AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidatesJune2023AfricaHydropowerModernisationProgrammeSEFAFUNDPARTNERS4AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidates5ContentsAcknowledgements4Acronyms6Executivesummary8Reportstructure13PART01-GENERALMODERNISATIONBACKGROUNDSECTION01Backgroundinformation16SECTION02Driversandopportunitiesofmodernisation22AcknowledgementsSECTION03E&Simplicationsassociatedwithmodernisationprojects51ThisReportwaswrittenandpreparedbytheInternationalSECTION04Modernisationcostbenchmarking57HydropowerAssociation(IHA)andcommissionedandfundedbytheSustainableEnergyFundforAfrica(SEFA)initiatedAfricaPART02-AFRICA-MAPPINGOFHYDROPOWERMODERNISATIONPOTENTIALHydropowerModernisationProgramme.SEFAisaspecialfundmanagedbytheAfricanDevelopmentBank(AfDB).SECTION05Africancontext68THETEAMSECTION06Methodology72AfDB/SEFAJoãoCunha,LeopoldRuppert,StellaMandago,AndersPedersen,SECTION07Summaryoffindings92MatthieuJalard,FredericaLourençoSECTION08E&Ssustainabilityreviewofhighneedplants104IHAAlexCampbell,MatteoBianciotto,AcileHammoud,DebbieGrey,SECTION09Conclusionsandrecommendations108ChangLiu,DavidSamuel,BillGirling,RebeccaEllisReferences1126AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidates7AcronymsHESGHydropowerSustainabilityEnvironmental,SocialandGovernanceGapHGIIPHydropowerSustainabilityGuidelinesonGoodInternationalIndustryPracticeUS$UnitedStatesdollarHPPHydropowerplantUS$mUnitedStatesdollarmillionHSHHydro-solarPVhybrid°CCelsiusdegreeHVDCHighvoltageDirectCurrentlineAARAlkali-AggregateReactionIEAInternationalEnergyAssociationACAlternatecurrentIFIInternationalFinancialInstitutionAFDAgencefrançaisededéveloppementIHAInternationalHydropowerAssociationAfDBAfricanDevelopmentBankIPPIndependentPowerProducerAHMPAfricaHydropowerModernisationProgrammekm2SquarekilometerBPABuiPowerAuthoritykWKilowattCAPEXCapitalexpenseskWhKilowatthourCAPPCentralAfricaPowerPoolLCOELevelisedcostofelectricityCSPConcentratedsolarpowerLECLiberiaElectricityCorporationDCDirectcurrentmMeterDRCDemocraticRepublicoftheCongom2SquaremeterE&SEnvironmentalandsustainabilitym3CubicmeterEAPPEasternAfricaPowerPoolMVAMegaVoltAmpereEOIExpressionofInterestMWMegawattEMElectromechanicalNNoEPCEngineering,ProcurementandConstructionNITSNationalInterconnectedTransmissionSystemESIAEnvironmentalandsocialimpactassessmentsO&MOperationandmaintenanceFPVFloatingphotovoltaicOEMOriginalEquipmentManufacturerGERDGrandEthiopianRenaissanceDamONEEOfficeNationaldeL'ElectriciteGHGGreenhousegasOPEXOperatingexpensesGWGigawattPSHPumpstoragehydropowerHDPEHighDensityPolyEthenePVPhotovoltaicQ1Quartile1Q3Quartile3sSecondSAPPSouthernAfricaPowerPoolTWhTerawattHourUEGCLUgandaElectricityGenerationCompanyLtd.VRAVoltaRiverAuthorityWAPPWesternAfricaPowerPoolyYearYYes8AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidates9requireinvestmentoverthenextdecadeGW).Allregionshadadditionalcapacityin(mediumneedcategory).mediumneed,particularlySouthernAfrica(5GW)andNorthAfrica(3GW).Table01showsaregionalbreakdownofExecutivesummarythemodernisationneedsidentifiedbythestudy.AllplantsclassifiedinhighneedofmodernisationwereinSub-SaharanAfrica,andintermsofinstalledcapacity,closeto80%islocatedacrossWest(2.1GW)andCentralAfrica(1.6GW),withtheremaininginEast(0.6GW)andSouthernAfrica(0.3Thishigh-levelscreeningstudy,thistwofoldchallengeismetinthemostTable01.RegionaloverviewofmodernisationneedsbynumberofcommissionedbytheAfricanDevelopmentsustainable,economical,andsecureway.stationsandinstalledcapacityBank(AfDB)throughitsSustainableEnergyFundforAfrica(SEFA)fundedAfricaIn2019Africa’sgrossgeneratingcapacityofRegionsLowneedMediumneedHighneedHydropowerModernisationProgrammeallformsofenergywasinexcessof245GW.1NorthAfrica(AHMP),presentstheresultsofa12-monthHydropowerinAfricacurrentlycontributesNo.stationsCapacityNo.stationsCapacityNo.stationsCapacitycontinent-widemappingofhydropowerto16%ofthetotalcapacityandistoday(MW)(MW)(MW)facilitieseligibleformodernisationcarriedoutthemostmatureandflexiblesourceofbytheInternationalHydropowerAssociationrenewableelectricityatscale.Itaccounts0073,09400(IHA).for80%oftherenewableenergygeneratedonthecontinent.2Asof2022,theinstalledWestAfrica31,268343042,103Regardingenergysupplyandglobalhydropowercapacitywas40GW,andofdevelopment,Africaisoneofthecontinentsthese,over60%ismorethan20yearsold.3EastAfrica653869387625thatwillfacethemostdifficultchallengesoverthecomingdecades.AfricancountriesCurrently,electricityconsumptioninAfricaCentralAfrica5923566631,557willneedtoprogressivelyincreasetheirhasreached732TWh,whichisexpectedtodomesticpowersupplytomeetthedemandincreaseby61%,to1,180TWh,by2030.4InSouthernAfrica166,800154,9617337forpowerrequiredtodeveloptheireconomy2020,outof1.3billionpeoplelivingintheandprovideelectricityformillionsofpeoplecontinent,over580million,around44%ofTOTALS309,5293610,089214,621toimprovetheirlivingstandards.Indoingso,thetotal,hadnoelectricity.Thesituationisthisenergytransitionwillneedtobedoneevenworseinruralareasas74%5ofthesesustainably.EventhoughAfricacurrentlyispopulationsarewithoutaccess.Oftheseonlyresponsiblefor4%ofglobalgreenhouse87candidatestations,21plantswithatotalgasemissions,theworldwidechallengeofcapacityof4.6GWwerecategorisedtobemitigatingclimatechangewillimposelimitsinurgentneedofmodernisation(orhighonfutureemissions.Hydropowercanofferdemand),andanadditional31stationswithavaluablecontributiontoensuringthatatotalinstalledcapacityof10.1GWwilllikely10AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidates11ThestudyhasidentifiedtheageingoftheelectromechanicalFromacapitalrequirementperspective,modernisationscomponents,lackofaccesstosparepartsandtheneedforarelessintensethangreenfieldsprojects.8Thislevelofmaintenanceonthecivilstructuresasthemaintriggerforinvestmentwouldnotonlysecuretheavailabilityofovermodernisationprojects.Numerousplantsclassifiedinthe14.7GWinstalledcapacity,enhanceplantflexibility,reducehigh-needcategoryareoperatingwithlegacytechnology,maintenancecosts,enhancewatermanagementandoftenatderatedcapacity,withunitsoperatinginastateofenablesaferoperationsoftheexistingfleetbutwouldalsodisrepairorentirelyoutofservice.increasetheexistinggeneratingcapacity.Thereplacementofoutdated,deteriorated,ordamagedelectromechanicalInordertosecurereliable,efficient,andsafeelectricitycomponentscouldincreasetheinstalledcapacityofthegenerationfromtheplantsinthehigh-needcategory,IHAfleetbetween740MWand1,700MW,thankstotheimprovedestimatesthatapproximatelyUS$2.1billionwillneedtobeefficiencyandincreasedpowercapabilityofmodernisedinvested.Incomparison,anadditionalUS$4.7billionmaybesystems.requiredbytheplantsinmediumneed.Investmentsare,therefore,fundamentaltosecuringtheseTable02.Overallestimatesofinvestmentneedfortotalcapacityplants'ongoingproductivityoverthefollowingdecadesassessedinthestudywithhighandmediumneedsformodernisationandshouldbeseenasanimmediateprioritytoachievedecarbonisedeconomicdevelopmentandsecurearesilientHighneedMediumneedfleetcapableofoperatingundermoreextremeweatherconditionstriggeredbyclimatechange.AmodernandInstalledcapacityassessedininthemapping4.6GW10.1GWefficienthydropowerfleetwillprovidecleanandreliableelectricityandoffergridstabilityandflexibilityservices,%ofoverallAfricanhydropowerfleet(38.5GW)612%26%whicharenecessarytoenabletheexpectedlarge-scaledeploymentofwindandsolarenergy.EstimatedinvestmentneedbasedIHAbenchmarkApprox.US$2.1billionApprox.US$4.7billionmodernisationcost0.23GW–0.53GW0.51GW-1.17GWFromanenvironmental&socialperspective,modernisationtoincreaseefficiencies,replaceequipment,andrectifyIndicativecapacityupgradeassociatedwithcompleteageinginfrastructureissueswouldnotinstigateanadversemodernisationproject7changeintheproject'simpacts.Infact,theseprojectsareoftenagreatopportunitytoimplementmeasuresthatcanThistotalincludespowerplantsforwhichdatawerereceiveddirectlyfromtheownersandplantsforwhichonlyimprovetheE&Sfootprintoftheplantanditsoperations.secondarydatawereavailable.ExamplesofthesemeasuresaretheintroductionoffishThecostfiguresshowninthistablearehighlevelestimatestoprovidearelativesenseofthemagnitudeofladders,theadoptionofimprovedturbinesealswhichmodernisationcostsbutwouldbesubjecttoamorestringentanddetailedcostestimatingprocessifaprojectiseliminatelubricantleakageandageneralimprovementofthetoproceedtothenextphase.healthandsafetyconditionofthepersonnelworkingintheplant.AnadditionalandimportantbenefitthathydropowerplantscouldprovidewithinthedevelopmentoftheAfricanpowersystemsistheopportunitytointroducefloatingsolarphotovoltaic(FPV)panelsfordeploymentinexisting12AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidates13hydropowerreservoirs,whereitmaybefeasibleandReportstructureeconomicallyviabletodosoashasbeendemonstratedbynumerousinternationalprojects9.FloatingsolartechnologyThereportisstructuredasfollows:locatedonhydropowerplantreservoirscanbesuccessfullyimplemented,takingadvantageofexistinggridinfrastructureExecutivesummaryPART02-Methodologyandresultsofthetoreducecosts,whilstcomplementingtheenergyAfricamodernisationstudyproductionofplants.ReportstuctureSection05Duringthemappingexercisedata,weregatheredfor26Part01-GeneralmodernisationbackgroundpresentsanoverviewofthehydropowerhydroreservoirstoassesspotentialsuitabilityforfloatinginformationsectorintheAfricancontestanddescribessolarPV(FPV).Thisledtoidentifying11candidatesiteswherethescopeofthestudy.floatingsolarhybridscouldbedeveloped.IntroducingaSection01solar-hybridsystemcouldhelpsupportgenerationshortfallspresentsanoverviewofthehydropowerSection06duringdroughtconditionsandprovidea‘quickwin’givensectoronagloballevel.outlineshowthedatawerecollectedandtheirrelativelyshortdeploymenttimescales.presentstheprocessandthemethodologySection02followedtodeterminetherehabilitationTheresultofthisstudyrepresentsavaluablestartingpointdescribesthemaindriversandbenefitsneedsofeachstation.onwhichtheAfDBcanbuildacomprehensiveprojecttoassociatedwiththemodernisationofageingmodernisetheAfricanhydropowerfleet.Therecommendedpowerplants.Section07nextstepistofurtherintensifythedialoguewiththepresentsasummaryofthefindingoftheowners,particularlyinthosehigh-needplantswhereIHA’sSection03classificationofthemodernisationneedsofassessmentservesasapre-feasibilitystudy.TheseareplantsprovidesadescriptionoftheE&Simplicationsthe87powerplantssubjecttothestudy.inurgentneedofmodernisationwheretheownersortheofmodernisationprojects.concessionershavedemonstratedinterestintheopportunitySection08tocooperatewiththeAfDBinthenearfuturethroughtheirSection04providesareviewoftheESGimpactsofthecollaborationwiththeIHAduringthecourseofthestudy.presentsthefindingsofacoststypicalmodernisationprojectsidentifiedinbenchmarkinganalysiswhichprovidesthisproject.Thegoalofthisdialogueshouldbetounderstandthescopeestimatedcostrangesforavarietyofofworksfurther.Thefeasibilityandthefinancialneedsformodernisationprojects.Section09theselectedprojects,alsoconsideranypotentialadditionalpresentsalistofconclusionsandbarriers(e.g.financingorenvironmental&sustainabilityrecommendationsforthebenefitsofthe(E&S))aswellasotheropportunitiesthatcouldbeincludedinAfDB.aproposedmodernisation.14AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidates15Part01Generalmodernisationbackgroundinformation1.000500016AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidates17Figure01.Globalelectricitygenerationfromlow-carbontechnologies(2021)Section012600TWhbackgroundinformationnuclear01.1Overviewofthehydropower4450TWhsectorhydropowerHydropowerisgloballythebackboneoflow-carbonelectricitygenerationandremainsthesinglelargestsource600TWh100TWhofrenewableelectricity.In2021,itaccountedfor16%ofallelectricitygeneratedacrosstheglobe,providinganbioenergyothersoverallcontribution55%higherthannuclearandmoresignificantthanallotherrenewablescombined(Figure01).1600TWhHowever,whilemostofthefinancesaregloballydirectedtowardsunlockingnewdevelopments,thereisalsoarapidlywind900TWhincreasingneedtomoderniseandoptimisethecurrentfleetofageingassets.Indeed,asoftoday,circa40%oftheglobalsolarPVfleetisatleast40yearsold.10Thiswillensurethatthevitalroleplayedbyhydropowerissustainedandenhanced.SOURCEIEAHydropowerremainsoneofthemostcompetitiveenergysourcesavailable.AccordingtotheInternationalRenewableEnergyAgency(IRENA),thecostofelectricityfromnewhydropowerprojectsremainsamongstthecheapestrenewableenergysourceswithanaveragelevelisedcostofenergy(LCOE)in2021of0.048US$/kWh(Figure02),wellbelowoffshorewind,geothermal,bioenergyandconcentratedsolarpower.18AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidates19Figure02.LevelisedcostofelectricityofrenewableenergysourcesFigure03.Hydropowerpotentialcapacity(2021)359GW0,11USD/kWh0,78USD/kWh0,7USD/kWh0,7USD/kWh0,5USD/kWh0,5USD/kWh0,3USD/kWh474GWCSPoffshorewindgeothermalbioenergysolarPVhydropoweronshorewind355GW307GWSOURCEIRENAandIHAanalysis(CSPreferstoconcentratedsolarpower)275GWTheremainingpotentialforthedevelopmentofnew240GWgreenfieldhydropowerprojectsissubstantial.Withoutincludingoff-riverpumpstoragehydro,circa2,000GW73GWofpotentialsitesareleftuntapped,notincluding550GWcurrentlyunderdevelopment.TheInternationalEnergy23GWAgencyandtheInternationalRenewableEnergyAgency254GWagreethattokeepglobalwarmingbelowtwo°C,themostcost-effectivepathwaywouldseeatleast850GWofnew28GW43GW91GW501GWhydropowercapacitydevelopedoverthenext30years.The205GW177GWnumbersareevenmoresignificantforthemoreambitiousNetZerotarget(limitingtemperaturerisetobelow1.5°C),154GWwithatotalinstalledcapacityrequiredinexcessof2,500GW(almosttwicetoday’sinstalledcapacity).118GWNORTHAND38GWCENTRALAMERICASOUTHAMERICAEUROPEAFRICASOUTHANDCENTRALASIAGLOBALKEY05001000150020002500300035004000RemainingpotentialGWEASTASIAANDPACIFICPipelineGWInstalledGWExcludingpumpedstoragehydropowerSOURCEIHA–HydropowerStatusReport202220AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidates21Thechallengesfacedtoachieveanet-zeroeconomyinvolve•XFLEXHYDRO–Thisprojectcurrentlybringstogethernotonlythedevelopmentofnewgreenfieldprojectsbutalso19institutionalpartnerswithinternationally-recognisedsubstantialeffortsinmodernisingtheexistingfleet.Indeed,expertise(includingIHA)tostudyanddemonstrateaccordingtotheIEA,166GWofnewhydropowercapacityadvancedtechnologicalsolutionstoextendtheflexibilityisexpectedtocomefromthemodernisationofthecurrentofexistinghydropowerplantandincreasehydraulicfleetoverthenextdecade.Itisalsoreportedthatifthecomponentslifespan,usingadvancedsoftwaresolutionsbusinesscaseformodernisationismademoreattractiveandandmodesttechnologicalupgrades.iftherewillbesufficientwaterresourcesavailabletoincreaseturbinesize,thispotentialcouldbesubstantiallyhigher,closerto400GW11.Nonetheless,despitethesepromisingfigures,globalinvestmentinmodernisationremainswellbelowtherequiredlevel.Indeed,theIEAfigureshowsthatplannedandannouncedmodernisationprojectsareestimatedtocostatotalofUSD127billionby2030,whiletheminimumrequiredinvestmenttoreplaceageingcomponentsandmaintainplantsavailabilityisestimatedintheorderofUS$300billion,or2.4xhigher.1201.2ReferencestoglobalmodernisationeffortsPreviouscontinentalstudiesthatwereconductedbytheIHAonmodernisationofhydropowerfleetinclude:•HydropowerModernisationNeedsinAsia;developedinassociationwiththeAsianInfrastructureInvestmentBank(AIIB),2020.•IHASummary•AIIBWorkingPaper•ModernizationofHydropowerPlantsinLatinAmericaandCaribbean–Identificationandprioritisationofinvestmentneeds;developedincooperationwiththeInter-AmericanDevelopmentBank(IDB),2020.