英国动力电池的未来-英VIP专享VIP免费

2025 and Beyond:
Promising battery cell
innovations for the
UK automotive sector
October 2022
This Insight Report is provided by the Technology Trends team at the APC
Key trends in automotive batteries 3
Study method and key insights 4
Aim of the insight report 5
Opportunities and challenges for automotive batteries 6
Clustering automotive battery types 8
Cross-cutting themes that drive innovation 12
Commercial readiness versus size of opportunity for next generation chemistries 13
Promising battery cell innovations for the UK automotive sector 16
What does this mean for the UK? 19
Glossary 22
Contents
2025 and Beyond: Promising battery cell innovations for the UK automotive sector 2
The automotive sector will dominate
future battery demand
The automotive sector will represent over 80% of
lithium-ion battery demand by 2030.
Vehicle manufacturers need batteries that achieve the
right balance of cost, energy density and life cycle
impact while navigating volatile raw material prices.
A diverse range of future battery technologies will
be developed to reduce reliance on one solution
The APC believes the automotive industry is
coalescing around three broad clusters of batteries:
entry level low cost, high volume performance and
high performance specialist.
Within these three broad clusters, vehicle manufacturers
are opting for dierent chemistry choices based on
their cell suppliers, production numbers, and specific
vehicle attributes.
Cross-cutting challenges will trigger
further innovations
Irrespective of end application, automotive batteries will
be subject to cross-cutting challenges that will trigger
further innovations including cell safety, manufacturing
improvements, recyclability and supply chain
development.
Key trends in automotive batteries
32025 and Beyond: Promising battery cell innovations for the UK automotive sector
2025andBeyond:PromisingbatterycellinnovationsfortheUKautomotivesectorOctober2022ThisInsightReportisprovidedbytheTechnologyTrendsteamattheAPCContentsKeytrendsinautomotivebatteries3Studymethodandkeyinsights4Aimoftheinsightreport5Opportunitiesandchallengesforautomotivebatteries6Clusteringautomotivebatterytypes8Cross-cuttingthemesthatdriveinnovation12Commercialreadinessversussizeofopportunityfornextgenerationchemistries13PromisingbatterycellinnovationsfortheUKautomotivesector16WhatdoesthismeanfortheUK?19Glossary222025andBeyond:PromisingbatterycellinnovationsfortheUKautomotivesector2KeytrendsinautomotivebatteriesTheautomotivesectorwilldominateAdiverserangeoffuturebatterytechnologieswillCross-cuttingchallengeswilltriggerfuturebatterydemandbedevelopedtoreducerelianceononesolutionfurtherinnovationsTheautomotivesectorwillrepresentover80%ofTheAPCbelievestheautomotiveindustryisIrrespectiveofendapplication,automotivebatterieswilllithium-ionbatterydemandby2030.coalescingaroundthreebroadclustersofbatteries:besubjecttocross-cuttingchallengesthatwilltriggerVehiclemanufacturersneedbatteriesthatachievetheentrylevellowcost,highvolumeperformanceandfurtherinnovationsincludingcellsafety,manufacturingrightbalanceofcost,energydensityandlifecyclehighperformancespecialist.improvements,recyclabilityandsupplychainimpactwhilenavigatingvolatilerawmaterialprices.Withinthesethreebroadclusters,vehiclemanufacturersdevelopment.areoptingfordifferentchemistrychoicesbasedontheircellsuppliers,productionnumbers,andspecificvehicleattributes.2025andBeyond:PromisingbatterycellinnovationsfortheUKautomotivesector3StudymethodKeyinsightsTheAPCqualitativelyassessedtherelativemarketEightinnovationsemergedthatarerelativelypotentialofnextgenerationbatteryinnovationsversusclosetomarketandcouldcaptureasignificanthowclosetheyaretoenteringtheautomotivemarket.portionoftheautomotivemarket.AqualitativeUKcapabilityassessmentwasalsoconductedtounderstandwheretheUKhas•SilicondominantanodesstrategicadvantagesintermsofIP,supplychain•Manganeserichcathodesandmanufacturingcapability.•IndustryscalebatterymaterialsrecyclingOnlythetechnologiesthataretheclosesttoentering•Solidstateelectrolytestheautomotivemarketwithahighmarketpotential•Lithiummetalanodewereanalysedinthisreport.Whileearlierstage•DryelectrodemanufacturinginnovationsareimportantfortheUK,theAPCtends•Lithiationtechniquestofocusoncommercialisinglate-stagetechnologies.