NextGenerationCarbonCaptureTechnologyTechnologyReviewWorkPackage2DepartmentforBusiness,EnergyandIndustrialStrategy60666122-WP2-RP-00124May2022NextGenerationCarbonCaptureTechnologyQualityinformationCheckedbyVerifiedbyApprovedbyGraemeCookAndyCrossPreparedbyKlimMacKenzieStephenFlorenceDavidMenmuirStephenFlorenceKevinTaylorRevisionHistoryRevisionRevisiondateDetailsAuthorizedNamePositionP115/10/2021AndyCrossProjectManagerFirstissueAndyCrossProjectManagerP211/11/2021MinorupdatesfollowingClientAndyCrossProjectManagerP317/12/2021commentsAndyCrossProjectManager029/04/2022UpdatesfollowingreviewbyAdvisoryBoardAndyCrossProjectManager124/05/2022AdditionalcommentsincorporatedAdditionalcommentsincorporatedDistributionList#HardCopiesPDFRequiredAssociation/CompanyNamePreparedfor:DepartmentforBusiness,EnergyandIndustrialStrategyAECOM2NextGenerationCarbonCaptureTechnologyPreparedfor:DepartmentforBusiness,EnergyandIndustrialStrategy1VictoriaStreetLondonSW1H0ETUnitedKingdomAECOMLimited7thFloor,Aurora120BothwellStreetGlasgowG27JSUnitedKingdomT:+441412480300aecom.com©2022AECOMLimited.AllRightsReserved.ThisdocumenthasbeenpreparedbyAECOMLimited(“AECOM”)forsoleuseofourclient(the“Client”)inaccordancewithgenerallyacceptedconsultancyprinciples,thebudgetforfeesandthetermsofreferenceagreedbetweenAECOMandtheClient.AnyinformationprovidedbythirdpartiesandreferredtohereinhasnotbeencheckedorverifiedbyAECOM,unlessotherwiseexpresslystatedinthedocument.NothirdpartymayrelyuponthisdocumentwithoutthepriorandexpresswrittenagreementofAECOM.Preparedfor:DepartmentforBusiness,EnergyandIndustrialStrategyAECOM3NextGenerationCarbonCaptureTechnologyTableofContents1.ExecutiveSummary.....................................................................................................................................62.Introduction................................................................................................................................................102.1TheProject.....................................................................................................................................102.2EstablishedCarbonCaptureApplications.......................................................................................102.3CostReductionthroughCommercialDeployment..........................................................................122.4DeploymentRiskOptimisation........................................................................................................132.5CategorisationofTechnologies.......................................................................................................152.6CaptureLevel.................................................................................................................................173.DemonstrationStageTechnologies...........................................................................................................183.1OverviewofTechnologiesReviewed..............................................................................................183.2Solvent-BasedCapture...................................................................................................................194.DevelopmentStageTechnologies..............................................................................................................265.ResearchStageTechnologies...................................................................................................................325.1Solvents..........................................................................................................................................325.2Sorbents.........................................................................................................................................345.3Membranes.....................................................................................................................................355.4OtherTechnologies.........................................................................................................................365.5Hybridisation...................................................................................................................................366.TechnologyApplications.............................................................................................................................376.1TechnologyApplicationMatrix........................................................................................................377.OpportunitiesandBarriers.........................................................................................................................407.1CommonOpportunities...................................................................................................................407.2CommonBarriers...........................................................................................................................417.3IndustrySpecificOpportunitiesandBarriers...................................................................................428.IndustryEngagementWorkshop................................................................................................................438.1InteractiveSessionResults............................................................................................................449.Abbreviations.............................................................................................................................................4810.References................................................................................................................................................50TablesTable1.Technologycategoriesusedinthisreport.................................................................................................7Table2.Technologycategoriesusedinthisreport...............................................................................................16Table3.SimplifieddefinitionsofTechnologyReadinessLevel(TRL)(IEAGHG2014)forCCStechnologies.....16Table4.Demonstrationstagetechnologiesreviewed..........................................................................................18Table5.MitsubishiHeavyIndustryAdvancedKMCDRProcess(KS-21Solvent)...............................................21Table6.ShellCansolv...........................................................................................................................................22Table7.FluorEconoamineFGPlus......................................................................................................................23Table8.CarbonClean.........................................................................................................................................24Table9.AkerCarbonCapture..............................................................................................................................25Table10.Developmentstagetechnologies..........................................................................................................26Table11Researchstagesolventtechnologyprojectssummary87........................................................................32Table12Researchstagesorbenttechnologyprojectssummary87.......................................................................34Table13Researchstagemembranetechnologyprojectssummary87..................................................................35Table14Otherresearchstagetechnologyprojectssummary87,88,89.....................................................................36Table15.TechnologyApplicationMatrix,basedonknownprojects.....................................................................38Table16.IndustrySpecificOpportunitiesandBarriers.........................................................................................42Preparedfor:DepartmentforBusiness,EnergyandIndustrialStrategyAECOM4NextGenerationCarbonCaptureTechnologyFiguresFigure1Relationshipbetweentechnologicalandcommercialreadiness1...........................................................12Figure2Balanceofrisktopromotetechnologicalinnovation..............................................................................13Figure3.Breakdownofdecarbonisationapproachrankingresultsbyindustrysector.........................................44Figure4.Decarbonisationapproachrankingresults............................................................................................44Figure5.Timetocommercialdeploymentresultsbysector.................................................................................45Figure6.Mostpromisingnextgenerationtechnologyresultsbysector...............................................................45Figure7.Carboncapturetechnologydeploymentscaleresultsbysector...........................................................46Figure8.Carboncapturedeploymenttimelineresultsbysector..........................................................................46Figure9.Carboncapturetechnologydemonstrationscaleresultsbysector.......................................................46Figure10.Carboncapturedemonstrationtimeresultsbysector.........................................................................47Figure11.AnticipatedCO2emissionscapturedresultsbyindustrysector...........................................................47Preparedfor:DepartmentforBusiness,EnergyandIndustrialStrategyAECOM5NextGenerationCarbonCaptureTechnology1.ExecutiveSummaryAECOMhasbeenappointedbyBEIStoconductareviewandtechnoeconomicanalysisofnextgenerationcarboncapturetechnologies.Thestudywillconsiderthepotentialapplicationofcarboncapturetechnologytodifferentindustrial,wasteandpowersites.Theworkfocusesontechnologieswiththepotentialtobedeployedatascaleoftheorderof1,000tonperdayofCO2captureby2030.Lesswell-developedtechnologiesthataremorelikelytobedeployedatscaleby2035,orlater,havebeenreportedon,butwithalowerlevelofdetail.Thisdocumentreviewsabroadrangeofcarboncapturetechnologies,thetechnoeconomicanalysisofselectedtechnologiesiscoveredinsubsequentreports.EstablishedCarbonCaptureandUsageApplicationsThereareexistingindustrialprocesseswheregasstreamsareprocessedthatcontainahighconcentrationofCO2.Theseindustriesincludetheproductionofhydrogen,naturalgasupgrading,brewinganddistillingandbiogasupgrading.Itisrelativelysimple,andlow-cost,tocaptureCO2fromthesesectorsanditisalreadycapturedatsomesitesforuseinindustriessuchasfoodprocessinganddrinksmanufacture.However,muchoftheCO2willnotbecapturedduetoarangeoffactors,includinglimitationsinmarketdemandforCO2.Theseindustriesofferlow-costCO2captureopportunitiesandwillbeimportantinrelationtoachievingcost-effectiveCO2emissionreductionsintheUK.However,thetotalmassofCO2availablefromsuchsourcesisverysmallincomparisontototalUKindustrialemissions.ThetechnologiesforcapturingtheCO2atthesesitesareimportantbutarenotthefocusofthisassignment.ThisstudyfocusesoncapturingCO2fromotheremissionsourcesincludingpowergeneration,thermaltreatmentofwasteandindustrialprocessessuchascementproduction.CostReductionThroughCommercialDeploymentAchievingcostreductionincarboncaptureisimportantinrelationtoencouragingdeploymentoftechnologies.Boththedevelopmentofnewprocesses,andtheadvancementofexistingsystemsthroughthevariousstagesofcommercialdeployment,areimportantelementsinachievingcostreductionsinthecarboncapturesector.Foralltechnologytypescostreductionsareprimarilyachievedbyprogressingthroughthecommercialreadinessscale.Developingatechnologytoahightechnologyreadinesslevel(TRL)isrequiredforareliablebasecosttobeestablishedandtoallowtheprocessofcostreductiontocommence.Advancingthroughthestagesofcommercialreadinessthenallowscostreductionstooccurfromimprovementstosub-components,manufacturingtechniques,maintenancestrategiesandfinancingcosts.Somesolvent-basedcarboncapturesystemshavesuccessfullycompletedtheearlystagesofcommercialdeploymentforpostcombustioncarboncapture.Thesetechnologieshaveanadvantageinrelationtolargescaledeploymentby2030.Therearemanytechnologiesatapre-commercialstageofdevelopment.Astimeprogressessomeofthesemayoffercostsavingsinindustrialapplications,andsomewillneverprogresstoacommercialsetting.Evenwherenewtechnologyconceptswilloffercostsavingsinthelongterm,theymaybemoreexpensiveduringinitialstagesofcommercialisationduetogreaterperceivedriskandtheimpactthiswillhaveoncontingenciesandfinancingcosts.Understandingthevalueof,anddifferencebetween,technologydevelopmentthroughincrementalimprovementsandthedevelopmentofnewconceptsandprocessesisimportantinrelationtopromotingefficientinnovationanddevelopmentinthecarboncapturesector.DeploymentRiskOptimisationCommercialdeploymentprovidesvaluableopportunitiesforinnovationandaccelerationofthedevelopmentprocess.However,prematurecommercialdeploymentbringsariskofdelays,failingprojects,inefficientuseoffundingandreputationaldamagetoatechnologyandorindustrysector.Whencommerciallydeployingarangeofnewtechnologiesandprogressingalongthecommercialreadinesspathway,abalanceisrequiredinrelationtothelevelofrisktakentopromoteinnovationinthetechnology.Anexcessivelylowriskapproachislikelytoresultinlackofinnovationandtheslowdevelopmentoftechnologies.Similarly,anexcessivelyhigh-riskapproachmayalsoresultintheslowdevelopmentoftechnologiesduetofailedprojects.Failingprojectsdivertmoneyawayfromothersthatcouldhaveprovidedusefulinnovation.Furthermore,theycanadverselyimpacttheperceptionofthetechnologyintheinvestmentcommunityandinthepublic.Preparedfor:DepartmentforBusiness,EnergyandIndustrialStrategyAECOM6NextGenerationCarbonCaptureTechnologyTheriskassociatedwithaprojectthatusesanewtechnologyisproportionaltoadiverserangeoffactors.Thesefactorswill,oratleastshould,beassessedbyorganisationsmakingsignificantinvestmentsintheproject.Understandingthesefactorsforagivenprojectallowsanassessmenttobemadeastothelevelofassociatedrisk.Factorstoconsiderinrelationtotheriskofdevelopingcarboncaptureprojectincludethepotentialimpactonmainprocessplant,abilitytoreverttoaknownworkingoption,relativescaleofreferenceplant,differencesinfeedgasinputs,technicaldifferencesintheprocess,riskallocationandperformanceassumptionsmade.Priortocommercialdeploymentadetailedtechnicalassessmentofperformanceassumptionsshouldbeundertakenbytheorganisationmakingtheinvestmentoranindependentthirdpartywithappropriateskills.Thisprocessisreferredtoasduediligence,andeffectiveduediligenceiscriticalinrelationtounderstandingtheriskassociatedwithcommercialdeploymentofnewtechnologies.Theduediligenceprocessunavoidablyrequiresdetailedexaminationandunderstandingoftheproposedprocessandtheperformanceofreferenceprojectsandordemonstrationplants.Ifsuitabletestdataisnotavailable,thentheonlyconclusioncanbethattheperformanceisnotproven.Theexistenceofademonstrationplantdoesnotmeanthatatechnologyhasbeensuccessfullydemonstrated.Asmalldemonstrationprojectthathasshowngoodperformance,withhighavailabilityoverasustainedperiod,inarepresentativeenvironmentisofhighervalueindemonstratingviabilitythanalargedemonstrationplantthatoperatedpoorlyorisunabletoprovideoperationalinformation.Theinabilitytoprovideevidenceofsustainedgoodoperationalperformanceiscallsviableoperationintodoubt.CategorisationofTechnologiesThenextgenerationtechnologiesthataremostlikelytobedeployableataround1000tpdscaleby2030aremostlyaminebasedsolventsystemsthatcanbedevelopedbyincrementalimprovements.InthisreportthesetechnologieshavebeenclassifiedasDemonstrationStagetechnologies.Somenon-aminebasedsolventsystemsalsohavegreaterpotentialfornear-termdeploymentasthereiscommonalityintheprocessequipmentused.Technologiesthatareconsideredmorelikelytobedeployableataround1000tpdscaleby2035orlaterhavebeenclassifiedasDevelopmentStagetechnologies.ResearchStagetechnologiesareatanearlierstageofdevelopment.DetailsofthecategorisationusedfordifferenttechnologiesinthisreportareprovidedinTable1.Foreachcategory,allconditionsmustbemet.Table1.TechnologycategoriesusedinthisreportCategoryDescription1.DemonstrationstageLikelytobedeployableatascalein•Incrementalimprovementsto,ornewapplicationsof,atechnologyplatformthatistheorderof1,000tpdby2030.broadlyconsistentwithatleastTRL8andhasdemonstratedsuccessfulcommercialdeploymentforatleast12monthsatasimilarscale.2.DevelopmentstageMaybedeployableatascaleinthe•Thetechnology,orapreviousiterationofthetechnology,hasoperatedatleast50orderof1,000tpdby2035tpdofCO2scale,foratleast12months,underrepresentativeconditions.3.Researchstage•Constructioncommenced,orfullfundingreceived,foraprojectinasimilarapplicationofatleast200tpdscale.•BroadlyconsistentwithTRLs5-8.•Thetechnology,orapreviousiterationofthetechnology,hasoperatedatleast5tpdofCO2scaleinasimilarapplication,and;•Currentoperationofdemonstrationprojectofatleast10tpdCO2captureor,orfullfundingreceived,foralargerproject.