•ModernisationofhydropowerinLatinAmericaandtheCaribbean:Investmentneedsandchallenges;IDBarticlebasedonIHAresearch,2020.22AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidates23Section02Projectstomodernisehydropowerplantsgofurtherthanbusiness-as-usualO&Mandinvolveamoresignificantdriversandopportunitiesre-investmentinanexistingasset.Althoughthetypeofofmodernisationmodernisationwillvaryonacase-by-casebasis,dependingontheneedsandoptionsavailableforagivensite,strategies02.1Overviewwillgenerallyfallintothefollowingtypes:ThemodernisationofhydropowerstationsisdrivenbyLifeextensionnumerousandofteninterrelatedfactors,fromageingprojectslooktoextendthelifeofthestationwithrepairsequipmenttoimprovingenergyperformance,operatingorreplacementsofexistingkeyelectro-mechanicalstrategies,environmentalimpactsandbroaderpolicycomponentstomaintaintheexistingoperationoftheunitschanges.Inallcases,specificcomponentsofageneratingor,insomecases,restorederatedunitsbacktotheirdesignstationwillneedtobereplaced,refurbishedorupgradedtocapacity,oftenimprovingperformance.Acasestudyisensurethatitcancontinuetooperatereliably,atleastuntilpresentedincasestudy1insection2.4.theendofthelifeoftheasset.Majorupgrade/uprateBeyondextendingthelifetimeoftheseassets,modernisationprojectsaimtoimproveservicesbyincreasinggeneratingrepresentsakeyopportunityforexistinghydropowerefficiency,upratinginstalledpowercapacity,expandinginfrastructuretoprovidebenefitssuchasoptimisedpowertheoperatingregimeorre-equippingasitewithnewproductionthroughimprovedefficiencyorcapacitytechnologies,e.g.tooperateundermoreextremevariationsadditions,optimisedoperationsandmaintenance(O&M),instreamflowortoaccommodategreaterpenetrationofenhancedflexibilityandwaterservicesatmultipurposevariablerenewabletechnologiesintotheenergymix;whilehydropowersites.Modernisationprojectshavecapitalalsoextendingthelifeofthestation.Casestudy2insectionrequirementswhicharemuchlesssignificantthangreenfield2.4showsanexampleprofile.projectsandgenerallyhavemodestornegligibleE&Simpacts.Totalredevelopmentprojectsinvolvelarger-scalestationoverhauls,rebuildsorplantexpansionschemes,includingsignificantcivilworkstomoderniseand,insomecases,replacetheexistingstationeitherin-situorbyaddinganewpowerhouseinanewlocation.Repurposinghydropowerdamsandreservoirsiteswithpumpedstoragecapabilityisanotherexample.Acasestudyforastationrebuildisgivenincasestudy3insection2.5.Digitalisationcanalsoplayacentralroleinanymodernisationschemeandbeintegratedwithinanyofthelistedcategories.Suchprojectsfocusonupdatingcontrolsystems,monitoringandcommunicationsystems,andintroducingstate-of-the-artdigitalanalyticstooptimiseoperationsandprovidepreventativemaintenance.24AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidates25Withdifferenttypesandscalesofprojects,therecanbemanyreasonsformodernisinganexistinghydropowerstation.Thisreviewlookstointroducethemaindriversandopportunitiesformodernisationprojects.Figure04.Diagramofahydropowerstationdisplayingkeyfeatures121KEY1Reservoir22Controlgate33Trashrack44Intake5Penstock56Powerhouse7Generator68Turbine79Drafttube810Outflow911Spilway1012Transmission1126AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidates2702.2PlantageingFigure05.IndicativeaveragelifespansofmajorsystemsinahydropowerstationAllhydropowerstationsageovertime,causingadegradationinreliabilityandperformance.HydraulicgeneratingunitsElectricalandcontrolsallundergosomedegreeofmechanicaldegradationoverBatteriesanddirectcurrent(DC)equipmentyearsofoperation;typically,theunit’sgeneratoristhefirstmajorcomponenttoexhibitsignsofwearandtearfromHighvoltage,switchgear,auxiliaryhighthermalormechanicalstresses(rotorsandwindings),electricals,controlequipmentgenerallyfollowedbytheturbines(rotatingblades,guideGeneratorsandtransformersvanes,etc.)andeventuallycivilstructureswillshowsignsofdegradationoverlongertimeframes,sometimesintroducingMechanicalissueswiththesafetyofthefacility.StudiespublishedbyGates,valves,cranes,auxiliarymechanicalInternationalFinancialInstitutions(IFI)s,OriginalEquipmentsystemsManufacturers(OEMs)andresearchorganisationsdescribeTurbinesthephysicalprocesseswhichleadtodegradationaswellasremedialmeasurestakeninmodernisationsinmoreCivilstructuresdetail.13,14,15,16,17,18Powerhouse,watercatchment,spilway,penstocks,steellinings,roads,bridgesFigure5presentsthelifespansofthemajorsystemsofaDams,canals,tunnels,caverns,reservoirs,hydropowerstationbasedonassessmentsappliedinasurgechambersWorldBankstudy.Thebluebarsshowtheyearseachtypeofsystemisingoodworkingconditionafterenteringservice;04080120160thedarkredbarsshowsubsequentyearsoffairperformance;andabovethisthreshold,thesystemsareexpectedtobeinyearspoorcondition,showninyellow.KEYgoodfairpoorSOURCEbasedondatafromaWorldBankstudybyGoldbergandEspeseth,2011Asshown,theelectricalauxiliaryandcontrolsystemsaretypicallyreplacedorupdatedfirst,oftenduetoobsolescence.Themajorelectro-mechanicaldrivetraincomponentssuchashydraulicturbines,generatorsandtransformersgenerallyaremodernised30to45yearsaftertheoriginalcommissioningdatedependingonseveralfactors,includingtheoriginalmaterialsusedinmanufacturingcomponents,operatingconditionsandsiteconditions.Degradationratescanbeacceleratedfordifferentreasons:28AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidates29•Improperequipmentmaintenance,eitherthroughlackofgreenhousegas(GHG)emissionsandcostsfortheutilitiestrainingonO&Mpracticesorresources,willaccelerateandcustomers.theendoflifeofhydropowerfacilities.Modernisationcanmitigatethisriskbyrepairingand•Highsedimentloadswillleadtoacceleratedplantreplacingoldequipmenttoreduceoutages,improvedegradation,particularlyintheturbines.availabilityand,insomecases,increasepoweroutput.AstudyundertakenbyanOEMshowedthatlifeextension•Changesinmodesofoperation,suchaswhenmachinesprojectswhereturbinerunnersarereplacedcouldincreasearemoreextensivelyusedforpeakingortheprovisionorrecoveroverallplantefficiencyby3percentandofgridsupportservices,canalsocausehigherstressespotentiallyupto6percentormore;whilelargerprojectsonrotatingmachineryandelectricalsystems,thereforeinvolvingtheupgradeofturbine-generatorunitscanincreasereducingtheirlifetime.installedcapacitybyupto40percent.19•Moreextremeweathereventssuchascyclonesorfloods02.4Capacityandtechnologyordamagecausedbysocialunrest.upgradesFinally,thecivilstructuresandassociatedfeatures,includingInsomecases,opportunitiesmayexisttoexpandorupdatethepowerhouse,spillwaygates,undergroundassets,dam,existingfacilities'installedcapacityandoverallefficiency.andreservoir,typicallylastlonger,withoverallplantlifetimesInthesecases,installedcapacity(MW)maybeincreasedanywherefrom60to100yearsandevenhigherinsomebyreplacingturbinerunnerswithhighercapacityunitsandcases.Conditionassessmentsofthemainstructuresareoptimisedsystems.20Technologydevelopmentsareakeyusuallycarriedoutperiodicallytoassessstructuralintegrityfactorinhydropowermodernisations.Oldsystemscanbeandanyneedforrepairs.replacedwithstate-of-the-artequipment,bringingbenefitsforoperators.21,22Fromturbinegeneratorstospillway02.3Performancerecoverygates,equipmentinstalledover30to40yearsagocanberetrofittedwithnewcomponentsoptimisedforimprovedAsdescribedabove,thegeneralageingofkeyelectro-efficiencyandreducedenvironmentalimpact,thankstomechanicalcomponents,alongwithotherfactorssuchasadvancedmanufacturingandmaterials.23,24,25,26Technologyoperationalchangesorlackofmaintenance,willalmostupgradescanalsobringforwardthedecisiontomoderniseacertainlyleadtoreducedperformanceovertime.This,inproject.turn,willresultinlongerandmorefrequentmaintenanceoutages,withanincreasedincidenceofforcedoutages,lossFinally,becauseofthelowercapitalcostsassociatedofefficiency,andlossesinenergyproduction.withmodernisation27,apotentialprojectassociatedwithincreasedinstalledcapacitycouldrepresentsasubstantialThiscanincreasebusinessriskand,dependingontheandcost-effectiveimprovementtotheenergysystemsowner’sappetiteforriskovertime,determinewhenatamuchlowerinvestmentthanagreenfieldproject.Inmodernisationisrequired.Moreover,ashydropowerisseveralcases,theassociatedcapacityupgradecanbequitecommonlythelowestmarginalcostunitinapowerpoolinsubstantial.28manymarkets,failingtomoderniseassetsadequatelycanhavedetrimentalimpacts.Supposethestationisoperatingsignificantlybelowratedcapacityforlongperiods.Inthatcase,theshortfallinelectricitysupplymaybereplacedbymoreexpensivethermalalternativesresultinginincreased30AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidates31Casestudy01.Kpong,GhanaCasestudy02.Nalubaale,UgandaTypeofmodernisationTypeofmodernisationLifeextensionmajorupgradeYearofcompletionYearofcompletion20202000TypeoffacilityTypeoffacility160MWrun-of-riverplant180MWrun-of-riverplantAgeoffacilitywhenAgeoffacilitywhenmodernisedmodernisedCommissionedin1982;approx.Commissionedin1954;approx.38years.46years.OwnerOwnerVoltaRiverAuthority(VRA)UgandaElectricityGenerationCompanyLtd.(UEGCL)PictureANDRITZ.com,©VRA.Picture©UEGCL.comHavingoperatedtheplantforabout30years,theVoltaRiverAuthoritydecidedtoundertakeInthe1990s,theNalubaalestationwasrefurbishedtorepairconcreteissuescausedasignificantretrofittoextendtheplant'slifeandincreaseitsavailability.ThemodernisedbyAlkali-AggregateReaction(AAR)inthepowerhouseandmaindamandtoaddressplantwillprovideGhanawithareliableandcleanenergysupplyforanother30years,accumulatedwearfromadecadeofcivildisorder.Duringtherepairs,theoutputpowerofallcontributing4.3%ofthecountry’stotalelectricitymix.tengeneratorswasincreased,bringingtheNalubaalePowerComplex’sgeneratingcapacityto180MW.Thestationisadjacenttothe200MWKiirahydropowerplantbuiltin2003,andCHARACTERISTICStogethertheNalubaale-KiiracomplexsuppliesathirdofUganda’selectricity.c1.AllfourturbinegeneratorsandassociatedsystemsweremodernisedbyAndritzHydro,CHARACTERISTICSincludingturbines&governors,generators,intakegates,excitation,protection&control1.From1990to2000,eachoftheten15MWKaplanturbineunitswasupgradedto18MW;systems,andpowerstationservicefacilities.2.Theunitswerecompletedsequentiallyin2016,2017,2019and2020.increasingtotalinstalledcapacityby20%from150MWto180MW.a3.Installedcapacityoftheplantwasmaintainedasbeforeat160MW.2.SinohydroCorporationoversawtherefurbishmentoftheconcretedamandpowerhouse4.Plantavailabilityrecoveredtoanaverageofabout96%followingcompletionin2021,comparedtothe2014averageavailabilityofabout92%justbeforetheretrofitworks–in2018-21.minimisingplantdowntimeformaintenanceandforcedoutages.a3.Since2003,upgradeshavebeenperiodicallyundertakenontheelectricalcomponents,5.Annualgeneration:986GWhin2021.6.TheprojectwassupportedbyanAgencefrançaisededéveloppement(AFD)loan.btypicallyduetosystemsbecomingobsolete;someworkshavealsobeendoneon7.Benefits:improvedavailabilityandreliabilityofelectricitysupply,reducedplantfailures,mechanicalandcivilstructures.lifeextension,optimisedoperations,andimprovedVRA’scompetitivepositioninnational4.Fullenvironmentalandsocialimpactassessments(ESIA)carriedouttoensureandinternationalmarkets.ccompliance.b5.Annualgeneration:724GWhin2021.a6.EskomUgandaLtd.hasoperatedtheNalubaale-Kiiracomplexundera20-yearconcession,whichisnearingtheendofitsterm.d7.Benefits:Increasingpowercapacityby30MW,lifeextensionofcomponents,reducedReferencesaInformationprovidedbyVRA;bhttps://www.afd.fr/fr/carte-des-projets/rehabilitation-de-la-centrale-hydroelectrique-de-kpong;chttps://www.andritz.com/hydro-en/hydronews/hn34/kpong-ghana32AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidates33environmentalimpact,increasedavailability,higherannualoutput&reducedO&Mcosts.Therearemanyotherexamplesofhydropowerupgrade8.Theplantiscomingupforitssubsequentrehabilitationandoptimisation,withfeasibilityprogramsinAfrica,suchasAkosombo,UpperKafueGorgeandKaribaNorthBankinZambia,wheremajorturbinestudiescompletedandprojectimplementationplannedfrom2025.Theprogramaimsretrofitsincreasedcapacity.29Otherprojectsincludethetocontinuetoaddressthelong-termeffectsofAARonthedam,refurbishmentofRoseireshydropowerplantinSudanwheremeasureswereelectromechanicalequipment,andstructuralenhancementsforfloodmitigation.aimplementedtoenhancesedimenthandlingcapacityby9.Therehadbeennospillingsince2000followingtheupgrades.However,recentfloodingincreasingtheheightofthedamby10mtoraiseitsstorageeventsin2020haveraisedconcernsaboutthecapacityofthespillwayaswellasthecapacityfrom3to7.4billionm3andtherebyincreasingsafetyofthedam.energygenerationby50percent.3010.UEGCLisstudyingthefeasibilityofinstallingfloatingsolarPVonitshydroreservoirs,includingNalubaale.02.5Policyandmarkets11.Findfurtherdetailsontheoperations&maintenance(O&M)strategy,issuesandmodernisationinareportpreparedbyIHAfortheWorldBank’sO&MHandbookforThedecisiontoextendthelifeandpotentiallyupgradeaHydropowerpublishedin2020.dhydropowerstationwilltypicallybeinfluencedstronglybytheoverallprojecteconomics,whichisprimarilydrivenbyReferencesmodernisationcosts,electricitypricesandmarketdesign.AtaInformationprovidedbyUEGCL;bhttps://tractebel-engie.com/en/references/nalubaale-and-kiira-hydropower-plantsthenationallevel,wherethereisariskofdecommissioningchttps://allafrica.com/stories/201208060974.html;dhttps://openknowledge.worldbank.org/bitstream/handle/10986/33313/Six-oldhydropowerstationsandpotentiallylosingreliable,Case-Studies.pdf?sequence=4&isAllowed=yrenewablegenerationcapacity,governmentsmayalsodevelopenablingpoliciestoencouragere-investment.Typicalcostbenchmarksforhydropowermodernisationprojectsarediscussedinsection6.1.InAfrica,cross-borderpowertradinghasbeentakingplaceformanydecades,withbilateralpowertradingarrangementsdatingbacktothe1950sand1960s.Duringthe1990s,energysectorreformandliberalisationofnationalgridswereundertakeninmanyAfricancountriesandsetthestageforthedevelopmentofpowerpools,beginningwiththeSouthernAfricaPowerPool(SAPP),followedbythedevelopmentofCentral(CAPP),Western(WAPP)andEasternpowerpools(EAPP);allwithsimilarobjectives31:•promoteandincreaseinvestmentsinelectricityproduction,transmissionanddistributioninfrastructure;•createaregionalregulatoryframeworkforpoolingenergyresources,includingtheestablishmentofcommonstandards,rulesandmonitoringmechanisms;•coordinatethelong-termenergydevelopmentintheregion.34AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidates35WhilethesepowerpoolshavebeenfunctioningsuccessfullyAfterbeingdestroyedintheLiberianCivilWarin1990,acompleterebuildoftheMountforsometime,specificchallengesinAfricahavedevelopedCoffeeHydropowerstationwascompletedin2017,increasingitspre-war64MWcapacityovertime.WhilsttheSAPPhasbeenthedominantplayer,to88MWfollowingthemodernisation.Therestorationbroughtmuch-neededpowerledbywell-establishedmarketsinSouthAfrica,thelackonline,providing1millionpeoplewithastableelectricitysupply,replacingfossil-fueldieselofachampionintheWAPPandEAPPappearstohavegeneratorsandhelpingreduceelectricitypricesinLiberia.csignificantlylimitedtheirprogress.ThisisevidentinSub-SaharanAfrica,whereexistinghydropowerisdominantandCHARACTERISTICSfuturegrowthinnewhydropowerisunderway,butawell-1.Rebuildingdamsandassociatedcivilworks,rehabilitationofthespillwayandgates,establishedpowertradingmarketisstillevolving.32intakestructure,andpowerhousecivilstructure&replacedtheelectromechanicalThetable03summarisesthosecountrieswithineachpowerequipment.poolwithover100MWofhydropowercapacityconsidered2.Therehabilitationofthedambeganin2012,thoughwiththeEbolavirusin2014andlocalundertheContinentalMappingstudy;andcommentsonaccesschallengeswithpoorroadinfrastructure,worksweredelayedbyayear.Followingsomekeytrendsthathaveevolvedrelativetotheirrespectivepartialcompletionoftheintakeandspillwaystructures,commissioningofthefour22MWenergymarketsandmajorhydrosuppliers