•Sodium-ionTheUKhasstrategicadvantagesinsodium-ionandsiliconanodes.Thereisalimitedwindowofopportunitytocapitaliseonthisadvantagewithtargetedcapitalandlate-stageR&Dinvestments.Areassuchasbatterymaterialsrecycling,solidstateelectrolytesandmanganeserichcathodesareworthpursuingduetotheirhighmarketpotentialandemergingUKcapability.2025andBeyond:PromisingbatterycellinnovationsfortheUKautomotivesector4AimoftheinsightreportTheaimofthisinsightreportistoprovideanItisimportanttonotethisanalysisrepresentsaautomotiveperspectiveonpromisingbatterysnapshotintime.ButwefeelthebroadthemesKeypointstechnologies.WiththebatterysectordevelopingandtechnologiestheAPChaveidentifiedinthis•Thisinsightreportaimstoprovideguidanceatsuchpace,itcanbehardtokeeptrackofwhatreportarevalid–eveniftherelativeprioritiesonwhichtechnologiestheUKshouldtechnologiesarebestsuitedtotheautomotivechangeasthemarketmatures.Tohelpguideinvestinbasedonthebestinformationsector.Therefore,wehavedrawnonpubliclyreadersthroughthelandscape,thereportiscurrentlyavailable.availableinformation,alongsideourexperienceinstructuredintothreeparts:•TheUK’scapabilityinnextgenerationtheautomotivesector,toassessthemarket.automotivebatterytechnologyispresented.DefineautomotiveDifferentlightdutyvehiclesrequirecertainattributesfrombatteries.2025andBeyond:PromisingbatterycellinnovationsfortheUKautomotivesectorbatterysegmentsThreebroadtypesofautomotivebatterieswereidentifiedthathavedifferentcellcostandenergydensityrequirements.ClusterfuturebatteryinnovationsTherelativemarketsizeandcommercialreadinessofeachbatterycellopportunitywasassessed.Fourclusterswereidentified,showingtherelativematurityandmarketopportunitysizeofdifferentbatterychemistriesfortheautomotivemarket.AssesstheUK'sMergingtheinsightsgeneratedfromtheprevioustwosections,relativestrengthsaqualitativeassessmentoftheUK’scapabilityinnextgenerationandopportunitiesautomotivebatterytechnologyispresented.ThissectionrecommendswhichtechnologiestheUKshouldpursuebasedonthebestavailableinformation,themarket,andtheUK’scompetitiveposition.5OpportunitiesandBatteriesareafundamentaltechnologyforanetInfact,thesheerscaleofautomotivehasbeenchallengesforzeroeconomyandoneofthefastestgrowinghugelybeneficialtothebatteryindustry.Batteryautomotivebatteriestechnologyareas.Nationsaimingtoinvigoratepackpriceshaveplummetedfromanaveragetheirnativemanufacturingbasesarequicklyof$1,100/kWhin2010to$132/kWhin2021KeypointsestablishingdomesticbatteryindustriestoenableaccordingtoBloombergNewEnergyFinance1.greengrowth.TheautomotivesectorispredictedThishastransformedelectricvehiclesfrom•Differentcostandperformancetobethedominantuserofbatteriesinthefuture.anicheproductofthe2010stooneoftherequirementswillmakebatteriesaBy2030,RhoMotionexpectover80%ofthelargestmarketopportunitiesofthe2020s.Thedifferentiatedproductwitharangeofcellbatterydemandwillcomefromtheautomotiveimprovementsarenotexpectedtostop–eveninchemistriesavailable.sector,withadjacentsectorsbenefitingfromthethefaceofshort-termmaterialpriceincreases.R&Dandmanufacturingadvancements.•Thereisplentyofscopeforinnovationwithdifferingpricepoints.Figure1:By2030approximately80%ofbatterydemandwillcomefromtheautomotivesector•VolumepassengercarswillrequiredifferentPVandLDV80%10%BESS302GWhbatteriestosportscars,heavygoodsBusandtruck119GWhvehicles,andtheoff-highwaysector.2,421GWh4%Portables88GWh3%Micromobility89GWh•By2030,over80%ofbatterydemandwill3%Non-road7.9GWhcomefromtheautomotivesector.Source:RhoMotion1.BNEF,2021.BatteryPackPricesFalltoanAverageof$132/kWh,ButRisingCommodityPricesStarttoBite.Availablefromhere.62025andBeyond:PromisingbatterycellinnovationsfortheUKautomotivesectorFigure2:Thereisbroadagreementinthedirectionofthecostofbatteries,with$100/kWhachievablein2025and<$100/kWhachievableby2030.By2025,industryexpertsandOEMsareforecastingbatterypackBatteryCosts$/kWh202020252030pricestohoveraround$100/kWh,fallingfurthertoaround$80/kWh2by2030.Therearetworoutestoachieve$80/kWhattheBloombergNewEnergyFinancePackCell¹PackCell¹PackCell¹packlevel:reducethecostoftheinputmaterialsandmaintainUSDepartmentofEnergy140104²8563²59²39²energydensity,orincreasetheenergydensityatagreaterrateAutomotiveCouncilUK143107-8060²thanthecostofthenewinputmaterials.Ford12585²97-7758²Renault16512310070²8060While$80/kWhatthepacklevelby2030isinprincipleGM150113100758060achievable,itcanonlybedoneifkeymaterialslikenickel,15011310075lithium,graphiteandcobaltarelowcostandsecuredinadvanceVW75--byOEMsandcellmanufacturers.67³50Tesla133100²--93³70APCanalysis,showninFigure3,suggeststhatfornickel-rich-chemistriessuchasNMC,futurepricescouldvaryalotmore1299773⁴55⁴-thanLFP.ThisisbecauseNMCisextremelysensitivetothepriceofnickel,cobaltandlithiummaterials,whereasLFPisonly1.Unlessspecified,cellcostsarederivedbymultiplyingthepackcostsby75%.2.Cell$/kWhprovidedintheliterature.3.50%costreductionby2030forsensitivetolithium.the’Entry’Segment;30%for’Volume’by2030.4.BasedonTesla’sBatteryDayAnnouncementSept2020–56%reductionbefore2025Thisthree-prongedchallengeofreducingbatterypackcosts,Figure3:NMCissensitivetothematerialcostsofnickelandcobalt,materialsabsentinLFPbatteries.improvingenergydensityandavoidingmaterialshortagedisruptionsisleadingtoarangeofnextgenerationtechnologiesNMNCMPCacPkaCckosCtoRsatnRgaengeLFPLFPPacPkaCckosCtoRsatnRgaengebeingconsideredbytheindustry.2502502142142502502.Thelowestcostsareonlyavailabletocertainvehiclemanufacturerswhobuyspecific200200177177batterycellsinhighenoughvolumes.Specialistplayers,likemanyofthevehicle217217200200manufacturersintheUK,needhigherperformancechemistriesatlowervolumes.172172Thekeypointisthatbatterieswillbeadifferentiatedproduct.Thismeansthereis150150129129150150plentyofscopeforinnovationwithdifferingpricepoints.Volumepassengercarswill100100102102110110requiredifferentbatteriestosportscars,heavygoodsvehicles,andtheoff-highway$/kWh119119121121sector.Moreover,batteriesforaerospaceandstationarystoragewillhavetheirown$/kWh1001001011019898performanceandpricepoints.