethirdpartiesmayneedtobesecuredbeforeanyuseofsuchmaterial.ISBN:978-92-9260-546-9Citation:IRENA(2023),Renewableenergybenefits:Leveraginglocalcapacityforsmall-scalehydropower,InternationalRenewableEnergyAgency,AbuDhabi.ABOUTIRENATheInternationalRenewableEnergyAgency(IRENA)isanintergovernmentalorganisationthatsupportscountriesintheirtransitiontoasustainableenergyfuture,andservesastheprincipalplatformforinternationalco-operation,acentreofexcellence,andarepositoryofpolicy,technology,resourceandfinancialknowledgeonrenewableenergy.IRENApromotesthewidespreadadoptionandsustainableuseofallformsofrenewableenergy,includingbioenergy,geothermal,hydropower,ocean,solarandwindenergy,inthepursuitofsustainabledevelopment,energyaccess,energysecurityandlow-carboneconomicgrowthandprosperity.www.irena.orgACKNOWLEDGEMENTSThisreportwasdevelopedundertheguidanceofRabiaFerroukhi(Director,IRENAKnowledge,PolicyandFinanceCentre).ItwasauthoredbyCeliaGarcía-Baños(IRENA)andDiptiVaghela(HPNET),andreviewedbyMichaelRenner(IRENA).ThereportbenefitedfromcontributionsbyDivyamNagpalandArslanKhalid(IRENA).StatisticalinformationoncurrentdeploymentwasprovidedbyDennisAkande,ImanAhmedandMilidzaniVikani(IRENA).ImenGherboudj,SibghatUllahandSujanAdhikari(IRENA)contributedwithresourcepotentialdata.ThereportbenefittedfromexternalreviewandvaluableinputsfromMadhusudhanAdhikari(AEPC);SatishGautam(AEPC-UNDP),RobertMatthews(AES);MeherbanKhanandSherzadAliKhan(AKRSP);ArdiNugrahaandSentanuHindrakusuma(AsosiasiHidroBandung);AleydaAmorales,FelixRosales,JoseLuisOlivasFlores,RebeccaLeaf(ATDER-BL);JaimeMuñoz(Asofenix);TonyKalupahana(Enersense);AartiReddy,JorgeNietoJimenez,RanishaBasnet,TarannumSahar(HPNET);BirajGautam,MaheshShrestha,andPremKarki(PEEDA);VishwaBhushanAmatya(ex-PracticalActionNepal),Dr.HediFeibel(SkatConsulting),andBikashPandey(WinrockInternational).DISCLAIMERThispublicationandthematerialhereinareprovided“asis”.AllreasonableprecautionshavebeentakenbyIRENAtoverifythereliabilityofthematerialinthispublication.However,neitherIRENAnoranyofitsofficials,agents,dataorotherthird-partycontentproviders,providesawarrantyofanykind,eitherexpressedorimplied,andtheyacceptnoresponsibilityorliabilityforanyconsequenceofuseofthepublicationormaterialherein.TheinformationcontainedhereindoesnotnecessarilyrepresenttheviewsofallMembersofIRENA.ThementionofspecificcompaniesorcertainprojectsorproductsdoesnotimplythattheyareendorsedorrecommendedbyIRENAinpreferencetoothersofasimilarnaturethatarenotmentioned.Thedesignationsemployed,andthepresentationofmaterialherein,donotimplytheexpressionofanyopiniononthepartofIRENAconcerningthelegalstatusofanyregion,country,territory,cityorareaorofitsauthorities,orconcerningthedelimitationoffrontiersorboundaries.3RENEWABLEENERGYBENEFITSLEVERAGINGLOCALCAPACITYFORSMALL-SCALEHYDROPOWERCONTENTSABOUTTHEIRENALEVERAGINGLOCALCAPACITYSERIES..........8KEYFINDINGS.....................................................101.INTRODUCTION122.REQUIREMENTSFORSMALL-SCALEHYDROPOWER162.1Implementationvaluechain...................................172.2Utilisationvaluechain:Productiveenduseofelectricity................382.3Climateadaptationvaluechain.................................423.SOCIO-ECONOMICVALUECREATION:COMMUNITYENTERPRISE,LOCALJOBSANDSOCIALCAPITAL493.1Communityenterprisemodels................................493.2Enablinglocalserviceprovidersthroughaffordableandreliableenergyaccess..553.3Climateadaptationvaluechain.................................584.CONCLUSIONSANDPOLICYRECOMMENDATIONS624.1Opportunitiesforlocalcapacitydevelopmentandjobcreation...........624.2Needforlocalcapacitydevelopment.............................63REFERENCES.............................................66ANNEXES69AnnexAClassificationofhydropoweraccordingtocapacity..............69AnnexBImplementationvaluechain:Factorsforvariationindurationandcost....70AnnexCRolecategories........................................72AnnexDTechnicaloverviewandcomponentsofsmall-scalehydropower.......73FIGURESFigure1Regionalinstalledandpotentialsmall-scalehydropowercapacitiesupto1MWin2019............................................................................................................................................13Figure2Overviewandcharacteristicsofsmall-scalehydropower(<1MW).................................................14Figure3Integrationofhydromini-gridvaluechainsforimplementation,utilisationandclimateadaptation............................................................................................................................................................16Figure4Implementationvaluechainofsmall-scalehydropower.......................................................................17Figure5Distributionofhumanresourcesrequiredalongthevaluechainforpico,microandminihydroplants..........................................................................................................................18Figure6Distributionofskillsrequiredforpico,microandminihydroplants................................................19Figure7Humanresourcesrequiredforprojectfeasibilityactivitiesfora5kW,50kWand500kWplant,byoccupation.................................................................................................22Figure8Humanresourcesrequiredforplanningandprocurementactivitiesfora5kW,50kWand500kWplant,byoccupation.................................................................................................24Figure9Humanresourcesrequiredformanufacturingactivitiesfora5kW,50kWand500kWplant,byoccupation.................................................................................................30Figure10Humanresourcesrequiredforinstallationandconnectionactivitiesfora5kW,50kWand500kWplant,byoccupation..................................................................................................33Figure11Humanresourcesrequiredforoperationandmaintenanceofa5kW,50kWand500kWplant,byoccupation(40-yearlifetime).............................................................36Figure12Ecosystemneedsforlivelihood-centricapproach.................................................................................38Figure13Utilisationvaluechainforsmall-scalehydropower...............................................................................40Figure14Linksbetweenwatershedsofhydromini-gridsandthewater-food-energynexus...................43Figure15Climateadaptationvaluechainforsmall-scalehydropower..............................................................43Figure16Benefitsfromphaseinterlinkageswhenhydromini-gridimplementationandadaptationaredoneinparallel............................................................................................................47Figure17Stakeholderlinksbetweenhydromini-gridsandwatershedmanagementforclimateadaptation...........................................................................................................................................................47Figure18Socialassetonlymodel(a)andsocialenterprisemodelforhydromini-grids(b)......................50Figure19Mechanismstoenableandscaleuplocalpractitionersinsmall-scalehydrodevelopment.......................................................................................................................................................575TABLESTable1Humanresourcesrequiredforassessingthefeasibilityofa5kW,Table250kWand500kWplant(person-days).............................................................................................................21Table3Table4Humanresourcesrequiredfortheplanningandprocurementofa5kW,Table550kWand500kWplant(person-days)............................................................................................................24Table6Table7Humanresourcesrequiredtomanufacturethemaincomponentsofa5kW,Table850kWand500kWplant(person-days)............................................................................................................29Table9Humanresourcesrequiredforinstallationandconnectionofa5kW,50kWand500kWplant(person-days)............................................................................................................33Humanresourcesrequiredforoperationandmaintenanceofa5kW,50kWand500kWplant(person-days,peryear)........................................................................................36Classificationandexamplesofproductiveendusesofmini-gridsforthepurposeofthisstudy.....................................................................................................................................................................39Rangeofwatershedrestorationtreatmentsforclimateadaptationinhydromini-grids..............46Communityenterprisemodelsforhydromini-gridsandcharacteristicsfordifferentiation..........................................................................................................................................................52Differencesbetweentypicalandwomen-centricapproachestosmall-scalehydro.......................59BOXESBox1Classificationofsmallhydropoweraccordingtocapacity...........................................................................17Box2Measuringemployment..............................................................................................................................................18Box3Softwareforsite-specificdataanalysesformini-gridfeasibility..............................................................20Box4Licensedversusopen-sourcetechnologyforlocalmanufacturing........................................................26Box5Trainingcentresforsmall-scalehydrodevelopment......................................................................................31Box6Energydemandstimulation:Theroleoflocalmanufacturers..................................................................40Box7CatchmentarearestorationinNicaragua:Strengtheningthewater-energy-foodnexus.............45Box8Practicetopolicy:AcceleratinggridinterconnectioninSouthandSoutheastAsia........................54Box9Whatwentright:SustainabilityversusdependenceinNepal’shydropowerdevelopment..........56Box10FacilitatingSouth-Southknowledgeexchange...............................................................................................57Box11Women-centricminihydroutilitiesinnorthernPakistan...........................................................................60RENEWABLEENERGYBENEFITSABBREVIATIONSAPRODELBOAssociationfortheDevelopmentofBocayElectricServiceATDER-BLAssociationofRuralDevelopmentWorkersBenjaminLinder(ATDER-BL)AKDNAgaKhanDevelopmentNetworkAKRSPAgaKhanRuralSupportProgrammeBoMbillofmaterialBoQbillofquantityMWmegawattsNGOnon-governmentalorganisationVECvillageelectrificationcommittee©AsosiasiHidroBandung(AHB)7ABOUTTHEIRENALEVERAGING©PtEntecIndonesiaLOCALCAPACITYSERIESRenewableenergydevelopmentcandriveeconomicgrowth,createnewjobsandenhancehumanhealthandwelfare.TheIRENALeveraginglocalcapacityseriesexaminesthekindsofjobcreatedandsuggestswaystobuildonexistingcapacitiestomaximisethebenefitsofrenewableenergydevelopment.Eachstudyfocusesonatechnologyandoutlinestherequirementsalongtheentirevaluechain,particularlyintermsofhumanresourcesandskills,toproduce,installandoperateplantsorfacilities.Theseriesintendstosupportassessmentofpotentialforlocalvaluecreationandleveragingofdomesticcapabilities.Todate,studieshavebeenreleasedforutility-scaleanddecentralisedrenewableenergysolutions.Ontheformer,analysesforsolarphotovoltaic(2016),onshorewind(2017)andoffshorewind(2018)havebeenproduced.Onthelatter,inadditiontothepresentreportonsmall-scalehydropower,ananalysishasbeencompletedforsolarwaterheaters(2021).Studiescoveringadditionaltechnologies,includingconcentratedsolarpower,andupdatesofpreviousanalysesareinpreparationorplanned.Theobjectiveoftheseriesistoinformfeasibilityassessmentsofprocuringthenecessarycomponentsandservicesdomesticallybyleveraginglocalcapabilitiesandcapacities.Thestudiescanhelpdecisionmakersidentifywaystomaximisedomesticvaluecreationopportunitiesforvariousenergytransitionsolutionsandreapsocio-economicbenefits.Inthecontextofthisreport,valuecreationfromsmall-scalehydropowerdeploymentiscloselylinkedtosupportinglocallivelihoods,strengtheningwatershedsandbuildingclimateresilience.TheseriesispartofIRENA’sextensiveanalyticalwork,ongoingsince2011,assessingthesocio-economicimpactsofarenewables-basedenergytransition.Theinitialfocusonemploymentcreationandskillswassubsequentlyextendedtocoverothersocio-economicelementssuchasgrossdomesticproduct,broadermeasuresofwelfare,localeconomicvaluecreation,improvedlivelihoodsandgender-differentiatedimpacts.8RENEWABLEENERGYBENEFITSANALYSESOFLOCALCAPACITIES201620172018202120232023RENEWABLEENERGYBENEFITSLEVERAGINGLOCALCAPACITYFORSMALL-SCALEHYDROPOWERASSESINGGENDEREQUALTYINRENEWABLEENERGY2017201920202022WomeninCleanEnergy,MiddleEastandNorthAfricaSurvey2017TheCleanEnergyBusinessCouncil,theInternationalRenewableEnergyAgencyandBloombergNewEnergyFinancehavegatheredbaselinedataonchallengesfacedbywomeninthecleanenergysectorintheMiddleEastandNorthAfrica(MENA).Findingsfromthesurveysuggestkeyactionstoattractmorewomenanddrawfromamorediversetalentpool.•Morethan50%oftherespondentsinMENAsaytheirworkplacehasmorementhanwomen,withonly29%reportinganevengenderbalance.•Womenfaceadditionalchallengescomparedwithmen,accordingto34%ofsurveyrespondentsfromMENA.Keybarrierstotheirentrytothecleanenergyindustryincludelowerenrolmentinscience,technology,engineeringandmathematics(STEM)programmesandabiasedviewofgenderroles.•Somerespondentssuggestthatwomenjointheindustryinentry-levelroles,butdonotreachthehighestlevels.KeychallengesforwomenintheMENAregion,asintherestoftheworld,includetheglassceilingforpromotionprospectsandlowerwagesforsimilarwork.•AlthoughtwothirdsofMENAparticipantssaidthecompanieswheretheyworkpaywomenandmenthesame,onethirdsaidwomenstillreceivealowersalaryforthesamerole.Menaremorelikelytobelievethatsalariesareequalthanwomen.•ManyMENAcountrieshavepoliciesonmaternityleavethataresimilaronpapertothoseinEuropeandbetterthanintheUnitedStates.However,only60%ofrespondentsnotedtheavailabilityofparentalleave,whichmightreflectanabsenceofpaternityleave.•Comparedwithrespondentsfromoutsidetheregion,MENArespondentsreportedlowerlevelsoffamily-friendlypoliciesthatallowforbetterwork-lifebalancewithintheircompanies.Parentalleavewasreportedtobethemostadoptedpolicy,followedbyflexibilitymeasureslikeflexi-time,part-timehoursandwork-from-homeschemes.•Femalerespondentsweremostenthusiasticaboutnetworkingevents,mentoringandtrainingaspotentialwaystohelpthemintheircareerprogression.•Networkingeventsshouldnotbelimitedtowomen,since14%offemalerespondentssaidthattheypreferredeventsopentobothgenders,while84%hadnopreferenceeitherway.Figure1:GenderbalanceinMENAcleanenergyworkplaces(percentageofrespondents)29%29%23%10%8%CeliaGarciaStrongmaleMoremenRoughlyevenMorewomenStrongfemaleCGarcia@irena.orgmajoritythanwomennumbersthanmenmajorityJennyChasejchase12@bloomberg.netSource:WomeninCleanEnergyMENA2017AmandaGlatthaarNoportionofthisdocumentmaybereproduced,scannedintoanelectronicsystem,distributed,publiclydisplayedorusedasthebasisofderivativeworkswithoutthepriorwrittenconsentofBloombergFinanceL.P.Formoreinformationontermsofuse,pleasecontactsales.bnef@bloomberg.net.Copyrightand1©BloombergFinanceL.P.2017Disclaimernoticeonpage12appliesthroughout.STUDIESOFACCESSCONTEXT2017201820192020202120222023TRACKINGSDG7THEENERGYPROGRESSREPORT2023AjointreportofthecustodianagenciesUnitedNationsStatisticsDivisionANNUALREVIEWSOFEMPLOYMENTINRENEWABLES2011-2013201420152016201720182019202020212022Theseandotherreportscanbedownloadedfromwww.irena.org/Publications9KEYFINDINGS©CHydroConcernPvt.Ltd.•Small-scalehydropowersystems,orhydromini-grids(<1MW),offerbenefitsincludingirrigationservicesandcanconnectcommunitiestothecentralgrid,evenallowingforthesaleofexcesspower.Additionally,community-basedhydromini-gridscanbeanature-basedsolutionforclimateadaptationandmitigation,incentivisinglocalcommunitiestorestoreandmaintainsurroundingwatersheds.•Small-scalehydropowerpresentsopportunitiesforsocio-economicvaluecreationthroughlocalemploymentandlivelihoods.Plentyofjobopportunitiesarecreatedintheimplementationvaluechain.Additionalopportunitiesforemploymentarederivedfromproductiveuses(utilisationvaluechain)andfromtheinfrastructureinvestmentsneededinwatershedconservationtoensurethecommunityandthehydromini-gridareareresilientagainstdroughtsandfloods(climateadaptationvaluechain).•Theimplementationvaluechaingenerallyconsistsofsixsegments:feasibility,planningandprocurement,manufacturing,installationandconnection,andoperationandmaintenance,followedbydecommissioningoncethelifetimeofthefacilityisreached.•Theimplementationofasmall-scalehydropowerplantrequiresmorethan17000person-daysforapicohydroplant(averaging5kW),around64000person-daysforamicrohydrofacility(50kW)andover160000person-daysforaminihydrosystem(500kW).•Operationandmaintenancework,whichisneededthroughoutthelifetimeofasystem,representsthelargestchunkofthelabourrequired(94%,87%,and78%oftotalperson-days,respectively,forpico,microandminihydrofacilities).•Themajorityoflabourrequiredfortheprojectinvolveslow-tomedium-leveltechnicalskills,withpercentagesrangingfrom79%oftotalperson-daysfora500kWprojectto93%fora5kWproject.Theseskillsaregenerallyreadilyavailableinacountry’sworkforceorcanbedevelopedthroughcertificationprogrammesorvocationaltrainingcentres.Theseskillsaretransferableandinhighdemandforotherruralinfrastructuredevelopmentjobs.•Connectingrenewableenergysupplywithincome-generatingactivities(productiveenduses)acrosssectorshasthepotentialtoboostproductivity,enhanceincomes,createlocalemploymentandcatalyseruraleconomies.Translatingenergyaccessintolivelihoodimprovementsrequiresinvestinginasocialecosystemthatcanfostertechnologysolutionstailoredtolivelihoodneedsanddeliverthefinancing,capacityandskillstraining;marketaccess;andcross-sectorpolicysupporttorealisethefullbenefitsofdecentralisedrenewableenergysolutions.10RENEWABLEENERGYBENEFITS©MzuzuInstituteofTechnology(MZITI)•Small-scalehydrosystemsinremotelocationsareoftenoperatedundersocialassetonlymodels,resultinginlowrevenueandminimalsocio-economicbenefits.However,transitioningtoaninclusivesocialenterprisemodel,wherethecommunityormembersownandmanagethemini-grid,canleadtomaximumutilisationofthesystem,generatingbenefitsforlocalenergyuseandsocio-economicdevelopment.Thisapproachincentiviseselectricityuseforincomegenerationandpromotessustainableenergyaccessthroughfinancialviabilityofthemini-grid.•Amongthedifferentdistributedrenewableenergysolutionssuitableforimprovingenergyaccess,small-scalehydropowernotonlyprovidesthemostopportunitiestodeveloplocalcapacitybutisthemostreliantonlocalcapacitydevelopmenttobesuccessful.•Small-scalehydropowerhardwarecanbemanufacturedlocally,representinganopportunitytoimpartlocalskills,createjobsandfosterenterprisedevelopment.However,costlyinternationalstandardsmakeitdifficultforlocaldeveloperstocompeteforsmall-scalehydropowerprojects.Therefore,internationalprogrammesfundedbydonorsneedtoencouragetheuseoflocalexperts,insteadofrelyingonforeignserviceproviders,tomaximisethebenefitsofengaginglocaltalent.•Thelackofaccesstomodernenergyaffectswomenandchildrendisproportionately.Small-scalehydrocanhelpintheadvancementofgenderequalityandtheempowermentofruralwomenasleadersandeconomicagentsofchange,therebytransforminglocaleconomiesandgeneratinginclusivegrowth.