•BroadlyconsistentwithTRLs1-4.Ofthetechnologiesinthisreportthathavebeenclassifiedasdevelopmentorresearchstage,thepotentialexistsforsomeofthemtobedeployedatscaleby2030orearlier.SomeofthedevelopmentstagetechnologiessuchastheNETPowerTechnology,CO2CapsolandtheLEILACprocesshaveconductedfrontendengineeringanddesignworkandareprogressingdemonstrationprojectsthatareintendedtobeimplementedpriorto2030.Similarly,somenewsolvents,orsolventadditives,beingresearchedatlabscalehavethepotentialtobetestedandthenaddedtoexistingcarboncapturefacilities.Beingincludedintheresearchordevelopmentcategoriesinthisreport,ratherthanthedemonstrationcategory,shouldnotbeviewednegativelyinrelationtothelong-termfuturepotentialofanytechnology.Thechallengesofpredictingthefutureandcategorisingmultiple,variedtechnologies,withlimitedinformationmustbeacknowledged.Preparedfor:DepartmentforBusiness,EnergyandIndustrialStrategyAECOM7NextGenerationCarbonCaptureTechnologyCaptureLevelForcarboncapturetechnologies,captureleveliscommonlydefinedasthepercentageofCO2intheincominggasstreamthatiscapturedbythetechnology.Thereisadebateastowhattheminimumcapturelevelfornewcarboncaptureplantsshouldbe.Inthisprojectthevalueoftechnologiesbeingabletoachieveahighcapturelevelisrecognised,butnominimumcapturelevelcriterionhasbeensetforqualificationasanextgenerationtechnology.Itispossiblethatatechnologywithalimitedcapturelevelcouldmakeavaluablecontributiontothecarboncaptureindustrybyofferingothersignificanttechnicaloreconomicadvantages.DemonstrationStageTechnologiesTechnologyofferingsfromsuppliersofaminesolvent-basedcapturesystemshavebeenreviewedinrelationtoseveralkeyparameters.Withinthecategoryofsolvent-basedcarboncapturetechnologiestherearearangeofdifferentopportunitiesforinnovation.Collectively,innovationsacrosstheseareashavethepotentialtooffersignificantbenefits.Fromthevarietyofinnovationoptionsavailableinsolvent-basedsystemsmanyhavethepotentialtoofferagoodbalancebetweenrisk,investmentrequirementsandpotentialbenefits.Innovationopportunitiesincludeusingexistingtechnologyinnewapplications,implementationatdifferentscales,improvementstoplantavailability,advancesinsolventchemistryandmanagement,processimprovements,improvedflue-gaspre-treatment,constructionimprovementsandmodularisation.Theseoptionsarebeingexploredbymanyofthekeysuppliers.DevelopmentStageTechnologiesFordevelopmentstagetechnologiesthereareincreasedlevelsofuncertaintyinrelationtocostsandperformance.Manyofthetechnologiesreviewedhavepotentialadvantagesovermoredevelopedtechnologies,butitremainstobeprovenwhetherthechallengesassociatedwithscale-upandtechnicalissuesspecifictotheindividualtechnologiescanbeovercome.Thesetechnologiesmustfirstdemonstratesustainedcommercialoperationatscaleandthenprovethatcostsavingscanbemade.Technologiesreviewedinthissectionincludeonesbasedonaminesolvents,non-aminesolvents,solidsorbents,fuelcells,membranes,oxy-combustionandcryogenics.ResearchStageTechnologiesResearchStagetechnologiesareatanearlierstageofdevelopmentandmosthaveonlybeendemonstratedatlabandbenchscalesorsmall-scalepilots.Manyoftheresearchstagetechnologiesaredevelopingcomponentsthatcouldbefittedintoexistingtechnologyplatformssuchasthosedescribedinrelationtothedemonstrationanddevelopmentstagetechnologies.Wherecomponentsarebeingdevelopedthatcanreadilybeusedinexistingtechnologyplatformsthenthepotentialformorerapiddeploymentexists.Researchstagetechnologiesincludesolvents,sorbents,membranes,cryogenics,chemicallooping,carbonationandoxy-combustioncycles.TechnologyApplicationMatrixAmatrixofthedemonstrationanddevelopmentstagetechnologieshasbeendevelopedthatindicatesthepotentialapplicabilityofdifferenttechnologiestodifferenttypesoffluegasses.Thisprovidesanindicationofwhichtechnologiesmaybemostsuitedtodifferentindustries.Theapplicabilityofindividualtechnologiestodifferenttypesoffluegashasbeenassessedbaseduponcurrentandpastoperationalapplications,testingperformed,plannedprojects,andengineeringjudgement.Whileindicationscanbeprovidedinrelationtowhichtechnologiesmaybebestsuitedtodifferentindustrialsectors,thematchingofcarboncapturetechnologytospecificgasstreamscontainingCO2requiresmoredetailedreview.Carefulconsiderationmustbegiventotherangeofchemicalandphysicalcharacteristicsofthetargetinputgasstreamandhowthesecomparetotherequirementsandtrackrecordofanytechnologiesunderconsideration.OpportunitiesandBarriersWithincreasingconcernsrelatingtotheclimateemergencythereisagrowingacceptanceoftheurgentneedtoreduceanthropogenicCO2emissionsrapidlyandsubstantially.ThiscreatesopportunitiesinrelationtothedevelopmentanddeploymentofcarboncapturetechnologiesintheUK.ForpotentialusersofcarboncapturetechnologyopportunitiesincludethemitigationofriskassociatedwithCO2emissioncosts,protectionagainsttighteningregulationsonCO2emissions,corporatereputationandattractinginvestment.Forcarboncapturetechnologyprovidersthereareopportunitiesinrelationtomarketsize,availabilityofinvestment,developmentofnewtechnologyconcepts,incrementalimprovementstoexistingtechnologiesandmodularisation.Thepotentialfortheseopportunitiestoberealisedcanbeincreasedbyencouragingcollaborationbetweendifferentcompaniesandindustriesinvolvedinthecarboncapturesector.Preparedfor:DepartmentforBusiness,EnergyandIndustrialStrategyAECOM8NextGenerationCarbonCaptureTechnologyCommonbarriersrelatingtothedeploymentofcarboncaptureprojectsincludetherelativecostsofcapturingandemittingCO2,thedevelopmentofsuitablepolicyandincentives,availabilityofCO2transportandstorageinfrastructure,CO2storagerisk,planningandpermitting,alternativedecarbonisationoptions,spaceconstraints,technologyrisk,timeandcostassociatedwithtechnologyscale-up,introductionofnewhazards,availabilityoffundingandpublicperception.Anoverviewofindustryspecificopportunitiesandbarriershasalsobeenprovided.IndustryEngagementWorkshopAnindustryengagementworkshopheldon30September2021incollaborationwiththeUKCarbonCaptureandStorageResearchCentre(UKCCSRC),JonGibbinsoftheUniversityofSheffieldandBEIS.Somekeymessagesfromtheworkshopwere:•Carboncapturewasseenbymostparticipantsashavinggreaterpotentialtodecarbonisethaneitherfuelswitchingorprocessmodification.Although,itshouldbenotedthattheseresultswereobtainedfromattendeesofaneventrelatingtocarboncapture,soattendeesmaybemorelikelytoviewitpositivelyasadecarbonisationapproach.•Solvent-basedtechnologieswithimprovementswereseenasbeingthemostpromisingnextgenerationcarboncapturetechnology.•Mostattendeesanticipateddeploymentofcarboncapture,andotherdecarbonisationtechnologies,by2030.•Themajorityofparticipantsanticipatedcarboncapturetechnologiesbeingcapableofcapturingmorethan90%oftotalemissionsfromtheirplant.•‘Falsestarts’inthecarboncaptureindustryhavebeenasourceoffrustrationandhavethepotentialtoundermineinvestorconfidence.Preparedfor:DepartmentforBusiness,EnergyandIndustrialStrategyAECOM9NextGenerationCarbonCaptureTechnology2.Introduction2.1TheProjectCarboncaptureutilisationandstorage(CCUS)isapriorityareaoftheUKGovernment’sTen-PointPlanforaGreenIndustrialRevolution.Insupportoftheplan,BEISmustdeliverthe£1billionNetZeroInnovationPortfolio(NZIP)betweenApril2021andMarch2025.ThisrequiresresearchintoadvancedcarboncapturetechnologiestopromotecosteffectiveCO2emissionreduction.AECOMhasbeenappointedbyBEIStoconductareviewofnextgenerationcarboncapturetechnologiesandatechnoeconomicanalysisofselectedoptionstobenchmarkthemagainstabasecaseofcurrentstateoftheartaminesolventtechnology.Thereviewwillconsiderthepotentialapplicationofcarboncapturetechnologytodifferentindustrial,wasteandpowersites.Theoutputsoftheassignmentareintendedtoinformgovernmentdecisionsrelatingtotheprovisionofinnovationsupportfundingforcarboncapture,andfuturepolicyaroundCCUSdeployment.AECOMwillbeworkingwithProfessorJonGibbinsoftheUniversityofSheffieldwhohasbeenadirectoroftheUKCCSResearchCentresince2012.ThestudycommencedinAugust2021andwillbecompletedinApril2022.Themaindeliverablesare:•Areportonnext-generationcarboncapturetechnologies,focussingontechnologieswiththepotentialtobedeployedintheorderof1,000tonperdayscaleby2030(thisreport).Lesswell-developedtechnologiesthataremorelikelytobedeployedatscaleby2035,orlater,havebeenreportedon,butwithalowerlevelofdetail.•Anindustryworkshoptogatherfeedbackonbarriersandopportunitiesrelatingtothedevelopmentofcarboncaptureprojects,whichwillinformanupdatedreport.•Acasestudyofamobilecarboncapturede-riskingproject.•Atechnoeconomicmethodologyandbenchmarkingreport.•Atechnoeconomicanalysisofcarboncapturetechnologyoptionsconsideringdifferenttechnologiesanddifferentindustries.•Asecondindustryworkshoptopresentthefindingsofthestudyandallowcarboncapturetechnologyproviderstopresenttheirtechnologies.ThisreviewdoesnotcoverthetransportationandstorageofCO2,directaircapturetechnologies,hydrogenproduction,biochartechnologiesorcertainothertechnologiesdetailedinSection2.2.Forthecarboncapturetechnologiesreviewedconsiderationwillbegiventotheapplicationofthesetechnologiestodifferentindustrial,wasteandpowersites.Theaimistoincreaseunderstandingaroundwhichtechnologiesmaybebetter,orlesswell,suitedtodifferentapplications.Thereportconcludeswithareviewofopportunitiesandbarrierstoinnovationanddeploymentofcarboncapturetechnology,bothingeneralandforspecificindustrialapplications.Section2containsinformationonsafetyandenvironmentalhazardsrelatingtothetechnologies.Onlyhazardsthatarespecifictothetechnologiesbeingreviewedarementioned.HazardsthatwillbecommontoalltechnologiessuchasCO2handlingandhighenergyelectricalsystemsareoutsidethescopeofthisreview.2.2EstablishedCarbonCaptureApplicationsThereareexistingindustrialprocesseswhereemissionstreamscontainamuchhigherconcentrationofCO2thantheemissionstreamsfromprocesseslikecombustion,cementorsteelmanufacture.Thismeansthatitisrelativelysimple,andlow-cost,tocapturetheCO2.InthesesectorsCO2isalreadycapturedatsomesitesforuseinindustriessuchasenhancedoilrecovery(EOR),foodprocessinganddrinksmanufacture.However,muchoftheCO2willnotbecapturedduetoarangeoffactors,includinglimitationsinmarketdemandforCO2.IfthemarketforCO2changesduetothedevelopmentofCO2transportationandstorageinfrastructureandpaymentmechanismsforthecaptureandstorageofCO2,thenopportunitieswillbecreatedforincreasedlevelsofcaptureandstoragefromfacilitiesthatnaturallygenerateaconcentratedstreamofCO2.Theseindustriesofferlow-costCO2captureopportunitiesandwillbeimportantinrelationtoachievingcost-effectiveCO2emissionreductionsintheUK.However,thetotalmassofCO2availablefromsuchsourcesisveryPreparedfor:DepartmentforBusiness,EnergyandIndustrialStrategyAECOM10NextGenerationCarbonCaptureTechnologysmallincomparisontototalUKindustrialemissions.ThetechnologiesforcapturingtheCO2atthesesitesareimportantbutarenotthefocusofthisassignment.Abriefcommentaryinrelationtosomeindustrieswiththepotentialtoofferlow-costcarboncaptureisprovidedbelow.HydrogenandHydrogenDerivatives–Hydrogenisahigh-volumeindustrialchemicalusedinseveralexistingmanufacturingprocessesincludingfertiliserproductionandhydrocarbonprocessing.Inthefuturehydrogenmayalsobeusedtodecarboniseenergysupplytoindustrial,commercialanddomesticusersandinprovidingenergytothetransportsector.MostofthehydrogenintheUKiscurrentlymanufacturedbyreforminghydrocarbons,suchasnaturalgas.WhennaturalgasisreformedCO2isgeneratedandaproportionofthisemergesfromtheprocessinaconcentratedformmakingitrelativelysimpleandlow-costtocapture.CO2iscurrentlycapturedfromhydrogenproductionfacilitiesintheUKforuseinthefoodanddrinkindustry.ThemassofCO2capturedduringhydrogenproductioniscurrentlylimitedbythesizeofthemarketfortheCO2.InnovationinmethanereformingtechnologycouldallowmoreoftheCO2generatedtobecapturedatalow-costiftransportationandstorageinfrastructurewasdevelopedandpaymentforthestorageofCO2wasavailable.LowcarbonhydrogenproductionisnotconsideredfurtherinthisstudyasitisbeinginvestigatedbyotherworkstreamsbeingconductedonbehalfofBEIS.NaturalGasProcessing–NaturalgasreservescontainvaryingquantitiesofCO2inadditiontomethane.RemovalofCO2andothercontaminantsfromrawnaturalgashasbeenpractisedaroundtheworldformanydecades.ThereareestablishedtechnologiesavailableforseparationoftheCO2fromtherawnaturalgas.TechnologyselectionforseparatingCO2willdependonavarietyoffactorsincludingthecompositionandphysicalpropertiesoftherawnaturalgasstreamtoberefined.Therewillbescopeforinnovationinrelationtothevariousnaturalgasprocessingtechnologiesavailable.However,thisareaoftechnicalinnovationisnotthefocusofthisreport.TheCO2removedduringnaturalgasprocessingrepresentsapotentialsourceofCO2thatcouldbecaptured,atrelativelylow-cost,andstored.BrewingandDistilling–CO2isgeneratedduringthefermentationprocessesthattakeplaceinthemanufactureofalcoholicdrinksandbioethanol.TheCO2fromfermentersemergesatahighconcentration,andtherefore,itisrelativelyeasy,andlow-cost,tocapture.Thisprocessisalreadyconductedatsomebrewinganddistillingsites,withtheCO2beingusedforavarietyofindustrialpurposes.IfanadditionalmarketwascreatedforthestorageofCO2,thentheCO2generatedatmorebreweriesanddistilleriescouldbecapturedandusedorstored.ThevolumeofalcoholproducedlimitsthevolumeofCO2availablefromthissource.Furthermore,captureandstorageofCO2atsomesitesmayremainchallengingifthesitesaresmallandornotlocatednearCO2usersortransportationinfrastructure.Nonetheless,CO2fromfermentationrepresentsapotentialsourceofCO2thatcouldbecaptured,atrelativelylow-cost,andstored.BiogasUpgrading–Biogasgeneratedatanaerobicdigestionfacilitiesandlandfillgassitescontainsmethane,CO2andarangeofothercontaminants.Therawbiogasisupgradedtobiomethaneatsomesitestoallowittobeinjectedintothegasgrid.DuringtheprocessofupgradingthebiogasastreamofconcentratedCO2isgenerated.Thisstreamhasthepotentialtobecapturedatrelativelylow-cost.Thetechnologiesusedforbiogasupgradingincludewaterwash,aminesolvents,sorbentsandmembranes.Therewillbescopeforinnovationinrelationtobiogasupgradingtechnologies.DuetolimitationsinfeedstocksupplybiogasfacilitiesaresmallerscalethannaturalgasprocessingfacilitiesandsomeotherindustrialsourcesofCO2.Thiscouldprovideopportunitiesforthedevelopmentofmodularsystemsforbiogasupgradingandsomecompaniesalreadyhaveofferingsinthisarea.Forexample,in2018CarbonCleanannounceditstechnologywasupgradingmorethan500,000m3ofbiogasperday1.ThevolumeofbiogasgeneratedlimitsthevolumeofCO2availablefromthissourceandcaptureandstorageofCO2atsomesitesmayremainchallengingifthesitesaresmallandornotlocatednearCO2usersortransportationinfrastructure.Nonetheless,CO2frombiogasupgradingrepresentsapotentialsourceofCO2thatcouldbecaptured,atrelativelylow-cost,andstored.Preparedfor:DepartmentforBusiness,EnergyandIndustrialStrategyAECOM11NextGenerationCarbonCaptureTechnology2.3CostReductionthroughCommercialDeploymentFormanycarboncaptureprojectsthelow-costofemittingCO2andthelackofCO2transportandstorageinfrastructurearemorefundamentalbarrierstodeploymentthantheavailabilityofsuitablecarboncapturetechnology.However,withincreasingconcernsabouttheclimateemergency,thecommercialviabilityofcarboncaptureandstorageprojectsisexpectedtoimprove.Costreductionincarboncaptureisimportantinrelationtoachievinglargescaledeploymentoftechnologiesinthesector.Boththedevelopmentofnewprocesses,andtheadvancementofexistingsystemsthroughthevariousstagesofcommercialdeployment,areimportantelementsinallowingcostreductionstobeachievedinthecarboncapturesector.Figure1showsascaleofcommercialreadinessnexttoatechnologyreadinessscale.Thefiguredemonstratesthestagesbetweeninitialcommercialdeployment,thatusuallyoccurswhentechnologiesarearoundTRL8or9andbecomingamaturecommercialassetclass.Figure1Relationshipbetweentechnologicalandcommercialreadiness1Foralltechnologytypes,costreductionsareprimarilyachievedbyprogressingthroughthecommercialreadinessscale,aspresentedinFigure1.DevelopingatechnologytoahighTRLisrequiredforareliablebasecosttobeestablishedandallowtheprocessofcostreductiontocommence.Advancingthroughthestagesofcommercialreadinessthenallowscostreductionstooccurfromimprovementstoaspectsincludingsub-components,manufacturingtechniques,maintenancestrategiesandfinancingcosts.Onceagiventechnologyhascompletedtheearlystagesofsuccessfulcommercialdeploymenttechnicallyimprovedsubcomponentscanbedevelopedbymovingthesesub-componentsthroughthevariousTRLstages.Thisallowscostreductionstooccurinthebasetechnologyasaresultoftheintegrationoftheimprovedsubcomponents.Somesolvent-basedcarboncapturesystemshavesuccessfullycompletedtheearlystagesofcommercialdeploymentforpostcombustioncarboncapture,equivalenttoCRI3or4onthescaleabove.Someexamplesinclude,Fluor’sEconoaminetechnologyusedattheBellinghamgaspowerplant,theShellCansolvtechnologyusedattheBoundaryDamcoalpowerplantandMitsubishiHeavyIndustriesKMCDRProcessusedatthePetraNovacoalpowerplant.Thesetechnologieshaveanadvantageinrelationtolargescaledeploymentby2030.IthasbeendemonstratedthatitispossibletoreliablyseparateCO2fromavarietyofgaseousstreamsusingsolventsandnowthereareavarietyofopportunitiestoinnovateindifferentpartsoftheprocess;incrementalcostreductionsarelikelytofollow.EarlierstagetechnologiessuchassomenovelabsorberdesignsortheNETPowertechnology,havenotyetdemonstratedlongtermreliableoperationinacommercialsetting.Costpredictionsandthepotentialforcostreductionsforthesetechnologiesmustbeconsidereddifferently.Preparedfor:DepartmentforBusiness,EnergyandIndustrialStrategyAECOM12NextGenerationCarbonCaptureTechnologyForcarboncapturetherearemanytechnologiesatapre-commercialstageofdevelopment,equivalenttoCRI1or2onthescaleabove.Astimeprogressessomemayoffercostsavingsinindustrialapplications,andsomewillneverprogresstoacommercialsetting.Thisstageofthedevelopmentandinnovationprocessischallengingfornewtechnologies,itissometimesreferredtoas‘thevalleyofdeath’.Evenwherenewtechnologyconceptswilloffercostsavingsinthelongterm,theymaybemoreexpensiveduringtheinitialstagesofcommercialisationduetogreaterperceivedriskandtheimpactthiswillhaveoncontingenciesandfinancingcosts.Theleveloffundingrequiredtofullydemonstrateandcommercialiseanewtechnologyissignificantandshouldnotbeunderestimated.Between2004and2020theUKhasGovernmentprovidedover£300millionforCCUSresearchdevelopmentanddemonstration3.Understandingthevalueof,anddifferencebetween,technologydevelopmentthroughincrementalimprovementsandthedevelopmentofnewconceptsisimportantinrelationtopromotingefficientinnovationanddevelopmentinthecarboncapturesector.Thereisvalueinincludingbothaspartofaninnovationprogram.Thisreportcoverstechnologiesthathaveestablishedcommercialplatformsandareprogressingthroughincrementalimprovementstosubsystems,newtechnologiesthathaveyettodemonstratesustainedreliableoperationinacommercialsetting,aswellastechnologiesthatdonotfitclearlyintoeitherofthesecategories.2.4DeploymentRiskOptimisationCommercialdeploymentprovidesvaluableopportunitiesforinnovationandaccelerationofthedevelopmentprocess.However,prematurecommercialdeploymentbringsariskofdelays,failingprojects,inefficientuseoffundingandreputationaldamagetoatechnologyandorindustrysector.Thissectiondiscusseswhatisrequiredforatechnologytobereadyforcommercialdeployment.Whencommerciallydeployingnewtechnologiesandprogressingalongthecommercialreadinesspathway,abalanceisrequiredinrelationtothelevelofrisktakentopromoteinnovationinthetechnology.Anexcessivelylowriskapproachislikelytoresultinlackofinnovationandtheslowdevelopmentoftechnologies.Similarly,anexcessivelyhigh-riskapproachmayalsoresultintheslowdevelopmentoftechnologiesduetofailedprojects.Whiletherecanbeaplaceforhigh-riskprojectsinaninnovationportfolio,itisimportantthatthelevelofriskassociatedwithprojectsiswellunderstood.Failingprojectsdivertmoneyawayfromotheropportunitiesthatcouldhaveprovidedusefulinnovation.Furthermore,theycanadverselyimpacttheperceptionofthetechnologyintheinvestmentcommunityandinthepublic.ThisconceptisillustratedbelowinFigure2.Figure2BalanceofrisktopromotetechnologicalinnovationTheriskassociatedwithadevelopmentofaprojectthatusesanewtechnologyisproportionaltoadiverserangeoffactors.Thesefactorswill,oratleastshould,beassessedbyorganisationsmakingsignificantinvestmentsintheproject.Understandingthesefactorsforagivenprojectallowsanassessmenttobemadeastothelevelofassociatedrisk.Factorstoconsiderinrelationtotheriskofdevelopingcarboncaptureprojectsareprovidedbelow.Preparedfor:DepartmentforBusiness,EnergyandIndustrialStrategyAECOM13NextGenerationCarbonCaptureTechnology2.4.1TechnologyRiskFactorsPotentialimpactonmainprocessplant–Differentcarboncapturetechnologieshavedifferentpotentialtoimpactthemainprocessplant.Ifthemainprocessplantcancontinueoperationwithoutthecarboncaptureelementoftheprocess,thentheriskofthemainprocessnotbeingabletooperateisavoided.Abilitytoreverttoaknownworkingoption–iftheinnovationcanbereplacedbysomethingthatisknowntoworkifitfailsthentherisksaregreatlyreduced,withremediationcostsanddowntimelikelytobeknowninadvance.Examplesmightbetryingnewsolventinaplantdesignedtouseaknownone,orrunningwithalowercostormoreefficientsub-componentbutleavingtheoptiontoreplaceoraddaprovenworkingalternativeifrequired.Relativescaleofreferenceplant-Scale-upisasignificantchallengeinrelationtothecommercialisationofsomenewtechnologies.Rapidscale-uptothenaturalupperlimitofatechnologyisgenerallybeneficialinrelationtoeconomiesofscaleandallowingcostreductionstotakeplace.However,rapidscale-upusuallyincreasestechnicalriskassociatedwiththeprojectandprematurescale-uphasledtoprojectfailuresinotherindustries.Astructuredapproachconsideringarangeoffactorsisrequiredtodetermineappropriatescale-upincrementsforanygiventechnology.Whilesuccessfullyscalingupnewtechnologiesisasignificantchallenge,itisonethathasbeenovercomebyallexistinglarge-scaleprocessindustries.Differencesininputs–Seeminglysmalldifferencesininputstoaprocesscanhaveanimpactonitsperformance.Formanycarboncapturetechnologiessmalldifferencesinthecompositionofthefeedstockgashavethepotentialtoimpacttheprocess.Degradationratesforsolventsandsorbentsareimpactedbythecompositionoftheincominggasstream.Directdepositionorfoulinghasalsobeenobservedtobeanissue.Thedegreetowhichademonstrationenvironmentisrelevanttootherapplicationsofatechnologywillbeasubjectfordebateascarboncapturetechnologiesaredeployedindifferentapplications.Technicaldifferencesnotrelatingtoscale-uporfeed–Technicaldifferencesbetweentheproposedplantandthereferencefacilitymaycontributetotechnicalrisk.Technicalreviewandunderstandingofthedifferencesbetweentwofacilitiesisrequiredtounderstandthelevelofprocessriskassociatedwiththechange.Differencesmayrelatetothemainprocessunitsorauxiliarypartsoftheprocess.Requirementforflexibleoperation–Theproposedmodeofoperationforacarboncaptureplantmaycontributetotheleveloftechnicalriskassociatedwithaproject.Someapplicationsmayrequirestart-stopoperationorrapidcapacityramprates.Differentcarboncapturetechnologieswillhavedifferentabilitiestoaccommodateflexibleoperation.Performanceassumptions–Theleveloftechnicalriskassociatedwithaprojectisdirectlydependantontheassumedperformanceoftheproposedplantrelativetoothercomparableplants.Moreconservativefinancialmodelassumptionsinaproposedcommercialplantreducetheriskoftheassumptionsnotbeingmet.Differenttypesofunderperformancewillhaveadifferentlevelofimpactonthecommercialperformanceofafacility.Forexample,a10%increaseinenergyconsumptioncanhaveadifferentfinancialimpacttoa10%increaseinconsumablesusageratesora10%changeinplantavailability.Foranyprocessthelikelyreasonsfor,andimpactof,underperformancemustbeanalysedandunderstood.Priortocommercialdeploymentadetailedtechnicalassessmentofperformanceassumptionsshouldbeundertakenbytheorganisationmakingtheinvestmentoranindependentthirdpartywithappropriateskills.Thisprocesscanbereferredtoasduediligence,andeffectiveduediligenceiscriticalinrelationtounderstandingtheriskassociatedwithcommercialdeploymentofnewtechnologies.Theduediligenceprocessunavoidablyrequiresdetailedexaminationandunderstandingoftheproposedprocessandtheperformanceofreferenceprojectsandordemonstrationplants.Ifsuitabletestdataisnotavailable,thentheonlyconclusioncanbethattheperformanceisnotproven.Theexistenceofademonstrationplantdoesnotbyitselfmeanthatatechnologyhasbeensuccessfullydemonstrated.Asmallbutthoroughlyrealisticdemonstrationprojectthathasshowngoodperformance,withhighavailabilityoverasustainedperiod,inasimilarenvironmentwillbeofmuchhighervalueindemonstratingviabilitythanalargedemonstrationplantthatoperatedpoorly,anegativeindicationofviability,orthatisunabletoprovideoperationalinformation,asituationthatalsocallsintodoubtviableoperation.Preparedfor:DepartmentforBusiness,EnergyandIndustrialStrategyAECOM14NextGenerationCarbonCaptureTechnology2.4.2OtherRiskFactorsThereareawiderangeoffactorsthatimpactthecommercialviabilityofaprojectthatdonotrelatedirectlytothecoreprocesstechnology,examplesofwhicharelistedbelow.Theseneedtobeconsideredinconjunctionwiththeassumedperformanceandtrackrecordofthetechnology.•Capitalrequired•Rateoffinancialreturn•Externaleconomicfactors.Forexample,priceofproduct,priceoffeedstockandcostofemittingandstoringCO2•Competitionfromothertechnologies•Availabilityofutilitiesandserviceconnections–includingCO2transportinfrastructure•Contractualriskallocation•Trackrecordofprojectparticipantsandavailabilityofrequiredskills•Planningandpermitting2.5CategorisationofTechnologiesThechallengesofpredictingthefutureandcategorisingmultiple,variedtechnologies,withlimitedinformationmustbeacknowledged.Onechallengeisthatthescale-upprocessfordifferenttypesoftechnologyisverydifferent.Somesolventsmaybeabletouseexistingtechnologyplatforms,whileprocessessuchasmembranesorfuelcellsmaybemoresuitedtomodularconstruction.Othertechnologiesrequireasingleunittobescaled-upinincrementswithsuccessfuloperationdemonstratedateachstage.Thenextgenerationtechnologiesthataremostlikelytobedeployableintheorderof1000tpdscaleby2030havebeenclassifiedasDemonstrationStagetechnologiesinthisreport.Technologiesthatareconsideredmorelikelytobedeployableataround1000tpdscaleby2035orlaterhavebeenclassifiedasDevelopmentStagetechnologies.ResearchStagetechnologiesareatanearlierstageofdevelopment.OfthetechnologiesinthisreportthathavebeenclassifiedasDevelopmentorResearchStage,thepotentialexistsforsomeofthemtobedeployedatscaleby2030orearlier.Forexample,somenewsolventsbeingresearchedatlabscalehavethepotentialtobetestedandthenaddedtoexistingcarboncapturefacilities.Beingincludedinresearchordevelopmentcategoryinthisreport,ratherthanthedemonstrationcategory,shouldnotbeviewednegativelyinrelationtothelong-termfuturepotentialofanytechnology.DetailsofthecategorisationusedforthedifferenttechnologiesinthisreportareprovidedinTable2.Foreachcategory,allconditionsmustbemet.Preparedfor:DepartmentforBusiness,EnergyandIndustrialStrategyAECOM15NextGenerationCarbonCaptureTechnologyTable2.TechnologycategoriesusedinthisreportCategoryDescription1.DemonstrationstageLikelytobedeployableatascalein•Incrementalimprovementsto,ornewapplicationsof,atechnologyplatformthatistheorderof1000tpdby2030.broadlyconsistentwithatleastTRL8andhasdemonstratedsuccessfulcommercialdeploymentforatleast12monthsatasimilarscale.2.DevelopmentstageMaybedeployableatascaleinthe•Thetechnology,orapreviousiterationofthetechnology,hasoperatedatleast50orderof1000tpdby2035tpdofCO2scale,foratleast12months,underrepresentativeconditions.3.Researchstage•Constructioncommenced,orfullfundingreceived,foraprojectinasimilarapplicationofatleast200tpdscale.•BroadlyconsistentwithTRLs5-8.•Thetechnology,orapreviousiterationofthetechnology,hasoperatedatleast5tpdofCO2scaleinasimilarapplication,and;•Currentoperationofdemonstrationprojectofatleast10tpdCO2captureor,orfullfundingreceived,foralargerproject.•BroadlyconsistentwithTRLs1-4.WhereTRLsarementionedinthisassignmentwehaveusedtheNationalEnergyTechnologyLaboratorydefinitionsprovidedinTable3.Table3.SimplifieddefinitionsofTechnologyReadinessLevel(TRL)(IEAGHG2014)forCCStechnologiesCategoryTechnologyReadinessLevelDescriptionDemonstration9NormalCommercialService8Commercialdemonstration,fullscaledeploymentinfinalform7Sub-scaledemonstration,fullyfunctionalprototypeDevelopment6Fullyintegratedpilottestedinarelevantenvironment5Sub-systemvalidationinarelevantenvironment4SystemvalidationinalaboratoryenvironmentResearch3Proof-of-concepttests,componentlevel2Formulationoftheapplication1Basicprinciples,observed,initialconceptPreparedfor:DepartmentforBusiness,EnergyandIndustrialStrategyAECOM16NextGenerationCarbonCaptureTechnology2.6CaptureLevelForcarboncapturetechnologies,captureleveliscommonlydefinedasthepercentageofCO2intheincominggasstreamthatiscapturedbythetechnology.Thereisadebateastowhattheminimumcapturelevelfornewcarboncaptureplantsshouldbe.Thedebatealsorelatestothedevelopmentofnewtechnologiesbecausesometechnologieshaveacapturelevelthatislimitedatalowerlevelbecauseoftheprincipalsusedtomaketheseparation.Ononesidethereisastrongargumentthatallcarboncaptureplantsshouldhaveahighcapturerate,forexample,greaterthan95%.Withoutahighcapturerate,asignificantmassofCO2emissionswillremainand,tomeetnetzerotargets,theCO2willneedtoberemovedfromtheatmospherebyothermeans.TherearelimitedothermeansavailableforremovalofCO2fromtheatmosphere.Ifdirectaircarboncaptureandstorage(DACCS)istobeused,logicwouldsuggestthatwhereamoreconcentratedstreamofCO2isavailableitwouldbelesscostlytoabateatthestreamatsourceratherthanindirectlythroughfurtherdirectaircapture.UsersofcarboncapturetechnologiesarelikelytohavetopayforfossiloriginCO2emissionsthatarenotcapturedbythecarboncaptureequipment.Ifpaymentlevelisbasedonanet-zeroemissionprinciplefortheindustry,thenthepricepaidforresidualCO2emissionscouldbesetatthecostofremovingCO2fromtheatmospherebyothermeans.Asthishasarelativelyhighcost,thiswouldencouragecapturetechnologieswithahighcapturerate.TheCommitteeforClimateChangecostestimatesfor2035indicatethatDACCSmaycostbetween£170and£240/tCO24.Ontheothersideofthedebatethecostofincreasingcaptureratesinsomecarboncaptureprojectscanbehighlynon-linear.ThismeansthattheunitcostofcapturingCO2(£/tonne)cangreatlyincreasewhentherequiredcapturelevelpassescertainpoints.ThereisariskthatacceptingnothingotherthanahighcapturelevelcouldreducetheoverallmassofCO2capturedasprojectswouldbecomeprohibitivelyexpensiveandorcomplexandarelesslikelytobebuiltasaresult.Inthisprojectthevalueoftechnologiesbeingabletoachieveahighcapturelevelisrecognised,butnominimumcapturelevelcriterionhasbeensetforqualificationasanextgenerationtechnology.Itispossiblethatatechnologywithalimitedcapturelevelcouldmakeavaluablecontributiontothecarboncaptureindustrybyofferingothersignificanttechnicaloreconomicadvantages.Preparedfor:DepartmentforBusiness,EnergyandIndustrialStrategyAECOM17NextGenerationCarbonCaptureTechnology3.DemonstrationStageTechnologiesThissectionprovidesinformationaboutselecteddemonstrationstagetechnologies.Thefocusisontechnologiesthatareinnovativeandatastageofdevelopmentthatmeansitislikelythattheycouldbedeployedat500-1000tpdscaleby2030.Beingdeployedby2030meansallaspectsofsuccessfultechnologydemonstration,projectdevelopment,consentsandconnectionagreements,planningandpermitting,outlinedesign,procurement,financing,design,construction,commissioningandtestingbeingcompletepriorto2030.3.1OverviewofTechnologiesReviewedTable4containsanoverviewofthedemonstrationstagetechnologiesreviewedinthissectionofthereport.Furtherinformationoneachtechnologyisprovidedinsubsequenttables.Thedemonstrationstagetechnologiesareallamine-basedsolventsystems.Table4.DemonstrationstagetechnologiesreviewedTechnologyProvidersOverviewSolvent-BasedSystemsMitsubishiHeavyIndustriesMHI’sKS-1solventwasusedatthe4700tpdPetraNovaprojectinTexas,USA.MHI’snextShellgenerationsolventisKS-21.Thenewsolvent,alongwithprocessimprovements,isFluoranticipatedtoofferincrementalimprovementsoverplantsusingKS-1.CarbonCleanSolutionsShell’sCansolvtechnologyhasbeendemonstratedatscaleatthe2740tpdBoundaryDamsiteinCanada.ThenextgenerationdeploymentislikelytoincludeEfWapplications.AkerCarbonCaptureApreviousiterationofFluor’sEconoamineFGPlustechnologywasdeployedat320-350tpdscaleatBellinghamGasPowerPlant,Massachusetts,USA.Thenextgenerationtechnologywillattempttoemployenergyimprovementfeaturesatlargescale.CarbonCleanSolutions’proprietaryaminehasbeenusedatthe160tpdscaleinIndiaonacoalplant.ThetechnologyutilisestheirproprietaryAPBSadvancedsolvent.Additionally,CarbonCleanhasofferingsofbespokelarge-scalecarboncaptureplantsandsmallermodularcarboncaptureunits.AkerCarbonCapturedesignedanddeliveredthe80,000tpa(~240tpd)CO2captureamineplantattheTCMfacilitywhichhasbeenincontinuousoperationsinceitsopeningin2013.Aker’s‘JustCatch’technologyutilisestheirproprietaryS26advancedsolvent.Akerofferslarge-scalecarboncaptureplantstermed‘BigCatch’andsmallermodularcarboncaptureunitstermed‘JustCatch’.AkerhasplansforfutureprojectsintheEfWandcementsectors.Preparedfor:DepartmentforBusiness,EnergyandIndustrialStrategyAECOM18NextGenerationCarbonCaptureTechnology3.2Solvent-BasedCaptureManyofthewell-developeddemonstrationphasetechnologiesarebasedonaminesolvents.Whilethereisvaluefromaninnovationperspectiveindevelopingarangeoftechnologiesbasedondifferentprinciples,itisimportanttorememberthatwithinthecategoryofamine-basedsolutionsthereareawiderangeofdifferentopportunitiesforinnovation.Collectively,innovationsacrosstheseareashavethepotentialtooffersignificantbenefits.Ifasupportivecommercialenvironmentforthedeploymentofcarboncaptureprojectsweretobeestablished,furtherdevelopmentofthesetechnologiescouldbeexpected.Fromthevarietyofinnovationoptionsavailableinamine-basedsystemsmanyhavethepotentialtoofferagoodbalancebetweenrisk,investmentrequirementsandpotentialbenefits.Asummaryofsomeofthemainareasforinnovationinaminesystemsisprovidedbelow.Opportunitiesforinnovationinamine-solvent-basedsystemsarebeingexploredbymanyofthekeysuppliers.DevelopmentsmadebyspecificsuppliersaredescribedinthesubsequenttablesinSection3.NewApplications-Whenanexistingaminecapturesystemisappliedtoanewprocess,oranemissionstreamwithdifferentproperties,changestothesystemwillberequired.Thesechangescreateopportunitiesforvaluablelearningandinnovation.Areasthatrequireattentionincludepre-treatmentoftheincominggasstream,absorberdesign,solventbehaviourduetoexposuretodifferentcontaminantsandsupplyofheat,coolingandelectricity