$/kWh$/kWh5050868681812025andBeyond:PromisingbatterycellinnovationsfortheUKautomotivesector12212250500000202120212025202520302030202120212025202520302030NMCNMBaCseBlianseelineNMCNMUnCcUerntacienrttyaiBnatyndBandLFPLUFnPcUerntacienrttyaiBnatyndBandLFPLBFaPseBlianseelineThesesensitivitiesmakeithardertoforecastbatterycostsandsuggestLFPisasaferbetwherecostiskey.Whereenergydensityisakeydriver,e.g.forlongerrangeorlargerpremiumvehicles,NMCisstillagoodchoice.7ClusteringautomotivePassengercarOEMsandtheirsupplychainsareDespiteindustrycoalescingaroundthreebatterytypesgravitatingtowardsthreecategoriesofbatteriessegmentsofbatteriesforlightdutyvehicles,tosuittheirfutureEVportfolios:significantdivergenceoccurssurroundingtheKeypointsspecificchemistrysolutions.ThesedifferencesTheAPCseesbatterytypesbroadlyEntrylevel,lowcostoccurforanumberofreasons.coalescingaroundthreecategoriesHighvolumeperformance•Entrylevel,lowcostHighperformance,specialistapplicationsSomecompaniesseemtobehedgingagainst•Highvolumeperformancerisingfuturerawmaterialprices.Othersareledby•Highperformance,specialistapplicationsVehiclemanufacturescommunicatethesetheircellmanufacturerstechnologyroadmaps.categoriesdifferentlybutmanyarepursuingaSomewillprioritisespecificvehicleattributes(say2025andBeyond:PromisingbatterycellinnovationsfortheUKautomotivesectormulti-chemistrystrategybasedontheirdifferentfastrecharging)thatrequirespecificchemistries.productsofferings.Belowisabriefdiscussionofthecharacteristicsthatdefineeachcategory.Figure4:CellcostandenergydensityneedsforthethreesegmentsorclustersidentifiedbytheAPC.RHSshowssomeexamplebatterychemistries.1400Highperformance,Highperformance,1200specialistapplicationsspecialistapplications1000800Ultra-HighLi-RichLithiumMetalSolidState600NiBlendsCathodesAnodesElectrolyte400CellEnergy(Wh/l)200HighvolumeHighvolumeperformanceperformance0Si0NCANMCNCMAeLNOAnodesMn-richEntrylevel,Entrylevel,lowcostlowcostLFPNa-ionMn-richM3PLFMP50100150200250CellCost($/kWh)8Entrylevel,lowcostCostiskingwithacceptableenergydensityForentrylevel,lowcostsolutions,areducedvolumeperformancevehicles.Thisisduetonovelenergydensityisacceptableifthe$/kWhisLFPcell-to-packconcepts3,moreenergydenselowenough.AffordablevehiclesthatonlydoaLFMPcells,aswellasrawmaterialpriceincreasesinmodestdailymileage,suchascitycars,aregoodotherchemistries.candidatesforthesebatterytypes.Inthemedium-term,CATL’scommitmenttoTherenewedinterestinLFPbatteriesfromVW,Fordmanufacturesodium-ioncellsby2023isaandStellantisunderscoresthedemandforthesepromising,albeituncertaindevelopment.WithtypesofchemistriesfromhighvolumeautomotiveapotentiallylowercostfloorthanLFP,Na-ionplayers.ArecentdevelopmenthasbeenTesla’sandcouldofferaviablealternativetolithium-ion.Mercedes'commitmenttoLFPchemistriesoutsideOtheroptionsincludezero-cobaltchemistrieslikeofChina.Thissuggeststhattheentrylevel,lowcostNMC370fromplayerslikeBASForhighvoltagechemistriescouldsatisfytheneedsofsomehighLNMOofferedbycompanieslikeHaldorTopsoe.2025andBeyond:PromisingbatterycellinnovationsfortheUKautomotivesector3.LFPchemistriesarelesslikelytoexperiencethermalrunawayeventscomparedtoNMC.Therefore,largerformatcellscanbesafelypackagedclosertogetherwithinabatterypack.Thisreducestheneedforelaboratethermalmanagementsystemsandreducestheinactivevolumeandweightthatcomeswithsmallerformatcells.Thisenablesahigher’cell-to-pack’ratio–theBYDBladebatteryisagoodexampleofthis.9HighvolumeperformanceGoodenergydensityatareasonablecostOfferinghighenergydensitiesatamodestcost,side,increasingamountsofsiliconwillbeaddedOEMsinEuropeandNorthAmericatendtoalongsidegraphite,risingfrom5%siliconcontentgravitatetowardsNMCandNCAbatteries.Thesetodaytoashighas20%inthenextfewyears.chemistriescurrentlydominateinWesternmarketsastheyofferthehighestrangeandarebestsuitedAnotherflavourofhighvolumeperformancetovehiclesthattravellongdistances,experienceincludestheNCMAcellsofferedbyLGEnergyhighutilisationorareheavier.SolutionswhicharebeingusedintheTeslaModelYinChinaandGeneralMotor’sHummerEV.AseriesofincrementalinnovationsareoccurringOtherinnovationsincludeNMxchemistriesbeinginthesehighvolumeperformancecellsthatcommercialisedbySVoltwhicheliminatecobaltsimultaneouslyimprovetheenergydensitybutclaimtomaintaintheperformanceofNMC811.andreducethe$/kWh.Nickel-richNMCssuchasNMC9.5.54andNCA95