•Tofullyrealisethebenefitsofsmall-scalehydropowerandmaximisedomesticvaluecreation,policiesandmeasuresneedtofocusonenhancingcommunitycapacityalongthevaluechainandpromotingsocialacceptance.Investmentinasocialecosystemiscriticalforthedeploymentofsmall-scalehydropower,whichshouldencouragecustomisedtechnicalsolutionsandprovidefunding,capacitybuilding,marketaccessandpolicysupport.Thiswillenablethebenefitsofdecentralisedrenewableenergytoberealised.111.INTRODUCTION1.INTRODUCTIONMorethan733millionpeoplethroughouttheworldstilldonothaveaccesstoelectricity,andatthecurrentpaceofelectrification,nearly670millionareexpectedtoremainwithoutaccessby2030(IEAetal.,2022).Extendingnationalgridstoremoteruralareaswithlow-densitysettlementspresentssignificantchallengesintermsoftechnicalcomplexity,highcostsandlimitedeconomicviabilityduetolowconsumptionandsubsequentlowreturnoninvestment.Thesedifficultiesareoftencompoundedbyadditionalfactors,suchaspoorgovernance,inadequateaccessroads,harshwintersandtheconstantthreatofnaturaldisasters(UNIDOandICSHP,2019).Asaresult,theendeavourofestablishingpowerinfrastructureintheselocalitiesremainsadauntingandfinanciallyunfeasibletask.Decentralisedmini-gridsorstand-alonesolutionsareincreasinglybeingdeployedtoexpandelectricityaccessforhouseholdsandpublicservicesandtosupportlivelihoodscriticalforruraldevelopment(IRENAandSELCOFoundation,2022).Amongthesesolutions,small-scalehydropowerhasthelongesttrackrecordofadoptionglobally,withtensofthousandsofsystemsinstalledsincethe1980s(ESMAP,2022)tomeetdiversecommunityenergyneedssuchashealthcare,education,accesstowater,entertainment,andsafety(e.g.streetlights),aswellastostimulateruraleconomiesthroughhouseholdandcommercialincomegenerationandjobcreation.Hydropowerhasplayedavarietyofrolesininfrastructuredevelopment,fromlarge-scalesystems1thatarevitalinsomecountriestomeeturbanandmajorindustrialdemand,tosmaller-scalefacilities,whichcandeliveraccessinoff-gridcommunitiesbutalsoconnecttothecentralgridinsomecasesandwhichfrequentlyprovidearangeofnon-energybenefits,includingirrigationservices(seeAnnexA).Theinherentbenefitsofsmall-scalehydropowersystems,alsocalledhydromini-grids,enablebridgingofcommunity-scaleandutility-scalecontexts,suchaswhencommunitiessellexcesspowertothecentralgridutility(UNIDOandICSHP,2019).Small-scalehydropoweriswidelyusedmini-gridtechnology,oftenfordeliveringenergytooff-gridvillages.IRENAestimatesthatthenumberofpeopleconnectedtohydropower-basedmini-gridsrosefrom5.7millionin2012tonearly7.2millionin2021,themajorityoftheminAsia(IRENA,2023a).Asiaremainstheleaderininstalledcapacitybutalsohasthelargestuntappedpotentialintheworld,followedbySouthAmericaandAfrica(IRENA,2023a)(seeFigure1).Sub-SaharanAfricahasthehighestuntappedpotentialforsmall-scalehydropower,notablyincountriesthathavelessthan5-10%ruralelectrificationrates(Korkovelosetal.,2018;WaterandEnergyforFood,n.d.).1Theclassificationofthescaleofahydropowerplantrelatestotheelectricityproductioncapacityexpressedinkilowatts(kW)ormegawatts(MW).However,specificclassificationsvaryfromcountrytocountryasthereiscurrentlynoconsensusamongcountriesandhydropowerassociationsontheupperlimitofwhatconstitutessmall-scalecapacity(seeAnnexAforfurtherdetails).Forthepurposesofthisreport,thecut-offis1MW.12RENEWABLEENERGYBENEFITSFigure1Regionalinstalledandpotentialsmall-scalehydropowercapacitiesupto1MWin2019MiddleEastPotentialcapacity(MW)Installedcapacity(MW)CentralAmericaandtheCaribbeanOceaniaAfricaSouthAmericaAsia050100150200250300Source:Basedon:IRENA,2023a;IRENA,2023b;TU-Delf,2017.Wheretherequisitenaturalresourcesexist,small-scalehydropowercanproduceelectricitywithalowlevelisedcostofenergy.Itstechno-economiccharacteristics,includingreliability,affordableupfrontcapital,andaffordableoperationandmaintenancecosts,allowforeconomicviabilitywithhighlypositivesocialandenvironmentalimpacts(seeFigure2).Theseadvantagesenablelowertariffsforoff-gridhouseholds,highertiersofelectricityservice,extensiveproductiveenduses,market-basedscalabilityandfinanciallyviablegridinterconnection.Amongotherbenefits,community-basedhydromini-grids(<1megawatts[MW])canbeanature-basedsolutionforclimateadaptationandmitigation.Theenergyaccessaffordedbysmallhydroincentiviseslocalcommunitiestorestoreandmaintainsurroundingwatersheds,2asotherwiseelectricitygenerationwillbeinterruptedbydroughtsandsevererain.Nature-basedsolutionsgenerateextensivejobs(WWFandILO,2020)andstrengthenthewater-energy-food-livelihoodsnexus.Inoff-grid,high-altituderegionsofnorthernPakistan,theexperiencesoftheAgaKhanDevelopmentNetwork(AKDN)showthatcommunity-basedmicroandminihydropowercanprovideanalternativeenergysourcetothemajorityofhouseholdsthatusefuelwoodforheatingandcookingcollectedfromthesmallpatchesofavailablenaturalforestorfruittrees,adverselyimpactinganalreadyfragileecosystem(AKDN,2014).2Watershedstrengtheningtreatmentsincluderestoration(plantingforests)andconservation(protectingforests).Theprotectionensuresclimateresiliencenotonlyforthehydrosystembutalsoforanyotherusageofwater(drinkingwater,irrigation,etc.)asthesamewatershedprovidesareservoirforalltheseuses.AtthecoreofclimateadaptationinruralareasoftheGlobalSouthistheclimateresilienceofthewater-energy-foodnexus,inwhichhydromini-gridsandtheirwatershedsplayacriticalroleasnature-basedsolutions.131.INTRODUCTIONFigure2Overviewandcharacteristicsofsmall-scalehydropower(<1MW)CHARACTERISTICSNobatteriesrequiredBENEFITSIncreasedsocio-economic24/7ElectricityReducedsystemLowertarisandgenerationcostspaybackperiodsresilienceLowcapitalandIncreasedmini-gridJobcreationandIncreasedO/Mcostsreliabilityskillsbuildingincome,savingsandlocalproducts/servicesLocalIncreasedenduseformanufacturingincomegenerationIncreasedloadfactorsandsocialservicesMotorandshaftpowerRelianceonIncentiviseswatershedIncreasedclimateresilienceofwatershedsrestorationwater-energy-livelihoodsnexusSource:HPNETandATDER-BL,2021.Note:24/7=24hours/7daysaweek.Becausetheequipmentneededcanbemanufacturedandmaintainedlocally,small-scalehydrodevelopmentcanincreaselocalskills,jobsandenterprisedevelopment.Theskillsrequiredforimplementationcanbetransferredfromotherinfrastructurework:constructionofconcretestructures,fabricationofelectromechanicalsystems,installationoftransmissionanddistributionslines,andsoon.Further,ashydromini-gridsgenerateelectricity24hoursperday,theyrequirenobatteriesandprovideon-tapelectricity.Thequalityofpowercanbesimilartothatofthecentralgrid,offeringlow-costelectricityduringoff-peakhours,ideallyatorbelowgridtariffs,topowerarangeofproductiveenduses,includingmotorisedloadsforagro-processingandlivestockcottageindustries(e.g.poultryfarming),acriticalneedinruralandsemi-urbanareasindevelopingcountries.Toensuresustainablesocio-economicgrowthinruralcommunities,specialattentionneedstobegiventothedevelopmentandstrengtheningoflocalcapacities,particularlyoflocaltechnicalserviceproviders,aswellascommunitystakeholders(e.g.women,youth).Further,communitiesthathaveanopportunitytoself-organiseandplayanactiveroleintheplanning,implementationandmanagementofsmall-scalehydropowerprojectscandevelopsocialcohesionthatenablesthemtoachieveadditionalcommunity-centricaspirations.©MZITI14RENEWABLEENERGYBENEFITS©HydroConcernPvt.Ltd.Thisreportanalysesthewayinwhichjobsandlocallivelihoodcreationcanbeleveragedthroughsmall-scalehydrosystems,differentiatingbetweenvaluechains(i.e.implementation,3utilisationandclimateadaptation).Itconsiderseachsegmentoftherelevantvaluechainmoreclosely,focusingonthehumanresources,skillsandmaterialsrequired(Section2).Thisisfollowedbyaqualitativeoverviewofthesocio-economicvaluecreatedfromthedeploymentofsmall-scalehydropowerunitsintermsofcommunityenterprise,localjobsandsocialcapital(Section3).Finally,thereportoffersconclusionsandpolicyrecommendations(Section4).Thescopeoftheanalysisisglobalbutincludescountryandregionalexperiences,withparticularfocusondevelopingcountries.Datawereobtainedthroughsurveysandinterviewswithlocalexpertsandinternationallyrecognisedandspecialisedinstitutionsinvolvedinsmall-scalehydropower.4Thereportaimstodeepenpolicymakers’understandingofthestepsneededtodevelopalocalmarketforsmall-scalehydropowerandoftheexistingcapabilitiesthatcanbeleveragedtodoso.3Insomesectorsthetermimplementationrefersonlytothedesign,planningandconstructionofaproject.Inthisstudy,itincludesallstepsofthedevelopmentofaproject,includingitsfeasibilityanalysisandday-to-dayoperations.4Alargenumberofstakeholderswereinterviewedand/orrespondedtoquestionnairesregardingtherequirementsfordevelopinglocalcapacityaroundsmall-scalehydropower.Thesestakeholdersincludedprojectdevelopers;componentmanufacturers;serviceproviders;energyauthorities;andrepresentativesofcommunitiesandofnationalandglobalassociationsdedicatedtosmall-scalehydropowerorrenewableenergyingeneral.Thestudyalsodrawsonthepublicreportsofrelevantorganisations.152.REQUIREMENTSFORSMALL-SCALEHYDROPOWER2.REQUIREMENTSFORSMALL-SCALEHYDROPOWERSmall-scalehydropowerpresentsopportunitiesforsocio-economicvaluecreationthroughlocalemploymentandlivelihoodenhancementduringtheimplementationstages,aswellasthroughproductiveusesduringtheoperationphase.Jobopportunitiesarisethroughoutthedevelopmentphasesofsmallhydropowerprojects.Thesejobsarepartofwhatiscalledtheimplementationvaluechain.Additionalopportunitiesforemploymentarederivedfromproductiveuses(theutilisationvaluechain)andfromtheinfrastructureinvestmentsneededinwatershedconservationtoensurethecommunityisresilientagainstdroughtsandfloods(theclimateadaptationvaluechain).5Thesethreevaluechainsareinterdependentintermsofensuringthelong-termsustainabilityofthehydromini-grid,aswellasstrengtheningthewater-energy-food-livelihoodsnexusoftheruralcommunity(seeFigure3).Figure3Integrationofhydromini-gridvaluechainsforimplementation,utilisationandclimateadaptation•SystemdesignalignswithforecastedIMPLEMENTATIONimpactofclimatechange.VALUECHAIN•Financialresourcemobilisationincludescatchmentarearestoration.•Socialmobilisationincludescatchmentarearestoration.•Agro-processingendusesalignCLIMATEUTILISATION•Systemcapacityalignswithutilisationwithagroecologyelements,asADAPTATIONVALUECHAINforecast.definedbytheFoodandAgricultureVALUECHAINOrganizationoftheUnitedNations,•Waterflowfromtail-raceisroutedforforincreasedclimateresilienceofirrigation.thewater-energy-foodnexus.•Financialresourcemobilisationincludes•Catchmentarearestorationincludesend-useequipmentandcapacitybuilding.cultivationofincome-generatingagroforestryproducts.•Socialmobilisationincludesutilisationstakeholders.•Productiveendusesincludeenhancedlocalservicesthatarevital•Distributionhardwareisadequateforduringclimateevents(e.g.homemotorisedloads.reconstruction,foodstorage,healthclinics).Thefollowingsubsectionsdiscussthedifferentvaluechainsderivedfromthedeploymentofsmall-scalehydropowerfacilities(implementation,utilisationandclimateadaptation).First,foreachofthesegmentsoftheimplementationvaluechain,thereisanevaluationofthematerials,equipmentandlabourneeded(2.1).Second,aqualitativeanalysisoftheproductiveenduseofelectricityisprovided:theutilisationvaluechain(2.2).Last,theimplicationsofclimateadaptationareexamined(2.3).Thisstudyusesquantitativeanalysistoexaminethepotentialforsmall-scalehydropowerprojectswithcapacitiesbelow1MW,includingpico,microandminihydropowercapacities(seeBox1andfurtherdetailsinAnnexA).Theprimaryobjectiveistoidentifyopportunitiesforlocalvaluecreationandsynergieswithexistingindustries.Thisanalysisalsoseekstoidentifywaysinwhichtheexistingcapabilitiesofthelocalindustrycanbeleveragedtosupportthedevelopmentofsmallhydropowerprojects.5Uptonow,theLeveragingLocalCapacityreportserieshasfocusedontheimplementationvaluechain,assessingthejobs,occupation,materialsandequipmentrequiredfromtheinceptionofaproject(planning)toitsdecommissioning.Thecurrentreport,giventhedecentralisednatureofthetechnology,alsoexplores,inaqualitativemanner,theclimateadaptationandutilisationvaluechains.16RENEWABLEENERGYBENEFITSBox1ClassificationofsmallhydropoweraccordingtocapacityPicohydropowersystemstypicallyhaveacapacityofupto5kW.Theyaredesignedtoprovideelectricitytoindividualhouseholdsorsmallcommunities.Picohydropowersystemsusuallyrelyonsmallturbinesthatcanbeinstalledinstreamsorsmallrivers.Thesesystemsarerelativelysimpleandinexpensive.Microhydropowersystemstypicallyhaveacapacityofbetween5kWand100kW.Theyaredesignedtoprovideelectricitytosmallcommunitiesorcommercialenterprises,suchasfarmsorsmallfactories.Microhydropowersystemscanbeinstalledinlargerstreamsorriversandrequirealargerinvestmentthanpicosystems.However,theycanprovideamorereliablesourceofelectricityandcanbeusedtopowermoreenergy-intensiveactivities.Minihydropowersystemstypicallyhaveacapacityofbetween100kWand10MW.Theyaredesignedtoprovideelectricitytolargercommunitiesorcommercialenterprises,suchaslargefactoriesormunicipalities.Minihydropowersystemsusuallyrequireasignificantinvestmentandmayrequiretheconstructionofdamsorotherinfrastructure.However,theycanprovideareliablesourceofelectricityandcanbeusedtopowerawiderangeofactivities.Forthepurposeofthisstudy,minihydropowersystemsof1MWandbelowareconsidered.2.1ImplementationvaluechainOnthebasisofexistinginstallations,estimatessuggestthatevery1MWofcommunity-ownedhydropowerinstalledgeneratestenfull-timeequivalentjobsineveryyearofitsoperation.Thisissignificantlymorethanothergenerationtechnologies,includingthenext-bestperformer,community-ownedsolarphotovoltaicsataroundthreefull-timejobsper1MWinstalled(Bere,JonesandJones,2015).Thesmall-scalehydropowerimplementationvaluechainmainlyconsistsofsixsegments:feasibility,planningandprocurement,manufacturing,installationandconnection,andoperationandmaintenance,followedbydecommissioningoncethelifetimeofthefacilityisreached.Thesesegmentscoverallprocessesalongthesupplychainfromtheprocurementofrawmaterialsandequipmenttothefinalproduct.Abriefoverviewofthevaluechainforsmall-scalehydropowerispresentedinFigure4.Additionaldetailsontheaveragedurationofeachsegment,togetherwithproject-specificfactorsimpactingdurationcanbefoundinAnnexB.Figure4Implementationvaluechainofsmall-scalehydropowerFeasibilityPlanning&ManufacturingInstallationOperation&DecomissioningprocurementmaintenanceFindingsarepresentedfirstforthetotallabourinputsinperson-days(seeBox2)neededfor5kilowatt(kW),50kWand500kWhydroplants.Eachsegmentofthevaluechainisthendiscussed.172.REQUIREMENTSFORSMALL-SCALEHYDROPOWERBox2MeasuringemploymentThedeploymentofrenewableenergyleadstoemploymentindifferentsectors,withdifferentlevelsofqualificationandduration.Wecandistinguishbetweendirect,indirectandinducedjobs.Directemploymentreferstoemploymentgenerateddirectlybycoreactivities(implementationvaluechain).Indirectemploymentincludesjobsinupstreamindustriesthatsupplyandsupportcoreactivitiesforsustainability(e.g.inthiscase,theclimateadaptationvaluechain,whichmusthappenonthesidelinesofthedeploymentofthesmall-scalehydropowersystem).Inducedemployment(generatedbyproductiveenduses)encompassesjobsresultingfromadditionalincomebeingspentongoodsandservicesinthebroadereconomy,suchasfood,clothing,transportationandentertainment(utilisationvaluechain).Employmentcanbemeasuredindifferentways.Full-timeequivalentjobsareequaltoonepersonworkingfull-timeoverthecourseofayear.Person-daysreflecttheamountofworkdonebyonepersonworkingfull-timeforoneday.LabourrequirementsalongtheimplementationsupplychainTogether,thefeasibility,planningandprocurement,manufacturing,installationandconnection,operationandmaintenance,anddecommissioningofasmall-scalehydropowerplantrequiremorethan17000person-daysforapicohydroplant(average5kW),around64000person-daysforamicrohydrofacility(50kW)andover160000person-daysforaminihydrosystem(500kW).6Thelabourrequirementsvaryacrossthevaluechain.Operationandmaintenanceworkisneededthroughoutthelifetimeofasystem–estimatedataround40years–andthereforerepresentsalargechunkofthelabourrequired(94%,87%and78%oftotalperson-daysrespectivelyforpico,microandminihydrofacilities).7AsillustratedinFigure5,installationandconnectionandmanufacturingarethenext-largestshares(upto4%,11%and15%,forpico,microandminihydrofacilities,respectively).Decommissioningisincluded,butitsshareisnegligible.Figure5Distributionofhumanresourcesrequiredalongthevaluechainforpico,microandminihydroplants1%1%1%3%1%1%2%9%1%7%3%12%5kW94%50kW87%500kW77%TOTALTOTALTOTAL1734563920163780person-daysperson-daysperson-daysOperation&maintenancePlanning&procurementFeasibilityManufacturingConstruction&installationNote:Thefigurespresentedinthisreporthavebeenroundedforclarityandeaseofcomprehension.Asaresult,theremightbeslightdiscrepanciesinthetotals,andtheymaynotpreciselyadduptotheoveralltotal.However,theseroundingadjustmentsdonotsignificantlyimpacttheoverallfindingsandconclusionsdrawnfromthedata.6Thatis,directjobsrequiredthroughoutthelifetimeofapico,microandminihydrosystem(frommanufacturingtodecommissioning).Indirectandinducedjobsarenotincluded.7Theperson-daysrequiredfortheannualoperationandmaintenanceofapico,microandminihydroplantareestimatedtobe636,1038and1299person-days,respectively.Overaperiodof40years(consideredtheaveragelifeexpectancyofthesesystems),thecumulativetotalis25428,41538and51951person-days,respectively,forpico,microandminihydro.18RENEWABLEENERGYBENEFITSSkillsrequirementsalongtheimplementationsupplychainCountriesthatdonotmanufactureequipmentdomesticallycanachievejobcreationinothersegmentsofthevaluechain,especiallyininstallationandconnectionandinoperationandmaintenance.Thebulkofthelabourneededinvolveslow-tomedium-leveltechnicalskills,whichmaybeavailableinanycountry’sworkforceorcouldbedevelopedthroughcertificationsorvocationaltrainingcentres(seeFigure6).Figure6Distributionofskillsrequiredforpico,microandminihydroplants0.3%4%2.4%0.3%8%2%12%3.7%7%5kW50kW500kW93%88%79%Non-STEMSTEMAdministrativeLowandmidskillsNote:STEM=science,technology,engineeringandmathematics.Note:Thefigurespresentedinthisreporthavebeenroundedforclarityandeaseofcomprehension.Asaresult,theremightbeslightdiscrepanciesinthetotals,andtheymaynotpreciselyadduptotheoveralltotal.However,theseroundingadjustmentsdonotsignificantlyimpacttheoverallfindingsandconclusionsdrawnfromthedata.Thediscussionbelowhighlightsthelabourandequipmentrequirementsfordifferentsegmentsofthesmallhydroimplementationvaluechain,fromprojectfeasibilitystudiesallthewaytothedecommissioningofprojectsthathavereachedtheendoftheirusefullife.2.1.1FeasibilityTypically,thevaluechainforanyrenewableenergyprojectbeginswithafeasibilityanalysis,includingthetechnicalandfinancialaspects.Activitiesinthisphaseincludethefollowing:•Siteidentification:Becausesmall-scalehydrositesrequireflowingwater,priortoconductingafeasibilitystudy,potentialsitesareidentifiedusingtopographicmapsandinterviewingcommunitymembers.Often,aftervisitingalreadyoperationalsystems,potentialbeneficiariesbetterunderstandtherequiredtypeofwaterflowandterrain,enablingthemtoidentifyapotentialsiteintheircommunityandtheninviteanexperienceddevelopertoconductapre-feasibilitystudy.•Feasibilitystudyofthesite:Afterpotentialsiteidentification,adetailedfeasibilitystudyiscarriedouttodeterminetheprecisehead,flow,locationandsizeofthecivilengineeringstructuresrequiredandtheanticipateddemandfromhousehold,commercialandpublicendusers.Forplantsthatare300kWto1000kWineco-fragileregions,atwo-tofour-yearassessmentofhydrologyiscritical.Theestimateddemandisthenusedtodeterminewhethertheexpectedpowergenerationwillbesufficientacrossvariousseasonalcycles.Consumer-relatedaspectsoffinancialviability(e.g.productiveenduse,willingnesstopay)arealsoassessedduringthisperiod,includingtariffstructuresandconnectionfees.Extensivecommunityengagementislikelytotakeplaceduringthisstagetoensurebuy-inandtoarriveatacommonvaluepropositionforthedevelopmentofthesmallhydroinfrastructureandtodefinetheroleofcommunityinthevariousstagesoftheproject.Suchengagementwouldinvolvetheparticipationofcommunitymobilisers,comprisinglocalchampionsandsocialscientists,andtheuseoftoolsthatcansupportcommunity-leveldatacollection(seeBox3).192.REQUIREMENTSFORSMALL-SCALEHYDROPOWER•Engineeringdesign,billofmaterialandbillofquantity:Ifthefeasibilitystudydeterminesthesiteisviable,detailedengineeringdesignsforthecivilworks,electromechanicalsystem,andtransmissionanddistributionlinearedevelopedtogeneratethebillofmaterial(BoM)8andthebillofquantity(BoQ)9anddeterminetheprojectbudget.•Financialandsocio-economicviabilityanalyses:Aftertheprojectbudgetisdetermined,atargetedplanforfinancialviabilityiscreatedbasedonavailablefinancing(e.g.grants,subsidies,loans,shares,in-kindcontributions),aswellasthespecificenterprisemodel(e.g.,households,agriculture,otherend-useconsumers)andtheanticipatedrevenueofthemini-gridfromconnectionfeesandtariffs.Toolscanbeusedbycommunitiestoassessthefeasibilitystageofmini-grids(seeBox3).•Access-to-financeprocesses:Considerableeffortisdedicatedtoobtainingthefinancingtoimplementtheproject.Withoutfundsinplace,thenextphasesoftheprojecttypicallycannotbecompleted.Someactivitiesofprocurementandconstructioncanbeinitiatedifthecommunityorotherstakeholdersmakein-kindcontributions(e.g.labour,rawmaterial).Box3Softwareforsite-specificdataanalysesformini-gridfeasibilitySoftware-basedtoolscanoptimisesocio-economicdatacollection,analysesandstakeholderengagementduringthefeasibilitystageofmini-griddesign,suchastheCommunityEnergyToolkit(COMET)forcommunity-leveldatacollectionandtheVillageDataAnalytics(VIDA)toolformulti-thematicanalysisacrossmultiplecommunitiesandsectors.CommunityEnergyToolkit(COMET)Communitiesplayacentralroleintheoperationsandsustainabilityofmini-grids;therefore,communityengagementduringthefeasibilitystageiscritical.COMETisarole-playingsoftwaretoolbuiltaroundarepresentationofamini-gridsystem,intendedtobeusedasaneducationalandcollaborativeplanningtoolindesigningacommunity-sizedmini-gridsystem.Thetoolisdesignedtobeusedwithinaprocessthatexploresmini-gridplanningandoperationaldecisions,includingdemandestimation.Networkeduserscometogethertoplayouthouseholdconsumptionandmakeimportantenergychoices,likepurchasingappliances,settingenergytariffsandmanagingfinancestopaytheirbillsontime.Users’individualbehaviour,likeswitchingappliancesonandoff,orfailingtomakeapayment,areimmediatelyvisibletoeveryoneelse.Thegraphic-basedtoolfacilitatescollaborationamongcommunitymembers,enablingthemtocollectivelydecideonanappropriatelysizedsystemandatariffthatpaysforsystemcosts,aswellasallowinguserstosimulateenergyconsumptionwithinthemini-grid’slimitedcapacity.VillageDataAnalytics(VIDA)Financialandsocio-economicviabilityrequiresinsightonhowtheelectrificationofaspecificcommunitywillimpactthesubregion,andviceversa,acrossruraldevelopmentinterventions.VIDAisamap-basedsoftwaretohelpreachtheSustainableDevelopmentGoals.Allowingitsusersinthefieldsofelectrification,healthcareandagriculturetochannelinvestments,runprojectsandmeasureimpact,VIDAintegratesdifferentdatastreams–suchassatelliteimagery,surveydataandsensordata–predictsoutcomesandallowsteamstocollaborate.Thevisualpresentationfeaturesofthetoolareespeciallyusefulincommunicatingpotentialsocio-economicimpacttodiversestakeholders,includinggovernmentagencies,theprivatesectorandcommunity-basedorganisations.Source:ENACT,n.d.;VIDA,n.d.8ABoMisacomprehensivelistoftherawmaterials,components,subassembliesandotheritemsrequiredtobuildaproduct.Itisanessentialdocumentusedinmanufacturing,engineeringandsupplychainmanagement.ABoMtypicallyincludesthenamesofthepartsandmaterials,theirquantities,andadescriptionoftheirspecificuseinthefinishedproduct.9ABoQisadocumentusedinconstructionprojectsthatprovidesadetailedlistofallthematerials,labourandequipmentrequiredtocompleteaspecificconstructionproject.Ittypicallyincludesadescriptionoftheworktobedone,thequantityofeachitemrequiredandtheunitpriceforeachitem.TheBoQisusedtoestimatethecostofaproject,aswellastomanageandtracktheproject’sprogress.20RENEWABLEENERGYBENEFITSLabourrequirements.Duringtheprojectfeasibilitystageofa5kW,50kWand500kWplant,roughly100,600and1500person-daysoflabour,respectively,arerequired,withvariouslevelsoftechnicalknowledgeandskills.Table1representsabreakdownoftheworkforceneeded,byoccupation(AnnexCliststhedifferentrolesincludedineachgroup).Table1Humanresourcesrequiredforassessingthefeasibilityofa5kW,50kWand500kWplant(person-days)Occupation5kW50kW500kWAdministrativeandfinancepersonnel1386377Contractsandprocurementpersonnel61580Drivers51520Projectmanagers1590211Designengineers985195Drafters31540Siteengineers7100204Surveyors52880Electricians31020Unskilledlabour81020Masonsandskilledlabour61020Communitymobilisers62653Environmentalimpactassessors21530Villageelectrificationcommittee570179Locallogisticspersonnel31020TOTAL965851549TOTAL(as%ofthetotalrequirements)0.60%0.90%0.90%Theinitialactivities(siteidentification,pre-feasibilitystudyandfeasibilitystudy)focusoncollectinginformationfromthesiteandthereforeinvolvefield-focusedpersonnel,supervisedbytheprojectmanagerandsupportedbytechnicalexpertsforspecialisedguidance.Theremainingeffortsfocusonanalysingtheinformationcollectedfromthesitetodeterminecostsandoverallfinancialviability.TheseeffortsincludeBoM,BoQandbudgetpreparation.Thereforetherolesinthisphasearepredominantlyforengineers,drafters,designersandsurveyors(whoaveragenearlyone-quarterofthetotalpersonnelrequiredduringthefeasibilityphaseforpico,microandminifacilities),followedbyadministrativeandfinancepersonnel(14–24%),andprojectmanagement(14-16%)(seeFigure7).212.REQUIREMENTSFORSMALL-SCALEHYDROPOWERFigure7Humanresourcesrequiredforprojectfeasibilityactivitiesfora5kW,50kWand500kWplant,byoccupation2%11%14%3%16%15%15%500kW24%8%9%3%4%2%9%5kW2%50kWTOTAL6%5%3%1%25%TOTAL94%39%TOTAL3%1%155014%10059015%34%person-daysperson-daysperson-daysAdministrativeContracts,DriversProjectDrafters,designUnskilledElectricians,EnvironmentalCommunity&financeprocurementmanagersengineers,sitelabourmasons&impactmobilisers&villagepersonnel&locallogisticsengineers&skilledlabourassessorselectrificationpersonnelsurveyorscommitteepersonnelNote:Thefigurespresentedinthisreporthavebeenroundedforclarityandeaseofcomprehension.Asaresult,theremightbeslightdiscrepanciesinthetotals,andtheymaynotpreciselyadduptotheoveralltotal.However,theseroundingadjustmentsdonotsignificantlyimpacttheoverallfindingsandconclusionsdrawnfromthedata.Overall,thefeasibilityphaserequiresunskilledlabour,administrativepersonnel,driversandsurveyorswhowouldbenefitfromlocalexpertiseandthereforeoffersconsiderableopportunitiesfordomesticemployment.Equipmentrequirements.Themainequipmentinthefeasibilityphaseisneededtocharacterisethesite’sterrain,includingtheheadmeasurementfromthecivilworkstothepowerhouse,andtomeasurethewaterflow.Forallprojects,theheadcanbemeasuredusinganaltimeter;however,forpicoandmicrohydrocapacities,useofamason’spipeandmetreruleisrequiredforsufficientaccuracy.Theterrainisthenmappedusingatotalstation,consistingofanelectronictheodoliteandelectronicdistancemetertomeasuretheverticalandhorizontalvariationsneededtodeterminetheidealpenstockpathfromthecivilworkstothepowerhouse.Dependingonthesite,theflowcanbetriangulatedusingaflowmeter,asaltconductivitymeter,year-roundrainfalldata,and/oranyavailableonlineflowdatasources.Alow-costv-notchorsquare-notchmadefromlocallyavailablematerial(e.g.wood)canbeinstalledifpersonsbasednearthesitecanroutinelyrecordthewaterlevel.2.1.2PlanningandprocurementAftertheprojectisdeemedfeasibleandfundingissecured,itenterstheplanningandprocurementphase,consistingofactivitiesthatestablishtheprocessesforachievingfullprojectimplementation.Planningandprocurementcanincludedistinctsteps;however,themajorityofplanningtasksarelinkedtoprocurement,andthereforeoftenthesameteamanchorsboth.Someplanningaspectscontinuethroughouttheimplementation,suchasco-ordinationoftransportationandaccommodation.Inremotelylocatedprojectsthatdonothaveasite-basedteamandinsteaddependonexperiencedpersonsinthecommunity,theimplementationteamvisitsthesiteatleastmonthly.Activitiesinthisphaseincludethefollowing:•Hiring:Personnelareneededtoadvertisepositions,reviewapplications,conductinterviewsandco-ordinatehiringprocesses.