.Thereisadegreeofriskinassumingthatanaminesystemthathasdemonstratedreliableoperationinoneapplicationwilloperatereliablyinanotherapplication,evenifwellthoughtthroughandsystematicmodificationsaremade.Scale-Emissionstreamsfromdifferentindustriescanbeverydifferentinscale.Whenanexistingaminecapturearrangementistobeappliedatadifferentscale,eitherlargerorsmaller,changestothesystemarerequired.Therewillbesub-systemswheretheoptimumdesignchoiceisimpactedbythescaleoftheplant.Applicationofexistingtechnologiesatdifferentscalescreatesopportunitiesforinnovation.PlantAvailability-Demonstrationofsustainedoperationwithhighavailabilitycanbeoverlookedasaninnovationpriority.However,demonstratingreliableoperationisvaluableinrelationtocommercialviability,buildinginvestorconfidenceinasectorandattractingfundingforfuturegenerationsofatechnology.Constructionofalarge-scalecarboncapturedemonstrationprojectthatfailstooperatereliablywouldbeamajorsetbacktothedevelopmentofaCCUSindustryintheUK.SolventChemistryandSolventHealthManagement-Innovationinaminesolventchemistryisanactiveareaofresearchwhereimprovementshavebeenmadeandfurtherimprovementsareanticipated.Solventchemistrycanbechangedbyusingdifferentamines,throughtheadditionofadditivesorbyacombinationofbothtechniques.Thereareabroadrangeofcharacteristicsthatcontributetotheoverallsuitabilityofasolventincludingsafety,environmentalcharacteristics,reclaimability,cost,degradationrates,equilibriumCO2capacity,heatofregeneration,corrosionpotential,heatcapacityandviscosity.Thetestingofsomevitalcharacteristics,suchasreclaimabilityandoverallsolventhealthmanagementrequireslongtermtestingwithexposuretoaspecificemissionstreamandsetofprocessconditions.Theuseoflarge-scaletestfacilitiesincreasesconfidenceintheresultsobtainedandfacilitatesscientificresearchintophysicalandchemicaldegradationmechanismsofsolventsinCO2capturefacilities.Thereareopportunitiesforinnovationinrelationtotheeffectivemonitoringandmanagementofanaminesolventwithagivencomposition.Solventmanagementincludesthedesignofreclaimingsystems,monitoringchangestosolventchemistryduringprocessoperation,alterationofprocessconditionstoimprovesolventlifetimeandperformanceandmanagementofadditives.ProcessImprovements-Amine-basedcarboncapturesystemsarecomplexprocessplantsandthereareopportunitiesforprocessplantimprovementsinseveralareas.Theseincludeplantdesignmodificationstoincreaseavailability,thermodynamicchangestoreduceenergyconsumption,costreductions,increasedintegrationwiththemainprocessplant,operationalflexibility,controlsystemimprovementsandreductioninplantfootprint.Flue-gasPre-treatment-Therearemanyopportunitiesforinnovationinrelationtooptimisationoffluegaspre-treatmentsystemswhenaminebasedsolventsystemsareappliedtonewapplications.Fluegaspre-treatmentequipmentissometimesomittedindiagramsofcarboncaptureplants,butitisavitalpartoftheprocess.Preparedfor:DepartmentforBusiness,EnergyandIndustrialStrategyAECOM19NextGenerationCarbonCaptureTechnologyAbalanceisrequiredinrelationtotheleveloffluegaspre-treatmentapplied.Areductionincontaminationlevelswillbeofbenefittothecaptureplantbutwillinvolvethepurchaseandoperationofadditionalprocessequipment.Prudentdesignofgaspre-treatmentequipmentisanimportantpartofplantdevelopmentastheimpactof,andcosttocontrol,differentcontaminantswillvary.Furthermore,theoptimumapproachtogaspre-treatmentislikelytobedifferentdependingonwhetheracaptureplantisretrofittedtoexistingequipmentorbuiltaspartofanew-buildproject.Theeffectivenessofsolventmanagementtechniquesandsolvent-relatedoperatingcostsunderdifferentfluegasconditionswillalsobeanimportantfactor.Thewideravailabilityofdatainthisareawouldallowbetterdecisionstobemadeinrelationtotheselectionoffluegaspre-treatmentequipment.ConstructionImprovements-Thereareopportunitiesforinnovationinrelationtotheconstructiontechniquesusedtobuildamine-basedcaptureplants.Large,highcost,componentssuchasabsorbercolumnsordirectcontactcoolerspresentopportunities.Theseincludetheuseoflowercostmaterials,newconstructiontechniques,understandingofembeddedCO2orbetterselectionofsite-builtorprefabricatedunitsfordifferentscalesofplant.Modularisation-Modularisationofsomeorallortheprocessplantisaconceptthathasthepotentialtobevaluableandisreceivingattentionfromseveralmanufacturers.Modularisationcreatesopportunitiesforcostreductionsthroughallowingfasterbuildtimes,deliveryondemand,fabricationinadedicatedmanufacturingfacilityandsimplifiedfoundationandutilitysystemdesign.Preparedfor:DepartmentforBusiness,EnergyandIndustrialStrategyAECOM20NextGenerationCarbonCaptureTechnology3.2.1MitsubishiHeavyIndustryTable5.MitsubishiHeavyIndustryAdvancedKMCDRProcess(KS-21Solvent)ParameterDescriptionNameTechnologyOverviewAdvancedKMCDRProcessStatedAdvantagesThetechnologyisthenextgenerationofMHI’sKMCDRProcess,anamineprocessusingtheKS-1solvent.ThenewtechnologyusesKS-21,whichisanewaminesolventformulationfromMHI.5Lowervolatility,greaterstabilityagainstdegradation,lowerOPEXversusKS-1andotheramines.5TargetIndustrialSectorsPostcombustioncapture(PCC)fluegasapplicationsFinancialInformationQuantifiedfinancialinformationisnotavailable.However,CO2capturecostsavingsCurrentDemonstrationStatuswouldbeexpectedifthepotentialadvantagesarerealisedandarenotoutweighedbyanyincreasetosolventcost,shoulditoccur.SafetyorenvironmentalhazardsOpportunitiesforandbarrierstoApreviousiterationofthistechnologywasusedatthePetraNovacoal-firedpowerplantimplementationandinnovationinTexas,USA.ThePetraNovaplantusedtheKS-1solventandwasabletomeetthedesigncapturerateof4,700tpd.ThecaptureplantranfromDecember2016toMayTechnologybackersandfunding2020.Itwasshutdownduetoanumberoffactorsthatincludedthelowoilpricesduringsourcesthepandemic,sincethefinancialviabilityoftheprojectdependsonusingtheCO2forAbilitytobedeployedat1000tpdenhancedoilrecovery.6CO2captureby2030TestingoftheAdvancedKMCDRProcessattheTechnologyCentreMongstad(TCM)inMongstad,NorwaybeganinMay2021.5Limitedreleaseofaminesandaminedegradationproductsiscommontoallamine-solvent-basedcaptureplant.Thetechnologywillbeperceivedaslowerriskcomparedtosomeotheroptionsasitisadevelopmentofanexistingtechnologyandscale-upisnotrequired.Lessonslearnedfrompreviousiterationsofthetechnologycanbeappliedtothis,andfutureiterations,ofthetechnology.Opportunitiesexisttodemonstratethetechnologyonawidervarietyofemissionstreams.KansaiElectricPowerCompany(KEPCO).NETLisprovidingfundingforaFEEDstudyattheUniversityofIllinoisfortheretrofitofthePrairieStateGenerationCompany’scoal-firedpowerstation.Likelytobedeployableat1000tpdscaleby2030subjecttosatisfactorypilotscale,orothertesting.DraxhasagreedtolicensetheAdvancedKMCDRprocessattheirbiomasspowerstationintheUK.7Preparedfor:DepartmentforBusiness,EnergyandIndustrialStrategyAECOM21NextGenerationCarbonCaptureTechnology3.2.2ShellCansolvDescriptionTable6.ShellCansolvShellCansolvParameterNameShell’sCansolvtechnologyutilisesthenextgenerationoftheirproprietaryCansolvTechnologyOverviewadvancedamine-basedsolvent.StatedAdvantagesTargetIndustrialSectorsReducedenergyuse,increasedabsorptionrate,lowervolatility,decreasedsolventFinancialInformationdegradationrateandimprovedsolventHSEcharacteristicsversusotheramines.CurrentDemonstrationStatusPostcombustioncapture(PCC)fluegasapplicationsAcarboncapturecostof$58/t-CO2(£42/t-CO2)wasusedbytheUSDepartmentofEnergy(DOE)fora90%CO2captureCansolvPCCprocessonacoal-firedpowerplant.8CO2capturecostsavingswouldbeexpectedifthepotentialadvantagesarerealised,lessonslearnedapplied,andadvantagesarenotoutweighedbyanyincreasetosolventcost.ApreviousiterationofthistechnologyisusedatBoundaryDamCoalPowerStation,Saskatchewan,CanadaShellCansolv1,000,000tpa(~3,000tpd)CO2captureOperationalsinceendof2014,butwithoperationalissuesreportedandavailabilityatonly40%in2015,relativetoatargetof80%.TheplantisoperatedbySkanskaPower.Theirlatestblog,July2021,indicatesthatatotalof4,166,419t-CO2hasbeencapturedsinceoperationalstart-up,thisiswellbelowthedesign1Mtpawhichwouldleadtobetween6Mand7Mt-CO2tohavebeencaptured.TotalCO2Capturein2020wasreportedas729,092tonnes,over70%ofthedesignvalue9,andnon-fuelOPEXof$20/tCO2wasreportedbyGCCSIforBD3.SafetyorenvironmentalhazardsFortumOsloVarmeEfWPlant,Oslo,NorwayOpportunitiesforandbarrierstoShellCansolv400,000tpa(~1,200tpd)CO2captureimplementationandinnovationProjectiscurrentlyatpilotstagehavingcompleteda9-monthtrialcapturing3.5tpdin201910,thesuccessofthepilothasledtoDNVGLapprovalasaqualifiedtechnologyforTechnologybackersandfundingfull-scaledemonstration.11ItisnotedthatathermalreclaimingunitwasnotinstalledonsourcesthepilotandinsteadtheconcentrationofdegradationproductswasmonitoredbyUPLC-MS(ultra-performanceliquidchromatography-massspectrometer)analysis.12TheAbilitytobedeployedat1000tpdNorwegiangovernmenthavepledged50%fundingforthefull-scaleprojectconditionalCO2captureby2030ontheother50%fromtheEU,forwhichithasbeenshortlistedasofApril2021.Iffundingisreceivedfulloperationisexpected2024.13Limitedreleaseofaminesandaminedegradationproductsiscommontoallamine-solvent-basedcaptureplant.Thetechnologywillbeperceivedaslowerriskcomparedtosomeotheroptionsasitisadevelopmentofanexistingtechnologyandscale-upisnotrequired.Lessonslearnedfrompreviousiterationsofthetechnologycanbeappliedtothis,andfutureiterations,ofthetechnology.Opportunitiesalsoexisttodemonstratethetechnologyonawidervarietyofemissionstreams.Shellhasexperiencefromthefirstlarge-scaleamine-basedcaptureplantatBoundaryDamthusanopportunitytoapplylearnings.ShellCansolvtechnologybackersincludeTechnipwhomtheyhavepartneredwithtoofferfullEPCservicesfortheircarboncapturetechnology.ShellCansolvisreceivingfundingfromtheNorwegiangovernmentfortheFortumEfWproject.Likelytobedeployableat1000tpdscaleby2030subjecttosatisfactorypilotscale,orother,testing.Preparedfor:DepartmentforBusiness,EnergyandIndustrialStrategyAECOM22NextGenerationCarbonCaptureTechnology3.2.3FluorEconoamineFGPlusTable7.FluorEconoamineFGPlusParameterDescriptionNameTechnologyOverviewFluorEconoamineFGPlusPotentialAdvantagesFluor’stechnologyutilisestheirnextgenerationproprietaryEconoamineFGPlusadvancedsolvent.Fluorhavealsodevelopedawater-leanaminesolvent.Reducedenergyuse,increasedabsorptionrate,lowervolatility,decreasedsolventdegradationrateandimprovedsolventHSEcharacteristicsversusotheramines.TargetIndustrialSectorsPostcombustioncapture(PCC)fluegasapplicationsFinancialInformationQuantifiedfinancialinformationisnotavailable.However,CO2capturecostsavingsCurrentDemonstrationStatuswouldbeexpectedifthepotentialadvantagesarerealisedandarenotoutweighedbyanyincreasetosolventcost,shoulditoccur.TheFluorwebsiteclaimsthattheFluorhascarboncaptureexperiencewithover30licencedplants14andistheonlytechnologytobecommerciallyprovenforCO2recoveryfromgas-turbineexhausts.15Detailsofthe30licencedplantsareavailableinIEAGHGreportNumberPH4/33andincludeoperationalplantsrangingfrom2–320tpdCO2captureandnolongeroperatingplantsrangingfrom25–1,000tpdCO2capture.16The1,000tpdCO2captureplantwasagas-firedpowerplantinLubbock,Texasinthe1980sforenhancedoilrecoverybutisbelievedtobebasedonthepreviousiterationMEAsolvent.17ApreviousiterationofFluor’stechnologywasdeployedatBellinghamGasPowerPlant,Massachusetts,USAFluorEconoamineFGPlus320-350tpdCO2captureContinuouslyoperatedbetween1991and2005,withclosureduetoincreaseinnaturalgasprices.15,18E.ONWilhelmshavenCoalPowerPlant,Bremen,GermanyFluorEconoamineFGPlus70tpdCO2CaptureTheBATreviewforPCCindicatesthepilotoperatedforapproximately7000hoursintotalbetween2012and2015.19SafetyorenvironmentalhazardsFluordevelopedawater-leansolventin2016,in2019throughfundingfromUSDOEOpportunitiesforandbarrierstoandTCMthesolventsystemwasvalidatedatTCM’stestfacilities.Testresultsimplementationandinnovationinformationareavailableandshowimprovementsovertheirprevioussolventiterations.TestingwasconductedonbothTCM’sRFCCgasandCHPgas.20TechnologybackersandfundingsourcesLimitedreleaseofaminesandaminedegradationproductsiscommontoallamine-solvent-basedcaptureplant.Abilitytobedeployedat1000tpdCO2captureby2030Thetechnologywillbeperceivedaslowerriskcomparedtosomeotheroptionsasitisadevelopmentofanexistingtechnologyandlessscale-upisrequired.Lessonslearnedfrompreviousiterationsofthetechnologycanbeappliedtothis,andfutureiterations,ofthetechnology.Opportunitiesalsoexisttodemonstratethetechnologyonawidervarietyofemissionstreams.Fluor’stechnologybackersincludetheUSDepartmentofEnergywhohaverecentlyfundedFEEDfora4MtpacarboncaptureplantforaCoalPowerPlantinNorthDakota.21FluorCarbonCapturehas30licencedplants,detailsoflicenseesareavailableinIEAGHGreportNumberPH4/33.16Likelytobedeployableat1000tpdscaleby2030,subjecttosatisfactorypilotscale,orother,testingiftheformulationhaschangedsinceuseatBellingham.Preparedfor:DepartmentforBusiness,EnergyandIndustrialStrategyAECOM23NextGenerationCarbonCaptureTechnology3.2.4CarbonCleanDescriptionTable8.CarbonCleanCarbonCleanParameterNameCarbonClean’stechnologyutilisestheirproprietaryAPBSadvancedsolvent.TechnologyOverviewAdditionally,CarbonCleanhasofferingsofbespokelarge-scalecarboncaptureplantsandsmallermodularcarboncaptureunits.PotentialAdvantagesReducedenergyuse,increasedabsorptionrate,lowervolatility,decreasedsolventTargetIndustrialSectorsdegradationrateandimprovedsolventHSEcharacteristicsversusotheramines.FinancialInformationEstablishmentofamodulardesignhaspotentialadvantages.CurrentDemonstrationStatusPostcombustioncapture(PCC)fluegasapplicationsCarbonCleanclaimacostofcaptureof$40/t-CO2whenusingAPBSintheirprocess,thoughitisnotclearforwhatfluegasorconditionsthisisapplicable.22CO2capturecostsavingswouldbeexpectedifthepotentialadvantagesarerealisedandarenotoutweighedbyanyincreasetosolventcost,shoulditoccur.TuticorinAlkaliChemical&FertilizersPlantCoal-FiredBoiler,TamilNadu,IndiaCarbonClean60,000tpa(174tpd)CO2captureInoperationsince201623,24TataSteelJamshedpurPlantBlastFurnace,IndiaCarbonClean5tpdCO2CaptureThemodularskidmountedunitwascommissionedin2021.CarbonClean&TataSteelhavestatedtheyhaveplanstodevelopalargerscaleunit,butnodetailsareavailable.25SafetyorenvironmentalhazardsCarbonCleanhascapturedover1milliontonnesofCO2acrossitsprojectssince2009.OpportunitiesforandbarrierstoTheseincludeseveralsmallpilots,alargenumberofnon-postcombustionbiomethaneimplementationandinnovationfacilitiesinGermany,SwitzerlandandDenmark,240tpdtestingatTCM,a21tpdkilngastestanda48tpddemonstrationtestinJawaTimur.25TechnologybackersandfundingsourcesLimitedreleaseofaminesandaminedegradationproductsiscommontoallamine-Abilitytobedeployedat1000tpdsolvent-basedcaptureplant.CO2captureby2030Thetechnologywillbeperceivedaslowerriskcomparedtosomeotheroptionsasitisadevelopmentofanexistingtechnologyandlessscale-upisrequired.Lessonslearnedfrompreviousiterationsofthetechnologycanbeappliedtothis,andfutureiterations,ofthetechnology.Opportunitiesalsoexisttodemonstratethetechnologyonawidervarietyofemissionstreams.Focusonofferingmodularisedoptionscoulddelivercostsavingsandabilityformorerapiddeployment.CarbonClean’sbackersincludeChevron,WAVEEquityPartners,Marubeni,Equinor,ICOSCapitalandBlume.InAugust2021raised$8M(£5.79M)innewinvestmentfromCEMEX.26Likelytobedeployableat1000tpdscaleby2030subjecttosatisfactorypilotscale,orother,testing.Preparedfor:DepartmentforBusiness,EnergyandIndustrialStrategyAECOM24NextGenerationCarbonCaptureTechnology3.2.5AkerCarbonCaptureTable9.AkerCarbonCaptureParameterDescriptionNameTechnologyOverviewAkerCarbonCapturePotentialAdvantagesAker’s‘JustCatch’technologyutilisestheirproprietaryS26advancedsolvent.Akerofferslarge-scalecarboncaptureplantstermed‘BigCatch’andsmallermodularcarboncaptureunitstermed‘JustCatch’.Reducedenergyuse,increasedabsorptionrate,lowervolatility,decreasedsolventdegradationrateandimprovedsolventHSEcharacteristicsversusotheramines.Establishmentofamodulardesignhaspotentialadvantages.TargetIndustrialSectorsPostcombustioncapture(PCC)fluegasapplicationsFinancialInformationAkerCarbonCapturequantifiedfinancialinformationisnotavailable.CO2capturecostCurrentDemonstrationStatussavingswouldbeexpectedifthepotentialadvantagesarerealisedandarenotoutweighedbyanyincreasetosolventcost,shoulditoccur.AkerCarbonCapturedesignedanddeliveredthe80,000tpa(~240tpd)CO2captureamineplantattheTCMfacilitywhichhasbeenincontinuousoperationsinceitsopeningin2013.TheyfurtherperformedtestingoftheircapturetechnologyatTCM.29FromthisAkeraremovingontodeploythenextiterationoftheirtechnologyatTwenceEfWPlant,Hengelo,NetherlandsAker‘JustCatch’100,000tpa(~300tpd)CO2captureOperationintendedtostartin2021,currentlyinBuildphase30NorcemCementFactory,Brevik,NorwayAker‘BigCatch’400,000tpa(~1,200tpd)CO2captureEPCstartJanuary2021,completionin202431SafetyorenvironmentalhazardsAkerhaveachievedmorethan50,000operatinghoursinsixpilotplantsglobally.35OpportunitiesforandbarrierstoimplementationandinnovationLimitedreleaseofaminesandaminedegradationproductsiscommontoallamine-solvent-basedcaptureplant.TechnologybackersandfundingsourcesThetechnologywillbeperceivedaslowerriskcomparedtosomeotheroptionsasitisaAbilitytobedeployedat1000tpddevelopmentofanexistingtechnologyandscale-upwouldnotberequirediftheNorcemCO2captureby2030facilityisbuiltandoperatessuccessfully.Lessonslearnedfrompreviousiterationsofthetechnologycanbeappliedtothis,andfutureiterations,ofthetechnology.OpportunitiesalsoexisttodemonstratethetechnologyonawidervarietyofemissionstreamsviaAker’sJustTestunit,whichhasalreadytestednaturalgas,coal,refinery,cement,EfWandhydrogenfluegasesacross30,000hoursofoperation.32Afocusonofferingmodularisedoptionscoulddelivercostsavingsandabilityformorerapiddeployment.AkerCarbonCaptureislistedontheOsloStockExchangeandinAugust2021raisedNOK840M(£70M)tosupportfurthergrowth.33AspectsofAker’sAdvancedCarbonCaptureprocessareDNVqualified34Likelytobedeployableat1000tpdscaleby2030,subjecttosatisfactorypilotscale,orother,testing.Preparedfor:DepartmentforBusiness,EnergyandIndustrialStrategyAECOM25NextGenerationCarbonCaptureTechnology4.DevelopmentStageTechnologiesDevelopmentstagetechnologiesarereviewedinthissectionofthereport.ThesetechnologiesareatanearlierstageofdevelopmentthanthedemonstrationstagetechnologiesreviewedinSection3.Fortechnologiesatanearlierstageofdevelopmentthereareincreasedlevelsofuncertaintyinrelationtocostsandperformance.Manyofthetechnologiesreviewedhavepotentialadvantagesovermoredevelopedtechnologies,butitremainstobeprovenwhetherthechallengesassociatedwithscale-upandtechnicalissuesspecifictotheindividualtechnologiescanbeovercome.Thesetechnologiesmustfirstdemonstratesustainedcommercialoperationatscaleandthenprovethatcostsavingscanbemade.Ofthetechnologiesreviewedinthissectionthepotentialexistsforsomeofthemtobedeployedatscaleby2030orearlier.Forexample,NETPowerandCO2Capsolhaveconductedfrontendengineeringanddesignworkandareprogressingdemonstrationprojectsthatareintendedtobeimplementedpriorto2030.Table10containsinformationonthetechnologiesreviewedincludingopinionsonpotentialadvantagesandchallenges.Table10.DevelopmentstagetechnologiesProvidersOverviewStatedAdvantagesChallengesDemonstrationStatusSolvent-BasedSystemsBASF&LindeBASF&Linde’sReducedenergyuseSolventperformancenotyetNationalCarbonCaptureCentreCoal-FiredPowerPlant,Wilsonville,Alabama,USAtechnologyutilisesLowersolventlossesprovenatalargescale.Scale-upBASFLinde30tpdCO2capture.Startingin2014thepilottrailwasoperatedforBASF’sproprietaryFlexibleoperatingrangeofprocessequipmentrequired4,109hoursandincludedevaluationofseveralprocessimprovements.15OASE®blueadvancedpriortocommercialapplication.aminesolventwithLinde’sNiederaussemCoalPowerStation,GermanyprocessengineeringBASFLinde7.2tpdCO2capture.Startingin2009thepilottrailswereoperatedfordevelopments26,000hours.15C-CaptureAnamineandnitrogenReducedenergyconsumptionSolventperformancenotyetCWLPCoalPowerPlant,Springfield,Illinois,USAfreesolventprocessusingprovenatalargescaleonflueacarboxylicacidsaltinEnvironmentalbenefitsfromnon-gases.Scale-upofprocessBASFLinde200tpdCO2capture.$47MoffundinghasbeensecuredfromtheUSorganicmediahazardoussolventequipmentrequiredpriortoDepartmentofEnergyandafurther$20MfromthestateofIllinois.Finaldesigniscommercialapplication.duetostartJune2021withconstructioninJune2022,andstart-upisplannedforLowercorrosivitythanotherearly2024.27,28solventsIndependentpilotplanttrialsbySINTEFin2020,scaleandoperationaldatanotSolventcaptureprocesssimilartoavailable.38amine-solventprocess38PilotplantatDraxpowerstationofc.1tpdCO2capture,commissionedinNovember2018andfulloperationannouncedFebruary2020.39ReceivedfundingfromUKgovernmenttoprogressequipmentdesignstoallowpotentialcommercialdeploymentwithDrax.40Preparedfor:DepartmentforBusiness,EnergyandIndustrialStrategyAECOM26NextGenerationCarbonCaptureTechnologyProvidersOverviewStatedAdvantagesChallengesDemonstrationStatusCO2CapsolHotpotassiumcarbonateReducedenergyconsumptionSolventandprocessperformanceCO2Capsolclaimthreesuccessfulpilotprojectswithmorethan3,300operating(formerlySargas)solventprocesswithnotyetprovenatalargescaleonhours.42patentedheatrecoveryEnvironmentalbenefitsfromnon-fluegases.Scale-upofprocesshazardoussolventequipmentrequiredpriortoLab-scalepilotplantatUniversityofPaderbronaspartofEUfundedprojectcommercialapplication.between2011-2014.43Scaleandoperationaldatanotavailable.HighercaptureratesfeasibleFluegasrequirespressurisationStockholmExergihasplanstobuildthelargestBECCS(BioenergywithCarbonAdaptionofestablishedpotassiumtoraisepartialpressureofCO2,CaptureandStorage)plantinEuropeusingCO2Capsol’stechnology.StockholmcarbonateprocessthismaynotbeeconomicalorExergiaimstocompleteconstructionandstartoperationsduringthesecondhalfofIncreasedoxygentolerance41,42feasibleforsomeprocesses.2025.Theplantwillbedesignedtocaptureupto800,000tpaCO2(~2,000tpdCO2Capture).44CO2SolutionsAcarbonicanhydraseReducedenergyconsumption,SolventandprocessperformanceA10tpdCO2capturepilotplanttrialwasperformedatParaChemindustrial(Nowownedbyenzymecatalysedwithabilitytooperateonlow-notyetprovenatalargescaleoncomplex.Thepilotplantwasrun>2,500hoursin2015andlaterfor3,000hoursSAIPEM)potassiumcarbonategradewasteheatfluegases.Scale-upofprocessbetweenSeptember2017andAugust2018.solventprocessequipmentrequiredpriortoA30tpdCO2captureunitatapulpmillinQuebecwasbuiltin2018/2019.AnBakerHughesCAPEnvironmentalbenefitsfromnon-commercialapplication.independenttechnicalauditwasperformedbyTetratech.Theunitwassoldto(DevelopedbyAnon-precipitatingchilledhazardoussolventSAIPEMalongwithCO2Solutionstechnology’sIPinDecember201946.TheunitisAlstom,nowownedammoniasolventprocessEnzymestabilityandresilience.undergoingworksandoperationwasplannedtoresumeinsummer2020withfullbyGeneralElectric)Adaptionofestablishedpotassiumcommercialoperationin2021.47Awater-leansolventcarbonateprocessIONCleanEnergyBakerHughesclaimaTRLof7hasbeenachievedfortheirChilledAmmonia(formerlyIONLowercorrosivitythanotherProcess(CAP)withtestingconductedatTCMonfluegasrangesbetween3.6–Engineering)solvents16%CO2.48TestingoftheCAP,underAlstom,wasconductedatTCMin2012-2014.TheTCMtestinginvolvedover6,000hoursofoperationontwofluegases;Reducedsolventdegradation45,47fluegasfromrefineryresiduefluidcatalyticcracker(RFCC)off-gasat80,000tpa(~240tpd)CO2captureandfluegasfromnaturalgascombinedheatandpowerReducedsolventdegradationControlofsolventemissionsis(CHP)22,000tpa(~67tpd)CO2capture.49Non-proprietarysolventrequiredtopreventshazardstoIncreasedoxygentolerance48peopleandtheenvironment.LowIONcompletedpilottestingattheNationalCarbonCaptureCenter(NCCC)inlevelsofsolventemissionscanbeAlabama,USAin2015.51achievedthroughchilling.Startingin2016,thesolventwastestedatthe12MWescaleatTCM.Thecampaignincluded2,750hoursoftestingcapturing14,000tonnesofCO2onindustrialflueLowercapitalcostsSolventandprocessperformancegasestosimulatecoal-firedconditions.51,52LowerO&McostsnotyetprovenatalargescaleonOn6/10/2021,theUSDOEannouncedfundingof$5.8MforanengineeringstudytoProprietary3Dprintedpacking50fluegases.retrofitION’stechnologyontotheCalpineDeltaEnergyCenterinPittsburg,California,whichisan850MWCCGTpowerplant.53Preparedfor:DepartmentforBusiness,EnergyandIndustrialStrategyAECOM27NextGenerationCarbonCaptureTechnologyProvidersOverviewStatedAdvantagesChallengesDemonstrationStatusRTIInternationalNon-aqueousSolventLowerregenerationenergySolventandprocessperformanceRTIhascompletedtwopilotplantprograms.TestingattheSINTEFTillerPlantinSolidSorbentsHigherregeneratorpressuresnotyetprovenatalargescaleonNorwaywasconducted2015-2018foratotalof2,000hoursat1tpdoncoal-derivedKawasakiCO2leadingtolowercompressionfluegases.fluegas.54,55Capture(KCC)energyLowercorrosivitythanotherIn2018,thesolventwastestedfor580hourswithcoal-firedfluegasattheNCCCinSvantesolventsAlabama,USAata1tpdscale.55(formerlyInventys)Lowerheatstablesalts54Demonstrationscaletestingat200tpdatTCMisscheduledfor2022.56TDAResearchTemperatureswingReducedenergyconsumption,ProcessperformancenotyetKawasakiconductedtrialsona10tpdCO2Capturefixedbedtestplantoncoal-firedadsorption(TSA)processwithabilitytooperateonlow-provenatalargescaleonfluefluegaspriorto2013,beforemovingtofurthertrialsona5tpdCO2Capturemovingutilisingagranulatedgradewasteheatgases,scale-uprequiredpriortobedsystemtestplantpriorto2019.52,57,59amine-coatedporouscommercialapplication.sorbentHighperformanceforwiderangeA40tpdCO2CapturedemonstrationplantexpectedtostartupatKEPCO’sMaizuruofCO2concentrationsFixedbedsystemnotfeasibleforcoal-firedpowerplantinJapanin2022.60scale-upthusrequiresHighercaptureratesfeasibledevelopmentofmovingbedA30tpdCO2CapturepilotplantatHuskyEnergyThermalLloydminster,CanadaNohazardoussolvents57systemandpreventionofsorbentwasconstructedin2019.61degradationduringconveying.58Initialengineeringanalysisforfeasibilityofa2Mtpa(~6,000tpd)CO2CapturefacilityforHolcimcementplantandnaturalgas-firedsteamgeneratorinColorado,StructuredsolidsorbentinReducedenergyconsumption,ProcessperformancenotyetUSA,alsoknownasLHCO2MENT,wasawardedDOEfundinginSeptember2020arotatingabsorptionbedwithabilitytooperateonlowprovenatalargescaleonfluewithaninitialscopingstudyalreadycompletedinJune2020.62systempressuresteamgases,scale-uprequiredpriortocommercialapplication.A10tpdCO2capturepilotplanttestingisbeingconductedattheNCCConcoalflueFastabsorption-regenerationgas.WorkwillbeconductedbothonthecoalfluegasandonsimulatednaturalgascycletimesReliabilityofmechanicalrotatingfluegasusingdilutedcoalfluegas.TheprojectisduetocompleteinJuly2022.63system,scalabilityrequiresTDAhaspublishedsomeoftheirpilotplantresults.Nohazardoussolventsmultiplerotatingbedunits.Nosorbentconveyingchallenges,Challengesexistwithsealingfixedbed61undervacuum-regenerationconditions.Challengeswithcapillaryporecondensationinthesorbent.15IsothermalprocessbasedReducedenergyconsumption,Processperformancenotyetonagranulatedalkalisedwithabilitytooperateonlowprovenatalargescaleonfluealuminasorbentpressuresteamgases,scale-uprequiredpriortocommercialapplication.NohazardoussolventsUseofmultiplefixedbedscouldNosorbenttransportchallenges,leadtoincreasedfootprintandfixedbed,claimedlowercostpotentiallyhighercostNopressureortemperatureswing,regenerationvialowpressuresteamHighercaptureratesfeasible63Preparedfor:DepartmentforBusiness,EnergyandIndustrialStrategyAECOM28NextGenerationCarbonCaptureTechnologyProvidersOverviewStatedAdvantagesChallengesDemonstrationStatusFuelCellsFuelCellEnergyMoltencarbonatefuelcellGenerateslowcarbonelectricity.ProcessperformancenotyetApilot2.8MWeMCFCpowerplantcapturingCO₂fromtheexhaustofacoal-fired(MCFC)provenatalargescaleonfluepowerplantwassupportedbytheUSDOEin2015.Subsequentlyin2016MembranesPotentialavailabilityoflowcarbongases,scale-uprequiredpriortopartneringwithExxonMobil,anotherpilotatacoalandgas-firedpowerplantinMembranehydrogen.commercialapplication.Alabama,USA,wastestedat54tpdCO2Capture.65TechnologyandResearch(MTR)LowerriskscalabilityviamodularLowlevelofcontaminantsisIn2019FuelCellEnergyextendedtheirrelationshipwithExxonMobilandwillinstallfuelcellunits.requiredinfeedgas,thusademonstrationunitatExxon’sRotterdamRefinery,dataonthescaleoftheunitisrequirementforextensivenotavailable.66InthesameyearaFEEDstudywasannouncedforan85tpdCO2Netwaterproducer,asaproductupstreamgastreatmentformanyCaptureunitforDraxPowerStation,UK.67ofmethaneoxidation.applications.15NOxdestruction.64Limitedcaptureratesfeasible,highpercentagecaptureratesi.e.greaterthan90%maynotbeachievable.15PolarispolymericReducedenergyconsumption.ProcessperformancenotyetMTRhasevaluatedtheirmembranesonaslipstreamofcoalfluegas.A20tpdCO2membraneprovenatalargescaleonflueCapturepilotplantwasoperatedattheNCCC.69Nochemicaluseorrelatedgases,scale-uprequiredpriortoemissions.commercialapplication.Subsequently,designandconstructionofac.150tpdCO2capturepilotplantata70%capturelevelisbeingimplementedwith2021fundingfromtheUSDOENETLNosteamuseLimitedcaptureratesfeasible,attheWyomingIntegratedTestCentre.70highpercentagecaptureratesi.e.Fastresponseandsimplegreaterthan90%maynotbeMTRhavealsoplannedtestingatTCMin2021.71turndown.achievable.15Passiveoperation,limitedmovingmechanicalparts.Lowerriskscalabilityviamodularmembraneunits.Lowermaintenanceandoperatorrequirements.Greatestadvantageasbulkremovalstep,suitableforhybridcaptureapproachbycombiningwithanothercapturetechnology.68Preparedfor:DepartmentforBusiness,EnergyandIndustrialStrategyAECOM29NextGenerationCarbonCaptureTechnologyProvidersOverviewStatedAdvantagesChallengesDemonstrationStatusOxy-CombustionNETPowerAllam-FetvedtCycleImprovedefficiencyrelativetoProcessperformancenotyetNETPower’s50MWthtestfacilityinLaPorte,Texas,USAwascommissionedinconventionalgasfiredpowerprovenatalargescale,scale-upMarch2018andhasachievedmorethan1,000operatinghours.73AECOMCleanEnergyPlateletoxy-fuelgenerationwithpostcombustionrequiredpriortocommercialestimatesthat~225tpdofCO2couldbecapturedbythisfacilitybasedonanLHVofSystems(CES)combustorprocesscapture.application.50MJ/kganda95%capturelevelofproducedCO2.CryogenicsGenerateslowcarbonelectricity.NotyetdemonstratedsustainedNETPowerarelookingtodevelopa300MWthplant.AECOMestimatesthat~1,350AirLiquideProducesindustrialgasco-reliableoperationofthetestplant.tpdofCO2couldbecapturedbythisfacilityonthesamebasis.StartinginQ22020,products(argonandnitrogen).theyhavebeenconductingaPre-FEEDstudyforinstallationatagenericUKCapableofwater-freeproduction.location.72Noemissions.72ProcessperformancenotyetCEShavea5MWePilotatKimberlinaCoalandBiomassfuelledPowerPlantinGenerateslowcarbonelectricity.provenatalargescale,scale-upCalifornia,USA,whichisclaimedtobeCCSreadyandproducing1,500MscfdofHigherturbineefficiencies.requiredpriortocommercialCO2(~78tpdCO2).75,76Compatiblewithawiderangeofapplication.gaseousorliquidfuels.TheMendottaBECCSprojectisplannedtocapture300,000tpa(~800tpd)CO2Abilitytorecoverupto100%ofNotyetdemonstratedsustainedusingCEStechnology.FEEDwasexpectedtobeginMarch2021withafinalCO2producedinthecombustor.reliableoperationofthetestplant.investmentdecisionin2022.77Noemissions.Waterproducer.74PSApluscryogenicCO2Usesonlyelectricalpower(noIndividualprocessstepsworkingEachoftheprocessingsteps(compression,dehydration,PSA,cryogenicseparationandsteamorthermalenergyrequired)togetherinoneintegratedprocessseparation,expansion)havecommercialapplications,butthecombinedprocesspurificationhybridprocessnotyetdemonstratedatalargehasnotbeendemonstrated.78Anindependentthird-partyassessmentinJuly2021IntegratesCO2liquefactionandscaleonfluegas,requiredpriortoratedthetechnologyatTRL-6.79purificationintotheseparationcommercialapplication.process.AirLiquidehasacontracttoprovideadesignpackagefora2,400tpdcaptureFocusonhydrogenapplicationsfacilityfortwohydrogenproductionunitsatZeelandRefineryinVlissingen,theIndividualprocessstepsbasedonmaymeanpostcombustionNetherlandsusingtheCryoCapFGtechnology.ThecontractwasawardedJuneestablishedtechnologies.captureislessadvanced.2021.81ImprovedhydrogenproductionratewhencapturingCO2fromhydrogenunits.Preparedfor:DepartmentforBusiness,EnergyandIndustrialStrategyAECOM30NextGenerationCarbonCaptureTechnologyProvidersOverviewStatedAdvantagesChallengesDemonstrationStatusCalciumLoopingEndesaPostcombustionCO2LowefficiencypenaltyScale-upanddemonstrationofA1.7MWt(upto50tpdCO2capture)pilotprojectwasconstructedthatcapturedCO2captureprocessbasedonlongtermsustainedoperationfromasidestreamoffluegassesfromthe50MWe,LaPereda,coalpowerplantinDirectSeparationacarbonation-calcinationLow-costsorbent(limestone)Spain.BeforefinishinginMay2013,theprojectoperatedforaround380hoursinReactorcycle.SorbentdegradationthroughCO2capturemodeandreportedlyachievedcaptureefficienciesupto95%80.TheCalixResilienttocontaminantsininputrepeatedcyclingprojectwasusedtosupporttheconceptualdesignofalarger,20MWthproject.gasTheEndesawebsitestatesthattheyarelookingtoextendtheprojectatLaPeredaProcessisconductedathighbydevelopingotherprojectsatthesite.PurgematerialhashighCaOtemperaturessoauseforthecontentandcanbeusedinheatisrequiredtopreventahighLowEmissionsIntensityLimeandCement(LEILAC)1isa25,000tpa(~75tpd)CO2cementproductionenergypenalty.CapturepilotplantoperatingatHeidelberCement’sLixheplantinBelgium.Itstartedupin2019andisreportedlyasuccess,althoughperformancedataisnotpubliclyAprocessmodificationforLowcapitalcostDemonstrationoflongtermavailable.36limeandcementsustainedoperationLEILAC2willbealargerdemonstrationunitlocatedatHeidelbergCement’splantinmanufacturetoaidLowenergypenaltyHannover,Germany.Plannedcapacityis100,000tpa(~300tpd)CO2Capture,capturebyproducingaAchievinghighlevelsofwhichrepresents20%ofthecementplant’scapacity.ItiscurrentlyinthemoreconcentratedstreamApplicableinthelimeandcementcalcinationathighplantengineeringphasewithconstructionscheduledtostartattheendof2022.37ofCO2,referedtoassectorwhereothercapturethroughputsLEILAC.technologiescanbechallengingtoapply.PowderedlimestoneisindirectlyheatedinaPlansforapplicationinironandtubularreactorsuchthatsteelsectortheCO2releasedduringcalcinationcanbedirectlycaptured.Preparedfor:DepartmentforBusiness,EnergyandIndustrialStrategyAECOM31ERR能研微讯微信公众号:Energy-report欢迎申请加入ERR能研微讯开发的能源研究微信群,请提供单位姓名(或学校姓名),申请添加智库掌门人(下面二维码)微信,智库掌门人会进行进群审核,已在能源研究群的人员请勿申请;群组禁止不通过智库掌门人拉人进群。