cathodeswillenterthemarketinthenext2-3years.OntheanodeTeslaModelY4.NMCchemistriestendtohavenumbersafterthemwhichrefertotherelativemassfractionsofeachelement.Forexample,NMC111meansapproximatelyCourtesyofTesla,Inc.equalamountsofnickel,manganeseandcobalt.NMC9.5.5means90%nickeland5%eachofcobaltandmanganese.2025andBeyond:PromisingbatterycellinnovationsfortheUKautomotivesector10Highperformance,specialistapplicationsNewchemistriesareneededtoenhanceenergyorpowerdensityHighperformance,specialistbatterieswillofferapromisinganodechoicesthatcanachieveastepstepchangeinenergyandpowerdensity,butwillchangeinperformancearelithiummetalanodesinitiallycommandapricepremium.Therefore,andsilicondominantanodes.highperformancevehiclesarelikelytobethefirstcustomers.HoweverifthesetechnologiescanbeNewanodesandelectrolyteshavenotbeenmanufacturedatscaleeffectively,theycouldalsovalidatedatthepacklevelforautomotivetrickledownintothehighvolumeperformanceapplications.Therefore,oneroutetoprovethesegment,displacingsomeexistingtechnologiesinviabilityofnewchemistriesbeforegraduatingtothelong-term.theautomotivesectoristofocusfirstonsmallerapplicationslikeconsumerelectronicsormedicalThelastdecadeoflithium-iondevelopmentindevices.SilaNanotechnologiesareusingtheirSitheautomotivesectorhasfocusedonenhancinganodetechnologyinwatches,Ilikahavedevelopedcathodes.ThenextdecadeisexpectedtoheraldsolidstatebatteriesformedicaldevicesandnewdevelopmentsinanodetechnologyandtheStoreDotinitiallyintroducedtheirrapidchargeelectrolytesthatcanenablethem.Thetwomostanodeconceptforconsumerelectronics.MercedesBenzwillincorporateSila'ssiliconanodechemistryforthefirsttimeintheelectricG-Class2025andBeyond:PromisingbatterycellinnovationsfortheUKautomotivesector11Cross-cuttingthemesInadditiontobatteryinnovationsbeingdevelopedtosuitcertainvehiclecategories,allautomotivethatdriveinnovationbatterieshaveadditionalcriteriatomeetwhichisgeneratingcross-cuttinginnovations:LCAconsiderationsManufacturingimprovementsBatteryrecyclingWater-basedsolventsDesignfordisassemblyDryelectrodesLithiationtechniquesMetal-to-electrodeEmissiontargets,recyclingmandatesandeliminatingharmfulchemicalsLi-ionmanufacturinghasfocusedonscalinguptoreducecostsareincentivisingcompaniestoimprovetheenvironmentalimpactofoverthelastfewyears.Thenextphasewillfeatureinnovationsthatbatteries.Thishasdrivenextensiveresearchintowater-basedsolventsoptimiseexistingmanufacturingprocessestoreducecostandimproveforhigh-nickelcathodes,industrialscalebatteryrecyclingfacilitiesandperformance.Examplesincludepre-lithiationtechniques,combiningdesigningcells/packsfordisassembly.electrodemanufacturingprocesssteps,anddryelectrodemanufacturing.SafetyimprovementsSupplychainvulnerabilityHVliquidelectrolytesNewcurrentcollectorsNext-genseparatorsLFPNa-ionLi-SMn-richAsmoreEVbatterycellsareplacedonthemarket,enhancingsafetyhasIncreaseddemandfornickel,cobaltandlithiumaredrivinguppricesinthebecomeahighpriority.Despiteeverimprovingmanufacturingprocesses,shorttomediumterm.Alternativechemistriesthataremadefrommoretheriskofon-boardcellfailureincreasesasEVvolumesrise.ThereforeabundantandcheapermaterialslikeLFP,sodium-ionandmanganese-richtoavoidcostlyrecalls,someOEMsmaypayapremiumforsafercells.areexpectedtoincreaseinmarketshare.DependingonthedurationandEnhancedcurrentcollectors,nextgenerationseparatorsandmorestableseverityoftherawmaterialspricespike,theselowercostchemistriescouldliquidelectrolytesforhighvoltagecathodesarebeingexploredtoreducereplaceasignificantportionofhigh-nickelchemistries.thelikelihoodofthermalrunawayevents.2025andBeyond:PromisingbatterycellinnovationsfortheUKautomotivesector12CommercialreadinessTheAPCconsiderednumerouscell-levelqualitativelyscoredfrom1-5.Fromtheanalysis,versussizeofopportunityforinnovationsandrankedthemusingaqualitativefourbroadcategoriesemerged.Thesewerenextgenerationchemistries2x2graph5.ThehorizontalaxisassessesthecreatedtohelpstructurebatterychemistrycommercialreadinesswhiletheverticalaxisinnovationsandshouldnotbeviewedasrigidKeypointsranksthesizeoftheopportunity.Themetricscategories.Amoredetailedexplanationofeach•TheAPChasassessedthecommercialusedtoassessthecommercialreadinessandcategoryisdefinedbelow.opportunityandreadinessfornumeroussizeofopportunityarelistedbelowandwerebatterycellrelatedtechnologies.