•Tenderingandservicecontracts:Forcomponentsthatarecustomisedtoeachsite(e.g.turbineassembly)andcomponentsthatarelesscostlywhenmanufacturedlocally(e.g.metalpenstock),tendersaredevelopedtocontractlocalmanufacturers,whoalsodotheinstallationandcommissioning.Dependingonthescaleandfundingsource,tendersmayberequiredforthecivilconstructionoftheweir,channel,forebaytankandpowerhouse.22RENEWABLEENERGYBENEFITS•Purchaseorders(bydeveloper):Procurementofrawmaterial,off-the-shelfcomponentsandcustomisedcomponentsinvolvesidentifyingvendors,obtainingquotations,selectingfinalvendors,creatingpurchasecontractsandco-ordinatingpayments.Somecomponentsmaybeprocuredbytheserviceprovider(e.g.metalfortheturbineispurchasedbytheturbinemanufacturer);inothercases,theyareprocuredbytheoveralldeveloper(e.g.cementforcivilworks).•Cashflowplanningandaccounting:Themanufacturingandconstructionphasesaredoneinparallel,requiringprocurementofrawmaterial,off-the-shelfcomponentsandcustomisedcomponents.Withextensivepurchasesandpaymentsinvolvedsimultaneously,fundsmustbemadeavailableontime.Inaddition,meticulousaccountingisrequiredforthedonortoapprovefuturepayments.•Monitoringandevaluation:Allfundingsourcesrequiremonitoringandevaluationreportsbeforetheywillreleasefundinginstalments.Whilethecontentofthereportscanbeprovidedbythefieldimplementationteam,thewritingofthereporttomeetthefunder’sstandardsrequiresappropriatelyskilledpersons.•Transportationtothesite:Projectsitesareofteninremoteareaswithminimalroadaccess,requiringskilleddrivingongraveland/ormudroadsinappropriatevehiclesandoftenmotorbikingorwalkingtowardstheend,ifthereisnomotorableroad.Throughouttheprojectimplementation,transportationmustbearrangedforpersonnel,rawmaterialsandcomponentstoreachthesite.•Accommodationatthesite:Atremotesites,allmealsandovernightstaysarearrangedatindividualhouseholdsorlodgesatthebeneficiaryvillage.Inmostcases,itemsformealsalsohavetobebroughtinforallprojectpersonnel.•Socialgovernancesystem:Asimplementationactivitiesmovefromdeskworktositework,facilitatingtheformationofasocialgovernancesystemwithinthebeneficiarycommunityiscriticalforbothimplementationandutilisationoftheproject.Usingthesamegovernancesystemduringimplementationthatwillsubsequentlybeusedduringutilisationofthefacilityenablesgapstobeaddressedpriortothecommissioningoftheproject.Basedonthesocialgovernanceandeconomicdisparitydatacollectedduringthefeasibilitystudy,discussionsareheldwithcommunitymemberswhorepresentallsocio-economicfactionsinordertodevelopcommunityconsensusonwhetheranyexistinggovernancestructureswillbeusedoranewframeworkwillbedeveloped.Aplanismadetooperationalisethedecision.232.REQUIREMENTSFORSMALL-SCALEHYDROPOWERLabourrequirements.Planningandprocurementofa5kW,50kWor500kWplantrequiresapproximately170,900and12000person-daysoflabour,respectively,withvariouslevelsoftechnicalknowledgeandskills.Table2representsabreakdownofthetotalworkforceneededintheplanningandprocurementphasebyoccupation.Table2Humanresourcesrequiredfortheplanningandprocurementofa5kW,50kWand500kWplant(person-days)Occupation5kW50kW500kWAdministrativeandfinancepersonnel202154732Contractsandprocurementpersonnel15822857Drivers257Projectmanager101402785Designengineers892559Siteengineers26136500Electricians530100Unskilledlabour1562100Communitymobilisers234862Environmentalimpactassessors2715Villageelectrificationcommittee2060200Locallogisticspersonnel203050TOTAL16690711967TOTAL(as%ofthetotalrequirements)1%1%7%Humanresourcesfortheplanningandprocurementphasearedistributedsuchthattherolesofadministrativeandfinance,logistics,andcontractsandprocurementpersonnel,andofprojectmanagersaltogetherformthemajorityoftherequiredperson-daysforthesegmentinallthecapacities,astheyareresponsiblefornearlyalltheactivitiesinthisphase.Theperson-daysfortheserolesinminihydrocapacitiesismuchhigherthaninothersegmentsofthevaluechain,becausethecivilworksarelargerandtakelongertobuild.Rawmaterialforcivilworksisprocuredasstructuresarebuilt,andassuchtheprocurementpositionsarerequiredforalongerperiod.Theremainingrequirementsmostlycomprisetechnicalroles,suchasdesignandsiteengineers,whoseinputsareneededasplanningandprocurementdecisionsandprocessesareestablished(seeFigure8).Figure8Humanresourcesrequiredforplanningandprocurementactivitiesfora5kW,50kWand500kWplant,byoccupation26%5kW12%12%50kW24%1%1%0.1%1%21%1%1%3%TOTALTOTAL500kW9%3%9%170910TOTAL7%12%person-days1%person-days119701%23%person-days20%6%25%15%24%40%AdministrativeContracts,DriversProjectDesignandUnskilledElectricians,EnvironmentalCommunity&financeprocurementmanagerssiteengineerslabourmasons&impactmobilisers&villagepersonnel&locallogisticsskilledlabourassessorselectrificationpersonnelcommitteepersonnelNote:Thefigurespresentedinthisreporthavebeenroundedforclarityandeaseofcomprehension.Asaresult,theremightbeslightdiscrepanciesinthetotals,andtheymaynotpreciselyadduptotheoveralltotal.However,theseroundingadjustmentsdonotsignificantlyimpacttheoverallfindingsandconclusionsdrawnfromthedata.24RENEWABLEENERGYBENEFITS©RHydroConcernPvt.Ltd.Materialandequipmentrequirements.Intermsofmaterialandequipmentfortheplanningandprocurementphase,forthedesk-basedroles,ITequipmentandapplicationsareneededforfinance-relatedtasksandinternalcommunication.Appropriatetypesandnumbersofvehiclesarerequiredtoaccommodatethetravelofpersonneltothesiteandthetransportofrawmaterialandcomponents.2.1.3ManufacturingThemanufacturingstagereferstothefabricationofcomponentsthatrequirecustomdesignand/orcomponentsthatarelesscostlytofabricatelocallythantoprocureofftheshelf.Componentsthataretypicallyprocuredasready-madepartsinclude:•Electromechanicalsystem:generator,electroniccomponentsoftheloadcontroller,bearings,andvalves•Transmissionanddistributionlinecomponents:accessories,cableandwires•Housewiringcomponents:metersandminiaturecircuitbreakersSuchoff-the-shelfcomponentsaretypicallynotmanufacturedlocallyandinsteadaresuppliedbynationalorinternationalsuppliersintheplanningandprocurementphase.Forexample,inPakistan,multiplelocalcompaniesproducewiresandcables,whilegeneratorsarebeingbuiltinIndia.Componentsthatrequiresite-specific,customiseddesignandthatcanbelocallymanufacturedincludethefollowing:•Civilworkscomponents:gatesfortheweirandchannel,penstocksupport,penstockexpansionjoints,andpowerhousedoorsandwindows;•Electromechanicalsystemcomponents:turbineassembly(includingthebase,manifold,joints,runnerandshaft),generatorbaseframe,housingforelectronicloadcontroller,ballastload,groundingelement,andaccessories;•Transmissionanddistributionlinecomponents:polesandtransformers;•Housewiringcomponents:protectiveboxesformetersandminiaturecircuitbreakers.Therearealsocomponentsthatcanbebuiltbycustomisingoff-the-shelfpartsforuseinpico,microorminihydrosystems,suchasinductionmotors,whichcanbelocallyconvertedtoinductiongenerators.Formalandinformaltechnologytransferhasledtoincreasinglocalisationoftheabovecomponents,specificallywiththedisseminationoflicensedandopen-sourcetechnologydevelopmentforturbinesandloadcontrollers(seeBox4).252.REQUIREMENTSFORSMALL-SCALEHYDROPOWERBox4Licensedversusopen-sourcetechnologyforlocalmanufacturingLicensedtechnologyreferstodesignsthatrequirepaymenttothelicenceownerforapplicationofthedesign,eitherperunitoraone-timelicencefee.Thefeeshelpreturntheinvestmentmadebythedesignownertodevelopthetechnology,typicallytakingseveralyears.Open-sourcetechnologyisdistributedpubliclyfreeofcost.Theavailabilityoflicensedandopen-sourcetechnologyhashelpedtoacceleratelocalturbineandloadcontrollermanufacturersintheGlobalSouth.LocalmanufacturingofturbinesThetypeofturbineforanyhydropowersitedependsonthespecificheadandflowconditionsavailableatthesitethroughouttheyear.Turbinetypescanbeclassifiedbyvariousfactors,includingtheenergyexchangebetweenthewaterandmachine(e.g.reactionorimpulseturbines),thedirectionofflowinthemachine(e.g.radial,tangential,axialormixedflow),thehydraulicpressureoperatingrange(e.g.low,mediumorhighhead)andtheturbinespeed(Linquip,2021).Thefollowinglicensedandopen-sourceturbinedesignshaveenabledlocalmanufacturingeveninthemostrurallocations,helpingtolowercosts,increasereliabilityandpromoteinnovationforrobustnessinlocalconditions.Insomecontextswherelocalcapacitybuildinghasnotbeenprovided,localmanufacturershavebeenabletoaccessready-madeturbinesandreverse-engineerforlocalmanufacturingofvarioussizesandconfigurations.Peltonturbines(highhead):FirstdevelopedintheUnitedStatesinthe1870s,Peltonturbinesrequirecastmetalbucketsfortheirrunners,10assembledusingfastenersand/orwelding.Indevelopingregionswherecustomisedmetalcastingisavailable,Peltonturbinesareprolificallyusedforhigh-headpico,microandminihydrosites.TheIntermediateTechnologyDevelopmentGroup,nowcalledPracticalAction,alongwithotherinternationaldevelopmentorganisations,helpeddisseminateopen-sourcedesignsofthePeltonturbineinthe1990s,andsincethennearlyalldevelopingcontextswithhighheadhavelocalPeltonmanufacturers.Today,theHydroEmpowermentNetwork(HPNET)facilitatestechnologytransferoflocalmanufacturingofthePeltonfromSouthAsiatoSub-SaharanAfrica.Crossflowturbines(mediumhead):Theearliestknowncrossflowdesignsweredevelopedintheearly1900sbyAustralian,GermanandHungariandesigners,andwereknownastheMitchell-Bankiturbinedesigns(JLAHydro,n.d.).Fromthemid-1970stothemid-1990s,theGovernmentofSwitzerlandcommissionedtheSwissCentreforAppropriateTechnologytosupportNepal’spioneeringlocalmanufacturersinimprovingexistingcrossflowdesignsforeaseoflocalmanufacturing(e.g.notrequiringcastmetalcomponents,andaddressingNepal-specificneedstoupgradewoodenwatermillstomechanisedmills).11ThereviseddesignswereknownastheT1-T8crossflowturbinesandwereavailableasopen-sourcedesignsthroughformaltraining(Nakarmietal.,1993).Asdemandforelectricitygenerationgrew,startingin1995theUniversityofStuttgartinGermanyanditsIndonesianpartnersdevelopedsophisticateddesignsforhigherefficiency,resultingintheT12seriesofcrossflowturbines,testedatHongKongPolytechnicUniversityandavailabletoanyonefreeofcostthroughformaltraining.Intheearly2000s,theSwisscompanyEntecAG,withpartnersinIndonesia,developedamoreadvancedcrossflowwithhigherguaranteedefficiency,knownastheT14(<300mmrunnerdiameter)andT15(<500mmrunnerdiameter)models,bothofwhicharelicenseddesignsrequiringformaltrainingbyPtEntecIndonesia(Entec,2012).10Therunneroftheturbinereferstothewheel-likecomponentthatspins.11TheUnitedMissiontoNepalsupportedtheparalleldevelopmentofcrossflowturbinesfordirect-drivemillingandelectricityproductionintheindustrialtownofButwal(furtherdetailscanbefoundinthefollowingsection).26RENEWABLEENERGYBENEFITSTurgoturbines(mediumtohighhead):InNepal,MrAkkalManNakarmiredesignedthetraditionalwaterwheel(ghatta)usedforgrindingmaizeandwheat,replacingthewoodenrunnerwithaTurgodesignusingmetalbuckets,creatingamorepowerfulandversatilemulti-purposepowerunittoexpandtheturbines’applicationtoricemillingandelectricitygeneration.12Inrecentyears,acollaborationbetweenNepalYantraShalaEnergy,theUniversityofBristol,thePeople,Energy&EnvironmentDevelopmentAssociation,KathmanduUniversity,andHPNETresultedinanopen-sourceTurgoturbinedesignande-learningmodule,availablefreeofcosttoanyone,asapartofanongoingcollaborativedesignprocesstocontinueadvancingTurgoturbines.Thedesignrequirestheavailabilityof3Dprintingfortheturbinebuckets,andthuseffortsarebeingmadebyHPNETtodistributepatternstolocationsthatdonothaveaccessto3Dprinting.Priortothisrecentcollaboration,practitionersinremotecontextshadreverse-engineeredTurgoturbinestodeveloplocaldesigns.Propeller,KaplanandFrancisturbines(lowhead):Low-headturbinesarethemostdifficulttomanufacture,requiringsophisticationintheturbinedesignaswellasthecivilworks.Low-headturbineshavenotbeenincludedintechnologytransferactivitiesfundedbyinternationaldonors,andthereforefewlocal,rural-basedmanufacturersforpropeller,KaplanandFrancisturbinescanbeidentified.However,inAfghanistanandMyanmar,localmanufacturershavebeenabletoreverse-engineerlow-headturbinestodeveloptheirowndesigns,albeitwithlimitedquality.ThereisanincreasingdemandforKaplanandFrancisturbinesbecausetheycanalsobeusedformedium-headsiteswithgreaterefficiencythancrossflowturbines.Assuch,KathmanduUniversitynowhasadedicatedeffortforthedevelopmentofFrancisturbines,andHPNETisaddressingthelow-headturbineneedsoflocalpractitionersthroughSouth-Southtechnologytransfer.LocalmanufacturingofloadcontrollersAnyhydromini-gridmustbeabletotechnicallyadjustforloadvariation(e.g.usersturninglightsandappliancesoffandon),andloadcontrollersaretherecommendedsolution.However,inrarecontexts,suchasMyanmar,whereloadcontrollertechnologyisnotavailableandyetnearly6000small-scalehydrosystemsareinstalled,localmanufacturershavebeenabletomanageloadvariation,albeitwithlossofefficiency.Inmostcases,especiallythosesupportedbydonorsandgovernmentfunding,eithermechanicalflowcontrollersorelectronicloadcontrollersareused.Mechanicalgovernorshaveanintuitivemechanicaldesign(e.g.flywheel)andassuchhavebeeneasilylocalised.However,moresophisticatedgovernorsrequireautomaticflowcontroltechnologythatmustbeimported.Inthecaseofelectronicloadcontrollers(ELCs),manydifferentelectroniccomponentsarerequired,mostofwhichhavetobeimported.Sincethe1990s,localelectronicsexpertsinColombia,India,Indonesia,Nepal,NicaraguaandSriLanka,amongothers,havedevelopedandlocallymanufacturedtheirowncontrolmechanismandcircuitdesigns,whileimportingthespecificresistorsandotherelectronicpartsrequiredforthedesign.ThepresenceoflocalELCmanufacturersinAsia-PacificandLatinAmericaoccurredthankstotheperseveranceoflocalentrepreneursindevelopingtheirownELCs,attimessupportedbyforeigndesignersanddonors,suchasPracticalAction,theGermanAgencyforInternationalCooperation,theGermanTechnicalCooperation,andEnDev.Currently,HPNETandtheSkatFoundationareenablingtechnologytransferofELCmanufacturingfromAsia-PacifictoSub-SaharanAfrica.Source:InterviewswithpractitionersinSouthandSoutheastAsia.12www.linkedin.com/pulse/obituary-memory-akkal-man-nakarmi-who-designed-ground-kandel.272.REQUIREMENTSFORSMALL-SCALEHYDROPOWER©HydroConcernPvt.Ltd.Thefollowingstepsareinvolvedinlocallymanufacturingcomponentsthatwillbeusedinthecivilworksstructures,theelectromechanicalsystem,andthetransmissionanddistributionlines:•Sitevisits:Althoughsitemeasurementsweretakenduringthefeasibilityphase,themanufacturer’sengineerswillvisitthesitetoverifythemeasurements.Iftherearedisparities,areviewprocessisconductedbyboththedeveloperandthemanufacturertoreachconsensus.•Drawingsforfabricationandassemblyprocess:Withverifiedsitemeasurements,theengineeringdesigndrawingsdevelopedduringthefeasibilitystagearerefinedforspecificcomponentstoincludedetailsofthefabricationandassemblyprocess.•FabricationBoM,BoQandworkplanforthefabricationprocess:Oncethecomponentdesign,alongwiththefabricationandassemblyprocesses,arefinalised,afabrication-specificBoM,BoQandworkplanaredeveloped.Thisincludesprocessesthatrequireoutsourcing(e.g.castingforPeltonturbinebuckets,andlaser-cuttingforcrossflowturbinerunners).Typically,themachinistisworkingonmultipleprojects,andsospecifichumanresourcesmustbescheduledforeachstepofthefabrication(e.g.bookingthetimeofthelathemachineoperator).•Purchaseorders(bymanufacturer):BasedontheBoMandBoQ,rawmetalisorderedfromrawmetalshopsandtransportedtothemanufacturingworkshop.Off-the-shelfparts,namelypipe,valves,bearings,bearinghousings,pulleysandbelts,areorderedfromvendorswhodeliverontimeandprovideadequatewarranties.•Machiningofcomponents:Mostofthecustom-designedcomponentsaremachinedfromrawmetal,usingwelding,drilling,andothersuchprocedures.Forhigh-headsites,runnercomponents(e.g.Peltonrunnerbuckets)needtobecast.Thetypeofmetalandthefacilityrequiredtocastandmachineitdependsonthetypeandsizeoftherunner.Aluminium,bronzeandbrasscanbecastbysmalllocalartisans,whilecastironrequiresamoreestablishedfacility,andstainlesssteelbucketsarerarelyusedforsmall-scalehydrosystems.•Assemblyandtesting:Beforethecomponentsareputthroughfinalaestheticsteps,aqualitycheckisdoneand,whenappropriate,assemblyandtestingareconductedtoverifythequalityofdesignandmachining.•Finishingandpainting:Thefinalstepofmanufacturingisthefinishingandpainting,whichdependonthecomponentandlevelofquality,primarilytopreventrusting.28RENEWABLEENERGYBENEFITSLabourrequirements.Thevastmajorityofthehumanresourcesrequiredforthemanufacturingphasearetechnicalrolessuchasmachinists,engineersanddrafters.Administrativeandfinancepersonnelisthesecondlargestrequirement(11–15%)ofthemanufacturingperson-days.Projectsthatdonotuselocallymanufacturedcomponentsforgolocaljobcreationofapproximately200,1100and4000person-daysfora5kW,50kWand500kWplant,respectively(seeTable3).13Table3Humanresourcesrequiredtomanufacturethemaincomponentsofa5kW,50kWand500kWplant(person-days)Occupation5kW50kW500kWAdministrativeandfinancepersonnel27126300Contractsandprocurementpersonnel102051Drivers51040Projectmanagers1790205Designengineers22100533Drafters52090Siteengineers21030Electricians21030Unskilledlabour240242Machinists1005002026Technicians10100513Communitymobilisers21040Villageelectrificationcommittee430114Locallogisticspersonnel730171TOTAL21510964386TOTAL(as%ofthetotalrequirements)1.2%1.7%2.7%13Theestimationsdonotincludethehumanresourcesrequiredtomanufactureoff-the-shelfcomponents,suchasgenerators,bearings,valves,cables,electroniccomponentsandcircuitbreakers,alsoknownasready-madecomponents.Suchcomponentsareproducedinlarge-scalefacilities,someofwhichonlyassemblecomponentsandprocurepartsfromothermanufacturers.Forexample,ageneratorismadeupofmanycomponents,andageneratormanufacturermayfabricatethegeneratorhousinganddotheoverallassemblybutprocurethemagnetandbearingsfromothers.292.REQUIREMENTSFORSMALL-SCALEHYDROPOWERMachinistsrepresentthebulkofjobsinthemanufacturingsection,accountingforroughlyhalfthetotalrequirements.Designengineers,siteengineersanddraftersfollow,requiringaltogetherbetween12%and15%ofthetotal(seeFigure9).Figure9Humanresourcesrequiredformanufacturingactivitiesfora5kW,50kWand500kWplant,byoccupation2151100439063%%183%%140%%151%%47%%51%%5kW2%50kW1%12%500kW5%TOTAL8%TOTAL8%TOTALperson-days13%person-days12%person-days15%47%1%46%4%46%6%AdministrativeContracts,DriversProjectDrafters,designUnskilledElectricians,EnvironmentalCommunity&financeprocurementmanagersengineers,sitelabourmasons&impactmobilisers&villagepersonnel&locallogisticsengineers&skilledlabourassessorselectrificationpersonnelsurveyorscommitteepersonnelNote:Thefigurespresentedinthisreporthavebeenroundedforclarityandeaseofcomprehension.Asaresult,theremightbeslightdiscrepanciesinthetotals,andtheymaynotpreciselyadduptotheoveralltotal.However,theseroundingadjustmentsdonotsignificantlyimpacttheoverallfindingsandconclusionsdrawnfromthedata.Equipmentrequirements.Theequipmentrequiredformetalworksfabricationincludesadrill,aweldingmachine,alatheandacuttingmachine.Themetalrequiredfortheturbinerunner,shaft,blades(orbuckets)ornozzlesiseitherbronze,mildsteelorcastiron,dependingonthetypeofturbine,thekilowattcapacityandthetargetedquality.Forassemblyandtesting,otherstructuresarerequired.Theready-madematerialrequiredforlocallymanufacturedcomponentsincludesmildsteelpipesofdifferentdiametersandthickness,metalsheets,angles,andbars.2.1.4InstallationandconnectionTheinstallationandconnectionphase,whichistypicallythephasewiththesecond-longestdurationintheimplementationvaluechain(theoperationsandmaintenancephasebeingthelongest),encompassestheon-sitecivilconstructionofconcretestructuresandtheinstallationofprefabricatedequipment.Duringthisphase,theprimaryfocusisonexecutingthephysicalconstructionandassemblyprocessesmeticulously,ensuringthattherequiredinfrastructureisbuilttospecificationsandthatthedesignatedequipmentiscorrectlyinstalledatthesite.