.Francisunitswasdonein2016-2017,suppliedbyVoithHydro.d3.Asthefacilitywasrenderedinoperableforyears,theoriginalowner(LEC)lostitsin-Casestudy03.MountCoffee,Liberiahouseexpertiseinoperatingthehydropowerplant.In2016,acontractwasassignedtoanoutsideagency(HOI)tooperateandmaintaintheplantwhilecarryingouttheoreticalTypeofmodernisationandhands-ontrainingtoqualifyO&Mstaff.FurtherinformationontheO&Mmodelwastotalredevelopmentpublishedin2020.c4.Annualgeneration:223GWhin2020.aYearofcompletion5.FundedbytheLiberianandNorwegiangovernments,EuropeanInvestmentBank,German2017developmentbankKfW,andtheMillenniumChallengeCorporation;atatotalcostofUS$357m.cCosts6.Benefits:Improvedefficiencyandcapacitybyrestoring88MW,optimisedoperations,lifeUS$357mextension,trainingonO&Mpractices,andimprovingclimateresilience.a7.Safety:mitigationofupstreamanddownstreamfloodimpactsTypeoffacility8.Althoughtheplantisnowoperatingwell,thereisaten-yearplantoaddtwomoreunits,88MWrun-of-riverplantwhichwouldexpandinstalledcapacityfromthecurrent88MWto132MW.Thereareotherplansunderconsiderationforasecondhydropowerplant.aFurthermore,a90AgeoffacilitywhenMWsolarfarmisplannedinLiberia,ofwhich20MWwillbebuiltattheMountCoffeemodernisedhydropowerplantexpectedby2024.aOriginallycommissionedin1966;approx.51years.ReferencesaInformationprovidedbyLEC(MountCoffee);bhttps://openknowledge.worldbank.org/bitstream/handle/10986/33313/Six-OwnerCase-Studies.pdf?sequence=4LiberiaElectricityCorporationchttps://www.ft.com/partnercontent/voith/mount-coffee-hydropower-plant-raised-from-the-ruins.html;dhttps://voith.com/hydro-in-africa-en/mount-coffee.htmlPictureopenknowledge.worldbank.orgb,©HydroOperationInternational(HOI)36AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidates37Table03.AfricanregionalpowerpoolsandkeyhydropowertrendsKeytrends&hydropowerplants(HPPs)TheKainji&JebbaHPPsarekeytothesuccessofpowertradinginNigeria,whichhaslowelectrificationratesRegionalPowerPool(<50%).The'NorthCore'transmissionprojectsoontobecompletedwilllinkNigeria-Niger-Benin-BurkinaFaso41GhanaandCôted’Ivoirearekeydriversofintegrationbecauseoftheirregionalambitions¢rallocationinSouthernAfrica(SAPP)theregion.Kpong&AkosomboHPPsinGhanawereupgraded;whileplansforKossou,Buyo&TaaboHPPsinCôteD’IvoireLinkedcountrieswith>100MWofageinghydropowerinscopeareunderwayRegionalPowerPoolZambia,SouthAfrica,Mozambique,Zimbabwe,NamibiaPlannedmembers:Angola,Malawi,TanzaniaCentralAfrica(CAPP)Keytrends&hydropowerplants(HPPs)HydroplantsintheZambeziriverbasinhaveundergoneorareundergoingmajormodernisationsorexpansions,Linkedcountrieswith>100MWofageinghydropowerinscopee.g.attheKariba,KafueGorge&TedzaniFallsHPPs33CahoraBassaHPPinMozambiquegeneratessignificantenergyfortheSAPPandhasfacilitiesdueforDRC,Cameroon,GabonmodernisationHPPsinSouthAfricaalsoplayacriticalrole,includingDrakensbergpumpedstorageschemewhichhelpsKeytrends&hydropowerplants(HPPs)provideback-upreservetothenetwork;recentlywithunitsmodernised34,35Angola,MalawiandTanzaniaarenotyetintegratedandeffortsareatanadvancedstagetolinkthethreeModernisation&expansionoftheIngaHPPsinDRCwillplayastrongroleintheregionalpools(CAPP,SAPP)countriesintothepowerpool36,37InMalawi,modernisationwillbeneededtoallowexistingHPPstointerfacewithanewinterconnectorbeingHPPsinGabonaredueforrehabilitation,andworksprogressedinCameroon(Edéa,Lagdo,SongloulouHPPs42constructedtoMozambiqueRegionalPowerPoolAngola’slocationcouldalsotradesupplyintoCAPPEastAfrica(EAPP)RegionalPowerPoolLinkedcountrieswith>100MWofageinghydropowerinscopeNorthAfrica(COMELEC)Egypt,Ethiopia,Kenya,Sudan,UgandaLinkedcountrieswith>100MWofageinghydropowerinscopeKeytrends&hydropowerplants(HPPs)MoroccoEthiopiahasanumberofexistinghydrofacilitiesinneedofmodernisationthatplayamajorroleintheEAPP.38Keytrends&hydropowerplants(HPPs)Recently,theWorldBankfinanceda667kmHVDClinefromKenyathroughTanzaniatoZambia;tolinkEAPP&AstheprimarysourceofrenewableenergyinMorocco,theexistinghydropowerassetsaredueforSAPP39modernisationInEgypt,themajorAswanHPPsarecomingupformodernisation40InallregionsandcountriesofAfricawhereexistingRegionalPowerPoolhydropowerplaysakeyrole,suchasEthiopia,NigeriaandUganda,thesuccessofthosemarketswillbetiedfirmlytoWestAfrica(WAPP)themaintenanceofexistinghydropowercapacityandthecontinueddevelopmentofnewhydropowerwherefeasible,Linkedcountrieswith>100MWofageinghydropowerinscopetoensurethattheseregionscangenerateanenergysurplus,alongwithensuringthatadequatetransmissionisinplaceforNigeria,Ghana,CôteD’Ivoirecross-borderpowertrading.38AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidates39Electricitymarketscanthereforeactasakeydriverfor02.6Powerflexibility,energymodernisationdecisions,whetherheavilyliberalisedor,asstorageandvariablerenewableismorecommoninanAfricancontext,stillmainlydrivenbyenergiesdeploymentnational-leveldecisions.OngoingreformsinmanymarketswillhavetorecognisebetterandremuneratetheessentialAselectricitymarketsandtransmissiongridsevolve45,powerrolehydropowerplaysinsupportinggridsandofferingflexibilityandenergystoragearebecomingincreasinglybalancingservicestothesystem.InpartsofbothNorthandessentialandstronglysupporttheneedforhydropowerSouthAmerica,EuropeandAustralia,hydropowerunitsaremodernisation.AccordingtoIRENAprojections,by2050,alreadymovingawayfromtraditionalbaseloadgenerationthefleetofwindandsolarplantsinAfricaandtheMiddletomodesofoperationwhichaccommodateandsupportEastmayreachtherecord-breakinglevelof1220GWofachangingenergymix.43Thiscontinuestomakeuseofinstalledcapacity,36xmorethantoday46.Itis,therefore,hydropower’suniquecharacteristicsasadispatchablepowernaturalthat,asoftoday,manygeneratorsandtransmissionsource,butcanalsoleadtohigheroperatingcostsandthesystemoperatorsarelookingforwaystoimprovefrequencyneedtore-investinplants.44controlandotherancillaryservicestosupporttheelectricitygrid;thiscanrequirehydropowerunitstooperateoverBroaderpolicychangescanalsohaveadirectorindirectanextendedrange,requiringquickerresponserampingimpact,particularlyregardingclimatepolicy.Forexample,capability,part-loadandfaststop/startcapabilitiesamongstnearlyallAfricancountrieshavecommittedtoactionotherimprovements.IfexistingstationswerenotoriginallyonclimatechangeinratifiedNationallyDetermineddesignedfortheseservices,componentsmayneedtobere-ContributionsundertheParisAgreement,agreeingtoreduceengineeredandreplaced.theirgreenhousegasemissionsandbuildresilience.SuchpolicycommitmentswillleadtoanincreasedemphasisonExistingandfuturepumpedhydropowerstorageprojectslowcarbongeneration,whichcanbedirectlysuppliedbycontinuetobeintegralinAfrica.InSouthAfrica,Eskom’shydropoweror,inthecaseofvariablesolarorwind,enabled40-year-old1000MWDrakensbergpumpedstoragebyhydropower’sflexiblecharacteristics,whichcanbefurtherfacilitywasrecentlymodernised,withupgradestoallthreeenhancedthroughmodernisation(seesection2.6).units,toensurereliableoperationforthenext40years.47AnotherexampleisinMorocco,wheretheOfficeNationalSimilarly,apolicyaimedatincreasingaccesstoelectricitydeL'Electricite(ONEE)hascommissionedastudyofthecan,inpart,actasadriverformodernisationassuch465MWAfourerhydropowercomplex,aimedatoptimisingprojectscansecureexistinglevelsofaccessandprovideoperationinboththepumpedstorageandconventionalenhancedavailabilitythroughadditionalcapacityandmorehydropowermodeofthecomplex.48TheInternationalForumreliableoperations.onPumpedStorageHydropower(PSH)providedglobalrecommendationstosupporttheincreaseddeploymentofPSH.49Innovativegeneratingsystemscanalsobeimplementedinmodernisationprojects,suchasthosebeingdemonstratedintheEU-fundedXFLEXHYDROprogramme.50Variablespeedhydroelectrictechnologiescanincreasethepowerflexibility40AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidates41andefficiencyofpumpedstorage,especiallyinmarkets02.8Hybridisationofwherenetworkstabilityisinfluencedbyasynchronouswind,hydropowerplantssolarandbatterytechnologies.BatteryhybridscanalsoimproveenergystorageservicesatexistinghydropowerHybridconceptsaregaininginterest,wherebydifferentstations,wherebythebatteryprovidesfastfrequencyrenewabletechnologiescomplementeachotherandworkresponseovershorttimescales(2secondsorless).Inturn,moreefficiently.InstallingFPVontoexistingreservoirs,hydro-generatorsprovidenetworkregulation&rampinginparticular,providesadditionalrenewablegenerationservicesoverlongertimeframes.Usingbatteryelectronicsthatislowcarbonandcost.FPVsystemscanuseexistingforfrequencycontrolcanalsorelievecontrolrequirementsinfrastructureatthehydropowersite,reducinglandandmechanicalwearandtearonhydromachinery.acquisitionandgridconnectioncostsotherwiseincurredingreenfieldsolarprojects.IntegratingtheFPVandhydropowerThesestrategiesaddtotherangeofoptionsavailableforcontrolsystemscanalsoprovideawin-winsolution;becausehydropower.Theycanalsogiveaccesstorevenuestreamsgeneratingunitscanberunflexiblyandusedtobackupthatareoffered(ormaybeofferedinthefuture)forpowersolaroutputfluctuations,thusfeedingamorestablepowerbalancingservices,thushelpingtoharnesshydropower’sprofileintothegridnetwork.Theaddedsolaroutputcanalsofullpotential.Whenplanningmodernisationprojects,bothreducerequirementsonhydrogenerationindaylighthoursthebenefitsandaddedcostsofflexibilitytechnologieswillandcanhelptopreservereservoirstoragelevelsduringdryneedtobeincreasinglyconsideredandweighedagainstperiods.alternativeapproaches.51,52Casestudy04.FloatingsolarPV,BuiDaminGhana02.7DigitalisationofsystemsThedigitalisationofhydropowertechnologiesandoperationandmaintenancepracticesiswellestablishedinmanymorematureenergymarketsandhasbecomeakeyfeatureofmodernisationprogrammes.Projectsnowincludeinstallingnewdigitalcontrols,intelligentconditionmonitoringsystems,remotelyoperatedsystems,andsupervisorycontrolanddataacquisitionsystemstodigitalisetheoperationandmanagementofexistingstations.ArecentpublicationbythePolicyCenterfortheNewSouthindicatesthatdigitalisationwillbekeytounlockingAfrica’srenewableenergypotentialtoaddressthemeagerelectrificationratesacrossthecontinent.Existinghydropowerassetsthataredesignatedformodernisationwillneedtoembracedigitalisationintotheirprojectdesignstoensurethattheseprojectsareoptimised.5342AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidates43ProjectWiththegovernmentofGhana’scommitmenttoincreaseprimarilyduetothecoolingeffectofthewateronthesolarSolarhybridatBuiHydropenetrationofrenewablesby10%by2030,BPAexpandedpanels.GeneratingStationtheexistingswitchyardatitsBuihydropowerplanttoaccommodate250MWofsolarPV–forthecreationofaWaterisalsoconservedforlargerarraysduetoreducedYearofcompletionhydro-solarPVhybrid(HSH)systemwithintheBuienclave.evaporationfromthereservoir.2020In2020,apilot1MWfloatingPVarraywasinstalledonthereservoiralongsidea50MWland-basedsolarPV,whichwasIMPLEMENTATIONTypeoffacilityalsocommissioned.Whencomplete,theHSHsystemaimstoPhase1pilotcommissionedin2020;404MWstoragehydroplant,augmentandpreservetheBuireservoirbygeneratingsolarPhase2expansionto5MWfloatingPVexpectedcompletewith1MWfloatingPV,plus4power.byendofof2022;MWunderconstructionandPhase3subjecttoasuccessfulimplementationofthe5MWplansfor>50MW.KEYCOMPONENTSsystem,BPAaimstoupscaleto>50MW.PanelsAgeoffacility2,500PVpanelunitsforthe1MWfloatingPVpilot,tobeProjectmodelHydrocommissionedin2013;upscaledto10,000units(Bi-FacialMono-crystallinePV1.Engineering,ProcurementandConstruction(EPC)+FloatingPVin2020module);theratingperunitis405Wwithsurfaceareaof2m2and30kgweight.financingOwner2.Installationwasdonebyin-housestaffatBuiPower.BuiPowerAuthority(BPA)Inverters3.PoweristransmittedviatheBuiswitchyardtoGhana’s4x250kWsizePicturesNationalInterconnectedTransmissionSystem(NITS).©BuiPowerAuthorityaTransformer4.BuiPowerhasbroaderplanstodevelopa250MWsolar1MVAsizetobeupgradedto6.3MVAuponcompletionofthe5MWplant.PVfacilityatthesite(includingthe50MWco-locatedsystemonland)andhasalsoearmarkedsixotherFloatslocationsforPVprojectsintheregion.HighDensityPolyEthene(HDPE).ReferencesKEYBENEFITSaInformationprovidedbyLEC(MountCoffee);bhttps://openknowledge.worldbank.org/bitstream/handle/10986/33313/Six-1MWfloatingsolarpilothadafootprintof1.7acres(6880Case-Studies.pdf?sequence=4m2),whichisarounda50%savingonspacecomparedtoanchttps://www.ft.com/partnercontent/voith/mount-coffee-hydropower-plant-raised-from-the-ruins.html;dhttps://voith.com/equivalent1MWofland-basedsolararray.hydro-in-africa-en/mount-coffee.htmlReduceddustaccumulationonthefloatingpanelscomparedtoland-based,reducingtheregularityofcleaningandlowermaintenancecost.Higherefficiencyandoutput:Averagemonthlygenerationforthe1MWfloatingPVis176MWhcomparedto148MWhofland-basedPV(19%increase).Thehigherefficiencyis44AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidates4502.9ClimateresilienceandBox01.HydropowerSectorClimatehydrologyResilienceGuideClimateresilienceisagrowingconcern,withhydrologicalTofacilitatethedevelopmentofhydropowervariabilitynowbeingconsideredinhydropowerinfrastructurethatcanwithstandtherisksofmodernisationprojects.Greaterweatherextremeswillaffectvariableclimaticconditions,theHydropowerhydropowerinfrastructureinclimate-sensitiveregionsandSectorClimateResilienceGuidewasmayrequireinvestmentinadaptivemeasures.Forexample,developedandlaunchedinMay2019.ItisthesouthernAfricaislikelytoexperienceadrierclimatewithfirstsector-specificclimateresilienceguidemorefrequentincidencesoflowprecipitation,whileeastprovidingapracticalandhelpfulapproachforAfricaisprojectedtoexperienceawetterclimatewithmoreidentifying,assessingandmanagingclimatefrequentheavyrainfall.54riskstoenhancetheclimatechangeresilienceofnewandexistinghydropowerprojects.ClimatechangeimpactsonexistingandfuturehydropowerprojectsinAfricawillunquestionablyresultintheneedThesix-phasemethodologycanbeappliedtoforadditionalresiliencemeasures,whichcouldrangeprojectsofalltypes,scalesandgeographiesfromenhancedfloodprotectiontosedimentmanagementandlooksatclimateriskscreening,datastrategies,improveddamsafetymeasures,includingearlyanalysis,climatestresstesting,climateriskwarningsystems,andstructuralimprovementstoriverandmanagement,monitoring,evaluationandreservoirareas.55Hydropowerfacilitiesmayalsoprovidereporting.increasedprotectionforcommunitiesviamodernandwell-maintainedhydropowerdamsandfacilitieswhichcanForfurtherinformationontheHydropowerofferimportantfloodprotectionorwaterstorageservicesSectorClimateResilienceGuide,pleaseduringextrememeteorologicalevents.Climatechangeseehere:https://www.hydropower.org/mayalsoresultinthepotentialforincreasedgenerationinpublications/hydropower-sector-climate-someregions.ArecentstudyontheLandscapeofClimateresilience-guideFinanceinAfricabytheClimatePolicyInitiativeidentifiedthathydropowersystemsintheeasternNile,NigerandVoltaMoregenerally,themagnitudeandvariabilityofriverinflowsbasinscouldexperiencepotentialrevenueincreasesof20-affectwateravailabilityforelectricityproduction,sometimes140%ifclimatechangescenariosareintegratedintodesignrequiringremedialmeasurestobetaken.Long-termchangesandbuilding.56inhydrologymayjustifytheneedformoreextensiveredesignatanexistingsiteforreservoirstorageandrun-of-Otherspecificexamplesincludesedimentmanagementriverhydropowerprojects.strategiesappliedatthe280MWRoseireshydropowerplantinSudanandaswellatthe130MWKapachirafacilityinForexample,supposethelong-termaverageriverMalawi.57,58,59flowisdeclining.Inthatcase,stationmodernisationmayberequiredtooptimisewaterusebychanging46AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidates47theturbinedesigntoadapttolowerminimumflowsor02.10Socio-environmentalpotentiallydecommissioningolderunits.Conversely,plantimpactsmodernisationwouldconsiderupgradestoincreaseunitcapacitywherepossibleorevenadditionalunitsifflowsSustainabilityandenvironmentalandsocialimpactcanbearegrowing.Inothercases,dam,reservoirandspillwaykeydriversformodernisation,particularlyinlarge-scaleupgradesmayberequiredifaverageriverflowshaveredevelopments.Newenvironmentaltechnologiesarealsochangedsignificantlyoverthedecadesandthereisagreaterbeingincreasinglyadoptedtoimprovenaturalhabitats,waterriskofextremefloodeventsinthefuture.quality,fishmanagementandreducedetrimentalimpactsonecologyupstreamanddownstreamofhydropowersites.63InaspecialreportpreparedbytheInternationalEnergyAgency(IEA),projectionsweremadeabouttheimpactsofForexistingmultipurposehydropowerschemesinAfrica,climatechangeonhydropowerprojectsinvariousregionswaterservicescanpotentiallybeimprovedasduetoofAfrica.Underarangeofscenarios,theregionalmeanmodernisationbyincreasingreservoircapacityorbyaddinghydropowercapacityfactor60isprojectedtodecreasebyorimprovingexistingirrigationservices,floodmanagementtheendofthecenturyduetoclimatechange.Theanalysisanddownstreamflowregimes.Hydropowersitesandindicatedsignificantspatialvariationinclimatechangetheiroperationscanalsoimpactaregion’spublicwaterimpactsregionallyinAfrica.Forexample,thehydropowerresources,meaningchangesexpectedfrommodernisationcapacityfactorinMoroccoisprojectedtodecreaseslightly;projectsmustbeconsideredattheplanningstageandinwhileitincreasesslightlyforprojectslocatedintheNilecollaborationwiththewaterauthority.basin(includingEgypt,Sudan,Kenya,andEthiopia)underascenariothatassumesglobalwarmingoflessthantwo°CbyForexample,inthecaseofthemodernisationofthe2100.61NalubaaleandKiirahydropowerplantsinUganda,EnvironmentalSocialImpact(ESIA)/ComplianceInsomeregions,climatechangeisalreadyshowingstrongAssessmentandEnvironmental&SocialRiskScreening/indicationsofimpactingwateravailabilityandseasoninflowInitialImpactAssessmentswereconsideredforallpossiblevariability,withdeclininghydrooutputinMoroccoinrecentoptions.64Similarly,theongoingmodernisationoftheyearsanddroughtsinpartsofAngola.ThedataandtoolsKainji-JebbacomplexinNigeriainvolvesfullconsiderationavailabletoaccuratelymodelhydrologicalimpactsvarybyofenvironmental&socialimpactsandbenefitsfromthecountryandregion.TheWorldMeteorologicalOrganization’srecoveryandrehabilitationofthesefacilities.652022StateofClimateServices:Energy62reportsetoutseveralapproachesbydifferentNationalMeteorologicalandHydrologicalServicesproviders,including,forexample,TajikHydrometinTajikistan.Withsupportfromseveralinternationalagencies,TajikHydrometcannowapplynewtechniquestoprovidemoretargetedinformationtoTajikistan’sstate-ownedpowerutilitytosupportthesafeandefficientoperationofhydropowerplants.48AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidates49Box02.Hydropowersustainabilitystandard02.11Contractuallimitsand&toolsregulationsDevelopedthroughamulti-stakeholderprocess,Manylarge-scalehydropowerfacilitiesoperateunderlong-hydropoweroperatorsanddeveloperscannowtermconcessionagreementsheldwithalocalauthorityordemonstratetheirprojects'environmental,socialpoweroff-takerandselltheelectricitygeneratedtoathird-andgovernance(ESG)performanceusingthepartybuyerviaapowerpurchaseagreement(PPA).66TheHydropowerSustainabilityStandard.expiryofanexistingconcessionoraPPAcanbeakeydriverforre-investinginanexistingasset.ForastationnearingtheProjectscanbecertifiedagainstdefinedendofitslife,renewaloftheconcessionagreementmayinternationalgoodsandbestpracticesusingbeakeyfactortomakesurethatthecurrentoperatorisHydropowerSustainabilityTools.Thetoolsprovidesufficientlyincentivisedtostartamodernisationproject.67acommonlanguageforgovernments,civilsociety,financialinstitutionsandthehydropowerRegulatoryrisksaffectdecisionsaroundmodernisationsectortodiscussandevaluatesustainabilityprojectsacrossseveralareas,notably:issuesinhydropowerprojects.Therearethreecomplementarytools:Electricitysectorlegislationcanguidere-licensingrequirementsforpowerstations;•TheHydropowerSustainabilityGuidelinesgridnetworkrulescanaffectoperatinganddispatchonGoodInternationalIndustryPracticerequirements;andtypicalmarketstructuresandpublic-(HGIIP)defineprocessesandoutcomesthatprivatemodelsimplementedinthepowersector(PPAs,constitutegoodinternationalindustrypractice.concessions,etc.).Governmentsmayalsosupportre-Performancecanbemeasuredthroughtwoinvestmentandmodernisation,mainlywherehydropowercomplementarytools:playsasignificantrole,asinNorwayandSwitzerland.Furthermore,inthecaseofFPVhybrid,theremaybe•TheHydropowerSustainabilityAssessmentadditionalregulatoryfactorstoconsider.68Protocol(HSAP)considers26guidelinetopicsandcomprehensivelyenablesprojectstoWaterlawsandpoliciesbenchmarkperformanceagainstdefinedgoodcanaffecttheusageofwaterresources.Waterauthoritiespractices.mustoftenbeconsultedtolicenseanychangesresultingfromhydropowermodernisation.•TheHydropowerSustainabilityEnvironmental,SocialandGovernanceGapAnalysisTool(HESG)Environmentallegislationchecksforgapsagainstthegoodpracticeonkeyrequirementscancomeintoforceorbeupdated,obligatingtopicsandincludesagapmanagementplan.ownerstorefurbishexistinghydropowersitestomeetstricterlimits.ForfurtherinformationontheHydropowerSustainabilityTools,pleaseseehere:https://www.AnInvestorsGuidetoHydropowerinAfrica,publishedhydrosustainability.org/hydropower-sustainability-in2021byinternationallawfirmAddleshawGoddardtoolswithsupportfromIHA,givesanoverviewoftheseareas50AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidates51andrelatedlegalissues.CountryprofilesareincludedonEthiopia,Nigeria,Malawi,Zambia,Uganda,Morocco,Mozambique,Cameroon,Ghana,andRwanda–manyofwhichhaveageinghydropowerstationsandmodernisationneeds.69TheWorldBank’sOperationandMaintenanceStrategiesforHydropower,publishedin2020withsupportfromIHA,alsoprovidesfurtherinformationonO&Mmodels.70Section03E&Simplicationsassociatedwithmodernisationprojects03.1IntroductionThefocusofthissectionistodiscussthemainenvironmentalandsocial(E&S)implicationsassociatedwithmodernisationprojects.Hydropowerprojectsprovideaninterfacebetweensocietyandtheenvironment.Modernisationprojectsarenodifferent.Theyaimtoprotectpeoplefromnaturalhazards,likedroughtsorfloods.Theyalsoallowpeopletobenefitfromwhatnatureoffers–renewableandcleanelectricitythatdrivessocio-economicdevelopmentandenableswindandsolarpowerwithstorageservices–bymaximisingtheoutputofexistinginfrastructure.Butsuchprojectsinevitablyinfluencetheenvironmentbyharmingorimprovingexistingconditions.Itisessentialtorecogniseandaddresstheseimpactstoincreasehydropowerpotentialfordevelopment,avoiding/mitigatingthenegativeandmaximisingthepositive.52AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidates53TheHydropowerSustainability(HS)Standardofferstheworksonelectrical,electromechanicalandcivilcomponentsleadingglobalassessmentframeworktoevaluatetheE&Sthathelpensurethelong-termefficiencyoftheprojects.performanceofhydropowerprojects.BasedonovertwoGenerally,andintheHSStandard,manyE&Sconsiderationsdecadesofimplementation,theHSStandardisaprovenaroundmajormodernisationexercisesorrefurbishmentsandrobustmethodologytoaddressE&SchallengesinforoperatinghydropowerprojectsaretypicallyassessedhydropoweranditsframeworkhasalreadybeenusedtousingthePreparationStageandImplementationstageassessthepotentialE&Simpactsofamodernisationprojecttools.ThisisbecausemanychallengesfacingmodernisationinSweden.71Itcoversthefollowing12sections,whichareprojectsaresimilartothoseinthedesignandconstructionalignedwiththeInternationalFinanceCorporation’s(IFC)stagesofanewbuildfacility,suchasalteredflowregimes,EnvironmentalandSocialPerformanceStandardsandthesedimentationanderosionissues,occupationalhealthandWorldBank’sEnvironmentalandSocialFramework:safetyconcerns,andpotentiallegacyissues.1.EnvironmentalandSocialAssessmentandManagementMinorworkstoincreaseefficiencies,replaceequipmentand2.LabourandWorkingConditionsrectifyageinginfrastructureissuescouldbeconsidered3.WaterQualityandSedimentsnormalassetmanagementpracticeforoperationsand4.CommunityImpactsandInfrastructureSafetyusuallywouldresultinpositivechangesintheE&Sindicators5.Resettlementoftheproject.6.BiodiversityandInvasiveSpecies7.IndigenousPeoplesOtherexamplesofE&Simpactsassociatedwithrehabilitation8.CulturalHeritageworksthatshouldreceivecarefulconsiderationinclude9.CommunicationsandConsultationbutarenotlimitedto:theuseoflandforbrieffacilities10.GovernanceandProcurementandaccessroads,thetemporarydiversionofriverwaters11.HydrologicalResourcefromriversections,thedischargeofpollutantdrainage12.ClimateChangeMitigationandResiliencefromcampsorthedischargeofhazardoussubstanceinthesurroundingsoftheplant,noiseandsafetyrisksfacedby03.2Generalconsiderationslocalcommunitiesandpossibleconflictsbetweenworkersabouttheenvironmental&socialandlocalcommunitymembers.implicationsofmodernisationprojectsBeyondmitigatingimpacts,modernisationprojectscanenhancepre-projectE&SconditionsandevenaddresslegacyHydropowerprojectscanhaveseveralsustainabilityrisksissuesthatmayimpactthefutureperceptionofhydropowerandopportunities.Theseareoftensite-andproject-specificinthecountryorregion.TheHSStandardalsooffersinsightandmustbeunderstoodindetailtoapplybestmanagementintobestpracticestohelpguideambitiousprojectownerspractices.Thisappliesequallytomodernisationprojects.indevelopingprojectsthatpositivelyimpactpeopleandtheplanet.AnotherpositiveaspectisthatmodernisationprojectsItisknownthathydropowerprojectstendtohaveanareoftenassociatedwithincreasedelectricitygenerationextensivelifetime,withover60%oftheplantsinAfricafromthetargetplant.Thisfactoralonehasasubstantialhavingbeeninserviceformorethan20years.Thesevastpositiveeffectinsupportingeconomicdevelopmentandlifetimesareusuallyaccomplishedduetomodernisationimprovingthelifequalityoflocalcommunities.54AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidates55Table04providesanon-exhaustivelistofpotentialE&SInthecaseofrehabilitationandmodernisationprojects,impactsofmodernisationprojectsandopportunitiesforbestitishighlyrecommendedtofollowthesamestepsasforpractices.newprojectsinanalysingpossibleE&Simpactsduringthepreparationandimplementationstages.ThevariousstepsTable04.Overviewofthepotentialphysical,biologicalandsocialcanbesummarisedasfollows:impactsofhydropowerprojectsPreparationstagePhysicalBiologicalSocial•ScopinganddetailedassessmentofpotentialAlterationtowaterlevelaroundtheTemporarydisturbanceoffauna,Safetyriskforworksduringenvironmentalandsocialimpactsoftheimplementationreservoirandthedownstreamriverincludingnesting,spawningandrehabilitationworkoftherehabilitationormodernisationprojectandthemigrationfaunaSafetyriskforlocalcommunitiesongoingoperationofthescheme.leavinginthesurroundingareaofDisruptionofsedimentmovement-theplant•DetailedstakeholderengagementonimpactsandintheriversystemPossibleconflictbetweenworkersissuesoftheproject,thoseofongoingoperations,andandlocalcommunitiesproposedmanagementmeasures.Conversionoflandfordisposalof-•Planningofavoidance,minimisation,mitigationandspoil,obsoletecomponents,and-compensationmeasuresforimplementingrehabilitation,-modernisation,andongoingoperation.disposalofwaste-•PlanningofstakeholderengagementforimplementingTemporaryuseoflandforfacilities-rehabilitation,modernisation,andongoingoperation.andaccessroads-ImplementationstageEmissiontoair(fromvehicles)-•ConstructiontotherequireddesignstoavoidandAdditionalnoiseduringproject-minimiseimpacts.implementation•Mitigationofconstructionstageimpacts,orwhenTemporarydiversionofariveror-mitigationisnotfeasible,compensation.excessivespilling•Continuingstakeholderengagement.03.3Hydropowersustainability•Monitoringandreportingtoregulatorsandstakeholders.guidelinesongoodinternationalindustrypracticeEventhoughinthecaseofrehabilitationprojects,therisksofnoticeablenegativeE&SimpactsaresubstantiallyOlderprojects,developedbeforeenvironmentalandsmallerthanthoseassociatedinitiallywiththeplant'ssocialissueswereconsideredatall,oftenlackadequateoriginalconstruction,rehabilitationprojects,ifnotenvironmentaldocumentationandplans.Modernisationproperlymanaged,couldtriggerunwantednegativeE&Sprojectsthusofferanexcellentopportunitytoimplementconsequencesandleadtoprojectdelays.OneimportantnewandmodernenvironmentalandsocialassessmentapproachtoconsiderwhenimplementingE&Simpactmanagementapproaches,withincreasedstakeholderassessmentandmanagementplansistheprincipleofengagementandlocalcommunitybuy-in.proportionality.Thisprinciplestipulatesthattheextentofmitigationrequired(andtheassociatedbudget)is56AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidates57proportionaltothenatureandscopeoftheimpactscausedSection04bytheproject.ModernisationcostItisthereforerecommendedthat,aspartofthestudytobebenchmarkingcarriedoutinpreparationforrehabilitationormodernisation,allthepartiesinvolved(includingplantowners,thesuppliers,04.1World-levelcostbenchmarksandthefinanciers)dedicatesufficienttimeandresourcestotheidentificationofpossibleE&SimpactsassociatedwithMuchlikeagreenfieldhydropowerproject,modernisationprojectstheexecutionoftheproject.varyfromsitetositeinscopeandcomplexity;therefore,estimatingamodernisationproject'scostinitsveryearlystagesisnotalwaysaArecentinitiativefundedbySwitzerland’sStateSecretariatstraightforwardactivity.Furthermore,thereislimitedliteratureontheforEconomicAffairs(SECO)madeavailableatotalof1millionsubject.ModernisationcostscanalsovarysignificantlyonaglobalSwissFrancs(USD1.02m)to40ormorehydropowerprojectsscaleduetocommodityprices,labourcosts,regulatoryandlicencingbetween2020and2024tohelpdevelopersandoperatorspoliciesandavailabilityofpartslocally.inAfrica,Asia,EuropeandtheAmericastobenchmarkandraisetheirsocialandenvironmentalperformance.IHAundertookahigh-levelbenchmarkingexercisein2020tohelpThisinitiativeismanagedbytheInternationalHydropowerinformunderstandingofinvestmentcostranges.TheexerciseAssociation’ssustainabilitydivision.72covered95datapointsacross64stationsin28countriesacrosstheworld,focusingonprojectsgreaterthan10MWininstalledcapacityandundertakenaftertheyear2000.73Thecostinformationwasdrawnfrombothpubliclyavailablesources(e.g.utilities,equipmentsuppliers,engineeringfirms,governmentsandIFIreports)andcostdatasupplieddirectlyfromstationownersoroperators.Publiclyavailableinformationpresentedsomeproblems;forseveralprojects,costbreakdownswerenotreported.Insuchinstances,discretionwasusedtodeterminehowcostswereapportioned,butwheresourcesweredeemedunreliable,theseprojectswerediscarded.58AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidates59Figure06.Thelocationofprojectsusedaspartofthecostwhyelectricalinstallationcostshavebeencombinedwithbenchmarkingexercisemechanicalinstallationcoststocreateelectro-mechanicalinstallationcosts.WhilegeneratorsarepartoftheelectricalNOTEDarkblueindicatescountrieswereatleastoneprojectconsideredinthecostbenchmarkingexercisewaslocatedsubsystemofastation,thecostsassociatedwithturbine-generatorsetsaretypicallyreportedtogetherratherthanFirstly,Capexcostswerecollected,recordedinUS$andseparately.dividedintothreemainsubsystemsofastation:Electricalinstallationcosts:includingtransformers,highIfrequired,costswereconvertedintoUS$andthenvoltageswitchgear,electricalequipment,auxiliaryelectricalescalatedtoobtainactualisedcostsin2020tomakethemservicesandelectricalcontrolsystems.comparableandaccountfortheeffectofgeneralinflation.Electro-mechanicalinstallationcosts:includingkeydrivetraincomponents(i.e.generator,turbines,statorsandThefollowingformulawasused:rotors)andcontrolstructures(i.e.gates,valvesandcranes).Civilworkscosts:includingthecivilinfrastructureofaCAPEXn=CAPEX0x(1+i)nprojectsuchasadam,intakes,powerhouse,penstocks,tunnels,spillways,roadsandbridges.CAPEXn=theactualisedcapitalexpenditureatyearn;ThesethreecategoriesarepurposelybroadduetothelackCAPEX0=thebasecapitalexpenditureatyear0;ofdetailedinformationavailableataprojectlevel.Thisisi=theescalationrate;n=thedifferencebetweenyearnandyear0.Inlinewitha2018studywhichfocusedonestimatingthecostsofgreenfieldprojectsworldwide,anescalationrate(i)of3percentwasadopted.74Theescalationratereferstoannualincreasesinpricesassociatedwithmodernisationprojectsduetoinflation.Meanwhile,civilcostsbearlittlerelationshipwiththecapacityofastation,reflectingthatthescopeofcivilworkscanvarywidelyandismoredependentonthesizeandconditionsofthestructure.Forexample,civilworkscanrangefromraisingadam’sheighttorehabilitatingitsspillwaygateswhichhavesignificantlydifferentcostimplicationsandarenotdirectlylinkedtoastation’sgeneratingcapacity.Civilcostscanalsobegreatlyinfluencedbylocalmaterialandlabourcosts,makingestimatingcostsonthisscaledifficult.Figure8showscostsasunitvaluesperinstalledcapacity60AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidates61(US$/MW)forelectricalandelectromechanicalinstallations.Table05.TherangeofmodernisationcostsonaUS$/MWbasisThemethodologyusedforcalculatingeachunitvalueona(2020)US$/MWbasiswas:ElectricalinstallationsElectro-mechanicalinstallations•Electricalinstallationcost(US$)/Totalcapacityofthestation.Minimum35,0091,000•Electro-mechanicalinstallationcost(US$)/capacityQ124,000291,000associatedwiththenumberofunitsimpacted.Median39,000432,000Forelectro-mechanicalcosts,theimpactedunits'capacitywasusedasthedenominator.Usingtheentirestation'sQ353,500542,000capacitywouldsignificantlydeflatethecostonaUS$/MWbasisandnotreflectreality.Maximum166,000945,000Figure07.BoxplotshowingthedistributionofmodernisationcostMean44,000464,000valuesforelectricalinstallationsandelectro-mechanicalinstallationsCost(2020US$/MW)900,000WithanaverageofUS$44,000/MW,electricalinstallation800,000costsrepresentasmallpercentageoftheoverallcost700,000KEYassociatedwithmorecomplexelectro-mechanical600,000electricalinstallationsmodernisationprojects(lessthan10%).500,000400,000electro-mechanicalElectro-mechanicalcostsvariedbyoverUS$250,000/MW300,000installationsbetweenQ1andQ3.Thiscan,inlargepart,beexplainedby200,000thescopeofwork.Costsatthelowerendofthisrangewere100,000generallyassociatedwithunitrehabilitation.Incontrast,costsofreplacingandupgradingthemaindrivetrain0components(stators,rotors,turbinesetc.)withintheunitwereatthehigherend.ModernisationprojectsthatinvolvedItillustratestherangecontainingtheminimum,Quartile1(Q1),themedian,Quartile3(Q3),andtothemaximum.Themeanistherehabilitationofunitstendedtorecordaveragecostsmarkedby‘x’.ofbelowUS$400,000/MW,whileprojectswhichreplacedturbinesandassociatedcomponentsincurredcostsaboveUS$600,000/MW.Moreover,evenmodernisationprojectssimilarinscopecanvaryduetothevariousotherfactorsinfluencingcosts,includingaccesstounitswithinthepowerhouse,availabilityofreplacementpartsfornon-typicalunitdesigns,variable62AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidates63labourcostsbycountry,upgradesrequiredtoundersizedoverheadcranes,etc.Forthislevelofanalysis,detailedcostsofthevaryingcomponentswerenotprovided.Moredetailedinformationonspecificcomponentswithinthescopeofthemodernisationproject(sealings,bearings,coolingsystem,turbinetype,rotorandstatorspecifications,etc.)wouldallowforamoreaccuratecostestimate.Still,itwouldneedtobebasedonmoredetailedstudies,whichareplannedtobeconductedforAHMPpilotprojects.AspartoftheworkintheAfricamodernisationmappingproject,IHAhasconfirmedthevalidityofthismodernisationcostbenchmarkingmethodologyandfiguresthroughconsultationwithtwomajorhydropowerOriginalEquipmentManufacturers(OEMs).BothOEMsindicatedthebenchmarksarereasonableandcomparablewiththeirmarketexperience.64AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidates6566AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidates67Part02Africa–mappingofhydropowermodernisationpotential68AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidates69Figure08.ElectricityaccessinAfrica(2020–%ofpopulation)Section05AfricancontextAccesstoelectricityisacrucialfactorinenablingAfrica'seconomicgrowthandsocialdevelopment.Withenergydemandgrowingtwiceasfastastheglobalaverage,Africahastheopportunitytobethefirstcontinenttodevelopitseconomyusingmainlyrenewableenergy.DespitetheremarkableprogressofAfricangovernmentsintacklingenergypoverty,thecontinentstillneedstoconnect20millionpeopletotheelectricitynetworkeveryyearfromnowto2030.AccordingtotheIEA,44%ofAfrica’spopulationwaswithoutaccesstoelectricityin2020,or584millionresidents,withcertaincountrieslikeDRC,Congo,Malawi,NigerorSouthSudanreportinglevelsabove80%.ElectricityaccessinAfrica5%52%99%SOURCEIEAdata&IHAanalysis70AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidates71Thecontinentcurrentlyhousesroughly40GWofinstalledmappingexercisebytheIHAonthecurrentstatusofthehydropowercapacity,makingittheleadingrenewablemainhydropowerfacilitiesinAfrica.Thisworkincluded:resourceandaprimaryelectricitysourcealongsidecoalandgas.Itsshareoftotalelectricitygenerationispredictedto•AscreeningoftheIHA’sworldhydropowerdatabase;increasefrom17%in2021toover23%by2040.75•AwebinarwiththeownersandoperatorsoftheseplantsAsshowninFigure09,thecurrentpipelineofhydropowertodescribetheintentandthepossibleoutcomesofthisprojectamountsto118GWandtheremaininguntappedworkandhowitrelatestoAHMP;potentialisabove470GW.76•Astation-leveldatacollectiontoclassifythestatusoftheassetsreviewed.Table06.HydropowercapacityperregionFigure09.Installed,underdevelopment,andremainingpotentialRegionCountriesparticipatingCapacity(MW)#stationshydropowercapacityinAfrica(2021)NorthAfrica7WestAfrica1038118474EastAfricaMorocco,Egypt,Sudan.Algeria,309419installedpipelineremainingpotentialCentralAfrica13SouthAfrica38CôteD'Ivoire,Ghana,Liberia,Nigeria,Mali38012101Burundi,Ethiopia,Kenya,Malawi,Mozambique,3146Tanzania,Uganda,Zambia,ZimbabweCongo,DRC,Cameroon,Gabon,0100200300400500600700GWSouthAfrica,Namibia12098SOURCEIHAStatusRepot202205.1ScopeTheoutcomeofthisassignmentwillbeavaluabletoolinthedecision-makingprocessoftheAfDBinindevelopingofWhileAfricahasthehighestpercentageoftheuntappedtheiractivitiesundertheAfricaHydropowerModernisationhydropowerpotentialofanyinhabitedcontinent(withcircaProgramme.10%utilised),47%oftheinstalledcapacityisover40yearsold,and60%isover30yearsold.77Significantopportunitiesexisttoimprovethegeneralandspecificneedsofdifferentassets,countries,andregionsaspartofafutureholisticstrategyforaclean,reliable,andsustainableenergysystem.Thisreportaimstopresenttheresultsofacontinental-wide72AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidates73Figure10.OverallmethodologyfortheContinentalMappingSection06Activity1Activity2Activity3InitialscreeningStationlevelDetailedMethodologyanddatagapdatacollectionassessmentanalysis&screening06.1Overview1.12.13.1Theoverallmethodologyfortheprojectfollowedathree-stepprocessScreenIHA'sStationspecificDetailedwhichisillustratedinFigure10.Eachstephelpednarrowdowndatabasedatacollectionassessmentofthenumberofstationsneedingmodernisationthroughdata-basedstationswithhighanalysis,expertadvice,andfeedbackfromstationowners.1.22.2needsLiteratureEngagementofreviewandownersinthe3.2identificationofdatacollectionDisseminationgapsand2.3presentationof1.3AssessmentofresultsInitialworkshopdatacollectedsessionwithoperatorsThefollowingsectionsdescribetheactivitiescarriedoutintasks1.1to3.2,asillustratedinFigure1074AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidates7506.2Activity1–initialscreeningFigure11.Locationofthe87plantsidentifiedforthestudyanddatagapanalysis6.2.1ScreeningIHA’sdatabase(Task1.1)Fortheinitialscreening,thedraftdatabasewascompiledusingstationdataextractedfromIHA’sglobalhydropowerdatabaseandinitiallyfilteredforstationsabove50MWandover30yearsold.Thisreachedalistof87stations,78totalling24.2GWinstalledcapacity(morethan60%oftheAfricanhydropowerfleet).Theprimarystationcharacteristicsgatheredinthedatabaseincluded:1.Stationname2.Installedcapacity(MW)3.Country4.Yearofcommissioning5.Typeofproject(storage,pumpedstorage,orrun-of-river)6.Numberofunits7.Province/state8.Rivername9.Locationwithlatitudeandlongitudegeocoordinates10.Projectstatus(operationalornon-operational)11.Stationownerandclassification12.AnnualgenerationInstalledcapacity(MW)Yearofcommissioning26countries1932201787plants(24GW)≥50MWsize≥30yearsold&AfDBproposedstations85001.0001.5002.10076AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidates77Figure12belowpresentstheageprofileoftheplants,i.e.6.2.2Literaturereview(Task1.2)installedcapacityandnumberofstationswithineachageAliteraturereviewwasundertakencoveringthreesubtasks:range.Thisillustratesthatmoststationswithintheidentifieddatasetwerebetween40and60yearsold.1.Checkthedatasetofbasiccharacteristicsandclosegapswherepossibleusingpublicinformationsources,suchasFigure12.Ageprofileofthe87hydrostations&installedcapacityotheronlinedatabases,newsarticles,andreports;AGEPROFILEOFSTATIONSSCREENED2.Screenpastorongoingrehabilitationprogrammesthathavetakenplaceatthe87stations;and3800MW4100MW8200MW814273.Reviewthekeydriversandopportunitiesforhydropowermodernisationusingexistingreferences.<30years30-39years40-49yearsKEYInthereviewofpastorongoingmodernisationprogrammes,6200MW1500MWforstationswhereinformationwasfound,theyearofthe1816MWrehabilitationwasrecorded,alongwithanoteonwhattype#stationsandscopeofrehabilitation(e.g.electromechanicalunits,50-59years>60yearselectricalsystems,orcompletestationrebuildforinstance;SOURCEIHAdatabaseandanalysisifthisinformationwasavailable).Thisreviewcomplementedthedatacollectionandownersurveysinactivity2ontherehabilitationstatusofplants.Thereviewofkeydriversandopportunitiesforhydropowermodernisationwashelpfulinbetterunderstandingthekeyfactorsthatdeterminetheneedformodernisation,withaparticularfocusontheAfricanregion.Thishelpedcontributeprimarilytosection(Driversandopportunitiesofmodernisation)andsections6&10(Summaryoffindingsanddetailedassessmentofcandidateprojects).6.2.3Webinarwithowners(Task1.3)Inparallelwiththeliteraturereview,ownersofthe87stationswerecontactedtoparticipateinthestudy.ContactdetailswereobtainedthroughthecombinedIHAandAfDBnetworks.Intotal,the87stationscomprised30owners,whowereallsentaformalletterfromIHAandAfDBexplainingthebackgroundofthestudy,togetherwithaninvitationtoawebinarwhichtookplaceon6April2022.TheobjectiveofthewebinarwasforIHAtopresentthebackgroundcontextofhydropowermodernisation,theplannedmethodologyfortheContinentalMappingStudyandforAfDBtopresent78AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidates79theAHMP.ItwasalsoanopportunitytoinvitetheownerstoThewebinarwasverywellattended,withover100activelyparticipateinthemappingprocessandencourageparticipants,including75fromAfricanhydropowerparticipationinthedatacollectionphasefollowingthecompanies,representingtwo-thirdsofthehydropowerwebinar(activity2).Theinvitationsalsoeffectivelyidentifiedcompaniesinvited.Inadditiontobuildingengagement,thethemostrelevantcontactpointsateachorganisation.Duringwebinarpresentationsanddiscussionpointsrevealedseveralthewebinar,twolivepollsweretakenonthekeydriversandkeytrends:barriersforhydropowermodernisation,andquestionsfromparticipantsonvariouspartsoftheagenda,asshownbelow:•HydropowermodernisationwillbecriticalbothgloballyandinAfricaWhatarethekeydriversandopportunitiesformodernisationprojects?•Modernisinghydropowerplantsgoesbeyondstandardrefurbishments#votes•InitialmappingshowsAfricahasanageingfleetandgood32161512examplesofprojectsthataresuitableformodernisationRefurbishingandupgradingDecarbonisationandbalancingClimateresilienceandIncreasingelectricitydemand•Newtechnologyconceptshaveakeyroletoplayinenvironmental&socialhydropowermodernisationplantsvariablerenewablesimpacts•AccesstofinancingisessentialtomovemodernisationprojectsforwardWhatarethemajorbarrierstohydromodernisationprojects?•Othermattersdiscussedduringthewebinarincluded#votesfinancingmodels,floatingsolarPV,cascadehydro,stafftraining,climateresilience,anddifferenthydropower4310111383hybridssuchasgreenhydrogen.FinancingLowelectricityRegulationsCommercialsLackingawarenessother06.3Activity2–Stationlevelprice/demanddatacollectionandscreeningcontract&permittingofexistinghydroFollowingthewebinarandinformedbytheliteraturereviewinActivity1,Activity2focusedonthecollectionofstation-specificdatatoassessthemodernisationneeds.6.3.1Stationspecificdatacollection(Task2.1)Thedatacollectionwascarriedoutbyremotecontactwiththestationowners.Detailedannualperformancedataisnotavailablefrompubliclyavailablesources.Thereforetheownersurveyswereessentialforthistask.Thestation-leveltemplateusedtocollectinformationincludedaquestionnaireanddataform.AlongwithatemplateExcelsheetpreparedforeachofthe87stations.80AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidates81Theformwasdividedintosixsections:05Annualperformancedata01Modernisationhistory10-yearhistoricaltrendsonannualpowerhousewaterdischarge(m3/s),annualoperationalcapacity(MW),annualaimingtogatherinformationaboutanymodernisationgeneration(GWh)andcapacityfactor(%),annualavailabilityactivitythatmayhavebeenundertakeninrecentyears,the(%),planned&forcedoutagerate(days&%)reasonsandbenefits,andanyavailableinformationrelatedtothecostsofmodernisation.06Floatingsolarassessmentdata02CurrentoperatingstatusFurthertothemodernisationneedsandperformanceofthehydropowerplants,datawasrequestedtoassessthegatheringinsightsonthecurrentstatusoftheasset,intermspotentialforfloatingsolarPVatthehydropowerreservoirs.ofoperationalpowerandannualgenerationcomparedtoThesedatafocusedonboththeoverallcharacteristicsofinstalledcapacityandoptimalannualoutput;rateofforcedthereservoirs(size,depth,levelvariation,waveheightandoutages;ifthereareexcessivespills(indicatingtheassetmaydischarge)andtheaccessibilitytotheswitchyardandthenotbetherightsizerelativetoriverflows,and/oroccurrencecapacityandtheconditionoftheexistingtransmissionline.offloodevents);recentconditionassessments;andifthereareanymajorsafetyissues.6.3.2Engagementofownersinthedatacollection(Task2.2)Theformthenwassenttoallownerscoveringthe87stationsin03scope,includinganumberwhodidnotattendthewebinar.TheFuturemodernisationplansresponseratesforthewebinarinTask1.3andsubsequentdatacollectionTask2.2phasesareshowninFigure16.iffuturemodernisationsareplannedandinformationonwhen,whattype,thereasonsandcost;ifthereareanyenvironmentalorsociallegacyissuesinvolved;andrequestonanyfurtherdetailsthatmayimpactthestation/modernisationneed.04Stationdesigndataclosinganygapsontheessentialcharacteristicscollectedinactivity1,andsomeadditionalfieldsongross&nethead(m),turbinetype,optimalcapacityfactor(%)andannualgeneration(GWh),typeofdam,andmultipurposeusesofthesite/reservoir.82AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidates83Figure13.ResponseratesOwnerresponsestotheinformationrequests•First,aqualitativejudgementwasmadeoneachcaseastowhetheritwasinhigh,mediumorlowneedforOfthe31ownersinvitedtothewebinarmodernisation,basedongeneralcriteriapresentedinTable7below.29%27%71%•Subsequently,aquantitativeassessmentwasthencarriedouttoscoreeachplant'slevelofmodernisationneedbasedonasetofspecifiedcriteria;thisstepwasundertakenonthe51plantsforwhichsufficientlydetailedinformationwasreceived.Thequantitativeanalysiswasdonetovalidatetheinitialqualitativecategorisationsandrankprojectswithineachcategory.64%9%Figure14.Illustrationofthetwostepsprocessusedinthestationassessment(Task2.3)criteriainaninfographicAttendedDidnotattendDatasubmittedPartialdataprovidedNoresponseSTEP01STEP02CategorisationScoringprocessQualitativejudgementtocategorisethestationsQuantitativeassessmenttoscorethelevelofbasedongeneralcriteriaforhigh,mediumorlowmodernisationneedusingarangeofspecificcriteria-inordertovalidatethequalitativecategorisationsmodernisationneedandrankthestationswithineachcategoryThisengagementprocessprovidedadialoguewithplantownersandoperatorstoinitiatethediscussiononGeneralperformancetrendsKeycomponentsreachingAgeofelectromechanialunitsOngoingmechanicalissuesmodernisationneeds,usingtheinformationextractedfromOwneroutlinedifapriorityornotend-of-lifeOperationalcapacityMWAnnualgenerationGWhthedatasheets.Annualavailability%ForcedoutagesModernisationplans/status/ModernisationplansRoleofplant6.3.3Assessmentofstationsdata(Task2.3)completedSafetyissueExcessivespillsThistaskaimedatorganisingthedatagatheredviatheresponsetothesurveyintoaconsolidatedsetofinformationHighneedMediumneedLowneedandclassifyingtherehabilitationneedofthe51plantsreviewed.RankhighneedlistRankmediumneedlistRanklowneedlistTheassessmentofthestationdata(Task2.3,Figure10)was1.StationA1.StationD1.StationAcarriedoutintwosteps:2.StationB2.StationE2.StationB3.StationC3.StationF3.StationC4....4....4....84AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidates85Step01PlantswithgoodperformanceormodernisationprojectsCategorisationrecentlycompleted,underwayorcommencingshortlywereclassifiedaslowneed.Inthefirststep,thedatacollectedaboutthepowerplantswerereviewedandreorganisedtoextractastandardisedsetConversely,plantsrunningoutdatedtechnology79,withpoorofspecificinformationenablingacomprehensiveviewoftheperformancesduetolowavailability,highforcedoutage,variousplants.and/orindicationofderatedorcompromisedunitsweretypicallyclassifiedashighneed.OftenthisjudgmentwasEachplant’smodernisationneedswerethencategorisedfacilitatedbysomeclearindicationsprovidedbytheownersbetweenlow,mediumandhighusingasetofgeneralcriteriaaboutoneormultipleplantsintheirfleetrequiringimminentsummarisedinTable7.Plantswereanalysedacrossseveralmodernisationworksforwhichaninitialassessmentwasspecificparametersextractedfromthedatasheets,i.e.alreadycarriedout.onmodernisationhistory,currentoperatingstatus,futuremodernisationplans,andtheannualperformanceoftheFinally,hydropowerplantsrelyingonunitsthatwerenotplants.recentlyinstalledbutstilloperatingreliably,possiblythankstoagoodmaintenanceprogrammeorsmallrehabilitationTable07.Generalcriteriaguidingthestations’categorisationworkscarriedoutovertime,wereclassifiedunderthemediumneedcategory.LowneedMediumneedHighneedStep02PerformancesScoringprocessGood-highavailability,lowforcedSatisfactory-someyearswithlowPoor-lowavailability,highforcedAsillustratedinFigure14,besidesthequalitativeassessmentoutagerateavailabilityandevidenceofforcedoutagerateoverextendedperiod(step1),inthesecondstepoftheprocess,aquantitativeoutagerateassessmentwasdonetoassignascoredescribingtherehabilitationneedsofeachstation.ThismorequantitativeComponentscondition&modernisationstatusanalysisaimedtocorroboratetheresultsoftheabovequalitativecategorisationprocess.LeveragingthedataOwneroutlinednotinneedofPartialmodernisationcompletedorKeycomponentsreachingendofreceivedbytheowner,amodernisationneedscorewasmodernisationunderwaylifeandnorecentmodernisationcalculatedforthecandidateplantsownedbycompaniesthatcompletedprovidedsufficientinformation.ThemodernisationscorewasFullworkscompletedorunderwayMinorworksrequired/scheduledcalculatedasthesumofindividualpointsassociatedwithOwnerorgovernmentoutlinedsomespecificcriteriadescribingtheconditionofthepowerModernisationtocommenceshortly-priorityformodernisationorplant.–contractsalreadyinplaceexpansionForexample,ontheageofthemajorelectromechanicalModernisationplansinplace,equipment,aplantwithgeneratingunitsolderthan45yearssometimespendingacompletesincethelastrefurbishmentwasassignedascoreof2,thosefeasibilitystudywithunitsbetween31-45yearsoldscored1,whilethoseCriteriausedforplantslackingdataSecondaryinformationindicatedSecondaryreportsnotedprojectsSecondarysourcesindicatedpoorworkscompletedorwellprogressed,&nourgentissuesorpartialrehabilitationsundertaken,condition&urgentrehabilitationand/orifthestatuswasunclearneeds/plans86AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidates87under30scored0.TheseageboundariescorrespondtoHastheownerplansorindicationsformodernisation?(Y=1,N=0)typicalageingratesofhydroturbinegenerators,asfoundintheliteraturereviewofmodernisationdriversandbenefitsHastheplantasubstantialroleonthegrid?(>10%nationalsupply=1,<10%=0)(seesection4).Othermainassessmentcriteriawerealsoscored,e.g.Istheownerindicatingmajormechanicalissues?Hastheownerindicatedsafetyissues?(Y=1,N=0)(Yesscored1,whereasNoscored0);Istheownerindicatinganeedforcivilworks?;IsashareoftheinstalledcapacityoutIsthereindicationofexcessivespills?(Y=1,N=0)ofservice?;Isannualgenerationbelowexpectations?,etc.AllscoringcriteriausedincalculatingthetotalmodernisationTotalscoreneedascoreforthe51plantsareshownbelowinTable8.SummingtheresultingvaluesassociatedwitheachcriterionTable08.Criteriausedinthescoringprocessofstations’gaveatotalscoreforeachstationoutofamaximumofmodernisationneeds15.TheseresultswereusedtovalidatethequalitativecategorisationsandprioritisecandidatesmostneedingScoringcriteriaforhydropowermodernisationneedsmodernisation.Insomecases,specificdatafieldsweremissingintheresponsesfromowners,reducingthetotalHowoldistheelectromechanicalequipment?(0-30y=0,31-45y=1,45y+=2)scorepossibleforthosestations.Isownerindicatingmajormechanicalissues?(Y=1,N=0)FloatingsolarassessmentIsownermentioningneedforCivilworks?(Y=1,N=0)Themaincriteriaforassessmentofsites’potentialforfloatingsolarwereasfollows,basedonascreeningIstherepoweroutofservicerelativetoinstalledMWcapacity?(0%=0,1-50%=1,>50%=2)methodologyandliteraturereviewofconstraintsforfloatingPVathydropowerreservoirs:Isannualgenerationin2020and2021belowexpectations?(0-50%=2,50%-90%=1,>90%=0)SolarirradianceinthereservoirareaHastheownerlinkedlowgenerationtowaterlevelissues?(Y=-1,N=0)inordertoassessthelevelofresourceavailabilityHastheownerlinkedlowgenerationtolowgriddemand?(Y=-1,N=0)Reservoirgeometry(surfaceareaandwaterHasannualavailabilityin2020and2021beenlow?(<80%=2,80%-90%=1>90%=0)depth)andwaterlevelvariationsIndicationofhighforcedoutages?(Y=1,N=0)toassessthespaceavailabilityforfloatingsolarPVandconstraintsontheanchoringandmooringfloatingstructure.Furtherbathymetricsurveyswouldberequiredinafeasibilitystudy.88AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidates89TransmissionlineutilisationfactorandHowlargeisthehydroplantcapacity?(0-49MW=0,>50MW=1)excesscapacityIsthereservoirsurfaceareaabove4000m2?(Y=1,N=0)tounderstandifthereisavailablegridconnectioncapacityattheexistingsitetoevacuatepowerfromthefloatingPV,andIsthemaximumreservoirdepthbelow50m?(Y=1,N=0)thehydropowerfacility’sgeneration.Arethemaximumwaterlevelvariationsbelow25m?(Y=1,N=0)DistancebetweenthereservoirandtheswitchyardIsthereservoirsinglepurpose,forenergyproductiononly?(Y=1,N=0)affectsthecableconnectioncost.Isthemaximumwaveheightbelow2m?(Y=1,N=0)ReservoirusesIsthedistancebetweenthereservoirandswitchyardbelow3km?(Y=1,N=0)toassessconstraintsifthereservoirisusedforotherIstheresparetransmissioncapacityavailable(above30MW)?(Y=1,N=0)purposesbeyondwaterstorageforenergyproduction.Istheturbinetypeflexible?(Pelton/Francis=1,otherwise=0)OtherdataTotalscoreonmaximumwaveheight,transformercapacity,reservoirdischargeratio,turbinerampingrate–whichcouldfurtherNOTEaffectsuitabilityforfloatingPVandhybridoperations.solarirradiationdatawasavailablefromapublicdatabaseperlocation(globalsolaratlas.info)Intotal,datawasreceivedfor26hydroreservoirsitesfromEachstationcouldreceiveamaximumpossiblescoreofownersforthefloatingsolarassessment.Ascoringprocess10(1pointperlistedcriteria).ThetotalscoreswereusedwasalsousedtoscreenthedatasetagainstthecriteriatorankthehydrositesregardingsuitabilityforfloatingPV.specifiedinTable09.Notesomeofthedatasheetshadmissingdatafieldswhichreducedtheoverallscorepossibleforthosecases.Table09.Criteriausedinthescoringprocesstoassessfloatingsolarpotentialatthehydro/reservoirsiteAselectionofcandidatesiteswasthenreviewedinmoredetail,discussingthevarioussitecharacteristicsandScoringcriteriaforhydropowermodernisationneedspotentialconstraintsaccordingtothosescreenedinTable9.Thepotentialenergyyieldfroma50MWfloatingsolarIssolarirradiationintensityatthesiteabove2000kWh/m2/year?(Y=1,N=0)arraywasalsocalculatedbasedonamethodologyfromapublishedEUJRCstudy80.FPVyieldiscalculatedbymultiplyingvariousinputtermsandassumptions.Theseincludesolarirradiationatthesite(kWh/m2/y),%ofreservoirsurfaceareacoveredbyFPV(i.e.km2covered),90AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidates91PVareafactor(assumedas0.1kW/m2),PVperformance•Scopeofpotentialmodernisation(componentsandratioaccountingforsystemlosses&coolingeffects(0.8worksrequired;statusoftheprojectregardingtimeline,assumed),andAC/DCinverterloadratio(1.25assumedstudies,fundingsecured;themagnitudeofenergygainsincludingsolarclipping).fromamodernisation,ifavailable)06.4Activity3–detailed•Costestimatesofmodernisation(eitherprovidedassessmentdirectlybytheownerwherepossibleand/orusingIHAbenchmarkrangesappliedtothecapacityimpacted)HydropowerstationsassessedinhighneedofmodernisationandownerspreferredlegalstructureformodernisationinActivity2werecarriedforwardasshortlistedcandidates(public,IndependentPowerProducerorPublicPrivateintoActivity3.Inthisprojectphase,amoredetailedanalysisPartnership)wascarriedouttounderstandbetterthecontextandtherequiredrehabilitationworkforeachcase.•PotentialforsolarPV(withanyadditionaldetailonprojectconstraints,thestatusofstudies)6.4.1Detailedassessmentofstationswithhighneeds(Task3.1)•Furtherconsiderations(e.g.sedimentmanagement,Forthistask,interviewsweresetupwitheachrelevantotherlocalfactors)ownertodiscussthecandidateplantsandmodernisationneedsinmoredetail.Thegoalwastoproducesummaries6.4.2Disseminationandpresentationofresults(Task3.2)oneachhigh-needcaseforamoredetailedassessmentandThefinaltaskoftheprojectfocusesondisseminatingprioritisationofcandidatescovering:andpresentingtheresults.Thisismostlycoveredbythepreparationofthisreportandtheparticipationatseveral•Hydropowerstationoverviewanddescription(keyeventsandwebinarstoshowcasethehigh-levelfindingsofessentialcharacteristics;categorisationrationale;agethiswork.&conditionofelectromechanicalunits;yearoflastrefurbishment;keymodernisationneeds–no.ofunits06.5Environmental&impactedandifanycivilworkswouldberequired)sustainability•RoleoftheplantcurrentlyinthepowersectorandhowAspartofthescreeningactivitiesfocusingonassessingtheitcouldimproveafterthemodernisation(contributionhydropowerplantconditions,IHAhasattemptedtocollecttototalnationalsupply;baseloadorpeakingservices;informationregardingtheenvironmentalandsustainabilitygenerationprofileconcerningseasonalhydrological(E&S)impactsofmodernisationprojectsfortheplantsinflows;reservoirstorage;cascadeoperationswithotherthehigh-needcategory.However,insufficientinformationplants)wasavailableatthisstage,andfurtherassessmentwouldbeneededonaproject-by-projectbasisaheadofmodernisation•Annualperformanceindicators(historicalgenerationwork.IHAhaspreparedareviewofthepossibleE&Sandavailabilitytrends)impactsofthemodernisationworksrequiredbythehigh-needstations.Thiswaspreparedinconsultationwiththe•Operationalissues(furtherdetailonongoingequipmentIHASustainabilityTeam,anditalsoincludessomegeneralproblems,refurbishmentneedsand/orreasonsforlowsuggestionsaboutGoodInternationalIndustryPracticeperformance)(GIIP)tobefollowedinpreparationforrehabilitationandmodernisationprojects.Theresultsofthisreviewarepresentedinsection08.92AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidates93Figure15.Numberofplantsinhigh,medium,orlowneedformodernisationbyregionNorthAfricaSection077SummaryoffindingsCentralAfricaEastAfricaThissectionpresentstheresultsofthemappingexercise436carriedoutbyIHAbyfollowingthemethodologydescribed7insection06.335607.1Continent-widemappingandregionalanalysis5Thefindingsofthestation-levelassessmentsobtainedWestAfricaapplyingthemethodologydescribedinsections6.3.3and6.4forthe87hydropowerplantstotalling24,200MWacross715AfricaarepresentedinFigure18.Thisshowsthenumberofplantsassessedtobeinhigh,mediumandlowneedfor16modernisationattheregionallevel,withtheresultsshowninTable10alongsidetheinstalledcapacityineachcategory.NumberofplantsassessedHighneedMediumneedLowneedSourceIHAanalysis94AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidates95Table10.RegionaloverviewofmodernisationneedsbynumberofTable11.Archetypecasesandcharacteristicsofplantsclassifiedasstationsandinstalledcapacityhigh,medorlowneedLowneedMediumneedHighneedLowneedRegionNo.stationsCapacity(MW)No.stationsCapacity(MW)No.stationsCapacity(MW)Plantsrecentlybuiltorrefurbished/upgraded(0-30years),operateatorneardesignperformancelevelsanddonotreportanyparticularelectrical,mechanicalorcivilissues.NorthAfrica0073,09400Forthoseplantslackingdata,rehabilitationsnotedascompletedorwellprogressed,andnoindicationofurgentissues.WestAfrica31,268343042,103MediumneedEastAfrica653869387625Plantsarerunningoldtechnologiesbutnotexperiencingmajormechanicalproblemslimitingtheirproduction.CentralAfrica5923566631,557Plantspartiallycompromisedandrunningatsomewhatreducedcapacitybecauseofaspecificelectrical,SouthernAfrica166,800154,9617337mechanicalorcivilissue,regardlessofage.Forthoseplantslackingdata,rehabilitationplans&projectsreportedduetotheirageand/orpartialrehabilitationsTOTALS309,5293610,089214,621undertaken;butthecurrentstatusisunclear.Overall,21plantstotalling4,621MW–approximately20%ofHighneedcapacityscreenedandrepresenting12%ofthetotalAfricanfleet–wereassessedwithhighmodernisationneeds;36Plantsrunningoldtechnology(30y+)andarecurrentlyexperiencingrepetitiveoutagesormechanicalissuesplantsequivalentto10,089MW(approx.40%capacitylimitingtheirproductivity(e.g.unit(s)outofservice,safetyissues,repetitiveforcedoutages).screened)inmediumneed;and30plantstotalling9,529Plantsseverelycompromisedwithseveral(orall)unitsoutofserviceand/orincapableofproducingatall,MW(approx.40%)werecategorisedaslowneed.Eastandregardlessoftheirage.SouthernAfricahadthehighestnumberofplantswithForthoseplantslackingdata,reportsidentifiedpoorconditionduetoageandurgentneedsforrehabilitation&highneeds,whereasWestandCentralAfricahadthemostrepairsindicated;manywithcommittedprojects.significantamountinhighdemandforinstalledcapacity.Figure16illustratesthepercentageofstationsidentifiedTable11describesthearchetypecasesoftheplantsashighneedsrequiringmodernisation,categorisedbytheidentifiedasahigh,mediumandlowneed.Theseresultcomponentsoftheasset;showingthat54%oftheassetsfromthequalitativeassessmentcriteriaoutlinedinthenecessarymodernisationprimarilytotheelectro-mechanicalmethodologyinsection06describestheconditionofthesystems(stators,rotors,turbines,etc.),whereastheplantsthatcanbefoundinthethreecategories.remaining46%requiredworkonboththeelectro-mechanicalsystemsandcivilstructures.96AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidates97Figure16.PercentagesplitofthenumberofhighneedcasesFigure17mapsthestationsaccordingtoageofdependingonthetypeofworkrequiredelectromechanicalequipmentsincelastmajorrefurbishment(alongtheXaxis,inyears)andannualgeneration/expectedgeneration(alongtheYaxis,in%).Thesizeofthebubblereflectsthesizeoftheinstalledcapacity(MW)oftheplant.Thecolourindicatesifitwasclassifiedaslow(green),medium(yellow)orhigh(red)modernisationneed.54%46%Figure17.MappingofstationsbykeyassessmentcriteriaElectrical,&Electrical,electromechanicalelectromechanical&120%civilstructure100%80%SourceIHAmappingexercise60%Moststationsthatwerecategorisedashighneedexhibiteda40%rangeofrecurrentproblems,whichinsomecasesresultedinderatingtheplant'sdesigncapacity.Theseissuesincluded:20%•highshaftvibrationwhenoperatingatratedpower,0%•hightemperatureinaturbinethrustbearing•coolingsystemsmalfunctioning0515253545556575•lackofspareparts,whichoftentriggerscannibalisationKEYprocessofunitsoutofservice.