•EightinnovationsstandoutaspromisingFigure5:Batterytechnologieswerecharacterisedintofourcategoriesbasedonopportunitysizeandcommercialdevelopmentsthatcouldbeintroducedreadiness.Thetechnologiesarelistedineachcategory.Thisreportfocussedonthepromisingdevelopments.intotheautomotivemarketby2025orjustafter.Left-of-fieldadvancementsLargePromisingdevelopments~7-10yearsfromthe~3-5yearsfromthe5.Itisimportanttostressthatthis2x2isasnapshotatapointintimefromfirstautomotiveproductLeft-of-fieldPromisingfirstautomotiveproductanautomotiveperspective.Individualtechnologiescouldmovefromadvancementsdevelopmentsonebuckettoanotherbasedonthesectoryouarelookingat.TheAPC•Advancedliquidelectrolytes•SilicondominantanodesmaintainsawatchingbriefonalltheclustersandcontinuouslyreviewsforLi-metalSizeofopportunityAcademic•Manganeserichcathodesassumptionsbasedonthelatestindustryinsightsgamechangers•Batteryrecycling•Conversionreactioncathodes•Li-Metalanode2025andBeyond:PromisingbatterycellinnovationsfortheUKautomotivesector•Novelcurrentcollectors•SolidStateElectrolytes•Metaltoelectrodetechnologies•Dryelectrode•Disorderedrocksaltcathodes•Semi-solid/hybridsolidstatemanufacturing•LithiationTechniquesAcademicgamechangers•Sodium-ion~10-15+yearsfromthefirstautomotiveproductHighvalue,Highvalue,nicheopportunitiesniche~5-7yearsfromthe•Lithium-airfirstautomotiveproduct•Metal-ionopportunities•Multi-valentchemistries•Li-S•StructuralbatteriesCommercialreadiness•Hybridultra-capacitorsSmall•Zinc-ion•Advancedsodium-nickelchloride•RapidchargeanodesHarderEasier(i.e.,Nb)Sizeofopportunitymetrics(score1-5)Commercialreadinessmetrics(score1-5)PotentialglobalmarketsizeOEM/cellmanufacturerinterestCross-sectorspilloverTRL/MRLlevelforautomotiveFuturesupplychain/technologychallengesHowwidespreaditcouldbeforautomotivePotentialofexistinglithium-ionerodingUSP13PromisingdevelopmentsLeft-of-fieldadvancementsInvestmentsinthesetechnologiesappearlucrativebasedonThiscategoryishigherriskwiththeinnovationsstillthecurrenttrajectoryoftheautomotiveindustry.Thereisapredominatelyinacademia,but,withsomepioneeringbroadconsensusthat,despitesometechnicalchallenges,companiesacceleratingtheirdevelopment.Thetechnologythesetechnologiescouldbe3-5yearsawayfrombeingchallengesaregreaterthaninthe’promisingdevelopments’commercialised.NumerousOEMsandcellmanufacturerscategoryandattractlessautomotivesectorinvestment.However,havethesetechnologiesontheirroadmapsandhaveinvestedifthetechnicalchallengesareovercomeinthiscategory,alargesignificantsumsofmoneytogettomarketfirst.Thechallengemarketsizeispossible.fortheUKisthatlarge,globalcompaniesareworkingontheseinnovations.Therefore,theUK’sofferingmustbehighlycompetitive.AUKcasestudy:PromisingdevelopmentsAUKcasestudy:Left-of-fieldadvancementsSolidstateelectrolytesAdvancedLi-ioncathodesTheUKisnurturingasolidelectrolyteecosystemwithsomeNMC,NCAandLFPcurrentlydominatetheautomotivesector.encouragingrecentinvestments.Inacademia,theFaradayDespitethehugeinterestinNi-richandMn-richcathodesasInstitution’s£15.3mSOLBATprogrammeisconductingthenextinnovationsfortheautomotivesector,thereisresearchfundamentalresearchonanodes,cathodesaswellasviablealsobeingconductedinotheradvancedlithium-ioncathodes.manufacturingprocessesforsolidstatebatteries.TheFutureCat(£9.9m)andCATMAT(£11m)projects,fundedOtherlaterstageR&DactivityincludestheLiMHiTproject.bytheFaradayInstitution,areassessingtheviabilityoflithiumInvolvingNissan,thisprojectisexploringhowthin,thermallyrichanddisorderedrocksaltcathodes(DRX).Thesecouldevaporatedlithiummetalanodesinteractwithsulfidebasedofferveryhightheoreticalenergydensitiesandpotentiallyelectrolytes.TheAutomotiveTransformationFund’sSOLSTICElowercosts.Movingawayfromjustchemistry,NEXTRODEprojectinvestigatedpotentialmanufacturingroutesand(£12m)arelookingatnewapproachestoslurrycastingandproductionequipmentforIlika’soxidebasedmaterial.particlealignmenttoenhancetheperformanceofbothnewandexistingcathodematerials.2025andBeyond:PromisingbatterycellinnovationsfortheUKautomotivesector14Highvalue,nicheopportunitiesAcademic-ledgamechangersTheseareinnovationswhichareunlikelytofeatureintraditionalThesechemistriesarebeingresearchedbyacademicinstitutionshighvolumeautomotivesegments.However,giventheiruniqueandarelong-termtechnologies.Thismakestheirmarketperformancecharacteristics,theymaycarveoutprofitablepotentialdifficulttoassess.However,iftheydeliverontheirlab-nichesiftheremainingfewtechnicalbarriersareovercome.basedclaims,theycouldpresentahugemarketopportunity.Othersectorssuchasaerospace,energystorageorconsumerelectronicscouldbenefitmorefromtheseinnovations.AUKcasestudy:Highvalue,nicheopportunitesAUKcasestudy:Academic-ledgamechangersNiobiumanodesSeedingfutureopportunities6AsEVadoptionincreases,therequirementforrapidchargingInJune2022,TheFaradayInstitutionawarded£2milliontobatteriescouldemergeasmorepeoplerelyonpublic16small,focusedprojectsinareasnotcoveredwithinthecharging.TherearemanyapproachestoimprovingchargingexistingUKbatteryresearchportfolios.Theprojectscoveredspeeds,bothfromamaterialsandcelllevel,rightthroughtoarangeofdifferenttechnologiesspanninganodes,cathodes,theBMS,packlevelandthermalmanagementstrategies.electrolytesandnovelbatteryconcepts.FromtheresearchlabsofCambridgeUniversity,theUKhasForexample,theUniversitiesofNottinghamandOxfordareestablishedtwopromisingstartups:NyoboltandEchioninvestigatingnovelgasdiffusionpolymerstoenhancetheTechnologies.Bothcompanieshavedevelopedniobiumcapacityandrateoflithium-airbatteries.AnotherprojectbasedanodesthatexhibitbetterfastchargingcapabilitythaninvolvingtheUniversitiesofStrathclydeandNottinghamissiliconorgraphitebasedanodesandofferbetterenergyexploringtheuseofmagnesium-basedbatteries,focusingdensitythanLTO.onsuitableelectrolytesthatofferacceptablecyclelife.FundamentalresearchprojectslikethisarecrucialinchallengingthestatusquoofbatteryresearchandgivetheUKacompetitiveadvantage.6.FaradayInstitution,2022.Seedprojectdetails.Availablefromhere.2025andBeyond:PromisingbatterycellinnovationsfortheUKautomotivesector15PromisingbatterycellThissectionofthereportindividuallyassessesthetechnologiesidentifiedinthe'promisinginnovationsforthedevelopments'cluster.ThefollowinganalysisonlyfocusesonthepromisingdevelopmentsasUKautomotivesectorthesearemostlikelytobemass-marketinthenext3-5years.ThemetricsusedtoassessthesizeofopportunityandUKcapabilityarelistedbelow.Keypoints•TheeightpromisingdevelopmentsidentifiedFigure6:Promisingdevelopments:SizeofopportunityvsUKcapability–thepromisingdevelopmentsareplottedbytheAPCarerankedagainstUKcapability.againstopportunitysizeandUKcapabilitytoexploittheopportunity.Opportunitiesarecolour-codedaccordingto•SiliconDominantAnodes,BatteryMaterialstheclustertheybelongto.Multiplecoloursareusedtoindicatetechnologiessuitedtomorethanonecategory.RecyclingandSodium-IonemergeaslargeopportunitieswithsignificantUKcapability.PromisingDevelopments:SizeofOpportunityvsUKCapabilityUKcapabilityrelativetotheworld(score1-5)5TheUK’srelativeR&DcapabilityLithiationSiliconTheUK’srelativemanufacturingcapacityTheUK’srelativesupplychaincapabilityTechniquesDominantSizeofopportunitymetrics(score1-5)BatteryMaterialsAnodesPotentialglobalmarketsizeCross-sectorspilloverRecyclingHowwidespreaditcouldbeforautomotive42025andBeyond:PromisingbatterycellinnovationsfortheUKautomotivesectorManganeseRichCathodesSizeofOpportunityDryElectrodeSolidStateManufacturingElectrolytes3Sodium-ionLithiumMetalAnodes21VolumeHighPerformanceCrossCuttingTechnologies0HighPerformance,SpecialistAEntryLevel,LowCost012345UKCapabilityRelativetotheWorld16HighvolumeperformanceHighperformance,specialistapplicationsCross-cuttingtechnologiesEntrylevel,lowcostInnovationTechnologydescriptionRationaleforbeingin'promisingdevelopments'RelevantUKactivitySilicondominantanodesAnodeformulationsandstructuresScoredasahighmarketopportunityasitiseasiertoCompanieslikeNexeonandTalgaTechnologiesManganeserichcathodeswheresiliconisthedominantintegrateintoexistingLi-ionmanufacturinglinesthanareconductingR&DinhighSicontentanodes.EVmaterial.ItexcludesbusinessasusualLi-metalwithonlyslightlylowerperformancecapability.MetalsGroupalsoacquiredJohnsonMatthey'sIndustryscalebatterysiliconblendedwithgraphite.Sianodepatents.AlkegenalsomanufacturematerialsrecyclingsiliconfibresintheUK.FBCprojectssuchasCathodeformulationsthatcontainaSABRE&SPICEarefurtheranchoringSianodeSolidstateelectrolyteshighproportionofmanganese.ThesecapabilityacrosstheUKsupplychain7.includelayeredoxides(NMC730),olivines(LFMP,LMP)andspinels(LMO,LMNO).Mn-richisanalternativeoptionthatcouldbeattractiveUKcapabilityisrelativelylowasonlyJohnsonMattheyforEuropeancompanieswhoarebehindChinainhadIPinLFMP/LNMOwhichhasnowbeenacquiredManufacturingtechniquesthatenabletheLFPracebutwantalowcost,decentperformingbyEVMetalsGroup.Valecouldprocessbatterythemechanicaldisassemblyandchemistry.ItsmarketsharepotentialishighgivengrademanganesebutcurrentlydoesnotintheUK.cost-effectiveseparationofblackthebroadrangeofapplicationsitcouldapplyto.massforautomotivebatterypackstoensureacirculareconomy.AllautomotivebatterieswillneedtoberecycledatTheUKhasseveralshreddersandmetalrecyclerssomepoint,evenifsomedogointosecond-lifebutonlyhasacoupleofcompanieswithemergingAtermthatcapturesoxide,sulfideapplications.Batteryrecyclingisaverysignificantcapabilityinhydrometallurgicalordirectseparationandpolymer-basedmaterialsformarketopportunityinlightoftheproposedEUBatteryprocesses.TheUKcurrentlylacksbatteryrecyclingelectrolytes.ItdoesnotincludeDirectiveandexpectedrawmaterialshortages.atindustrialscale.Italsolacksananchoringhybridorsemi-solidapproaches.cathodemanufacturertousetherecycledmaterialsandachieveacirculareconomy.TheFaradayInstitutionReLIBprojectislookingatnovelwaystoefficientlyseparatethematerialsinbatterycells.ManyOEMssuchasVW,Toyota,Renault,NissanTheUK’scapabilityisfairduetoIlika’scapabilitiesinandBMWarecommittedtosolidstatebatteriesasoxide-basedmaterials.TheUKdoesseemtolackanendpointintheirbatterydevelopment.Giventhecapabilityinsulfideandpolymer-basedelectrolytes.continuousimprovementsofliquidbasedNMCandSinceitiscurrentlyunknownwhichtechnologyLFP,therearesomequestionmarksaroundwhethercaneffectivelybescaleduptoserviceautomotive,itcouldenterthehighestvolumesegments.theUKlacksabalancedportfolioofoptions.HighvolumeperformanceCross-cuttingtechnologiesHighperformance,specialistapplicationsEntrylevel,lowcost7.FaradayBatteryChallenge,2021.FaradayBatteryChallenge:fundedprojectstodate.Availablefromhere.2025andBeyond:PromisingbatterycellinnovationsfortheUKautomotivesector17InnovationTechnologydescriptionRationaleforbeingin'promisingdevelopments'RelevantUKactivityLithiummetalanodeDryelectrodemanufacturingUsinglithiummetalviaathinfoil,Lithiummetaloffersexcellentenergydensity,TheUKhassomelithiumchemicalcompanies,Lithiationtechniquesvapourdepositedor’anodeless’formatbutbigquestionsremainoverhowtolikeLiventandLevertonLithium,whocouldtoreplacegraphiteintheanode.manufacturelithiummetalathighvolumesmanufactureprecursorsforlithiummetalanodes.Sodium-ionandintegrateitintoGigafactories.TheUKcurrentlylackscompanieswiththeprocessProcessesthateliminatetheneedcapabilitytoturnthisintoaLi-metalanode.forharmfulsolventssuchasNMPinThisisabatterycell-agnosticinnovationsohasthemanufactureofbatterycells.alargemarketpotentialforarangeofdifferentThereislittleevidenceofanyUKactivityinthisarea.cathodeandanodesthatuseliquid-basedslurries.BuildingcapabilitywouldrequireaUK-basedcellApproachesthatoptimisetheuseofDryelectrodemanufacturingisbeingpioneeredmanufactureracquiringtherightIPandprocesses.lithiuminthecellformationandbythelikesofTesla,LGandFraunhoferwithfirstagingprocess.introductionlikelytooccurinthemid2020s.NoUKcompanyisactivelylookingatpre-lithiationtechniquessothiswouldhavetobeadoptedbyaAsecondarybattery(i.e.,sameAdvancedpre-lithiationtechniqueswilllikelybelargecellmanufacturer.intercalationprinciplesaslithium-ion)integratedintoexistingcellmanufacturersplanswhichusessodiuminsteadoflithiumoverthenext2-3years.ItisalsoanenablerforTheUKiswell-placedwithsodiumcarbonateinthecathodeoranode.amoreeffectiveadoptionofsilicondominantproducerTataChemicalsandhardcarbonproduceranodessoareabigmarketopportunity.Phillips66manufacturingproductsintheUK.ThereisalsostrongR&DpresenceinNa-ionthroughtheSignificantindustryactivityhasoccurredoverthelastlikesofFaradion,DeregalleraandAMTEPoweryear.ThisincludesCATLannouncingNa-ioncellsforhencetheUK’scapabilityisrankedveryhigh.Faraday2023andotherChinesemanufacturerssuchasHiNa.BatteryChallengeprojects,suchasNEXGENNAandThereisalsoramp-upactivityinthesupplychainHIPERCARB,havebeenkeytoenhancingUKresearchfromcathodemanufacturers(Altris,Natrium)andcapabilitiesacrossthesodium-ionvaluechain.anodeplayers(Phillips66).TheacquisitionofFaradionbyRelianceIndustrieshasalsobolsteredthecredibilityofNa-ionasapotentialautomotivesolution.However,nomajorvehiclemanufacturerhaspubliclycommittedtousingNa-ionyet.HighvolumeperformanceCross-cuttingtechnologiesHighperformance,specialistapplicationsEntrylevel,lowcost2025andBeyond:PromisingbatterycellinnovationsfortheUKautomotivesector18WhatdoesthismeanBelowisasummarytableoftheUKplayersandcompaniesandsomegoodstart-upsinmostoffortheUK?prominentinternationalplayersineachareatotheareasidentifiedascrucialforUKautomotivegiveanindicationonthecompetitiontheUKbatteries.However,toexcelinthesetechnologyKeypointsfaces.SomethoughtsontheimplicationsforareastheUKshouldadoptaparallelapproach•TheUKneedstoattractcathodeandanodetheUKineachoftheautomotivecategoriesofofquicklygrowingdomesticcapabilitieswhilemanufacturerstobuildanecosystemaroundbatteriesisofferedbelow.encouragingFDItoaugmentthese.TheUKnewelectrodeconceptsandrecycling.BatteryIndustrialisationCentre(UKBIC)playsa•ManufacturingandprocessR&DshouldAcrossallthesetechnologysegmentstheUKcrucialroleinattractingnextgenerationbatterybeconductedtoinvestigatecosteffectiveiscurrentlyafastfollowercomparedtoChina,cellchemistries,withUKacademiakeyinmanufacturingmethodsforSidominanttheUSandsomeEuropeannations.TheUKprovidingasteadyflowofhigh-qualityR&Dandanodes.hassomeexceptionalR&Dactivity,afewbigskilledtalent.•TheUKshoulddoubledownonitsstrengthinNa-ionandaimforcellsthatreachFigure7:SummaryofpromisingtechnologieswithcolourcodingtocategoriesshowingtheUKand>200Wh/kg.TheestablishmentofaNa-ioninternationalplayersindustryalsobenefitstheUK’sgrowingenergystoragemarket.CategoryTechnologyPotentialUKPlayersExamplesofLeadingPlayersAbroadRSBruce,uRecycle,JohnsonMatthey,2025andBeyond:PromisingbatterycellinnovationsfortheUKautomotivesectorCrosscuttingBatteryRecyclingUmicore,BASF,GangfengLithium,technologiesUKBIC,EMR,FenixLi-Cycle,RedwoodMaterials,CATLDryElectrodesPPG,UKBICHighLithiationTechniquesN/ATesla,VW,AMBatteries,LGperformance,SolidStateIlika,Britishvolt,Emerson&Renwick,Varta,LG,NanoscaleComponentsspecialistElectrolytesUKBIC,MorganAdvancedMaterialsapplicationsSolidPower,Quantumscape,Prologium,LithiumMetalAnodesLivent,LevertonLithium,SigmaLithiumFactorialEnergy,SES,BlueSolutionsHighvolumeperformanceSiliconDominantNexeon,TalgaTechnologies,Abermale,GangfengLithium,AnodesEVMetalsGroup,AlkegenHydro-Quebec,Li-MetalEntrylevel,lowcostManganeseRichEVMetalsGroup,Vale,iCoNiChemStoreDot,Enevate,Enovix,SilaNanotechnologiesSodium-ionFaradion,Deregallera,AMTEPower,Phillips66BASF,HaldorTopsoe,NanoOne,UmicoreCATL,HiNaEnergy,HaldorTopsoe,Natron,Tiamat,AltrisABNon-exhaustiveAssumedtohaveacquiredJohnsonMatthey’sbatterymaterialIP19Cross-cuttingtechnologiesHighvolumeperformanceThesetechnologiesappearattractivetotheUKbutarereliantonlargecompaniesThiscategorywilllikelybecharacterisedbyincrementalinnovationsinexistinghigh-enddecidingtopursuethem.BothdryelectrodemanufacturingandlithiationcellchemistriessuchasNMC9.5.5and20%Sianodes.InnovationandmanufacturingwillstrategiesrequirethecellmanufacturertointegratethemintheirGigafactories.likelybecarriedoutbyestablishedcellmanufacturerssotheUKshouldbeaimingtoattractThismeansthatcompaniessuchasEnvision-AESC,BritishvoltorAMTEPowerthesecompaniesandtheirrespectivecathodeandanodesuppliersintotheUK.SiliconmustdeveloptheIPin-houseoracquireitfromasmallerresearchcompany.dominantanodeswilllikelyenterthismarketshortlyafterfirstenteringhighperformance,specialistapplications.Therefore,advancedmanufacturingandprocessR&DshouldbeWithregardstobatteryrecycling,newmethodstocosteffectivelyandsustainablyconductedtoinvestigatecost-effectivemanufacturingmethodsforSidominantanodes.processblackmassshouldbeexplored,especiallymethodsthatcansuccessfullyextractandlithiatecathodeswhichcouldmakerecyclingLFPprofitable.AUK-basedNewercathodechemistriesaremorelikelytobeadoptediftheycanreducerelianceoncathodemanufacturerisneededtoanchorblackmassprocessingintheUK.criticalmaterials.Therefore,someformsofzero-cobalt/Mn-richchemistriescouldbeadoptedinthissegmentastheyoffergoodperformanceatanacceptablecost.Inthemid-Highperformance,specialistapplications2030s,innovationslikelithiummetalandsolidstateelectrolytesareforecasttoreachacostGiventheUK'svehicleproductionbase,highperformancespecialistapplicationpointwheretheyareviableinthehighvolumeperformancesegmentofthemarket.technologiesseemattractivetotheUK’sautomotivesectorfutureR&Dpathway.Withregardstolithiummetalandsolidstateelectrolytes,somefundamentalquestionsremainEntrylevel,lowcostaroundhowappropriateexistinglithium-ionprocessesaretomanufacturethem.GiventhealreadylowcostsLFPcanachieve,itisunderstandablethattherearenotmanylow-costinnovationroutesthatareopenfortheUK:onlyMn-richandNa-ion.Giventhisuncertainty,UKR&DshouldexploreapproachesthatinvestigatethehighTherisinginterestinLFMPisacommercialisationrisktothesetechnologies,potentiallyvolumemanufacturingroutesforsolidstateandlithiummetal.Thisistoascertainmakingthemuncompetitivebeforetheyareintroduced.However,diversifyingawaywhetherexistingmanufacturingassetscanbeutilisedwithoutcompromisingfromachemistrythatChinaholdssuchdominanceinmakesstrategicsense.theperformanceorlowcostpotentialofasolidstatebattery.Alternatively,newapproachesmaybeneededtomaximisetheperformanceandachievetheambitiousInthecaseofNa-ion,therearealsobenefitsinmovingawayfromlithiumasit$/kWhandenergydensitytargetssetbyproponentsofsolidstatebatteries.experiencessupplyshortagesintheshorttomediumterm.TheUKshoulddoubledownonitsstrengthinNa-ionandaimforcellsthatreach>200Wh/kg.IntheFDIisalsoneededinsolidstateelectrolytestoencourageabalancedportfoliomeantime,theestablishmentofaNa-ionindustrycouldalsobenefittheUK’srapidlybetweenoxides,sulfidesandpolymers.Atthemoment,theUKhasgoodcapabilitygrowingenergystoragemarket.FirstgenerationNa-iontechnologyissuitableforinoxidesbutnopolymerorsulfidecapability.thismarketsocouldhelpde-risktheinitialinvestmentfortheautomotivesector.2025andBeyond:PromisingbatterycellinnovationsfortheUKautomotivesector20GetintouchContactFundingforDiscussBatteryprojectsBatterytechnologyDanBuntingDrHadiMoztarzadehHeadofBusinessDevelopmentHeadofTechnologyTrendsdan.bunting@apcuk.co.ukhadi.moztarzadeh@apcuk.co.ukContributorsOrganisationsFaradayBatteryChallengeAPCTechnologyTrendsTeamFaradayInstitutionLukeBatesUKBatteryIndustrialisationCentreDrChrisJonesRhoMotionDrHadiMoztarzadehJonRegnart2025andBeyond:PromisingbatterycellinnovationsfortheUKautomotivesector21GlossaryAPCAdvancedPropulsionCentreNCA95NCAthathas95%nickelwithBESSBatteryEnergyStationaryStorageNCMA5%cobaltandaluminiumLi-SLithiumSulfurNMCLFPLithiumIronPhosphateNMC370NickelCobaltManganeseAluminiumLFMPLithiumIronManganesePhosphateNMC811LMOLithiumManganeseOxideNMxNickelManganeseCobaltLNMOLithiumNickelManganeseOxideOEMNa-ionSodium-ionNMCthathas30%nickel,70%manganeseNbNiobiumand0%cobaltNCANickelCobaltAluminiumNMCthathas80%nickel,10%manganeseand10%cobaltGenerictermforamid/highmanganesecathodewithnickelinOriginalEquipmentManufacturer(vehiclemanufacturer)2025andBeyond:PromisingbatterycellinnovationsfortheUKautomotivesector22AdvancedPropulsionCentreUniversityRoadCoventryCV47AL+44(0)2476528700www.apcuk.co.uk@theapcukAdvancedPropulsionCentreUK

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