•Trainingofvillage-basedstakeholders:Becausesitesaretypicallylocatedinremotelocations,skilledandunskilledlabourisoftenprovidedbylocalcommunities,requiringextensiveon-the-jobtrainingformasons,operators,linesmenandothersthroughouttheinstallationandconnectionactivities.Thetrainers(e.g.siteengineers)aretypicallydrawnfromthenearesturbanorsemi-urbancentreand/orfromthenearbycommunitiesthathavealreadyimplementedsmall-scalehydroorsimilarinfrastructure,thusinvolvingvillage-to-villagementorship.•Constructionofconcretestructures:Concretestructuresarerequiredthroughoutthesystem,namelyfortheweir,channelandforebaytankintheupstreamcivilworks;theanchorblockofthepenstock;thepowerhousefoundationandwalls;andthepolesusedforthetransmissionanddistributionlines.Similarstepsareusedfortheconstructionofanyconcretestructure;however,theexactprocess(e.g.mixingratios,application,curingtimes)willdependonthestrengthrequirements.30RENEWABLEENERGYBENEFITS•Installationofallcomponents:Aftertheconcretestructuresarebuilt,theprefabricatedcomponentscanbeinstalled,namelythegatesoftheweirandforebaytankaccessoriesintheupstreamcivilworks;thepenstockpipes,jointsandairvalves;theturbineassembly(manifold,baseframe,valves,runner,bearings,housing);thegeneratorassembly(baseframe,generator,bearings,drivesystem);theloadcontrollersystem;andtheelectricalprotectionsystemsforthepowerhouse,forthetransmissionanddistributionlines,andwithinhomes.•Testingandcommissioningofthefullsystem:Thefinalactivityoftheinstallationandconnectionphaseisthetestingandcommissioningofthefullsystem,includingtheupstreamcivilworksstructuresandcomponents,theelectromechanicalsysteminthepowerhouse,thetransmissionanddistributionlines,andthehousewiring,inthatorder.Thefirsttestistoreleasethewaterfromtheweirintothechannelandforebaytanktotestforanyleaks.Next,thewaterisreleasedfromtheforebaytanktothepenstock,againtocheckforleaks.Finally,thevalvesinthepowerhouseareopened,allowingthewatertoflowintotheturbinetocheckforsmoothrotation.Thereafter,theturbineisengagedwiththegeneratortocheckforgenerationoutputpower.Theelectricityisthenreleasedintothetransmissionline,wherevoltageismeasuredatcriticalpoints.Soonafter,theelectricityisreleasedintothedistributionlinesandintoeachconnectedbuilding.Ateachstepoftestingandcommissioning,amultitudeofsafetyproceduresarerequired,includingsafetytrainingforeachhousehold,whichcanalsoinvolvethesigningofanagreementwiththehouseholdonusageprotocolsrelatedtosafety.Further,ateachstepofthetesting,variousmeasurementsandobservationsaredocumentedandreviewedbeforeproceedingtothenextstep.TrainingcentresinAsia-Pacifichaveprovidedextensiveopportunityforinstallationandpost-installationtraining,aswellasdesignandmanufacturing(seeBox5).Box5Trainingcentresforsmall-scalehydrodevelopmentTrainingandmanufacturingcentresintheGlobalSouth,particularlythoselocatedinsubregionswithsmall-scalehydrosites,havesignificantlycontributedtothelocalisationofthesmall-scalehydroimplementationvaluechainandthescale-upofskilledhumanresources.Asia-Pacific:CentresinAsiasupportedbytheUnitedNationsIndustrialDevelopmentOrganization(UNIDO)includetheInternationalCentreforSmallHydro-PowerinHangzhou,China,andtheRegionalCentreforSmallHydroPowerinTrivandrum,India(UNIDO,n.d.).TheASEANHydropowerCompetenceCentreinIndonesia,initiatedbytheASEANGermanMiniHydroPowerProjectandtheASEANCentreforEnergy,providescapacitybuildingacrosstheAssociationofSoutheastAsianNations(ASEAN)regionwithsupportfrominternational,nationalandlocalgovernmentsandtheprivatesector.Theregionalsohasgrassroots,non-government,non-profitcapacity-buildingcentres,includingthePeople-CenteredBusinessandEconomicInstituteinIndonesia,theTonibungCenterforRenewableEnergyandAppropriateTechnologyinMalaysia,theSIBATCenterforRenewableEnergyandAppropriateTechnologyinLuzon,Philippines,andtheYamogRenewableandSustainableEnergyTechnologiesCenterinMindanao,Philippines.Further,associationsforlocalpractitionersandusers,suchastheNepalMicroHydropowerDevelopmentAssociation,theFederationofElectricityConsumerSocietiesinSriLanka,andHydropowerforCommunityEmpowermentinMyanmar,haveprovidedopportunitiesforlocalcapacitybuilding(HPNET,n.d.).Inaddition,privatemanufacturersinNepalandinPakistan,suchastheHydrolinkEngineeringEquipmentCompany,haveinitiatedsector-widecapacitybuilding.312.REQUIREMENTSFORSMALL-SCALEHYDROPOWERLatinAmerica:PracticalActionestablishedtheDemonstrationandTrainingCentreinAppropriateTechnologiesinPeru,equippedwithademonstrationpicohydrositeformicrohydrodesignandoperationstraining(Escobaretal.,2012).BasedinColombia,APROTECEnergíasAlternativashassupportedsmall-scalehydrodesign,manufacturing,operationandmaintenancecapacitybuildinginvariousregionsofCentralandSouthAmerica,includingHondurasandNicaragua(APROTEC,n.d.).Localpractitionerorganisations,suchAsofenixandATDER-BL14inNicaragua,alsoprovidelocalcapacitybuildingtooperators,communityleadersandlocalgovernment.Sub-SaharanAfrica:Variouscapacity-buildinginitiatives,centresandexpertshaveadvancedthesectorinAfricancontextsforseveraldecades,startingwithmissionaryorganisations;however,mosthavenotbeenwelldocumented.UNIDOhasaprominentcentreinNigeriacalledtheRegionalCentreforSmallHydroPower,whilegrassrootseffortsinrecentdecadeshaveresultedinremotelylocatedcentres,suchastheMzuzuInstituteforTechnologyandInnovationinMalawi.PracticalAction,EnDev,andEnergy4Impactareamongseveraldonorandimplementingorganisationsthathaveenabledlocalcapacity-buildingactivitiesinEthiopia,Kenya,RwandaandtheUnitedRepublicofTanzania,amongothers.14AssociationofRuralDevelopmentWorkersBenjaminLinder,acompanyoperatingmainlyintheelectricpowersector.Labourrequirements.Theactivitiesfortheinstallationandconnectionphaseinvolvenearlythefullrangeofoccupationalroles.Fora5kW,50kWor500kWplant,theperson-daysrequiredforinstallationandconnectionareapproximately600,5500,and19000,respectively,asseeninTable4.Unskilledlabourhasthelargestnumberofperson-days,withitsshareincreasingwithprojectcapacity(26%to50%).Person-daysforthevillageelectrificationcommittee(VEC)arecomparativelygreaterinpicoandmicrohydrocapacitiessincethoseprojectstendtobecommunityled,whileminihydroconstructionismanagedbythedeveloper(seeFigure10).Trainedoperatorshaveahighrateofattritionbecausetheirmicrohydroskillsopenupnewemploymentprospectsforthem.Becauseofthis,someprogrammestrainagreaternumberofoperatorsthanrequiredduringtheinstallation.32RENEWABLEENERGYBENEFITSTable4Humanresourcesrequiredforinstallationandconnectionofa5kW,50kWand500kWplant(person-days)Occupation5kW50kW500kWAdministrativeandfinancepersonnel60490846Contractsandprocurementpersonnel318150Drivers30120350Projectmanagers42120439Designengineers576884Electricians511881351Siteengineers30200500Unskilledlabour15024009600Machinists431206Technicians12300600Masonsandskilledlabour707201549Operators142031155Communitymobilisers304561080Environmentalimpactassessor32050Villageelectrificationcommittee60162277Locallogisticspersonnel51550TOTAL569551919088TOTAL(as%ofthetotalrequirements)3%9%12%Figure10Humanresourcesrequiredforinstallationandconnectionactivitiesfora5kW,50kWand500kWplant,byoccupation13%11%13%9%10%5%2%3%5%5%5%4%4%3%7%27%5kW7%50kW190902%3%2%TOTAL10%43%TOTAL2%500kW2%5705520TOTALperson-daysperson-days5%person-days12%53%AdministrativeContracts,DriversProjectDrafters,designUnskilledMachinistsTechnicians&Community&financeprocurementmanagersengineers,sitelabourelectriciansmobilisers&villagepersonnel&locallogisticsengineers&electrificationpersonnelsurveyorscommitteepersonnelNote:Thefigurespresentedinthisreporthavebeenroundedforclarityandeaseofcomprehension.Asaresult,theremightbeslightdiscrepanciesinthetotals,andtheymaynotpreciselyadduptotheoveralltotal.However,theseroundingadjustmentsdonotsignificantlyimpacttheoverallfindingsandconclusionsdrawnfromthedata.332.REQUIREMENTSFORSMALL-SCALEHYDROPOWERMaterialrequirements.Therawmaterialrequiredfortheconstructionofconcretestructuresincludescement,sand,aggregateandwater.Reinforcingbarsofdifferentdiametersarealsorequired.Thecuringprocessfortheconcreterequiresmetalorwoodenmoulds.Theinstallationofprefabricatedcomponentsrequiresafullsetofmechanicaltools(e.g.spannerset,hexkeyset)andelectricaltools(e.g.multi-meter,tachometer).DependingonwhetherthepenstockismadefromHDPErubber,PVCplasticormetal,itsinstallationrequiresspecialtoolsandmaterialforsealingthejoints.2.1.5OperationandmaintenanceTheoperationandmaintenancephaseof5kW,50kWand500kWplantscoverstheoperationofthesystemfortheaverageexpectedlifetimeof40years,andthereforeaccountsforalargepercentageofrequiredhumanresources.Pico,microandminihydroplantsdonotrequirecost-intensivetechnicalmaintenancebutbenefitfromsafeoperations,routinepreventivemonitoringandimmediatecorrectivemaintenancetoavoidtheneedformajorrepairs.Thisphasealsoinvolvesthesocialandfinancialaspectsofdistributingelectricity,includingdoor-to-doorcheckingofloadpoints(inthecaseofflattariff),meterreadings(inthecaseofmeteredtariff),tariffcollection,financialmanagementandcommunitymobilisationfortechnicalmaintenance.Activitiesinthisphaseincludethefollowing:•Dailyoperation:Theoperatorturnsthesystemonbyreleasingwaterintotheturbineusingavalveinthepowerhouse.15Ifthereadingsforvoltageandfrequencyarestableandsufficient,theelectricitygeneratedisreleasedtothevillagedistributionline,andthenreadingsarecontinuallymonitoredforstability.Duringthewalktothepowerhouse,theoperatorswillcheckthedistributionlines.•Routinemonitoring:Thedistributionline,penstockandforebaytrashrackarecheckedonaweeklybasis,ifnotdaily.Electricalconnectionsinthepowerhousearealsochecked.•Preventivemaintenance:Leaksintheconcretestructurearebestrepairedwhentheyaresmall.Penstockjoints,dependingonwhethertheyaremetal,PVCorHDPEmaterial,aremaintained.Rubberpackingintheturbinemanifoldisreplaced.Bearingsaregreased.•Troubleshootingandsmallrepairs:Ifthewaterlevelisabnormal,theoperatorwalksalongthepenstocktotheweirandforebaytank,inspectingalltheinfrastructureforleakage.•Majorrehabilitation:Mudslidescansignificantlydamagetheconcretestructuresandrequirereconstruction.Floodinginthepowerhousecanrequirereplacementofthegeneratorandcontrollerelectronics.•Door-to-doorverification:Inmini-gridsthatuseflattariffs,limitingthenumberofloadpoints,theVEC(orothergoverningbody)periodicallyverifiesthenumberoflightpointsandplugpointswithvisitstoeachhousehold.Insystemsthatusemeters,theVECdelegatespersonstoreadmeters,recordthedataandsubmitthedatatothebookkeeper.Mini-gridsthatuseprepaidsmartmetersordedicateddistributionlines(e.g.enterprisesduringoff-peakhoursatreducedtariffs)donotrequiresuchmonitoring.•Tariffcollection:Tariffcollectionmethodscanrangefromdoor-to-doorcollectionorcollectionatacentralpoint,dependingonthenumberofhouseholdsconnectedtothemini-grid,userwillingnesstopay,typeoftariffsystem(e.g.flat,tiered,dynamic),typeofmeters,typeofuser(e.g.household,enterprise),thefundingavailabletohirepersonsorupgrademeters,andthetypeofmini-gridenterprisemodel.Thegoverningbodyisabletoconsistentlycollectmonthlytariffsandnewuserconnectionfees,enablingthemini-gridtogeneraterevenueforitssustainability.15Whetherthegenerationsystemisturnedonandoffdailydependsonwhetherthegoverningbodyhasoptedtogenerateanddistributeelectricity24/7oronlyatcertaintimesoftheday.Inthecaseof24/7operation,althoughvalveoperationwillnotbedaily(sincethewaterreleasevalveswillbekeptopenforlongperiods),theoperatorwillstillneedtomonitorvoltageandfrequencyreadingsmultipletimesadayandbeon-calltoaddressanyissuesonthetransmissionanddistributionlines.34RENEWABLEENERGYBENEFITS©HydroConcernPvt.Ltd.•Financialmanagement:Dependingonthetypeofenterprisemodel,accountsmanagementrequiresbookkeepingoftariffsowedbyandcollectedfromeachconsumer;provisionofcompensationtooperators,meterreadersandotherservicesinvolvedinoperationandmaintenance;budgetingforpreventivemaintenance;andpreparationofaccountingreportsforthegoverningbodyandshareholders.•Communitymobilisation:Systemsthatareremotelylocatedrelyoncommunitymemberstoprovidethelabourrequiredformaintenance,sincethenumberofpowerhouseoperatorsistypicallynotenough.Tasksincludecleaningdebrisintheweirandforebaytank,maintainingthepenstockpathtopreventmudslidesduringrainsandfiresduringdroughts,movingbouldersatriskofdamagingthepowerhouseduringrains,andtrimmingvegetationawayfromtransmissionanddistributionlines.TheVECco-ordinatesthemaintenanceschedulesandmobilisescommunitymemberstosupporttheseactivities.Labourrequirements.Theperson-daysperyearrequiredforoperationandmaintenanceactivitiesareestimatedataround400fora5kWplant,almost1400fora50kWplantandover3100fora500kWplant(seeTable5).Operatorshavethemostimportantroleinthisphase(40-45%),followedbytheVEC(upto20%)(seeFigure11).Thetotalpercentageofperson-daysforthisphaseisinverselyproportionaltotheoutputcapacity.Thisisbecausepicoandmicrohydrosystemsaretypicallynotrun24/7andthereforerequireoperatorstostartandstopthesystemdaily,whileminihydrosystemsareusuallyrun24/7,andthereforelesstimeisrequiredoftheoperator.Inallotherphases,suchastheinstallationandconnectionphase(thephasewiththenexthighesttotalperson-days),humanresourcesincreasewithcapacitybecauseofthemoreinvolvedprocessesrequiredforeachphaseinmicroandminihydroprojects.352.REQUIREMENTSFORSMALL-SCALEHYDROPOWERTable5Humanresourcesrequiredforoperationandmaintenanceofa5kW,50kWand500kWplant(person-days,peryear)Occupation5kW50kW500kWAdministrativeandfinancepersonnel736120Contractsandprocurementpersonnel012Drivers255Projectmanagers2864Designengineers21675Siteengineers670153Electricians18203257Unskilledlabour28100210Machinists11241Technicians31530Masonsandskilledlabour1260150Operators1835481369Communitymobilisers6891274Villageelectrificationcommittee74227412Locallogisticspersonnel248TOTAL3170TOTAL(as%ofthetotalrequirements)407139578%94%87%Figure11Humanresourcesrequiredforoperationandmaintenanceofa5kW,50kWand500kWplant,byoccupation(40-yearlifetime)17%2%7%3%9%4%18%16%13%5kW50kW500kW0.2%0.5%0.4%2%TOTAL2%TOTAL1%TOTAL7%7%60%6%16220556507%58%1264707%person-daysperson-daysperson-days53%AdministrativeContracts,DriversProjectDesign&siteUnskilledMachinists,electricians,Community&financeprocurementmanagersengineerslabourtechnicians,operators,mobilisers&villagepersonnel&locallogisticsmasonsandskilledlabourelectrificationpersonnelcommitteepersonnelNote:Basedoncumulativeoperationandmaintenancerequirementsoverafacilitylifetimeof40years.36RENEWABLEENERGYBENEFITS©HydroConcernPvt.Ltd.2.1.6DecommissioningDependingontheiruse,largerhydroprojectsareoftendecommissionedwhenanalternativepowersourceorirrigationinfrastructureisavailable.However,inthecaseofpico,microandminihydroprojects,thesystemsaredevelopedascommunityassetsand,assuch,neverdecommissioned.Inmostcasesinwhichthemaingridhassubsequentlyarrivedinthearea,themini-grid–ifoperatingwithouttechnicalissues–hascontinuedtobeusedalongsidethemaingrid(IHAetal.,202217).Evenifthereisnolongeraneedforthesystem,theplantistypicallykeptintactbutnotoperated.Incaseswherethesystemhasbecomenon-operationalduetotechnicalandfinancialissues,thecommunitymaystillchoosenottodisassemblethesystem.Thecostliestcomponentsofasmall-scalehydrosystem,namelytheupstreamcivilworksstructuresmadefromconcrete,cannotbedismantledandthenreassembledforuseelsewhere;theonlywaytheycanberemovedistodemolishthem.Thepenstockandelectromechanicalsystemcanbedisassembledandreassembled.However,becausethesystemdesigniscustomtoaspecificheadandflow,itistypicallyachallengetofindasitethatmeetstheexactspecificationstoreusecomponents.Inshort,therearenofinancialadvantagestodecommissioningaplant,andthereforeitisusuallynotdone.Assuch,therearenoempiricaldataonjobsanddurationfordecommissioningpico,microandminihydroplants.Theoretically,wecanassumethatdecommissioninginvolvesde-installationoftheprefabricatedcomponents,destructionofthecivilstructures,saferemovalofthedebrisandsalvagingofanycomponentsthatcanbeusedinanotherproject.Thehumanresourcesrequiredwouldbeskilledlabourforremovingtheprefabricatedcomponentsforuseelsewhereandunskilledlabourforremovingtheconcretestructures.Intermsofequipment,thesametoolsthatwereusedtoinstalltheprefabricatedcomponentswouldbeusedtoremovethem.Fortheremovalofthecivilstructures,toolsthatcanquicklydestroyconcretestructuresandcanbetakentotheupstreamlocationbyfootarerequired(e.g.sledgehammer).372.REQUIREMENTSFORSMALL-SCALEHYDROPOWER2.2Utilisationvaluechain:ProductiveenduseofelectricityConnectingrenewableenergysupplywithincome-generatingactivitiesacrosssectorshasthepotentialtoboostproductivity,enhanceincomes,createlocalemploymentandcatalyseruraleconomies.InEthiopia,forexample,installingdecentralisedrenewablesolutionsforhorticulture,wheatanddairyindustriesmayresultinthecreationofaround190000employmentsthroughoutvaluechainsbyincreasingproductioncapacityandreducinglosses(EthiopiaJobsCreationCommission,2021).Inmanydevelopingcountries,thetransitiontoimprovedenergyaccessthroughdecentralisedrenewableshaslarge-scaleimplicationsforlivelihoods.SeveralexamplesfromKenyaandNigeriashowthatproductivitygainsandproductiveusesinruralenterprisesrangingfromretailandotherservicestoagriculturalprocessingbusinessescreateuptofivetimesmoreemploymentthanthedirectjobscreatedindeliveringrenewable-basedenergysolutions(Shirley,2020).Translatingenergyaccessintolivelihoodimprovementsrequiresinvestinginanecosystemthatcanfostertechnologysolutionstailoredtolivelihoodneedsanddeliverthefinancing,capacity,skillstraining,marketaccess,andcross-sectorpolicysupporttorealisethefullbenefitsofdistributedrenewableenergysolutions(Figure12).TargetedeffortstolinkrenewableswithlivelihoodsarewellalignedwiththeongoingobjectiveofbuildingbackbetterfromtheCOVID-19pandemicandwiththeSustainableDevelopmentGoals(IRENA,2020).Achievingboththeseobjectivesrequiresco-ordinationwithingovernmentstoassessexistingandnewlivelihoodopportunitiesacrosssectorsthatstandtogainfromimprovedaccesstomodernenergyservices.Beyondtechnologydeployment,effortsarealsoneededtoraiseawarenessofproductiveend-useapplicationsandtoimproveaccesstomarketsfornewproductsandservices.Figure12Ecosystemneedsforlivelihood-centricapproachTechnology•Tailoredfinancingproductsinnovation•Mobiliselocalcapital•OwnershipmodelsFinancingFOSTERINGLIVELIHOODSsolutions•EcientappliancesWITHDECENTRALISED•CatertospecificneedsRENEWABLEENERGY•Last-milesupplychainsANECOSYSTEMSAPPROACH•AwarenessraisingUserandTraining&•Skillsdevelopmentlivelihoodcapacity•Knowledgetransferbuildingneeds•Accesstomarketsforproducts/servicesPolicy•Stableinputsources•AccesstoinformationChannels/•Cross-sectorassessmentslinkages•Dedicatedpolicies•De-riskingtoolsPartnershipGenderKnowledgeSource:IRENAandSELCOFoundation,2022.Theavailabilityofsmall-scalehydropowerunitsincommunitiesotherwisenotconnectedtothegridmakesitpossibletocreatenewemploymentthroughproductiveenduses,16whichcouldencouragemoreinclusivegrowthwithinthecommunities.Suchusesaretypicallyhousehold-based,community-ownedorexternallyownedenterprises.SomeexamplescanbeseeninTable6.16Althoughitgenerallyreferstotheutilisationofelectricity,thetermproductiveusesofenergyisuseddifferentlyacrosstheliterature.Forthepurposeofthisstudy,productiveuseswillbeclassifiedbasedonpublicservices,household-basedlivelihoodsandenterprisesthatcanbenefitfromenergyaccess,asshowninTable6withexamples.38RENEWABLEENERGYBENEFITSTable6Classificationandexamplesofproductiveendusesofmini-gridsforthepurposeofthisstudyPublicservicesHousehold-basedlivelihoodsEnterprisesSocialwelfareProductServiceHybridVillager-ownedExternallyowned&communitymakingprovisionenterpriseenterpriseservicesMakingSellingaSellingSeparatefromFacilitiesthatFacilitiesthatproductsatservicefromproductsandahouseholdgenerateprofitdonotdirectlyhomeandhomeservicesfromconnectionandandarenotcontributetosellingthemhomeownedbyvillageownedbyincomegenerationentrepreneurstosomeoneintheandofferservicesmanufactureandvillageformaintainingsellservicesandsocialwelfareandproducts•Petrol/gaswell-beingpumpProducing:•Cold•Carpentry•Community-•Healthclinicsstorage(e.g.sellscaleagri-•Telecomtower•Community•Broomsproducts,processing•Large-scale•Phonebuildhomes)centres•Chopstickscharging•Bakeryagri-processing•Trainingcentres•Tailoring•Agri-plantations•Placeofworship•Leafplates•Printing•Fabrication•Poultryfarm•Schools•Weavingworkshop•Localmarkets•Silkworm•Washing•Streetlightsbreedingorironing•Restaurants•Convenienceclothes&cateringstore•Dailygoodsshop•Small-scale•Brickmakingmilling•Lime•Cashcropbaking•Waterfarming(e.g.heatingcashews)•Winemaking•Vehiclerepairandrental•Ricehulling•CornthreshingHydromini-gridsofferopportunitiestosupportcommunitiesindifferentways:•Thesector’swell-establishedlocalmanufacturingenterprises,someofwhicharealsosmall-scalehydroprojectdevelopersandmanufacturers,havebeenabletosupportcommunitieswithenterprisementorship,locallyfabricatedutilisationequipment,andseedfinance–allofwhichstimulatesenergydemandandincreasedutilisation(seeBox6).•Small-scalehydropowercanbeusedtodirectlyoperateagri-millingequipment,throughtheuseofabeltdriveconnectingtheshaftofthemillstotheshaftofthehydroturbines,withouttheneedtogenerateelectricity.Infact,thesmall-scalehydrosectorinNepalwasscaledupbecauseoftensofthousandsofhouseholdsaccessedloansfromtheAgriculturalDevelopmentBanktoupgradetheirwaterwheelmillstomoreefficientmicrohydromills,helpingtofinancethecapacitybuildingresultingfromtheBYS(BalajuYantraShala)andSATApartnership,ultimatelyleadingtolocalskillsfordevelopingadvancedsystemsthatalsoincludeelectricitygeneration.•Withoutreliableaccessto24-hourpower,manyenterpriseswillnotfinditfeasibletoinvestinpowerintensiveequipment.Hydromini-gridsofferthataccessandthuscanencourageinvestmentintoproductiveendusesbyentrepreneursandbanks,particularlyiftheyareequippedtoavoiddamagingvoltagefluctuations.Availabilityof24-hourpoweralsomakesitpossibleforminihydropowerinstallationstoofferlowertariffsforproductiveendusesduringoff-peakhours,increasingtheirprofitability.Examplesarebakerieswhichcanfireupelectricovensstartingveryearlyinthemorningandgrainmillsthatcanoperateduringtheday.Applicationssuchascelltowerswillbepreparedtopayhightariffsbutneedreliablepower24hoursaday.392.REQUIREMENTSFORSMALL-SCALEHYDROPOWERBox6Energydemandstimulation:TheroleoflocalmanufacturersProductiveendusesthatgeneratelocalincomeand/orreducephysicaldrudgeryrequiremachinerysuchasgrainmills,oilpresses,waterpumps,brick-makingmachines,andinductionfurnacesformetalcasting.However,machinerythatisalignedinsizetothemini-grid(andaffordable)isoftennotavailable,sincemostisdesignedwithunlimitedelectricitysupplyfromcentralgridsinmind.Further,communitiesthatarenotversedinenterprise-basedendusesmaynothaveindividualswhocanestablishandoperateend-useenterprises.Small-scalehydrodevelopershaveovercomethesechallengesandsuccessfullyachievedhighloadfactorsincorporatingagri-processingandlocalindustryloadsbylocallymanufacturingtheend-useappliancesandprovidingtrainingandmentoringtolocalyouthgroups,women’sgroups,andindividualswithanaturalsenseofentrepreneurship.Typically,thelocalmanufacturersofsmall-scalehydroequipmentarealsothekeyresourcestofabricatelocalend-useequipmentandcanapplytheirentrepreneurialexperienceandskillstomentorcommunitymembersandenablethemtoinitiatefinanciallyviableenduses.Examplesofsuchlocalmanufacturersinclude(a)HydropowerforCommunityEmpowermentinMyanmar,supportingmicroandminihydroco-operativeswithideas,equipment,mentorshipandfinancetoestablishanchorloadsthatgeneratehighrevenuefortheco-operative,suchthathouseholdusecanbesubsidised,and(b)MzuzuInstituteforTechnologyandInnovationinMalawi,providingequipmentandtrainingtowomen’sgroupstotransitionfromhighdrudgerymanualcornmillingtomechanisedmilling.Source:Interviewswithlocalpractitioners.Useofsmall-scalehydrosystemshasthepotentialforextensiveproductiveendusebecauseelectricityisproduced24hours,makingthesesystemsmorecost-effectivethanbattery-dependentmini-grids.Assuch,afterorinparallelwiththeinstallationofthemini-grid,theprojectanditsbeneficiarieswillbenefitfromenteringfromtheutilisationvaluechain.Thededicatedvaluechainforproductiveusesderivedfromthedeploymentofhydromini-gridsisshowninFigure13.Theutilisationvaluechainwilldifferbasedontheapproachesofthestakeholdersinvolved,howeverminimallyitwillinvolvethefollowing:feasibilityandsecuringfinance,planningandprocurement,manufacturingofequipmentnotavailableinthemarket,installationandcapacitybuilding,andoperationandmaintenance.Figure13Utilisationvaluechainforsmall-scalehydropowerFeasibility&Planning&ManufacturingofInstallationOperation&accesstofinanceprocurementend-useequipment&capacity-buildingmaintenanceFeasibilityphase:Aparticipatorydemandassessmentforproductiveenduseisconductedwithhouseholds,socialserviceproviders,andenterprises,withfacilitationsupportfromtheVEC.Thepowerconsumptionfortheidealscenarioisforecastedandcomparedwithvarioustechnicalaspectsofthegenerationcapacityandqualityofpoweroutputoftheproposedhydromini-grid.Finalproductiveendusesforhouseholds,socialserviceproviders,andenterprisesareprioritisedbasedonaneffectiveloadmanagementstrategy,theavailabilityofend-useequipmentandappliances,theavailabilityoffundingtoprocuretheequipmentandappliances,localcapacitiestoproperlyusetheequipmentandappliances,accesstomarkets,andfinancialviability.40RENEWABLEENERGYBENEFITSPlanningandprocurementphase:Plansaremadetointegrateproductiveendusesintothemini-grid,(e.g.replacingflattariffswithmeteredtariffs).Policiesandprocessesaredevelopedtoaddressoverloadingandanygrievancescausedbytheuseoflargerloads.Financialandlogisticalarrangementsforprocurementaremade.Forsocialandpublicservices,theprocessinvolvesinterfacingwithlocalgovernment.Manufacturingphase:Forcertainenduses,theequipmentcanbedesignedandfabricatedlocally(e.g.concretebrick-makingmachines).Someenduses(e.g.acommunityricemill)mayrequireanewbuildingorshelteringstructure.Astheequipmentisprocured,itistestedbeforebeingtransportedtothevillage.Inothercases,boththeequipmentandstructurealreadyexist,andthepreparationistoensurethewiringisappropriatelysizedfortheanticipatedcurrentandvoltage.Duringthisperiod,membersofthecommunityreceiveanyneededcapacitybuildingtooperatetheend-useequipment,aswellastodevelopandmanageelectricity-basedenterprises.Installationandcapacity-buildingphase:Afterthemini-gridiscommissioned,theend-useequipmenthasbeenprocured,andnecessarytrainingshavebeencompleted,theend-useequipmentisinstalledandinitiated.Operationandmaintenancephase:Theend-useequipmentisoperatedandmaintainedasperinstructionsprovidedbytheequipmentsupplier.Labourrequirements.Whilethepre-installationactivitiesandperson-dayswillvarywiththetypeoforganisationleadingtheutilisationvaluechainandtheapproachused,thehumanresourcestypicallyrequiredareforprojectmanagement,administrative,finance,specialist,skilledlabour,andunskilledlabourroles.Requiredspecialistsincludepersonswhocanidentifyincome-generatingactivitiesthatarehomebasedandenterprisebased,havingakeensenseofwhichgoodsandservicesarebothhighindemandandwillbecomeincreasinglyviablewhenproducedwithelectricity.Employeesresponsibleatsocialservicesfacilities,suchashealthclinicsandschools,arealsorequiredtointegrateelectricityuseintotheservicestheyprovide.Theinstallationandcapacity-buildingphaseentailsrolesforprojectmanagement,administration,specialists,skilledlabour,andunskilledlabour.Requiredspecialistsincludethoserecommendedbythesuppliersoftheend-useequipmentforqualityinstallationandthoseprovidingtrainingofequipmentoperators.Inpost-installationactivities,eachsocialservice,home-basedlivelihoodandenterprisewillhaveitsownvaluechain.Trendstonoteinclude:•Inendusesthatexistedpriortothehydromini-grid,jobsmayincreaseiffacilitiesarebeingexpanded.Newfacilitiesforproductiveendusesestablishedaftertheprovisionofelectricitywilloffernewjobs.Assumingthereisongoingdemand,financeandhumanresources,andampleelectricity,thejobswillbeavailableindefinitelyandlikelyincreaseinnumber,basedonexamplesofvillagesthathavetransformedintosmalltownsafterelectricityaccess.•Integratingagri-processingandagroecologywithhydromini-gridsraisestheneedforhumanresourcesandincreasessocio-economicbenefitsfromelectricityaccess.Acountrycanbealeadingproducerofrawmaterialsbutlackofruralelectrificationresultsinminimalprocessingandthuslimitslocalincomegeneration.Forexample,Myanmarisoneofthetopsesameproducersglobally,yetduetolackofelectricityharvestedsesamemustbetransportedforprocessing,whichhasledtoexcessivelossoftheproduce.Whenelectricityaccessislinkedwiththelocalagri-processingneedsofsmallholderfarmers,thechanceoflocalincomegenerationinagriculturevaluechainsincreaseswithouttheneedforintermediarytrade.•Incoastalandislandcommunities,electricityaccessforseafoodproductionandtrade(e.g.fishfarming,coldroomfacilities,icemakersandelectricboats)havehighdemand.•Theenhancementofelectricityaccessenablesimprovementsinthelivelihoodsofruralwomen.Inturn,womenleadersbringtheirexperiencetobearonwaystoimprovetheutilisationvaluechains.412.REQUIREMENTSFORSMALL-SCALEHYDROPOWERMaximisingutilisationofhydromini-gridsandsolutionstomeetthefullenergydemandoftheproductiveend-usefacilityleadstoimprovedlocalsocio-economicconditionsthroughincomegenerationandlivelihoodenhancement,andimprovedsocialwell-beingthroughtheprovisionofsocialservices–allrequiringextensivehumanresources.However,highercapacitymini-gridsdonotautomaticallytranslateintogreaterhumanresourceneed.Infact,withlesselectricitythereismorerelianceonmanualprocesses,whichinfactrequiremorehumanresourcesthanmechanisedprocesses.Thesejobs,however,aretypicallyharshandbadlypaid.Materialrequirements.Thematerialrequiredfortheutilisationvaluechainincludesbuildingconstructionmaterialfornewfacilities,suchastinroofing,bricksandcement.Italsoincludesrawmaterialtoproduceend-useequipmentthatmaynotbeavailableofftheshelfduetotherequiredsmallerpowerconsumption(e.g.ricemillsthatcanrunonsmallmotors)orbecausethereisnodemandforitinurbanareas(e.g.locallyfabricatedmachinetoproducecementbricks).Finally,materialrequirementsincluderawmaterialandsuppliesrequiredforthemyriadofenduses(e.g.clinicsupplies,schoolfurniture,agroforestryenterpriseinputs).2.3ClimateadaptationvaluechainRuralcommunitiesarebearingthebruntofclimatechange,partlyduetoalackofadequatehousing,waterandenergyinfrastructureresilientagainstdroughtsandfloods.Foodsecurityalsobecomesanissuewithlongerdryseasonsandintensewetseasons,whichimpactbothagricultureandaccesstomarkets.Hydropowerrequiresaconsistentwatersupplytogenerateelectricityyearround.Seasonalfluctuationsinstreamflow,aswellastopographyandchangesinforestcover,allimpactasystem’senergyoutput,makingsomesystemsmorevulnerablethanothers.Whentheforestabovehydropowerintakeislogged,theretentioncapacityofthesoilandstreamflowisaltered.Suchconditionsareexacerbatedduringextremetemperaturesandweathereventscausedbyclimatechange.Theconsequencesarelargevariabilitybetweenwetanddryseasonflowratesandincreasedriskoffloodsandlandslides,whichcoulddamagehydropowerstructures.Increasedsiltationcanalsoclogintakesandweardownturbinerunners,incurringadditionalmaintenancecosts.Distributionandtransmissionlinesarepronetodamagebystormsandotherclimaticeventswithstrongwinds.Withinthecontextofincreasingtheclimateresilienceofthewater-energy-food-livelihoodsnexusthroughadaptation,community-scalehydrocangeneratenature-based,technicalandsocio-economicsolutionsanddrawbenefitsfromthem.Nature-basedsolutions:Theterrainandforestsofthewatershedformthecatchmentareathatharnessesnaturalwatersourcesfortheoperationofthesmall-scalehydrosystem.Maintainingandestablishingmatureforestcoverandusingmethodstominimiserainwaterrun-offalleviatestheimpactsofseasonalvariabilityinflow,reduceslandsliderisksandcanhelpbuildresilienceagainsttheimpactsofclimatechange.Suchnature-basedsolutions17offerextensivejobcreation(WWFandILO,2020).Accesstoreliableelectricityprovidescommunitiesthathavesmall-scalehydropoweranaddedincentivetoprotecttheirwatersheds,asdothesocio-economicco-benefitsofwatershedrestoration,securingofcleandrinkingwaterandwaterforirrigation,forestresourcesforenhancinglocallivelihoods,andelectricityutilisationforincomegeneration.17Nature-basedsolutions,suchasrestorativeforestry,wetlandsandagriculture(InstituteforCarbonRemovalLawandPolicy,2020)arepracticesthatleverageecologicalsystemstomeetsocietalgoals,includinginfrastructuredevelopmentandclimateresilience,whilealsorestoringorstrengtheningthenaturalprocessesthemselves.Areasofimpactincludewaterresourcemanagement,disasterriskreductionandgreeninfrastructure(WWF,2022).42RENEWABLEENERGYBENEFITSTechnicalsolutions:Inadditiontocatchmentarearestoration,thetechnicaldesignandengineeringofthehydromini-gridcomponentscanbeadaptedtowithstandclimatechangeimpacts.Forexample,adjustingthelocationanddimensionsofthecivilstructuresandpowerhouse,aswellasconsideringundergroundcablesforthetransmissionline,canmitigateimpactduringclimateevents.Socio-economicsolutions:AsreflectedinFigure14,theclimateadaptationvaluechaincanbenefitfrom,andcreatebenefitsfor,theutilisationvaluechain.Productiveendusesdesignedtoprovidevitalservicesduringclimateeventsandotherdisasters,suchasearthquakes,acceleratethecommunity’srecoveryandrehabilitation.Conversely,catchmentarearestorationinclusiveofagroforestryandbenefitsforwaterusesthatimpactlivelihoodsandhealthbuildtheclimateresilienceofthesocio-economicaspectsofthecommunity,aswellgeneratejobsandstrengthenexistinglivelihoods.Figure14Linksbetweenwatershedsofhydromini-gridsandthewater-food-energynexusClimateLivelihoodsForestsresilientruralWaterWater-energy-foodcommunitiesnexusHydromini-gridsEnergyFoodRoleofclimateresilientwatershedsofhydromini-gridsSource:HPNET-SEEED,2022.Fundingforsmall-scalehydropowertypicallydoesnotincludefundsforbuildingclimateresilience(e.g.watershedrestoration),andsotheintensivelabourrequiredistypicallynotcompensated.Althoughinsomecasesforestconservationprogrammesenableemploymentforsimilaractivities,dedicatedfundingforclimateadaptationinsmall-scalehydropowergeneratessignificantdirectandinducedemployment,especiallyforwomeninruralareas.Amongtheactivitiesthatrequirehumanresourcesaremappingthewatershedsandspringsheds,monitoringseasonalandclimaticchangestowaterflow,identifyingandprioritisingareasforrestoration,implementingrestorationactivities,maintainingtreenurseries,conservingexistingandrestoredforests,andmonitoringresults.Climateadaptationisavitalcomponentofsmall-scalehydropowerimplementation,ensuringsustainableelectricitygenerationduringdroughtsandfloods,aswellasbuildingclimateresilienceinotherwaterusagesthatimpactthewater-energy-food-livelihoodsnexus(e.g.irrigationanddrinkingwater).AspreviouslyshowninFigure14,thevaluechainsofhydromini-gridimplementation,utilisationandclimateadaptationaredistinctyetinterdependent.Adedicatedvaluechainforintegratingclimateresilienceinhydromini-gridsisrequired.Thephasesforclimateadaptation(seeFigure15)inhydromini-gridsincludethefollowing:Figure15Climateadaptationvaluechainforsmall-scalehydropowerFeasibility&PlanningPreparationTreatmentMaintenanceMonitoringaccesstofinanceoftreatment&evaluationmaterial432.REQUIREMENTSFORSMALL-SCALEHYDROPOWERFeasibilityphase:Thebaselineconditionsofthewatershedareassessedusingvariousmethods.Inparallel,awatershedgovernancebodyisidentifiedtofacilitatethecommunityincollectivelydevelopingalong-termstrategywithnear-termmeasurablegoals,initialcommunityprotocolsforwatershedstewardship,stakeholderroles,activitymilestones,roughbudget,potentialfunders,andimpactindicators–allofwhichmaybeiteratedinlaterphases.Goalssetinthefeasibilityphasecanfocusonrestorationandrehabilitationprocesses,aswellasconservation,andonmeasurestopreventormitigatedamagefromnegativeexternalactivitysuchaslogging,mininganddegenerativeagroforestry.Thefeasibilityphaseconcludeswiththeprocessofsecuringfundingand/orin-kindresourcesfornear-termgoalsandactivities,includingdevelopingproposals.Planningphase:Thisphase’sactivitiesentailplanningofthepreparationandtreatmentphasesforspecificprojects(ortreatments)afterfundingand/orin-kindresourcesaresecured.Theproposalsestablishedinthefeasibilityphaseareusedtodevelopadetailedworkplanthatintegrateslogisticalsteps,suchastransportation,procurement,andliaisonwithexternalactors,includinglocalgovernmentandwatershedspecialists.Basedontheworkplan,theobjectives,protocols,rolesandimpactmetricsproposedinthefeasibilityphasecanberefined.Preparationphase:Thisphaseincludespreparationofthematerial,equipmentand/orfacilitiesrequiredforthespecificwatershedtreatment,suchasnature-based,technicaland/orsocio-economictreatments.Forexample,preparationforwatershedrestorationtreatmentmightincludeseedcollection,seedbedpreparation,seedpropagationandtheconstructionofanursery.Treatmentphase:Theactualclimateadaptationactivityiscarriedout,aspertheworkplandevelopedintheplanningphaseandusingthematerialspreparedduringthepreparationphase.Treatmentactivities(seeTable7)canbepassiveoractive.Passivenature-basedtreatmentsfocusonconservationmethods,wheretheexistingforestlandscapeisrelativelyhealthyandthereforeprotectedorwherenaturalgenerationcanresultinsufficientrehabilitation.Conversely,activenature-basedtreatmentsfocusonrestoringtheecologicalintegrityofseverelydegeneratedwatersheds,whererestorationisdonethroughactivitiessuchasplantingseedlingstorestoreforestsorapplyingearthworktechniquestoreduceerosion.Amiddlepathbetweenthetwoiswherecommunitiessupportthelandscapetonaturallyrestoreitself,basedontheirgenerationsofknowledgeoftheland(WRI,2022).Treatmentalsoincludestechnicaldesignorretrofittingsothatthehydromini-gridcivilandtransmissionstructurescanwithstandclimatechangeimpacts.Finally,thetreatmentphasecanincludetheinitialstepsofestablishingneworstrengtheningexistinglivelihoodsdependentonthewatershed.Maintenancephase:Activitiesinthisphasefocusonmaintainingthespecifictreatment,suchasweeding,watering,replantingtoreplaceseedlingsthatdidnotsurvive,andapplyingorganicfertilisers.Monitoringandevaluationphase:Broadly,theprogressofthelong-termstrategydevelopedduringthefeasibilityphaseistrackedinthisphasebasedonthemilestonesset.Morespecifically,theresultsofthesolutions,treatmentsorprojectscarriedoutintheplanning,preparationandtreatmentphasesaremonitoredusingtheimpactmetricssetduringtheplanningphase.InNicaragua(seeBox7),India,MalaysiaandthePhilippines(HPNETYouTubeChannel,2021),catchmentarearestorationhasbeenintegratedwiththeimplementationofmicroandminihydrosystems.44RENEWABLEENERGYBENEFITSBox7Energydemandstimulation:TheroleoflocalmanufacturersSince1987,thepartnershipofATDER-BLandAPRODELBO18hasbeendevelopingsmall-scalehydroprojectsinconjunctionwiththeconservationofthewatershedsthatprovidewatertothenaturalsystems.Becausecatchmentarearestorationeffortsbearresultsoverseveralyears,ATDER-BLandAPRODELBO’srestorationactivitiesspanningoverseveraldecadesprovideanevidence-basedperspectiveonimpact.Earlyoninthe190kWBocayminihydroandthe914kWElBoteminihydrocasestudiedbytheUnitedNationsIndustrialDevelopmentOrganization(UNIDOandICSHP,2019),ATDER-BLmonitoredtheconditionsoftheforestandotherresourcesoftheminihydrocatchmentarea.Oversixyears,acceleratedforestlosswasobservedduetotheadvancementoftheagrarianfrontier,itselfdrivenbyrisingacuteruralpoverty.Althoughhighlylabourintensive,lowyieldinganddestructivetotheforests,subsistencefarmingbecamethedefaultformostfamilies,andledtointenseerosionduringrains,exacerbatingsocio-economicconditions.Toalleviatethesituation,atwo-prongrestorationapproachwasestablished:acquiretheforestlandforpreservationandsupportfamiliestoimproveagrarianpracticesforincreasedincomeandpreservationofsoil.Theinitialtwoyearsofactivitiesincludedasoftloanforfamiliestogrowbasicgrainsandcoffee,provisionofanagronomisttoensuretheloanwasusedeffectively,andsimplereforestationmethodsstartingwithseeds.Theresultsweremixed,however:duetolackofawarenessandknow-how,therewasnouptakeoftheloan,thepart-timeagronomistwasinsufficient,andtheseedssourcedfromanotherregiondidnottakeroot.Basedonthelessonslearnt,theprogrammewasrevisedtofocusonpaymentforecosystemservices,alongwithimprovedcapacitybuilding.Theresultswerepositive,includingtheincreaseofhouseholdincomethroughsustainableagricultureandnewcrops;identificationandrehabilitationofsevereerosionlocations;socialactivitiestopromoteenvironmentalpractices;increasedwildlifeandstrengthenedlocalecologicalthroughforestregrowth;andawomen-centricapproachtorestorationwherewomenarekeycontributorsandbeneficiariesofthewatershedandtheminihydrosystemthroughsustainableagricultureproducts.Source:HPNETandATDER-BL,2021.18AssociationfortheDevelopmentofBocayElectricService.Labourrequirements.Thehumanresourcerequirementforclimateadaptationofsmall-scalehydrosystemsissubstantialanddependsonthespecificclimatevulnerabilitiesandadaptationopportunitiespresentinagivencatchmentarea.InnorthernPakistan,whereclimatechangeiscausingwatersourcestodiminish,theAgaKhanRuralSupportProgramme(AKRSP)hasmandatedhazardandvulnerabilityriskassessmentasapartoffeasibilitystudiesofsmall-scalehydroprojects.Someprojectsbuilteighttotenyearsagolacksufficientwatertooperateatfullcapacityandhavecatchmentareasthatcanberehabilitatedwithnaturaltreatment.Theinitialphasesoftheseeffortsrequireclimatechangeexpertswhocandesignsmall-scalehydroplantswithclimate-resilientmethodsforfragileregions.Plausibletreatmentstoaddresscertainclimateimpactshavevaryingtimeframesforresults(seeTable7)dependingonthefieldlabourrequired.Thelongerthetimeframetogenerateresults,themoreperson-daysarerequired.452.REQUIREMENTSFORSMALL-SCALEHYDROPOWERTable7Rangeofwatershedrestorationtreatmentsforclimateadaptationinhydromini-gridsPOTENTIALTREATMENTSFORHYDROMINI-GRIDWATERSHEDSTRENGTHENINGClimatechangeRestorativeAgri-techBuiltstructures(checkAfforestationadversity,impactagroforestryfor(agriculturaldams,weirs,levees,(active)+orriskdegradedareascontouring,culverts/channels/Reforestationterracing,etc.)drainagestructures,(passiveoractive)penstock,impoundment/forebaytank,gabions,riprap)MudslidesFloodingSedimentation&deterioratedwaterqualitySoilnutrientdepletionStreamflowfluctuationReducedbiodiversityShiftingspecies/climatemigrationChangeorfluctuationsinwaterandairtemperaturesReducedwaterlevel/flow(surfaceorgroundwater)Treatmentisspecifictoeachwatershedanddesignedafterconductingandanalysingabaselineassessment.Legendfortimeframeforresults:QuickresultsMedium-termresultsTime-intensiveresults(6months-5years)(5-10years)(10-20+years)Exacttimeframeofresultsvarieswitheachcatchmentareaandtreatmentscenario.Source:HPNET-SEEED,2022.46RENEWABLEENERGYBENEFITSFurthermore,ifclimateadaptationisdoneinparallelwiththeimplementationofthehydromini-grid,overlappingphasescanbeleveragedtosavecostsandtime(seeFigure16).Figure16Benefitsfromphaseinterlinkageswhenhydromini-gridimplementationandadaptationaredoneinparallelHYDROMINI-GRIDCLIMATEACTIONIMPLEMENTATIONPHASESPHASESFeasibilityPotentialecologicalimpactofbothoptimisedFeasibilityPlanning&•PotentialoverlapbetweensitelocationsPlanningprocurement•CollaborationbetweengoverningbodiesofbothPreparation•Skilled&unskilledlaborprioritisedforbothManufacturing•SharingvehiclesforrawmaterialtransportationConstruction•PotentialoverlapbetweensitelocationsTreatment&installation•CollaborationbetweengoverningbodiesofbothMaintenanceOperation&Sameteamforcivilstructure&treatmentmaintenancemaintenanceMonitoringAgri-processingintergratedwithwatershedrestoration&evaluationUtilisationSource:HPNET-SEEED,2022.However,insmallercommunitiesmostlocalstakeholders(e.g.socialmobilisers,governancebodies,households(seeFigure17)maynothaveenoughbandwidthtopursuemini-gridimplementationandclimateadaptationinparallel.Figure17Stakeholderlinksbetweenhydromini-gridsandwatershedmanagementforclimateadaptationHYDROMINI-GRIDIMPLEMENTATIONMANAGMENTCLIMATEADAPTATIONSTAKEHOLDERSSTAKEHOLDERSWatershedGovernanceBodyorexternalorganisationDeveloperGovernmentdonors,specialistsFUNDS/APPROVALLocalgovernment,donors,householdsEnd-use&environmentalimpactspecialistsACCOUNTS/PROCUREMENTWatershedGovernanceBody,NGOs,CSOsDeveloperSPECIALISTSTreatmentspecialists,NGOs,CSOsTECHNICALROLESForestersandagronomistsManufacturers&developer‘steamsofengineers,SOCIALMOBILISERSProjectcommitteeshydrologists,surveyor,technicians,operatorsVillageElectrificationCommittee,CSO,NGOVillageElectrificationCommitteeGOVERNINGBODYWatershedGovernanceBodyCOMMUNITYMEMBERSSource:HPNET-SEEED,2022.Note:CSO=civilsocietyorganisation;NGO=non-governmentalorganisation.472.REQUIREMENTSFORSMALL-SCALEHYDROPOWER©HydroConcernPvt.Ltd.Althoughimpossibletogenerallyquantifyduetodifferencesamongspecificsites,therolesaresimilaracrossnature-based,technicalandsocio-economicmethods.Allrequireprojectmanagement,administrative,finance,specialist,skilledlabourandunskilledlabourroles.However,thespecialists’roleswillvarydependingonthemethod.Fornature-basedsolutionssuchasregenerativeagroforestry,afforestationandreforestation,forestersandagroeconomistsarerequired,withvaryingjobintensitydependingonthespecifictreatment(WWFandILO,2020).Fortechnicalsolutions,rolesaresimilartothosepresentedintheinstallationandconnectionphaseoftheimplementationvaluechainsinceactivitiesfocusonbuiltstructures.Forsocio-economicsolutions,personsexperiencedinthemesthatconnectcatchmentarearestorationwithagri-processing(i.e.agroecology)arerequired.Womenprovideinvaluablecontributionstoallmethodsandroletypes.Materialrequirements.Thematerialrequiredfortheclimateadaptationvaluechainalsodependsonthetypeoftreatment.Nature-basedsolutionsrequirematerialandtoolstoconstructtemporarysheltersbasedontheinputrequiredforeachtreatment(e.g.nurseryforseedlings,storagefororganicfertiliser).Theconstructionmaterialistypicallylocallysourced(e.g.bamboo)andreusedfromotherproject(e.g.cementbags).Othermaterialinputsincludeseeds,containersanditemstocultivatetheseedlings.Technicalsolutionsrequirematerialandtoolstobuildand/orreinforcecomponentsofthehydromini-grids,suchasmildsteelrods,cement,aggregateandsandforconcretestructures.Thematerialrequiredforsocio-economicmethodswilldependonthecommunity’sspecificvulnerabilitiestoclimatechange(e.g.equipmentforbuildingreconstructioninapost-disasterscenario).48RENEWABLEENERGYBENEFITS3.SOCIO-ECONOMICVALUECREATION:COMMUNITYENTERPRISE,LOCALJOBSANDSOCIALCAPITALTheprevioussectiondiscussedindetailthehumanresources,equipmentandmaterialsrequiredtoimplementsmallhydrosystems.However,additionalvalueisderivedfromstepstakentoensurethatlocalcommunitiesareresilientagainstdroughtsandfloodsaftertheinstallationiscompleted.Small-scalehydropowerisamaturetechnology,andtherefore,localmanufacturers–oftensmalltomediumenterprises–canproduce,installandmaintainmostoftheelementsrequired.Inthisway,astreamofnewjobscanbeprovidedinruralareas,whichcanhaveatransformativeeffectoneconomicandsocialdevelopment,andencourageinvestmentstobuildaclimate-resilientwater-energy-foodnexus,suchaswatershedprotection.Particularlyinremotemountainousregions,suchasNepalorpartsofPakistan,theseadvantagesstrengthenaprimarysourceoflocalincome,sustainabletourism,whereguesthousesandhomestayscanofferenhancedserviceswithaccesstoelectricityandreliablewatersources.Successfulimplementationandconsistentoperationofthevaluechainsofpico,microandminihydrosystemsrequireacohesivecommunity.Workingeffectivelytogetherduringtheprojectimplementationgeneratesextensivesocialcapital,whichstrengthensthesustainabilityandutilisationofthesystems.Thisincludescommunityparticipationinplanningandfeasibilityassessments,design,planning,groundpreparation,collectionofrawmaterial,constructionofinfrastructure,commissioning,andtraining.Community-basedownershipcanincentivisecohesionandself-organisationinlesshomogenouscommunitiesoraclusterofcommunitiestooperatemini-gridsinclusivelyforsharedsocio-economicbenefits.Further,foracommunityadoptingsmall-scalehydropower,thepotentialtogenerateincomeandcreatejobsduringtheinstallationandpost-installationphasesdependsontheextenttowhichitcanleverageexistinglocalskillsandeconomicactivitiesorcreatenewones.Theexpertiserequiredtodesignandbuildthemajortechnicalcomponents(seeAnnexD)cantypicallybefoundorestablishedlocally.Thepotentialtocreatepost-installationvalueprincipallyliesinthemaintenanceandoperationofthefacility.Additionally,inducedjobsresultfromtheconservationoftheareaandfromtheproductiveusesthatcanbegeneratedaftertherenewableenergyfacilityisupandrunning.Experiencesuggeststhatapproachesthatleveragewomen-centricprocessesresultinmorerobustgovernance,utilisationandtechnicalsustainabilityofthehydrosystem.Mechanismsforoptimalandinclusivesocio-economicimpactarediscussedinthefollowingsections,whichcoverthetypesofcommunityenterprisemodelandthefactorsfortheirsustainability(3.1),supportforlocalserviceprovidersandjobcreation(3.2),andapplicationofagenderlenstoensurebenefitsreachwomen(3.3).3.1CommunityenterprisemodelsSmall-scalehydrosystemsareoftenlocatedinremotelocationsandareoperatedundera“socialassetonly”model,wherebycommunitiesoperatethesystemforonlyafewhoursperdaytomeetbasicneeds,eventhoughelectricitycanpotentiallybegenerated24hours.Thispracticeresultsinlowloadfactorswithlessrevenueandminimumcashflow;itdoesnotoptimallygeneratesocio-economicbenefits,andmaintenanceischallengingasusuallythereareinsufficientfundstosustainthesesystems(seeFigure18[a]).However,themanagementofasystemcanbetransitionedfromasocialassetonlytoan“inclusivesocialenterprise”,wherethemini-gridismanagedasanenterpriseownedbythecommunityormembersofthecommunity.Bycreatingmanagementstructuresthatincentivisemaximumutilisationofsmallhydrosystems,thecommunitysocialenterpriseapproachgeneratesmultiplebenefitsforenergyandsocio-economicdevelopment,includingfinancialviabilityofthemini-grid,andthereforesustainableenergyaccess,aswellasincentivisationofelectricityuseforincomegeneration(seeFigure18[b]).493.SOCIO-ECONOMICVALUECREATIONFigure18Socialassetonlymodel(a);andsocialenterprisemodelforhydromini-grids(b)a)b)KEYCHALLENGE:SOCIALASSETONLYSOLUTION:TRANSITIONTOSOCIALENTERPRISEEnergydevelopmentEconomicdevelopmentHydrominiProvidesHydrominiProvideselectricitygridasaelectricitygridasantohouseholdssocialenterpriseassetCommunityCommunitySocialassetonlymodel-NotsustainableOwnership&ProvideselectricityRunsthePEUValue-addmanagmentfortothePEUenterprisetolocal•Operatesonlyafewhoursperday(i.e.eveningonly)socialenterpriseenterpriselivelihoods•Lowpowerfactors/noproductiveend-useloads•Irregulartaricollection/noenergymetersFinanceforIncreased•Minimumcashflowsustainablehousehold•Notenoughfundsformaintenanceandrepairoperation,income•Weakmanagmentmaintenance•Highriskofabandonmentwhenmaingridarrives&capacityEnterpriseSource:HPNET,2020.upgradeDynamictaristructure&Productiveend-use(PEU)incentivisedconnectionfeesaslocalsocialenterpriseCommunityenterprisemodelsusedforhydromini-gridsincludeusergroup,co-operative,publiclimitedcompanyandprivatelimitedcompany.Theydifferintermsofstakeholderroles,plantownership,decision-makingprocessesandprofit-sharingarrangements(seeTable8).•Intheusergroupmodel,alloramajorityofhouseholdsinacommunityjointogethertoestablishandmanagetheirmini-grid.Thegroupisfacilitatedbyarepresentativesupervisorybody:theVEC.Becauseusergroupsarefoundedonthevaluesofinclusivityandequity,theycangeneratehighlevelsofcommunityparticipation,especiallyatthestartofimplementation;however,aftercommissioningthereisoftenthefree-riderissueofhouseholdsnotpayingatariffbutstillreceivingelectricity.Usergroupscanbeseenassubparcomparedwithotherenterprisemodelsbecausetheyarenotlegalentitiesthatrequireexternalfinancialaudits.However,theyarerecognisedbylocalinstitutions,suchasinPakistanwheremicrohydrousergroups,knownasvillageorganisations,areacknowledgedbythegovernmentasownersofthemini-grids.Mostgrant-orsubsidy-fundedprojectsstartasusergroupmodels.Inrecentyears,someusergroupshavetransitionedtoenterprisestoresolvepitfalls.InNepal,theAlternativeEnergyPromotionCentreandUnitedNationsDevelopmentProgramme’sRenewableEnergyforRuralLivelihoodinitiativehasfacilitatedfledglingprojectsgovernedbyusergroupstoadoptcommunity-privatepartnerships,wheretheplantisleasedouttoaprivateentrepreneurwhoisabletocultivatefinancialviability(HPNET-SEEED,2021).•Theco-operativemodelreferstoasituationwherethemini-gridisownedandmanagedbyalegallyregisteredco-operative,asajointlyownedanddemocraticallycontrolledenterprise.Aco-operativeisanautonomousassociationofindividualsunitedvoluntarilytomeettheircommoneconomic,socialandculturalneedsandaspirations.Inthecaseofmini-grids,theco-operativememberssharethecosts,risksandresponsibilitiesofestablishingandrunningamini-gridtoprovidesustainableelectricity.Co-operativesaregovernedbyademocraticallyelectedbodythatusuallydelegatesthemanagementofthemini-gridtoaqualifiedandpaidgroupofpersonsfromwithinthecommunity.Intheabsenceofsuchlocalcapability,co-operativescanresorttohiringexternalstafffortheshortorlongrun.Co-operativeownedhydromini-gridsinMyanmarandNicaraguahavebeeninstrumentalinenablinglocalcommunitiestoachievegoalsbeyondenergyaccess.InMyanmar,the50RENEWABLEENERGYBENEFITS©ATDER-BLLinYuangChiminihydroco-operativealsoownsproductiveend-useenterprises,providingadditionalservicestothecommunity.InNicaragua,aminihydroco-operativeestablishedbyATDER-BL(RuralDevelopmentWorkersAssociation–BenjaminLinder)hasrestoredmanyacresofwatersheds,resultinginclimateresilienceofthehydromini-grids,improvedrurallivelihoodandmitigationofgreenhousegaswithhealthierforests(HPNET-SEEED,2021).•Inthepubliclimitedcompanymodel,themini-gridisjointlyownedandmanagedbyalargegroupofindividuals,asalegallyregisteredentityaspertherulesandregulationsofapubliclimitedcompany.Thenumberofminimumshareholdersvariesfromcountrytocountry,withaminimumrangeof50-70individuals.Anexampleofthepubliclimitedcompanymodelthatisinclusivetoallthemini-gridbeneficiariesistheapproachdevelopedbytheAKRSPinPakistanforitsminihydroprojects,knownasthecommunityutilitycompanymodel.Itenablestheparticipationofwomenastheprimaryshareholdersoftheprojectandproductiveend-useenterprises(HPNET-SEEED,2021).•Intheprivatelimitedcompanymodel,themini-gridisownedandmanagedbyanindividualorasmallgroupofindividuals,asalegallyregisteredentityaspertherulesandregulationsofaprivatelimitedcompany.Themaximumnumberofinvestorsvariesfromcountrytocountrybutistypicallyfewerthan30.Becausethesustainabilityofsmall-scalehydrosystemsisinherentlydependentontheroleofthebeneficiarycommunity,projectsownedbyaprivatelimitedcompanyworkbestwhentheenterpriseisownedbysomeonefromthecommunityitselforalreadyhasrapportwiththecommunity.AnexampleofsuchanownerisMrBirBahadurGhaleinNepal,themanagingdirectorofHydroConcernPvt.Ltd.Thefirstofthemorethan200hydromini-gridshehasdevelopedwasforhisowncommunityofBarpakinruralNepal.Becauseheispartofandtrustedbythecommunity,hehasbeenabletocoachhouseholdsandenterprisestoestablishextensiveproductiveenduses,whichhaveplayedamajorroleinpost-earthquakerehabilitation,aswellasupgradingtheprojecttogeneratemoreelectricity(HPNET-SEEED,2021).513.SOCIO-ECONOMICVALUECREATIONTable8Communityenterprisemodelsforhydromini-gridsandcharacteristicsfordifferentiationCharacteristicUsergroupCo-operativePubliclimitedPrivatelimitedcompanycompanySocialenterprisestakeholdersMini-gridAllhouseholdsareAllhouseholdsareinvitedtoconnecttothemini-gridforbeneficiariesinvitedtoconnecttoaconnectionfeethemini-gridatnoorminimalcostGeneralAllhouseholdsAnyonewhobuysAnyonewhoAnyonewhobuysgoverningbodyconnectedtothesharesisamember.buyssharesisasharesisaninvestor.mini-grid,calledshareholder.CustomCustomtoeachusersCustomtoeachtoeachpubliclimitedprivatelimitedco-operative:company:company:•Whocanbuyshares•Whocanbuyshares•Whocanbuysharesandhowmanyandhowmanyandhowmany•Partialsharesfor•Mechanismsfor•PartialsharesforaffordabilityaffordabilityaffordabilitySupervisoryVillageelectrificationBoardofDirectorsBoardofDirectorsIndividualownerorbodycommittee(VEC)BoardofDirectorsMini-gridVEC(unpaid)+BoardorhiredstaffHiredstaffHiredstaffmanagementtechnicians(paid)OwnershipprocessesLegalownerNolegalregistrationRegisteredRegisteredpublicRegisteredprivatebutrecognisedlocallyco-operativelimitedcompanylimitedcompanyDecisionRepresentativeOnevote,regardlessVotescandependonOwnermakesmakingconsensus-buildingofnumbersofsharesnumberofsharesdecisionswithinvestorinputsProfitsharingCommunalneedsareAmongallmembers,Amongallprioritisedaspercountry-shareholders,asperAmongownersspecificbylawscountry-specificbylawsThesecommunityenterprisemodels,alongwithhybridversions,cansignificantlyenhancethelong-termfinancialviabilityofsmall-scalehydrosystemsandtheresultingsocio-economicimpacts.Theyhelpshiftthemindsetofcommunitiestowardsmaximisingtheutilisationoftheirpico,microandminihydrosystemstosellelectricityaswellasincreasingelectricity-basedservicesandproducts.Inadditiontostand-aloneoperations,thereareopportunitiesforcommunityenterprisestobenefitfromconnectingtheirsmall-scalehydroprojectstothemaingridand/ortoeachother.Thismaytakeplaceinsituationswherethemaingridisbeingextendedand/orwherelocaldemandhasoutgrownthecapacityofaparticularsmall-scalehydrosystem.•Interconnectiontothemaingridispossiblewhereappropriategovernmentregulationexistsforfeed-in-tariffs.Insuchsettings,severalthingsmayhappen.Incaseswhereelectricityfromthecentralgridisreliableandmoreaffordablethanelectricityfromthelocalmini-grid,generationplantshavebeenabandoned,orthetransmissionanddistributionlinesareextendedtocommunitiesthatdonothaveaccesstothemaingridbutcanaffordtopaythetariffforelectricityfromthesmall-scalehydrosystem.Incaseswherethecentralgridisnotreliable,communitiestendtouseboththecentralgridandthemini-grid.Whenthecentralgridisnotaffordable,communitiestypicallycontinuetheuseofthesmall-scalehydrosystem.Yetanothervariantisthecommunitydistributingpowertoitsownconsumers52RENEWABLEENERGYBENEFITSbeforefeedingintothemaingrid.Inallcases,thesaleofelectricitytotheutilitygeneratesincomeforthecommunity,whichcancontributetocommunityfundsforsocialwelfareexpenses(e.g.teachers’salaries,funeralexpenses,climateadaptation).Small-scalehydrofeedingintothemaingridhasbeensuccessfulinIndonesia,NepalandSriLanka(seeBox8).•Project-to-projectinterconnectioniswhenthetransmissionanddistributionlinesofmultiplesmall-scalehydroprojectsareintegratedintoasinglenetworkforsystemswithexcesspowertosellelectricitytomeettheneedsofsystemsthathavebeenoverloaded.ThepracticehasbeeneffectivelyimplementedinNepal,withuptosevenmini-gridsinterconnectedandsharingelectricitytoensure24-hourdemandismet.ThepracticehasalsometwithsuccessinMalaysiaandNicaraguaandiscurrentlybeingdevelopedforvalley-scalehydromini-gridsinPakistan.•Project-to-projectinterconnectionfeedingintothemaingridisthecombinedoptionoftheabove,wherethetransmissionlinesofmultiplesmall-scalehydroprojectsareinterconnectedtoformalargermini-gridthatisinterconnectedtothecentralgridrunbythenationalorstateutility.ThispracticehasbeensuccessfulinNicaragua,whileinNepalandPakistantechnologyforcontrollingtherateofpowerinjectedfromeachinterconnectedprojectintothemainisbeingexplored.Inalltheabovescenarios,communityenterpriseandgridinterconnectionarecomplementaryinthatmostregulatoryframeworksrequiremini-gridsownedbyusergroupstoconverttolegalentities,suchasregisteredco-operatives,publiclimitedcompaniesorprivatecompanies,inordertointerconnectandsellelectricitytothecentralgridortoneighbouringmini-grids.533.SOCIO-ECONOMICVALUECREATIONBox8Practicetopolicy:AcceleratinggridinterconnectioninSouthandSoutheastAsiaThearrivalofthecentralgridposesadilemmaformini-gridinvestors,includingpolicymakers,projectdevelopersandbeneficiarycommunities.GridinterconnectionwasfirstpilotedintheSouthandSoutheastAsiaregioninIndonesia,bythePeople-CenteredBusinessandEconomicInstitute(IBEKA).Overthelasttwodecades,IBEKAhasfacilitatedtheinterconnectionofseveralcommunity-ownedprojects,includingtheCintaMekarprojectincollaborationwiththeUnitedNationsEconomicandSocialCommissionforAsiaandthePacificusingthePro-PoorPublic-PrivatePartnership(5P)approach(ESCAP,n.d.).InSriLanka,severalmicrohydroprojectshavebeensuccessfullyinterconnectedtothemaingridaspartofacorporatesocialresponsibilitypartnershipbetweentheutility,thecommunitiesandtheNGOEnergyForum.Inspiteofthedemonstratedsuccessintheseefforts,regulatoryandfinancingchallengeshavepreventedthemfrombeenscaledbeyondseveralprojects(Tenenbaum,GreacenandVaghela,2018).DuringaSouth-Southpractice-to-policyexchange(HPNET,2018),thekeypolicyandtechnicalactorsofthepilotedefforts,alongwithdevelopersandgovernmentactorsfromcontextsinneedofgridinterconnectionregulations,werebroughttogetherinSriLanka,wheretheparticipantswereabletovisitan18kWcommunity-ownedmicrohydroprojectthatwasgeneratingcommunityincomethankstotheutilityinterconnectingtothemaingrid.TheeventinspiredkeyactorsfromNepaltomoveforwardwiththeirowncommitmentin2014tointerconnectmicrohydroprojectstothemaingrid,followedbythedevelopmentofapowerpurchaseagreementin2016andthefirstinterconnectionofamicrohydrosystemtothecentralgridin2018.Thepilotinterconnectionofa23kWcommunity-ownedmicrohydroplantresultedinsignificantbenefitsbothforthemini-gridandthecentralgrid.Thefinancialsustainabilityofthemicrohydroplantdrasticallyimprovedbecausebysellingelectricitytothecentralgridthemicrohydroplantloadfactorrosefrom25%to77%.Thereliabilityofthecentralgridincreased.Withsuchmeasurableresults,effortsthereafterhavescaledtoseveralinterconnectionsunderanewpolicyoftheNepalElectricityAuthorityallowingtheinterconnectionofallmicrohydroprojectstothenationalgrid(Mallik,2018).Atthetimeofwriting,theAlternativeEnergyPromotionCentre(AEPC)andtheNepalElectricityAuthoritywerejointlypreparingtheIntegratedMasterPlanforMinigrids,whichhasranked2353potentialsmall-scalehydroprojectsontheirfunctionalstatus,plantcapacity,ageofplan,potentialbenefittotheutility,andsocio-economicbenefits,amongothermetrics.With10%ofNepal’s3000microandminihydroprojectsfacedwiththearrivalofthemaingridand/orpowershortageascommunitiesgrow,maingridinterconnectionandclusterinterconnectionarenowprovensolutionstosustaintheoperationsofthecommunity-ownedsystems(Mallik,2018).Theeffortsarebeingco-ordinatedbytheRenewableEnergyforRuralLivelihoods(RERL)initiativeattheAlternativeEnergyPromotionCentre,inpartnershipwiththeUnitedNationsDevelopmentProgramme.RERL’ssuccessinNepalisanexampleforothersintheregiontouseamulti-actorapproachtopushfordemonstrationandthenscale-upofgridinterconnectionofsmall-scalehydroprojects.54RENEWABLEENERGYBENEFITS©MzuzuInstituteofTechnology(MZITI)3.2EnablinglocalserviceprovidersthroughaffordableandreliableenergyaccessSmall-scalehydroisamatureandfairlysimpletechnology(IRENAandIEA-ETSAP,2015),andunlikelarge-scalefacilitiesthatrelymostlyonexternalmaterialimportsandexpertise,suchinstallationsrequireacloseknowledgeoflocalgeographyandsuppliers.Further,theimplementationskillsrequiredarecloselyrelatedto,andcanbecarriedforwardto,otherinfrastructurework;forexample,thedesignandconstructionofhydrologicalstructuresbuiltformicrohydromaybesimilartodesignandconstructionusedforirrigationservices,andthedesignandupkeepofmicrohydroelectromechanicalcomponentsaresimilartothedesignandupkeeprequiredinmanyothersectorsthatrelyonmotorsandgenerators.Becausehardwarecanbemanufacturedlocally(withinacountry,orevenacityorvillage)andmaintainedbylocalactors,thedevelopmentofprojectsrepresentsanopportunitytoenhancelocalskills,jobsandenterprisedevelopment.PoliciesandprogrammesthathaveprioritisedcapacitybuildingtoadvancelocalexpertiseandtomanufactureequipmentlocallyinIndonesia,Nepal(seeBox9),PakistanandSriLankahavenotonlyresultedinacceleratedruralelectrificationbuthavealsoenabled:•localinnovationforadaptingequipmenttolocalcontexts,ensuringlong-termtechnicalsustainabilityofsmall-scalehydrosystems;•localmanufacturingtoachieveinternationalqualitystandards,allowingthemtoincreaseprofitbyaccessingforeigncustomers;and•localjobcreationfromagrowingsmall-scalehydrosector,theinjectionofskilledhumanresourcesintorelatedsectors,andlocaltechnicalenterprisedevelopment–alldirectlybenefitinglocaleconomies.553.SOCIO-ECONOMICVALUECREATION©ATDER-BLBox9Whatwentright:SustainabilityversusdependenceinNepal’shydropowerdevelopmentHydropoweraccountsforalmost100%oftheelectricitygeneratedinNepalandmeetsover70%ofthecountry’spowerneeds,withtheremainderimportedfromIndia.Nepalalsohasover3000microhydropowermini-gridssupplyingoff-gridcommunities.Aroundhalfthehydropoweronthegridisgeneratedbyindependentpowerproducers.Theecosystemofprofessionallyskilledhydropowerpractitionersintheprivatesector,forbothon-andoff-gridsystems,largelytracesitsoriginstotwopioneeringcentres.One,basedinButwal,startedwiththeButwalTechnicalInstitute,19avocationaltrainingschool,andeventuallydevelopedintoacomplexofthreecomplementarycompanies:ButwalPowerCompany,HimalHydro,andNepalHydroandElectric.TheothercentreisattheBYS(BalajuYantraShalaPvt.Ltd.)20inKathmandu,whichprovidesbothvocationaltrainingandinstallationsofmicroandsmallhydropowerprojects.Establishedinthe1960swithtechnicalcapacitybuildingfromEuropeanexpertise,BYSandtheButwalTechnicalInstitutetriggeredthedevelopmentofNepal’shomegrownhydropowermanufacturingsector.Theyproducedthecountry’sfirstcrossflowandPeltonturbines,whichcurrentlyaccountforanestimated80%ofturbinesinNepal.Overthecourseoffivedecades,theseinstitutionsbuiltpowerprojectswhileproducingorcatalysingthousandsofcompetentengineersandtechnicians,overahundredactiveindependentpowerproducers,anddozensofconstructionandmanufacturingcompaniesandengineeringconsultancyfirms.Thekeyfactorsthatacceleratedtheestablishmentandsuccessofbothorganisationswereahighdemandforhydropowertechnologyaddressedbylocalcapacitybuildingandlocalfinance.Source:Gautam,2020;Liechty,2022.19TheButwalTechnicalInstitutewasestablishedin1963bytheUnitedMissiontoNepalandwasacceleratedbytheButwalPowerCompany,whichwasestablishedfordevelopmentandoperationoflargehydropower(BTI,n.d.).20BYSwasthefirstturbinemanufacturerinNepal,establishedin1959asajointventurebetweentheSwissAssociationforTechnicalAssistanceandtheNepalIndustrialDevelopmentCooperation.WithsupportfromtheSwissAssociationforTechnicalAssistance,BYSstartedwithafocusonupgradingwoodenwaterwheelswithefficientwatermills,madepossiblewiththeuseofmicrohydrocrossflowturbines.Withmillingabasicnecessity,therewasgreatdemandfortheefficientmills.BYS’sefficientmillswereingreatdemandandstrengthenedthecompany’sfinancialresourcestofurtherinnovateandbuilditscapacitytoaddelectricitygenerationtothemillingsites.AsBYS’scapacitytodevelophydromini-gridsacceleratedsodiditsworkforcenumber,manyofwhomlaterstartedtheirownsmall-scalehydroenterprisesaddressingspecificnichestoscaleupthelocalsector’svaluechain(BYS,n.d.).56RENEWABLEENERGYBENEFITSBox10FacilitatingSouth-SouthknowledgeexchangeTheHydroEmpowermentNetwork(HPNET)isaknowledgeexchangeandadvocacyplatformtoadvancesmall-scalehydropower(<1MW)forclimate-resilientandequitableruraldevelopmentinmarginalisedregionsofAsia-Pacific,LatinAmericaandSub-SaharanAfrica.Withover150members,theHPNETSecretariatfacilitatesafour-stepapproachtoSouth-Southexchange,aspartofitsacceleratorprogrammeSocialEnterpriseforEnergy,EcologicalandEconomicDevelopment:Collatingbestpractices.Bydocumentingandcollatinglocalknowledgeandexperiences,HPNEThasidentifiedfactorsforsustainabilityandbestpracticesfromhigh-impact,long-livedhydromini-gridstosupportalllocalpractitionersandcommunitiestomaximiselong-term,technical,environmental,institutionalandfinancialsustainabilityoftheirhydromini-grids.Groundtruthing.HPNETismappingstakeholderecosystemsincountrieswithlowelectrificationratesandhighpotentialforcommunity-basedhydro,identifyingandassessingtheworkoflocalpractitionersbymeansofinsituobservationsratherthanremotely.Knowledgeexchange.Technicalandthematiccapacitybuildingisofferedtolocaliselargesegmentsofthemicrohydrovaluechain,includinglocalmanufacturing,andtherebyimprovingsustainabilityandbenefitsforlivelihoodpromotion.Peer-to-peerexchangeamongregionsorcommonstakeholdersisalsooffered.Impact-focused,customisedcapacitybuildingisofferedtoespeciallypromisinglocalpractitioners.Strategicadvocacy.Gapsandopportunitiesforresourcemobilisationarebeingidentifiedforhigh-potential,high-needcontexts,towardsfacilitatingpartnershipsbetweenlocalpractitionersanddecisionmakerstoachieveaccesstofinanceforprojectimplementation,productiveend-useapplication,andsolutionsforclimateresilience,suchaswatershedstrengtheningthroughcatchmentarearestorationtoreducetheimpactofdroughtsandfloodsonhydromini-gridinfrastructure.Source:HPNET,n.d.Whendevelopmentprogrammesintegratelocaltechnicalcapacitybuildingwithnaturalresourcemapping,localmulti-actorecosystemdevelopmentandlocallyaccessiblefinancingforprojectimplementation,utilisationandcatchmentarearestoration,theresultisaccelerateddeploymentwithlowercosts,higherreliability,greaterlocaljobcreationandoptimalsocio-economicbenefits,asinthecaseofNepal(seeFigure19).Figure19Mechanismstoenableandscaleuplocalpractitionersinsmall-scalehydrodevelopmentMaximumnumberHighquality,AdvancedlocalHighproductiveAllusesofwaterofviablesitesleastcost&timedeveloperswhoenduseand/orwithstandclimateecientprojectinterconnectiontoidentifiedintheimplementationcanscaleupthecentralgridchangeimpactleasttimeimplementationCustomisedcapacitySupportforlocallyMulti-actorfacilitationNaturalresourcebuildingthatadvancesLocallyaccessibledevelopedpublic-tointergratesmall-scalemappinginpartnershipexistinglocalskillsetsprojectfinance,privatepartnershipshydrowithclimatewithprovenlocalandorganisationaldesignatedbasedonforincreasingresilienceofthewater-expertsdevelopmentbottlenecksfacedbyutilisationenergy-food-livelioodslocaldevelopersnexusOutcomesMechanisms573.SOCIO-ECONOMICVALUECREATION3.3Gender-sensitiveapproachesThelackofaccesstomodernenergyaffectswomenandchildrendisproportionately.Dependingonthechoicesmade,theavailabilityofresourcesfromsmall-scalehydrowatershedscandecreasewomen’sburdensandvulnerabilities.Forinstance,availabilityofelectricity,irrigation,drinkingwaterandfoodhaveasignificantimpactonwomen,duetotheirtraditionalrolesofcooking,carryingwaterandfuelwood,workinginthefieldsandhills,andcaringforotherfamilymembers(IRENA,2016).Small-scalehydrocanhelpintheadvancementofgenderequalityandtheempowermentofruralwomenasleadersandeconomicagentsofchange,therebytransforminglocaleconomiesandgeneratinginclusivegrowth.AcrossSouthandSoutheastAsia,hydromini-gridshaveenabledareductioninwomen’sphysicaldrudgery,increasedtheirtimeforrestandleisure,providednewopportunitiesforincomegeneration,andofferedimprovedhealthandsafety.InPakistan,theAKDNhasobservedhowgirlsandwomenincommunitieselectrifiedwithminihydroareabletostudyatnight,sinceduringthedaytheyhavehouseholdresponsibilities.Householdcookingwithfirewoodhasbeenreplacedwithelectriccooking.TheAKDNhasprovided110girlsschoolsthatarepoweredbysmall-scalehydrowithsatellite-basedinternet,providingstrategicgenderempowermentinremoteareasofnorthernPakistan(AKDN,2014).InIndonesia,MyanmarandNepal,hydromini-gridshaveenabledruralhealthfacilitiestoprovideinfantdeliveryservicesinthecommunity,alleviatingtheneedforpregnantwomentotravellongdistances.Suchbenefitsforwomencanbegeneratedusinggender-sensitiveapproachestosmall-scalehydroimplementation,utilisationandclimateadaptation,whichinturnbenefitthesustainabilityandeffectivenessoftheproject(seeTable9).58RENEWABLEENERGYBENEFITSTable9Differencesbetweentypicalandwomen-centricapproachestosmall-scalehydroFeasibilityTypicalapproachWomen-centricapproachwithbenefitsfortheprojectThereisaminorityrepresentationofwomeninAllwomenareinvitedtofeasibilityactivitiesandtheprojectgoverningbody.providedanequalvoiceindecisionmaking.»Leadstoacceleratedcohesionofthecommunityrequiredfortheproject.ImplementationPlanning&WomenarenotconsultedinRepresentativesofwomenfromallsocialgroupsprocurementplanningofimplementationprovidestrategicinputsinplanning.milestones(e.g.schedulingofInstallation&constructionactivities).»Leadstotimelymilestoneachievements.connectionWomenprovidephysicalWomen’sexpertiseisprioritisedforskilledrolesOperation&labourbutarenotawareof(e.g.surveyors,masons)andfacilitatedtoprovideallmaintenancehowthesystemworks.womeninthecommunityworkingknowledgeonhowthehydrosystemworks.Utilisation»LeadstomorewomensupportingtheprojectClimateinstallation.adaptationBecausewomendonotknowWomenareabletounderstandhowthetechnicalsystemthebasiccomponentsofworks,contributetomanagementoffinancialaccountsasystemandkeyaspectsandothergoverningaspectsbyhavinganequaloroftroubleshooting,yetaremajoritywomen-menratiointhegoverningbody.heavilyimpactedbypowercuts,theycreatepressure»Leadstowomensupportingtroubleshootingandforthegovernancebodytogovernanceaspectsforreliableoperation.maintainthesystem.WomenarenotinvolvedinStartingfromprojectfeasibility,womenareprominentlythedemandassessmentforinvolvedinenvisioningtheutilisationoftheprojectandproductiveendusesandnotthepotentialsocio-economicimpactatthehouseholdprovidedcapacitybuildinglevel,includingloadestimation,contribution,paymenttouseelectricityforexistingplan,andtariffdecisionandcollection.andnewlivelihoods.»Leadstowomenpurchasingmachinestousewithexistingproductiveendusesandrequestingtrainingtolearnnewenduses,therebyincreasingtheplantloadfactorandfinancialviability.ThecommunityisnotTheconnectionofruralwomentoforestsisleveragedmotivatedtoundertakebyunderstandingwomen’sviewpointsonsolutionsclimateadaptationactivities,toensurewaterflowsremainconsistentwithclimateresultinginreducedwaterchange.flowsandlimitedoperationoftheplant.»Leadstowomenmobilisingthecommunityforforestrestorationactivitiesandplayingaleadingroleinprotectingexistingforests.593.SOCIO-ECONOMICVALUECREATIONIntermsofimplementation,especiallyinlargercommunities,womenfromdifferentsocialgroupsplayanimportantroleinunifyingthecommunity.Yetintermsofimplementationdecisionmakingandgovernance,womenfromthebeneficiarycommunityareoftenexcludedandlimitedtoprovidinglabour.Alargepaygapiswellknowntoexistintheengineeringrolesacrossthesector(IRENA,2019).Thegenderimbalanceinthesectorneedstoberedressed,suchasthroughpartnershipsbetweenhydropowercompaniesanduniversities,mentoringschemeswithotherwomeninthesector,andpromotionofgender-sensitiveworkplacepractices,suchasparentalleave.Intermsofutilisation,womencanbetrainedandeducatedintheuseandmaintenanceofelectricityservices,sincetheyaretheoneswhomostfrequentlyuseelectricityinthehousehold.TheAKRSPinPakistanhasenabledwomentobecometheprimaryshareholdersoftheprojectandproductiveend-useenterprises(seeBox11).Inaddition,community-basedorganisations,NGOsandrelevantgovernmentorganisationsthatsupportsmall-andmedium-sizedenterprisecanjointheprojectfromthestartofitsdevelopmenttoenableexistingandpotentialwomen-empoweringbusinesses.Box11Women-centricminihydroutilitiesinnorthernPakistanSinceinitiatingsmall-scalehydroprojectsinruralPakistaninthe1980s,theAgaKhanRuralSupportProgramme(AKRSP)hasiterateditsapproachtoincreasethetechnicalandeconomicsustainabilityofhydromini-grids,aswellasthesocio-economicbenefitsgeneratedbytheprojects.TheAKRSP’smicrohydroprojectsprovideelectricitytooneorafewvillages,whileitsminihydroprojectselectrifyentirevalleyswithmanyvillagesintheremoteregionofChitralinnorthwestPakistan,withupto1500householdspersystem.CentraltotheAKRSP’sminihydroapproachisthecommunityutilitycompanymodel(seeSection3.1),inwhicheachelectricitygenerationanddistributionenterpriseisregisteredasapubliclimitedcompanyunderthe1984CompaniesOrdinanceoftheSecuritiesandExchangeCommissionofPakistan.Eachcommunityutilityisestablishedwithallbeneficiaryhouseholdsasshareholders(typically1000to1500),withtheAKRSPandinternationaldevelopmentpartnersasco-investorsforseedfunding.TheenterprisehasaBoardofDirectorsforgovernanceandamanagementbodyledbyaCEOforday-to-daymanagement.TheAKRSPfacilitateseachcommunityutilitytosetcommercialandsocialobjectives,includingenablingwomenbeneficiariestoleadandearnbybeingBoardmembers,shareholders,operationsstaffand/orproductiveendusersoftheminihydroenterprise.AsBoardmemberswomendevelopgovernancepolicies,includingtariffsetting,andasshareholderstheydirectlyearndividends.Womenalsomakesignificantcontributionsasoperationsstaff,managingtariffcollectionandraisingawarenessonincreasingenduse.TheAKRSPprovidesfrequenttrainingandseedfundingopportunitiesforwomenconsumerstousetheminihydroforincomegeneration,includingcarpentrytraining,craftdevelopmentandothercommercialenduses.TheAKRSPhasestablishedover200microandminihydrosystemsprovidingelectricityto33000households,ofwhichsevenarecommunityutilitieswith8300connections.Source:HPNET-SEEED,2021;Khan,2019.60RENEWABLEENERGYBENEFITS©HydroConcernPvt.Ltd.Intermsofcatchmentarearestorationforclimateadaptation,theknowledgeandexperienceofindigenouswomenoftenextendtoarangeofwatershedmanagementandagriculture-relatedworkandpractices.Communityhydrowatershedeffortsshowthatwatershedmanagementismosteffectivewhenwomenareleadingandco-ordinatingtheprocess.Theirknowledgeofsoil,plantandpestmanagement,seedpreparation,andpost-harvestprocessingandstoragehascontributedtothedevelopmentofsustainabletraditionalfarmingsystemsinmanyregions,whileprovidingsubsistencetotheirfamiliesandthecommunity.Designingpoliciestomaximiselocalbenefitsfromthedeploymentofsmall-scalehydropowerrequiresadeepunderstandingoftheinputrequirements.Thefollowingsectionprovidesadetailedassessmentofthedifferentvaluechainsderivedfromthedeploymentofsmall-scalefacilities(implementation,climateadaptationandutilisation).Itprovidesadetailedassessmentoftherequirementsintermsoflabour,skills,materialsandequipmentfordifferentcapacities(i.e.pico,microandmini).Theassessmentfocusesonthecoresegmentsofthevaluechain–feasibility,planningandprocurement,manufacturing,installationandconnection,operationandmaintenance,anddecommissioningofsmall-scalehydropower–butalsoprovidesanoverviewofwhatwouldalsoberequiredfortheutilisationandclimateadaptationvaluechains,andwhatbenefitstheywouldbringtocommunities.614.CONCLUSIONSANDPOLICYRECOMMENDATIONS4.CONCLUSIONSANDPOLICYRECOMMENDATIONSRenewablesourcesofenergyarekeyfortheunfoldingenergytransition,notonlyinsupportingclimategoalsandotherenvironmentalprotectionobjectivesbutalsoinincreasingenergysecurity,reducingrelianceonfossilfuelsand,morecruciallyinthecaseofsmall-scalehydropower,enablingenergyaccesstocommunities.Greaterenergyaccesscanimprovelivelihoods,communityeconomicgrowth,employmentopportunitiesandhumanwelfare.Domesticvaluecreationcanbemaximisedbyleveragingandenhancingcapabilitiesinexistingindustriesalongthevaluechainordevelopingsuchcapabilities.Inpartsoftheworldwherehydrologicalandtopographicconditionsaresuitable,generallymountainousandhillyregionswithreliablerainfall,mini-gridspoweredbysmall-scalehydropowerareparticularlywellsuitedtoprovideenergyaccesstocommunitiesinremoteruralareastoimprovetheirresiliencetoclimatechangeandincreaselivelihoodopportunities.Amongthedifferentdistributedrenewableenergysolutionssuitableforimprovingenergyaccess,small-scalehydropowerprovidesopportunitiestodeveloplocalcapacityandreliesonlocalcapacitydevelopmenttobesuccessful.4.1OpportunitiesforlocalcapacitydevelopmentandjobcreationSmallhydropowerpresentsopportunitiesforlocaljobcreationateverystageofitsdevelopment.Comparedwithsolarenergyandwindpower,smallhydropowerrequiresthelargestshareofon-sitecivilworksconstruction,andmanyofitskeyelectricalandmechanicalcomponentscanoftenbemanufacturedlocally,evenincountrieswithonlybasicindustrialinfrastructure.Civilworksrequirelocalcapacityforsitesurveying,designandconstructionoftheintake,de-siltingandwaterconveyancestructures,installationofthepenstockpipe,andconstructionofthepowerhouse.Civilworksalsoprovidecommunitieswithopportunitiestocontributein-kindlabourfortransportationofconstructionmaterialsandmasonry.In-countrymanufacturingofsluicegates,penstockpipes,manifoldsandwaterturbinesrequiresleveragingandbuildingthecapacityoflocalmetalworkshops.Ontheelectricalside,whilegeneratorsmightneedtobeimportedinmanycountries,thereareopportunitiesforworkshopstomanufacturecontrolpanelsandelectronicloadcontrollersin-country.Thisreporthasoutlinedtheperson-hoursoflocalskilledandunskilledlabourrequiredateachsteptoproperlydesign,constructandoperatesmallhydropowerprojectsofarangeofsizes.Incountrieswithnationalcapacityfordesign,manufacturingandconstruction,smallhydropowerprojectsareoftenabletoprovideelectricityatpricescomparabletothegridorlower.Smallhydropowercanoperatewithoutbatterystorage.Withouttheneedtoamortisethecostofchemicalbatteries,theoperationofsmallhydropowerfacilitiesisalmostfree.Theabilitytooperate24hoursadayresultsintheproductionofalargeamountofenergy,whichmaybeabletobesoldduringoff-peakhoursatlowertariff.Affordabletariffsarekeytothefeasibilityofarangeofproductiveuses,whichhavethepotentialtosignificantlyimprovelivelihoodsandgenerateemploymentinruralareas.Atthesametime,additionalenergysoldincreasestheincomeofthepowerplantwithoutsignificantlyincreasingoperationalcosts.Smallhydropowerprojectsthushaveboththeopportunityandaveryclearincentivetoactivelypromoteproductiveusesandincreasetheirownutilisationfactorthroughtheprovisionofflexibletariffs.Thisreportoutlinesthelocalcapacitiesthatcanbeleveragedbothfrominsidethecommunitiessuppliedbysmallhydropowerandfromoutsidetoinvestinandoperateenterprisesthatcanbepoweredbysmallhydropowerprojects.62RENEWABLEENERGYBENEFITSThesustainableoperationofallhydropowerprojectsdependsontheconservationofthewatershedthatsuppliesthem.Inthecaseofsmall-scalehydropowerprojects,thecommunityalsodependsonthesamewatershedformanyotherservicessuchascommunitydrinkingwater,irrigation,fuelandfodder,andlivelihoodsrelatedtonon-timberforestproducts.Bythemselvesinvestingintheprotectionofwatershedsandmobilisingthecommunitytodothesame,small-scalehydropowerprojectsbecomeanimportantnature-basedsolutionforbothclimatemitigationandadaptation.Thisinvestmentleveragesthecapacityofthecommunityandgeneratesjobsaswellascontributingtostrengtheningcommunities’resiliencetoclimatechange.4.2NeedforlocalcapacitydevelopmentSmall-scalehydropowercanrelyonin-countrycapacitydevelopmentforitssuccessmorethanotherrenewableenergytechnologies,suchassolarandwind.Theexamplesprovidedinthisreportshowthatsmall-scalehydropowerhasbeensuccessfulincountriessuchasAfghanistan,Indonesia,Nepal,Nicaragua,Pakistan,PeruandthePhilippines,wheresignificantinvestmenthasbeenmadeoverthepastfourtofivedecadestodeveloplocalcapacityinallaspectsofsmallhydropowerdevelopment.Theresultingcapacityinsurvey,design,installationandmanufacturingofcomponentsisresponsibleforthesecountriesbeingabletoinstallandoperatethousandsofsmall-scalehydropowerprojects.Myanmarisanexceptioninthatthecapacitywasgeneratedbypractitionersfromwithin,giventherelativeisolationofthecountryinthistimeperiod.Thesmall-scalehydropowerprojectsinthesecountriespoweragri-processingandotherproductiveendusesand,inmanycases,havebeenabletomobilisethecommunitiestheyservetocontributetoprotectingthewatersheds.Attemptsatexpansionofthesmall-scalehydropowersectortonewgeographies,suchasSub-SaharanAfrica,haveoftenbeenunsuccessfulwhentheydonotincorporatetheneedtoinvestinlocalcapacitydevelopment.Bringinginexpertisefromoutsidethecountrytosurvey,designandinstallindividualprojects,alongwithimportingkeycomponentssuchasturbines,penstockpipesandelectronicloadcontrollers,hasresultedinexpensiveprojectsandhaslosttheadvantagesofsmall-scalehydropowergeneratingjobsinitsdevelopmentandpromotingarangeofproductiveenduses.Itiscriticaltoprovideresourcesfortraininglocalexpertsandtransferringexpertisetoin-countryworkshopsforlocalmanufacturingofturbines,electronicloadcontrollersandothercomponents.Therefore,tomaximisethedomesticvaluecreatedinthedevelopmentofsmall-scalehydropower,policiesandmeasuresareneededtofirststimulatesocialacceptanceandtothenenhancecommunitycapacityalongthevaluechain.Forthedeploymentofsmall-scalehydropower,itiscriticaltoinvestinasocialecosystemthatcanencouragetechnicalsolutionscustomisedtolivelihoodrequirementswhilealsoprovidingfunding,capacityandskills,marketaccess,andpolicysupporttofullyrealisethebenefitsofdecentralisedrenewableenergy.Somekeyactionstoachievethisare:•Gatherup-to-datedata:Datagatheringonthepotentialofsmall-scalehydropowertosupplytheenergyneedsofcommunitiesiskeytoattractinginvestment.Climatechangealsoposesathreattothereliabilityofsmall-scaleprojects;therefore,properdataareneededtoensuretheplantswillbeabletorunefficientlyandmitigatetheimpactsofclimatechange.Availabledataontheeconomicandexploitablepotentialarescarceanddonotalwaysaccountforcurrentpolicyframeworks,technologicaladvancementsandthepossibilitytoengagecommunitiesintheprocess.634.CONCLUSIONANDPOLICYRECOMMENDATIONS•Promotepublicawareness,acceptanceandcommunitycommitment:Thesocialandenvironmentalcostsoflarge-scalehydropowermaycolourperceptionsofsmall-scalehydropower,thuslimitingitsappeal.Itisimportanttohighlighttheadvantagesofsmall-scalehydropowerasasolutiontocommunityelectrificationandinclusivesustainableindustrialdevelopment.Measurestoenhancecommunityawarenessofthebenefitsofsmall-scalehydropowerarekeytoovercomingnon-economicbarriers.Localpractitionersandgovernmentcanjointlypromotethebenefitsofsmall-scalehydropowerthroughinformationandawarenesscampaignsandseekcommunityengagement.•Encouragestakeholderengagement:Aneffectivesocialecosystemcanonlybecreatedwiththeparticipationofkeystakeholders,includinglocalornationalgovernments;financinginstitutionsrangingfrominternationaldonorstointermediariesandlocalbanks;businessesfocusedonenergyandotherlivelihoodareas;andNGOstoactasincubators,advocatesandsoon.Forthat,planningshouldincludeamappingofstakeholdersacrosslivelihoodvaluechainsandestablishpartnershipstosupporttheintegrationofsmall-scalehydropowerandenableaccesstomarkets,newskillsandcapacitytomaximisebenefitsforlocalenterprises.•Supportsmallhydropowerdevelopmentthroughpolicies,regulationsandincentives:Althoughmanycountrieshaverenewableenergypolicies,financialincentivesandtargets,theysometimesfavourothertechnologiesanddonotapplytosmall-scalehydropower.Thepolicyframeworkshouldgivemoreattentiontoandprotectthedevelopmentofsmall-scalehydropower,whichisoftenlocatedinremoteareaswithoutaccesstothelocalgrids.Nationalelectrificationplansneedtomorefairlyconsiderhowsmallhydroofferssolutionsintermsofcostscomparedwithothersolutions,thehighertiersofaccesssmallhydrocanprovide,theexistingecosystemsavailableincertaincountries(e.g.developers,turbinemanufactures),andthenon-energybenefits.Incentivepoliciestailoredtoacountry’sspecificneedsincreasebankinginstitutions’andfacilitators’confidence,whichmayresultinmoresignificantinvestments.Additionally,thereisaneedtosimplifybureaucraticprocedures.Long,complicatedadministrativepermitprocessesarecostly,difficulttonavigateforuntrainedactors,andcanresultinsignificantdelaysduringprojectimplementationanddiscourageinvestorsandcommunities.•Mobilisefinancingmechanismsforlocalserviceproviders:Despitethebenefitsoutweighingtheinitialcosts,small-scalehydropowerisstilloftenperceivedashighriskbyprivateinvestors.Asaresult,thedeploymentislimitedinsomecasestograntsorsoftloansfrommultilateralorbilateraldonors,whichdoesnotrepresentasustainablefinancingmodel.Thereisaneedtofacilitatetheaccesstoearly-stagehigh-riskfinancingandplatformsforexperienceandknowledgesharing.Additionally,abroadmixofpoliciesandmeasuresareneededtoensurethecompetitivenessofdomesticfirms.Theseincludeeffortstowardsindustrialupgradingandsupplierdevelopmentaswellasthecreationofassociationsandnetworksamongimporters,producersandsellers.