•insomespecificcases,sedimentationwasamajordriveroftheneedformodernisationHighneedMediumneedLowneed2000MW500MW100MWNotesYaxis:Actualoutputin2020and2021inGWhdividedbytheoptimaloutputfortheplantinGWh.Xaxis:Ageisbasedontheinformationavailableaboutmajorelectromechanicalrehabilitationwork.Iftheplanthasunitsofdifferentagetheweightedaverageoftheageoftheunitsisconsidered.Bubblesize:Representingthesizeoftheinstalledcapacity(MW).98AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidates99Thoseassessedinlowneed(blue)showedrelativelylower07.3Costestimatesforageofequipment(<20years)andrecentannualgenerationmodernisationprojectsinAfricaclosertooptimal(100%).Incontrast,themedium(inyellow)andhighneed(red)casesweremoredistributedacrossAdditionalinformationwasgatheredoncostsinAfricathechart.Mostshowedreducedgeneration,aroundorbasedonestimatesprovidedbyownersandsecondarybelow65%ofexpectedoutput,and/orelectromechanicalsources.Mostofthecostestimateswerefortheproposedcomponentsover30yearsoldsincecommissioningorrehabilitationandreplacementofelectromechanicalthelastmajorrefurbishment.Afewoutlierswithunitscomponents;Thedatacollectedforeachprojectunder30yearsoldreportedspecificongoingequipmentincludedinstalledcapacityassociated,costestimatefororperformanceissues.Somedatapointsalsositalongthemodernisation,thereferenceyearfortheestimatereceived,bottomaxisat0%generation,astheseplantshavebeenshutandthe2020actualisedcostfollowingtheworld-leveldownduetoagedanddamagedequipment.benchmarksmethodology,US$/MWcalculation.07.2QuantitativeassessmentThestatisticaldistributionoftheseUS$/MWcostestimateswasthencalculatedandcomparedwiththedistributionofAsexplainedinsection6.3.3,thesecondstepofthetheIHAworld-levelbenchmarkvalues,asshowninTable12.stationdataassessment(Task2.3)includedaquantitativeassessmentoftheplants.ForthestationswithdatareceivedTable12.ComparisonofIHAbenchmarkswithAfricanmodernisationfromowners,ascoringprocesswasundertakentoprovideacostestimates(electromechanicalinstallations)quantitativeassessmentofthemodernisationneeds,confirmtheinitialfindingsandprovideanindicativerankingoftheIHABenchmarkAfricanEstimatesstationsclassifiedunderthesamecategory.US$/MWUS$/MW7.2.1RankedlistofcandidatesTheplantswerescoredagainstspecificcriteriausingMin90,988227,132performanceindicatorsandfeedbackreceivedinthedatasheets,asoutlinedinthemethodology.TheresultsofQ1290,923317,950thisquantitativeassessmentconfirmedthehigh-needcasesidentifiedintheinitialcategorisationofplantsintohigh,Median431,852413,514mediumandlow-needgroupsbasedonqualitativereviewsandfurtherprovidedarankingofthecandidatestations.Q3542,175514,551Insummary,thehighneedcasesscoredinthe6.5–12rangeoutofamaximumof15acrosstheassessmentcriteria;mediumcasesscored2.5–5.5;andlowneedcasesscored0–2.5.Max945,427622,277Mean463,815417,898100AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidates101Ingeneral,thedatasetscorrelatereasonably,andparticularlyexistingfleet'shealthandsafetyoperationsandboostthewhenlookingatthemedianandmeanvalueswhichareinactualgeneration.Accordingtoaresearchpaperonthethesameballpark,intheUS$400,000-500,000/MWrange.modernisationofhydropowerplantspublishedin2021,thereplacementofageingturbineshasthepotentialtoincrease07.4Overallinvestmentneedssystemefficiencybetween4%and6%andtheinstalledcapacitybetween5%and11.6%.84ThistranslatesintoatotalAnestimationwasalsomadeofthetotalinvestmentpotentialcapacitygainbetween740MWand1.700MWforneedsofinstalledcapacityassessedinhighandmediumthe14.7GWinhighandmediumneed.85needsinthemappingstudy.Forthiscalculation,IHA’sbenchmarkcostwasassumedtocoverthemodernisationof07.5Floatingsolarassessmentelectromechanicalcomponents(meanvalue:US$464,000/MW)81,multipliedbythecapacityineachcategory,with7.5.1ScreeningofcandidatesresultsshowninTable13.Datawasgatheredfor26hydroreservoirsitestoassesspotentialsuitabilityforFPV.BasedonthemethodologyTable13.Overallestimatesofinvestmentneedfortotalcapacityoutlinedinsection06,thelistofsiteswasscoredagainstaassessedinthestudywithhighandmediumneedsformodernisationrangeofscreeningcriteria,receivingascoreoutof10persite,withhigherscoresindicatinghigherpotentialsuitability.HighneedMediumneedThescreeningexerciseresultedinatotalof11candidatesitesbasedonacceptablescores(indicatingbetterlikelihoodInstalledcapacityassessedininthemapping†4.6GW10.1GWofsitesuitability),geographicspread(maxthreesitespercountry)andcompletenessofdatareceived.%ofoverallAfricanhydropowerfleetin2021(38.5GW)8212%26%Reviewingthe11hydroreservoirsites,thecharacteristicsthatEstimatedinvestmentneedbasedIHAbenchmarkApprox.US$2.1billionApprox.US$4.7billionwereusedtoselectthesesiteswereasfollows:modernisationcost††0.23GW–0.53GW0.51GW-1.17GW•Solarirradiancewasgenerallyhigherthanthe2000IndicativecapacityupgradeassociatedwithcompletekWh/m2/yaveragefortheAfricancontinentformostmodernisationproject83candidatesites(referencedinaEuropeanCommissionJointResearchCentre(JRC)study)86.†Thistotalincludespowerplantsforwhichdatawerereceiveddirectlyfromtheownersandplantsforwhichonlysecondarydatawereavailable.•Reservoirsurfaceareawasmoresignificantthan1km2in††Theestimatedinvestmentfiguresinthetableareexclusivelyaimedatprovidinganindicationoftheorderofmagnitudeoftheallcases.investmentrequiredandshouldbetakenasageneralindicationonly.•Maximumreservoirdepthwasatorbelowthe50mTheresultsfromthislevelofinvestmentwouldbeextremelyscreeningthresholdfor6ofthesites;Deeperreservoirsbeneficialtotheeconomicandsocialdevelopmentofthemayaddcomplexityandcosttothemooringandcontinent.Acomprehensivehydropowerplantmodernisationanchoringsystemforthefloatingstructure;bathymetricprogrammewouldsecureover14.7GWofreliablesurveywouldneedtobecarriedouttotostudydesign&electricitygeneration,increaseplantflexibility,improvetheinstallationconstraintsproperly.•Reservoirwaterlevelvariationsforseveralsitesexceededthescoringthresholdof25mmax,anotherfactorimpactinganchoringandmooring.102AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidates103•Sevenreservoirsweresingle-purpose,suggestingaassumptions.Theseincludesolarirradiationatthesitelowlikelihoodofotherreservoirsrestrictingtheuse(kWh/m2/y),%ofreservoirsurfaceareacoveredbyFPV(i.e.offloatingpanels.However,mostofthemultipurposekm2covered),PVareafactor(assumedas0.1kW/m2),PVfunctionswereforfloodcontrolandirrigation,whichperformanceratioaccountingforsystemlosses&coolingwouldnotnecessarilyimpactuseofthefloatingpanels.effects(0.8assumed),andAC/DCinverterloadratio(1.25assumedincludingsolarclipping).•Maxwaveheightsweregenerallybelow1m,whichposesnoparticularconstraint.Toreviewareasonablescenario,thecalculationassumeda500,000m2surfaceareaofreservoircoveredbyFPV,i.e.a•Distancebetweenreservoirandswitchyardwasbelow50MWsystemsize,whichgavea%areacovereddepending3kmformostsites.Longerdistancewouldaddcablingonthereservoirsizeineachcase.costtoconnectinthefloatingPVsystembutwouldnotnecessarilyprecludeprojects.Insomecases,othertie-inAnnualFPVoutputisinthe100-125GWhrangefromthe50pointsmayalsoexistnearerthereservoirsites.MWsystemassumed.•SomeextentofsparetransmissioncapacityattheThestudyshowsthatfloatingsolarhybridscouldbeahydropowerstations’gridconnectionwasidentifiedvaluablemeansofimprovinggenerationathydrositesduringforallthelistedcases.Mostofthe9casessuggesteddroughtevents.Theyalsoprovideaquickwin,giventheiratleast30-50MWavailable,basedonreportedexcessrelativelyshortdeploymenttimescales.transmissioncapacityavailable(inMW),orlineutilisationfactor(in%),whichislowerthan100%suggestsspareheadroom.Theremayalsobecaseswheresolargenerationcouldenablehydrogenerationtobereducedduringthoseperiods,whichmaybenefitoperatorsinpreservingwaterlevelsatthereservoir.Theseaspectswouldneeddetailedstudyandpowersystemstudiestoassessthecapabilityofthelocalgridtohandleaddedsolarpowersupply.CapacityconstraintswouldalsoaffectFPVsystemsizing.•ThelastcriterionshowedmostofthehydrostationshadFrancisturbineswhichwouldprovidemorerampingflexibilitytoaccommodatesolaroutputfluctuations.7.5.2SolarenergyyieldcalculationTorepresentthepotentialsolarenergyyield,annualoutputfromaproposedFPVsystemwascalculatedbasedonvariousinputassumptions;andbycomparingtheincreaseingenerationachievedatselectedhydrosites.ThemethodologyfollowsthatoutlinedinChapter8(basedonpublishedEUJRCstudy92),wherebyFPVyieldiscalculatedbymultiplyingvariousinputtermsand1C0o4ntinent-widemappingofhydropowerrehabilitatioAnfrcicaanHdiyddartoepsowerModernisationProgram10m4eContinent-widemappingofhydropowerrehabilitationcandidates105Section0808.2Workrequiredbythehighneedcasesandhigh-E&SsustainabilityreviewoflevelconsiderationsontheE&Shighneedplantsimpacts08.1IntroductionAhigh-levelsummaryoftheworkneededbyeachoftheplantsidentifiedinhighneedissummarisedintotheTocollectdataaboutthepossibleE&Simplicationassociatedfollowingcategories:withthemodernisationneedoftheplantsinhighdemand,simplifiedquestionnairesweresenttotheplantowners•electromechanicalsystems;basedonthestandard'sperformancerequirementsand•minorcivilinfrastructurework;technicalcriteria.Fromtheresultsofthequestionnaires,it•reconstructionoftransmissioninfrastructure;washopedtoprovideadetailedE&Sreviewofthepotential•sedimentationremoval;impactsofthedifferentmodernisationprojects.•modernisationinvolvinganincreaseincapacity.Unfortunately,therehavebeennoresponsestodate.Nonetheless,thefollowingsectionpresentsaliteratureThescopeofidentifiedhighneedstationsisalmostalwaysreviewanddesk-basedanalysisofsimilarexamplesofexclusivelyfocusedonthemodernisationoftheelectricalmodernisationprojectstohighlightkeytrendsandflaganyandelectromechanicalequipmentoftheplant.Thesehigh-riskareas.typicallyincludedrivetraincomponents(i.e.,generator,turbines,statorsandrotors),controlstructures(i.e.,gates,valvesandcranes),transformers,highvoltageswitchgear,auxiliaryelectricalservices,andelectricalcontrolsystems.Inafewcases,interventionsonthecivilstructurearerequired.Still,thesealwaysaimtomaintainthecurrentinfrastructure(housing,waterintakeandoutlet,anddam)inasafeandreliableoperatingstatusratherthanexpandingthedamsize.Inthosecaseswhicharepredominantlyfocusedontherehabilitationormodernisationoftheelectromechanicalequipment,theoriginalE&Sfootprintoftheplantgenerallyremainsunalteredasnosignificantalterationsaremadetothecorecivilinfrastructures(as,forinstance,thedamorthewaterintakeandtailracestructures).Providedthatallrequiredassessmentandmitigationmeasuresareconsideredduringtheplanningandimplementationphases,theseprojects'cumulativeenvironmentalandsocialimpactsontheoperationoftheplantshouldberelativelyinconsequential.106AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidates107Theymayevenbepositiveinsomeinstances.Althoughthisisnotthecaseforanyoftheplantsreviewedindetail,itisessentialtounderlinethatiftheworkshouldalsoIndeed,thescopeofamodernisationprojectisoftenrequireanexpansionofthedam,thiswillneedadetailedtorehabilitatethepowerplanttoitsoriginalnameplateassessmentofthephysical,biologicalandsocialimplicationscondition,whichusuallyimpliesabetterutilisationofassociatedwiththeadditionalupstreamareaimpoundedwaterresourcesduetohigherefficiencyandenhancedbythereservoirandtheerectionofthenewcivilstructures.unitregulatingcapacity,aswellasmoreefficientandsaferThesecasesarealmostcomparabletoagreenfieldproject,operations.Rehabilitatedplantsrequirelessextraordinaryasthemajorcivilengineeringinterventionswillsubstantiallymaintenanceandareoftenasaferworkingenvironment.altertheE&Simpactoftheinstallation.Additionally,theintroductionofmodernandmoreefficientelectromechanicalequipmentcan,inspecificcases,enableFinally,particularattentionshouldbededicatedtoprojectstheplanttoextenditsoperatingrangeandmayresultforpowerplantslocatedinWorldHeritagesitesorwithpre-inareductioninstart&stopoperations,allowingbetterexistingconflictswithlocalcommunities.Thismaygenerateregulationofthewaterdischargedfromtheplantandthepotentialconstraintsontheextractionofadditionalwaterformaintenanceofaminimumwaterlevelinthedownstreamelectricityproductionaswellastheaccessibilityofthesite.88riverduringtheperiodoflowwateravailability.RehabilitationandmodernisationprojectscanalsobeassociatedwithTheIHAhascooperatedwithvariousrelevantstakeholders,implementingothermeasuresaimedatmitigatingtheincludingenvironmental&socialNGOs,governments,originalproject'spossiblenegativeimpacts.Thesemeasuresoperators,suppliers,andfinancialinstitutions,inpreparingincludeimprovedfishpassagebyintroducingfishladdersortheHydropowerSustainabilityStandard.Thisisaglobalimprovedturbineseals,whicheliminatelubricantleakage.certificationschemespecificallydesignedforgreenfieldsIngeneral,oneofthemainaspectstobeconsideredisandbrownfieldshydropowerprojects.88TheStandardisthealterationorthediversionofthewaterflowpassingalignedwithgreenfinanceinitiativessuchastheClimatethroughthepowerplantsduringtheperiodoftheworks.BondsInitiative’sHydropowerCriteria,andisoftenrequiredThisaspecthasbiologicalimplications,duetothepossibletoaccessgreenfinance.changeinwatersupplyinthedownstreamriver,aswellassocialimpacts,duetothepossibleutilisationofthewaterreleasedbytheplantforotheractivities.87Itisgenerallyrecommendedtorehabilitatehydropowerpowerplantsequippedwithmultipleunitsadoptingamulti-stageapproachwithworkbeingcarriedoutsequentiallyonthevariousunits.Thisapproachwilllimittheoverallimpactoftheresultsontheelectricityproductionandwatersupplytothedownstreamriver.Inthosecaseswheremodernisationofthegeneratingunitscouldbeassociatedwithasubstantialincreaseingeneratingcapacity.Typically,anad-hocanalysistoidentifyandmitigatethepossibleconsequencesontheriver’secosystemandtheactivitiescarriedoutbythelocalcommunitiesinthedownstreamareasisrecommended.108AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidates109Section09Moreover,theneedformodernisationhasneverbeenmoreimportant.IEA’sSpecialHydropowerMarketReportConclusionand2021forecaststhatglobally,around45%(170GW)oftherecommendationsprojectedincreaseinhydropowercapacityby2030willderivefromexistinginfrastructure;theforecastconsiders09.1Mappingconclusionsprojectedgrowthintherangeof4-5GWfromreplacementsandupratesoftheexistingfleetinAfricaandtheMiddleModernisationhasavarietyofdriversandpotentialEast(primarilySub-SaharanAfrica).Inallgrowthscenarios,improvements,whicharedeterminedbytheconditionsadequateinvestmentintotoday’shydropowercapacityandoptionsavailableforanindividualsite.Modernisationwillbeessentialtosustainandenhancereliableelectricityprojectsprovideanopportunitytoaddresslegacyissuessuppliesfordecades.ofolderstationswhileofferingawindowtoimplementup-to-dateenergytechnologies,capacityupgrades,andOutofthe24.2GWofinstalledhydropowercapacityenvironmentalmeasuresatexistingsitesatrelativelylowcoveredinthestudy,4.6GWwasassessedinhighneedcost.Incountrieswithambitiousdecarbonisationplans,ofmodernisation,makingupover10%ofAfrica’soverallmodernisinghydropowerusingtechnologiestoenhancehydropowerfleetandrepresentinganestimatedUS$2.1flexibilityserviceswillhelpsupportgrowthinvariablebillionofrequiredinvestment.89Forthemostpart,the21renewablescomingontothesystem.Severalcasestudieshigh-needplantsidentifiedinthemappingwereusingillustratedtheapproachesandbenefitsthatcanbeachieved.oldtechnologyandexperiencingfrequentoutagesormechanicalissueslimitingproductivity,withgeneratingunitsoftenworkingatlimitedpowerorcompletelyoutofservice.Thislevelofinvestmentwouldnotonlyrestoreroughly800MWofexistinghydropowercapacitycurrentlyoutofoutofservice.Still,itcouldpotentiallyincreaseupto11%oftheseplants'overallinstallednominalcapacity.Afurther10.1GWwasassessedinmediumneedofmodernisation,coveringafurther25%oftheAfrica’stotalinstalledhydropower,andrepresentinganadditionalUS$4.7billionofestimatedinvestmentrequired.The36plantscategorisedinmediumneed,whilenotexperiencingsuchmajorproblemsasthehighneedcases,werenonethelessrunningoldtechnologiesandinmanycasespartiallycompromisedandarelikelytorequireinvestmentinrehabilitationorupgradingoffacilitiesinthecomingyears.Regionally,allplantsidentifiedinhighneedofmodernisationwereinSub-SaharanAfrica.Intermsofinstalledcapacity,justover90%waslocatedacrossWest(2.1GW),Central(1.6GW)andEastAfrica(0.6GW),withtheremainderinSouthernAfrica(0.3GW).Allregionshadadditionalcapacityin110AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidates111mediumneed,particularlySouthernAfrica(5GW)andNorth09.1RecommendationstotheAfrica(3GW).AfricanDevelopmentBankAlltheseplantsneedextensivemodernisationworktoThemappinghasrecommendedalistofplantscategorisedrestoreexistingelectromechanicalinfrastructuretofullinhighormediumneed,someofwhichwouldrequirecapabilityandimproveannualproductionandperformancefurtherinvestigationtobetterunderstandthecurrentstatusbyinstallingnew,moreefficienttechnologies.Thereareandspecificinvestmentneeds.ThestudyhasalsosetoutalsoopportunitiestoincreasecapacitythroughupgradesashortlistofprioritycandidatesfortheAfDBtoconsiderorexpansionsand/orbyinstallingfloating(orland-based)formodernisationandinvestment–withassessmentsandsolarPVatornearthehydropowersite.Eachcasewouldalsosummariescompiledforthesecasesincollaborationwiththesupportprogressindecarbonisationandinterconnectionplantowners.ofgridsbyimprovingtheavailabilityandreliabilityofcleanelectricitysupply.Additionally,themodernisationswouldRecommendednextstepswouldbetoinvestigatefurthertheprovideachancetoadaptexistinghydropowertobemoreinvestmentneedsandscopeofworksandconductfeasibilityresilientagainstclimatechangeimpacts,particularlyinforselectedprojects–alsoconsideringanypotentialthosecountriesexperiencinghydrologicalvariability.Theseadditionalbarriers(e.g.financingorenvironmental&projectsarealsolikelytobecost-effectiveoptionscomparedsustainability(E&S))aswellasotheropportunitiesthatcouldtogreenfieldalternatives.beincludedinaproposedmodernisation(drawingonthedrivers&opportunitiesoutlinedinChapter3,andanyfurtherFromanenvironmental&socialperspective,rehabilitationE&Sbenefitsidentified).Thiswouldinvolveworkingcloselyworkstoincreaseefficiencies,replaceequipment,andrectifywiththeowners,relevantspecialists,andsuppliers.ageinginfrastructureissuescouldbeconsideredusualassetmanagementpracticeforoperationsandnormallywouldnotMorespecifically,forthosestationsidentifiedasinhighneedinstigateachangeintheproject'simpacts.Theseprojectsofmodernisation,itisrecommendedthatamoredetailedareoftenanexcellentopportunitytoimplementmeasuresanalysisbeundertakentooptimisetheinvestmentneedsforthatcanimprovetheE&Sfootprintoftheplantanditsthefacility.Forthosestationsidentifiedasmediumneeds,operations.Examplesofthesemeasuresaretheintroductionacomprehensivemonitoringprogramisrecommendedoffishladdersorimprovedturbineseals,whicheliminatetoassesstheconditionandperformanceoftheassetonalubricantleakage.cyclicalbasis.Inmanycases,intheoverallassessmentofmodernisationneedsforhydroelectricfacilitiesinAfrica,accesstosparepartsforevenroutinemaintenancewasidentifiedasabarriertotheoverallassetmanagementstrategyattheplant.ThisaspectshouldbeaddressedbyplantownersworkingdirectlywithequipmentmanufacturerswhohaveexperiencewithsourcingandsupplyingsparepartsinAfrica.112AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidates113References19GE,2018.‘Hownewtechnologiesinhydropowercanincrease43www.hydroworld.com/articles/2017/06/epri-releases-whitepaper-68www.bfe.admin.ch/bfe/en/home/policy/energy-strategy-2050.hydropowerplantsavailabilityandefficiency?’.Presentationon-hydro-plant-operations.html#grefhtml1www.iea.org/reports/africa-energy-outlook-2019.(confidential)44Frankl,P.,2019.‘Theneedformodernizinghydroinrapidly69www.addleshawgoddard.com/en/insights/insights-briefings/2021/iea.blob.core.windows.net/assets/2f7b6170-d616-4dd7-a7ca-20www.andritz.com/group-en/news-media/hydro/2018-08-02-nurek-changingpowersystems’.IEApresentation,WorldHydropowerenergy/an-investors-guide-to-hydropower-in-africa/a65a3a332fc1/Africa_Energy_Outlook_2019.pdfelectro-mechanical-equipment-hydro(accessed25November,2019).Congress2019.70openknowledge.worldbank.org/handle/10986/333132www.iea.org/fuels-and-technologies/electricity21voith.com/corp-en/VH_ShapingTheFuture_18_vvk_VH3397_en_45Thisalsoincludesthecaseofpowerplantsinitiallydesignedto71www.hydrosustainability.org/published-assessments/semla-iv3IHAhydropowerdatabase.screen.pdf(accessed25November,2019).operateonisolatedgridsandaresubsequentlyconnectedtothe72Foradditionaldetailssee:https://www.hydropower.org/news/iha-4www.iea.org/regions/africaandIEAAfricaEnergyOutlook2022.22www.andritz.com/resource/mainpowergridoftheregion,causingachangeinhowthesearelaunches-1m-assessment-fund-for-sustainable-hydropower-projects5Source:IEA,WorldEnergyOutlook-2021.Accesstoelectricity.blob/31840/5cab6294379100be61fdd75aa590769f/hydro-service-operated.73Notethatforseveralprojects,twooreventhreedatapointswere6ThetotalpoweroftheAfricanhydropowerfleetistakenfromrehab-en-data.pdf(accessed25November,2019).46Basedon“IRENA_REmap_Global_Renewables_Outlook_2021”,availableastheinformationwassufficientlygranular.Forexample,theIHAStatusreport2022:https://www.hydropower.org/23www.ge.com/reports/tiny-bubbles-big-impact-hydro-power-plant-dataforAnnualPledgesScenario.AfricaandtheMiddleEastistheaprojectcouldhavecostinformationonelectricalinstallationsandpublications/2022-hydropower-status-reporthelp-save-north-carolina-lake/regionalclassificationusedbyIRENA.TheinstalledfleetinAfricacivilworks.7ThisfigureisbasedonastudyfocusedontheEuropeanfleet,24www.nww.usace.army.mil/Media/News-Releases/andtheMiddleEastin2022amountsto34.2GW(IRENA,Renewable74Davitti,A.,2018.‘Projectcostmodellingforhydropowerschemesindicatingachievablepowerincreasebetween5%and11.6%whenArticle/1473327/18-026-corps-of-engineers-awards-321-million-CapacityStatistics2023).indevelopingcountries’.Hydropower&Dams,IssueSix.replacingold,deterioratedturbinesbasedonoutdatedtechnology.modernization-contract-to-design-m/47www.hydroreview.com/hydro-industry-news/voith-hydro-IEAhttps://www.iea.org/reports/climate-impacts-on-african-“AssessingtheenergypotentialofmodernizingtheEuropean25www.ge.com/reports/go-with-the-flow-these-engineers-are-completes-modernization-work-on-1000-mw-drakensberg-pumped-hydropowerhydropowerfleet”,EmanueleQuarantaandothers,2021.https://doi.building-a-fish-friendly-hydropower-plant/storage/#gref75IHAanalysis.HydropowerStatusReport2022.https://www.org/10.1016/j.enconman.2021.11465526Marx,P.,2019.‘Leverageexistinghydropowerassetstosupport48www.nsenergybusiness.com/projects/abdelmoumen-pumped-hydropower.org/publications/2022-hydropower-status-report.8Totalinstalledcostsforgreenfieldhydropowerprojectsaretheenergytransition’.GERenewableEnergypresentation,Worldstorage-power-plant/76Note:Pipelinereferstoprojectsunderconstruction,regulatorgenerallyintherangeof2,100US$/kW(IRENA2021RenewableHydropowerCongress201949pumped-storage-forum.hydropower.org/approved,pendingregulatorapprovalorannounced.PowerGenerationCosts),whilemodernisationprojectcostsarein27Comparedtogreenfieldproject.50www.xflexhydro.net77BasedonIHAHydropowerDatabasetherangeof400-500US$/kW.Additionalinformationaboutthe28Forinstance,theKaribaSouthpowerstationlocatedonthe51www.epri.com/#/pages/product/3002006400/?lang=en-US78SomestationswereincludedbasedondiscussionsofpotentialmodernisationcostbenchmarkisavailableinSection5.ZambeziRiverwasmodernisedin2010andthecapacityofthe52www.estorage-project.eu/wp-content/uploads/2013/06/eStorage-needwithAfDB.9Alistofthetop5FPVprojectsin2025isavailableinthefollowingfourFrancisunitswasincreased150MWto180MW.ThisprovidedD3.2-Value-of-storage.pdf79TheformwasalsotranslatedintoFrenchforcompaniesoperatingarticle:totalpowerupliftof120MW.https://www.nsenergybusiness.com/53/www.policycenter.ma/opinion/digitalization-future-energy-africainfrancophonecountrieswww.ysgsolar.com/blog/5-largest-floating-solar-farms-world-2022-projects/kariba-north-hydroelectric-power-station/54www.iea.org/reports/climate-impacts-on-african-hydropower80www.sciencedirect.com/science/article/pii/ysg-solar29www.hydroreview.com/world-regions/refurbishment-renewing-55www.hydropower.org/publications/hydropower-sector-climate-S0960148121000471?dgcid=rss_sd_all10Seealso:IEAHydropowerSpecialMarketReportAnalysisandveteran-assets-and-securing-new-megawatts-in-zambia-and-resilience-guide81Seesection3Forecastto2030iea.blob.core.windows.net/assets/4d2d4365-08c6-nicaragua/#gref56www.climatepolicyinitiative.org/wp-content/uploads/2022/09/82ThetotalpoweroftheAfricanhydropowerfleetistaken4171-9ea2-8549fabd1c8d/HydropowerSpecialMarketReport_corr.pdf30www.hydropower.org/sediment-management-case-studies/sudan-Landscape-of-Climate-Finance-in-Africa.pdffromtheIHAStatusreport2022:https://www.hydropower.org/11IEA,HydropowerSpecialMarketReport,2021.roseires57www.hydropower.org/sediment-management-case-studies/sudan-publications/2022-hydropower-status-report.In2022IHAupdated12IEA,HydropowerSpecialMarketReport,2021.31ecdpm.org/work/african-power-pools-regional-energy-national-roseiresthisfigureto40GW.13documents.worldbank.org/curated/en/518271468336607781/power58www.researchgate.net/publication/263007058_Modelling_of_83ThisfigureisbasedonastudyfocusedontheEuropeanfleet,Rehabilitation-of-hydropower-an-introduction-to-economic-and-32ecdpm.org/application/files/1816/6074/5141/DP-244-African-sedimentation_processes_inside_Roseires_Reservoir_Sudanindicatingachievablepowerincreasebetween5%and11.6%whentechnical-issues(accessed3December,2019).Power-Pools-1.pdf59www.hydropower.org/sediment-management-case-studies/replacingold,deterioratedturbinesbasedonoutdatedtechnology.14MartinsNogueira,M.andAlarcón,A.,2019.‘Impactodelas33www.grida.no/resources/5184malawi-kapichira“AssessingtheenergypotentialofmodernizingtheEuropeanparadasenlageneraciónhidroeléctricadeBrasil’.Notatécnicadel34techcentral.co.za/for-the-first-time-there-is-real-concern-about-60Thecapacityfactoristheratioofactualelectricalenergyoutputhydropowerfleet”,EmanueleQuarantaandothers,2021.https://doi.BID;IDB-TN-01595.the-stability-of-the-grid/204566/overagivenperiodoftimetothetheoreticalmaximumelectricalorg/10.1016/j.enconman.2021.11465515(accessed2December,2019).35www.hydroreview.com/hydro-industry-news/voith-hydro-energyoutputoverthatperiod84ThisfigurearebasedonastudyfocusedontheEuropeanfleet16www.advantageaustria.org/us/events/Andritz-Hydro.pdfcompletes-modernization-work-on-1000-mw-drakensberg-pumped-61www.iea.org/reports/climate-impacts-on-african-hydropowerandindicatedachievablepowerincreaseupto11.6%.17www.hydropower.org/sediment-managementstorage/#gref62/library.wmo.int/index.php?lvl=notice_display&id=22136#.Y-“AssessingtheenergypotentialofmodernizingtheEuropean18www.osti.gov/etdeweb/servlets/purl/2139767736www.engineeringnews.co.za/article/sapp-to-prioritise-malawi-D00XbP0Q-hydropowerfleet”,EmanueleQuarantaandothers,2021.https://doi.tanzania-angola-for-regional-grid-integration-2018-11-2863www.hydropower.org/sites/default/files/publications-docs/org/10.1016/j.enconman.2021.11465537www.esi-africa.com/industry-sectors/business-and-markets/Better%20Hydro%20Compendium%20of%20Case%20Studies%2085Thesefiguresshouldbetakenasabest-casescenario,asnotspecial-offer-sapp-mapped-out-to-showcase-opportunities/2017.pdfallthepowerplantidentifiedinthestudy,donecessarilyrequire38ecdpm.org/work/african-power-pools-regional-energy-national-64tractebel-engie.com/en/references/nalubaale-and-kiira-modernisationworkincludingafullredesignoftheturbineandpowerhydropower-plantsotherhydrauliccomponentswhichcouldleadtonoticeablecapacity39documents1.worldbank.org/curated/en/184131524133396228/pdf/65www.afdb.org/sites/default/files/documents/environmental-and-upgrade.Project-Information-Document-Integrated-Safeguards-Data-Sheet-social-assessments/nigeria_-_kainji_and_jebba_hydro_power_plant_86www.sciencedirect.com/science/article/pii/AFCC2-RI-3A-Tanzania-Zambia-Transmission-Interconnector-P163752.rehabilitation_project_-_esia_summary.pdfS0960148121000471?dgcid=rss_sd_allpdf66Apowerpurchaseagreement(PPA)isacontractualagreement87AdetailedassessmentontheimplicationoftheAwashRiver40www.hydropower-dams.com/news/consulting-services-sought-betweenanenergyproducerandanenergybuyer.BysigningaPPA,Bassinisavailableatthislink:https://www.hilarispublisher.com/open-for-rehabilitation-of-egypts-aswan-high-dam-and-hydropower-plants/thetwopartiesagreetobuyandsellanamountofenergywhichaccess/awash-rivers-the-ongoing-irrigation-practices-future-projects-41www.esi-africa.com/industry-sectors/transmission-and-istobegeneratedbyarenewableassetatapricedeterminedbyaand-its-impacts-on-the-environment-of-awash-river-basin-73509.htmldistribution/wapp-north-core-project-for-interconnectivity-to-be-specificcontractualclause.Thisisgenerallylong-termagreement88whc.unesco.org/en/list/509/completed-in-2023/coveringaperiodbetween10-20years.89www.hydropower.org/sustainability-standard42www.andritz.com/hydro-en/hydronews/hydropower-africa/67Dupraz,C.,2019.‘ModernisationStrategies’SwissFederalOffice90Seesection5foradditionaldetails.cameroonoffEnergypresentation,WorldHydropowerCongress2019.114AfricaHydropowerModernisationProgrammeContinent-widemappingofhydropowerrehabilitationcandidates115DisclaimerTheviewsexpressedinthispublicationarethoseoftheauthorsanddonotnecessarilyreflecttheviewsandpoliciesoftheAfricanDevelopmentBank(AfDB),itsBoardofGovernors,itsBoardofDirectorsorthegovernmentstheyrepresent.AfDBanditsBoardofDirectorsdonotguaranteetheaccuracyofthedataincludedinthispublicationandacceptnoresponsibilityforanyconsequenceoftheiruse.Thestudywasintendedtobeahigh-levelscreeningexercisetoidentifypotentialcandidatehydropowerstationsformodernisationatacontinentalscaleinAfrica.Theinformationprovidedinthisstudyisnotacomprehensive,detailedanalysisandisnotintendedtobeusedtodecideonspecificplant-levelmodernisationdesignrequirements.Bymakingadesignationorreferencetoaparticulargeographicalareaorusingtheterm“country”,AfDBdoesnotintendtomakeanyjudgmentsastothelegaloranotherstatusofanyterritoryorarea.AfDBencouragesprintingandcopyinginformationexclusivelyforpersonalandnon-commercialpurposeswithproperacknowledgementofAfDB.Usersarerestrictedfromselling,redistributing,orcreatingderivativeworksforcommercialpurposeswithouttheexpresswrittenconsentofAfDB.UtilisingthisdocumentisintendedandauthorisedonlyforthebenefitsofthepersonnelemployedbytheAfricanDevelopmentBank.SustainableEnergyFundforAfrica(SEFA)AfricanDevelopmentBankGroupImmeubleduCentredecommerceInternationald’AbidjanCCIAAvenueJean-PaulII01BP1387Abidjan01,Côted’Ivoirewww.afdb.org/sefa©2023AfricanDevelopmentBankAllrightsreserved