ERR能研微讯聚焦世界能源行业热点资讯,发布最新能源研究报告,提供能源行业咨询。本订阅号原创内容包含能源行业最新动态、趋势、深度调查、科技发现等内容,同时为读者带来国内外高端能源报告主要内容的提炼、摘要、翻译、编辑和综述,内容版权遵循CreativeCommons协议。知识星球提供能源行业最新资讯、政策、前沿分析、报告(日均更新15条+,十年plus能源行业分析师主理)提供能源投资研究报告(日均更新8~12篇,覆盖数十家券商研究所)二维码矩阵资报告号:ERR能研微讯订阅号二维码(左)丨行业咨询、情报、专家合作:ERR能研君(右)视频、图表号、研究成果:能研智库订阅号二维码(左)丨ERR能研微讯头条号、西瓜视频(右)能研智库视频号(左)丨能研智库抖音号(右)NextGenerationCarbonCaptureTechnology5.ResearchStageTechnologiesResearchstagetechnologiesarethosethatcurrentTRLmakesthemunlikelytobedeployableby2035.Themajorityhaveonlybeendemonstratedatlabandbenchscalesorsmall-scalepilots.Itispossiblethatamongthesetechnologiesasmallnumbercouldgoontoseerapidadvancementoverthenextfewyearsandthusbecomeleadingcommercialtechnologies.Astheselessreadilydeployabletechnologiesarenottheprimaryfocusofthisstudyonlyahigh-levelassessmentoftheirdevelopmentandpotentialhasbeenconducted.Mostresearchstagetechnologiescanbegroupedintothethreecoretechnologytypes:membranes,solventsandsorbents.Projectsinthesetechnologygroupsaredevelopingmoreadvancedversionsofthosetechnologiesseeninthedemonstrationanddevelopmentcategories,oftenthroughadvancesinmaterialsandapplicationmethodstoimproveperformanceefficiencyandreducecost.Inaddition,othertechnologyoptionsarebeingdevelopedthatfitoutsidethesegroupsoftechnologies.Thesetechnologiesincludeenzymecatalysedcapture,cryogeniccapture,chemicalloopingandoxy-combustioncycles.5.1SolventsKeychallengesanddevelopmentareasforsolventtechnologiesare83:•Improvingabsorptioncapacity•Improvingabsorptionrate•Reducingthesolventcost•Reducingtheenergyrequirementforregeneration•Improvingsolventstabilityandreducingdegradation•Reducingsolventinducedcorrosiontoallowuseoflowercostmaterials•ReducingthesolventenvironmentalimpactTable11presentsasummaryofresearchstagesolventtechnologyprojectsandtheirdevelopmentstatus.Table11Researchstagesolventtechnologyprojectssummary87ProjectApplicationTypeParticipantDevelopmentstatusPost-CombustionActive,1MWeNovelElectrochemicalMassachusettsInstituteofRegenerationofAminePost-CombustionTechnologySolventsPost-CombustionUniversityofKentuckyActive,0.7MWeSlipstreamDemonstrationPost-CombustionUsingAdvancedSolvents,Post-CombustionUniversityofIllinoisatActive,LabHeatIntegration,andUrbana-ChampaignMembraneSeparationUniversityofTexasActive,0.5MWeBiphasicCO2AbsorptionwithLiquid-LiquidPhaseUniversityofNotreDameActive,LabSeparationPiperazineSolventwithFlashRegenerationMicroencapsulatedCO2CaptureMaterialsPhase-ChangingAbsorbentPost-CombustionGEGlobalResearchActive,Bench-Scale,SimulatedFlueGasCO2-BindingOrganicLiquidPost-CombustionPacificNorthwestNationalSolventsPost-CombustionLaboratoryActive,LabPost-CombustionAminosiliconeSolventGEGlobalResearchActive,10MWeAmmonia-andPotassiumSRIInternational,BakerActive,Bench-Scale,SimulatedCarbonate-BasedMixed-HughesandUniversityofFlueGas.SaltSolventIllinoisActive,Pilot-Scale,ActualFlueWasteHeatIntegrationPost-CombustionSouthernCompanyServices,GasInc.Preparedfor:DepartmentforBusiness,EnergyandIndustrialStrategyAECOM32NextGenerationCarbonCaptureTechnologyProjectApplicationTypeParticipantDevelopmentstatusLindeLLCCompleted,1.5MWeSlipstreamNovelAmine-Post-CombustionBasedPost-CombustionProcessCarbonicAnhydrasePost-CombustionAkermin,Inc.Completed,Bench-Scale,ActualCatalyzedAdvancedFlueGasCarbonateandNon-VolatileSaltSolution(“Solvents”)CarbonAbsorberRetrofitPost-CombustionNeumannSystemsGroupCompleted,0.5MWeEquipmentNovelAbsorption/StripperPost-CombustionWilliamMarshRiceUniversityCSiommuplaleteteddF,lBueenGcha-sScale,ProcessGas-PressurizedStrippingPost-CombustionCarbonCaptureScientificCompleted,Bench-Scale,RealFlueGasSolvent+EnzymeandPost-CombustionNovozymesNorthAmerica,Completed,Bench-Scale,VacuumRegenerationInc.SimulatedFlueGasTechnologyOptimizedSolventPost-CombustionBabcock&WilcoxCompleted,Bench-Scale,FormulationSimulatedandActualFlueGasHotCarbonateAbsorptionPost-CombustionUniversityofIllinoisatCompleted,LabwithCrystallization-EnabledUrbana-ChampaignHigh-PressureStrippingCChaepmturicealAdditivesforCO2Post-CombustionLawrenceBerkeleyNationalCompleted,Bench-Scale,LaboratorySimulatedFlueGasSelf-concentratingAminePost-Combustion3HCompany,LLCCompleted,LabAbsorbentIonicLiquidsPost-CombustionUniversityofNotreDameCompleted,LabCompleted,LabNovelIntegratedVacuumPost-CombustionIllinoisStateGeologicalCarbonateProcessSurveyPOSTCAPCaptureandPost-CombustionSiemensEnergyInc.2.5MWeSequestrationReversibleIonicLiquidsPost-CombustionGeorgiaTechResearchCompleted,LabCorporationPhaseTransitionalPost-CombustionHamptonUniversityCompleted,LabAbsorptionPost-CombustionPost-CombustionSRIInternationalCompleted,0.15MWe(Pre-Combustion)CO2BakerHughesCaptureUsingAC-ABCPilotProcessIFPEN/Axens1500hoursofoperationwasCompactCarbonCaptureachievedonamini-pilotatIFPEN(3C)–RotatingAbsorberoperatingonsyntheticblastfurnacegas.15DMXProcess–SingletoPost-CombustionA0.5tph(~12tpd)CO2captureDualPhaseSolventpilotplantistobebuiltfortheEuropeanH20203DprojectatArcelorMittal’ssiteinDunkirk.84Commissioningandstart-uparescheduledforfirsthalfof2022.85Preparedfor:DepartmentforBusiness,EnergyandIndustrialStrategyAECOM33NextGenerationCarbonCaptureTechnology5.2SorbentsKeychallengesanddevelopmentareasforsorbenttechnologiesare87:•Creatinganddesigningtailoredsorbentmaterialswithdesiredattributesforspecificapplications•Developingunderstandingofthemolecular,microscopicandmacroscopicstructurelevelsandtheirrelationshiptothesorbentmaterialproperties•Improvinglong-termreactivity,recyclabilityandrobustnessofthesorbent•OptimisingintegrationofthesorbentwithintheprocessTable12presentsasummaryofresearchstagesorbenttechnologyprojectsandtheirdevelopmentstatus.Table12Researchstagesorbenttechnologyprojectssummary87ProjectApplicationTypeParticipantDevelopmentstatusPost-CombustionPressureSwingAdsorptionGeorgiaTechResearchActive,LabProcesswithNovelSorbentCorporationActive,LabPorousPolymerNetworksPost-CombustionTexasA&MUniversityActive,Bench-Scale,ActualFlueGasNovelSolidSorbentPost-CombustionSRIInternationalActive,LabCompleted,Bench-Scale,SimulatedFluidizableSolidSorbentsPost-CombustionResearchTriangleInstituteFlueGasAdvancedAerogelSorbentsPost-CombustionAspenAerogels,Inc.-TemperatureSwingPost-CombustionNRGEnergy,Inc.Completed,Bench-Scale,SimulatedAdsorptionwithStructuredPost-CombustionW.R.GraceandCo.FlueGasSorbentPost-CombustionRTIInternationalPost-CombustionCompleted,Bench-Scale,SimulatedRapidPressureSwingPost-CombustionADA-ES,Inc.FlueGasAdsorptionPost-CombustionTDAResearch,Inc.GeorgiaTechResearchCompleted,Bench-Scale,SimulatedAdvancedSolidSorbentsCorporationFlueGasandProcessesforCO2CaptureCompleted,Bench-Scale,ActualFlueGasCross-HeatExchangerforCompleted,Bench-Scale,SimulatedSorbent-BasedCO2FlueGasCaptureCompleted,Bench-Scale,ActualFlueGasLow-Cost,High-CapacityCompleted,Bench-Scale,ActualRegenerableSorbentFlueGasCompleted,15kW,SimulatedFlueRapidTemperatureSwingGasAdsorptionCompleted,LabNovelAdsorptionProcessPost-CombustionInnoSepra,LLCCompleted,Bench-Scale,1tonneHybridSorptionUsingSolidPost-CombustionUniversityofNorthDakotaperday,ActualFlueGasSorbentsPost-CombustionUniversityofAkronActive,0.1MWeMetalMonolithicAmine-Post-CombustionUOPGraftedZeolitesCompleted,LabPost-CombustionRTIInternationalCO2RemovalfromFluePre-CombustionTDAResearch,Inc.GasUsingMicroporousMOFsNovelConcept,Pre-AltexTechnologiesCombustionCorporationADrySorbent-BasedPost-CombustionCO2CaptureHighCapacityRegenerableSorbentNovelConcepts/IntegratedTemperatureandPressureSwingCarbonCaptureSystemPreparedfor:DepartmentforBusiness,EnergyandIndustrialStrategyAECOM34NextGenerationCarbonCaptureTechnology5.3MembranesKeychallengesanddevelopmentareasformembranetechnologiesare87:•Developinganunderstandingofthetransportphenomenaatthemembraneinterfaceinnewmaterials(ofparticularinterestarepolymeric,carbonmetallic,ceramic,dual-phaseandcomposites)toimprovetheirpermeabilityandselectivityperformance•Fabricationofnewdesignsandmethodstoproducemembranestructuresormodularunitsatlargescaleandreducedcost•ImprovingmembranelifeandresistancetodetrimentaleffectsofcontaminantsinthegasfeedTable13presentsasummaryofresearchstagemembranetechnologyprojectsandtheirdevelopmentstatus.Table13Researchstagemembranetechnologyprojectssummary87ProjectApplicationTypeParticipantDevelopmentstatusOhioStateUniversityActive,LabSCeOle2cStiovuercMeesmbranesfor<1%Post-CombustionSubambientTemperaturePost-CombustionAmericanAirLiquide,Inc.Active,0.3MWeMembraneInorganic/PolymerCompositePost-CombustionOhioStateUniversityCompleted,Pilot-Scale,ActualFlueMembranePost-CombustionGasPost-CombustionGEGlobalResearchCompositeHollowFibreMembraneTechnologyandCompleted,Bench-Scale,SimulatedMembranesResearch,Inc.FlueGasLow-PressureMembraneCompleted,Bench-Scale,SimulatedContactors(Mega-Module)&ActualFlueGasHollow-Fibre,PolymericPost-CombustionRTIInternationalCompleted,Bench-Scale,SimulatedMembraneFlueGasBiomimeticMembranePost-CombustionCarbozymeCompleted,LabPost-CombustionUniversityofNewMexicoCompleted,LabDualFunctional,Silica-BasedMembraneZeoliteMembraneReactorPre-CombustionArizonaStateUniversityActive,Bench-Scale,ActualSyngasMixedMatrixMembranesPre-CombustionSBtuaftfealoUniversityofNewYork,Active,Bench-Scale,ActualSyngasPBIPolymerMembranePre-CombustionSRIInternationalActive,Bench-Scale,ActualSyngasTwo-StageMembranePre-CombustionMediaandProcessActive,Bench-Scale,ActualSyngasSeparation:CarbonMolecularTechnology,Inc.SieveMembraneReactorfollowedbyPd-BasedMembraneHigh-TemperaturePolymer-Pre-CombustionLosAlamosNationalCompleted,Bench-Scale,SimulatedBasedMembraneLaboratorySyngasDual-PhaseCeramic-Pre-CombustionArizonaStateUniversityCompleted,LabCarbonateMembraneReactorPd-AlloysforSulfur/CarbonPre-CombustionPallCorporationCompleted,LabResistanceHydrogen-SelectiveZeolitePre-CombustionUniversityofMinnesotaCompleted,Bench-Scale,SimulatedMembranesSyngasPressure-SwingMembranePre-CombustionNewJerseyInstituteofCompleted,LabAbsorptionDeviceandTechnologyProcessNanoporous,Pre-CombustionGasTechnologyInstituteCompleted,Bench-Scale,SimulatedSuperhydrophobicMembraneSyngasContactorProcessPolymerMembraneProcessPre-CombustionMembraneTechnologyandCompleted,Bench-Scale,ActualDevelopmentResearch,Inc.SyngasHybridGO-PEEKMembraneNovelConceptGasTechnoogyInstitute-Active,LabProcessGTIPreparedfor:DepartmentforBusiness,EnergyandIndustrialStrategyAECOM35NextGenerationCarbonCaptureTechnologyProjectApplicationTypeParticipantDevelopmentstatusActive,LabNovelConcepts/ICENovelConcept,LiquidIonSolutionsLLCActive,LabMembraneforPost-Post-CombustionCombustionCO2CaptureLLNL–LawrenceLivermoreNationalLaboratoryNovelConcept/EncapsulationofSolventsinPermeableNovelConceptMembraneforCO2Capture5.4OtherTechnologiesTable14presentsasummaryofotherresearchstagetechnologyprojectsandtheirdevelopmentstatus.Table14Otherresearchstagetechnologyprojectssummary87,88,89ProjectParticipantDevelopmentstatusNovelConcepts/CryogenicCarbonCaptureProcessSLLuCstainableEnergySolutions,Active,Bench-Scale,ActualFlueGasSupersonicInertialCO2ExtractionSystemOrbitalATKInc.Active,Bench-Scale,SimulatedFlueGasBetterEnzymesforCarbonCaptureCalciumLoopingCodexisActive,Lab-ScaleChemicalLooping,CaSO4TechnicalUniversityofDarmstadt,GermanyActive,1MWth,Scaling-Upto20MWthIndustrialWasteCarbonationALSTOMWindsorOCOTechnologyCompleted,3MWthOxy-FuelledFlashCalciner(FormerlyCarbon8)OCO’scontainerisedsystemusesanacceleratedCO2toPolypropyleneOrigenPowercarbonationprocess.Itcurrentlyofferssmall-scaleCO2captureat30,000toverthelifetimeoftheLanzatechplant.ReceivedfundingfromBEISin2019forOxy-FuelledFlashCalcinerProject;£249,000towardsthe£356,000project.LanzatechhaveatechnologythatconversgassescontainingCOintohydrocarbonproductsusingafermentationprocess.ThecompanyrecentlyannouncedintentionstodevelopaprojectthatallowsCO2tobeusedasafeedstock86.Detailsofthedevelopmentstatusofthetechnologyarelimited.5.5HybridisationAdevelopmentalareaofinterestistheadoptionofahybridisedapproach,combiningthedifferenttechnologytypeswiththeaimofovercomingtheirindividualchallengesandgainingthebenefitsofeachofthetechnologies.Examplesofahybridapproachinclude:•Solvent-MembraneCO2Capture–AnaqueousammoniumsolventisusedinanabsorbertoremoveCO2fromafluegasstream,thecarbon-richsolutionfromtheabsorberisthenpassedthroughamembranedesignedtoselectivelytransporttheboundcarbon,enhancingitsconcentrationonthepermeateside.•Sorbent-MembraneCO2Capture–AmembraneisusedtoperformbulkCO2removalfromafluegasstreamundermildvacuum,removingmorethan50%ofCO2,thenasecondstageofsorbentCO2separationisperformedtoachieve~90%capture.•Membrane-Liquefaction(Cryogenic)CO2Capture–Amembraneisusedtopre-concentratetheCO2streamsentforliquefactioncapture.Preparedfor:DepartmentforBusiness,EnergyandIndustrialStrategyAECOM36NextGenerationCarbonCaptureTechnology6.TechnologyApplicationsInputgasstreamstocarboncapturefacilitieswillhavedifferentphysicalpropertiesand/orcomposition.Thiswillgiverisetodifferentprocessingrequirementsduetofactorssuchaspressure,temperature,contaminantspecies,andcontaminantconcentrations.CO2concentrationisimportantwhenconsideringtechnologyselection.However,evenifatechnologyisapplicabletooneinputgasstreamwithinacertainCO2concentrationrange,itmaynotbeapplicableforanotherinputgasstreamwiththesameCO2concentrationrangeduetodifferencesincontaminantconcentrations.Typically,higherconcentrationsofCO2willaidcaptureandseparation.However,thereisalwaysapossibilitythatanotherparameterofthehigherconcentrationinputgasmaymitigateanybenefit.Forexample,presenceofacontaminantspeciesthatishighlyreactivetoatechnology’ssolventmaycauseextremelevelsofdegradationandrendercapturebyitsuseimpractical.Thissectionfocussesonpostcombustiontechnologiesthatcouldbeaddedtoarangeofexistingprocesses.ItdoesnotconsideralterationstoindustrialprocessessuchasintheLEILACprocessortheNETPowertechnology.Theseprocessesarelimitedinapplicationtospecificindustries,withLEILACtechnologybeingproposedforlimeandcementmanufactureandtheNETPowertechnologybeingproposedforpowergeneration.6.1TechnologyApplicationMatrixAmatrixoftheapplicabilityofeachofthedemonstrationanddevelopmentstagetechnologiestocaptureCO2fromgasstreamswithdifferentCO2concentrationsisdisplayedinTable15.ExamplesoftypicalindustrialprocesseswherethesefluegasCO2concentrationsarepresentarealsoprovided.Theapplicabilityofeachtechnologytodifferentfluegaseshasbeenjudgedbasedontheprojectscompletedbythetechnologysupplier.Mostcredithasbeengivenforcurrentandpastoperationalprojects,thenpilottestingconducted,thenfundedfutureprojects,andfinallyengineeringjudgementhasbeenusedtoapplytheratings.Whereprojectsprocessingaparticularinputgasstreamhavenotbeenidentifiedforatechnologythishasbeengivenalowerapplicabilityrankinginthematrixcreated.Inthesecases,applicabilityforfluegasseswithhigherconcentrationCO2thantheprojectsidentifiedforthetechnologyhasbeendeemedmorefavourablethanforlowerconcentration.ThisisbecausetypicallylowerCO2concentrationswillprovetechnicallyandeconomicallymorechallengingtocapture.Inmanycasesitwouldbepossibletoapplyatechnologyacrossawiderangeofinputgasstreams,butcostcouldvarysignificantly.Whereatechnologyhasbeenmarkedas‘PossiblyApplicable’inthematrixitmaystillbewellsuitedtothatkindofinputgas.Furthermore,itispossiblethatitcouldbebettersuitedtoagiveninputgasstreamthanothertechnologiesthathavebeenmarkedas‘Applicable’forthatgasstreambecausetheyhavedevelopedprojectsthatprocesssimilargasses.Preparedfor:DepartmentforBusiness,EnergyandIndustrialStrategyAECOM37NextGenerationCarbonCaptureTechnologyTable15.TechnologyApplicationMatrix,basedonknownprojectsFlueGasCO2ConcentrationLowMidHighVeryHighCategory1-5%5-10%10-15%15+%Typicalindustrialprocesses•CCGT•NaturalGasFired•Oil-FiredBoiler•Iron&Steelwheresuchafluegasmaybe•AluminiumBoiler•Coal-FiredBoilerProductionpresent•CHP•EfW•Glass(air/fuel•FiredHeater•Biomass-Fired•Cement/Lime•OilRefiningProductionfurnace)Boiler•HydrogenProduction•AnaerobicDigestionDemonstrationStageTechnologiesMitsubishiHeavyIndustryShellCansolvFluorEconoamineFGPlusCarbonCleanAkerCarbonCaptureDevelopmentStageTechnologiesBASF&LindeC-CaptureCO2CapsolCO2SolutionsSAIPEMBakerHughesCAPIONCleanEnergyRTIInternationalKawasakiCO2CaptureSvanteTDAResearchFuelCellEnergyMembraneTechnologyandResearchAirLiquideKeyApplicableLikelytobeApplicablePossiblyApplicableTherearetwoimportantlimitationstonoteinrelationtotheclassificationprocessapplied.Firstly,classificationhasbeenbasedprimarilyoninputgasCO2concentration.TheCO2concentrationsfromsomeindustrialfluegassesarelikelytochangeovertimeduetoreasonssuchaselectrificationofprocessheatingorchangestothemixtureoffuelsfiredincombustionappliances.Secondly,analysesbasedoninputgascontaminationlevelsfordifferentcontaminantsmayhaveprovideddifferentresults.ClassificationbasedonCO2concentrationwasselectedbecausecontaminationlevelsvarybetweensitesinanygivenindustryandcontaminationcanbecontrolled,atacost,bypre-treatmenttechnologiesthatcouldbeincorporatedintothecarboncapturefacility.Preparedfor:DepartmentforBusiness,EnergyandIndustrialStrategyAECOM38NextGenerationCarbonCaptureTechnologyDuringthetechnologyselectionprocessforanypotentialcarboncapturefacility,itisimportanttofullyunderstandthecompositionandphysicalpropertiesoftheoutputemissionstreamfromtheprocessgeneratingtheCO2,andtheeffectsontheproposedpost-combustioncaptureprocesstode-riskfuturedeployment.Inaddition,considerationshouldbegiventoanyparametersthatmaychangeintheemissionstreamduringthelifeofthecaptureplant.Thiscanthenbeusedwhenconsideringwhatcombinationofinputgaspre-treatmentandcarboncapturetechnologywouldbemostcompatiblewiththesite.Preparedfor:DepartmentforBusiness,EnergyandIndustrialStrategyAECOM39NextGenerationCarbonCaptureTechnology7.OpportunitiesandBarriersThissectioncontainsabriefoverviewofopportunitiesandbarriersrelatingtothedevelopmentanddeploymentofcarboncapturetechnologies.Opportunitiesandbarrierscommontoallpotentialendusersarediscussedfollowedbyanexaminationofsectorspecificissues.Inadditiontoin-houseknowledgeoftheindustry,theinformationbelowwasinformedbyanindustryengagementworkshopthattookplaceon30September2021.7.1CommonOpportunitiesWithincreasingconcernsrelatingtotheclimateemergencythereisagrowingacceptanceoftheurgentneedtoreduceanthropogenicCO2emissionsrapidlyandsubstantially.ThiscreatesopportunitiesinrelationtothedevelopmentanddeploymentofcarboncapturetechnologiesintheUK.Someofthemainopportunitiescommontomostcarboncaptureprojectsareoutlinedbelow.Theopportunitieshavebeensplitintothoseapplicabletocarboncaptureusersandthoseapplicabletocarboncapturetechnologyproviders.Thepotentialfortheseopportunitiestoberealisedcanbeincreasedbyencouragingcollaborationbetweendifferentcompaniesandindustriesinvolvedinthecarboncapturesector.7.1.1ForCarbonCaptureTechnologyUsersMitigationofriskassociatedwithCO2emissioncosts–ItislikelythatthecostofemittingCO2inthefuturewillincrease.Consequently,beingabletooperatewithlowerCO2emissionsmayprovidecompetitiveadvantage.Licencetooperate–SomeindustriesmaybepreventedfromoperatinginthefutureifCO2emissionsarenotprevented.Corporatereputation–Theimplementationofprojectsthatbenefittheenvironmentcanenhancethereputationofcompanies.Availabilityofinvestment–Publicandprivateinvestmentfundsmaybeavailableforthedevelopmentofcarboncaptureprojects.Earlyadoptionadvantages–Thereareadvantagesrelatingtotheearlyadoptionofanynewtechnology.CO2asafeedstock–InsomeprocessesthereisthepotentialtouseCO2asafeedstock.7.1.2ForCarbonCaptureTechnologyProvidersMarketsize–Thereisasubstantialpotentialglobalmarkettosuccessfuldevelopersofcarboncapturetechnologies.Availabilityofinvestment–Publicandprivateinvestmentfundsmaybeavailableforthedevelopmentofcarboncapturetechnologies.Incrementalimprovements–Carboncapturetechnologyhashadverylimiteddeploymentinmanyapplications.WhereexistingCO2capturetechnologyisdeployedinnewapplicationstherewillbescopeforincrementaltechnicalimprovementstothesystemwhichwillleadtoperformanceimprovementsandcostreductions.Newconcepts–ThereareawidevarietyofCO2captureconceptsavailable,manyofwhichareattheearlystagesofdevelopment.Itispossiblethatanearly-stagetechnologyconceptcouldoffercostandperformanceadvantagesovermoreestablishedoptions.Modularisation–Theproductionofstandardisedmodulesthatcanbeattachedtoexistingprocessesisaconceptbeingexploredbytechnologysuppliers.Theuseofstandardisedmodulesoffersfinancialandtechnicaladvantages.Preparedfor:DepartmentforBusiness,EnergyandIndustrialStrategyAECOM40NextGenerationCarbonCaptureTechnology7.2CommonBarriersCostofemittingCO2–Thecostofcapturing,transportingandstoringCO2iscurrentlygreaterthanthecostofemittingittoatmosphereinmostsituations.Policyandincentives-Clearpolicyandarobust,longterm,systemoftaxesandincentiveswillberequiredtomakecarboncaptureprojecteconomicallyattractiveandallowfinanceablebusinessmodelstobedeveloped.Workinthisareaisongoingbuttherearemultiplechallengesassociatedwithdevelopmentoftherequiredpolicyandincentivesschemes.CO2infrastructure–ThereiscurrentlyalackofinfrastructureforthetransportationandstorageofCO2intheUK.ThecarboncaptureclustersproposedforsomeindustrialhubsintheUKhavethepotentialtoservetheseareasandbeextended.However,inmuchofthecountrytherearenoplansforthedevelopmentofCO2transportationinfrastructureintheshorttomediumterm.CO2storagerisk–StorageoflargequantitiesofCO2couldcreatelargefinancialliabilities.Organisationsinvolvedinthisindustrywouldneedtobebothcapableof,andwillingto,assumethatliability.Carboncapturechainrisk–ForacarboncaptureplanttobeofvalueitrequiresasourceofCO2,ameansoftransportingCO2toastoragesiteandafunctioningstoragesite.Theseelementsofthechainmaybeownedandoperatedbydifferentcompanies.Ifanyoneoftheseelementsisunavailable,orbecomesunavailableduringthelifeoftheproject,thenthisisarisktothecarboncaptureproject.Theriskscreatedbyrelianceonotherpartsofachainofequipmentcreateadditionalcostsforaprojectandmaydiscourageinvestment.Alternativedecarbonisationoptions–Lowercostdecarbonisationoptionsmaybeabarriertocarboncapturedeploymentinsomesettings.Examplesofpotentialalternativedecarbonisationoptionsincludedemandreduction,productsubstitution,electrification,efficiencyimprovementsandfuelswitching.Theavailabilityoflowercostdecarbonisationoptionsisindustryandsitespecific.Permittingandregulation–carboncaptureisanewindustrysothereareareasofenvironmentalpermittingandregulationthatrequiretobedeveloped.Abalanceisrequiredbetweenthesometimes-competingprioritiesofencouragingthedevelopmentofcarboncaptureprojects,protectingtheenvironmentfrompotentiallyharmfulemissions(otherthanCO2),encouragingthedeploymentofnewtechnologiesandallowingtheintellectualpropertyoftechnologydeveloperstobeprotected.Inaddition,anydifferencesinapproachbetweenthedevolvedadministrationsintheUKhavethepotentialtoaddcomplicationtorequirements.Planning–Obtainingtherequiredplanningpermissionforacarboncapturefacilitymaybeabarrieratsomesites.Carboncaptureplantsarelargeprocessplantswithimpactsrelatingtoappearance,emissions,noise,traffic,safetyandenvironmentalhazardsandotherpotentialimpacts.Forretrofitprojectstheremayalsobephysicalconstraintsinrelationtothespaceavailableadjacenttotheexistingprocessplant.Technologyrisk–Carboncaptureplantscanbecomplexandexpensiveandmanytechnologieshavenotbeendemonstratedinacommercialsetting.Scale-up–Scalingupnewtechnologiestoalargescalecanbeanexpensive,timeconsumingandhigh-riskprocesswithnoguaranteeofsuccess.Abalanceisrequiredbetweenachievingrapidscale-up,tobenefitfromeconomiesofscale,andavoidingexcessivetechnicalriskassociatedwithrapidscale-up.Availabilityoffunding–Thereisalimitedamountoffundingavailableforthedevelopmentofnewtechnologies.Health,safetyandtheenvironment–Theconstructionofacarboncaptureplantwillintroducenewhazardstoasitethatrequiretobemitigated.PublicPerception–Thedevelopmentofcarboncaptureprojectshasthepotentialtobenefitcorporatereputation.However,publicperceptionalsohasthepotentialtobeabarriertodevelopmentifcarboncaptureisperceivedashighriskandamethodofprolongingthecontinuedoperationofpollutingindustriesordistractingattentionfromlesspoliticallyfavourabledecarbonisationoptions,suchasdemandreduction.Toovercomethisbarrierbothappropriateuseofcarboncaptureandmanagementofpublicperceptionarerequired.Preparedfor:DepartmentforBusiness,EnergyandIndustrialStrategyAECOM41NextGenerationCarbonCaptureTechnology7.3IndustrySpecificOpportunitiesandBarriersTable16detailsindustryspecificopportunitiesandbarriersrelatingtothedeploymentofcarboncapturetechnology.Table16.IndustrySpecificOpportunitiesandBarriersIndustryOpportunitiesBarriersEnergyfromwaste•PotentialfornetnegativeCO2emissionsdue•ThepotentialimpactofresidualCHPandgasfiredtobiogeniccontentoffeedstockcontaminantcarryoverfromexistingfluepowergenerationgastreatmentprocesses.BiomassPower•Consistenthighloadoperationgeneration•Experienceofcomplexfluegastreatment•DispersedlocationofsitesCementandlime•Improvedpublicperception•LimitedotheroptionsforresidualwasteGlasstreatmentOilandgas•Relativelylowlevelofcontaminationinflue•CompetingtechnologiesforlowcarbonIron,steelandnon-gaselectricitygenerationferrousmetalsChemicals•HighvolumesofCO2producedatonesource•PossibleintermittentoperationAnaerobicdigestion•LowCO2concentrationsBrewinganddistilling•PotentialfornetnegativeCO2emissionsdue•Limitedavailabilityofsustainabletobiogeniccontentoffeedstockfeedstock•HighvolumesofCO2producedatonesource•Dispersedlocationofsites•Limitedotherwaysofsubstantiallyreducing•ThepotentialimpactofresidualCO2emissionscontaminantcarryoverfromexistingfluegastreatmentprocesses.•PotentialtoexportlowCO2product•PotentialfornetnegativeCO2emissionsiffeedstockwithbiogeniccontentisused.•Limitedotherwaysofsubstantiallyreducing•DispersedlocationofsitesCO2emissions.Particularlyforlargesitesthat•Thepotentialimpactofresidualcannotsourceenoughgoodqualityrecycledcontaminantcarryoverfromexistingflueglasstoreplacecarbonatefeedstockgastreatmentprocesses.•PotentialtoexportlowCO2product•Experienceofgashandling,includingCO2•Multipleemissionstreamsatsomesitescapturetechnologies•Maybeperceivednegativelyasawayof•Accesstostoragesitesallowingthecontinueduseoffossilfuels•HighvolumesofCO2producedatonesource•HighvolumesofCO2producedatonesource•Otherpotentialdecarbonisationoptions•PotentialtoexportlowCO2productavailable•SomeemissionstreamswithhighCO2•Differentchallengesfordifferentindustryconcentration(eginfertiliserproduction)subsectors.Forexample,intermittentoperation,contamination,scaleor•PotentialtoexportlowCO2productsgeographiclocation.•PotentialtouseCO2inproductmanufacture•PotentialfornetnegativeCO2emissionsdue•Relativelysmallscaletobiogeniccontentoffeedstock•Dispersedlocationofsites•RelativelyhighCO2concentrationinbiogas•EstablishedprocessesforCO2extractionforwhenbiogasisupgradedtobiomethane•PotentialfornegativeCO2emissions•Dispersedlocationofsites•HighconcentrationCO2produced•Relativelysmallscale•EstablishedCO2captureandsalesPreparedfor:DepartmentforBusiness,EnergyandIndustrialStrategyAECOM42NextGenerationCarbonCaptureTechnology8.IndustryEngagementWorkshopThissectionsummarisesfindingsfromthe‘NextGenerationCarbonCaptureTechnology’industryengagementworkshopheldon30September2021.TheworkshopwasmanagedbyAECOM,hostedbytheUKCarbonCaptureandStorageResearchCentre(UKCCSRC),withtechnicalinputfromJonGibbinsoftheUniversityofSheffieldandBEIS.Thepurposeoftheworkshopwastoengagewithrepresentativesfromarangeofindustrysectors.Aswellasstimulatingenthusiasm,theworkshopfacilitatedopendiscussionandpromotedopportunitiesforcollaborationinrelationtonextgenerationcarboncapturetechnologies.Participantswereencouragedtosharetheirviewsonopportunitiesandbarriersrelatingtothedevelopmentanddeploymentofcarboncapturetechnologies.FeedbackonopportunitiesandbarriersiscontainedintheWP2report(thatwillbepublishedbyBEISinMay2022),allotherfeedbackfromtheworkshopisreportedinthisdocument.FollowinganintroductorypresentationbyAECOMtheworkshophadtwointeractivesessions.Duringtheinteractivepartsoftheworkshopinformationwasgatheredfromparticipantsbyaskingmultiplechoicequestionsandcollectingcommentsmadeanonymouslyondifferentsubjects.Whileallresponsesweremadeanonymously,attendeeswereaskedtoprovideanindicationoftheindustrysectorthattheywereaffiliatedwith.TheX-Leapsoftwareplatformwasusedtoanonymiseandfacilitatetheinteractivepartoftheworkshop.Theworkshopwaswellattendedwith135participantsattendingintotal.Participantsincludedrepresentativesfromalltheanticipatedindustries.Therewereconsistentlyhighlevelsofengagementfromattendees,withupto80responsesineachX-Leapquestionandover100commentsmadeduringtheopportunitiesandbarriersopendiscussion.Thishighlevelofparticipationfromavarietyofsectorsresultedinawiderangeofopinionsbeingexpressedandmeantthatvaluableinformationwasobtained.Somekeymessagesfromtheworkshopwere:•Carboncapturewasseenbymostparticipantsashavinggreaterpotentialtodecarbonisethaneitherfuelswitchingorprocessmodification.Although,itshouldbenotedthattheseresultswereobtainedfromattendeesofaneventrelatingtocarboncapture,soattendeesmaybemorelikelytoviewitpositivelyasadecarbonisationapproach.•Solvent-basedtechnologieswithimprovementswereseenasbeingthemostpromisingnextgenerationcarboncapturetechnology.•Mostattendeesanticipateddeploymentofcarboncapture,andotherdecarbonisationtechnologies,by2030.•Themajorityofparticipantsanticipatedcarboncapturetechnologiesbeingcapableofcapturingmorethan90%oftotalemissionsfromtheirplant.•‘Falsestarts’inthecarboncaptureindustryhavebeenasourceoffrustrationandhavethepotentialtoundermineinvestorconfidence.Thequestionsaskedduringtheworkshopwereintendedtoprovideinsightintothecurrentthoughtsandopinionsofdifferentindustrialsectorsonarangeofissuesrelatingtothedeploymentofcarboncapturetechnology.Participantswerepresentedwithsimplemultiple-choiceanswerstoarangeofquestionstoallowthemtoexpresstheiropinions.Theanswerstomanyofthequestionsaskedweremorecomplexthancouldbecoveredbymultiplechoiceanswersandwilldependonawiderangeofinterrelatedfactors.Furthermore,questionsmayhavebeeninterpreteddifferentlybydifferentparticipantswhichmayhaveaffectedtheiranswers.Thisshouldbetakenintoconsiderationwhendrawinganyconclusionsfromtheresultsobtained.Theinputsprovidedbyparticipantsrepresenttheanonymouslyexpressedopinionsoftheindividualswhoattendedtheworkshop,andforsomeindustrysectorstherewereonlyasmallnumberofattendees.Therefore,theresultsobtaineddonotnecessarilyrepresentthewiderviewsoftheindustriesconcerned.Preparedfor:DepartmentforBusiness,EnergyandIndustrialStrategyAECOM43NextGenerationCarbonCaptureTechnology8.1InteractiveSessionResults8.1.1PotentialtoDecarboniseThequestionaskedtoparticipantsinthissectionwas‘Pleaseselectandranktheapproachesthathavethegreatestdecarbonisationpotentialforyoursector.’Threeoptionsweregivenandweretoberankedinorder,withthetopapproachbeingtheoptionwiththegreatestpotential.Therewere80responsestothisquestionandtheaverage(mean)rankingforeachapproachisgiveninFigure3.AbreakdownoftheresultsbysectorisgiveninFigure3.The‘petro-chem,fertilisersandfinechemicals’sectorwasomittedfromthisgraphbecausenoresponseswereobtained.Figure3.Breakdownofdecarbonisationapproachrankingresultsbyindustrysector.Figure4.Decarbonisationapproachrankingresults.Keyobservationsfromtheresultsobtainedfromthisquestionare:Inallindustrysectors,carboncapturewasconsideredtohavemoredecarbonisationpotentialthanfuelswitchingorprocessmodifications.Although,itshouldbenotedthattheseresultswereobtainedfromattendeesofaneventrelatingtocarboncapture,soattendeesmaybemorelikelytoviewitpositivelyasadecarbonisationapproach.CarboncapturewasviewedparticularlyfavourablyintheEfWsector.Thismaybeduetothelimitedalternativesfordecarbonisationinthissector.Inthecement,glass,lime,ceramicsandmetalssectortherewasamoreevensplitbetweenresponsesonwhichdecarbonisationoptionofferedthegreatestpotential.Thismayreflectagreateravailabilityofoptionsinrelationtofuelswitching,orprocessmodifications,comparedtootherindustries.Preparedfor:DepartmentforBusiness,EnergyandIndustrialStrategyAECOM44NextGenerationCarbonCaptureTechnology8.1.2TimetoCommercialDeploymentParticipantswereaskedto‘Selectthetimeyourindustrialsites(orwidersector)mightstartthefirstfull-scale,ornearfull-scale,decarbonisationofindividualsites.’Onlyoneanswerwastobeselected.Therewere72responses,andthetotalresultsaregiveninFigure5.Figure5.Timetocommercialdeploymentresultsbysector.8.1.3MostPromisingNextGenerationTechnologiesParticipantswereaskedto‘Pleaseselectthemostpromisingnextgenerationtechnologiesforcarboncapture.’andgiventheoptiontoselectuptofouranswers.Therewere189answersselectedintotalfrom77respondents.AbreakdownoftheresultsbysectorisgiveninFigure6.Figure6.Mostpromisingnextgenerationtechnologyresultsbysector.Preparedfor:DepartmentforBusiness,EnergyandIndustrialStrategyAECOM45NextGenerationCarbonCaptureTechnology8.1.4CarbonCaptureDeploymentTherewerefivequestionsaskedinthissectionregardingexpectedtimeandscaleofcarboncapturedeployment.Foreachquestion,oneanswercouldbeselectedandtherewerebetween35and40respondentstoeachquestion.TheresultsfromthesequestionsaredisplayedinFigures7to11.Figure7.Carboncapturetechnologydeploymentscaleresultsbysector.Figure8.Carboncapturedeploymenttimelineresultsbysector.Figure9.Carboncapturetechnologydemonstrationscaleresultsbysector.Preparedfor:DepartmentforBusiness,EnergyandIndustrialStrategyAECOM46NextGenerationCarbonCaptureTechnologyFigure10.Carboncapturedemonstrationtimeresultsbysector.Figure11.AnticipatedCO2emissionscapturedresultsbyindustrysector.Preparedfor:DepartmentforBusiness,EnergyandIndustrialStrategyAECOM47NextGenerationCarbonCaptureTechnology9.AbbreviationsMeaning3DimensionalAbbreviationAllam-FetvedtCycle3DBestAvailableTechnologyAFCBioenergywithCarbonCaptureandStorageBATUKGovernmentDepartmentofBusiness,Energy&IndustrialStrategyBECCSChilledAmmoniaProcessBEISCapitalExpenditureCAPCombinedCycleGasTurbineCAPEXCarbonCaptureandStorageCCGTCarbonCaptureUtilisationandStorageCCSCombinedHeat&PowerCCUSCleanEnergySystemsCHPCarbonDioxideCESCommercialReadinessIndexCO2USDepartmentofEnergyCRIEnergyfromWasteDOEEngineering,Procurement&ConstructionEfWEnhancedOilRecoveryEPCEuropeanUnionEORFrontEndEngineeringDesignEUFinalInvestmentDecisionFEEDGlobalCCSInstituteFIDHealth,Safety&EnvironmentGCCSIInternationalEnergyAgencyGreenHouseGasR&DProgrammeHSEIntellectualPropertyIEAGHGKawasakiCO2CaptureIPKansaiElectricPowerCompanyKCCLowEmissionsIntensityLimeandCementKEPCOLowerHeatingValueLEILACMoltenCarbonateFuelCellLHVMonoethanolamineMCFCMitsubishiHeavyIndustriesMEAThousandsofStandardCubicFeetperDayMHIMembraneTechnologyandResearchMscfdMegaWattsMTRMegaWattsElectricalMWMegaWattsThermalMWeUSNationalCarbonCaptureCenterMWthNationalEnergyTechnologyLaboratory(ofUSDepartmentofEnergy)NCCCNorwegianKroneNETLNetZeroInnovationPortfolioNOKOperating&MaintenanceNZIPOperatingExpenditureO&MPostCombustionCaptureOPEXPCCPreparedfor:DepartmentforBusiness,EnergyandIndustrialStrategyAECOM48NextGenerationCarbonCaptureTechnologyPressureSwingAdsorptionRefineryResidueFluidCatalyticCrackerPSATechnologyCentreMongstadRFCCTonnesperDayTCMTonnesperAnnumtpdTechnologyReadinessLeveltpaTemperatureSwingAdsorptionTRLUnitedKingdomofGreatBritainandNorthernIrelandTSAUltra-PerformanceLiquidChromatography-MassSpectrometerUKUnitedStatesofAmericaUPLC-MSUS/USAPreparedfor:DepartmentforBusiness,EnergyandIndustrialStrategyAECOM49NextGenerationCarbonCaptureTechnology10.References1.Company'sSolventsSurpasses500,000m3/dayofbiogasupgrading,CarbonCleanWebsite,articlefrom22June2018https://www.carbonclean.com/media-center/news/article/2018/06/companys-solvents-surpasses-500k-m3-day-of-biogas-upgrading,accessedon08/12/20212.LookingForward:Barriers,risksandrewardsoftheAustralianGeothermalSectorto2020and20303.ElectroniccommunicationwithBEISduringprojectexecution,25/11/20214.https://www.theccc.org.uk/wp-content/uploads/2020/12/The-Sixth-Carbon-Budget-The-UKs-path-to-Net-Zero.pdf5.MHIpressrelease,MHIwebsite,https://www.mhi.com/news/210304.htmlaccessedon4/10/20216.NRGPetroNovaCaseStudy,NRGwebsite,https://www.nrg.com/case-studies/petra-nova.htmlaccessedon29/09/20217.Draxpressrelease,Draxwebsite,https://www.drax.com/press_release/drax-and-mitsubishi-heavy-industries-sign-pioneering-deal-to-deliver-the-worlds-largest-carbon-capture-power-project/accessedon4/10/20218.PHASEII:LargePilotTestingofLinde-BASFAdvancedPost-CombustionCO2CaptureTechnologyataCoal-FiredPowerPlant(FE0031581),DOE/NETL2019CarbonCapture,Utilization,Storage,andOilandGasTechnologiesIntegratedReviewMeetingPittsburgh,PA/Aug.26-30,20199.SaskPowerBoundaryDamBlogJuly2021,SaskPowerwebsite,https://www.saskpower.com/about-us/our-company/blog/2021/bd3-status-update-july-2021accessedon08/09/202110.CCSpilotphasesuccessfullycompletedonNorwegianwaste-to-energyplant,TheChemicalEngineerwebsitearticle,https://www.thechemicalengineer.com/news/ccs-pilot-phase-successfully-completed-on-norwegian-waste-to-energy-plant/accessedon06/09/202111.DNVGLapprovesShellcarboncapturetechnologytobringdownemissionsfromFortumwaste-to-energyplant,01/07/2020,DNVGLwebsite,https://www.dnv.com/news/dnv-gl-approves-shell-carbon-capture-technology-to-bring-down-emissions-from-fortum-waste-to-energy-plant--179829accessedon06/09/202112.Highlightsofanamine-basedCO2capturepilotplantcampaignattheFortumOsloVarmeWastetoEnergyplantinOslo,Norway,March2021,M.Tednesetal,15thInternationalConferenceonGreenhouseGasControlTechnologies,GHGT-1513.FortumOsloVarme’sCCSprojecttakesimportantstepforward,16/04/2021,NewestCCUSwebsite,https://www.newestccus.eu/news/fortum-oslo-varme%E2%80%99s-ccs-project-takes-important-step-forwardaccessedon29/09/202114.Fluorwebsite-CarbonCapture,https://www.fluor.com/client-markets/energy/production/carbon-captureaccessedon08/09/202115.FurtherAssessmentofEmergingCO2CaptureTechnologiesforthePowerSectorandtheirPotentialtoReduceCosts,September2019,IEAGHGTechnicalReport16.Improvementinpowergenerationwithpost-combustioncaptureofCO2,ReportNumberPH4/33,November2004,IEAGHG17.CarbonCaptureandStorage,U.Bergeetal,ZERO(ZeroEmissionResourceOrganisation)Report18.Bellingham,ZeroCO2website(notupdatedsince2016/17),http://www.zeroco2.no/projects/bellinghamaccessedon07/09/202119.BATReviewforNew-BuildandRetrofitPost-CombustionCarbonDioxideCaptureUsingAmine-BasedTechnologiesforPowerandCHPPlantsFuelledbyGasandBiomassasanEmergingTechnologyundertheIEDfortheUK,July2021,J.Gibbins&M.Lucquiaud20.FluorSolventTestingatTechnologyCenterMongstad(Project70814),August2019,S.Reddy&C.Freeman21.FluorawardedFEEDcontractforNorthDakotacarboncaptureproject,TheChemicalEngineerwebsitearticlehttps://www.thechemicalengineer.com/news/fluor-awarded-feed-contract-for-north-dakota-carbon-capture-project/accessedon08/09/2021Preparedfor:DepartmentforBusiness,EnergyandIndustrialStrategyAECOM50NextGenerationCarbonCaptureTechnology22.CarbonCleanwebsite-Solvents,https://www.carbonclean.com/solvents?hsLang=enaccessedon06/09/202123.CarbonCleanSolutionsDemonstrationPlantDetails,UniversityofEdinburghGlobalSCCSProjects,https://www.geos.ed.ac.uk/sccs/project-info/2021accessedon06/09/202124.Inaction:theworld'sfirstfullycommercialcarboncaptureandutilisationplant,14/01/2021,Ediewebsite,https://www.edie.net/downloads/In-action--the-world-s-first-fully-commercial-carbon-capture-and-utilisation-plant/521accessedon30/09/202125.CarbonCleanwebsite,https://www.carbonclean.com/accessedon30/09/202126.CarbonCleanpressrelease,CarbonCleanwebsite,https://www.carbonclean.com/media-center/news/series-b-extension-with-cemex-as-new-investoraccessedon06/09/202127.BASFandLindetotest200tperdayCO₂captureinIllinois,05/06/2021,Chemical&EngineeringNewswebsite,https://cen.acs.org/environment/climate-change/BASF-Linde-test-200-t/99/i21accessedon08/09/202128.CityWater,LightandPowerplantchosenassiteforcarboncapturetechnologypilottesting,13/05/2021,AmericanPublicPowerAssociationwebsite,https://www.publicpower.org/periodical/article/city-water-light-and-power-plant-chosen-site-carbon-capture-technology-pilot-testingaccessedon30/09/202129.JustCatch–CapturePlants,18thJune2019,O.Graff,Keynote,TCCS-10,Trondheim30.TwenceProjectDetails,UniversityofEdinburghGlobalSCCSProjects,https://www.geos.ed.ac.uk/sccs/project-info/2623accessedon06/09/202131.AkerSolutionspressrelease,AkerSolutionswebsite,https://www.akersolutions.com/news/news-archive/2020/aker-solutions-awarded-contract-for-the-brevik-carbon-capture-project/accessedon06/09/202132.AkerCarbonCapturewebsite–JustTest,https://akercarboncapture.com/offerings/just-test/accessedon06/10/202133.AkerCarbonCaptureraisesNOK840milliontofundacceleratedgrowth,13/08/2021,CisionNewswebsite,https://news.cision.com/aker-carbon-capture-as/r/aker-carbon-capture-raises-nok-840-million-to-fund-accelerated-growth,c3395993accessedon06/09/202134.Akersolutions’carboncapturetechnologygetsDNVapprovalforinstallationatNorcemCementPlant,29/01/2020,ChemicalEngineeringwebsite,https://www.chemengonline.com/aker-solutions-carbon-capture-technology-gets-dnv-approval-for-installation-at-norcem-cement-plant/accessedon07/09/202135.AkerCarbonCapturewebsite,https://akercarboncapture.com/accessedon06/09/202136.ProjectLEILACwebsite–PilotPlant,https://www.project-leilac.eu/leilac-pilot-plantaccessedom06/10/202137.ProjectLEILACwebsite–FAQs,https://www.project-leilac.eu/faqaccessedon30/09/202138.C-Capturewebsite,https://www.c-capture.co.uk/,accessedon27/09/202139.DraxBECCSPilotPlantDetails,UniversityofEdinburghGlobalSCCSProjects,https://www.geos.ed.ac.uk/sccs/project-info/2261,accessedon27/09/202140.Draxpressrelease,Draxwebsite,https://www.drax.com/press_release/5m-boost-scale-ground-breaking-carbon-capture-pilot-drax-uks-largest-power-station/,accessedon27/09/202141.AssessmentofafullyintegratedSARGASprocessoperatingoncaolwithnearzeroemissions,November2008,J.Hetland&T.Christensen,AppliedThermalEngineering,Volume28,Issue16,Pages2030-203842.CO2Capsolwebsite,https://www.co2capsol.com/accessedon27/09/202143.FinalReportSummary-CAPSOL(DesignTechnologiesforMulti-scaleInnovationandIntegrationinPost-CombustionCO2Capture:FromMoleculestoUnitOperationsandIntegratedPlants),https://cordis.europa.eu/project/id/282789/reporting,accessedon27/09/202144.CO2CapsolASOPERATIONALUPDATE-September22,2021,ModularFinancewebsite,https://mfn.se/8228unk/a/co2-capsol/co2-capsol-as-operational-update-september-22-2021-cb9d0bce,accessedon27/09/202145.DemonstrationResultsofEnzyme-AcceleratedCO2Capture,15/11/2016,L.Fradette,S.Lefebvre&J.Carley,GHGT-13Preparedfor:DepartmentforBusiness,EnergyandIndustrialStrategyAECOM51NextGenerationCarbonCaptureTechnology46.SaipemTakesCSI’sCarbonCaptureTechnology,30/01/2020,CHEManagerInternationalwebsite,https://www.chemanager-online.com/en/news-opinions/headlines/saipem-takes-csi-s-carbon-capture-technologyaccessedon27/09/202147.CO2Solutionswebsite,https://co2solutions.com/en/projects/accessedon27/09/202148.BakerHugheswebsite–ChilledAmmoniaProcess,https://www.bakerhughes.com/process-solutions/chilled-ammonia-process,accessedon27/09/202149.ChilledAmmoniaProcessScale-upandLessonsLearned,2017,O.Augustssonetal,EnergyProcedia,13thInternationalConferenceonGreenhouseGasControlTechnologies,GHGT-1350.IONwebsite–OurTechnology,https://ioncleanenergy.com/our-technology/accessedon7/10/212151.IONEngineeringInitiatesTestCampaignatTechnologyCentreMongstad(TCM),World'sLargestandMostAdvancedCO2CaptureTestFacility,12/10/2016,CisionPRNewswirewebsite,https://www.prnewswire.com/news-releases/ion-engineering-initiates-test-campaign-at-technology-centre-mongstad-tcm-worlds-largest-and-most-advanced-co2-capture-test-facility-300342517.htmlaccessedon7/10/202152.NETLwebsite–IONEngineeringprojectpage,https://www.netl.doe.gov/node/7185accessedon7/10/202153.DOEInvests$45MilliontoDecarbonizetheNaturalGasPowerandIndustrialSectorsUsingCarbonCaptureandStorage,06/10/2021,DepartmentofEnergywebsite,https://www.energy.gov/articles/doe-invests-45-million-decarbonize-natural-gas-power-and-industrial-sectors-using-carbonaccessedon7/10/202154.eCO2Sol–ImprovingSustainabilityofFossilFuelResources,RTIbrochure,https://www.rti.org/brochures/eco2sol%E2%84%A2%E2%80%94improving-sustainability-fossil-fuel-resourcesaccessedon7/10/202155.TestingofRTI’sNon-AqueousSolventCO2CaptureProcessatNCCCusingtheSSTU(DE-FE0026466),NCCCreport,https://www.nationalcarboncapturecenter.com/wp-content/uploads/2021/01/RTI-International-Non-Aqueous-Solvent-CO2-Capture-Process-2018.pdfaccessedon7/10/202156.CarboncapturesystemtobetestedatTechnologyCentreMongstad,01/02/2021,WorldCoalwebsite,https://www.worldcoal.com/coal/01022021/carbon-capture-system-to-be-tested-at-technology-centre-mongstad/accessedon7/10/202157.StudyonSolidAdsorbentforCO2-CapturefromPostCombustionGasesUtilizingLow-TemperatureThermalEnergy,September2013,T.Okumura,2ndPostCombustionCaptureConference58.DevelopmentprogressofenergysavingCO2capturetechnologyutilizingsolidsorbent,September2017,T.Okumura,JCOALWorkshop-Wyoming59.KawasakiCO2Capture:anenergy-savingcapturesystemusingaminesolidsorbent,September2019,R.Numaguchietal,IEAGHG5thPostCombustionCaptureConference60.KansaiElectricPower,KawasakiHeavyIndustries,AndRITEAgreedToBuildATestFacilityToConductCO2CaptureDemonstrationProject,26/10/2020,JEPICUSAwebsite,https://www.jepic-usa.org/digests/2020/10/26/japan-kansai-electric-power-kawasaki-heavy-industries-and-rite-agreed-to-build-a-test-facility-to-conduct-co2-capture-demonstration-projectaccessedon27/09/202161.Svantewebsite–CarbonCaptureSolutions,https://svanteinc.com/carbon-capture-solutions/accessedon27/09/202162.Svantepressrelease,Svantewebsite,https://svanteinc.com/u-s-department-of-energys-national-energy-technology-laboratory-announces-investment-to-further-develop-lh-co2ment-colorado-project-carbon-capture-technology/accessedon05/10/202163.SorbentBasedPost-CombustionCO2SlipstreamTesting,NETLwebsite–TDAResearchprojectpage,https://www.netl.doe.gov/projects/project-information.aspx?p=FE0012870accessedon27/09/202164.CarbonDioxideMembraneSeparationforCarbonCaptureusingDirectFuelCellSystems,DFCTechnologyUsedasElectrochemicalMembraneforCO2PurificationandCaptureduringPowerGeneration,FuelCellEnergyWhitePaper65.06Remove:Carboncaptureandstorage,August2020,GlobalCCSInstitutePreparedfor:DepartmentforBusiness,EnergyandIndustrialStrategyAECOM52NextGenerationCarbonCaptureTechnology66.Developinganddeployingscalabletechnologysolutions,23/04/2021,ExxonMobilwebsite,https://corporate.exxonmobil.com/Sustainability/Energy-and-Carbon-Summary/Strategy/Developing-and-deploying-scalable-technology-solutions#Carboncaptureandstorageaccessedon01/10/202167.FuelCellEnergypressrelease,FuelCellEnergywebsite,https://investor.fce.com/press-releases/press-release-details/2019/FuelCell-Energy-Announces-New-Carbon-Capture-Project-with-Drax-Power-Station/default.aspxaccessedon01/10/202168.MTRwebsite–CarbonCapture–NaturalGasFiredPowerPlants,https://www.mtrinc.com/our-business/carbon-capture/natural-gas-fired-power-plants/accessedon05/10/202169.LargePilotTestingoftheMTRMembranePost-CombustionCO2CaptureProcess,January2020,MTRwebsite,https://www.mtrinc.com/news/large-pilot-testing-of-the-mtr-membrane-post-combustion-co-2-capture-process/accessedon27/09/202170.DOEAwardsApproximately$99MillionforDemonstrationofLarge-ScalePilotCarbonCaptureTechnologies,30/04/2021,DepartmentofEnergywebsite,https://www.energy.gov/fecm/articles/doe-awards-approximately-99-million-demonstration-large-scale-pilot-carbon-captureaccessedon27/09/202171.OurOwnHistory,TechnologyCentreMongstad(TCM),https://tcmda.com/wp-content/uploads/sites/5/2021/04/6041-Technology-Centre-Mongstad-DA-TCM-historien-ENG_Page3-1.pdfaccessedon27/09/202172.NETPowerwebsite,https://netpower.com/accessedon05/10/202173.DayI-SessionIII-SimonSmith,StudyManager,McDermott,CaseStudy-Pre-FEEDforUKDeploymentofAllam-Fetvedt,CyclePowerPlant,BirminghamCCSSummitSeptember202174.CleanEnergySystemswebsite–ZeroEmissionsPowerGeneration,https://www.cleanenergysystems.com/zero-emissions-power-generationaccessedon06/10/202175.CleanEnergySystemswebsite–SiteLocations,https://www.cleanenergysystems.com/site-locationsaccessedon01/10/202176.KimberlinaOxyfuelTestFacilityDetails,UniversityofEdinburghGlobalSCCSProjects,https://www.geos.ed.ac.uk/sccs/project-info/1261accessedon01/10/202177.Schlumberger,Chevron,MicrosoftplanBECCSprojectinCalifornia,04/03/2021,BiomassMagazinewebsite,http://biomassmagazine.com/articles/17779/schlumberger-chevron-microsoft-plan-beccs-project-in-californiaaccessedon29/09/202178.“Adsorptionassistedcryogeniccarboncapture:analternatepathtosteamdriventechnologiestodecreasecostandcarbonfootprint,”March2021,G.Rodriguesetal,15thInternationalConferenceonGreenhouseGasControlTechnologies.79.“ReviewofCryogenicCarbonCaptureInnovationsandTheirPotentialApplications,”29/07/2021,C.Font-Palmaetal,JournalofCarbonResearch80.FinalReportSummary-CAOLING(DevelopmentofpostcombustionCO2capturewithCaOinalargetestingfacility:“CaOling”),CordisEuropawebsite,https://cordis.europa.eu/project/id/241302/reportingaccessedon08/12/202181.Endesawebsite,https://www.endesa.com/en/projects/all-projects/environment/less-co2-emissionsaccessedon08/12/202182.AirLiquideEngineering&ConstructionsupportsdecarbonisationofZeelandRefinery,03/06/2021,HydrocarbonEngineeringwebsite,https://www.hydrocarbonengineering.com/refining/03062021/air-liquide-engineering-construction-supports-decarbonisation-of-zeeland-refinery/accessedon29/09/202183.AssessmentofEmergingCO2CaptureTechnologiesandTheirPotentialtoReduceCosts,December2014,IEAGHG84.CO2Capture:LaunchOfDinamx,AnIndustrialPilotDemonstrationProjectForTheDmxProcess,21/10/2020,IFPENwebsite,https://www.ifpenergiesnouvelles.com/article/co2-capture-launch-dinamx-industrial-pilot-demonstration-project-dmx-processaccessedon27/09/202185.APilotPlantinDunkirkforDMXProcessDemonstration,March2021,Proceedingsofthe15thGreenhouseGasControlTechnologiesConference15-18March2021,https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3821422accessedon27/09/2021Preparedfor:DepartmentforBusiness,EnergyandIndustrialStrategyAECOM53NextGenerationCarbonCaptureTechnology86.TwelveandLanzaTechPartnertoProducetheWorld’sFirstPolypropylenefromCO2,Lanzatechwebsite,articlefrom01/09/2021,accessed08/12/2021,https:www.lanzatech.com/2021/09/01/twelve-and-lanzatech-partner-to-produce-the-worlds-first-polypropylene-from-co2/87.AppendixF–EmergingCO2CaptureTechnologies,18/11/2020,MeetingTheDualChallengeARoadmaptoAt-ScaleDeploymentofCarbonCapture,Use,andStorage,ReportoftheNationalPetroleumCouncil88.Carbon8swebsite–OurSolutions,https://c8s.co.uk/a-scalable-approach/accessedon11/10/202189.BEISpressrelease,UKGovernmentwebsitehttps://www.gov.uk/government/news/uks-largest-carbon-capture-project-to-prevent-equivalent-of-22000-cars-emissions-from-polluting-the-atmosphere-from-2021accessedon11/10/2021Preparedfor:DepartmentforBusiness,EnergyandIndustrialStrategyAECOM54NextGenerationCarbonCaptureTechnologyaecom.comPreparedfor:DepartmentforBusiness,EnergyandIndustrialStrategyAECOM55