•Expandlocalcapabilitiesandskillsdevelopment:Education,trainingandretraininginitiativesareneededtomeettheoccupationalandskillsrequirementsofsmall-scalehydropower.Vocationaltrainingcentres,especiallyinruralareas,couldplayacriticalroleinskillingworkerstoovercomelocalskillsgapsthatmayexist.Prospectsforlocalemploymentwouldbeboostedbytrainingprogrammesandcertificationschemesforrequiredoccupations,aswellasbyproductiveend-useactivities.Moreover,involvingwomenandmenequallyintheemploymentopportunitiesalongthevarioussegmentsofthevaluechainwouldleverageanopportunityforgenderempowermentandimprovelivelihoods.64RENEWABLEENERGYBENEFITS•FacilitateSouth-South,peer-to-peerlearning:WhiledevelopingcontextsofSouthandSoutheastAsia,Sub-SaharanAfrica,andLatinAmericahaveallhadsmall-scalehydrodevelopmentforseveraldecades,thescale-upandmainstreamingofthesectorhasvariedinthelasttwodecades.Duetoextensivedonorinvestmentsinlocalcapacitybuilding,thesectorsinSouthandSoutheastAsiahavehadsuccessinscaled-upimplementation,whileinSub-SaharanAfricaandLatinAmericathenumberofinitiativesremainssmall,withopportunitiesnascentornotyetidentified.ThereisextensivedemandforSouth-SouthexchangebetweenAsia-PacificandSub-SaharanAfricapractitioners.ThereisalsomuchtolearnfromtheLatinAmericancontexts,asthelevelofdocumentationandSouth-Southengagementtherehasbeenminimal.•Empowerwomenandyouth:Thelackofaccesstomodernenergyaffectswomenandchildrendisproportionately.Small-scalehydrocanhelpintheadvancementofgenderequalityandtheempowermentofwomenaseconomicagentsofchangeandleaders,therebytransformingeconomiesandgeneratinginclusivegrowth.Integratingagenderlenscanhelpremovebarriersforwomenparticipatinginthedeploymentofsmall-scalehydropowerorinproductiveenduses.Inthatcontext,itiscriticaltofacilitateaccesstofinanceandtodevelopskillsandmentorshipprogrammesforwomen.Thesuccessofwomen-ownedenterprisescouldbearolemodelforotherwomen,whowouldbeencouragedtobecomeentrepreneurs.Similarly,theinvolvementandcapacitybuildingofcommunityyouthtobecomelocalpractitionersofsmall-scalehydrocanleadtoacceleratedimplementationandtechnicalsustainability.Thevariousmeasurespresentedhereneedtobetailoredtoeachcontext,reflectingspecificcircumstances(e.g.policyandregulatoryframeworks,financinglandscape,skillsandcapacity,existingplanstofacilitateaccesstogrid).Poorlyselectedandstructuredmeasurescansetbacksmall-scalehydropowerdevelopment.Anassessmentofexistingresourcesincludinglabour,materialsandequipmentshouldbemappedagainsttherequirementsineachsegmentofthevaluechain.Basedonsuchanalysis,opportunitiesforleveraginglocallabourmarketsandexistingindustriescanbeidentifiedandpoliciesandmeasurescanbeintroducedtostrengthenlocalcapacitiesandmaximisedomesticvalue.Thedetailedlookatvaluecreationopportunitiespresentedinthisreportcanserveasastartingpointfordesigningpoliciesappropriateforeachcase.65REFERENCESREFERENCESAKDN(AgaKhanDevelopmentNetwork)(2014),“Minihydroelectricplants:Energyforremotecommunities”,AKDN,11February,https://the.akdn/en/resources-media/whats-new/spotlights/energy-remote-communities.APROTEC(n.d.),“Educaciónycapacitación”,www.aprotec.com.co/educacion-y-capacitacion.BalajuYantraShala(BYS)(n.d.),BalajuYantraShala(P)Ltd,Homepage,www.bys.com.np,[Accessed31August2023].Bere,J.,C.JonesandS.Jones(2015),TheEconomicandSocialImpactofSmallandCommunityHydroinWales,CREWRegenerationWales,Cardiff,www.deg.wales/wp-content/uploads/2015/09/ImpactofSmallandCommunityHydroinWales.pdf.BerksCountyConservationDistrict(2023),"Wathersheds",http://berkscd.com/watersheds/.ButwalTechnicalInstitute(BTI)(n.d.),ButwalTechnicalInstitute,Homepage,https://bti.org.np[Accesed31August2023].DelftUniversityofTechnology(TU-Delft)(2017),“Systematichigh-resolutionassessmentofglobalhydropowerpotential”,TU-Delft,Delft,Netherlands,https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0171844.ENACT(EnergyActionPartners)(n.d.),“COMET”,https://enactpartners.org/comet.Entec(2012),“DevelopmenthistoryofEnteccrossflowturbines”,www.yumpu.com/en/document/view/970646/development-history-of-entec-cross-flow-turbines.ESCAP(EconomicandSocialCommissionforAsiaandthePacific)(n.d.),“Partnershipsforresilientenergyfuture”,ESCAP,Bangkok,www.unescap.org/sites/default/files/Brochure%20-%205P.pdf.Escobar,R.,etal.(2012),“Promotingandimprovingrenewableenergyprojectsthroughlocalcapacitydevelopment”,inModelingandOptimizationofRenewableEnergySystems,IntechOpen,www.intechopen.com/books/modeling-and-optimization-of-renewable-energy-systems/promoting-and-improving-renewable-energy-projects-through-local-capacity-development.ESMAP(EnergySectorManagementAssistanceProgram)(2022),MiniGridsforHalfaBillionPeople,WorldBank,Washington,D.C.,https://openknowledge.worldbank.org/handle/10986/38082.EthiopiaJobsCreationComission(2021),EthiopiaJobCreationthroughOµ-gridEnergyAccess,www.ace-taf.org/wpcontent/uploads/2021/08/Jobs-and-EnergyReport_Ethiopia-_August_2021.pdf.Gautam,B.(2020),“Localcapacitybuildingthroughtechnologytransfer:TurgoturbineinNepal”,TheFlowblog,HydroEmpowermentNetwork,1July,www.hpnet.org/blog/local-capacity-development-through-technology-transfer-turgo-turbine-in-nepal.HPNET(HydroEmpowermentNetwork)(2021),"HydroMini-Grids:Characteristics&Benefits",www.hpnet.org/blog/hydro-mini-grids-charatersistics-co-benefits.HPNET(2020),“SEEED:Productiveenduseandsocialenterprise”,TheFlowblog,HPNET,30December,www.hpnet.org/blog/seeed-productive-end-use-and-social-enterprise.66RENEWABLEENERGYBENEFITSHPNET(2019),“Componentsofasustainablehydromini-grid”,TheFlowblog,HPNET,1June,www.hpnet.org/blog/components-of-a-sustainable-hydro-mini-grid.HPNET(2018),"ImpactofPractice-to-PolicyDialogue:Nepal'sFirstGrid-InterconnectedMicroHydroProject.RetrievedfromHydroEmpowermentNetwork",www.hpnet.org/blog/impact-of-practice-to-policy-dialogue-nepals-first-grid-interconnected-micro-hydro-project.HPNET(n.d.),“Regionalcentersofknowledge”,www.hpnet.org/partnerships.html.HPNETandAssociationofRuralDevelopmentWorkersBenjaminLinder(ATDER-BL)(2021),“Nicaragua:Awell-springofbestpracticesforwatershedrestoration”,18August,www.hpnet.org/blog/nicaragua-a-well-spring-of-best-practices-for-watershedrestoration.HPNET-SEEED(HydroEmpowermentNetwork–SocialEnterpriseforEnergy,EcologicalandEconomicDevelopment)(2022),“E-courseonclimateresilientsolutionstohydromini-grids”,www.seeedlearning.org.HPNET-SEEED(2021),“ModuleB:Socialenterprisemodelsforhydromini-grids”,https://seeedlearning.org/courses/module-b.HPNETYouTubechannel(2021),“Session2A:Socialandenvironmentalapproaches–Advancingcommunityscalehydropower”,www.youtube.com/watch?v=9hhorSHeyrs.IEA(InternationalEnergyAgency),IRENA(InternationalRenewableEnergyAgency),UNSD(UnitedNationsStatisticsDivision),WorldBankandWHO(WorldHealthOrganization)(2022),TrackingSDG7:TheEnergyProgressReport2022,WorldBank,Washington,D.C.,https://trackingsdg7.esmap.org/data/files/download-documents/sdg7-report2022-full_report.pdf.InstituteforCarbonRemovalLawandPolicy(2020),“Nature-basedsolutionstoclimatechange”,SchoolofInternationalService,AmericanUniversity,www.american.edu/sis/centers/carbon-removal/upload/icrlp_fact_sheet_nature_based_solutions_2020_update.pdf.IHA(InternationalHydropowerAssociation),WorldBankandHSAP(HydropowerSustainabilityAssessmentProtocol)(2017),BetterHydro:CompendiumofCaseStudies2017,IHAcentralofficeincollaborationwiththeWorldBankGroup,HydropowerSustainabilityAssessmentProtocol,www.hydropower.org/publications/better-hydro-compendium-of-case-studies-2017.IRENA(InternationalRenewableEnergyAgency)(2023a),Off-GridRenewableEnergyStatistics2022,IRENA,AbuDhabi,www.irena.org/Publications/2022/Dec/Off-grid-renewable-energy-statistics-2022.IRENA(2023b),“GlobalATLASforRenewableEnergy”,InternationalRenewableEnergyAgency,AbuDhabi,https://globalatlas.irena.org/workspace.IRENA(2022),“Hydropower”,www.irena.org/Energy-Transition/Technology/Hydropower,[Accessed31August2023].IRENA(2020),Post-COVIDrecovery:Anagendaforresilience,developmentandequality,IRENA,AbuDhabi,www.irena.org/publications/2020/Jun/Post-COVID-Recovery.IRENA(2019),RenewableEnergy:AGenderPerspective,IRENA,AbuDhabi,www.irena.org/publications/2019/Jan/Renewable-Energy-A-Gender-Perspective.IRENA(2016),RenewableEnergyBenefits:DecentralisedSolutionsintheAgri-FoodChain,IRENA,AbuDhabi,www.irena.org/-/media/Files/IRENA/Agency/Publication/2016/IRENA_Decentralised_solutions_for_agrifood_chain_2016.pdf.67REFERENCESIRENAandIEA-ETSAP(InternationalEnergyAgency–EnergyTechnologySystemsAnalysisProgramme)(2015),Hydropower:TechnologyBrief,www.irena.org/-/media/Files/IRENA/Agency/Publication/2015/IRENA-ETSAP_Tech_Brief_E06_Hydropower.pdf.IRENAandSELCOFoundation(2022),FosteringLivelihoodswithDecentralisedRenewableEnergy:AnEcosystemsApproach,IRENA,AbuDhabi,www.irena.org/publications/2022/Jan/Fostering-Livelihoods-with-Decentralised-Renewable-Energy.JLAHydro(n.d.),“Thecross-flowprinciple”,https://jlahydro.be/products/jla-cross-flow-turbines/the-cross-flow-principle/?lang=en.Khan,M.(2019).“Pakistan:Evolutiontoinclusivesocialenterprise”,TheFlow(blog),HydroEmpowermentNetwork,30September,www.hpnet.org/blog/a-women-centric-enterprise-based-approach-lessons-from-pakistan.Korkovelos,A.,etal.(2018),“Ageospatialassessmentofsmall-scalehydropowerpotentialinSub-SaharanAfrica”,Energies,Vol.11,3100,https://doi.org/10.3390/en11113100.Liechty,M.(2022),WhatWentRight:SustainabilityVersusDependenceinNepal’sHydropowerDevelopment,CambridgeUniversityPress.Mallik,J.K.(2018),“Gridinterconnectionofmicrohydropower:AnexperiencesharingfromNepal”,AsiaCleanEnergyForum,Manila.Nakarmi,K.,etal.(1993),“Crossflowturbinedesignandequipmentengineering”,HarnessingWaterPoweronaSmallScale,MHPG,https://skat.ch/wp-content/uploads/2017/03/03-T12-Manual.pdf.Shirley,R.(2020),“Creatinglivelihoodsthroughcleanenergyandagriculture”,Rural21:TheInternationalJournalforRuralDevelopment,26June,www.rural21.com/english/current-issue/detail/article/creating-livelihoods-through-clean-energyand-agriculture.html.UNIDO(n.d.),“Smallhydro-power”,www.unido.org/our-focus/safeguarding-environment/clean-energy-access-productive-use/renewable-energy/focus-areas/small-hydro-power.UNIDO(UnitedNationsIndustrialDevelopmentOrganization)andICSHP(InternationalCenteronSmallHydroPower)(2019),WorldSmallHydropowerDevelopmentReport2019:CaseStudies,UNIDOandICSHP,www.unido.org/sites/default/files/files/2020-02/WSHPDR%202019%20Case%20Studies.pdf.VIDA(VillageDataAnalytics)(n.d.),“VillageDataAnalytics(VIDA)”,www.vida.place.WaterandEnergyforFood(n.d.),AngolaCountryProfile:Laws,Policy,andRegulationsAffectingtheWater-Energy-FoodNexus,https://we4f.org/wp-content/uploads/2022/11/WE4F-Angola-Country-Profile.pdf.WRI(WorldResourcesInstitute)(2022),TheRoleofAssistedNaturalRegenerationinAcceleratingForestandLandscapeRestoration,WRIBrasil,www.wri.org/research/assisted-natural-regeneration-case-studies.WWF(WorldWildlifeFund)(2022),“Whatarenature-basedsolutions,andhowcantheyhelpusaddresstheclimatecrisis?”,www.worldwildlife.org/stories/what-are-nature-based-solutions-and-how-can-they-help-us-address-the-climate-crisis.WWFandILO(InternationalLabourOrganization)(2020),NatureHires:HowNature-basedSolutionsCanPoweraGreenJobsRecovery,WWFandILO,https://wwfeu.awsassets.panda.org/downloads/nature_hires_report_wwf_ilo.pdf.68RENEWABLEENERGYBENEFITSANNEXESAnnexA.ClassificationofhydropoweraccordingtocapacityTheclassificationofthescaleofahydropowerplantsimplyrelatestotheelectricityproductioncapacityexpressedinmegawatts(MW).However,specificclassificationsvaryfromcountrytocountryasthereiscurrentlynoconsensusamongcountriesandhydropowerassociationsregardingtheupperlimitofwhatconstitutessmall-scalecapacity.Forinstance,someEuropeanUnioncountrieslikeBelgium,Greece,Ireland,PortugalandSpainaccept10MWasthethresholdbetweensmallandlargesystems,whileothersplacethemaximumcapacityfrom3to1.5MW.OutsidetheEuropeanUnion,thislimitcanbemuchhigher,asintheUnitedStates(30MW)andIndia(25MW).21Forthepurposesofthisreport,thecut-offis10MW.Belowthatthreshold,small-scalehydropowercanbebrokenintosubcategoriesofpico,micro,miniandsmallhydropower(seeTableA.1).TableA1ApplicabilitydependingonpoweroutputTypeCapacityApplicabilityLarge>10MWLargeurbanpopulationsSmall>1and<10MWSmallcommunitieswiththepossibilityofsupplyingelectricitytothenationalgridMini>100kWand<1MWSmallfactoryorisolatedcommunityMicro>5kWand<100kWSmallisolatedcommunityPico<5kWFewtoseveralhouseholds,dependingonloadperhousehold(seeTableA.2)Forthepurposeofthispublication,theanalysisdivesintopico,microandminihydrocapacities,astheyhaveparticularmeritinleveraginglocalcapacities;picohydroisconsideredas≤5kilowatts.Source:AdaptedfromCarrasco,PainandSpuhler,2019.Thisreportfocusesoncapacitiesbelow1MW.Tohelpcontextualise,TableA.2providespossiblescenariosonmaximumnumbersofhouseholdsforeachcapacity,assumingsimultaneoususageofloads.TableA2IllustratingconsumptionandsystemcapacitiesofdifferentloadscenariosforsmallhydroSimultaneousPicohydroMicrohydroMinihydroloadscenarios≤5kW>5kWand<100kW>100kWand<1MWMaximumnumberofhouseholdsforsimultaneoususeBasichouseholduse50100010000100Watts3LEDpoints,cellphone,smallTVHouseholdusewithelectriccooking1500Watts366663LEDpoints,cellphone,TV,ricecookerHouseholdusewithelectriccooking&smallappliances2500Watts240400LEDpoints,cellphone,TV,ricecooker,blenderHouseholdusewithelectriccooking,smallappliances,andproductiveenduse5000Watts120200LEDpoints,cellphone,TV,ricecooker,blender,carpenter’ssaw21Carrasco,J.L.,A.PainandD.Spuhler(2019),“Hydropower(small-scale)”,SustainableSanitationandWaterManagement,https://sswm.info/water-nutrient-cycle/water-distribution/hardwares/water-network-distribution/hydropower-%28small-scale%2969ANNEXESAnnexB.Implementationvaluechain:FactorsforvariationindurationandcostsTableB1Small-scalehydropowerimplementationphases,averagedurationandproject-specificfactorsimpactingduration,person-daysandcostsImplementationphase,activitiesandaveragedurationFactorsimpactingdurationPhase1:Feasibility,5kW(0.5months);50kW(6months);500kW(12months)aSiteidentification•EaseofaccesstothesiteforfeasibilitystudybPre-feasibilitystudyofthesite•Availabilityofreliablerainfalldata,topographicmap,cFeasibilitystudyofthesitedTechnicaldesign,billofmaterial,billofquantity,andmultiplespotmeasurements•Sizeofthecatchmentareaworkplanandbudget•OptionsforcivilstructurelocationseFinancialandsocio-economicviabilityanalyses•AvailabilityofskilledpersonnelfSecuringfinance•Easeofaccesstofinance•InterestofthebeneficiarycommunitytocommitPhase2:Planning&procurement:OngoingthroughinstallationandconnectionaHumanresourcehiring•EaseofaccesstothesitefortransportingrawmaterialbTendersandservicecontractsandequipmentcPurchaseorders(bydeveloper)dCashflowplanningandaccounting•TimelinealignmentbetweenfunderpaymentsandeMonitoringandevaluationprocurementmilestonesfTransportationtothesitegAccommodationatthesite•Availabilityandcostofrawmaterialandoff-the-shelfhSocialgovernanceframeworkcomponents,vehiclesanddriversfortransportingsuppliesoverdirtroads,andunskilledlabourinremotelocationsforunloadingequipment•MobilisationofthebeneficiarycommunityPhase3:Manufacturingofcustomcomponents:5kW(0.5months);50kW(3months);500kW(6months)Forthelocalfabricationofcustomcomponents•Easeofaccesstothesitetocollectdesignrequiredforthecivilworks,electromechanicalsystem,measurementsturbineassembly,controllersystem,transmissionanddistributionlines,andhousewiringcomponents:•Availabilityofrawmaterial•CapacityofthefabricationfacilityaSitevisits•Consistentavailabilityofmachinists•WhetheranyfabricationprocessesrequirebDrawingsforfabricationandassemblyprocessoutsourcingcFabricationbillofmaterial,billofquantity,andworkplandPurchaseorders(bylocalmanufacturer)eMachiningofcomponentsfAssemblyandtestinggFinishingandpainting70RENEWABLEENERGYBENEFITSPhase4:Construction&installation:5kW(1month);50kW(6months);500kW(12months)Onthesite:•EaseofaccesstothesitefortransportingrawmaterialandequipmentaCapacitybuildingofvillage-basedstakeholders(unskilledlabour,masons,operators,linesmen,•Extentofmanuallabourrequiredformaterialtransportgovernancebody,etc.)•WidthoftheweirbConstructionofcivilworkstructures(i.e.weir,channel,forebaytank,penstockanchorblocks,•Lengthofthechannelpowerhouse,andtransmissionanddistributionpoles)•PenstocklengthandwhetheritwillbeburiedcInstallationofallcomponents,(i.e.penstock,•Sizeofthepowerhousemanifold-valves-turbine-generatorsystem,loadcontroller,electricalprotection,transmissionand•Turbineselectionimpactonpowerhousedesigndistributionlines,andwiring)•WhetherhouseholdsarescatteredordenselylocateddTestingandcommissioningofthefullsystem•Professionalandeffectivemanagementofinstallationandconnection•Self-co-ordinationofthecommunitytoprovideunskilledandskilledlabour,includingmasons•Possibilitiesofsocialconflictrelatedtoconstructionaspects•Availabilityofexperiencedpersonstotrainoperatorsandtotestandcommissionthesystem•WhethermanagementteamismanagingasingleprojectormultipleprojectsinparallelPhase5:Operation&maintenance:OngoingthroughprojectutilisationaOperationofthesystem•Easeofaccesstothepowerhouse,includingafterbMaintenancenightfallcTroubleshooting•Qualityofthedesignandinstallationforreliablesystemoperation•Operationandmaintenanceofthespecificturbinetype•Extentofoperationalissues(e.g.shortrepairsorextensivetroubleshootingandrehabilitation)•Frequencyofrequiredrepairs71ANNEXESAnnexC.RolecategoriesTableC1RolecategorydisaggregationAdministrativeandfinancepersonnelAccountantAdministrativepersonnelContractsandprocurementpersonnelFinanceco-ordinatorDriversContractsco-ordinatorProjectmanagerProcurementco-ordinatorDesignengineersDriver–heavyvehicleDraftersDriver–lightvehicleSiteengineersProjectmanagerSurveyorsDesignengineer–civilworksElectriciansDesignengineer–electromechanicalsystemUnskilledlabourDrafterforengineeringdrawingsSiteengineerforcivilworksMachinists/fabricatorsSiteengineerforelectromechanicalsystemSiteengineer–manufacturedcomponentsforcivilworksTechniciansTopographicsurveyorMasonsandskilledlabourElectricianOperatorsLabourforlifting/loadingandconstructionAgronomistsMachinist–gascutterCommunitymobilisersMachinist–drilloperatorEnvironmentalimpactassessorMachinist–generalVillageelectrificationcommitteeMachinist–grinderoperatorLocallogisticspersonnelMachinist–latheoperatorMachinist–PCBfabrication(skilledlabour)Machinist–rolleroperatorMachinist–specialskilledpersonsMachinist–welderMachinist–spraypainterforelectromechanicalcomponentsPenstocktechnicianTechnicalhelperMasonsSkilledlabour–miscellaneousMicrohydrooperatorAgronomistCommunitymobiliserEnvironmentalimpactassessorIncludesmanager,accountant,meterreader,secretaryVillagelodgingperson(cook,cleaner,etc.)72RENEWABLEENERGYBENEFITSAnnexD.Technicaloverviewandcomponentsofsmall-scalehydropowerSmall-scalehydropowersystemscanuseoneofthreesolutionsforgeneratingpowerfromwater:diversionchanneltype,hydrokinetic,andvortexsystems.Diversionalchanneltypesystemsusesmallcivilstructurestodiverttheflowofstreamatsufficientheadintothepenstockconnectedtotheturbine.Thetailraceisplacedsuchthatthewaterflowsbackintotheoriginalsource(seeFigureD.1).Thesesystemshavethehighestgenerationpotentialandnotsurprisinglyarethemostimplemented.Hydrokineticsystemsarethoseplacedinlargewatersources,suchastidalhydrosystems.Theyaretypicallylowheadandthehavetheleastgenerationpotential.Vortexsystemsaremodularandcanbesubmergedorsuspendedoverthevortex;however,theyrequirespecialsiteconditionsandarenotascommon.Thispublicationfocusesonthediversionchanneltypeusedforpico,microandminihydro.Builtinfrastructurecomponentsofthediversionchanneltypesystem(seeFiguresD.1andD.2)include:FigureD1DiversionchanneltypeFigureD2Componentsofasustainablehydromicrohydromini-gridSource:www.gov.scot/publications/report-small-scale-hydro-plant-machinery-review/pages/4/•Upstreamcivilstructures,includingtheweir(orintake)thatdivertsthestreamintoachannel(orcanal)connectedtotheforebaytank,andaccessories(e.g.gatesandvalves)•Penstocktoroutethewaterfromtheforebaytanktothemanifoldoftheturbineassembly•Powergenerationequipmentinthepowerhouse:theturbineassembly(includingmanifold,valvesrunner,shaft,housing,andaccessories),generator,driveassembly(connectinggeneratorandturbine),andloadcontroller•Powerdistribution:transmission,distribution,andhousewiringequipmentTheupstreamcivilstructuresandpenstockalonecanbeusedforwaterirrigationandmanagementpurposes.Theentiresystem,includingthecivilstructures,penstock,powergenerationsystemandpowerdistributionnetwork,isreferredtoasahydromini-grid.73ANNEXESInadditionaltothebuiltinfrastructure,thetechnicalfunctionofasmall-scalehydrosystemisdependentonthenaturalenvironmentalfeaturesatthespecificsite,particularlythewatershedandthehydromini-gridcatchmentarea.Asprecipitationoccursoveralandarea,thewatershedintheterraindrainsoffthewaterintorivers,streams,lakesand/orundergroundwatersources(seeFigureD.3).Thecatchmentareaisapartofthewatershedlocatedbetweenitsupperboundaryandaspecificpointofinterestinthewatershed,suchastheweirofahydromini-grid,anirrigationsystemordrinkingwaterinfrastructure.Theconceptofacatchmentareaiscriticaltohydromini-gridsbecauseitiswheretheflowofwaterrequiredtogenerateelectricityissourced.Becausethepoweroutputofanyhydromini-griddependsontheheadandflowdefinedbyaspecificcatchmentarea,thedesignandinstallationofthecivilworks,penstock,powergenerationsystemanddistributionnetworkmustbecustomised,makinglocalknowledgeandlocalcapacitiescriticalthroughoutimplementationandoperation.FigureD3Precipitationabsorbedbythewatershed,throughspecificcatchmentareasSource:BerksCountryConservationDistrict,2023.Theabilityofthecatchmentareatoeitherabsorbprecipitationorproducerun-offdependsonthestructuralresilienceofitsterrain,whichgreatlybenefitsfromthepresenceofhealthyforests.Forestedwatershedssustainstreamflowduringthedryseasons,ensuringconsistentpowergenerationfromthehydromini-grid,aswellasareliablewatersourceforirrigation,sanitationandotherruralneeds.Duringwetseasons,denseforestspreventerosionandmudslides,knowntodevastateruralinfrastructure.Further,sustainableforestscanallowforforest-basedfoodsecurityandrurallivelihoodsthatenableadditionalincome,jobsandenterprisefromaccesstoelectricity(e.g.localprocessingofagri-forestproductsforahighersellingprice).Finally,strengtheningforestsisaprimarysolutiontocapturinggreenhouseemissionsandpreventsemissionscausedbydeforestation.Intheseways,small-scalehydropowerisanature-basedsolutionthatcanproduceco-benefitsforclimate-resilientruraldevelopment.74IRENAHEADQUARTERSP.O.Box236,AbuDhabiUnitedArabEmirateswww.irena.org©IRENA2023